

REALIZING
THE SPECIFICATION AND EXECUTION OF WORKFLOWS

THROUGH THE EVENT CALCULUS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

HÜSEYĐN YILMAZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

THE DEPARTMENT OF COMPUTER ENGINEERING

DECEMBER 2006

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan ÖZGEN
 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

 Prof. Dr. Ayşe KĐPER
 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Dr. Nihan KESĐM ÇĐÇEKLĐ
 Supervisor

Examining Committee Members:

Assoc. Prof. Dr. Ali Hikmet DOĞRU (METU, CENG)

Assoc. Prof. Dr. Nihan KESĐM ÇĐÇEKLĐ (METU, CENG)

Assoc. Prof. Dr. Ferda Nur ALPASLAN (METU, CENG)

Assist. Prof. Dr. Pınar ŞENKUL (METU, CENG)

Gökçe Banu LALECĐ (METU, SRDC)

III

PLAGIARISM

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

 Name, Last Name: Hüseyin YILMAZ

Signature :

IV

ABSTRACT

REALIZING THE SPECIFICATION AND EXECUTION OF WORKFLOWS

THROUGH THE EVENT CALCULUS

YILMAZ, Hüseyin

M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Nihan KESĐM ÇĐÇEKLĐ

December 2006, 92 pages

Workflow management promises a solution to an age-old problem: controlling,

monitoring, optimizing and supporting business processes. What is new about

workflow management is the explicit representation of the business process logic

which allows for computerized support. In the light of this support, many

researchers developed different approaches to model new systems with different

capabilities to solve this age-old problem. One of the approaches is using logic-

based methodology for the specification and execution of workflows. Here, the

event calculus, a logic programming formalism for representing events and their

effects especially in database applications, is used for this approach. It is shown

that the control flow graph of a workflow specification can be expressed as a set

of logical formulas and the event calculus can be used to specify the role of a

workflow manager through a set of rules for the execution dependencies of

activities. Constructed workflow formalization through Event Calculus is realized

by using recent technologies, and the resulting product is named as EventFlow,

V

including some administrative interfaces to manage system and workflow engine.

The thesis describes the architecture and implementation details of EventFlow, an

editor developed for graphical representation of control flow graph, and

technologies used in the implementation. And an example application is built to

show the usability and execution of the implemented system.

Keywords : Workflow, Workflow Management System, Workflow

formalization, The Event Calculus.

VI

ÖZ

OLAY CEBĐRĐ ÜZERĐNDEN ĐŞ AKIŞI TANIM VE UYGULAMASININ

GERÇEKLENMESĐ

YILMAZ, Hüseyin

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Nihan KESĐM ÇĐÇEKLĐ

Aralık 2006, 92 sayfa

Đş akışı yönetim sistemi asırlık bir problem olan iş süreçlerinin desteklenmesi,

kontrolü, izlenmesi ve en uygun şekilde düzenlenmesi sorununa çözüm temin

eder. Bu sistem ile ilgili yeni olan şey ise sistemin iş süreci mantığının açık

tanımlamasına bilgisayar desteğinin sağlanmış olmasıdır. Bu destek ışığında,

birçok araştırmacı bu asırlık problemin çözümünü sağlayacak farklı yeteneklerde

sistemler modellemek için farklı yaklaşımlar geliştirmişlerdir. Bunlardan birisi de

iş akışlarının yorumlanması, gerçekleştirilmesi ve biçimlendirilmesi için mantık

tabanlı bir metodoloji kullanılmasıdır. Burada, daha çok veritabanı

uygulamalarında olayları ve etkilerini belirtmek için kullanılan bir mantıksal

programlama biçimi olan Olay Cebiri, bu yaklaşım için kullanılmıştır. Kontrol

akış diyagramına ait işakışı tanımlamasının bir mantıksal formüller bütünü olarak

ifade edilebileceği ve Olay Cebiri’nin, aktivitelerin uygulama bağımlılıkları için

oluşturulacak kurallar bütünü aracılığı ile işakışı yöneticisi görevinin

VII

tanımlanmasında kullanılabileceği gösterilmiştir. Oluşturulan Olay Cebiri tabanlı

iş akışı tanımlaması, güncel teknolojiler kullanılarak gerçeklenmiş ve sonuçta

oluşan, iş akışı motoru ve bazı sistem yönetim arayüzlerine sahip ürüne

EventFlow ismi verilmiştir. Đş akışı motoru ve grafiksel kontrol akışı

düzenleyicisine ait mimari ve geliştirme detayları ile kullanılan teknolojilere ait

detaylar verilmiştir. Ayrıca, oluşturulan sistemin kullanılırlığı ve çalışmasının

gösterilmesi için örnek bir uygulama oluşturulmuştur.

Anahtar Kelimeler : Đş Akışı, Đş Akışı Yönetim Sistemi, Đş Akışı

Biçimlendirme, Olay Cebiri.

VIII

ACKNOWLEDGMENTS

I am grateful to my thesis supervisor Assoc. Prof. Dr. Nihan KESĐM ÇĐÇEKLĐ for

her guidance, motivation and support throughout this study.

I also want to thank my parents, my sisters and my wife for their motivating

support.

IX

TABLE OF CONTENTS

PLAGIARISM... III

ABSTRACT .. IV

ÖZ ...VI

ACKNOWLEDGMENTS... VIII

TABLE OF CONTENTS... IX

LIST OF TABLES...XI

LIST OF FIGURES ..XII

LIST OF ABBREVIATIONS ... XIV

CHAPTER

1. INTRODUCTION.. 1

2. RELATED WORK... 6

2.1. Basic concepts.. 6

2.1.1. Workflow concepts.. 6

2.1.2. The Event Calculus.. 9

2.2. Modeling workflows .. 11

2.2.1. Using the Temporal Logic ... 11

2.2.2. Using the Event Calculus... 12

2.2.3. Using Event-Condition-Action Rules... 13

2.2.4. Using Petri Nets... 13

X

2.3. Sample Workflow Systems .. 15

2.3.1. Commercial Workflow Systems .. 15

2.3.2. Open Source Workflow Systems ... 18

3. WORKFLOW FORMALIZATION USING THE EVENT CALCULUS.... 20

3.1. Formalizing the control flow graphs ... 20

3.2. Specification of workflows using the Event Calculus 22

3.2.1. Activities by events ... 23

3.2.2. Activity scheduling.. 24

3.2.3. Workflow state .. 30

3.2.4. Execution of workflows... 33

4. THE ARCHITECTURE AND IMPLEMENTATION OF EVENTFLOW .. 36

4.1. Architecture ... 38

4.2. Implementation Details of EventFlow System...................................... 40

4.2.1. Build-time Functionality.. 42

4.2.2. Run-time Process Control Functionality... 46

4.2.3. Run-time Activity Interactions... 49

5. AN EXAMPLE EVENTFLOW APPLICATION.. 51

5.1. Workflow for Order Processing.. 51

5.2. Sample Run.. 55

6. CONCLUSION .. 63

REFERENCES .. 65

APPENDICES

A. ORIGINAL PREDICATES ... 69

B. CREATE SCRIPTS FOR TABLES ... 73

C. XSB IMPLEMENTATION OF FORMALIZATION PREDICATES......... 76

D. BRIEF USER MANUAL FOR EVENTFLOW EDITOR 82

XI

LIST OF TABLES

Table 3.1 Successor relationships between activities....................................... 20

Table 3.2 Execution states of activities ... 32

Table 3.3 States of agents ... 32

Table 5.1 ActivityDetails table content for example specification 52

XII

LIST OF FIGURES

Figure 1.1 Workflow management systems in a historical perspective. 2

Figure 2.1 An example control flow graph.. 8

Figure 3.1 Activity actj starts when activity acti finishes 25

Figure 3.2 (a) AND-split and (b) AND-join.. 26

Figure 3.3 (a) XOR-split and (b) XOR-join .. 28

Figure 4.1 Workflow System Characteristics .. 37

Figure 4.2 EventFlow System Architecture... 38

Figure 4.3 EFProject Modules .. 41

Figure 4.4 J2EE Hierarchy for EFProject Modules ... 41

Figure 4.5 EventFlow Editor Screenshot... 43

Figure 4.6 Modeling Elements of EventFlow.. 44

Figure 4.7 Loop implementation... 44

Figure 4.8 Compansation alternative... 45

Figure 4.9 Database Tables... 48

Figure 5.1 An Example EventFLow Specification .. 51

Figure 5.2 Product List page shown to the customer 56

Figure 5.3 Order given by customer2.. 57

Figure 5.4 Previous Orders List page.. 57

Figure 5.5 Details of the Order given by customer2 .. 58

Figure 5.6 Worklist of agent Agent1... 58

Figure 5.7 Activity page containing details of the related order....................... 59

Figure 5.8 Worklist of an agent2 .. 60

Figure 5.9 Worklist of an agent3 .. 60

Figure 5.10 Worklist of an agent4... 61

Figure 5.11 Worklist of an agent5... 61

Figure 5.12 Worklist of an agent6... 62

XIII

Figure D.1 The EventFlow Editor... 82

Figure D.2 Dialog to open template from the system 86

Figure D.3 Add new agent dialog ... 86

Figure D.4 Add new activity dialog .. 87

Figure D.5 Add new role dialog.. 87

Figure D.6 Global Data Definitions Dialog... 89

Figure D.7 Edit Activity Details Dialog.. 90

Figure D.8 Define Condition Dialog... 91

XIV

LIST OF ABBREVIATIONS

APPL : Application

API : Application Programming Interface

Ax : Axiom

AxH : Axioms for Happens

AxIT : Axiom for Initiates/Terminates

AxS : Axiom for Scheduling

DBMS : Database Management System

EC : Event Calculus

ECA : Event-Condition-Action

EPC : Event-driven Process Chain

IT : Information Technology

J2EE : Java2 Platform, Enterprise Edition

WFMS : Workflow Management System

WfMC : Workflow Management Coalition

OS : Operating System

UIMS : User Interface Management System

YAWL : Yet Another Workflow Language

XPDL : XML Process Description Language

OMG : Object Management Group

1

CHAPTER 1

INTRODUCTION

In former times, information systems were designed to support the execution of

individual tasks. Today’s information systems need to support the business

processes at hand. It no longer suffices to focus on just the tasks. The information

system also needs to control, monitor and support the logistical aspects of a

business process. In other words, the information system also has to manage the

flow of work through the organization. Many organizations with complex

business processes have identified the need for concepts, techniques, and tools to

support the management of workflows. Based on this need the term workflow

management was born.

Until recently there were no generic tools to support workflow management. As a

result, parts of the business process were hard-coded in the applications. For

example, an application to support task X triggers another application to support

task Y. This means that one application knows about the existence of another

application. This is undesirable, because every time the underlying business

process is changed, applications need to be modified. Moreover, similar constructs

need to be implemented in several applications and it is not possible to monitor

and control the entire workflow. Therefore, several software vendors recognized

the need for workflow management systems. A Workflow Management System

(WFMS) is a generic software tool which allows for the definition, execution,

registration and control of workflows. At the moment many vendors are offering a

workflow management system. This shows that the software industry recognizes

the potential of workflow management tools.

2

Figure 1.1 Workflow management systems in a historical perspective.

In order to become aware of the impact of workflow management in the near

future, it is useful to consider the evolution of information systems over the last

four decades [33,36]. Figure 1.1 shows the phenomenon of workflow

management in a historical perspective. The figure illustrates the evolution of

information systems in the last four decades by describing the architecture of a

typical information system in terms of its components. In the sixties an

information system was composed of a number of stand-alone applications. For

each of these applications an application-specific user interface and database

system had to be developed, i.e., each application had its own routines for user

interaction and data storage and retrieval. In the seventies data was pushed out of

the applications. For this purpose Database Management Systems (DBMS) were

developed. By using a DBMS, applications were freed from the burden of data

management. In the eighties a similar thing happened for user interfaces. The

emergence of User Interface Management Systems (UIMS) enabled application

developers to push the user interaction out of the applications. WFMS is the next

step in pushing generic functionality out of the applications. The nineties are

marked by the emergence of workflow software, allowing application developers

to push the business procedures out of the applications.

Figure 1.1 clearly shows that, the WFMS is a generic building block to support

business processes. Many information systems could benefit from such a building

block, because many organizations are starting to see the need for advanced tools

to support the design and execution of business processes. There are several

3

reasons for the increased interest in business processes [33,36]. First of all,

management philosophies such as Business Process Reengineering and

Continuous Process Improvement stimulated organizations to become more aware

of the business processes. Secondly, today’s organizations need to deliver a broad

range of products and services. As a result the number of processes inside

organizations has increased. Not only the number of products and services has

increased, but also the lifetime of products and services has decreased in the last

three decades. As a result, today’s business processes are also subject to frequent

changes. Moreover, the complexity of these processes increased considerably. All

these changes in the environment of the information system in an average

organization, have made business processes an important issue in the development

of information systems. Therefore, there is a clear need for a building block

named ‘workflow management system’ [33].

The main purpose of a workflow management system is the support of the

definition, execution, registration and control of processes [33]. Because

processes are a dominant factor in workflow management, it is important to use an

established framework for modeling and analyzing workflow processes. A

workflow is a collection of cooperating, coordinated activities designed to

accomplish a completely or partially automated process [19]. An activity in a

workflow is performed by an agent that can be one or more software systems, one

or a team of humans, or a combination of these. Human activities include

interacting with computers closely (e.g., providing input commands) or loosely

(e.g., using computers only to indicate activity progress). Examples of activities

include updating a file or database, generating or mailing a bill, and laying a

cable. In addition to a collection of activities, a workflow defines the order of

activity invocation or condition(s) under which activities must be invoked,

activity synchronization, and information/data flow. A workflow management

system provides these and also provides support for modeling, executing and

monitoring the activities in a workflow. Nowadays, there are many commercial

products [8,18,23,24] to model and execute workflows and there have been many

formal models proposed for the analysis and reasoning about the workflows.

4

[6,20] The most common frameworks for specifying workflows are graph-based,

event-condition-action rules, and logic-based methods.

Graph-based approaches provide a good way to visualize the overall flow of

control, where nodes are associated with activities and edges with control or data

flow between activities. Petri nets and state charts are graph-based general-

purpose process specification formalisms that have been applied to workflow

specifications [33,23].

ECA rules have been widely used in active databases and they have been adopted

in the specification of workflows as well. However, their expressive power is not

as general as control flow graphs [5].

Logic-based formalisms, on the other hand, use the power of declarative

semantics of logic to specify the properties of workflows and the operational

semantics of logical systems to model the execution of workflows. Logic-based

approaches mostly deal with the verification of workflows with global constraints

[4,26].

