
PARALLELIZED ARCHITECTURES FOR LOW LATENCY TURBO
STRUCTURES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ORHAN GAZİ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

JANUARY 2007

Approval of the Graduate School of Natural and Applied Sciences.

Prof. Dr. Canan Özgen
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree
of Doctor of Philosophy.

Prof. Dr. İsmet Erkmen
Head of Department

This is to certify that we have read this thesis and that in our opinion it is
fully adequate, in scope and quality, as a thesis for the degree of Doctor of
Philosophy.

Assist. Prof. Dr. A. Özgür
Yılmaz

Supervisor

Examining Committee Members

Prof. Dr. Yalçın Tanık (METU, EE)

Assist. Prof. Dr. A. Özgür Yılmaz (METU, EE)

Assoc. Prof. Dr. Melek. D. Yücel (METU, EE)

Assist. Prof. Dr. Çağatay Candan (METU, EE)

Assist. Prof. Dr. Emre Aktaş (Hacettepe University, EE)

I hereby declare that all information in this document has been ob-
tained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct,
I have fully cited and referenced all material and results that are not
original to this work.

Name, Last name : Orhan Gazi

Signature :

iii

ABSTRACT

PARALLELIZED ARCHITECTURES FOR LOW LATENCY TURBO

STRUCTURES

Gazi, Orhan

Ph. D., Department of Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. A. Özgür Yılmaz

January 2007, 143 pages

In this thesis, we present low latency general concatenated code structures

suitable for parallel processing. We propose parallel decodable serially con-

catenated codes (PDSCCs) which is a general structure to construct many

variants of serially concatenated codes. Using this most general structure we

derive parallel decodable serially concatenated convolutional codes (PDSC-

CCs). Convolutional product codes which are instances of PDSCCCs are

studied in detail. PDSCCCs have much less decoding latency and show al-

most the same performance compared to classical serially concatenated con-

volutional codes. Using the same idea, we propose parallel decodable turbo

codes (PDTCs) which represent a general structure to construct parallel con-

catenated codes. PDTCs have much less latency compared to classical turbo

codes and they both achieve similar performance.

We extend the approach proposed for the construction of parallel decod-

able concatenated codes to trellis coded modulation, turbo channel equaliza-

tion, and space time trellis codes and show that low latency systems can be

constructed using the same idea. Parallel decoding operation introduces new

iv

problems in implementation. One such problem is memory collision which oc-

curs when multiple decoder units attempt accessing the same memory device.

We propose novel interleaver structures which prevent the memory collision

problem while achieving performance close to other interleavers.

Keywords: iterative decoding, concatenated codes, soft decision decoding al-

gorithms, parallel processing, decoding latency, memory collision, turbo equal-

ization, trellis coded modulation, space time trellis coding

v

ÖZ

DÜŞÜK GECİKMELİ PARALELLEŞTİRİLMİŞ TURBO YAPILAR

Gazi, Orhan

Doktora, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Assist. Prof. Dr. A. Özgür Yılmaz

Ocak 2007, 143 sayfa

Bu tez calışmasında paralel işlemeye elverişli düşük gecikmeli birleşik kod

yapıları öneriyoruz. Paralel çözümlenebilir seri birleşik kodları (PÇSBK) or-

taya koyuyoruz. PÇSBK’ lar seri birleşik kodlar icin genel bir yapı ifade et-

mektedir. Bu genel yapıyı kullanarak paralel çözümlenebilir seri birleşik konvo-

lusyonel kodları (PÇSBKK) öneriyoruz. PÇSBKK’ lar oldukça düşük gecikme

sürelerine sahip olmakla birlikte seri birleşik konvolusyonel kodlar ile aynı

performansı göstermektedirler. Daha sonra aynı fikirden yola çıkarak paralel

çözümlenebilir turbo kodları (PÇTC) tanıtıyoruz. PÇTC’ lar paralel birleşik

kodlar için genel bir yapı ifade etmektedirler. PÇTC’ lar klasik turbo kod-

larla aynı performansı sergilemekte ve de turbo kodlara göre çok daha düşük

çözümlenme sürelerine sahiptirler.

Önerilen kod yapılarında kullanılan mantığı, örgü kodlanmış modülasyona,

turbo kanal denkleştirmeye ve uzay zaman örgü kodlama yapılarına uyarla-

yarak daha hızlı calışan iletişim sistemleri elde etmenin mümkün olduğunu

da çalışmalarımızda göstermekteyiz. Paralel çözümle işleminin gerçeklenmesi

esnasında bazı sorunlarla karşılaşılmaktadır. Bellek çarpışması bu sorunların

en başta gelenlerinden birisidir. Bellek çarpışmasını önlemek amacıyla yeni

vi

bir serpiştirici yapısı öneriyoruz. Önerilen serpiştirici üniteleri, yaygın olarak

kullanılan serpiştiricilere benzer performans göstermekte ve ek olarak bellek

çarpışma sorununu engellemektedir.

Anahtar Kelimeler: yinelemeli çözüm, birleşik kodlar, yumuşak çözümleme

algoritmaları, paralel işleme, çözüm gecikmesi, bellek çarpışması, turbo den-

kleştirme, örgü kodlanmış modülasyon, uzay zaman örgü kodlama

vii

To Good People

viii

ACKNOWLEDGMENTS

I would like to express my special thanks to Assist. Prof. Dr. A. Özgür Yılmaz

for his guidance and support during my thesis work. I have benefited from his

deep knowledge and his intellectual approach to research. I have gained too

much from his discipline on research. I am grateful to Dr. Emre Aktaş for his

invaluable suggestions for my research. I would like to thank Assoc. Prof. Dr.

Melek Yücel for kindly being in my Ph.D. committee. I would like to thank to

my family for all their support and love. My special thanks goes to my niece

Yağmur and my nephew Gürkan whose love gave me energy during my Ph.D.

work.

ix

PREFACE

A three years study was spent for this doctoral thesis. The thesis was written

according to the chronological order of progress. There are some future studies,

yet the main ideas are clearly presented in the thesis. Some parts of this thesis

have been published in journals, accepted for publication, or to be submitted

for publication. Some were also presented in conferences or workshops.

Journal Papers

1. O. Gazi, A. O. Yılmaz, ”Turbo Product Codes Based on Convolutional

Codes,” ETRI Journal, vol. 28, no. 4, Aug. 2006, pp. 453-460,

2. O. Gazi, A. O Yılmaz, ”Zero State Doped Turbo Equalizer,” IEEE Com-

munications Letters, accepted for publication, Nov. 2006.

3. O. Gazi, A. O. Yılmaz, ”Fast Decodable Turbo Codes,” IEEE Commu-

nications Letters, accepted for publication, Nov. 2006.

4. O. Gazi, A. O. Yılmaz, ”Analysis of Parallel Decodable Turbo Codes,”

IEEE Transactions on Wireless Communications, to be submitted.

5. O. Gazi, A. O. Yılmaz, ”Bit vs Symbol Interleaved Joint Structures for

TCM, MIMO, PDSCCCs,” IEEE Transactions on Wireless Communi-

cations, in preparation

Conference Papers

1. O. Gazi, A. O. Yılmaz, ”On Parallelized Concatenated Codes,” IEEE

Wireless Communications and Networking Conference, Hong Kong, 11-

15 March 2007, Accepted.

x

2. O. Gazi, A. O. Yılmaz, ”Konvolusyonel Kodların Performans Analizi,”

İTÜSEM İletişim Teknolojileri Sempozyumu 2005, pp. 171-176, Çukurova

Üniversitesi, Adana-Türkiye.

3. O. Gazi, A. O. Yılmaz, ”Serpiştiricinin Konvolusyonel Çarpım Kod-

larının Performansı Üzerindeki Etkileri,” URSI Türkiye Ulusal Komitesi

3. Bilimsel Kongresi, Hacettepe Üniversitesi, pp. 471-474, 6-8 Eylül

2006, Ankara-Türkiye.

4. O. Gazi, A. O. Yılmaz, ”Parallel Decodable Concatenated Convolutional

Codes,” ISEECE 2006, pp. 1-7, Nov. 23-25, 2006, Nicosia, North

Cyprus.

5. O. Gazi, A. O. Yılmaz, ”Doğrusal Kodların Spektrum Ağırlık Fonksiy-

onlarının Hesaplanması,” ELECO 2006, pp. 149-154, 6-10 Aralık 2006,

Bursa-Türkiye.

xi

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

DEDICATION . viii

ACKNOWLEDGMENTS . viii

PREFACE . x

TABLE OF CONTENTS . xii

LIST OF FIGURES . xvi

CHAPTER

1 INTRODUCTION . 1

2 MODERN CODING THEORY 6

2.1 Channel Coding and Information Theory 6

2.2 Error Correcting Codes 7

2.2.1 Block Code . 8

2.2.2 Trellis Diagrams for Block Codes 9

2.3 Convolutional Codes . 11

2.4 Polynomial Representation of Convolutional Codes . . . 14

2.5 Spectrum Functions of Convolutional Codes 16

2.5.1 Input Redundancy Weight Enumerating Func-
tion . 17

2.5.2 Weight Enumerating Function 17

2.5.3 Input Output Weight Enumerating Function . 17

2.5.4 Conditional Weight Enumerating Function . . 18

2.5.5 Computation of Spectrum Functions 18

2.6 Decoding . 19

2.7 Performance Bounds . 19

xii

2.8 Punctured Convolutional Codes 20

2.9 Some Properties of Convolutional Codes 21

2.9.1 Hard Decision vs Soft Decision Decoding . . . 22

2.9.2 Free Distance 23

3 CONCATENATED CODES . 25

3.1 Introduction . 25

3.2 Turbo Codes . 26

3.3 Interleaving . 27

3.3.1 The effect of Interleaving on Code Performance 29

3.4 Interleaver Types . 29

3.4.1 Block Interleaver 30

3.4.2 Convolutional Interlavers, Cyclic Shift Inter-
leavers . 30

3.4.3 Random Interleavers 32

3.4.4 Code-Matched Interleavers 33

3.5 Uniform Interleaver . 33

3.6 Analytical Performance of Turbo Codes 33

3.7 Serially Concatenated Convolutional Codes 34

3.7.1 SCCC Design 34

3.8 Turbo Code Design . 35

3.9 Iterative Decoding and Soft-Input Soft Output (SISO)
Module . 37

3.10 Major Drawbacks of Concatenated Codes 38

4 PARALLEL DECODABLE SERIALLY CONCATENATED CON-
VOLUTIONAL CODES . 42

4.1 Introduction . 42

4.2 CPC Encoder and Decoder (Code Structure) 44

4.2.1 CPC Encoder 44

4.2.2 CPC Decoder 47

4.3 Parallel Decodable Serially Concatenated Codes (PDSCCs) 48

4.3.1 PDSCC Decoder 51

4.4 Practical Implementation Issues 52

4.4.1 Memory Collision Problem 52

xiii

4.4.2 Row-Column S-random (RCS-random) Inter-
leavers . 53

4.5 CPC Minimum Distance and Its Asymptotic Performance 57

4.5.1 CPC with Rectangular Interleaver 57

4.5.2 CPC with Column S-random Interleaver . . . 57

4.5.3 CPC with Full S-random Interleaver 59

4.5.4 CPC with RCS-random Interleaver 59

4.5.5 PDSCCC with RCS-random Interleaver 61

4.5.6 Asymptotic Performance 61

4.6 Practical Implementation Advantages 63

4.7 Performance of CPCs 63

4.7.1 Trellis Termination Effects 64

4.7.2 Interleaving Effects 65

4.7.3 Puncturing Effects 67

4.8 Peformance of PDSCCCs 69

4.9 Analytical Analysis of PDSCCCs 72

4.10 BER Bounds for PDSCCCs 74

5 PARALLEL DECODABLE TURBO CODES 79

5.1 Introduction . 79

5.2 IRWEF of Parallel Concatenated Code 80

5.3 Parallel Decodable Turbo Codes (PDTCs) 82

5.3.1 Decoding Delay 84

5.4 Performance Analysis of Parallel Decodable Turbo Codes 85

5.5 Some Instances of PDTCs 88

5.5.1 Woven turbo codes 88

5.5.2 Convolutional coupled codes 88

5.6 Further Analysis of PDTCs 89

5.6.1 Minimum Distance of PDTC with Rectangu-
lar Interleavers 89

5.6.2 Minimum Distance of PDTC with S-random
Interleavers . 91

5.6.3 Minimum Distance of PDTC with Row-Column
S-random Interleaver 93

5.6.4 Memory Collision Problem 95

xiv

5.7 Increasing Code Rate by Puncturing 99

6 SOME APPLICATIONS OF THE PROPOSED PARALLELIZA-
TION TECHNIQUES . 100

6.1 Turbo Equalization . 100

6.1.1 System Model 101

6.1.2 Zero State Doped Turbo Equalizer (ZSDTE) . 103

6.1.3 Transmitter Side Equivalent Model 106

6.1.4 Simulation Results 106

6.2 Joint Structures for Trellis Coded Modulation, Convo-
lutional Product Codes and Space Time Trellis Codes . 108

6.2.1 Trellis Coded Modulation 110

6.2.2 Trellis Coded Modulated CPC 116

6.2.3 Joint CPC and STTC 118

6.2.4 Joint CPC and STTCs 121

7 CONCLUSIONS AND FUTURE WORK 126

APPENDICES . 128

A Computation of Spectrum Function of Convolutional Codes . . . 129

B Analytical Bound Calculation 132

C The MAP Algorithm . 135

REFERENCES . 137

VITA . 143

xv

LIST OF FIGURES

2.1 Communication Bound for AWGN Channel. 7
2.2 Block code trellis diagram. 11
2.3 Expurgated trellis diagram. 11
2.4 Non systematic convolutional encoder with feed forward. . . . 12
2.5 Systematic Convolutional encoder with feed back. 13
2.6 (1, 5/7)octal Convolutional encoder trellis diagram. 13
2.7 (1, 5/7)octal Convolutional encoder state diagram. 13
2.8 (1, 5/7)octal Convolutional encoder state graph. 14
2.9 Controllable canonical form of a rational transfer function. . . 15
2.10 Punctured convolutional encoder trellis diagram. 21
2.11 Soft decision Viterbi decoding illustration. 23

3.1 Parallel concatenated convolutional code. CC1, CC2 are con-
stituent recursive systematic convolutional codes (RSCs) 1
and 2, respectively. 27

3.2 Turbo decoder structure. D1, D2 are constituent decoders 1
and 2 respectively. rd, rp1, rp2 are received signals. Ld, Lde, Ld′ , Lde′

are log-likelihoods. 27
3.3 Convolutional interleaver and de-Interleaver. 31
3.4 Serially concatenated encoder and decoder structure. 34
3.5 SISO module. 38
3.6 Hybrid encoder and decoder. 39

4.1 Regular product code encoding procedure, where a block code
is used to encode rows and columns. 45

4.2 CPC encoding procedure without an interleaver. 46
4.3 Convolutional product code encoder with any type of inter-

leaver (d denotes data bits and p denotes parity bits). 47
4.4 Decoding operation of the convolutional product code. 48
4.5 SCCC encoding operation. 48
4.6 PDSCC structure. 49
4.7 PDSCC decoder. rx is the received signal value, S/P and

P/S are the serial to parallel and parallel to serial converters
respectively. INT is the interleaver. Lk and Ll are the bit
probabilities. 51

4.8 An Interleaver without memory collision. 52

xvi

4.9 An Interleaver causing memory collision. 53

4.10 Row column S-random interleaver without memory collision. . 55

4.11 PDSCCC with collision free row-column S-random interleaver. 56

4.12 If the columns elements are not mixed d2
free is preserved. . . . 58

4.13 d2
free is not preserved if S-random interleaver is used (’x’ stands

for a single or a group of 0’s). 60

4.14 CPC Encoding operation using RCS-random interleaver. (’x’
stands for a single or a group of 0’s). 62

4.15 CPCs and SCCC performance graph. CPCs with no trellis
termination (CPC No TT). CPCs when rows (outer codes) are
trellis terminated (CPC R-T). CPCs when rows and columns
(outer and inner codes) are trellis terminated (CPC TT). Frame
length=1024, Iteration number=12. 65

4.16 SCC and CPC performance graph for different interleavers.
Iteration number=12. Frame length 1024. The graph is ex-
plained below. 67

4.17 Punctured CPC (Rate:2/3) and punctured SCCC (Rate:2/3)
simulation graph. 69

4.18 PDSCCC and CPC Performance graph. RCSRI is the row-
column S-random interleaver. FSRI is the full S-random in-
terleaver. Frame length = 1024. Iteration number = 12 70

4.19 Punctured CPC Performance graph when full S-random and
row-column S-random interleaver is employed. Rate' 16/25.
Frame length = 1024. Iteration number = 12 71

4.20 PDSCCC Performance graph for full S-random interleaver and
collision free RCS-random interleaver. N=M=32. Frame length=1024.
72

4.21 PDSCCC and SCCC performance graph. N=16, M=16. Frame
length = 1024. Iteration number = 12 73

4.22 Serial concatenated code. CC1 and CC2 are constituent codes
CCs 1 and 2, respectively. These can be block codes, convo-
lutional codes or a mix of both. The interleaver size is L. . . . 74

4.23 CPCs ’ analytical bounds for different interleaver sizes. Square
input matrices are used. Trellis termination bits are added
to codewords by both outer and inner encoders. Constituent
Encoders are RSC (1, 5/7)octal. L is the interleaver size. 75

4.24 PDSCCC analytical bounds for small interleaver size. 76

4.25 PDSCCC analytical bounds for a small interleaver size. 76

4.26 PDSCCC analytical bounds for large interleaver size. 77

4.27 PDSCCCs ’ analytical bounds for large interleaver size. 77

4.28 CPCs ’ analytical bounds when trellis termination bits are not
used. 78

xvii

5.1 Parallel concatenated code. CC1, CC2 are constituent recur-
sive systematic convolutional codes 1 and 2 respectively, D1

and D2 are soft-in soft-output decoders. rd, rp1 and rp2 are
the received signal values for data and parity bits. Ld, Lde,
L′de are log-likelihood values. 81

5.2 PDTC encoder. CC1i, CC2i are constituent RSCs. S/P and
P/S are the serial to parallel and parallel to serial converters. . 83

5.3 PDTC decoder. D1i, D2j(i = 1 . . . N, j = 1 . . . M) are the
decoders for RSCs CC1i and CC2i respectively. rd, rp1 and rp2

are the received signals for data and parity bits. Ld, Lde, L′d
and L′de are log-likelihoods. 83

5.4 Analytical bounds for PDTCs using uniform interleaving. Con-
stituent codes are trellis terminated. 86

5.5 Analytical bounds for PDTCs using uniform interleaving. Con-
stituent codes are trellis terminated. 86

5.6 PDTC performance graph. Interleaver size = 2048. N and
M are the number of constituent encoders in upper and lower
clusters. S-random (S = 20) interleaver is used. The curves
refer to 12 iterations. 87

5.7 Woven Turbo Encoding Operation. 89

5.8 Convolutional Coupled Codes Encoding Operation. I1 · · · IM
are interleavers. BC21 · · ·BC2M are the constituent block codes.
90

5.9 PDTC encoding operation matrix illustration. Rectangular
interleaver is employed. 92

5.10 Free distance computation of PDTCs when rectangular inter-
leaver is employed. 92

5.11 PDTC Encoding operation matrix illustration. An S-random
interleaver is used. 94

5.12 PDTC Encoding operation matrix illustration. A RCS-random
interleaver is employed. 96

5.13 PDTC performance graph. RCS-random interleaver is em-
ployed. MC refers to an interleaver with memory collision . . . 97

5.14 PDTC performance graph. RCS-random interleaver is em-
ployed. MC means memory collision 98

5.15 PDTC performance graph for RCS-random and S-random in-
terleavers. MC means memory collision 98

5.16 Punctured PDTC performance graph with RCS-random inter-
leaver. Frame length =1024. Rate is 0.47. Iteration number
is 12. 99

6.1 Transmitter side of a communication system. 102

6.2 Receiver side of a communication system. 102

6.3 Tapped delay line model for three tap frequency selective chan-
nel. 103

xviii

6.4 Trellis representation for a three tap frequency selective chan-
nel. The possible content of the delay elements r0 = (1, 1),
r1 = (−1, 1), r2 = (1,−1), r3 = (−1,−1) are the states. The
transitions from a state St at time t to another state St+1 at
time t+1 occurs according to the input and output pair vt/yt

where vt is the channel input and yt is the channel output. . . 104
6.5 Turbo equalizer. y is the received signal. Ly, L1, L2, L3, L4

and L5 denote log-likelihoods. 104
6.6 Zero state doping process at the transmitter side. tb, tc are

the trellis termination bits and symbols respectively. 105
6.7 Parallel equivalent model. 106
6.8 Bit error rate (BER) performance of ZSDTE and sliding win-

dow turbo equalizer (SWTE). N=M=1 corresponds to the
classical turbo equalizer. 107

6.9 Frame error rate performance of the ZSDTE and SWTE. N=M=1
corresponds to the classical turbo equalizer. 108

6.10 Error rates for the ZSDTE for the asymmetric case, i.e., N=16,
M=1. ATE and CTE mean asymmetric and classical turbo
equalizer respectively. 109

6.11 Trellis coded modulation procedure. 112
6.12 4 PSK and 8 PSK Constellations. 113
6.13 Constellation expansion and partitioning of the constellation.

Codewords are carefully assigned to the constellation points. . 113
6.14 Systematic Convolutional Encoder. 114
6.15 State transition diagram of the convolutional encoder in Fig-

ure 6.14. Codewords are carefully assigned to the constellation
according to Ungerböeck design rules. 115

6.16 TMCPC encoding operation. 117
6.17 TMCPC decoding operation. 119
6.18 TMCPC performance graph. Frame length=1024. Iteration

number=12. S-random interleaver is used (S = 20). N=32,
M=34 . 120

6.19 STTC 4-state encoder diagram. 121
6.20 MIMO communication system. 122
6.21 Parallel decodable concatenated space time trellis code en-

coder and decoder blocks. S’/P’ is the pairwise serial to par-
allel converter, i.e., cells holding data and parity symbol pairs
from STTCs are multiplexed and transmitted. 123

6.22 MIMO-CPC encoding operation. 124
6.23 MIMO decoding operation. SBc denotes symbol to bit proba-

bility conversion for column vectors. BSr denotes bit to sym-
bol probability conversion for rows. 124

6.24 CPC-MIMO performance graph. 125

A.1 State machine for convolutional code generator (1, 5/7)octal. . . 130
A.2 Matrix representation of polynomial WZ. 131

xix

CHAPTER 1

INTRODUCTION

Information theory was born within the field of communications with the pub-

lication of Shannon’s paper in 1948 [1]. In his paper, Shannon stated that

it was possible to transmit data reliably over a communication channel at a

rate lower than the channel capacity if suitable error correction codes are used.

Over fifty years researchers are developing error correcting codes to approach

the limits determined by Shannon. Almost at the same time as Shannon’s

work, the first error correcting codes were introduced by Hamming [2] and

Golay [3]. The general approach in both Hamming and Golay codes was the

same, they divided information symbol blocks into sub-blocks of length k and

they added n− k parity symbols to the end of these sub-blocks. The resulting

code is referred as a block code and referred to a (n, k) code.

Other block codes discovered are Reed-Muller, cyclic codes, BCH, and

Reed Solomon (RS) codes [4, 5]. Reed Muller codes were more flexible for the

number of codewords and the number of correctable errors per codeword when

compared to Hamming and Golay codes. Reed Muller codes were popular

during 1970’s and widely used in space-craft communication. BCH constitutes

an important class of cyclic codes. RS codes are the non-binary extension of

BCH codes. Berlekamp introduced an efficient decoding algorithm for Reed

Solomon codes in 1960 [6] which led to widespread application of RS codes

in practical systems such as compact disc players (CD), digital versatile disc

(DVD) players, and cellular digital packet data standard.

Having a frame oriented structure, block codes have some drawbacks. Some

1

of these drawbacks are that the entire frame must be received before decoding

starts, frame synchronization is needed, codeword size is not flexible etc. Con-

volutional codes are first introduced by Elias in 1955 [7]. Rather than grouping

parity and data bits separately, convolutional codes mix data and parity bits

uniformly. The convolutional encoding operation is performed continuously

using shift registers. Decoding can also be done continuously which achieves

a significant reduction in latency compared to block codes. Convolutional

codes became popular and were applied in many communication systems after

the introduction of the Viterbi algorithm in 1967 [8]. For instance, the GSM

standard uses a convolutional code. It is also widely used in deep space com-

munications [9]. Ungerboeck combined convolutional coding and modulation

processes and introduced trellis coded modulation [10] in 1976. Trellis coded

modulation was adopted in use for telephone modems and for many satellite

communication applications [11].

