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ABSTRACT 

 

NAVIGATION AND CONTROL STUDIES ON CRUISE 

MISSILES 

 

EKÜTEKİN, Vedat 

Ph. D., Department of Mechanical Engineering 

Supervisor: Prof. Dr. M. Kemal ÖZGÖREN 

January 2007, 298 pages 

 

A cruise missile is a guided missile that uses a lifting wing and a jet 

propulsion system to allow sustained flight. Cruise missiles are, in essence, 

unmanned aircraft and they are generally designed to carry a large conventional or 

nuclear warhead many hundreds of miles with excellent accuracy. In this study, 

navigation and control studies on cruise missiles are performed. Due to the variety 

and complexity of the subsystems of the cruise missiles, the main concern is limited 

with the navigation system. Navigation system determines the position, velocity, 

attitude and time solutions of the missile. Therefore, it can be concluded that an 

accurate self-contained navigation system directly influences the success of the 

missile. In the study, modern radar data association algorithms are implemented as 

new Terrain Aided Navigation (TAN) algorithms which can be used with low-cost 

Inertial Measurement Units (IMU’s). In order to perform the study, first a thorough 

survey of the literature on mid-course navigation of cruise missiles is performed. 
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Then, study on modern radar data association algorithms and their implementations 

to TAN are done with simple simulations. At the case study part, a six degree of 

freedom (6 DOF) flight simulation tool is developed which includes the 

aerodynamic and dynamic model of the cruise missile model including error model 

of the navigation system. Finally, the performances of the designed navigation 

systems with the implemented TAN algorithms are examined in detail with the help 

of the simulations performed. 

Keywords: Cruise Missile, Terrain Aided Navigation (TAN), Probabilistic Data 

Association Filter (PDAF), Track Splitting Filter (TSF), Multiple Hypothesis 

Tracking (MHT). 
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ÖZ 

 

SEYİR FÜZELERİ ÜZERİNE SEYRÜSEFER VE DENETİM 

ÇALIŞMALARI 

 

EKÜTEKİN, Vedat 

Doktora, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. M. Kemal ÖZGÖREN 

Ocak 2007, 298 sayfa 

 

Seyir füzesi, kaldırma kanatları ve jet itki sistemi ile kararlı uçuş sağlayan 

güdümlü bir füzedir. Seyir füzeleri genellikle, büyük konvansiyonel ya da nükleer 

savaş başlıklarını uzak mesafelere çok hassas olarak taşıyan insansız hava 

taşıtlarıdır. Bu çalışmada, seyir füzeleri üzerine seyrüsefer ve denetim çalışmaları 

gerçekleştirilmiştir. Seyir füzelerinin alt sistemlerindeki çeşitlilik ve karmaşıklık 

nedeniyle, çalışmanın ana konusu seyrüsefer sistemiyle kısıtlanmıştır. Seyrüsefer 

sistemi füzenin konum, hız, yönelim ve zaman çözümlerini belirler. Bu nedenle, 

hassas, kendi kendine yeterli bir seyrüsefer sisteminin füzenin başarısını doğrudan 

etkileyeceği sonucuna varılabilir. Çalışmada, modern radar veri ilişkilendirme 

algoritmaları, düşük maliyetli ataletsel seyrüsefer sistemleri ile kullanılabilecek yeni 

Arazi Destekli Seyrüsefer (ADS) algoritma uygulamaları için kullanılmıştır. 

Çalışmayı gerçekleştirmek için, ilk aşamada seyir füzelerinin seyrüsefer 

yöntemlerine ait ayrıntılı kaynak araştırması yapılmıştır. Daha sonra, modern radar 
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veri ilişkilendirme algoritmaları üzerine çalışılmış ve bunların ADS uygulamaları 

basit benzetimlerle gerçekleştirilmiştir. Örnek olay incelemesi kısmında, seyir 

füzesinin aerodinamik ve dinamik modeli ile seyrüsefer sisteminin hata 

modellemesini de içeren altı serbestlik dereceli bir uçuş benzetim aracı 

geliştirilmiştir. Son olarak, yeni uygulanan ADS algoritmaları kullanılarak 

tasarlanan seyrüsefer sistemlerinin başarımları, gerçekleştirilen uçuş 

benzetimlerinin yardımıyla ayrıntılı olarak incelenmiştir. 

Anahtar Kelimeler: Seyir Füzesi, Arazi Destekli Seyrüsefer (ADS), Olasılıklı Veri 

İlişkilendirme Filtresi (OVİF), İz Ayırma Filtresi (İAF), Çoklu Varsayımlı Takip 

(ÇVT) 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Scope of the Study 

A cruise missile is a guided missile that uses a lifting wing and a jet 

propulsion system to allow sustained flight. Cruise missiles are, in essence, 

unmanned aircraft and they are generally designed to carry a large conventional or 

nuclear warhead many hundreds of miles with excellent accuracy [1]. 

A cruise missile usually flies at subsonic speed and it would require several 

hours of continuously guided flight to cover its mission distance. Hence, guidance 

errors that accumulate with time would be almost 100 times larger for a cruise 

missile than for a ballistic missile which is guided for the first five of the twenty 

minutes. Therefore its accurate arrival on the target could be achieved only with 

continuous guidance that is updated and corrected from time to time by new 

location information. In order to obtain the necessary location information, a long-

range cruise missile employs a device that can correlate information obtained by an 

onboard sensor about the terrain it is flying over with some kind of map stored in 

the memory of an onboard computer [2]. 
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Navigation system of a cruise missile determines the position, velocity, 

attitude and time solutions of the missile. Therefore, it can be concluded that an 

accurate self-contained navigation system directly influences the success of the 

missile. In this study, navigation and control studies on cruise missiles will be 

performed. 

Terrain Aided (Referenced) Navigation (TAN) is an important part of 

“Integrated Navigation Systems” in military and civil avionics. TAN provides 

position fixes, which can be used to aid a central navigation system. Especially, if 

other sources for position aids, like the Global Positioning System (GPS), are not 

available, TAN can provide reliable position information in low level flights over 

significant terrain [3]. 

The scope of the study is to implement some modern radar data association 

algorithms as new Terrain Aided Navigation (TAN) algorithms which can be used 

with low-cost Inertial Measurement Units (IMU’s). 

In this chapter, theory about the study will be given. First, information about 

cruise missiles and cruise missile navigation performance will be given. Then, 

literature survey on TAN techniques will be discussed in detail. Finally, information 

about radar tracking techniques and possible implementations of radar data 

association algorithms to TAN will be given. At the last section of the chapter, 

outline of the thesis study will be summarized. 
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1.2. Cruise Missiles 

1.2.1. Background 

A cruise missile is a guided missile that uses a lifting wing and a jet 

propulsion system to allow sustained flight. Cruise missiles are, in essence, 

unmanned aircraft. They are generally designed to carry a large conventional or 

nuclear warhead many hundreds of miles with excellent accuracy. In 2001, modern 

cruise missiles normally travel at sub-sonic speeds, are self-navigating, and fly low 

in order to avoid radar detection [1]. The term cruise missile covers several vehicles 

and their capabilities, from the Chinese Silkworm (HY-2), which has a range of less 

than 105 km, to the U.S. Advanced Cruise Missile (ACM), which can fly to ranges 

of up to 3,000 km. These vehicles vary greatly in their speed and ability to penetrate 

defenses. All, however, meet the definition of a cruise missile: “an unmanned self-

propelled guided vehicle that sustains flight through aerodynamic lift for most of its 

flight path and whose primary mission is to place an ordnance or special payload on 

a target”. This definition can include unmanned air vehicles (UAV’s) and 

unmanned control-guided helicopters or aircraft [4]. 

Cruise missiles were first developed by Nazi Germany during World War II. 

The V-1 (introduced in 1944) was the first weapon to use the classic cruise missile 

layout of a bomb-like fuselage with short wings and a dorsally mounted engine, 

along with a simple inertial guidance system. The V-1 was propelled by a crude 

pulse-jet engine, the sound of which gave the V-1 its nickname of “buzz bomb”. 

Japanese kamikaze aircraft could be viewed as manned cruise missiles. During the 

Cold War, both the United States and the Soviet Union experimented further with 

the concept, deploying early cruise missiles from submarines and aircraft. The 

Soviet Union was especially fond of large cruise missiles. The United States had a 

program to develop a nuclear-powered cruise missile, Project Pluto. Although the 

concept was proven sound, none were ever test-launched. While ballistic missiles 

were the weapons of choice for land targets, heavy nuclear and conventional tipped 
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cruise missiles were seen by the USSR as a primary weapon to destroy US carrier 

battle groups. Large submarines (e.g. Echo and Oscar class) were developed to 

carry these weapons and shadow US battle groups at sea, and large bombers (e.g. 

Backfire, Bear, and Blackjack models) were equipped with the weapons [1]. 

As of 2001, the Tomahawk missile (BGM-109) model has become a 

significant part of the US naval arsenal. It gives ships and submarines an extremely 

accurate, long-range, conventional land attack weapon. Each costs about $1,000,000 

USD. The United States Air Force deploys an air launched cruise missile, the 

AGM-86. It can be launched from bombers like the B-52 Stratofortress. Both the 

Tomahawk and the AGM-86 were used extensively during Operation Desert Storm 

[1]. 

In Figure 1, Figure 2, Table 1 and Table 2, well-known US cruise missiles 

with specifications were presented as examples to typical cruise missiles. 

 
Figure 1. BGM-109 Tomahawk Cruise Missile [5] 
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Figure 2. AGM-86 Air-Launched Cruise Missile (ALCM) [6] 

 

1.2.2. Cruise Missile Technology 

Cruise missile technology has advanced substantially since the German V-1 

of World War II. Modern cruise missiles fly at altitudes one-tenth those of the V-1, 

have Radar Cross-Sections (RCS) one hundred times smaller (which reduces 

detectability), and accuracies two hundred times better [7]. 

The technology of the cruise missile has four main component elements: 

1. Airframe; 

2. Propulsion system; 
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3. Guidance systems; 

4. Warhead. [7] 

As an example, the main components of Tomahawk cruise missile are 

shown in Figure 3 [5]. 

 

Table 1. BGM-109 Tomahawk Cruise Missile Specifications [5] 

Primary Function:  Long-range subsonic cruise missile for attacking land targets. 

Contractor:  Hughes Missile Systems Co., Tucson, Ariz. 

Power Plant:  Williams International F107-WR-402 cruise turbo-fan engine; 
solid-fuel booster 

Length:  18 feet 3 inches (5.56 meters); with booster: 20 feet 6 inches 
(6.25 meters) 

Weight:  2,650 pounds (1192.5 kg); 3,200 pounds (1440 kg) with 
booster 

Diameter:  20.4 inches (51.81 cm) 

Wing Span:  8 feet 9 inches (2.67 meters) 

Range:  Land attack, conventional warhead: 600 nautical miles (690 
statute miles, 1104 km) 

Speed:  Subsonic – about 550 mph (880 km/h) 

Guidance System:  Inertial and TERCOM 

Warheads:  

Conventional: 1,000 pounds Bull pup, or conventional sub-
munitions dispenser with combined effect bomblets, or WDU-
36 warhead with PBXN-107 explosive & FMU-148 fuze, or 
200 kt. W-80 nuclear device 

Date Deployed:  1983 

Costs  
$500,000 - current production Unit Cost 
$1,400,000 - average unit cost (TY$) 
$11,210,000,000 - total program cost (TY$)  

Total Program  4 170 missiles  
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Table 2. AGM-86 Air-Launched Cruise Missile (ALCM) Specifications [6] 

Primary Function:  Air-to-surface strategic missile  

Contractor: Boeing Aerospace Co.  

Guidance 
Contractors: Litton Guidance and Control  

Power Plant:  Williams Research Corp. F-107-WR-10 turbofan engine  

Thrust: 600 pounds (270 kilograms)  

Length: 20 feet, 9 inches (6.29 meters)  

Weight:  3,150 pounds (1,417.5 kilograms)  

Diameter: 24.5 inches (62.23 centimeter)  

Wingspan: 12 feet (3.64 meters)  

Range: AGM-86B: 1,500-plus miles (1,305 nautical miles)  

Speed: About 550 mph (Mach 0.73)  

Guidance System: Litton inertial navigation element with terrain contour-
matching updates  

Warheads: Nuclear capable  

Sensors: 
A terrain contour-matching guidance system that allows the 
missile to fly complicated routes to a target through use of 
maps of the planned flight route stored in on-board computers  

Unit Cost: $1 million  

Date Deployed: December 1982  

Inventory: Active force, 1,628; ANG, 0; Reserve, 0  
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Figure 3. Main Components of Tomahawk Cruise Missile 

 

1.2.2.1. Airframe 

The airframe is essentially that of a small (unmanned) aeroplane or a design 

based on a Remotely Piloted Vehicle (RPV). Early two-wing, three-surface tail 

aircraft designs were followed by four-wing, four-tail cruciform configurations. As 

an example, the body of a Tomahawk cruise missile which has two wings and a 

four-fan tail [7] is given in Figure 4 [5]. 

 

 
Figure 4. Tomahawk Cruise Missile Configuration 



 9

1.2.2.2. Propulsion System 

The propulsion system needs to maintain sufficient momentum to counter 

the force of gravity. Most cruise missiles are propelled by a small, highly 

specialized, air-breathing engine which thus needs to draw oxygen from the 

atmosphere into the engine for the bulk of the flight. Air-breathing engines are one 

of four types: pulsejet, ramjet, turbojet or turbofan, this last being a more efficient 

form of turbojet developed in the 1970’s. Short to medium range systems tend to 

employ turbojets, which though less efficient, are usually less expensive than 

turbofans. Most long-range missiles, e.g. the Tomahawk use highly efficient 

turbofans propelling them at high subsonic speeds. The few long-range cruise 

missiles propelled by ramjets include the French ASMP and ASURA which are 

capable of Mach 2 and Mach 3 speeds respectively [7]. 

Many missiles are launched by rocket boosters and some missiles, especially 

short-range Anti Ship Cruise Missiles (ASCM’s) like the Exocet, are powered 

throughout their flight by rocket motors. Older rocket-propelled models, such as the 

Styx and Silkworm ASCM’s use liquid fuelled rocket engines, while newer ones, 

such as the Exocet, use solid fuel motors [7]. 

 

1.2.2.3. Guidance Systems 

Cruise missiles have at least two guidance systems: an in-flight guidance 

system to maintain its flight path and altitude, and a terminal guidance system for 

the final approach to the target. Depending upon the particular characteristics of the 

guidance system, the missile may be programmed: as autonomous (i.e. launch and 

leave); or for remote piloting by command (i.e. flow by a human operator over a 

remote communications link); or as semi-autonomous (a combination of the two, 

with remote manual input in the terminal stage) [7]. 
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1.2.2.3.1. In-flight Guidance 

In-flight guidance relies on Inertial Navigation Systems (INS) using 

gyroscopes to ascertain the missile's position. Shorter-range cruise missiles may use 

only inertial and terminal guidance. Longer-range missiles require supplemental 

information to make up for inherent inertial guidance inaccuracies (or drift). One 

sophisticated supplemental system in current use is Terrain Contour Matching, 

known in the United States as TERCOM, a position fixing technique. A digital 

terrain map of the missile’s planned route has first to be made, and it is then stored 

in the weapon’s guidance system. Updates received from a radar altimeter 

determine the missile’s altitude and this information is then compared with terrain 

heights in the pre-stored digital map. Once the updates are received, the missile can 

correct its flight back to the planned route [7]. 

Due to the high cost and complexities of obtaining the satellite data needed 

to create the digitized maps for TERCOM, the US is the only nation that currently 

incorporates this technology widely in its cruise missiles. However, the Soviet SS-

N-21 Sampson, a long-range Submarine-Launched Cruise Missile (SLCM) dubbed 

“Tomahawkski” due to its similarity to the US system, is believed to be able to 

incorporate a TERCOM-like guidance system. The French ASMP and Apache 

missiles also use terrain matching and several other Western nations, including the 

UK and Sweden, are believed to have the capability to incorporate TERCOM into 

cruise missiles [7]. 

Global Positioning System (GPS) data is another supplementary guidance 

system, which has yet to be fully exploited. It uses a constellation of 24 

continuously transmitting navigation satellites provided by the US Department of 

Defense. Military users can receive positional data accurate down to 5 meters or 

less. However, the same signal ‘degraded’ for civilian users (and potential 

adversaries) is less precise, but accurate enough for most purposes. A similar 

system, GLONASS, is being deployed by Russia [7]. 
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GPS is now used in US cruise missiles, such as the Tomahawks used to 

attack Bosnian Serb targets in September 1995. France intends to use GPS for its 

Apache series of cruise missiles, and other countries are also expected to do so. 

Thus, with the ever-widening availability of this technology, all proliferators can 

significantly enhance the accuracy of their cruise missiles. For them GPS will be 

preferable to TERCOM because it does not require such elaborate and cost-

intensive pre-programming of data [7]. 

However both systems have their limitations. TERCOM navigates by 

identifying distinctive terrain features. On the other hand, the GPS system utilizes 

long-range satellite systems whose transmissions can be jammed using shorter 

range, more powerful signals, and the civilian signals can also be switched off if 

necessary, as was the case during Operation Desert Storm in 1991 [7]. 

 

1.2.2.3.2. Terminal Guidance 

Terminal guidance systems help the missile to home in on the target in the 

final stages of flight. These systems may make use of active or semi-active radar, 

infrared, television, or “home-on-jam” (i.e. on a jamming signal) techniques [7]. 

The Tomahawk uses an additional set of precise terminal navigation updates 

known as the Digital Scene Matching Area Correlator (DSMAC), a two-

dimensional, map-matching concept that employs an onboard sensor to obtain a 

sequence of images of the ground directly below the missile. The images are 

compared to reference data stored in the missile’s navigational computer, and route 

changes are made accordingly, prior to final target acquisition [7]. 

In Figure 5, TERCOM and DSMAC guidance principles are shown [5]. 
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Figure 5. TERCOM and DSMAC Guidance 

 

1.2.2.4. Warhead 

In some respects the most significant component of a cruise missile is its 

warhead. Unlike a ballistic missile, which places enormous stresses on its warhead 

as it accelerates and as it re-enters the Earth’s atmosphere, a cruise missile flies 

much like an aircraft. Its warhead can therefore be based upon munitions originally 

designed for manned aircraft, making the development of Chemical and Biological 

(CW and BW) payloads for cruise missiles a comparatively simple matter [7]. 

Currently, most cruise missiles are armed with conventional, high-explosive 

warheads. However several countries are known to have available blast 

fragmentation warheads for use with their cruise missiles (e.g. ASCM’s such as the 
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Chinese Silkworm, the Iraqi FAW series, and the Israeli Gabriel) or sub-munitions 

(e.g. the French Exocet ASCM and Apache TLACM and the German Kormoran 

ASCM) [7]. 

Some ex-Soviet systems are dual-capable and can be fitted with either a 

conventional or nuclear warhead. Only the US, Russia and France are known to 

deploy nuclear-armed cruise missiles at present. The Chinese were also reported 

some time ago to be nearing completion of a nuclear warhead for their Silkworm 

ASCM. No nation is currently known to possess a CW or BW cruise missile 

warhead. However there have been media reports suggesting that Syria, Iran, and 

China are attempting to develop these [7]. 

Different variants of the Tomahawk may be nuclear or conventionally 

armed. Due partly to arms control constraints and partly to improvements in 

conventional payloads, the US is concentrating on the development and deployment 

of conventionally armed missiles. The Tomahawk TLAM-D for example carries a 

sub-munitions dispenser that allows it to deliver bomblets on three different targets, 

before diving into a fourth [7]. 

 

1.2.3. Low-Cost Cruise Missiles 

Advances in new commercial technologies make the development of low 

cost guided weapons possible. US authorities developed the Low Cost Cruise 

Missile Defense (LCCMD) program in order to defeat a threat consisting of 

unsophisticated air vehicles attempting to overwhelm their defensives by attacking 

in large numbers or by attacking over wide geographic areas [8]. 
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It is claimed that 82 countries (including third world countries like Egypt, 

Chile, and Singapore) possess cruise missiles where 75 systems are in service and 

42 are in development [9]. 

Advanced low cost interceptor seekers, using commercial hardware, and 

matching seeker performance as Noise Radar Seeker, the Micro Electromechanical 

Machine System (MEMS) Electronically Steerable Antenna (ESA) Seeker, Laser 

Seeker, Infrared (IR) Seeker, Optical ESA, Ultra High Frequency (UHF) Seeker and 

advanced navigation algorithms can be examples for low cost systems which can be 

used in cruise missiles in the future. 

As an example, in reference [10], an amateur researcher claims to build a 

cruise missile in his own garage with a budget of just 5,000 US dollars. He also 

subscribes all the work he does in his site. 

 

1.3. Terrain Aided Navigation (TAN) 

Terrain Aided Navigation (TAN) is a technique to estimate the position of a 

moving vehicle by comparing the measured terrain profile under the vehicle to a 

stored elevation map. TAN has been operational for unmanned vehicles for some 

time. Although this operational system has proven to be reliable and cost effective, 

it is desirable to develop enhancements which can either reduce the pre-planning 

effort or increase the operational envelope, i.e., reliable operation in terrain with 

less reliable or with stored elevation data with larger errors. It is anticipated that 

terrain aided navigation will be in use for many years to come due to the long term 

stability of the terrain profile of earth, the relative ease of mapping and maintaining 

maps of large operational areas, the ease and reliability with which on-board 

measurements can be made and the relatively low computational burden of 

computing navigation updates in an embedded vehicle processor [11]. 
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TAN is an important part of “Integrated Navigation Systems” in military and 

civil avionics. TAN provides position fixes, which can be used to aid a central 

navigation system. Especially, if other sources for position aids, like the Global 

Positioning System (GPS), are not available, TAN can provide reliable position 

information in low level flights over significant terrain. The outage of the GPS in 

hostile jammed environments or due to shadowing effects caused by low level 

flights in valleys is always possible and has to be expected. Therefore, TAN, which 

is independent from external information sources, is predestinated for additional 

position aiding [3]. 

 

1.3.1. TAN Techniques 

A number of TAN techniques have been developed and tested. These fall 

into two general algorithmic categories [11]: 

1. Batch Algorithms, 

2. Recursive Algorithms. 

In addition, there are two general map storage techniques: small, high 

fidelity maps which are used at specific points along the intended route of the 

vehicle; and a single, large, low fidelity map which encompasses the entire 

operating area of the vehicle. These techniques are shown in Figure 6 and are 

associated with the two most widely understood TAN implementations [11]: 

1. Terrain Contour Matching (TERCOM) 

2. Sandia Inertial Terrain Aided Navigation (SITAN) [12] 
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The most widely known form of TAN is TERCOM. With TERCOM a strip 

of terrain elevation measurements are collected while the vehicle flies along the 

intended route and the measurements are post processed by a batch algorithm to 

provide a correlation with a high fidelity map. In the operational missile systems 

employing TERCOM the stored map preparation and validation process includes 

extensive analysis to evaluate the probability of obtaining a strong and 

unambiguous correlation with candidate maps. The map size in the cross-track 

direction is determined by the “worst case” navigation uncertainty and in the down-

track direction by the larger of “worst case” navigation uncertainty or the map 

length necessary to provide an unambiguous update opportunity. A sequence of 

maps are then developed to provide navigation update opportunities from the launch 

point to the target. The operational TERCOM applications use a mean absolute 

difference (MAD) algorithm which is only a modest computational requirement in 

an embedded flight processor. In addition, the map storage requirements are 

minimized by carefully selecting the minimum number and size of maps required 

for each mission [11]. 

In the late 1970’s TAN in the form of SITAN was proposed. SITAN uses an 

extended Kalman Filter (EKF) and a local terrain linearization technique to 

implement a recursive algorithm. This algorithm operates on individual terrain 

elevation measurements as they become available and for the entire duration of the 

mission. This requires a map for the entire mission. For missile applications the 

map could be for the length of the mission with the width determined by navigation 

uncertainly and terrain uniqueness or suitability. However, for manned aircraft 

applications map data for the entire operating area must be stored because the pilot 

may deviate from the preplanned route at any time. SITAN has been developed and 

evaluated for the manned aircraft application using Digital Terrain Elevation Data 

(DTED) which is a low fidelity Defense Mapping Agency (DMA) product readily 

available in most operational areas [11]. 
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Figure 6. Terrain Aided Navigation (TAN) Techniques [11] 

 

Other TAN techniques including TERPROM and SPARTAN have been 

developed and evaluated since then. In the late 1950’s and throughout the 1960’s 

when TAN concepts were originally developed and in the 1970’s when TAN 

concepts were applied to missile applications, digital computer capabilities were 

limited. Within the past few years the computational, data storage and memory 

access capabilities of embedded vehicle computers have improved dramatically. 

Thus, the previously assumed computational constraints do not apply as techniques 

are developed to enhance the performance and to expand the operational envelope 

of TAN techniques [11]. 

The TERCOM and SITAN approaches both have attributes that are of 

interest. Although enhancements can be envisioned in a number of areas the 

approach here is to investigate algorithm techniques which would make more 

complete use of the information content of the stored elevation data, the a priori 

knowledge of the errors in the stored elevation data and the elevation 
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measurements. Batch processing algorithm (i.e. TERCOM) was generally selected 

for cruise missiles because: no linearization of the terrain profile is necessary; it 

does not require an acquisition process; and the algorithm techniques are applicable 

to both small discrete maps and large maps which can support continuous 

navigation updating [11]. 

 

1.3.2. TAN System Considerations 

In terrain aided navigation, position estimates are referenced to the terrain 

data and are insensitive to position bias errors in the terrain data. Because of this 

characteristics, terrain aided navigation systems are especially useful in applications 

that require accurate navigation relative to targets, obstacles, structures, and other 

features whose locations are derived from the same source as the stored elevation 

data [13]. 

Terrain aided navigation (TAN) consists of sensing a terrain elevation 

profile beneath an air vehicle and correlating the profile with stored digital terrain 

elevation data (DTED) to produce an estimate of vehicle position. An INS, usually 

with barometric altimeter aiding, provides the approximate trajectory. TAN systems 

provide three dimensional position updates to the navigation system by estimating 

INS trajectory errors. Radar or laser altimeter measures ground clearance and the 

DTED gives terrain elevation above mean sea level (MSL). Implementation 

requires an INS, an altimeter, DTED, and a flight computer for executing the TAN 

algorithm. In Figure 7, an illustration is given for TAN measurement process [13]. 
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Figure 7. TAN Measurements 

 

1.3.3. Digital Terrain Elevation Data (DTED) 

As it is mentioned in the previous sections, the critical part of TAN is the 

elevation model used in the system. Generally, DTED is used for military purposes. 

The U. S. Department of Defense, through the National Geospatial Intelligence 

Agency, produces several kinds of digital cartographic data. One is digital elevation 

data, in a series called DTED. The data is available as 1-by-1 degree quadrangles at 

horizontal resolutions ranging from about 1 kilometer to 1 meter. The lowest 

resolution data is available to the public [14]. 
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DTED Level 0 files have 121-by-121 points. DTED Level 1 files have 1201-

by-1201. The edges of adjacent tiles have redundant records. DTED files are binary. 

No line ending conversion or byte-swapping is required when downloading a 

DTED file [14]. The data available to the public is called Level 0 and has a 30 arc 

second spacing. Other higher resolution data called Level 1 and Level 2 is not 

available to public. Performance specifications of DTED files are defined in a US 

military standard [15] and detailed information can be obtained from there. 

For cruise missile mid-course navigation phase, because of its broad-area 

coverage, Level 1 DTED is used by most TAN systems. With very accurate and 

expensive-to-produce DTED, TAN system horizontal position accuracies rivaling 

those of GPS can be achieved. In TAN systems using Level 1 DTED over broad 

areas, accuracies in the range of 50–200 m CEP are typical for low-flying air 

vehicles like cruise missiles [13]. 

In Turkey, various levels of DTED are prepared by HGK (Harita Genel 

Komutanlığı - Turkish General Mapping Commandership) for all regions of Turkey 

from topographic maps and they are served to national institutions with protocols. 

The properties of DTED prepared for Turkey are given in Table 3 [16]. 

 

1.4. Literature Survey on TAN 

TAN systems are generally used for military purposes. As a result of this, 

access to literature about TAN became very difficult. Especially for TERCOM, 

original famous report of Baker and Clem (1977), named “Terrain Contour 

Matching (TERCOM) Primer” could not be obtained. However, all the papers about 

TAN found in IEEE and AIAA are investigated and classified for the study. 

Moreover, US patents about TAN are also investigated. 
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Table 3. Properties of DTED Prepared by HGK 

DTED Type DTED Level 2 DTED Level 1 

Map Scale 1/25,000 1/250,000 

Map Datum WGS84, ED50 WGS84, ED50 

Map Coverage 1”x1” 3”x3” 

Unit Map Coverage 7.5’x7.5’ 1°x1° 

Unit File Size 0.5 MB 3 MB 

Resolution and 
Accuracy 

±26 m horizontal 
±20 m altitude 

±130 m horizontal 
±30 m altitude 

DTED Preparation 
Source and Method 

YÜKPAF25 
Interpolation 

YÜKPAF250 
Interpolation 

Confidentiality Classified Unclassified 

 

TAN papers can be classified according to their subjects as follows: 

1. Cruise Missile System Performance, 

2. Terrain Models and Path Optimization, 

3. TAN Applications, 

4. TAN Algorithms. 

As it can be seen from the survey results, TAN can be found in various 

subjects related with cruise missiles and navigation applications. The papers are 

investigated considering TAN point of view for the study. 
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1.4.1. Cruise Missile System Performance 

In several papers, general system performances of TAN applications of 

cruise missiles are investigated. Henley [17] provides an overview of the 

SPARTAN technique and other techniques for improving navigation performance 

over very flat terrains. Navigation system performances of various TAN systems are 

investigated and terrain data requirements are defined. Details of the TAN 

algorithms are not given in the paper. In Table 4, navigation performances of 

various INS aided systems are compared. 

 

Table 4. Navigation System Performances of Various INS Aiding Systems [17] 

 
 

Nielson [18] investigates the Conventional Air Launched Cruise Missile 

(CALCM) performance. Advantages of integrating GPS navigation into the missile 

in place of TERCOM are stated in this paper. Results and benefits of the GPS 

integrated cruise missile are given considering the applications in the Gulf War. 

However, it is known that jamming is a very important problem for GPS integrated 

systems. In Iraq War, several GPS aided cruise missiles have been jammed by Iraq 

military forces. Therefore, besides ease of using GPS, reliability problems should 

also be taken into consideration. 
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Hicks [19] provides a functional description of the navigation and guidance 

system in the Advanced Cruise Missile (ACM) and discusses some of the areas of 

improvements over the ALCM. From the paper, it can be seen that ACM has a very 

complex navigation and flight control system. The paper is helpful for 

understanding the navigation and guidance of a cruise missile. 

Bennett [20] investigates the use of digital terrain map data for airborne 

operations. The fundamental uses of digital map data for TAN and simulators are 

given in the paper. Moreover, information about mission planning and simulation is 

also given. From his work, Bennett [20] concludes that GPS and TAN are 

complementary navigation sensors, and when properly integrated with INS, they 

provide the essential correlation of aircraft position with respect to the actual 

ground contours. 

 

1.4.2. Terrain Models and Path Optimization 

Terrain models used in TAN systems are very critical. They should be 

modeled as accurate as possible in order to obtain better navigation solutions. Chen 

and Yu [21] improve the models used for TAN. Actually, they improve the terrain 

model by considering horizontal position noises of the terrain model as colored 

noises. The TAN algorithm used in the paper is SITAN which will be discussed in 

the following sections in detail. 

A very similar paper is presented by Wang and Chen [22]. In their paper, 

possible error sources related to the elevation model is added to the SITAN 

equations in order to improve navigation solutions. Yu, et al [23] also propose 

various terrain linearization techniques required for SITAN implementation and 

present the improvements in navigation solutions. 
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Terrain models are also critical for mission planning of the airborne 

vehicles. Therefore, selection of the optimal path when using terrain models is one 

of the major problems of TAN. Paris and Le Cadre [24] investigate the planification 

of a mobile trajectory in order to use its own motion for improving its position 

estimation. In other words, an optimal trajectory is aimed to be planned which 

minimizes the localization error along the path or at the arrival area. In the paper of 

McFarland, et al [25], techniques originally developed for robot motion planning 

are applied to compute paths for autonomous air vehicles, such as cruise missiles or 

UAV’s. This approach is said to be particularly useful in multi-objective 

optimization problems such as intercepting a target while also maneuvering to 

minimize observability to ground-based tracking stations. 

Improvement of TAN using optimization is also one of the subjects of TAN. 

Bar-Gill, et al [26] propose a new method for improving the accuracy of TAN 

algorithms. They minimize the navigation errors which propagate along the flight 

path by designing airframe trajectories in a priori mission planning. The method 

uses information theory-based conditional entropy mapping and synthesizes 

minimum-entropy trajectories. Hence, by selecting optimal flight paths, navigation 

accuracies of the used TAN algorithms are improved. 

In the paper of Li, et al [27], optimal control methodology is adopted to 

design a terrain following controller for cruise missile. In this methodology, both 

tracking errors and control increments are considered in a quadratic penalty 

function. This paper is different from others; because, terrain following flight is 

investigated from the control point of view. Here, the TAN algorithms used and 

errors due to navigation system are not considered. 
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1.4.3. TAN Applications 

TAN applications can be found in literature especially for military purposes. 

Here, instead of developing new TAN algorithms, the applications of the known 

algorithms to real systems are given. In order to concentrate on TAN algorithms in 

detail, TAN applications are presented in a separate section. TAN algorithms found 

in literature will be investigated in the following section. 

Baird and Snyder [28] describe the design, mechanization and preliminary 

flight testing of a new altitude channel implementation, referenced primarily to the 

SITAN altitude estimates for AFTI/F-16 aircraft. Their paper is a typical SITAN 

algorithm application to a real system. In a similar way, Hollowell [29] presents the 

application of SITAN algorithm to US Army UH-1 Helicopter. In the paper, 

Multiple Model Adaptive Estimation (MMAE) techniques are employed for SITAN 

algorithm using a bank of single state Kalman filters to ensure that reliable position 

estimates are obtained even in the face of large initial position errors. 