The logic-based methods have the benefit of well-defined declarative semantics

and well-studied computational models. In this thesis, a logic programming

approach for the specification of control flow graphs, execution dependencies

between activities and scheduling of activities within a workflow has been

realized. The implementation includes the specification of main types of flow

controls, such as sequential, concurrent and alternative execution of activities.

Other issues such as representing the transactional properties of workflows, or

temporal constraints (global constraints) between workflow activities are out of

the scope of this thesis.

The main contribution of the thesis is to develop a workflow management system

based on Event Calculus to realize the given formalization in [18]. As a proof of

concept, a simple workflow management system is developed, to show the

usability of the given formalization for a real-life application. Also, by providing

some administrative capabilities, it will be easy to manage the system and define

5

different workflows to use for different applications or purposes. This system can

also be used as a quick tool for simulation of real-life applications, and testing of

different experimental workflows without implementing any logic for the

activities used in workflow definition. Also it is useful to analyze the behaviour of

workflows for different control flows with different number of agents and

workflow instances. Also it may serve the need for querying the history of the

workflow to analyze and assess the efficiency, accuracy and the timeliness of the

activities by deriving the state of the workflow at any time in the past.

The rest of the thesis is organized as follows. Chapter 2 contains a brief review of

basic concepts of workflows and related works done on workflow management

systems. In Chapter 3, details of Event Calculus based formalization of

specification and execution of workflows are given. Chapter 4 gives the detailed

information about the implementation and the architecture of the workflow

management system (namely EventFlow) and the components used while

developing that system. In Chapter 5, a sample application is given. And, Chapter

6 concludes the work by summarizing the features and possible future extensions

of the implemented system.

6

CHAPTER 2

RELATED WORK

In this chapter, basic concepts which are related to workflow management

systems and the Event Calculus (EC) are first described briefly. Then some of the

approaches for workflow modelling are summarized. Finally, some open source

and commercial workflow system implementations are given as sample workflow

systems.

2.1. Basic concepts

In this section, the definitions of basic concepts of the workflow systems and the

EC will be described briefly to introduce the main parts of the framework

presented in this thesis.

2.1.1. Workflow concepts

A workflow is a computerized facilitation or automation of a business process

involving the coordinated execution of multiple activities performed by different

processing entities. Processing of purchase orders over the Internet and insurance

claims can be given as examples of workflows. An activity (task) defines a logical

step or description of a piece of work that contributes toward the achievement of a

process like updating a database, generating a bill, mailing a form, etc. An agent

is a processing entity that performs the defined activities in the workflow. It can

be a hardware device, a person or a software system such as an application

program, etc. A task defined to be done by human includes interacting with

computers such as providing input commands. A workflow instance represents an

instance of workflow definition which includes the automated aspects of a process

7

instance only. Running several concurrent instances of a workflow is possible. For

example, a workflow manager can execute several processing orders at the same

time.

A workflow management system is a software system that controls the execution of

the multiple activities by different agents. Specification (design) of a workflow

includes describing those aspects of its constituent activities and the agents that

execute them. And also the relationships among activities and their execution

requirements are defined.

A reference model that describes the major components and interfaces within a

workflow architecture is defined by the Workflow Management Coalition

(WfMC) [14]. In a workflow, activities are related to one another via flow control

conditions. Designing workflow with many different transition patterns is possible

[34]. Accordingly the following basic routings among the activities are identified

in this framework:

1. Sequential: Execution of activities sequentially (i.e. an activity is followed

by the next activity).

2. Parallel: Execution of two or more activities parallelly. Two building

blocks are identified for this kind of execution:

(a) AND-split enables the concurrent execution of two or more

activities after another activity has been completed.

(b) AND-join synchronizes the parallel flows, and the next activity can

start only after all activities in the join have been completed.

3. Conditional: Execution of one of the alternative activities. In order to

model a choice among two or more alternatives following blocks can be

used:

(a) XOR-split enables the execution of only one of several branches of

flows based on a condition check

8

(b) XOR-join re-converges the execution into a single thread of control

without any synchronization.

4. Iteration: An activity cycle involving the repetitive execution of activities

until a condition is met. Representation of that can be done by using XOR-

split and XOR-join blocks.

Control flow graphs, most appropriate way of showing the execution

dependencies of the activities in a workflow, provide a good way to visualize the

overall flow of control. The vertices identify the names of corresponding activities

in a control flow graph. And the edges represent the successor relation between th

activities. Typically the initial and final activities of a workflow, the subsequent

acivities for each activity, and whether all of these subsequent activities must be

executed concurrently, or it is sufficient to execute only one branch depending on

a condition is specified by a control flow graph.

Figure 2.1 An example control flow graph

Figure 2.1 illustrates a control flow graph where the activity i is the initial task,

and f is the final task. After the activity i is completed, next activity a will start.

After completion of the activiy a, one of the subsequent activities b, and d will be

started with respect to the evaluation result of the conditions cond1 and cond2.

This is indicated by the label “XOR”. From the definition of “XOR-split”, only

one of the subsequent branches corresponding to the condition which is evaluated

to true will be started. The conditions are based on workflow control data and

applied to the current state of the workflow. The conditions can depend on some

logical status, or output generated by some prior activity in the workflow, or on

the value of some external variable (e.g. time). If the condition cond1 is true, then

9

the activity b, and just after the completion of it the activity c will be started,

otherwise the activity d will be started. Activity e will be enabled immediately

after either one of the activities c or d is completed. After completion of the

activity e, the activity g will be started and just after the completion of that

activity, both of the subsequent activities h and j will be started concurrently. This

is indicated by the label “AND”. And the final activity f can only start after the

completion of the parallel activities h and j. And after the activity f is completed,

the running instance workflow will be completed.

2.1.2. The Event Calculus

The EC is a logic programming formalism for representing events and their

effects, especially in database applications [21]. One of the EC dialects is based

on a later simplified version presented in [22]. There are two assumptions made in

this simplified version of the EC:

• The events have no extended duration

• The properties initiated by events, hold in the period that event initiates

and contain the said event.

The formulation and implementation of the EC are simplified by these

assumptions; otherwise nothing essential depends on them.

The EC is based on general axioms concerning notions of events, properties and

the periods of time for which the properties hold. The events initiate and/or

terminate periods of time in which a property holds. As events occur in the

domain of the application, the general axioms imply new properties that hold true

in the new state of the world being modeled, and infer the termination of

properties that no longer hold true from the previous state. The main axiom used

by the event calculus to infer that a property holds true at a time is described as

follow:

holds_at(Property, Time) �

happens(Event, Time1),

10

Time1 ≤ Time,

initiates(Event, Property),

not broken(Property, Time1, Time). (Ax1)

In (Ax1), the predicate holds_at(Property, Time) represents that the property

Property holds at time Time, and the other predicates in that axiom represent the

following:

• happens(Event, Time1) : The event Event occurs at time point Time1;

• initiates(Event, Property) : The event Event initiates a period of time

during which the property Property holds;

• broken(Property, Time1, Time) : The property Property ceases to hold

between time point Time1 and time point Time (inclusive) due to an event

which terminates it.

The time points are ordered by the usual comparative operators. The not operator

is interpreted as negation-as-failure. The use of negation-as-failure gives a form of

default persistence into the future. Thus, the persistence axiom states that once a

property Property is initiated by an event Event at time point Time1, it holds for

an open period of time containing time point Time1 (i.e. [Time1,Time)), unless

there is another event happened at some point of time after time point Time1, that

breaks the persistence of property Property.

Other axioms used in the body of this axiom are defined as follows. The axiom for

happens(Event, Time) is usually defined as an extensional predicate symbol that

records the happening of the event Event at time point Time. A particular course

of events that occur in the real world being modeled is represented with a set of

such extensional predicates. The axiom for broken(Property, Time1, Time2) is

defined by the following clause:

broken(Property, Time1, Time2) �

happens(Event, Time), terminates(Event, Property),

Time1 ≤ Time ≤ Time2. (Ax2)

11

That is, the persistence of the property Property is broken at time point Time2 if a

distinct event Event that happened at time Time between Time1 and Time2

terminates the persistence of property Property. Here the predicate

terminates(Event, Property) represents that the event Event terminates any

ongoing period during which property Property holds. Finally the axioms for

initiates and terminates are specific to the application at hand. The problem

domain is captured by a set of initiates and terminates clauses.

The EC is defined as a collection of all types of axioms described above. The state

of the system at any point of time until the time point t can be computed by using

the holds_at predicate, if the event occurrences until time t are known. The event

occurrences are recorded as an extensional database and snapshots of the database

state can be derived at any time using this history of events. Also, it is possible to

extend the EC by adding the definition of other predicates such as holds_for to

find out the period of time for which a property holds.

2.2. Modeling workflows

There are many approaches studied by researchers for the modeling of long

running sequence of activities, in other words, workflows. Some of them are

briefly described in the following sections.

2.2.1. Using the Temporal Logic

In [3], workflows are modeled as a set of inter-task dependencies. Both local and

global constraints are modeled in this way and, therefore, the control-flow graph

is not represented explicitly. The tasks in a workflow are described in terms of

significant events. A typical event is the beginning or termination of a task, but it

can also be some other thing like printing a report, etc.

When an event is received for execution, it is checked against every dependency

and based on that the event might be accepted, rejected, or delayed and scheduled

later. The dependencies are specified as formulae in Computational Tree Logic.

The scheduler enforces these dependencies by converting them into automata and

ensuring that the sequence of scheduled events is accepted by all these automata.

12

This work does not explicitly deal with the verification issues, such as whether the

given set of constraints implies some other constraints.

2.2.2. Using the Event Calculus

Actually, the EC is a simple temporal formalism designed to model situations

characterized by a set of events, whose occurrences have the effect of initiating or

terminating the validity of determined properties. Given a description of when

these events take place and of the properties they affect, it is able to determine the

maximal validity intervals over which a property holds uninterruptedly. It uses a

polynomial algorithm for the verification or calculation of the maximal validity

intervals and its axioms can easily be implemented as a logic program.

The EC provides mechanisms for storing and querying the history of all known

events. Once the event occurrences until time t are known, the state of the system

can be computed at any point of time until t. In order to be able to model the

invocation of activities in a workflow, we need to be able to represent that certain

type of event invariably follows a certain other type of event, or that a certain type

of event occurs when some property holds [19]. In this framework events are

treated as triggers that denote the start or end times of activities. Once we know

the history of all events either explicitly recorded or automatically generated by

the system, the modeling of workflow execution becomes the computation of new

events from the history and thus executing new activities until the end of the

workflow is reached. The most important result made possible by this approach is

the definition of the operational semantics of event detection, condition

verification and activity scheduling in terms of a well-defined semantics, which

can be computed by that of a deductive system and queries.

[19] presents a simple scheduling algorithm in which it is possible to model

agents as separate entities and assign agents to certain activities based on their

cost. The workflow manager is designed to choose the best agent to perform the

next scheduled activity among all available agents qualified to do that activity.

The representation of events, activities and agents in presented framework makes

13

it also possible to model the execution of concurrent workflow instances over a

single workflow specification.

2.2.3. Using Event-Condition-Action Rules

Event-Condition-Action (ECA) rules are a way of modeling dependencies

between workflow activities. As the name specifies, each rule consists of three

components: events, conditions and actions. Event corresponds to the notion of

significant event like beginning or ending of a transaction. A condition is a query

over the database state. The condition is satisfied if the query evaluates to true. An

action is a program which can be either a database operation or an external

operation such as an application program. If the condition is satisfied for a rule

then the action associated with the rule is fired. ECA rules are expressive enough

to model global constraints between tasks.

In [15], Vortex, a programming paradigm for modeling workflows, is defined. In

this model, a workflow is specified in terms of modules and attributes values

which are to be computed. Vortex paradigm is especially suitable for modeling

dynamic, data-driven workflows. Modules correspond to workflow activities. The

task of the modules is to compute the values for the specified attributes. Global

constraints can be expressed in a Vortex workflow specification. To verify Vortex

workflows, model checking techniques can be applied on a symbolic

representation of a workflow specified using event-condition-action rules.

In [7], triggers are used to model workflows. Workflows are represented as

activities with dependencies between them. The workflow activities are

represented as transactions and the dependencies between the transactions are

represented by triggers which are simple ECA rules. The scheduler executes the

transactions in a nested transaction model, and defines mechanisms to serialize

concurrently executing rules.

2.2.4. Using Petri Nets

Petri Nets are an established way of modeling and verifying process behavior. A

Petri Net is a directed bipartite graph consisting of two types of nodes, called

14

places and transitions. Edges go either from places to transitions or from

transitions to places. At any time a place contains zero or more tokens. The state

of the Petri Net, referred to as marking, denotes the distribution of tokens over

places. Since workflows are models of complex processes, it seems natural to try

to formalize workflows in a Petri Net setting. The graphical nature of Petri Nets

also makes them appealing as a modeling tool.

Petri Nets are used to model workflow tasks and dependencies between these

tasks in [1]. Logical operators have been used to specify relationships between

multiple dependencies. The classical Petri Net has been extended with time to

model temporal dependencies. It is possible to verify safety and liveness

properties of the workflow specification on the resulting Petri Net model. It is also

possible to check the consistency of the dependencies specified. However, even

though it is possible to check whether a workflow specification can be scheduled,

there is no scheduler to actually schedule the tasks.

In [33], workflows have been modeled as tasks and transitions between these

tasks. Join and split constructs are used to model constraints between these tasks.

However, it is possible to specify only local constraints using these constructs.

Triggers have been used to model constraints arising out of external conditions. In

order to model constraints based on attribute values and time, a higher level Petri

Net extended with the semantics of token color and time are used. The Petri Net

model of a task is simpler than in [1]. However, the use of higher level Petri Nets

provides more abstraction of the workflow specification than in [1]. It is possible

to check for deadlock, live-lock and proper termination on the Petri Net model of

the workflow. Special structural characterizations of Petri Nets have been

provided where these properties can be verified in polynomial time. As in [1],

there is no scheduler to actually schedule the different tasks according to the

constraints.

15

2.3. Sample Workflow Systems

There are many commercial [8,11,18,23,24,27] and open source implementations

[26] of workflow management system software. Before starting the

implementation of EventFlow system, some of them are briefly examined from

the point of their used technologies and capabilities given for modeling and

executing workflows.

2.3.1. Commercial Workflow Systems

COSA [29] is a Petri-net-based workflow management system developed by Ley

GmbH, a German company based in Pullheim. The modeling language of COSA

consists of two types of building blocks: activities (i.e., Petri net transitions) and

conditions (i.e. Petri net places). COSA extends the classical Petri net model with

control data to allow for explicit choices based on information and decisions.

