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ABSTRACT 
 

SENSITIVITY AND ERROR ANALYSIS OF A DIFFERENTIAL RECTIFICATION METHOD 
FOR CCD FRAME CAMERAS AND PUSHBROOM SCANNERS 

 
 

Bettemir, Önder Halis 

MSc., Department of Civil Engineering 

Supervisor      : Assoc. Prof. Mahmut Onur Karslıoğlu 

 

September 2006, 252 pages 
 

 

In this thesis, sensitivity and error analysis of a differential rectification method were performed by 

using digital images taken by a frame camera onboard BILSAT and pushbroom scanner on ASTER. 

Three methods were implemented for Sensitivity and Uncertainty analysis: Monte Carlo, covariance 

analysis and FAST (Fourier Amplitude Sensitivity Test).  

 

 A parameter estimation procedure was carried out on the basis of so called Mixed Model extended by 

some suitable additional regularization parameters to stabilize the solution for improper geometrical 

conditions of the imaging system.  

 

The effectiveness and accuracy of the differential rectification method were compared with other 

rectification methods and the results were analyzed. Furthermore the differential method is adapted to 

the pushbroom scanners and software which provides rectified images from raw satellite images was 

developed.   

 

 

Keywords: Orthoimages, rectification, sensitivity analysis, error analysis, Mixed Model (Gauss-

Helmert model) 
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ÖZ 
 

CCD VE PUSHBROOM KAMERALAR İÇİN GELİŞTİRİLMİŞ DİFERANSİYEL 

REKTİFİKASYON YÖNTEMİNİN DUYARLILIK VE HATA ANALİZİ 

 

 

Bettemir, Önder Halis 

Y. Lisans, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi           : Doç. Dr. Mahmut Onur Karslıoğlu 

 

Eylül 2006, 252 sayfa 

 

 

 

 

Bu tezde BİLSAT üzerindeki Metrik kamera (frame camera) ve ASTER üzerindeki pushbroom tarayıcı 

ile çekilen görüntüler kullanılarak diferansiyel rektifikasyon yönteminin duyarlılık ve hata analizi 

yapıldı. Duyarlılık ve hata analizinde Diferansiyel Analiz, Monte Carlo Hassasiyet Analizi ve Fourier 

Genlik Duyarlılık Testi (FGDT) metodları kullanıldı.  

 

Parametre kestirimi, Karışık Model (Gauss-Helmert) yöntemi ile görüntü alım geometrisinin 

bozukluğundan etkilenen çözümü stabilize etmek için uygun düzeltme yöntemleri kullanılarak yapıldı. 

 

Algoritmanın verimliliği ve duyarlılığı diğer görüntü rektifikasyon methodları ile karşılaştırıldı ve 

sonuçları analiz edildi. Bununla beraber yeni geliştirilen rektifikasyon yöntemi pushbroom tarayıcılara 

uyarlandı ve uydu fotoğraflarının rektifikasyonunu yapan bir yazılım geliştirildi.  

 

 

Anahtar Kelimeler: Sayısal Ortofoto, rektifikasyon (rödresman), duyarlılık 

analizi, hata analizi, Karışık Model (Gauss-Helmert modeli). 
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CHAPTER 1 

 

 

INTRODUCTION 
 

 

 

In this thesis it is aimed to implement and derive the algorithm of the differential rectification 

method (DRM) developed for charge coupled device (CCD) cameras in detail, to adopt DRM to 

pushbroom scanners, to perform a sensitivity and uncertainty analysis of the DRM for both CCD and 

pushbroom scanner images, and to compare the accuracy of DRM with some of the existing 

rectification methods. For the implementation of the algorithm, images taken by BiLSAT and ASTER 

will be used as the data source in the study. 

 

There are many rectification methods and each method has unique algorithms and as a result 

unique accuracy. However, in general the methods project the image coordinates to the earth surface 

considering the earth as a planar surface and then apply the necessary corrections for the curvature of 

the earth. A new differential method (DRM) was proposed for orthorectification [1] that projects the 

pixel coordinates directly on to the reference ellipsoid as an earth model, thus requiring no additional 

corrections. 

 

1.1 Necessity of Rectification 

 

 There are several reasons that prevent an image to be used directly as image map. These are 

explained in the following subsections 

 

1.1.1 Tilted Image 

 

 

 

 

 

 

 

 

 

Figure 1.1 (a) Geometry of a tilted image (b) Appearances of grids in a tilted image [2]. 

(a) (b) 
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Satellites can not always pass exactly over the ground object that is desired to be imaged 

because of the orbit characteristics of satellites. In order to image the intended ground object, imaging 

system of satellite is tilted from the nadir direction. Because of this, the ratio of the distance between 

the sensor and the ground surface, and the ratio of the distance between camera focus and the imaging 

sensor of all image points will not be the same (Figure 1.1a). The scale of the image is directly related 

with this ratio, different ratio results in scale variations in the image. In order to use the image as an 

image map, the scale variations due to tilt should be eliminated [2].  

 

It is easily seen that the ratio of the lines Lb to bB and La to LA (Figure 1.1a) are not the same. 

Because of the tilt of the sensor ration of Lb to bB is smaller, resulting different scales in different 

portions of the image. Figure 1.1b shows the appearance of the same sized grids in a tilted image. The 

scale at the top of the image is considerably smaller than the bottom part which is a good representation 

of the tilt effect on scale. 

 

1.1.2 Earth’s Curvature 

 

         The surface of the earth is not a flat surface and especially satellite images cover a wide area and 

the curvature of the earth becomes an important factor that affects the ratio of the distance between the 

focus and sensor, sensor and the ground point (Figure 1.2). Although the image is not tilted, the ratio of 

Ad to dD is not the same with the ratio of Ac to cC because of the earth’s curvature. In order to keep 

scale constant all over the image, the earth’s curvature effect should be eliminated. 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Earth curvature effect on the scale of the image 

 

 

1.1.3 Relief Displacements 

 

Relief displacement is the shift or displacement in the photographic position of an image caused 

by the relief, elevation with respect to a selected datum, of the object (Figure 1.3). Relief displacement 

is outward for points whose elevations are above datum and inwards for points whose elevations are 
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below datum [2, p137].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Effect of relief displacement, the exact location of the point A is further from the A’ [2]. 

 

 

 Relief displacements change the relative positions, in other words the relative distance 

between the objects in the image. For this reason the image cannot be used as a map unless the relief 

displacements are eliminated. The relief displacement effect increases if the ground point is further 

from the image center. Furthermore, the displacement direction is same with the direction to the image 

center. 

 

1.1.4 Atmospheric Refraction 

 

Propagation direction of light ray changes (Figure 1.4) when the density of the medium changes [2, 

p102]. It is known that density of the atmosphere decreases with increasing altitude. For this reason, 

light rays do not travel in straight lines through the atmosphere; they are bent according to the Snell’s 

law. Since analytic photogrammetric equations are derived with the assumption of light rays travel in 

straight lines, corrections should be applied in order to eliminate the error caused by atmospheric 

refraction. 
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Figure 1.4 Refraction of light rays while propagating through atmosphere [2] 

 

 

1.1.5 Lens Distortion 

 

Characteristics of camera lens have an important effect on the image. Although they are 

produced very cautiously, some malfunctioning will be present in the device and the lens will distort 

the light rays according to the distance from the image center, causing the changes at the relative 

positions between the ground points. Lens distortion effect can be eliminated by mathematical 

corrections derived after the lens calibration [2, p.97]. 

 

1.2 Common Rectification Methods 

 

In this subchapter some of the widespread rectification methods will be presented. 

 

1.2.1 Helmert Transformation 

 

In 2-D Helmert transformation, there are only four parameters for the scale, shift and rotation. 

Two axes are rotated by same amount so the rotation is orthogonal [3]. The formula of Helmert 

transformation (HT) can be given as; 

 

davbuy
cbvaux
++−=

++=                         (1.1) 
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In Equation 1.1 a and b are the rotation parameters, c and d are translation parameters, u and v 

are the image coordinates. Scale is the norm of a and b. In order to determine the parameters at least 

two GCPs should be collected. Since this is an orthogonal transformation, this method can not be used 

in the rectification of satellite images. HT can not eliminate effect of tilt and curvature of the earth 

successfully. 

 

1.2.2 Affine Transformation 

 

In affine transformation the raw satellite or airborne image is rectified by a transformation 

operation. The transformation parameters are computed after the optimization process of the residuals 

of the GCPs collected at the field. Rotation of the two axes is not the same. In Affine Transformation 

rotation is not orthogonal but parallel lines remains parallel after the rotation [3]. The mathematical 

formula of the transformation can be written as; 

 

fevduY
cbvauX

++=
++=                       (1.2) 

  

In Equation 1.2 a and b are the both rotation and scaling, c is the translation parameters of the x 

axis, similarly d and e are the rotation and scaling parameters and f is the translation parameter for the y 

axis. X and Y are the ground coordinates of the corresponding pixel with respect to a certain datum and 

finally u and v are image coordinates. Totally there are 6 parameters to be solved, so at least 3 GCPs are 

required in order to determine the transformation parameters. 

 

1.2.3 Pseudo Affine Transformation 

 

Pseudo Affine is an eight parameter transformation used for the rectification of satellite images. 

In order to solve eight parameters at least four GCPs are required. This method has three rotation 

parameters and one translation parameter for each axis [3]. The mathematical formula of the Pseudo 

Affine Transform is given as; 

 

8765

4321

avauauvay
avauauvax

+++=
+++=                      (1.3) 

 

Pseudo Affine Transformation is neither an orthogonal transformation nor parallel lines stay 

parallel. Because of a1 and a5 terms rotation and scaling will not be the same for every pixel in the raw 

image. 
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1.2.4 Projective Transformation 

 

Projective transformation is an 8 parameter transformation generally used for the rectification of 

images shot by CCD array. 8 parameters are computed after the optimization process of the GCPs 

collected from the field [2, p548]. The transformation equations are derived from colinearity equations; 
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222

++
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=
ybxa

cybxaY                       (1.4) 

 

In Equation 1.4 X and Y are the rectified coordinates expressed in terms of x and y, which are 

tilted photo coordinates. a1, b1, c1, a2, b2, c2, a3 and b3 are the transformation parameters to be solved. 

The method requires collection of at least four GCPs for the solution of parameters. Projective 

transformation is generally used for the rectification of airborne images. 

 

1.2.5 Second Order Conformal Transform 

 

As its name implies, this method rotates the image axes with same angle but the amount of 

rotation is not the same at every location of the image. In other words rotation amount may not be the 

same for different pixel locations but the both axis will be rotated by the same amount. There are four 

parameters for rotation of the two axes and one parameter for the translation of each axis. In order to 

determine all parameters, at least three GCPs are required [3]. The mathematical formula of the method 

can be written as; 
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When second order conformal transformation is applied, parallel lines may not remain parallel 

after the transformation. 

 

1.2.6 Polynomial Transformation 

 

For the rectification of satellite images, Polynomial Transformations are generally used. The 

order of polynomial can be taken as two or three. Higher order polynomials increase the parameter 

number considerably which results an increase in demand for GCPs. Furthermore higher order terms 

may be correlated with each other and cause rank deficiency in the coefficient matrix leading to 

inaccurate solution. The general formula for the polynomial transform can be written as; 
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 In Equation 1.6 a and b are coefficients to be determined for rectification, u and v are raw 

image coordinates of the ground point and x and y are the assigned ground point for the corresponding 

image point [3].  

 

1.2.7 Orthorectification 

 

In orthorectification method, colinearity equations are applied in order to provide a relationship 

between image and ground points. Additionally, elevation information of the ground points are required 

for the elimination of relief displacements. For this reason, a Digital Elevation Model (DEM) is 

required in orthorectification process. Furthermore computational demand of this method is much 

higher than other rectification methods. On the other hand, if inner and outer orientation parameters of 

the camera are known accurately, the accuracy of the rectification will be better than the other methods. 

To improve the accuracy of these parameters parameter estimation procedure may be carried out within 

the rectification process. Besides, orthorectification provides the elevation information for each pixel of 

the rectified image. 

 

Colinearity equations are usually written with an assumption of a flat earth surface in order to 

make equations easier to solve [4]. After the rectification process corrections are made for curvature of 

the earth (Figure 1.5). DRM directly rectifies the ground points on to reference ellipsoid as an earth 

model and avoids earth curvature corrections [1]. One of the tasks in this thesis is to compare the 

accuracy of DRM with present orthorectification methods for regions with different topographic 

characteristics. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Classical orthorectification methods [4]. 
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1.3 Related Works About Image Rectification 

 

 There are many techniques developed for the rectification of orthoimages. Most commonly 

used technique is affine and polynomial transformation methods. Another widespread technique is 

differential rectification. The literature related with the image rectification is presented briefly as below; 

Besides “ill-conditioned” analytical relationships, an alternative approach was proposed by 

Okamato to the triangulation of satellite line scanner imagery [5]. In his approach an initial 

transformation of the original perspective line image into an affine projection which is then followed by 

a linear transformation from image to object space for stereo geometries is performed. The advantage of 

the method can be considered as avoiding very high correlations arising between the orientation 

parameters due to very narrow view angle of the imaging device. 

 

Direct Linear Transformation (DLT) was suggested by El-Manadili and Novak for the geometric 

modeling of SPOT imagery [6]. DLT approach does not require parameters of the interior and 

ephemeris information. The solution is based only on ground control points. This is advantageous for 

processing of the new high resolution satellite images, especially if their sensor model and ephemeris 

information are not available. DLT is employed after correcting the image coordinates for systematic 

distortions caused by Earth rotation and cell size variations due to off-nadir viewing. Corrections for 

other systematic errors are considered through the adjustment. 

 

The principle of orientation images was used by Kornus for the geometric inflight calibration of 

MOMS-2P imagery [7]. This method is based on extended collinear equations [8]. The exterior 

orientation parameters are determined in the so called orientation images. Between the orientation 

images, parameters of an arbitrary scan line are interpolated using Lagrange polynomials. For modeling 

of the interior orientation for each CCD array, five parameters are introduced. All unknown parameters 

are estimated in a bundle block adjustment using threefold stereo imagery. For the determination of the 

unknown parameters, a large number of tie points is required which are automatically measured. 

 

 An orbital parameter model was suggested by Gugan [9]. The collinear equations are expanded 

by two orbital parameters to model the satellite movement along the path and the earth’s rotation: the 

linear angular changes with time of the true anomaly and the right ascension of the ascending node. The 

attitude variations are modeled by drift rates. This model was successfully adopted by Valadan Zoej 

and Petrie and applied for SPOT level 1A and 1B, MOMS – 02 and IRS-1C imagery [10]. 

 

 For the photogrammetric triangulation using MOMS-02, MOMS-02/D2 and MOMS-

2P/PRIRODA imageries good results are obtained using the program SPOTCHECK+ [11-12]. This 

solution was successfully applied on various sensors eg. SPOT, Landsat, TM5 and JERS-1 [13]. The 

approach is based on a photogrammetric strict sensor model which needs only 10 ground control points. 

Furthermore, the sensor model can be easily extended to process images from other high resolution 

imaging systems as they become available. 
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 Applicability and accuracy of the rectification methods were compared by Ok. A. Ö. in his MS 

thesis [14]. The study examines rectification models including affine transformation to rigorous 

analytical rectification. 

 

 DRM for monoscopic images taken by CCD frame cameras was proposed by Karslıoğlu and 

Friedrich [1]. The method directly assigns the geodetic coordinates of the images by avoiding earth 

curvature corrections. In this thesis, sensitivity and accuracy analysis of DRM will be performed for 

both CCD frame cameras and pushbroom scanners.  

 

1.4 Sensitivity and Uncertainty Analysis 

 

 Sensitivity refers to the variation in output of a mathematical model with respect to changes in 

the values of the model’s parameters. A sensitivity analysis attempts to provide a ranking to the 

assumptions of the model’s parameters with respect to their contribution to model output variability or 

uncertainty [15]. The difficulty of a sensitivity analysis increases when the underlying model is 

nonlinear, non-monotonic or when the input parameters range over several orders of magnitude. In a 

broader sense, sensitivity can refer to how conclusions may change if models, data, or assessment 

assumptions are changed. 

 

 Uncertainty refers to lack of knowledge about specific factors, parameters, or models. 

Uncertainty includes parameter uncertainty, i.e. measurement errors, sampling errors, systematic errors, 

model uncertainty, i.e. uncertainty due to necessary simplification of real-world processes, 

misspecification of the model structure, model misuse, use of inappropriate surrogate variables, and 

scenario uncertainty, i.e. descriptive errors, aggregation errors, errors in professional judgment, and 

incomplete analysis [16]. 

 

 Sensitivity analysis is conducted to determine which input parameters have significant effect 

on the outputs and which parameters contribute most to output variability, thus require more attention 

when performing uncertainty analysis. Sensitivity analyses are often referred to as local or global. Local 

analysis considers one parameter at a time and addresses sensitivity relative to the point estimates of 

parameters. Global analysis examines sensitivity with respect to the entire parameter distribution. 

 

 The main objective of uncertainty analysis is to assess the statistical properties of model 

outputs as a function of stochastic input parameters. Methods generally used for uncertainty analysis 

can be listed as First Order Analysis, Monte Carlo Simulation, Latin Hypercube Sampling, Response 

Surface Methodology, Fourier Amplitude Sensitivity Test and Point Estimate Method [17]. 

 

 In literature there are many works on sensitivity and uncertainty. Some of them are listed 

below; 
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  Rank transformed data had been used by Conover and Iman at covariance analysis which is a 

combination of regression, and analysis of variance [18]. Rank transformed data have properties of 

robustness and power in both regression, and analysis of variance. The authors examined a robust 

ANCOVA procedure based on replacing the data with their ranks and performed the parametric 

calculations with their ranks. 

 

  A Performance Assessment study was made by Helton aiming to find “What occurrences can 

take place?”, “How likely are these occurrences?”, “What are the consequences of individual 

occurrences?” and “How much confidence exists in the answers?” In his study the author divided the 

uncertainty in two components; stochastic (aleatory) uncertainty which arises because the system under 

study can potentially behave in many different ways, and subjective (epistemic) uncertainty, which 

arises from a lack of knowledge about quantities that are assumed to have fixed values within the 

computational implementation of the Performance Assessment [19]. 

 

A Monte Carlo method to study the effect of systematic and random errors on computer 

models mainly dealing with experimental data was presented by Vasques [20]. The uncertainty analysis 

approach presented in his work is based on the analysis of cumulative probability distributions of 

output variables of the models involved taking into account the effect of both random and systematic 

errors. The main objectives of his study were to detect the error source with stochastic dominance on 

the uncertainty propagation, and the combined effect on output variables of the models. 

 

 Uncertainty and sensitivity analysis results obtained with random and Latin Hypercube 

sampling were compared by Helton [21]. In order to assess the stability of the sensitivity analysis 

results caused by inadequate sample size, he used Kendall’s coefficient of concordance and the top 

down coefficient of concordance. 

 

 Some of the variance based methods used in sensitivity analysis to ascertain how much a 

model depends on each or some of its input parameters were reviewed by Chan, Saltelli and Tarantola 

[22]. In their analysis “Correlation ratios or Importance Measures”, “Sobol’ Indices” and FAST 

Indices” are used. At the end of their study they concluded that all the alternative global methods, 

variance-based or not, can offer, at best, a qualitative picture of the model sensitivity. The variance 

based methods such as correlation ratio or importance measures are model independent and can 

evaluate main effect contributions. 

 

 Methods for the sensitivity and uncertainty analysis of signalized intersections had been 

compared by Ji [17]. In his analysis he has used four sensitivity analysis methods; Partial Differential 

Analysis, Partial Correlation Coefficients, Standardized Regression Coefficients and Fourier Amplitude 

Sensitivity Test and four uncertainty analysis methods; First Order Analysis, Monte Carlo Simulation, 

FAST, and Point Estimate Method. 
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 A new method of sensitivity analysis of model output based on Fourier Amplitude Sensitivity 

Test (FAST) had been proposed by Saltelli [23]. The method allows the computation of the total 

contribution of each parameter to the output’s variance. The term “total contribution” means the 

parameters’ main effects, as well as all the interaction terms involving that factor, are included. In his 

study Saltelli addresses the limitations of other sensitivity analysis methods and suggest that the total-

effect indices are ideally suited to perform a global, quantitative, model-independent sensitivity 

analysis. 

 

1.5 Prospects from This Thesis 

 

 In this thesis, it is aimed to find the accuracy and effectiveness of the DRM by comparing it 

with some of the other rectification methods. At the end of the study software which can generate 

orthoimages acquired by CCD frame cameras and Pushbroom scanners will be developed. 

 

Additionally, three sensitivity analysis methods, Differential Sensitivity, Monte Carlo and 

Fourier Amplitude Sensitivity Test (FAST) will be applied to compute the uncertainty in the rectified 

coordinates and the sensitivity of the rectification parameters. These analyses will be performed by 

using both BilSAT and ASTER images and the computed sensitivity will be on the basis of both 

BilSAT and ASTER geometry. 

 

 The new method will be implemented for pushbroom scanners which have continuous attitude 

and position information. In case of missing information in terms of position or attitude, these will be 

predicted by interpolation. 

 

 During the research BilSAT and ASTER images and SRTM DEM will be used as data source 

and Matlab mathematical programming software will be used for programming of the algorithms. 

 

In Chapter 2, reference and time systems used in rectification process are briefly introduced. 

Additionally, assumptions made in the definition of some of the reference frames are explained and 

illustrated. 

 

In Chapter 3, region of analysis is described. Both BilSAT and ASTER images used in the 

analysis are presented. Additionally, Ground Control Points (GCP) distribution is defined and 

measurement method of ground coordinates and image coordinates are explained. 

 

In Chapter 4, derivation of colinearity equations are described for both CCD cameras and 

pushbroom scanners. In this chapter; lens distortion, precession, nutation, polar motion, atmospheric 

refraction and relief displacement corrections are explained. Additionally, all transformation procedures 

in the rectification process explained in detail. In this chapter some modifications on DRM is illustrated 
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also. Convergence of the iteration process is brushed up and the convergence of the method is 

accelerated. 

 

In Chapter 5, parameter estimation procedure used in this thesis is introduced. The solution of 

the parameter estimation equations is not stable because of the weak camera geometry of the satellites 

and correlations between the parameters. This prevents obtaining an accurate solution for the 

parameters. For this reason, solution of the system is stabilized by applying regularization methods. 

Three regularization algorithms used for the stabilization of the solution are introduced in this chapter. 

Furthermore, improvement obtained in the accuracy of the solution by applying regularization methods 

is also tested.  

 

In Chapter 6, the parameter estimation methods are implemented to improve the accuracy of 

the parameters. Additionally, performance of the regularization methods is compared in terms of 

accuracy and convergence. Furthermore, DRM for both CCD frame and pushbroom scanners are 

implemented by using improved parameters. For the CCD frame cameras some constraints are 

introduced to improve the result of the parameter estimation and an outlier test is performed to check 

the result of the parameter estimation and GCPs. 

 

In Chapter 7 DRM is compared with some of the existing rectification methods. The 

comparison is performed in terms of accuracy, speed and complexity of the methods. Additionally, 

changes in the estimated parameters with respect to initial conditions are examined by adding blunders 

to the initial values of the parameters. At the end of the chapter the analysis results are commented. 

 

In Chapter 8 sensitivity and uncertainty analysis is performed for the rectification methods of 

CCD frame camera and pushbroom scanners. First the sensitivity analysis methods used in the analysis 

are introduced then the methods are implemented for both CCD frame cameras and pushbroom 

scanners. The sensitivity and uncertainty results are also commented. 

 

In Chapter 9 an overall discussion of the thesis study is made. Analysis results are commented 

briefly and some recommendations are suggested for future studies related with DRM and sensitivity 

and uncertainty analysis. 



 13

 

 

CHAPTER 2 

 

 

REFERENCE AND TIME SYSTEMS USED IN RECTIFICATION PROCEDURE 
 

 

 

 In this chapter, reference and time systems used in the thesis will be briefly introduced. 

Assumptions in the definition of the reference systems are also clearly illustrated. 

 

 

2.1 REFERENCE SYSTEMS USED IN RECTIFICATION PROCEDURE 

 

 In this section ten reference systems used in the rectification procedure are illustrated. 

 

2.1.1 Image Coordinate System (SIM) 

 

Image coordinate system is denoted by SIM.      

 

This coordinate system is used for positioning the pixels of the image. Since an image is 2 

dimensional, image coordinate system is also 2 dimensional. The origin of this system is at the upper 

left corner of the image, x and y axis are orthogonal to each other. Direction of these axes are shown in 

Figure 2.1. Unit of image coordinate system is pixel; in other words the smallest picture element. SIM is 

a Left Hand coordinate system. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Illustration of image coordinate system 
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2.1.2 Photo Coordinate System (SP) 

 

Photo coordinate system is denoted by SP. 

