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ABSTRACT

ONE-DIMENSIONAL REAL-TIME SIGNAL DENOISING USING

WAVELET-BASED KALMAN FILTERING

DURMAZ, Murat

M.S., Department of Geodetic and Geographic Information Technologies

Supervisor : Assoc. Prof. Dr. Mahmut Onur KARSLIOĞLU

May 2007, 74 pages

Denoising signals is an important task of digital signal processing. Many linear

and non-linear methods for signal denoising have been developed. Wavelet based

denoising is the most famous nonlinear denoising method lately. In the linear case,

Kalman filter is famous for its easy implementation and real-time nature. Wavelet-

Kalman filter developed lately is an important improvement over Kalman filter, in

which the Kalman filter operates in the wavelet domain, filtering the wavelet coeffi-

cients, and resulting in the filtered wavelet transform of the signal in real-time. The

real-time filtering and multiresolution representation is a powerful feature for many

real world applications.

This study explains in detail the derivation and implementation of Real-Time

Wavelet-Kalman Filter method to remove noise from signals in real-time. The fil-

ter is enhanced to use different wavelet types than the Haar wavelet, and also it is

improved to operate on higer block sizes than two. Wavelet shrinkage is integrated

to the filter and it is shown that by utilizing this integration more noise suppression

is obtainable. A user friendly application is developed to import, filter and export

signals in Java programming language. And finally, the applicability of the proposed

method to suppress noise from seismic waves coming from eartquakes and to en-

hance spontaneous potentials measured from groundwater wells is also shown.
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ÖZ

TEK BOYUTLU SİNYALLERDE DALGACIK TABANLI KALMAN FİLİTRESI

KULLANARAK GERÇEK ZAMANLI GÜRÜLTÜ BASTIRILMASI

DURMAZ, Murat

Yüksek Lisans, Jeodezi ve Coğrafi Bilgi Teknolojileri Bölümü

Tez Yöneticisi : Doç. Dr. Mahmut Onur KARSLIOĞLU

Mayıs 2007, 74 sayfa

Sayısal sinyal işlemenin önemli bir görevi sinyallerdeki gürültüyü bastırmaktır.

Sinyallerdeki gürültünün bastırılması için bir çok doğrusal ve doğrusal olmayan

teknik geliştirilmiştir. Dalgacık tabanlı gürültü bastırma son zamanların en ünlü

doğrusal olmayan tekniğidir. Kalman filtresi ise doğrusal olanlar içinde basitçe uygu-

lanabilir olması ve gerçek zamanlı kullanılabilir olmasından dolayı tanınır. Son za-

manlarda geliştirilen Dalgacık-Kalman filtresi normal Kalman filtresi üzerine önemli

bir ilave- dir ki bu filtre Dalgacık tanım kümesinde sinyalin dalgacık katsayılarını

filtreler ve sonuç olarak filtrelenmiş sinyalin Dalgacık dönüşümünü gerçek zamanlı

olarak hesaplar. Gerçek-zamanlı filtreleme ve çoklu çözünürlüklü gösterim bir çok

gerçek sinyal işleme problemi için çok önemlidir.

Bu çalışma sinyaller içindeki gürültüyü bastırmak için, Gerçek-Zamanlı Dalgacık-

Kalman filtresi metodunun türetilmesini ve geliştirilmesini ayrıntılı biçimde anlatır.

Filtre Haar dalgacık fonksiyonu dışındaki diğer fonksiyonları da kullanabilecek bi-

çimde geliştirilmiştir. Filtre aynı zamanda daha yüksek blok büyüklüklerinde de

çalışacak şekilde genişletilmiştir. İlave olarak, metoda Dalgacık sıkıştırma tekniği en-

tegre edilerek daha fazla gürültü bastırılabileceği gösterilmiştir. Bu çalışmada ayrıca,

sinyallerin açılması, işlenmesi ve saklanması amacıyla kullanıcı dostu bir bilgisa-

yar programı geliştirilmiştir. Son olarak, metodun sismik dalgalardaki gürültünün
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batırılması ve yeraltı kuyularında ölçülen doğal potansiyel sinyalinin düzeltilmesi

amacıyla kullanılabilirliği gösterilmiştir.

Anahtar Kelimeler: Dalgacık-Kalman, Dalgacık, Kalman Filitresi, Dalgacık Sıkış-

tırma, Sismik, Gürültü bastırma
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(Afet-İşleri, 2007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 5.3 Gönen Earthquake 20/10/2006 . . . . . . . . . . . . . . . . . . . . . 51
Figure 5.4 Frequency response of Gönen Earthquake and Buttleworth filter . . 52
Figure 5.5 Reconstructed signal after Butterworth Filtering . . . . . . . . . . . 52
Figure 5.6 Reconstructed signal after Wavelet-Kalman Filtering . . . . . . . . . 53
Figure 5.7 Simplified Well Logging Schema . . . . . . . . . . . . . . . . . . . . 55
Figure 5.8 Sample SP Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 5.9 A Noisy Well Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 5.10 MAF Filtered Well Log with kernel=5 . . . . . . . . . . . . . . . . . . 57
Figure 5.11 Wavelet-Kalman Filtered Well Log with level 4 . . . . . . . . . . . . 58

Figure B.1 Wavelet UML Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure B.2 Wavelet UML Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure B.3 Screenshot of Torpu (the software developed) . . . . . . . . . . . . . 73
Figure B.4 another screenshot of Torpu (the software developed) . . . . . . . . 74

xiii



CHAPTER 1

INTRODUCTION

We sense our environment with observations made by measuring devices. Although

the technology have developed new high quality measuring devices, there still exists

uncertainity in our measurements. Therefore removal of the noise (the unwanted

signal parts in general) from the observed signal is a very important part of any

signal processing task. In this sense, also a parameter estimation procedure can be

regarded as a noise reduction method in an optimal way.

The first formal method of finding an optimal estimate from noisy data is the

method of least squares, which is introduced by Gauss in 1809 (Grival and Andrews,

2001). Wiener (1964) proposed a new time-invariant filter that uses the signal-to-

noise ratio (SNR) of the signal to find the solution for the least-mean-squared predic-

tion error of the signal (Grival and Andrews, 2001).

The Wiener Filter is useful in predicting the signal in future in the presence of

noisy measurements. However, it only works for time-invariant (stationary) signals.

Moreover it is hard to find a recursive, computationally efficient discrete algorithm

for it (Minkler and Minkler, 1993). In 1960s Kalman introduced a new sequential

and recursive discrete-time filter for time-varying or time-invariant signals which

can easily be implemented by computers (Minkler and Minkler, 1993). His work and

other achievements in the area is explained in detail in Chapter 2.

The above methods are based on linear systems theory. They use linear systems

of equations to describe the signal. On the other hand, the Fourier Transform have

been used by scientists and engineers to represent signals in frequency domain since

1822. By the invention of FFT(Fast Fourier Transform) and improvements in compu-

tational power, other types of noise removal techniques have been introduced. These

noise removal techniques use the frequency response of white noise in the frequency

1



domain. Since white noise has a flat spectrum in frequency domain, a thresholding

filter can be implemented by a prior knowledge of the noise characteristics (Petrou

and Bosdogianni, 1999). These kind of filters can also be implemented as convolu-

tion filter in time domain which makes it computationally efficient. They are called

low pass filters since they only allow low frequency components in the resulting

signal. Although the Fast Fourier Transform gives a computationlly fast orthogo-

nal transform for signal processing, it does not have time resolution, which makes

it difficult to analyse the noise content of the signal in time domain (Mallat, 1998).

To overcome this problem Gabor (1946) introduced Windowed Fourier Transform.

Windowed Fourier Transform is a transform where a Gabor atom is convolved with

the signal resulting in frequency variations of the signal over time (Mallat, 1998).

Grossman and Morlet (1984) showed that scaling and dilating a single function

“wavelet” can be used to construct the so called Continuous Wavelet Transform to

analyse a given signal in both frequency and time domain. Haar (1910) introduced

the simplest form of wavelet function called Haar Wavelet.

The Continuous Wavelet Transform is simple to implement, but it is not computa-

tionally efficient. Mallat (1989) showed that the continuous wavelet transform can be

implemented in a computationally efficient form with a dyadic multiresolution anal-

ysis. Instead of scaling and translating the wavelet function over continuous scales

and time, dyadic scaling and translating functions are introduced. Moreover a fil-

terbank for transforming dyadic wavelet transform is also introduced. In Addition,

he showed a way to systematically construct wavelet basis functions (Mallat, 1989).

After the theoretical and practical basis for wavelet transform is described, different

types of wavelet basis functions have been introduced among which the Daubechies

wavelets (Daubechies, 1988) are the most used ones since they are compactly sup-

ported and differentiable. A compactly supported wavelet function is defined only

on an interval in time domain, which is an important property to have a good time

localization.

Donoho and Johnstone (1994) showed that simple thresholding in an appropriate

basis can be a nearly optimal non-linear estimator of a signal contaminated with

white noise. Moreover They showed that a universal threshold can be computed

by the length of the signal and σ, which is the variance of the noise content in the

signal (Donoho and Johnstone, 1995). Different kind of basis and threshold choosing
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mechanizms have been developed since then.

Hong et al. (1998) introduced a new agorithm called Wavelet-Kalman Filter which

is a special kind of the Kalman Filter that decomposes a signal to its wavelet coeffi-

cients. Wavelet-Kalman Filter decomposes the signal to its wavelet coefficients in

real-time while filtering the signal with Kalman Filter. With this algorithm the two

different areas of signal estimation methods meet in one algorithm. They also proved

that this new algorithm gives more accurate estimations than the standard Kalman

Filter (Hong et al., 1998).

In the second chapter of this study the Kalman Filter will be explained in detail

and it’s relation to the least squares method will be shown in detail. While the third

chapter will explain the wavelet based multiresolution analysis and wavelet shrink-

age, the forth chapter will give the Wavelet-Kalman filter derivation and implemen-

tation in detail. Also Monte-Carlo simulation results of the implementation will be

listed in this chapter. The fifth chapter will show the application of the Wavelet-

Kalman Filter to well logs and seismic waves and comparisons with existing filtering

methods. Finally, the sixth chapter will list the conclusions of the study and potential

future research areas.

The main objective of the thesis is to study if the method developed by (Hong

et al., 1998) can be used in denoising of some signals related to geosciences. The

algorithm introduced by Hong et al. (1998) will be implemented. Throughout the

thesis the method introduced by (Hong et al., 1998) will be developed further to

include other wavelet functions and to work with levels higher than two. Moreover,

wavelet based thresholding (wavelet shrinkage) will be integrated into the Wavelet-

Kalman Filter to introduce even more smoothing of the signal. The algorithm will be

implemented in Java programming language and will be bundled in a software with

simple to use graphical user interface.

3



CHAPTER 2

KALMAN FILTERING

2.1 Stochastic Processes

Suppose a surveyor is holding a GPS receiver and measuring the coordinates of

his position in five minutes intervals. Because of, among others, the GPS satellites

ephemeris errors and other environmental conditions along the signal path, he will

measure different coordinates of his position in five minute intervals. Which is the

exact position of the surveyor? The answer is not straightforward. The measure-

ments are simply random variables. The process of measuring the position of the

surveyor in five minutes time, standing at the same position, can be identified as a

stochastic process or time series.