Another example of a TAN application is the paper of Nordlund and 

Gustafsson [30]. They estimate the position of an aircraft using a terrain aided 

positioning algorithm based on a Rao-Blackwellisation technique. This technique 

uses recursive Monte Carlo methods, also known as particle filters and provides a 

favorable approximate solution. The TAN algorithm used here will be investigated 

in the following section considering the original paper of Bergman, et al [31]. 

TAN can be used in applications not only for air vehicles but for underwater 

and land vehicles as well. Newman and Durrant-Whyte [32] describe and 

investigate autonomous navigation of an underwater vehicle which uses inertial and 

sonar based sensors. In their paper, they associate inertial and sonar based world 

frame feature information in order to form a robust navigation algorithm. They do 

not use ready terrain map information for navigation; but, they form feature 

information around the underwater vehicle by using sonar measurements. 
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TAN applications for land vehicles are found in the papers of Madhavan, et 

al [33] and Bruder, et al [34]. Madhavan, et al [33] describe a TAN system which 

employs points of maximum curvature extracted from laser scan data as primary 

landmarks. On the other hand, Bruder, et al [34] present the development and 

implementation of a new sensor integration algorithm employing a terrain map to 

reduce INS errors. The algorithm used in this paper is very similar to classical TAN 

applications which use terrain height data for navigation correction. 

Terrain model improvement can also be considered as applications of TAN. 

Accurate terrain models not only improve the accuracy of the navigation system but 

they are also required for accurate height profile of the concerned areas. Morisue 

and Ikeda [35] demonstrate a navigation system which is used for high level of 

location accuracy. They achieve it by using various map-matching techniques. On 

the other hand, McLellan and Schleppe [36] describe an integrated real-time 

differential GPS and barometry system, with the prime aim of significantly 

changing and improving the method of positioning and layout of Shell Canada’s 

land seismic surveys. They also state that the system had provided horizontal 

positioning better than 5 meters and height accuracy of better than 2 meters at 2 

sigmas. The system proposed is actually an integrated GPS system instead of a 

TAN algorithm application. However, since terrain height information is obtained 

accurately, the paper can be considered as an example for batch process terrain 

modeling application. 

 

1.4.4. TAN Algorithms 

As stated in the previous sections above, the hearth of TAN is the 

algorithms. A number of TAN techniques have been developed and tested. These 

fall into two general algorithmic categories of batch and recursive algorithms [11] 

as explained in the previous sections. 
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Literature survey on TAN algorithms is done considering these algorithmic 

categories. 

 

1.4.4.1. Batch TAN Algorithms 

The famous batch TAN algorithm found in literature is TERCOM. As it was 

mentioned before, original famous report of Baker and Clem (1977), named 

“Terrain Contour Matching (TERCOM) Primer” could not be obtained. However, 

detailed information about TERCOM is found in the book of Siouris [37]. 

TERCOM is a form of correlation guidance based on a comparison between the 

measured and the pre-stored features of the profile of the ground (i.e., terrain) over 

which a missile or aircraft is flying. Generally, terrain height forms the basis of this 

comparison [37]. There are a number of correlation algorithms (e.g., mean squared 

difference (MSD), mean absolute difference (MAD), the normalized MAD, the 

normalized MSD, and the product method) of varying complexity and accuracy that 

can be used to correlate the measured data with the reference data. Furthermore, the 

MAD algorithm provides the best combination of accuracy and computational 

efficiency for performing real-time terrain contour matching in an onboard 

computer environment [37]. Actually, TERCOM is a maximum likelihood 

estimator which uses only terrain height information for determining the vehicle’s 

actual position. TERCOM is a batch process. Therefore, information about the 

position of the vehicle is post processed in order to have a navigation solution. 

TERCOM will be investigated in detail in the following chapter as one of the major 

TAN algorithms. 

Johnson, et al [11] improve the performance of TERCOM and SITAN by 

using maximum a posteriori estimator (MAP). Their technique makes more 

complete use of the information content of the stored elevation data, the a priori 

knowledge of the errors in the stored elevation data and the elevation 
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measurements. Actually, the technique is a batch algorithm which uses past 

information for TAN algorithm. However, this past information improves the 

results of both batch and recursive algorithms as explained in the paper. The theory 

behind the algorithm is straight forward; however, in order to apply MAP 

algorithm, extra computations are required. 

Erhui, et al [38] propose a new TAN algorithm based on the probability 

distribution differences of terrain height samples. They call their technique as 

Probability-Based Terrain Aided Navigation (PTAN) approach. The technique 

proposed is a batch algorithm and instead of correlating the height data collected by 

the radar and the barometer as in TERCOM, the proposed PTAN algorithm 

computes the probability distribution difference between them. The minimum 

probability distribution difference gives the best matching and the position of the air 

vehicle is determined accordingly. Again, the theory behind the algorithm is straight 

forward; however, in order to find probability distributions, considerable 

computational load is required. 

Zhou and Zhang [39] propose a scheme of TAN based on principle of 

computer vision. Being different from the conventional terrain matching technique, 

i.e. TERCOM, the scheme uses CCD camera rather than barometer and radio 

altimeter as sensing element. The technique proposed is a batch algorithm and it is 

claimed in the paper that shorter flight time is sufficient for successful terrain 

matching. Since, the original paper is in Chinese, details of the algorithm can not be 

obtained; only abstract of the paper is investigated. However, since CCD camera is 

used for correlation, environmental constraints should be considered. In other 

words, CCD camera can not be used in all weather conditions. This is thought to be 

the major drawback of the algorithm proposed. 

Quintang, et al [40] propose a new TAN approach using probabilistic data 

association filter (PDAF) to overcome irresolvable ambiguities in the correlation 

function used in TERCOM. The basic idea of the approach is to convert correlation 
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function value to the probability of position estimate being actual position of the air 

vehicle. It is shown via set of simulations that the method can improve the 

performance of TAN compared to TERCOM. The approach proposed is a batch 

algorithm. The interesting point is it uses one of the modern radar tracking 

algorithms. Actually, TAN is a data association problem, especially for the 

acquisition mode where INS position errors are very large. Here, it was thought 

whether the algorithm could be used for real-time applications. Therefore, this 

paper gave inspiration for implementing modern data association algorithms to 

TAN in the Ph.D. study. 

 

1.4.4.2. Recursive TAN Algorithms 

The major recursive TAN algorithm found in literature is SITAN proposed 

by Hostetler and Andreas [12]. They investigate the application of nonlinear 

Kalman filtering techniques to the continuous updating of an INS using individual 

radar terrain clearance measurements in their paper. First order Extended Kalman 

Filter (EKF) is used in order to model the slopes of the terrain surface. Hence, real-

time TAN solution can be obtained. Moreover, for large initial position 

uncertainties, a parallel Kalman filter technique which uses a bank of reduced order 

filters is used. The technique is the first EKF implementation to TAN. However, 

due to highly nonlinear structure of the terrain profiles, the filter solutions can 

diverge especially for large position errors. Moreover, linearization of the terrain 

slopes is the critical point for SITAN algorithm. Especially for mountainous 

terrains, modeling of the terrain slopes is a considerable problem. SITAN will be 

investigated in detail in the following chapter as one of the major TAN algorithms. 

Pei, et al [41] propose BITAN algorithm for navigation solution in their 

paper. BITAN is a type of TAN algorithm using the Kalman filtering theory to 

estimate position and velocity errors of the INS. The algorithm has been developed 
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for both acquisition and tracking modes of operation. Actually, the algorithm is an 

improved SITAN algorithm especially for acquisition mode. Moreover, again bank 

of Kalman filters are used for navigation solution. Hence, same problems for 

SITAN algorithm exist also for this algorithm. 

TAN is a nonlinear estimation problem. Bergman, et al [31] derive the 

optimal Bayesian solution for TAN. The implementation is grid based, calculating 

the probability of a set of points on an adaptively dense mesh. Actually, Bayes 

formula is a well-known formula in estimation. However, direct application of the 

formula is very restricted due to computational problems. As a result of this, 

Bergman, et al [31] propose the Cramer-Rao bound for Bayesian solution 

implementation. The major disadvantage of the algorithm proposed is originated 

from computational problems. 

One of the most interesting algorithms is proposed by Enns and Morrell 

[42]. They propose a new TAN algorithm called VATAN which uses the Viterbi 

algorithm for navigation solution. The Viterbi algorithm is a dynamic programming 

algorithm used for data association problem. From the simulation results, it is 

shown that VATAN algorithm overcomes divergence problems associated with the 

EKF in SITAN and provides position estimates with smaller average squared errors. 

Actually, navigation accuracy is improved with VATAN compared to SITAN 

especially for flat and mountainous terrains. In order to implement the algorithm, 

conditional probabilities of the measurements and INS states should be calculated 

recursively. Actually, the algorithm is different from other real-time TAN 

algorithms and it has better results than SITAN. 

Dezert [43] proposes a new application of PDAF for improving the accuracy 

of autonomous strapdown INS. The method proposed is a TAN algorithm based on 

landmark detection combined with a classical strapdown INS. It is also stated that 

the algorithm can be integrated with relatively low cost in existing operational TAN 

systems. Actually, the algorithm does not use elevation data for navigation solution. 
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However, it is a real-time application of PDAF and relation with the former paper 

of Quintang, et al [40] can be obtained where batch implementation of PDAF is 

used. Therefore, this paper also gave inspiration for implementing real-time PDAF 

to TAN in the Ph.D. study. 

Some recursive TAN algorithms are also proposed which use images for 

navigation solution. Hongbo, et al [44] and Bevington, et al [45] can be examples to 

image based TAN. Hongbo, et al [44] propose a TAN algorithm which use range 

images from imaging laser radar. On the other hand, Bevington, et al [45] use 

images of Synthetic Aperture Radar (SAR) for navigation solution. Both methods 

require detection of land marks since images are used. As it was stated in the 

previous section, the major drawback of the image based TAN comes from 

environmental constraints. 

There exist also some hybrid TAN methods which use both batch and 

recursive algorithms together. Metzger, et al [3] propose a hybrid TAN system 

which uses a bank of Kalman filters and a comparison technique. Actually, the 

proposed algorithm is a mixture of TERCOM and SITAN algorithms. Using the 

advantages of both algorithms, better navigation solutions can be obtained. 

 

1.4.5. TAN Patents 

United States patents related with TAN are also investigated in literature 

survey. Since patents are practical applications, detailed information can be 

obtained from them. Several patents are investigated related with TAN algorithms. 

Chan and Snyder [46] propose a system for correlation and recognition of 

terrain elevation. They use correlation function in frequency domain in order to 
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improve navigation solutions. The method is the improvement of the correlation 

technique. 

Baird [47] integrates TERCOM and SITAN algorithms with a modified 

Kalman filter processor. Hence, the operation of the SITAN processing is 

effectively continuously optimized. Actually, the system is the application of a 

hybrid TAN algorithm as explained in the previous section. 

Lerche [48] improves TERCOM method by scanning a larger area for 

correlation process. The method is applied for the navigation of an aircraft. Raymer, 

et al [49] proposes a method for Schuler cycle error reduction for use in a TAN 

system. By detecting Schuler cycles, TAN system errors are degraded. 

Finally, Goebel, et al [50] propose a terrain correlation system for TAN. 

Actually, the correlation system is an improved TERCOM algorithm which uses 

MAD correlation. Detailed information including application methods are given in 

the related patent. 

It is known that TAN algorithms are used generally for military purposes. 

Due to the confidentiality of the subject, related patents about TAN are limited. In 

fact, the patents found are taken many years later than their technology developed. 

 

1.5. Target Tracking 

TAN is a nonlinear estimation problem; since, terrain height information is 

used for navigation solution. Actually, TAN can be considered as a data association 

problem, especially for the acquisition operation mode where INS position errors 

are considerably large. From the literature survey of Quintang, et al [40] and Dezert 

[43], it has been thought that modern data association algorithms can be 
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implemented for real-time TAN algorithms. Therefore, radar tracking, especially 

data association subject is investigated. In this section, general information about 

radar tracking and data association algorithms will be given. 

 

1.5.1. Background 

The modern need for tracking algorithms began with the development of 

radar during World War II. By the 1950’s, radar was a relatively mature technology. 

Systems were installed aboard military ships and aircraft and at airports. The 

tracking of radar targets, however, was still performed manually by drawing lines 

through blips on a display screen. The first attempts to automate the tracking 

process were modeled closely on human performance. For the single-target case, 

the resulting algorithm was straight forward; the computer accumulated a series of 

positions from radar reports and estimated the velocity of the target to predict its 

future position [51]. 

Even single-target tracking presented certain challenges related to the 

uncertainty inherent in position measurements. A first problem involves deciding 

how to represent this uncertainty. A crude approach is to define an error radius 

surrounding the position estimate. This practice implies that the probability of 

finding the target is uniformly distributed throughout the volume of a three-

dimensional sphere. Unfortunately, this simple approach is far from optimal. The 

error region associated with many sensors is highly non-spherical; radar, for 

example, tends to provide accurate range information but has relatively poorer 

radial resolution. Furthermore, one would expect the actual position of the target to 

be closer on average to the mean position estimate than to the perimeter of the error 

volume, which suggests, in turn, that the probability density should be greater near 

the center [51]. 
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A second difficulty in handling uncertainty is determining how to interpolate 

the actual trajectory of the target from multiple measurements, each with its own 

error allowance. For targets known to have constant velocity (e.g., they travel in a 

straight line at constant speed), there are methods for calculating tile straight-line 

path that best fits, by some measure, the series of past positions. A desirable 

property of this approach is that it should always converge on the correct path, as 

the number of reports increases, the difference between the estimated velocity and 

the actual velocity should approach zero. On the other hand, retaining all past 

reports of a target and recalculating the entire trajectory every time a new report 

arrives is impractical. Such a method would eventually exceed all constraints on 

computation time and storage space [51]. 

A near-optimal method for addressing a large class of tracking problems was 

developed in 1960 by R.E. Kalman. His approach, referred to as Kalman filtering, 

involves the recursive fusion of noisy measurements to produce an accurate 

estimate of the state of a system of interest. A key feature of the Kalman filter is its 

representation of state estimates in terms of mean vectors and error covariance 

matrices, where a covariance matrix provides an estimate (usually a conservative 

over-estimate) of the second moment of the error distribution associated with the 

mean estimate. The square root of the estimated covariance gives an estimate of the 

standard deviation. If the sequences of measurement errors are statistically 

independent, the Kalman filter produces a sequence of conservative fused estimates 

with diminishing error covariances [51]. 

Kalman’s work had a dramatic impact on the field of target tracking in 

particular and data fusion in general. By the mid-1960’s, Kalman filtering was a 

standard methodology. It has become as central to multiple-target tracking as it has 

been to single-target tracking; however, it addresses only one aspect of the overall 

problem [51]. 
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1.5.2. Data Association Algorithms 

In tracking targets with less-than-unity probability of detection in the 

presence of false alarms (clutter), data association, deciding which of the received 

multiple measurements to use to update each track is crucial. A number of 

algorithms have been developed to solve this problem. Two simple solutions are; 

1. Strongest Neighbor Filter (SNF), and 

2. Nearest Neighbor Filter (NNF). 

In the SNF, the signal with the highest intensity among the validated 

measurements (in a gate) is used for track update and the others are discarded. In 

the NNF, the measurement closest to the predicted measurement is used. While 

these simple techniques work reasonably well with benign targets in sparse 

scenarios, they begin to fail as the false alarm rate increases or with low observable 

(low probability of target detection) maneuvering targets [52]. 

The NNF is perhaps the simplest approach for determining which tracked 

object produced a given sensor report. When a new position report arrives, all 

existing tracks are projected forward to the time of the new measurement. Then, the 

distance from the report to each projected position is calculated, and the report is 

associated with the nearest track. More generally, the distance calculation is 

computed to reflect the relative uncertainties (covariances) associated with each 

track and report [51]. 

In Figure 8, NNF implementation is shown. The idea of the rule is to 

estimate each object’s position at the time of a new position report, and then assign 

the report to the nearest such estimate. This intuitively plausible approach is 

especially attractive because it decomposes the multiple-target tracking problem 

into a set of single-target problems [51]. 
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Figure 8. NNF Implementation [51] 

 

Data association becomes more difficult with multiple targets where the 

tracks compete for measurements. Here, in addition to a track validating multiple 

measurements as in the single target case, a measurement itself can be validated by 

multiple tracks (i.e., contention occurs among tracks for measurements). Several 

algorithms are developed to handle this contention: 

1. Track Splitting (TS), 

2. Multiple Hypothesis Tracking (MHT), 

3. Probabilistic Data Association (PDA), 

4. Joint Probabilistic Data Association (JPDA). 
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Actually, there are various data association algorithms proposed for multiple 

target tracking in literature. However, the algorithms listed above can be considered 

as modern data association algorithms. 

In track splitting and MHT, a robust solution to the problem of assignment 

ambiguities is found by creating multiple hypothesis tracks. Under this scheme, the 

tracking system does not have to commit immediately or irrevocably to a single 

assignment of each report. If a report is highly correlated with more than one track, 

an updated copy of each track can be created; subsequent reports can be used to 

determine which assignment is correct. As more reports come in, the track 

associated with the correct assignment will rapidly converge on the true target 

trajectory, whereas the falsely updated tracks are less likely to be correlated with 

subsequent reports [51]. 

This basic technique is called track splitting. One of its worrisome 

consequences is a proliferation in the number of tracks upon which a program must 

keep tabs. The proliferation can be controlled with the same track deletion 

mechanism used in the nearest-neighbor algorithm, which scans through all the 

tracks from time to time and eliminates those that have a low probability of 

association with recent reports. A more sophisticated approach to track splitting, 

called multiple-hypothesis tracking, maintains a history of track branchings, so that 

as soon as one branch is confirmed, the alternative branches can be pruned away 

[51]. MHT is a more powerful (but much more complex) algorithm that handles the 

multi-target tracking problem by evaluating the likelihood that there is a target 

given a sequence of measurements. 

In PDA, instead of using only one measurement among the received ones 

and discarding the others, an all of the validated measurements with different 

weights (probabilities) are used. The standard PDA and its numerous improved 

versions have been shown to be very effective in tracking a single target in clutter 

[52]. 
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JPDA algorithm is used to track multiple targets by evaluating the 

measurement-to-track association probabilities and combining them to find the state 

estimate [52]. Actually, JPDA is the developed version of PDA algorithm for 

multiple targets. 

PDA, TS and MHT will be investigated in detail in the following chapters 

for TAN implementation. 

 

1.6. Outline of the Thesis 

In this section, the outline of the Ph.D. study will be given. The thesis is 

composed of five chapters: 

1. Introduction, 

2. Major TAN Methods, 

3. Implementation of Radar Tracking Algorithms to TAN, 

4. Case Study, 

5. Discussion and Conclusion. 

In the first chapter, an introduction to the study was done. First, the scope of 

the study was presented. Then, general information about cruise missiles and TAN 

was given. A detailed literature survey was performed about TAN and was 

presented in this chapter. Finally, general information about data association 

algorithms was given as fundamental knowledge of the study. 
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In Chapter 2, major TAN methods are investigated. First, INS errors of the 

cruise missiles and need for TAN systems are discussed. Then, major TAN methods 

including TERCOM, SITAN and VATAN are presented in detail. Fundamentals of 

the major methods are discussed in this chapter in order to make comparisons for 

the implemented TAN algorithms in the Ph.D. study. 

In Chapter 3, implementation of data association algorithms to TAN is 

presented. This chapter contains the original Ph.D. work. First, general information 

about modern target tracking algorithms are given. PDAF and TSF algorithms and 

their general implementations are investigated. Then, PDAF and TSF 

implementations to TAN are presented. At the end of the chapter, a simple 

simulation model is developed for the mid-course flight of the cruise missile. 

Finally, simulations are performed with the implemented TAN algorithms and the 

results are compared with the major TAN methods. 

In Chapter 4, case studies are performed. A 6 DOF simulation tool is 

developed for the simulation of the mid-course flight of a cruise missile. 

Implemented TAN algorithms are used with the 6 DOF simulation model and their 

performances are investigated. 

In Chapter 5, the results obtained from the study are discussed. Advantages 

and disadvantages of the new implemented TAN algorithms are compared with the 

major TAN algorithms. Finally, conclusions of the study are presented. 



 40

 

CHAPTER 2 

MAJOR TERRAIN AIDED NAVIGATION METHODS 

 

In this chapter, first, general INS errors and TAN INS errors in cruise 

missiles will be discussed. Then, the need for TAN in cruise missiles will be 

investigated. Next, major TAN algorithms and their implementations will be 

presented. TERCOM, SITAN and VATAN will be investigated in detail in this 

chapter. Eventually, navigation performance of these major TAN algorithms will be 

discussed; and, conclusions obtained will be presented. 

 

2.1. Cruise Missile INS Errors 

2.1.1. INS Only Errors 

The development of inertial navigation technology took place primarily in 

Germany, the United States and the former Soviet Union. The gyro compass 

indicating true north on a moving base as on ships can be regarded as the beginning 

of inertial navigation. At the end of World War I the allies had in the Treaty of 

Versailles imposed restrictions to Germany for the maximum size of ships to be 

built. These restrictions promoted in this country gun stabilization and inertial 

technology in general, which culminated at the end of World War II in a 
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functioning air-supported gyrocompass with electronic Schuler tuning for the “One-

Man Submarines”, in the V2 guidance system and a true concept for an INS. After 

the war the development of this technology was taken over by the superpowers, the 

United States and the former Soviet Union [53]. 

Inertial navigation systems (INS) are sophisticated autonomous, 

electromechanical systems that supply the position, velocity and attitude of the 

vehicle on which they are mounted. INS is basically a measuring system; therefore, 

the outputs of an INS will contain errors due to its sensors (accelerometers and 

gyroscopes) and mechanization. Inertial navigation sensor component errors create 

error in the navigation system’s computed position, velocity, and attitude. 

Accelerometer and gyroscope errors can be represented in a general form, including 

some significant environment dependent errors as [54]: 

1. Biases and drifts, 

2. Scale factor and misalignments, 

3. White noise, 

4. Time correlated short-term errors, 

5. Other environment sensitive errors. 

A lot of experience has been gained on the behavior of INS errors from the 

accumulated experience of INS users and analysts. Various linear models were 

developed that describe accurately the behavior of these errors as given in 

references [54], [55], and [56]. These models were used in the implementation of 

Kalman filters for estimating the INS error outputs and error sources [55]. 
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There are two approaches to the derivation of INS error models. One of 

them is known as the φ -angle (perturbation or true frame) approach, and the other 

is known as ψ -angle (or computer frame) approach. When deriving the 

perturbation error model, the nominal non-linear navigation equations are perturbed 

in the local-level north-pointing Cartesian coordinate system that corresponds to the 

true geographic location of the INS. The ψ -angle error model, on the other hand, is 

obtained when the nominal equations are perturbed in the local-level north-pointing 

coordinate system that corresponds to the geographic location indicated by the INS. 

It has been shown that both models are equivalent and yield, therefore, identical 

results. The differential equations that describe the error behavior of the INS are 

divided into equations describing the propagation of the attitude errors. Both the 

translatory and the attitude error equations can be expressed in two different ways 

that yield two versions of the translatory error equations and two versions of the 

attitude error equations. The two versions of the translatory equations depend on 

whether the equation variables are position error components or velocity error 

components. The two versions of the attitude equations depend on whether the 

equation variables are components of the platform to computer frame attitude 

difference, or components of the platform to true frame attitude difference. All these 

versions are, of course, identical. In order to obtain a complete set of INS error 

equations, the analyst has to decide whether to adopt the perturbation or ψ -angle 

approach. Once this choice is made, the analyst has to decide which of the two 

corresponding versions of the translatory equations to use and which of the two 

versions of the attitude equations to use. (These two choices are independent.) [56]. 

Most of the published work on INS errors adopt theψ -angle approach and 

use the velocity error version of the translatory error equation. This model is also 

used in the present analysis. In addition, the components of the platform to 

computer frame attitude differences are used as the variables of the attitude error 

equations. Although this angular difference is imaginary and cannot be measured, it 

possesses the advantage that the translatory error is not coupled into the attitude 
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error equations. The physical attitude difference between the platform and the local-

level north-pointing coordinate system is calculable using the position and attitude 

errors obtained from the solution of these INS error equations. Then, a complete 

terrestrial INS error model, expressed by the following equations is obtained [55]: 

( )v v f gδ ω δ δ+ Ω + × = ∇ − Ψ × + ∆
rr r rrr r r&

 (2.1)

r r vδ ρ δ δ+ × =
rr r r&

 (2.2)

δ ω δ εΨ + × Ψ =
r rr r&

 (2.3)

where vδ r , rδ r  and δΨ
r

 are, respectively, the velocity, position, and attitude 

error vectors; Ω
r

 is the Earth rate vector; ωr  is the angular rate vector of the true 

coordinate system with respect to inertial frame; ∇
r

 is the accelerometer error 

vector; f
r

 is the specific force (accelerometer readings) vector; g∆
r  is the error in 

the computed gravity vector; ρr  is the vector of the rate of turn of the true frame 

with respect to Earth; and finally εr  is the gyro drift vector. From geometric 

relations, it can be shown that in the local north, east and down coordinate system 

(i.e. in the geographic frame) [55]: 

cos
0
sin

λ

λ

Ω⋅⎡ ⎤
⎢ ⎥Ω = ⎢ ⎥
⎢ ⎥−Ω ⋅⎣ ⎦

 (2.4)

where λ  is the local latitude. In the same manner, the vector ωr  is computed 

as follows [55]: 
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ω ρ= Ω +
rr r  (2.5)

where 
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ρ λ
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⋅⎡ ⎤
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&

&

&

 and µ  is the local longitude. 

When INS position, velocity and attitude error equations are resolved in true 

frame (i.e. geographic frame), nine scalar differential equations are obtained, which 

can be put in a state-space model. If the expressions for Ω
r

, ωr  and ρr  are used, the 

resulting state-space model is obtained as follows [55]: 
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 (2.6)

where; 

rδ : Scalar position errors 

vδ : Scalar velocity errors 

δψ : Scalar attitude errors 

Ω : Earth’s inertial angular velocity 
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µ : Longitude of the true frame with respect to Greenwich meridian 

µ& : Longitude rate of the true frame 

λ : Latitude of the true frame with respect to Equator 

λ& : Latitude rate of the true frame 

g : Earth’s gravity 

R : Radius of Earth 

f : Specific forces sensed by the accelerometers 

∇ : Scalar accelerometer biases 

ε : Scalar gyro drifts 

, ,N E D : Subscripts denoting north, east and down components respectively 

s : Sine of the defined angle 

c : Cosine of the defined angle 

 

The error model given in equation (2.6) can be used in simulations for 

predicting INS errors of the system. Another way of determining INS errors is the 

direct application of the real error sources (from both sensors and mechanization) in 

the navigation equations. Actually, the error model obtained above is used for 
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integrating various navigation systems with INS. However, for simulations, INS 

error model will be sufficient and its implementation will be much easier. 

INS error model is applied for the mid-course phase of a cruise missile. The 

cruise missile is assumed to be moving with constant velocity. Moreover, 

acceleration changes during mid-course flight are assumed smaller. INS quality is 

taken as 1.0 nm/hr for simulations. 

INS quality is the major parameter in order to achieve the required 

navigation solutions. It is mainly determined by sensor quality and initial alignment 

errors. In Table 5, various INS qualities and corresponding sensor and initial 

alignment errors are presented. 

 

Table 5. INS Sensor Error Sources [57] 

 INS Quality (All errors except random walk are 1σ biases) 

Error Source 10 nm/hr 1.0 nm/hr 0.5 nm/hr 0.2 nm/hr 

Accelerometer Bias 223 µg 37 µg 19 µg 4.2 µg 

Accel. Scale Factor 223 ppm 179 ppm 90 ppm 21 ppm 

Input Axis Misalign. 22 arcsec 3 arcsec 1.5 arcsec 0.4 arcsec 

Random Walk 56 µg/√hz 56 µg/√hz 7.5 µg/√hz 4.2 µg/√hz 

Gyro Bias 0.11 deg/hr 4.5e-3 deg/hr 2.2e-3 deg/hr 8.4e-4 deg/hr 

Gyro Scale Factor 112 ppm 112 ppm 7.5 ppm 1.67 ppm 

Input Axis Misalign. 22 arcsec 2.2 arcsec 1.1 arcsec 0.4 arcsec 

Random Walk 0.078 deg/√hr 2.2e-3 deg/√hr 1.1e-3 deg/√hr 5e-4 deg/√hr 

Initial Misalignment 
(Vertical/Horizontal) 

2089 arcsec/ 
59 arcsec 

606 arcsec/ 
59 arcsec 

600 arcsec/ 
29 arcsec 

600 arcsec/ 
29 arcsec 
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INS quality is generally expressed by the total position error divided by 

time. For example, 10 nm/hr INS quality will be sufficient for ballistic missiles. 

However, for military aircrafts and cruise missiles 1.0 nm/hr INS quality is 

required. In the same manner, as operation time and required range increases, INS 

quality will be also increased. Intercontinental Ballistic Missiles (ICBM) and space 

vehicles use very accurate INS. The major problem of using very accurate INS is its 

cost. Moreover, due to large space requirements of very accurate INS, they can not 

be used in most of the military systems. 

INS error model simulations are performed in Simulink [58]. Considering 

1.0 nm/hr INS quality, horizontal position and velocity errors and attitude errors are 

obtained. It is known that, an initial altitude error ( 0h∆ ) or altitude-rate error ( 0h∆ & ) 

or an accelerometer error will grow exponentially with time, thus making the 

indicated altitude and altitude-rate indications useless after a few minutes. The 

instability of the vertical channel for INS will result, no matter how carefully the 

vertical component of gravity is mechanized as a function of computed altitude 

[59]. In real systems, vertical channel of INS is generally aided by barometric 

altimeters. Since, horizontal position errors are critical for TAN, altitude errors are 

not investigated. Simulation results are shown in Figure 9, Figure 10, and Figure 11. 
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Figure 9. Horizontal Position Errors of the INS Error Model 

 

 
Figure 10. Horizontal Velocity Errors of the INS Error Model 
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Figure 11. Attitude Errors of the INS Error Model 

 

As it can be seen from the simulation results, quadratic increase of position 

errors due to double integration dominates the INS only navigation solution. On the 

other hand, the validity of the error model can be seen from Figure 9. Here, using 

sensor errors defined in Table 5, 1.0 nm/hr quality INS is achieved. 

 

2.1.2. TAN INS Errors 

INS only errors of a navigation system are discussed in the previous section. 

As it can be seen from the simulation results, due to large navigation times of cruise 

missiles, INS should be aided with other navigation systems. TAN is the well-

known method for improving navigation solution. 

The accuracy of the TAN position estimate for a simple case is derived from 

application of linear estimation theory. Using horizontal INS position errors 
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modeled as independent random walks (uncorrelated white noises), following 

expression can be obtained for the circular error probable (CEP) of horizontal 

position updates [13]. 

1/ 4 3/8 3/ 40.57 ( / ) ( / )ss nCEP V d s hδ σ= ⋅ ⋅ ∆ ⋅  (2.7)

where; 

:ssCEP  The steady state CEP of horizontal position updates (m), 

:nσ  Standard deviation of the profile measurement errors (m), 

:h  Deterministic local terrain slope at the measurement locations in both 

down-range and cross-range directions (unitless), 

:d∆  Distance between profile measurements (m), 

:s  Vehicle ground speed (m/s), 

:Vδ  Maximum INS velocity error (m/s). 

 

The primary value of the equation above is that it shows the sensitivities of 

accuracy to implementation parameters. Steady state CEP is most sensitive to the 

ratio /n hσ , least sensitive to Vδ , and nominally sensitive to the time between 

profile measurements /d s∆ . Using typical values of; 

Vδ = 1 m/s (1 nm/hr-class INS) 

s = 250 m/s 
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d∆ = 100 m 

h = 0.05 (moderately rough terrain) 

nσ = 15 m 

 

results in a ssCEP  of 29 m. Because of the assumptions in the equation given 

above, predictions should be treated as approximations, a conservative lower bound 

for TAN accuracy [13]. 

As it can be seen from linear TAN estimation results, INS error growth in 

time is limited using TAN algorithms. By correlating terrain profiles with INS 

solutions a few times during operation or recursively, position estimates are 

obtained. Then, INS is updated according to the estimated navigation solutions. 

 

2.2. TERCOM 

2.2.1. Background 

Terrain Contour Matching (TERCOM) can be defined as a technique for 

determination of the position location of an airborne vehicle with respect to the 

terrain over which the vehicle is flying. More specifically, TERCOM is a form of 

correlation guidance based on a comparison between the measured and the pre-

stored features of the profile of the ground (i.e., terrain) over which a missile or 

aircraft is flying. Generally, terrain height forms the basis of this comparison. 

Reference terrain elevation source data descriptive of the relative elevations of the 

terrain in the fix point areas are stored in the air vehicle’s onboard computer. 
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Obtaining the reference data requires prior measurement of the ground contours of 

interest. These data are in the form of a horizontally arranged matrix of digital 

elevation numbers. A given set of these numbers describes a terrain profile. The 

length of contour profile necessary for a unique fit is a function of terrain 

roughness, but is in the range of 6 to 10 km and can be a curved path [37]. 

As the vehicle flies over the matrix area, data describing the actual terrain 

profile beneath the vehicle are acquired. That is, the actual profile is acquired using 

a combination of radar and barometric altimeter outputs sampled at specific 

intervals, and when compared against the stored matrix profiles provide the position 

location. This type of guidance is used for updating a mid-course guidance system 

on a periodic basis, and has been applied to the guidance of cruise missiles, which 

usually fly at subsonic speeds and fairly constant altitude. With regard to mid-

course guidance, it is well known that the simplest mid-course guidance is the 

explicit guidance method. The guidance algorithm has the capability to guide the 

missile to a desired point in the air while controlling the approach angle and 

minimizing an appropriate cost function. Furthermore, the guidance gains of the 

explicit guidance law are usually selected to shape the trajectory for the desired 

conditions [37]. 

The TERCOM technique, first patented in 1958, relies for its operating 

principle on the simple fact that the altitude of the ground above sea level varies as 

a function of location. Historically, TERCOM has evolved from several R&D 

programs that developed certain areas of the overall process. These programs 

perfected the technology as it is known today [37]. In Table 6, a chronological 

overview of this development is summarized. 