In his paper Shannon stated that it is possible to achieve error free trans-

mission using long channel codes. Some researchers attempted constructing

long codes by concatenating codes. The earliest study in this field was done

by Elias in [7] where product codes were introduced. Elias used two block

codes sequentially to encode the information frame. In 1966 Forney [12] con-

catenated a block code and a convolutional code, where he used soft decision

decoding for the inner code. The interest in soft decision decoding and inter-

leaver use multiplied after Forney’s work. For this reason, many researchers

refer to Forney as the founder of the concatenated codes.

Turbo codes which are also called parallel concatenated convolutional codes

were introduced in 1993 [13]. Turbo codes approached the Shannon limit the

most when compared to all the available codes at that time. This flourished a

large volume of research on concatenated codes and soft decision algorithms.

Turbo codes were pursued by the development of the serially concatenated

convolutional codes and block product codes. The success of turbo codes also

led to the rediscovery of Galleger’s low density parity check codes [14]. The

good performance of turbo codes and their derivatives lies on the success of

2

the well known soft decision algorithm BCJR. It was verified both empirically

and analytically that it was possible to approach the Shannon limit using soft

decision algorithms [13].

The idea of turbo decoding was further extended to channel equalization

[15] where turbo equalization was introduced. An equalizer is a signal pro-

cessing subsystem that mitigates the effects of frequency selective channels.

A frequency selective channel can be considered as a rate-1 convolutional en-

coder that employs real or complex symbols. The combination of a convolu-

tional code and an ISI channel (frequency selective channel) can be considered

as a serially concatenated convolutional code. The combined system can be

decoded using turbo decoding algorithms.

Although concatenated codes show very good performance at low SNR val-

ues, their large decoding latency due to complex decoding algorithms and long

frame lengths is a major problem in communication systems. Two approaches

are generally followed to reduce the decoding latency. One is the development

of complexity reduction techniques for decoding algorithms, the other is the

construction of more efficient hardware structures. We focus on the second

method in this thesis where parallel processing will be utilized.

Parallel processing is a way to reduce the decoding latency. Some channel

code families such as block product codes are more suitable for parallel process-

ing operations. However, since these codes are constructed using block codes,

a large number of states form for even small frame lengths which prevents the

use of marginal a-posteriori (MAP) decoding for these codes and hence sub-

optimal decoding algorithms are used. Recently new classes of concatenated

codes which enable parallel processing are proposed. These are woven convolu-

tional codes [16], convolutional coupled codes [17], and woven turbo codes [18].

In these code structures, block codes or convolutional codes are concatenated

in parallel and serial manner.

In this thesis we propose general parallelized structures for concatenated

codes. We propose a general structure for parallel decodable serially concate-

nated codes and using the same idea we introduce parallel decodable turbo

3

structures. The proposed structures are very suitable for parallel processing

operations and show comparable performance to their counterparts. For par-

allel decoding of the concatenated codes, general trend is to devise systems

for the receiver side. This type of systems suffer from extra memory use,

complexity increase in decoding operations, and performance loss. The most

widely known classical method for parallel decoding is the sliding window tech-

nique. It is based on dividing data block into small frames and processing each

frame separately by different processors. Since this method divides the frames

into sub-blocks, as the number of sub-blocks increase, undetermined bound-

ary probabilities worsen code performance seriously. In our work, we follow

a different approach. We parallelize encoder side and use it directly at the

decoder side for parallel processing. This enables us to have more control on

code parameters. Parallelized encoding operation can be illustrated using ma-

trix notation and this matrix structure can be used for the determination of

lower and upper bounds for the worst case minimum distance of the code. In

addition, by the help of matrix notation the number of parallel decoders for a

guaranteed worst case minimum distance can be determined. It is also shown

that many proposed structures already available in literature are instances of

our general structures. Many other different codes can be generated using the

generalized structures proposed in this thesis.

Memory collision is one of the most important problems observed during

parallel decoding operation. Memory collision occurs if two or more decoders

try to access the same memory segment at the same clock instance. It is due

to the permutation order of the interleaver. Using the matrix notation for par-

allelized encoding operation, specific collision interleavers can be constructed.

We propose such a memory collision free novel interleaver which is called the

row-column S-random interleaver. The proposed interleaver can be handled in

a manner to guarantee a lower bound for worst case minimum distance. We

also show that, using row-column S-random interleaver, it is possible to make

a tradeoff between number of parallel decoders and code performance without

memory collision. The proposed structures are highly suitable for integration

4

with other communications units such as trellis coded modulation, space time

trellis codes, multi-carrier communication. In our work, we study two such

systems involving trellis codes modulation and space time trellis codes. The

outline of the thesis is as follows.

In Chapter 2, block and convolutional codes are reviewed, decoding meth-

ods are discussed, and some fundamental concepts from information theory

are given.

Chapter 3 focuses on concatenated codes. Turbo code (TC) and serially

concatenated convolutional code (SCCC) structures are explained. The role

of the interleavers on the performance of the TCs and SCCCs is inspected.

In Chapter 4 parallel decodable serially concatenated convolutional codes

(PDSCCCs) are introduced. It is shown that the SCCCs and block prod-

uct codes are instances of the proposed structure. Interleaving effects on the

performance of PDSCCCs are studied. Analytical bounds using the uniform

interleaver approach are drawn for PDSCCC. Simulation results which include

the effects of minimum distance for different interleavers and trellis termina-

tions are reported.

In Chapter 5 we introduce parallel decodable turbo codes (PDTCs). In

fact, this is a general structure for parallel concatenated codes. We analyze

the effects of interleaving on the performance of PDTCs. Simulation results of

the proposed system are depicted and latency gain over classical turbo codes

are emphasized.

In Chapter 6, we study the extension of PDSCCCs and PDTCs to turbo

equalization and MIMO communication systems. Zero state doped turbo

equalizer is introduced. Joint structures for PDSCCC, trellis coded modu-

lation, and MIMO trellis codes are studied. Finally, conclusions and some

suggestions for future studies are given in Chapter 7.

5

CHAPTER 2

MODERN CODING THEORY

In this chapter some basic concepts of information theory will be reviewed.

Linear block and convolutional codes will be explained shortly. Trellis repre-

sentation for linear codes will be presented. Spectrum functions of the convo-

lutional codes will be defined. Bound expressions for probability of bit error

will be given. Some properties of the convolutional codes will be inspected.

2.1 Channel Coding and Information Theory

Channel coding has become a requisite apparatus for modern communications

systems. Power and bandwidth are two important constraints during the de-

sign of channel codes. Coding gain, which is the difference in the signal energy

between coded and uncoded communication systems to realize a given bit error

probability, is an indicator for the code performance. Nearly 60 years ago it was

stated by Shannon that large coding gains can be achieved using long enough

coded sequences. Shannon proved the existence of some limits for reliable com-

munication. For almost 60 years researchers are looking for codes approaching

Shannon limits. The capacity formula for the additive white Gaussian noise

channel is given as

C = Wlog(1 +
P

N0W
) bits/sec, (2.1)

where C is the capacity, W is the signal bandwidth, P is the signal power, and

N0 is the noise power spectral density.

6

It is obvious from eqn. (2.1) that as the signal power increases capacity

increases as well. Hence, we can conclude that by increasing the signal power

only we can set the channel capacity to any value. For reliable communication

the transmission rate (bits per second) should be less than the channel capacity,

i.e.,

R < Wlog(1 +
P

N0W
). (2.2)

Defining ρ = C
W

which is called the spectral efficiency, eqn. (2.2) leads to

P = R.Eb

ρ = log(1 + ρ.
Eb

N0

) (2.3)

where Eb is the energy consumed per data bit. It can be further simplified as:

Eb

N0

=
2ρ − 1

ρ
. (2.4)

This relation is plotted in Fig. 2.1. The reliable communication is possible in

the region below the curve. As the R tends to zero, Eb/N0 = ln2 ∼ −1.6dB is

the minimum value of Eb/N0 for reliable communication.

� ���

� � �� �� ������

��	�

��
� ����

Figure 2.1: Communication Bound for AWGN Channel.

2.2 Error Correcting Codes

Channel coding is the addition of some redundant bits to information bits at

the transmitter side. The added redundancy is used for the detection of the

7

transmitted bits at the receiver side. Shannon stated the existence of good

channel codes for error free communications. However, he didn’t show how

to find good channel codes. Linear codes have been dominantly studied due

to their analytical tractability. Linear codes mainly consists of two classes of

codes: block and convolutional codes. A linear code is a vector space [19]. Each

element of the code is called a codeword. Codewords are symbol sequences.

The symbols used in codewords are chosen from a finite field F , i.e., code

C = {c1, c2, . . . , cM−1, cM} , ci = [b1, . . . , bn], where bj ∈ F for ∀ i, j. The

code rate R is defined as R = logq(M)/n where q is the number of elements in

F . Systematic linear block codes are formed by appending parity check bits

to the end of information bits. Convolutional codes do not usually operate

in block fashion. However, they can be considered as block codes under some

circumstances.

2.2.1 Block Code

A linear block code over a finite field F is a subspace of a vector space F n.

Linear block code elements are n-tuple vectors whose elements are chosen from

F . The code elements (n-tuple vectors) are called codewords. An (n, k) block

encoder takes a k-tuple data-word and matches this data-word to an n-tuple

codeword from the code and uses this n-tuple codeword for transmission. For

k-symbol words there are qk possible number of data words. For n-symbol

codewords, there are qn vectors to be used as codewords, since n > k we have

more vectors than the data-words. Hence, sets of vectors can be carefully

chosen for use in transmission considering distances among them. When the

minimum distance between any codeword pairs is the criterion, the sets of

vectors are chosen such that they have largest minimum distances.

At the receiver side, the received vectors can be separated from each other

using the Euclidian distance measure. The distinguishability of these code-

words at the receiver side gives an indication about the performance of the

code. As the distances within the codebook becomes larger, better detection

8

of the transmitted codeword is achieved at the receiver side. Every vector

space has basis vectors that generate all the vectors. A generator matrix for

a linear code is defined as the matrix whose rows are the basis vectors of the

code. The dimension of the generator matrix of an (n, k) code is k × n, i.e.,

there are k basis vectors of the code.

2.2.2 Trellis Diagrams for Block Codes

The generator matrix of a block code is used to generate the codewords. The

parity check matrix of a code is used to generate the codewords of the dual

code. The parity check matrix is also used to check the validity of the code-

words. Let G denote the generator matrix of a block code and H denote the

parity check matrix. For a linear (n, k) code C, size of the generator matrix G

is k × n and the size of the the parity check matrix H is (n − k) × n. Either

the parity check matrix or the generator matrix of a block code can be used to

generate the trellis diagram states. We explain the trellis diagram construction

using the parity check matrix here. A more detailed discussion of the subject

can be found in [19].

The parity check matrix H satisfies the equality c.HT = 0 for a codeword c.

The block code can also be described by a trellis diagram. The trellis diagram

for a linear block code is constructed as follows. Consider the codeword c =

(c0, c1, . . . , ci, . . . , cn−2, cn−1) over the binary field GF (2) ci ∈ 0, 1. The trellis

path consists of n stages. Each stage has some states. The number of states in

a stage can be at most 2n−k. At the beginning there is only one state which is

the zero state and is denoted by S0(0). In general the states for stage l will be

denoted by Si(l), 0 ≤ i ≤ 2n−k. The next state sequence is determined from

the previous one according to the following equality

Sm(l + 1) = Si(l)⊕ αj
ihl+1, (2.5)

where

9

αj
i =





1 if j = 1

0 if j = 0,
(2.6)

hl+1 is the l + 1’th column vector of the parity check matrix, and ⊕ denotes

the module-2 addition operation.

At trellis depth l = n

S0(n) = S0(0)⊕
n−1∑
i=0

αj
ihi = 0. (2.7)

Since the first and last states are zero stated the above equality means that

n−1∑
i=0

αj
ihi = 0. (2.8)

An example is given below to clarify the trellis structure of a block code.

Example: For the parity check matrix

H = [h0 h1 h2 h3] =


 1 1 0 1 0

1 0 1 0 1


 , (2.9)

the trellis diagram is shown in Fig. 2.2. The state diagram is obtained as

follows. We start with the zero state (00), then h0 is multiplied with 0 and

added to the zero state and h0 is multiplied by 1 and added to the zero state,

in this manner we find the two next states for zero state. In the second stage,

we have two states. We consider those two states separately. For the first

state, h1 is multiplied with 0 and added to the first state, and h1 is multiplied

with 1 and added to the fist state. In this way we find two next state values for

the first state of the second stage. These two next states correspond to input

bits zero and one respectively. A similar procedure is performed for the second

state of the second stage and two next states are obtained. This procedure goes

on until the number of stages equals the number of bits in codewords. Not all

the sequences produced by the trellis diagram are codewords. The codewords

are those words that have path to the final zero state. We remove the nodes

10

and branches that do not have zero state as the final state. This procedure is

called the expurgation of the trellis diagram. The expurgated trellis diagram

is shown in Fig. 2.3.

�
�

�
�

�

�

� ���

�� ��

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

��

��

��

��

Figure 2.2: Block code trellis diagram.

�
�

�
�

�

�

� ���

� �

�

�

�

�

�

�

�

�

�

�

��

�

��

��

��

��

Figure 2.3: Expurgated trellis diagram.

2.3 Convolutional Codes

A binary convolutional encoder consists of binary shift registers and binary

adders. Convolutional encoders are finite state machines. The encoding pro-

cedure can be illustrated using finite state machines which are represented by

state diagrams, graphs, and trellises. The state of the convolutional encoder

is determined by the contents of the shift registers. If the longest shift register

11

of the convolutional encoder contains M flip-flops then the encoding procedure

can be illustrated using a state machine of 2M states. For each input informa-

tion sequence the finite state machine produces a binary output sequence.

Convolutional encoders are divided into different categories with regard to

encoders outputs. According to the encoding operation convolutional encoders

are classified as recursive and non-recursive. They are classified as systematic,

which is the case when data bits appear directly at the output, and non-

systematic where data bits do not appear directly at the encoder output. A

systematic recursive convolutional code has a recursive encoder structure and

has data bits at the encoder output. The encoder structure of a non-recursive

convolutional code is depicted in Fig. 2.4. If there is a feedback path in

the encoder structure, the code is a recursive code. A recursive systematic

convolutional encoder (RSC) is depicted in Fig. 2.5.

� �

�

�

�

�

��

��

Figure 2.4: Non systematic convolutional encoder with feed forward.

The operation of the RSC in Fig. 2.5 is illustrated in Figs. 2.6, 2.7, 2.8

using trellis diagram, state machine, and state graph.

Graphical illustration of the state diagram is used to find the transfer func-

tion of a convolutional code [19]. The transfer function contains all the in-

formation about the convolutional code, i.e., the number of codewords with

Hamming weight d. The transfer function of the RSC in Fig. 2.5 is found [11]

using its state graph as in eqn. (2.10).

T (X) = X5 + 2X6 + 4X7 + . . . (2.10)

12

� �

�

�

�
�

��

��

Figure 2.5: Systematic Convolutional encoder with feed back.

�

�

�

�

����� 	
 ��
�

����� 	
 ���

���� �� ��� � � �

� � � �

�� ��

����

� � � �

��� �
� � � �

� � � �

� � � �

����

�� �� ����

Figure 2.6: (1, 5/7)octal Convolutional encoder trellis diagram.

��

��

��

������

���� ����

����

����

���� ����

����

Figure 2.7: (1, 5/7)octal Convolutional encoder state diagram.

13

�� �� ��

��

��
���

��

��

��
��

�

���

�	
��
�� �� ����

�	
��
�� �� �	�

Figure 2.8: (1, 5/7)octal Convolutional encoder state graph.

The lowest power of X in transfer function T (X) denotes the free distance of

the convolutional code. If convolutional codes are trellis terminated, they can

be considered as block codes. Hence, the studies made on block codes turn

out to be valid for the convolutional codes; too.

2.4 Polynomial Representation of Convolutional

Codes

For the single stage of a generic convolutional encoder in Fig. 2.9, let ui be

the information bit sequence at input port i, and cj be the bit sequence at the

convolutional encoder output port j. The sequences are given below

ui = [u0i, u1i, . . .],

cj = [c0j, c1j, . . .]. (2.11)

The information and code bit sequences (datawords and codewords) can be

expressed in terms of the delay operator as

14

� � �

� � � � � � � � �

� � � � � � � � �

��

��

���	
��

���
���
 �

�

�

�

���
 ���

� � �

�

� �

Figure 2.9: Controllable canonical form of a rational transfer function.

ui(D) = [u0i + u1iD
1 + · · ·], (2.12)

cj(D) = [c0i + c1iD
1 + · · ·].

Let fij(D) and gji(D) be the forward and backward transfer functions of the

convolutional encoder between input port i and output port j as depicted in

Fig. 2.9 such that

fij(D) = f0ij + f1ijD + · · ·+ fmijD
m, (2.13)

gji(D) = 1 + g1jiD + · · ·+ gmjiD
m.

The codewords can be written in terms of the datawords using the transfer

functions as [20];

cj(D) = ui(D)Tij(D), (2.14)

Tij(D) = fij(D)/gji(D) (2.15)

=
f0ij + f1ijD + · · ·+ fmijD

m

1 + g1jiD + · · ·+ gmjiDm
.

15

For non-systematic convolutional encoder with R input ports and S output

ports, the generator matrix of the code is given as

[G]ij = {Tij(D)}, (2.16)

i = 1 . . . R,

j = 1 . . . S,

G = {T11, T12, . . . , T1S, T21, . . . , TRS}. (2.17)

For systematic convolutional encoders the generator matrix using the delay

operator is defined as

[G]ij = {1, Tij(D)}. (2.18)

For example, the generator matrix of the convolutional encoder in Fig. 2.5 is

G(D) = (1, 1+D2/1+D +D2). The generator matrix is sometimes expressed

in octal form. The convolutional encoder in Fig. 2.5 is also expressed by the

generator matrix in octal form (1, 5/7)octal.

2.5 Spectrum Functions of Convolutional Codes

Channel codes are described using spectrum functions. They provide informa-

tion about the codewords, i.e., number of codewords of a specific Hamming

weight, number of input sequences with a specific Hamming weight generating

codewords of a certain Hamming weight, information about parity check se-

quences etc. We below summarize the well known spectrum functions. Know-

ing the spectrum functions of convolutional codes, analytical upper bound

expressions for bit error probabilities can be determined. The computation of

spectrum functions of convolutional codes is a difficult task. We introduce a

method which makes computations of spectrum functions an easy task.

16

2.5.1 Input Redundancy Weight Enumerating Function

Input redundancy weight enumerating functions (IRWEFs) contain parity

Hamming weight information. An IRWEF is defined as,

A(W,Z) =
∑
w,z

Aw,zW
wZz, (2.19)

where Aw,z denotes the number of codewords generated with input sequences

of Hamming weight w and having parity check weight of z. The coefficients

Aw,z’s are named as IRWEF coefficients.

2.5.2 Weight Enumerating Function

Weight enumerating function gives information about the codewords, i.e., num-

ber of codewords with a specific Hamming weight. It is defined as,

A(X) =
n∑

i=dmin

AiX
i, (2.20)

where Ai is the number of codewords with Hamming weight i, X is a dummy

variable, and dmin is the minimum distance of the code. WEF gives informa-

tion only about the codewords. No information is available about the input

information sequences or parity weights.

2.5.3 Input Output Weight Enumerating Function

Input Output Weight Enumerating Function IOWEF contains information

about the Hamming weight of the input sequences along with the produced

codewords as in,

A(W,X) =
∑
w,i

Aw,iW
wX i. (2.21)

Aw,i is the number of codewords of Hamming weight i generated by information

sequences of Hamming weight w. W and X are dummy variables.

17

2.5.4 Conditional Weight Enumerating Function

Conditional weight enumerating function (CWEF) gives us information about

the weight distribution of the codeword sequences that are generated from a

Hamming weight w input sequences as defined in

A(w, X) =
∑

i

Aw,iX
i, (2.22)

where i is the Hamming weight of the codewords generated by input sequences

of Hamming weight w. An alternative definition where parity check sequences

are used is also available and is given below,

A(w, Z) = Aw(Z) =
∑

z

Aw,zZ
z (2.23)

where z is the Hamming weight of parity sequences produced by input words

of Hamming weight w.

2.5.5 Computation of Spectrum Functions

Computation of spectrum functions is a difficult job especially for large input

frame lengths. Spectrum functions of some low rate convolutional codes are

computed in [21] where a forward-backward algorithm is employed in compu-

tation. In [22] also a Viterbi like method is proposed. To find the spectrum

functions of the codes two approaches can be pursued. In the first approach,

a computer program can be written for producing all input sequences and

generating all the codewords, finding their Hamming weights and number of

codewords for a specific Hamming weight of input sequences. This method is

not efficient for codes with large sizes. The second approach is the polynomial

approach we propose. Polynomial approach is introduced by an example in

Appendix A.

18

2.6 Decoding

Channel codes are decoded using either algebraic or trellis based decoding

methods. Algebraic techniques have some reduced complexity advantages,

however their performances are worse than the trellis based decoding algo-

rithms. Sequential decoding algorithms are the first practical algorithms to

provide fast but sub-optimal decoding for convolutional codes. Trellis based

algorithms show optimal performance. The most well known trellis based de-

coding algorithms are Viterbi, and marginal a posteriori (MAP). Hard and soft

decision techniques can be applied to Viterbi algorithm. Soft output Viterbi

algorithm (SOVA) is developed by integrating the soft decision approach to

Viterbi algorithm. The classical Viterbi algorithm estimates data sequences,

i.e., it minimizes sequence error rate. However, MAP algorithm minimizes

bit error rate. Although the MAP algorithm shows better performance re-

sults compared to Viterbi algorithm, it is approximately twice more complex

than the Viterbi decoding [19]. The MAP algorithm is recently modified and

log-MAP and max-log-MAP algorithms were introduced [23]. The log-MAP

algorithm is used for our simulations.

2.7 Performance Bounds

Trellis terminated convolutional codes can be considered as block codes. The

analytical bound expressions developed for block codes are also valid for con-

volutional codes in this case. There are two criteria for code performance.

These are bit error rate (BER) and frame error rate (FER) of a code. A frame

is a sequence of a number of bits. The bit error probability of a (n, k) lin-

ear block code observed through an additive white Gaussian noise (AWGN)

channel satisfies the bound

Pb ≤
n∑

d=dmin

w̃dNd

k
Q(

√
2dREb

N0

), (2.24)

where Nd is the number of code words of weight d, w̃d is the average weight of

19

the Nd messages that produce weight d codewords, N0/2 is the double sided

noise power spectral density, Eb is the energy per bit, dmin is the minimum

distance of the code, R is the code rate, n is the number of codewords and

Q(x) is an exponentially decreasing function defined by

Q(x) =
1√
2π

∫ ∞

x

e
−y2

2 dy. (2.25)

At high SNR values, the bit error probability is approximated by the first term

of summation in eqn. (2.24) and it is given by

Pb ≈ w̃dmin
Ndmin

k
Q(

√
dmin2rEb

N0

). (2.26)

One of the most important criteria in code design is to maximize the mini-

mum distance of the code and try to minimize the number of codes with the

minimum Hamming weight.

2.8 Punctured Convolutional Codes

Puncturing which involves the elimination of parity bits is used to increase the

rate of codes. However, heavily punctured codes suffer from performance loss.

There is a tradeoff among the puncturing degree, Eb/N0, and the performance

of the code. Puncturing operation usually decreases the free distance of convo-

lutional codes. Puncturing process is illustrated by the help of a matrix. For

instance, for a rate 1/2 convolutional code, if

P =


 1 1

1 0


 (2.27)

is employed as a puncturing matrix, we delete every other parity bit from the

encoded bit stream. The meaning of the first column is that the first data and

parity pair is kept, the second column indicates that for the next data and

parity pair, data bit is kept however parity bit is eliminated. For instance,

the code whose generator matrix G = (1, 5/7)octal has free distance dfree = 5,

i.e., an input sequence ’0111’ produces minimum Hamming weight codeword

20

’00111011’. The puncturing matrix in eqn. (2.27) can also be expressed as a

vector [1110] by concatenation of the column of P in eqn. (2.27).

When the puncturing matrix is applied to this code, its free distance de-

creases to d
′
free = 3, i.e., deleting every second parity bit in a periodic man-

ner the bit sequence ’001x101x’ is obtained from minimum Hamming weight

codeword. The trellis diagram of punctured convolutional encoder (1, 5/7)octal

happens to be as in Fig. 2.10.

�

�

�

�

�� ��

�� ��

����

� � � �

����

� � ��

����

����

����

�� ��

� � � �

�� ��

����

�� ��

�� ��

� � � �

�	
��
� ����

�	
��
� �	�

Figure 2.10: Punctured convolutional encoder trellis diagram.

If the puncturing matrix

P =


 1 1 1 1

1 0 0 0


 (2.28)

is employed for a rate 1/2 convolutional code, the code rate to increases to

4/5. An equivalent representation for the puncturing matrix in eqn. (2.28) is

shown by the puncturing pattern [11101010].