 

Similar to SIM, SP is a 2D coordinate system. Origin of photo coordinate system is the principal 

point of the CCD frame. For the images scanned by pushbroom sensors x coordinate of the origin is the 

principal point of pushbroom scanner and y coordinate of origin is the half of the image height. 

Direction of x axis is same with SIM but y axis is reversed (Figure 2.2). For this reason SP is a Right 

Hand coordinate system. Unit of SP is mm, therefore a scale factor c is required to perform the 

transformation from SIM to SP. Parameters required to transform SIM to SP are: principal coordinates 

(∆x, ∆y), and size of the sensing element (c) of the sensor.  

 

 

 

 

 

 

 

Figure 2.2 Illustration of photo coordinate system 

 

 

2.1.3 Camera Coordinate System (SC) 

 

Camera coordinate system is denoted by SC.  

 

SC is a 3D coordinate system that has the origin at satellite camera focus. In SC direction of x 

and y axes are same with SP. z axis’s direction is defined to complete a 3D right hand reference system. 

Orientation of axis of SC is shown in Figure 2.3. Similar to SP unit of the SC is mm. Transformation 

from SP to SC requires focal length, f, of the camera. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Illustration of camera coordinate system 
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2.1.4 Body Fixed Reference System (SB) 

 

Body fixed reference system denoted by SB. 

  

Origin of SB is mass center of the satellite. Axis of body fixed reference system coincide with 

the principal axis of the inertia tensor of the satellite. If a satellite rotates around the earth as earth 

oriented, axis of SB coincide almost with orbital coordinate system and the angles between the two 

corresponding coordinate axes are considered as the attitude angles of the satellite (Figure 2.4). 

Transformation from SC to SB is performed by a rotation of 180o around the x axis and -90o around z 

axis.  

 

 

   

   

  

 

 

 

 

Figure 2.4 Orientation of body fixed reference system and orbital reference system 

 

 

 

2.1.5 Orbital Reference System (SO) 

 

Orbital reference system is denoted by SO.       

 

SO is a reference system with its origin defined at the satellite’s center of mass. Z-axis is 

pointing in the same direction as the satellite’s nadir direction, given in Earth Centered Inertial 

reference frame (Figure 2.5). Y-axis is defined in the opposite direction of the angular momentum 

vector of the satellite orbit. X-axis completes a 3D right hand reference system. In this sense if 

eccentricity of the orbit is too small, direction of the X-axis can be considered as the same direction 

with the velocity vector of the satellite. Transformation from SB to SO is performed by means of a 

rotation matrix constructed by the attitude angles of the satellite [24]. 
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Figure 2.5 Orientation of orbital reference system with respect to inertial reference frame 

 

 

 

2.1.6 Earth Fixed Reference Frame (SE) 

 

      Earth centered earth fixed reference frame is denoted by SE. 

 

 The origin of this reference system is the mass center of the earth. Orientation of this system 

changes with time and with respect to the solid earth’s body as well as to the celestial reference system. 

Z-axis is directed towards a conventional mean terrestrial (north) pole (Figure 2.6). XZ plane is 

generated by the conventional mean meridian plane of Greenwich, which is spanned by the axis of 

rotation and the Greenwich zero meridian. Y axis is directed so as to obtain a right handed system [25, 

p 31]. 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Illustration of earth centered earth fixed reference frame 
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2.1.7 Quasi Inertial Reference Frame (SI) 

 

         Quasi-Inertial reference system is denoted by SI. 

 

Origin of the Quasi-inertial reference system is the mass center of the Earth. Rotation axis of 

the earth forms the Z axis, direction from mass center of the earth to the true vernal equinox defines the 

X axis and the Y axis completes a 3D right hand coordinate system (Figure 2.7). The unit of SI is 

meters [25, p 25].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Illustration of the inertial reference frame 

 

 

 

 

2.1.8 Geodetic Reference System (Global Ellipsoidal Reference System) (SG) 

 

Geodetic reference system is denoted by SG. 

 

In Figure 2.8 geocentric ellipsoidal coordinates are shown. WGS84 ellipsoid is used as a datum 

for the reference frame with coordinates expressed in geodetic latitude, longitude and height above the 

reference Earth ellipsoid. Geodetic latitude and longitude are defined as the angle between the ellipsoid 

normal and its projection onto the equator, and the angle between the local meridian and the Greenwich 

meridian respectively. The frame parameters are; 

 

• Semimajor axis a; 6378137 meters 

• Semiminor axis b; 6356752,314 meters 

• Flattening f ; 1/298,257223560 
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Figure 2.8 Illustration of geodetic coordinate system [25, p 93]. 

 

 

 

2.1.9 Local Ellipsoidal Reference Frame (SL) 

 

Local Ellipsoidal Coordinate system is denoted by SL. 

 

SL is defined by the zenith, east and north directions. Zenith direction is the direction of the 

Ellipsoidal normal and defines the direction of the z axis, x axis directs through the North Pole and the 

y axis directs to the East which makes the coordinate system a Left Hand System (Figure 2.9). Origin of 

the SL is taken as the observer’s position [25, p 43]. 

 

 
Figure 2.9 Illustration of local ellipsoidal reference frame [25, p 101] 
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2.1.10 Map Projection Coordinate Frame (SM) 

 

Map projection coordinate system is denoted by SM. 

 

Universal Transverse Mercator (UTM) map projection coordinate system is used in order to 

provide a mapping from latitude and longitude to a plane coordinate system which is an approximation 

to a Cartesian coordinate system for a portion of the Earth’s surface [2, p.571].  

 

These reference and coordinate systems will be used in the orthorectification and error analysis 

of the new differential image rectification method. 

 

 

 

 2.2 TIME SYSTEMS USED IN RECTIFICATION PROCEDURE 

 

 

2.2.1 UTC Time 

 

Coordinated Universal Time (UTC) is a high-precision atomic time standard which 

approximately tracks Universal Time (UT). It is the basis for legal civil time all over the Earth: time 

zones around the world are expressed as positive and negative offsets from UTC. In this role it is also 

referred to as Zulu time (Z), or using the term "Greenwich Mean Time" (GMT). 

 

As a time scale, UTC divides time up into days, and days into hours, minutes, and seconds. 

Days are conventionally identified using the Gregorian calendar, but Julian Day Numbers can also be 

used. Each day contains 24 hours and each hour contains 60 minutes, but the number of seconds in a 

minute is slightly variable. 

 

Most UTC days contain exactly 86400 seconds, with exactly 60 seconds in each minute. 

Occasionally the last minute of a day has 59 or 61 seconds, or prior to 1972 other lengths. These 

irregular days have 86399 seconds, 86401 seconds, or some other number of seconds. The irregular day 

lengths mean that Julian Dates don't work properly with UTC. The intercalary seconds are known as 

"leap seconds" [26]. 

 

2.2.2 Universal Time 

 

UT0 is Universal Time determined at an observatory by observing the diurnal motion of stars 

or extragalactic radio sources, and also from ranging observations of the Moon and artificial Earth 

satellites. It is uncorrected for the displacement of Earth's geographic pole from its rotational pole. This 

displacement, called polar motion, causes the geographic position of any place on Earth to vary by 
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several meters, and different observatories will find a different value for UT0 at the same moment. It is 

thus not, strictly speaking, Universal [27].  

 

UT1 is computed by correcting UT0 for the effect of polar motion on the longitude of the 

observing site. UT1 is the same everywhere on Earth, and defines the true rotation angle of the Earth 

with respect to a fixed frame of reference. Since the rotational speed of the earth is not uniform, UT1 

has an uncertainty of plus or minus 3 milliseconds per day.  

 

 

2.2.3 Unix Time 

 

Unix time, or POSIX time, is a system for describing points in time. It is widely used not only 

on Unix-like operating systems but in many other computing systems, including the Java programming 

language. It is an encoding of UTC, and is sufficiently similar to a linear representation of the passage 

of time that it is frequently mistaken for one. The Unix epoch is the time 00:00:00 UTC on January 1, 

1970 [28]. 
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CHAPTER 3 

 

 

STUDY AREA AND IMAGES 

 

 

 
 Error Analysis of the new orthorectification method is performed around Ankara region in 

Turkey. Bilsat and ASTER images are used in order to test the accuracy of the new method coverage of 

these images are shown by blue rectangle in Figure 3.1. Additionally sensitivity and uncertainty 

analysis are based on the geometry of Ankara images. 

 

 
Figure 3.1 Snapshot of Ankara and Anatolia region. 

 

 

In the Figure 3.1 Ankara and the neighboring cities are shown. In the error Analysis one 

BilSAT and one ASTER images are used each covering approximately 3600 km2. The region is 

mountainous area having up to 2000 meter high top elevations. Elmadağ and Altındağ are the examples 

of the mountains near Ankara. Steep slopes exist in the region and elevation differences up to 1000 

meters can be measured in close regions. However, the region has smooth surfaces near Gölbaşı and 
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Haymana Plato. This property of the study region will allow us to compare the accuracy of the method 

both for mountainous and flat areas.  

 

 

3.1 CCD Frame Camera Image 

 

 Error analysis of the new orthorectification method for CCD arrays is performed with one 

BilSAT image. BilSAT is launched with a cooperation between TÜBİTAK-Bilten and Surrey Satellite 

Technology Limited (SSTL) of Surrey University, UK. It is a technology transfer project aimed at 

acquiring small satellite technologies. BilSAT has the properties represented in Table 3.1 [29]. 

 

 

Table 3.1 Technical properties of BilSAT 

Weight: 129 kg 
Orbit: 686 km, circular, sun synchronous 

Attitude 
Control: 

3-axis stabilized 

Orbit alignment by propulsion engine 

Life 
time: 

(5+10) year 

Multispectral Camera Properties: 

         Ground Sampling Distance : 27,6 m 

         Radiometric ranges: (µm) 
         Band 1: 0.45 - 0.52 ( Blue ) 

         Band 2: 0.52 - 0.60 (Green) 

         Band 3: 0.63 - 0.69 ( Red ) 

Cameras: 

         Band 4: 0.76 - 0.90 (Near Infrared) 
 

 

 

In order to examine the rectification accuracy, Ground Control Points (GCP) are collected from 

several sites seen on the image. Measured and computed coordinates of GCPs are compared during the 

error analysis. During the selection of GCPs some important facts are considered such as; 

 

• GCPs should easily be detectable both in the image and in the ground. 

• GCPs should be stationary and permanent. 

• GCP should be well distributed in the image and cover all image. 

• GCP positions should not be collinear on the image. 
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Bilsat image taken on August 3rd 2005 is used in the analysis. 28 GCPs were collected and 

distribution of GCPs is shown in the Figure 3.2. 

 
Figure 3.2 Distribution of GCPs for the image shot on August 3rd 2005. 

 

 

 

Spatial resolution of BilSAT can be considered as low compared with new generation 

commercial remote sensing satellites. Most of the detectable objects in high resolution satellite images 

was undetectable in Bilsat images. For this reason collecting GCPs was relatively difficult. GCPs are 

collected mainly from highway bridges, road intersections and airports. Building corners, minor roads 

or monuments were impossible to detect from the image. 

 

 

3.2 Pushbroom Scanner Image 

  

An ASTER image is used for the sensitivity and uncertainty analysis and implementation of 

the new method adopted for pushbroom scanners. ASTER is a cooperative effort between NASA and 

Japan's Ministry of Economy Trade and Industry (METI), with the collaboration of scientific and 

industry organizations in both countries [30]. ASTER captures high spatial resolution data in 14 bands, 

from the visible to the thermal infrared wavelengths; and provides stereo viewing capability for digital 

elevation model creation. Technical properties of the Visible Near Infrared (VNIR) band of the ASTER 

is represented in Table 3.2 [30]. 
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Table 3.2 Technical properties of VNIR band of ASTER 

 

Characteristic VNIR 
Band 1: 0.52 - 0.60 µm 

Spectral Range Nadir looking 
Band 2: 0.63 - 0.69 µm 

  Nadir looking 
Band 3: 0.76 - 0.86 µm 

  Nadir looking 
Band 3: 0.76 - 0.86 µm 

  Backward looking 
Ground 

Resolution 15 m 
Swath Width 

(km) 60 
Quantization 

(bits) 8 
 

 

 

 

The image is acquired in August 27th 2002. ASTER has approximately 15 meter ground 

resolution in visible bands. In ASTER images; airports, highways and road intersections can easily be 

detected. If there is a sharp contrast, even the minor roads can also be detected (Figure 3.3). 
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Figure 3.3 Distribution of GCPs of the image shot by ASTER 

 

3.3 GCP Coordinate Measurements 

 

Distribution of GCPs with their geodetic coordinates with respect to WGS 84 datum is shown 

in Figure 3.4. GCPs are collected by means of a hand held Magellan GPS receiver by absolute 

positioning. Accuracy of the GCP coordinates is expected to be within 15 meters. To check if there is a 

blunder in the measurements, the measured ground coordinates are compared by a topographic map and 

it is seen that there is not any considerable error. The snapshot is obtained from Trackmaker software. 
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Figure 3.4 Distribution of ground control points shown on Trackmaker software 

 

 

 

3.4 DEM Data 

 

In this thesis for the elevation data SRTM DEM will be used. The data is produced by The 

Shuttle Radar Topography Mission (SRTM). The mission obtained elevation data on a near-global scale 

to generate the most complete high-resolution digital topographic database of Earth. SRTM consisted of 

a specially modified radar system that flew onboard the Space Shuttle Endeavour during an 11-day 

mission in February of 2000 [31]. 

 

SRTM DEM data has an accuracy of approximately 5 meters for the region of Ankara. 

Elevation accuracy of 5 meters is adequate for the orthorectification of BilSAT and ASTER images, 

since both satellites have coarse spatial resolution and the images are not oblique.  

 

SRTM DEM stores elevation data in 3 arc second intervals. Each DEM file contains 

1201x1201 elevation value thus covers a region of 1 degree of latitude and longitude. 
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CHAPTER 4 

 

 

DRM ALGORITHM FOR CCD FRAME CAMERA AND PUSHBROOM SCANNERS 

 

 

 

4.1 DRM Algorithm for CCD Frame Cameras 

 

 DRM is based on colinearity equations to provide a relationship between pixel positions and 

corresponding positions on ground. Colinearity is the condition which requires that all three points; the 

exposure station of photograph (focus), an object point, and its photo image lie on a straight line 

(Figure 4.1). The equations expressing this condition are called colinearity equations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Illustration of Colinearity Conditions [31] 

 

Abbreviations used in Figure 4.1 are explained as; 

M is the photographic nadir point, 

PP is the principal point, 

P’ is the image position of the object point P and x”, y” are the image coordinates of point P. 

 

Z 
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 Colinearity equations are written with respect to interior and exterior camera parameters 

Interior orientation parameters of the camera can be listed as; 

 

• f  focal length (mm) 

• ∆x, ∆y principal point coordinates (mm) 

• k1, k2 radial lens distortion (1/mm2 and 1/mm4 respectively) 

• p1, p2 asymmetric radial lens distortion (1/mm) 

 

Exterior orientation parameters of the camera can be listed as; 

 

• camcamcam ZYX ,, Object coordinates of camera position with respect to a given datum 

(meter) 

• κϕω ,,  Attitude angles of the SO with respect to SB  

 

 

4.1.1 Transformation from SIM to SP 

 

Implementation of the DRM for CCD frame cameras consists of 6 stages and the data required 

for each step are shown in Figure 4.2, where the transformation steps and required parameters and data 

are explained. To begin the rectification procedure pixel coordinates are obtained from image in SIM. 

 

The first step of the algorithm consists of transformation of image coordinates from SIM to SC. 

Image coordinates are converted to SP by using Equation 4.1. In this transformation, origin of 

coordinate system is translated from left corner to the middle of the CCD array not only by moving half 

of the size of the CCD array but also by applying the correction of the misalignment of the principal 

point to the CCD center by an amount of ∆x and ∆y. Furthermore, direction of y axis is reversed and 

coordinate system is shifted from Left Hand system to Right Hand system. Additionally, unit of this 

coordinate system is converted from pixel to mm by using parameter ‘c’ the size of the sensing element 

in CCD array. Transformation from SIM to SP can be formulated as in Equation 4.1. 
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Figure 4.2 Illustration of the algorithm of DRM 
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            (4.1) 
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where; 

x ′′  and y ′′  are the cartesian coordinates of the image point in pixel read from the digital image (pixel) 

width and height are the image width and image height (pixel) 

∆x, ∆y are the x and y coordinates of the principal point (mm) 

c is the image scale (mm/pixel). 

x′ and y′ are the position in SC (mm) 

START 

Required Parameters: 
Exterior Orientation and 
WGS 84 Parameters 
Atmospheric Parameters 3. WGS 84 

Cartesian 
Coordinates 

2. Camera 
Coordinates 

1. Image 
Coordinates 

4. Ellipsoidal 
Coordinates 

5. Isothermal 
Coordinates 

6. Photomap 
Coordinates 

T1. Pixel by Pixel 
Transformation 
      1 => 2 

T2. Pixel by Pixel 
Transformation 
      2 => 3 

T3. Pixel by Pixel 
Transformation 
  3 => 4 (Iterative) 

T4. Pixel by Pixel 
Transformation 
      4 => 5 

T5. Pixel by Pixel 
Transformation 
      5 => 6 

Required Parameters: 
Inner Orientation 
Parameters 

Required Parameters: 
DEM, and WGS 84 
parameters 

Required Parameters: 
Projection Parameters 

Required Parameters: 
Map Scale, Origin 

END 
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The transformed pixel coordinates from SIM to SP are not the ideal pixel positions. There are 

small displacements in their ideal positions because of the distorting effect of the camera lens. These 

displacements can be corrected by using mathematical models. 

 

 

4.1.2 Lens Distortion Corrections 

 

Lens distortions are corrected by a polynomial model. The radial distortion value is the radial 

displacement from the ideal location to the actual image of the collimator cross, with positive values 

indicating outward displacements. Radial and asymmetric lens distortions are corrected by the 

following formulae [33]; 
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where; 

r is the distance of the corresponding pixel from the principal point on the CCD array (mm)  

x′  is the x coordinate of the image point in SP  

y′  is the y coordinate of the image point in SP 

x, y and z values are the for lens distortion free image coordinates in SC 

k1 and k2 are radial lens distortion parameters 

p1 and p2 are decentering lens distortion parameters 

f is the focal length of the camera  

 

 

4.1.3 Transformation from SP to SC 

 

By using focal length of the camera and pixel positions in SP, transformation to SC can be 

performed. The origin of coordinate system is moved from principal point to focus, for this reason all 

image points’ z coordinates are –f (Equation 4.3). 

 

Direction vector of each pixel with respect to the camera coordinate system is calculated by 

using the formula, 

 

[ ] 222/',, zyxzyxD
C

++=        (4.4) 
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where; 

x and  y are the corrected pixel coordinates in SP and z is the negative value of focal length 
C
D  is the direction vector with respect to SC 

 

 

4.1.4 Computation of Intersection Point 

 

Applying Equation 4.4 completes the first step of the rectification algorithm. Second step of the 

algorithm involves the computation of cartesian coordinates of intersection point with the direction 

vector computed in step 1 with the WGS84 ellipsoid. To compute the cartesian coordinates of the 

intersection point, first the direction vector with respect to SC should be transformed to SE and the 

intersection equation involving the direction vector in SE and camera position should be generated. 

Whole transformation sequence can be illustrated as; 

 

EIOBCEC SSSSSSS →→→→=→  

 

4.1.4.1 Transformation from SC to SB 

 

To transform from SC to SB 180o rotation respect to X axis and - 90o rotation with respect to Z 

axis is required. The orientations of two coordinate systems are shown in Figure 4.3a and 4.3b. 
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where; 
B
D  is the direction vector of the corresponding image point with respect to SB 
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Figure 4.3   (a) Orientation of SC (b) Orientation of SB 

 

4.1.4.2 Transformation from SB to SO 

 

After performing the transformation from SC to SB the next transformation is from SB to SO. To 

perform this transformation, attitude of the satellite is required. 

 

Attitude angles (Roll, Pitch and Yaw (ω, φ, κ)) between SB and SO are obtained from telemetry 

file. By R213(-ω, -φ, -κ) rotation matrix constructed with minus signs of the attitude angles the direction 

vector will be transformed from SC to SO. Transformation from SC to SO can be shown as;  

 

( ) BO SRS κφω −−−= ,,213                       (4.6) 
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  (4.7) 

where; 
O
D is the direction vector of the corresponding image pixel with respect to SO 

 

 In this section transformation equations are explained if the attitude between SB and SO is 

given in rotation angles. However, the transformation parameter can be obtained in terms of quaternion. 

In this case the transformation from SB to SO will be as fallowing; 

 

 Quaternions are given as; 

[ ]′= 4321 qqqqq                       (4.8) 

 

 Rotation matrix in Equation 4.6 required for the transformation can be written in terms of 

quaternions as; 

 

Z 
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The rotation matrix defined in Equation 4.9 can be used for the transformation from SB to SO. 

However, if Euler angles are required for comparison by the fallowing procedure Euler angles can be 

computed. By equating two matrix represented in Equations 4.7 and 4.9, the attitude angles can be 

computed by the following equations; 

 

The quaternions can be expressed in terms of Euler angles by the following equations[24]; 
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 The obtained Euler angles are the same with the rotation angles defined in Equation 4.6. For 

this reason, the rotation angles computed by the Equations 4.11 to 4.13 can be substituted into the 

matrix defined in Equation 4.7 and the two attitude angle set can also be compared. 

 

4.1.4.3 Transformation from SO to SE 

 

 To proceed to the next step, direction vector should be transformed from SO to SE, rotation 

matrix of this transformation is calculated by using the definition of SO. 

 

 The orbital reference frame is defined by the position and velocity of the satellite measured in 

the quasi-inertial frame. However, position and velocity are obtained in SE. When performing the 

transformation from SO to SE, position and velocity should be transformed from SE to SI. Then the 

rotation matrix from SO to SI can be computed. After transforming the direction vector with respect to 
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SI, it can be transformed with respect to SE. By using position and velocity vectors in SI direction 

cosines are computed which rotates SO to SI (Figure 4.4). Transformation from SI to SE is performed by 

applying precession, nutation and polar motion corrections and GAST rotation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Orientation of SO with respect to SI 

 

 

Velocity of satellite is computed from two successive position measurement of satellite by the 

GPS receiver installed on the satellite. GPS receiver gives geodetic coordinates of the satellite with 

respect to WGS84 reference ellipsoid. For a small time interval, the angular velocity of the satellite and 

change in altitude can be assumed to be constant. Hence velocity of the satellite can be computed 

without a considerable error. To derive the rate of change of cartesian coordinates with respect to time, 

rate of change of geodetic coordinates with respect to time and rate of change of cartesian coordinates 

with respect to geodetic coordinates are used by applying chain rule for three orthogonal axes. The 

whole equation is shown below. 
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t1 and t2 are the epoch that the coordinates are measured 

 

 The partial derivative equations are derived from the transformation formulae from geodetic 

coordinates to Cartesian coordinates; 

 

( ) λφ coscoshNX +=                                     (4.15) 

( ) λφ sincoshNY +=  

( ) φsin2 hNeNZ +−=  

where [34]; 

 

X, Y and Z are the geocentric coordinates of the satellite with respect to WGS84 reference frame. 
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In these equationsφ , λ and h are geodetic coordinates of the satellite and a is the semimajor 

axis and b is the semiminor axis of the WGS84 ellipsoid. 

 

Position and velocity vectors of the satellite are shown below 

=r  [ zyx rrr ] 

=v [ zyx vvv ] 

where; 

r is the position vector  

v is the velocity vector.  

 

The next step is rotating these vectors from SE to SI. In order to perform this rotation 

precession, nutation and polar motion corrections should be applied and GAST rotation should be 

performed. These procedures are explained briefly as; 

 

 

4.1.4.3.1 Correction Due to Precession 

 

 Precession rotation includes 3 Euler rotations, these are; 

R3(ZA)R2(θ)R3(ζA) 
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[24] where; 

T is the Julian century computed by the equation 

 

36525
dT =                      (4.17) 

where; 

d is the Julian Day computed by the formula [24] 

 

JD = 367 * Y – floor (7 * (Y + floor ((M + 9) / 12)) / 4) + floor (275 * M / 9)  

+ D  + 1721014 + UT1 / 24 - 0.5                   (4.18) 

where; 

Y is year 

M is month 

D is date and UT1 is the time in decimal hours in UT1. 
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4.1.4.3.2 Correction Due to Nutation  

 

 After precession correction, nutation correction is applied. The nutation correction includes 3 

Euler rotations, these are R1(-ε0 – ∆ε)R3(-∆ψ)R1(ε0). Rotation angles are computed by the following 

formulae [24] 
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4.1.4.3.3 Correction Due to Polar Motion  

 

Polar motion is the motion of the rotation axis of the earth relative to the earth’s crust as viewed from 

the earth-fixed reference system. Polar motion directly affects the coordinates of stations on the surface 

of the earth and the gravity vector. The polar motion effect can be eliminated by two rotations about x 

and y axes. The rotation angles can be computed from the formula in degrees [35]; 

 

( ) ( ) ( ) ( )CCAAx sin1327.0cos0632.0sin0131.0cos0599.00417.0 −+−−=  

( ) ( ) ( ) ( )CCAAy sin0632.0cos1327.0sin0530.0cos0115.03475.0 −−+−=               (4.20) 

where; 
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MJD = JD - 2400000.5 

MJD is the modified Julian Date 

 

4.1.4.3.4 GAST (Greenwich Apparent Sidereal Time) 

 

 After the precession and nutation corrections R3(GAST) rotation is performed[24].  
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In Equation 4.21 n is an arbitrary integer which satisfies 240 <≤ GMST . 

where GMST is the Greenwich Mean Sidereal Time. 
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The rotation from earth fixed reference frame to inertial reference frame can be shown as; 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ppAAAE

I
xRyRGASTRRRRZRRR 21301301323 )(−∆+∆Ψ−−= εεεθζR             (4.22) 

E
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 When transforming the velocity vector from SE to SI, the term E

E
wr× is added to the velocity 

vector (Equation 4.23). This is because SE is not an inertial reference frame and velocity measured in 

this reference system will be different than the velocity measured in inertial reference frame. Ew is the 

angular velocity of the earth rotation measured in radians and 
E
r is the position vector of the satellite 

measured in SE [36]. 