In the following sections, TERCOM method will be investigated in detail. 

Fundamentals of the TERCOM concept are taken from Siouris [37]. At the end of 

TERCOM section, simulations performed will be discussed. 
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Table 6. Chronological Overview of TERCOM Development [37] 

PROGRAM YEAR OBJECTIVES 

Fingerprint 1958 

Guidance package for SLAM 
missile TERCOM concept 
first 
proposed. 
 

TERCOM 1960-1961 
Feasibility study of terrain 
contour matching. 
 

LACOM (Low Altitude 
Contour Matching) 1963-1965 

Design and development of a 
complete fix-taking 
subsystem. 
 

RACOM (Rapid Contour 
Matching) 1963-1966 

Improve TERCOM 
computation procedures and 
increase accuracy. 
 

SAMSO (USAF’s Space 
and Missiles Systems 
Organization) Programs 
(a) TPLS (Terminal 
Position Location System 
(b) TERSE (Terminal 
Sensing Experiment) 
(c) TERF (Terminal Fix). 
(d) TSOFT (Terminal 
Sensor Overland Flight 
Test). 
 

1963-1971 
Application of terrain 
correlation techniques for 
ballistic missiles. 
 

Avionics Update 1972-1975 
Study and define a TERCOMI
drone system capable of 
operational deployment. 
 

TAINS (Terrain Aided 
INS) 
TERCOM 

1972-1974 

Feasibility study for 
incorporation in cruise missile 
and evaluation of snow 
coverage effects on terrain 
profile acquisition. 
 

Competitive Flyoff 1975 

McDonnell – Douglas 
Astrodynamics awarded a 
contract for TERCOM 
system. 
 

RACOM (Recursive All 
Weather Contour 
Matching) 

1975 
Improve terrain correlation 
update accuracy. 
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2.2.2. TERCOM Concept 

TERCOM system uses an airborne altimeter and a data processor to 

correlate the measured terrain contours to obtain the best estimate of position. The 

TERCOM system relies on a set of digital maps stored in the memory of the 

missile’s onboard computer. These maps consist of rectangular arrays of numbered 

squares representing the variation of ground elevation above sea level as a function 

of location. Consequently, as the missile approaches an area for which the computer 

memory has a map, the onboard radar altimeter starts providing a stream of ground 

elevation data. Furthermore, the computer, by comparing these data with the 

information it has in its memory, can accurately determine the actual trajectory of 

the missile and instruct the autopilot to return the missile to its planned trajectory. 

Four such corrective maneuvers are shown in the vertical overhead view in Figure 

12 [37]. 

 

 
Figure 12. TERCOM Maps in Use [37] 

 

The map types used in TERCOM differ in length, width, and cell size. The 

cell size determines, in part, the accuracy of the TERCOM fix. The TERCOM maps 



 55

become smaller and are spaced closer together as the missile approaches the target. 

As a result, because of the decreasing cell size, the updates become more accurate. 

A terminal accuracy on the order of 100 meters (i.e. DTED Level 1) is considered 

feasible for the TERCOM system [37]. 

The process of determining air vehicle position by the use of terrain contour 

matching can generally be described as consisting of three basic steps; data 

preparation, data acquisition, and data correlation. In Figure 13, TERCOM concept 

is illustrated [37]. 

 

 
Figure 13. TERCOM Concept [37] 

 

The critical part of TERCOM process is the data correlation where 

navigation solution is performed. There are several data correlation algorithms like 

MAD and MSD and they will be discussed in the following section. 
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TERCOM measurement process is illustrated in Figure 14 in block diagram 

form. The radar altimeter acquires altitude estimates above terrain. Then, the radar 

altimeter output is differenced with the system’s reference altitude. Various 

arithmetic operations (e.g. mean removal and quantization) are then performed on 

the differenced data. Finally, the correlation between the stored and acquired data is 

performed with the MAD function, and a position fix is determined [37]. 

 

 
Figure 14. TERCOM Measurements [37] 

 

2.2.3. TERCOM Data Correlation Techniques 

There are a number of correlation algorithms (e.g., mean squared difference 

(MSD), mean absolute difference (MAD), the normalized MAD, the normalized 
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MSD, and the product method) of varying complexity used in TERCOM. 

Furthermore, the MAD algorithm provides the best combination of accuracy and 

computational efficiency for performing real-time terrain contour matching in an 

onboard computer environment. Therefore, here only the MAD and MSD 

correlation algorithms will be discussed [37]. 

The MAD algorithm is applied considering the first N height differences to 

be acquired. Then, these differences are removed, so that the sample profile is its 

mean value. Next, this profile is compared with each row of matrix data in the 

following manner. Let nh  (1 n N≤ ≤ ) denote any row of matrix data and nH  the 

sequence of required data. Consequently, the MAD algorithm, which is used for 

correlating the measured terrain elevation file with each down-track column of the 

reference matrix, is defined as follows [37]: 

, , ,
1

(1/ )
N

k m k m m n
i

MAD N h H
=

= −∑  (2.8)

where; 

,k mMAD : The value of the mean absolute difference between the k’th terrain 

elevation file and the m’th reference matrix column, 

N :  The number of samples in the measured terrain elevation file and 

usually it is also equal to the number of rows in the reference 

matrix, 

M :  The number of reference matrix columns, 

K :  The number of measured terrain elevation files used in the 

correlation process, 
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=  The absolute value of the argument, 

, ,n m k : Row, column, and terrain elevation file indices, 

,m nH :  The stored reference matrix data, 1 ,  1m M n N≤ ≤ ≤ ≤ , 

,k mh :  The k’th measured terrain elevation file, 1 k K≤ ≤ . 

 

The MSD algorithm can be expressed in terms of the profile in question. 

Mathematically, the expression for MSD is [37], 

( )2

1
(1/ )

N

jk ij ik
i

MSD N S S
=

= −∑  (2.9)

where, 

,j kS S : j’th and k’th profiles, 

N : Length of each profile. 

 

Note that for uniformity, the MAD algorithm can also be expressed as in the 

expression for the MSD. Thus, 

1
(1/ )

N

jk ij ik
i

MAD N S S
=

= −∑  (2.10)
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Examination of the expressions for the MAD and MSD processors indicates 

that both of these correlators can be viewed as distance measures, where the 

dimensions of the space for which these distances are defined correspond to the 

number of elements in the profiles. From (2.9) and (2.10), it is noted that the 

ambiguity between any two profiles is defined as the probability “ P ” that sensed 

data corresponding to one of the profiles will be closer (in terms of the distance 

measure) to the other profile than to the one from which it was taken [37]. 

Mathematically, the ambiguity ξ  can be expressed as: 

[ ],  where a minimum of  is sought, 
[ ],  where a maximum of  is sought.

jk jj jk
jk

jk jj jk

P C C C
P C C C

ξ
<⎧ ⎫

= ⎨ ⎬>⎩ ⎭  
(2.11)

 

For a MAD processor, jkC  is given by the following expression: 

1
(1/ )

N

jk ij ik
i

C N S R
=

= −∑
 

(2.12)

where, 

jS : j’th measured profile, 

kR : k’th reference profile. 

 

A more detailed account of the terrain correlation processing for a single map 

is conceptually shown in Figure 15. 
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Figure 15. Terrain Correlation Processing [37] 

 

2.2.4. Terrain Roughness Characteristics 

For TERCOM correlation process, roughness and uniqueness of the selected 

terrain is very critical. It should be noted that the TERCOM concept will not work 

over all types of terrain. For instance, the rougher the terrain, the better TERCOM 

works. However, good terrain must be more than just rough, it must be unique (i.e., 

a given profile out of the TERCOM map must not resemble any other map [37]. 

Terrain roughness is defined as the standard deviation of the terrain 

elevation samples as shown in Figure 16. It is usually referred to as “sigma-T” (or 

Tσ ) [37]. 

Sigma- T is defined by the equation: 

1  -->  N 

M x N 

M x M 

M x M 
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2

1
(1/ ) ( )

N

T i
i

N H Hσ
=

= −∑  (2.13)

where, 

1
(1/ )

N

i
i

H N H
=

= ∑ : Mean Elevation 

 
Figure 16. Terrain Standard Deviation (Sigma-T) [37] 

 

Thus, Tσ  is a measure of the variation of the terrain elevation about its 

average elevation. Note that the minimum value of Tσ  required to support 

TERCOM operation is approximately 25 ft (7.62 m). Areas that have sigma-T 

values of fifty or greater are usually considered as good candidates for TERCOM 

fix areas. Obviously, lakes and very flat or smooth areas have low values of sigma-

T. Therefore, they are not suitable as fix areas. However, sigma-T is not the only 

criterion for determining whether a given area is suitable for TERCOM operation 

[37]. 

In particular, there are three parameters that are used to describe TERCOM-

related terrain, and their values can give an indication of the terrain’s ability to 

support a successful TERCOM fix. These parameters are sigma-T, sigma-Z ( Zσ ), 
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and the terrain correlation length ( TX ). It is usually assumed that parallel terrain 

elevation profiles that are separated by a distance greater than TX  are independent 

of each other [37]. 

Sigma-Z is defined as the standard deviation of the point-to-point changes in 

terrain elevation (i.e., the slope) as shown in Figure 17. Like sigma-T, the value of 

sigma-Z provides a direct indication of terrain roughness. Sigma-Z has also been 

shown to be a valid indicator of TERCOM performance. The expression for sigma-

Z, assuming a Gaussian autocorrelation function, can be obtained from Figure 17. 

Mathematically, sigma-Z is given by the equation [37]: 

2

1
[1/( 1)] ( )
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Z i
i

N D Dσ
=

= − −∑
 

(2.14)

where, 

1i i iD H H += −  
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D N D
−

=

= − ∑  

 
Figure 17. Definition of Sigma-Z [37] 
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The two parameters sigma-T and sigma-Z are related to the third parameter 

TX  according to the relation [37]: 

2 2 22 [1 exp( / ) ]Z T Td Xσ σ= ⋅ ⋅ − −∆  (2.15)

where; 

d∆ : Cell size (or distance between elevation samples). 

 

2.2.5. Simulations and Discussion 

In order to investigate TERCOM performance, a simulation model is 

developed with Matlab [60]. The sample map considered for the simulations has the 

size of M=21 by N=100 where the cells are 100 x 100 meters approximately. The 

TERCOM procedure is as follows: 

1. Map is selected considering CEP of the INS. 

2. M x M (21 x 21) for N=1 is considered. 

3. Height measurements are considered then. 

4. Absolute differences, 1, ,m m nh H−  n= 1 to M and m= 1 to M are 

calculated for MAD process. (21 x 21 operations) 

5. Square differences, 2
1, ,( )m m nh H−  n= 1 to M and m= 1 to M are 

calculated for MSD process. (21 x 21 operations) 
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6. Steps “1” to “3” are repeated for N=1 to 100. (21 x 21 x 100 

operations) 

7. , , ,
1

(1/ )
N

k m k m m n
i

MAD N h H
=

= −∑ , is calculated for MAD process. 

(Extra sum and averaging operations for 21 x 21 x 100 elements) 

8. ( )2

1
(1/ )

N

jk ij ik
i

MSD N S S
=

= −∑ , is calculated for MSD process. (Extra 

sum and averaging operations for 21 x 21 x 100 elements) 

9. Minimum of MAD and MSD functions are sought in order to 

determine the indices “i" and “j” of the horizontal position fixes for 

both MAD and MSD processes. (Determination of the minimum 

points) 

For the simulations, DTED Level 1 data were required and they have been 

obtained from HGK. The properties of DTED prepared for Turkey were given in 

Table 3 [16]. Horizontal accuracy of Level 1 DTED is defined as ±130 m, and 

vertical accuracy as ±30 m. In fact, especially horizontal accuracy of the DTED 

Level 1 data for Turkey is not sufficient for navigation purposes. Actually, DTED 

Level 2 data which have horizontal accuracy of ±26 m can be resampled to DTED 

Level 1 and used for practical applications. However, for the Ph.D. study, DTED 

Level 1 data are used considering the horizontal accuracies of DTED Level 2. 

In order to perform the simulations, first selection of the areas is performed 

using the mapping software OziExplorer [61]. In order to select the areas for 

simulation, roughness of the surfaces is investigated using elevation property of the 

software which uses DTED Level 1 files obtained from HGK. Sample area 

selection using OziExplorer is shown in Figure 18. 
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Figure 18. Sample Area Selection from OziExplorer Software [61] 

 

Then, using OziExplorer3D [62] software, optional add-on to the 

OziExplorer software which allows map images to be viewed in 3D, selected areas 

were rendered as matrix grids. For the simulations, three special areas were 

selected: 

1. Area with rough surface, 

2. Area with smooth surface, 

3. Area with having uniqueness (i.e. a single mountain). 
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Selected areas rendered using OziExplorer3D are shown in Figure 19 and 

Figure 20. 

 

 
Figure 19. Rendered Rough Surface Area 

 

As it can be seen from Figure 19, M x N area is totally concerned for the 

TERCOM process. Therefore, at least M x M x N calculations are required. 

Actually, it is obvious that “M” depends on the accuracy of the INS. If the INS 

quality is worse, the area considered should be larger (i.e. large M). On the other 

hand, TERCOM algorithms (both MAD and MSD) are simple and straight forward. 

However, unnecessary calculations can be performed during the process since the 

whole area is concerned. 

Next, the matrix cells are formed as seen in the figures above considering 

SSLM (short sample long matrix) map selection method for TERCOM [37]. The 

required sample size for the along track is approximately 7.78 km. For the 

INS Path 

Actual Path 

N=1; MxM = 21x21 

N=m, 1<m<100 

N=100; MxM = 21x21 

i 

j 
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simulations, it is selected nearly 10 km depending on the latitude of the area 

(Actually the numbers of the cells are taken to be constant.) Cross track errors 

depend on the accuracy of the INS. Depending on the typical 1 nmi/hr class INS 

which is generally used for cruise missiles, cross track sample size is selected 

approximately 1.85 km (1 nmi) assuming the worst case for cross track errors. 

 
Figure 20. Rendered Smooth Surface Area and Area with Uniqueness 

 

On the other hand, velocity of the cruise missile is considered to be constant 

for the simulations moving from west to east direction (or vice versa) in order to 

investigate TERCOM concept. Before performing TERCOM algorithms, sigma-T 

and sigma-Z values are calculated in order to validate the roughness of the surfaces 

selected. 

First, considering perfect measurement and no error sources, selected 

profiles were determined. Here, the ambiguity term, ξ  in equation (2.11) exactly 
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becomes zero as expected. Then, errors are added to the selected profile 

measurement values considering white noise. 

Monte Carlo simulations of 100 runs are performed for TERCOM 

simulations. Since, TERCOM is a batch process; true position fixes for navigation 

solutions are sought. Simulation results are given in Table 7 to Table 9 for different 

terrain types. 

 

Table 7. TERCOM Simulation Results for Rough Terrain 

Initial INS Position Error (One axis, approximate) 400 m 

Height Measurement Standard Deviation (One sigma) 10 m 

TERCOM Map Grid Size (MxM) 21x21 

Number of Height Measurements for Correlation (N) 100 

Sigma-T of the Area Concerned 47.07 m 

Sigma-Z of the Area Concerned 1.88 m 

Correlation Method MAD MSD 

Percentage of False Fix 6 % 9 % 

Maximum False Fix Error (Total approximate error) 200 m 200 m 

 

Table 8. TERCOM Simulation Results for Smooth Terrain 

Initial INS Position Error (One axis, approximate) 400 m 

Height Measurement Standard Deviation (One sigma) 10 m 

TERCOM Map Grid Size (MxM) 21x21 

Number of Height Measurements for Correlation (N) 100 

Sigma-T of the Area Concerned 7.22 m 

Sigma-Z of the Area Concerned 0.38 m 

Correlation Method MAD MSD 

Percentage of False Fix 100 % 100 % 
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Table 9. TERCOM Simulation Results for Terrain with Uniqueness 

Initial INS Position Error (One axis, approximate) 400 m 

Height Measurement Standard Deviation (One sigma) 10 m 

TERCOM Map Grid Size (MxM) 21x21 

Number of Height Measurements for Correlation (N) 100 

Sigma-T of the Area Concerned 46.4 

Sigma-Z of the Area Concerned 6.37 

Correlation Method MAD MSD 

Percentage of False Fix 1 % 1 % 

Maximum False Fix Error (Total approximate error) 150 m 150 m 

 

From the results, it is seen that best position fix results are obtained with 

terrain with uniqueness. However, it should be noted that the critical parameter is 

the sigma-Z value of the area concerned where standard deviation of the point-to-

point changes in terrain elevation (i.e., the slope) are calculated. Eventhough, rough 

surface has larger sigma-T (standard deviation of height of the area) value, having a 

larger value of sigma-Z terrain with uniqueness gives better correlation results than 

rough surface. Moreover, for smooth terrain, correlation algorithms do not give 

position fixes as expected. 

For the TERCOM process, several conclusions are achieved from the 

concept study and simulations performed. They are summarized as follows: 

1. Navigation solutions can be obtained for rough and unique surfaces 

as expected. 

2. Correlation algorithm is simple but not smart. Many calculations 

should be performed in order to have a position fix. 
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3. It is thought that the algorithm was derived considering the 

capability of the computers of 1950’s, performing only matrix 

calculations and simple mathematical operations. 

4. Physical meaning of MAD and MSD processes is the minimization 

of the area difference between the measured and the reference areas 

along the route of the missile. 

5. In the simulations, it was shown that MAD process shows better 

position fix than MSD process. For a terrain with small terrain height 

changes, MSD process neglects the small height difference terms and 

exaggerate the larger height difference terms. On the other hand, in 

MAD process absolute height difference terms are taken into account 

with same weights. 

6. The critical parameter for best terrain correlation is sigma-Z value of 

the area concerned where standard deviation of the point-to-point 

changes in terrain elevation (i.e. the slope) are calculated instead of 

sigma-T value where standard deviation of height of the area is 

calculated. In other words, the slopes of the area concerned are more 

critical than the roughness of the area for correlation. 

7. TERCOM process is independent of the target model where cruise 

missile is the target. Possible tracks for the missile are selected 

where tracks are the missile path formed by the terrain elevation file 

(DTED). Since, the target motion is not modeled, kinematical 

behavior of the system is not known. 

8. TERCOM process is actually a Maximum Likelihood Estimator 

(MLE) which uses “Least Squares Estimation (LSE)” technique. 
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Here, minimum error of the height measurements are sought for 

position fixes using least squares (LS) estimation: 

( ) ( , ) ( )           1,....,z j h j x j j kε= + =  (2.16)

[ ] [ ]
k

j=1

ˆ ( ) arg min ( ) ( , ) ( ) ( , )TLS
x Xx k z j h j x z j h j x∈= − −∑  (2.17)

where; 

( )z j : Measurement of the terrain taken at “j” 

( , )h j x : DTED value of the related points with respect to taken 

measurement, ( )z j  

ˆ ( )LSx k : Minimum “MSD value times k” of the terrain height 

differences 

 

2.3. SITAN 

2.3.1. SITAN Fundamentals 

As it was stated in the first chapter, the major recursive TAN algorithm 

found in literature is SITAN which is proposed by Hostetler and Andreas [12]. In 

order to investigate SITAN in detail, first original work of Hostetler and Andreas 

[12] will be investigated in detail. 

The basic configuration for optimal terrain aided navigation is shown in 

Figure 21. This structure is typical of Kalman filtering in which nonlinear auxiliary 
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measurements are iteratively processed to estimate and compensate for the errors in 

a navigation system. At each measurement update time the current state estimate in 

conjunction with stored topographical data (i.e. terrain elevation data), is used to 

obtain a prediction of what the radar ground clearance measurement should be. The 

actual radar measurement is then compared with this predicted measurement, and 

their difference is processed by the Kalman filter to generate estimates of the 

navigation system's error states. The measurement matrix in this case is related to 

the downrange and cross range terrain slopes calculated from the stored data. The 

error estimates are then fed back to compensate the navigation system and thus 

provide an improved estimate of the actual state (position, velocity. etc.) of the 

system. This process is iterated many times e.g. every 30-50 m of distance traveled, 

as the system maneuvers along its trajectory, thus providing essentially continuous 

updating to the navigation system [12]. 

 

 
Figure 21. SITAN Process [12] 

 

System equations for extended Kalman filtering (EKF) are derived 

considering navigation equations. True navigation state vector x  is defined as [12]: 
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x

y

x
y
hx
v
v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.18)

where; 

x : Horizontal coordinates along eastward direction, 

y : Horizontal coordinates along northward direction, 

h : Height above sea level, 

xv : Velocity along x  direction, 

yv : Velocity along y  direction. 

 

Let x%  be the measured state vector for x  from INS with the help of 

barometric altimeter, x̂  the estimated state vector for x  after updating, x̂δ  the 

optimal estimation of error vector xδ  for x  from the outputs of Kalman filter. 

For a constant sampling period T , the recursion error state vector equation 

is as [12]: 

( 1) ( ) ( ) ( )x k k x k w kδ δ+ = Φ ⋅ +  (2.19)

where; 
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x

y

x
y
hx
v
v

δ
δ
δδ
δ
δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

: Error state vector, 

1 0 0 0
0 1 0 0

( ) 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

T
T

k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥Φ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

: Transition matrix, 

( )
( )
( )( )
( )

( )
x

y

x

y

h

v

v

w k
w k
w kw k
w k

w k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

: Process noise vector (White noises). 

 

In order to implement EKF, 1-D measurement hδ  is needed, which is the 

difference between estimated relative height estC , and measured relative height 

measC . measC  comes from the measurement of radar altimeter; estC  is the difference 

between estimated height above sea level from barometric altimeter (or INS), b̂aroh  

and terrain height ˆ
DTEDh  from digital terrain elevation data based on the estimated 

position of ˆ ˆ( , )x y  from INS. Thus hδ  is expressed by [12]: 

est meash C Cδ = −  (2.20)

where; 
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ˆ ˆ
est baro DTEDC h h= − , 

b̂aroh : Estimated height above sea level from barometric altimeter, 

ˆ ˆ
DTED ter DTEDh h ε= + , 

ˆ
DTEDh : DTED (Terrain) height at the estimated position ˆ ˆ( , )x y , 

t̂erh : Actual terrain height at the estimated position ˆ ˆ( , )x y . 

meas radar radarC h w= + , 

radarh : Radar altimeter measurement at the actual position ( , )x y , 

radarw : Radar altimeter white noise measurement error. 

 

SITAN measurement process is shown in Figure 22. 

Now, expand terrain height difference measurement given in equation 

(2.20). 

[ ] [ ]ˆ ˆ ˆ ˆ( , ) ( ( , ) ) ( , )est meas baro ter DTED radar radarh C C h x y h x y h x y wδ ε= − = − + − +  (2.21)
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Figure 22. SITAN Measurement Process 

 

Here, using Taylor series expansion, actual position is assumed to be near 

the estimated position. Therefore, 

ˆ ˆ( , ) ( , )baro baro baroh x y h x y hδ= +  (2.22)

 

Then, 

ˆ ˆ[ ( , ) ] [ ( , ) ] [ ( , ) ]baro baro ter DTED radar radarh h x y h h x y h x y wδ δ ε= + − + − +  (2.23)

 

The correlation between the estimated and the actual positions is the key 

point of the SITAN process [12]. Consider a fitted function ( , )f x y  to the terrain 

profile being expanded near ˆ ˆ( , )x y  as shown in Figure 23. Then, 

hbaro 

Cest 

hter 

ˆ ˆ( , )P x y  '( , )P x y  

Cmeas 
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ˆ ˆ ˆ ˆ( , ) ( , ) ( ) ( )f ff x y f x y x x y y
x y

∂ ∂
= + − + −

∂ ∂
 (2.24)

where; 

x
fh
x

∂
=

∂
: Terrain slopes along eastward direction, 

y
fh
y

∂
=

∂
: Terrain slopes along northward direction, 

ˆx x xδ = − , 

ˆy y yδ = − . 

 

Here, terrain profiles xh  and yh  are needed for the EKF. 

 

 
Figure 23. Terrain Stochastic Linearization (TSL) [12] 
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From the figure, following relations can be defined [12]: 

ˆ ˆ( , ) ( , ) ( , ) x yf x y f x y f f x y h x h yδ δ δ= + = + ⋅ + ⋅  (2.25)

1( , ) ( , )terh x y f x y m= +  (2.26)

2ˆ ˆ ˆ ˆ( , ) ( , )terh x y f x y m= +  (2.27)

where; 

1m : TSL error at the actual point ( , )x y , 

2m : TSL error at the estimated point ˆ ˆ( , )x y  

 

Considering the actual position, following relation is valid [12]: 

( , ) ( , ) ( , ) 0baro ter radarh x y h x y h x y− − =  (2.28)

 

Then using equations (2.23), (2.25), (2.26), and (2.27), 

1 2( )
meas

baro x y DTED radar

w

h h h x h y w m mδ δ δ δ ε= − ⋅ − ⋅ − + + +
14444244443

 
(2.29)

 



 79

Here, terrain linearization errors 1m  and 2m  are included in the 

measurement error. Moreover, DTED error DTEDε  was modeled as white. Finally 

system measurement equation in discrete form can be written as follows [12]: 

( ) ( ) ( ) ( )measz k H k x k w kδ= ⋅ +  (2.30)

where; 

( ) 1 0 0x yH k h h⎡ ⎤= − −⎣ ⎦ : Measurement matrix, 

( )measw k : Measurement white noise 

 

Using linearization methods to the nonlinear system equations, the system is 

linearized. Therefore, EKF is implemented. Following part is the application of the 

standard EKF equations. EKF equations for SITAN are presented in Table 10 

considering standard EKF equations given in Gelb [63]. 

Implementation of the SITAN process is straight forward after the terrain 

slopes are modeled. However, the main problem of the process is the divergence of 

the KF. Due to highly nonlinear nature of terrain surfaces, filter divergence can 

occur especially when the linearization error is comparable to the measurement 

error. In these cases the standard EKF may yield unsatisfactory performance, and 

divergence can occur in which the actual estimation errors become orders of 

magnitude larger than the filter's own computation of their covariance [12]. Figure 

24 demonstrates this phenomenon for a simulation test case in which the initial 

position error standard deviations were 75 m and all other conditions were the same 

as in the prior simulation. 
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Table 10. Kalman Filter Equations for SITAN Process 

SITAN System Error Model:  

( 1) ( ) ( ) ( )x k k x k w kδ δ+ = Φ ⋅ +  given in (2.19)

( ) (0, ( ))w k N Q k=  

System Noise Covariance Matrix: 

( ) { ( ) ( ) }TQ k Cov w k w k=  (2.31)

SITAN Measurement Model: 

( ) ( ) ( ) ( )measz k H k x k w kδ= ⋅ +  given in (2.30)

( ) (0, ( ))measw k N R k=  

Measurement Noise Covariance Matrix: 

( ) { ( ) ( ) }T
meas measR k Cov w k w k=  (2.32)

Initial Conditions: 

0 0 0
ˆ( , )x N x Pδ δ=  (2.33)

Other Assumptions: 

( ) ( ) 0T
measE w k w k⎡ ⎤⋅ =⎣ ⎦  for all k  

(Measurements are independent) 

(2.34)

State Estimate Propagation: 

ˆ ˆ( | 1) ( 1) ( 1| 1)x k k k x k kδ δ− = Φ − ⋅ − −  (2.35)

Error Covariance Propagation: 

( | 1) ( 1) ( 1| 1) ( 1) ( 1)TP k k k P k k k Q k− = Φ − ⋅ − − ⋅Φ − + −  (2.36)

Gain Matrix: 
1( ) ( | 1) ( ) [ ( ) ( | 1) ( ) ( )]T TK k P k k H k H k P k k H k R k −= − ⋅ ⋅ ⋅ − ⋅ +  (2.37)

State Estimate Update: 

ˆ ˆ ˆ( | ) ( | 1) ( ) [ ( ) ( ) ( | 1)]x k k x k k K k z k H k x k kδ δ δ= − + ⋅ − ⋅ −  (2.38)

Error Covariance Update: 

( | ) [ ( ) ( )] ( | 1)P k k I K k H k P k k= − ⋅ ⋅ −  (2.39)
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Figure 24. Standard EKF Divergence Problem [12] 

 

In order to improve EKF performance, modified stochastic linearization 

approach is used. However, single EKF for large errors actually can not perform 

good results. Therefore, parallel Kalman filters are used in order to estimate large 

position errors, especially large initial errors as shown in Figure 25. After initial 

errors are estimated within the accepted CEP values (i.e. ~30 m), single KF 

becomes sufficient for navigation purposes. 

 

 
Figure 25. Parallel KF Configuration [12] 
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The selection of the convergent filter can be done quite easily by examining 

the residuals (i.e. estimated minus measured values of height) i∆  for each filter. A 

selection algorithm based upon the assumed whiteness property of the filter 

residuals that worked well in practice is to choose the filter with the smallest value 

of [12]; 

j'th filter

j'th filter
1

1 N
i
T

i i i i i

AWRS
N H PH R=

⎡ ⎤∆
= ⎢ ⎥+⎣ ⎦

∑  (2.40)

where; 

j'th filterAWRS : Average Weighted Residual Squared of the j’th filter, 

iH : Measurement vector containing the terrain slopes at the i’th time 

interval, 

iP : Error covariance matrix, 

iR : Measurement noise covariance matrix, 

N : Number of measurements processed, 

 

This AWRS value is the average weighted residual squared between the 

predicted ground clearance for each filter and the ground clearance measured by the 

radar altimeter for each time it . The weighting factor is inherently calculated by 

each Kalman filter and is simply the expected variance of i∆  at each measurement. 

By examining the minimum AWRS values for each filter after a sufficiently large 
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number of measurements have been processed, the correct filter and its associated 

state error estimates can be chosen. 

 

2.3.2. Simulations and Discussion 

Simulations for SITAN are performed for both tracking and acquisition 

modes. In order to perform simulations, Simulink [58] is used. Mathematical 

models described in the previous section are used for trajectory and INS models in 

order to obtain 1.0 nm/hr INS quality by adding white noise terms to horizontal 

positions, altitude and horizontal velocities. Terrain slopes are derived considering 

the gradients of the height values of the related DTED files. 

For the simulations, three special terrain types are selected: 

1. Rough terrain, 

2. Smooth terrain, 

3. Mountainous terrain. 

Some properties of these selected terrains for TAN are given in Table 11. It 

should be noted that, these properties satisfy terrain requirements for the 

simulations. 

Simulation model details will be presented in the following section. In this 

section, SITAN characteristic simulation results will be presented. First, horizontal 

position errors for tracking mode are performed for three different terrain types. 

Simulation parameters for tracking mode are given in Table 12. Here, it should be 
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noted that initial position error is less than the grid size of the DTED considered 

(i.e. less than 100 meters for DTED Level 1). 

 

Table 11. Terrain Parameters for SITAN Simulations 

Terrain Type Rough Smooth Mountainous 

Mean height of the terrain profile 1093 m 1104 m 1177 m 

Sigma-T 77.9 m 34.1 m 212.9 m 

Sigma-Z 16.3 m 3.7 m 23.1 m 

TX  670.2 m 1309 m 1302 m 

 

Table 12. SITAN Simulation Parameters for Tracking Mode 

Initial INS position deviation (one axis) 80 m 

Initial vehicle velocity 240 m/s 

Initial INS east velocity bias 0.5 m/s 

Initial INS north velocity bias 0.5 m/s 

INS horizontal position standard deviation  5 m 

INS altitude position standard deviation 3 m 

Radar altimeter standard deviation 3 m 

INS velocity standard deviation 0.3 m/s 

 

SITAN filter works at 1 Hz. In other words, it gives updates at every 1 

second. Simulations are performed for 100 seconds of operation time. In actual 

systems, INS is updated recursively considering SITAN position corrections. 

Hence, INS errors become zero at discrete SITAN updates. However, in the 

simulations, in order to show SITAN characteristics, INS error model is not 
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updated; and only first 100 seconds of operation is considered. Simulation results of 

tracking mode for different terrain types are shown from Figure 26 to Figure 31. 

 

 
Figure 26. Rough Terrain Northward Position Error vs. Time 

 

 
Figure 27. Rough Terrain Eastward Position Error vs. Time 
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Figure 28. Smooth Terrain Northward Position Error vs. Time 

 

 
Figure 29. Smooth Terrain Eastward Position Error vs. Time 
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Figure 30. Mountainous Terrain Northward Position Error vs. Time 

 

 
Figure 31. Mountainous Terrain Eastward Position Error vs. Time 
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As it can be seen from the figures above, SITAN improves position errors 

for rough and mountainous terrain types. On the other hand, due to slope 

determination process in SITAN, solutions have serious jumps for mountainous 

terrain type. This can be explained by the severe slope changes in the mountainous 

terrain modeling. As a result of this, SITAN works better for rough terrains. 

However, by TSL or other linearization methods as explained in the original paper 

[12], navigation solutions can be improved. In fact, these techniques depend on the 

terrain selected; and, extra work is required for terrain linearization. 

Next, SITAN simulations for acquisition mode are performed. Here, initial 

position error is assumed to be greater than DTED grid size. 25 parallel KF’s are 

used in the simulations as shown in Table 13. Here, the index “ i ” indicates the 

related grid for initial position. For example, if the initial position error was 2” short 

along longitude and 2” long along latitude considering INS outputs, actual initial 

position would be at 5i =  where 13i =  was the INS index. 

 

Table 13. Parallel KF Structure for SITAN Acquisition Mode 

2*3"INSλ λ= + 5i =  10i =  15i =  20i =  25i =  
3"INSλ λ= + 4i =  9i =  14i =  19i =  24i =  

INSλ λ=  3i =  8i =  13i =  18i =  23i =  
3"INSλ λ= − 2i =  7i =  12i =  17i =  22i =  

2*3"INSλ λ= − 1i =  6i =  11i =  16i =  21i =  

Time: t k=  2*3"INSµ µ= − 3"INSµ µ= − INSµ µ= 3"INSµ µ= +  2*3"INSµ µ= +
 

Note: Index i=13 gives ( )h kδ  at position ( INSλ , INSµ ) of INS, at time “ 0t t= ”. 