2.9 Some Properties of Convolutional Codes

Convolutional codes can be linear or non-linear. Mostly, linear convolutional

codes are used in practice. The number of states in a convolutional encoder

state machine depends on the number of memory cells in shift registers. The

trellis structure can be time varying or time invariant. In both cases, the trellis

21

structure is a much more regular structure when compared to block code trellis

structures. Convolutional codes are widely used in communication systems.

Convolutional codes have found applications in voice band applications. Con-

volutional codes are also employed in deep space communication. An overview

of the recent applications of convolutional codes in space communication is

summarized in [9].

2.9.1 Hard Decision vs Soft Decision Decoding

Viterbi based algorithms can use both hard decision and soft decision methods.

Hard decision is explained as follows. Assuming the use of BPSK modulation

during communication, the binary values 0 and 1 are represented by −1 and

1. When the modulated signals are passed through an AWGN channel, the

received signals are never exactly −1 or 1 due to noise. The received signals

can be quantized to the nearest constellation point and appropriate binary

values can be assigned. This quantization converts the AWGN channel to the

binary symmetric channel. Quantization causes some information loss. The

binary sequence is lastly fed to the Viterbi decoder. The overall decoding

operation is called hard decision Viterbi decoding, since before the Viterbi

decoding operation the receiver makes a binary (Hard) decision about the

received signals.

In soft decision Viterbi decoding operation, quantization unit is omitted.

Actual received signal values are directly fed to the Viterbi decoder. Received

signal values are called soft values, since no quantization and demodulation

operations were performed, i.e., no hard decision is made. This is illustrated

[24] in Fig. 2.11. Soft Viterbi decoding operations are the same as the hard

Viterbi decoding procedure with the difference that the former one uses soft

values for the branch metrics and path metrics use the squared Euclidian

distance rather than the Hamming distance. Soft decision Viterbi decoding is

illustrated in Fig. 2.11. Soft Viterbi decoding can be implemented using digital

signal processors and FPGAs, and no noticeable performance degradation is

22

observed compared to computer simulations when fixed point implementation

is done even with a small number of bits.

� ���

���

���

���

���

	
��

���

	
��

���

���

���

���

��� ����

���

���

��

�
�

���� ����

�
�

����

����
����

�	�	

�� �
��

�� 	��
�
��

Figure 2.11: Soft decision Viterbi decoding illustration.

In order to obtain performance close to Shannon bounds, soft channel outputs

are necessary. Hard Viterbi decoding apparently performs 2dB worse than soft

Viterbi decoding.

2.9.2 Free Distance

Assuming all zero sequence is transmitted, an error event is defined as a depar-

ture from the all zero path followed by remerging to the all zero path. Error

events start at state zero and return to state zero after some time, no return to

the zero state in between occurs. A decoding error occurs if the received signal

is closer to any other sequence other than the all zero sequence. Referring to

Fig. 2.6, it is seen that there is a path whose received sequence is closer to the

error sequence 111000 than the all zero sequence. Hamming distance between

all zero path and the error sequence is 5. Since this is the smallest Hamming

distance for error events, it is also called free Hamming distance and denoted

by dfree. If the convolutional code trellis diagram is not zero state terminated

then Hamming free distance has no meaning. The performance of a convo-

lutional code is closely related to its free distance. Linear block codes are

designed for specific distance properties. However, good convolutional codes

23

are searched for a given number of memory elements. Free distance is the

criteria for finding digital convolutional encoder circuits.

24

CHAPTER 3

CONCATENATED CODES

In this chapter we study well known parallel and serially concatenated con-

volutional codes. The reasons behind the good performance of concatenated

convolutional codes are explained. Different type of interleavers are discussed.

The design criteria behind the selection of constituent codes for good concate-

nated convolutional codes are clarified. We also explain soft-input-soft output

iterative processing module, and show that using soft-in-soft-out modules any

concatenated structure can be iteratively decoded.

3.1 Introduction

To achieve Shannon limits, construction of codes with large block lengths is es-

sential. In fact, construction of large block length codes is not a difficult task.

Randomly generated codes with large block sizes will achieve good perfor-

mance with high probability. However, the decoding complexity for randomly

generated codes increases exponentially with the codeword size. Hence, ran-

domly generated codes with large block sizes quickly become unaffordable. To

reduce the decoding complexity and to obtain codes with large block sizes code

concatenation technique has for long been considered by researchers.

Elias introduced product codes [25] in which shorter block codes were com-

bined to obtain a good larger block length code. Following the work of Elias

concatenated codes were introduced in [12]. The main reason behind the code

concatenation is to obtain high performance and low decoding complexity when

25

compared to a single code which achieves the same performance. Low decoding

complexity is achieved by decoding constituent codes separately. Constituent

encoders can be concatenated in serial or parallel manner or a combination of

both known as the hybrid concatenation. The constituent codes in a concate-

nated code structure can be chosen from block or convolutional codes.

3.2 Turbo Codes

Turbo codes which were introduced in 1993 by Berrou et. al. [13] represents

a breakthrough in coding theory. A turbo code encoder is formed by two

constituent systematic recursive convolutional encoders and an interleaver in

between. The input information sequence is fed directly to the first encoder

and it is fed to the second encoder after being interleaved. The exchange of

extrinsic information between decoders occurs in a sequential manner. This

extrinsic information exchange continues sufficiently many times. Usually an

iteration number between 8 and 12 is sufficient. The performance of turbo

codes is quite close to Shannon limits. This aroused a huge interest in coding

society. Since the introduction of turbo codes, there has been an enormous

amount of research in many aspects of encoding as well as decoding.

The astonishing performance of turbo codes were investigated in [26], and

it was found that the role of the interleaver was one of the most critical factors

for the performance of turbo codes. An analytical bound expression for the

performance of turbo codes using uniform interleaver is given in [26]. Although

the uniform interleaver approach determines bounds on the code performance,

the bounds are not so tight.

Turbo codes were also selected for many telecommunication systems stan-

dards such as the UMTS standard proposed by the third generation partner-

ship project (3GPP)[27]. Due to this popular interest, many iterative decoding

algorithms to reduce decoding complexity have been proposed [28].

The encoder and decoder structure of a turbo code are depicted in Figs. 3.1

and 3.2. Recursive systematic convolutional codes are employed as constituent

26

���

��������	�� ��

� ��

�

�

Figure 3.1: Parallel concatenated convolutional code. CC1, CC2 are con-
stituent recursive systematic convolutional codes (RSCs) 1 and 2, respectively.

�� ��������	��

��
��������	��

���

�

�
 ���� �
 �
�

�
� �

�
�

�������
�

�

�������
�����

Figure 3.2: Turbo decoder structure. D1, D2 are constituent decoders 1 and
2 respectively. rd, rp1, rp2 are received signals. Ld, Lde, Ld′ , Lde′ are log-
likelihoods.

codes. The decoder modules use soft decision decoding algorithms.

3.3 Interleaving

Interleaving is the process of re-ordering a data sequence in a one-to-one corre-

spondence. The inverse of this process is called de-interleaving. Interleaver is a

device that changes the order of symbols in a sequence. Interleaving enhances

the error correcting capability of the codes in certain situations. Interleaving

operation is especially critical for channels with bursty error characteristics.

Multipath communication channel is such a channel. Another such channel

is the magnetic recoding channel where an interleaver can be placed between

encoder and communication channel, at the receiver the received data is de-

interleaved first and thus the errors are spread over time. This converts bursty

errors to random errors. The errors within a codeword become independent

to a decoder. Interleaving operation is also used in concatenated codes. The

27

use of interleaver in turbo codes reduce number of coefficients of low weight

codewords which results in a reduced bit error probability by a factor of 1/(in-

terleaver length) and this reduction is called interleaving gain [23]. The basic

roles of the interleaver in a turbo code can be outlined as below.

1. The basic duty of an interleaver is to combine two shorter codes of inferior

performance into one longer code with superior performance.

2. Two decoders’ input data are virtually de-correlated by interleaving such

that, after corrections in the first decoder, some of the uncorrectable

errors from the first decoder can be spread by the interleaver such that

they can be corrected by the second decoder.

3. Another role of the interleaver is to break the low weight input sequences

and increase the free distance of the codewords or reduce the number of

low weight codewords.

Turbo like codes are potential candidates for implementation in communica-

tion systems. There are already some implementations of turbo-like codes [29].

During the implementation of concatenated codes, some problems arise. The

commonly encountered problems are the inefficient use of memory, memory

collision, and high hardware complexity. Concatenated codes have high de-

coding latency. To reduce the decoding latency parallelization at the decoder

side is employed. If the interleaver is not designed in specific manner then it

is highly probable that memory collision problem occurs during the parallel

processing operation. Hence, many high performance interleavers can be of

no use, if parallel decoding operation is performed at the receiver side. This

issue led to the birth of an important research field which is the memory col-

lision free interleaver design for parallel decoding operations [30]. Although

parallelization reduces the decoding delay enormously it enhances hardware

complexity. Hence, there is a tradeoff among code performance, reduced la-

tency, and hardware complexity.

28

3.3.1 The effect of Interleaving on Code Performance

Interleaver design is usually not of analytical nature. Very often an interleaver

is employed in an iterative decoding system, then the behavior of the inter-

leaver is explained through simulation results. Each simulation result demon-

strates the performance of the interleaver for a specific encoder and decoder

pair, hence a general interleaver design method is not easily agreed upon. The

role of the interleaver on the code performance will be discussed here consid-

ering the turbo code. A typical turbo code BER performance graph mainly

consists of three regions, steady region, waterfall region, and error floor region.

Turbo codes perform well at low SNR values close to Shannon limits. The per-

formance of the turbo code at high SNR values is mainly determined by the

structure of the interleaver. This region is called the error floor region. Good

interleavers reduce the multiplicities of low weight code words and possibly

increase minimum distance, and thus enchance code performance at high SNR

values. The design of the good interleavers that result in a small number of

low weight codewords has been an active research area over the past decade.

3.4 Interleaver Types

There are many interleavers proposed in the literature. An interleaver can be

designed for a specific constituent code. For instance, for the constituent codes

with the generator matrix (1, 5/7)octal the weight two input patterns 1001 and

100001 produce codewords with the smallest Hamming weights. Hence, a good

interleaver designed for (1, 5/7)octal should break the low Hamming weight in-

put patterns. However, some of the interleavers can be used for any constituent

code and show good performance. We will here give a brief information about

the most widely known interleavers. Interleavers can be divided into two main

categories. These are block type interleavers, random interleavers, and code

matched interleavers. Some of the block-type interleavers are block inter-

leavers, multiplex interleavers, convolutional interleavers, shuffle interleavers,

co-prime interleavers, Welch-Costas interleavers, Berrou-Glavieux interleavers,

29

JPL interleavers, and Takeshito-Costello interleavers [31]. Interleavers may be

given some attributes like causality, delay amount, memory, spreading factor,

dispersion factor etc. [31]. Random interleavers are those ones which involve

a pseudo-random operation during their construction. The use of random in-

terleavers play a fundamental role in iterative decoding schemes. The uniform

interleaver is actually not a real interleaver. It is used to estimate the per-

formance of the concatenated codes considering all the available interleavers.

Considering all the available interleavers there is at least one interleaver with

the same performance as that of the uniform interleaver.

3.4.1 Block Interleaver

In a block interleaver, the incoming information sequence is written into a

matrix row-wise and it is read out from the matrix in column-wise. Block

interleavers are easy to implement. However, they may fail to break some low

weight input sequence patterns. As a result of this, the performance of turbo

codes with rectangular interleavers is not good enough. Block interleavers are

efficient if error patters to be broken reside in a single row or column. For block

interleavers the interleaving technique should be modified if the error patters

are confined to several consecutive rows or columns. Block interleavers are also

called rectangular interleavers. Odd-even block interleavers and helical inter-

leavers are two different block interleavers. In the former one, even positions

are mapped to odd positions and vice versa whereas data bits are read diago-

nally and written row-wise in helical interleavers. Helical interleavers prevent

consecutive bits being output from the same column or row. These interleavers

are a little bit better than the regular block interleaver.

3.4.2 Convolutional Interlavers, Cyclic Shift Interleavers

Convolutional interleavers were introduced by Forney [23]. Data is written into

a matrix in a convolutional interleaver. Different row elements are read out

with different time delays. The same row elements are read out with the same

30

time delay. Convolutional interleavers have less end-to-end delays compared to

block interleavers. In the cyclic shift interleaver, data is written into a matrix,

each row is cyclicly shifted by different amount, and the cyclically row shifted

matrix elements are read out in column-wise. Convolutional interleaving and

de-interleaving operation is depicted in Fig. 3.3.

������

������

�
�
�

�

��
�
�
�

������

�	
�	�
��	
��
�
���������

�	
�	�
��	
��
����
���������

Figure 3.3: Convolutional interleaver and de-Interleaver.

31

3.4.3 Random Interleavers

3.4.3.1 Random Interleaver

A random interleaver is obtained by generating a pseudo-random sequence of

length L. The sequence elements are selected from the set S = {1, 2, · · · , L−
1, L} and each element appears once in the random sequence. The size of the

interleaver is L. The elements of the pseudo-random sequence are chosen with

equal probability. A data sequence is interleaved by reading the input bits

according to the generated pseudo-random sequence.

3.4.3.2 S-random Interleaver

S-random interleavers or spread interleavers are constructed by generating

random numbers from 1 to L based on an S-constraint where S is the minimum

interleaving distance.

The operation of the S-random interleaver is as follows. A randomly se-

lected integer is compared to the previously S1 selected integers. If the absolute

differences between the selected integer and any of the S1 previously selected

integers are greater or equal to S2 then the randomly selected integer accepted

otherwise it is rejected. An S-random interleaver is determined based on

| Ii − Ij |≤ S1 j = i + 1, · · · , S1 + i (3.1)

| P (Ii)− P (Ij) |≥ S2 j = i + 1, · · · , S1 + i (3.2)

where Ik denotes the original index and P (Ik) is the permuted index in the

interleaved sequence. When identical constituent codes are used, it is appro-

priate to choose S1 = S2 = S, where S ≤ L/2.

An S-random interleaver employed in a turbo code system can break input

patterns with lengths up to S + 1 and produce high weight parity check se-

quences. This is achieved as explained in the following sentence. Assume that

there exists an input pattern sequence of length up to S + 1. The upper con-

32

stituent encoder produces a low weight parity sequence. The information se-

quence is broken by an S-random interleaver and the lower constituent encoder

produces a high weight parity sequence in this case. S-random interleavers are

widely employed in concatenated codes.

3.4.4 Code-Matched Interleavers

A code-matched interleaver is a special type of pseudo random interleaver

designed for certain constituent codes. The major aim of the code-matched

interleaver is to break the low weigth input sequences in such a manner that the

first several spectral lines of the code are totaly eliminated. Due to the specific

design concept, the performance of the code-matched interleaver is better than

the S-random interleaver. However, its design is more cumbersome than the

S-random interleaver and not general for all constituent codes.

3.5 Uniform Interleaver

The uniform interleaver is also called the average interleaver. The uniform

interleaver is defined as a probabilistic device that maps a given input infor-

mation sequence of length L and Hamming weight w into all distinct
(

L
w

)
per-

mutations of it with equal probability 1/
(

L
w

)
. The uniform interleaver permits

the estimation of the average interleaver gain, independent of the particular

interleaver used in a turbo encoder. Overall performance of a turbo code is

determined using the uniform interleaver. The performance estimation using

the uniform interleaver concept is also applicable to serially concatenated con-

volutional codes and to many other concatenated code structures. Although

the uniform interleaver approach provides an estimate about the system per-

formance, it should be noted that it is usually a rough estimate.

3.6 Analytical Performance of Turbo Codes

An upper bound for the bit error probability Pb of turbo codes is computed by

33

Pb ≤
L∑

w=1

∞∑

d=dmin

wA(w, d)
1

L
Q(

√
2dR

Eb

N0

), (3.3)

where L is the size of the interleaver, w is the Hamming weight of the in-

put information sequence which generates codewords of Hamming weight d.

The code rate is denoted by R. A(w, d) is the number of codewords of Ham-

ming weight d generated by input sequences of Hamming weight w. The term

A(w, d) is often named as the distance spectrum of the code.

3.7 Serially Concatenated Convolutional Codes

The encoder and decoder structure of serial concatenated codes are depicted

in Fig. 3.4. In encoding operation, datawords are encoded using an outer

convolutional code after which the outer codewords are passed through an

interleaver. The interleaved bit stream is fed to the inner convolutional encoder

and outer codewords are generated and transmitted. The behavior of the

decoder is a little bit different here than a turbo decoder. The outputs of the

outer decoders are used as coded bit probabilities of the inner decoder and

these coded bit probabilities are updated and given to the outer decoder for

data bit probabilities. This iteration is repeated sufficiently many times.

�����
����	��
�������
��
��������	��

�������	� ��	����	�

���� �
������	��
����� �
������	��

�������
��

���
�������
��

�� �� �� ��

�����
�
�����
�

�������

������� �����
�

���� �
���

�������
��������
�������

Figure 3.4: Serially concatenated encoder and decoder structure.

3.7.1 SCCC Design

The design of a SCCC involves the selection of inner and outer convolutional

codes according to some criteria. The inner encoder should be a recursive

34

convolutional encoder. The use of a recursive inner encoder provides an inter-

leaver gain [32]. The improvement in bit error probability due to the use of

interleaver is defined as the interleaver gain. The interleaver gain for SCCC

equals L−do
free/2 for even values of do

free and it is L−(do
free+1)/2 for odd values of

the free distance do
free. As a consequence of this statement, we should choose

an outer code with a large value of odd free distance. Another design criteria

is that the number of datawords generating codewords with Hamming weight

do
free should be minimum and also Hamming weights of these datawords should

be minimized. Since non-recursive codes have wfree = 1, they can be conve-

nient to choose for outer convolutional codes. Inner code effective free distance

(di
f,eff) which is the minimum weight codewords generated by weight 2 input

data words should be maximized. The most critical difference between PCCCs

and SCCCs is the great difference in the interleaver gain. For an interleaver of

length L, PCCCs show an interleaver gain of L−1 whereas SCCCs provide an

interleaver gain of L−(do
free+1)/2 assuming that do

free is an odd number. PCCCs

have better performance than SCCCs at low SNR values, SCCCs on the other

hand have better performance at high SNR values. When error floor is taken

into consideration, PCCCs reach their error floor region before the SCCCs

where the intersection point is usually around error rates of practical interest.

3.8 Turbo Code Design

The first encoder of turbo code is usually trellis terminated. This eliminates

the availability weight-2 codewords. The second encoder termination is not

crucial and does not degrade the code performance too much [33]. The er-

ror floor of the turbo code is a consequence of the low minimum distance of

the code. The error floor level can be lowered by increasing the size of the

interleaver without changing the minimum distance of the code. Choosing

constituent codes from RSCs in a turbo code system usually result in an in-

creased minimum distance. The interleaver in a turbo code system reduces

the number of low weight codewords. This is called spectral thinning [33].

35

The asymptotic performance of the turbo code is computed using (3.4) where

Lmin/L is the effective multiplicity. Lmin is the number of minimum distance

codewords,

Pb ≈ Lminw̃min

L
Q

(√
dmin

2REb

N0

)
. (3.4)

The asymptotic performance of the turbo code is mainly determined by

the minimum distance of the code. The error floor phenomena in turbo codes

is due to the fact they have small minimum distance and as a result of this

a relatively flat minimum distance asymptote appears. The role of the in-

terleaver on the error floor region can be explained in two ways. Increasing

the interleaver size and keeping minimum distance the same result in a lower

effective multiplicity and this reduces the error floor level, without changing

the slope of the asymptote. In this case the error floor is seen at higher SNR

and lower BER values. Conversely, reducing interleaver size and keeping min-

imum distance and its multiplicity the same, causes error floor to rise and it is

reached at lower SNRs and higher BERs. If the size of the interleaver is fixed,

then the error floor slope can be changed by changing the minimum distance

and keeping its multiplicity the same. The rectangular interleaver is one of

those interleavers known for a long time. Rectangular interleaver results in

large multiplicities of dmin. Increasing the rectangular interleaver size does

not result in a considerable reduction in effective multiplicity of the minimum

distance. Hence, the error floor of the turbo code is not lowered when rect-

angular interleaver is employed. Unlike the rectangular interleaver, the use of

a random interleaver in a turbo code system affects the distance spectrum of

the code. The use of random interleaver and RSCs cause a turbo code to have

a sparse distance spectrum.

In [33] average turbo code is defined. The distance spectrum of an average

turbo code is computed over all pseudo random interleavers of length L. Mini-

mum distance codewords of an average turbo code are generated from weight-2

input words assuming that a large interleaver size is used. To maximize the

36

minimum distance of the average turbo code, the constituent codes are chosen

such that they give largest output weight codewords for weight-2 information

words. The interleaving gain of a turbo code is found to be L1−wmin where L

is the interlaver size and wmin is the minimum Hamming weight of the data-

words which generates codewords with dmin. For recursive convolutional codes

wmin = 2, hence when recursive constituent codes are used in a turbo code sys-

tem, the interleaving gain becomes L−1. For nonrecursive convolutional codes

wmin = 1. Thus, turbo code system does not benefit from the interleaving gain

when nonrecursive convolutional codes are employed as constituent codes.

3.9 Iterative Decoding and Soft-Input Soft Out-

put (SISO) Module

MAP algorithm is used to decode trellis codes. As an abstraction in concate-

nated code architectures, the single input single output (SISO) modules are

utilized. Concatenated codes are iteratively decoded by using the SISO mod-

ules for each of the constituent codes [34]. Component decoders are the SISO

modules which exchange information and make use of the received information

from other modules.

In Fig. 3.5 trellis encoder, a section of the trellis and SISO module is de-

picted. A single section of the trellis completely illustrates the behavior of

the encoder. For the trellis section in Fig. 3.5, a transition occurs from state

St to St+1 along with the information bit u and code bit c. P (u) and P (c)

are the probabilities for data and coded bits. The Soft-Input Soft-Output

(SISO) module is a four-port device that takes input sequence, channel proba-

bilities P (u, I), P (c, I), and produces the updated input sequence and channel

probabilities P (u,O), P (c, O). The updated probabilities are used as input

probabilities by other SISO modules. The SISO algorithm needs the entire se-

quence to be received before decoding starts. The use of SISO modules makes

life easy for the decoding of any concatenated code. In Fig. 3.6 the encoder

37

���� ������
	
����

	

��� 	

���

	
����

�����
��

���
��

�
���� ��

���

�������
��
����

�

���� �� ��

Figure 3.5: SISO module.

decoder structures for a hybrid code are depicted.

3.10 Major Drawbacks of Concatenated Codes

High speed turbo-like codes can offer great promises for reliable communica-

tion in real time applications such as wide band multimedia services. Although

selected for many standards, turbo-like codes have a major drawback which is

their significant amount of decoding latency due to iterative decoding. Espe-

cially real time applications such as voice and video communications require

low latency. It is essential to find solutions for high latency since it is obvious

that future communication systems will need higher throughput.

Latency reduction can be achieved via two approaches. One method is

to decrease the complexity of the decoding algorithms i.e., to decrease the

computation amount needed for decoding processes, the other is to use multiple

processors for higher decoding speeds or use concurrent computation methods

38

�����������	��

��
������������ ����
�����

����
�����

����
��������������	��

��������	��� �

���
���

���
���

��� ���

��� ������ ���

��� ���

�������

��������������

�������

���
���

���!"!#�

����� $�� ����� $��%

��������	��

��������	���

����� $��%�
&
'
(

� � �
 �

�� ��

Figure 3.6: Hybrid encoder and decoder.

39

to calculate the parameters of the decoding algorithm. We first explain the

studies made for the complexity reduction then clarify the method of using

multiple processors.

There are two well known approaches to reduce the complexity of the MAP

algorithm. These are T-BCJR and M-BCJR algorithms [35]. M-BCJR algo-

rithm reduces the complexity of the algorithms using only M most likely states.

T-BCJR algorithm uses a threshold to determine the states to be eliminated.

When state probabilities fall below a threshold they are discarded. The M-

BCJR uses a subset of M states while T-BCJR uses variable number of states

at different trellis stages. Hence, T-BCJR shows a dynamic behavior whereas

M-BCJR has a static behavior. The T-BCJR algorithm shows better perfor-

mance when compared to the M-BCJR algorithm.

The number of iterations is also related to the computation amount hence

to decoding latency. Low latency can be achieved by reducing the number of

iterations which is achieved by defining good stopping criteria beyond which

negligible performance improvement is observed. In [36, 37] a number of stop-

ping criteria have been suggested to terminate the decoding procedure early

when there is no more performance improvement observed.

Another work to reduce the decoding latency of turbo codes were done

in [29] where radix-4, center-to-top algorithms are introduced. Center-to-top

algorithms involve the concurrent computation of the forward and backward

state probabilities. Early-stop algorithm for reduction of iteration numbers

is proposed. An FPGA implementation of the proposed algorithms is also

presented.