2.1.1 One Dimensional Random Processes

2.1.1.1 Definition

A signal f(t) whose values can be determined for any time instance t of interest is

called a deterministic signal. The exact value of the signal can be predicted by the

associated formulation of f(t) (Brown and Hwang, 1991). For example for a deter-

ministic signal

f(t) = 10sin2πt (2.1)

the exact value of f(t) for any time instance t can be predicted exactly. However,

suppose that f(t) is formulated as :

f(t) = 10sin(2πt+ θ) (2.2)

4



where θ is an independent random varable with known distribution. Then the value

of the signal f(t) can not be predicted in deterministic sense and it will be a random

variable. A one dimensional process f(t), whose value is a random variable for any

time instance t, is called one dimensional random process (Therrien, 1992). If the

process is defined on discrete time intervals then it is called discrete one dimensional

random process and represented as f [k] or fk, where k is the discrete time interval.

In this study one dimensional random processes are refered as random processes for

short.

2.1.1.2 Expected Value and Variance

The expected value for a discrete one dimensional stochastic process is defined as

(Grival and Andrews, 2001):

E{x} =
n∑
k=0

xkp(xk) (2.3)

Where E means the expected value and p is the probability density function of x. If

the occurance of random variables are of equal probability, then E{x} is simply the

average of the series. The mean is also called the first statistical moment of x.

The variance of a stochastic process is defined as:

σ2 =
n∑
k=0

(xk − E{x})2p(xk) (2.4)

Where σ2 is called the variance (square of standard deviation from mean) and p

is the probability function of x. If the occurence of random variables are of equal

probability, then variance can be written in the form of

σ2 =
1
n

n∑
k=0

(xk − E{x})2 (2.5)

The variance in this case is called the avarage mean squared deviation from mean.

The variance is a measure of clustering property of a random variable around its

5



mean. The variance is smaller, the more strong clustering property there is (Grival

and Andrews, 2001).

2.1.1.3 Autocovariance, Autocorrelation and Crosscorrelation Functions

The autocovariance function of a one dimensional random process x(t) is defined as:

Rcov(x)(i, j) = E{[x(i)−mx(i)][x(j)−mx(j)]} (2.6)

where i and j are two arbitrary time samples, mx is the mean (expected value) of

the process (Brown and Hwang, 1991). A special case of the autocovariance function

for zero mean random processes is called autocorreleation function. Autocorrelation

function is defined as :

Rx(i, j) = E{x(i)x(j)} (2.7)

Autocorrelation function shows how the random process x(t) is correlated with itself

at two different time samples. If the random process is stationary (described in Sub-

section 2.1.1.4), then autocorrelation function depends only on the time difference

τ .

Rx(τ) = E{x(t)x(t+ τ)} (2.8)

where i = t and j = t + τ substituted into Equation 2.7 (Brown and Hwang, 1991).

In the case of a discrete random process x[k], the autocorrelation and autocovariance

functions can be represented as matrices.

Rcov(x) =


E{[x1 −m1]2} . . . E{[x1 −m1][xk −mk]}

...
. . .

...

E{[xk −mk][x1 −m1]} . . . E{[xk −mk]2}

 (2.9)

When the expected value of the random process is zero then the autocovariance and

autocorrelation matrices are equal (Brown and Hwang, 1991):
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Rcov(x) = Rx =


E{x2

1} . . . E{x1xk}
...

. . .
...

E{xkx1} . . . E{xk]2}

 (2.10)

Autocorrelation function gives valueable information about the random process some

of which are (Brown and Hwang, 1991):

1. Rx(0) is the mean square value (variance) of the process x(t).

2. Rx is a symetrix matrix in the scase of a stationary process x(t).

3. Rx(t) ≤ Rx(0). In the case of stationary processes they are equal.

4. If x(t) is a periodic signal with period T , then Rx(t) is also periodic with the

same period.

5. If x(t) does not contain any periodic components, then limt→∞Rx(t) = 0. This

implies zero mean for the process x(t).

Crosscorrelation of two random processes x(t) and y(t) is defined as (Brown and

Hwang, 1991):

Rxy(i, j) = E{x(i)y(j)} (2.11)

As in autocorrelation, if the random processes are stationary then the crosscorrelation

function depends only on the time difference τ .

Rxy(τ) = E{x(t)y(t+ τ)} (2.12)

where i = t and j = t + τ . The crosscorrelation of two random processes gives

information about how the two random processes correlate with each other. The

subscripts in Rxy is important since

Rxy(τ) = Ryx(−τ) (2.13)
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2.1.1.4 Stationarity and Ergodicity

A random process x(t) is called strict-sense stationary if all of its statistics (mean,

variance, etc..) are independent of time. At which time you observe the process the

mean, and variance are the same (Grival and Andrews, 2001). Wide-sense stationary

processes are random processes whose mean is constant and covariance is dependent

only on the time tifference of the observation as in Equation 2.8.

A random process is called ergodic if it’s statistics (mean, variance, etc..) are the

same as the statistics of any ensambled processes.(Grival and Andrews, 2001). Thus,

any sample of the random process contains all statistical variations of it (Brown and

Hwang, 1991).

2.1.1.5 Power Spectral Density Function

The autocorrelation function Rx(τ) defined in Equation 2.8 gives important clues

about the frequency content of the random process (Brown and Hwang, 1991). If

the autocorrelation function Rx(τ) decreases rapidly with τ , then it means that the

random process varies rapidly with time. On the other hand, if the random process

changes slowly with time, then Rx(τ) decreases slowly with τ (Brown and Hwang,

1991). For stationary signals, the Wiener-Khinchine relation is defined as :

Sx(jω) = F[Rx(τ)] =
∫ ∞

−∞
Rx(τ)e−jωτdτ (2.14)

where Sx(jω) is the power spectral density function of the random process x(t),

F[Rx(τ)] is the Fourier Transform (define in Equation 3.1) of the autocorrelation

function of x(t). Power spectral density function and the autocorrelation function

contains the basic information about the process. They can be converted to each

other by means of the Fourier Transform. Rx(0) is the power (mean square value)

of the random process and has the relation with power spectral density function as

(Brown and Hwang, 1991):

Rx(0) = E{x2(t)} =
1
2π

∫ ∞

−∞
Sx(jw)dw (2.15)

whereE{x2(t)} is the expected value for the power of the random process x(t). Most
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of the time it is called mean square value of the random process (Brown and Hwang,

1991).

2.2 Some of Special Random Processes

2.2.1 White noise

White noise is a random process whose power spectral density,as the Fourier Trans-

form of the autocorrelation function, is constant (Gelb, 1974).

Swn(jω) = F[Rwn(τ)] = A (2.16)

where A is a constant value, Swn(jω) is the power spectral density function of the

white noise, Rwn(τ) is the autocorrelation function. Having a constant power spec-

tral density function, white noise covers all the frequency spectrum. The term white

comes from the white light, which is the sum of all frequencies from visible light

spectrum (Brown and Hwang, 1991). The pure white noise has infinite power :

Pwn =
1
2π

∫ ∞

−∞
Swn(jω)dω =

1
2π

∫ ∞

−∞
Adω (2.17)

where Pwn is the power of pure white noise. Thus, it is not pyhsically plausible

(Brown and Hwang, 1991). To achieve a finite variance white noise, bandlimited white

noise is introduced. It has a band limited power spectral density function defined as:

Sbwn(jω) =


A, |ω| ≤ 2πW

0, |ω| > 2πW
(2.18)

where W is the physical frequency bandwidth. The corresponding autocorrelation

function is (Brown and Hwang, 1991) :

Rbwn(τ) = 2WA

(
sin(2πWτ)

2πWτ

)
(2.19)

It is obvious from the equation that the power of band limited white noise is finite
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and has the value Rbwn(0) = 2WA. Discrete white noise is usually referred as zero-

mean uncorrelated random variable with fixed variance (Brown and Hwang, 1991).

2.2.2 Gauss-Markov Processes

A random process x(t) is called Gaussian (normal) if its probability density function

p is a Gaussian function defined below (Grival and Andrews, 2001). The Gaussian

probability density function for single valued process x is :

p(x) =
1√
2πσ

e−
(x−E{x})2

2σ2 (2.20)

where σ is the standard deviation of x. For a vector valued x the Gaussian probabil-

ity density function is of the form:

p(x) =
1√

(2π)n|Cx|
e

1
2
(x−E{x})T Cx

−1(x−E{x}) (2.21)

Where |Cx| is the determinant of the covariance matrix Cx , n is the dimension (or

the number of variates) in the column vector x.

A stationary Gaussian process x(t) whose autocorrelation function is exponen-

tial is called Gauss-Markov process. The autocorrelation function for Gauss-Markov

process is defined as (Brown and Hwang, 1991) :

Rx(τ) = σ2eβ|τ | (2.22)

where σ2 is the mean-square value of the process and 1/β is the time constant. The

process is nondeterministic, uncorrelated and looks like noise (Brown and Hwang,

1991). As time increases the autocorrelation function Rx approaches to zero, thus the

process has zero mean. Brown and Hwang (1991) states that Gauss-Markov process

is an important process because, it seems to fit a large number of physical processes

with good accuracy and has a relatively simple mathematical formulation.

2.2.3 ARMA Processes

A discrete random process which is modelled by :
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y[n+ 1] =
K∑
k=0

aky[n− k] +
M∑
m=0

bmw[n−m] (2.23)

where y is the random process, which is modeled by a difference equation of its

previous values, w is a white noise sequence with zero mean and unit variance, is

called an ARMA (Autoregressive Moving Averages) model of the random process y

(Brown and Hwang, 1991). Generally, ARMA models are known as shaping filters of

white noise to desired colored noise. Colored noise is a model for correlated random

processes. Both sides of the Equation 2.23 can be z-transformed and arranged as :

A(z)Y (z) = B(z)W (z) (2.24)

where Y (z) and W (z) are the z-transforms of the process and white noise respec-

tively, A(z) and B(z) are the coefficients of the z-transforms of the process and white

noise. The z-transform or complex spectral density function is defined as (Therrien,

1992):

H(z) =
∞∑

k=−∞
x[k]z−k (2.25)

where z = ejω, H(z) is the z-transform of the process x[k]. The resulting power

spectral desity function for the ARMA process is then (Therrien, 1992)

Sy(jω) =
|B(z)|2

|A(z)|2
(2.26)

where Sy is the desired power spectral density function for the model. The system

is said to be stationary if the roots of A(z) lies inside the unit circle in the z-plane,

otherwise it is nonstationary (Brown and Hwang, 1991).

2.2.4 Wiener or Brownian Motion Process

A Random process which is an integral of white noise is called a Wiener or Brownian

motion process (Brown and Hwang, 1991).
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x(t) =
∫ t

0
F (u)du (2.27)

whereF (u) is a white noise process. The expected value of the process x(t) isE{x(t)} =

0 and its variance is E{x2(t)} = t (Brown and Hwang, 1991). The autocorrelation

function of x(t) is defined as:

Rx(t1, t2) =


t2, t1 ≥ t2

t1, t1 < t2
(2.28)

where t1 and t2 are two time samples of the brownian motion process. The ARMA

model for the brownian motion can be defined as :

x[t+ 1] = x[t] + w[t] (2.29)

where t is the time instance and w[t] is the realization of the white noise at time

instance t.

2.3 Recursive Parameter Estimation

Recursive parameter estimation is based on the Gauss-Markoff model (not to be con-

fused with Gauss-Markov process), which leads to the best unbiased estimation of

the parameters by using the method of least squares.