 Index i=1 gives ( )h kδ  at position ( 2*3"INSλ − , 2 *3"INSµ − ) of INS for DTED Level 
1, at time k . 
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Hence, the simulations are performed for acquisition mode. Simulations are 

performed only for rough terrain in order to show acquisition performance. 

Simulation parameters for acquisition mode are given in Table 14. Here, initial 

position errors are given for both axes in order to determine initial position index. 

From the simulations, determination of the initial position index is required. 

 

Table 14. SITAN Simulation Parameters for Acquisition Mode 

Initial INS position deviation (northward axis) -200 m 

Initial INS position deviation (northward axis) -180 m 

Initial position index (according to Table 13) 25 

Initial vehicle velocity 240 m/s 

Initial INS east velocity bias 0.5 m/s 

Initial INS north velocity bias 0.5 m/s 

INS horizontal position standard deviation  5 m 

INS altitude position standard deviation 3 m 

Radar altimeter standard deviation 3 m 

INS velocity standard deviation 0.3 m/s 

 

Simulations are performed for rough terrain for both minimum AWRS filter 

and the central filter. Horizontal position errors are given in Figure 32 and Figure 

33. Minimum AWRS filter index versus time is given in Figure 34. Here, central 

SITAN filter results are also presented in order to show filter divergence. From the 

simulations, it can be seen that in order to obtain correct navigation solutions for 

large initial position errors, parallel KF’s should be used. Moreover, from Figure 34 

initial position index obtained is exactly the same with the simulation initial 

condition which means that the correct initial position is found from the parallel 

filter structure SITAN simulations. 
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Figure 32. Northward Position Error vs. Time for Acquisition Mode 

 

 
Figure 33. Eastward Position Error vs. Time for Acquisition Mode 
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Figure 34. Minimum AWRS KF Index vs. Time for Acquisition Mode 

 

For the SITAN process, several conclusions are achieved from the concept 

study and simulations performed. They are summarized as follows: 

1. SITAN is a recursive TAN technique which uses EKF unlike 

TERCOM which is a batch process. 

2. SITAN performance depends on the linearization of the terrain 

profiles since terrain slopes are required for the KF measurements. 

For large position errors, divergence can occur due to linearization 

errors in the EKF. In order to get rid of this, modified terrain 

linearization techniques and parallel KF structure are used. 

3. SITAN improves position errors for rough and mountainous terrain 

types. However, due to slope determination process in SITAN, 

solutions have sometimes serious jumps for mountainous terrain 

type. This can be explained by the severe slope changes in the 
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mountainous terrain modeling. Therefore, linearization of the terrain 

profiles is very critical especially for mountainous terrains in 

SITAN. 

4. SITAN performance is better than both INS and terrain grids unlike 

TERCOM. In TERCOM, error can not be better than the terrain grid 

dimensions. 

5. SITAN performs better for smaller position errors due to terrain 

linearization. Due to this fact, for large initial position errors 

TERCOM or SITAN with parallel KF structure must be used. 

6. SITAN is a tracking process (i.e. it tracks the actual path with 

minimum errors) where TERCOM is an acquisition process (i.e. it 

estimates the initial position of the target). 

 

2.4. VATAN 

2.4.1. VATAN Fundamentals 

As it was stated in the first chapter, one of the interesting TAN algorithms 

found in literature is VATAN which is proposed by Enss and Morrell [42]. In order 

to investigate VATAN in detail, first original work of Enss and Morrell [42] will be 

investigated in detail. 

VATAN is a recursive TAN technique which uses Viterbi Algorithm (VA). 

VA is a maximum a posteriori (MAP) estimator that estimates a sequence of system 

states from a sequence of observation values [42]. Viterbi algorithm is actually a 

dynamic programming technique for estimation which uses past information. 
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The state and observation sequences are denoted by [42]: 

0( ,..., )nx x x=  (2.41)

0( ,..., )nz z z=  (2.42)

where; 

( )
( )k

x k
x

y k
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

: Vehicle’s position at time kt , 

[ ]( )kz z k= : Measured terrain elevation at time kt . 

 

The VA consists of the computation of a metric function kL  that is a 

measure of the likelihood of each state value being the true state at time k ; kL can 

be computed recursively using conditional probability density functions 1( | )k kp x x+  

and ( | )k kp z x  as follows [42] based on the assumption that the system dynamics 

are Markov; that is, the state at 1k +  is conditionally independent, given the state at 

time k , of the state at any previous time: 

1 0
1 0,..., 1 1

( ) max ln ( | ) ln ( ) ln ( | )
k

k k

k k i i i ix x i i

L x p x x p x p z x
−

−
= =

⎡ ⎤= + +⎢ ⎥
⎣ ⎦
∑ ∑  (2.43)

1
1 1 1

1

ln ( | ) max ln ( | ) ( )
k

k

k k k k k kx i

p z x p x x L x
−

− − −
=

⎡ ⎤= + +⎢ ⎥
⎣ ⎦
∑  (2.44)

where; 
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0 0 0( ) ln ( )L x p x= : Initial condition of kL . 

 

The optimal estimate ˆ
kx  is that kx  for which kL  is maximum. The value 

1kx −  that maximizes equation (2.44) for each kx  is termed the survivor. Denoted 

( )k kS x , it is used to generate MAP state sequence estimates. The MAP state 

sequence estimate 0
ˆ ˆ ˆ( ,..., )kx x x=  can be generated via the following recursive 

procedure [42]: 

ˆ arg max{ ( )}
k

k k kx
x L x=  (2.45)

1
ˆ ( )k k kx S x− =   

2 1 1 1
ˆ ˆ ˆ( ) ( ( ))k k k k k kx S x S S x− − − −= =   

1 1 1
ˆ ˆ ˆ( ) ( (...( ( ))))k j k j k j k j k j k kx S x S S S x− − + − + − + −= =  (2.46)

 

The recursion in equation (2.44) is a filter, providing state estimates based 

on the system dynamics and observations. For an observable linear system model 

with Gaussian noises, equation (2.44) is functionally equivalent to a Kalman filter 

and equation (2.46) is equivalent to a fixed interval smoother (e.g., a Rauch-Tung-

Striebel smoother). These equivalences suggest that the VA is a suitable 

replacement in applications that use Kalman filtering [42]. 

For the TAN problem, the VA has two significant advantages over the EKF 

used in SITAN [42]: 
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1. Metric function is computed for all possible state values makes the 

VA much more robust than the EKF in situations where the 

observations do not strongly support a single estimate of the state 

value. 

2. The nonlinear relationship between vehicle position and measured 

terrain elevation can be represented exactly with the VA but must be 

approximated for the EKF. 

In VATAN, the VA generates optimal MAP vehicle position estimates using 

the terrain elevation beneath the vehicle as its observation. In order to implement 

VATAN, conditional observation and; state transition densities in equation (2.44) 

are needed as well as an initial value of the metric 0L . In the original VATAN 

paper [42], very simple models are used to obtain the required densities. 

Parameters required for the VATAN technique are given as follows [42]: 

Nominal terrain height (Actual terrain height with zero measurement errors): 

( ) ( ) ( )ter k INS k radar kh x h x h x= −  (2.47)

 

Measured terrain elevation (Observation used in VATAN): 

ˆ ˆ ˆ( ) ( ) ( ) ( )k ter k INS k radar kz h k h x h x h xδ= = = −  (2.48)
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The measurements are assumed to be unbiased, independent and Gaussian. 

Therefore; ˆ[ ( )] ( )INS k INS kE h x h x=  and ˆ[ ( )] ( )radar k radar kE h x h x=  with variances 

2 ( )
INSh kσ  and 2 ( )

radarh kσ .Then [42]: 

ˆ ˆ[ | ] [ ( )] [ ( )] ( )k k INS k radar k ter kE z x E h x E h x h x= − =  (2.49)

2 2 2( ) ( ) ( )
INS radarz h hk k kσ σ σ= +  (2.50)

 

Thus the conditional observation probability density function is: 

[ ]2

22

( )1( | ) exp
2 ( )2 ( )

k ter k
k k

zz

z h x
p z x

kk σπσ

⎛ ⎞−
⎜ ⎟= ⋅ −
⎜ ⎟
⎝ ⎠

 (2.51)

 

The state transition density 1( | )k kp x x+  describes the states’ evolution with 

time. Given a known velocity vector kx&  that is constant over the T  second sample 

interval from kt  to 1kt + , the state’s evolution is [42]: 

1k k kx x x T+ = + ⋅&  (2.52)

 

Since the vehicle’s velocity is provided by the INS, it is not known 

precisely. This uncertainty is dealt with by modeling the INS velocity as a Gaussian 

random variable with mean INS
kx&  and variance 2

INS
kx

σ & , indicative of the INS 
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precision. Thus the random variable 1kx +  conditioned on kx  is a random variable 

with mean and variance [42]: 

1[ ] [ ]INS
k k kE x x E x T+ = + ⋅&  (2.53)

1

2 2 2
INSk k

x x
Tσ σ

+
= ⋅&  (2.54)

 

Since 0x  is assumed to be Gaussian, by equation (2.52), kx  is Gaussian for 

0k > . Moreover, the metric function kL  is initialized considering equation (2.43) 

by [42]: 

0 0 0 0( ) ln ( ) ln ( )INSL x p x p x= =  (2.55)

 

Here, it should be noted that VATAN models are derived considering a 

simplified INS model. Actually, INS error model used in SITAN can also be used 

for VATAN implementation. 

 

2.4.2. Simulations and Discussion 

Simulation results for VATAN are presented from the original work of Enss 

and Morrell [42]. They performed simulations for VATAN using four different 

terrain types: 

1. Typical rough terrain, 
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2. Flat terrain, 

3. Mountainous terrain, 

4. Sloped and flat terrain. 

Flight paths regarding the terrain types are shown in Figure 35. 

 

 
Figure 35. Contour Plot for VATAN Simulation Terrain Types [42] 

 

Simulations are performed for horizontal position errors (mean errors 

performed with Monte Carlo simulations and deviation errors simulated in tracking 

mode) and the results are compared with SITAN. Simulation results for different 

terrain types show that VATAN consistently performs as well as or better than 

SITAN implementation. VATAN performs as well as SITAN in moderately rough, 
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sloped terrain and it exceeds SITAN’s performance in very flat or very rough 

terrains [42]. 

However, there exist some drawbacks of the VATAN technique. VATAN’s 

major limitation is the increased computational capacity necessary to implement the 

VA when compared to an EKF [42]. In the original paper, the two-dimensional VA 

has only been implemented in a discrete state space; a continuous state-space 

implementation of the two-dimensional VA would improve VATAN’s accuracy 

and could result in a substantial reduction of the computational capacity necessary 

to implement VATAN [42]. 

For the VATAN process, several conclusions are achieved from the 

investigation of the original paper of Enss and Morrell [42]. They are summarized 

as follows: 

1. VATAN is a recursive TAN technique like SITAN. However, since 

the past measurements are stored and used its performance is said to 

be better than SITAN. 

2. From the paper, it is shown that VATAN performs better results for 

all terrain conditions (both very rough and flat terrains). 

3. VATAN uses VA which is a maximum a posteriori (MAP) estimator 

that estimates a sequence of system states from a sequence of 

observation values. VA is actually a dynamic programming 

technique for estimation which uses past information. 

4. The major disadvantage of VATAN is the limitation of the increased 

computational capacity necessary to implement the process. 

Actually, VA is also used as a radar tracking algorithm. By 
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investigating this paper, implementation of modern radar tracking 

algorithms to TAN has been inspired. 

 

In this chapter, major TAN algorithms have been investigated in detail with 

their fundamentals described in original references and the simulations performed. 

Simulation model details are not presented in this chapter; since, they will be given 

in the following chapter. Several conclusions have been obtained from the detailed 

study of the major algorithms and they have been discussed in the chapter. 
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CHAPTER 3 

IMPLEMENTATION OF TARGET TRACKING ALGORITHMS 

TO TERRAIN AIDED NAVIGATION 

 

In this chapter, implementation of target tracking algorithms to TAN is 

presented. First, general information about modern target tracking algorithms are 

given. Next, PDAF and TSF data association algorithms and their general 

implementations are investigated. Then, PDAF and TSF implementations to TAN 

are presented. At the end of the chapter, a simple simulation model is developed for 

the mid-course flight of the cruise missile. Finally, simulations are performed with 

the implemented TAN algorithms and the results are compared with the major TAN 

methods. 

 

3.1. Target Tracking Background 

In the first section of the chapter, a historical background about target 

tracking will be introduced. Major developments in multi-target tracking over the 

past four decades and how algorithms developed primarily for tracking air targets 

will be discussed. Then, target state estimation algorithms like Kalman filtering and 

association algorithms fundamentals will be investigated. 
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Eventhough tracking problems can be found in many applications, e.g., 

ocean surveillance and submarine tracking, most tracking algorithms have been 

developed for air targets [64]. 

A tracking problem is defined by the targets of interest, the sensors that 

collect the measurements, and the environment in which the targets move and 

sensors observe the targets. The basic functions in multi-target tracking consist of 

prediction, association, and estimation and they are shown in Figure 36. When 

measurements are received, the current tracks are predicted to the time of the 

measurements and associated with the measurements. Then the associated 

measurements are used to update the state estimates of the tracks. Although these 

functions are not always performed sequentially, they are present in most tracking 

algorithms [64]. 

 

 
Figure 36. Basic Tracking Functions [64] 

 

Prediction and estimation are single target state estimation functions in the 

absence of measurement uncertainty. Prediction difficulty depends on target 

dynamics and sensor revisit time. On the other hand, when the origins of the 

measurements are uncertain, e.g., when clutter or multiple targets are present, the 

measurements have to be associated with other measurements or tracks before the 

target state estimates can be generated. Therefore, data association establishes 
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tracking as a separate discipline from traditional state estimation in target tracking 

[64]. 

Chong, et al [64] investigated target estimation and data association 

algorithms in detail for ground target tracking. However, they discussed the subject 

from the historical point of view and investigated the algorithms with the related 

references in detail. In the following sections, target estimation and data association 

algorithms will be summarized considering the helpful reference of Chong, et al 

[64]. 

 

3.1.1. Target State Estimation 

Target state estimation is an important component of any multi-target 

tracking algorithm. The association of measurements to tracks requires the 

prediction of the target state of each track to the time of the measurements so that 

the measurement to track likelihood can be computed. Accurate state prediction is a 

key to good association performance. Once an association decision has been made, 

the output of the tracker consists of updated state estimates of the tracks using the 

associated measurements [64]. 

Target state algorithms can be grouped according to the algorithms applied 

as follows: 

1. Linear Estimation Algorithms: 

These algorithms assume linear target motion and observation 

models and provide estimates of the target state by means of linear 

transformations [64]. 
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a. Alpha-Beta-Gamma Filters: 

These constant coefficient filters estimate the target position and 

velocity from position measurements only. The alpha-beta filter 

assumes a second order model driven by white noise for the target 

dynamics while the alpha-beta-gamma filter assumes a third order 

model. In either case, the filters can be considered as steady state 

Kalman filter [64]. 

b. Kalman Filter: 

The Kalman filter has been the standard approach to filtering for 

linear systems since its development in the earlier sixties [64]. 

Details of Kalman filtering have been discussed in several chapters 

of the study. 

2. Adaptive Filters: 

When a target maneuvers, the model no longer matches the 

dynamics and performance will degrade. Several approaches have been 

developed to detect maneuvers and adapt the filter to the target dynamics 

in real-time [64]. 

a. Parameter Adjustment: 

The structure of the filter is fixed. However, the filter will 

monitor its own performance (such as the size of the residuals) and 

adapt parameters (such as the process noise covariance or the 

Kalman filter gain) when a target maneuver is detected [64]. 
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b. State Augmentation: 

This approach uses different dynamics models when a maneuver 

has been detected. For example, before maneuver, a constant 

velocity model is used. When a maneuver has been detected, the 

filter switches to an acceleration model with higher state dimension 

and switches back to the original model when the maneuver is 

determined to have ended [64]. 

3. Multiple Models: 

When the measurement does not contain sufficient information, an 

incorrect decision may be made, resulting in poor performance. 

Therefore, algorithms that maintain multiple target dynamic models 

have been developed. These algorithms compute the probability of each 

model being true given the measurements and generate a target state 

estimate as a weighted sum of the estimates given the individual models 

[64]. 

a. Static Multiple Models: 

These models assume that the true target motion model is static 

and contained in a fixed set of models. Because the target model 

does not change with time, this approach is not appropriate for 

maneuvering targets [64]. 

b. Model Sequence Pruning: 

The optimal multiple model estimator requires a filter for each 

possible model sequence hypothesis. Since the number of model 

sequences and thus the number of filters increases exponentially with 
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time, the optimal estimator is not practical. An obvious sub-optimal 

approach is to prune the least likely model sequences according to 

their probabilities [64]. 

c. Generalized Pseudo Bayesian Estimator: 

The Generalized Pseudo Bayesian (GPB) method is a suboptimal 

approach that reduces the number of filters by merging model 

sequences that end up with the same fixed length sub-sequences 

[64]. 

d. Interacting Multiple Models: 

The Interacting Multiple Model (IMM) algorithm is one of the 

most popular algorithms for tracking maneuvering targets because of 

its relatively simple implementation and its ability to handle 

complicated dynamics [64]. 

e. Variable Structure Interacting Multiple Models: 

While IMM has been successfully used in several applications, 

having a fixed model set has its disadvantages. Variable Structure 

Interacting Multiple Model (VSIMM) approach is used to track 

ground targets moving over roads and open field. The target motion 

models reflect the mobility of a target for different conditions [64]. 

4. Nonlinear Estimation: 

Many dynamic models or observation models do not satisfy the 

linear assumptions. Therefore, approaches for estimating the state of 

nonlinear systems have been developed. 
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a. Extended Kalman Filter (EKF): 

The non-linearity of the dynamic and observation models can be 

linearized about a nominal trajectory, and then a Kalman filter can 

be developed with the linearized model which is called EKF [64]. 

b. Gaussian Sum Approximations: 

The EKF assumes that the conditional probability distribution 

can be approximated reasonably accurately by a Gaussian 

distribution. When this approximation is not valid, the conditional 

probability distribution of the states given the cumulative 

measurements can be approximated by a sum of Gaussian 

distribution [64]. 

c. Nonlinear Filtering: 

This optimal nonlinear filtering algorithm has nice features such 

as the ability to update the probability distribution of the states due 

to non-detections. However, implementation is computationally 

intensive since it requires discretization of the state space and 

performing the integration by a summation. Thus, even though the 

algorithm has been known for many years, it has seldom been used 

[64]. 
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3.1.2. Data Association 

When the origins of the measurements are uncertain, e.g., when clutter or 

multiple targets are present, the measurements have to be associated with other 

measurements or tracks before the target state estimates can be generated. 

Association is what distinguishes target tracking from traditional state estimation 

and establishes tracking as a separate discipline [64]. 

Data association algorithms can be classified according to whether they 

focus on single targets or consider explicitly the presence of multiple targets and 

whether association decisions are made using single or multiple scans of data. The 

early algorithms tend to focus on single scan and single targets, while the recent 

algorithms deal with multiple scans of data and multiple targets. In general, 

algorithms that consider multiple targets and use multiple scans of data perform 

better but require more computations [64]. 

Data association algorithms can be grouped according to the algorithms 

applied as follows: 

1. Single Target Track Formation: 

These track formation algorithms initiate tracks from sequences of 

measurements without considering competition from other tracks [64]. 

a. “M” out of “N” Test: 

A track is tentatively initiated from a single measurement. A 

validation gate is then established around this measurement and a 

measurement falling inside this gate becomes part of the track. When 

there are “M” detections out of “N” scans of measurements, then the 
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track is formed or confirmed. This method is very simple but does 

not provide a score on the confidence of the track [64]. 

b. Likelihood (Ratio) Test: 

In the likelihood tests, tracks are declared as confirmed (or 

deleted) when the likelihood or ratio exceeds (or falls below) a 

certain threshold [64]. 

2. Single Target Track Maintenance: 

These algorithms associate measurements with the existing tracks 

without considering the presence of other tracks. Thus a measurement 

may be associated with multiple tracks [64]. 

a. Nearest Neighbor: 

In this method, the measurement that is closest (according to 

some distance measure) to the track is associated with the track from 

the multiple measurements. This approach makes a hard decision 

based on a single scan and is very easy to implement. However, it 

does not perform well in high density situations [64]. 

b. Track Splitting: 

This is basically applying the likelihood function (or ratio) 

approach to track maintenance. For every measurement that falls in 

the validation gate, the track is split. Each track is scored using a 

likelihood function as discussed before. The track is pruned when the 

likelihood falls below a threshold. This approach makes soft 

decisions based upon multiple scans of data. Because of its 
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computational requirements and limited performance, this approach 

is no longer popular [64]. 

c. Probabilistic Data Association (PDA): 

Instead of associating a single measurement with a track, this 

approach probabilistically associates all measurements in the 

validation gate. The PDAF is an all-neighbors association algorithm. 

It is fairly easy to implement and has been shown to perform better 

than the nearest neighbor approach in high clutter [64]. 

d. Optimal Bayesian Approach: 

The PDAF is a suboptimal approach since the association event 

only considers the current measurements. On the other hand, the 

optimal Bayesian approach will consider all possible association 

hypotheses up to the current time [64]. 

3. Multiple Target Track Maintenance: 

Association performance can be improved when the algorithms 

consider explicitly the presence of multiple targets and recognize that a 

single measurement cannot belong to multiple tracks [64]. 

a. Optimal Assignment: 

The optimal assignment approach, also sometimes called global 

nearest neighbor, is the coordinated version of nearest neighbor. 

Instead of selecting the measurement that is closest to a track, this 

approach selects the set of measurements that is closest to the set of 

tracks according to some global distance measure subject to the 
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constraint that two tracks do not share a single measurement, and 

two measurements do not appear in the same track [64]. 

b. Joint Probabilistic Data Association (JPDA): 

This is the extension of PDA to multiple targets. The tracks for a 

known number of targets are assumed to have been initiated and the 

problem is to associate the measurements to the tracks [64]. 

4. Multiple Scan Coordinated Association: 

Both the measurement and the target motion models have 

uncertainty. Therefore, the single scan decisions may not be the correct 

associations. Thus association performance can be improved by using 

multiple scans of data. The core of all multiple scan algorithms is the 

evaluation of track likelihoods, which can be used for both track 

formation and maintenance. Thus multiple scan algorithms generally can 

be used for both track formation and association [64]. 

a. Integer Programming: 

This approach was the fist multiple scan algorithm and integer 

programming problem can be solved by branch and bound or other 

methods. However, this algorithm was improved to other multiple 

scan algorithms such as multiple hypothesis tracking [64]. 

b. Multiple Hypothesis Tracking (MHT): 

Multiple hypothesis tracking delays making hard decisions when 

there is not sufficient information to make a good decision. 

Alternative hypotheses are formed to represent the ambiguities and 
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each hypothesis is evaluated. The MHT is conceptually simple but 

computationally intensive since the number of hypotheses grows 

exponentially [64]. 

c. Multi-Dimensional Assignment: 

Traditional MHT requires the explicit expansion and evaluation 

of many hypotheses. Successful implementation requires the use of 

sophisticated hypothesis management techniques to handle the 

combinations. During the last decade, alternative optimization based 

methods that do not require the explicit expansion and evaluation of 

hypotheses have been developed. Such algorithms are easier to 

implement and computationally more efficient [64]. 

5. Tracking Without Data Association: 

Several approaches have been proposed to perform tracking without 

an explicit association function. Instead of dealing with individual target 

states and individual measurements, these approaches treat all targets 

and measurements as components of one system, and estimate the 

system state directly without explicitly forming association hypotheses 

[64]. 

a. Symmetric Measurement Equations: 

In this approach the original measurements on the targets are 

converted into a new set of measurements that are symmetric 

functions of the original measurements [64]. 
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b. Multi-target Nonlinear Filtering: 

The individual target motion and measurement models can be 

aggregated into a multi-target motion model given by the conditional 

probabilities and a measurement model given by the likelihood 

function. Then, the same nonlinear filtering method developed for a 

single target can be used (conceptually at least) for tracking multiple 

targets [64]. 

 

As it can be seen from the historical point of view, target tracking is a 

comprehensive subject. In this study, implementation of some of these algorithms to 

TAN is done. As a result of this, some of the algorithms summarized above will be 

discussed in detail in the following sections. Then, they will be implemented for 

TAN applications. 

 

3.2. Probabilistic Data Association Filter (PDAF) 

3.2.1. Theory 

The PDA algorithm calculates in real-time the probability that each 

validated measurement is attributable to the target of interest. This probabilistic 

(Bayesian) information is used in a tracking filter, the PDA filter (PDAF) which 

accounts for the measurement origin uncertainty [52]. 

The following assumptions are made to obtain the recursive PDAF state 

estimator (tracker) [52]: 
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1. There is only one target of interest whose state evolves according to 

a dynamic equation driven by process noise. 

2. The track has been initialized. 

3. The past information about the target is summarized approximately 

by; 

[ ]1 ˆ( ) | ( ); ( | 1), ( | 1)kp x k Z x k x k k P k k z−⎡ ⎤ = Ν − −⎣ ⎦  (3.1)

where, 

[ ]ˆ( ); ( | 1), ( | 1)x k x k k P k kΝ − − :  Normal probability density function. 

( )x k : Argument, 

ˆ( | 1)x k k − : Mean, 

( | 1)P k k − : Covariance matrix. 

4. At each time, a validation region is set up. 

5. Among the possibly several validated measurements, at most one of 

them can be target-originated, if the target was detected and the 

corresponding measurement fell into the validation region. 

6. The remaining measurements are assumed to be false alarms or 

clutter and are modeled as independent identically distributed 

measurements with uniform spatial distribution. 
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7. The target detections occur independently over time with known 

probability. 

These assumptions enable a state estimation scheme to be obtained, which is 

almost as simple as the Kalman filter, but much more effective in clutter [52]. 

The probabilistic data association algorithm associates all valid observations 

with a track. For each validated observation, an updated estimate ˆ ( | )ix k k  is 

computed. A probability of correct association iβ  is computed for each such track. 

Then a combined track is formed from the weighted average of these tracks: 

ˆ ˆ( | ) ( | )i ix k k x k kβ= ⋅∑  (3.2)

 

For multiple targets, the same process occurs although the probability 

calculations are more complex which is called Joint Probabilistic Data Association 

Filter (JPDAF) [65]. 

In Figure 37, general PDAF implementation is shown. Then, the following 

approach can be implemented in order to perform PDAF algorithm [65]: 

1. The set of validated measurements is computed. 

2. For each validated measurement an updated track is computed. 

3. For each updated track an association probability iβ  is computed. 

The calculation of this probability can be quite complex and 

dependent on the assumed clutter densities. However, it is normally 
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adequate to set iβ  proportional to the normalized innovation for the 

association. 

 

 
Figure 37. PDAF Implementation [65] 

 

4. A combined (average) track is computed. 

5. A combined average covariance can also be computed although this 

can become quite complex. 
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6. A single prediction of the combined track is then made to the next 

scan time and the process is repeated. 

The PDAF and JPDAF methods are appropriate in situations where there is a 

high degree of clutter. The great advantage with the PDAF method is that you are 

never wrong. The problem is you are also never right [65]. 

PDA procedure is summarized in Figure 38 and detailed PDAF equations 

are given in Appendix. 

 

 
Figure 38. PDAF Procedure [66] 
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3.2.2. Implementation of PDAF to TAN 

3.2.2.1. Implementation Methods of PDAF for TAN 

Terrain Aided Navigation (TAN) algorithms estimate the position of a 

moving vehicle by comparing the measured terrain profile under the vehicle to a 

stored elevation map. Therefore, the critical part of the TAN is the terrain elevation 

database, i.e. DTED for the common military applications. Batch and recursive 

algorithms are used for TAN as explained before. For batch algorithm, i.e. 

TERCOM, only DTED is used in order to estimate the position of the vehicle. On 

the other hand, for recursive algorithms, like SITAN, VATAN, etc. besides DTED, 

the system dynamics should also be modeled. 

Application of the target tracking algorithms to navigation problems have 

been investigated in several papers given in Qingtang, et al [40], Dezert [43] and 

Maksarov and Durrant-Whyte [67]. In the paper of Qingtang, et al [40], TAN using 

PDAF was investigated for the batch algorithm. Association probabilities have been 

derived using the MSD function of the TERCOM process and performance of the 

TAN using PDA and TERCOM has been compared. In the paper of Dezert [43], 

PDAF has been used in order to improve the accuracy of a strapdown INS using 

landmark detections. Maksarov and Durrant-Whyte [67] used multiple hypothesis 

technique (MHT) algorithm for an autonomous mobile vehicle with multiple sonar 

sensors for range measurements. 

As it can be seen from the papers investigated, Qingtang, et al [40] is 

directly related with the Ph.D. study. The main difference of the Ph.D. study from 

Qingtang, et al [40] is the real-time application of PDAF to TAN which will be 

discussed in detail. 

First application of a target tracking algorithm to TAN problem should be 

discussed. Consider the assumptions to obtain a recursive PDAF estimator again: 
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1. There is only one target of interest whose state evolves according to 

a dynamic equation driven by process noise. 

• Target of interest is the cruise missile and its motion can be 

modeled. In MHT and JPDA multiple targets are 

considered with more complex algorithms. 

2. The track has been initialized. 

• Initial conditions of the vehicle’s motion can be modeled. 

3. The past information about the target is summarized. 

• Cruise missile dynamics model gives information about its 

motion. 

4. At each time, a validation region is set up. 

• CEP of the vehicle is determined by the quality of the INS 

used. The validation region for the measurements is set 

considering 3σ position error bound of the INS horizontal 

positions. 

5. Among the possibly several validated measurements, at most one of 

them can be target-originated, if the target was detected and the 

corresponding measurement fell into the validation region. 

• DTED area considering the 3σ position error bound of the 

vehicle can be used considering only one of the height 

measurements rely on the target. 
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6. The remaining measurements are assumed to be false alarms or 

clutter and are modeled as independent identically distributed 

measurements with uniform spatial distribution. 

• False measurements are modeled considering the height 

channel covariances due to radar and INS height 

measurements. 

7. The target detections occur independently over time with known 

probability densities. 

• Radar height measurements can be modeled as time 

independent occurrences. 

From the assumptions of PDAF, it is seen that PDAF can be applied to 

TAN. Data association problem comes from the DTED height differences used for 

TAN. It is known that one of the grid of the DTED batch considered gives the 

correct position of the vehicle. Now, the implementation of PDAF algorithm to 

TAN can be discussed. 

First, consider other TAN algorithms used for both batch and recursive 

algorithms. In Figure 39, batch algorithm concept is summarized. 

In the batch algorithm, only the height measurements and their relations with 

the related DTED are considered. For a period of time, measurements are taken and 

correlation can be obtained using TERCOM process which is actually a maximum 

likelihood estimator. For the batch algorithm, the model of the vehicle motion is not 

required. Therefore, procedure is simple and larger DTED area should be used for 

the calculations. As a result of this, it can be concluded that batch algorithm can be 

successfully used in cruise missiles with considerably accurate INS. In fact, INS 

quality used in cruise missiles is around 1 nm/hr. Then, a few position updates 
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during the mid-course phase of the operation with the help of TERCOM algorithm 

will be sufficient for the navigation solution. 

 

 
Figure 39. Batch Algorithm for TAN Solution (Acquisition Mode) 

 

In recursive algorithms, TAN solution is done continuously. In order to 

achieve a complete navigation solution, the motion of the vehicle should also be 

modeled. In Figure 40, recursive algorithm for TAN concept is shown. 
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Figure 40. Recursive Algorithm for TAN Solution (Tracking Mode) 

 

As it was discussed in earlier chapters, there are various recursive TAN 

algorithms proposed in literature. The well-known recursive algorithm is SITAN. 

Recursive TAN algorithms generally use estimation theory in order to solve the 

navigation problem. In SITAN, extended Kalman filtering, where in VATAN, 

Viterbi algorithm (a maximum a posteriori state sequence estimator) is used. 

Various recursive algorithms are also proposed as using maximum a posteriori 

estimation and optimal Bayesian estimation. 

Due to the nonlinear dynamics of the navigation system using terrain 

information, algorithms for recursive TAN solutions require generally complex 
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calculations. In SITAN, linearization is done using EKF for the terrain. Several 

disadvantages of the recursive TAN algorithms can be summarized as follows: 

1. TAN requires terrain information for the navigation solution and the 

dynamics of the system is highly nonlinear. 

2. Equations derived for recursive algorithms are generally complex 

and needs considerable calculation work. 

3. Real-time application for the TAN solution is generally impractical 

for high velocity vehicles like cruise missile due nonlinear 

characteristics of the system. 

4. In SITAN, terrain linearization and terrain slopes are required in 

order to apply extended Kalman filter equations which are actually 

critical stages for TAN solution. 

In this study, a new recursive TAN algorithm is investigated, which uses 

PDA, a target tracking algorithm. In Figure 41, real-time PDAF application for 

TAN is shown. Consider the PDA approach given in the previous section for TAN 

again: 

1. The set of validated measurements is computed. 

• Measurement gate is taken as 3σ position error bound of 

the INS and the invalid possibilities for the height 

differences ( )ih kδ  are discarded. 

2. For each validated measurement an updated track is computed. 
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• Here, INS error model is used due to its linear 

characteristics. The updated tracks ˆ ( )ix kδ  are computed 

for all valid points in the gate using PDA filtering.  

3. For each updated track an association probability iβ  is computed. 

• Using height differences for each valid element of the grid, 

association probabilities iβ  are calculated. 

4. A combined (average) track is computed. 

5. A combined average covariance can also be computed although this 

can become quite complex. 

6. A single prediction of the combined track is then made to the next 

scan time and the process is repeated. 

• Estimated error state ˆ ( | )x k kδ  is computed considering 

equation (3.2). Then the estimated error state becomes: 

ˆ ˆ( | ) ( | )i ix k k x k kδ β δ= ⋅∑  (3.3)

 

Next, derivation of the PDAF equations for TAN is done. PDAF equations 

for TAN are implemented considering standard real-time PDAF equations which 

are given in Appendix. 
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Figure 41. PDAF Implementation for TAN Solution 

 

3.2.2.2. PDAF Equations Implemented for TAN 

3.2.2.2.1. Past Measurement Information 

In the TAN algorithm, the only measurement is the height difference hδ  

given in equation (2.23) which was given for SITAN in the previous chapter. 