For the use of multiple processors in decoder systems, two kinds of struc-

tures have been reported in literature. These are the pipelining [38] and block

partitioning methods [39]. For pipelining method, let W denote the number of

processors and K be the iteration number, in this method each processor pro-

cesses the entire block for K/W iterations and passes the extrinsic information

to the next processors. Hardware complexity of pipelining method is greater

than of block partitioning methods, i.e., need larger register space compared

40

to block partitioning. In the block partitioning method, the received frame is

divided into sub-frames, then sub-frames are processed by parallel processors.

In [40] instead of overlapping frames the forward and backward variables com-

puted in the previous stage are used as boundary distributions, hence eliminat-

ing the need for extra memory use for boundary probabilities and overlapping.

In [41] two component decoders are run concurrently by which latency can be

reduced approximately by half. This scheme corresponds to a parallelization

in iterations.

41

CHAPTER 4

PARALLEL DECODABLE SERIALLY

CONCATENATED CONVOLUTIONAL

CODES

In this chapter we introduce novel code families called the convolutional prod-

uct codes and, later generalize the concept and propose parallel decodable

serially concatenated codes. The proposed structure here is a generalization of

all the serially concatenated codes and many other variants can also be derived.

An original interleaver structure called row-column S-random interleaver which

prevents memory collision problem in parallel processing operations is also pro-

posed.

4.1 Introduction

The aim of the concatenated codes is to built powerful error correcting codes

with reasonable constituent decoder complexities. Concatenated codes are

proposed by Forney [12] in 1966. Concatenated codes are similar to product

codes. However, in the previous case an interleaver is usually employed between

encoders. Forney showed that the use of a posteriori probabilities (APPs)

as opposed to hard decision estimates was essential for enhancing decoder

performance. Following Forney’s work, new APP algorithms were developed.

The BCJR [42] which is ignored for a long time is now one of the most widely

known APP algorithms.

42

With the introduction of turbo codes (parallel concatenated convolutional

codes, i.e., PCCCs) in 1993 a huge interest on iterative decoding aroused.

Turbo codes can achieve bit error rate (BER) levels around 10−5 at code rates

quite close to the corresponding capacity with reasonable decoding complexity.

The use of soft-in soft-out decoding algorithms was a key in this success. This

showed the way to the invention of serially concatenated convolutional codes

SCCCs in [32], where the authors showed that they were better than PCCCs

in some respects.

Block codes show good performance around rates 0.5. For lower rates or

much higher rates their performance is not as good as rate 0.5 performance.

High rate block product codes are studied in [43]. Although these codes also

have large decoding complexity, they are very suitable for parallel decoding

operations. Product codes studied so far have been constructed using linear

block codes, such as Hamming, extended Hamming [44, 45], BCH [43, 46], and

Reed Solomon [47] codes. Single parity check (SPC) product codes are studied

in [48]. Three and more dimensional SPC product codes are studied in [49].

Product codes have also attracted practical attention lately. DSP and FPGA

implementations are studied in [50].

Although block codes have time varying trellises, convolutional codes’ trel-

lis structures are usually time invariant. Moreover, the number of states in the

trellis structure of an (n, k) block code is upper bounded by and usually on the

order of 2(n−k) where k is the information sequence length and n is the codeword

length in bits [22]. However, the number of states in a convolutional code can

be set as desired. The time-invariant trellis structure of convolutional codes

makes them more convenient for implementation [32]. In addition, numer-

ous practical techniques such as trellis coded modulation and puncturing can

be simply utilized with convolutional codes as opposed to linear block codes.

Convolutional codes are also integrated with space time trellis codes which is a

variant of convolutional codes adapted for multi antenna transmission systems.

Since convolutional codes are more suitable for practical implementations we

will in this chapter propose convolutional product codes (CPCs) which are

43

constructed using convolutional codes only. The use of convolutional codes

in a product code setting lays the ground for utilizing all the flexibility and

vast knowledge base for convolutional codes in parallel decoders. This type

of product code has component codes with a time invariant trellis structure,

as opposed to product codes constructed with linear block codes (Hamming,

BCH, Reed Solomon etc.). Hence, CPC may be more favorable for imple-

mentation than linear block product codes. CPC has a matrix structure, and

this makes it attractive for integration with multi-carrier communication. For

example, the vertical dimension can be used for different sub-carriers.

We further extend the idea of CPCs and propose parallel decodable serially

concatenated convolutional codes (PDSCCCs) which have reduced decoding

delays compared to serially concatenated convolutional codes (SCCCs) and at

the same time show comparable performance. The newly proposed codes have

parallel processing property which results in significantly less decoding delays

compared to SCCCs. CPCs constitute a subclass of PDSCCCs. The idea is ex-

panded and parallel decodable concatenated codes (PDSCCs) are introduced.

This is the most general structure for all the serially concatenated codes. It is

easily observed that PDSCCCs, SCCCs, and block products codes are nothing

but instances of PDSCCs. In the following sections, the encoding and decoding

structures for the parallel structures will be explained and a novel interleaver

design method to avoid some problems met in practical implementations will

be presented.

4.2 CPC Encoder and Decoder (Code Struc-

ture)

4.2.1 CPC Encoder

A regular product code is constructed by placing the information bits/symbols

into a matrix. The rows and columns are encoded separately using linear block

codes [44, 46]. This type of a product encoder is shown in Fig. 4.1. It is seen

44

from the figure that the data and parity bits are grouped separately.

Data Bits

Encode Rows

Data Bits

Row Parity

Bits

Data Bits

Row Parity

Bits

Encode Columns

Column Parity Bits

Row

Column

Parity Bits

Parity

Data

Parity

Figure 4.1: Regular product code encoding procedure, where a block code is
used to encode rows and columns.

In our case we use convolutional codes instead of linear block codes to

encode rows and columns. This is illustrated in Fig. 4.2. When compared to

Fig. 4.1, it is obvious that data and parity bits are mixed uniformly.

Encoding is performed by using a matrix which determines how each en-

coder works. The data to be sent is put into a matrix. Each row of the matrix

is encoded using a convolutional code. We use the same recursive systematic

convolutional code (RSC) to encode each row, although different convolutional

codes can be used for this purpose. Once each row is encoded, the matrix is

sent, if desired, to an interleaver. Our data matrix dimension is k× k and the

encoded data matrix dimension is n×n, i.e., our code is an (n2, k2) code. The

interleaved matrix is coded column-wise. In our simulation we used a rate 1/2

45

Data Bits

Encode Rows

Encode Columns

Parity

Data

Figure 4.2: CPC encoding procedure without an interleaver.

46

recursive systematic convolutional code with the matrix generator (1, 5/7)octal

to encode each row and column. Hence, the overall code rate is 1/4. The gen-

eral encoding procedure, which includes any type of interleaver, is illustrated

in Fig. 4.3.

4

3

2

1

d
d

d
d

4

4

3

3

2
2

1

1

p
d
p
d

p

d

p
d

Encode

Rows

Interleave

h

g

f
e

d

c

b
a

Encode

Columns

h

g

f
e

d

c

b
a

p
p
p
p

h

g

f
e

p
p

p
p

d

c

b

a

h

g

f

e

d

c

b

a

Figure 4.3: Convolutional product code encoder with any type of interleaver
(d denotes data bits and p denotes parity bits).

4.2.2 CPC Decoder

Convolutional product coded data is multiplexed to a single stream and binary

phase shift key (BPSK) modulated. The BPSK modulated signal is passed

through an additive white Gaussian noise (AWGN) channel with double-sided

noise power spectral density N0

2
, i.e., noise variance is σ2 = N0

2
. We used the

log-MAP soft decoding algorithm [32] to iteratively decode the convolutional

product code. Each column is independently decoded one by one since columns

were encoded last. The extrinsic information obtained from the columns is

passed to the row decoder after being de-interleaved. Then row decoding

proceeds; rows are decoded one by one and interleaved extrinsic information is

passed to the column decoder. The CPC decoding procedure is depicted in Fig.

4.4. This procedure is repeated for a sufficient number of times. The decoding

structure employed in this study is the same as that of serially concatenated

codes in Fig. 4.5 [32]. For frames of equal length, an SCCC decoder uses

two log-MAP decoders and performs quite well at low rates. CPC decoders

can utilize many log-MAP decoders in parallel, thus showing smaller decoding

47

delays. Therefore, we will compare the proposed CPC structure to that of

SCCC.

4

4

3

3

2
2

1

1

p
d
p
d

p

d

p
d

Interleave

h

g

f
e

d

c

b
a

p
p
p
p

h

g

f
e

p
p

p
p

d

c

b

a

h

g

f

e

d

c

b

a

p4
d4
p3
d3

p2
d2
p1
d1

e
e

e

e

e
e

e

e

L

L

L
L

L

L

L
L

h
g
f
e

d
c
b
a

e
e

e

e

e
e

e

e

L

L

L
L

L

L

L
L

p4
d4
p3
d3

p2
d2
p1
d1

e
e

e

e

e
e

e

e

L

L

L
L

L

L

L
L

Decode each column

using a different log-MAP

decoder, extract extrinsic

information for the bits a-h

De-interleave

Pass it to row

decoder

De-interleave

Decode each row

using a different

log-MAP decoder.

Pass it to column decoders

Decide on bits.

Figure 4.4: Decoding operation of the convolutional product code.

�����
�����	��
���	 ����
��	��� �������� �

����	����� �
����

�����	��
���	 ����
��� ��������
�
���� ���� ������ ����

Figure 4.5: SCCC encoding operation.

4.3 Parallel Decodable Serially Concatenated

Codes (PDSCCs)

CPC encoding operation involves the use of a matrix. Instead of using matrix

notation for convolutional product encoding a serially concatenated system

can be employed to realize the same code. To realize the equivalent structure

two code clusters are concatenated in series and an interleaver is employed

between code clusters. A code cluster is constructed by concatenating con-

stituent codes in parallel. The number of constituent codes in outer and inner

48

code clusters is variable. The number of constituent codes in outer cluster is

denoted by N and the number of constituent codes in inner cluster is denoted

by M. The constituent codes can be chosen from both block and convolutional

codes. The general structure of the PDSCCs is depicted in Fig. 4.6 where

C11, C12, . . . , C1N and C21, C22, . . . , C2M are the outer and inner constituent

code (CC) encoders respectively. An interleaver is placed between the inner

and outer encoder clusters. Serial and parallel converters are employed in

PDSCCs structure. Serial to parallel conversion can be achieved by row-wise

or column-wise writing of a matrix with data elements. Parallel to serial con-

version corresponds to row-wise or column-wise reading of matrix elements. If

only block codes are employed in Fig. 4.6, with determined N and M values

according to the type of block codes employed, a regular product code as in

Fig. 4.1 is obtained.

P/S

CC

11

CC

1
N

S/P
 P/S

CC

2
1

CC

2M

S/P

.

.

.

.

.

.

.

.

.

.

Input

Sequence

Output

Sequence

w

w

1

w

N

l

1

l

N

x

1

x

M

k

1

k

M

INT

x

Figure 4.6: PDSCC structure.

If only convolutional codes are employed for constituent codes in PDSCCs,

parallel decodable serially concatenated convolutional codes (PDSCCCs) are

obtained. When M=N=1, PDSCCCs turn out to be SCCCs, i.e., SCCCs

are a special case of PDSCCCs. Assuming that the rate of all the con-

stituent encoders equals 1/2, for an input sequence of length (N.M)/2 where

N ≥ 2, M = 2× k, k is a positive integer greater than 1, the overall encoding

procedure can be demonstrated using a matrix notation. This special case

corresponds to previously mentioned CPCs. In CPCs M value is chosen as

2N so that input matrix becomes a square matrix. Hence it can be said that

CPC is an instance of general PDSCCCs structure. The length of the informa-

49

tion frames processed by constituent codes are shorter than the original frame

length. Due to this reason trellis termination criteria becomes more important

for PDSCCCs especially for large number of parallel branches.

Addition of trellis termination bits decreases code rate. When all the con-

stituent codes are trellis terminated the code rate for an information frame of

length L can be computed as

R =
L

L
R1R2

+ T1N
R1R2

+ T2M
R2

, (4.1)

where Ri and Ti are the rates and number of memory elements respectively for

constituent codes in clusters. The effect of trellis termination bits on code rate

for different number of rate 1/2 and memory-2 outer and inner constituent

codes for information frame length of 1024 are tabulated in table 4.1 where it

is assumed that all the constituent encoders add trellis termination bits. As it

is clear from table 4.1 that code rate decreases slightly even for large number

of parallel branches.

Table 4.1: PDSCCC rates for different number of parallel branches in outer
and inner clusters.

N

M

1
 4
 8
 16
 32
 64

1

4

8

16

32

64

0.249
 0.248
 0.247
 0.245
 0.242
 0.234

0.247
 0.247
 0.246
 0.244
 0.240
 0.233

0.245
 0.245
 0.244
 0.242
 0.238
 0.231

0.242
 0.241
 0.240
 0.238
 0.235
 0.228

0.235
 0.234
 0.233
 0.231
 0.228
 0.222

0.222
 0.221
 0.220
 0.219
 0.216
 0.210

It may be noted that the structure in Fig. 4.6 is very general. One may

use different codes of even different rates and number of memory elements

as constituent codes. Although this is the case we will consider the rate 1/2

memory-2 RSC with (1, 5/7)octal without loss of generality.

50

Interleaver use can be varied in PDSCCS. Many different use of the inter-

leaver are possible, a single interleaver can be used between clusters, separate

interleavers can be employed in front of the inner constituent codes, different

interleavers can be used before the outer constituent codes, or we can use a dif-

ferent interleaver for each of the constituent codes in outer and inner clusters.

The use of interleavers for inner constituent codes corresponds to the use of

interleavers for columns of the row encoded matrix in CPC case. We will talk

about the column S-random interleaved CPC in the following sections. The

use of separate interleavers for all the constituent codes leads to the discov-

ery of memory collision free row-column S-random interleaver. The memory

collision problem and row-column S-random interleaver which prevents the

memory collision problem will be introduced in the following sections.

4.3.1 PDSCC Decoder

The decoder of a PDSCC is seen in Fig. 4.7. It is clear from the decoder

structure that decoders D11 . . . D1N and decoders D21 . . . D2M can be run in

parallel. The decoders may employ any soft decision algorithms. The decoders

working in parallel process shorter frame lengths and they need less clock cycles

to process the entire frame.

���

�����

���

��
	
 	
�

	

	�

�� ��

���

��

��

���

���

�

�

��

��

Figure 4.7: PDSCC decoder. rx is the received signal value, S/P and P/S are
the serial to parallel and parallel to serial converters respectively. INT is the
interleaver. Lk and Ll are the bit probabilities.

51

4.4 Practical Implementation Issues

4.4.1 Memory Collision Problem

Although parallelization of the concatenated codes reduces the latency, it cre-

ates new problems. Memory collision and extra memory need for the storage

of the boundary distributions are such two problems. The memory collision

is explained as follows. The output of the decoders and the received data

should be stored according to the permutation order of the interleaver. Classi-

cal serial concatenated convolutional has two constituent decoders. However,

parallel decodable serially concatenated convolutional code has two constituent

decoder clusters each of which contains many decoders. All the decoders in

one of the clusters run in parallel and try to access the memory locations where

the extrinsic information generated by the other cluster’s decoders is stored.

During this access two or more decoders in the same cluster may try to use

the same memory segment at the same clock instant, and this is an impossible

event. Hence, memory collision occurs which is due to the permutation order

of the interleaver. An interleaver without memory collision is shown in Fig.

4.8. An interleaver which causes memory collision is depicted in Fig. 4.9.

�

�

�

��

��

�

�

��

��

��

�

�

	

��

��

�

��
��� �

��
��� �

��
��� �

��
��� �

�
�
�
	

��� �

�
��
��
��

��� �

��
��
��
��

��� �

�
�
�
�

��� �

Figure 4.8: An Interleaver without memory collision.

52

1

5

9

13

2

6

10

14

3

7

11

15

4

8

12

16

Decoder 1

Decoder 2

Decoder 3

Decoder 4

5

6

7

8

RAM 1

9

10

11

12

RAM 2

13

14

15

16

RAM 3

1

2

3

4

RAM 0

Figure 4.9: An Interleaver causing memory collision.

To avoid the memory collision problem in parallel decoding operation, the

number of memory blocks where interleaved data is stored should be greater

than or equal to the number of decoders in constituent decoder clusters and

furthermore each decoder in a cluster should try to access different memory

segments at each clock. This can be achieved using specifically designed inter-

leavers. We propose novel row-column S-random interleaver in the following

section and illustrate the avoidance of memory collision with row-column S-

random interleaver.

4.4.2 Row-Column S-random (RCS-random) Interleavers

In this section we propose row-column S-random interleaver to prevent the

memory collision problem and to achieve similar performance to that of the

classical S-random interleaver. This type of interleaver can be interpreted as

a joint structure of the rectangular and random interleaver. This structure

both benefits from the randomness and the advantages of the matrix struc-

ture. RCS-random interleaving is applicable to any type of code, i.e., it can

be used for serially concatenated convolutional codes or parallel concatenated

convolutional codes. The operation of the RCS-random interleaver is as fol-

53

lows. The data sequence is put into a matrix. First each row of the matrix

is interleaved by distinct interleavers then each column of the matrix is inter-

leaved by different interleavers. Finally the interleaved matrix elements are

encoded row-wise. Hence, an equal number of constituent codes are utilized,

i.e., N=M. This sequence of operations guarantees the prevention of memory

collision if the variables for decoding of each row is kept in a separate memory

block. There would be a collision if two rows have bits at the same column

whose variables are stored in the same memory block. But this is impossi-

ble since they could only go to different column by the first row interleaving

operation. This type of encoding is illustrated in Fig. 4.10. The number of

memory blocks equal the number of rows of the data matrix. If the number

of memory blocks is less than the number of rows of the data matrix memory

collision cannot be avoided. Since in this case, two decoder varbles shares the

same memory block which causes memory collision.

To clarify the concept more, we give an example illustrating the use of row-

column S-random interleaver for collision free parallel decoding operations.

The overall procedure is illustrated in Fig. 4.11. For simplicity a data matrix

of size 2× 2 is considered. The number of parallel encoders in outer and inner

clusters were chosen as 2. First rows are encoded by RSCs, each row of the

matrix is separately interleaved, then each column of the matrix is separately

interleaved, finally rows are encoded again by RSCs. Different column elements

of the interleaved matrix resides in different memory locations and this prevents

memory collision issue. This is clearly seen in Fig. 4.11.

In CPC encoding operation, the encoding is performed column-wise after

RCS-random interleaving. This does not prevent memory collision as can be

observed from the fact that no interleaving is a special case of RCS-random in-

terleaving and it will cause memory collision. Minimum distance of PDSCCCs

and CPCs with RCS-random interleavers will be investigated in the following

sections. It should be noted that the RCS-random interleaver introduce in

this section is its plainest form with equal number of encoders in each cluster.

Generalizations for this scheme are possible as well.

54

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16

Rows are interleaved by

independent S-random

interleavers

1
 2
 3
 4

5
 6
 7
 8

9
 10
 11
 12

13
 14
 15
 16

2
 1
 4
 3

8
 7
 6
 5

11
 9
 10
 12

13
 16
 14
 15

8
 9
 14
 12

2
 1
 10
 15

13
 16
 6
 3

11
 7
 4
 5

Columns are interleaved

by independent S-random

interleavers

Information vector elements

are row-wise written into a

matrix

Matrix elements are read

row-wise

8
 9
 14
 12
 2
 1
 10
 15
 13
16
 6
 3
 11
 7
 4
 5

8

9

14

12

2

1

10

15

13

16

6

3

11

7

4

5

Decoder 1

Decoder 2

Decoder 3

Decoder 4

1

2

3

4

RAM 0

5

6

7

8

RAM 1

9

10

11

12

RAM 2

13

14

15

16

RAM 3

Figure 4.10: Row column S-random interleaver without memory collision.

55

�� ��
�� ��

�� �� �� ��
�� �� �� ��

�� �� �� ��
�� �� �� ��

�� �� �� ��
�� �� �� ��

�� ��� �� �� �� �� �� ��
�� ��� �� �� �� ��� �� ���

�	
���
��� �	��
�����
��� �	��
�����
����	� �	
���
���

����������� �� !�" #�!$%&

'()*+(, -

'()*+(, .

/0
10
12
/3
/4
14
/3
/2

'()*+(, 5

6789:7; <

=>�?@

�?@

AB ABC

ABCD

ABDEFG GFE

6789:7; H

EFG

GFE

6789:7; I

6789:7; J

K

>
EFG

��

K>

14
/4
12
/2

LMN4

10
/0
13
/3

LMN2

'()*+(, O

Figure 4.11: PDSCCC with collision free row-column S-random interleaver.

56

4.5 CPC Minimum Distance and Its Asymp-

totic Performance

The Hamming weight of a binary codeword is defined as the number of ’1’s

available in the codeword [51]. The minimum distance of a linear code is the

minimum Hamming weight of all the codewords. The minimum distance plays

an important role in code performance. As it gets larger, code performance

becomes better, especially at high SNR values [51]. We assume that dfree is the

free distance of the component convolutional codes used in CPCs with trellis

termination. We will investigate the minimum distance of CPCs according to

the type of the interleavers.

4.5.1 CPC with Rectangular Interleaver

After the first stage of the CPC encoding operation (row encoding), it is ob-

vious that one of the rows of the row-encoded matrix should contain at least

dfree number of ’1’s. This means that there are dfree columns containing at

least a single ’1’ in row-encoded matrix. When columns are encoded, there ex-

ist at least dfree number of columns each containing at least dfree ’1’s. Hence,

in total there are at least d2
free ’1’s in the coded matrix. This is the mini-

mum distance of the CPC whose component convolutional codes have trellis

termination constraint. In Fig. 4.12 this concept is explained for (1, 5/7)octal

component convolutional codes whose free distance is 5. In summary, if rect-

angular interleaver is used the CPC minimum distance is d2
free.

4.5.2 CPC with Column S-random Interleaver

Both to preserve the d2
free minimum distance of the CPC, and to get benefit

from the interleaving gain, after row encoding one can use S-random inter-

leavers for each column, i.e., each column is interleaved but different column

elements are not mixed. In this way it is guaranteed that dfree number of

columns contain a single ’1’ before column encoding operation. We call this

57

Encode Rows

Encode Columns

Row Data Bits
 X 1 X 1 X X X 1 X 1 X X 1 X X X

X 1 X 1 X X X 1 X 1 X X 1 X X X

X

X

1

X

1

X

X

X

X

1

X

X

X

1

X

X

X

1

X

1

X

X

X

X

1

X

X

X

1

X

X

X

1

X

1

X

X

X

X

1

X

X

X

1

X

X

X

1

X

1

X

X

X

X

1

X

X

X

1

X

X

X

1

X

1

X

X

X

X

1

X

X

X

1

X

Figure 4.12: If the columns elements are not mixed d2
free is preserved.

58

type of interleaving column S-random interleaving to distinguish it from reg-

ular S-random interleaving. A helical interleaver [52] also does not mix the

different column elements. A helical interleaver and a combination of helical

and column S-random interleavers will also be considered.

4.5.3 CPC with Full S-random Interleaver

If a single S-random interleaver is used for all the elements of the matrix after

row encoding, the number of columns that contain a single ’1’ is not necessar-

ily equal to dfree. This leads to the fact that CPC minimum distance is not

necessarily equal to d2
free any more. In fact, after interleaving operation all the

’1’s may appear in a single column. This means that CPC minimum distance

is lower bounded by dfree. We call this type of interleaving full S-random in-

terleaving. In Fig. 4.13 the effect of the full S-random interleaver is illustrated.

It is seen from the Fig. 4.13 that when the row encoded matrix is S-random

interleaved all the ’1’s appearing in a row may go to a single column. This

verifies that CPC minimum distance is lower bounded by dfree. Although the

use of S-random interleaver guarantees a smaller minimum distance compared

to rectangular interleaver, its performance is much better than rectangular

interleaver.

4.5.4 CPC with RCS-random Interleaver

In this interleaving method, minimum distance d2
free is preserved for CPC

and maximum interleaving gain is achieved. After row encoding operation,

each row of the row-encoded matrix is S-random interleaved with a different

S-random interleaver. In this way, the number of ’1’s in each row stays the

same, i.e., one of the rows contains at least dfree number of ’1’s. Then each

column of the row-encoded matrix is S-random interleaved with a different

S-random interleaver. Different column elements are not mixed. Hence, there

are at least dfree number of columns each containing at least a single ’1’.

Then second stage of the encoding operation proceeds. Columns are encoded

59

Encode Rows

Encode Columns

Row Data Bits
 X 1 X 1 X X X 1 X 1 X X 1 X X X

X 1 X X X X X X X X X X X X X X

X

X

X

X

X

1

1

1

X

1

1

1

1

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

an S-random interleaver

 X X X X X X X X X X X

X

1

1

1

1

1

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Figure 4.13: d2
free is not preserved if S-random interleaver is used (’x’ stands

for a single or a group of 0’s).