Unfortunately, only safe Petri nets are allowed, i.e., it is not allowed to have

multiple tokens in one place. Therefore, COSA is unable to support multiple

instances directly. The only way to deal with multiple instances is to use

workflow triggers. Every subprocess in COSA has a unique start activity and a

unique end activity. As a result, only highly structured subprocesses are possible

and termination is always explicit. The main feature of the workflow language of

COSA is that it allows for the explicit representation of states.

Lotus Domino Workflow [23] is the workflow extension of the groupware product

Lotus Domino/Notes (Lotus/IBM). Clearly, the tight integration with the

groupware product is one of the attractive features of this product. The marriage

between groupware (Lotus Domino/Notes) and workflow (Domino Workow)

allows for partly structured workflows. There are various types of resource

classes, e.g., person (singleton), workgroup (including inheritance and many-to-

many relationships), department (only one-to-many relationships, however with

inheritance), and roles. Each routing relation is of one of the following types:

1. Always (for AND-split)

16

2. Exclusive choice (for XOR-split made by the user at the end of the

activity)

3. Multiple choice (for OR-split made by the user after completing the

activity)

4. Condition (automatically evaluated on the basis of data elements)

5. Else (only taken if none of the other routing relations is activated).

Each activity can serve as a join. The type of join is determined implicitly. Joins

are either enabled or disabled. If a join is disabled, it serves as an XOR-join, i.e.,

the activity is enabled the moment one of the preceding activities completes. If the

join is enabled, it continuously checks whether potentially it can receive more

inputs in the future without activating itself. This way it is possible to make AND-

joins or use more advanced synchronization mechanisms.

MQSeries/Workflow [8] is the successor of IBM's workflow offering, FlowMark.

FlowMark was one of the first workflow products that was independent from

document management and imaging services. It has been renamed to

MQSeries/Workflow after a move from the proprietary middleware to middleware

based on the MQSeries product. The workflow model consists of activities linked

by transitions. Other than a decomposition block, few other special modeling

constructs are available. The workflow engine of MQSeries/Workflow has unique

execution semantics in that it propagates a False Token for every transition with a

condition evaluating to False. This allows for every activity that has more than

one incoming transition to act as a synchronizing merge (AND-join). Other than

the synchronizing merge, which is a natural construct for MQSeries/Workflow,

there is no way to directly implement any of the other advanced synchronization

patterns [34]. Support for multiple instances is provided through the Bundle

construct although it is not suitable if the number of instances is not known at any

point prior to generating the instances involved. Arbitrary loops are not supported.

An explicit termination point is not required and the workflow process will

terminate when there is nothing else to be executed. There is no direct way to

17

model the cancellation patterns [34]. There is a global data container for the

running workflow instance, and also for each activity, one can define an input and

an output data.

Visual WorkFlo [11,12] is part of the FileNet's Panagon suite (Panagon WorkFlo

Services) that includes also document management and imaging servers. Visual

WorkFlo is one of the oldest products on the market. The workflow modeling

language of Visual WorkFlo is structured and is a collection of activities and

routing elements such as Branch (XOR-split), While (structured loop), Static Split

(AND-split), Rendezvous (AND-join), and Release. Visual WorkFlo does not

directly support any of the advanced synchronization patterns. It requires the

model to have structured loops only and one, explicit, termination node thus

limiting the suitability of the resulting specifications. Direct support for Multiple

Instances is possible through the Release construct as long as there is no further

synchronization required. There is no direct way to implement any of the state-

based patterns. There is no explicit support for the cancellation patterns.

SAP R/3 Workflow [27] is an integrated workflow component within SAP’s R/3

software suite. SAP R/3 Workflow imposes a number of restrictions on the use of

Event-driven Process Chains (EPC). EPCs that are used for workflow modeling

consist of a set of functions (activities), events and connectors (AND, XOR, OR).

However, in SAP R/3 Workflow not the full expressive power of EPCs can be

used, as there are a number of syntactic restrictions similar in vein to the

restrictions imposed by Filenet Visual Worko (e.g. every workflow needs to have

a unique starting and a unique ending point, and-splits are always followed by

and-joins, or-splits by or-joins). As such, there is no direct provision for the

advanced synchronization constructs, multiple instances, arbitrary loops, state-

based or cancellation patterns [34].

NovaManage [24] is an integrated document management and workflow solution

designed to meet the needs of highly regulated and quality controlled industries,

such as the pharmaceutical and medical device sectors. Activity can be assigned to

one or more agent (person), and the group of agents. Parallel-split (AND-split)

18

and Decide (XOR-split) nodes are supported directly. If there is a decide node

after an activity currently executed by the agent, the agent will be asked to select

the next activity or activities to enable for execution in currently running

workflow instance. For each split node, there must be a corresponding join node.

Each workflow template must have a unique starting and a unique ending activity.

There is no support for state-based and cancellation patterns [34]. There is no data

container defined for the workflow.

2.3.2. Open Source Workflow Systems

Yet Another Workflow Language (YAWL), [38] an open source workflow

language/management system, is based on a rigorous analysis of existing

workflow management systems and workflow languages. YAWL extends Petri-

Nets as its modeling approach. Unlike traditional systems it provides direct

support for most of the workflow patterns. YAWL supports the control-flow

perspective, the data perspective, and is able to interact with web services

declared in Web Service Definition Language (WSDL). It is based on a

distributed, web-friendly infrastructure.

The Enhydra Shark project [8] delivers a workflow server with a difference. It is

an extendable and embeddable Java Open Source workflow engine framework

including a standard implementation completely based on Workflow Management

Coalition (WfMC) specifications using XML Processing Description Language

(XPDL) as its native workflow process definition format and the WfMC

"ToolAgents" Application Programming Interface (API) for serverside execution

of system activities.

Every single component (persistence layer, assignment manager, etc.) can be used

with its standard implementation or extended/replaced by project specific

modules. This way Enhydra Shark can be used as a simple "Java library" in

servlet or swing applications or running in a J2EE container supporting a session

beans API, Corba ORB or accessed as a web service.

19

WfMOpen [37] is a J2EE based implementation of a workflow facility (workflow

engine) as proposed by the WfMC and the Object Management Group (OMG).

Workflows are specified using WfMC's XPDL with some extensions.

20

CHAPTER 3

WORKFLOW FORMALIZATION USING THE EVENT
CALCULUS

Before giving the architectural and the implementational details of the developed

workflow system (namely EventFlow), the association between the constructs of

the Event Calculus (EC), and also the details of using the EC in the specification

and the execution of workflows are described in this chapter.

3.1. Formalizing the control flow graphs

A set of predicates in first-order-logic can be used to represent a given control

flow graph. In this thesis, it is considered that there are five different successor

relations between activities. These relations with separate predicate symbols are

described in Table 3.1.

Table 3.1 Successor relationships between activities

Predicate Description

initial_activity(Activity)

sequential(Activity1, Activity2)

and_split(Activity, ListOfActivities)

xor_split(Activity, ActCondPairs)

and_join(ListOfActivities, Activity)

xor_join(ListOfActivities, Activity)

final_activity(Activity)

Activity is the first activity in the workflow

Activity2 follows Activity1 unconditionally

Activity is followed by a list of activities in ListOfActivities

Activity is followed by Activityx in list ActCondPairs if condition

conditionx is true

Activity starts after all the activities in ListOfActivities completed

Activity starts after one of the activity in ListOfActivities

completed

Activity is the last activity in the workflow

21

The developed framework must be able to express the execution of concurrent

workflow instances over the same specification. For example, if the workflow

describes the activities in an order processing application, there may be more than

one order being processed at the same time. In order to be able to model such

concurrent instances of a given workflow and the execution of the same activities

for different workflow instances, a special naming convention must be used. Thus,

each workflow instance is given a unique identity.

This unique identity is an atomic term and it is generated by the system when the

workflow instance is started. Since each activity is executed at different times for

different workflow instances, their names must be associated with that unique

identity of workflow instance to identify each of these executions. In its simplest

form, this identity will be the workflow instance id. Thus, in first order predicate

form of the workflow, each activity execution is represented by a term

“act(AcivitytName, EID)” where ActivityName is the name of the activity given

by the user at the specification, and EID is the execution id of the activity

generated by the system for the workflow instance being run.

For example, an execution of activity e in Figure 2.1, in a workflow instance w1

can be represented by the term act(e,w1), and when it is completed it can trigger

the execution of the activity g with the same workflow id, i.e. act(g,w1).

The sample workflow shown in Figure 2.1 is actually translated into the

following first order predicates in the implemented framework, using the naming

conventions described above:

initial_activity(act(i, EID)).

sequential(act(i, EID), act(a, EID)).

xor_split(act(a, EID), [(act(b, EID), cond1), (act(d, EID), cond2)]).

sequential(act(b, EID), act(c, EID)).

xor_join([act(c, EID), act(d, EID)], act(e, EID)).

sequential(act(e, EID), act(g, EID)).

and_split(act(g, EID), [act(h, EID), act(j, EID)]).

and_join([act(h, EID), act(j, EID)], act(f, EID)).

22

final_activity(act(f, EID)).

The graphical structure of the control flow graph can be directly mapped into a set

of logic formulas by the above set of predicates. In this thesis, this mapping is

automatically done by the EventFlow Editor while saving the built workflow

template to the disk or the system database. (see Section 4.2.1) The workflow

manager determines the actual execution order of activities. The execution

dependency rules are used by the workflow manager to determine which activity

needs to be scheduled next. The execution dependency rules are various

scheduling pre-conditions and they are described as axioms within the framework

of the EC.

The main concern of this thesis is the design of a workflow manager within the

framework of the EC and the implementation of that system using different

technologies. So, before going into the details of the technologies used to

implement that system, the EC and the usage of the EC to specify and execute

workflows over the implemented framework must be described.

While implementing the framework, some additions and also modifications are

done on these predicates. For example, because of the possibility of non-

terminating loop problem described in the same paper, new predicate happened is

used instead of the predicate happens, which is the main predicate of the EC. The

main difference between these to predicates is that the predicate happened checks

only the events that are known to have happened while the predicate happens

checks all possible events. Modified predicates will be used in the axioms used to

define workflow manager through the EC and the original rules in [19] are put in

Appendix A.

3.2. Specification of workflows using the Event Calculus

This section presents a summary of the work in [19] to explain the specification of

workflows in a logical framework and the rules to specify the execution

requirements of workflows.

23

3.2.1. Activities by events

The occurrences of events are considered as instantaneous happenings in the EC,

so that the events have no duration. But, from the workflow point of view, agents

need some time to carry out their tasks, so the activities must have some time

duration. Depending on the nature of the activity, the period of time needed to

finish an activity can be either fixed or varying amount. As an example of activity

needing fixed amount of time, an automatic mechanical task can be given. But, an

activity performed by a human may need varying amount of time to complete the

task.

Generally in workflow systems, the details of the internal operations of the

activities are not interested by a workflow specification, but the way the activities

are sequenced is. A workflow manager is concerned only with those aspects of an

activity that are externally visible on the workflow level. So that, from the

workflow manager point of view, an activity can be in one of the possible

execution states and state transitions are enabled in terms of externally observable

events.

In the implemented framework each activity is initiated by an event and its

termination is regarded as another event that records the completion of that

activity. Once the occurrence times of these events are known, the duration of the

activity can be derived easily. The internal operation of the activity is unknown to

the workflow manager, and the activity is in execution state between these two

special events.

The workflow manager assigns activities to agents and the activities are executed

by the corresponding agents. By recording the times of occurrences of the starting

and ending events for an activity, the workflow manager can maintain the state of

an activity. The starting event of an activity is triggered by the workflow manager,

and the ending event of an activity is sent by the agent to the workflow manager.

The conditions that describe the end of the activity may be produced by the agent

performing the activity. For instance, the activity may be a computer program and

24

it may finish only when the user of the program fills in and submits a form. Such

an input can be considered as an external event. Then the agent will terminate its

execution by sending end activity event to the workflow manager. The execution

duration of an activity is therefore application dependent and the activity must be

designed to inform the workflow manager of its completion.

The activities are viewed as independent modules executed by proper agents and

the implementation details of activities are not described in detail. Only their

interfaces with the workflow manager in terms of their starting time, ending time

and any relevant data that they generate to affect the workflow execution are

described.

3.2.2. Activity scheduling

The execution order of activities depends on the successor relation among

activities, and conditions that are currently satisfied on the system state. To

establish the local execution dependencies between the activities within the same

workflow instance, the unique identity (workflow instance id) given to the

workflow instance by the workflow manager is used.

The predicate follows is used to define the execution dependencies between the

activities:

follows(Activity1, Activity2, WorkflowInstance, Time): The activity

Activity2 follows the activity Activity1 in the workflow instance

WorkflowInstance at time point Time.

The rules for the predicate follows for each successor relation considered in this

work are described below. These rules, mainly, describe the scheduling pre-

conditions of activities and therefore they are named as axioms for scheduling

(AxS).

Figure 3.1 shows a graphical representation of sequential routing of activities.

When activity acti finishes, the next activity actj can start unconditionally.

25

Figure 3.1 Activity actj starts when activity acti finishes

For sequential activities, execution dependency rule is written as:

follows(Activity1, Activity2, WorkflowInstance, Time) �

 sequential(Activity1, Activity2),

 happened(end(Activity1, _, WorkflowInstance), Time). (AxS1)

In a workflow instance WorkflowInstance at a time point Time, Activity2 follows

Activity1 unconditionally when Activity1 is completed by any of the qualified

agents in the same workflow instance at the time point Time. By using happened

predicate, only the events that are known to have happened are checked and the

possibility of having endless loops because of the call to the predicate happens is

eliminated.

Activities after an AND-split are scheduled to be executed concurrently in a

workflow. An AND-split is illustrated in Figure 3.2-(a). When the activity acti

finishes, activities acta1, acta2 ..., actan will start concurrently. Figure 3.2-(b)

illustrates AND-join. The activity actj will start when all the preceding activities

actb1, actb2 ..., actbm are finished by the corresponding agents.

All subsequent activities will be scheduled when the end of activity acti is

recorded by the workflow manager. Also, the activity actj can only be scheduled

by the workflow manager when the ending events of all its predecessor activities

are recorded.