2.3.1 Gauss-Markoff Model

2.3.1.1 Definition

A Gauss-Markof model is defined as:

E{y} = Xβ , D(y) = σ2P−1 (2.30)

where y is the observation (measurements) vector, D(y) is the variance covariance

matrix of the observations. P is a positive definite weight matrix. X is the linear
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(or linearized) coefficient matrix, which contains the partial derivatives of the obser-

vations with respect to parameters and β is the unknown,fixed system parameters

(Koch, 1999). According to the model expected values of the measurements (E{y})

are a linear function of the system parameters β. This linear system model is some-

times a linearized model by using physical or mathematical laws (Koch, 1999).

2.3.2 Derivation

Let s be an estimator of the expected values of measurements (E(y) = s(β)), and

observations have a positive definite covariance function Σ. If the estimator s mini-

mizes the quadratic form

f(β) = [y − s(β)]TΣ−1[y − s(β)] (2.31)

where f(β) is the quadratic form to be minimized and superscript T is the transpose

sign, then s is called the least squares estimator. Least squares estimators minimize

the sum of squares of the residuals which are the corrections to the observations. This

can be treated as finding the best fit for estimation parameters geometrically (Koch,

1999).

In the case of Gauss-Markoff model the Σ is known as Σ = σ2P−1 where σ is the

variance of unit weight. Taking P = I , which means the observations have the same

quality, the quadratic form becomes (Koch, 1999):

f(β) = [y −Xβ]T
1
σ2

P [y −Xβ] (2.32)

which has an extreme value by

∂f

∂β
=
∂( 1

σ2 (yTy − 2yTXβ + βT XT Xβ))
∂β

= 0 (2.33)

The roots are the estimated parameters β̂ which can be calculated by

β̂ = (XT X)−1XT y (2.34)
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In the case of non unit weight variance P 6= I , the estimated parameters become

β̂ = (XT PX)−1XT Py (2.35)

and

D(β̂) = σ2(XT PX)−1 (2.36)

where D(β̂) is the covariance matrix of the estimtated parameters. The resulting

estimate of E{y} is given by

E{y} = ŷ = Xβ̂ (2.37)

The estimated residual vector is given by ê = ŷ − y. The solution of the Gauss-

Markoff model can be treated as a noise reduction method if the residuals ê are

treated as the unknown white noise component in the measurements y. Then the

variance of the residuals is the variance of the white noise removed.

D(ê) =
êT ê

n− u
(2.38)

where n is the number of measurements, u is the number of parameters and D(ê) is

the estimated variance of the residuals.

2.3.3 Recursive Parameter Estimation

Gauss-Markoff model assumes that all the observations are available prior to the pa-

rameter estimation. Suppose that the measurements can be seperated to uncorrelated

vectors ym and ym−1 measured at different times. Then the model equations can be

written as (Koch, 1999):

X =

Xm−1

Xm

 ,y =

ym−1

ym

 and D(y) = σ2

P −1
m−1 0

0 P −1
m

 (2.39)
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By using Equation 2.35, the estimation for the parameters β can be obtained by (Koch,

1999):

β̂ = (XT
m−1Pm−1Xm−1 + XT

mPmXm)−1(XT
m−1Pm−1ym−1 + XT

mPmym) (2.40)

If β̂m−1 denotes the estimators of the parameters based on the measurements at time

m − 1 and D(β̂) = σ2Σm−1 is their covariance matrix, then the estimators of the

parameters at time m can be written as:

β̂m = (Σm−1
−1 + XT

mPmXm)−1(Σm−1
−1β̂m−1 + XT

mPmym) (2.41)

with D(β̂m) = σ2Σm (Koch, 1999). Using Equation 2.36 Σm can be written as:

Σm = Σm−1 − FmXmΣm−1 (2.42)

where

Fm = Σm−1Xm
T (Pm

−1 + XmΣm−1Xm
T )−1 (2.43)

Substituting Fm into Equatation 2.41 yields (Koch, 1999):

β̂m = β̂m−1 + Fm(ym −Xmβ̂m−1) (2.44)

This defines a recursive relationship between the estimators of the parameters at time

m with the estimators of the parameters at time m − 1. The recursive algorithm

starts with normal Gauss-Markoff model to obtain the estimators of the parameters

β̂1 by using Equation 2.35 or 2.34. If the parameters β are assumed to be the state

variables of a dynamic system which are linearly transformed from time tm−1 to tm

by addition of random disturbances (white noise), then The Equation 2.44 turns out

to be a Kalman-Bucy filter (Koch, 1999).
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2.4 Kalman Filter

Kalman filter is an optimal recursive estimation algorithm introduced by Kalman

(1960). The word optimal is a tricky keyword since it depends on the choosen cri-

teria. However, Maybeck (1979) states that Kalman Filter is optimal in virtually any

criterion that makes sense under the assumptions of noise characteristics and system

model in its definition. Kalman Filter uses every information available for it to esti-

mate the state of a given system. Maybeck (1979) expresses that this knowledge can

be listed as :

1. Knowledge of system deterministic model or dynamics.

2. Knowledge of measurement device dynamics.

3. Statistics of the measurement noise.

4. Statistics of the system noise.

5. Uncertainnity of the system model.

6. Initial conditions.

7. Control inputs to the system.

Moreover Kalman filter does not depend on previously processed data to be repro-

cessed when new mesurements are available.

2.4.1 Discrete Kalman Filter

Discrete Kalman filter is a state space approach to parameter estimation. The param-

eters of the system are treated as states of a random process. The Discrete Kalman

Filter estimates the states of the given system that minimizes the state estimate error

covariance (Welch and Bishop, 2001).

2.4.1.1 Derivation

Assume the system is modeled by the following linear difference equation:

xk+1 = Akxk + wk (2.45)
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and the system is observed by measuring the outputs of the system which has a linear

relationship with the system state as:

zk = Ckxk + vk (2.46)

where,

xk is an (nx1) process state vector at time instance tk.

Ak is (nxn) matrix that relates the state xk to the state xk+1, if the random process

is a continues process it is called the state transition matrix Brown and Hwang

(1991).

wk is a (nx1) vector which is assumed to be a white noise sequence with known

covariance. wk is called the process noise.

zk is (mx1) measurement vector at time instance tk.

Ck is a (mxn) matrix, which is the ideal (noiseless) linear relation between the mea-

surements an the state vector xk.

vk is (mx1) measurement error vector. It is assumed to be independent of process

noise wk and having a known covariance structure (Brown and Hwang, 1991).

White noise sequences wk and vk has the following covariance matrices:

E{wk(wi)T } =


Qk, i = k

0, i 6= k

(2.47)

E{vk(vi)T } =


Rk, i = k

0, i 6= k

(2.48)

E{wkvT
i } = 0 for all k and i (2.49)

Assume that we have a priori estimate of the system state xk at time tk as x̂k
−.

And also assume that the error covariance matrix associated to the prior estimate

is known. Estimation error of the known prior estimate is defined as:

ek
− = xk − x̂k (2.50)
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and the associated process error covariance matrix is

Pk
− = E{ek

−ek
−T} (2.51)

With the assumption of the a priori estimate x̂k
−, measurements zk at time instance

tk is used to improve the quality of the prior estimate by using a blending matrix Kk.

x̂k = x̂k
− + Kk(zk −Ckx̂k

−) (2.52)

where x̂k is the updated estimate of the state and Kk is the blending factor that gives

and optimal update to the state in least squares sense. The error covariance matrix

for the updated estimate x̂k is defined as

Pk = E{ekeT
k } = E{[xk − x̂k][xk − x̂k]T } (2.53)

Substituting the Equations 2.51 and 2.52 into the equation of Pk one gets

Pk = (I −KkCk)Pk
−(I −KkCk)T + KkRkKk

T (2.54)

and setting the derivative of Pk with respect to the blending factor Kk we get the

Kalman Gain matrix Kk that minimizes the mean square error in estimated state vari-

ables.

Kk = Pk
−Ck

T (CkP −
k CT

k + Rk)−1 (2.55)

The updated process error covariance matrix Pk in the case of optimal kalman gain

Kk can be computed by substituting Equation 2.55 into 2.54 as

Pk = (I −KkCk)Pk
− (2.56)
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The updated optimal estimate x̂k can be easily projected ahead to find the a priori

estimate at time instance tk+1 as

x̂k
− = Akx̂k (2.57)

and the associated error covariance matrix is

Pk+1
− = AkPkAT

k + Qk (2.58)

By using Equations 2.58, 2.57, 2.55 and 2.56, the recursive Kalman Filter can be writ-

ten as a prediction correction style algorithm by assuming the system and measure-

ment noise is normally distributed white noise with variance matrices Qk and Rk

respectively. The graphical representation of the Algorithm 1 is given in Figure 2.1.

Algorithm 1 Kalman Filter
1: P−

k ⇐ P 0

2: x−k ⇐ x0

3: k ⇐ 0

4: while measurement is collected do

5: Rk ⇐ covariance of new measurements // Rk and Qk can be dependent on time.

6: Qk ⇐ covariance of current system state variables

7: zk ⇐ measurements

8: Kk ⇐ P−
k CT (CP−

k CT + Rk)−1 // Find Kalman gain matrix Kk

9: P k ⇐ (I −KkC)P−
k

10: x̂k ⇐ x̂−k + Kk(zk −Cx̂−k ) // Apply correction to the predicted state variables by

taking the measurements into account

11: P−
k+1 ⇐ AP kA

T + Qk // Predict Future error covariance of the state matrix

12: x̂−k+1 ⇐ Ax̂k // Predict future version of x̂k

13: k ⇐ k + 1
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Figure 2.1: Discrete Kalman filter execution diagram

Kalman gain is the most important part of the algorithm it resambles the Fm

matrix of the recursive parameter estimation in Equation 2.44.

Kk =
P−
k CT

CP−
k CT + Rk

As it is seen from the formula, it gives the filter an adaptive nature since the

filter relies on measurements as the measurement variance decreases (measurement

quality increases) and relies more on system prediction otherwise. Moreover, the

state transition matrix A and the observation matrix C can also be dependent on

time which strengthens the adaptive nature of the Kalman filter. The adaptive nature

of the Kalman Filter introduces a tuning phase for the Kalman Filter. The variances

Q(process noise variance) and R(measurement noise variance) may not be known

exactly. That is why, the filtering algorithm is tuned by adjusting Q and R to obtain

the desired process error covariance P k. Welch and Bishop (2001) states that, since

the error variance of the estimates converges very rapidly to some constant matrix,

if the measurement noise variance and process noise variance do not change with

time, the Kalman gain matrix Kk can be taken as a constant matrix, which reduces

the computation cost dramatically.
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2.4.2 Example: Estimating a Constant

Assume that we are measuring a constant value such as voltage where the measure-

ment device has a known error covariance. Then the system state equation is

xk+1 = xk + wk (2.59)

and the measurement equation is

zk = xk + vk (2.60)

Also assume that the true system state is 5 volts. According to the system description,

the state transition matrix Ak is constant and equal to 1, the measurement model ma-

trix Ck is constant and equal to 1. The measurement error is a zero mean uncorrelated

sequence with fixed variance R = 3 and the process noise variance is unknown. The

Figure 2.2 shows the measurements.

Figure 2.2: Realization of the process with constant value of 5 and zero mean mea-
surement noise with variance of 3.

The process noise variance is unknown and yet to be determined by tunin the

Kalman filter to get the desired error covariance matrix Pk of Equation 2.56. This

Figure 2.3 shows the effects of choosing different process variances.
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(a) Kalman filter result when process noise
variance set to 10. Pk = 2.4162

(b) Kalman Filter result when process
noise variance set to 0.1, Pk = 0.5

(c) Kalman Filter result when process
noise variance set to 0.001, Pk = 0.0543

(d) Kalman Filter result when process
noise variance set to 0.00001, Pk = 0.0024

Figure 2.3: Different process variances and their effect on the results of the Kalman
Filter.