However, since the 3σ horizontal error bound of the vehicle is estimated 

considering the quality of the INS used, a batch of height differences around the 

INS position can be obtained. Rewrite SITAN equations considering the barometric 

height given as the INS height. Then, barometric height definition can be rewritten 

as follows: 

ˆ( | 1)Hx k k −

( )iz k  
ˆ ( | )ix k kδ

( )iz k

ˆ ( | )ix k kδ

∑

t k=  

INS Height Difference ( INShδ ) 

Actual Height 
Difference ( ihδ ) 

1t k= +  
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( , ) ( , )INS baroh x y h x y=  (3.4)

 

Since DTED are used in the simulations where the heights are given with 

respect to related longitudes and latitudes, instead of using eastward and northward 

positions ( , )x y , longitudes and latitudes ( , )µ λ  are selected in the equations. Then, 

estimated and trajectory (real) positions can be defined as: 

ˆ ˆ( , ) ( , )INS INSx y µ λ=  (3.5)

( , ) ( , )traj trajx y µ λ=  (3.6)

where; 

ˆ ˆ( , )x y : Estimated eastward and northward position, 

( , )INS INSµ λ : Longitude and latitude of the INS position, 

( , )x y : Trajectory eastward and northward position, 

( , )traj trajµ λ : Longitude and latitude of the trajectory position. 

 

Considering the measurements to be taken at discrete time steps k , SITAN 

measurement equations derived according to Figure 22 can be rewritten as follows: 
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( ) ( ( ), ( ))
( ( ), ( )) ( ) ( )

INS INS INS INS

DTED INS INS INS est

h k h k k
h k k w k C k

µ λ
µ λ

=
= + +

 (3.7)

( ) ( ( ), ( )) ( ) ( )INS DTED traj traj radar meash k h k k w k C kµ λ= + +  (3.8)

( ) ( ) ( )radar meas radarh k C k w k= +  (3.9)

( ) ( ) ( )meas esth k C k C kδ = −  (3.10)

[ ]( ) ( ( ), ( )) ( )

( ( ), ( )) ( )
DTED INS INS INS

DTED traj traj radar

h k h k k w k

h k k w k

δ µ λ

µ λ

= +

⎡ ⎤− +⎣ ⎦
 (3.11)

 

Now, consider the DTED batch for each height difference which is shown in 

Figure 42. Then, for each grid node, equation (3.11) can be written as follows 

considering the grid index i : 

[ ]( ) ( ( ), ( )) ( )

( ( ), ( )) ( )
i DTED i i INS

DTED traj traj radar

h k h k k w k

h k k w k

δ µ λ

µ λ

= +

⎡ ⎤− +⎣ ⎦
 

                                     1,..., ( )i m k=  

(3.12)

where; 

i : Index of the DTED grid node, 

( )m k : DTED grid size (selected as square of an odd number for INS 

position to be at the center of the DTED grid) 
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Here, it should be noted that INS height difference is at 13i =  for a 5x5 

DTED grid size. 

 

 

Figure 42. Height Differences Batch Used in PDAF 

 

Height difference at the INS position can be found for a DTED grid size of 

( )m k  as: 

[ ]1 ( ) 1
2

( ) ( )INS m k
h k h kδ δ

+
=  (3.13)

 

From Figure 42, it can be seen that the only actual measurement is 

13i INSh hδ δ= =  at time step k . Other ,  1,..., ( )ih i m kδ =  values are derived using the 
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=
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( ) 1m khδ −
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... 3 500INS mσ ≈  
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defined DTED grid. Using the DTED heights given at the positions around the 

given INS position, height difference batch at time step k  is obtained. 

For the TAN algorithm, past height difference measurements are averaged in 

order to smooth the effects of the past measurements. In order to achieve this, 

height measurements are put in a buffer and then, the average is used as the 

measurement batch to the PDA filter. For the study, buffer size of 20 to 30 (i.e., 20-

30 seconds of measurements) was sufficient. As the new measurements come, the 

oldest measurements are eliminated. 

Consideration of the past measurement information can be summarized as 

follows: 

1( ) ( )             0
ave

s k

i i
k

h s k h k s k
s

δ δ
+

+ = ⋅ > ≥∑  (3.14)

where; 

aveihδ : Average of the height difference at position related to index i , 

s : Buffer size. 

In the same manner, height difference batch matrix can be written as: 

1 2 1 2

1

2

3

( ) 1

( ) m(k) m(k)

( ) ... ... ... ...

( ) ... ... ... ...

ˆ ( ) ... ... ... ...( ) 0

... ... ... ... ( )

... ... ... ... ( )

ave

ave

ave

ave

ave

m k

m k

ave

h s k

h s k

h s kh s k s k

h s k

h s k

δ

δ

δδ

δ

δ

−

×

+

+

++ = > ≥

+

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.15)
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3.2.2.2.2. Measurement Validation 

In order to determine validation region for measurements, consider standard 

PDAF equations in the Appendix. In the TAN algorithm, validation region given in 

equation (A.3) is directly taken as the 3σ error bound of the vehicle. However, 

height difference measurements in the batch matrix must be valid for the 

calculations. In the equation considered, measurements are the height differences 

, 1,..., ( )ih i m kδ = . Innovation covariance ( )S k  given in equation (A.4) contains the 

system height state covariance ( | 1)−P k k , and the radar measurement noise 

covariance matrix ( )R k . Therefore: 

2 2( | 1) ; ( )
INSh radarP k k R kσ σ− = =  (3.16)

 

Then, equation (A.3) becomes: 

[ ] 1( ) ( | 1) ( ) ( )−⋅ − + ⋅ ≤T
i ih k P k k R k h kδ δ γ  

( )2 2 2( )
INSi h radarh kδ γ σ σ≤ ⋅ +  

( ) 1 2
2 2( )
INSi h radarh kδ γ σ σ⎡ ⎤≤ ⋅ +⎣ ⎦  (3.17)

 

Gate threshold γ  is taken as 16 (4σ error bound) considering 99.9989% of 

the measurements to be in the gate as in the original reference of Kirubarajan and 

BarShalom [52]. Height difference measurement values, ( )ih kδ , which are not 
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valid according to equation (3.17) are eliminated by assigning very large values of 

( )ih kδ . Hence, in the data association process for the measurements given in 

equation (A.33), probability of the invalid measurements become zero (i.e. 0ie ≅ ) 

and have no effect in the TAN solution. 

 

3.2.2.2.3. State & Covariance Estimation, Update and Prediction 

For the TAN algorithm, generic PDAF equations are directly used using a 

modification for the definition of the states. Filter equations are given as follows: 

INS Error Model: 

( 1) ( ) ( ) ( )x k k x k w kδ δ+ = Φ ⋅ +  (3.18)

where; 

[ ]( ) ; ; ; ; Tx k rN rE h vN vEδ δ δ δ δ δ= : Navigation error states vector, 

rNδ : Northward position error state, 

rEδ : Eastward position error state, 

hδ : Height position error state, 

vNδ : Northward velocity error state, 

vEδ : Eastward velocity error state, 
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1 0 0 0
0 1 0 0

( ) 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥Φ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

T
T

k : State transition matrix with sample time T . 

[ ]( ) ( ), ( ), ( ), ( ), ( )rN rE h vN vEw k w k w k w k w k w kδ δ δ δ δ= : INS error state white 

noises where 2( ) (0, )i iw k N σ=  with mean 

zero and variance 2
iσ  to the related state. 

 

PDAF Measurement Model: 

( ) ( ) ( ) ( )i m i measz k H k x k w kδ= ⋅ +  (3.19)

where; 

( ) ( )
avei iz k h kδ= : Average of the height difference at position related to 

index i , 

[ ]( ) 0 0 1 0 0mH k = : Height measurement matrix, 

2( ) (0, )=meas radarw k N σ : Measurement White Noise with mean zero and 

variance 2
radarσ . 

 

After defining system and measurement models, PDAF equations can be 

implemented for TAN. PDAF equations contain Kalman filter equations with 
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association probabilities. For PDAF equations, innovation form of Kalman filter 

equations are used. 

Propagation (Prediction) Equations: 

ˆ ˆ( | 1) ( 1) ( 1| 1)x k k k x k kδ δ− = Φ − ⋅ − −  (3.20)

( | 1) ( 1) ( 1| 1) ( 1) ( 1)TP k k k P k k k Q k− = Φ − ⋅ − − ⋅Φ − + −  (3.21)

where; 

( )P k : State covariance matrix, 

2

2

2

2

2

0 0 0 0
0 0 0 0
0 0 0 0( )

0 0 0 0
0 0 0 0

INS

rN

rE

h

vN

vE

Q k

σ
σ

σ

σ
σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

: System noise covariance matrix 

 

State and Covariance Update: 

( ) ( ) ( | 1) ( ) ( )T
P PS k H k P k k H k R k= ⋅ − ⋅ +  (3.22)

1( ) ( | 1) ( ) ( )T
PK k P k k H k S k −= − ⋅ ⋅  (3.23)

ˆ ˆ( | ) ( | 1) ( ) ( )Px k k x k k K k v kδ δ= − + ⋅  (3.24)

where; 
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( )S k : Innovation covariance matrix, 

( )K k : PDA filter gain, 

1 0 0 0 0
( ) 0 1 0 0 0

0 0 1 0 0
PH k

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

: PDAF measurement matrix, 

( )

0
( ) ( ) ( )

i

m k

P i P
i

v k k v kβ
=

= ⋅∑ : Combined PDAF innovation, 

ˆ( ) ( ) ( | 1)
i i iP P Pv k z k z k k= − − : PDAF innovation states, 

( ) ; ;
i aveP i i iz k rN rE hδ δ δ⎡ ⎤= ⎣ ⎦ : PDAF measurement states, 

ˆˆ ( | 1) ( ) ( | 1)
iP Pz k k H k x k kδ− = ⋅ − : Measurement state estimation, 

2

2

2

0 0
( ) 0 0

0 0

rN

rE

radar

R k
σ

σ
σ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

: PDAF measurement noise covariance matrix 

 

Here, it should be noted that PDAF measurement states ( )
iPz k  are different 

from the actual measurement states ( )iz k . Since, only height difference 

measurements are taken into account, position updates are not available with the 

height measurement matrix ( )mH k . As a result of this, PDAF measurement matrix 

( )PH k  is defined in order to make position corrections with the same filter gains of 

height corrections. 
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PDAF measurement states ( )
iPz k  are defined such that northward and 

eastward positions are calculated according to the index i  as shown in Figure 42. 

Moreover, due to position inaccuracies along horizontal coordinates, horizontal 

position white noises 2
rNσ  and 2

rEσ  terms are added in the measurement noise 

covariance matrix. Height difference measurements ( )iz k  are used for the 

determination of the conditional probability of the event ( )i kβ  instead of ( )
iPz k ; 

since, positions are not actually measured. With the use of ( )
iPz k , filter gains 

obtained for height difference states are directly used for position states. 

For the position error definitions, consider Figure 42 again. As it was given 

in equation (3.13), INS position index is at [ ]1 ( ) 1
2INSi m k= +  for a DTED grid size 

of ( )m k  where the grid is selected as a square. At the INS position index INSi , 

0INSrNδ =  and 0INSrEδ = ; since no position correction exists for the INS position. 

Using geometrical relations for the DTED grid index and horizontal positions, 

following definitions can be done for horizontal position errors: 

( ) 1
( ) 1

2( )i y
m kirN i m k ceil d

m k
δ

⎛ ⎞⎡ ⎤⎛ ⎞ +⎜ ⎟= + ⋅ − − ⋅⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠
 (3.25)

( ) 1
2( )i x

m kirE ceil d
m k

δ
⎛ ⎞⎛ ⎞ +

= − ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (3.26)

where; 

irNδ : Northward position error at index i , 

irEδ : Eastward position error at index i , 
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( )m k : DTED grid size, 

( )ceil X : Function which rounds the element of X  to the nearest integer 

towards infinity. 

yd : DTED spacing along latitude direction, 

xd : DTED spacing along longitude direction. 

 

Horizontal position error definitions are shown in Figure 43. 

 

 

Figure 43. Horizontal Position Error Definitions 
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=
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As an example, consider the horizontal position errors at index 2i =  for 5x5 

DTED grid size as shown in Figure 43. Using equations (3.25) and (3.26), 

horizontal position errors can be found as follows: 

2
2 25 12 25 1 1

225i y yrN ceil d dδ =

⎛ ⎞⎡ ⎤ +⎛ ⎞
= + ⋅ − − ⋅ = − ⋅⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠⎣ ⎦⎝ ⎠

 

2
2 25 1 2

225i x xrE ceil d dδ =

⎛ ⎞+⎛ ⎞
= − ⋅ = − ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

 

As it can be seen from the calculated results, horizontal position errors, 

which are determined from equations (3.25) and (3.26), can be directly used for INS 

position updates. Therefore, by determining the index of the position from TAN 

algorithms, INS error model can be updated. Moreover, as it was stated earlier, 

horizontal position white noises 2
rNσ  and 2

rEσ  terms are added in the measurement 

noise covariance matrix in order to model position inaccuracies along horizontal 

coordinates. 

For the state covariance update, equations (A.15) to (A.17) are used. 

However, the conditional probability of the false events is zero (i.e. 0 ( ) 0kβ ≅ ) for 

the TAN application which will be explained in the following section. Moreover, 

for the spread of the innovations term ( )P k% , only the measured state ( )iz k  will be 

considered. Hence: 

( | ) ( | 1) ( ) ( ) ( ) ( )TP k k P k k K k S k K k P k= − − ⋅ ⋅ + %  (3.27)
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( )

0
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

m k
T T T

i i i
i

P k K k k v k v k v k v k K kβ
=

⎡ ⎤
≅ ⋅ ⋅ ⋅ − ⋅ ⋅⎢ ⎥

⎣ ⎦
∑%  (3.28)

where; 

( )

0
( ) ( ) ( )

m k

i i
i

v k k v kβ
=

= ⋅∑ : Combined height difference innovation, 

ˆ( ) ( ) ( | 1)i i iv k z k z k k= − −  

ˆ( ) ( ) ( ) ( | 1)
avei iv k h k H k x k kδ δ= − ⋅ − : Height difference innovation states 

 

Here, it should be noted that ( )P k%  term will be effected only from the height 

channel. Therefore, in state covariance matrix ( | )P k k , ( )P k%  term will be added 

only to the height channel. 

 

3.2.2.2.4. The Probabilistic Data Association 

Association probabilities are calculated considering the height differences 

used in parametric PDA equation (A.32). In this equation, determination of DP  and 

GP  parameters are critical. Probability of detection of a target originated 

measurement DP  must be one; since the height difference measurements grid is 

formed virtually from the related DTED within the 3σ horizontal error bound of the 

vehicle position. If no measurements are taken, then the height measurement grid 

could not be formed. Probability of measurements in the gate GP  is also taken one 
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considering the used DTED grid is the 3σ horizontal error bound of the vehicle 

obtained from the quality of the INS. Actually measurement gating process 

eliminates the impossible height difference solutions according to equation (3.17) 

derived. Therefore: 

1, 1D GP P= =  (3.29)

 

Then from equation (A.34), 0b �  and equation (A.32) becomes: 

( )

1

( )           1,..., ( )i
i m k

j
j

ek i m k
e

β

=

⎧
⎪⎪= =⎨
⎪
⎪⎩
∑

 (3.30)

where; 

11 ( ) ( ) ( )
2

T
i iv k S k v k

ie e
−− ⋅ ⋅ ⋅

≅ : Given in equation (A.33) 

 

3.2.2.2.5. Summary of PDAF Equations for TAN 

PDAF equations derived in the previous sections for real-time TAN 

application is summarized in Table 15. Initialization of Kalman filters is generally 

done by setting state covariance matrix as a coefficient of system covariance matrix: 

2
0 ( ),     (typically 10)P Q kα α= ⋅ =      [65] (3.31)
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Table 15. PDAF Equations for TAN Process 

INS Error Model:  

( 1) ( ) ( ) ( )x k k x k w kδ δ+ = Φ ⋅ +  given in(3.18)

( ) (0, ( ))w k N Q k=  

System Noise Covariance Matrix: 

( ) { ( ) ( ) }TQ k Cov w k w k=  given in (3.21)

PDAF Measurement Model: 

( ) ( ) ( ) ( )i m i measz k H k x k w kδ= ⋅ +  given in (3.19)

2( ) (0, )=meas radarw k N σ  

Association Probabilities: 

( )

1

( )           1,..., ( )i
i m k

j
j

ek i m k
e

β

=

⎧
⎪⎪= =⎨
⎪
⎪⎩
∑

 

given in (3.30)

Initial Conditions: 

0 0 0
ˆ( , )x N x Pδ δ=  (3.32)

Other Assumptions: 

( ) ( ) 0T
measE w k w k⎡ ⎤⋅ =⎣ ⎦  for all k  

(Measurements are independent) 

(3.33)

State Estimate Propagation: 

ˆ ˆ( | 1) ( 1) ( 1| 1)x k k k x k kδ δ− = Φ − ⋅ − −  given in (3.20)

Error Covariance Propagation: 

( | 1) ( 1) ( 1| 1) ( 1) ( 1)TP k k k P k k k Q k− = Φ − ⋅ − − ⋅Φ − + −  given in (3.21)

PDAF Gain Matrix: 
1( ) ( | 1) ( ) ( )T

PK k P k k H k S k −= − ⋅ ⋅  given in (3.23)

State Estimate Update: 

ˆ ˆ( | ) ( | 1) ( ) ( )Px k k x k k K k v kδ δ= − + ⋅  given in (3.24)
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Table 15. PDAF Equations for TAN Process (Continued) 

Error Covariance Update: 

( | ) ( | 1) ( ) ( ) ( ) ( )TP k k P k k K k S k K k P k= − − ⋅ ⋅ + %  given in (3.27)

( )

0
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

m k
T T T

i i i
i

P k K k k v k v k v k v k K kβ
=

⎡ ⎤
≅ ⋅ ⋅ ⋅ − ⋅ ⋅⎢ ⎥

⎣ ⎦
∑%  

given in (3.28)

 

3.2.2.3. Discussion of Real-time PDAF Implementation for TAN 

In this section, implemented PDA method for TAN will be discussed. The 

advantages of the PDA approach for TAN solution can be summarized as follows: 

1. Real-time TAN solution can be obtained with a single PDA filter. 

2. PDA filter can be used for both batch and recursive TAN solution. 

For batch solution, larger grid size is selected for navigation solution. 

For recursive solution, horizontal positions are calculated recursively 

in relatively small DTED grids. 

3. Since past measurements are taken into account, smoothing of the 

measurements in the filter is achieved which decreases errors. 

4. Since INS error model is used for navigation solution, application of 

the filter is simple and the filter is linear. 

5. Batch size of the DTED area concerned can be changed. Both larger 

DTED areas for acquisition mode or smaller DTED areas for 

tracking modes can be selected using the same filter. 
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6. Results of the filter are good for both recursive and batch algorithms. 

The results compared with SITAN and TERCOM algorithms will be 

discussed in the simulations section. 

The difference of the PDA approach from Qingtang, et al [40] is also 

summarized as follows: 

1. In the paper of Qingtang, et al [40], TAN using PDAF was 

investigated for the batch algorithm. The motion of the vehicle is not 

modeled. 

2. In the paper of Qingtang, et al [40], the batch algorithm obtained 

using PDAF actually uses maximum likelihood approach as used for 

TERCOM. Therefore, association probabilities iβ  are calculated 

with the help of the MSD function used in TERCOM. 

3. In the paper of Qingtang, et al [40], performance of the TAN using 

PDA and TERCOM has been compared. It is stated that PDA was 

used in order to improve the performance of TAN compared to 

TERCOM. 

4. In the Ph.D. study, real-time PDAF implementation is done. By 

using the error model of the INS used in the vehicle, system 

dynamics is modeled. Using PDAF, error states of the system are 

estimated. 

5. In the Ph.D. study, PDAF equations are directly implemented for the 

TAN solution. Association probabilities obtained from height 

difference measurements for each element of the DTED grid 

concerned are used for position updates considering the index of the 

DTED grid. 
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Simulation results of the implemented PDA filter will be presented at the 

“Simulations” section of the chapter. 

 

3.3. Multiple Hypothesis Tracking (MHT) and Track Splitting Filter 

(TSF) 

3.3.1. Theory 

In classical multiple-target tracking, the problem is divided into two steps, 

association and estimation. Step 1 associates contacts with targets. Step 2 uses the 

contacts associated with each target to produce an estimate of that target’s state. 

Complications arise when there is more than one reasonable way to associate 

contacts with targets. The classical approach to this problem is to form association 

hypotheses and to use MHT. In this approach, alternative hypotheses are formed to 

explain the source of the observations. Each hypothesis assigns observations to 

targets or false alarms. For each hypothesis, MHT computes the probability that it is 

correct. This is also the probability that the target state estimates that result from 

this hypothesis are correct. Most MHT algorithms display only the estimates of 

target state associated with the highest probability hypothesis [68]. 

The model used for the MHT problem is a generalization of the recursion for 

general multiple-hypothesis tracking. This recursion applies to problems that are 

nonlinear and non-Gaussian as well as to standard linear Gaussian situations. In this 

general case, the distributions on target state may fail to be independent of one 

another (even when conditioned on an association hypothesis) and may require a 

joint state space representation. This recursion includes a conceptually simple 

Bayesian method of computing association probabilities [68]. 
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Numerous books and articles on multiple-target tracking examine in detail 

the many variations and approaches to MHT problem. Many of these discuss the 

practical aspects of implementing multiple target trackers and compare approaches. 

In addition to the full or classical MHT as defined by “Reid” and “Mori et al.”, a 

number of approximations are in common use for finding solutions to tracking 

problems. Examples include joint probabilistic data association and probabilistic 

MHT [68]. 

Multiple hypotheses tracking (MHT) is a deferred decision logic in which 

alternative data association hypotheses are formed whenever there are observation 

to track conflict situations. Then, rather than combining these hypotheses, as in the 

JPDA method, the hypotheses are propagated in anticipation that subsequent data 

will resolve the uncertainty [69]. 

The original MHT method, denoted Reid’s algorithm, was first presented by 

Reid [70]. There are two basic approaches to MHT implementation. The first 

(hypothesis-oriented) approach follows the original work of Reid [70]. It maintains 

the hypothesis structure from scan to scan and continually expands and cuts back 

(prunes) the hypotheses as new data are received. At each scan, a set of hypotheses 

will be carried over from the previous scan and composed of one or more tracks that 

are compatible with all other tracks in the hypothesis. Compatible tracks are defined 

to be tracks that do not share any common observations. Then, on the receipt of new 

data, each hypothesis is expanded into a set of new hypotheses by considering all 

observation-to-track assignments for the tracks within the hypothesis. Again, as new 

hypotheses are formed, the compatibility constraint for tracks within a hypothesis is 

maintained [69]. 

An alternative (track-oriented) approach [71] does not maintain hypotheses 

from scan to scan. The tracks formed on each scan are reformed into hypotheses 

and the tracks that survive pruning are predicted to the next scan where the process 

continues [69]. 
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In Figure 44 and Figure 45, the operations of MHT that are required by both 

implementation methods are summarized. 

 
Figure 44. MHT Logic Overview [69] 

 
Figure 45. High-level Flow Chart of MHT Algorithm [69] 
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The Multiple Hypothesis Tracking (MHT) filter maintains separate tracks 

for each possible associated observation. At each time step, the predicted 

observation is used to establish a validation gate and for each measurement that is 

found in this validation gate, a new hypothesis track is generated. Thus a single 

track is split into “n” tracks, one associated with each valid measurement, plus one 

track (usually denoted 0) for the no-association hypothesis [65]. 

Each of these new tracks is then treated independently and used to generate 

new predictions for the next time step. Since the number of branches into which the 

track is split can grow exponentially, the likelihood function of each split track is 

computed and the unlikely ones are discarded. The MHT algorithm works on 

complete sequences of observations [65]. 

In MHTF, every validated observation ( )pz k  is used to establish a new 

track, ˆ ( | )px k k . In addition the “false alarm” and/or “missed observation” 

hypothesis also generates a track, 0ˆ ( | )x k k . These tracks are propagated forward to 

the next gate and again each track is associated with each valid observation, 

( 1)qz k +  and the tracks are again split into tracks associated with each possible 

pair-wise association, ˆ ( 1| 1)pqx k k+ + . Probabilities or likelihoods, pqλ  of correct 

track histories are maintained to prune the resulting hypothesis tree [65]. 

In Figure 46, MHTF implementation is shown. 
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Figure 46. MHTF Implementation [65] 

 

Then, the following approach can be implemented in order to perform 

MHTF algorithm [65]: 

1. A predicted observation and validation gate are computed. 

2. All validated observations are associated plus no-association 

hypothesis. 

3. The track is updated separately with each validated hypothesis. 

4. A likelihood associated with correct association is computed. 
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5. The likelihood of the each entire track sequence is computed. 

6. Some pruning of the hypothesis tree may take place. 

7. Each track hypothesis is now independently predicted forward to the 

next time-step. 

8. Producing as many new tracks as associated measurements (plus no 

track solution). 

9. The process repeats. 

 

There are three points to note about the MHT and TSF algorithm [65]: 

1. A unity detection probability (no missing data) is assumed. 

2. Likelihood pruning method does not work well with long 

measurement sequences as it becomes dominated by old 

measurements. One “hack” around this is to use a fading-memory 

window. 

3. Method is dominated by computational and memory requirements of 

the splitting algorithm. 

 

MHT algorithm is good in situation with low clutter rates but high track 

uncertainty (crossing tracks, maneuvering targets, etc). Practically, the algorithm is 

dominated by the approach used for pruning unlikely target hypotheses [65]. 
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TSF is proposed by Smith and Buechler [72] and older than the original 

MHT method presented by Reid [70]. In TSF, a tree of hypotheses is kept for each 

target individually, and a maximum likelihood criterion is used to prune the tree. On 

the other hand, Reid’s MHT constructs a tree of all possible hypotheses, including 

all possible new track initiations at every time step. Reid discusses a number of 

strategies to prune the tree in order to achieve reasonable computation times. In the 

Ph.D. study, TSF is implemented for TAN due to INS error model characteristics. 

Since, horizontal INS error bound is estimated for the cruise missile and errors do 

not change rapidly, implementation of TSF for TAN became sufficient for 

navigation solution. 

 

3.3.2. Implementation of TSF to TAN 

As it was stated in the previous section, TSF is an older method than the 

original MHT method. TSF is a recursive branching algorithm for multiple-object 

discrimination and tracking consists of a bank of parallel filters of the Kalman form, 

each of which estimates a trajectory associated with a certain selected measurement 

sequence. The measurement sequences processed by the algorithm are restricted to 

a tractable number by combining similar trajectory estimates, by excluding unlikely 

measurement/ state associations, and by deleting unlikely trajectory estimates. The 

measurement sequence selection is accomplished by threshold tests based on the 

innovations sequence and state estimates of each filter [72]. 

TSF and MHT methods are similar except for hypotheses formation. 

Consider the TSF and MHT approach given in the previous section for TAN again 

[65]: 

1. A predicted observation and validation gate are computed. 
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• Measurement gate is taken as the 3σ horizontal error bound 

of the INS and the invalid possibilities for the height 

differences ( )ih kδ  are discarded. 

2. All validated observations are associated plus no-association 

hypothesis. 

• Every grid position (i.e. index) in the 3σ horizontal error 

bound of the INS is considered to be one of the possible 

navigation solutions. 

3. The track is updated separately with each validated hypothesis. 

4. A likelihood associated with correct association is computed. 

5. The likelihood of the each entire track sequence is computed. 

• Navigation solution is assumed to be one of the grid 

positions in the 3σ horizontal error bound of the INS. 

According to the index of the grid position, there exist “n x 

n” possible tracks (i.e. hypothesis) for each time step where 

“n x n” denotes the batch size of the DTED considered. The 

likelihood of the each possible track sequence is computed. 

6. Some pruning of the hypothesis tree may take place. 

• Number of possible tracks is limited considering INS error 

characteristics. According the small position error changes 

of the INS for small periods of time where the TAN 

algorithm is applied, it is assumed that possible tracks are 

in the 3σ horizontal error bound of the INS where each 
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track follows the grid position from INS position to all grid 

positions in the INS horizontal error bound. Then, tracks 

with minimum likelihoods are selected for the navigation 

solution. Hence, hypotheses are pruned. 

7. Each track hypothesis is now independently predicted forward to the 

next time-step. 

• Navigation solution is found for each possible track using 

standard Kalman filter equations as given in the reference 

papers for MHT/ TSF procedure. Using a definite number 

of minimum likelihood values of the entire track sequences, 

navigation solution is achieved. 

 
 

Figure 47. MHTF Implementation for TAN for a Single Time Step 

ˆ( | 1)Hx k k −

ˆ ( | )ix k k

ˆ ( | )jx k k

jλ  

t k=  

INS Height Difference ( INShδ ) 

Actual Height 
Difference ( ihδ ) 

1t k= +iλ  

Compare “ λ ” for each track. 
(For all NxN tracks) 
Search for definite number of 
minimum “ λ ” values. 
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Details of the TSF procedure applied for TAN and derivation of the TSF 

equations are discussed in detail in the following section. In Figure 47, TSF 

application for TAN for a single time step is shown. 

 

3.3.3. TSF Equations Implemented for TAN 

TSF maintains separate tracks for each possible associated observation. At 

each time step, the predicted observation is used to establish a validation gate and 

for each measurement that is found in this validation gate, a new hypothesis track is 

generated. Thus a single track is split in to “n” tracks, one associated with each 

valid measurement, plus one track (usually denoted 0) for the no-association 

hypothesis [65]. 

Each of these new tracks is then treated independently and used to generate 

new predictions for the next time step. Since the number of branches into which the 

track is split can grow exponentially, the likelihood function of each split track is 

computed and the unlikely ones are discarded [65]. 

The TSF procedure works as follows [65]: 

1. The TSF algorithm works on complete sequences of observations. 

2. The probability that a given branch sequence of observations (from 

root to leaf) is correct. 

3. The l’th sequence of measurements up to time k: 

{ }1, ,
(1), , ( )

l k l

kl
i iZ z z k≡ L  (3.34)
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4. ,k lΘ  is the event that the sequence klZ  is a correct track. 

5. Then the likelihood function for this event is clearly: 

1, ,

, ,( ) ( | ) ( (1), , ( ) | )
l k l

k l k l kl kl
i iP Z P z z kΛ Θ = Θ = ΘL  (3.35)

6. kZ  the cumulative set of all measurements up to time k: 

,

, 1 ,

1

( ) ( | )
j l

k
k l j k l

i
j

P z Z −

=

Λ Θ = Θ∏  (3.36)

7. Linear and Gaussian distribution for the likelihood function is 

assumed: 

, 1

1

1( ) exp ( ) ( ) ( )
2

k
k l T

k
j

c v j S j v j−

=

⎡ ⎤
Λ Θ = ⋅ − ⋅ ⋅⎢ ⎥

⎣ ⎦
∑  (3.37)

where, 

ˆ( ) ( ) ( | 1)v j z j z j j= − − : Innovation between track and measurement 

8. Modified log-likelihood function is defined as: 

,
1

1

( )( ) 2 log ( ) ( ) ( )
k l k

T

jk

k v j S j v j
c

λ −

=

⎡ ⎤Λ Θ
≡ − ⋅ = ⋅ ⋅⎢ ⎥

⎣ ⎦
∑  (3.38)

9. Modified log-likelihood function is recursively computed from: 

1( ) ( 1) ( ) ( ) ( )Tk k v k S k v kλ λ −= − + ⋅ ⋅  (3.39)
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10. Each track is updated using standard Kalman filter equations. 

11. A “goodness of fit” and test for accepting a track is that ( )k dλ < . 

12. Definite numbers of tracks are accepted for each time step. 

 

As it can be seen from the TSF procedure, for each track, standard Kalman 

filter equations are used. Hence, PDAF state estimation, state and covariance update 

and prediction equations which are given in the previous sections are used in order 

to include horizontal position inaccuracies to the navigation solution. 

The critical part of the TSF procedure implemented for TAN is the track 

formation and track pruning steps. These steps are summarized as follows: 

1. Navigation solution is assumed to be one of the grid index followed 

by some of the tracks in the 3σ horizontal error bound of the INS. 

According to the index of the grid position in the 3σ horizontal error 

bound, there exist “n x n” possible navigation solutions where “n x 

n” denotes the batch size of the DTED considered. 

2. Possible tracks are different from grid indices. At the initial time 

step, there exist “n x n” possible tracks from INS position grid to all 

possible grid positions as shown in Figure 48. The modified log-

likelihood of the each possible track sequence is computed from 

equation (3.38) as follows: 
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,
1

1

( )( ) 2 log ( ) ( ) ( )

for   1..." "

i i

k l k
Ti

i M M
jk

k v j S j v j
c

i n n

λ −

=

⎡ ⎤Λ Θ
≡ − ⋅ = ⋅ ⋅⎢ ⎥

⎣ ⎦
= ×

∑  

where, 

( )m k : DTED Grid Size (DTED grid is taken as a square.) 

 

 
Figure 48. TSF Track Formation and Pruning 

 

3. At the following time step, best “M” tracks of the existing “n x n” 

possible tracks are selected. Hence, hypothesis is pruned. In order to 

apply pruning, several methods can be applied. Using ( )i k dλ <  for 
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accepting tracks or selecting minimum ( )i kλ  values for 1....i M=  

can be applied. Then, “n x n” possible tracks from “M” accepted 

tracks to all possible grid positions are selected. Modified log-

likelihood function is recursively computed from equation (3.39) for 

each formed new track as follows: 

1( 1) ( ) ( 1) ( 1) ( 1)

for 1... ,  1..." "
ij ij

T
ij ij M Mk k v k S k v k

i M j n n

λ λ −+ = + + ⋅ + ⋅ +

= = ×
 

4. Procedure defined at step 3 is done recursively in order to obtain 

navigation solution. 