26

Figure 3.2 (a) AND-split and (b) AND-join

Thus the representation of the execution dependency of an AND-split is described

by the following rule:

follows(Activity1, Activity2, WorkflowInstance, Time) �

and_split(Activity1, ActivityList),

happened(end(Activity1, _, WorkflowInstance), Time),

member(Activity2, ActivityList). (AxS2)

If Activity2 is a member of the activity list ActivityList in AND-split, the predicate

member will be true. Each activity in the activity list ActivityList follows

Activity1 concurrently in a workflow instance WorkflowInstance at a time point

Time, when Activity1 is completed by any of the qualified agents in that workflow

instance at the given time point.

The following rule is used to represent the execution of an AND-join of activities:

follows(Activity1, Activity2, WorkflowInstance, Time) �

and_join(ActivityList, Activity2),

 findActEndTimePairs(ActivityList, WorkflowInstance, ActEndTimePairs),

 actWithMaxEndTime(ActEndTimePairs, Activity1, Time). (AxS3)

27

The predicate findActEndTimePairs is used by the rule to find out whether all

predecessor activities in ActivityList are completed in a workflow instance

WorkflowInstance or not. If this predicate holds, ActEndTimePairs will be the

list of all predecessor activities of actj together with their ending times. Then the

predicate actWithMaxEndTime picks the predecessor activity with the latest

ending time from the list. In Figure 3.2-(b), activity actj must wait for the

completion of all predecessor activities actb1, actb2 ..., actbm. The last conjunct in

this rule ensures that actj is scheduled at the time of the last ending activity among

activities actb1, actb2 ..., actbm.

The 3-argument predicate findActEndTimePairs (see Appendix A for the original

predicate definition, and see Appendix C for modified version) finds the ending

times of all predecessor activities in an AND-join. The third argument is a list of

(activity, ending time) pairs if all the incoming activities have completed their

executions. The 3-argument predicate actWithMaxEndTime (see Appendix A for

the original predicate definition) simply calls its 4-argument definition in order to

find the maximum ending time in the list of (activity, ending time) pairs. The

subsequent activity in an AND-join can start execution only if all incoming

activities are completed. Therefore the maximum ending time is found to

determine the starting time of the subsequent activity.

Depending on the evaluation of the conditions, one of the alternative activities

executed in a workflow instance if there is XOR-split after the activity currently

executing.

28

Figure 3.3 (a) XOR-split and (b) XOR-join

In an XOR-split, when the activity acti ends, one of the activities acta1, acta2, ...,

actan will start depending on the condition satisfied at that time.

follows(Activity1, Activity2, WorkflowInstance, Time) �

xor_split(Activity1, ActCondPairs),

happened(end(Activity1, _, WorkflowInstance), Time),

member((Activity2, Condition2), ActCondPairs),

initiates(Event, Condition2),

happened(Event, Time2),

max([Time1|Time2], Time),

holds_at(Condition2, Time). (AxS4)

One of the conditions at the split should evaluate to true. If not, then none of the

branches can be chosen by the workflow manager. By using member predicate,

each activity-condition pair is picked from the list of activities ActCondPairs and

checked whether the corresponding condition is evaluated to true or not. The

picked activity Activity2 will be scheduled by the workflow manager in a

workflow instace WorkflowInstance at time point Time only if Time is the later

of the two time points:

29

• The ending time of activity Activity1

• The time of the event that initiates the condition Condition2 for activity

Activity2.

Also Condition2 must be checked to see whether the condition still holds at time

point Time.

In an XOR-join, if any one of the incoming activities is finished, the activity at the

join can start executing. Thus the XOR-join is represented by the following rule:

follows(Activity1, Activity2, WorkflowInstance, Time) :-

xor_join(ActivityList, Activity2),

findOneActEndTimePair(ActivityList,WorkflowInstance, Activity1,

Time)

(AxS5)

The rule uses the predicate findOneActEndTimePair which holds when one of

predecessor activities in ActivityList is completed in a workflow instance

WorkflowInstance. If this predicate holds, Activity1 will be the completed

predecessor activity and Time will be its ending time. Thus, the subsequent

activity is scheduled at time point Time of the first ending activity. The 3-

argument predicate findOneActEndTimePair (see Appendix A for the original

predicate definition, and see Appendix C for the modified version of it) finds the

predecessor activity, that has been completed in an XOR-join, with its ending

time. It simply checks each activity in the XOR-join with the predicate member to

see whether it has been finished.

The event occurrences for the activities carried out by the corresponding agents

must also be identified uniquely as done for the activities of concurrent instances

of same workflow. One activity may be executed by different agents in different

instances of workflow which are running concurrently. So the agent assignment

must also be considered in the naming of the events. For this purpose, the unique

30

identifier of the workflow instance is used in the predicate used to describe events

such as the one used in above predicate. (i.e., end(Activity, Agent,

WorkflowInstance))

3.2.3. Workflow state

The specification and execution of activities must be permitted by the workflow

management systems. The axioms necessary for the specification of workflow

activities and the description of scheduling pre-conditions among the activities are

presented so far within the current logical framework. In this section, the

execution semantics of the workflows through the EC will be explained. The

representation of the system state maintained by the workflow manager, and the

rules for the execution of activities by appropriate agents are described in the

following sub-sections.

At any time the execution state of a workflow can be defined as a collection of

states of its constituent activities and agents. The occurrences of events and the

execution of activities cause changes in the state of workflow. The EC axioms are

used to derive the state of the workflow. The workflow manager makes an agent

assignment for the activities and also schedules new activities according to the

specification. At any point in time, one can check activities executing or

completed at that time point, or agents assigned to any task.

Each activity is characterized by a set of executable states and transitions between

these states. An activity may be in either of the following states:

• waiting: An initial state of an activity. An activity is put into the waiting

list of the agent(s), capable of doing that activity and it is waiting for any

of the assigned agents to execute it.

• active: The executing state of an activity. One of the assigned agent is

currently executing that activity.

• completed: Done state of an activity. One of the assigned agent is finished

that activity.

31

The activity enters in waiting state, when the workflow manager determines the

next activity to be executed, and puts that activity into the worklists of all agents

that can perform that activity. If an agent retrieves the activity from its worklist

and starts executing it, then the activity enters in active state at that time point.

When the agent finishes executing the activity, the activity enters the completed

state finally.

Each agent has a worklist showing which activities are waiting for that agent. The

property waiting is also used to represent the worklists of agents since it includes

the information about which activity is waiting for which agent. The property

waiting(Activity, Agent, WorkflowInstance, Time) describes that activity Activity

is waiting for agent Agent in a particular workflow instance WorkflowInstance.

The time variable Time denotes the point of time at which the activity started

waiting for the agent.

An agent can be in either of the following two states:

• idle: An agent is in idle state when there is no activity in the worklist of

the agent and the agent is not assigned to any activity. This state of an

agent is described by a predicate idle(Agent).

• assigned: The agent is in assigned state when an activity is in active state

with that agent. This state of an agent is described by a predicate

assigned(Agent, Activity, WorkflowInstance).

The state of the agent is changed by the following events:

• assign(Agent, Activity, WorkflowInstance): An agent Agent is assigned to an

activity Activity in a workflow instance WorkflowInstance.

• release(Agent, Activity, WorkflowInstance): An agent Agent is released an

activity Activity in a workflow instance WorkflowInstance.

In addition to the time dependent description of the workflow state, there are also

static properties of the workflow. The agent definitions, the activities for which

32

they are qualified are static properties of the workflow and they are defined in the

workflow specification. In order to represent the relationship between the

activities and agents we use the predicate qualified(Agent, Activity).

The time-dependent states for activities and agents together with the events

causing the transitions between these states are summarized in Table 3.2 and

Table 3.3 respectively.

Table 3.2 Execution states of activities

State of Activity Meaning Initiating Event

active(Act, Ag, W)

completed(Act, Ag, W)

waiting(Act2, Ag2, W, T)

Act is being executed by Ag in workflow instance W

Act is completed in workflow instance W

Act2 is in worklist of Ag2 in workflow instance W

with timestamp T

start(Act, Ag, W)

end(Act, Ag, W)

release(Ag1, Act1, W)

Table 3.3 States of agents

States of Agents Meaning Initiating Event

idle(Ag)

assigned(Act, Ag, W)

Ag is idle

Ag is carrying out Act in workflow instance W

release(Ag, Act, W)

assign(Ag, Act, W)

The rules to describe how these events cause state transitions are presented in the

Appendix A part of this thesis and these rules are named as axioms for

initiates/terminates (AxIT) for reference purposes.

After the starting event of an activity is recorded by the workflow manager, it

becomes active in a corresponding workflow instance.(AxIT1) Also the recording

of an end event for that activity sets up a completed state for it (AxIT2),

terminating its active state (AxIT3). If an agent starts to execute one of the

33

activities from its worklist, it is not in idle state any more (AxIT4) and it is

assigned to the executed activity until finishing that activity (AxIT5). An agent

becomes idle, after finishing or releasing the activity currently executing by that

agent (AxIT6, AxIT7). If there is no activity in the worklist of the agent, it will

remain in the idle state. If there are one or more activities waiting for that agent in

the agent’s worklist, the agent will be assigned to the next activity in its worklist.

The property waiting(Activity, Agent, WorkflowInstance, Time) is used to represent

both the state of an activity, and the worklists of agents. An agent is released when

it completes an activity and the subsequent activity is enabled by the workflow

manager. The subsequent activity is inserted to the worklists of all agents

qualified to do that activity (AxIT8). When an activity is assigned to an agent, the

activity is no longer in waiting state (AxIT9). This activity no longer exists in the

worklists of other agents that are not currently executing it.

A workflow manager generates a selection event for an activity Activity with

condition evaluating to true, and this activity is put into all of the qualified agents’

worklists. Ending event for that activity terminates the selection of that activity.

These rules are added to the system to be able to implement the XOR condition

evaluation operation. Because the data values needed to evaluate the conditions

are not known by the EC, this evaluation is done by the manager and by using

event select, the manager indicates that the condition for the activity Activity is

evaluated to true. (see Section 4.2.2)

 initiates(select(Agent, Activity, WorkflowInstance),

 selected(Activity, WorkflowInstance)).

 terminates(end(Activity, _, WorkflowInstance),

 selected(Activity, WorkflowInstance)).

3.2.4. Execution of workflows

It is a critical issue for the workflow manager to assign an activity to appropriate

agents in order to execute workflow. If an activity is not an automated one, it will

be in waiting state till any of the agent having that activity in its worklist starts to

34

execute that activity. The axioms given in this section are used to record new

event occurrences in the history through the predicate happened. Therefore the

rules are named as axioms for happens (AxH).

The execution of an activity can start only when an agent is assigned to that

activity. As soon as the agent is assigned, the starting event of the activity is

generated, which is described by the following rule (AxH1):

happens(start(Activity, Agent, WorkflowInstance), Time) �

happened(assign(Agent, Activity, WorkflowInstance), Time).

In a workflow instance WorkflowInstance, the happening of the assign event of

an activity Activity for an agent Agent means that the happening of the starting

event of that activity is occurred at the same time point Time. And, when an

activity is completed, the ending event of the activity is recorded and the agent

that completed the activity is released (AxH2).

happens(release(Agent, Activity, WorkflowInstance), Time) �

happened(end(Activity, Agent, WorkflowInstance), Time).

The workflow manager is an interpreter to generate events that start and assign

agents to activities through the event generation rules. In order to start generating

the events (and thus, start the execution of workflow instances), the manager

needs to know what initiates the workflow and also the initial state of the system.

In this framework there must be an external event to start the workflow. This

initial event must be defined in the workflow specification. In addition, all agents

are in idle state at the beginning. In order to set all agents idle initially, an event

having affect of initiating the idle property for all agents, called free_agent(Ag), is

defined (AxIT10). The manager starts a workflow instance when an initial

external event happens. When that starting external event is recorded, the manager

schedules the first activity of the workflow by inserting it into the worklists of all

35

agents qualified to perform that activity. The workflow manager will keep

scheduling the next activity for each completed activity using the execution

dependency rules (AxS1 – AxS8) and event generation rules (AxH1 – AxH2)

until the end of the workflow is reached (or until the current time). In order to start

this process, following rule is written, so that when the initial event happens, the

first activity can be scheduled:

initiates(Event, waiting(Activity, Agent, WorkflowInstance, Time)) �

initial_activity(Activity),

starts(Event, WorkflowInstance),

happened(Event, Time),

setEID(Activity, WorkflowInstance),

qualified(Agent, Activity). (AxIT13)

The starting event is defined with the predicate starts. The predicate starts also

generates a unique workflow instance id WorkflowInstance. Thus, this rule

represents that when the event which starts the workflow instance

WorkflowInstance happens at time point Time, the first activity of the workflow

starts waiting for all qualified agents. The predicate setEID sets the execution id of

the initial activity of the workflow instance to the workflow id WorkflowInstance.

36

CHAPTER 4

THE ARCHITECTURE AND IMPLEMENTATION OF
EVENTFLOW

The Workflow Management Systems (WFMS) provide the procedural automation

of a business process by the management of the sequence of work activities and

the invocation of appropriate human and/or automated software program

associated with the various activity steps. An individual business process may

have a life cycle ranging from minutes to days (or even months), depending upon

its complexity and the duration of the various constituent activities. Such systems

may be implemented in a variety of ways. Despite this variety, all WFMSs exhibit

certain common characteristics, which provide a basis for developing integration

and interoperability capability between different products. In the Workflow

Management Coaliation (WfMC) Reference Model [14], a common model for the

construction of workflow system is described.

At the highest level, all WFMSs may be characterised as providing support in

three functional areas [14]:

• Build-time functions, concerned with defining, and possibly modelling,

the workflow process and its constituent activities. EventFlow Editor

provides that functionality in our system.

• Run-time control functions, concerned with managing the workflow

processes in an operational environment and sequencing the various

activities to be handled as part of each process. EventFlow Engine

provides that functionality.

37

• Run-time interactions with human users and Information Technology

(IT) application tools for processing the various activity steps. Worklist

and activity implementations provide this functionality.

Figure 4.1 illustrates the basic characteristics of WFMSs and the relationships

between these main functions.

Figure 4.1 Workflow System Characteristics

In this chapter, the computational aspects of the logical description discussed in

the previous chapter, including details of the system architecture and the system

implementation (such as technology used to develop system, open source

components used for the main parts of the system, etc.), are discussed. The next

chapter presents a case study which is designed with the implemented system.

Also there is a brief user manual for EventFlow Editor in Appendix D of this

thesis.

38

4.1. Architecture

Figure 4.2 depicts the components of the system architecture for EventFlow. The

workflow state is described as a deductive database. The records of event

occurrences are considered to be an extensional database, called the history. The

intentional database includes the event calculus rules, workflow specification and

activity execution dependency rules, and workflow execution rules. The set of

known events and the set of possible workflow states are immediately

characterized in terms of the set of all logical consequences of this deductive

database. All these are kept by XSB, an open source Prolog interpreter, and an

open source library InterProlog is used by the EventFlow engine to communicate

with this component.