 

4.1.4.3.5           Transformation from SO to SI 

 

After transforming the position and velocity vectors to SI, the rotation matrix can be 

constructed which transforms from SO to SI. However, it is easier to construct the rotation matrix from 

SI to SO. This rotation matrix is the attitude of the SO with respect to SI and it is represented as [24]. 
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The matrix in Equation 4.25 is constructed in three steps. First the third row is constructed 

which is the direction of the Z axis of SO in SI. By the definition of SO the Z axis is the opposite 

direction of the satellite position vector. 

 

[ ]zyxOI ZZZ
r
rZ =−=                    (4.26) 

where; 

OIZ is the direction vector of the Z axis of the orbital reference frame with respect to SI 

r is the position vector of the satellite with respect to SI 

 

 Y axis of the SO with respect to SI is defined as the perpendicular direction to the both X and Z 

axes satisfying right hand rule. Since X and Z axes span the orbital plane and velocity vector is always 

inside the orbital plane, by this definition the direction vector of Y axis in inertial reference system can 

be computed by the formula; 
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[ ]zyxOI YYY
vr
vrY =

×
×

−=                    (4.27)  

where; 

OIY is the direction vector of the Y axis of the SO with respect to SI  

v is the velocity vector of the satellite with respect to SI 

 

 Since SO satisfies the right hand rule, the cross product of the Y and Z axes will give the 

direction of the X axis with respect to SI. This is shown by; 

 

=×= OIOIOI ZYX  [ zyx XXX ]                  (4.28) 

 

Transpose of the rotation matrix shown in Equation 4.25 will be the transformation matrix 

from SO to SI. 
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 Direction vector with respect to SI is transformed to SE by applying precession and nutation 

corrections and GAST rotation which can be shown as 

 
I

I
EE

rr R=                       (4.30) 

where;  
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E
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Equation of the rotation from SO to SE can be written as 
O

O

I

I

EE
DRRD =                      (4.31) 

where 
E
D  is the direction vector of the corresponding image point with respect to SE 

Direction vector of corresponding image point with respect to SE is obtained. The direction 

vector goes through from satellite’s camera focus and passes the corresponding sensing element of the 

CCD array and intersects the WGS84 ellipsoid. The intersection point of direction vector with the 

WGS84 ellipsoid surface should be computed in order to complete step 2. Satellite camera’s position is 

known with respect to SE at the instant of the image acquisiton, if the intersection point on the reference 

ellipsoid is assumed as P0 with the coordinates [X0, Y0, Z0 ] then the following equation can be written 

[1]; 
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where; 

X0, Y0, Z0 are the coordinates of the intersection point with respect to SE 

Xcam, Ycam, Zcam are the coordinates of the satellite camera with respect to SE 

s is the distance between satellite’s camera focus and the intersection point on the reference ellipsoid 
XE

D , 
YE

D , 
ZE

D  are the components of direction vector from camera focus to image plane with respect to SE 

 

In Equation 4.32 there are 4 unknowns to be solved which are X0, Y0, Z0 and s. However, 

Equation 4.32 contains only 3 equations which is inadequate for solving the equation set. One more 

equation is required for the solution for the intersection point. Since P0 is on the reference ellipsoid’s 

surface, ellipsoidal surface equation can be written for this point, 

12
0

2
00 =+

+
b
Z

a
YX                     (4.33) 

where;  

a is the semimajor axis  

b is the semiminor axis of the WGS84 reference ellipsoid. 

 This leads to a system of four equations and four unknowns 

 

If Equation 4.32 is substituted into Equation 4.33 the following intersection equation will be obtained, 
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              (4.34) 

 

Solving Equation 4.34 for s will lead to two solutions for s, which are 
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 Among the two s values the shorter one is the proper solution because the bigger distance 

gives the other side of the ellipsoidal surface [1]. The smaller root is substituted into the intersection 

equation and intersection point’s coordinates X0, Y0, Z0 are computed. Solution for the smaller root is 

as following 

 

α
αγββ

2
42 −−−

=s                     (4.36) 

 

If s is substituted into Equation 4.32 Cartesian coordinates of the intersection point can be 

computed. This may be thought as the end of Step 2 but this is not the case. Since the light ray passes 

through the atmosphere which is a dispersive medium, it is refracted and its path is not a straight line 

anymore. For this reason, computed cartesian coordinates of the ground point should be corrected. The 

correction is performed by the zenith angle of the direction vector. In order to compute zenith angle the 

direction vector should be transformed from SE to SL. The rotation matrix of this transformation is 

computed by means of the geodetic coordinates of the corresponding ground point. For this reason, 

cartesian coordinates should be transformed into geodetic coordinates. Cartesian coordinates are 

converted to ellipsoidal coordinates by an iterative method [25, p. 100].  
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 The algorithm shown in Equation 4.37 is an iterative method, in order to start iteration, it is a 

good approximation to take initial value of h as 0 and compute φ  and correct the h. This iteration 

continues until the difference in h is less than a predefined threshold value. 

 

 

4.1.5 Atmospheric Refraction Correction 
 

According to the Snell’s law light rays are bended while traveling through a medium of 

changing refraction index (Figure 4.5). Besides the refractivity of the medium, change in direction is 
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proportional to the entrance angle also. The relation between the entrance and exit angles to the 

boundary is given as; 

 
2211 sinsin θθ nn =                     (4.38) 

where 
 
n1 is the refractivity index of the first medium  

n2 is the refractivity of the second medium 

θ1 is the entrance angle of the light ray to the boundary 

θ2 is the exit angle of the light from the boundary 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5 Refraction of a light ray in a dispersive medium [37]. 
 

 

 

 Entrance angle of the light ray will be equal to its zenith angle. Computation of zenith and 

azimuth angles is explained in chapter 4.1.6. 

( ) 6101−= nN                                   (4.39) 

[27, p.120] where  

N is the refractivity and computed for visible light by the formula [25 p. 126] 
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where 

h is the elevation with respect to mean sea level 

p is atmospheric pressure in hPa 

T is the temperature of the atmosphere in Kelvin 

e is humidity measured as the water vapor pressure in hPa 

 

Parameters in the Equation 4.40 are not constant and they should be computed for each 

atmosphere layer. In order to compute the refractivity, the atmosphere is divided into layer of 1 km 

thickness. Within each layer refractivity is considered as constant 
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Atmosphere pressure, p is computed from the barometric formula [38] 

RT
Mgh

epp
−

= 0                      (4.41) 

where;  

h is the height in meter 

P0 is pressure at ground level in hPa 

M is the mass of 1 mole of air 0.029 kg mol-1  

R is the gas constant (8.314 J K-1 mol-1)  

g0 is the acceleration due to gravity (9.81 m s-2 ) 

 

By taking the initial values for temperature as 300 Kelvin, atmospheric pressure as 1023 hPa and 

water vapor pressure as 16 hPa the following values are obtained for the atmospheric conditions for the 

first 85 km. 
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Figure 4.6 Variation of temperature in the atmosphere when ground temperature is 300 Kelvin. 

 

 

 By using the temperature at the corresponding elevation, air pressure is computed for each 

layer. The graph of the pressure variation with increasing elevation is shown in Figure 4.7, 
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Figure 4.7 Variation of pressure in the atmosphere when ground pressure is 1023 Hpa. 
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Figure 4.8 Variation of refractivity of the atmosphere. 
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By using the computed atmospheric parameters, refractivity of each layer can be computed. 

Graph of refractivity is shown in the Figure 4.8 

 

Finally, refraction index is computed for each layer by using refractivity assuming refraction 

index is equal to 1 at the top layer (Figure 4.9). 
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Figure 4.9 Variation of refraction index with respect to elevation 

 

 

4.1.6 Transformation from SE to SL 

 

To perform atmospheric corrections, zenith angle of the direction vector should be computed. 

To compute zenith and azimuth angles, direction vector in SE should be transformed to SL. 

 

In order to transform from SE to SL first from the third axis (Z-axis) the frame is rotated by λ 

degrees and from the second axis (Y-axis) the frame is rotated by 90 – φ degrees. To convert the local 

system to left hand system the first axis is multiplied by -1. The total rotation is [25, p43] 

E
L
R = Q1R2(90 – φ)R3(λ)                   (4.42) 

where 

φ  is the latitude of the point on the ground 

λ  is the longitude of the point on the ground 
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If the matrix multiplications represented in Equation 4.42 are performed, the following matrix 

will be obtained, 
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In this matrix sin(90 – φ) is substituted by cos(φ) and cos(90 – φ) is substituted by sin(φ). 
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This can be written in matrix form as; 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−−
=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

E

z

E

y

E

x

L

z

L

y

L

x

D

D
D

D

D

D

φλφλφ
λλ

φλφλφ

sinsincoscoscos
0cossin

cossinsincossin
                (4.44) 

 By using the direction vector with respect to SL, azimuth and zenith angles of the direction line 

can be computed by the following formulae: 
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where 

α  is the azimuth angle 

z is the zenith angle 

 

 

4.1.7 Relief Displacement Correction 

 

The intersection point of the direction vector with the WGS84 ellipsoid is exactly on the 

reference ellipsoid, in other words its ellipsoidal height is zero which is usually not the real case. Height 

differences of the objects with respect to datum cause relief displacements which alter the place of the 

objects in the image. In order to eliminate relief displacements, exact elevation of ground objects 

should be known. While studying with mono images to eliminate relief displacements a DEM is 

required. First at the position of intersection, elevation of that point is read from DEM and a correction 

for relief displacement for the geodetic position is done on reference ellipsoid, then height value of the 

corrected position is read from DEM and another correction is performed considering the elevation 

differences between two successive height values obtained from DEM. The iterative procedure 
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continues until the elevation difference between two successive elevation values reduces to a 

predetermined threshold value [1].  

 

The iteration algorithm is shown in Figure 4.10. The intersection point of direction vector with 

WGS84 ellipsoid is shown as P0 in the figure. From its geodetic coordinates an elevation value is 

obtained from DEM. By using azimuth & zenith angles and ellipsoidal parameters geodetic coordinates 

of the intersection point is corrected [1]. The correction formulae are shown in Equation 4.47. After the 

first iteration the present point is called P1 which has different geodetic coordinates from the previous 

points, this will cause a different ellipsoidal normal as shown in the Figure 4.10. The direction vector is 

again transformed from SE to SL in order to compute the correct zenith and azimuth angles, after 

correcting the zenith and azimuth a new height value obtained from DEM, h1, and geodetic coordinates 

are corrected if the difference between two height values, |h1- h0|, is greater than the pre-defined 

threshold value, ε. Magnitude of the correction is computed by the elevation differences obtained at 

current and previous iteration steps. This is the modification for the DRM which was using only the 

previous elevation data. Iteration procedure continues until the difference between two successive 

height values are below the threshold value. 

 
 

Figure 4.10 Illustration of relief displacement correction algorithm [1] 

 

The procedure can be formulated as; 
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The threshold value to be satisfied is ε<∆ nh , finally 

 

After n iterations final position of the point becomes nλ , nφ  and nh  

 

Geodetic coordinates of the intersection points and the corrected points are not expected to be 

exactly on the DEM grids. For this reason, elevation of the point can not be obtained directly. 

Interpolation is required to predict the elevation of the point. Because of this four nearest grid point’s 

elevation are obtained from DEM and a linear interpolation is applied if Pi is not exactly on the DEM 

grids. 

 

 

4.1.8 Transformation from SG to SM 

 

After computing the geodetic coordinates for each pixel position, the geodetic coordinates are 

converted to Universal Transverse Mercator (UTM) coordinates. Conversion of coordinates between 

the geodetic system of latitude and longitude and the UTM map projection involves complex 

mathematics. A UTM zone has a number of defining constants in addition to the required standard 

ellipsoid parameters. These defining constants are; 

 

k0 is scale factor along the central meridian 

0φ is latitude of the grid origin 

0λ is longitude of the grid origin 

E0: is false easting  

N0: is false northing 

 

The longitude of the gird origin 0λ  is conventionally referred to as the longitude of the central 

meridian. 

 

.,, nanana hh === φφλλ
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UTM conversion equations involve series expansion which is truncated to a limited number of 

terms. For this reason, the accuracy of the transformation is limited not only to the number of 

significant figures in the computations; but also the truncation of the series. When the following 

formulae are used, the accuracy should be satisfactory as long as the points are limited to the defined 

region of the particular UTM zone.  

 

A key parameter involved in UTM conversions is the meridional distance M from the equator 

to a specific latitudeφ . Calculation of M can be performed by a truncated series expansion which is 

given in the following equation [2, p.582]. 
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where; 

M is the meridian distance from the equator to a specific latitude φ, 

a is the semimajor axis, 

e is the eccentricity, 

φ  is the latitude. 

  

 The value of latitudeφ  in the first term must be in radian. This equation is accurate to 1 mm in 

any latitude. 

 

 A forward procedure that can convert latitude φ  and longitude λ of a point to X and Y 

Transverse Mercator coordinates begins by computing the following preliminary quantities T, C, A [2, 

p.582]. 

φ2tan=T                      (4.49) 

φ22' coseC =                      (4.50) 

( ) φλλ cos0−=A                     (4.51) 

where  

λ and 0λ are in radians 

'e  is second eccentricity 

0λ  is the longitude of the grid origin (central meridian) 

The following equations complete the forward conversion to X and Y. 
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[2, p. 583] where;    

k0 is a scale factor at central meridian 

e’ is the second eccentricity 

E0, N0 are false easting and false northing respectively 

M is the meridianal distance at latitude φ  computed from Eq. 46 

M0 is the meridianal distance at latitude 0φ  computed from Eq. 46 

N is the length of ellipsoid normal at latitude φ  expressed in page 35 

 

 

4.1.9 Resampling 

 

 After transforming the geodetic coordinates of the ground point to UTM coordinates, next step 

is to produce the image map. The computed UTM coordinates will be irregularly spaced and placed. To 

obtain a regular shaped and spaced UTM grids, a mapping algorithm should be defined that maps 

Brightness Values of the image with irregular UTM grids to image with regular UTM grids. 

 

 When a digital image is acquired, no attempt is made to have the pixels line up with any 

particular map projection coordinates. It is therefore necessary to perform resampling to obtain a digital 

sample at an intermediate row, column location. Resampling involves interpolation between existing 

pixels’ brightness value (BV) to synthesize pixels that correspond to fractional locations. Determination 

of the appropriate fractional locations is often the result of a coordinate transformation. 

 

 There are several techniques available for resampling digital images. Among these methods 

three of them are widely used which are nearest-neighborhood interpolation, bilinear interpolation and 

bicubic convolution. In this thesis nearest-neighborhood interpolation is used for resampling procedure 

because of its simplicity. As the methods name implies the BV chosen will be that of the image pixel 

whose center is closest to the center of the grid cell. From a computational standpoint, all that is 

required is to round off the fractional row and column values to the nearest integer value [2, p. 563]. 

After performing the resampling all requirements of the algorithm illustrated in Figure 4.2 will be 

accomplished. 
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4.2 DRM Algorithm For Pushbroom Scanners 

 

DRM developed for CCD cameras is adopted for the pushbroom cameras. DRM produces an 

orthoimage from the raw satellite images by directly intersecting the image to ellipsoidal coordinates 

avoiding corrections for the projected image. Furthermore the image is transformed into UTM 

coordinates and by nearest neighborhood resampling algorithm the image pixel positions are computed 

for the UTM coordinates and the orthoimage is produced from the raw pushbroom satellite image. 

Since the image accusation is not immediate in pushbroom cameras; position, attitude and time 

parameters are not constant as in the CCD cameras. Unfortunately these parameters are not available in 

telemetry for small time intervals. To have continuous data for position and attitude, the position data 

obtained from GPS receiver and attitude information obtained from gyroscope or star tracker at a 

constant time interval is interpolated by polynomial functions. Time of the image acquisition is 

computed by using the time of starting the image acquisition and the acquisition frequency of the 

pushbroom camera. 

 

Since almost all imaging satellites have pushbroom scanner onboard, there are many articles 

about rectification of pushbroom imagery in literature [39-51]. 

 

 

4.2.1 Input Data 

 

 To implement the method some assumptions are made about the telemetry data related with 

the position and attitude of the camera. Attitude and position data may vary from satellite to satellite, 

based on the satellite mission requirements. The method is proposed for a certain type of position and 

attitude data but no matter the format of the data, the method can be implemented for all pushbroom 

satellites. The proposed telemetry file data format is given as following; 

 

• Camera position with respect to SE is available in 3 seconds interval. 

• Attitude of the body fixed reference system with respect to the orbital reference system is 

available in Euler angles in the order of x, y and z axes respectively. 

• Time of starting and ending of the image acquisition is given with respect to UT1 time. 

 

 

4.2.2 Computational Procedure 

 

 The registration process will be pixel by pixel. But to register whole image, first one row of 

the image will be registered and then the position and attitude of the camera will be updated. This 

requires the computation of the time of acquisition of the image strip. In order to compute the 

acquisition time of the strip the acquisition frequency f0, should be known. f0 can be computed by the 

following formula; 
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se tt
heightf
−

=0
                      (4.54) 

 

In this equation te is the ending time ts is the starting time of image acquisition. height  is the 

total number of strips in the image, and f0 is the acquisition frequency. Acquisition time of ith strip is 

computed by the formula, 

 

0f
itt si +=                      (4.55) 

in Equation 4.55 i is the strip number. 

 

Position and attitude of the satellite at time ti is computed by interpolation. A curve is fitted to 

the position and attitude data of the camera during image acquisition. A second order polynomial 

interpolation method whose parameters are computed by least squares is used for the satellite position 

and s-pline method is used for the interpolation of attitude angles.  

 

4.2.2.1 Interpolation of Attitude by Spline Method 

 

Spline interpolation method is preferred for the interpolation of attitude angles because spline 

provides smooth curves which pass from the data points. However, spline requires boundary conditions 

for the generation of curves, the rate of change of angles at the start and end of image acquisition is 

difficult to predict. This difficulty can be easily achieved by the property of splines that the effect of 

boundary conditions diminishes after two nodes before or after the boundary. In order to get the 

advantage of this property, data acquisition of the attitude angles starts two epochs before the starting of 

image acquisition and ends two epochs after the ending of the image acquisition. 

 

If there are n+1 epochs during the image acquisition then the spline interpolation method will 

produce n different polynomial functions for the interpolation of the attitude angles at the intermediate 

time values. Characteristics of splines are the two successive spline functions give same value at the 

boundary node and have same slope. For this reason they produce a continuous and smooth curves that 

fits the data [52]. 

General form of spline functions are; 

 

 i Interval    gi(x) 

0 [t0, t1]   ( ) ( ) ( ) 000
2

00
3

00 dttcttbtta +−+−+−               (4.56) 

1 [t1, t2]   ( ) ( ) ( ) 111
2

11
3

11 dttcttbtta +−+−+−  

 :     :         : 

n [tn, tn+1]   ( ) ( ) ( ) nnnnnnn dttcttbtta +−+−+− 23  
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where 

n is the number of epochs 

ti is the time at the ith epoch 

t is the time that interpolation will be performed 

a, b, c, d are the coefficients of the polynomials 

 

Computation of ai, bi, ci and di is performed by the following formulae 
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b =                       (4.58) 
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c                    (4.59) 

ii yd =                       (4.60) 

 

In equations 4.57 to 4.60; 

 

y is the value of the function at the corresponding epoch (radian) 

h is the difference between two successive epoch (second) 

S are the coefficients to be computed by using the data as following 
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        (4.61) 

 

where; 

[ ]nn xxf ,1−  is equal to f(xn) – f(xn-1) 

 

If S is solved and substituted into Eq. 4.57, 4.58 and 4.59 the required values of attitude angles 

can be obtained. 
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4.2.2.2 Interpolation of Camera Position by Least Squares 

 

Position of the push broom camera is interpolated by a 2nd order polynomial in the form of;

  

iii ctbta ++2                          (4.62) 

where; 

ai, bi and ci are the coefficients of the polynomial 

t is the time that the camera position is required 

i = 1,2,3 for x,y and z coordinates respectively 

 

Computation of the coefficients of the polynomial will be performed by Least Squares (LS) 

algorithm. LS computes the coefficients of the polynomial which minimizes the sum of the squares of 

the residuals. This will cause a contradiction that the camera position calculated by interpolation and 

obtained from telemetry will not be same for the time when position data is available. This is not an 

important drawback unless the residuals are very large, moreover it is known that observations are 

prone to error and the LS fit can be considered as the camera position that is corrected from the errors. 

The solution of parameters will be in the following form [53]; 

 

( ) yXXX'β '1−=                     (4.63) 

where; 

i = 1,2,3. 
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in this matrix x, y and z coordinates will be substituted for p  
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4.2.2.3 Rectification of the Image with DRM 

 

After interpolating the position and attitude of the camera, the image strip can be registered by 

DRM. 

 

 First, the image strip is transformed from SI to SP by the following formula; 

 

ycwidthyy ∆−⎟
⎠
⎞

⎜
⎝
⎛ −′′=′ *

2
                   (4.64) 

 

In Equation 4.64; 

y" is the image coordinate with respect to the raw satellite image (pixel) 

width is the width of the image (pixel) 

c is the size of the sensing element (mm/pixel) 

y∆ is the coordinate of the principal point (mm) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 Orientation of image and photo coordinate system with respect to scanner. 

 

 

 

Lens distortion of the camera is eliminated by the following formula 

 

( )ypykykyy ′−′−′−′= 31 4
2

2
1                                  (4.65) 

In Equation 4.65, 

 

k1 and k2 are the symmetric lens distortion parameters (1/mm2, 1/mm4 respectively) 

p is the asymmetric lens distortion parameter (1/mm) 

y is the corrected photo coordinate (mm) 

y" 

x" 
Image coordinate system 

y' 

x' 

Photo coordinate system 



 56

 

Camera coordinate system of the pushbroom camera is defined as z axis points through camera 

direction, x axis points through the satellite flight direction and y axis completes a right hand coordinate 

system. Camera coordinate system is shown in Figure 4.12. 

 

 

Figure 4.12 Orientation of camera coordinate system with respect to scanner 

 

 

Direction vector of the line from the camera focus to the center of a certain pixel element in 

camera coordinate system can be written as; 

 

[ ]
22

,,0

fy

fySC
+

=                     (4.66) 

where 

SC is the direction vector with respect to the camera coordinate system 

f is the focal length of the camera 

y is position of the image point in the corresponding strip with respect to SP 

 

Camera may shot an oblique image by an angle µ according to the flight direction. As a result 

the camera coordinate system makes an angle µ with respect to body fixed reference system. In order to 

transform from camera coordinate system to body fixed reference system an R1(-µ) rotation is 

necessary. R1(-µ)  rotation matrix can be written as; 

 

 

( )
⎥
⎥
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⎤

⎢
⎢
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⎡
−=

µµ
µµµ

cossin0
sincos0
001

1R                     (4.67) 

 

x 

z 

y 

Camera coordinate system 

Camera focus 

Linear array 
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Transformation from  

( ) CB SRS µ1=                      (4.68) 

In the next step direction vector with respect to SB is transformed to SO by using the computed 

attitude angles interpolated by spline method at the epoch of acquisition of corresponding strip. The 

transformation from SB to SO is performed by 3 Euler rotation in the order of y, x and z axes with the 

rotation angles for each axis is φ, ω and κ respectively. The transformation from SB to SO is written in 

Equation 4.7. 

 

 By using the position and velocity of the camera and the time of the acquisition of the strip, 

direction vector with respect to SO is converted to SE. The following steps are explained at the 

rectification algorithm of the CCD frame cameras. 

 

• Image strip is intersected with the WGS84 ellipsoid. 

• Atmospheric refraction corrections are applied to the intersection coordinates. 