5. For real-time navigation solution, accepted tracks can be used in 

several methods. Selecting and using the results of the best track 

which gives minimum likelihood is actually a dynamic programming 

method which was discussed for Viterbi algorithm. On the other 

hand, using mean value of the selected tracks’ results can also be 

used which is actually a kind of data association process discussed 

for PDA algorithm. However, from the simulations which will be 

discussed in the following sections, all tracks converge to the same 

index of the DTED grid. Actually, for sufficiently rough surfaces this 

is the expected result of the TSF. 

6. In order to decrease the effects of the old measurements, modified 

log-likelihood function defined in equation (3.39) can be used by a 

weighting factor as follows: 

1( 1) ( ) ( 1) ( 1) ( 1)

for 1... ,  1..." "
ij ij

T
ij WF ij M Mk K k v k S k v k

i M j n n

λ λ −+ = ⋅ + + ⋅ + ⋅ +

= = ×
 (3.40)
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TSF equations derived for TAN application is summarized in Table 16. 

Initialization of Kalman filters is again done by setting state covariance matrix as a 

coefficient of system covariance matrix given in equation (3.31).  

As it can be seen from Table 16, standard Kalman filter equations are used 

for each track considering horizontal position error inaccuracies. Track formation, 

pruning and real-time solutions are also summarized. 

 

Table 16. TSF Equations for TAN Process 

INS Error Model:  

( 1) ( ) ( ) ( )x k k x k w kδ δ+ = Φ ⋅ +  given in(3.18)

( ) (0, ( ))w k N Q k=  

System Noise Covariance Matrix: 

( ) { ( ) ( ) }TQ k Cov w k w k=  given in (3.21)

TSF Measurement Model: 

( ) ( ) ( ) ( )i m i measz k H k x k w kδ= ⋅ +  given in (3.19)

2( ) (0, )=meas radarw k N σ  

Measurement Noise Covariance Matrix: 

( ) { ( ) ( ) }T
meas measR k Cov w k w k=  given in (3.30)

Initial Conditions: 

0 0 0
ˆ( , )x N x Pδ δ=  given in (3.32)

Other Assumptions: 

( ) ( ) 0T
measE w k w k⎡ ⎤⋅ =⎣ ⎦  for all k  

(Measurements are independent) 

given in (3.33)

State Estimate Propagation (for each track): 

ˆ ˆ( | 1) ( 1) ( 1| 1)x k k k x k kδ δ− = Φ − ⋅ − −  given in (3.20)
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Table 16. TSF Equations for TAN Process (Continued) 

Error Covariance Propagation (for each track): 

( | 1) ( 1) ( 1| 1) ( 1) ( 1)TP k k k P k k k Q k− = Φ − ⋅ − − ⋅Φ − + −  given in (3.21)

TSF Gain Matrix (for each track): 
1( ) ( | 1) ( ) ( )T

PK k P k k H k S k −= − ⋅ ⋅  given in (3.23)

State Estimate Update (for each track): 

ˆ ˆ( | ) ( | 1) ( ) ( )Px k k x k k K k v kδ δ= − + ⋅  given in (3.24)

Error Covariance Update (for each track): 

( | ) [ ( ) ( )] ( | 1)P k k I K k H k P k k= − ⋅ ⋅ −  given in (2.39)

Modified Log-likelihood Function (Initial Track Formation): 
,

1

1

( )( ) 2 log ( ) ( ) ( )

for   1..." "

i i

k l k
Ti

i M M
jk

k v j S j v j
c

i n n

λ −

=

⎡ ⎤Λ Θ
≡ − ⋅ = ⋅ ⋅⎢ ⎥

⎣ ⎦
= ×

∑  
given in (3.38)

Recursively Computed Modified Log-likelihood Function: 
1( 1) ( ) ( 1) ( 1) ( 1)

for 1... ,  1..." "
ij ij

T
ij WF ij M Mk K k v k S k v k

i M j n n

λ λ −+ = ⋅ + + ⋅ + ⋅ +

= = ×
 

given in (3.39)

Track Pruning: 

Select best “M” tracks from “M x n x n” tracks such that; 
( ) min  ( ) for 1...ij ijk T k T ij Mλ λ+ = + =  

(3.41)

State Estimate Propagation (for all tracks): 

ˆ ˆ( | 1) ( | 1) for  1...ix k k average x k k i Mδ δ⎡ ⎤− = − =⎣ ⎦  (3.42)

 

3.3.4. Discussion of TSF Implementation for TAN 

In this section, implemented TSF method for TAN will be discussed. The 

advantages of the TSF approach for TAN solution can be summarized as follows: 

1. Real-time TAN solution can be obtained with parallel TSF’s. 
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2. Application of the filter is more complex than PDAF but the filter is 

again linear since INS error model is used. 

3. Batch size of the DTED area concerned can be changed. Both larger 

DTED areas for acquisition mode or smaller DTED areas for 

tracking modes can be selected using the same TSF structure. 

4. TSF gives solutions for various tracks selected. Actually, all tracks 

converge to the same index of the DTED grid (i.e. solution grid). 

However, for smooth terrains, there exist more than one position 

solution index and the tracks can be investigated separately in order 

to give more than one but finite number of navigation solutions. 

5. Results of the filter are good for both recursive and batch algorithms. 

The results compared with SITAN and TERCOM algorithms will be 

discussed in the simulations section. 

 

Simulation results of the implemented TSF will be presented at the 

“Simulations” section of the chapter. 

 

3.4. Simulations 

3.4.1. Simulation Model Development 

After the implementation of PDAF and TSF for TAN, the algorithms are 

tested using simple kinematic models. Kinematic models are prepared considering 
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the mid-course flight of a cruise missile with constant heading and velocity motion 

at constant altitude. 

Simulations for the TAN models are done using Simulink [58]. In order to 

perform simulations, first trajectory and INS kinematic models are formed. Then, 

DTED database model is prepared. Finally, SITAN, TERCOM, PDAF and TSF 

models are formed. Finally, the overall architecture is formed in order to perform 

simulations for position errors along east and north directions of the vehicle motion. 

In Figure 49, a general Simulink model for the studied TAN models is 

given. Loosely coupled integration structure is used for TAN models where INS is 

not updated at each TAN correction step but updated at a greater period. This is 

done in order not to influence INS results from possible fault corrected TAN 

solutions. Details of the simulation sub-models will be given in the following 

sections. 

INS MODEL

TRAJECTORY 
MODEL

INS ERROR 
STATES

-
+ DTED HEIGHT 

MODEL

TERCOM MODEL

SITAN MODEL

PDAF MODEL

Navigation States

TERCOM ERROR 
STATES

SITAN ERROR 
STATES

PDAF ERROR 
STATES

TSF MODEL TSF ERROR 
STATES

Measurements
(Height Differences)

+
+

+
+

+
+

+
+

 
Figure 49. General Simulink Model for TAN Models 
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3.4.1.1. Trajectory and INS Model 

For the simulations, the motion of the vehicle is modeled considering the 

mid-course flight of a cruise missile with constant heading and velocity motion at 

constant altitude. Actually, this assumption is almost valid for mid-course flight of a 

generic cruise missile. For the INS model, white noise terms are added to velocity 

and position terms. Since the height terms will be taken from the DTED database 

according to vehicle’s latitude and longitude (i.e. horizontal positions), height is not 

considered in the vehicle’s state. 

Trajectory model of the vehicle considering continuous states can be 

modeled as follows: 

( ) ( ) ( )traj trajx t F t x t= ⋅&  (3.43)

where, 

( ) ; ; ; ; ;
T

traj traj traj traj traj traj trajx t rN rE h vN vE vD⎡ ⎤= ⎣ ⎦  

trajrN : Northward position of the vehicle 

trajrE : Eastward position of the vehicle 

trajh : Altitude of the vehicle 

trajvN : Northward velocity of the vehicle 

trajvE : Eastward velocity of the vehicle 
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trajvD : Down velocity of the vehicle 

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

( )
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

F t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

For the simulations, vehicle horizontal velocity and altitude are taken as 

constant values. These assumptions can be summarized as follows: 

.trajvN Const=  (3.44)

.trajvE Const=  (3.45)

.trajh Const=  (3.46)

0trajvD =  (3.47)

 

In the same manner, for INS model white noise terms are added to the 

trajectory model: 

( ) ( ) ( ) ( )INS INSx t F t x t w t= ⋅ +&  (3.48)

where, 



 163

[ ]( ) ; ; ; ; ; T
INS INS INS INS INS INS INSx t rN rE h vN vE vD=  

( ) ( ); ( ); ( ); ( ); ( ); ( )
INS INS INS INS INS INS

T

rN rE h vN vE vDw t w t w t w t w t w t w t⎡ ⎤= ⎣ ⎦  

2( ) (0, )i iw t N σ= : Zero mean normal distribution with variance 2
iσ  

corresponding to related position and velocity 

 

For simulations with TAN algorithms, DTED are used in order to determine 

height differences at each time step as measurements which are given in equation 

(3.11). DTED heights are given as a function of longitude and latitude. However, 

simulations are performed considering Cartesian coordinates in order to visualize 

navigation errors better in the simulations. Actually, latitudes and northward 

positions and longitudes and eastward positions are correlated. Correlations are 

defined as follows [73]: 

N

d vN
dt R h

λ =
+

 (3.49)

( ) cosE

d vE
dt R h

µ
λ

=
+ ⋅

 (3.50)

where, 

λ : Latitude of the vehicle 

µ : Longitude of the vehicle 

h : Height of the vehicle above ground 
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NR : Earth’s polar radius 

ER : Earth’s equatorial radius 

 

The geometry of the earth is considered as an ellipsoid in WGS-84 

coordinate system. The earth’s polar radius NR  and equatorial radius ER  are 

defined as [74]: 

2

2 2 3/ 2

(1 )
(1 sin )N

a eR
e λ

⋅ −
=

− ⋅
 (3.51)

2 2 1/ 2/(1 sin )ER a e λ= − ⋅  (3.52)

where, 

a : Semi-major axis 

2e : First eccentricity squared 

 

WGS-84 values of these parameters are [74]: 

6378137 ± 2 ma =  (3.53)

2 0.00669437999013e =  (3.54)
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NR  and ER  terms vary with changing latitude. However, in the simulations, 

changes in latitude will be less than one degree. Therefore, these terms are taken as 

constant values with their initial conditions taken in the simulations. 

Then, correlations for the white noise terms for longitudes and latitudes can 

be expressed as follows: 

2
2

2( )
rN

NR hλ
σσ =

+
 (3.55)

2
2

2[( ) cos ]
rE

ER hµ
σσ

λ
=

+ ⋅
 (3.56)

 

In the simulations, discrete models are used considering the actual case. 

Height measurements will be taken at discrete intervals. Therefore, the models are 

discretized as follows: 

( ) ( )k I F t TΦ = + ⋅  (3.57)

where, 

( )kΦ : State transition matrix 

T :  Sample time (In the simulations, 1 secondT =  taken.) 

 

Finally, trajectory model becomes: 
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( 1) ( ) ( )traj trajx k k x k+ = Φ ⋅  (3.58)

( 1) ( )1 0 0 0 0
( 1) ( )0 1 0 0 0

( 1) ( )0 0 1 0 0
( 1) ( )0 0 0 1 0 0
( 1) ( )0 0 0 0 1 0
( 1) ( )0 0 0 0 0 1

traj traj

traj traj

traj traj

traj traj

traj traj

traj traj

rN k rN kT
rE k rE kT
h k h kT

vN k vN k
vE k vE k
vD k vD k

+⎡ ⎤ ⎡⎡ ⎤
⎢ ⎥ ⎢⎢ ⎥+⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢+ ⎢ ⎥

= ⋅⎢ ⎥ ⎢⎢ ⎥+⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+
⎢ ⎥ ⎢ ⎥

+⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

 (3.59)

 

Here, it should be noted that ( )kΦ  term becomes constant considering 

constant velocity motion with the given sample time. Hence, linear discrete model 

is formed. In the same manner, for the INS model: 

( 1) ( ) ( ) ( )INS INSx k k x k w k+ = Φ ⋅ +  (3.60)

where, 

[ ]( ) ; ; ; ; ; T
INS INS INS INS INS INS INSx k rN rE h vN vE vD=  

( ) ( ); ( ); ( ); ( ); ( ); ( )
INS INS INS INS INS INS

T

rN rE h vN vE vDw k w k w k w k w k w k w k⎡ ⎤= ⎣ ⎦  

2( ) (0, )i iw k N σ= : Zero mean normal distribution with variance 2
iσ  

corresponding to related position and velocity 

 

White noise terms can be written as follows then: 
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2

2( ) (0, )
( )

rN

N

w k N
R hλ

σ
=

+
 (3.61)

2

2( ) (0, )
[( ) cos ]

rE

E

w k N
R hµ

σ
λ

=
+ ⋅

 (3.62)

2( ) (0, )rN rNw k N σ=  (3.63)

2( ) (0, )rE rEw k N σ=  (3.64)

2( ) (0, )h hw k N σ=  (3.65)

2( ) (0, )vN vNw k N σ=  (3.66)

2( ) (0, )vE vEw k N σ=  (3.67)

2( ) (0, )vD vDw k N σ=  (3.68)

 

Here, it should be noted that, 2
hσ  term is the variance of the barometric 

altimeter of the INS used. Radar altimeter errors will be added as measurement 

errors in the TAN algorithms. 
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3.4.1.2. DTED Database Model 

As stated in the previous section, height of the vehicle is determined from 

the DTED maps according to the related latitude and longitude of the vehicle. For 

this purpose, Simulink “Lookup Table” blocks are used [58]. Then, measurement 

height differences are taken for the TERCOM, SITAN, PDAF and TSF models by 

adding INS white noises as system noise and radar white noises as measurement 

noise considering Figure 50. 

 

 
Figure 50. DTED Height Measurement Difference 

 

DTED height difference for the INS position was derived in equation (3.11). 

Recall equation (3.11) in order to investigate DTED model: 

hbaro 

Cest 

hter 

ˆ ˆ( , )P x y  '( , )P x y  

Cmeas 
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[ ]
INS Height Model

Radar Height Measurement Model

( ) ( ( ), ( )) ( )

( ( ), ( )) ( )

DTED INS INS INS

DTED traj traj radar

h k h k k w k

h k k w k

δ µ λ

µ λ

= +

⎡ ⎤− +⎣ ⎦

144444424444443

144444424444443

 

 

Here, it should be noted that first part of the equation is the model of the INS 

height and second part is the radar height measurement model. Hence, the 

difference gives height difference term, ( )h kδ . Using longitude and latitude values 

of the trajectory and INS models, height difference term can be obtained for 

simulations.  

Height difference, ( )h kδ  parameter is used in SITAN model directly. 

However, batch height difference values are required for the applications of 

TERCOM, PDAF, TSF and “SITAN with Bank of Kalman Filters”. This is done by 

calculating all height difference terms in the 3σ horizontal error bound of the INS 

and was derived in equation (3.12). Recall equation (3.12): 

[ ]
Height Model for All Positions in the DTED Batch

Radar Height Measurement Model

( ) ( ( ), ( )) ( )

( ( ), ( )) ( )

i DTED i i INS

DTED traj traj radar

h k h k k w k

h k k w k

δ µ λ

µ λ

= +

⎡ ⎤− +⎣ ⎦

1444442444443

144444424444443

 

                                     1,..., ( )i m k=  

where; 

i : Index of the DTED grid node, 
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( )m k : DTED grid size (selected as square of an odd number for INS 

position to be at the center of the DTED grid) 

 

Considering equation (3.12), formation of a batch of height differences for a 

5x5 DTED grid size is shown in Table 17. 

 

Table 17. Batch of Height Differences Formation for 5x5 DTED Grid 

2*3"INSλ λ= + 5i =  10i =  15i =  20i =  25i =  
3"INSλ λ= + 4i =  9i =  14i =  19i =  24i =  

INSλ λ=  3i =  8i =  13i =  18i =  23i =  
3"INSλ λ= − 2i =  7i =  12i =  17i =  22i =  

2*3"INSλ λ= − 1i =  6i =  11i =  16i =  21i =  

Time: t k=  2*3"INSµ µ= − 3"INSµ µ= − INSµ µ= 3"INSµ µ= +  2*3"INSµ µ= +
 

Note: Index i=13 gives ( )h kδ  at position ( INSλ , INSµ ) of INS, at time “ 0t t= ”. 

 Index i=1 gives ( )h kδ  at position ( 2*3"INSλ − , 2 *3"INSµ − ) of INS for DTED Level 
1, at time k . In the same manner, batch of ( )h kδ ’s are obtained. 

 

DTED database model formed in Simulink is shown in Figure 51. Here, 

latitudes and longitudes of the INS and trajectory model are determined first. Using 

“Lookup Table” blocks of Simulink, DTED heights for the INS and trajectory are 

found. Then height differences ( )h kδ  are determined in order to use in the TAN 

models. Moreover, for SITAN process, terrain slopes along longitude and latitude 

directions, ( , )x yh h  are also determined using the same procedure above. For 

“SITAN with Bank of Kalman Filters” model, batch of slopes are also formed 

considering batch formation explained in Table 17. 
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Figure 51. Simulink DTED Database Model 

 

For the simulations, DTED Level 1 data were required and they have been 

obtained from HGK. The properties of DTED prepared for Turkey were given in 

Table 3 [16]. Horizontal accuracy of Level 1 DTED is defined as ±130 m, and 

vertical accuracy as ±30 m. On the other hand, horizontal accuracy of DTED Level 

2 data is ±26 m. In the simulations, DTED Level 1 data are used considering the 

horizontal accuracies of DTED Level 2. Moreover, simulations with real DTED 

Level 2 data are also performed which were also obtained from HGK for a few 

places of Turkey. 

In order to read DTED files for simulations, Matlab “Mapping Toolbox” is 

used [75]. Hence, binary DTED files are directly used as text files in the simulations 

with the help of “Mapping Toolbox”. 
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3.4.1.3. TERCOM Model 

TERCOM was studied in detail in Chapter 2 with the simulations performed 

and the results were discussed. For TAN algorithm simulations, the models for 

TERCOM are formed considering the well-known MAD and MSD processes 

derived for TERCOM. 

Recall equations derived for MAD and MSD processes given from equation 

(2.9) to (2.11): 

( )2

1
(1/ )

N

jk ij ik
i

MSD N S S
=

= −∑  

1
(1/ )

N

jk ij ik
i

MAD N S S
=

= −∑  

[ ],  where a minimum of  is sought, 
[ ],  where a maximum of  is sought.

jk jj jk
jk

jk jj jk

P C C C
P C C C

ξ
<⎧ ⎫

= ⎨ ⎬>⎩ ⎭  

 

Examination of the expressions for the MAD and MSD processors indicates 

that both of these correlators can be viewed as distance measures, where the 

dimensions of the space for which these distances are defined correspond to the 

number of elements in the profiles. 

In order to form TERCOM model in Simulink, “Signal Processing Blockset” 

is used [76]. In this blockset, RMS, mean and minimum selection operations 

defined for MAD and MSD processes can be done in real-time. 
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TERCOM model formed in Simulink is shown in Figure 52. Here, at the 

upper part MAD process, at the lower part MSD process occurs. Using batch of 

height differences “ ( )h kδ ”obtained from DTED database model, minimum of 

MAD and MSD functions are determined. It should be noted that, TERCOM 

Simulink model works in real-time by calculating MAD and MSD functions at each 

time step. In actual applications, these functions are calculated once after some time 

of the operation begins. However, considering calculated MAD and MSD functions 

at some definite times of operation, TERCOM processes can be understood. 

On the other hand, position corrections are done considering calculated 

position indices from TERCOM. As a result of this, position accuracies for 

TERCOM are within the limit of the DTED grid size. In other words, TERCOM 

horizontal position accuracies can not be better than the DTED grid accuracy used. 

 

 
Figure 52. Simulink TERCOM Model 

 



 174

3.4.1.4. SITAN Model 

SITAN was studied in detail in Chapter 2 with the simulations performed 

and the results were discussed. For TAN algorithm simulations, the models formed 

for SITAN are directly used. Two models are used for SITAN: 

1. Standard EKF for SITAN for tracking mode (Errors less than 100 

meters for DTED Level 1 maps) 

2. Bank of EKF’s for acquisition mode (Errors grater than 100 meters 

for DTED Level 1 maps) 

 

For tracking mode, equations derived for SITAN given in Table 10 are used. 

EKF equations are written in Simulink using S-functions [58]. An S-function is a 

computer language description of a Simulink block. S-functions use a special 

calling syntax that enables the user to interact with Simulink equation solvers. This 

interaction is very similar to the interaction that takes place between the solvers and 

built-in Simulink blocks. The form of an S-function is very general and can 

accommodate continuous, discrete, and hybrid systems [14]. 

Simulink model with standard EKF for SITAN for tracking mode is shown 

in Figure 53. Here, EKF uses the height difference between the INS and the 

trajectory and the slopes at the INS position. 

For acquisition mode, parallel EKF structure with 3x3 and 5x5 grid size is 

used. In order to select position fix, equation (2.40) is used. Recall equation (2.40) 

which gives AWRS value of the selected filter: 
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Figure 53. Simulink Single EKF SITAN Model 

 

j'th filter

j'th filter
1

1 N
i
T

i i i i i

AWRS
N H PH R=

⎡ ⎤∆
= ⎢ ⎥+⎣ ⎦

∑  

where; 

j'th filterAWRS : Average Weighted Residual Squared of the j’th filter, 

 

This AWRS value is the average weighted residual squared between the 

predicted ground clearance for each filter and the ground clearance measured by the 

radar altimeter for each time it . By examining the minimum AWRS values for each 

filter after a sufficiently large number of measurements have been processed, the 

correct filter and its associated state error estimates are chosen. 

Formation of the SITAN model for acquisition mode is quite complex. In 

Figure 54 and Figure 55, SITAN models with bank of EKF’s are shown. 
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Figure 54. Simulink Bank of EKF SITAN Model for 5x5 Grids 

 

In these models, parallel Kalman filters run with different initial conditions 

and slopes. Single EKF model is used for tracking mode simulations, where bank of 

EKF’s models are used in the acquisition mode simulations. Simulation results of 

SITAN filters for tracking and acquisition modes were also given in Chapter 2. 
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Figure 55. Simulink Bank of EKF SITAN Model for 3x3 Grids 

 

3.4.1.5. PDAF Model 

PDAF model is formed in Simulink considering the equations in section 

3.2.2.2 which were summarized in Table 15. Here, it should be noted that Simulink 

architecture is very simple. Only a single PDAF is used in all of the simulations. 

Batch size of the filter (i.e. considered grid size) can be changed independent of the 

PDA filter. PDAF model can be used for both acquisition and tracking modes of the 

TAN solution. 

In the PDAF model, following processes are performed: 

1. Height differences are taken from the DTED database model. 

2. Gating process is done in order to extract impossible position 

solutions. 
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3. Height differences are averaged in order to form past measurement 

information. 

4. Averaged height differences are used in the PDAF in order to 

determine PDAF error states. 

 

Simulink PDAF model is shown in Figure 56. 

 

 
Figure 56. Simulink PDAF Model 

 

3.4.1.6. TSF Model 

TSF model is formed in Simulink considering the equations in section 3.3.3 

which were summarized in Table 16. Here, it should be noted that again Simulink 

architecture is very simple like PDAF model. However, more complex operations 

are done in TSF model, since bank of Kalman filter operations are performed. Bank 

of Kalman filter operations are performed using an S-function. Batch size of the 

filter (i.e. considered grid size) can be changed independent of the filter. TSF model 

can be used for both acquisition and tracking modes of the TAN solution as 

explained in the related sections before. 
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In the TSF model, following processes are performed: 

1. Height differences are taken from the DTED database model. 

2. Gating process is done in order to extract the impossible position 

solutions. 

3. Height differences are used in the TSF in order to determine TSF 

error states. 

 

Simulink TSF model is shown in Figure 57. 

 
Figure 57. Simulink TSF Model 

 

3.4.2. Case Studies 

Case studies with simple kinematic models are performed for three different 

cases: 

1. Simulations with DTED Level 1 

2. Simulations with DTED Level 2 
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3. Simulations with Various DTED Grid Sizes 

 

For various DTED level simulations, different terrain types are selected. 

Then, simulations for tracking and acquisition modes are performed simultaneously 

using the implemented TAN algorithms compared with the well-known algorithms. 

 

3.4.2.1. Simulations With DTED Level 1 

3.4.2.1.1. Terrain Selection 

Simulations are performed for three different types of terrains: 

1. Rough terrain 

2. Smooth terrain 

3. Mountainous terrain 

 

In order to determine the required terrains, Microdem/ TerraBase II 

Software [77] is used. Terrain contours of 50 meters and the trajectory paths 

obtained from the software is shown in Figure 58. Then, terrain heights versus time 

plots for the selected terrains are given in Figure 59, Figure 60 and Figure 61. 

Finally, terrain parameters are calculated for the selected terrains and summarized 

in Table 18. 
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Figure 58. Terrain Contours for TAN Simulations 

 

 
Figure 59. Terrain Height vs. Time for Rough Terrain 
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Figure 60. Terrain Height vs. Time for Smooth Terrain 

 

 
Figure 61. Terrain Height vs. Time for Mountainous Terrain 

 

Table 18. Terrain Parameters for TAN Simulations 

Terrain Type Rough Smooth Mountainous 

Mean height of the terrain profile 1093 m 1104 m 1177 m 

Sigma-T 77.9 m 34.1 m 212.9 m 

Sigma-Z 16.2 m 3.7 m 23.1 m 

TX  674.6 1309 m 1302 m 
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3.4.2.1.2. INS Model Verification 

In order to perform simulations, verification of the INS model used is 

required first. For cruise missiles, generally 1.0 nm/hr INS quality is required. In the 

simulations, simple INS model is formed considering equation (3.60). In this 

equation, white noise terms are added to positions and velocities considering 

constant velocity flight. 

In Table 19, simulation parameters used for the INS model are given. Using 

the values provided, INS model is tested for horizontal position errors. Horizontal 

position and velocity errors are given in Figure 62 and Figure 63. 

 

Table 19. INS Model Parameters for 1.0 nm/hr Quality 

Initial vehicle velocity 240 m/s 

Initial INS east velocity bias 0.5 m/s 

Initial INS north velocity bias 0.5 m/s 

INS horizontal position standard deviation ( rNσ , rEσ ) 9 m 

INS velocity standard deviation ( vNσ , vEσ ) 0.05 m/s 

 

As it can be seen from the horizontal position errors, INS quality is about 3.0 

nm/hr. Actually, selecting worse INS quality than the real system used is preferred 

in order to test the performance of the TAN algorithms used. In the simulations, 

small operation times (like 100 seconds) are used for TAN applications where INS 

is not updated during the simulation period. 
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Figure 62. Horizontal Position Errors of the INS Model Used 

 

 
Figure 63. Horizontal Velocity Errors of the INS Model Used 
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3.4.2.1.3. Simulation Results 

Simulations are performed for two modes of operation of TAN algorithms: 

1. Tracking mode, where SITAN single filter, PDAF and TSF are 

compared with Monte Carlo simulations along the trajectory 

(Recursive Solution); 

2. Acquisition mode, where PDAF, TSF and TERCOM are compared 

with Monte Carlo simulations for the position update at a defined 

time (Batch Solution). 

 

3.4.2.1.3.1. Simulations for Tracking Mode 

First, simulations for tracking mode are done. Parameters used in the 

simulations are given in Table 20. Monte Carlo simulations of 100 runs are 

performed and the following plots are obtained for SITAN, PDAF and TSF. 

1. Northward and eastward position errors; 

2. RMS values of north and east positions. 

 

For tracking mode simulations, TERCOM is not used. In order to apply 

TERCOM algorithm, larger DTED grid size and large initial position errors are 

required. When TERCOM algorithm is applied for small grid size, false position 

fixes occur with high percentages since INS error model is not used in TERCOM 

algorithm. 
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Table 20. Simulation Parameters for Tracking Mode 

Initial INS position deviation (one axis) 60 m 

Initial vehicle velocity 240 m/s 

Initial INS east velocity bias 0.5 m/s 

Initial INS north velocity bias 0.5 m/s 

INS horizontal position standard deviation  9 m 

INS altitude position standard deviation 3 m 

Radar altimeter standard deviation 3 m 

INS velocity standard deviation 0.05 m/s 

DTED Grid Size (for PDAF and TSF) 3x3 

 

Terrain Type 1 (Rough Terrain): 

 
Figure 64. Northward Position Error vs. Time 
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Figure 65. Eastward Position Error vs. Time 

 

 
Figure 66. Northward Position RMS Error vs. Time 
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Figure 67. Eastward Position RMS Error vs. Time 

 

 
Figure 68. Total Position RMS Error vs. Time 
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Terrain Type 2 (Smooth Terrain): 

 
Figure 69. Northward Position Error vs. Time 

 

 
Figure 70. Eastward Position Error vs. Time 
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Figure 71. Total Position RMS Error vs. Time 

 

Terrain Type 3 (Mountainous Terrain): 

 
Figure 72. Northward Position Error vs. Time 
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Figure 73. Eastward Position Error vs. Time 

 

 
Figure 74. Northward Position RMS Error vs. Time 
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Figure 75. Eastward Position RMS Error vs. Time 

 

 
Figure 76. Total Position RMS Error vs. Time 
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Simulations for tracking mode are done for a small period of time (i.e. 100 

seconds for tracking mode) in order to visualize the performance of the 

implemented TAN algorithms. In the actual navigation system of a cruise missile, 

INS will be updated at discrete time intervals according to the TAN algorithm used. 

In the simulations performed above, after 10 to 40 seconds of operation, since INS 

is not updated errors grow and TAN algorithm can not be used since small DTED 

grid size is selected. TAN performance depends on the terrain type. For 

mountainous terrains, implemented TAN algorithms find position fixes faster than 

rough terrains. Hence, INS update time can be determined from the selected terrain 

properties. 

From the simulations, it is seen that better results than SITAN are obtained 

for rough and mountainous terrain types. For the smooth terrain, SITAN seems to 

show better results. However, response of the SITAN filter is also not stable and 

navigation solution cannot be obtained for smooth terrain. TSF and PDA filter 

results are considerably good, since if navigation solution does not exist, the filters 

follow INS error model which is actually a desired feature. From the Monte Carlo 

simulations, position RMS errors of the TSF and PDAF algorithms become less 

than 50 meters for mountainous terrains; in other words, a decreased navigation 

error is obtained. As it can be seen from the simulation results TSF behaves as a 

correction shift along the INS error model. 

 

3.4.2.1.3.2. Simulations for Acquisition Mode 

Parameters used in the simulations for acquisition mode are given in Table 

21. Monte Carlo simulations of 100 runs are performed and northward and eastward 

position errors at the update time are obtained from the plots for TERCOM, PDAF 

and TSF. 
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Table 21. Simulation Parameters for Acquisition Mode 

Initial INS position deviation (one axis) 400 m 

Initial vehicle velocity 240 m/s 

Initial INS east velocity bias 0.5 m/s 

Initial INS north velocity bias 0.5 m/s 

INS horizontal position standard deviation  9 m 

INS altitude position standard deviation 3 m 

Radar altimeter standard deviation 3 m 

INS velocity standard deviation 0.05 m/s 

DTED Grid Size (for PDAF and TSF) 11x11 

 

Terrain Type 1 (Rough Terrain): 

 
Figure 77. Northward Position Error vs. Time 

 

Update time 
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Figure 78. Eastward Position Error vs. Time 

 

 
Figure 79. TSF Indices vs. Time 

 

 

Update time 
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Terrain Type 2 (Smooth Terrain): 

 
Figure 80. Northward Position Error vs. Time 

 

 
Figure 81. Eastward Position Error vs. Time 
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Terrain Type 3 (Mountainous Terrain): 

 
Figure 82. Northward Position Error vs. Time 

 

 
Figure 83. Eastward Position Error vs. Time 

 

Update time 

Update time 



 198

 
Figure 84. TSF Indices vs. Time 

 

From the simulations, it is seen that similar results with TERCOM are 

obtained for rough terrain type. For the smooth terrain, both algorithms do not have 

navigation solution. As it can be seen from the results, TSF and PDA filter can be 

used also for acquisition mode of TAN solution using the considered DTED size. 

SITAN bank of Kalman filters is not considered for acquisition mode here; since, 

for the initial error given 121 Kalman filters should be run for the simulation. On 

the other hand, using TSF and PDAF, same solutions with TERCOM are obtained. 

In the simulations, TSF indices for navigation solutions are also given. Here, 

best definite number of navigation solutions converges to the same position index in 

a few seconds especially for mountainous terrain. However, for smooth terrain, 

indices changes in time unlike other terrain types. On the other hand, pruning 

method is selected such that best definite number of tracks with minimum 

likelihood functions selected. Working on other pruning methods may improve 

navigation solutions for smooth terrains. 
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Another critical point in the simulations is the percentage of false fix for 

acquisition mode. In TERCOM, since INS error model is not considered for 

correlation process, there is always a probability of false fix in the position 

solutions. In the Monte Carlo simulations performed, a few false position fixes 

occurred for TERCOM for rough terrain type. On the other hand, with PDAF and 

TSF no false position fixes occurred. 

 

3.4.2.2. Simulations With DTED Level 2 

3.4.2.2.1. Terrain Properties 

Simulations with DTED Level 2 are performed for a single terrain type 

shown in Figure 85. Parameters of the selected terrain showed the area to be a rough 

terrain. Then, terrain heights versus time plot for the selected terrain is given in 

Figure 86. 

 
Figure 85. DTED Level 2 Terrain for TAN Simulations 
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Figure 86. Terrain Height vs. Time for DTED Level 2 Terrain 

 

3.4.2.2.2. Simulation Results 

Simulations are performed for both tracking and acquisition modes of 

operation as in DTED Level 1 simulations. 

 

3.4.2.2.2.1. Simulations for Tracking Mode 

Monte Carlo simulations of 100 runs are performed and position errors are 

obtained for SITAN, PDAF and TSF. Parameters used in the DTED Level 2 

simulations are given in Table 22. It should be noted that since DTED Level 2 is 

used, initial INS error is selected smaller considering grid size of the DTED used. 