Figure 4.2 EventFlow System Architecture

Conceptually speaking the database states need not be independently stored, since

they follow logically from the history. The history only needs appending event

occurrences to, in order to record that some event has happened in the modeled

39

reality. But, to be able to store workflow application data and to be able to keep

the event history even the system crashes, a permanent database is needed. This

database is used to store data from applicational point of view and for

administrative purposes. For this purpose, Apache Derby, an open source

relational database developed by Java, is used.

In order to give the user the ability of defining workflows with a graphical user

interface in an easy way, a visual workflow editor tool (EventFlow Editor) is

developed by using Java Swing components and an open source Java graph

library JGraph. This tool also provides a capability to define new agents and new

activities. Also, a Graph-to-EC-Axioms converter module has been implemented.

This converter automatically generates the first order predicate form of the

workflow drawn by the user when it is saved to the disk or the system database. It

uses Connector Module to send data to or get data from the EventFlow Engine.

Also the end user/agent can get his worklist and do the appropriate operation for

the selected/assigned activity via Web interface of the system implemented using

Java Server Faces Technology.

The module called efpManager is used to run the automated activities. These

automated activities may need to run an application to communicate with the

outside world and according to the result taken from that application, the state of

the activity can be changed and the next activity can be scheduled by the manager.

Automated activities are assigned to the agent eventflow with the role manager.

A typical cycle in this architecture can be described as follows. The environment

notifies the system the start of a new workflow instance by appending an external

event that initiates the workflow. At the same time this is logged into the

EventFlowDB. Since the set of known events (i.e. history) now includes at least

one event, the interpreter reacts to this change by scheduling the first activity in

the workflow. The first activity is placed to the worklists of qualified agent(s).

Agent queries its worklist and sees the waiting activities, and checks out one of

them from the list. This means that an assign event is occurred and the activity

40

state is changed to active. After the agent finishes the required operation, it sends

the finish activity request. The end of the activity is recorded in the history and

also in the event log at the applicational database. Then, the interpreter uses the

execution dependency rules and agent assignment rules to put the next activity to

the corresponding agent(s)’ worklist. Meanwhile, the environment may record the

beginning of another workflow instance, or the executed activities may insert new

(external) events to the history. The interpreter proceeds to coordinate the

activities by reacting these new happenings until a saturation state is reached in

which all possible events have been derived.

4.2. Implementation Details of EventFlow System

The logic-based formalization of the workflow using the EC as base can be

implemented using various techniques. To support the basic characteristics given

at the beginning of this chapter, different software components are brought

together while developing the EventFlow system. For example, the given axioms

are implemented directly in Prolog, although, it is possible to implement these by

using Java as the other parts of the system.

For the implementation of the system, an Enterprise Application Project named

EFProject created according to the J2EE 1.3 specifications with basic modules

included. These modules are shown in Figure 4.3, and Figure 4.4 shows the J2EE

hierarchy of these modules. Here, EFProjectApplicationClient includes the

implementation of administrative purpose user interfaces and a workflow editor

which gives the user the ability of defining new workflow templates. Also the

editor has an ability to convert graphical representation of the workflow into first

order predicate form. EFProjectConnector module is responsible for providing

communication functionality between the server part and the client part of the

system. EFProjectCommons contains the common objects, used by all or some of

the other modules, such as an object to implement static values or to carry data

between server side and client. EFProjectManager includes manager that is

responsible for executing automated tasks assigned to the agent eventFlow, and

also the outside connector in that module gives an ability to communicate with

41

outside world such as the database, an application program or a Web service.

EFProjectEJB and EFProjectWeb construct the server part of the project together.

EFProjectEJB contains all the logic to implement the workflow engine, and

provides communication with the external components like Prolog environment

and the database. EFProjectWeb provides an interface for the browser and

supports communication between EFProjectEJB and client part (such as

EventFlow Editor or worklist opened by a user using browser).

Figure 4.3 EFProject Modules

Figure 4.4 J2EE Hierarchy for EFProject Modules

42

As described before, our system supports three main functional areas as the other

WFMSs. These areas and the system components implemented to support given

functionality are described in the following sections.

4.2.1. Build-time Functionality

The Build-time functions are those which result in a computerised definition of a

business process. During this phase, a business process is translated from the real

world into a formal, computer processable definition by the use of one or more

analysis, modelling and system definition techniques. A process definition

normally comprises a number of discrete activity steps, with associated computer

and/or human operations and rules governing the progression of the process

through the various activity steps. The process definition may be expressed in

textual or graphical form or in a formal language notation.

Previously mentioned project module EFProjectApplicationClient provides the

above functionality. In this thesis, EventFlow Editor is implemented to support

graphical representation and modeling of the workflows by the user. Generating

first order predicates from graphical representation of the workflow is provided by

this editor also. This is done while saving the designed workflow to the system or

the disk by user. An open source Java graph library JGraph is used for graph

visualization functionalities and drawing utilities. It is a powerful, easy-to-use,

feature-rich and standards-compliant open source graph component available for

Java.

Figure 4.5 shows EventFlow Editor Screenshot. Also Figure 4.6 shows the

modeling elements used in this implementation. The clock at the AND-join

element means that all the activities before that must be finished, in other words,

this is a synchronization point for the activities connected to that node in the

graph. The question mark at the XOR-split means that this is a decision point to

select the next activity with respect to input condition given.

43

Figure 4.5 EventFlow Editor Screenshot

Each workflow specification has a starting activity and an ending activity (the

circles with triangle and square). These are automatic activities that are executed

by the workflow manager. The other activities are designed by the user and can be

executed by the workflow manager and the agents interactively.

By using the dialogbox, reached through the activity node popup menu item “Edit

Activity Details”, one can assign agents or group of agents to a selected activity

node by choosing them from the list of agents that are previously defined in the

database, and also select an operation to be executed by the agents qualified when

the activity is activated by any of the agents for that node. Operation description

label is shown at the bottom of the activity node on the graph definition.

44

Figure 4.6 Modeling Elements of EventFlow

Although, in the formalization part of this thesis, there aren’t any axioms to

describe the loop structures and compensation operations, one can easily add these

abilities to his model by using simply “XOR” nodes.

Figure 4.7 Loop implementation

Figure 4.7 shows a possible loop implementation in the EventFlow architecture.

Here, the first activity will be done till the value of x becomes more than 5. Also,

the activity after the condition “x<5” will be an automatic dummy operation; it

45

will just reinitiate the first activity. This is needed because it is not permitted to

directly connect join and split nodes.

Figure 4.8 Compansation alternative

Figure 4.8 shows the specification of compensation ability for an activity. Here,

let us say that if the value of x is greater then or equal to 5, then it is needed to

rollback all the changes done at the application level till that point. This can be

thought as an exceptional state for the workflow with respect to the application

that uses the given workflow for its applicational purposes. In short, this

alternative cannot give any information to the workflow manager about the

exceptional state of the workflow. So, it just continues to run the executing

instance of the workflow. Thus, from the workflow manager point of view, the

workflow instance will end normally. But, by implementing new activity to

compensate the exceptional state of the running workflow instance, and by

defining the condition that causes this exception properly, an application

developer can easily do the necessary operation at the application level such as

sending an e-mail indicating the exceptional state of the workflow to any related

agent like an application admin, or deleting and/or updating some data from the

46

application database to rollback the changes done by the agents previously

assigned to the activities and executed them in this workflow instance.

After modeling a business process, one can save this as a template in the database.

When this is done the editor converts the graphical representation into its first

order predicate form and also generates the EC based axioms, and then stores

these in the database for future use. For object serialization purposes XStream, a

simple library to serialize objects to XML and back again, is used. Database part

will be explained in the next section. After saving the workflow specification, the

user can start a new instance or reopen it for editing purposes.

EventFlow Editor also provides an administrative user with the ability to define

new operations and agents on the system. Details are described in a brief user

manual for EventFlow Editor presented in Appendix D part of this thesis.

4.2.2. Run-time Process Control Functionality

At run-time, the process definition is interpreted by the software which is

responsible for creating and controlling operational instances of the process,

scheduling the various activities within the process and invoking the appropriate

human and IT application resources. These run-time process control functions act

as a linkage between the process as modelled within the process definition and the

process as it is seen in the real world, reflected in the runtime interactions of users

and IT application tools. The core component is the basic workflow management

control software (or "engine"), responsible for process creation and deletion,

control of the activity scheduling within an operational process and interaction

with application tools or human resources.

Above functionalities are provided by the EFProjectEJB module of the

EventFlow system. This module implements a simple logic to do required

functionality and make a bridge between the external components such as the

database and client applications.

47

The EC axioms are directly implemented in Prolog and compiled and loaded to

the underlying Prolog interpreter. In this part, XSB Prolog, a research-oriented

Logic Programming system for Unix and Windows/DOS-based systems,

representing a semantically enriched functional superset of Prolog and offering

among other things evaluation through full SLG resolution – a table-oriented

resolution method, is used for the evaluation of the axioms and also it is used as

an event database for the system. Interprolog library is used to be able to

communicate with XSB Prolog. InterProlog is an open source Java front-end and

functional enhancement for standard Prologs, running on Windows, Linux and

Mac OS X. It consists of a Java application front-end that communicates with a

Prolog system running either as a subprocess, using standard console redirection

and TCP/IP sockets, or as a dynamic loadable library, using the Java Native

Interface. It provides Java with the ability to call any Prolog goal through a

PrologEngine object, and for Prolog to invoke any Java method through a

javaMessage predicate, while passing virtually any Java objects and Prolog terms

between both languages with a single instruction.

In addition to the Prolog implementation part of the engine, there are some other

parts implemented for administrative purposes, end user operations and sending

relevant event occurrences to the event database (XSB) and getting worklist for

any agent sending request to the engine. These parts are Java codes. For

administrative purposes such as adding a new agent or activity (operation), saving

or modifying workflow template, and also recording event log, there must be a

way to keep all necessary data. The easiest way of doing that is to put all

necessary data into a database. Apache Derby is used to store the necessary data.

It is a relational database implemented entirely in Java.

In Figure 4.9, the tables created at the database and relations between them are

shown. Also the create scripts are given in Appendix B.

The table RoleDetails keeps the role information of the agents. By using a role

value, one can assign an activity to a group of agents. This can be done by the

following qualified predicate.

48

qualified(agent(_, role1), act(act1, w1)).

This predicate indicates that any agent having role value role1 is qualified for

activity act1 in a workflow instance with execution id w1. So, when an agent from

role1 logged on to the system and queries his worklist, he will see this activity in

his worklist if it is in waiting state for the current workflow instance.

Figure 4.9 Database Tables

The table AgentDetails contains basic information about the defined agents.

Validation of the agents and an agent list for activity assignment operation are

maintained by using this table. For the automated activities, a static agent

definition is put into this table. Values defined for that agent is “eventFlow”,

“Event”, “FLOW”, “manager” and “manager”. The efpManager takes the

worklist of this agent and performs the defined operation for each activity in that

list.

The table ActivityDetails is used to store detailed information about the activities

such as which operation will be executed when it is activated by the agent, or

whether it is an automatic operation or not. If it is an automatic operation,

49

efpManager will execute the corresponding operation for that activity as soon as

the activity is taken from the automatic task queue. Tasks are put into this queue

by the EventFlow Manager by assigning these activities to the special agent

eventFlow. Actually, the queue corresponds to the worklist of the agent

eventFlow.

The table RunningEventFlows is used to store extra information about running

instances of the workflow such as the corresponding template id, data container

including the values assigned to the data for the running instance of the workflow

and also conditions with the related activity values if the running workflow

contains XOR node. Although, some value about workflow is shown to the user in

his worklist, these are not kept in the deductive database provided by Prolog

interpreter. So it is needed to store these data somewhere else. This table is used

for this purpose.

The table EventLog is used to keep events occurred in the system. When an event

occurs, it is also recorded in that table. If the system crashes the system state can

be recovered by using the data recorded in this table. Also, it can be used for

reporting facilities.

The table EventFlowTemplate is used to store template workflow definitions for

future use. The field templateGraph contains the serialized version of the

graphical representation of the specification, convertedGraph field contains the

rules obtained by converting graph to first order predicate form and templatePNG

contains the visual image of the workflow template.

The Primary Keys, that are Integer type, are generated by the database

automatically by using the auto generation utility of Apache Derby.

4.2.3. Run-time Activity Interactions

Individual activities within a workflow process are typically concerned with

human operations, often realised in conjunction with the use of a particular IT tool

(for example, form filling), or with information processing operations requiring a

50

particular application program to operate on some defined information (for

example, updating an orders database with a new record). Interaction with the

process control software is necessary to transfer control between activities, to

ascertain the operational status of processes, to invoke application tools and pass

the appropriate data, etc.

This part includes the implementation of an application built on the developed

framework. It also provides interfaces to indicate that the activity is checked out,

completed or released by an agent. There is also Worklist (or inbox)

implementation for the agents. This will be used to see waiting activities and

select one of them and do the appropriate operation.

In this thesis, JavaServer Faces technology is used for the implementation of a

sample application (described in Chapter 5) and for the implementation of

worklists. JSF technology simplifies building user interfaces for JavaServer

applications. Developers of various skill levels can quickly build web applications

by: assembling reusable user interface components in a page; connecting these

components to an application data source; and wiring client-generated events to

server-side event handlers. For these reasons, JSF is selected for the

implementation of the case study in Chapter 5 of this thesis.

51

CHAPTER 5

AN EXAMPLE EVENTFLOW APPLICATION

The illustration of the use of the given formalization and the developed system

will be done by an example application. It demonstrates an application of

purchasing items over the Internet by authenticated customers and processing of

the orders.

Figure 5.1 An Example EventFLow Specification

5.1. Workflow for Order Processing

A workflow (EventFlow) specification used for order processing is given in

Figure 5.1. Instead of using activity names, primary keys generated automatically

by the Apache Derby database system, are used for the activities. Thus, it

52

guarantees the uniqueness of the activities on the system. Table 5.1 gives the

values recorded in the database for the activities in the example workflow graph.