60

separately using a RSC. After column encoding operation, there exists at least

dfree number of columns each containing at least dfree number of ’1’s. Hence,

the minimum distance of the code becomes d2
free. The encoding procedure

using row-column S-random interleaver is depicted in Fig. 4.14.

4.5.5 PDSCCC with RCS-random Interleaver

The use of row-column S-random interleaver in CPC encoding operation guar-

antees dmin = d2
free equality. However, for PDSCCCs with RCS-random in-

terleavers dmin = d2
free is not guaranteed unless completely different random

column interleavers are used during the row-column interleaving operation.

This is due to a similar discussion in the previous sub-section. For a frame

length of 1024, the data matrix size is 32 × 32, row encoded matrix size is

32 × 68, it is possible to find 68 completely different column random inter-

leavers of length 32.

4.5.6 Asymptotic Performance

If row and column convolutional codes are trellis terminated, the row and col-

umn convolutional codes can be considered as block codes. Asymptotic per-

formance studies made for block codes are here valid for convolutional product

codes. BER probability of the CPCs can be approximated using the formula,

Pb '
N2

c,dfree
w2

c,dfree

k2
Q

(√
d2

free

2Es

N0

)
, Es = REb, (4.2)

where dfree is the free distance of the convolutional code used to construct the

convolutional product code. Nc,dfree
is the number of convolutional codewords

with free distance dfree, k2 is the length of the data information frame, and

wc,dfree
is the average Hamming weight of the information words that produces

convolutional codewords with Hamming weight dfree, R is the overall rate of

the CPC. The BER approximation in (4.2) is valid if any one of the rectangular

interleaver, column S-random interleaver, or row-column S-random interleaver

is used during the CPC encoding operation.

61

������ ����

������ 	�
����

���
��� ���� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

� �	�������� �����
�����

� � � � � � � � � � �

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

����� ��� ��� !"#$%&' (��(
!"&(�)& �(#��'(� ')&*#� +,-

��� .�%%)&* /�)*�("0 (�� !"��
)' �(#��'(�1��

Figure 4.14: CPC Encoding operation using RCS-random interleaver. (’x’
stands for a single or a group of 0’s).

62

4.6 Practical Implementation Advantages

The implementation advantage of CPC will be discussed herein with the pa-

rameters used in this study. Trellis termination will be neglected in calculation

and will not alter the results significantly with regard to complexity. Let t and

c be latency and computational complexity of a single stage of RSCs’ trellis

where identical codes are used as constituent codes. In SCCC, for a given

transmit data vector of length L, two log-MAP decoders are needed. The first

decoder has a complexity c.(2L) and a time delay t.(2L). The second decoder

has a shorter input, thus it has a complexity c.(L) and a time delay t.(L). In

total, the complexity is c.(3L) and the time delay is t.(3L). In CPC columns

are decoded first. The use of separate log-MAP decoders for each row and

column makes parallel processing operations possible. Each column decoder

has complexity c.(
√

L) and time delay t.(
√

L). Since these decoders are run in

parallel the total column decoding complexity is c.(2L) but the time delay is

t.(
√

L). Similarly, row decoding has a total complexity c.(L) and time delay

t.(
√

L). Hence, although both complexities are the same, time delays differ

very much and brings about a
√

L times increase in decoding rate. Hence, the

main advantage of CPCs lies on its suitability for parallel decoding procedure.

Although there are some proposed methods for the parallel decoding of SCCCs

and PCCCs, these methods usually propose extra algorithms to solve problems

met in parallel processing. (Such algorithms not only bring extra complexity

to the decoding operation [30, 40], but also may suffer from performance loss).

This situation is totally remedied with the proposed CPCs.

4.7 Performance of CPCs

We used recursive systematic convolutional code (1, 5/7)octal for all the con-

stituent encoders. An S-random interleaver (S = 18) is employed between

clusters. Input information sequence frame length is chosen as 1024 bits. We

formed a size 32× 32 information matrix. Thus, N (number of row decoders)

63

equals 32 and M (number of column decoders) equals 68 (i.e., trellis termina-

tion bits are added after row encoding). The encoded data in matrix form is

multiplexed to a single stream and binary phase shift key (BPSK) modulated.

The BPSK modulated signal is passed through an additive white Gaussian

noise (AWGN) channel with double-sided power spectral density N0

2
. We used

the log-MAP soft decoding algorithm [13] to iteratively decode the CPCs. We

used 12 iterations for decoding. We also simulated the serially concatenated

convolutional code which is a special case of CPCs with M = N = 1. The

signal-to-noise ratio values given in the figures are normalized with the proper

code rates for all scenarios with trellis termination taken into account. Non-

recursive systematic convolutional codes were also tried and it was seen that

their performance is not as good as the CPC system where RSCs are employed.

The type of the interleaver is very critical on the performance of the CPCs.

We will separately investigate the effects of each case. Trellis termination and

puncturing effects will be investigated separately.

4.7.1 Trellis Termination Effects

We investigated the effects of trellis termination for three different scenarios.

Trellis termination bits are added by the outer RSC encoders (row encoders)

(R-T) with rate 0.235, both outer and inner constituent RSC encoders (row

and column encoders) added trellis termination bits to the codeword (TT)

with rate 0.221, neither outer and inner constituent RSC encoders added trel-

lis termination bits to the codewords (No-TT) with rate 0.25. Although addi-

tion of trellis termination bits decreases the code rate, they are so critical for

good performance of the CPCs as seen in Fig. 4.15. The addition of trellis

termination bits in turbo or serially concatenated code brings a negligible im-

provement on the code performance [53]. However, without trellis termination

the performance of the CPCs degrades drastically.

The performance graphs are seen in Fig. 4.15. CPCs have better perfor-

mance at very low Eb/N0 levels when only inner codes are trellis terminated.

64

They perform worse at higher Eb/N0 levels when compared to the inner and

outer codes trellis terminated case. Though quite close up to BER 10−7, SCCC

seems to have an error curve of higher slope compared to TT at higher Eb/N0

values. The analytical bound is evaluated for TT case using the uniform inter-

leaver approach. However as it is seen from the Fig. 4.15 the bound obtained

by uniform interleaver concept gives a rough idea about the code performance.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

 CPC and SCCC Performance Graph

 E
b
/N

0
 in dB

 B
E

R

CPC No TT
CPC TT
CPC R−T
SCCC
Analytical Bound

Figure 4.15: CPCs and SCCC performance graph. CPCs with no trellis ter-
mination (CPC No TT). CPCs when rows (outer codes) are trellis terminated
(CPC R-T). CPCs when rows and columns (outer and inner codes) are trellis
terminated (CPC TT). Frame length=1024, Iteration number=12.

4.7.2 Interleaving Effects

4.7.2.1 Rectangular Interleaver

In this case, rectangular interleaving operation is performed after row encoding.

Trellis termination bits are added both to rows and columns. The addition of

trellis termination bits are necessary to guarantee that each row and column

has at least dfree number of ’1’s. The total number of ’1’s which is the minimum

65

distance of the CPC is dmin = d2
free = 25. With trellis termination bits

worst case dmin = d2
free, otherwise dmin is not equal to d2

free anymore. The

performance graph of this code is shown in Fig. 4.16. It is seen from the graph

that the performance of this CPC is not good for low SNR values, although

its minimum distance is large. This is due to large multiplicities of low weight

codewords. As well known, minimum distance dominates the performance of

the code at high SNR values.

4.7.2.2 Full S-random Interleaver

After the row encoding operation, an S-random interleaver (S = 18) is used.

We also simulated a serially concatenated convolutional code to compare against

CPC. The performance graph is seen in Fig. 4.16. As seen from the perfor-

mance curve, the performance is very good compared to the cases where inter-

leavers different than S-random are used. Due to the S-random interleaver use

after row encoding, the minimum distance of the CPC is not necessarily equal

to d2
free. In fact, the worst case dmin of CPC with a full S-random interleaver

is lower bounded by dfree. Although CPC with a full S-random interleaver

has a smaller worst case dmin, it shows the best performance at low rates due

to the large interleaver gain and low multiplicities of the minimum distance

codewords.

4.7.2.3 Column S-random Interleaver

To obtain both better performance than the no interleaver case and to pre-

serve the dmin = d2
free of CPC, we applied an S-random interleaver (S = 3)

to each column separately. We called such interleaving as column S-random

interleaving. Different column elements are not mixed. From Fig. 4.16 it is

seen that the performance is better compared to the CPC in which rectangular

interleaver is used. Its performance is worse than CPC where a full S-random

interleaver is used after row encoding. The use of the helical interleaver also

guarantees that minimum distance of CPC equals d2
free. We also investigated

66

the case that an helical interleaver is followed by a column S-random inter-

leaver. It is seen that such an interleaver results in slightly better performance

than the one where only column S-random interleaver is used during the en-

coding procedure.

0.5 1 1.5 2 2.5 3 3.5

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

 SCCC and CPC performance graph for different interleavers

 E
b
/N

0

 B
E

R

C1
C2
C3
C4
C5
C6
C7

Figure 4.16: SCC and CPC performance graph for different interleavers. It-
eration number=12. Frame length 1024. The graph is explained below.

C1: Rectangular interleaver is used (Rate ≈ 1/4)
C2: Theoretical bound for CPC with rectangular interleaver using eqn. 4.2
(Rate ≈ 1/4)
C3: Helical interleaver is used (Rate ≈ 1/4)
C4: Each column is S-random interleaved (Column S-random) (Rate ≈ 1/4)
C5: Helical + column S-random interleaver is used (Rate ≈ 1/4)
C6: Full S-random interleaver is used (Rate ≈ 1/4)
C7: SCCC with S-random interleaver (Rate ≈ 1/4)

4.7.3 Puncturing Effects

Puncturing is a widely used tool to increase the code rate of convolutional codes

[54]. The puncturing operation increases the rate of a code, but decreases the

free distance. This results in a worse error rate performance compared to the

67

non-punctured case. We used the puncturing vectors [1110] and [11101010]

to puncture the convolutional component codes. We applied the puncturing

vector to columns only and both to rows and columns. For the puncturing

vector [1110] , when puncturing is applied only to the column encoders, it

results in a code rate of 2/3 each. The overall code rate becomes (1/2)×(2/3) =

1/3. When trellis termination is used for rows and columns, a convolutional

code with a slightly smaller overall code rate (≤ 1/3) is produced. In the

other case, when puncturing is applied to each row and column encoder, it

results in an increased code rate of approximately (2/3)× (2/3) = 4/9. When

the puncturing vector [11101010] is employed, the code rates are 2/5 for row

punctured CPCs and 16/25 for row-column punctured CPCs.

The puncturing operation decreases the free distance of convolutional codes.

We puncture the (1, 5/7)octal component convolutional code which has dfree =

5, i.e., an input sequence ’0111’ produces minimum Hamming weight codeword

’00111011’. When every other parity bit punctured its free distance decreases

to d
′
free = 3, i.e., ’001x101x’ is obtained from minimum Hamming weight code-

word. Hence, the CPCs constructed using punctured component convolutional

codes have smaller minimum distance. In fact, the minimum distance equals

d2
free = 9, if no interleaving operation is performed or column S-random inter-

leaver is used. When puncturing vector v = [11101010] is employed, the free

distance decreases to d
′
free = 3.

When puncturing vector P = [1110] is applied only to rows, it results in

a rate 2/3 CPC. From Fig. 4.17, it is seen that the performance of the CPC

with a full S-random interleaver is good after being punctured. Its performance

is comparable to that of the SCCC. When the puncturing process is applied

to both rows and columns, it results in a CPC of rate approximately 4/9.

If puncturing vector P = [11101010] is employed code rate increases up to

16/25. The simulation results of rate 4/9 PDSCCCs and CPCs using different

interleavers are depicted in Fig. 4.18. It is clear from Fig. 4.18 that rate

4/9 CPC with row-column S-random interleaver shows the best performance,

68

this can be attributed to the guaranteed largest minimum distance d2
free. For

code rate 16/25, simulation results are illustrated in Fig. 4.19. In Fig. 4.19

two CPCs utilizing full S-random and row-column S-random interleavers are

compared. Recall that dmin is not necessarily lower bounded by d2
free when an

S-random interleaver is used. However, when row-column S-random interleaver

is used dmin ≥ d2
free. This results in a better performance and it is clearly seen

in Fig. 4.19. When both punctured code simulation graphs are compared, it

is seen that as the puncturing amount increases, the minimum distance of the

code becomes a critical factor for the code performance.

0.5 1 1.5 2
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Punctured SCCC and Punctured CPC Performance Graph

 E
b
/N

0
 in dB

 B
E

R

P−CPC
P−SCCC

Figure 4.17: Punctured CPC (Rate:2/3) and punctured SCCC (Rate:2/3)
simulation graph.

4.8 Peformance of PDSCCCs

We simulated PDSCCCs using row-column S-random interleaver and full S-

random interleavers. To prevent memory collision issue RCS-random inter-

leaver is used in PDSCCC. The performance results for PDSCCC with RCS-

69

0.6 0.8 1 1.2 1.4 1.6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

PDSCCC and CPC Performance Graph, Rate ~ 4/9, Frame Length = 1024

E
b
/N

0

 B
E

R
−

F
E

R

N=M=16 BER FSRI
N=M=16 FER FSRI
N=M=32 BER FSRI
N=M=32 FER FSRI
N=32, M=51 BER FSRI
N=32, M=51 FER FSRI
N=32, M=51 BER RCSRI
N=32, M=51 FER RCSRI

CPC

CPC

Figure 4.18: PDSCCC and CPC Performance graph. RCSRI is the row-
column S-random interleaver. FSRI is the full S-random interleaver. Frame
length = 1024. Iteration number = 12

70

0.5 1 1.5 2 2.5 3 3.5 4
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

PDSCCC 34x45 Punctured CPC, Rate ~ 16/25

E
b
/N

0

 B
E

R

Full S−Random Interleaver
Row Column S−Random Interleaver

Figure 4.19: Punctured CPC Performance graph when full S-random and
row-column S-random interleaver is employed. Rate' 16/25. Frame length =
1024. Iteration number = 12

71

random interleaver and full S-random interleaver is depicted in Fig. 4.20. It

is clear from this figure that, RCS-random interleaver shows almost the same

performance when compared to S-random interleaver. However, for moderate

Eb/N0 values they both achieve almost the same performance. In Fig. 4.21

SCCC is compared to that of the PDSCCC whose outer and inner cluster

numbers are 16. As it is obvious from Fig. 4.21 PDSCCC shows better per-

formance at high Eb/N0 values. For low Eb/N0 regions SCCC shows slightly

better performance.

0.5 0.6 0.7 0.8 0.9 1 1.1
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

PDSCCC 32x32 Performance Graph

E
b
/N

0
 in dB

 B
E

R
−

F
E

R

BER with S−Rand. Int.
FER with S−Rand. Int.
BER with RCS−Rand. Int.
FER with RCS−Rand. Int.

Figure 4.20: PDSCCC Performance graph for full S-random interleaver and
collision free RCS-random interleaver. N=M=32. Frame length=1024.

4.9 Analytical Analysis of PDSCCCs

An analytical bound expression for the performance of serially concatenated

codes is given in [32] where the authors employ uniform interleaving. The

uniform interleaver permits the estimation of the average interleaver gain, in-

dependent of the particular interleaver used in concatenated codes. Thus, the

72

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

PDSCCC Performance Graph for M=N=16

E
b
/N

0

 B
E

R
−

F
E

R

PDSCCC BER
PDSCCC FER
SCCC

Figure 4.21: PDSCCC and SCCC performance graph. N=16, M=16. Frame
length = 1024. Iteration number = 12

performance of a SCCC over all possible interleavers can be determined. We

define the functions necessary to evaluate the performance in the remainder of

this section.

Using spectrum functions of the SCCCs, performance upper bound to the

bit error probability for maximum likelihood soft decoding of the code is found

in the form [26],

Pb(e) ≤
∑
w,i

w

k
Aw,ierfc(

√
iREb

N0

). (4.3)

This is also written using two separate terms,

Pb
∼= 1

2

∑
m

Dierfc(

√
iREb

No

) (4.4)

where R is the code rate, Eb

N0
is the bit energy to noise ratio of the AWGN

channel, Di is obtained from the IOWEF coefficients according to:

73

Di =
∑

w

w

k
Aw,i. (4.5)

4.9.0.1 IOWEF of a Serial Concatenated Code

CC

1

Interleaver
 CC

2

Input Sequence
 Codewords

w
 i
 x

Figure 4.22: Serial concatenated code. CC1 and CC2 are constituent codes
CCs 1 and 2, respectively. These can be block codes, convolutional codes or a
mix of both. The interleaver size is L.

IOWEF ACs(W,X) of serial concatenated code is expressed as a product of

the two CWEFs of the constituent codes, which is normalized by the number

of the possible permutations (i.e., uniform interleaver)

ACs(W,X) =
L∑

i=0

ACC1(W, i)× ACC2(i,X)(
L
i

) . (4.6)

Once IOWEF of a concatenated code is available, upper bound to the bit error

probability can be calculated using (4.4) and (4.5).

4.10 BER Bounds for PDSCCCs

The uniform interleaver approach is used to evaluate the average performance

of the PDSCCCs. Since the information bits of parallel subsequences of inner

and outer clusters are independent, IOWEFs of the inner and outer clusters

can be evaluated as

AC1(W,X) =
N∏

i=1

A1i(W,X) (4.7)

AC2(W,X) =
M∏
i=1

A2i(W,X), (4.8)

where A1i(W,X) and A2i(W,X) are the IOWEFs of the CCs in inner and outer

clusters. We considered different scenarios and evaluated analytical bounds for

74

the performance of the CPCs. The analytical bounds for square input matrices

are shown in Fig. 4.23 for different interleaver lenghts. Trellis termination bits

are used by both inner and outer clusters. It is clear from the Fig. 4.23 that

as the interleaver size increases better performance is obtained.

0 2 4 6 8 10 12 14 16
10

−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Eb/No

P
b(e

)

 Analytical Bounds for Convolutional Product Codes

L=30
L=70
L=160
L=390
L=720
L=1150
L=1680
L=2176
L=3040

Figure 4.23: CPCs ’ analytical bounds for different interleaver sizes. Square
input matrices are used. Trellis termination bits are added to codewords by
both outer and inner encoders. Constituent Encoders are RSC (1, 5/7)octal. L
is the interleaver size.

We considered shorter interleaver lenghts and analyzed asymmetric cases

in Figs. 4.24 and 4.25. It is obvious from the Figs. 4.24 and 4.25 that CPCs ’

performance is comparable to that of SCCCs (i.e., case M=N=1) for smaller

M and N values (e.g., M=N=8 or N=1, M=8).

For larger interleaver sizes the bounds are shown in Figs. 4.26 and 4.27. With

a larger interleaver length of 2176 one can choose greater M and N values

such that almost the same performance is achieved as that of SCCCs, e.g. the

bounds for N=M=32 and N=M=1 (i.e., SCCC) cases are almost the same.

When greater M and N values are used, the degradation in performance is much

less as compared to the case where shorter interleaver lengths (256) are used.

75

0 2 4 6 8 10 12
10

−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Eb/No

P
b(e

)

 Analytical bounds for PDSCCCs

M=1
M=8
M=16
M=32
M=64

Interleaver Size =256
 N=1

Figure 4.24: PDSCCC analytical bounds for small interleaver size.

0 2 4 6 8 10 12 14
10

−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Eb/No

P
b(e

)

 Analytical bounds for PDSCCCs

M=1
M=8
M=16
M=32
M=64

Interleaver Size = 256
 N=8

Figure 4.25: PDSCCC analytical bounds for a small interleaver size.

76

0 1 2 3 4 5 6 7 8 9 10 11
10

−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Eb/No

P
b(e

)

 Analytical bounds for PDSCCCs

M=1
M=16
M=32

Interleaver Size =2176
 N=1

Figure 4.26: PDSCCC analytical bounds for large interleaver size.

0 1 2 3 4 5 6 7 8 9 10 11
10

−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Eb/No

P
b(e

)

 Analytical bounds for PDSCCCs

M=1
M=32
M=68
M=128

Interleaver Size =2176
 N=32

Figure 4.27: PDSCCCs ’ analytical bounds for large interleaver size.

77

Analytical bounds are also evaluated for the case when the trellis termination

is not applied to the constituent codes as shown in Fig. 4.28. When compared

to Fig. 4.23 the degradation in performance is obvious.

0 2 4 6 8 10 12 14

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Eb/No

P
b(e

)

 Analytical bounds for CPCs (No trellis termination)

N=32
N=128
N=512
N=2048
N=8192

Figure 4.28: CPCs ’ analytical bounds when trellis termination bits are not
used.

78

CHAPTER 5

PARALLEL DECODABLE TURBO CODES

In this chapter we propose a new structure for turbo codes which is suitable for

parallel decoding operations. The proposed scheme here utilizes paralleliza-

tion at the encoder side and uses it for parallel decoding at the receiver side.

Minimum distance of the proposed code is computed. The effects of differ-

ent interleavers on code performance is investigated. Parallel decodable turbo

code systems with and without memory collision interleavers are simulated.

5.1 Introduction

Turbo codes show good performance at low SNR regions. However their high

decoding latency lower their attractiveness for practical implementations. The

use of multiple processors for decoding is a way to reduce the decoding latency.

In this chapter we introduce a low latency architecture for turbo codes, and

the proposed architecture can easily be decoded using multiple processors.

Main benefit of this structure lies on reduced latency by a factor of number

of parallel processors employed. On the other hand, the proposed structure

hardware complexity is increased by the same factor.

Although the use of multiple processors decreases decoding latency signif-

icantly, some difficulties and drawbacks in practical implementations arises.

One difficulty is the memory collision problem which occurs mainly due to

the permutation order of the interleaver. This problem can be avoided by

designing collision free interleavers. There are a number of collision free inter-

79

leavers suggested. In [55] an algebraic collision free interleaver design method

is proposed. This method can be applied to block or multi-state interleavers.

Dividable interleaving method to prevent collision is introduced in [56]. Par-

allelization within iteration is achieved in [57] by the use of a collision free

rectangular type interleaver designed with an empirically found set of param-

eters. In [30, 58, 59] a number of algebraic techniques for parallel turbo code

interleaver design are introduced. In this chapter, we also employ our collision

free row-column S-random interleaver introduced in previous chapter for the

parallel decodable turbo codes. Analytical analysis of the proposed structure

is performed using the uniform interleaver approach.

5.2 IRWEF of Parallel Concatenated Code

The classical encoder and decoder of a typical parallel concatenated code (Cp)

is shown in Fig. 5.1. Constituent codes can be chosen either from block codes

or convolutional codes only. Block and convolutional codes can also be concate-

nated in parallel. If constituent codes are selected from recursive systematic

convolutional codes (RSCs) the well known Turbo codes are obtained.

Using the uniform interleaver approach, CWEF of the parallel concate-

nated code is found by [26],

ACp
w (Z) =

ACC1
w (Z)× ACC2

w (Z)(
L
w

) , (5.1)

where ACC1
w (Z) and ACC2

w (Z) are the CWEFs of the constituent codes CC1

and CC2, A
Cp
w (Z) is the CWEF of the parallel concatenated code. L is the

interleaver size, w and z are the Hamming weights of the information and

parity sequences, respectively. We obtain the IRWEF of the code Cp as in

ACp(W,Z) =
k∑

w=1

WwACp
w (Z), (5.2)

where k is the length of the input information sequences. A performance upper

bound to the bit error probability for the maximum likelihood soft decoding

80

���

����������	
��

� ��

�
�

�

� �������	
��

����������	
��

�
�

�

�
�

�� ���

����

����

�

��

1pd r ,r

1pd r),Inter(r

)Inter(rd

Figure 5.1: Parallel concatenated code. CC1, CC2 are constituent recursive
systematic convolutional codes 1 and 2 respectively, D1 and D2 are soft-in
soft-output decoders. rd, rp1 and rp2 are the received signal values for data
and parity bits. Ld, Lde, L′de are log-likelihood values.

of the code in an AWGN channel of double sided noise power spectral density

N0/2 is found as below [26]

Pb
∼= 1

2

∑
m

Dmerfc(

√
m

RcEb

No

), (5.3)

where Rc is the code rate, Eb

No
is the bit energy to noise ratio of the AWGN

channel, Dm is obtained from the IRWEF coefficients according to

Dm =
∑

z+w=m

w

k
Aw,z. (5.4)

We give an example in Appendix B for the computation of eqn. (5.3) for a

block code.

81

5.3 Parallel Decodable Turbo Codes (PDTCs)

Our proposed structure is seen in Fig. 5.2. As it is seen from Fig. 5.2 that

we employ parallelization at the encoder side and use this parallel structure

at the decoder side. The input information sequence is sent to a serial to

parallel converter to form subsequences, and these subsequences are encoded

using (RSCs). Although we employ only RSCs for constituent codes any com-

bination of block and convolutional codes can be used for constituent codes.