The tuning phase of the Kalman filter is an offline process where different distinct

Kalman filters run on a sample measured input to find the best process noise variance

Q and the measurement noise variance R (Welch and Bishop, 2001). After tuning the

noise variances the filter can be run online (rela-time) to estimate the state of the

desired process.
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CHAPTER 3

MULTI RESOLUTION REPRESENTATION AND

THRESHOLDING

3.1 Fourier Transform

Signals can be treated as functions of time or space. For example, the seismic waves

coming from an earthquake can be represented as a function of time having magni-

tude of the acceleration (cm/s2), as magnitude = f(t) (Simav, 1996). In some cases,

the signal itself is a superposition of other signals. Fourier Transform is the most fa-

mous signal representation technique that decomposes the signal into superposition

of trigonometric functions of different frequencies (Debnath and Mikusinski, 1999).

f̂(ω) =
1√
2π

∫ ∞

∞
f(t)e−iwtdt (3.1)

Where ω is frequency and f̂(w) is the signal representation in frequency domain.

Fourier transform finds how much oscillations are there for a given frequency of ω

Mallat (1998).

Figure 3.1 shows a similarity between representing points in 3-D euclidian space

and representations of functions in frequency domain. Debnath and Mikusinski

(1999) states that every periodic finite energy function can be represented in fre-

quency domain by using the Fourier Transform. The Fourier Transform can be in-

terpreted as finding the frequency distribution of the given function in the frequency

domain.

The Inverse Fourier Transform converts the frequency coefficients into the time

domain. The inverse transform equation is (Debnath and Mikusinski, 1999):
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(a) Representation of a point in 3-D cartesian coordinate system with cor-
dinates (x1, y1, z1)

(b) Fourier Representation of a function f(t) in frequency domain with
coefficients ω1, ω2, ω3, . . . ., ωn of frequencies

Figure 3.1: Representation of a point in 3-D cartesian coordinate system (a) and rep-
resentation of a function in frequency domain (b)
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f(t) =
1√
2π

∫ ∞

∞
f̂(w)eiwtdw (3.2)

Fourier Transform is used in diverse application areas of science and engineering

ranging from quantum physics to solution of partial differencial equations, from im-

age processing to data compression. Simple noise removal or smoothing filters can be

implemented by setting the frequency coefficients of the high frequency components

to zero (Mallat, 1998). This simple algorithm is called low-pass filtering since it al-

lows only the low frequency components of the signal in Fourier domain. However,

this kind of algorithms assume that the noise content of the signal is stationary(noise

characteristics do not change with time) and noise in frequency domain is repre-

sented by high frequency components. The Fourier transform does not have good

time/space localization (knowledge of which frequencies appear at which time), be-

cause the building blocks of the transform are trigonometric functions which do not

have finite (compact) support (Mallat, 1998). A function with finite support is defined

on a finite interval and zero outside that interval.

3.1.1 Windowed Fourier Transform

Altough the Fourier Transform is a very useful method to represent the signal content

in frequency domain, it cannot reveal the frequency localization of the signal. Sup-

pose that only a subset of the signal content is contaminated with noise, the fourier

transform will only show the frequency content of the whole signal. To overcome the

frequency localization problem of the fourier transform, Gabor (1946) showed that

windowed fourier transform can be implemented by convolving the signal with the

gabor windows gu,ξ(t). Gabor windows are modulated and translated versions of

simple symmetric window functions(Mallat, 1998).

Gabor window is defined as :

gu,ξ(t) = eiξtg(t− u) (3.3)

Where u is the time translation and ξ is the frequency modulation parameters and

t is time. g(t) is a windowing function. Blackman, Hamming Gaussian and Han-
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ning window functions are mostly used window functions. The Windowed Fourier

Transform (Short time Fourier Transform) can be formulated as (Mallat, 1998):

Sf(u, ξ) =
∫ ∞

−∞
f(t)g(t− u)e−iξtdt (3.4)

where u is the locallization and ξ is the frequency modulation parameters. Note that

Sf(u, ξ) in Equation 3.4 is a two dimensional signal rather than one dimensional

result of standard Fourier Transform. u is the localization dimension, and ξ is the fre-

quency parameter. The reconstruction formula for the Windowed fourier transform

can be written as (Mallat, 1998):

f(t) =
1
2π

∫ ∞

−∞

∫ ∞

−∞
Sf(u, ξ)g(t− u)eiξtdξdu (3.5)

Although Windowed Fourier Transform gives the frequency localization of the sig-

nal,It is a redundant transform and its time frequency resolution is constant. The time

frequency resolution can be arranged by scaling the windowing function g(t)(Mallat,

1998).

3.2 Wavelets and Continuous Wavelet Transform

Wavelets are simple wave-like functions whose scaled and translated versions form

an orthonormal basis for finite energy signals (Mallat, 1998). Although the theoret-

ical basis for wavelets and wavelet transform was given by (Mallat, 1989), (Haar,

1910) had used the term wavelet in his thesis for simple functions of finite support. In

1960s through 1980s Guido Weiss and Ronald Coifman and (Grossman and Morlet,

1984) used scaling and dilating simple functions (atoms or wavelets) to analyse sig-

nals. After Mallat’s theoretical foundation (Mallat, 1989) many researchers and scien-

tists studied different families of wavelet functions. (Daubechies, 1988) has given the

formulations of widely used finite support and p-times differentible wavelet func-

tions known as Daubechies family of wavelets. Recently, wavelet like functions for

multiresolution analysis of signals lead to orther kinds of wavelets like geometric

wavelets, which tries to find geometrical wavelets forming a geometric subdivision
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of an image to remove noise (Alani et al., 2007) and spherical wavelets, which tries

to implement wavelets on a spherical surface (McEwen et al., 2007).

Formally, a wavelet is a function ψ(t) whose average is zero,

∫ ∞

−∞
ψ(t)dt = 0 (3.6)

It’s dilations and translations form an orthonormal base for finite energy signals

(
∫∞
−∞ |f(t)|2dt = 0) (Mallat, 1998). Figure 3.2 shows Daubechies wavelet and its scal-

ing function.
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Figure 3.2: Daubechies 8 wavelet and its associated scaling function.

scaled and dilated version of the mother wavelet can be written as:

ψu,s =
1√
|s|
ψ(
t− u

s
) (3.7)

Where u is the translation and s is the scale factor. Then any finite energy signal can

be represented as (Mallat, 1998):

f(t) =
1
Cψ

∫ ∞

−∞

∫ ∞

−∞
c(u, s)ψu,s(t)dt

ds

s2
(3.8)
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Where Cψ is the admissibility constant defined as :

Cψ =
∫ ∞

−∞

| ˆψ(ρ)|2

|ρ|
dρ (3.9)

where ψ̂(ρ) is the Fourier transform of ψ(t). The success of the inverse transform

depends on the condition 0 < Cψ < ∞. The admissibility condition implies that

ψ̂(0) =
∫∞
∞ ψ(t)dt = 0, which is identical to Equation 3.6 (Mallat, 1998). c(u, s) is the

wavelet transform of f(t) which defines the coefficients of the wavelet functions at

different scales and times.

c(u, s) =
∫ ∞

−∞
f(t)ψu,sdt (3.10)

Although Continuous Wavelet Transform gives a multiresolution representation of

the signal at different scales and times, it is not computationally efficient and redun-

dant like Windowed Fourier Transform (Mallat, 1998). Discrete wavelet transform

can be computed efficiently by using a Dyadic Wavelet Transform (Mallat, 1989). In-

stead of using continuous scales, one can use dyadic scales (scales of power of two

coming from Nyquist-Shannon Sampling theorem), and use orthogonal wavelets to

eliminate redundant coefficients.

3.2.1 Multiresolution Representation

A Multiresolution representation of a signal is a sparse representation by its wavelet

and scaling coefficients, forming a resolution pyramid of the signal. At every scale

(pyramid level) a coefficient of the scaling function (φ(t)) represent the low pass fil-

tered version of the original signal, wheras coefficients of the wavelet function (ψ(t))

represent the high pass filtered version of the original signal at that scale. The top

of the pyramid gives the coarse representation of the signal (mostly the average of

the signal) wheras the bottom of the pyramid represents the fine details. The direct

sum of the coefficients of the pyramid gives the perfect reconstruction of the original

signal (Mallat, 1998). The frequency resolution increases in the direction of the top of

the pyramid, however the time resolution decreases to the top of the pyramid.
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The J level multiresolution representation of a signal f(t) can be written as:

f(t) =
∞∑

u=−∞
au,Jφu,J(t) +

∞∑
u=−∞

0∑
s=J

wu,sψu,s(t) (3.11)

Where au,J is the scaling function coefficients at scale J , wu,s is the wavelet function

coefficients at scale s and time u, The scaling function is defined as :

φu,J =
1√
2J
φ(

1− 2Ju
2J

) (3.12)

and the wavelet function is defined as :

ψu,s =
1√
2s
ψ(
t− 2su

2s
) (3.13)

Scaling function φ(t) itself can be represented as a sum of wavelet functions:

φ(t) =
∑

cu,sψu,s(t) (3.14)

That means, at the coarsest scale it represents the remaining wavelet coefficients

of the signal as well. The admissibility condition for scaling function is
∫
φ(t)dt =

φ̂(0) = 1 (φ̂ is the Fourier Transform of φ). This also means that the scaling function

is a low pass filter (Mallat, 1998).

The wavelet transform can be calculated by a series of convolutions and down-

sampling operations performed on a discrete signal f [t] (Mallat, 1989). This series can

be setup easily as a conjugate mirror filter or filter banks. Wavelet based filterbank

splits the signal into two components one of which represents the high pass content

and the other represents the low pass content. The low pass content is computed by

convolving the signal with the associated scaling function φ[t]. The high pass content

is computed by convolving the signal by associated wavelet function ψ[t]. Then the

low frequency part is subsampled again to find the high and low frequency content of

the signal at the next coarse level (Mallat, 1998). The resulting signal representation

is the scaling function and wavelet function coefficients in a pyramidwise fashion.

The graphical representation of the algorithm is given in Figure 3.3.
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Figure 3.3: Graphical representation of a filter bank. Wf [t] represents the wavelet
transform of f [t]. g[t] is the scaling function, h[t] is the wavelet function. ∗ represents
the convolution operator.

Inverse wavelet transform can be computed by inversing the filter bank. Sum-

ming up and upsampling the lower scales to find the finest scale representation of

the signal itself. The graphical representation of the inverse filter bank is shown in

Figure 3.4.

Figure 3.4: Graphical representation of a inverse filter bank. g[t] is the scaling func-
tion, h[t] is the wavelet function. ∗ represents the convolution operator.

Multiresolution representation gives a sparse representation, where most of the

coefficients are zero or close to zero (Mallat, 1998). Sparse representation of the sig-

nal is a very important property for signal compression and implementing fast signal

processing algorithms. The sparsity property comes from the orthogonal property of

the wavelets used. It removes the redundant information from the signal content.

The choice of the wavelet function according to the signal characteristics is very im-
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portant since redundancy depends on wavelet function coefficients itself. The Figure

3.5 shows a simple sine wave function and its wavelet coefficients.
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Figure 3.5: Sine wave function and its wavelet transform with Daubechies 4 wavelet.
The left side of the wavelet coefficients hold the low frequency content of the signal
(coarse representation), the right hand side holds the fine details.
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Conjugate mirror filter implementation of the wavelet transform is computation-

ally efficient and simple to implement. Wavelet transform can also be implemented

as a matrix operator Tl,s where l is the input size and s is the level of the transform.