Table 5.1 ActivityDetails table content for example specification

ActivityId Activity ActivityType Operation Description

2

3

4

5

6

7

8

9

10

11

order_collection

order_processing

package

billing

arrange_shipping

byAir

surfaceMail

archieve

final_activitiy

initial_activity

A

U

U

A

U

U

U

U

A

A

orderCollection

operation

operation

billing

operation

operation

operation

operation

finalAct

initialAct

Order Collection Operation

Order Processing Operation

Package Operation

Billing Operation

Arrange Shipping

By Air

Surface Mail

Archieve Operation

Final Activity

Initial Activity

Activity with id “2” is an order collection operation, and done automatically by

the eventflow manager to collect the ordered items from the sites. The value “A”

indicates that the activity is an automatic one which will be executed by the

automatic task invocator (e.g., efpManager in this framework). Activity with id

“3” processes the order by updating the inventory. Activities “4” and “5” then start

concurrently. Activity “4” removes the product from the warehouse and packages

the item. Activity “5” performs the billing function automatically. After both

activities are completed, activity “6” arranges shipping by initiating either activity

“7” or activity “8” according to the selection done by the customer. Finally when

the delivery is successful, the database is updated to indicate that the order has

been fulfilled. In order to model and manage the execution of this workflow in the

presented framework first the workflow graph specification is translated into first

order logic using the predicates shown in Table 3.1. Thus the example workflow

is translated into the following:

53

initial_activity(act(11,EID)).

sequential(act(11,EID), act(2,EID)).

sequential(act(2,EID), act(3,EID)).

and_split(act(3,EID),[act(4,EID), act(5,EID)]).

and_join([act(4,EID), act(5,EID)],act(6,EID)).

sequential(act(9,EID), act(10,EID)).

xor_split(act(6,EID),[(act(7,EID),selected(act(7,EID),EID)),

 (act(8,EID),selected(act(8,EID),EID))]).

xor_join([act(7,EID), act(8,EID)],act(9,EID)).

final_activity(act(10,EID)).

The list of qualified agents is given as follows:

qualified(agent(eventFlow,manager),act(11,EID)).

qualified(agent(eventFlow,manager),act(2,EID)).

qualified(agent(agent1,role),act(3,EID)).

qualified(agent(agent6,role),act(3,EID)).

qualified(agent(agent2,role),act(4,EID)).

qualified(agent(eventFlow,manager),act(5,EID)).

qualified(agent(agent3,role),act(6,EID)).

qualified(agent(agent4,role),act(7,EID)).

qualified(agent(agent5,role),act(8,EID)).

qualified(agent(_,role),act(9,EID)).

qualified(agent(eventFlow,manager),act(10,EID)).

In original paper [19], agents do not have a role. By adding that value to the agent

definition, it becomes to be possible to assign an activity to a group of agents

without giving all agents’ names. Let us say that, it is needed to assign an activity

to 10 agents with having same role value. There is two possible ways to do that

definition:

• Assign activity to all agents one by one. In that case there will be 10

qualified predicate and search space is increased

54

• Assign activity to common role value. (i.e., use the predicate agent(_,

role)) Then there will be only one qualified predicate in search space for

the given group of agents

In this example it is assumed that all activities, except the activities that are

qualified to the agent eventFlow, are considered as non-automatic activities. These

activities need human interference, thus their termination needs some external

event such as waiting for the user to enter some data. For instance, activity

package needs the operator to input data that the packaging is finished. The actual

shipment of the package (by air or surface mail) is done by a person, thus the

completion of this activity must be recorded by an input and this is considered as

an external event.

When the activities are finished, the agent will inform the system by using its

worklist. After finishing the required operation, it must select the activity from his

worklist and finalize that activity. When he submits the completion, the manager

fires an end event on the system, so, the flow continues with the next available

action in the specification. As seen above, the automatic tasks (i.e. the activity

does not need an human interference to complete its job) are assigned to

predefined agent agent(eventFlow, manager), so these activities are put into the

automatic task invocator module efpManager execution queue when activated.

The workflow is initiated by an external event which is the submission of an order

request form. Every time this event is entered to the system a new workflow

instance is started. The following rule is used to specify the initialization of a

workflow instance:

starts(Ev, Wno) �

 ext_event(Ev),

 Ev = runWF(CID),

 Wno = CID.

55

Here occurrence of the external event runWF starts the current instance of the

workflow. When creating an instance of a workflow, it is assigned to a new

execution id EID, and this is unique for the system. All event occurrence times

are recorded in not only the deductive but also the application database with the

clause happened.

The workflow specification for the given specification is now complete. The

external events to initiate the workflow instances, to end varying activities will be

input to the system at various points in time. Thus, given a set of predicates for a

workflow graph specification, external events and qualified agents, the axioms

that are presented in [19] can be used to answer queries such as finding out the

system state at a specific time, or the period of time for which a certain property

holds. By querying the history of events the actual order and occurrence times of

all activities can be derived.

Because of the characteristic of the Prolog system, if an agent tries to get his

worklist, the system searches all history of the events to find all activities with

status waiting for the current agent. This is a very time consuming operation for

big systems with very big history database. So some more rules are added to

retract unused/finished workflow instance events from the history. This rule is

executed automatically by the manager when final_activity is reached. Then from

the history database of Prolog system, one can only search for the active workflow

instances’ events. But, we have also an application database and all events logged

there, all kind of reports can be taken from this log. This log can be used to create

any snapshot of the deductive database at any time, because all events are

recorded there, as they occurred.

5.2. Sample Run

Customers can order any item from the site by using “Product List” page

containing the available items and the current basket of the customer shown in

Figure 5.2 after signing into a system. Available products are shown to the

customer. After picking up the items for purchasing, by approving the basket for

56

the order operation, the given order will be recorded into application database and

this operation will cause to start a new instance of the workflow shown in Figure

5.1. In this sample run, customer1 and customer2 will order some items from the

site. Different delivery option will be selected by the customers (i.e., the items

ordered by one of the customer will be delivered via surface mail while the other

by air.) Orders will be handled by the related agents concurrently.

Figure 5.2 Product List page shown to the customer

Figure 5.2 and Figure 5.3 show orders given by the customers. Customer2 wants

his items to be delivered by air, indicated by the checkbox shon on the page.

57

Figure 5.3 Order given by customer2

Also the customer can check his previous orders by the page shown in Figure 5.4

and Figure 5.5. This page shows the current state of the order and the other details

related with that order.

Figure 5.4 Previous Orders List page

58

Figure 5.5 Details of the Order given by customer2

After starting the workflow, activities assigned to the system agent (i.e.

eventFlow) will do the automated tasks. These are namely initial_activity and

order_collection activities. After executing the order_collection activity by the

system agent, the activity order_processing will be shown at the worklists of the

qualified agents agent1 and agent6 respectively, and these agents will see that

activity in their inbox when they are query the system by logging into system or

refreshing the inbox page. The first agent checking out the activity will be

assigned to that activity by the system. Here the agent agent1 will do that activity.

Figure 5.6 Worklist of agent Agent1

59

Figure 5.6 shows the worklist of the agent agent1, and there are more than one

instance of an “Purchasing Items Over Internet”. This shows that the concurrent

instances of any workflow can run on the system. To do the corresponding

operation with the activity agent1 will use the “CheckOut” link. This link will

redirect the agent to the coreesponding operation page in Figure 5.7.

Figure 5.7 Activity page containing details of the related order

agent1 will finish that activity by clicking the button “Done”. This will end that

activity and the next activities will be scheduled by the workflow manager. If the

button “Cancel” is clicked by the agent, the acivity will return to the waiting state

again.

60

Figure 5.8 Worklist of an agent2

After the activity “Order Processing” is finished by an agent agent1, both

activities “Package Operation” and “Billing” are put into the waiting state for the

corresponding qualified agents. As stated before, activity “Billing” is an

automated task so it is executed by the eventFlow manager as soon as it gets that

activity from its execution queue. The other activity “Packaging” is waiting in the

worklist of the agent agent2. When agent2 finishes packaging, the next activity

will be scheduled by the manager.

Figure 5.9 Worklist of an agent3

The next activity is “Arrange Shipping”. This activity is assigned to the agent

agent3 by the manager. After that activity the manager will select one of the

branches according to the evaluation of the conditions. Because the customer1 did

61

not select the “Delivery by Air” option, the next scheduled activity will be the

activity “Surface Mail”, and it is agent5’s responsibility to do that activity,

because this agent is the only agent qualified to do that activity. For customer2’s

order, “By Air” activity will be assigned to the qualified agent agent4. By using

EID values displayed in the worklists, the correctness of the assignment can be

checked.

Figure 5.10 Worklist of an agent4

Figure 5.11 Worklist of an agent5

After finishing “Surface Mail”, the activity “Archieve Operation” will be

scheduled to be done by the qualified agents. Here, the role role is qualified to that

activity. Thus, the activity will be shown each agent that has the role role. One of

the agents having that role value can checkout and do the corresponding operation

62

to complete that task. When this activity is finished by any of the qualified agent,

the workflow instance will be completed. Figure 5.12 shows the worklist of an

agent6 having role as his role value.

Figure 5.12 Worklist of an agent6

63

CHAPTER 6

CONCLUSION

This thesis demonstrates the use of the event calculus to describe the specification

and execution of activities in a workflow. The main axioms of the event calculus

are integrated with a set of activity execution dependency rules and a set of agent

assignment rules for the formalization of workflow systems. It is shown that

major types of activity routings in a workflow (namely sequential, concurrent and

conditional) can be expressed in a declarative way. It is also illustrated that agent

assignments and concurrent workflow instances can be modeled within the

framework of the event calculus. An implemented architecture of a workflow

management system is presented as a proof of concept application of this logic-

based approach. For a quick simulation of a workflow, the user needs merely to

specify the activities in the control flow graph and the external events and their

possible effects on the underlying database. The rest of the workflow management

is done by the rules presented in this thesis.

The proposed logic-based approach can be used as a quick tool in prototyping

applications and/or simulations of workflows. Due to its additional temporal

dimension, it provides facilities for querying the history of all activities, thus

providing opportunities to analyze the execution of the workflows. It can be used

as an easy tool to simulate and verify the execution of a prototype workflow

system. The workflow might be executed with different number of agents and

assignments. The behavior of the workflow can be analyzed by querying the

history of events and the snapshots of the workflow state at different times.

64

A graphical tool (EventFlow Editor) is developed for the designed architecture to

provide the user with the facility of drawing the control-flow graph of the

workflow. And this application is also used to map the generated graph into a set

of atomic formulas automatically. A sample application is implemented by using

the developed architecture, to show the usability of the framework and the

correctness of the axioms stated for the implementation of workflow systems by

using the EC. Also main functionalities such as running concurrent instances of

the same workflow specification are provided by the system.

In this thesis the workflows that do not terminate successfully are not considered.

Some of the activities can abort and therefore they need to be compensated or

some kind of exception handling mechanism must be applied. As a future work,

the set of execution dependency rules can be extended to cover such control

flows. These extensions do not require substantial changes to the proposed

architecture. Broadly speaking, what needs to be done is to define additional

scheduling rules to the set of axioms AxS, so that when an activity does not end,

the execution is diverted to another route of activities, which will be used either to

abort the workflow or compensate the failed activity.

65

REFERENCES

1. Adam, N.R., Atluri, V. & Huang, W.K. (1998). Modeling and analysis of
workflows using Petri Nets. In: Journal of Intelligent Information Systems

10 (2). (pp. 131-158)

2. Apache Derby, An Open Source Relational Database Implementation in
Java. (Last Visited:2006) http://db.apache.org/derby/

3. Attie, P.C., Singh, M.P., Sheth, A. & Rusinkiewicz M. (1993) Specifying
and Enforcing Intertask Dependencies. In: Proceedings of the 19th

Conference on Very Large Databases, (Los Altos CA), Dublin.

4. Baral, C., Lobo, J. & Trajcevski, G. (2001). Formalizing and reasoning
about the requirements specifications of workflow systems. International

Journal of Intelligent Information Systems 10 (4) (pp. 483–507).

5. Bettini, C., Wang, X., & Jajodia, S. (2002) Temporal reasoning in
workflow systems. Distributed and Parallel Databases 11 (3) (pp. 269–
306).

6. Davulcu, H., Kifer, M., Ramakrishnan, C.R. & Ramakrishnan, I.V. (1998)
Logic based modeling and analysis of workflows. In: Proceedings of ACM

Symposium on Principles of Database Systems, ACM Press, Seattle,
Washington. (pp. 25–33).

7. Dayal, U., Hsu, M. & Ladin, R. (1990). Organizing long running activities
with triggers and transactions. In: Proceedings of the International

Conference on Management of Data, Atlantic City, NJ.

8. Ebbers, M., Kasselman, A., Mitchell, A. & Orr, B. (1999). Image And
Workflow Library: MQSeries Workflow Concepts, Installation and
Administration. Redbook. SG24-5375-00. IBM. USA

9. Enhydra Shark Open Source Workflow (Last Visited:2006)
http://www.enhydra.org/workflow/shark/index.html

10. Fernandez, A.A., Williams, M.H. & Paton, N.W. (1997). A logic-based
integration of active and deductive databases. New Generation Computing

15 (pp. 205–244).

66

11. FileNet. (1997). Visual WorkFlo Design Guide. FileNet Corporation,
Costa Mesa, CA, USA.

12. FileNet. (1999) Panagon Visual WorkFlo Architecture. FileNet
Corporation, Costa Mesa, CA, USA.

13. Georgakopoulos, D., Hornick, M. & Sheth, A. (1995). An Overview of
Workflow Management: From Process Modeling to Workflow
Automation Infrastructure. In: Distributed and Parallel Database, 3.
Kluwer Academic Publishers, Boston. (pp. 119-153).

14. Hollingsworth, D. (1995). The workflow reference model. Workflow

Management Coalition. (Last Visited: 2006)
http://www.wfmc.org/standards/docs/tc003v11.pdf

15. Hull, R., Llirbat, F., Simon, E., Su, J., Dong, G., Kumar, B. & Zhou, G.
(1999). Declarative workflows that support easy modification and dynamic
browsing. In: Georgakopoulos, G., Prinz, W. & Wolf, A.L. (Eds.)
Proceedings of the International Joint on Work Activities Coordination

and Collabaration (WACC’99)San Francisco (pp. 69-78)

16. InterProlog, A Java front-end and enhancement for Prolog, Declarative.
(Last Visited: 2006) http://www.declarativa.com/interprolog/

17. JGraph, An Open Source Java Graph Library. (Last Visited: 2006)
http://www.jgraph.com/

18. Keen, M., Cavell, J., Hill, S., Kee, C.K., Neave, W., Rumph, B. & Tran,
H. (2004). BPEL4WS Business Process with WebSphere Business
Integration: Understanding, Modeling, Migrating. Redbook. SG24-6381-

00. IBM. USA.

19. Kesim-Çiçekli, N. & Çiçekli, I. (2006). Formalizing the specification and
execution of workflows using the Event Claculus. In: Information

Sciences, Volume 176, Issue 15. (pp. 2227-2267)

20. Kesim-Çiçekli, N. & Yıldırım Y. (2000). Formalizing workflows using the
event calculus. In: Ibrahim, M., Kung, J. & Revell, N. (Eds.), The 11th

International Workshop on Database and Expert Systems Applications
(DEXA_00), LNCS, vol. 1873, Springer-Verlag, Berlin. (pp. 222–231).