• Relief displacements are removed by elevation data obtained from DEM. 

• Ellipsoidal coordinates are converted into UTM coordinates. 

• Orthoimage with respect to UTM coordinates is produced from the raw pushbroom scanner 

image by nearest neighboring resampling algorithm. 
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CHAPTER 5 

 

 

PARAMETER ESTIMATION 

 

 
 

Photogrammetry is an art and science of determining the position and shape of objects from 

photographs [32]. To be able to make accurate measurements from images camera calibration and 

rectification of the image must be done. These tasks are performed with the analytical relationship 

between image points and ground points. As mentioned previously the analytical relationship is given 

by the colinearity equations. To possess precise parameters a parameter estimation procedure has to be 

performed. 

 

5.1  Method of Parameter Estimation 

 

A sensible method of estimating unknown parameters is given by minimizing the sum of the 

squares of the deviations of the observations y from the squares of the deviations of the observations y 

from the estimators s[E(y)] of their expected values E(y), which are functions of the unknown 

parameters. Hence, the sum of squares (y – s[E(y)])’ (y – s[E(y)]) shall be minimized. By means of the 

positive definite covariance matrix D(y) = Σ of the observations, this method can be generalized by the 

requirement to minimize the quadratic form (y – s[E(y)])’ -1Σ  (y – s[E(y)]), since small variances of 

the observations correspond to large elements of the inverse -1Σ of the covariance matrix 

corresponding to large weights of the observations. 

 

 Gauss Markoff model can be represented as 

 

eyX +=β   with  ( ) -1P2σ=yD                     (5.1) 

where; 

unX *        (rank X = u) 

u is number of parameters 

n is number of observations 

nnP * is weight matrix with size nn×  

nnyD *)(   variance covariance matrix of the observations 
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 Solution for the fixed parameters will be by the following equation [53] 

 

( ) PyXPXX ′′= −1β  with ( ) ( ) 1ˆ −′= PXXD β                    (5.4) 

 

Replacing the error vector e in the Gauss-Markoff Model, by a linear combination - γZ of the 

unknown random parameters γ , a mixed model on the basis of fixed and random parameters is 

obtained by  

 

γβ ZX +=y    with E( γ ) = 0 and D( γ ) = σ2
γγΣ                   (5.5) 

 

 where 

X is un × and Z is rn × matrix of unknown coefficients with rankZ = n. β is 1×u  vector of 

unknown fixed parameters, γ is an 1×r vector of unknown random parameters as measurements with 

expected value, E( γ ) = 0 and variance covariance matrix, D( γ ) = σ2
γγΣ  with unknown positive 

factor σ2. γγΣ is rr × given positive definite cofactor matrix, y 1×n observation vector. The best 

linear unbiased estimator of the fixed parameter β̂ of β is given by, 

 

( ) yΣXXΣX 111ˆ −−− ′′= yyyyβ                        (5.6) 

 

with covariance matrix of the observations D(y) =D( γβ ZX + ) = σ2 Z γγΣ Z’= σ2
yyΣ  

yyΣ is the variance covariance matrix of the observations.  

 The estimator γ̂ of γ follows with, 

( )βyγ ˆˆ 1 XΣΣ −= −
yyyγ                        (5.7) 
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where yγΣ  is covariance of γ and y  C(γ, y) =C(γ, γβ ZX + ) = σ2 γγΣ Z’= σ2
yγΣ  

In the algorithm represented, y will be the observations, in other words the geodetic coordinates 

of the measured ground control points.  

 β is the vector of satellite’s inner and outer parameters, which is shown as 

 

[ ]′∆∆= camcamcam ZYXppkkcyxf κφω2121β                    (5.8) 

 

where, 

f is the focal length of the camera 

∆x is the x value of the principal point coordinate of the camera 

∆y is the y value of the principal point coordinate of the camera 

c is the size of a sensor on the CCD array 

k1 and k2 are the radial lens distortion parameters 

p1 and p2 are the asymmetric lens distortion parameters 

ω, φ, κ are the attitude angles between SB and SO 

Xcam, Ycam, Zcam are the cartesian coordinates of the camera with respect to SE. 

 

142 ×n  X matrix includes the partial derivatives of the geodetic coordinates with respect to fixed 

parameters where the geodetic coordinates are calculated from the rectification equations. 
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Colinearity equations are not linear equations so they should be linearized by first order Taylor 

expansion. First order Taylor expansion requires the initial approximation values for the parameters and 

the first derivatives of them.  
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So the equation can be written as  

γβ ZXy +∆=∆                              (5.11) 

( ) yXXX yyyy ∆Σ′Σ′=∆ −−− 111β̂                      (5.12) 
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βββ ˆˆ
0 ∆+=                        (5.13) 

Estimated parameters β̂  are substituted into the Equation 5.7 in order to compute estimated 

random parameters. γ vector includes the parameters that are the corrections to pixel coordinates and 

elevation, in other words random errors resulted from the recording of pixel coordinates of digital 

image and elevation of ground point obtained from DEM. γ is given by, 

[ ] nxhyx 31"" ′= ξξξγ                       (5.14) 

 

Z matrix can be constituted as follows, 
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To compute the random parameters a priori information about the correlation of random 

parameters is needed. The variance covariance matrix of random parameters γγΣ should be introduced. 

A reasonable assumption is made when constructing the variance covariance matrix of the random 

parameters, that there is no correlation between the random parameters, not only between the random 

parameters but also between the parameters at measurement sites. This is because obtaining the pixel 

coordinates from the digital image is prone to random errors. It is not expected to make systematic 

errors. However, elevation values of the DEM may have bias and the plus or minus systematic error 

may be present which can not be predicted without a detailed error analysis of DEM. 

 

As a result of these assumptions variance covariance matrix of the random parameters 

becomes a diagonal matrix. Then the variance covariance matrix of random parameters is multiplied by 

Z matrix and yγΣ is computed. The second unknown for the solution of the random parameters is the 

variance covariance matrix of the measurements, yyΣ  which can be computed as 'ZZΣγγ . 

 Parameter estimation is performed usually for fixed parameters in articles [54-72]. In other 

words, fixed parameters are corrected by Gauss Markov model and the random part in the model is 

represented with the residuals. However, by using mixed model pixel coordinates are corrected by 

Fritsch [73]. 
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The matrix inverse in Equation 5.6 can not be computed because of the rank deficiency in the 

X matrix. However, to compute fixed parameters the matrix inverse is had to be taken, for this reason 

some regularization methods are applied to achieve this task. 

 

5.2 Regularization Methods 

 

In order to stabilize the system 3 regularization methods are applied and their performances are 

compared. The regularization methods are fictitious observations, Tikhonov regularization and Singular 

Value Decomposition (SVD). 

 

5.2.1 Fictitious Observations 

 

 A set of fictitious observations,µ , as unknown parameters is added to the system. The system 

with zero fictitious observations can be written as [74, 75] 
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where; 

y observation vector 

µ fictitious observations (µ=0) 

I unit matrix 

v error vector 

V variance covariance matrix of the fixed parameters 

σ2 variance of unit weight. 

 

Solution of Eq.70 for the fixed parameters is performed by the solution  

 

( )( ) ( )( )yZZΣX'PXZZΣX'β -1-1 ''ˆ 1

γγγγ

−
+=                  (5.18) 

where 

P weight matrix for fictitious observations 
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5.2.2 Tikhonov Regularization 

 

Tikhonov regularization which is the most commonly used method of regularization of ill 

posed problems is applied also. Its simplest form is an ill conditioned system of linear equations is as 

follows; 

 

y=βX                       (5.19) 

where; 

X is an mxn matrix 

β  is a column vector of n unknown parameters 

y is a column vector of m entries 

 

Minimization of sum of the squares of the residuals is replaced by the problem of seeking an X 

to minimize [76] 
222 βαβ +− yX                     (5.20) 

 

for some suitably chosen Tikhonov factor α >0. The new form of the problem improves the 

conditioning of the problem, thus enabling a numerical solution. An explicit solution, denoted by β̂  is 

given by; 

 

( ) yI TT XXX 12ˆ −
+= αβ                    (5.21) 

where; 

I is an nxn identity matrix. 

 

If α  is taken as 0 in the Eq. it reduces to the least squares solution of an overdetermined 

problem (m > n). 

 

Although at first, the choice of the solution to this regularized problem may look artificial, and 

indeed the parameter α seems rather arbitrarily, the process can be justified in a Bayesian point of 

view. For an ill posed problem one must necessarily introduce some additional assumptions in order to 

get a stable solution. Statistically it might be assumed that a priori multivariate normal distribution of 

β̂  with errors of zero mean with a standard deviation of xσ . Moreover, the observations are also 

subject to errors with zero mean and standard deviation of yσ . Under these assumptions the Tikhonov 

regularized solution is the most probable solution given the data and the a priori distribution ofβ , 

according to Bayes’ theorem. The Tikhonov parameter is then
βσ

σ
α y= . 
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For general multivariate normal distributions for β  and the data error, a transformation of the 

variables can be applied to reduce to the case as having zero mean. Equivalently, the equation takes the 

form 

 
2

0
22

QP
y ββαβ −+−X                      (5.22) 

where; 

P
β stands for the weighted norm ββ PT . 

In the Bayesian interpretation, P is the inverse covariance matrix of y, 0β is the expected value 

ofβ , and Qα  is the inverse covariance matrix ofβ . 

This can be solved explicitly by the formula; 

 

( ) ( )0
12

0 βαβ XPXPPXX −++
− yTT                    (5.23) 

 

 

5.2.3 Singular Value Decomposition 

 

Ill conditioned problems can be solved by using singular value decomposition method which is 

shown above [77]; 

 
TVUX Σ=                       (5.24) 

where 

Σ is the diagonal matrix of singular values iσ augmented with zeros so as to be mxn 

U and V are left and right singular vectors respectively. 

 

Tikhonov regularized solution can be expressed as  

 

yVDU T=β̂                       (5.25) 

where; 

D is an mxn matrix equal to 
2ασ

σ
+i

i  on the diagonal and zero elsewhere. This demonstrates the effect 

of Tikhonov parameter on the condition number of the regularized problem. 
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5.3  Effect of Regularization 

 

A study has been performed on the condition number of the design matrix with the position of 

the control points on the CCD array. In the first case narrowly distributed GCPs are selected and the 

condition number of the design matrix is computed. In the second run the widely distributed GCPs are 

selected and the condition number of the design matrix is computed.  

 

 

Pixel positions used in the narrower distribution; 

 

Table 5.1 Coordinates of narrow distributed pixel positions 

 

950,950 1000,950 1050,950 

950,1000 1000,1000 1050,1000 

950, 1050 1000,1050 1050,1050 

 

Pixel positions used in the wider distribution; 

 

Table 5.2 Coordinates of wide distributed pixel positions 

 

1,1 1024,1 2048,1 

1, 1024 1024,1024 2048,1024 

1, 2048 1024,2048 2048,2048 

 

 

The condition number of a matrix measures the sensitivity of the solution of a system of linear 

equations to errors in the data. It gives an indication of the accuracy of the results from matrix inversion 

and the linear equation solution. Values close to 1 indicate a well-conditioned matrix. 

 

Condition number of the design matrix is computed from the fallowing formula; 

( ) 1'*' −XXXX                     (5.26) 

 

Where the norm is the Frobenius norm and computed as [78]; 

∑∑
= =

=
n

i

n

j
ijaA

1 1

2                     (5.27) 

 

In the first case condition number is computed by using narrower GCP distribution is 

computed as; 

6.33073e+038 
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Which is an extremely large number that implies obtaining an accurate solution is impossible. 

 

In the second trial by using the same parameters and same analytical equation but choosing 

widely distributed pixel positions the condition number is computed as; 

3.37508e+030 

 

When two numbers are compared it is seen that choosing widely distributed GCP improves the 

accuracy of the solution but the improvement in geometry is not adequate since the condition number is 

again too high to obtain an accurate solution. To conclude it can be said that, significant improvement 

in accuracy is obtained by choosing GCP widely distributed but brushing up the geometry is not 

adequate to obtain accurate solution. 

 

This is because the rank deficiency was caused not only from the weak geometry but also the 

correlation between the parameters. Improving the geometry can help up to a certain case. In order to 

reach further improvement, mathematical methods should be used. For this reason fictitious 

observations are added into observations and the solution for the equation became as in the Equation 

5.18. The condition number of the matrix to be inversed for the narrow case is computed as; 

8.51589e+014 

 

This means that the improvement is significant compared by the improvement gained from 

strengthening the geometry. Same procedure is applied for the widely distributed pixel positions and 

the following condition number is obtained; 

8.51593e+014 

 

This is a surprising solution that widely distributed solution has slightly weak accuracy 

compared with narrowly distributed solution. But the condition numbers of the two different geometries 

are almost the same, because of this it can be said that when fictitious observations are used the effect 

of geometry fades out. However, the improved condition number is not adequate for accurate solution, 

it still needs improvement. 

 

Ill conditioned situation has occurred not only from the weak geometry but also the correlation 

between the parameters used for the camera calibration. Effect of weak geometry has been eliminated 

by fictitious observations, in order to eliminate the effect of correlation between camera calibration 

parameters some modification has been done on camera parameters. First of all, camera position is 

represented by geodetic coordinates instead of cartesian coordinates. In this model, altitude of the 

camera, size of the sensing element on CCD frame and focal length are correlated. For this reason 

altitude of the camera and size of the sensing element are eliminated from the equation system. 

 

The parameters of the model is as follows 
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[ ] 1212121 ×
′∆∆= camcamppkkyxf λφκφωβ               (5.28) 

 

By using this system with the narrower GCP distribution, condition number of the system is 

computed as 

     2.1533e+033 

 

 Second mathematical model is slightly better than the first model, but the result is quite bad 

for a solution of a desired accuracy. 

 

Second method’s computational accuracy is examined with widely distributed pixel positions. 

The condition number computed for this situation is, 

1.3246e+024 

 

Obtained result has a considerable improvement compared with the narrow distributed pixel 

positions. However current situation is still bad for an accurate solution. The improvement gained by 

choosing widely distributed GCPs is not adequate for obtaining an accurate solution. In order to 

improve the solution accuracy fictitious observations are introduced and for the narrow distributed pixel 

positions the following condition number is obtained as, 

2.8356383e+010 

 

 Condition number computed for narrow model is adequate for solution with computer using 8 

byte double, variables. When compared with the first model it is seen that higher improvement in the 

accuracy of the solution is obtained when a regularization method is applied. The regularization method 

is also applied to the widely distributed pixel positions and the following result is obtained, 

2.8356389e+010 

 

The result is very similar to the first mathematical model in a way that, the condition number 

computed for the widely distributed pixel positions is slightly worse than the narrower pixel positions. 

To conclude the analysis, the distribution of the pixel position has direct impact on the solution 

accuracy if a regularization method had not been applied. For this type of rectification procedures, the 

pixel positions should be selected in a way that they should be distributed as wide as possible. 

However, not an adequate improvement is obtained by selecting widely distributed GCPs in both 

models. To obtain a solution a regularization method should be applied, when a regularization 

technique is applied the effect of GCP distribution on the solution accuracy diminishes. Although, 

narrower distributed GCPs had given slightly better results in both models, since the difference between 

wide and narrow distributed points is very small there is no contradiction in the comment. Furthermore, 

regularization improves the accuracy of the solution considerably more than the improvement gained 

by modifying the imaging geometry. However, when a regularization method is applied the 

convergence of the problem slows down and more iterations are required. 
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CHAPTER 6 

 

 

IMPLEMENTATION OF PARAMETER ESTIMATION AND DRM 

 

 

 
In this chapter DRM whose theory was explained in chapter 4 will be implemented. However, 

initial values obtained for the parameters were not precise enough for the implementation. For this 

reason, in the beginning a parameter estimation procedure will be applied to correct the parameters that 

will be used in the implementation of DRM. For the parameter estimation process, Gauss Markoff 

method explained in chapter 5 will be performed. 

 

6.1 Implementation of Parameter Estimation for CCD Frame Cameras 

 

 The parameter estimation will be implemented by using the collected GCPs and Bilsat image 

presented in Chapter 3. Three regularization methods are implemented for parameter estimation 

procedure of the CCD frame camera and the results of the methods are compared at the end. Since 

regularization methods slow down the convergence of the parameter estimation an iterative procedure 

is applied which continues until the residuals become smaller than a predefined threshold value. 

 

6.1.1 Implementation of Parameter Estimation with Fictitious Observations 

  

Solution of this regularization method requires the cofactor matrix of the parameters. To 

regularize the equation, cofactor matrix of the parameters (Equation 5.28) shown below is used. 
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To satisfy the convergence criteria 552 iteration were performed. The residuals of each GCP 

computed with the fictitious observations are given in Appendix B. 3D Scatterplots of the corrections 
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for the pixel values and corrections for elevation are presented in Figures 6.1 to 6.3 (Table B.1 and 

Table B.4,5,6), 
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Figure 6.1 x pixel corrections computed by fictitious observation 
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Figure 6.2 y pixel corrections computed by fictitious observation 
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Figure 6.3 Elevation corrections computed by fictitious observation 

 

 

 

6.1.2 Implementation of Parameter Estimation with Tikhonov Regularization 

 

 For the implementation of Tikhonov regularization 12x12 identity matrix is used to 

regularize the equation. For the Tikhonov parameterα , 0.0003 is assigned. The selection of Tikhonov 

parameter has considerable effect on the solution. Selection of too small Tikhonov parameter can not 

reqularize the solution properly on the other hand selection of too large Tikhonov parameter will slow 

down the solution and the iteration may not converge. 

 

 The assigned Tikhonov parameter can be accepted as a proper value since it reduced the 

condition number significantly and the problem converged at the end of 487 iterations. Residuals of 

parameter estimation with Tikhonov regularization is presented in Figure 6.4 to 6.6 (Table B2 and 

Table B7,8,9). 
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Figure 6.4 x pixel coordinate corrections computed by Tikhonov regularization 
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Figure 6.5 y pixel coordinate corrections computed by Tikhonov regularization 
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Figure 6.6 Elevation corrections computed by Tikhonov regularization 

 

 

 

 

6.1.3 Implementation of  Parameter Estimation with SVD 

 

For the implementation of SVD Tikhonov parameter is assigned as 0.0003 which is same 

with the Tikhonov regularization. For the standard values of the parameters the variances assigned in 

fictitious observation regularization are used.  Convergence of SVD was very fast at the end of 2 

iterations the equation converged. Residuals of parameter estimation with SVD is presented in Figure 

6.7 to 6.9 (Table B3 and B10,11,12). 
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Figure 6.7 x pixel coordinate corrections computed by SVD 
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Figure 6.8 y pixel coordinate corrections computed by SVD 
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Figure 6.9 Elevation corrections computed by SVD 

 

 

 

When the residuals obtained at the end of the three different regularization procedures are 

examined it is seen that the most pleasing results are obtained with Tikhonov regularization. When the 

theory behind the regularization methods is examined it is seen that the Tikhonov regularization and 

fictitious observations are very similar to each other but Tikhonov regularization has no restriction on 

the corrections of parameters. However, the fictitious observation method requires cofactor matrix of 

the parameters while Tikhonov regularization requires only an identity matrix whose size is same with 

the parameter number. For this reason it can be thought that the computed corrections to parameters 

are weighted according to the variances of the parameters in fictitious observations while there is no 

weight applied to parameters in Tikhonov regularization. 

 

 By considering this it can be easily predicted that, Tikhonov regularization will converge to a 

minimum in the error space much faster than fictitious observation method. However, since the 

corrections to parameters are computed without considering the variance of the parameters, the 

resulting corrections may not be realistic. At least it can be said that fictitious observations can correct 

the initial values of the parameters better although the residuals are higher. For the implementation of 

the new orthorectification, parameter estimation results of Tikhonov regularization is used since the 

initial values of the parameters were very far from their true values so that obtaining their true value 

were almost impossible. 

 

 Singular Value Decomposition (SVD) is the most complicated method among the three. The 

convergence of SVD is faster than both Tikhonov regularization and fictitious observations. However, 
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in SVD α  and variance of the parameters must be determined very carefully if this is ignored the 

method may diverge. This can be considered as the drawback of the method since the remaining 

methods always converge unless α  is selected too small. While faster convergence of SVD can be 

considered as its advantage. In order to assure the convergence of SVD solution, α  is chosen a little 

larger, thus the convergence of the method slowed down and residuals increased. Smallest residuals 

are obtained by SVD regularization, but estimated parameter values were not pleasing compared with 

other two regularization methods. 

 

 Not all of the parameters obtained at the end of the parameter estimation procedure were 

realistic. To acquire the true value for parameters some restrictions are applied to the parameters. It is 

known that the average ground resolution of Bilsat image is 27.6 meter. By using this information a 

relationship is established in between focal length, size of the sensing element and satellite altitude. 

Because of this restriction camera position and focal length were not allowed to change freely and at 

the end of the parameter estimation more realistic results are obtained. As expected, residuals of the 

parameter estimation at the end of the parameter estimation with restriction were higher than the 

estimation without restriction. This does not mean that the parameter estimation is unsuccessful. It 

means, the parameter estimation performed by using Tikhonov regularization has converged to a 

minima which is not the true minima. 

 

 

6.2       Gauss Markoff Model not of full rank with constraints 

 

Besides using regularization, restrictions to parameters are applied to solve the system 

correctly. Apart from the effort to prevent the rank deficiency, because of the correlations between the 

parameters, equation system has rank deficiency and the equation system is named as, “Gauss-

Markoff Model not of full rank with constraints”. In this system 

 

( )yE=βX    with rank X = q < u,                   (6.1) 

H β = w and D(y) = σ2 I  

where 

β is 12x1 matrix including the parameters 

[ ] 1122121 ×
′∆∆= ppkkyxfss κφωλφβ                  (6.2) 
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Biased estimator β
~

of β  is obtained by [53] 

 

( ) ( )( ) ( )( )[ ]yXXXHHXXHHyXXX '''''''
~ 1 −−−− −+= wβ                  (6.3) 

or by 

( ) ( )( ) ( )w−−=
−−− βββ HHXXHHXX

1
''''

~
                  (6.4) 

 

where 

( ) yXXX '' −=β                       (6.5) 

( )−XX ' is the pseudo inverse of XX '  

 

Residuals are defined by 

y−= β
~~ Xe                        (6.6) 

( ) ( ) ( ) ( )( ) ( )[ ]X'XXHH'XXHH'XXXXXXXIe −−−−− +−= '''''~ 12σD               (6.7) 

where 

( ) ( ) Hn
yy

n
Ω=−

′
−=

1~~12 ββσ XX                     (6.8) 