Inputsize is the rowdimension of the column matrix that is to be transformed. Haar

wavelet is defined by its wavelet and scaling function as:

h =
[

1√
2

− 1√
2

]
(3.15)

g =
[

1√
2

1√
2

]
(3.16)

Where h is the wavelet function and g is the scaling function of the Haar wavelet.

Then the one level wavelet transform matrix, T 2,1 to transform inputsize of two can

be written as:

T 2,1 =

g

h

 =

 1√
2

1√
2

1√
2

− 1√
2

 (3.17)

The resulting matrix T 2,1 is an orthonormal matrix. It’s inverse is it’s transpose

T 2,1(T 2,1)T = I and det(T 2,1) = 1. This matrix can be used to project column vectors

of length two to the wavelet domain simply by left multiplying the column vector.

Let x = [5, 3]T , then the wavelet transform of x is Tx = [5.6569,−1.4142]T . For

higher input column vector sizes, the matrix T l,s must be extended to include trans-

lated versions of the scaling and wavelet function. The following matrix is a one level

wavelet transform matrix for input size of four.

T 4,1 =



1√
2

1√
2

0 0

0 0 1√
2

1√
2

1√
2

− 1√
2

0 0

0 0 1√
2

− 1√
2

 (3.18)

Note that the first two rows of the matrix T 4,1 in Equation 3.18 contains the translated

versions of the scaling function. This is identical to downsampling and convolving

the signal as in filter banks. And the next two rows contain the translated version of

the wavelet function h again just like in filterbanks.
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The matrix T 4,1 is a one level wavelet transform matrix. To develop a two level

wavelet transform matrix, the matrix T 2,1 can be used.

T 4 =

T 2,1 0

0 I

T 4,1 (3.19)

The wavelet transform matrix for eight valued input data can be written as:

T 8 =

T 2,1 0

0 I

T 4,1 0

0 I

T 8,1 (3.20)

Higher matrix dimensions can be reached by implementing a recursive algorithm.

The recursive algorithm only depends on the one level wavelet transform in ap-

propriate scale level. Haar wavelet is a very simple case of a wavelet function. It

has a support of two, which leads to proper matrix formulations. However, for

the case of wavelets having support of more than two, care must be taken into ac-

count in the formulation, because edge overlapping occurs. For instance, Daub4

wavelet has a support of four defined by function coefficients h = [h1, h2, h3, h4] and

g = [g1, g2, g3, g4]. The one level wavelet transform for four valued input data is:

T 4,1 =


g1 g2 g3 g4

0 0 g1 g2 g3 g4

h1 h2 h3 h4

0 0 h1 h2 h3 h4

 (3.21)

As it is seen from the matrix layout in Equation 3.21, the second and fourth row

contain overlaps. This overlapping behaviour can be eliminated by assuming the

signal to be transformed is periodic. Then the matrix T 4,1 can be written in the form:

T 4,1 =


g1 g2 g3 g4

g3 g4 g1 g2

h1 h2 h3 h4

h3 h4 h1 h2

 (3.22)

Arranging the matrix does not effect its orthogonal property T 4,1(T 4,1)T = I4x4. Pe-
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riodic signal assumption is required because the wavelet transform is implemented

as a circular convolution operator.

3.2.2 Wavelet Shrinkage

Wavelet transform is an orthogonal projection on to the wavelet domain. Threshold-

ing the wavelet coefficients is equivalent to estimating the signal with less wavelet

components(Mallat, 1998). White noise in wavelet domain produces high frequency

components. Figure 3.6 shows the sinewave example with added zero mean gaus-

sian noise of variance 0.1.
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Figure 3.6: A noisy Sine wave function with zero mean gaussian noise of variance
0.01, and its 5 level wavelet transform with Daubechies 4 wavelet. Observe that the
left hand side of the wavelet transform shows the trend significantly.

Thresholding the amplitudes of the wavelet coefficients which are closer to zero

removes the frequency content added by white noise. Most commonly used thresh-

olding techniques are soft and hard thresholding.

Hard thresholding can be implemented as :

Wf [i] =


Wf [i] if |Wf [i]| > T

0 if |Wf [i]| ≤ T

(3.23)

Where Wf [i] is the wavelet coefficients in the finest scale, T is the threshold value.

Similarly soft thresholding can be implemented as :
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Wf [i] =


Wf [i]− T if Wf [i] > T

Wf [i] + T if Wf [i] < −T

0 if |Wf [i]| ≤ T

(3.24)

The threshold value T is very important, since the wrong value of a threshold may

remove signal content when trying to remove noise, or it may not denoise well.

Donoho and Johnstone (1995) states that such an optimal threshold exists and can

be calculated by

T = σ
√

2logeN (3.25)

Where T is the threshold value, σ is the noise standard deviation, N is the signal

length. In most cases, σ is not known directly, and must be calculated by the signal

content. Donoho and Johnstone (1994) shows that unknown signal variance can be

calculated with the finest scale wavelet coefficients.

σ̂ =
MAD(Wf [i])

0.6745
=
mediani(|Wf [i]|)

0.6745
(3.26)

whereMAD is Median of Absolute Deviation and Wf [i] are the wavelet coefficients

at the finest scale. Median is calculated as follows: Absolute values of the wavelet

coefficients in the finest scale are sorted. Then, the median value is the middle value

in the sorted array if the data length is odd, otherwise it is the mean of the two middle

values.
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CHAPTER 4

WAVELET-KALMAN FILTER

Kalman filter is a recursive optimal (linear, adaptive, unbiased and minimum error

variance) filtering technique (Maybeck, 1979). Wavelet-Kalman filter, on the other

hand, is a specialized Kalman filtering algorithm to make use of Kalman filter’s op-

timality as well as to decompose the signal to it’s wavelet coefficients in real-time

(Hong et al., 1998).

Standard Kalman filter operates on signal parameters, continously adjusting the

state variables by using measurements, such that the error covariance of the es-

timated state variable is minimum. Whereas, Wavelet-Kalman Filter operates on

blocks of information where the block content is wavelet transform of the signal state

variables. Thus, the algorithm operates in the wavelet domain in order to estimate

the wavelet transform of the signal, minimizing the error variance of the estimated

wavelet transform coefficients. Another advantage of this algorithm is, it computes

the total wavelet transform of the filtered signal in real-time due to real-time charac-

teristics of the Kalman filter.(Hong et al., 1998). In order to use wavelet coefficients

of the signal in state vector of the Kalman filter, the signal should be processed block

by block. The block size depends on the desired decomposition level of the signal.

Since the wavelet decomposition relies on dyadic filter bank, the blocksize must be

in powers of two. Figure 4.1 shows a simple diagram showing the filter in action.

In order to use blocks as state variables instead of the variables themself, the

system model equations, observation equation and process and measurement noise

variances should be rearranged. In subsection 4.1 this rearangement for blocksize

of four is shown. And in subsection 4.2 transforming the block equations into the

Wavelet-Kalman filter equations is presented.
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Figure 4.1: Wavelet-Kalman filter in action. The left hand side of the figure shows
the block level filtered wavelet transform of the signal, the right hand side shows the
continuous fedding of the filter by measurement blocks.

4.1 Block Equations

In most cases, system state in Kalman filter is modelled by differential equations and

continuously refined by measurements as a function of the state variables. Assume a

random signal xk which is governed by the following discrete equation:

xk+1 = Akxk + wk (4.1)

which is observed by :

zk = Ckxk + vk (4.2)

where zk is measurement at time instant k, wk is the model noise and vk is the mea-

surement noise, Ak is the state transition matrix, xk is the state vector and Ck is the

measurement equation that relates the the state vector to the measurements. Mean

and variances as expected values of the white noise processes in terms of covariance

matrices are known as follows:

E{wk} = 0 (4.3)

E{wk(wi)T } =


Qk i = k

0 i 6= k

(4.4)

E{vk} = 0 (4.5)

E{vk(vi)T } =


Rk i = k

0 i 6= k

(4.6)

(4.7)
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Since wavelet transform is performed in dyadic scales the blocksize is in powers of

two and can be calculated by 2level. If the desired level of wavelet decomposition is

two then a blocksize of four should be used. In order to run the filter, it should be fed

with four measurements per block ([zk−3,zk−2,zk−1,zk]T ) up to time instant k. The

state vector of the system should be a vector of four elements ([xk−3,xk−2,xk−1,xk]T )

and the system equations Equation 4.1, Equation 4.2 should be rearranged as follows.


xk+1

xk+2

xk+3

xk+4

 = Ãk


xk−3

xk−2

xk−1

xk

 + w̃k (4.8)

which is observed by: 
zk−3

zk−2

zk−1

zk

 = C̃k


xk−3

xk−2

xk−1

xk

 + ṽk (4.9)

Where Ãk is the matrix that relates the block at k to block at k + 4, C̃k is the matrix

that relates the state variable block to the measurement block, wk and vk are the new

system and measurement noise processes. By using the relation between xk+1 and

xk, in Equation 4.1, xk+1 can be represented with respect to xk−3,xk−2,xk−1,xk by :

1. xk+1 = Axk + wk

2. xk+1 = A(Axk−1 + wk−1) + wk

3. xk+1 = A3xk−2 + A2wk−2 + Awk−1 + wk

4. xk+1 = A4xk−3 + A3wk−3 + A2wk−2 + Awk−1 + wk

By averaging both sides of the above equations the relationship of xk+1 with

xk−3,xk−2,xk−1 and xk is obtained as following:
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xk+1 = 1
4 [A4A3A2A]


xk−3

xk−2

xk−1

xk

 + (w̃k+1 = wk + 3
4Awk−1 + 2

4A2wk−2 + 1
4A3wk−3)

where w̃k+1 is the total propagated error in the calculation of xk+1. The equations for

xk+2,xk+3 and xk+4 can be written similarly. After all the equations are set Ãk and

w̃k matrices can be written as :

Ãk =


1
4A4 1

4A3 1
4A2 1

4A

0 1
3A4 1

3A3 1
3A2

0 0 1
2A4 1

2A3

0 0 0 A4



w̃k =


wk + 3

4Awk−1 + 2
4A2wk−2 + 1

4A3wk−3

wk+1 + Awk + 2
3A2wk−1 + 1

3A3wk−2

wk+2 + Awk+1 + A2wk + 1
2A3wk−1

wk+3 + Awk+2 + A2wk+1 + A3wk


The observation matrix C̃k in Equation 4.9 can be written as diag(C,C,C,C), as-

suming Ck is a constant matrix C. Transfering the equations in to the block form

results in a new set of process equations which is directly related to the original pro-

cess defined by Equation 4.1 and Equation 4.2 as:

E{w̃k} = 0 (4.10)

E{ṽk} = 0 (4.11)

since w̃k and ṽk are linear combinations of wk and vk respectively. The new process

and measurement variances are

E{ṽk(ṽk)T } = diag(R,R,R,R) (4.12)

E{w̃k(w̃k)T } = Q̃ (4.13)

The symetric matrix Q̃ is the variance-covariance matrix of the new system associ-

39



ated with the system noise. The matrix Q̃ is not diagonal since inter block relations

result in correlations. The matrix content is given below element-wise . Note that

the equations are simplified by using the statistics of process noise wk (E{wkwj} =

0, k 6= j and E{wkwTk } = Q).