 

Table 22. Simulation Parameters for DTED Level 2 Tracking Mode 

Initial INS position deviation (one axis) 25 m 

Other parameters Same as in Table 20. 
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Figure 87. Northward Position Error vs. Time 

 

 
Figure 88. Eastward Position Error vs. Time 
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Figure 89. Northward Position RMS Error vs. Time 

 

 
Figure 90. Eastward Position RMS Error vs. Time 
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Figure 91. Total Position RMS Error vs. Time 

 

From the simulations, it is seen that better results than SITAN are obtained 

for the selected terrain type. From the Monte Carlo simulations, position RMS 

errors of the TSF and PDAF algorithms become less than 25 meters for the selected 

terrain. It should be noted that DTED Level 2 grid size accuracy is about 30 meters. 

Hence, real-time accuracy is increased. 

 

3.4.2.2.2.2. Simulations for Acquisition Mode 

Parameters used in the simulations for acquisition mode are given in Table 

23. Monte Carlo simulations of 100 runs are performed and northward and eastward 

position errors at the update time are obtained from the plots for TERCOM, PDAF 

and TSF. 
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Table 23. Simulation Parameters for DTED Level 2 Acquisition Mode 

Initial INS position deviation (one axis) 140 m 

Other parameters Same as in Table 21. 

 

 
Figure 92. Northward Position Error vs. Time 

 
Figure 93. Eastward Position Error vs. Time 

Update time 

Update time 
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Figure 94. TSF Indices vs. Time 

 

Simulation results show that TAN algorithms also work with DTED Level 2 

for acquisition mode. However, DTED Level 1 results seem to be better than DTED 

Level 2 results. Unfortunately, there were not sufficient DTED Level 2 maps for 

simulations in order to compare simulation results in detail. Actually, vehicle 

velocity directly influences TAN performance. For cruise missiles, DTED Level 1 

maps are sufficient for mid-course flight navigation solution where INS position 

fixes less than 50 meters can be obtained. For faster vehicles like cruise missiles, 

rapid changes in the terrain profile as in DTED Level 2 decreases TAN 

performance. As a result of this, use of DTED Level 1 maps for TAN acquisition 

mode seems to perform better solutions. 
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3.4.2.3. Simulations with Various DTED Grid Sizes 

Final part of the case studies is done with various DTED grid sizes for 

PDAF and TSF. Here same initial position errors are taken for simulations in 

tracking mode along rough terrain. Parameters used in the simulations for 

acquisition mode are given in Table 24. Monte Carlo simulations of 100 runs are 

performed and northward and eastward position errors are obtained for PDAF and 

TSF. 

Table 24. Simulation Parameters for Various DTED Grid Sizes 

Initial INS position deviation (one axis) 80 m 
DTED Grid Size (for PDAF and TSF) 3x3 

5x5 
7x7 
9x9 

11x11 
Other parameters Same as in Table 21. 

 

 
Figure 95. PDAF Northward Position Error vs. Time 
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It should be noted that initial position errors are taken small in order to have 

solutions with small DTED grid sizes. Hence, effects of selecting larger DTED grid 

sizes are examined in this section. 

 
Figure 96. PDAF Eastward Position Error vs. Time 

 

 
Figure 97. PDAF Total Position RMS Error vs. Time 
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Figure 98. TSF Northward Position Error vs. Time 

 
Figure 99. TSF Eastward Position Error vs. Time 

 
Figure 100. TSF Total Position RMS Error vs. Time 
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It is seen that changing grid size for the same initial position errors for TSF 

slightly changes simulation results. Again errors are bounded and limited with the 

related grid solution. However, selecting larger grid sizes for PDAF solutions 

generally increase position errors. This is due to PDA procedure where weighted 

averages of the all grid points are taken into account for navigation solution. 

Therefore, it can be concluded that PDAF DTED grid size should be selected in 

accordance with the position errors. 

 

3.4.2.4. Discussion 

From the simulations performed, several conclusions are achieved about the 

implemented TAN algorithms. The advantages of the new algorithms proposed can 

be summarized as follows: 

1. Real-time TAN solution can be obtained with a single PDA filter. 

Since past measurements are taken into account, by changing the 

buffer size of the measurements the filter, measurements are 

smoothed. 

2. Real-time TAN solution can be obtained with a single TSF structure. 

However, TSF operations are more complex than SITAN. On the 

other hand, in TSF, more than one track is selected in order to 

determine navigation solution. Hence, probability of false fix 

decreases unlike TERCOM. 

3. Real-time TAN solution is obtained by considering horizontal 

position errors of DTED used in real-time PDA filter and TSF. 

Hence, horizontal position states are added to the Kalman filters used 

in PDAF and TSF. 
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4. Application of the filters is simple and the filters are linear, since 

INS error model is used. 

5. Batch size of the DTED area concerned can be changed independent 

of the model used. Both larger DTED areas for acquisition mode or 

smaller DTED areas for tracking modes can be selected using the 

same filters. 

6. Results of the filters are good for both recursive and batch 

algorithms. For tracking mode, position RMS error is less than 50 

meters. Moreover, PDAF shows stable response. For smooth terrains 

where no navigation solution exists, PDAF follows the INS error 

model which is actually a desired feature. 

7. TSF can be considered as a real-time TERCOM process for large 

position errors, i.e. large DTED batch size. Possibility of false 

position fixes decrease with TSF when compared with TERCOM. 

On the other hand, for small position errors, decreasing the 

weighting factor of the past measurements for TSF, better real-time 

solutions can be obtained. 
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CHAPTER 4 

CASE STUDY 

 

In this chapter, simulation results of the implemented TAN algorithms are 

presented for a cruise missile model. First, a 6 DOF simulation tool is developed in 

order to model cruise missile mid-course flight. Then, related sub-systems are 

modeled in order to reflect mid-course flight controls and cruise missile navigation 

system error models. Then, simulations are performed with PDAF and TSF TAN 

models with actual flight conditions. Finally, simulation results are compared with 

major TAN algorithms considering other flight parameters of the cruise missile 

model. 

 

4.1. Simulation Tool Development 

The simulation tool developed for the cruise missile is capable of 

performing full mid-course flight simulation of the cruise missile modeled. 

Actually, a generic simulation tool applicable to all air vehicles is considered except 

for guidance methods applied. 

In order to investigate the performance of the TAN algorithms improved, a 

realistic 6 DOF simulation tool is required. 6 DOF simulation model is built in 
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Simulink [58] and mid-course flight of the cruise missile is simulated with the 

model developed. General 6 DOF simulation model architecture is shown in Figure 

101 where TAN algorithms are used with the loosely coupled architecture for aiding 

INS. 

 

AIRFRAME

Truth Model States

+ -

MISSILE
SENSORS

TAN HEIGHT 
MODEL

TAN MODELS
(SITAN, PDAF, 
TSF, TERCOM)

AUTOPILOTS ACTUATORS

GUIDANCE

INS Model States

TAN Model States

INS ONLY ERROR 
MODEL

NAVIGATION 
ERRORS

INS Accelarations and 
Angular Velocities

+ -

 
Figure 101. General 6 DOF Simulink Model with Implemented TAN Models 

 

6 DOF simulation model is formed from the following main sub-systems: 
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1. Airframe: Airframe is composed of various models in order to 

simulate the dynamic behavior of the cruise missile. 

Dynamics, kinematics, aerodynamics, propulsion, force 

and environmental modules constitute airframe sub-

system. 

2. Autopilots: A variety of controllers are implemented for mid-course 

flight of the cruise missile: roll control, pitch 

acceleration controller for altitude hold, yaw stability 

augmentation, and BTT (bank-to-turn) heading angle 

tracker autopilots. All autopilots are derived by the pole 

placement techniques. 

3. Actuators: Second-order actuators with rate and position limiters 

are used in the 6 DOF model in order to control the 

elevator, rudder and aileron. 

4. Sensors: Strapdown INS sensor errors are modeled in order to 

reflect bias, drift, scale factor and misalignment errors 

for accelerometer and gyro outputs. Moreover, 

barometric and radar altimeter outputs are also 

modeled. 

5. Guidance: For the selected waypoints along the missile path, 

heading correction is applied using the heading angle 

tracker. 

6. INS Error Model: Strapdown INS error model given in equation 

(2.6) is used in the simulations in order to 

reflect INS velocity and position errors 

considering improved bias and drift models of 
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the INS sensors. However, altitude channel of 

the INS model is not used considering 

barometric altimeter measurements. 

7. TAN Models: Derived TAN models in the previous chapters for 

TERCOM, SITAN, PDAF and TSF are directly used 

in the 6 DOF simulation model by tuning parameters 

of the derived filters. 

 

6 DOF simulation model sub-systems will be discussed in the following 

sections except for INS error and TAN models which were investigated in detail in 

the previous chapters. 

 

4.1.1. Airframe 

Airframe sub-system models dynamic behavior of the cruise missile model. 

6 DOF equations of motion are derived and used in this section with the related sub-

systems described in the previous section. 

Newton’s law is applied for translational motion and Euler’s law is applied 

for rotational motion in order to model cruise missile dynamics over an elliptical 

earth considering earth’s rotation. First, reference frames are defined. Then, 

Newton’s and Euler’s equations are derived considering forces and moments on the 

system. Finally, kinematic equations are derived. 
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4.1.1.1. Reference Frames 

Coordinate frames are required in order to define the motion of the vehicle 

which is considered. Moreover, for kinematic equations, they have to be defined 

carefully. When the rotation of the earth and earth’s geometry is considered, various 

coordinate frames have to be defined. Coordinate frames used for the simulations 

can be classified as follows: 

1. Inertial Frame (Geocentric Inertial-J2000 Frame), iℑ  

2. Earth Centered Earth Fixed (ECEF) Frame, eℑ  

3. Geographic (North, East, Down – NED) Frame, gℑ  

4. Body Frame, bℑ  

5. Wind Coordinate Frame, wℑ  

 

The position and attitude of the missile with respect to inertial frame is 

found using kinematic equations. Since time of flight for the cruise missiles are 

quite long, the effects of earth’s curvature and earth’s angular velocity should be 

added in the transformations. 

In Figure 102 and Figure 103, these frames were presented. Transformation 

matrices are derived between these frames and using translational and rotational 

transformation equations, positions and attitudes are defined in the proper reference 

frames as follows considering tensor algebra [78]: 
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Figure 102. Inertial and ECEF Reference Frames 

 

 
Figure 103. Geographic and Body Reference Frames 
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( ) ( , ) ( )ˆa a b br C r= ⋅  (4.1)

( , ) ( , ) ( )
/

ˆ ˆi b i b b
b iC C ω= ⋅&
%  (4.2)

where, 

r :  Position vector 

Ĉ : Transformation matrix (Direction Cosine Matrix, DCM) 

ω% : Skew symmetric matrix form of angular velocity vector, ω  

( )
/
b

b iω : Angular velocity vector of the body frame with respect to inertial 

frame in body frame 

, ,a b i : Indices of the related reference frames 

 

Then, transformation procedures for the defined coordinate frames can be 

applied considering “Rotated Frame Based” (RFB) sequences [78]: 

a. Transformation from Body to Geographic Frame 
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(ψ : Yaw angle, θ : Pitch angle, φ : Roll angle, :c  Cos, :s  Sin) 

 

b. Transformation from Geographic to ECEF Frame 
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( µ : Longitude, λ : Geocentric Latitude) 

(4.4)

c. Transformation from ECEF to Inertial Frame 
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( Ω : Earth’s angular velocity) 

(4.5)

d. Transformation from Body to Wind Frame 

( ) ( )
3 2
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( , )ˆ

0

w b

c c s s c
C c s c s s

s c

α β β α β
α β β α β

α α

⋅ ⋅⎡ ⎤
⎢ ⎥= − ⋅ − ⋅⎢ ⎥
⎢ ⎥−⎣ ⎦

 

( :α  Angle of attack, :β  Side slip angle) 

(4.6)

 

Finally, between different coordinate frames successive transformations can 

be done as follows [78]: 

),(),(),(),( ˆˆˆˆ bggeeibi CCCC ⋅⋅=  (4.7)

( , ) ( , ) ( , ) ( , ) ( , )ˆ ˆ ˆ ˆ ˆe b e g g b e g b g TC C C C C= ⋅ = ⋅  (4.8)

 

4.1.1.2. 6 DOF Equations of Motion 

For translational motion, Newton’s law is applied with respect to inertial 

frame considering the conventions in Figure 103 in vector notation. 

/ ,i A O a pm D v F m g⋅ = + ⋅
rr r  (4.9)

where, 

m :  Mass of the vehicle 

iD :  Differential operator in inertial frame 

/A Ovr : Velocity vector of the center of mass with respect to inertial frame 
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,a pF
r

: Aerodynamic and propulsion forces acting on the vehicle 

gr : Gravitational acceleration 

 

Then, the equations are derived in geographic frame from equation (4.9) 

considering kinematic equations as follows: 

/ / / /i A O e A O e i A OD v D v vω= + ×
rr r r  (4.10)

( )/ / / /e A O e A E e e i A OD v D v D rω= + ×
rr r r  
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123
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=
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/ / / /e A O e A E e i A ED v D v vω= + ×
rr r r  

/ / / / / /i A O e A E e i A E e i A OD v D v v vω ω= + × + ×
r rr r r r  

/ / / /A O A E e i A Ov v rω= + ×
rr r r  

/ / / / / / /2i A O e A E e i A E e i e i A OD v D v v rω ω ω= + ⋅ × + × ×
r r rr r r r  (4.11)
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After replacing equation (4.11) in (4.10), translational equations of motion 

can be written in geographic frame. 

/ , / / / / /
1 2e A E a p e i A E e i e i A OD v F g v r
m

ω ω ω= ⋅ + − ⋅ × − × ×
r r r rr r r r  (4.12)

 

Equation (4.12) is written in tensor form in geographic frame because of its 

use in scalar manipulations. 

( ) ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
/ , / / / / /

1 ˆ 2g g b b g g g g g g
A E a p e i A E e i e i A Ov C F g v r

m
ω ω ω= ⋅ ⋅ + − ⋅ × − ⋅ ⋅& % % %  (4.13)

where, 

( , ) ( , ) ( , )ˆ ˆ ˆg b g i b i TC C C= ⋅ : DCM from body to geographic frame 

( )
,
b

a pF : Aerodynamic and propulsion forces acting on the vehicle 

[ ]( ) 0 0 Tgg g= : Gravitational acceleration vector 

[ ]( )
/ cos 0 sing

e iω λ λ= Ω⋅ −Ω⋅ : Earth’s angular velocity in gℑ  

[ ]( )
/

Tg
A Ev vN vE vD= : Velocity of the vehicle in geographic frame 

 

Next, Euler’s law is applied for rotational motion about the center of mass of 

the vehicle. 
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/i A b A b i A AD H D H H Mω= + × =
r r r rr  (4.14)

where, 

AH
r

: Angular momentum vector about center of mass ( /A b b iH I ω= ⋅
r ( r ) 

AM
r

: Moment vector about center of mass 

 

Again equation (4.14) is written in tensor form in body frame in order to 

obtain angular velocities of the vehicle. 

( ) ( ) ( ) ( ) ( ) ( )
/ / /

ˆ ˆb b b b b b
b b i b i b b i aI I Mω ω ω⋅ + ⋅ ⋅ =&% %  

( )( ) ( ) 1 ( ) ( ) ( ) ( )
/ / /

ˆ ˆb b b b b b
b i b b i b b i aI I Mω ω ω−= − ⋅ ⋅ +&% %  (4.15)

where, 
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ˆ 0 0

0 0

b
b
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I I

I

⎡ ⎤
⎢ ⎥= ⎢ ⎥
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: Moment of inertia matrix of the vehicle 

( )b
aM : Aerodynamic moments acting on the vehicle in body frame 

[ ]( )
/

Tb
b i p q rω = : Roll, pitch and yaw rate of the vehicle 
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4.1.1.3. Kinematic Equations 

Translational and angular velocities of the vehicle are obtained from 6 DOF 

equations of motion. Then, positions and attitudes are derived using kinematic 

equations. 

( )
/ / /
g

A E e A E A Er D r v= =
r r&  (4.16)

where, 

[ ]/
T

A Er rN rE rD=
r : Northward, eastward and downward positions 

 

( , ) ( , ) ( )
/

ˆ ˆi b i b b
b iC C ω= ⋅&
%  

( , ) ( , ) ( , )ˆ ˆ ˆb g i b T i gC C C= ⋅  (4.17)

 

Using the elements of ( , )ˆ b gC  matrix given in equation (4.3) roll, pitch and 

yaw angles (i.e. φ , θ  and ψ ) are obtained. 

 

4.1.1.4. Aerodynamics and Propulsion 

In the previous sections, dynamic and kinematic equations of motion are 

derived. In order to solve dynamic equations of motion, forces and moments acting 

on the body should be known. External forces and moments acting on the body are 
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due to aerodynamics and propulsion. Forces and moments acting on the body are 

summarized as follows [79]: 

( ) ( ) ( )
, 0

0

X p
b b b

a p a p Y

Z

C F
F F F q S C

C
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a m

n

C b
M q S C c

C b

⋅⎡ ⎤
⎢ ⎥= ⋅ ⋅ ⋅⎢ ⎥
⎢ ⎥⋅⎣ ⎦

 (4.20)

where, 

( )b
aF : Aerodynamic forces acting on the vehicle in body frame 

( )w
aF : Aerodynamic forces acting on the vehicle in wind (stability) frame 

( )b
pF : Propulsion force acting on the vehicle, ( pF : Scalar value) 

q : Dynamic pressure ( 21
2

q Vρ= ⋅ ⋅ ) 

ρ : Density of the ambient atmosphere 

V : Velocity of the vehicle 

S : Reference area (Theoretical wing area for aircraft type vehicle) 
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b : Span 

c : Chord 

, ,X Y ZC C C : Aerodynamic force coefficients (Axial, side and normal force 

coefficients) 

, ,D Y LC C C : Aerodynamic force coefficients (Drag, side and lift force 

coefficients) 

, ,l m nC C C : Aerodynamic moment coefficients (Rolling, pitching and 

yawing moment coefficients) 

 

Aerodynamic force and moment coefficients are modeled generally by 

simple Taylor series expansion, including only the linear terms and making all 

derivatives tabular functions of Mach number and angle of attack considering small 

side slip angles as follows [79]: 

0
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The equations above represent a linear model for constant Mach numbers 

and angle of attack values. In force coefficients, the effect of body rates on the lift 

and side forces, i.e., the 
qLC , 

pYC , and 
rYC  derivatives can often be neglected [79]. 

For moment coefficients, rolling and yawing moment coefficients have negligible 

trim coefficients 
0l

C  and 
0nC  [79]. 

For 6 DOF simulations, aerodynamic coefficients are obtained from USAF 

Digital DATCOM software [80]. First, a solid model of a generic cruise missile is 

formed using a CAD software. Next, mass and inertia properties are obtained from 

the solid model. Finally, USAF Digital DATCOM model of the cruise missile is 

prepared in order to obtain aerodynamic coefficients and coefficient derivatives. In 

Figure 104, a view of the cruise missile solid model is shown. In Table 25, some 

properties of the cruise missile used in the simulations are given. 
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Figure 104. Cruise Missile Solid Model 

 

Table 25. Cruise Missile Model Specifications 

Length:  6.25 meters 

Initial Missile Weight: 1200 kg 

Fuel Weight: 450 kg 

Diameter:  53.34 cm 

Wing Span:  4.64 meters 

Wing Chord: 0.689 meters 

Speed:  0.4 – 0.8 Mach 

Cruise Speed: 0.7 Mach 

Engine Type: 600 lb-f (~2500 N) Type 

 

Some of the coefficients required in equations (4.21) and (4.26) are not 

directly obtained from Digital DATCOM. Therefore, using the coefficients obtained 

from the Digital DATCOM manual [80], required coefficients are derived.  
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Propulsion force acting on the missile is considered from turbojet and acting 

along axial axis only. Turbojet force is obtained as tabulated results with respect to 

Mach number and altitude above sea level. The specific fuel consumption (SFC) Fb  

is an important indicator for the efficiency of the turbojet. It is defined by the ratio 

of fuel flow to thrust as [79]: 

F
F

p

mb
F

=
&

 (4.27)

where, 

Fm& : Fuel flow rate 

 

Required thrust pF  is obtained from Mach control loop. Using look up 

tables, SFC and fuel flow rates are obtained. Hence, mass of the missile is modeled 

for simulations. 

 

4.1.1.5. Environmental Models 

In order to obtain a generic 6 DOF model, environment is also modeled. 

Gravity and atmosphere is modeled for simulations and derivations for wind effects 

are taken into consideration. 

For the gravity, WGS84 gravity model is used considering altitude of the 

vehicle above sea level [81]: 
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2

0 2

1 0.00193185138639 sin9.7803267714
1 0.00669437999013 sin

g λ

λ

⎛ ⎞+ ⋅
= ⋅⎜ ⎟

− ⋅⎝ ⎠
 (4.28)

( )

2

0 2( ) Rg h g
R h

⎛ ⎞
⎜ ⎟= ⋅
⎜ ⎟+⎝ ⎠

 (4.29)

where, 

λ : Geographic latitude 

0g : Theoretical gravity 

R : Radius of the spherical earth 

h : Height of the vehicle above sea level 

 

For the atmosphere model, the 1962 International Standard Atmosphere or 

ISO 2553 is used given in [79]. Actually, since mid-course flight of a cruise missile 

at constant speed and altitude is considered, only wind model is required for the 

simulations. 

In 6 DOF simulations, winds and gusts alter the incidence angles and thus 

change the aerodynamic forces and moments. The incidence angles are calculated 

from the velocity vector of the vehicle’s center of mass with respect to air. To 

determine velocity of the vehicle with respect to air /A airvr , wind vector /air Evr  is 

subtracted from the geographic velocity /A Evr  considering the conventions given in 

Figure 103 [79]. 
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/ / /A air A E air Ev v v= −
r r r  (4.30)

( )( ) ( , ) ( ) ( )
/ / /

ˆb b g g g
A air A E air Ev C v v= ⋅ −  

[ ]( )
/ cos sin 0g

air E w w w wv V Vψ ψ= − ⋅ − ⋅  (4.31)

where, 

wV : Wind magnitude 

wψ : Wind direction from north 

 

In the simulations, a pre-specified wind profile with varying magnitude and 

direction is applied. Wind features will be given in the next section. 

 

4.1.2. Autopilots and Controls 

A variety of controllers are implemented for the mid-course flight of the 

cruise missile: 

1. Mach hold control 

2. Roll position control 

3. Heading angle control with bank-to-turn autopilot 

4. Yaw stability augmentation 
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5. Altitude hold control with acceleration autopilot 

 

All autopilots are derived by classical pole placement techniques 

summarized in Zipfel [79]. 

 

4.1.2.1. Mach Hold Control 

Cruise missiles have to maintain Mach number under maneuvers and 

environmental effects. The thrust required rF  to maintain a certain Mach number is 

equal to drag force projected onto the centerline of the turbine. Considering the 

turbine axis parallel to the body’s first axis, it is required that [79]: 

cos
D

r
q S CF

α
⋅ ⋅

=  (4.32)

 

Mach hold control loop is shown in Figure 105. The time constant FT  of a 

generic turbojet engine is between 0.2 and 1.0 seconds. Gain MG  is calculated from 

second degree closed loop transfer function (TF) considering natural frequency and 

damping of the system as follows [79]: 
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M
F

m VG
T ζ

⋅
=

⋅ ⋅
 (4.33)

where, 
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m : Mass of the missile 

sV : Sonic speed ( sV R Tγ= ⋅ ⋅ ) 

ζ : Damping of the closed loop TF 

 

 
Figure 105. Mach Hold Control Loop [79] 

 

4.1.2.2. Roll Position Control 

A dual feedback controller is built for roll position autopilot. The inner rate 

loop augments the aerodynamic damping and the outer loop executes the roll 

position command as shown in Figure 106. The transfer function between roll and 

aileron command is rather simple as follows [79]: 

( )
( )

a

p

LLp s
a s s LL

δ

δ
=

−
 (4.34)

where, 
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aLLδ : Roll control derivative, ( )1 aa lLL qSb I C
δδ =  

pLL : Roll damping derivative, ( )( )1 2
pp lLL qSb I b V C=  

 

 
Figure 106. Roll Rate and Position Feedback Loops [79] 

 

Using closed loop TF of the roll position against commanded roll position 

and setting parameters for second order TF, roll position autopilot gains Kφ  and 

pK  can be determined as follows [79]: 
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2
rollroll n p

p
a

LL
K

LL δ

ζ ω +
=  (4.37)

4.1.2.3. Heading Angle Control 

Heading changes of the cruise missiles are executed by roll control since 

bank-to-turn control is used. As the lift vector is banked, a horizontal force 

component generates a lateral acceleration that turns the velocity vector horizontally 

[79]. 

Heading angle tracker is built by wrapping a heading loop around the roll 

position autopilot as shown in Figure 107. Again, the pole placement technique 

from root locus analysis is applied in order to determine heading gain Kψ  using the 

open loop TF derived from the figure and equation (4.35) [79]: 

 
Figure 107. Heading Angle Tracker Loop [79] 
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( )21
rollroll n roll

VK
gψ ζ ω ζ= ⋅ ⋅ ⋅ −  (4.39)

4.1.2.4. Yaw Stability Augmentation 

Dynamic stability of the vehicle in yaw plane is improved by the yaw rate 

damping loop. Yaw rate feedback loop is shown in Figure 108. The transfer 

function between yaw rate and rudder command is found from the linear 

perturbation equations of the missile yaw plane which can be found in various 

references [79]: 

 
Figure 108. Yaw Rate Feedback Loop [79] 
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 (4.40)

where, 

iY : Dimensionalized derivatives of i  for side force Y  
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iLN : Dimensionalized yawing moment of i  

( ) YY qS m C
ββ = , ( )

rr YY qS m C
δδ = , 

( )3 nLN qSb I C
ββ = , ( )3 rr nLN qSb I C

δδ = , ( )( )3 2
rr nLN qSb I b V C= . 

 

Using closed loop TF of the yaw rate against commanded yaw rate derived 

from Figure 108 and equation (4.40) and selecting the closed loop damping 

coefficient rζ , yaw rate gain rK  is determined as follows [79]: 

( )
( )

( )
2 2 2

( )
( ) 2

yaw yaw

r r

c r r r r yaw n n

G s z G s zr s
r s s a K G s b K G z s sζ ω ω

+ +
= =

+ + + + + +
 (4.41)

( ) ( ) ( )22 2 2 21 2 2 4r yaw yaw yaw
r

K a z a z a b
G

ζ ζ ζ⎡ ⎤= − − + − − −⎢ ⎥⎣ ⎦
 (4.42)

yawn r rb K G zω = +  (4.43)

 

4.1.2.5. Altitude Hold Control 

In order to build altitude hold autopilot, two feedback loops are wrapped 

around the normal acceleration autopilot with two gains HG  and vG  determining 

the dynamic response as shown in Figure 109. These gains are determined from the 

root locus analysis of the inner and outer altitude loops. Adaptive gain scheduling is 

not required for HG  and vG , since altitude corridors are usually fixed and a constant 
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set of gains is sufficient. Actually, constant gain values give also good performance 

for terrain following [79]. 

 

 
Figure 109. Altitude Hold Autopilot [79] 

 

4.1.2.6. Acceleration Autopilot 

In cruise missiles, the normal load factor plane generally contains an 

acceleration feedback loop. Guidance systems of cruise missiles like terrain 

following and obstacle avoidance require rapid response that only an acceleration 

autopilot can provide [79]. 

Acceleration autopilot loop is shown in Figure 110. The transfer function 

between pitch rate, normal acceleration and elevator command is found from the 

linear perturbation equations of the missile pitch plane which can be found in 

various references [79]: 
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Figure 110. Acceleration Autopilot Loop [79] 
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where, 

Lα : Dimensionalized derivative of lift force L  with respect to α . 

iM : Dimensionalized pitching moment of i  

( ) LL qS m C
αα = , 

( )2 mM qSc I C
αα = , ( )2 ee mM qSc I C

δδ = , ( )( )2 2
qq mM qSc I c V C= . 

 

Using closed loop TF of the normal acceleration against commanded normal 

acceleration derived from Figure 110 and equation (4.44) and selecting the closed 
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loop damping coefficient pitchζ , the natural frequency pitchω  and a pole location p , 

acceleration autopilot gains are determined as follows [79]: 
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 (4.48)

 

As it can be seen from the equations, the position feed-forward gain pG  can 

not be determined from pole placement technique. Therefore, it must be determined 

from root locus analysis. Fixed value of gain pG  determined from root locus gave 

sufficient performance for acceleration autopilot designed. 

 

4.1.3. Actuators 

An actuator is a device that actualizes steering inputs to motivators. These 

motivators are aileron, elevator and rudder for the cruise missile. For the 
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simulations, the response of the fin actuator is modeled by a second order TF as 

[79]: 

2

2 2

( )
( ) 2

act

act act

n

c act n n

i s
i s s s

ωδ
δ ζ ω ω

=
+ +

 (4.49)

where, 

iδ : Actual control surface deflection 

ciδ : Fin command 

actnω : Natural frequency of the actuator 

actζ : Damping ratio of the actuator 

 

Although the TF models only the linearized dynamics, fin deflection and fin 

rate limiters are included in the actuator model as two important nonlinearities 

which are shown in Figure 111. 

 
Figure 111. Second Order Actuator Model [79] 
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Actuator model derived is applied for all control channels (i.e. elevator, 

rudder and aileron) considering critical damping for the actuators by selecting large 

natural frequency values compared to autopilot natural frequencies. (For the 

simulations, 100
actnω =  rad/s is selected for all channels.) 

 

4.1.4. Sensors 

Cruise missile model contain IMU and altimeter sensors. Accelerometers 

and gyros are used in the IMU of the missile. For height channel stability of the 

INS, barometric altimeter is used. For terrain clearance measurements in order to 

apply TAN algorithms, a radar altimeter is also required. 

Accelerometers are modeled considering strapdown INS architecture with 

random bias and noise, scale factor and misalignment as follows [79]: 

( ) ( ) ( )b b b
accf f fδ= +  (4.50)

( ) ( )ˆ ˆ( )b b
a a af S M f wδ = ∇ + + ⋅ +  (4.51)

where, 

( )b
accf : Output of the accelerometers 

( )bf : True acceleration values 

( )bfδ : Accelerometer errors 

∇ , aw : Random bias and white noise vector 
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Gyro errors are also modeled in the same manner [79]: 

( ) ( ) ( )
/ / /gyro

b b b
b i b i b iω ω δω= +  (4.52)

( ) ( )
/ /

ˆ ˆ( )b b
b i g g b i gS M wδω ε ω= + + ⋅ +  (4.53)

where, 

( )
/ gyro

b
b iω : Output of the gyros 

( )
/
b

b iω : True angular rates 

( )
/
b

b iδω : Gyro errors 

ε , gw : Random drift and white noise vector 

ˆ
gS : Scale factor error matrix 

ˆ
gM : Misalignment matrix 
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Barometric and radar altimeters are modeled with scale factor error and 

random noise. Actually, there exist detailed error models in the literature especially 

for barometric altimeters [82]. However, simple error models are sufficient for 

simulation purposes, since the effects of other errors can be neglected. Then error 

models for the altimeters become as follows [83]: 

baro baro baro baroh S h vδ = ⋅ +  (4.54)

radar radar radar radarh S h vδ = ⋅ +  (4.55)

where, 

hδ : Altimeter errors 

S : Scale factors 

v : Measurement white noises 

 

4.2. Simulations 

In the previous section of the chapter, 6 DOF simulation models were 

developed. In this section, simulation results of a realistic cruise missile operation 

scenario with TAN will be discussed in detail. 

The operation scenario of the cruise missile model used in the simulations 

can be summarized as follows: 

1. 6 DOF cruise missile model with TAN simulations are performed 

with the loosely coupled architecture shown in Figure 101. 
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2. Simulation path is selected such that the missile had a constant 

heading through north for a constant time with large position errors. 

Then, TAN algorithms are applied during this time period in order to 

correct position errors. Next, the heading is corrected at discrete time 

intervals with the applied TAN algorithms in order to reach the 

desired waypoint. Simulation path used for the simulation is shown 

in Figure 112. Actually, selected terrain profile is a rough terrain. 

 

 
Figure 112. Simulation Path Used for 6 DOF Cruise Missile Simulation 
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3. Large DTED grid size is used in acquisition mode for TAN 

algorithms and after first INS update, DTED grid size is decreased in 

tracking modes of operation. 

4. 10 nmi/hr class INS sensor model parameters are used in order to 

model the INS used in the simulations. Initial errors are used for the 

INS in order to simulate cruise missile model, such that simulations 

began after about half an hour of operation. 

5. In order to accelerate simulation times, simulations are performed 

with constant aerodynamic parameters derived at the cruise Mach 

number. Hence, aerodynamic coefficients become function of angle 

of attacks only. 

6. Control strategy used for the simulations is as follows: 

a. Terrain following guidance is applied throughout the simulations. 

Altitude hold control is performed with pitch acceleration 

controller. 

b. Constant speed is achieved by Mach hold control loop throughout 

the operation. 

c. Heading angle tracker is used with bank-to-turn controller. 

Constant heading for initial period of operation is used. Then, 

heading updates are done at discrete times when INS is updated. 

d. Yaw stability is obtained with yaw stability augmentation 

controller. 
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Table 26. 6 DOF Cruise Missile Model Simulation Parameters 

Simulation Scenario 

1. 0 – 41 s. : Heading = 0° 
2. At 41 s. : Initial heading correction 

for the desired waypoint 
3. At 81 s. : Second heading correction

Controls Applied 

1. Terrain following with altitude hold 
2. Heading angle tracker with BTT 

control 
3. Yaw stability controller 
4. Mach hold control 

Environmental Conditions 
1. ISO 2553 atmosphere model 
2. Pre-specified wind profile 
3. Universal gravity model 

Commanded Mach Number 0.7 M 

Commanded Height 300 m AGL 

INS Quality 
10 nmi/hr Class 
(Parameters are given in Table 5) 

Initial Horizontal INS Position Error 
(Total Horizontal Position Error) ~ 400 m 

Initial Horizontal INS Velocity Error 
Standard Deviation 
(Each axis, 1 σ) 

0.5 m/s 

Initial Vertical INS Position Error 
Standard Deviation (1 σ) 5 m 

Barometric Altimeter Standard 
Deviation (1 σ) 3 m 

Radar Altimeter Standard Deviation 
(1 σ) 

3 m 

Initial INS Attitude Errors Standard 
Deviation (1 σ) 0.05° 

TAN Algorithms Update Interval 0.5 s 

INS Update Interval 40 s 

TERCOM Update Interval  55 s 

Initial DTED Grid Size 
(Acquisition Mode) 

11 x 11 (for PDAF and TSF) 

Tracking Mode DTED Grid Size 5 x 5 (for PDAF and TSF) 
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Parameters used in the simulations are summarized in Table 26. Simulations 

are performed in real-time with these parameters for three INS position updates. 