( ) ( ) ( ) ( )ββββββ −
′

−+−
′

−=Ω
~~~~

XX'XX yyH                   (6.9) 

( )rqn
H

+−
Ω

=2σ                     (6.10) 

 

is an unbiased estimator of the variance of unit weight. 

 

 As a restriction equation, with the help of the Bilsat geometry a relationship between the 

satellite altitude, focal length, size of the sensor on the CCD array and ground resolution of the Bilsat 

is derived. 

c
Hf

G o=                       (6.11) 

 

where 
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G is the ground resolution of Bilsat 

fo is the focal length computed from the restriction equation 

H is the altitude of the satellite 

c is the size of the sensing element on the CCD camera 

  

 In this equation G is assigned as a fixed value equal to 28.8 meter. H is computed by the 

corrected position at the current step of the parameter estimation procedure, c is also a constant value 

equal to 0.0074 mm. Restriction equation (See Equation 6.1) is written as 

 

ffwH o −==β                     (6.12) 

 

 The restriction equation w represents the required value to be added to the focal length to 

satisfy the restriction equation while, the linearized Gauss Helmert model computes the corrections to 

be added to the initial values of the parameters. So the restriction equation has the correction amount 

to be added to focal length to satisfy the restriction equation. 

 

 Solution results of the Gauss-Markoff Model not of full rank with constraints are given in 

Appendix B in Table B.13 and Table B14. Results of the Gauss Markoff Model with constraint were 

worse than unconstrained solution. This is an expected result since in order to satisfy the constraint the 

solution of the model will shift from the minimum sum of the square of residuals. 

 

 

6.3 Test for Outliers 

 

 A test for outliers ε  has been performed to make sure that there is not any blunder in the 

measured ground coordinates or image coordinates. The outlier test procedure is as follows 

 

 PXXN T=                      (6.13) 

 1−= NQxx                      (6.14) 

T
xxll XXQQ =                                   (6.15) 

llii QPr −= 1                                   (6.16) 

i

i
i r

e
l
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=∇                                   (6.17) 

i

i
i r

l 0
0

δσ
=∇                                   (6.18) 

ii P0σσ =                                   (6.19) 

un
PeeT

−
=0σ                                   (6.20) 
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i

i
i r

r−
=

1
00 δδ                                  (6.21) 

where 

xxQ  is the cofactor matrix of parameters 

llQ  is the cofactor matrix of the observations 

ri is the redundancy of the ith observation 

il∇  is the probable error of the ith observation 

il0∇  is the internal reliability of the ith observation 

0σ is the variance 

iσ  is the variance of the ith observation 

i0δ  is the network anomaly 

 

0δ  is equal to 4.13 for powertest80.0001.0 00 == γα  

 ii
T
ixxi lPxQx 00 ∇=∇                     (6.22) 

 

 where 
T
ix  is the ith row of the X matrix 

Pi is the weight of the ith observation 

  

ii

i
i vQv

v
v

0σ
=                                      (6.23) 

ii
i

ii Q
P

vQv −=
1                                   (6.24) 

ii

i
i vQv

v
v

0σ
=                                  (6.25) 

 

 Results of outlier test are given in Appendix B. The outlier test covers 25 ground points. 

Since each point is represented as latitude and longitude the test is performed for 50 ground 

coordinates. As explained in Chapter 3 ground points are measured by means of a hand GPS receiver 

and the expected accuracy of the ground coordinates are 15 meters. Each point is measured by the 

same method and there was not any obstruction on the terrain for the GPS signal, same weights are 

assigned for the ground points. 

 

 By using the Equations 6.13 to 6.15 corrected measurements’ weight matrix is computed. iiQ  

contains the diagonal elements of this matrix. Degree of freedom of each measurement, ri is computed 

by iiQ  and weight of the measurement. With the ri values of each measurement, condition of each 
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measurement can be commented. It is required that each measurement has ri value greater than 0.3 to 

0.5, fortunately every measurements’ ri values satisfy the requirements. Probable error of each 

measurement il∇ , are computed by the Equation 6.17 and the lowest error limit of each 

measurement il0∇ , is computed by the Equation 6.18. il0∇  represents the internal reliability of the 

measurements. These numbers are required to be smaller and have close values. When the error limits 

of the measurements are examined (Table B.32), it is seen that the values and range are very small. 

This shows that the measurements are reliable. Finally by using Equation 6.21 i0δ , network anomaly 

is computed. i0δ is used for the prediction of the maximum effect of error ( il0∇ ), on the function. For 

this reason, the smaller the i0δ  values, the better the parameter estimation results. When the i0δ  

values are examined in Table B.32, it is seen that they are relatively large. This can be explained as 

the errors in the measurements are small but their effects on the parameter estimation results are 

significant. This can be explained by the very sensitive analytic relationship between the parameters 

and the observation. For this reason condition number of the variance covariance matrix is very high. 

 

 Additionally, conformity of the measurements is examined by using Equations 6.23 to 

Equation 6.25. The analysis results are presented in Table B.33. Since all standardized residuals are 

smaller than 1.96 it can be said that all measurements are concordant. The analyses are performed for 

001.00 =α  and test power as 80.00 =γ . 

 

 

6.4 Implementation of Tikhonov Regularization for Pushbroom Scanner 

 

ASTER image obtained for the implementation and accuracy assessment of the algorithm had 

no position and orientation data. For this reason the camera position and the camera attitude were to 

be determined by a parameter estimation procedure. Some of the parameters mentioned in Chapter 4 

have been changed in this procedure since there were no initial data for position and attitude of the 

camera. Position of the camera has been determined by means of Kepler parameters instead of a 

second order polynomial. 3 of the 6 Kepler parameters were known for ASTER orbit these are; 

 

Semimajor axis a 

Eccentricity e 

Inclination i 

 

The remaining 3 parameters are determined by the following procedure; 

 

The raw image is registered by affine transformation. For initial approximation the satellite’s 

attitude angles are assumed to be zero and an initial position of the camera is obtained from the first 

and second lines, then the satellites velocity is predicted assuming that the time difference of the 



 80

acquisition of one line is 0.0022 second. The obtained velocity and position is in SE in order to 

compute Kepler parameters they should be transformed into SI.  

 

After obtaining camera position and velocity in SI, the Kepler parameters are computed by 

the following formulae [80]; 

 

vrH ×=                      (6.26) 

where; 

r is the position vector with respect to SI 

v is the velocity vector with respect to SI 
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where; 

Hx is the first element of H 

Hy is the second element of H 

Ω  is the right ascension of the ascending node of the orbit 
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where; 

i is the inclination 

Hx is the third element of H 

 

Inclination angle of ASTER orbit is known as 98.88o and inclination angle is not computed 

but it is taken as equal to 98.88o [81]. 

 

( ) ( )rRiRP Ω= 31                     (6.29) 
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where 

ω argument of perigee 

ν  is true anomaly 

P2 is second element of P 

P1 is first element of P 

 

Semimajor axis and eccentricity is computed by the following formulae; 

 

( )µ/2 2vr

r
a

−
=                     (6.31) 

aHe µ/1 2−=                     (6.32) 

where 

µ  is GM which is equal to 3.986005e14  

However a and e are known a priori and 7078000 meter and 0.0012 are assigned for 

semimajor axis and eccentricity respectively [81]. 

 

E is computed from the formulae 
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True anomaly can be computed as 
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2
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Finally ω can be computed as 

ω = (ω + ν ) – ν                     (6.37) 

 

This completes the six Kepler elements. However, the computed Kepler parameters do not 

represent the true orbit because the velocity estimation was not proper so the computed three Kepler 

parameters are corrected by a parameter estimation procedure. In order to simplify the parameter 

estimation procedure only right ascension and true anomaly is corrected in an iterative manner. 
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( ) yXXX TT ∆=∆
−1

β                     (6.38) 
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subscript c in icλ  and icφ  indicates ith computed coordinate. 

 

The iteration continues until changes in true anomaly and right ascension becomes smaller 

than a specified threshold value. The relation between the Kepler parameters and satellite coordinates 

are set by the following relationship; 

 

Cartesian camera coordinates are obtained by the following relationship 

 
IEE
rRr I=                      (6.39) 

where; 
E
r  is the position vector with respect to SE 

IR
E

 is the rotation matrix transforms the position vector from SI to SE computation of IR
E

 is 

explained in Chapter 4. 
I
r  is the position vector with respect to SI computed by the following equation 
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where;  

BR
I

is the rotation matrix that transforms from SB to SI  

Construction of BR
I

 is as following 

( ) ( ) ( )Ω+++= 312 2/2/ RRRR B ππω ij
I
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B
r is the satellite position vector with respect to SB derivation of 

B
r  is as following 
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where; 

S is the distance from earth center to satellite and computed as  

 

( )EeaS cos1−=                     (6.42) 

 

At the end of the parameter estimation Kepler orbit parameters are estimated more 

accurately. However, it is very rare that the satellite’s attitude and camera have no inclination. So the 

computed Kepler parameters are still needs to be corrected. By using the GCPs; satellite attitude, 

attitude change rate, camera attitude and camera attitude change rate, camera focus, principle point 

and satellite position will be estimated by a parameter estimation procedure. 

 

In the parameter estimation procedure the following parameters will be estimated. 

 

[ ]1443322114321 kyfaaaaaaaaaaaa ssssss ∆′′′′Ω= λλλφφφνβ  

where 

ν  is the true anomaly 
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Ω  is the right ascension of the ascending node 

a'1 is the roll angle between SO and SB 

a’2 is the pitch angle between SO and SB 

a’3 is the yaw angle between SO and SB 

a’4 is the attitude angle of the camera between SB and SC 

1a is the change in roll angle with time 

2a is the change in pitch angle with time 

3a is the change in yaw angle with time 

4a  is the change in attitude angle of the camera 

1a  is the change rate in roll angle with time 

2a  is the change rate in pitch angle with time 

3a  is the change rate in yaw angle with time 

4a  is the change rate in attitude angle of the camera 

sφ  is position correction for the camera latitude 

sφ is the position correction rate for the camera latitude 

sφ is the position correction change rate for the camera latitude 

sλ  is position correction for the camera longitude 

sλ  is the position correction rate for the camera longitude 

sλ  is the position correction change rate for the camera longitude 

f is the focal length of the camera (mm) 

y∆  is the principal point coordinate on the pushbroom scanner 

k1 is the radial lens distortion parameter 

 

In the parameter estimation procedure, since GCPs are not imaged at the same time satellite 

position should be recomputed for each GCP. To compute mean anomaly, time difference between the 

perigee passage and the image acquisition should be computed. Mean anomaly at the beginning of the 

image acquisition is estimated by the following formula 

 

EeEM sin−=                     (6.43) 

 

where 

M is the mean anomaly 

E is eccentric anomaly 

e is the eccentricity of the orbit 
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Time difference between the beginning of the image acquisition and time of the imaging of 

the GCP is computed as 

 

yt *0022.0=∆                     (6.44) 

where;  

y is the row number of the image 

 

Change in mean anomaly is computed by the formula 

τ
π tM ∆

=∆
2                     (6.45) 

where; 

µ
πτ

3

2 a
=                     (6.46) 

where; 

τ  is the orbit period 

a is the semimajor axis of the orbit 

µ  is GMe 3.986005e14m3/s2  

 

Mean anomaly at the time of the acquisition of the GCP is computed as 

MMM i ∆+=                     (6.47) 

At this step Eccentric anomaly should be computed. But this requires a solution of nonlinear 

equation. The eccentric anomaly is computed iteratively by Newton method. Iterative method can be 

represented as [81]; 
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In this problem an initial value is required for eccentric anomaly; to start the iteration 

eccentric anomaly at the beginning of the image acquisition is taken. 

 

True anomaly and distance between satellite and Earth center is computed from the Equation 

6.36 and 6.41. Then the Equation 6.38 and 6.39 are applied to compute satellite position in SE. 

Cartesian camera position is converted to geodetic coordinates by means of the iterative method and 

correction to camera position is applied by the following formulae 
2

000 ttss ∆+∆++= φφφφφ  

2
000 ttss ∆+∆++= λλλλλ                   (6.49) 
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After computing the corrected satellite position, the next step is to compute the intersection 

point of the image direction vector and WGS84 reference ellipsoid. Direction vector of the line 

between camera focus and corresponding sensing element with respect to SC can be written as; 
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where; 

x is the x coordinate of the corresponding picture element in SIM 

width is the number columns in the image 

c is the size of the sensing element 0.007 mm 

f is the focal length of the camera 

 

Transformation from SC to SB is performed in two steps; at first step camera system is rotated 

180o with respect to x axis and then rotated a4
o. The transformation can be shown as 

 
C

C

BB
DRD =                      (6.51) 

where; 

C
B
R is the rotation matrix for the transformation from SC to SB which can be written as 

( ) ( )π141 RaRRC

B
=                     (6.52) 

2
4444 tataaa ∆+∆+′=  

 

The next transformation is from SB to SO. This transformation is performed by three 

successive rotations in the order of y, x and z axes respectively. The transformation can be written as 
B

B
OO

DRD =                      (6.53) 

where; 

B
O
R  is the rotation matrix for the transformation from SB to SO. The rotation matrix can be 

written as;  

 

( ) ( ) ( )221133 aRaRaRR B
O

=                                 (6.54) 

tataaa ∆+∆+′= 1111  

tataaa ∆+∆+′= 2222  

tataaa ∆+∆+′= 3333  

 

Rotation from SO to SE and intersection of the direction vector with WGS84 ellipsoid and 

relief displacement corrections are same with the CCD camera model and procedure is explained in 
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Chapter 4.2. Finally, a mathematical model is established between image points and corresponding 

ground point. 

 

The parameters in the model are not known, since there is no attitude information or any a 

priori information about the interior camera parameters. In order to start the parameter estimation 

procedure initial values for the unknown parameters is assumed as “0”. Then all parameters are 

corrected after the parameter estimation procedure. The general equation for  the parameter estimation 

can be written as; 

 

( ) yXXX ∆=∆ −1'β                     (6.55) 

where; 

β∆  is the corrections for the parameters 

y∆  is the array of the difference between measured coordinates and computed coordinates of 

the GCPs.  
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Solution for the least square estimation requires computing the matrix inverse. Because of the 

correlation between parameters and weak geometry of the camera the condition number of the matrix 

is very high meaning that an accurate solution is impossible. For this reason Tikhonov regularization 

method is applied to the model and Equation 6.55 becomes 

 

 ( ) yXIXX ∆+=∆ −1' αβ                    (6.56) 

where; 

α is the Tikhonov regularization number 

I is the identity matrix of size 23x23 

 

Convergence of the algorithm was very slow because of the regularization procedure. 

Furthermore, because of the correlations between parameters, all parameters are not estimated at the 

same time. Attitude parameters and orbit parameters are estimated separately. This was the second 

factor that slows down the convergence. In order to reduce y∆ below the threshold value, 2500 

iterations are performed. The computation amount for the algorithm is very demanding. At the of the 

parameter estimation, following values for the parameters are computed; 
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Table 6.1 Estimated values of the parameters of the pushbroom model. 

 

Parameter Estimated Value 

True Anomaly 1,54258

Right Ascension -1,30976

Roll -0,12800

Pitch -0,18933

Yaw -0,09060

Theta 0,13727

Roll Rate 9,711E-08

Roll Rate Change -1,559E-08

Pitch Rate 8,338E-10

Pitch Rate Change -1,160E-06

Yaw Rate 2,753E-07

Yaw Rate Change -2,491E-08

Theta Rate -0,00369

Theta Rate Change 0,00141

Phi Anomaly 0,00069

Phi A. Rate -2,082E-04

Phi A. Rate Change 0,00374

Lambda Anomaly -6,333E-04

L. A. Rate -0,00262

L. A. Rate Change 0,00126

Focal Length 330,00003

Principle Point -1,525E-05

Lens Par -7,112E-05

 

Residuals of the GCPs and corrected GCP coordinates are presented in Appendix B. 

 

 

 

6.5 Implementation of DRM for CCD Frame Cameras 

 

To implement DRM software is written on Matlab. For the rectification procedure the 

required data: raw image, telemetry and DEM should be supplied to the folder that the software runs. 

The software gets the image acquisition time, raw image name and telemetry name from the user. 

Then the software converts the entered UTC time to unix time, opens the telemetry and finds the 

proper line by using the unix time. The position, velocity and attitude angles of the satellite are 

obtained from telemetry. 
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 After obtaining necessary data for rectification, the pixel by pixel transformation is 

performed. The method starts with a double loop of 2048 repetitions for the image to be rectified. First 

the pixel coordinates are transformed to SP and the lens distortion corrections are applied. By using 

focal length of the camera corrected image coordinates are transformed to SC. The direction vector 

measured in camera coordinate system is transformed to orbital reference system by the attitude 

angles obtained from telemetry. By the position and velocity with respect to SI, the orientation of 

orbital reference frame is computed and direction vector is transformed to SI. By using image 

acquisition time GAST angle is computed and by applying precession, nutation and polar motion 

correction and GAST rotation direction vector is transformed to SE.  

 

 Intersection pointy of the direction vector with WGS84 ellipsoid is computed by solving the 

quadratic equation. At this stage the cartesian coordinates are converted to geodetic coordinates and 

the direction vector is transformed to local coordinate system and its zenith and azimuth angles are 

computed. By using the zenith angle and atmospheric parameters, atmospheric refraction coefficients 

are computed for 85 layers and the initial intersection position is corrected.  

 

 After the atmospheric refraction correction, relief displacement corrections are performed by 

iterative method. At this stage the elevation information is obtained from DEM. SRTM DEM is used 

for the elevation data in this thesis. This file contains elevation data at each 3 arc second interval for 

both latitude and longitude. A DEM file covers an area of 1 degree latitude to 1 degree longitude thus 

in a SRTM DEM file there are 1201x1201 numbers. Elevation data is stored in binary format in order 

to reduce the storage requirement. Elevation data is stored beginning with the top row for the latitude 

and after completing the whole columns for the longitude going from west to east, the next row for 

latitude starts which is 3 arc seconds south of the previous row Figure 6.11 [82]. 

 

  

 

 

 

 

 

Figure 6.10 Illustration of elevation storage order in SRTM DEM. 

 

 Binary DEM could not be retrieved correctly, for this reason software is written in C++ 

which reads the binary DEM and writes the elevation data to a text file. Elevation data is obtained 

from this text file in ASCII format. 

 

Row 1 
Row 2 

Row 1201 

C 1201 C 1 
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 Bilsat image covers approximately 60x60 km2 area. Since it is a very wide area, most of the 

case the image intersects more than one region that a DEM file cover. The possibilities of DEM file 

requirements are shown in Figures 6.11 to 6.14. 

 

 

 
Figure 6.11 Intersection with only one DEM region. 

 

 

 

 
Figure 6.12 Intersection with two DEM regions vertically. 
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Figure 6.13 Intersection with two DEM regions horizontally. 

 

 

 
Figure 6.14 Intersection with four DEM regions. 

 

 

 

 The first possibility is that the image intersects only with one DEM region. This is the easiest 

situation to handle. In this case only one DEM file is read and no additional procedure is required 

(Figure 6.11). In the second case, the image intersects with two DEM regions in which one region is at 

northern of the other (Figure 6.12). In this case two DEM regions are read from two different files and 

they are embedded to one DEM file. DEM file covering the northern region is kept at upper portion 

and the file covering the southern region is embedded to the below of that matrix. The top row of the 

southern matrix is deleted, since it is repeated in the bottom row of the northern matrix. The resulting 

DEM file consists of 2401x1201 numbers. 

 

 The third possibility is that the image intersects with again two DEM regions however; the 

latter one is at eastern region of the first DEM region. Considering Figure 6.13 the DEM file covering 

the eastern region is embedded to the left side of the file covering the western region. In this case the 



 92

matrix consists of the elevation values of the region is 1201x2401 matrix. The last possibility is that 

the image intersects with four DEM regions. In this case four different DEM file are read and the 

elevation values are embedded into each other in the following order (Figure 6.14). At first the 

western side of the northern and southern DEM regions is embedded into each other and 2401x1201 

sized matrix is obtained. Next, at the eastern side of the northern and southern DEM regions are 

embedded and again a 2401x1201 sized matrix is obtained. The two matrixes are embedded into each 

other by deleting the intersecting column from one of the two matrixes. At the end 2401x2401 sized 

matrix is obtained.  

 

In the final case, the resulting matrix is considerably large and requires consisting amount of 

memory. Since, SRTM DEM contains only integer numbers the matrix is converted from double to 

long integer whose one element contains only two bytes. By this transformation, important amount of 

memory is saved. However, long integers can not be multiplied by double type numbers, for this 

reason the elevation value extracted from the matrix is reconverted to double type variable before the 

multiplication operation. This procedure reduces the memory requirement but increases the 

computational demand. 

 

To extract the elevation of a ground point, its position in the matrix that stores elevation 

should be computed. North West corner of the matrix is defined as the origin of the matrix and the 

coordinate system of the matrix is same with the Figure 6.10. Both latitude and longitude of the North 

West corner are integers. The difference between North West corner coordinates and the ground 

points’ coordinates are computed. Since SRTM DEM has 3 arc second interval the difference is 

multiplied by 1200 and increased by 1 to obtain the required position of elevation data. The final 

number will not be integers in most of the case. For this reason, nearest elevation positions are 

obtained by computing ceil and floor of the number. Then, elevation of the ground point is estimated 

by using the neighboring elevation data by linear interpolation. Weights of the elevation data are 

assigned which are inversely proportional with the distance to the ground point. 
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Figure 6.15 Resampled image of orthorectified Bilsat image by using Nearest Neighborhood 

algorithm 

 

 

In Figure 6.15 resampled image of the Bilsat is shown. Vertical direction of the image is 

North direction. Grid lines are drawn at 10 km intervals. Nearest Neighborhood resampling algorithm 

is preferred for resampling in order to protect original pixel values. Since this map has same scale at 

every pixel and the north direction is same everywhere, this image can be called as image map. 

 

Rectification is performed by using a DEM, in other words not only the horizontal 

coordinates but also the elevation of the each pixel is computed. However, the image map shown in 

Figure 6.15 can not represent the elevation information, except for the shadow and illumination effect 

on the terrain. To represent the elevation information on the image directly, a 3-D image is produced 

by using Matlab software. Because of the long processing time and the large storage requirement, only 

a small portion of the image is transformed to 3-D. The product is shown in Figure 6.16. 
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Figure 6.16 3D terrain model of a small portion of the Bilsat Image. 

 

 

The 3D surface model is generated for a small portion of the whole image since, the 

construction of the 3D surface model requires very high memory and computation time. In order to 

represent the 3D surface after the orthorectification a small portion, 250x250 pixel size, of a rectified 

image is copied and the 3D surface model is generated from that portion.  

 

Since 3 arc second SRTM DEM is used during orthorectification a linear interpolation is 

performed in order to find pixel’s elevation assuming a constant slope at that location. Because of this, 

elevation information assigned to pixels is not adequate for regions that have irregular slopes. 

Moreover for urban areas, a detailed and accurate surface model such as LIDAR data is required to 

produce a correct 3D urban image. 

 

 

6.5.1 Convergence Analysis of DRM 

 

The iterative procedure is investigated by changing the threshold value and the number of 

iterations observed at each pixel is examined. For the analysis threshold values of 1m 0.1 m and 0.01 

meter is chosen. For Bilsat images which have approximately 30 meter spatial resolution, error 
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propagation which occurred by even using 1 meter threshold is unimportant which causes roughly 

± 0.1 meter position error for almost nadir images and ± 1 meter elevation error. 

 

 
Figure 6.17 Difference between 1 meter threshold and 0.1 meter threshold values. 

 

 

By examining the Figure 6.17 it will be easily seen that at most of the regions there is no 

difference namely, no additional iteration occurred by reducing the threshold value from 1 to 0.1 

meter. These regions correspond to dark red colored portions in the Figure 6.17. At the remaining 

portion additional iteration is performed due to stricter threshold value and the difference between 1 

meter value and 0.1 meter value is calculated as ± 0.0001 meter. The values can be seen in the 

d_phi.mat file. 

 

 In Figure 6.18 the difference in longitude can be predicted which is resulted by reducing 

threshold value from 1 meter to 0.1 meter. The contours are same with the latitude but the scale is 

different. Average difference observed in longitude is around ± 0.001 meter. 

 

 Similarly elevation values are compared and it is seen that the difference is about ± 0.006 

meters. The elevation difference values are stored in d_h.mat file. 

 

 Threshold value is reduced from 0.1 meter to 0.01 meter and the difference between two 

rectification results is examined. Contour plot that shows the difference can be seen in Figure 6.18.  
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Figure 6.18 Contour map of difference in iteration number caused by changing the threshold value 

from 0.1 to 0.01 meter. 

 

 

 Threshold value for the stopping criteria is reduced from 0.1 to 0.01 meter and the results are 

compared. The difference of the analysis results are presented in a contour map as in Figure 6.18. The 

Blue regions in the figure are the zones where no additional iteration step is occurred; because of this 

geodetic coordinates of this region did not change by reducing the threshold value.  

 

Average difference for the latitude is computed as ± 2.4e-5 meter and for the longitude is   

±  6.0e-5 meter. These differences can be considered as negligible for an image which has 

approximately 30 meters spatial resolution. It can be concluded that, there is no reason to reduce the 

threshold value from 0.1 meter to 0.01 meter to increase the accuracy. These changes are negligible 

because the image was shot almost in nadir direction. Maximum rotation was about 8o around x axis 

between SO and SB, so horizontal coordinates are not affected much by the changes in elevation. 

Average difference in elevation occurred due to change in the threshold value is computed as   

± 4.1e-4 meter, which is a negligible value for a map which has a scale 1/250000. 

 

Decreasing the threshold value for stopping criteria for the relief displacement correction 

stage increases the computation demand. If the threshold value is selected as 1 meter average iteration 

number for each pixel size is 2.93. This means at the end of 3rd iteration most of the pixels converges 