The number of RSCs in the upper cluster is denoted by N , and M is the

number of RSCs in the lower cluster. The decoder is depicted in Fig. 5.3.

Serial-to-parallel and parallel-to -serial converters are employed in this struc-

ture. Serial-to-parallel converter gets an input sequence and forms a matrix,

the matrix elements can be filled row-wise or column-wise. We prefer to fill

the matrix using row-wise. Parallel to serial converter does the opposite job,

i.e., it forms a sequence of bits by either multiplexing matrix columns or multi-

plexing matrix rows. Although the encoding operation can be performed using

multiple processor, it is not a necessity. A single processor can also be used

at the encoder side. As it is clear from Fig. 5.3 that decoders D11, . . . , D1N

and D21, . . . , D2M can be run in parallel. This reduces decoding delay consid-

erably. For turbo codes upper encoder should be trellis terminated, however

this is not a necessity for the lower encoder. Constituent codes in upper and

lower clusters may use trellis termination bits. This decreases the code rate.

If all the constituent codes are trellis terminated than the code rate for PDTC

is computed using

R =
L

(1
R1

+ 1
R2
− 1)L + T1N

R1
+ T2M

R2

, (5.5)

where Ri and Ti denote rates and number of memory elements for the con-

stituent codes in clusters. The effect of the trellis termination bits on the code

rate for different number of parallel branches are shown in table 5.1. Trellis

termination bits decrease the code rate more when compared to rate table for

PDSCCCs.

82

�

��

��

� ��� ���

����

����

����

���	

��� ���
��
��
��
�

�
�
�

�
�
�

Figure 5.2: PDTC encoder. CC1i, CC2i are constituent RSCs. S/P and P/S
are the serial to parallel and parallel to serial converters.

���

���

�����

���

���	��
����

�
��

���

����� ���

���

���

���

���

���

�

�
���

���

��� �
��

���	��

�

��

�
�
�

�
�
�

Figure 5.3: PDTC decoder. D1i, D2j(i = 1 . . . N, j = 1 . . .M) are the decoders
for RSCs CC1i and CC2i respectively. rd, rp1 and rp2 are the received signals
for data and parity bits. Ld, Lde, L′d and L′de are log-likelihoods.

83

Table 5.1: PDTC rates for different number of parallel branches in outer and
inner clusters. Interleaver size is 1024. R1 = R2 = 1/2, T1 = T2 = 2.

N

M

1
 4
 8
 16
 32
 64

1

4

8

16

32

64

0.332
 0.307

0.331
 0.329
 0.306

0.319

0.328
 0.324
 0.318

0.323
0.326

0.296

0.304
0.316
0.329
 0.328

0.331
 0.329
 0.326

0.326
 0.324
 0.323
 0.313
0.320

0.319

0.301
0.304
 0.296
 0.285
0.306

0.301

0.318
 0.307

0.307

0.316
 0.313

5.3.1 Decoding Delay

Let c and t be the computational complexity and latency of a single stage of

the code trellis. In a classical turbo code, for a given transmit data vector of

length L, two log-MAP decoders are needed. Both decoders have a computa-

tional complexity of (c.L) and a time delay of (t.L). In total, the complexity

of each iteration is (c.2L) and the time delay is (t.2L). In PDTC the use

of separate log-MAP decoders for each constituent code makes parallel pro-

cessing operation possible. Assuming that M = N, all decoders in the first

and second decoder clusters have a complexity of (c.L/N) and a time delay of

(t.L/N) ignoring the use of trellis termination bits. The total computational

complexity is (c.2L) and the decoding delay is (t.2L/N). As seen from this

discussion, the decoding delay is reduced by a factor of N while keeping the

total computational complexity almost the same as before (excluding a small

overhead for the serial to parallel and the opposite operations). Naturally, the

decoding latency decreases in this case at the expense of increased hardware

complexity as in all parallel processing operations. In fact, hardware complex-

ity is increased by the same factor of number of parallel processors employed,

assuming that there are equal number of decoders in clusters. Hence, a tradeoff

between latency and hardware complexity is observed.

84

5.4 Performance Analysis of Parallel Decod-

able Turbo Codes

We used the (1, 5/7)octal RSC for all the constituent codes. Trellis termination

is performed in each encoder where both the terminating data and parity bits

are appended to the encoded sequence. This slightly decreases the overall

code rate and is taken into account while calculating the Eb

N0
values both in

computation of the analytical bounds and in simulations. A1i(W,Z)’s are the

IRWEF ’s of the constituent codes CC1i(i = 1, . . . , N), similarly A2i(W,Z)’s

are the IRWEF ’s of the constituent codes CC2i(i = 1, . . . , M). A1(W,Z),

A2(W,Z) are the IRWEF of the equivalent upper and lower codes respectively.

Since the information bits are independent, these IRWEF ’s can be evaluated

as

A1(W,Z) =
N∏

i=1

A1i(W,Z) (5.6)

A2(W,Z) =
M∏
i=1

A2i(W,Z). (5.7)

We evaluated IRWEF ’s for different lengths of input information sequences.

Once IRWEF ’s of the PDTC ’s are available, the uniform interleaver analytical

bound approach can be applied and equations (5.3), (5.4) can be used to

determine upper bounds. Analytical bounds for different interleaver lengths

and N, M values are shown in Figs. 5.4 and 5.5.

In Fig. 5.4 the analytical bounds for a number of M = N values are

depicted. The code rates are readily calculated with L/(3L + 4(M + N)) by

taking trellis termination into account. The classical turbo code corresponds

to M = N = 1. It is seen that there is a rise in the error floor with increasing M

and N. However, when a larger interleaver size is used as in Fig. 5.5, it is seen

that PDTC error floor is almost the same as that of the classical turbo code

for moderate M and N values. When asymptotes of the bounds are inspected,

i.e., at very high SNR, it is observed that the bounds are off from each other by

85

0 1 2 3 4 5 6 7 8 9 10
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

0
 in dB

P
b(e

)

Analytical Bounds for PDTCs

M=N=1
M=N=8
M=N=16
M=N=32

Interleaver Size = 256

Figure 5.4: Analytical bounds for PDTCs using uniform interleaving. Con-
stituent codes are trellis terminated.

0 1 2 3 4 5 6 7 8 9 10
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

0
 in dB

P
b(e

)

Analytical Bounds for PDTCs

M=N=1
M=N=8
M=N=16
M=N=32
M=N=64

Interleaver Size = 2048

Figure 5.5: Analytical bounds for PDTCs using uniform interleaving. Con-
stituent codes are trellis terminated.

86

0 0.2 0.4 0.6 0.8 1 1.2
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

PD−Turbo Code Performance Graph

E
b
/N

0
 in dB

 B
E

R

M=N=8
M=N=4
M=N=1

Figure 5.6: PDTC performance graph. Interleaver size = 2048. N and M are
the number of constituent encoders in upper and lower clusters. S-random
(S = 20) interleaver is used. The curves refer to 12 iterations.

87

an amount directly related to code rates. This suggests that the parallelized

codes have similar WEFs and the rise in error floors is mainly due to rate loss

stemming from trellis termination. The rise in error floor is more visible for

large values of M and N but diminishes as interleaver size increases. Hence, we

can choose larger M and N values with larger interleaver sizes and gain more in

decoding delay. Simulation results of the proposed system is depicted in Fig.

5.6. The log-MAP algorithm is used for simulations. It is seen from Fig. 5.6

that the PDTC performance is almost the same as that of the classical turbo

code along with a slight rise in error floor predicted analytically.

5.5 Some Instances of PDTCs

There are some instances of PDTCs in literature. We present below two in-

stances of PDTCs which are woven turbo codes and convolutional coupled

codes.

5.5.1 Woven turbo codes

Woven turbo codes [18] are an instance of the proposed general structure where

convolutional codes are employed for the upper and lower cluster codes and a

rectangular interleaver is used. A single encoder in outer cluster is used. The

woven turbo encoder is illustrated in Fig. 5.7.

5.5.2 Convolutional coupled codes

The encoding operation of the convolutional coupled codes [17] is explained

as follows. Data is put into a matrix. Rows are encoded using a RSCs and

convolutional parity matrix is obtained. Next, rows are interleaved separately,

and columns are encoded using a block encoder and block parity matrix is

formed. The parity bits in convolutional and block parity matrices are mul-

tiplexed and transmitted. The convolutional coupled encoding operation is

depicted in Fig. 5.8. It is clear form Fig. 5.8 that the convolutional coupled

88

�

�

�

�

�

����

����

���	

�

�

�

���

�
�
�

�

�

�

	

��
�

�

Figure 5.7: Woven Turbo Encoding Operation.

codes are an instance of the proposed general system.

5.6 Further Analysis of PDTCs

In this section we inspect the minimum distance (dmin) of the parallel decod-

able turbo codes (PDTC). We give bound expressions for dmin of PDTC. The

effect of the puncturing on dmin is also investigated. Different interleavers will

be tried, and the best one will be emphasized.

5.6.1 Minimum Distance of PDTC with Rectangular

Interleavers

Minimum distance of the PDTCs with rectangular interleaver is found as fol-

lows. The encoding operation with rectangular interleaver is given in Fig. 5.9

using matrix notation and it is graphically illustrated in 5.10. Rows are en-

coded first which corresponds to encoding in the upper cluster. Parity bits

89

������ ���� 	�
��
�
� ��� ���� ���
��

�
�� ����
���

���������� ����

���������� ��

������ ���	���
	�
�� � ����� �������� ��

���
� !"#"$%

�

&�

&�

'
()� �)(

*(+��

*(+�,

-+��

-+�.

�)(()�

/
/
/

/
/
/

0�

0.

1�� ����

���
� !"#"$%

&

Figure 5.8: Convolutional Coupled Codes Encoding Operation. I1 · · · IM are
interleavers. BC21 · · ·BC2M are the constituent block codes.

90

are left intact and only data bits are encoded in the vertical direction which

corresponds to the coding at the lower cluster of a PDTC encoder.

Assume that codewords of Hamming weight dfree are generated from input

sequences of Hamming weights wfree in the constituent convolutional code.

Consider a single row of the data matrix whose elements are non-zero and its

Hamming weight equals wfree. After the first encoding operation we have a

row vector of Hamming weight dfree. The data bits have a Hamming weight

wfree, hence the parity bits have a Hamming weight of dfree − wfree. When

the second stage of encoding operation is performed (column encoding), we

have wfree number of columns each of whose Hamming weight is at least dfree.

Hence the total Hamming weight of the encoded matrix is (minimum distance):

dmin = wfree × dfree + dfree − wfree. (5.8)

For systematic codes wfree ≤ dfree. When used in (5.8), the following upper

bound is obtained for dmin of the PDTCs

dmin ≤ d2
free. (5.9)

For RSCs a nonzero input sequence contains at least two ’1’s. Hence, for

the case wfree = 2 which corresponds to the lowest possible Hamming weight

of the input sequence we can determine the following bound for dmin

3× dfree − 2 ≤ dmin ≤ d2
free. (5.10)

5.6.2 Minimum Distance of PDTC with S-random In-

terleavers

The encoding operation when an S-random interleaver is used is depicted in

Fig. 5.11 for the case that there exists at least one row with Hamming weight

wfree. After the first encoding operation (upper cluster encoding), we have

at least one row whose Hamming distance is dfree. The parity bits have a

91

������
����

������ 	�
�
�
�
 ����

�� ��
�� ��

�� �� �� ��
�� �� �� ��

�� �� �� ��
�� � �� �
�� �� �� ��
�� � �� �

Figure 5.9: PDTC encoding operation matrix illustration. Rectangular inter-
leaver is employed.

Encode Rows

Encode Only

Data Columns

d d d d d
 d p d p d p d p

 d p d p d p d p

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Figure 5.10: Free distance computation of PDTCs when rectangular interleaver
is employed.

92

Hamming weight of dfree−wfree. When the data bits are S-random interleaved,

it is possible that all the nonzero data bits goes to the first column. This

corresponds to the worst case in terms of minimum distance. The data bits at

the columns are encoded next, this corresponds to the encoding procedure at

the lower side of the PDTC system. The first column at least has a Hamming

weight of dfree. The total Hamming weight of the matrix is the sum of the

Hamming weight of the first column and Hamming weight of the parity bits

which was dfree − wfree. Hence, the worst case dmin of the PDTC equals

dfree − wfree + dfree, i.e., dmin = 2 × dfree − wfree. For systematic codes

wfree ≤ dfree. When it is used in dmin = 2 × dfree − wfree we obtain lower

bound dfree ≤ dmin. Considering the case wfree = 2, we get the bound dfree ≤
dmin ≤ 2dfree − 2. To obtain higher minimum distances for the PDTC row-

column S-random interleaver can be used.

5.6.3 Minimum Distance of PDTC with Row-Column

S-random Interleaver

To maximize the minimum distance of the PDTC and to get the maximum

benefit from the interleaving gain, we will make use of row-column S-random

interleavers. The encoding operation of PDTCs using RCS-random interleaver

is as follows. Data is put into a matrix, each row of the matrix is encoded by

RSCs. This corresponds to encoding operation in the upper cluster. The

encoded data is sent to an RCS-random interleaver. However, during the

interleaving operation only the data bits are involved, i.e., the places of parity

bits are fixed and they are left intact. The use of RCS-random interleaver

guarantees that there are at least wfree number of columns containing at least

a single ’1’ in data matrix. When the encoding is performed along the vertical

dimension, it is clear that the number of ’1’s in the matrix structure is at least

dmin = wfree × dfree + dfree − wfree. (5.11)

which is the worst case dmin of the PDTC. In our study we used constituent

93

������ ����

	�
������

����������� ���
���� ���� ����

� � � � � � � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

������ ����
����
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � � � � � � �

�

�

�

�

�

�

�

�

�� !" #$%!$�&$
'()*++,�-
.$,-/" 01233

4'5$6'75
#$%!$�&$ '(
)*++,�-
.$,-/" 81233

9*7,": #$%!$�&$ '(
)*++,�- .$,-/"

81233;012334'5$6'75
#$%!$�&$ '(

)*++,�- .$,-/"
81233

� � � � � � � �

Figure 5.11: PDTC Encoding operation matrix illustration. An S-random
interleaver is used.

94

convolutional codes with the generator matrix (1, 5/7)octal. The free distance

of this convolutional code is dfree = 5. The Hamming weight of the input se-

quences that produce dfree Hamming weight codewords is wfree = 3. Putting

these values into the eqn. (5.11), we get dmin = 17, which is the worst case

minimum distance of the PDTC when RCS-random interleaver is employed.

Parallel decodable serially concatenated codes are studied in Chapter 5. Con-

sidering the rate 1/3 parallel decodable serially concatenated convolutional

systems whose dmin equals 15 when row-column S-random interleaver is used,

PDTC system has a higher minimum distance. Hence, it is expected that

PDTC system has an error floor at higher SNR values compared to the punc-

tured PDSCCCs. PDTC encoding operation using the RCS-random inter-

leaver is depicted in Fig. 5.12.

5.6.4 Memory Collision Problem

When parallel decodable turbo codes (PDTCs) are concerned, memory colli-

sion does not occur if after row-column S-random interleaving operation the

encoding is performed row-wise by the lower cluster encoders. However, in this

case worst case minimum distance of the PDTC is not guaranteed to be equal

to dmin = wfree×dfree+dfree−wfree. If columns of the interleaved data matrix

are encoded by lower cluster encoders, memory collision occurs but minimum

distance of PDTC has its greatest value. This is clearly seen from simulation

results in Fig.5.13 where PDTC with MC shows better performance due to

guaranteed higher minimum distance. However, during the RCS-random in-

terleaving operation, if completely distinct random interleavers are used for

each column, minimum distance of the PDTC again gets is maximum value

wfree × dfree + dfree − wfree. However, for short frame lengths it may not

be possible to find required number of completely different interleavers. The

performance of the PDTC with a collision free interleaver is depicted in Fig.

5.13.

Although, PDTC with MC shows better performance for M=32 and N=32,

95

������ ����

�	���
 ����
��	��
��� �	�	 ���� ����

�� �� �� ��

�� �� �� ��

�

��

�

�

�

�

�

�� �� �� �� �� �� �� ��

�	���
 ����
��	��
����
� �	�	 ���� ����

������ �	�	 ����
�� ����

�

�

��

�

�

�

�

�

�

�

�

�

��

�

�

�

��

�

�

�

�

�	�� ������� ����
� �	�
	 �	

�� ��� �� �!"##≥

�� �� �� �� �� �� �� ��

�
��
�
�
�

��
�
�
�
�

�
�
��
�
�

�
�
�
��
�

�� �� �� ��

Figure 5.12: PDTC Encoding operation matrix illustration. A RCS-random
interleaver is employed.

96

0 0.5 1 1.5 2 2.5 3
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

PDTC with Row Column S−Random Int

E
b
/N

0
 in dB

 B
E

R

N=M=32 No MC
N=M=16 No MC
N=M=8 No MC
N=M=32 MC

Figure 5.13: PDTC performance graph. RCS-random interleaver is employed.
MC refers to an interleaver with memory collision

as the number of lower cluster encoder increases (number of columns increases),

the performance of the PDTC degrades in spite of large free distance. This is

due to the shorter frame lengths of the lower cluster encoders and large rate

loss due to trellis termination bits for a great number of encoders. Performance

of PDTC for a large number of column encoders is illustrated in Fig. 5.14.

Changing the size of the matrix does not affect worst case minimum distance

of the code, this is clear from Fig. 5.14, since all the lines almost have the same

slope. The slope of the performance lines depends on the minimum distance

of the code.

The effect of the minimum distance on the performance of PDTC is better

seen when N=32, M=32, i.e., frame length equals 1024. The performance

graph is depicted in Fig. 5.15. It is clear that PDTCs with RCS-random

interleaver with memory collision show better performance.

97

0 0.5 1 1.5 2 2.5 3
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

PDTC with Row Column S−Random Int

E
b
/N

0
 in dB

 B
E

R

N=M=32 MC
N=16, M=64 MC
N=8, M=128 MC

Figure 5.14: PDTC performance graph. RCS-random interleaver is employed.
MC means memory collision

0.5 1 1.5 2 2.5 3
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

PDTC Performance

E
b
/N

0
 in dB

 B
E

R

N=32, M=32 RCS−Rand MC
N=32, M=32 RCS−Rand No MC
N=32, M=32 Full S−Rand

Figure 5.15: PDTC performance graph for RCS-random and S-random inter-
leavers. MC means memory collision

98

5.7 Increasing Code Rate by Puncturing

The dmin of PDTC will be evaluated here when puncturing is applied. Assume

the use of the puncturing pattern v = [1110], i.e., every second parity bit is

eliminated. Assuming the use of rectangular or RCS-random interleaver, the

minimum distance of the PDTC is computed as

dmin = wfree · dp
free + dp

free − wfree (5.12)

where dp
free is the free distance of the convolutional code after puncturing

operation. For the convolutional code with generator polynomial (1, 5/7)octal,

the use of the puncturing pattern v = [1110] results in dp
free = 3 and wfree = 3.

Using eq. (5.12) the minimum distance of the punctured PDTC is found as

9. The simulation results for punctured PDTC is depicted in Fig. 5.16. RCS-

random interleaver is employed for the simulation. As it is clear from the

Fig. 5.16 that PDTC with memory collision has a slightly better performance

than PDTC without memory collision. This is due to the guaranteed largest

minimum distance of PDTC given in eqn. 5.11.

0 0.5 1 1.5 2 2.5 3 3.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Punctured 32x32 PDTC Performance Graph

E
b
/N

0
 in dB

B
E

R

MC
No MC

Figure 5.16: Punctured PDTC performance graph with RCS-random inter-
leaver. Frame length =1024. Rate is 0.47. Iteration number is 12.

99

CHAPTER 6

SOME APPLICATIONS OF THE

PROPOSED PARALLELIZATION

TECHNIQUES

The proposed parallelized structures can be applied in many different com-

munication scenarios. We will present a few exemplary systems to show the

generality of the proposed methodology.

6.1 Turbo Equalization

Communication systems suffer from inter-symbol interference (ISI) in fre-

quency selective channels. A channel equalizer is usually employed at the

receiver side to estimate the data and alleviate the effect of ISI. Traditional

equalizers are usually linear filters for which various criteria are used for their

performance, such as minimum mean square error (MMSE). Zero forcing equal-

izer (ZFE)[60] is the simplest one which is achieved by just inverting the chan-

nel.

With the invention of the turbo codes in 1993 [13] iterative algorithms

gained much popularity among communication society. The iterative approach

was extended to channel equalization in [15] where turbo equalizer was intro-

duced.

Turbo equalization is the process of combining channel equalization and

decoding operations in an iterative manner. The information produced in

100

the decoders and equalizers are traded back and forth to enhance the overall

performance. A turbo equalizer (TE) system usually employs soft-input, soft

output (SISO) algorithms at the decoder and equalizer block. The popular

SISO algorithms employed are the marginal a posteriori (MAP), and Viterbi

based algorithms which are sequential in nature. However, sequential solutions

such as MAP and soft output Viterbi suffer from high complexity and high

latency which is a limiting factor in practical applications in spite of their good

performances.

To reduce complexity and the large latency, a number of algorithms to

use at the equalizer block have been suggested in [61] where minimum mean

square error (MMSE) equalizer is used at the equalizer block. However, its

performance degrades seriously in severe ISI cases [62]. In [63], a least mean

squares based update algorithm is used for the determination of the linear

filter coefficients. A joint structure that combines coding and equalization

different than turbo equalization is suggested in [64] where decision feedback

equalizer soft information is exchanged with the decoder hard decisions in

an iterative manner. Although the use of sub-optimum algorithms result in

reduced complexity, the performance loss cannot be tolerable for some cases

[62].

In our study, we introduce zero state doped turbo equalizer (ZSDTE) struc-

ture which uses trellis based optimal decoding algorithms and is very suitable

for parallel processing at the receiver side. We use zero state trellis termina-

tion method which permits parallelization of the turbo equalizer. ZSDTE has

significantly low latency compared to the classical turbo equalizer structure

and at the same time exhibits the same performance.

6.1.1 System Model

The transmitter and receiver sides of a communication system that sends data

through a frequency selective channel is depicted in Figs. 6.1 and 6.2. The

channel is also included into the transmitter side for ease of representation.

101

���
�������

�	
�

���
� ���
������

������� ���
�����

����������� �����

����������� �
� �

Figure 6.1: Transmitter side of a communication system.

��������� 	�
����

����� ���
������

��
����� �����

	����������� 	�������������
������ ����� ��
��� ��
�����

Figure 6.2: Receiver side of a communication system.

In the transmitter model, the transmit filter, the channel, and the receive filter

are incorporated into the ISI channel model which is represented by a discrete

time linear transversal filter with the finite length impulse response given by

[60]

h[n] =

Lf−1∑

k=0

hkδ[n− k], (6.1)

where hk are the filter coefficients and Lf is the filter length. The channel

coefficients hk are time-invariant and available at the receiver. A tapped delay

line model for the frequency selective channel with three channel taps is de-

picted in Fig. 6.3. The received signal samples yk can be expressed in terms

of channel coefficients and input symbols by

y[k] = n[k] + h[k] ∗ c[k] (6.2)

where ′∗′ denotes the convolution operation, n[k] are the independent and iden-

tically distributed Gaussian noise samples with probability density function

f(n) =
1√

2πσ2
e−n2/2σ2

. (6.3)

102

We assume that all the symbols in the model are real without loss of generality.

The frequency selective channel can be represented using a trellis diagram. For

the three tapped ISI channel the trellis representation is depicted in Fig. 6.4

for the channel taps h0 = 0.407, h1 = 0.815 and h2 = 0.407.

� �

� �

�� �

�

��

����

	�

�
�

��

Figure 6.3: Tapped delay line model for three tap frequency selective channel.

To mitigate the effects of the ISI at the receiver, decoding and equalization

operations are combined such that soft information exchange among blocks

occurs. This iterative structure is called the turbo equalizer which is depicted

in Fig. 6.5. Although we have used MAP algorithm for both the equalizer and

decoder blocks in Fig. 6.5 any SISO algorithm can be adopted for both blocks.