21. Kowalski, R.A. & Sergot, M.J. (1986). A logic-based calculus of events.
New Generation Computing, 4, 67–95.

22. Kowalski , R.A. (1992). Database updates in the event calculus. Journal of

Logic Programming 12, (1-2), 121–146.

67

23. Nielsen, S.P., Serpola, S., Collins, F., Morrison, D. & Strobl, R. (1999).
Lotus Domino Workflow 5.0: A Developer’s Handbook. Redbook SG24-

5331-01. IBM. USA.

24. NovaManage Integrated document management and workflow for highly
regulated industries. (Last Visited: 2006)
http://www.cimage.com/products/novamanage/index.htm

25. Muth, P., Wodtke, D., Weissenfels, J., Weikum, G., & Kotz Dittrich, A.
(1998). Enterprise-wide Workflow Management based on State and
Activity Charts. In Dogac, A., Kalinichenko, L., Ozsu, M.T., & Sheth A.
(Eds.), Workflow Management Systems and Interoperability, (pp. 281-
303). NATO Advanced Study Institute, Springer-Verlag.

26. Perez, C.E. (Last Updated : 2006) Open Source Workflow Engines written
in Java. http://www.manageability.org/blog/stuff/workflow_in_java

27. SAP. (1997). WF SAP Business Workflow. SAP AG. Walldorf, Germany.

28. Senkul, P., Kifer, M. & Toroslu, Đ.H. (2002) A logical framework for
scheduling workflows under resource allocation constraints. In:
Proceedings of the 28th International Conference on Very Large Data

Bases (VLDB 2002). Hong Kong, China. (pp. 694–705).

29. Software-Ley GmbH. (1999). COSA 3.0 User Manuel. Pullheim,
Germany.

30. XStream, An Open Source Object Serialization Library. (Last Visited:
2006) http://xstream.codehaus.org/

31. XSB, An Open Source Prolog Interpreter. (Last Visited: 2006)
http://xsb.sourceforge.net/

32. Van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B. &
Barros, A.P. (2000). Workflow patterns. In: Etzion O. & Scheuermann, P.
(Eds.). Proc. CoopIS 2000, LNCS 1901. Springer. (Last Visited: 2006)
http://is.tm.tue.nl/staff/wvdaalst/publications/p159.pdf

33. Van Der Aalst, W.M.P. (1998). The Application of Petri Nets to Workflow
Management. The Journal of Circuits, Systems and Computers 1 (8). (Last
Visited: 2006) http://is.tm.tue.nl/staff/wvdaalst/publications/p53.pdf

34. Van Der Aalst, W.M.P. & Ter Hofstede, A.H.M. (2003). YAWL: Yet
Another Workflow Language. QUT Technical report, FIT-TR-2003-04.
Queensland University of Technology, Brisbane. (Last Visited: 2006)
http://is.tm.tue.nl/staff/wvdaalst/publications/p198.pdf

35. Van Der Aalst, W.M.P., Aldred, L., Dumas, M. & Ter Hofstede, A.H.M.
(2004). Design and Implementation of the YAWL System. In : Persson, A.

68

& Stirna, J. (Eds.), Advanced Information Systems Engineering,

Proceedings of the 16th International Conference on Advanced

Information Systems Engineering (CAiSE'04), volume 3084 of Lecture

Notes in Computer Science. Springer-Verlag, Berlin. (pp 142-159) (Last
Visited: 2006) http://is.tm.tue.nl/staff/wvdaalst/publications/p224.pdf

36. Van Der Aalst, W.M.P. (1996). Three Good Reasons for Using a Petri-net-
based Workflow Management System. Proceedings of the International

Working Conference on Information and Process Integration in

Enterprises (IPIC'96) (Last Visited: 2006)
http://is.tm.tue.nl/staff/wvdaalst/publications/p52.pdf

37. WfMOpen : Open Source Workflow Project (Last visited: 2006)
http://wfmopen.sourceforge.net/

38. YAWL: Yet Another Workflow Language (Last visited: 2006)
http://www.yawl.fit.qut.edu.au/

69

APPENDICES

APPENDIX A. ORIGINAL PREDICATES

In this section, the predicates (axioms) used for the implementation of EventFlow

are given in [19] are listed.

Axioms for Happens:

happens(start(Act, Ag, W), T) � happens(assign(Ag, Act, W), T). (AxH1)

happens(release(Ag, Act, W), T) � happens(end(Act, Ag, W), T). (AxH2)

happens(end(Act, Ag, W), T) �

 happens(start(Act, Ag, W), Ts), fixed_activity(Act),

qualified(Ag, Act, Td), T = Ts + Td. (AxH3)

happens(end(Act, Ag, W), T) �

 happens(start(Act, Ag, W), Ts), varying_activity(Act),

end_event(Act, ExtEvent), happens(ExtEvent, Te),

qualified(Ag, Act, Td), Tf = Ts + Td, max([Te, Tf], T). (AxH4)

happens(assign(Ag, Act, W), T) �

 happens(release(Ag, _, _), T),

holds_at(waiting(Act, Ag, W, T1), T), holds_at(idle(Ag), T),

not waiting_longer(Act, Ag, T1, T), not better_agent(Ag, Act, T). (AxH5)

happens(assign(Ag, Act, W), T) �

 initiates(_, waiting(Act, Ag, W, T)), holds_at(waiting(Act, Ag, W, T), T),

holds_at(idle(Ag), T), not better_agent(Ag, Act, T). (AxH6)

 happens(free_agent(Ag), 0) � agent(Ag). (AxH7)

waiting_longer(Act, Ag, T1, T) �

 holds_at(waiting(Act2, Ag, W, T2), T),

Act ≠ Act2, T2 < T1.

70

better_agent(Ag1, Act, T) �

qualified(Ag1, Act, C1), qualified(Ag2, Act, C2),

C2 < C1, holds_at(idle(Ag2), T).

Axioms for Scheduling:

follows(Act1, Act2, W, T) �

 sequential(Act1, Act2), happens(end(Act1, _, W, T)). (AxS1)

follows(Act1, Act2, W, T) �

 and_split(Act1, ActList), happens(end(Act1, _, W, T)),

member(Act2, ActList). (AxS2)

follows(Act1, Act2, W, T) �

 and_join(ActList, Act2),

findActEndTimePairs(ActList, W, ActEndTimePairs),

actWithMaxEndTime(ActEndTimePairs, Act1, T). (AxS3)

follows(Act1, Act2, W, T) �

 xor_split(Act1, ActCondPairs), happens(end(Act1, _, W), T1),

member((Act2, Cond2), ActCondPairs), initiates(Ev, Cond2),

happens(Ev, T2), max([T1, T2], T), holds_at(Cond2, T). (AxS4)

follows(Act1, Act2, W, T) �

xor_join(ActList, Act2),

findOneActEndTimePair(ActList, W, Act1, T). (AxS5)

follows(Act1, InitAct, W, T) �

serial(Act1, B), happens(end(Act1, _, W), T),

initial(B, InitAct), setIterationNo(InitAct, 1). (AxS6)

follows(FnlAct, Act2, W, T) �

serial(B, Act2, Cond), final(B, FnlAct),

happens(end(FnlAct, _, W), T), not holds_at(Cond, T). (AxS7)

follows(FnlAct, InitAct, W, T) �

initial(B, InitAct), final(B, FnlAct), serial(B, _, Cond),

happens(end(FnlAct, _, W), T), holds_at(Cond, T),

getIterationNo(FnlAct, I), J = I + 1, setIterationNo(InitAct, J). (AxS8)

 setIterationNo(Act, N) � Act = act(_, b(_, _, IterationNo)), IterationNo = N.

 getIterationNo(Act, IterationNo) � Act = act(_, b(_, _, IterationNo)).

71

 findOneActEndTimePair(ActList, W, Act, EndTime) �

 member(Act, ActList),

 happens(end(end(Act, _, W)), EndTime).

findActEndTimePairs(ActList, W, ActTimePairs) �

 findall((Act, EndTime),

(member(Act, ActList),happens(end(Act, _, W), EndTime)),

ActTimePairs),

length(ActList, ActListLen), length(ActTimePairs, ActTimePairsLen),

ActListLen = ActTimePairsLen.

actWithMaxEndTime([FirstPair|ActEndTimePairs], Act, EndTime)�

 actWithMaxEndTime(ActEndTimePairs, FirstPair, Act, EndTime).

actWithMaxEndTime([], (Act, EndTime), Act, EndTime).

actWithMaxEndTime([CurrPair|Rest], CurrMax, Act, EndTime)�

 CurrPair = (Act1, T1), CurrMax = (Act2, T2), T1 > T2,

 actWithMaxEndTime(Rest, CurrPair, Act, EndTime).

actWithMaxEndTime([CurrPair|Rest], CurrMax, Act, EndTime)�

 CurrPair = (Act1, T1), CurrMax = (Act2, T2), T1 ≤ T2,

 actWithMaxEndTime(Rest, CurrMax, Act, EndTime).

Axioms for Initiates/Terminates:

initiates(start(Act, Ag, W), active(Act, Ag, W)). (AxIT1)

initiates(end(Act, Ag, W), completed(Act, Ag, W)). (AxIT2)

terminates(end(Act, Ag, W), active(Act, Ag, W)). (AxIT3)

terminates(assign(Ag, _, _) , idle(Ag)). (AxIT4)

initiates(assign(Ag, Act, W), assigned(Ag, Act, W)). (AxIT5)

initiates(release(Ag, _, _), idle(Ag)). (AxIT6)

terminates(release(Ag, Act, W), assigned(Ag, Act, W)). (AxIT7)

initiates(release(Ag1, Act1, W), waiting(Act2, Ag2, W, T)) �

follows(Act1, Act2, W, T),

qualified(Ag2, Act2, _). (AxIT8)

terminates(assign(_, Act, W), waiting(Act, _, W, _)). (AxIT9)

initiates(free_agent(Ag), idle(Ag)). (AxIT10)

initiates(Ev, waiting(Act, Ag, W, T)) �

72

 initial_activity(Act),

 starts(Ev, W), happens(Ev, T),

 setEID(Act, W), qualified(Ag, Act, _). (AxIT11)

73

APPENDIX B. CREATE SCRIPTS FOR TABLES

These scripts are prepared for Apache Derby database. It is possible to use these

scripts for other databases by changing data type definitions and modifying

keywords for the database that is planned to be used.

Scripts For System Tables :

CREATE TABLE RoleDetails

 (role VARCHAR(30) NOT NULL,

 description VARCHAR(50) NOT NULL,

 PRIMARY KEY (role));

CREATE TABLE AgentDetails

 (agent VARCHAR(30) NOT NULL,

 firstName VARCHAR(50) NOT NULL,

 lastName VARCHAR(50) NOT NULL,

 password VARCHAR(10) NOT NULL,

 role VARCHAR(30) NOT NULL,

 PRIMARY KEY (agent),

 FOREIGN KEY (role) REFRENCES RoleDetails (role));

CREATE TABLE ActivityDetails

 (activityId INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY,

 activity VARCHAR(50) NOT NULL,

 activityType VARCHAR(1) NOT NULL CHECK (activityType in ('A','U')),

 operation VARCHAR(20) NOT NULL,

 description VARCHAR(150) NOT NULL,

 PRIMARY KEY (activityId));

74

CREATE TABLE RunningEventFlows

 (executionId INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY,

 templateId INTEGER NOT NULL,

 eventFlow VARCHAR(50) NOT NULL,

 startTime TIMESTAMP,

 endTime TIMESTAMP,

 starter VARCHAR(30),

 replayScript CLOB(4M),

 dataContainer CLOB(4M),

 conditionMap CLOB(4M),

 PRIMARY KEY (executionId),

 FOREIGN KEY (starter) REFERENCES AgentDetails (agent),

 FOREIGN KEY (templateId) REFERENCES EventFlowTemplate

(templateId));

CREATE TABLE EventLog

 (eventId INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY,

 executionId INTEGER NOT NULL,

 event VARCHAR(15) NOT NULL,

 activityId INTEGER NOT NULL,

 iteration INTEGER NOT NULL DEFAULT 0,

 time TIMESTAMP NOT NULL,

 agent VARCHAR(30),

 role VARCHAR(30),

 PRIMARY KEY (eventId),

 FOREIGN KEY (executionId) REFERENCES RunningEventFlows

(executionId) ON DELETE CASCADE,

 FOREIGN KEY (activityId) REFERENCES ActivityDetails (activityId) ON

DELETE CASCADE);

CREATE TABLE EventFlowTemplate

 (templateId INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY,

 templateName VARCHAR(50) NOT NULL,

 templateDesc VARCHAR(200),

 templateGraph BLOB(4M),

 convertedGraph CLOB(4M),

 templatePNG BLOB(4M),

 dataContainer CLOB(4M),

75

 conditionMap CLOB(4M),

 PRIMARY KEY (templateId));

Scripts For Sample Application Tables :

CREATE TABLE Products

 (productId INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY,

 productName VARCHAR(50) NOT NULL,

 productDescription VARCHAR(250) NOT NULL,

 productPrice INTEGER,

 PRIMARY KEY (productId));

CREATE TABLE Orders

 (orderId INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY,

 executingEFID INTEGER NOT NULL,

 orderDate TIMESTAMP NOT NULL,

 customer VARCHAR(30),

 deliveryType VARCHAR(20),

 status VARCHAR(100),

 price INTEGER,

 PRIMARY KEY (orderId),

 FOREIGN KEY (executingEFID) REFERENCES RunningEventFlows

(executionId),

 FOREIGN KEY (customer) REFERENCES AgentDetails (agent));

CREATE TABLE OrderedItems

 (orderId INTEGER NOT NULL,

 productId INTEGER NOT NULL,

 amount INTEGER NOT NULL,

 PRIMARY KEY (orderId,productId),

 FOREIGN KEY (orderId) REFERENCES Orders (orderId),

 FOREIGN KEY (productId) REFERENCES Products (productId));

76

APPENDIX C. XSB IMPLEMENTATION OF FORMALIZATION
PREDICATES

/***/

/* */

/* EventFlow Formalization */

/* Formalizing the specification and execution of */

/* workflows using the Event Calculus */

/* */

/***/

/***/

/* */

/* Workflow Management */

/* */

/***/

/******************** Workflow State *********************/

/*

 * Execution states of activities

 * active(Act,Ag,W) -> Act is being executed by Ag in W

 * (initiated by event -> start(Act,Ag,W))

 * completed(Act,Ag,W) -> Act is completed by Ag in W

 * (initiated by event -> end(Act,Ag,W))

 * waiting(Act,Ag,W,T) -> Act is in the worklist of Ag in W by timestamp T

 * (initiated by event -> start(Ag0,Act0,W))

 *

 * States of Agents

 * idle(Ag) -> Ag is idle

 * (initiated by event -> release(Ag,Act,W))

 * assigned(Act,Ag,W) -> Ag is carrying out Act in W

 * (initiated by event -> assign(Ag,Act,W))

 */

/*********************** AxIT ************************/

77

/*

 * An activity becomes active in a workflow instance

 * when its starting event is recorded in the database. An event

 * recording the end of an activity sets up a completed state for

 * that activity, terminating its active state.