and the height difference between previous and next DEM readings becomes less than 1 meter. If the 

threshold value is selected as 0.1 meter than the average iteration number becomes 3.05. This is 

slightly more than the previous iteration number. 0.12 increase in average iteration number causes 

some 500.000 more iteration for the rectification. This is not an unachievable demand for current 
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computer technology but as mentioned the increase in the rectification accuracy is not much and 

necessary for a coarse resolution image. In the next step the iteration size is selected as 0.01 meter and 

the average iteration number is computed as 3.64. Increase in computation demand becomes 

influential and increase in registration accuracy is not satisfactory. However, if the registration 

algorithm were running on a powerful computer, the increase in computation demand would not cause 

any problem. Furthermore, increase in iteration number does not require additional memory or storage 

demand. 

 

The effect of re-computing the ellipsoidal normal or using the first computed ellipsoidal 

normal has also been examined. In first trial, the ellipsoidal normal has been recomputed for each 

iteration step and at the second trial the ellipsoidal normal which is computed at the first iteration step 

is used for the remaining iterations. Difference between the two approaches for latitude is computed as 

± 3.5e-4 meter in average. The contour plot gives the distribution for the each pixel as in Figure 6.19. 

 

 
Figure 6.19 Change in latitude due to changing ellipsoidal normal at each iteration. 

 

 

In Figure 6.19 green portions are labeled as no change or change occurred less than 0.001 

meter. Blue portions are the regions that have changed less than – 0.001 meter and orange portions 

indicate more than 0.001 meter change in direction of latitude. “–” sign indicates shift to the south. It 

is seen from the contour graph that considerable part of the pixels are affected more than 1 millimeter 

in direction of latitude due to not re-computing the ellipsoidal normal. 
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Figure 6.20 Change in longitude at final step due to not recomputing ellipsoidal. 

 

 

 In Figure 6.20 blue portions are regions where no change occurred or changes less than 0.002 

meter in absolute value are observed. Green portions indicate shift to the east. On the other hand, dark 

blue portions indicates shift to the west. Absolute value of average shift of one pixel is computed as 

±  6.4e-4 meter which is slightly larger than the shift observed in the direction of latitude. 

 

 
Figure 6.21 Change in elevation at final step due to not updating ellipsoidal normal 

 

 Differences between elevations are computed as ±  9.6e-5 meter. This is slightly less than 

horizontal coordinates because this is the error occurred because of miscomputing the correct position 
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and obtaining wrong elevation from DEM. When the error magnitudes are examined it is seen that, 

recomputing ellipsoidal normal at each iteration step or keeping it constant for all iterations will not 

affect the registration accuracy of Bilsat images.  

 

It can be easily predicted that if the inclination of the direction line increases the convergence 

of the iteration procedure becomes more difficult. In order to examine the convergence of the method 

high attitude angles are assigned for the attitude angle of the camera. For the first trial 15 degrees are 

assigned to omega and phi attitude angles, for the second trial 20 degrees are assigned and for the 

third trial 25 degrees are assigned. The number of iterations for the iterative procedure to converge is 

plotted in figures 6.22 to 6.24. 

 

 
Figure 6.22 Contour map of iteration number for 15o of attitude angles 

 

 

 Contour map of iteration number is shown in Figure 6.22 for 15o of attitude angles for roll 

and pitch. In light blue regions iteration number is less than 5 and in dark blue regions iteration 

number is between 5 and 10. Light and dark blue regions covers the most of the image, in other words 

in most of the region iteration number is less than 10. In the remaining parts which are local areas, the 

iteration continued until 20 or 25 times, these are the places where the slopes changed suddenly i.e. 

top of a hill or a valley. Average number of iteration for the whole area is computed as 5.6 for 0.1 cm 

threshold value which is considerably higher than the previous analysis. 
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Figure 6.23 Contour map of iteration number for 20o of attitude angles 

 

 

 In Figure 6.23 contour map of iteration number for 20o of attitude angles are shown. In the 

figure similar to Figure 6.22 light blue area indicates iteration number less than 5 and dark blue area 

indicates iteration number between 5 and 10. When contour map is examined it is seen that there is a 

considerable increase in the size of dark blue areas compared with the previous analysis. This 

indicates that convergence of the relief displacement correction algorithm slows down when roll and 

pitch angles increase. Average value for the iteration number is computed as 6.4 more than the 

previous analysis as expected. 
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Figure 6.24 Contour map of iteration number for 25o of attitude angles 

 

 

 Figure 6.24 shows the contour map of number of iterations for 25o roll and pitch angles. 

Contour interval is same with the previous two figures. In this analysis it seen that the iterative relief 

displacement correction algorithm has converged in smooth regions in less than 10 iterations. On the 

other hand, in mountainous regions the algorithm did not converged as successfully as the images 

taken in nadir direction. Red portions show the iteration numbers between 25 and 30. Most of the red 

portions have iteration number as 30 which is the maximum iteration number in the analysis. It is seen 

that for highly oblique images the iteration still converges for smooth and gently sloped regions, and 

the algorithm fails in steep slopes. However, elevation error is not more than one meter; since the 

image is oblique horizontal coordinates are registered with a considerable error. Average iteration 

number is computed as 8.1 which is a considerable increase in iteration number and computation 

demand. 

 

 

6.6 Implementation of DRM for Pushbroom Scanners 

 

The implementation of DRM adopted for pushbroom scanners will be implemented by the 

corrected parameters obtained at the end of the parameter estimation procedure. In the parameter 

estimation procedure, additional parameters are adopted for the orbital perturbation to reduce the 

residuals. For this reason, there will be small differences in the implementation when compared with 

the model explained in Chapter 4. 
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The rectification process first detects the time from the current image line. Then computes 

the camera position and then computes the attitude of the camera. After performing necessary 

precession, nutation and polar motion corrections, the image line is intersected with reference 

ellipsoid. By the algorithm explained in the rectification process for the images taken by CCD frame 

cameras, atmospheric refraction and relief displacement effects are removed, and geodetic coordinates 

are transformed to UTM coordinates. By nearest neighbor resampling method an image map shown in 

Figure 6.25 is produced from the raw ASTER image. 

 

 
Figure 6.25 Image map produced from the raw ASTER image. 

 



 103

 

 

CHAPTER 7 

 

 

ERROR ANALYSIS OF DRM 

 

 

 

7.1 Comparison of DRM for CCD camera with Existing Methods 

 

 To measure the accuracy of DRM, rectification results are compared with four rectification 

methods being currently used. The rectification methods selected for comparison is shown below; 

 

7.1.1  Affine Transformation 

 

feydx
cbyax

++=
++=

φ
λ                        (7.1) 

where; 

Φ and λ are geodetic coordinates of the GCPs 

x and y are the pixel coordinates of the image point 

a, b, c, d, e and f are parameters of the rectification method 

 

After the parameter estimation procedure the coefficients are computed and the residuals of the 

GCPs are given in appendix B Table B.15 to B.17. 

 

 Affine Transformation is a simple rectification method that has moderate accuracy; this 

method is selected because of its simplicity. This method does not take into account of the elevation of 

the GCPs. Furthermore, the method can not model the earth curvature properly because of inadequate 

number of parameters used. 

 

7.1.2  3-D Affine Transformation 
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+++++=
+++++=         (7.2) 

where; 

x and y are pixel coordinates image point 

a and b are coefficients of the model 

Φ, λ and h are geodetic coordinates of the GCPs 
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 The second model takes into account of the elevation of GCPs. Furthermore since more 

parameters are used, this method can model the earth curvature better. The rectification accuracy of the 

3D affine transform is compared with DRM. 

 

 Residuals of the GCP computed with 3D polynomial model are given in appendix B in Table 

B.18 to Table B.20. 

 

7.1.3  Projective Transformation 
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In this model φ  and λ  are geodetic coordinates of the image. After a linearized least square 

adjustment the parameters of the projective transformation can be computed. 

 

Residuals of the GCP computed with projective transformation are given in appendix B in Table B.21 

to Table B.23. 

 

7.1.4  Pinhole Camera Model 

 

 Colinearity equations for the camera can be written as; 
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The solution of this equation set is performed by a least squares solution as 

 

( ) yXXX '' 1−=β                                     (7.5) 

where; 



 105

[ ]′∆∆= 21 kkyxfZYX LLL κφωβ  

 

11221

21

2

1

1

1111111111

2

1

1

1111111111

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∆∂
∂

∆∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∆∂
∂

∆∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∆∂
∂

∆∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∆∂
∂

∆∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

n

nnnnnnnn

L

n

L

n

L

n

nnnnnnnn

L

n

L

n

L

n

LLL

LLL

k
y

k
y

y
y

x
y

f
yyyy

Z
y

Y
y

X
y

k
x

k
x

y
x

x
x

f
xxxx

Z
x

Y
x

X
x

k
y

k
y

y
y

x
y

f
yyyy

Z
y

Y
y

X
y

k
x

k
x

y
x

x
x

f
xxxx

Z
x

Y
x

X
x

X

κφω

κφω

κφω

κφω

 

 

 Residuals and the parameters of pinhole camera model is presented in Appendix B. 

 

 Pin hole camera model directly maps the pixel coordinates to ground coordinates by 

colinearity equations. For this reason, it is computationally the most demanding model among the 

methods chosen for the comparison. Results of pin hole camera model analysis are given in Table B.24 

and Table B.25. 

 

7.1.5  Comparison of Rectification Methods 

 

When the residuals of the Ground Control and Ground Check points are examined it is seen 

that if the complexity of the model increases, accuracy of the results increases too. However, to achieve 

an accurate solution with a complex model requires demanding mathematical and numerical procedures 

for satellite images. For this reason, DRM has the most demanding computation and regularization 

methods to reach the desired accuracy. 

 

Although both DRM and pinhole rectification method are based on the colinearity equations, 

they end up with different solution and accuracy. DRM has slightly better accuracy which may be 

because of the better initial values for the parameters and the more complex lens model for imaging 

camera. Initial values of DRM for attitude are obtained from magnetometer & sun sensor while zero is 

assigned for the pinhole camera model. Furthermore, camera position was available for DRM by means 

of a GPS receiver while, the coordinates of the image center is assigned for initial camera position in 

pinhole camera model. As a result of these, the iteration procedure may converge to local minima and 

stuck into that local minimum. However, since better initial values are provided for DRM it was able to 

converge into global minimum. 

 

To compare the overall effectiveness of the model in terms of accuracy, computational cost 

and complexity; the simpler models becomes more advantageous. Because rectification of the whole 

Bilsat images with affine transformations and projective transformations are completed in a very short 

time, similarly with the pinhole camera model rectification takes slightly longer but not very long. 
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However, rectification of the whole Bilsat image with DRM takes more than 2 hours, which is 

considerably longer than the other methods. The rectification is performed by using software developed 

by Matlab and the software run on 1 GHz AMD processor with 256 MB ram. The computation time 

will be much smaller if the algorithm were run on executable software format and with more powerful 

computer such as 3 GHz processor and 1 GB ram which is the configuration that can easily be 

purchased. For this reason the computational demand becomes less important with the improvement in 

computer technology. 

 

The second drawback is the computational complexity of DRM. If the initial values for the 

parameters are not accurate enough for a desired accuracy then it is required to improve the initial 

values by a parameter estimation procedure. Partial derivatives of DRM with respect to parameters are 

very demanding and the solution of parameter estimation procedure requires regularization. Once the 

partial derivatives are computed analytically or they can be computed as numerically it will not be a 

problem but the finding an optimum regularization method may be difficult in some situations. This can 

be made easier by reducing the number of lens distortion parameters in order to reduce the condition 

number. 

 

As a conclusion, DRM presents better results when compared with the other existing 

rectification methods. If the algorithm is run on a powerful computer the computational demand can be 

easily handled and by applying the proper regularization method optimum results can be achieved. 

Consequently, it can be suggested that DRM should be preferred if high accuracy is required for 

rectification process. 

 

 

7.2 Comparison of DRM for Pushbroom Scanners with Existing Methods 

 

In this section rectification results and performance of DRM adopted for pushbroom scanners 

will be compared with the existing methods. Rectification results are presented in Appendix B in Table 

B.27 to Table B.31.  

 

When the rectification results are examined it is seen that the rectification accuracy of DRM is 

not much better than 3D affine transformation. Actually the low performance of DRM can be explained 

as assigning improper initial values for the parameter estimation. Neither satellite orbit nor attitude 

angles were available as initial values for the parameter estimation. For this reason, as explained in 

Chapter 6 very rough orbit model is assigned for the camera position and perturbation parameters are 

added to the model in order to decrease residuals at the end of the parameter estimation. However, 

additional parameters increase the correlation between the parameters and the equation system became 

highly “ill-conditioned”. For this reason, performance of the DRM is not good as expected. However, if 

initial parameters for the position and attitude are available, it is certain that the DRM will present 

much better results. 
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 When the elevations of the ground control points are examined, it is seen that there are 

moderate elevation changes. To compare the rectification accuracy of the methods, a simulation data is 

prepared by exaggerating the elevation of the GCPs. Simulation data is prepared by increasing the 

elevation differences twice of the present situation. Comparison procedure is repeated by simulation 

data and analysis results are presented in Table B.30 and Table 31. In this case, rectification accuracy of 

the DRM did not change significantly, but accuracy of 3D affine transformation decreased 

significantly. From this analysis it can be concluded that the rectification accuracy of DRM does not 

decrease considerably in steep slopes. This property of DRM makes it an attractive method for the 

rectification of mountainous images. 

 

 Computation time of DRM for pushbroom cameras is much higher than not only the affine 

transformation but also DRM for CCD frame cameras. In the comparison part of the DRM for frame 

cameras computation demand of the method was commented as a drawback of the method. Because of 

the additional parameters added for the orbit and attitude perturbations, computational cost is increased 

significantly. Additionally, it is expected that pushbroom scanners have higher spatial resolution than 

CCD frame cameras installed on the same platform. This results larger images for pushbroom scanned 

terrain of the same area. Because of these reasons, rectification of ASTER images with DRM took 

considerably long time. Full rectification of one ASTER image took almost 16 hours with 1 GHz AMD 

processor. However, 3D affine transformation rectified whole image slightly more than half an hour. 

For the pushbroom scanners, computation cost becomes an important factor even for powerful 

computers. 

 

 

7.3 Testing the Parameter Estimation Results 

 

 Different regularization methods end up with different estimations to the parameters at the end 

of the parameter estimation process while the residuals were in acceptable limits. This makes the 

analyzer suspicious about finding the true global minima that is the closest values of the parameters. 

The estimation result may converge to local minima with a different combination of estimations to 

parameters that somehow minimizes the residuals. It may not be always possible to know every 

parameter exactly and with improper initial value estimation to unknown parameters, the parameter 

estimation process may converge to irrelevant local minima. In this part, it is desired to see how the 

improper initial value assignments affect the parameter estimation result. To implement this task, initial 

values of the parameters are blundered by adding noise. Parameter estimation results are tested for the 

improper initial values of; velocity, position, focal length, principal coordinates, radial and asymmetric 

lens parameters. At each analysis one component of velocity and position are blundered so totally 16 

analyses were run to complete the test. 
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 In the first run x component of the velocity were blundered by adding 1000 in SE coordinate 

system. Velocity is required to establish the orbital reference system, blundering the x component will 

affect the attitude of the camera. When the estimated parameters are compared with the original results 

it is seen that camera position is affected about 20 km in x and 10 km in y and z coordinates. Roll and 

pitch angles are also affected by not as much as the kappa angle. It is seen that the kappa angle is very 

sensitive to x component of the velocity. Focal length is estimated 3 mm shorter and x coordinate of the 

principal point is estimated 1 mm further from the origin which is an important amount for the interior 

camera parameter. The other lens parameters are not affected considerably. 

 

 In the second run y component of the velocity is blundered by adding 1000. At the end of the 

parameter estimation, camera position is affected in similar amounts with the previous analysis but the 

sign of the displacement is reverse. Similarly attitude angles are effected by almost the same magnitude 

but in different sign. Kappa angle is again the most affected parameter. Focal length is not affected 

much while principle coordinates are affected slightly more than half a millimeter. Radial lens 

distortion parameters are considerably changed but, there is slightly change in asymmetric lens 

distortion parameters. 

 

 In the third run z component of the velocity is blundered by adding 1000. At the end of the 

parameter estimation camera position is affected only by 5 km in x and y coordinates and surprisingly 

not affected in z coordinate. Attitude angles are also affected less when compared with the previous 

analyses and kappa angle is still the most sensitive one. Focal length and principal coordinates are 

slightly affected and lens distortion parameters are changed very little. 

 

 In the fourth run x component of the camera position is blundered by adding 50000. At the end 

of the analysis it is seen that error in x coordinate of the position had propagated to other components of 

the position. It is seen that all position components are affected about 20 km. Attitude of the camera is 

affected very little, even the kappa angle changed about 0.2 degree. However focal length is affected 

enormously. Remaining parameters show very little change both in magnitude and sign. 

 

 In the fifth and sixth run y and z components of the camera is blundered by adding 50000 

respectively. Similar to the previous analysis all position components are affected about 20 km in 

magnitude while there is very little change in attitude angles. Similarly focal length of the camera is 

estimated more than 5 mm longer than it is. Finally interior camera parameters are not affected 

considerably. 

 

 In the seventh run roll angle is blundered by adding 1 degree. Camera position is affected 

about 10 km in x and y and 3 km in z components. Only the roll angle is affected by the blundering of 

the roll angle. Focal length is estimated 1 mm longer than it is and the other camera parameters are not 

affected considerably. 
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 In the eight run pitch angle is blundered by adding 1 degree. z component of the camera 

position is affected about 10 km while x and y components are affected by about 5 km. For the attitude 

angles only pitch angle is affected considerably, the remaining angles are affected slightly. Focal length 

is estimated 0.5 mm longer and y coordinate of the principle point is estimated about 0.3 mm further. 

Lens distortion parameters are not affected considerably. 

 

 In the ninth run yaw angle is blundered by adding 1 degree. In this analysis camera position is 

not affected considerably when compared with the previous analysis only x component is displaced by 

3 km. Similarly attitude angles are not affected considerably. Surprisingly kappa angle is the least 

affected parameter in the analysis of blundering the kappa angle. Focal length is estimated a little 

longer and x coordinate of the principle point is displaced a little and remaining interior camera 

parameters are not affected much. 

 

 In the tenth run focal length is blundered by adding 5 mm. In this analysis camera position and 

attitude angles are not affected much. Focal length is estimated a little longer and there are slight 

changes in principle coordinates. Radial lens distortion parameters are affected considerably while 

asymmetric lens distortion parameters are not. 

 

 In the eleventh and twelfth run x and y coordinates of the principle coordinates are blundered. 

In these analyses, camera position is affected about 1 km and only roll and pitch angles are changed 

notably. Blundering x coordinate elongates the focal length while y coordinate shortens the focal 

length. Furthermore, all interior camera parameters are affected significantly in these analyses. 

 

 In the thirteenth to sixteenth analyses interior camera parameters are blundered. Camera 

position and attitude angles are not affected notably but interior camera parameters are affected 

considerably. Estimated parameters at the end of the test are presented in Table B.34.   
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CHAPTER 8 

 

 

SENSITIVITY AND UNCERTAINTY ANALYSIS  

 

 

 
 In this Chapter sensitivity and uncertainty analysis of DRM is performed. In the analysis three 

methods are used; first one is differential analysis, the second one is Monte Carlo and third one is the 

Fourier Amplitude Sensitivity Test (FAST). In three methods the sensitivity of the parameters to the 

model are examined and uncertainty in the results are computed. Some of the studies about the 

Sensitivity Analysis methods can be obtained from [83-102].  

 

 In the analysis it is aimed to compute the uncertainty of the model, where the parameters have 

some amount of errors. The errors are assigned by an expert opinion [33] that the uncertainties of the 

parameters are determined by the possible error ranges that can be observed based on the instrument 

characteristics which measures the quantity. Star tracker and the GPS receiver on board can be given as 

the example for this. The remaining error ranges are assigned by the prediction of the precision of the 

camera calibration performed before the launch of the satellite. Interior camera parameters can be given 

as example.  

 

 The objective of the analysis is to mention the uncertainty in the ground coordinates computed 

by the DRM with the possible error ranges in the methods. Moreover, it is aimed to compare the 

performance of the sensitivity analysis methods and list the advantages and disadvantages of the 

methods. 

 

8.1 Methods of Sensitivity Analysis 

 

8.1.1 Differential Analysis (Covariance Analysis) 

 

Differential analysis is based on Taylor series expansion to approximate the model under 

consideration. Differential analysis involves four steps; 

 

Step 1:  

Base values, ranges and distributions are selected for the input variables. The model including 

the input variables and the output is written as [88]; 
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( )xf=y             (8.1) 

Base value represents the most probable value that the parameter can be assigned. Base values 

of the interior camera parameters are calculated after the camera calibration procedure and exterior 

camera parameters are obtained from the telemetry. Finally base value of elevation is provided from 

DEM. Ranges of the variables are obtained by the Variance Covariance matrix of the parameters, as a 

result distribution of the parameters are considered as normal. 

 

Step 2: 

Taylor series that approximate output variable, y are developed. In this study first order Taylor 

series approximation is used. First order Taylor Series expansion approximating function y can be 

written as [88]; 
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where 

ox  is the vector of input parameters with the corresponding base values 

xi is the value of the ith input parameter within its range 

 

 Evaluation of the partial derivatives is the most demanding part of the differential analysis. For 

this reason, second order Taylor series expansion is avoided. 

 

Step 3: 

Variance propagation techniques are used to estimate the uncertainty in y. If first order Taylor 

series is used the following results will be obtained [88]; 
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where  

E denotes the expected value, 

 

 Variance is computed from the formula [88]; 
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where 

V is variance of the output variable 

Cov is variance covariance matrix of the parameters 
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Step 4:  

Taylor series approximations are used to estimate the importance of each parameter. If first 

order Taylor series expansion is used for the estimation of y, the contribution of parameters to the 

variance of y can be estimated with the ratio shown below [88]; 
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 The fractional contributions to variance can be used to order the parameters with respect to 

their contribution to the uncertainty in y. This ordering depends on both the absolute effect of the 

parameter, as measured with their partial derivatives, and the effect of distributions assigned to the 

parameter, as measured by V(xi). 

 

8.1.2 Monte Carlo Analysis 

 

Monte Carlo analysis is based on performing multiple model evaluations with probabilistically 

selected model input, and using the results of these evaluations to determine both the uncertainty in 

model predictions and the input variables that give rise to the determined uncertainty. Monte Carlo 

analysis consists of five steps; 

 

Step 1: 

Range and distribution of each parameter are determined. This can either be obtained by an 

expert opinion or by a parameter estimation procedure. These ranges and distributions will be used in 

the next step in the generation of a sample from the corresponding parameters. 

 

Step 2: 

A sample set is generated based on the ranges and distributions specified in the first step. 

Common used sample generation techniques are; random sampling, stratified sampling and Latin 

hypercube sampling. Among the three methods Latin hypercube sampling method is used because Latin 

hypercube sampling has a number of desirable properties which can be explained as; full stratification 

across the range of each variable, relatively small sample size requirement, direct estimation of means, 

variances and distribution functions and the availability of a variety of techniques for sensitivity 

analysis [88]. 

 

In Latin hypercube sampling method, range of each parameter (i.e. xi) is divided into m 

intervals of equal probability and one value is selected from each interval. The m values thus obtained 

for the first parameter (x1) are paired at random with the m values obtained for the second parameter 
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(x2). These m pairs are combined in a random manner with the m values of the third parameter (x3) to 

form m triples. This process is continued until a set of m n-tuples is formed which can be represented as 

 

[ ]inii xx ,.....,1=x , i = 1, . . . , m        (8.7) 

where; 

m is the sample size 

n is the number of parameters 

 

Latin hypercube sampling operates to ensure full coverage (stratification) over the range of 

each variable. In the case of n sample size, the range of each variable is divided into n equal probability 

intervals and one value is selected from each interval. 

  

Control of correlation within a sample used in a Monte Carlo analysis is very important. If two 

or more variables are correlated, then it is necessary that the appropriate correlation structure be 

incorporated into the sample if meaningful results are to be obtained from the uncertainty and 

sensitivity analysis. In response to this situation, Iman & Conover have proposed a method of 