Q̃11 = Q(1/16A6 + 1/4A4 + 9/16A2 + 1)

Q̃12 = Q(1/6A5 + 1/2A3 + A)

Q̃13 = Q(3/8A4 + A2)

Q̃14 = QA3

Q̃21 = Q̃12

Q̃22 = Q(1/9A6 + 4/9A4 + A2 + 1)

Q̃23 = Q(1/3A5 + A3 + A)

Q̃24 = Q(A4 + A2)

Q̃31 = Q̃13

Q̃32 = Q̃23

Q̃33 = Q(1/4A6 + A4 + A2 + 1)

Q̃34 = Q(A5 + A3 + A)

Q̃41 = Q̃14

Q̃42 = Q̃24

Q̃43 = Q̃34

Q̃44 = Q(A6 + A4 + A2 + 1)

4.2 Wavelet Decomposition

The block equations of the previous chapter can be projected onto the wavelet do-

main by using a projection matrix T , which can be calculated by the algorithm de-

fined in Chapter 3. Representing wavelet projection in matrix form is important since

the resultant wavelet domain equations can be used with existing Kalman filter im-

plementations. The block state variables can be represented in a matrix Xk as :

40



Xk =


xk−3

xk−2

xk−1

xk

 (4.14)

The state matrix Xk, which contains the block state variables, can be transformed

into the wavelet domain by :

X̄k = TXk (4.15)

Where X̄k contains the wavelet coefficients of the state variables. Substituting the

wavelet coefficients into the Equation 4.8 and Equation 4.9 Wavelet domain process

equations can be written as :

X̄k+1 = ĀX̄k + W̄k (4.16)

Which is observed by :

Zk = C̄X̄k + vk (4.17)

Where Ā = TÃT
T

, C̄ = C̃T
T

and W̄ k = T w̃k. The mean and variance of the

new process noise is E{W̄ k} = 0 and E{W̄ k(W̄ k)T } = TQ̃T
T

respectively. The

Standard Kalman filter can be directly applied to the system to obtain the estimates

of the wavelet coefficients.

At every Kalman step the wavelet coefficients X̄k is corrected by using the mea-

surement block Zk and the measurement equation 4.17. The output of the correc-

tion step can be the wavelet transform of the block X̄k, or the signal representation

Xk. The signal representation of the block is calculated by applying inverse wavelet

transform to the block.

X̂k = T T X̄k (4.18)

After the correction step, next Wavelet-Kalman block is predicted by using the adopted

system stochastic model equation 4.16.
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4.3 Integrating The Wavelet Shrinkage

Wavelet-Kalman filter is a linear filter that estimates the wavelet coefficients in terms

of the state variables of the given system. Non-linear wavelet thresholding, as de-

scribed in Section 3.2.2, may be used to improve noise reduction in the Wavelet-

Kalman correction step. After correcting the Wavelet-Kalman state variables soft or

hard thresholding can be applied to the state variable.

The threshold value can either be calculated by Equation 3.26 or the state error

covariance matrix of the estimated state. System state error covariance matrix P k in

Equation 2.56 contains the error covariance matrix of the estimated wavelet coeffi-

cients. However, σ needed in the threshold value in Equation 3.25 is the standard

deviation of the system state variables not the coefficients in the wavelet domain.

The system error covariance matrix P s
k can be calculated by utilizing the law of error

propogation.

P s
k = T TP kT (4.19)

Then the system standard deviation estimate σ̂ can be calculated by taking the square

root of the average of the diagonal elements.

σ̂ =

√∑
i P

s
k[i, i]

dim(P s
k)

(4.20)

Where P s
k[i][i] is the ith diagonal element, and dim(P s

k) is the diagonal dimension of

the matrix P s
k.

4.4 Monte-Carlo Simulations and Results

Filtering performance of the Wavelet-kalman filter is tested with monte-carlo simu-

lations on a simple signal of length 512 with additive noise of variance 1. The signal

can be threated as a recording of a Brownian Motion which is described by its system

equation :

xk+1 = xk + wk (4.21)
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which is observed by :

zk = xk + vk (4.22)

Where zk is the signal content, xk is the system state variable, wk and vk are process

and measurement noise respectively with

E{wk} = 0 (4.23)

E{vk} = 0 (4.24)

E{wk(wi)T } =


0.1 i = k

0 i 6= k

(4.25)

E{vk(vi)T } =


1 i = k

0 i 6= k

(4.26)

Filter performance is tested with calculating the MSE (Mean Square Error). The MSE

is calculated as:

mse =

√∑
i (f [i]− f̂ [i])2

N − 1
(4.27)

Where f [i] is the original signal, f̂ [i] is the filtered signal and N is the signal length.

Smaller mse value means better estimation of the signal.
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Figure 4.2 shows the original signal before adding noise.

Figure 4.2: Original signal generated by f(t) = 5 + |sin(t/50.0)|cos(t/30.0) +
1/2.0sin(t/20.0)

The noisy version of the signal looks like as in Figure 4.3.

Figure 4.3: Original signal with additive Gaussian white noise with σ=1 and µ=0

Standard Kalman filter and Wavelet-Kalman filter is applied to the noisy signal

200 times. At each iteration a new signal is generated from the original signal by

adding Gaussian white noise of variance 1 and mean 0. The process noise variance is

set to 0.1.
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Figure 4.4: Wavelet Kalman Filter result with level=4, Daub4 wavelet and process
noise variance set to 0.1. mse(Mean Square Error)= 0.015083.

The mean square errors for both thresholding enabled and disabled versions are

collected and their averages are shown in Table 4.1 for performance comparison of 2

level Wavelet-Kalman filter.

Table 4.1: Monte-Carlo Performance of filters of level two

Filter mse(mean) mse(mean,thresholded)
WK(Haar) 0.0115403 0.0113227
WK(Daub4) 0.0115403 0.0112438
WK(Daub6) 0.0115403 0.0110092
WK(Coiflet6) 0.0115403 0.0110708
Kalman 0.0125757

According to Table 4.1, Wavelet-Kalman filter performs better than the Standard

Kalman filter. Morever, it is obvious that the choice of wavelet function does not

change the resulting mean square error. This is due to the orthonormal projection

property of the wavelet transform, which means perfect (lossless) reconstruction of

a signal from it’s wavelet coefficients. Thresholding the coefficients of the state vari-

ables improves the resulting mean square error. In the case of thresholding, Daub6

wavelet performs better than other wavelets.

Table 4.2 shows the results of the filters at decomposition level of four. The perfor-

mance of the Wavelet-Kalman filter is increasing as the decomposition level increase.

Daub6 wavelet performs better than other wavelet types. This shows that wavelet
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Figure 4.5: Standard Kalman Filter result with process noise variance set to 0.1.
mse(Mean Square Error)=0.017433.

Table 4.2: Monte-Carlo Performance of filters of level four

Filter mse(mean) mse(mean,thresholded)
WK(Haar) 0.0105139 0.0103911
WK(Daub4) 0.0105139 0.0103984
WK(Daub6) 0.0105139 0.0103374
WK(Coiflet6) 0.0105139 0.0103428
Kalman 0.0126197

thresholding performance is related to the signal content and the input size.

Table 4.3: Monte-Carlo Performance of filters of level six

Filter mse(mean) mse(mean,thresholded)
WK(Haar) 0.0094232 0.0093188
WK(Daub4) 0.0094232 0.0094184
WK(Daub6) 0.0094232 0.0094697
WK(Coiflet6) 0.0094232 0.009442
Kalman 0.0126048

Table 4.3 proves that as the decomposition level increases, the Wavelet-Kalman

filter performance increases. However, the wavelet thresholding does not improve

the results as the decompostion level increases. This can be due to improved per-

formance of Wavelet-Kalman filter which removes high frequencies from the signal

content leading to less thresholding. Table 4.4 shows the result of thresholding where

the standard deviation σ̂ is calculated with the equation 3.26.

According to Table 4.4, when variance, estimated by Equation 3.26, is used to

46



Table 4.4: Monte-Carlo Performance of filters of level six, with thresholding based on
MAD variance estimation

Filter mse(mean) mse(mean,thresholded)
WK(Haar) 0.0094146 0.0093091
WK(Daub4) 0.0094146 0.0094109
WK(Daub6) 0.0094146 0.0094644
WK(Coiflet6) 0.0094146 0.0094332
Kalman 0.0125667

estimate thresholding, Wavelet-Kalman Filter is not improved further.

Figure 4.6 shows the wavelet coefficients of Daub4 wavelet after applying wavelet

thresholding. Wavelet threshold is choosen with the Equation 3.25 taking σ = 1 and

N = 512. Figure 4.7 shows the reconstructed signal from thresholded coefficients.

The mean square error for simple wavelet hard thresholding (0.46274) is much higher

than the Wavelet Kalman Results (0.0094146).
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Figure 4.6: Thresholded wavelet coefficients with 4 level wavelet transform with
Daub4 wavelet. σ = 1, N = 512, threshold is calculated according to Equation 3.25.
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Figure 4.7: Reconstructed signal after wavelet thresholding, mse=0.46274.
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CHAPTER 5

APPLICATIONS

Wavelet-Kalman Filter can be applied to a diversity of signal processing applications,

especially to those that require real-time processing. However, the filter can also be

applied to offline (not real-time) data after the data is collected. This chapter shows

how Wavelet-Kalman filter derived in Chapter 4 can be used to filter real signals and

show the comparison of the filter with certain existing filtering applications. Two

different types of earth related signals are studied. The first one is the seismic signals

from Gönen/Balıkesir eartquake recorded on 20th of November 2006. The second

type of the signal is the well logs of spotaneos potentials from DSİ (Devlet Su İşleri -

General Directorate of State Hydraulic Works, Turkey) well logging devices.

Wavelet-Kalman Filter results are compared to the existing filtering results by

means of a signal to noise ratio. The signal to noise shows how well the filter sup-

pressed the noise power while the signal power is preserved. it is usually measured

in decibells (dB) and its is a logaritmic scale measure. There are different types of

SNR calculations in the literature (Mallat, 1998; Petrou and Bosdogianni, 1999), since

the true signal is not known in thıs case an approximate SNR can be calculated as :

SNR = 10log10(
∑

i f̂ [i]
2∑

i (f [i]− f̂ [i])2
) (5.1)

where f̂ [i] is the filtered signal, f [i] is the measured signal. The SNR increases as

the estimation error decreases. Although the SNR is a quantitative measure of filter

quality, visual quality check is also required to compare the results.

Wavelet-Kalman filter and Kalman Filter is applied to the real signals with the

Brownian Motion system model which approximates the system model as it is given

in Equation 4.21 and 4.22. Process noise variance resulting from this uncertainity is

tuned according to application needs by changing process noise variance in the filter.
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5.1 Application to Seismic Waves

Seismic waves coming from earthquakes are recorded by strong motion acceloreme-

ters. Figure 5.1 shows a strong motion acceloremeter.

Figure 5.1: GSR-16 accelerometer with a dynamic range of 72/96 dB, SNR > 102dB
(Geosig, 2007)

Accelerometers are located on ground in a fixed position in public buildings or in

small observatories as in figure 5.2 (Afet-İşleri, 2007).

(a) An observation site with
GSR-16 accelerometer.

(b) Inside of the observation
site

Figure 5.2: Location of a sample GSR-16 observation site (a) and its inside (b) (Afet-
İşleri, 2007)

The Figure 5.3 shows acceleration record of Gönen/Balıkesir Earthquake occured

on November 20, 2006 at 18:15 pm localtime in the north to south direction.