6.1.2 Zero State Doped Turbo Equalizer (ZSDTE)

By parallel processing high latency caused by decoder and equalizer modules

can be reduced. To enable the parallel processing operation, we will partition

trellis structure of the encoder and equalizer modules, i.e., we will obtain

parallel trellis structures. This is achieved by the addition of trellis termination

bits to the binary information bits in a periodic manner so that the trellis

diagram of the convolutional encoder visits the zero state periodically. The

same procedure is repeated for the ISI channel input symbol sequence, i.e.,

trellis termination symbols are inserted in a periodic manner. Hence, the ISI

channel trellis is also periodically terminated. This procedure is illustrated

in Fig. 6.6. Instead of the trellis termination bits, tail biting can be used in

the convolutional encoder. Using tail biting it is guaranteed that the starting

and ending states are the same [65]. However, the insertion of the trellis

103

��

� �

� � � � � � � �

�	
���
 ����� ��

� �

�
�

� � � � � �
� �

� � � �

� � �
� �

� �

� � �

� � � � � �
�

� � �
� � �

� � � � � �
� �

�	
���
 ����� ��

Figure 6.4: Trellis representation for a three tap frequency selective channel.
The possible content of the delay elements r0 = (1, 1), r1 = (−1, 1), r2 =
(1,−1), r3 = (−1,−1) are the states. The transitions from a state St at time
t to another state St+1 at time t + 1 occurs according to the input and output
pair vt/yt where vt is the channel input and yt is the channel output.

��� ������	
� �

���
��
��
� ��� �
���
�

���
��
��
� �

��
��

�

� �

�

�

�

��

�
���
 �����

�!�"

Figure 6.5: Turbo equalizer. y is the received signal. Ly, L1, L2, L3, L4 and L5

denote log-likelihoods.

104

termination symbols for the channel part is a must, since by employing tail

biting symbols for the ISI channel trellis it is impossible to obtain parallelized

trellis structure.

����������
�	
�

���
� ���
������ ������� ���
�����

����������� �����

����������� ��� ��

� !" #$"%%&'("$)&*+(& * ,&('

��- ./0 /1 23434555 /634347

� !" #$"%%&'("$)&*+(& * '8), %'
��- .90 91 23:3:555 9; 3:3:7

������� ����������� ������<�������� =���

Figure 6.6: Zero state doping process at the transmitter side. tb, tc are the
trellis termination bits and symbols respectively.

This approach can also be interpreted as pre-coding. The binary informa-

tion sequence is pre-coded and then passed through a convolutional encoder.

The encoded binary data is binary phase shift keying (BPSK) modulated.

The BPSK symbol sequences are pre-coded and passed through an ISI chan-

nel. White Gaussian noise with double sideband power spectral density N0/2

is added to the channel output. The pre-coding effectively divides the incom-

ing sequence of blocks into smaller blocks which can be processed separately

by multiple equalizers and decoders in a parallel manner at the receiver side.

To clarify the pre-coding operation further, an equivalent representation that

better illustrates the overall operation in Fig. 6.6 is explained in the following

section.

105

6.1.3 Transmitter Side Equivalent Model

The zero ZSDTE model in Fig. 6.6 may seem complex in the first look. How-

ever, the same system can be expressed with a simplified model. This model

is depicted in Fig. 6.7. As it is seen from the Fig. 6.7, serial to parallel (S/P)

and parallel to serial (P/S) converters are employed. In fact, if we employ mul-

tiplexers instead of S/P converters and de-multiplexers for the place of P/S

converters both structures become exactly the same. S/P and P/S converters

are nothing but multiplexers and de-multiplexers preceded by rectangular in-

terleavers. All of the outer constituent encoders add trellis termination bits

to the coded data sequences. Inner ISI channel trellises are also terminated.

This transmitter side equivalent model enables us for parallel decoding and

equalization operations at the receiver side. The structure in Fig. 6.7 has the

same form as the parallelized codes in chapters 5 and 6.

���

��

��

��� ���

��� ����

��� ����

���

�
�
�
�
�

�
�
�
�
�

	
��
� �����
��������

������
�
����

�

��

��

��

��

��

��

 �

 �

�!"
�

#$% &

'()*

Figure 6.7: Parallel equivalent model.

Parallel decoding and equalization can be performed similar to PDSCCCs

as detailed in chapter 4. The decoding latency is decreased by a factor of

number of constituent elements in clusters assuming that equal number of

branches are used in clusters. The memory collision problem can be avoided

with row-column S-random interleavers.

6.1.4 Simulation Results

We use RSC (1, 5/7)octal for the outer code. An S-random (S = 18) inter-

leaver is employed between convolutional encoder and the BPSK modulator.

The three tap ISI channel model in [60] is adopted. The channel coefficients

106

are h0 = 0.407, h1 = 0.815 and h2 = 0.407. Both ISI channel and outer con-

volutional code has memory 2, i.e., the number of states in trellis structures

are the same. The log-MAP algorithm is used for both the decoder and equal-

izer blocks. Trellis termination bits were taken into account while computing

the overall rate and thus the energy per bit. Input information frame length

is chosen as 1024 bits. Twelve iterations are performed for each frame. For

statistical significance, the simulations were run until at least 60 erroneously

encoded frames have been received. The number of outer and inner branches

were chosen equal, i.e., N=M=1, N=M=4, N=M=16. The asymmetric case

was also considered, i.e., N value changes and M=1 fixed. We also simulated

turbo equalizer using the sliding window method in [40]. The performance

graphs are shown in Figs. 6.8, 6.9, and 6.10.

0 1 2 3 4 5 6 7
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 Turbo Equalizer Performance Graph

 E
b
/N

0

 B
E

R

N=M=1 ZSDTE
N=M=4 ZSDTE
N=M=16 ZSDTE
N=M=16 Sliding Win. TE

Figure 6.8: Bit error rate (BER) performance of ZSDTE and sliding window
turbo equalizer (SWTE). N=M=1 corresponds to the classical turbo equalizer.

As seen from Figs. 6.8 and 6.9, ZSDTE shows very close performance

to that of the classical turbo equalizer for even large N and M values, i.e.,

N=M=16. As the number of branches increases, BER and FER performance

107

0 1 2 3 4 5 6 7
10

−4

10
−3

10
−2

10
−1

10
0

 Eb/No

 F
E

R

FER Performance of the Turbo Equalizer

N=M=1 ZSDTE
N=M=4 ZSDTE
N=M=16 ZSDTE
N=M=16 Sliding Win. TE

Figure 6.9: Frame error rate performance of the ZSDTE and SWTE. N=M=1
corresponds to the classical turbo equalizer.

degrades slightly. As it is obvious from the Figs. ZS doping method shows

better performance than the sliding window technique. The simulation re-

sults for the asymmetric situation is depicted in Fig. 6.10. It is seen that

the performance with ZSDTE is quite comparable to that of classical turbo

equalizer.

6.2 Joint Structures for Trellis Coded Modu-

lation, Convolutional Product Codes and

Space Time Trellis Codes

By employing joint structures it is possible to obtain better communications

systems. Those communication units employing convolutional codes can be

jointly designed. Some of those communication schemes employing trellis codes

are trellis coded modulation and space time trellis coding. CPC which is a

108

0 1 2 3 4 5 6 7
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 E
b
/N

0

 Turbo Equalizer Performance Graph

CTE−BER
ATE−BER
CTE−FER
ATE−FER

Figure 6.10: Error rates for the ZSDTE for the asymmetric case, i.e., N=16,
M=1. ATE and CTE mean asymmetric and classical turbo equalizer respec-
tively.

109

special case of PDSCCC can be incorporated with trellis coded modulation

and with space time trellis coding. Since CPC has a matrix structure and

enables parallel processing operations, better jointly designed communication

systems with low latency can be obtained. In this section joint structure for

CPC involving both space time trellis codes and convolutional product codes

will be introduced. We first provide some background information and then

introduce our joint structures.

6.2.1 Trellis Coded Modulation

For error free communication the use of channel codes before transmission is a

must. Block and convolutional code provide coding gain through the insertion

of redundant bits. Redundancy is measured in terms of the code rate R,

which is the ratio of the information bits to the total number of transmitted

bits. The addition of the redundancy bits causes code rate to decrease. If the

information transmission rate is to be the same, then symbol transmission rate

for the coded system should be increased by R−1. This means an increased

bandwidth. In a bandwidth-limited system this is a severe problem.

Modulation and coding were usually regarded as two separate processes

until the discovery of trellis coded modulation in 1976 by Ungerböeck [10].

Ungerböeck used convolutional coding and modulation jointly and showed that

it was possible to decrease the probability of error in bandlimited channels by

introducing redundancy with the three step method in [10] without increas-

ing the transmission bandwidth. In TCM the coding operation is performed

in the modulation signal space. The performance of an uncoded modulation

scheme depends on the Euclidian distance between signals in the modulation

signal space. The purpose of TCM is to maximize the free Euclidian distance

of the code by properly matching the codewords to signal points in the con-

stellation diagram. Trellis coded modulation was adopted in use for telephone

modems and for many satellite communication applications [11]. Trellis coded

modulation can be described as below.

110

• Add p bits of redundancy to every set of m source bits.

• Expand signal constellation from 2m to 2m+p.

• Use the m + p bits encoded blocks to select from the expanded signal

constellation.

Symbol transmission rate is the same. Hence no additional bandwidth is

needed. The main idea of Ungerböeck’s system lies on the manner by which

the m information bits are mapped onto the 2m+p signals in the expanded

constellation. This procedure is achieved through set partitioning. The goal

is to maximize the Euclidian distance between symbols sequences. In general

there are three main stages of trellis coded modulation. Ungerböeck proposed

that choosing p = 1 is sufficient to achieve the additional performance.

• Signal constellation expansion.

• Signal constellation partitioning.

• Selection of the the partitions by convolutional encoders.

The general procedure for Ungerböeck encoder is shown in Fig. 6.11.The

number of information bits in one data symbol is denoted by m where k of the

m information bits are encoded using a rate k
k+1

convolutional encoder. The

resulting k + 1 bits are used to select one of the 2k+1 partitions of the 2m+1

signal constellations at the (k + 1)st level of the constellation’s partition tree.

The remaining m− k bits are used to select a signal from the chosen partition

three. The selection of the signal is determined by the convolutional encoder

structure, hence the complete system is referred as trellis coded modulation.

In addition, the spectral efficiency of a system is defined as the number

of bits per second transmitted per 1 Hz of bandwidth. A brief explanation is

given for each of the three main stages of TCM in the following sections.

111

���� ������	

��
���������

��
�����

����
� � ������ ���
���� ���� ���������

����

����
� � ������ ����
��� ����
��� ����

����

���	
�
�
�

���	

�

�����	
�
�
�

���	

�

�
�
�

�

Figure 6.11: Trellis coded modulation procedure.

6.2.1.1 Constellations

There are three main constellations used in communication systems.

• One dimensional constellations.

• Rectangular constellations.

• MPSK (M-ary phase shift keying) constellations.

Rectangular constellations provide better minimum distance versus average

energy performance, however they are distorted when they pass through non-

linear devices. In MPSK although the minimum distance between constellation

points is relatively small, the modulated signal has a constant envelope and is

not distorted by non-linearities. In Fig. 6.12 4-PSK and 8-PSK constellations

are depicted as examples.

6.2.1.2 Set Partitioning

Set partitioning involves dividing the signal constellation into subsets with

larger minimum distance between points in the subset than the minimum dis-

112

Figure 6.12: 4 PSK and 8 PSK Constellations.

tance between points in the original constellation.

An 8-PSK signal constellation partitioning is illustrated in Fig. 6.13. The

partitioning is explained as follows. First constellation A is divided into two

subsets B0 and B1, then subsets B0 and B1 are divided into two subsets C0, C1

and C2, C3 respectively. At each level of subdivision, the minimum distance

between symbols increases compared to the previous level.

�

�� ��

�� �� �� ��

Figure 6.13: Constellation expansion and partitioning of the constellation.
Codewords are carefully assigned to the constellation points.

113

6.2.1.3 Selection of the the partitions by convolutional encoders

A convolutional encoder is used in TCM. Convolutional encoder can be system-

atic or non-systematic. If the convolutional encoder is a systematic encoder,

there exists parallel transitions between states in the trellis diagram of the con-

volutional encoder. If non-systematic code is used then there exists no parallel

transitions between states in trellis diagram. While assigning code words to the

signal partitions care should be given to maximize the Euclidian distance be-

tween parallel transitions. This situation is considered in Ungerböeck’s work.

Now we state the Ungerböeck design rules,

1. Signals in the same lowest partition region are assigned to the parallel

transitions, if parallel transitions exists, this rule maximizes distance

between parallel paths.

2. Signals in the preceding partition are assigned to transitions that start

or stop in the same state. This specification maximizes distance between

non-parallel paths.

3. All signals are used equally often.

For QPSK to 8-PSK expansion we will use the convolutional encoder in Fig.

6.14. Codewords will be mapped to the constellation points considering Ungerböeck’s

design principles. The assignment of codewords to constellation points is il-

lustrated in Fig. 6.15.

8-PSK Signal

Mapper

S0
 S1

m0

m1

k0

k1

k2

v

+

Figure 6.14: Systematic Convolutional Encoder.

114

�

�

�

�

�

�

�

�

������

������

������
������

������

������������

������
������

��� ��� ������

������
������

������

������

������

�

���

	��

�	�

		�

��	

	�	

			 �		

�		

�
�
�
�

���

	�	

��	

			

�	�

		�	��

Figure 6.15: State transition diagram of the convolutional encoder in Fig-
ure 6.14. Codewords are carefully assigned to the constellation according to
Ungerböeck design rules.

115

Ungerböeck’s design principles maximize the minimum free distance of the

encoder. The minimum free distance of the encoder is the minimum of free

distance between parallel and non-parallel transitions. In other words,

dfree = min{dfreeparallel
, dfreenon−parallel

}.

6.2.2 Trellis Coded Modulated CPC

In this section we explain the joint structure involving TCM and CPC. The

process at the transmitter side for the joint system is described as follows.

Data is put into a matrix. Each row of the data matrix is first encoded using a

rate 1/2 recursive systematic convolutional code whose generator polynomial

is (1, 5/7)octal. Next, column encoding operation proceeds. Each column of the

data matrix is encoded using Ungerböck’s 8-State RSC [66, 67]. The encoding

operation is illustrated in Fig. 6.16. Column encoded data is 8-PSK modulated

and passed through an AWGN channel. An interleaver can be employed after

row decoding if desired. For simplicity of the illustration we have omitted the

interleaver in our Figs. The role of the interleaver is so critical for the good

performance of the TMCPC, hence in our simulations we used an S-random

interleaver after row encoding operation.

6.2.2.1 TMCPC Decoding

TMCPC decoding operation is more complex than classical CPC decoding

operation. Symbol-wise log-MAP decoders are used for the TMCPC decoding.

In addition, symbol probability partition (bit probabilities are formed using

symbol probabilities) and symbol probability formation (symbol probabilities

are computed using bit probabilities) operations are performed during the

decoding of TMCPC. Columns are decoded first and symbol probabilities are

obtained. Data and parity bit probabilities are extracted from column symbol

probabilities.

A similar procedure can be considered for obtaining the symbol proba-

bilities from the bit probabilities (i.e., obtain symbol probabilities from the

116

�
�
�
�

�

�

�
�
�
�

�

�

d d d d

d d d d

d d d d

d d d d ���	
� �	
� ��������������� ��
�
�
�
�

�

!
!
!
!

"

#

p d p d p d p d

p d p d p d p d

p d p d p d p d

p d p d p d p d

���	
� $	%�&�� �����'���()*�+,� ���-. �./.�
�0$

1
1
1
1
1
1
1
1

2

3

4
4
4
4
4
4
4
4

5

6

q q q q q q q q

p d p d p d p d

p d p d p d p d

q q q q q q q q

p d p d p d p d

p d p d p d p d

7
8
9

:
;
<

 c c c c c c c c

 c c c c c c c c
'
8

'
7

'
6

'
5

'
4

'
3

'
2

'
1

87654321

=>?@ABC D E>A@FGH
IHJGK LMNOP

Figure 6.16: TMCPC encoding operation.

117

marginal bit probabilities). Using the bit probabilities, symbol probabilities

for the row symbols are found assuming that the bits forming the symbols

are independent. These are given to the symbol-wise row decoders. Row

symbol-wise log-MAP decoders produce new likelihood symbol probabilities.

Subtracting old symbol probabilities from new symbol probabilities, extrinsic

symbol probabilities are obtained and given to the column decoders. This

procedure is repeated sufficiently many times. Overall decoding procedure is

illustrated in Fig. 6.17

The system performance is depicted in Fig. 6.18. Shannon limit for 8-PSK

[66] modulation for the given code rate is approximately Eb
N0

= 0 dB. From

performance graph it is seen that TMCPC is 1.75 dB away from the Shannon

limit. In [68] a detailed study of serially concatenated trellis coded modulation

has been made. From the results in [68], classical serially concatenated TCM

has almost the same performance as TMCPC. They both reach to 10−5 at

Eb/N0 = 1.6dB.

6.2.3 Joint CPC and STTC

In this section joint structure involving space time trellis codes and convolu-

tional product codes will be given. We first give a brief information about

space time codes then explain our joint structure.

6.2.3.1 Space Time Codes

Multipath fading could severely degrade the performance of wireless systems.

Traditional block codes and convolutional codes are generally used in single

antenna transmission systems. In multi antenna transmission systems space

time block codes and space time trellis codes are used to enable diversity

gain and forward error correction. These codes benefit from diversity and

enables better communication. Space time block codes provide diversity gain

with a simple decoding algorithm. However, they do not provide coding gain.

Therefore they may not be considered as a block code. Space time trellis

118

�
�

�
�
�

�

 c c c c c c c c

 c c c c c c c c
'
8

'
7

'
6

'
5

'
4

'
3

'
2

'
1

87654321

���	
� �	��
�� ��
 	�� �����
�	� ��	������� ��� �	�
�����
 ������ �����

� ��
 ������ ��� ��� ���

�	�
 �	� ��
�	� �
 ����	������� ��� ����� �����	������� ���

!�� ��� ��
�� �
 �	� ��
�	� �
 ����	������� ��� ����� ��
�	�"�����	�"#$%
��	
��

&���� �	� ��
�	� �'���������	������� ��� 	����� �	� �����	������� ��� ��	
 �	� �����	������� ��� �	�
 �	��
� ��
�	���	������� ��� �	�
��� ��
 �����������

� ��
 ������ � �� ��� ���

&���� �	��
� ��
�	� �'���������	������� ��� 	����� �����	������� ��� �	� ����
� �

(

)

!����� �	��
� ��
�	� �'���������	������� ���

)
(

����
� 	� ����

Figure 6.17: TMCPC decoding operation.

119

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 Trellis Coded Modulated CPC Performance Graph

 Eb/No

 B
E

R
−

F
E

R

BER
FER

Figure 6.18: TMCPC performance graph. Frame length=1024. Iteration num-
ber=12. S-random interleaver is used (S = 20). N=32, M=34

codes (STTCs) were first introduced by Tarokh, Seshadri and Calderbank

[69]. STTCs achieve coding gain in addition to diversity gain. This makes

them more powerful when compared to space time block codes. However,

their decoding is more complex and this makes them less attractive due to the

existence of limited computation facilities. The trellis diagram of Tarokh’s 4

state STTC is depicted in Fig. 6.19 where input symbols are QPSK modulated

and represented by 0, 1, 2, 3. The modulated signals are sent to the state

machine. Parity symbols are added to the input symbols and each symbol is

sent using a transmitter antenna.

The MIMO transmission system for any number of transmitter and receiver

antennas is illustrated in Fig. 6.20. The channel between Nt transmitter and

Mr receiver antennas is represented with a matrix H of size Mr × Nt. The

elements of the channel matrix hij are channel coefficients, and they represent

the channel gain between transmitter antenna i and receiver antenna j for a

channel without intersymbol interference.

120

����� ������ �	��
�� ��� ��
� ���
���
� �
 �
����

� ���� ���� ���� ����

� ���� ���� ���� ����

� ���� ���� ���� ����

� ���� ���� ���� ����

�

�

�

�

�

�

�

�

Figure 6.19: STTC 4-state encoder diagram.

H =




h1,1 h1,2 . . . h1,Nt

h2,1 h2,2 . . . h2,Nt

...
... . . .

...

hMr,1 hMr,2 . . . hMr,Nt




(6.4)

If the encoded frame length equals L, then we can form a matrix X of size

Nt × T , where T equals L/Nt, Nt is the number of transmitter antennas, Mr

is the number of receiver antennas. The received signal can be expressed by a

matrix Y of size Mr × T as in

Y =

√
ρ

M
HX + W, (6.5)

where W is the Mr × T additive noise matrix whose elements are samples

of independent zero-mean complex Gaussian random variables with variance

N0/2, and ρ is the signal-to-noise ratio (SNR) per receiver antenna.

6.2.4 Joint CPC and STTCs

CPC is a special case of PDSCCCs and it can be integrated with STTCs. In

Figs. 6.21, 6.22, and 6.23 joint encoding and decoding operations are illus-

trated. Interleaver is omitted from Figs. 6.22 and 6.23 for simplicity after

row encoding operation. In fact the use of interleaver is critical for the good

operation of the joint coded system. The state diagram given in Fig. 6.19 uses

121

�
�
�
�
�

���

���

�
�
�
�
�

���

���

�
�
�
�
�
�

�	
� �

���� ����	
� �

����

��������
�����
�

��������
�����
�

Figure 6.20: MIMO communication system.

two transmitter antennas.

Decoding operation of the CPC-MIMO systems are similar to that of the

TCM-CPC systems. STTCs can be decoded using the Viterbi [51] algorithm.

In addition, the MAP algorithm [51] can also be employed for the decoding

operation of STTCs. For our simulations we used MAP. The overall decoding

operation is given in Fig. 6.23.

In MAP and Viterbi algorithms, branch metrics (BM) are calculated according

to [22]

BM =
Mr∑
i=1

| yi −
N∑

j=1

thijx̃j |2, (6.6)

where Nt is the number of transmitter antennas, Mr is the number of receiver

antennas, hij is the channel coefficient between transmitter i and receiver j, x̃j

is the transmitted symbol from transmitter antenna j and is determined from

the state transition diagram of the STTC. It is assumed that perfect chan-

nel information is available at the receiver. CPC-STTC encoding operation

is similar to that of the CPC-TCM structure. After row encoding operation,

mapping is performed for column bits, and space time trellis coding is per-

formed along columns. The encoded symbols are multiplexed and transmitted

using multi antenna systems. For the simulation of this joint structure we

have used 2 transmitter and 2 receiver antennas. Joint structure involves CPC

with constituent codes (1, 5/7)octal and Tarok’s 4-state STTCs. The simula-

122

�� �

���

���

��� ��� 	
��
�����
 ���������
�����
 �����

�����

�����

������

�

��

���

�

�����

�����

�����

��� ����� ���

��

��

�����	 �

��

	 ���������

!
�

!

�

"#$%&# '%()

"#$%&# '%()

*+

*,+
*-

*,-

.

.

.

.

.

.

.

.

.

.

.

.

Figure 6.21: Parallel decodable concatenated space time trellis code encoder
and decoder blocks. S’/P’ is the pairwise serial to parallel converter, i.e.,
cells holding data and parity symbol pairs from STTCs are multiplexed and
transmitted.

123

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

Encode Rows

using (1,5/7)

octal

p

d

p

d

p

d

p

d

p

d

p

d

p

d

p

d

p

d

p

d

p

d

p

d

p

d

p

d

p

d

p

d

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

16
15
14
13
12
11
10
9

8
7
6
5
4
3
2
1

Columns are

QPSK

mapped

Encode Columns

using Tarokh
 ’
s four

state STTC

Transmit each column separately.

p

1
s

1

s

Multiplexer

Column Vectors

s
s
s
s
s
s
s
s

s

s

s

s

s

s

s

s

s
s
s
s
s
s
s
s

s

s

s

s

s

s

s

s

p

16

p

15

p

14

p

13

p

12

p

11

p

10

p

9

16
15
14
13
12
11
10
9

p

8

p

7

p

6

p

5

p

4

p

3

p

2

p

1

8
7
6
5
4
3
2
1

Figure 6.22: MIMO-CPC encoding operation.

������ ���� ��	
�
��

����	�
�� ����

�������

�����

���� ��

���

�

��� �

��

������ �����
�
��	
� ����

��������

�
�

�

�

�� ���� ��!

��!��

Figure 6.23: MIMO decoding operation. SBc denotes symbol to bit proba-
bility conversion for column vectors. BSr denotes bit to symbol probability
conversion for rows.

124

0 2 4 6 8 10 12 14 16 18 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

 CPC−MIMO Performance Graph

 SNR−per Receive Antenna

 B
E

R
−

F
E

R

BER
FER

Figure 6.24: CPC-MIMO performance graph.

tion result is depicted in Fig. 6.24. Serial concatenation of space time trellis

codes and convolutional codes are studied in [70] From the results of [70] it

is clear that the proposed system achieves similar performance, and has much

less decoding latency.