controlling the correlation structure in random and Latin hypercube samples that is based on rank 

correlation rather than sample correlation [18]. In other words, correlation structures will be controlled 

on rank-transformed data rather than the original data. The advantages of this method are its simplicity 

and being distribution free. 

 

The controlling the correlation of the sample set is performed as follows; 

 

The sample set of size m from n input variables is represented in a nm×  matrix named as X. 

The procedure is based on rearranging the values in the individual columns of X so that a desired rank 

correlation structure results between the individual variables. Let C is the correlation matrix of the 

parameters, the aim is to generate a sample set that has same correlation with C. 

 

Although the procedure is based on rearranging the values in the individual columns of X to 

obtain a new matrix X* that has a rank correlation structure close to that described by C, it is not 

possible to work directly with X. For this reason, it is necessary to define a new matrix [88]; 
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Matrix S has the same dimension as X, but it is independent of X. Each column of S contains a 

random permutation of the m van der Waerden scores.  
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where 1−Φ is the inverse of the standard normal distribution.  

The matrix S is then rearranged to obtain the correlation structure defined by C. This 

rearrangement is based on the Cholesky factorization of C. 

 

C = PPT         (8.9) 

where 

P is a lower triangular matrix 

 

 Cholesky factorization is possible because C is a symmetric positive definite matrix. The 

condition that the correlation matrix associated with S be close to the identity matrix should be 

considered also. Unfortunately the correlation matrix of S will not always be the identity matrix. 

However, it is possible to make a correction for this situation. The starting point for this correction is 

the Cholesky factorization for the variance covariance matrix of S [88]; 

 

E = QQT         (8.10) 

where 

E is the variance covariance matrix of S 

 

The matrix S* is defined by 

 

S* = S(Q-1)TPT        (8.11) 

 

S* has C as its correlation matrix. By rearranging the values in the individual columns of X to 

have same rank order with S* will construct the matrix X* which has rank correlation matrix close to 

C.  

 After constructing the sample set, each element of the sample is supplied to the model as input, 

and the corresponding model predictions leads to sequence of results of the form 

 

Step 3: 

 Model is evaluated for each sample element shown in Equation 8.7. Creating a sequence of 

results of the form; 

 

( ) ( )iiniii fxxxf xy == ,...,, 21 , i = 1,2,. . . .,m    (8.12) 

 Model evaluations described in Equation 8.11 create a mapping from the parameters to the 

results of analysis yi, which can be studied in subsequent uncertainty and sensitivity analysis. 
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Step 4: 

 Results obtained from the analysis are used as the basis for an uncertainty analysis. One way to 

represent the uncertainty in y can be by means of mean and variable. When random or Latin hypercube 

sampling is used to generate the sample, the expected value and variance of y can be estimated by the 

following formula [88]. 
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 Use of expected value and variance to characterize uncertainty reduces all of the information 

in the sample set about the variability in y to two numbers. Clearly, information is lost in this process. 

Another way to summarize the variability in y is through the use of an estimated distribution function. 

In particular, this function is given by the step function F defined by 
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where 

 y have been ordered so that yi ≤yi+1 creating a plot that displays all the information contained about the 

uncertainty in y in the sample set. 

 

Step 5: 

 In this step sensitivity analysis,  based on an exploration of the mapping from analysis input to 

analysis results. One of the simplest but also most useful techniques is the generation of scatterplots. A 

scatterplot for input variable xj and the output variable yi is a plot of the points 

 

    (xij, yi), i=1, 2 ,. . . . ,m       (8.16) 

 

Sensitivity analysis performed as a part of Monte Carlo studies are often based on regression analysis. 

In this approach, a model of the form in Equation 8.17 is developed from the mapping between analysis 

inputs and analysis results [88]. 

∑+=
j

jj xbby 0
        (8.17) 

where 

xj are the parameters under consideration 
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bj are the coefficients that must be determined 

 The coefficients bj can be used to indicate the importance of the individual variables xj with 

respect to the uncertainty in y. 

 

 Computation of bj in Equation 8.17, is based on the minimization of sum of the misfits to the 

model of each equation [64]. 

 

 In order to measure the extend to which the regression model can match the observed data R2 

value is used. R2 is computed from the formula [88]; 
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where 

yi is the actual value computed from the sample set 

iŷ is the estimate of yi obtained from the regression model 

iy is the mean of yi 

 

 When the variation about the regression line is small, the corresponding R2 value will be close 

to 1. Conversely, if variation about the regression line is large, then the corresponding R2 will be close 

to 0. 

 

 The coefficients of the variables do not represent the importance of variables in the model. 

Because the unit of variable directly affects the coefficient, in order to obtain an idea about the 

importance of the variables, parameters and the output values are normalized by subtracting the mean 

and dividing by standard deviation. After this process, the coefficients are computed again, and the 

computed coefficients after the standardization is called standardized regression coefficients. The 

standardization formulae can be shown as [88]; 
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where; 

Y is the standardized output 

Xi is the standardized parameters 
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 When more than one parameter is under consideration, partial correlation coefficients can be 

used to provide a measure of the linear relationships between the output variable y and the individual 

parameters xp. The partial correlation coefficient between y and an individual variable xp is obtained 

from the use of a sequence of regression models. To compute partial correlation coefficient two 

regression models are constructed [88]; 

 

 ∑
≠

+=
pj

jj xbby 0ˆ         (8.21) 

where 

∑
≠

+=
pj

jjp xccx 0ˆ  

 The results of the two preceding regressions are used to define the new variables y - ŷ  and 

pp xx ˆ− . The partial correlation coefficient between y and xp is the correlation coefficient between y - 

ŷ  and pp xx ˆ− . Thus, the partial correlation coefficient provides a measure of linear relationship 

between y and xp with the linear effects of the other variables removed. The partial correlation 

coefficient provides a measure of the strength of the linear relationship between two variables after a 

correction has been made for the linear effects of the other variables in the analysis, and the standard 

regression coefficient measures the effect on the output variable that results from perturbing an input 

variable by a fixed fraction of its standard deviation. Thus, partial correlation coefficients and 

standardized regression coefficients provide related, but not identical measures of variable importance. 

In particular, the partial correlation coefficient provides a measure of variable importance that tends to 

exclude the effects of other variables, the assumed distribution for the particular input variable under 

consideration, and the magnitude of the impact of an input variable on an output variable. 

 

8.1.3 Fourier Amplitude Sensitivity Test (FAST) 

 

FAST is based on performing a numerical calculation to obtain the expected value and 

variance of a model prediction. Basis of this calculation is a transformation that converts a 

multidimensional integral over all the uncertain model inputs to a one dimensional integral. Further, a 

decomposition of the Fourier series representation of the model is used to obtain the fractional 
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contribution of the individual input variables to the variance of the model prediction. FAST method 

involves the following procedure; 

 

The output y is linked through the model f to a set of n parameters [ ]nxx ,...,,x 21=x  which 

can be represented as ( )xfy = . It is possible to state the expressions for the expected value and 

variance of y as [88]; 

 

( ) ( ) ( ) xxx dpfyE ∫Ω=          (8.22) 

( ) ( ) ( )[ ] ( ) xxx dpyEfyV
2

∫ −=        (8.23) 

where; 

p(x) is the probability distribution function of x. 

Ω  is the set of all possible values that x can take. 

 

The multidimensional integrals are difficult to evaluate and this difficult is overcome by 

applying a procedure that convert the multidimensional integral to one dimensional integral. This is 

done along a curve exploring the n dimensional domainΩ . The curve is defined by a set of parametric 

equations [88], 

 

( ) ( ) nisGsx iii ,...,1,sin =∀= ω       (8.24) 

where; 

s is a scalar variable over the range +∞<<∞− s  

Gi are transformation functions 

iω is a set of different frequencies associated with each parameter. 

 

So the integral in Equation 8.18 becomes 

 

( ) ( ) ( ) ( )[ ]dssGsGsGfyE nn∫
−

=
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ωωω
π

sin,,sin,sin
2
1

2211 …    (8.25) 

  

 In the second model, as s varies all the factors change simultaneously along a curve that 

systematically exploresΩ . Each xi oscillates periodically at the corresponding frequency iω . The 

output y shows different periodicities combined with the different frequencies iω , whatever the model f 

is. If the ith factor has strong influence on the output, the oscillations of y at frequency iω  shall be of 

high amplitude. This is the basis for computing a sensitivity measure, which is based for factor xi, on 

the coefficients of the corresponding frequency iω  and its harmonics. None of the frequency must be 

obtainable as a linear combination of the others with integer coefficients, so; 
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 If the condition mentioned in Equation 8.26 is satisfied, the curve is space filling and 

according to the ergodic theorem the rth moment can be computed by evaluating the model along the 

curve 
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 Cukier showed that if iω ’s are positive integers, then π2=T . By considering f(s) within the 

finite interval (- π; π) Equation 8.22 and Equation 8.23 become [23] 
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If the function f(s) is expanded in a Fourier series, the following equation is obtained; 
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The spectrum of the Fourier series expansion is defined as 22
jjj BA +=Λ  with Zj ∈ .Since 

f(s) is a real valued function, Aj, Bj, and jΛ  have the following properties; 

jjjjjj BBAA Λ=Λ−== −−− . 

By evaluating the spectrum for the fundamental frequency iω and its higher harmonics ipω , Di 

, portion of the output variance D arising from the uncertainty of parameter i can be estimated as: 
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where; 

{ }00 −= ZZ  

By summing all jΛ , 0Zj∈  total variance can be estimated as [23]; 

∑∑
+∞

=∈

Λ=Λ=
1

2ˆ
0 j

j
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jD         (8.34) 

The ratio DDi
ˆ/ˆ  is the estimate of the main effect of xi on y. This ratio can be used to 

computer the rank of the importance of the individual parameters with respect to their impact on the 

uncertainty in y. In practice, the integrals that define Aj and Bj, must be approximated numerically also 

the series in Equation 8.33 must be truncated. In principle, its magnitude does not depend on the choice 

of the frequencies used in computations. 

 

8.2 Implementation of Sensitivity Analysis Methods for CCD Cameras 

 

 In this subchapter the sensitivity analysis algorithms explained in chapter 8.1 will be 

implemented by DRM for CCD frame cameras. Differential analysis and Monte Carlo methods are 

implemented by 15 parameters. On the other hand, FAST is implemented with only 11 parameters. The 

reason of this is explained in the implementation part. Moreover the performance and the results of the 

sensitivity analysis methods are compared at the end of this subchapter. 

 

8.2.1 Implementation of Differential Analysis (Covariance Analysis) 

 

Since y array includes both φ  and λ, the sensitivity analysis will be performed for each output 

variables separately. Sensitivity analysis of the new rectification method with Differential Analysis is 

implemented to 9 different pixel positions on the CCD array of the Bilsat. The pixel positions are given 

as 

Table 8.1 Image Coordinates of analysis locations 

 

  1 2 3 4 5 6 7 8 9 

x 1 1 1 1024 1024 1024 2048 2048 2048 

y 1 1024 2048 1 1024 2048 1 1024 2048 
 

 

 

 

 

 

 

Figure 8.1 Illustration of analysis locations. 
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 The relationship between the parameters and the function can be written as; 

 

( )hZYXcppkkYXff ,,,,,,,,,,,,,, 2121 κφω∆∆=y     (8.35) 

where 

y is the ground coordinates of the corresponding pixel 

h is the elevation of ground point obtained from DEM 

the remaining are the interior and exterior camera parameters explained at chapter 4. 

Variance of the rectification is estimated by the following equation 
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The variance of inner orientation parameters are obtained by camera calibration procedure 

performed by F. Jurgen [33]. The variance covariance of the position is obtained from the output of the 

GPS receiver and accuracy of the attitude parameters are obtained at the end of star tracker calibration 

procedure. 
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 After computing the estimated variance of the rectification, fractional contribution to variance 

is obtained by applying the Equation 8.6. The analysis results are given below. 

 

Table 8.2 Variance of the latitude computed by the differential uncertainty analysis 

 

1,57E-10 1,56E-10 1,63E-10 

1,59E-10 1,53E-10 1,61E-10 

1,96E-10 1,52E-10 1,69E-10 

 

 

Table 8.3 Variance of the longitude computed by the differential uncertainty analysis 

 

2,63E-10 2,62E-10 2,62E-10 

2,52E-10 2,52E-10 2,54E-10 

2,96E-10 3,03E-10 2,88E-10 

 

 

Uncertainty of both latitude and longitude can be represented in UTM coordinates which is a 

meaningful result. This is performed by applying the formulae: 
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Table 8.4 Variance of the x coordinate in meters 

 

79,771 79,688 81,374

80,264 78,696 80,847

89,249 78,558 82,778

 

 

Table 8.5 Variance of the y coordinate in meters 

 

79,151 78,949 78,957

77,422 77,423 77,795

83,896 84,896 82,779
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 Fractional contribution of the parameters to the uncertainty with different pixel positions is 

given in Table B.26. 

 

Sensitivity indexes of the parameters with respect to latitude computed for the pixel location 

(1024, 1024) are presented as Bar Chart in Figure 8.2. Bar Chart is a proper way of visualization of 

quantities. 
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Figure 8.2 Illustration sensitivity indexes of the parameters for latitude. 

 

 

 When sensitivity of the parameters are examined it is seen that lens distortion parameters of 

the camera including k1, k2, p1 and p2 and size of the sensing element of the CCD array has smallest 

contribution to the uncertainty in the rectified image’s coordinates. Sensitivity of these parameters is 

minimum at the middle and increases at the edges and corners of the image. At the middle part of the 

image c does not contribute any uncertainty to the total uncertainty. This is because size of the sensing 

element does not have any effect on the rectified coordinates at the middle of the image. 

 

Uncertainty of the elevation obtained from DEM has very small contribution to the total 

uncertainty. The reason for this result can be explained as the almost nadir imaging of the satellite 

camera. Therefore, uncertainty in the elevation did not contribute to the total uncertainty considerably. 

However, in case of a oblique imaging it will be obvious that the contribution of the uncertainty of 

elevation will be much higher. 

 

 The remaining inner orientation parameters and cartesian position of the camera are the 

parameters that contributes to the total uncertainty moderately. The effect of camera position slightly 

decreases at the corners of the image. At first glance it can be thought as the effect of camera position 

decreases at the corners of the image but it is not the case. Since the effect of the other parameters to the 

uncertainty increases and the contribution of the uncertainty in the camera position to the total 
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uncertainty decreases. In the case of principal coordinates (pc) of the CCD frame, x coordinate of pc 

contributes more to the uncertainty in the latitude and y coordinate of pc contributes more to the 

uncertainty in the longitude. Both x and y coordinates of the pc contributes more to the total uncertainty 

at the lower part of the image.  
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Figure 8.3 Illustration sensitivity indexes of the parameters for longitude 

 

 

  Uncertainty in the attitude angles had contributed to the total uncertainty the most. This is an 

expected result since the model is very sensitive to the attitude angles which can easily be obtained by 

examining the partial derivatives. Among the 3 attitude angles κ angle, rotation in z axis, contributes 

least for both uncertainty in latitude and longitude. Uncertainty in pitch angle, rotation with respect to y 

axis, has the highest contribution to the uncertainty in the latitude, similarly uncertainty in roll, rotation 

with respect to x axis, has the highest contribution to the uncertainty in longitude. 

 

 

8.2.2 Implementation of the Monte Carlo Method 

 

The first step of the Monte Carlo analysis involves the selection of variable ranges and 

distributions. This step has a significant importance because both the range and distribution of 

parameters will affect the output of the sensitivity analysis. 

 

In this analysis, distribution of the parameters is accepted as normally distributed and the range 

is restricted by ± 3σ which covers the 99.9% of the possible range. After the determination of the 

distributions and ranges, generation of samples representing the determined distribution and ranges are 

concerned.  
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 Sample size is taken as 1000 and the Monte Carlo analysis is performed for 9 different pixel 

positions on the CCD array. The results of the 9 analysis each containing 1000 output result is stored in 

an array shown below. 
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 After performing the model computations by using the sample set, the expected value and 

variance for the output value can be estimated. 

 

 

Table 8.6 Expected values of the corresponding pixel positions for latitude 

 

40,0315 39,7544 39,4745 

40,0548 39,7899 39,5175 

40,0948 39,8213 39,5465 

 

 

Table 8.7 Expected values of the corresponding pixel positions for longitude 

 

32,3217 32,3767 32,4080 

32,6910 32,7290 32,7704 

33,0501 33,0825 33,1311 

 

 

Table 8.8 Standard deviation of the corresponding pixel values for latitude 

 

1,034E-04 9,618E-05 1,056E-04 

9,674E-05 9,569E-05 9,919E-05 

1,020E-04 9,453E-05 1,004E-04 

 

 

Table 8.9 Standard deviation of the corresponding pixel values for longitude 

 

1,564E-04 1,339E-04 1,356E-04 

1,272E-04 1,280E-04 1,281E-04 

1,359E-04 1,308E-04 1,358E-04 
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 An estimated distribution function gives a better characterization of the uncertainty in an 

output variable than a mean and variance. Distribution functions can be estimated from the relationship 

given in Equation 8.15. Abscissa displays the values for the output variable, and the ordinate displays 

the cumulative probability, which is the probability of obtaining a value equal to or less than a value on 

the abscissa. The step height is equal to the probability associated with the individual sample elements. 

 

 
Figure 8.4 Distribution function for the latitude of the camera for the pixel position (1024, 1024) 
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Figure 8.5 Distribution function for the longitude of the camera for the pixel position (1024, 1024) 

 

 

 Cumulative Distribution plots of the Latitude and Longitude of the ground coordinates give 

considerably precious information. By examining these plots the range of the computed ground 

coordinates can be obtained and the ranges for any probability ration can easily be computed. The 

advantage of cumulative distribution plots are, they store all information obtained in the analysis. On 

the other hand, computing mean and variance gets rid of the information obtained by the analysis and it 

reduces the information to only two numbers. However, if the two cumulative distribution functions are 

examined, it will be seen that they are very close to Normal Distribution, so it can be said that there will 

not be considerable amount of data loss if the data is reduced to mean and variance. But it is certain that 

original data is always more precise. 

 

 Scatterplots are a common way of examining the relationship and sensitivity between the 

parameters and observations. For this reason by examining the scatterplots the sensitivity of the 

parameter is tried to be revealed. The generation of scatterplots is undoubtedly the simplest sensitivity 

analysis technique. This approach consists of generating plots of the (xij, yi), i = 1,. . . ,m, for each input 

variable xj. 
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Figure 8.6 Scatterplot of the latitude and roll angle 

 

 

 

 

 

 
Figure 8.7 Scatterplot of the latitude and pitch angle 
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Figure 8.8 Scatterplot of the latitude and yaw angle 

 

 

 

When the scatterplot of latitude vs roll angle (Figure 8.6) is examined at first glance it is 

difficult to see a trend; it seems that the distribution is completely random. Meanwhile, it is not 

expected to see a trend between roll angle and latitude also. 

 

When the scatterplot represented in Figure 8.7 is examined a slight correlation can be observed 

between the latitude and pitch angle. The regression line that minimizes the sum of the squares will 

have a negative slope meaning that if pitch angle is increased the latitude will decrease. 

  

In the scatterplot of the latitude and yaw angle (Figure 8.8) is investigated, it is difficult to see 

any trend. However, for the central pixel (1024, 1024) it is not expected to see any trend between yaw 

angle and latitude. So for this pixel location it can be said that latitude is not sensitive to yaw angle. 
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Figure 8.9 Scatterplot of the longitude and roll angle 

 

 

 

 

 
Figure 8.10 Scatterplot of the longitude and pitch angle 
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Figure 8.11 Scatterplot of the longitude and yaw angle is shown 

 

 

 Although there is not a sharp trend when the scatterplot is examined carefully it is seen that 

when roll angle increases longitude decreases (Figure 8.9). This is an expected trend that there is a 

correlation between longitude and roll angle. 

 

When the scatterplot of pitch angle versus longitude is investigated it is difficult to see a trend 

(Figure 8.10). The distribution seems to be completely random. This is also an expected result that 

longitude and pitch angle is not correlated.  

 

When the scatterplot of the yaw angle versus longitude is examined, it can be said that it is 

difficult to see a trend between yaw angle and longitude (Figure 8.11). This is an expected result since 

for the pixel position (1024, 1024) it is expected not to see any correlation between yaw angle and 

longitude. However for the pixel positions located close to the edges of the sensor, changes in yaw 

angle affect longitude of the ground point considerably. 
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Figure 8.12 Scatterplot of the latitude and x coordinate of the principle point 

 

 

 

 

 
Figure 8.13 Scatterplot of the latitude and y coordinate of the principle point 
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Figure 8.14 Scatterplot of the longitude and x coordinate of the principle point 

 

 

 

When the scatterplot of the x coordinate of the principle point, x∆ , and latitude of the ground 

point is examined, it is difficult to see any correlation (Figure 8.12). Additionally, it is not expected to 

detect a significant correlation between x∆  and latitude. 

 

When the scatterplot of the y coordinate of the principle axis y∆ , versus latitude of the ground 

point is investigated it is seen that there is a slight correlation between two parameters (Figure 8.13). It 

can be concluded that while y∆  increases, Latitude decreases. This is also an expected result since the 

latitude and y∆  is expected to be correlated. 

 

 When the scatterplot of the x coordinate of the principle point versus longitude is examined, it 

is seen that there is a weak correlation that when x∆  increases, longitude increases as well (Figure 

8.14).  
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Figure 8.15 Scatterplot of the longitude and y coordinate of the principle point 

 

 

When the scatterplot of the y coordinate of the principle point, y∆ , versus longitude is 

examined, it is difficult to detect any correlation. 

 

Whole scatterplots are not printed since it is not practical, but when all scatterplots are 

examined it was not possible to observe a strong trend between the parameters and the ground point’s 

coordinates. However this does not mean that there is not any correlation between the ground point’s 

coordinates and remaining parameters. 

 

 When all scatterplots are examined it is seen that lens distortion parameters have almost no 

correlation with the ground coordinates, this means that lens distortion parameters do not have much 

sensitivity on ground coordinates. Similarly Elevation of ground coordinates does not have 

considerable impact on rectified coordinates. 

 

 It should be strictly mentioned that the results obtained by examining the scatterplots are valid 

for the pixel positions next to (1024, 1024) if different pixel positions are examined it should not be 

expected to end up with similar results. However the result may be similar but it will not be the same. 

Additionally, correlations detected between attitude and ground point and between principal point and 

ground point are valid for the current orbit characteristics and attitude angles. If the inclination of the 

Bilsat changes considerably or any significant change in the attitude angles of the satellite will change 

the obtained correlations and sensitivity relationships considerably. 
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 After the regression analysis for the geodetic latitude and longitude the following regression 

coefficients are obtained for the pixel position (1024, 1024). 
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 Unit of geodetic coordinates for the given coefficients is degree. In this model the coefficients 

of the parameters are determined in a way which minimizes the sum of the square of the residuals. The 

higher coefficient does not mean that the variable is more important than the others; it is related with 

the unit of the variable. For example, coefficients of the camera position are very small when compared 

with the other parameters coefficients, this is because the satellite position is indicated in millions 

which is much larger than the other parameters so the coefficients of the camera position is computed to 

be smaller than the other parameters. 

 

 The goodness of fit is measured by the R2 coefficient, for this regression analysis R2 is computed as; 

 

0.5156 for the geodetic latitude 

0.5018 for the geodetic longitude 

 

This indicates a moderate fit for the nonlinear model with linear regression model. 

 

 The solution for the standardized coefficients will be performed by least squares method. The 

regression model obtained by using standardized coefficients can be seen below; 
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R2 value for geodetic latitude is 0.5221 

R2 value for geodetic longitude is 0.5108 
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 Standardized regression coefficients give relationship between the model output and 

parameters by eliminating the effects of unit of the parameters. This property of standardized regression 

coefficients makes the comparison between the parameters possible. To begin with latitude, the most 

important parameter is computed to be pitch angle. Considering the geometry of the satellite, this is not 

surprising. The second important parameter is Y coordinate of the camera. However size of the sensing 

element on CCD array is computed to be least important parameter. This is because of the position of 

the pixel, which the analysis is performed. Just as in the case of differential analysis where the 

derivative of latitude with respect to c vanishes, the effect of c in Monte Carlo analysis vanishes at the 

pixel position (1024, 1024). Similar result is observed for yaw angle. Again the importance of yaw 

angle vanishes at the centre of the image. It seen that focal length is an important parameter both at the 

centre and at the edges. 

 

  When the coefficients of the parameters for the longitude are examined it is seen that roll 

angle is the most important parameter for the longitude. The second important parameter is the X 

coordinate of the camera. This result is not surprising when the satellite geometry is considered; these 

two parameters are expected to be correlated with the longitude. When the remaining parameters are 

examined besides the camera attitude and camera position, focal length of the camera and anomaly of 

DEM can be considered as important parameters. Importance of DEM anomaly is computed lower for 

the longitude than latitude. This is because of the imaging geometry, for a different pixel position or 