Next, simulation results are presented. First, 6 DOF simulation results of the system 

are given as follows: 

 

 
Figure 113. Altitude vs. Time 

 
Figure 114. Flight Profile over the Terrain 

Initial Position Final WP 
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Figure 115. Latitude vs. Longitude over Terrain Contours 

 
Figure 116. Roll Rate vs. Time 

 
Figure 117. Pitch and Yaw Rates vs. Time 

Initial Position 

Final WP 
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Figure 118. Attitudes vs. Time 

 

 
Figure 119. Attitude Errors vs. Time 
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Figure 120. Total Velocity and Body Longitudinal Velocity vs. Time 

 
Figure 121. Lateral and Vertical Body Velocities vs. Time 

 
Figure 122. Angle of Attack and Side Slip Angle vs. Time 



 251

 
Figure 123. Wind Profile (Wind Velocity and Wind Heading) vs. Time 

 
Figure 124. Mach vs. Time 

 
Figure 125. Missile Mass vs. Time 
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Figure 126. Turbojet Thrust vs. Time 

 
Figure 127. Missile Heading and Commanded Heading vs. Time 

 
Figure 128. Body Accelerations vs. Time 



 253

From the simulation results of the system, controls applied for mid-course 

guidance phase can be seen easily. In Figure 113 to Figure 115 flight profile of the 

missile is given in detail. Terrain following guidance and heading corrections for 

the required waypoint can be seen from the results. Commanded height is given as 

300 meters AGL and using acceleration controller, AGL height is kept between 300 

± 150 meters which can be considered as an accepted range for the rough terrain 

considered. 

Attitude rates are shown in Figure 116 and Figure 117. Heading commands 

are given at 41 and 81 seconds of the simulation. Since BTT control is applied, roll 

and yaw rates change rapidly at these instants as expected. On the other hand, rapid 

changes in pitch rate are due to terrain following controller where normal 

acceleration controller is used in order to follow the rapid changes in height 

channel. Attitudes can be explained in the same manner which is shown in Figure 

118. Here, heading angle ϕ  changes due to missile bank angle φ , since BTT 

controller is used. Moreover, pitch angle θ  changes between ±10° due to terrain 

following. Finally attitude errors are presented in Figure 119 which are consistent 

with the INS error model results. Attitude and attitude rates in the controllers are 

used from INS error model. Hence, the system worked as in the actual applications. 

Missile total velocity and body velocity components are given in Figure 120 

and Figure 121. Total velocity is kept constant within a range due to Mach control 

loop. Changes in lateral body velocity are due to wind and rapid changes in vertical 

body velocity are due to terrain following control. Angle of attack α  and side slip 

angle β  are shown in Figure 122 and wind profile is given in Figure 123. Changes 

in β  is due to wind profile where side wind components are considered for 

simulations. Finally Mach graph is presented in Figure 124 where Mach is 

controlled at 0.7 M within ±0.002 M due to Mach control loop. 
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Changes in missile mass are given in Figure 125. Since Mach control is 

applied at constant altitude, constant mass flow rate, actually fuel flow rate is 

obtained as expected. Next, turbojet thrust is shown in Figure 126 where thrust 

changes between 750 – 2500 N in order to respond Mach control loop and terrain 

following controller. Then, missile heading versus commanded heading is given 

Figure 127. Here, missile response to heading commands can be seen well than the 

previous attitude plots. Heading corrections at 41 and 81 seconds of the simulation 

are applied considering the corrected missile position from TAN algorithms and 

waypoint position. It should be noted that INS updates from TAN algorithms are 

done at 40 seconds intervals. Hence, final position error decrease which will be 

discussed in the end of the chapter. 

Finally, body accelerations are presented in Figure 128 where longitudinal 

and lateral accelerations are small as expected due to Mach and BTT controls. 

Vertical acceleration component changes up to 3 g’s due to acceleration controller 

in order to achieve terrain following. 

In the final section of the chapter, TAN results obtained from the 

simulations are presented. Here, original, updated INS and TAN algorithms’ results 

are compared for both acquisition mode where initial position errors are huge for 

the first part of the simulation and for tracking mode. At the end of the chapter, final 

position errors are tabulated and discussed. 
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Figure 129. Northward Position Errors vs. Time (Acquisition Mode) 

 
Figure 130. Eastward Position Errors vs. Time (Acquisition Mode) 
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Figure 131. Northward Position Errors vs. Time (Tracking Mode) 

 
Figure 132. Eastward Position Errors vs. Time (Tracking Mode) 
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Figure 133. Northward Velocity Errors vs. Time 

 
Figure 134. Eastward Velocity Errors vs. Time 
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TAN results are compared for both acquisition modes and tracking modes of 

operation. In the first 40 seconds of the operation, TAN algorithms are applied for 

acquisition mode with a larger DTED grid size of 11x11 given in Table 26. Here, 

large initial position errors are corrected using PDAF and TSF algorithms. 

Moreover, the results are compared with TERCOM results. In Figure 129, 

northward position errors and in Figure 130, eastward position errors are shown. At 

40 seconds, PDAF and TSF corrections are done and INS is updated. On the other 

hand, TERCOM correction is done at 55 seconds. Both filters worked well in order 

to have errors less than 50 meters in both horizontal channels after a few seconds of 

operation. At the beginning of the TAN algorithms, past information is not used. 

Hence, filter results diverge for PDAF and TSF as it can be seen from the 

simulations. 

Then, tracking mode position errors are shown in Figure 131 and Figure 

132. Simulation results are given for 40 seconds to the end of the operation for 

tracking mode. In tracking mode, PDAF and TSF results are compared with SITAN 

results using a smaller DTED grid size of 5x5 given in Table 26. Here, INS is 

updated at 40 seconds intervals beginning from acquisition mode update at 40 

seconds. As it can be seen from the results, real-time PDAF results are better than 

other algorithms. TSF results follow INS error model as expected due to the 

algorithm properties. In TSF, index correction for the navigation system is done as 

in TERCOM. Hence, TSF errors are sometimes within the neighborhood of the 

actual navigation solution. However, errors are limited within the grid size of 

DTED Level 1 (i.e. ~80 meters). Another interesting point is the divergence of TSF 

for a few seconds of operation at INS update times. This is due to lack of past 

measurement information. As older measurements come, TSF begins to follow INS 

errors. For PDAF, real-time corrections as in SITAN can be achieved since 

averages of the possible grid positions are considered throughout the operation. 

In Table 27, RMS errors and final position errors from the required 

waypoint is tabulated for tracking mode simulations. 
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Table 27. Tracking Mode Position Errors 

 RMS Error [m] Final Position Error [m] 

PDAF 24 16 

TSF 60 75 

SITAN 36 24 

Updated INS 46 75 

Original INS 379 390 

 

As it can be seen from Table 27, PDAF results are better than other 

algorithms, especially than SITAN. Hence, it can be concluded that real-time PDAF 

improves navigation performance. On the other hand, if TSF divergence is avoided 

for the initial few seconds of update intervals, similar results with the updated INS 

can be achieved. However, it is shown from the results that TSF works better for 

acquisition mode than tracking mode. For the simulations, loosely coupled 

architecture is used where INS is updated at discrete time intervals. Actually, 

simulation results show that tightly coupled architecture where INS is updated 

continuously can be used for real-time PDAF and SITAN in order to have better 

updated INS results. 

In the final part of the TAN simulations, horizontal position errors are 

presented in Figure 133 and Figure 134. TAN algorithms tend to correct northward 

velocity errors but not eastward velocity errors. Actually, with TAN algorithms 

velocity states can not be updated correctly, since measurements are only heights. 

However, if a detailed INS error model was used in TAN filters instead of simple 

error models derived in the previous chapter, better velocity errors could be 

obtained. In fact, TAN filter results can be improved by using better INS models in 

TAN models. 
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CHAPTER 5 

DISCUSSION AND CONCLUSION 

 

In the study, modern radar data association algorithms are implemented as 

new TAN algorithms which can be used with low-cost IMU’s. After performing a 

thorough survey of the literature on mid-course navigation of cruise missiles, study 

on modern radar data association algorithms and their implementations to TAN are 

done. Finally, performances of the designed navigation systems with the 

implemented TAN algorithms are examined in detail with the help of the 

simulations performed. 

In Chapter 1, theory about the study is given. Cruise missiles, cruise missile 

navigation performance and literature survey on TAN techniques are discussed. As 

it was discussed in detail in the chapter, the hearth of TAN is the algorithms used 

which fall into two general algorithmic categories of batch and recursive 

algorithms. Therefore, main research of the study is concentrated on TAN 

algorithms. 

From the literature survey, papers of Quintang, et al [40] and Dezert [43] 

gave inspiration for implementing modern data association algorithms to TAN in 

the Ph.D. study. Quintang, et al [40] propose a new TAN approach using PDAF to 

overcome irresolvable ambiguities in the correlation function used in TERCOM. 

The approach proposed is a batch algorithm which uses one of the modern radar 
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tracking algorithms. On the other hand, in the second paper, Dezert [43] proposes a 

new application of PDAF for improving the accuracy of autonomous strapdown 

INS. However, it is a real-time application of PDAF and relation with the former 

paper of Quintang, et al [40] can be obtained where batch implementation of PDAF 

is used. Therefore, it was thought whether PDAF could be used as a TAN algorithm 

for real-time applications. 

TAN is a nonlinear estimation problem; since, terrain height information is 

used for navigation solution. Actually, TAN can be considered as a data association 

problem, especially for the acquisition operation mode where INS position errors 

are considerably large. From the literature survey as stated above, it has been 

thought that modern data association algorithms can be implemented for real-time 

TAN algorithms. Therefore, radar tracking, especially data association subject is 

investigated. At the end of Chapter 1, information about radar tracking techniques 

and possible implementations of radar data association algorithms to TAN is given. 

In Chapter 2, major TAN methods are investigated. First, INS errors of the 

cruise missiles and need for TAN systems are discussed. Then, major TAN methods 

including TERCOM, SITAN and VATAN are presented in detail. Fundamentals of 

the major methods are discussed in this chapter with simulations in order to make 

comparisons for the implemented TAN algorithms in the Ph.D. study. 

For the TERCOM process, several conclusions are achieved from the 

concept study and simulations performed. They are summarized as follows: 

1. Correlation algorithm is simple but not smart. Many calculations 

should be performed in order to have a position fix and navigation 

solutions can be obtained for rough and unique terrains as expected. 
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2. It is thought that the algorithm was derived considering the 

capability of the computers of 1950’s, performing only matrix 

calculations and simple mathematical operations. 

3. Physical meaning of MAD and MSD processes is the minimization 

of the area difference between the measured and the reference areas 

along the route of the missile. Actually, TERCOM process is 

actually a Maximum Likelihood Estimator (MLE) which uses “Least 

Squares Estimation (LSE)” technique. 

4. In the simulations, it was shown that MAD process shows better 

position fix than MSD process. For a terrain with small terrain height 

changes, MSD process neglects the small height difference terms and 

exaggerate the larger height difference terms. On the other hand, in 

MAD process absolute height difference terms are taken into account 

with same weights. 

5. The critical parameter for best terrain correlation is sigma-Z value of 

the area concerned where standard deviation of the point-to-point 

changes in terrain elevation (i.e. the slope) are calculated instead of 

sigma-T value where standard deviation of height of the area is 

calculated. In other words, the slopes of the area concerned are more 

critical than the roughness of the area for correlation. 

6. TERCOM process is independent of the target model where cruise 

missile is the target. Possible tracks for the missile are selected 

where tracks are the missile path formed by the terrain elevation file 

(DTED). Since, the target motion is not modeled; kinematical 

behavior of the system is not known. 
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For the SITAN process, conclusions achieved from the concept study and 

simulations performed is summarized as follows: 

1. SITAN is a recursive TAN technique which uses EKF unlike 

TERCOM which is a batch process. 

2. SITAN performance depends on the linearization of the terrain 

profiles since terrain slopes are required for the KF measurements. 

For large position errors, divergence can occur due to linearization 

errors in the EKF. In order to get rid of this, modified terrain 

linearization techniques and parallel KF structure are used. 

3. SITAN improves position errors for rough and mountainous terrain 

types. However, due to slope determination process in SITAN, 

solutions have sometimes serious jumps for mountainous terrain 

type. This can be explained by the severe slope changes in the 

mountainous terrain modeling. Therefore, linearization of the terrain 

profiles is very critical especially for mountainous terrains in 

SITAN. 

4. SITAN performance is better than both INS and terrain grids unlike 

TERCOM. In TERCOM, error can not be better than the terrain grid 

dimensions. 

5. SITAN performs better for smaller position errors due to terrain 

linearization. Due to this fact, for large initial position errors 

TERCOM or SITAN with parallel KF structure must be used. 
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In the last part of Chapter 2, VATAN is investigated. VATAN uses VA 

which is a maximum a posteriori (MAP) estimator that estimates a sequence of 

system states from a sequence of observation values. VA is actually a dynamic 

programming technique for estimation which uses past information in data 

association problems. Therefore, it is thought that other data association algorithms 

can be used for TAN algorithms in the study. 

In Chapter 3, implementation of target tracking algorithms to TAN is 

presented. First, general information about modern target tracking algorithms are 

given. Next, PDAF and TSF data association algorithms and their general 

implementations are investigated. Then, PDAF and TSF implementations to TAN 

are presented. At the end of the chapter, a simple simulation model is developed for 

the mid-course flight of the cruise missile. Finally, simulations are performed with 

the implemented TAN algorithms and the results are compared with the major TAN 

methods. 

The advantages of the PDA and TS approach implemented for TAN solution 

can be summarized as follows: 

1. Real-time TAN solution can be obtained with a single PDA filter or 

parallel TS filters. 

2. PDA and TS filters can be used for both batch and recursive TAN 

solution. For batch solution, larger grid size is selected for navigation 

solution. For recursive solution, horizontal positions are calculated 

recursively in relatively small DTED grids. 

3. Since past measurements are taken into account, smoothing of the 

measurements in the filter is achieved which decreases errors. 
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4. Since INS error model is used for navigation solution, application of 

the filters is simple and the filters are linear. 

5. Batch size of the DTED area concerned can be changed. Both larger 

DTED areas for acquisition mode or smaller DTED areas for 

tracking modes can be selected using the same PDA filter. 

6. TSF gives solutions for various tracks selected. Actually, all tracks 

converge to the same index of the DTED grid (i.e. solution grid). 

However, for smooth terrains, there exist more than one position 

solution index and the tracks can be investigated separately in order 

to give more than one but finite number of navigation solutions. 

 

TSF approach is original when compared with other papers. However, PDA 

approach for TAN is found in the literature. The difference of the PDA algorithm 

developed from Qingtang, et al [40] is summarized as follows: 

1. In the paper of Qingtang, et al [40], TAN using PDAF was 

investigated for the batch algorithm. The motion of the vehicle is not 

modeled. 

2. In the paper of Qingtang, et al [40], performance of the TAN using 

PDA and TERCOM has been compared. It is stated that PDA was 

used in order to improve the performance of TAN compared to 

TERCOM. 

3. In the Ph.D. study, real-time PDAF implementation is done. By 

using the error model of the INS used in the vehicle, system 
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dynamics is modeled. Using PDAF, error states of the system are 

estimated recursively. 

4. In the Ph.D. study, PDAF equations are directly implemented for the 

TAN solution. Association probabilities obtained from height 

difference measurements for each element of the DTED grid 

concerned are used for position updates, considering the index of the 

DTED grid. 

 

In the last part of Chapter 3, simulations are performed for both acquisition 

and tracking modes of operation considering a small period of time (i.e. 100 

seconds for tracking mode) operation in order to visualize the performance of the 

implemented TAN algorithms. Simulations are performed for rough, smooth and 

mountainous terrain types. Moreover, effects of using different DTED types and 

DTED grid sizes are also investigated. 

In tracking mode, it is seen that better results than SITAN are obtained for 

rough and mountainous terrain types. TSF and PDAF results are considerably good, 

since if navigation solution does not exist, the filters follow INS error model which 

is actually a desired feature. From the Monte Carlo simulations, position RMS 

errors of the TSF and PDAF algorithms become less than 50 meters for 

mountainous terrains; in other words, a decreased navigation error is obtained.  

In acquisition mode, it is seen that similar results with TERCOM are 

obtained for rough terrain type. Critical point in the acquisition mode simulations is 

the percentage of false fix for acquisition mode. In TERCOM, since INS error 

model is not considered for correlation process, there is always a probability of false 

fix in the position solutions. In the Monte Carlo simulations performed, a few false 
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position fixes occurred for TERCOM for rough terrain type. On the other hand, 

with PDAF and TSF no false position fixes occurred. 

Simulation results also show that TAN algorithms work with DTED Level 2 

for acquisition and tracking modes. However, DTED Level 1 results seem to be 

better than DTED Level 2 results. Unfortunately, there were not sufficient DTED 

Level 2 maps for simulations in order to compare simulation results in detail. 

Actually, vehicle velocity directly influences TAN performance. For cruise 

missiles, DTED Level 1 maps are sufficient for mid-course flight navigation 

solution where INS position fixes less than 50 meters can be obtained. For faster 

vehicles like cruise missiles, rapid changes in the terrain profile as in DTED Level 2 

decreases TAN performance. As a result of this, use of DTED Level 1 maps for 

TAN acquisition mode seems to perform better solutions. 

At the end of Chapter 3, simulations are done with various DTED grid sizes 

for PDAF and TSF. Here same initial position errors are taken for simulations in 

tracking mode along rough terrain. It is seen that changing grid size for the same 

initial position errors for TSF slightly changes simulation results. Again errors are 

bounded and limited with the related grid solution. However, selecting larger grid 

sizes for PDAF solutions generally increase position errors. This is due to PDA 

procedure where weighted averages of the all grid points are taken into account for 

navigation solution. Therefore, it can be concluded that PDAF DTED grid size 

should be selected in accordance with the position errors. 

In Chapter 4, case studies are performed for a cruise missile model with the 

help of the 6 DOF simulation tool developed. The simulation tool developed for the 

cruise missile is capable of performing full mid-course flight simulation of the 

cruise missile modeled. Actually, a generic simulation tool applicable to all air 

vehicles is considered except for guidance methods applied. 
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A variety of controllers are implemented for the mid-course flight of the 

cruise missile; Mach hold control, roll position control, heading angle control with 

bank-to-turn autopilot, yaw stability augmentation and altitude hold control with 

acceleration autopilot. All autopilots are derived by classical pole placement 

techniques summarized in Zipfel [79]. 

Then, simulations are performed with PDAF and TSF TAN models with 

actual flight conditions. Finally, simulation results are compared with major TAN 

algorithms considering other flight parameters of the cruise missile model. From the 

simulation results of the system, controls applied for mid-course guidance phase are 

clearly observed. 

From the simulations performed in Chapter 4, better results are obtained for 

PDAF than other algorithms, especially than SITAN. Hence, it can be concluded 

that real-time PDAF improves navigation performance. However, simulation results 

also show that TSF works better for acquisition mode than tracking mode. 

Several conclusions are achieved from the implemented PDAF and TSF 

algorithms from the simulations performed in Chapter 3 and Chapter 4. The 

advantages of the new algorithms proposed can be summarized as follows: 

1. Real-time TAN solution can be obtained with a single PDA filter. 

Since past measurements are taken into account, by changing the 

buffer size of the measurements the filter, measurements are 

smoothed. 

2. Real-time TAN solution can be obtained with a single TSF structure. 

However, TSF operations are more complex than SITAN. On the 

other hand, in TSF, more than one track is selected in order to 

determine navigation solution. Hence, probability of false fix 

decreases unlike in TERCOM. 
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3. Real-time TAN solution is obtained by considering horizontal 

position errors of DTED used in real-time PDA filter and TSF. 

Hence, horizontal position states are added to the Kalman filters used 

in PDAF and TSF. 

4. Application of the filters is simple and the filters are linear, since 

INS error model is used. 

5. Batch size of the DTED area concerned can be changed independent 

of the model used. Both larger DTED areas for acquisition mode or 

smaller DTED areas for tracking modes can be selected using the 

same filters. 

6. Results of the filters are good for both recursive and batch 

algorithms. For tracking mode, position RMS error is less than 50 

meters for DTED Level 1. Moreover, PDAF shows stable response. 

For smooth terrains where no navigation solution exists, PDAF 

follows the INS error model which is actually a desired feature. 

7. TSF can be considered as a real-time TERCOM process for large 

position errors, i.e. large DTED batch size. Possibility of false 

position fixes decrease with TSF when compared with TERCOM. 

On the other hand, for small position errors, decreasing the 

weighting factor of the past measurements for TSF, better real-time 

solutions can be obtained. However, real-time results of TSF follows 

INS error model unlike PDAF where position errors decrease much. 
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Contributions of the Study: 

In order to declare the contributions of the study, disadvantages of the 

present TAN algorithms should be overviewed again. Several disadvantages of the 

TAN algorithms can be summarized as follows: 

1. TAN requires terrain information for real-time navigation solution 

and the dynamics of the system is highly nonlinear which need 

considerable calculation work. 

2. Real-time application for the TAN solution is generally impractical 

for high velocity vehicles like cruise missiles due nonlinear 

characteristics of the system. 

3. In SITAN, terrain linearization and terrain slopes are required in 

order to apply extended Kalman filter equations which are actually 

critical stages for TAN solution. 

4. TERCOM is a batch process and it is independent of the target 

model where cruise missile is the target. Since, the target motion is 

not modeled; kinematical behavior of the system is not known and 

possibility of false position fixes increase especially for terrains with 

similar height profiles. 

 

Then, the contributions of the study can be summarized as follows: 

1. Modern radar data association algorithms are implemented as new 

TAN algorithms which can be used with low-cost IMU’s. 
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2. Acquisition mode performance of the TAN algorithms is improved 

when compared with TERCOM. Probability of false fix decreases 

with the implementation of PDAF and TSF for TAN. 

3. Tracking mode performance of the TAN algorithms is improved 

when compared with SITAN especially with the implementation of 

PDAF. 

4. Application of the filters is simple and the filters are linear, since 

INS error model is used for position updates. 

5. No linearization for terrain is required for the implemented 

algorithms. DTED files can be used directly without any prior work 

for operation. 

6. Implemented algorithms can be applied to existing systems with the 

use of the new micro-processors with relatively low costs. 

 

Future Work: 

As the future work, implemented TAN algorithms can be used for tightly 

coupled integration architecture. Actually, simulation results show that tightly 

coupled architecture where INS is updated continuously can be used for real-time 

PDAF and SITAN in order to have better updated INS results. 

Another future work can be the improvement of the implemented filters. 

Filter system and measurement models are constructed considering simple INS 

models with position and velocity errors only. If a detailed INS error model was 

used in the implemented filters, better results could be obtained than the simulation 
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results in Chapter 4. Finally, a hybrid filter algorithm can be implemented which 

uses both PDAF and TSF in order to have superior results than stand alone PDAF 

and TSF algorithms. 
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APPENDIX 

PROBABILISTIC DATA ASSOCIATION EQUATIONS [52] 

The PDA algorithm calculates in real-time the probability that each 

validated measurement is attributable to the target of interest. This probabilistic 

(Bayesian) information is used in a tracking filter, the PDA filter (PDAF), which 

accounts for the measurement origin uncertainty. 

 

Past Measurement Information: 

The PDAF uses a decomposition of the estimation with respect to the origin 

of each element of the latest set of validated measurements, denoted as: 

{ } ( )

1
( ) ( ) m k

i i
Z k z k

=
=  (A.1)

where; 

( )iz k : i ’th validated measurement, 

( )m k : Number of measurements in the validation region at time k . 

 

The cumulative set (sequence) of measurements is: 
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{ } 1
( ) kk

j
Z Z j

=
=  (A.2)

 

Measurement Validation: 

From the Gaussian assumption, the validation region is the elliptical region: 

 

[ ] [ ]{ }1ˆ ˆ( , ) : ( | 1) ( ) ( | 1)TV k Z z z k k S k z z k kγ γ−= − − ⋅ ⋅ − − ≤  (A.3)

where; 

γ : Gate threshold, 

( ) ( ) ( | 1) ( ) ( )TS k H k P k k H k R k= ⋅ − ⋅ +  (A.4)

( )S k : Covariance of the innovation corresponding to the true measurement. 

 

The volume of the validation region given in equation (A.3) is: 

1 2 1 2( ) ( ) ( )z z

z z

n n
n nV k c S k c S kγ γ= ⋅ ⋅ = ⋅ ⋅  (A.5)

where the coefficient 
znc  depends on the dimension of the measurement (it 

is the volume of the zn -dimensional unit hyper sphere: 1 2c = , 2c π= , 3 4 3c π= , 

etc.) 
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The State Estimation: 

In view of the assumptions listed, the association events; 

{ }
{ }

( ) is the target originated measurement     1,..., ( )
( )

none of the measurements is target originated              0
i

i

z k i m k
k

i
θ

⎧ =⎪= ⎨ =⎪⎩
 

(A.6)

are mutually exclusive and exhaustive for ( ) 1m k ≥ . 

Using the total probability theorem with regard to the above events, the 

conditional mean of the state at time k  can be written as; 

ˆ( | ) ( ) | kx k k E x k Z⎡ ⎤= ⎣ ⎦   

{ }
( )

0

ˆ( | ) ( ) | ( ), ( ) |
m k

k k
i i

i
x k k E x k k Z P k Zθ θ

=

⎡ ⎤= ⋅⎣ ⎦∑   

( )

0

ˆ ˆ( | ) ( | ) ( )
m k

i i
i

x k k x k k kβ
=

= ⋅∑  (A.7)

where, ˆ ( | )ix k k  is the updated state conditioned on the event that the i ’th 

validated measurement is correct, and; 

{ }( ) ( ) | k
i ik P k Zβ θ=  (A.8)

is the conditional probability of this event; the association probability, 

obtained from the PDA procedure presented in the next subsection. 

The estimate conditioned on measurement i  being correct is; 
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ˆ ˆ( | ) ( | 1) ( ) ( )i ix k k x k k K k v k= − + ⋅                        1,..., ( )i m k=  (A.9)

where the corresponding innovation is; 

ˆ( ) ( ) ( | 1)i iv k z k z k k= − −  (A.10)

 

The gain ( )K k  is the same as in the standard Kalman filter; 

1( ) ( | 1) ( ) ( )TK k P k k H k S k −= − ⋅ ⋅  (A.11)

since, conditioned on ( )i kθ , there is no measurement origin uncertainty. 

For 0i =  (i.e. if none of the measurements is correct) or ( ) 0m k =  (i.e. there 

is no validated measurement); 

0ˆ ˆ( | ) ( | 1)x k k x k k= −  (A.12)

 

The State and Covariance Update: 

Combining equations (A.9) and (A.12) into equation (A.7) yields the state 

update equation of the PDAF; 

ˆ ˆ( | ) ( | 1) ( ) ( )x k k x k k K k v k= − + ⋅  (A.13)

where the combined innovation is; 
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( )

0
( ) ( ) ( )

m k

i i
i

v k k v kβ
=

= ⋅∑  (A.14)

 

The covariance associated with the updated state is; 

[ ]0 0( | ) ( ) ( | 1) 1 ( ) ( | ) ( )cP k k k P k k k P k k P kβ β= ⋅ − + − ⋅ + %  (A.15)

where the covariance of the state updated with the correct measurement is; 

( | ) ( | 1) ( ) ( ) ( )c TP k k P k k K k S k K k= − − ⋅ ⋅  (A.16)

and the spread of the innovations term (similar to the spread of the means 

term in a mixture) is; 

( )

0
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

m k
T T T

i i i
i

P k K k k v k v k v k v k K kβ
=

⎡ ⎤
= ⋅ ⋅ ⋅ − ⋅ ⋅⎢ ⎥

⎣ ⎦
∑%  (A.17)

 

The Prediction Equations: 

The prediction of the state and measurement to 1k +  is done as in the 

standard filter, i.e.; 

ˆ ˆ( 1| ) ( ) ( | )x k k k x k k+ = Φ ⋅  (A.18)

ˆˆ( 1| ) ( 1) ( 1| )z k k H k x k k+ = + ⋅ +  (A.19)
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The covariance of the predicted state is, similarly; 

( 1| ) ( ) ( | ) ( ) ( )TP k k k P k k k Q k+ = Φ ⋅ ⋅Φ +  (A.20)

where ( | )P k k  is given by equation (A.15). 

The innovation covariance (for the correct measurement) is, again, as in the 

standard filter; 

( 1) ( 1) ( 1| ) ( 1) ( 1)TS k H k P k k H k R k+ = + ⋅ + ⋅ + + +  (A.21)

 

The Probabilistic Data Association: 

To evaluate the association probabilities, the conditioning is broken down 

into the past data 1kZ −  and the latest data ( )Z k . A probabilistic inference can be 

made on both the number of measurements in the validation region (from the clutter 

density, if known) and on their location, expressed as; 

{ } { }1( ) ( ) | ( ) | ( ), ( ),k k
i i ik P k Z P k Z k m k Zβ θ θ −= =  (A.22)

Using Bayes’ formula, the above is rewritten as; 

{ }1 11( ) ( ) | ( ), ( ), ( ) | ( ),k k
i i ik p Z k k m k Z p k m k Z

c
β θ θ− −⎡ ⎤= ⋅ ⋅⎣ ⎦

0,..., ( )i m k=  
(A.23)
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The joint density of the validated measurements conditioned on ( ), 0i k iθ ≠ , 

is the product of; 

• The (assumed) Gaussian PDF of the correct (target-originated) 

measurements; 

• The PDF of the incorrect measurements, which are assumed to be uniform 

in the validation region whose volume ( )V k  is given in equation (A.5). 

The PDF of the correct measurement (with the GP  factor that accounts for 

restricting the normal density to the validation gate) is; 

[ ]1 1( ) | ( ), ( ), ( ) | ( | 1), ( )k
i i G ip z k k m k Z p N z k z k k S kθ − −⎡ ⎤ = ⋅ −⎣ ⎦  

[ ]1 ( ) | 0, ( )G ip N v k S k−= ⋅  
(A.24)

 

The PDF from equation (A.23) is then; 

[ ]{1 ( ) 1( ) | ( ), ( ), ( ) ...k m k
i Gp Z k k m k Z V k P Nθ − − +⎡ ⎤ = ⋅ ⋅⎣ ⎦  (A.25)

 

The probabilities of the association events conditioned only on the number 

of validated measurements are; 

[ ]( ) 1
1

( )

( ) ( ) | 0, ( )      1,..., ( )
( ) | ( ), ( ),

( )                                            0

m k
G ik

i m k

V k P N v k S k i m k
p Z k k m k Z

V k i
θ

− +
−

−

⎧ ⋅ ⋅ =⎪⎡ ⎤ = ⎨⎣ ⎦ =⎪⎩
 (A.26)
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where ( )F mµ  is the probability mass function (PMF) of the number of false 

measurements (false alarms or clutter) in the validation region. 

Two models can be used for the PMF ( )F mµ  in a volume of interest V : 

1. A Poisson model with a certain spatial density λ ; 

( )( )
!

m
V

F
Vm e

m
λ λµ − ⋅ ⋅

= ⋅  (A.27)

2. A diffuse prior model; 

( ) ( 1)F Fm mµ µ δ= − =  (A.28)

  where the constant δ  is irrelevant since it cancels out. 

Using the (parametric) Poisson model in equation (A.26) yields; 

[ ]
[ ]

( ) [ ]

-1

-1

( ) (1 ) ( )                          1,..., ( )
( )

1 ( ) ( ) (1 ) ( )    0

D G D G D G
i

D G D G D G

P P P P m k P P V k i m k
m k

P P V k P P m k P P V k i

λ
γ

λ λ

⎧ ⋅ ⋅ ⋅ ⋅ + − ⋅ ⋅ ⋅ =⎪= ⎨
− ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + − ⋅ ⋅ ⋅ =⎪⎩  

(A.29)

 

The (nonparametric) diffuse prior equation A.28 yields; 

[ ]
( )

1        1,..., ( )
( )( )

1           0

D G
i

D G

P P i m k
m km k

P P i
γ

⎧ ⋅ ⋅ =⎪= ⎨
⎪ − ⋅ =⎩

 (A.30)
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The nonparametric model in equation (A.30) can be obtained from equation 

A.29 by setting; 

( )
( )

m k
V k

λ =  (A.31)

i.e., replacing the Poisson parameter with the sample spatial density of the 

validated measurements. The volume ( )V k  of the elliptical (i.e., Gaussian-based) 

validation region is given in equation (A.5). 

 

The Parametric PDA: 

Using equations (A.29) and (A.25) with the explicit expression of the 

Gaussian PDF in equation (A.23) yields, after some cancellations, the final 

equations of the parametric PDA with the Poisson clutter model; 

( )

1

( )

1

          1,..., ( )

( )
          0

i
m k

j
j

i

m k

j
j

e i m k
b e

k
b i

b e

β =

=

⎧ =⎪
⎪ +
⎪

= ⎨
⎪ =
⎪

+⎪
⎩

∑

∑

 (A.32)

where; 

11 ( ) ( ) ( )
2

T
i iv k S k v k

ie e
−− ⋅ ⋅ ⋅

=  (A.33)
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1 2 12 ( ) D G

D

P Pb S k
P

λ π − ⋅
= ⋅ ⋅ ⋅  (A.34)

 

The last expression above can be rewritten as; 

2 1 12 ( )
z

z

n

D G
n

D

P Pb V k c
P

π λ
λ

− − ⋅⎛ ⎞= ⋅ ⋅ ⋅ ⋅⎜ ⎟
⎝ ⎠

 (A.35)

where; 

DP : Probability of detection of a target originated measurement, 

GP : Probability of measurements in the gate. 
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