125

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Iteratively decoded codes perform very close to the Shannon limits. However,

iterative decoding operation limits their use in practice due to large decoding

latency. The work on this thesis concentrates on enhancing the latency of

iterative decoding. In this thesis work, we proposed parallel decodable con-

catenated codes which reduces the latency by parallel processing. The latency

is decreased by a factor of number of parallel branches employed during the

decoding operation. The main idea for the construction of these systems is

to employ parallel encoders at the transmitter side and make use of it at the

decoder side. This provides us with more flexibility on code design. Using this

idea, convolutional product codes and a more general structure called parallel

decodable serially concatenated codes (PDSCCs) are suggested. We proposed

parallel decodable serially concatenated convolutional codes (PDSCCCs) us-

ing the PDSCC structure. We showed that using PDSCC structure regular

product codes, serially concatenated convolutional codes, and convolutional

product codes can be generated. The effect of different interleavers on the

performance of CPCs are investigated. Minimum distance of the CPCs are

inspected with regard to different interleavers. The effect of trellis termination

bits on CPC performance is studied. The proposed structures are analytically

investigated using the uniform interleaver approach.

Parallel processing operation introduces some new problems. One of the

most critical problems is memory collision. Specific interlavers are designed

in literature to prevent the memory collision problem and these interleavers

126

are usually constructed using algebraic techniques. We propose row-column

S-random interleavers which has random behavior like S-random interleavers

and show comparable performance to that of S-random interleaver. This type

of interleavers also prevents the memory collision problem. Row-column S-

random interleaver can be considered as a joint structure of helical and S-

random interleavers. The performance of the PDSCCCs with memory collision

free row-column S-random interleavers are demonstrated.

Pursuing the same idea, parallel decodable turbo codes (PDTCs) are pro-

posed. It is seen that PDTCs show comparable performance to that of the

classical turbo codes with a significant reduced latency. Minimum distance of

the parallel decodable turbo codes are investigated and we provided bounds for

the minimum distance considering the use of different interleavers. It is seen

that, to get maximum benefit from the interleaving gain and maximize the

dmin of the PDTC, row-column S-random interleaver is the best choice. Simu-

lation results for different interleavers are presented. It is also seen that some

instances of our general structure (PDTC) are already available in literature.

It is soon realized that the same methodology can be extended to any com-

munication unit which does have a regular trellis structure. Turbo equalizer

and space time trellis codes are two such structures. We proposed joint struc-

tures involving CPCs, trellis coded modulation, and space time trellis codes.

The joint structures benefit from reduced latency and have similar performance

compared to their counterparts.

Although parallel processing reduces the decoding latency enormously, hard-

ware complexity is increased almost by the same factor. Hence, a tradeoff

exists between decoding latency and hardware complexity for the proposed

structures. Using different settings in the proposed structures, various sys-

tems can be obtained and the best one can be decided considering complexity,

latency, and hardware complexity.

Erasure decoding is an important concept for bursty error channels. Since

our proposed units have a matrix structure, they may be useful for erasure de-

coding and this is a subject we currently investigate on. Another future study

127

is the joint structure involving CPC and OFDM. Two dimensional structure

of CPC enables it to be easily integrated with OFDM. We look into integrat-

ing the CPC frames into a time selective OFDM system so that joint channel

estimation and decoding is easily performed. The implementation of a CPC

decoder on a FPGA platform is also under way. Bit and symbol interleaved

joint PDSCCC, TCM, PDTC, and MIMO systems is another future topic un-

der investigation.

128

APPENDIX A

Computation of Spectrum Function of

Convolutional Codes

We below give an example to illustrate the spectrum function computations

of convolutional codes using the polynomial approach.

Example:

The task is to find IRWEF of the convolutional code with the generator poly-

nomial (1, 5/7)octal. State and block diagrams for this encoder are shown in

Fig. A.1. The state diagram is transformed into a state transition matrix

T (W,Z) as shown below. Each branch label of the state diagram is replaced

with the polynomial WwZz, where W and Z are dummy variables which facili-

tate the enumeration of the input weight(w) and parity weight(z), respectively.

The element of the T (W,Z) at index location (i, j) resembles the branch label

from state transition i to j.

T (W,Z) =




1 0 WZ 0

WZ 0 1 0

0 W 0 Z

0 Z 0 W




(A.1)

For an input sequence of length k, frame transition matrix F (W,Z) is defined

by,

F (W,Z) = T (W,Z)k. (A.2)

129

Each element of the F (W,Z) matrix is a polynomial. The sum of all the poly-

nomials (i.e., the sum of elements of F (W,Z)) equals the IRWEF (A(W,Z))

of the convolutional code).

A(W,Z) =
∑
i,j

Fi,j(W,Z) (A.3)

The element of F (W,Z) at index position (2, 3) is the IRWEF for the code-

words whose trellis diagrams start at state 2 and ends at state 3. Since convo-

lutional codes that we use are always trellis terminated (i.e., trellis diagrams

end at state 0), the (0, 0) element of F (W,Z) gives complete information about

the convolutional code, i.e., IRWEF is [F (W,Z)]1,1

� �

�

�

������ ��	���
� �

��� ��	���
�
�

��� ��	���
�
�

��

��

����

��� ���

��� ���

������

������

Figure A.1: State machine for convolutional code generator (1, 5/7)octal.

For moderate even small input sequence lengths it is difficult to find the IR-

WEFs of the linear codes. Some mathematics software is usually used to com-

pute IRWEFs. Polynomial multiplication equals convolution of the coefficients

of the variables which are written in increasing order. If your polynomial uses

130

two variables then two dimensional convolution should be used. For n variable

polynomials n dimensional convolution is used. To find the frame transition

matrix for an input sequence of length k (i.e., T (W,Z)k) each element of the

transition matrix T (W,Z) is expressed as a matrix of size p× p, here p is ar-

bitrary and depends on the user’s will. A larger p gives more accurate results,

however an intermediate p is sufficient due to the fast decay rate of the error

function. Once each element of the transfer function T (W,Z) is expressed as

a matrix, then any power of the T (W,Z) can be taken. T (W,Z) elements

are polynomials, and element multiplication corresponds to 2D convolution

of their matrix representation. After each 2D convolutional operation resul-

tant matrix dimension doubles, hence we truncate the resultant matrix to the

original size by taking the first p rows and columns and forming a new ma-

trix. When all the powers are taken, the [T (W,Z)]1,1 element is our transfer

function for the trellis terminated convolutional code.

Example: [T (W,Z)]2,1 = WZ This element is expressed in matrix form as:

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

W

0

 W

1

 W

2

 W

3

 W

4

 W

5

Z

0

Z

1

Z

2

Z

3

Z

4

Z

5

)
,
(

)
1
,
2
(

Z
W
T
 =

Figure A.2: Matrix representation of polynomial WZ.

131

APPENDIX B

Analytical Bound Calculation

The bit error probability computation of a block code is explained below by an

example where we assume that IRWEF of the block code is already available.

Example:

For BCH(7,4) code there are only 24 codes, and IRWEF for the BCH code is

given below:

AC(W,Z) = 1W 0Z0 + 3W 1Z2 + W 1Z3 + 3W 2Z1 + 3W 2Z2 + 1W 3Z0

+ 3W 3Z1 + 1W 4Z3 (B.1)

= 1 + W (3Z2 + Z3) + W 2(3Z + 3Z2) + W 3(1 + 3Z) + W 4Z3

(B.2)

The CWEFs are obtained from IRWEFs as follows.

AC
0 (Z) = 1 w = 0 (B.3)

AC
1 (Z) = 3Z2 + Z3 w = 1 (B.4)

AC
2 (Z) = 3Z + 3Z2 w = 2 (B.5)

AC
3 (Z) = 1 + 3Z w = 3 (B.6)

AC
4 (Z) = Z3 w = 4 (B.7)

The relation between IRWEF coefficients and CWEF is given in eqn. (B.8).

AC
w(Z) =

∑
j

Aw,jZ
j (B.8)

132

CWEF of the concatenated code is obtained by

ACp
w =

AC1
w × AC2

w(
N
w

) , (B.9)

where the coefficients are readily evaluated for our example as follows.

A
Cp

0 (Z) =
1× 1(

4
0

) = 1 (B.10)

A
Cp

1 (Z) =
(3Z2 + Z3)× (3Z2 + Z3)(

4
1

) =
9

4
Z4 +

3

2
Z5 +

1

4
Z6 (B.11)

A
Cp

2 (Z) =
(3Z + Z2)× (3Z + Z2)(

4
2

) =
3

2
Z2 + 3Z3 +

3

2
Z4 (B.12)

A
Cp

3 (Z) =
(1 + 3Z)× (1 + 3Z)(

4
3

) =
1

4
+

3

2
Z +

9

4
Z2 (B.13)

A
Cp

4 (Z) =
Z3 × Z3

(
4
4

) = Z6 (B.14)

The IRWEF for parallel concatenated code is computed using (B.15) and is

given in (B.16).

ACp(W,Z) =
∑

w

ACp
w (Z)Ww (B.15)

ACp(W,Z) = 1 + W (
9

4
Z4 +

3

2
Z5 +

1

4
Z6) + W 2(

3

2
Z2 + 3Z3 +

3

2
Z4)

+ W 3(
1

4
+

3

2
Z +

9

4
Z2) + W 4(Z6) (B.16)

Dm’s are computed using the IRWEF. Using Dm’s bit error probability Pb(e)

is computed as:

Pb(e) ≈ 1

2

∑
j+w=m

Dmerfc

(√
mREb

N0

)
(B.17)

133

Pb(e) =
1

2

[
0.1875erfc

(√
3REb

N0

)

+ 1.875erfc

(√
4REb

N0

)

+ 4.3125erfc

(√
5REb

N0

)

+ 1.125erfc

(√
6REb

N0

)

+ 0.0625erfc

(√
7REb

N0

)

+ erfc

(√
10REb

N0

)

134

APPENDIX C

The MAP Algorithm

The MAP algorithm as implemented through the BCJR algorithm is sum-

marized here. Assume that there are P complex numbers used in the con-

stellation scheme. The constellation alphabet consists of the symbols C =

{c1, c2, . . . , cP−1, cP}.

The received signal vector is denoted by y and has length L, i.e., L symbols

are transmitted. The task is to determine the transmitted symbols. Given the

received signal vector, the probability that a specific symbol value is sent has

to be determined. Given the received vector, the probability of the kth data

symbol being equal to each of the symbols should be evaluated as

p(uk = ci|y) =
∑

s,s′:uk=ci

p(sk−1 = s′, sk = s, | y). (C.1)

Since p(y) does not depend on ci, we will actually evaluate (C.1) using the

states at time epochs k − 1 and k

p(s′, s, y) = p(sk−1 = s′, sk = s, y), (C.2)

where sn is the state of the finite state machine at time epoch n.

For y = [y1, y2, . . . , yL], the vector yk
1 = [y1, . . . , yk] is defined. Eqn. (C.2)

can now be stated as

135

p(s′, s′y) = p(s′, s, yk−1
1 , yk, y

K
k+1)

= p(yL
k+1|s′, s, yk−1

1 , yk)p(s′, s, yk−1
1 , yk)

= p(yL
k+1|s′, s, yk−1

1 , yk)p(s, yk|s′, yk−1
1)p(s′, yk−1

1)

= p(yL
k+1|s)p(s, yk|s′)p(s′, yk−1

1)

= βk(s)γk(s
′, s)αk−1(s

′).

(C.3)

Based on (C.3),

αk(s) = p(s, yk
1)

=
∑

s′
p(s′, s, yk

1)

=
∑

s′
p(s, yk|s′, yk−1

1)p(s′, yk−1
1)

=
∑

s′
p(s, yk|s′)p(s′, yk−1

1)

=
∑

s′
γk(s

′, s)α(s′).

(C.4)

Hence, the probability αk(s) can be computed recursively. Similarly the prob-

ability βk(s) can be computed in a recursive way as in

βk−1(s
′) =

∑
s

βk(s)γk(s
′, s). (C.5)

For encoders starting from the zero state, α0 is initialized as

α0(s) =





1 if s = 0

0 otherwise.
(C.6)

Similarly βL(s) s are initialized with,

βL(s) =





1 if s = 0

0 otherwise,
(C.7)

136

for the encoders with trellis termination to the zero state. The main variable

used in recursion operations is evaluated by

γk(s
′, s) = p(s, yk|s′)

=
p(s′, s, yk)

p(s′)

=
p(s′, s)
p(s′)

p(s′, s, yk)

p(s′, s)
= p(s|s′)p(yk|s′, s)
= p(uk)p(yk|uk),

(C.8)

where the event uk corresponds to the transition from s′ to s. Its values is

nonzero if there is a valid transition otherwise it is zero.

137

REFERENCES

[1] C. Shannon, “A mathematical theory of communication,” Tech. Rep., Bell
Systems, vol. 27, pp. 379–423, 1948.

[2] R. W. Hamming, “Error detecting and correcting codes,” Tech. Rep., Bell
Systems, vol. 26, no. 2, pp. 147–160, 1950.

[3] M. J. E. Golay, “Notes on digital coding,” Proc. IEEE, vol. 37, p. 657,
1949.

[4] R. C. Bose and D. K. Ray-Chaudhuri, “On a class of error correcting
binary group codes,” Information and Control, vol. 3, pp. 69–79, 1960.

[5] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
SIAM Journal on Applied Mathematics, vol. 8, pp. 598–606, 1960.

[6] E. R. Berlekamp, “Nonbinary bch decoding,” IEEE Trans. Inform. The-
ory, vol. 14, no. 2, pp. 300–304, 1968.

[7] P. Elias, “Coding for noisy channels,” IRE. Conv. Record, vol. 4, pp.
37–47, 1955.

[8] A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm,” IEEE Trans. Inform. Theory, vol. 13, pp.
260–269, 1967.

[9] D. J. Costello, J. Hagenauer, H. Imai, and S. B. Wicker, “Applications
of error-control coding,” IEEE Trans. Inform. Theory, vol. 44, pp. 2531–
2560, 1998.

[10] G. Ungerboeck and I. Csajka, “On improving data-link performance by
increasing the channel alphabet and introducing sequence coding,” in Int.
Symp. Inform. Theory, Ronneby, Sweden, June 1976.

[11] S. Wicker, Error Control Systems for Digital Communications and Stor-
age. Prentice Hall, Inc.: Englewood Cliffs, 1995.

[12] J. G. D. Forney, Concatenated Codes. MA, USA: M.I.T. Press, 1966.

[13] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-
correcting coding and decoding: Turbo-codes,” in Proc. ICC’93, Geneva,
Switzerland, May 1993, pp. 1064–1070.

[14] R. G. Gallager, “Low density parity check codes,” IRE Trans. Inform.
Theory, vol. 8, pp. 21–28, 1962.

138

[15] C. Douillard et al., “Iterative correction of intersymbol interference:
Turbo equalization,” Eur. Trans. on Telecommun., vol. 6, pp. 507–511,
1995.

[16] S. Host, “On woven convolutional codes,” Ph.D. dissertation, Lund Uni-
versity, Sweden, Sept. 1999.

[17] S. Chaoui, “Convolutional coupled codes,” Ph.D. dissertation, University
of Darmstadt, Germany, Feb. 2003.

[18] J. Feudenberger, M. Bossert, V. Zyablov, and S. Shavgulidze, “Woven
turbo codes,” in Seventh International Workshop on Algebraic and Com-
binatorial Coding Theory, Bansko, Bulgaria, June 2000, pp. 145–150.

[19] S. Lin and D. J. Costello, Error Control Coding. Prentice Hall, 2004.

[20] R. Johannesson and K. S. Zigangirov, Fundamentals of Convolutional
Coding. IEEE Press, 1999.

[21] J. Conan, “The weight spectra of some short low-rate convolutional
codes,” IEEE Trans. Commun., vol. 32, no. 9, pp. 1050–1053, 1984.

[22] L. Hanzo, T. H. Liew, and B. L. Yeap, Turbo Coding, Turbo Equalisation
and Space-Time Coding for Transmission over Fading Channels. John
Wiley and Sons, 2002.

[23] B. Vucetic and J. Yuan, Turbo Codes Principles and Applications. Kluwer
Academic Publishers, 2004.

[24] R. D. Wesel, “Convolutional codes,” Encyclopedia of Telecommunications,
vol. 1, pp. 598–606, 2003.

[25] P. Elias, “Error free decoding,” IRE Trans. Inform. Theory, vol. IT-4, pp.
29–37, 1954.

[26] S. Benedetto and G. Montorsi, “Unveiling turbo codes: some results
on parallel concatenated coding schemes,” IEEE Trans. Inform. Theory,
vol. 42, no. 2, pp. 409–428, 1996.

[27] F. Marx and J. Farah, “Improved turbo-coded umts systems with un-
equal error protection of compressed video sequences transmitted over
frequency-selective channels communications,” in IEEE Int. Conf., vol. 5,
2004, pp. 3091–3095.

[28] A. Shibutani, H. Suda, and F. Adachi, “Complexity reduction of turbo
decoding,” in IEEE VTS 50th, Ansterdam, Netherlands, Sept. 1999, pp.
1570–1574.

[29] J. W. Jung et al., “Design and architecture of low-latency high-speed
turbo decoders,” ETRI Journal, vol. 27, no. 5, pp. 525–532, 2005.

139

[30] A. Tarable, S. Benedetto, and G. Montorsi, “Mapping interleaving laws
to parallel turbo and ldpc decoder architectures,” IEEE Trans. Inform.
Theory, vol. 50, no. 9, pp. 2002–2009, 2004.

[31] C. Heegard and S. B. Wicker, Turbo Coding. Kluwer Academic Press,
1999.

[32] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serially con-
catenation of interleaved codes: Design and performance analysis,” IEEE
Trans. Inform. Theory, vol. 44, pp. 909–926, 1998.

[33] S. Benedetto and G. Montorsi, “Design of parallel concatenated convolu-
tional codes,” IEEE Trans. Commun., vol. 44, no. 5, pp. 591–600, 1996.

[34] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Soft-input, soft
output modules for the construction and distributed iterativ decoding of
code networks,” vol. 9, no. 5, pp. 155–172, 1998.

[35] V. Franz and J. B. Anderson, “Concatenated decoding with a reduced
search based bcjr algorithm,” IEEE J. Select. Areas Commun., vol. 16,
pp. 186–195, 1998.

[36] D. Lee and I. Park, “A low complexity stopping criterion for iterative
turbo decoding,” IEICE Trans. Commun., vol. 88, no. 1, pp. 399–401,
2005.

[37] F. Zhai and I. Fair, “Techniques for early stopping and error detection in
turbo decoding,” IEEE Trans. Commun., vol. 51, no. 10, pp. 1617–1623,
2003.

[38] C. Schurgers, E. Catthoor, and M. Engels, “Optimized map decoder,” in
IEEE Workshop on Signal Processing Systems, Lafayette, LA, USA, Jan.
2000, pp. 245–254.

[39] P. Robertson, E. Villebrum, and P. Hoeher, “A comparison of optimal
and sub-optimal map decoding algorithms operating in the log domain,”
in IEEE Int. Conf. on Comm., vol. 2, Seattle, USA, 1995.

[40] S. Yoon and Y. Bar-Ness, “A parallel map algorithm for low latency turbo
decoding,” IEEE Commun. Lett., vol. 6, no. 7, pp. 288–290, 2002.

[41] Y. Wang, J. Zhang, M. Fossorier, and J. S. Yedidia, “Reduced latency
turbo decoding,” in SPAWC, IEEE 6th Workshop, Honolulu, USA.

[42] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory,
vol. IT-20, pp. 284–287, 1974.

[43] R. M. Pyndiah, “Near-optimum decoding of product codes: block turbo
codes,” IEEE Commun. Lett., vol. 6, no. 8, pp. 1003–1010, 1998.

140

[44] E. Hewitt, “Turbo product codes for lmds,” in IEEE Radio and Wireless
Conference, 1998, pp. 107–111.

[45] N. Y. Yu, Y. Kim, and P. J. Lee, “Iterative decoding of product codes com-
posed of extended hamming codes,” in Fifth IEEE Symposium on Com-
puters and Communications (ISCC 2000), Antibes, France, July 2000,
pp. 732–737.

[46] T. Shohon, Y. Soutome, and H. Ogiwara, “Simple computation method of
soft value for iterative decoding of product code composed of linear block
code,” IEIC Trans. Fundamentals, vol. 82, no. 10, pp. 2199–2203, 1999.

[47] O. Aitsab and R. Pyndiah, “Performance of reed solomon block turbo
codes,” in Proc. IEEE GLOBECOM’96 Conf., vol. 1/3, London, U.K.,
Jan. 1996, pp. 121–125.

[48] D. Rankin and T. A. Gulliver, “Single parity check product codes,” IEEE
Trans. Commun., vol. 49, no. 8, pp. 1354–1362, 2001.

[49] D. Rankin and T. Gulliver, “Randomly interleaved single parity check
product codes,” in Proc. IEEE Int. Symp. on Inform. Theory, June 2000,
p. 88.

[50] A. Goalic and R. Pyndiah, “Real time turbo decoding of product codes on
a digital signal processor,” in Int. Symposium on turbo codes and related
topics, Brest, Sept. 1997, pp. 624–628.

[51] S. Lin and D. J. Costello, Error Control Coding. Prentice Hall, 2004.

[52] B. Vucetic and J. Yuan, Turbo Codes Principles and Applications. Kluwer
Academic Publishers, 2000.

[53] P. Robertson, “Illuminating the structure of parallel concatenated recur-
sive (turbo) codes,” in Proc. GLOBECOM’94, no. 15, San Francisco, CA,
Nov. 1994, pp. 1298–1303.

[54] J. Hagenauer, “Rate-compatible punctured convolutional codes (rcpc
codes) and their applications,” IEEE Trans. Inform. Theory, vol. 44, no. 3,
pp. 909–926, 1998.

[55] A. Giulietti, L. van der Perre, and M. Strum, “Parallel turbo coding
interleavers: avoiding collisions in accesses to storage elements,” Electron.
Lett., vol. 38, no. 5, pp. 232–233, 2002.

[56] J. Kwak and K. Lee, “Design of dividable interleaver for parallel decoding
in turbo codes,” Electron. Lett., vol. 38, no. 22, pp. 1362–1364, 2002.

[57] C. Berrou, Y. Saouter, C. Douillard, S. Kerouedan, and M. Jezequel,
“Designing good permutations for turbo codes: towards a single model,”
in IEEE Int. Conf. on Comm., vol. 1, June 2004, pp. 341–345.

141

[58] R. Dobkin, M. Peleg, and R. Ginosar, “Parallel interleaver design and
vlsi architecture for low-latency map turbo decoders,” IEEE Trans. VLSI
Syst., vol. 13, no. 4, pp. 427–438, 2005.

[59] L. Dinoi and S. Benedetto, “Variable-size interleaver design for parallel
turbo decoder architectures,” in IEEE Commun. Society Globecom, Dal-
las, USA, Sept. 2004, pp. 1833–1840.

[60] J. Proakis, Introduction to Magnetic Materials. McGraw-Hill: Digital
Communications, 4th ed., 2001.

[61] M. Tuchler, R. Koetter, and A. Singer, “Turbo equalization: Principles
and new results,,” IEEE Trans. Commun., vol. 50, no. 5, pp. 754–767,
2003.

[62] F. R. Rad and J. Moon, “Low complexity turbo equalization for high
density magnetic recording,” in Proc. ICC 2005, vol. 1, May 2005, pp.
688–692.

[63] A. Glavieux, C. Laot, and J. Labat, “Turbo equalization over a frequency
selective channel,” in Proc. Int. Symp. Turbo Codes, Brest, France, Sept.
1997, pp. 96–102.

[64] S. Ariyavisitakul and Y. Li, “Joint coding and decision feedback equaliza-
tion for broadband wireless channels,” IEEE J. Select. Areas Commun.,
vol. 16, pp. 1670–1678, 1998.

[65] J. B. Anderson and S. M. Hladik, “Tail biting map decoders,” IEEE J.
Select. Areas Commun., vol. 16, no. 2, pp. 297–302, 1998.

[66] G. Ungerboeck, “Trellis coded modulation with redundant signal sets,
part i: Introduction,” IEEE Commun. Mag., vol. 25, no. 2, pp. 5–11,
1987.

[67] ——, “Trellis coded modulation with redundant signal sets, part ii: State
of the art,” IEEE Commun. Mag., vol. 25, no. 2, pp. 12–21, 1987.

[68] P. K. Gray, “Serially concatenated trellis coded modulation,” Ph.D. dis-
sertation, University of South Australia, Mar. 1999.

[69] N. S. V. Tarokh and A. R. Calderbank, “Space-time codes for high data
rate wireless communication: performance criterion and code construc-
tion,” IEEE Trans. Inform. Theory, vol. 44, no. 2, pp. 744–765, 1998.

[70] Z. W. Z. Chi and K. K. Parhi, “Iterative decoding of space-time codes and
related implementation issued,” in Proc. of 2000 IEEE Asimolar Confer-
ence, vol. 1, 2000, pp. 562–566.

142

VITA

Orhan Gazi received the BS, MS, and Ph.D. degrees in electrical and elec-

tronics engineering from Middle East Technical University, Ankara, Turkey in

1996, 2001, and 2007 respectively. His research includes error control coding

and signal processing. He is currently employed as an Instructor in Cankaya

University, where he delivers lectures in electrical engineering.

143