 */

 initiates(start(Act, Ag, W) , active(Act, Ag, W)). %AxIT1

 initiates(end(Act, Ag, W) , completed(Act, Ag, W)). %AxIT2

 terminates(end(Act, Ag, W) , active(Act,Ag,W)). %AxIT3

/*

 * When an activity starts being executed by an agent, the

 * agent is not idle any more and it is assigned to that activity

 * until it finishes the activity. When the activity is finished,

 * the agent is released and it is ready to execute the next activity.

 */

 terminates(assign(Ag, _, _) , idle(Ag)). %AxIT4

 initiates(assign(Ag, Act, W) , assigned(Ag, Act, W)). %AxIT5

/*

 * When an agent finishes its task and it is released, it

 * becomes idle. If the worklist of the agent is empty, the agent remains

 * in the idle state. If there are one or more activities waiting

 * for that agent in the agent's worklist, the agent is assigned

 * to the next activity in its worklist.

 */

 initiates(release(Ag, _, _) , idle(Ag)). %AxIT6

 terminates(release(Ag, Act, W) , assigned(Ag, Act, W)). %AxIT7

/*

 * waiting property is used to represent the state of an activity

 * and to represent the worklists of agents.

 */

 initiates(release(Ag1, Act1, W), waiting(Act2, Ag2, W, T)) :-

 follows(Act1, Act2, W, T),

78

 qualified(Ag2, Act2). %AxIT8

 terminates(assign(_, Act, W), waiting(Act, _, W, _)). %AxIT9

 initiates(Ev, waiting(Act, Ag, W, T)) :-

 initial_activity(Act),

 starts(Ev, W),

 happened(Ev, T),

 setEID(Act, W),

 qualified(Ag, Act). %AxIT10

/**/

 /*Selection done by Ag for given Act for instance W.*/

 initiates(select(Ag, Act, W), selected(Act, W)).

 terminates(end(Act, _, W), selected(Act, W)).

/**/

/**************** Workflow Execution **********************/

/* Rules for triggering Events */

/*

 * The execution of an activity can start only when an agent

 * is assigned to that activity. As soon as the agent is assigned,

 * the starting event of the activity is generated.

 */

 happens(start(Act, Ag, W), T) :-

 happened(assign(Ag, Act, W), T). %AxH1

/*

 * Releasing Agents

 * When an activity is completed, the ending event of the activity

 * is recorded and the agent that completed the activity is released.

 *

 * An agent is released when the task is finished. [This rule can

 * be extended to model the case where the task is suspended and agent

 * can look at other tasks in the meanwhile.]

 */

happens(release(Ag, Act, W), T) :-

 happened(end(Act, Ag, W), T). %AxH2

79

/********* Execution Dependencies of Activities ********/

/****** Sequential Activities *******/

 follows(Act1, Act2, W, T) :-

 sequential(Act1, Act2),

 happened(end(Act1, _, W), T). %AxS1

/***** AND-Split and AND-Join *****/

 follows(Act1, Act2, W, T) :-

 and_split(Act1, ActList),

 happened(end(Act1, _, W), T),

 member(Act2, ActList). %AxS2

 follows(Act1, Act2, W, T) :-

 and_join(ActList, Act2),

 findActEndTimePairs(ActList, W, ActEndTimePairs),

 actWithMaxEndTime(ActEndTimePairs, Act1, T). %AxS3

 findActEndTimePairs(ActList, W, ActTimePairs) :-

 findall((Act, EndTime),

 (member(Act, ActList), happened(end(Act, _, W), EndTime)),

 ActTimePairs),

 length(ActList, ActListLen),

 length(ActTimePairs, ActTimePairsLen),

 ActListLen = ActTimePairsLen.

 actWithMaxEndTime([FirstPair|ActEndTimePairs], Act, EndTime) :-

 actWithMaxEndTime(ActEndTimePairs, FirstPair, Act, EndTime).

 actWithMaxEndTime([], (Act, EndTime), Act, EndTime).

 actWithMaxEndTime([CurrPair|Rest], CurrMax, Act, EndTime) :-

 CurrPair = (Act1, T1),

 CurrMax = (Act2, T2),

 T1 @> T2,

 actWithMaxEndTime(Rest, CurrPair, Act, EndTime).

 actWithMaxEndTime([CurrPair|Rest], CurrMax, Act, EndTime) :-

 CurrPair = (Act1, T1),

 CurrMax = (Act2, T2),

80

 T1 @=< T2,

 actWithMaxEndTime(Rest, CurrMax, Act, EndTime).

/***** XOR-Split and XOR-Join *****/

 follows(Act1, Act2, W, T) :-

 xor_split(Act1, ActCondPairs),

 happened(end(Act1, _, W), T1),

 member((Act2, Cond2), ActCondPairs),

 initiates(Ev, Cond2),

 happened(Ev, T2),

 max([T1,T2], T),

 holds_at(Cond2, T). %AxS4

 follows(Act1, Act2, W, T) :-

 xor_join(ActList, Act2),

 findOneActEndTimePair(ActList, W, Act1, T). %AxS5

 findOneActEndTimePair(ActList, W, Act, EndTime) :-

 member(Act, ActList),

 happened(end(Act, _, W), EndTime).

/***/

/*

 * HOLDS_AT - System states holding at a certain time EC Axioms

 */

 holds_at(P, T) :-

 happened(E, T1),

 T1 @=< T,

 initiates(E, P),

 not broken(P, T1, T).

 broken(P, T1, T2) :-

 happened(E, T), terminates(E, P),

 T1 @=< T, T @=< T2.

 holds_for(P, T1, T2) :-

 happened(E1, T1),

 initiates(E1, P),

81

 happened(E2, T2),

 terminates(E2, P),

 not broken(P, T1, T2).

 holdsNow(Property) :-

 clock(Now),

 holds_at(Property, Now).

/* To start workflow instances */

starts(Ev, Wno) :-

 ext_event(Ev),

 Ev = runWF(CID),

 Wno = CID.

/********************* Dummy predicates *****************/

and_split(dummy,_).

and_join(_,dummy).

xor_split(dummy,_).

xor_join(_,dummy).

sequantial(dummy,dummy).

happened(dummy,dummy).

/******************** Utility functions ******************/

min([H|L],M) :- min(L,H,M).

min([],M,M) :- !.

min([H|L],CM,M) :- H @< CM, !, min(L,H,M).

min([_|L],CM,M) :- min(L,CM,M).

max([H|L],M) :- max(L,H,M).

max([],M,M) :- !.

max([H|L],CM,M) :- H @> CM, !, max(L,H,M).

max([_|L],CM,M) :- max(L,CM,M).

82

APPENDIX D. BRIEF USER MANUAL FOR EVENTFLOW
EDITOR

The EventFlow Editor is a graphical user interface to build a workflow model,

save the designed workflow to disk or system, and convert it to the defined first

order predicates. Also, it provides some administrative facilities to user such as

defining new activity. The first time the EventFlow Editor is started, you will be

presented with a blank canvas, with the instructions in the Status Bar asking you

to open or create specification to begin. Figure D.1 shows the EventFlow Editor.

Figure D.1 The EventFlow Editor

83

Elements within the EventFlow Editor

Before giving the details of the design of a workflow by the editor, the elements

within the editor are described briefly.

Menu Toolbar

The Menu Toolbar contains five groups of buttons to assist the user in

maintaining his/her EventFlow design. The menu can be repositioned by

dragging the left-hand anchor bar.

• Specification Maintenance Buttons: This group of

buttons provides the user the standard options to create, save, open and

close EventFlow specification.

• EventFlow Maintenance Buttons: The designed workflow

diagrams are captured within EventFlow specification. Using this group of

buttons, one can create a new specification, remove an existing

specification or run an instance of specification on developed framework.

• Edit Options Buttons: This group of buttons provides the

standard Undo and Redo options as well as the option to delete the

currently selected objects.

• Alignment Options Buttons: These buttons can be

used to assist with the alignment of objects within the currently opened

specification, when multiple objects have been selected.

• Object Size Buttons: To increase or decrease the size of an object

within the currently opened workflow model, these buttons can be used.

Palette Bar

The Palette Bar contains nine selector buttons that assist with creation, selection

and positioning of objects within the specification. This menu can be repositioned

84

by dragging the left-hand anchor bar. It is also accessible by right-clicking

anyempty place on a workflow model. Once an element is selected, it is possible

to drop objects in the canvas by left-clicking the mouse button.

• Activity: Use this button to create an activity representing a single

task to be performed by the agent(s).

• Activity Block: To create an activity block, a container for another

EventFlow specification, this button can be used.

• AND-split: This button can be used to add an AND-split node to the

EventFlow specification currently opened. The symbol on the button

indicates that all activities connected to that node will be activated without

chacking any condition.

• AND-join: The button indicates the synchronization point for the

branches coming out from the AND-aplit node. The clock means that all

incoming branches must be completed before continueing with the next

activity.

• XOR-split: To add an XOR-split node to a workflow model, this

button can be used. Question mark indicates a decision point to select next

activity to continue with.

• XOR-join: To ad an XOR-join node, this button must be used. If one

of the incoming branches is completed, then the next activity will be

activated by the workflow manager.

• Condition: Adding condition for the branch connected to an XOR-

split in a workflow model, this button must be used.

85

• Flow Relation: This button is used to create a relation between two

nodes in a workflow model. These nodes must be connectable, otherwise

the relation between them cannot be built.

• Marquee Selection: This button activates the Marquee Selector,

which allows the user to select individual or multiple objects by clicking

and dragging left mouse button.

Other Elements

The canvas is where the user is creating and editing his/her workflow model. The

Background task progress bar shows work in progress for certain background

tasks, like the saving of specification files.

Menu Items

This section provides a brief overview of the EventFlow Editor Menu Items

located along the top of the EventFlow Editor.

• Specification Menu: The Specification Menu provides all the standard file

options of Create, Print, Open, Save, Close and Exit. Also, It has two more

options to run an opened workflow specification on developed system and

open a workflow specification from the list of templates previously saved

to the system database. Figure D.2 shows the dialog reached by clicking

“Open Specification From System” menu item. This dialog lists templates

which are previously saved to system database. The user can select and

open one of the template from the list by just clicking on it, and using

“Done” button.

86

Figure D.2 Dialog to open template from the system

• Administration Menu: This menu provides the user to define new activity,

agent and role definitions for the system. The dialogs opened with the

menu items belong to that menu are shown in Figure D.3, Figure D.4 and

Figure D.5.

Figure D.3 Add new agent dialog

87

Figure D.4 Add new activity dialog

Figure D.5 Add new role dialog

• EventFlow Menu: The EventFlow Menu provides options to create,

remove, rename, and resize the currently selected eventflow specification.

It also provides options to export a workflow model to a PNG image file

and for directly printing out it.

• Edit Menu: The Edit Menu provides the standard options of Undo, Redo,

Cut, Copy, Paste and Delete objects within your specification.

• Elements Menu: The Elements Menu allows the user to align EventFlow

elements within the current specification, modify their size.

88

Create an EventFlow specification

This next chapter will lead the user through the process of creating an eventFlow

specification from beginning to end, through a series of brief lessons following a

scenario. The scenario will be the one used in sample run (see Section 5.2) part of

this thesis.

To create new EventFlow specification follow the steps listed below:

• Click button, or use “Specification � Create Specification” menu item

to create new empty EventFlow specification

• When the new specification is created, the title will be “New EventFlow

Specification [1]”. To change this title, use “EventFlow � Rename

EventFlow Specification”

For the example specification, two different data must be declared for indicating

the delivery type. These are namely “byAir” with the data type of Boolean, and

“surface” with the same data type. Follow given steps:

• Right-click the Start element () end select “Set Global Data” from the

displayed Popup-menu.

• A dialog will be shown. Fill the necessary values (Data name and Data

Type) as shown in the Figure D.6. There are four different data types

available. These are Boolean, Integer, String and Complex.

• Use “Add” button to add definition to the data container

• Use “Delete” button to remove unnecessary data definition from the data

container

• After defining all necessary data, use “Done” button to commit the

changes

89

Figure D.6 Global Data Definitions Dialog

To add an activity to the current specification, follow these steps:

• Click or the popup-menu item “Activity” shown when clicking the

empty place in the canvas

• Position the mouse where the activity will be placed

• Left click the mouse to place the activity

• Right click the newly added activity, and select “Edit Activity Details”

from popup menu, to select the task and agent(s) for that activity node.

Figure D.7 shows that dialog.

90

Figure D.7 Edit Activity Details Dialog

To add a condition to the current workflow model:

• Click , or select “Condition” item from the popup menu to add new

condition

• Place the mouse to the correct place on the canvas and left click to mouse

• Right click the new condition node to define Condition. Use the dialog

shown in Figure D.8.

91

Figure D.8 Define Condition Dialog

To connect two nodes for the current workflow module use “Flow relation” like:

• Click , or select “Flow Relation” from popup menu.

• Hold the left mouse button down and dram a line from the node selected to

the one it will be connected.

• The editor will indicate which connection points are valid by drawing a

blue box around suitable connectors as the mouse passes over them

There are some restrictions to connect two nodes. These are basicly:

• Condition nodes only accept an incoming flow from XOR-split.

• Each node can accept only one incoming flow except the join nodes.

(XOR-join and AND-join)

• Each node can have only one outgoing flow except the split nodes (XOR-

split and AND-split)

92

• XOR and AND nodes cannot connect directly.

• Split and join nodes are cannot connect directly

To save the EventFlow specification to the system database use button. This

will sabe the newly created workflow template to the system database with given

title for future use.