The signal was prefiltered with Butterworth bandpass filter with low frequency

set to 0.08 hz, and high frequency is set to 25 hz to remove high frequency com-
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Figure 5.3: Gönen/Balıkesir Earthquake occured on 20/10/2006 18:15 pm. localtime

ponents from the signal. The frequency response of the earthquake signal and the

butterworth filter is shown in Figure 5.4

The reconstructed version of the Butterworth filtered signal zoomed to [2500-

2600] in the time axis is shown in Figure 5.5. This reconstruction produces a signal

to noise ratio of 67.154 dB, calculated using Equation 5.1. Figure 5.6 shows the same

signal reconstructed after Wavelet-Kalman filter.

To apply the Wavelet-Kalman filter to the signal based on the system model of

brownian motion, the signal noise variance and process noise variance are needed.

The approximate value for signal noise variance can be estimated from mean square

difference of the butterworth-filtered signal and the original signal.

σ̂2 =
∑

i (f [i]− fb[i])2

N − 1

where σ̂2 is the estimated noise variance, f [] is the original recorded signal, fb[] is the

filtered signal with butterworth filter, N is the record length. The estimated variance

for the signal is found to be 0.000006361. The process variance is the unknown vari-

ance value and it is to be found by experimenting the filter to find the best match.

This is the so called tuning phase of the Kalman filter (Maybeck, 1979). The best
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Figure 5.4: Butterworth filter and the frequency response (Fourier Transform) of the
Gönen Earthquake record.
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Figure 5.5: Reconstructed and original signal after butterworth filter zoomed to
[2500-2600] in time axis. The signal to noise ratio is 67.154 dB
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Figure 5.6: Reconstructed and original signal after Wavelet-Kalman filter. Wavelet-
Kalman level is 4 and process noise variance is set to 0.00012722. The graph is
zoomed to [2500-2550] in time axis. The resulting signal to noise ratio is 68.848072 dB

match is decided to be the process noise variance that minimizes the mean square

error between the wavelet-kalman filtered signal and the butterworth filtered signal.

The best matched process noise variance is found to be 0.00012722. The comparisons

of Wavelet-Kalman filters and Kalman filters are shown in table 5.1, mse values are

calculated between the Wavelet-Kalman Filtered signal and the butterworth filtered

signal.

Table 5.1: 2 level Wavelet-Kalman Filter performance comparisons on seismic signal
filtering.

Filter SNR(dB) mse SNR(dB,threshold) mse(threshold)
WK(Haar) 66.9673663 0.0000827 66.6932399 0.000083
WK(Daub4) 66.9673663 0.0000827 66.70236 0.000083
WK(Daub6) 66.9673666 0.0000827 66.7030922 0.000083
WK(Coiflet6) 66.9673663 0.0000827 66.7042513 0.000083
Kalman 64.9747688 0.0000842

According to Table 5.1 Wavelet Kalman filter provides better signal to noise ra-

tio for the best match process noise variance than the Butterworth-Filtered signal.

Wavelet-Kalman filter gives better performance at any rate than the standard Kalman

filter. A drop is detected in the SNR when the thresholding is enabled. This is referred
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to the smoothing effect of the wavelet shrinkage which decreases the signal power.

Coiflet6 wavelet seems to perform better than other wavelets in filtering the seismic

signals with Wavelet-Kalman filter of level two.

Table 5.2: 4 level Wavelet-Kalman Filter performance comparisons on seismic signal
filtering.

Filter SNR(dB) mse SNR(dB,threshold) mse(threshold)
WK(Haar) 69.4309269 0.0000807 68.8420142 0.0000813
WK(Daub4) 69.4309269 0.0000807 68.9551482 0.0000812
WK(Daub6) 69.4309269 0.0000807 69.0048833 0.0000812
WK(Coiflet6) 69.4309269 0.0000807 68.9649212 0.0000812
Kalman 64.9747688 0.0000842

Table 5.3: 6 level Wavelet-Kalman Filter performance comparisons on seismic signal
filtering.

Filter SNR(dB) rmse SNR(dB,threshold) rmse(threshold)
WK(Haar) 69.5676505 0.0000808 68.7896925 0.0000815
WK(Daub4) 69.5676505 0.0000808 68.9596389 0.0000814
WK(Daub6) 69.5676505 0.0000808 69.0316703 0.0000813
WK(Coiflet6) 69.5676505 0.0000808 68.9801525 0.0000813
Kalman 64.9747688 0.0000842

Tables 5.2 and 5.3 show that as the level of decomposition increase the SNR

value increases as well. When thresholding is enabled in the Wavelet-Kalman Fil-

ter, Daub6 wavelet turned out to be more suitable for seismic signal denoising than

other wavelet types. This should be because of the polynomial approximation prop-

erty of Daubechies wavelets (Daubechies, 1988). When compared to Butterworth

filtered signal, Wavelet-Kalman filters produce maximum SNR value at 6 level de-

composition as 69.5676505 dB which is better than 67.154 dB value of Butterworth

filter.

5.2 Application to Well Logs

Well logging is a procedure to find information about the earth’s crust while drilling

for different purposes like oil/gas or groundwater. Well logging is the process of

measuring some electrical or physical properties of rocks (Jorden and Campbell,

1986). The mostly used measurements are spontaneous potential (SP) and resistiv-
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ity (RT). SP is the measured potential differences in the borehole caused by different

chemical properties of rocks. Resistivity is related to the electrical currents in the

borehole. The interpretation of the measurements give clues about:

• Formation fluid saturation.

• Net reservoir thickness.

• Formation porosity.

• Formation water resistivity.

• Structure of the strata.

Therefore it’s an important part of formation evaluation (Jorden and Campbell, 1986).

The signals used in this study are SP signals measured by DSI (General Directorate of

State Hydraulic Works, Turkey) well log measuring devices with measurement qual-

ity of 1 milivolts. SP is the measure of potential difference between different strata

through the borehole. Spontaneous potentials are formed by electrochemical poten-

tials, electrokinetic potentials and redox potentials. Different diffusion speeds of ions

in the solutions and boundaries of junctions develop electrochemical potential. Elec-

trokinetic potential forms on porous material when an ionic solution moves through

it (Jorden and Campbell, 1986). Figure 5.7 shows a simplified well logging schema.

Figure 5.7: Simplified Well logging schema, measurement device logs the SP and RT
through the borehole.

The signal is collected with a computer attached to the measurement device via

a serial port. The measurement device measures the potentials and convert the po-
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tential values to digital values in milivolts to be read and recorded by the computer.

Moreover, it amplifies the measured signal to adjust them to the dynamic range of

the analog to digital converter. Figure 5.8 shows a sample SP log of a well log.

Figure 5.8: Sample spontaneous potential log plot.

The measurement device has a precision of 1 mV. However, due to amplification

of the signal the resulting precision is the multiple of amplification. The signal noise

is removed by a simple moving averages filter (MAF). Moving averages filter is a

simple averaging convolution operator. The width of the convolution kernel is con-

trolled by user. Figure 5.9 shows a simple noisy well log signal and Figure 5.10 shows

the MAF filtered output with kernel width of 5. The graph is zoomed for better visi-

bility of filter results. Figure 5.11 shows the same signal filtered with Wavelet-Kalman

Filter of level 4 and process variance of 20, again the graph is zoomed in for better

visibility.

Figures 5.10 and 5.11 show that Wavelet-Kalman filter can be used to eliminate

noise from the SP signals. Moreover, the performance becomes better for properly

choosen process noise variance. The choice of process noise variance is dependent

on the resulting smoothness of the filtered output. The bigger the process noise vari-
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Figure 5.9: A noisy SP log of a well where the amplification is 20.

Figure 5.10: Moving averages filtered version of the signal in Figure 5.9. The MAF
kernel is 5 and resulting SNR is 90.7634124 dB
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Figure 5.11: Wavelet-Kalman filtered version of the SP signal in Figure 5.9. Level is 4
and process variance is set to 20. The resulting SNR is 96.53214549.

ance the bigger the resulting SNR. However, this results in less noise content removal.

So the choice of the process noise variance should be user controlled like the kernel

within MAF filter. Table 5.4 shows the relationship between SNR and process noise

variance. It is obvious that as process noise variance increases the SNR value in-

creases also. This shows that, increasing the process noise variance decreases the

removed noise power.

Table 5.4: The relation between process variance and SNR

Process Variance SNR(dB)
1 72.17045
5 85.31541
10 90.88055
20 96.53214
30 100.03057

Table 5.5 shows the relation between the level of the Wavelet-Kalman filter and

the SNR value with the process variance set to constant value of 20. As the level

increases the SNR value increase also, resulting better estimation with the same pro-

cess variance. Table 5.6 shows the relation of MAF filter kernel width and SNR. The
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Table 5.5: The relation between Wavelet-Kalman level and SNR

level SNR(dB)
2 94.48818
4 96.53214
6 96.92265

Table 5.6: The relation between MAF kernel width and SNR.

level SNR(dB)
3 95.84879
5 90.76341
7 86.73729

SNR drops rapidly as the kernel width of the MAF filter increases.

Tables (5.6, 5.5, 5.4) shows that using MAF filters with higher kernel widths may

result in significant signal content loss. Choice of process variance and level of

Wavelet-Kalman filter gives the ability to the user to control the level of noise re-

moval better than MAF filter.
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CHAPTER 6

CONCLUSION

It results from the Monte-Carlo simulations that proposed algorithm shows better

performance than the Standard Kalman filter. It performs at the same time the wavelet

decomposition of the signal in real-time, which is very useful to analyse the signal

in multiresolutions in real-time. Additionally, real-time wavelet thresholding was

integrated in the algorithm which improves the filter performance.

Also the experiments on case studies showed that Wavelet based Kalman Filter-

ing algorithm supresses noise more than the standard Kalman Filter by using real,

earth related signals such as well logs and seismic waves. Comparisons are accom-

plished with some certain existing filtering applications in terms of resulting signal

to noise ratios. Real-time characteristics and the performance of the filter makes it a

useful method for real-time signal analysis and control. It turned out that Brownian

motion system model combined with Wavelet-Kalman filter is a very useful tool to

model signals whose deterministic part is not known directly. The choice of process

variance gives the user the ability to control the smoothness of the resulting signal.

It is also observed that using different kind of wavelet functions inside the pro-

posed algorithm gives the same noise removal level in the Wavelet-Kalman Filter.

This means that the Wavelet-Kalman filter without wavelet thresholding is indepen-

dent of the wavelet function choosen. On the other hand, integrating wavelet based

thresholding in the algorithm gives better results for differrent wavelet types. More-

over, introducing higher block sizes with or without thresholding increases the filter

performance.

The algorithm is also applied to some real world signals of earth sciences. Ap-

plication to the seismic signals showed that if properly tuned, the proposed algo-

rithm could replace the exisiting filtering technique of Butterworth filter. It is also
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observed that Daubechies6 wavelet gives better results than other wavelets when

thresholding is enabled. Another application area is the filtering of well logs, where

Wavelet-Kalman filter gives better results and control over the exisiting moving av-

erages based filter when the filter is tuned by changing the process noise variance.

Although this study gives a deep understanding of the proposed method, further

research is still necessary for observing the applicability of the method in different

kind of problems of geosciences, like satellite orbit predictions, satellite attitude de-

termination. It is also reasonable to expand proposed methodology into higher di-

mensions for adoption to wider applications areas. Real-time characteristics of the

signal will make it useful for application to deformation monitoring of civil struc-

tures such as dams or bridges (installed in the accelerometer chip).
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APPENDIX A

THE WAVELET-KALMAN EQUATIONS FOR 8-BLOCK

For three level wavelet-kalman filter a block of size eight is needed. The block equa-

tions and variance covariance matrices for blocksize of eight are given below, which

are calculated similar to the blocksize of four calculations in Chapter 4.

A.1 Process noise covariance matrix Q

The process noise covariance matrix Q is given elementwise below.

Q11 = 1
64A

14Q+ 1
16A

12Q+ 9
64A10Q + 1

4A
8Q+ 25

64A
6Q+ 9

16A
4Q+ 49

64A
2Q+Q

Q12 = 1
28A

13Q+ 3
28A

11Q+ 3
14A

9Q+ 5
14A

7Q+ 15
28A

5Q+ 3
4A

3Q+AQ

Q13 = 1
16A

12Q+ 1
6A

10Q+ 15
48A

8Q+ 1
2A

6Q+ 35
48A

4Q+A2Q

Q14 = 1
10A

11Q+ 1
4A

9Q+ 18
40A

7Q+ 7
10A

5Q+A3Q

Q15 = 5
32A

10Q+ 3
8A

8Q+ 21
32A

6Q+A4Q

Q16 = 1
4A

9Q+ 7
12A

7Q+A5Q

Q17 = 7
16A

8Q+A6Q

Q18 = A7Q

Q21 = Q12

Q22 = 1
49A

14Q+ 4
49A

12Q+ 9
49A

10Q+ 16
49A

8Q+ 25
49A

6Q+ 36
49A

4Q+A2Q+AQ

Q23 = 1
21A

13Q+ 1
7A

11Q+ 2
7A

9Q+ 10
21A

7Q+ 5
7A

Q +A3Q+AQ

Q24 = 3
35A

12Q+ 8
35A

10Q+ 3
7A

8q + 24
35A

6Q+A4Q+A2Q

Q25 = 1
7A

11Q+ 10
28A

9Q+ 18
28A

7Q+A5Q+A3Q

Q26 = 5
21A

10Q+ 4
7A

8Q+A6Q+A4Q

Q27 = 3
7A9Q+A7Q+A5Q

Q28 = A8Q+A6Q

Q31 = Q13

Q32 = Q23
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Q33 = 1
36A

14Q+ 1
9A

12Q+ 1
4A

10Q+ 4
9A

8Q+ 25
36A

6Q+A4Q+A2Q+Q

Q34 = 1
15A

13Q+ 1
5A

11Q+ 2
5A

9Q+ 2
3A

7Q+A3Q+AQ

Q35 = 3
24A

12Q+ 1
3A

10Q+ 5
8A

8Q+A6Q+A4Q+A2Q

Q36 = 2
9A

11Q+ 10
18A

9Q+A7Q+A5Q+A3Q

Q37 = 5
12A

10Q+A8Q+A6Q+A4Q

Q38 = A9Q+A7Q+A5Q

Q41 = Q14

Q42 = Q24

Q43 = Q34

Q44 = 1
25A

14Q+ 4
25A

12Q+ 9
25A

10Q+ 16
25A

8Q+A6Q+A4Q+A2Q+Q

Q45 = 2
20A

13Q+ 6
20A

11Q+ 3
5A

9Q+A7Q+A5Q+A3Q+AQ

Q46 = 1
5A

12Q+ 8
15A

10Q+A8Q+A6Q+A4Q+A2Q

Q47 = 2
5A

11Q+A9Q+A7Q+A5Q+A3Q

Q48 = A10Q+A8Q+A6Q+A4Q

Q51 = Q15

Q52 = Q25

Q53 = Q35

Q54 = Q45

Q55 = 1
16A

14Q+ 1
4A

12Q+ 9
16A

10Q+A8Q+A6Q+A4Q+A2Q+Q

Q56 = 1
6A

13Q+ 1
2A

11Q+A9Q+A7Q+A5Q+A3Q+AQ

Q57 = 3
8A

12Q+A10Q+A8Q+A6Q+A4Q+A2Q

Q58 = A11Q+A9Q+A7Q+A5Q+A3Q

Q61 = Q16

Q62 = Q26

Q63 = Q36

Q64 = Q46

Q65 = Q56

Q66 = 1
9A

14Q+ 4
9A

12Q+A10Q+A8Q+A6Q+A4Q+A2Q+Q

Q67 = 1
3A

13Q+A11Q+A9Q+A7Q+A5Q+A3Q+AQ

Q68 = A12Q+A10Q+A8Q+A6Q+A4Q+A2Q

Q71 = Q17

Q72 = Q27

Q73 = Q37
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Q74 = Q47

Q75 = Q57

Q76 = Q67

Q77 = 1
4A

14Q+A12Q+A10Q+A8Q+A6Q+A4Q+A2Q+Q

Q78 = A13Q+A11Q+A9Q+A7Q+A5Q+A3Q+AQ

Q81 = Q18

Q82 = Q28

Q83 = Q38

Q84 = Q48

Q85 = Q58

Q86 = Q68

Q87 = Q78

Q88 = A14Q+A12Q+A10Q+A8Q+A6Q+A4Q+A2Q+Q

A.2 The System linearmodel matrix A

The associated A matrix is given below

A =



1
8A

8 1
8A

7 1
8A

6 1
8A

5 1
8A

4 1
8A

3 1
8A

2 1
8A

0 1
7A

8 1
7A

7 1
7A

6 1
7A

5 1
7A

4 1
7A

3 1
7A

2

0 0 1
6A

8 1
6A

7 1
6A

6 1
6A

5 1
6A

4 1
6A

3

0 0 0 1
5A

8 1
5A

7 1
5A

6 1
5A

5 1
5A

4

0 0 0 0 1
4A

8 1
4A

7 1
4A

6 1
4A

5

0 0 0 0 0 1
3A

8 1
3A

7 1
3A

6

0 0 0 0 0 0 1
2A

8 1
2A

7

0 0 0 0 0 0 0 A8


Note that both in process noise covariance matrix Q and the system linear model matrix

A has a pattern similar to the matrices computed in Chapter 4. A generalized Q and A

matrix can be calculated by utilizing this pattern. The following code segments show how

this matrices can be computed in Java programming language.
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The foolowing code segment lists how the covariance matrix Q can be represented as a

class in Java programming language.

package edu.metu.ggit.signal.torpu.kalman;

import Jama.Matrix;

public class GeneralizedQMatrix extends Matrix {

//level of decomposittion

private int level;

public GeneralizedQMatrix(int level,double a,double q) {

super(1<<level,1<<level);

this.level = level;

init(a,q);

}

//initialize the Q matrix according to fixed value

// a and process noise variance q

// use the symetry property of the covariance matrix.

private void init(double a, double q) {

int nData=1<<level;

int colCount = nData+nData 1;

Matrix D = new Matrix(nData,colCount);

for (int row = 0; row< nData; row++) {

for (int col=nData row 1;col<colCount row;col++) {

if (col == nData row 1) {

D.set(row, col, 1);

}else if ( col<= nData 1){

D.set(row, col, Math.pow(a, col (nData row 1)));

} else {

double coef = (double)(2∗nData row col 1)/(nData row);

if (2∗nData row col 1<1) coef=1.0/(nData row);

D.set(row, col, coef∗Math.pow(a, col (nData row 1)));

}

}
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}

Matrix X = D.times(q).times(D.transpose());

setMatrix(0, nData 1, 0, nData 1, X);

}

}
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The code segment below shows how the generic form of the A matrix can be represented

as a class in Java programming language.

package edu.metu.ggit.signal.torpu.kalman;

import Jama.Matrix;

public class BlockAMatrix extends Matrix {

public BlockAMatrix(int level,double a) {

super(1<<level,1<<level);

int nDataBlock = 1<<level;

for (int k = 0; k< nDataBlock; k++) {

for (int i = k; i< nDataBlock; i++) {

double ap = Math.pow(a, nDataBlock i + k);

set(k, i, ap / (nDataBlock k));

}

}

}

public static void main(String[] args) {

new BlockAMatrix(2,1).print(1, 4);

}

}
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APPENDIX B

SOFTWARE

B.1 Definition

The wavelet-Kalman filter is implemented as a software program with a graphical userin-

terface in Java programming language. The software is called “Törpu” which is the Turkish

word for raspa. The software also includes conversion routines for seismic data and well log

data. An image denoising method based on Wavelet-Kalman filter also included for investi-

gating the applicability of the algorithm to two dimensions.

B.2 Design and Algorithms

The software is designed in an extensible way to make it easy to adopt new filters and

wavelets into the Wavelet-Kalman Filter and the main Graphical User Interface (GUI). Kalman

and Wavelet-Kalman filters are designed to be classes that use interfaces to read the input

signal and write the output signal. Signals are modeled by interface classes to enable easy

adoption of exisiting signals.

The external packages used in the software is the JAMA(Java Matrix Algebra package)

which contains the Matrix class and other utility functions needed to implement the Kalman

Filters (JAMA, 2007). And JFreeChart is used to present the signal and filter results in graphs.

The graphs in this study are generated by JFreeChart (JFreeChart, 2007).

IWavelet interface is the base interface for all WaveletFunction implementations. Ab-

stractWavelet implements the matrix representation of the wavelet transform in a generic

way. Figure B.1 shows the UML diagram for wavelets.

Wavelet-Kalman filter and Kalman Filter implements the base interface IKalmanFilter

which defines the necessary operation for running a Kalman Filter. Figure B.2 shows the

UML diagram of Wavelet-Kalman filter and Kalman Filter and their relations.

The Wavelet-Kalman filter algorithm is given in Algorithm 2. and Some sample screen-

shots from the software called Törpü is listed in Figures B.3 and B.4.
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Figure B.1: Iwavelet Interface and its implementing Wavelet classes. getMatrix-
Form() function returns the matrix form of the associated wavelet.

Figure B.2: IKalmanFilter Interface and its implementing Wavelet-Kalman and
Kalman Filters.
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Algorithm 2 Wavelet-Kalman Filter
1: T ⇐ wavelet transform matrix

2: A ⇐ BlockAMatrix()

3: Q ⇐ GeneralizedQMatrix()

4: A ⇐ TAT T

5: Q ⇐ TQT T

6: C ⇐ TCT T

7: P−
k ⇐ P 0, x−k ⇐ Tx0 // x0 is the a priori block estimate at k

8: k ⇐ 0

9: while measurement is collected in blocks do

10: Rk ⇐ variance of new measurement block

11: zk ⇐ measurement block

12: zk ⇐ Tzk // Transform measurements into wavelet domain.

13: Rk ⇐ TRkT T // Transform the measurement variance into wavelet domain

14: Kk ⇐ P−
k CT (CP−

k CT + Rk)−1 // Find Kalman gain matrix Kk

15: P k ⇐ (I −KkC)P−
k

16: x̂k ⇐ x̂−k + Kk(zk −Cx̂−k ) // Apply correction to the predicted state variables by

taking the measurements into account

17: if thresholding enabled then

18: applyThreshold(x̂k)

19: P−
k+1 ⇐ AP kA

T + Q // Predict Future error covariance of the state matrix

20: x̂−k+1 ⇐ Ax̂k // Predict future version of x̂k

21: if output coefficients then

22: output x̂k

23: else

24: output T T x̂k // Output the estimated state in system state variable domain

25: k ⇐ k + 1
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Figure B.3: Shows a screenshot of the software with seismic signal, well log and
images.
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Figure B.4: Shows a screenshot of the software with seismic signal, well log and
images with the parameter dialog for wavelet-kalman filter.
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