attitude angles a reverse case may be observed. The lens distortion parameters are computed as the least 

important parameters. Since their coefficients are very small, it is difficult to compare them within each 

other. A small error in computation procedure may affect the coefficient of the parameter considerably. 

Since the system was ill conditioned and Tikhonov regularization method is applied, this can easily 

happen. 

 

 Regression analysis often performs poorly when the relationships between the input and 

output variables are nonlinear. This is an expected result since regression analysis is based on 

developing linear relationships between variables. The problems associated with poor linear fits to 

nonlinear data can often be avoided with the technique of rank regression. 

 

 In rank regression analysis, original data are replaced with their corresponding ranks and the 

usual regression procedures are performed on these ranks. Specifically the smallest value of each 

variable is assigned the rank 1 and the largest value is assigned as rank m where m is the size of the 

sample set. 

 

 The rank correlation data shows that there is no significant correlation between the ranks of the 

parameters and the output. 
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Ranked regression coefficients 
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R2 value for geodetic latitude is 0.4905 

R2 value for geodetic longitude is 0.4908 

 

 For the solution of the ranked regression coefficients again Tikhonov regularization method is 

applied. When the coefficients of the ranked transformed data are observed it is seen that the lens 

distortion parameters are the most important ones. This is really an unexpected result. The reason for 

this result may be explained by the rank of the lens distortion parameters somehow coincided with each 

other and the correlation of the rank transformed data of the lens distortion parameters become larger. 

On the other hand, it is known that the effect of the lens distortion parameters on the ground point’s 

coordinates are very small. When the other parameters are examined it is seen that the x coordinate of 

the principle point is less important than the y coordinate of the principle point.  

 

 When the coefficients of the regression model computed for the longitude are examined, it is 

seen that their magnitudes are almost same. There are slight differences between the coefficients of 

parameters which indicates that the rank transformed data did not provide valuable solutions. 

 

 Furthermore, the ranked coefficients are standardized and the regression analysis is repeated 

with the standardized rank coefficients in order to compare the parameter importance with the 

coefficients of the standardized rank coefficient data results with the other data results. At the end of the 

analysis the following result is obtained. 
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R2 value for latitude is 0.4356 

R2 value for longitude is 0.4377 



 138

 When the coefficients of the standardized rank transformed data for latitude are examined, it is 

seen that attitude angles except for yaw angle have significant effect on the output. Furthermore, pitch 

angle has the most importance among the attitude angles. It is surprising that asymmetric lens distortion 

parameter p1 has the highest coefficient. It is sure that this parameter can not be the most important 

parameter but its rank transformed form is highly correlated with the rank transformed form of the 

output variable. 

 

 For the coefficients of the longitude, the highest coefficient is again the asymmetric lens 

distortion parameter. For the longitude asymmetric lens distortion for the x direction has the highest 

coefficient, while asymmetric lens distortion parameter for the y direction has the highest coefficient 

for the latitude. x coordinate of the principal point has significant importance also. For position 

parameters; Y coordinate of the camera position has the highest correlation among the other 

parameters. Additionally, radial lens distortion parameters have significant importance for both latitude 

and longitude. Consequently, it can be said that standardized rank transformed data increases the 

importance of the intrinsic camera parameters. 

 

 

Table 8.10 Correlation coefficients of latitude computed by original data 

 

Parameter 

Correlation 

Coefficient 

f 0.019814 

x∆  -0.015475 

y∆  -0.059639 

k1 0.011546 

k2 0.030562 

p1 0.018968 

p2 -0.0069374 

c 0.02393 

ω  -0.037016 

φ  0.023234 

κ  0.025821 

X 0.075037 

Y 0.04826 

Z 0.055268 

hξ  -0.062685 
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Figure 8.16 Bar chart of the correlation coefficients for latitude 

 

 

 In Figure 8.16 absolute values of the correlation coefficients are plotted in order to represent 

the magnitude of correlation. 

  

When the partial correlation coefficients of the parameters computed for the latitude are 

examined, it is seen that the lens distortion parameters have slightly lower importance than the position 

and attitude of the camera. To begin with focal length of the camera, it has very low correlation with 

the latitude; this is probably because of the image coordinates of the analysis location. As the previous 

analysis had shown, at the center of the image effect of focal length on the ground coordinates 

decreases. As expected latitude is correlated with the y coordinate of the principle point. In the analysis 

it is seen that there is a strong relationship between y∆ and latitude. As computed in the regression 

analysis second radial lens distortion parameter k2 has stronger correlation than first radial lens 

distortion parameter k1. Additionally, asymmetric lens distortion parameters have comparably less 

effect on latitude but first asymmetric lens distortion parameter has stronger correlation. Size of the 

sensor of the CCD frame has considerably stronger correlation with the latitude. Although for the center 

of the image it is expected to see no correlation with ground coordinates, c has important correlation 

with latitude. 

 

 Position and attitude are the parameters that strong correlations are expected to be observed. 

On the contrary, slightly larger correlation than the interior camera parameters are found out. Especially 

the attitude angles have very weak correlation. Roll and yaw angles are not expected to have strong 

correlation with latitude, however pitch angle is thought to be the most important parameter for the 

latitude has very weak correlation. This can be explained as the relationship between pitch angle and 

latitude can be expressed in terms of other parameters such as; camera position and principle point 

coordinates. Because of this, partial correlation coefficient of pitch is lower than the expected value. 
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For the camera position, X and Y coordinates have strong correlation which is an expected result. 

However Z coordinate of the camera position has the highest correlation coefficient among all 

parameters which is not expected. Furthermore, elevation anomaly has very strong correlation between 

latitude, which is not an expected result also. 

 

 Correlation coefficients of parameters for longitude for the pixel coordinate (1024, 1024) are 

given as; 

 

 

Table 8.11 Correlation coefficients of longitude computed by original data 

Parameter
Correlation 
Coefficient 

f 0.062596 

x∆  0.059495 

y∆  -0.069782 

k1 -0.022712 

k2 -0.0030084 

p1 -0.019923 

p2 -0.0040983 

c 0.034977 

ω  -0.018621 

φ  0.019947 

κ  0.060504 

X 0.061843 

Y 0.027501 

Z 0.02658 

hξ  -0.016636 
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Figure 8.17 Bar chart of the correlation coefficients for longitude 

 

 

In Figure 8.17 absolute values of the correlation coefficients are plotted in order to represent 

the magnitude of correlation. 

 

 When the correlation coefficients for the longitude are examined it is seen that focal length of 

the camera has strong correlation with the longitude. In the previous analysis weak correlation with the 

latitude has been observed. Principle coordinates of the sensor have stronger correlation with the 

longitude. In the previous analysis y coordinate was computed to have stronger correlation with 

latitude, similarly for this analysis it is expected to observe strong correlation with x coordinate. 

Although x coordinate has strong correlation, y coordinate has stronger correlation than x, which is not 

expected. Radial lens distortion parameters have slightly weak correlation, first radial lens distortion 

parameter has stronger correlation than the second parameter as expected. Same situation is observed in 

asymmetric lens distortion parameters also. Similar to the previous analysis, size of the sensor of the 

CCD frame has strong correlation with ground coordinates. This correlation is not expected for that 

pixel coordinates where the analysis was performed. 

 

 For the attitude and position of the camera, the correlation observed is below the expectations. 

Especially roll angle has very little correlation with longitude. On the other hand, roll angle is expected 

to have the strongest correlation with the longitude. Pitch angle has weak correlation which is expected 

to be observed but yaw angle has very strong correlation which is not expected to be observed. Among 

the three attitude angles yaw angle is the most correlated parameter, which is certainly an unexpected 

result leads to the conclusion; the relationship between the yaw angle and longitude can not be 

represented by the other parameters. For the camera position X coordinate of the camera has very 

strong correlation, after the focal length of the camera it has the strongest correlation with longitude. 
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Longitude is expected to be correlated with X and Y coordinates of the camera position, both 

parameters have direct effect on longitude however correlation of Y coordinate of the camera is weaker 

than the expected result. Anomaly of the elevation has weak correlation with the longitude. This result 

was observed at the previous regression analysis also; however ground coordinates are not expected to 

be highly correlated with elevation anomaly. 

 

 Besides partial correlation coefficients of parameters, partial rank correlation coefficients are 

computed by replacing the original data with rank transformed data. Partial correlation coefficients are 

presented below. 

 

 

Table 8.12 Correlation coefficients of latitude computed by rank transformed data 

Parameter
Correlation 
Coefficient 

f 3.0961 

x∆  3.0343 

y∆  3.0735 

k1 3.084 

k2 2.9767 

p1 3.049 

p2 3.0728 

c 3.1129 

ω  3.0284 

φ  3.0216 

κ  3.0011 

X 3.0317 

Y 3.0398 

Z 3.0434 

hξ  3.0444 

 

 

 

 When the correlation coefficients computed by the rank transformed data are examined, it is 

seen that the results are very close to each other. This situation makes commenting on the results 

difficult because in the computation procedure of the coefficients, Tikhonov regularization is applied 

for the stabilization of the equation. Accordingly a small error caused by the regularization method may 

change the variable importance significantly.  

 



 143

 Focal length of the camera has slightly stronger correlation with the latitude. Analysis with the 

original data led to a very weak correlation between focal length and latitude. So it can be said that rank 

transformation has increased the importance of focal length. Principal point’s coordinates have 

correlation also, especially y coordinate has strong correlation with latitude. This result was observed in 

the previous analysis also and it is an expected result. First radial lens distortion parameter has strong 

correlation with the latitude while second lens distortion parameter has weaker correlation. This result 

was also an expected situation. Additionally, second order lens distortion parameter has the weakest 

correlation with latitude. Asymmetric lens distortion coefficients have moderate correlation and the 

second parameter has slightly stronger correlation. This result was observed in the previous analysis 

also. Size of the sensing element has the strongest correlation. It is known that c is an important 

parameter but its importance is not expected to be stronger than attitude angles. 

 

 When the attitude angles are considered, it is seen that roll and pitch angles have moderate 

importance and Kappa angle has weak correlation. For the latitude it is expected to have strong 

correlation with pitch angle. However, observing weak correlation with yaw angle is an expected result. 

For the camera position Z coordinate has the strongest correlation. It is known that all components of 

camera position influences ground coordinates. However, it is expected to observe higher correlations 

for X and Y components of the camera position. Elevation anomaly of DEM has moderate correlation 

with latitude. To conclude the analysis, size of the sensing element has the strong correlation which is 

an expected result however importance of the Pitch angle is found out to be lower than the expectations. 

 

 Next analysis is performed with the rank transformed data to compute the correlation between 

geodetic longitude and the parameters. 
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Table 8.13 Correlation coefficients of longitude computed by rank transformed data 

Parameter 

Correlation 

Coefficient 

f 3.1034 

x∆  3.0472 

y∆  3.0346 

k1 3.0744 

k2 3.0353 

p1 3.0879 

p2 3.0578 

c 3.0298 

ω  3.0088 

φ  3.0823 

κ  3.0614 

X 3.0829 

Y 3.0912 

Z 3.1195 

hξ  3.1131 

 

 

 When the coefficients of the correlation analysis for the longitude with rank transformed data 

are examined, it is seen that they are close to each other. This is similar to the previous analysis of rank 

transformed data of latitude. It can be concluded that rank transformed data gives correlation 

coefficients which are close to each other. So this makes the interpretation of the results of the analysis 

difficult. 

 

 Focal length of the camera has strong correlation with longitude. This was observed in the 

previous analysis also. However, rank transformed data has slightly decreased its correlation. Principle 

point coordinates have moderate importance on longitude. Both coordinates have very similar 

correlation on longitude which is not an expected result. When the imaging geometry of the camera is 

considered it is expected that the x coordinate should have considerably higher importance on longitude 

than y coordinate has. Radial lens distortion parameters have moderate importance on the longitude. 

First radial lens distortion parameter has considerably higher correlation than the second one, which 

was observed in the previous analysis also. Asymmetric radial lens distortion parameters have slightly 

stronger correlations. It can be said that higher importance for asymmetric lens distortion was observed 

by using rank transformed data. Additionally, first asymmetric lens distortion parameter has stronger 

correlation than the second one. Size of the sensing element has very weak correlation with the 

longitude, so this can be interpreted as rank transformation decreased the correlation between longitude 

and size of the sensing element. 
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 When the attitude angles are considered it is seen that pitch and yaw angles have the strongest 

correlation with longitude. For the roll angle which has slightly weak correlation with latitude is 

expected to have strong correlation with longitude. Coordinates of the camera position have very strong 

correlation with longitude. The highest coefficient among all parameters was Z coordinate of camera 

position. Apparently, this is not an expected result, because Z coordinate is not expected to be 

correlated with longitude stronger than X and Y coordinates. Furthermore, its correlation coefficient is 

higher than camera attitude angles’ coefficients which is not an expected result. Elevation anomaly also 

has very strong correlation with longitude so it can be concluded that rank transformation has increases 

the correlation between the longitude and camera position and elevation anomaly. 

 

Monte Carlo method is an appropriate model for the sensitivity and uncertainty analysis. Since 

Monte Carlo techniques are particularly appropriate for analysis problems in which large uncertainties 

are associated with the input variables. In particular, differential analysis is likely to perform poorly 

when the relationships between the input and output variables are nonlinear and the input variables 

have large uncertainties. Moreover, Monte Carlo techniques provide direct estimates for distribution 

functions [88]. 

 

Monte Carlo techniques do not require large amount of sophistication that goes beyond the 

analysis problem of interest. In contrast, differential analysis require a large amount of specialized 

knowledge to make them work which can be very costly in terms of analyst time as in the case of taking 

partial derivatives in differential analysis method. Conceptually Monte Carlo techniques are simpler 

and do not require modifications to the original model or additional numerical procedures [88]. 

 

 However, in this analysis better results are obtained at the end of the differential analysis. 

Since sensitivity analysis of Monte Carlo is based on regression analysis, it did not present proper 

results for a non linear model. 

 

 

8.2.3 Implementation of FAST 

 

To start the sensitivity analysis range and distribution of the parameters should be determined. 

To compare the performance of the methods same range and distributions are defined for the 

parameters; 

 

To compute one dimensional integral in Equation 8.25 frequencies which is not a linear 

combination of the others should be assigned for each parameter. Unfortunately only 11 linear 

independent frequencies can be obtained. For this reason, number of parameters is reduced from 14 to 

11. The parameters, which sensitivity will be analyzed are listed with the assigned frequencies in Table 

8.14 as following; 
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Cartesian Camera Coordinates in SE : X, Y, Z 

Attitude of Camera: κφω ,,  

Focal length of the Camera: f 

Principal Coordinates: yx ∆∆  

Radial lens distortion parameters: k1, k2 

 

 

Table 8.14 Frequencies assigned for the parameters are listed. 

Parameter  X Y Z ω    φ   κ   f  x∆  y∆   k1  k2 
Frequency 145 177 199 41 67 105 219 229 235 243 247 

 

 

 

The 11 parameter integral is reduced to one parameter integral by the following transformation 

[23]; 

( )svxx iiii ωsin1+=        (8.40) 

where; 

ix is the nominal value of the ith parameter 

iv  defines the endpoints of the estimated range for uncertainty for xi 

iω  is the assigned frequency for the ith parameter 

s varies in 2,2 ππ−  

The assigned vi values can be listed as; 

 

 

Table 8.15 Assigned vi values for the parameters 

Prm  X Y Z ω    φ   κ   f  x∆   y∆   k1  k2 
vi 8.89e-6 1.32e-5 8.82e-6 0.678 2.62 0.890 0.0057 0.074 0.074 1.78e-4 2.22e-8 

 

 

 

The integrals in Equations 8.25 are evaluated numerically for the 9 pixel locations which are 

same with the differential and Monte Carlo sensitivity analysis implementations. Sensitivity values of 

the parameters computed for the pixel location (1024, 1024) are presented in Table 8.16 and Table 

8.17; 
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Table 8.16 Computed sensitivity indexes for latitude by FAST 

Parameter Sensitivity

X 0,00072

Y 0,00016

Z 0,00039

ω  0,00743

φ  0,00191

κ  0,00078

f 0,00019

x∆  5,00E-06

y∆  0,00010

k1 0,00019

k2 0,00021
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Figure 8.18 Sensitivity Indexes for longitude computed by FAST 

 

 

When the sensitivity of parameters on the latitude is examined it is seen that the most 

important parameter is roll angle and the second important one is pitch angle. Least sensitive parameter 

on the phi coordinate is x∆ . As expected y∆ has more effect on the latitude than  x∆  has. 

Furthermore X cartesian coordinate has significant effect on the latitude.  
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Table 8.17 Computed sensitivity indexes for longitude by FAST 

Parameter Sensitivity

X 0,00073

Y 0,00015

Z 0,00038

ω  0,00744

φ  0,00192

κ  0,00078

f 0,00019

x∆  5,17E-06

y∆  0,00010

k1 0,00019

k2 0,00021
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Figure 8.19 Sensitivity Indexes for longitude computed by FAST 

 

 

When the sensitivity of parameters on the longitude is examined similar results are obtained. 

Again the most important parameter is roll angle, and then pitch angle is the second important 

parameter. Least sensitive parameter on the phi coordinate is x∆ , however its sensitivity is slightly 

increased. Furthermore X cartesian coordinate has significant effect on the variance of the lambda 

coordinate as it effects phi coordinate also. Sensitivity of the parameters on longitude is very similar to 

their sensitivity on latitude. For the analysis on longitude, it is expected to observe higher sensitivity for 

y∆ and Pitch angle. 
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Result of the FAST does not depend on the pixel coordinates which is not the case in 

Differential Analysis and Monte Carlo Simulation. When the analysis results for different pixel 

locations are examined it is seen that there were almost no differences in sensitivity indexes for the 

parameters. This is an important advantage of FAST when compared with the other methods since it 

reduces the number of required model computations significantly.  

 

 

8.3 Implementation of the Sensitivity Analysis Methods for Pushbroom Scanners 

 

Sensitivity and uncertainty analysis of the DRM is performed by using three methods as in the 

case for CCD frame camera. Differential analysis, Monte Carlo, and Fourier Amplitude Sensitivity Test 

(FAST) are implemented respectively. In three methods the sensitivity of the parameters to the model 

are examined and uncertainty in the results are computed. 

 

For the implementation of Differential Analysis and Monte Carlo Sensitivity analysis 23 

parameters are included. However, only 11 parameters are analyzed with FAST. This is because only 

11 linearly independent numbers can be obtained [23]. Implementation of Sensitivity Analysis methods 

are presented below; 

 

 

8.3.1 Implementation of Differential Analysis (Covariance Analysis) 

 

Differential Analysis method is implemented with 23 parameters, which can be listed as 

following; 

 

[ ]hkyfaaaaaaaaaaaa ssssss ξλλλφφφβ 1443322114321 ∆′′′′Ω= ������������������   (8.41) 

where 

Ω  is the right ascension of the ascending node 

a'1 is the roll angle between SO and SB 

a’2 is the pitch angle between SO and SB 

a’3 is the yaw angle between SO and SB 

a’4 is the attitude angle of the camera between SB and SC 

1a� is the change in roll angle with time 

2a� is the change in pitch angle with time 

3a� is the change in yaw angle with time 

4a�  is the change in attitude angle of the camera 

1a��  is the change rate in roll angle with time 

2a��  is the change rate in pitch angle with time 
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3a��  is the change rate in yaw angle with time 

4a��  is the change rate in attitude angle of the camera 

sφ  is position correction for the camera latitude 

sφ� is the position correction rate for the camera latitude 

sφ�� is the position correction change rate for the camera latitude 

sλ  is position correction for the camera longitude 

sλ�  is the position correction rate for the camera longitude 

sλ��  is the position correction change rate for the camera longitude 

  f is the focal length of the camera (mm) 

y∆  is the principal point coordinate on the pushbroom scanner 

k1 is the radial lens distortion parameter (1/mm2) 

hξ  is the error of the elevation obtained from DEM. 

 

Differential analysis method is implemented for 15 different pixel locations to examine not 

only the sensitivity of the parameters but also the change of the sensitivity of the parameters with 

respect to pixel locations. The pixel locations and distributions are listed below; 

 

Table 8.18 Distribution of analysis locations for pushbroom scanner 

 

1, 1 2500, 1 5000, 1 

1, 1000 2500, 1000 5000, 1000

1, 2000 2500, 2000 5000, 2000

1, 3000 2500, 3000 5000, 3000

1, 4000 2500, 4000 5000, 4000

 

Distribution of the pixel position in the image is shown as; 

 

 
Figure 8.20 Illustration of analysis locations on the image 
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Similar to the analysis for CCD frame cameras, sensitivity analysis for DRM will be 

performed for latitude and longitude separately. Variance of the ground positions is computed by 

Equation 8.4 and Equation 8.5. For the implementation of the differential sensitivity analysis, the 

variance covariance matrix is assumed to be a diagonal matrix and the order of the parameters will be 

the same with parameter order in Equation 8.40. Partial derivatives of the parameters with respect to 

geodetic latitude and longitude of the ground coordinates are represented as; 
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Variance of the latitude of pixel locations is computed and shown in Table 8.19. 

 

Table 8.19 Variance of latitude computed by differential sensitivity 
7,67E-12 8,42E-12 1,14E-11

1,89E-11 3,46E-11 7,64E-12

8,37E-12 1,13E-11 1,87E-11

3,42E-11 7,61E-12 8,32E-12

1,12E-11 1,84E-11 3,38E-11

 

Variance of the longitude of pixel locations is computed and shown in Table 8.20 as; 

 

Table 8.20 Variance of longitude computed by differential sensitivity 
3,82E-11 5,31E-11 1,01E-10

1,89E-10 3,31E-10 3,79E-11

5,27E-11 1,00E-10 1,88E-10

3,29E-10 3,77E-11 5,24E-11

9,94E-11 1,87E-10 3,27E-10
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When the variance is transformed from geodetic coordinates to UTM coordinates, the 

following results shown in Tables 8.21 and 8.22 are obtained. 

 

 

Table 8.21 Variance of the ground points with respect to UTM x coordinate 

311,164 341,491 461,887

766,214 1402,419 310,028

339,523 457,342 757,043

1386,188 308,908 337,596

452,919 748,076 1370,322

 

 

 

Table 8.22 Variance of the ground points with respect to UTM y coordinate 

909,385 1263,605 2397,818

4501,326 7889,465 903,623

1255,390 2381,865 4471,800

7838,270 898,027 1247,413

2366,435 4442,750 7788,504

 
 
 

When the sensitivities of the parameters are examined it is seen that the attitude angles have 

considerable impact on the variance of the ground coordinates (Table 8.23). For the latitude pitch and 

yaw parameters are very sensitive. Pitch angle is expected to be a sensitive parameter for latitude while 

yaw angle is not expected to be that much sensitive. Furthermore, change in roll angle with respect to 

time is very sensitive for latitude. Additionally, latitude is computed to be sensitive to all position 

anomaly parameters including anomaly in latitude and its rate of change. Because of the obliqueness of 

the image sensitivity of the DEM error is high. 

 

Longitude is sensitive to roll and theta angles (Table 8.24). The roll and theta angles are 

expected to have high sensitivity on longitude if the camera geometry is considered. Furthermore, 

change in pitch angle with respect to time has considerable effect on longitude. This is a similar result 

of the change in roll angle has high sensitivity on latitude. Surprisingly, longitude is more sensitive to 

position anomaly of the camera than attitude of the camera. Change in latitude anomaly of the camera 

has the highest sensitivity while, focal length of the camera has the lowest sensitivity. Additionally 

error in DEM has slightly important sensitivity on longitude. The remaining parameters do not have 

considerable sensitivity on longitude. Sensitivity indexes of the parameters for latitude and longitude 

for the 15 analysis locations are given in Table B.35 and B.36.  

 

 



 153

Table 8.23 Sensitivity Indexes of the parameters with respect to latitude of ground coordinate (See 

Equation 8.41). 

Parameter 
Sensitivity 

Index 
Right Ascension 5,602E-08
Roll 2,312E-03
Pitch 1,641E-01
Yaw 1,038E-02
Theta 2,058E-03
Roll Rate 3,614E-02
Roll Rate Change 6,883E-04
Pitch Rate 5,826E-04
Pitch Rate Change 1,501E-05
Yaw Rate 1,270E-07
Yaw Rate Change 1,075E-07
Theta Rate 4,893E-04
Theta Rate Change 6,625E-03
Phi Anomaly 3,472E-02
Phi A. Rate 4,702E-01
Phi A. Rate Change 2,196E-01
Lambda Anomaly 2,974E-02
L. A. Rate 1,935E-02
L. A. Rate Change 2,620E-03
Focal Length 4,201E-13
Principle Coordinate 1,866E-09
Lens D. Parameter 2,139E-09
DEM Error 4,019E-04
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Figure 8.21 Sensitivity indexes of parameters with respect to latitude 

 

 

 

 

Table 8.24 Sensitivity Indexes of the parameters with respect to longitude of ground coordinate. 

Parameter 
Sensitivity 

Index 
Right Ascension 1,203E-04
Roll 3,050E-02
Pitch 1,121E-07
Yaw 1,266E-03
Theta 7,148E-02
Roll Rate 6,497E-06
Roll Rate Change 1,237E-07
Pitch Rate 1,048E-07
Pitch Rate Change 8,883E-03
Yaw Rate 7,519E-05
Yaw Rate Change 6,364E-05
Theta Rate 6,454E-03
Theta Rate Change 8,740E-02
Phi Anomaly 2,375E-08
Phi A. Rate 3,248E-07
Phi A. Rate Change 2,679E-02
Lambda Anomaly 3,628E-03
L. A. Rate 6,722E-01
L. A. Rate Change 9,104E-02
Focal Length 1,458E-11
Principle Coordinate 6,483E-08
Lens D. Parameter 7,430E-08
DEM Error 1,051E-04
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Figure 8.22 Sensitivity indexes of parameters with respect to longitude 

 

 

 

8.3.2 Monte Carlo Sensitivity Analysis 

 

For the Monte Carlo Sensitivity Analysis same 23 parameters are selected for the analysis. 

Distribution of the parameters is accepted as normally distributed and the range is restricted by ± 3σ of its 

mean value which covers the 99.9% of the possible range. For the sampling Latin Hypercube sampling 

method is used. 

 

For the sample generation it is assumed that there is no correlation between parameters. Similar to 

the Monte Carlo analysis for the CCD camera 1000 sample is generated for the model evaluation. Sample 

size is adequate for the representation of the normal distribution.  

 

After evaluating the model with the generated sample set for the corresponding pixel positions, the 

fallowing mean and standard deviations are obtained. 

 

 

Table 8.25 Expected value of the latitude computed by Monte Carlo analysis 

40,357 40,220 40,099

39,992 39,900 40,351

40,215 40,093 39,986

39,894 40,346 40,209

40,087 39,981 39,888
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Table 8.26 Expected value of the longitude obtained by Monte Carlo analysis 

34,16276 34,11499 33,95756

33,68918 33,30595 34,20479

34,15695 33,99966 33,7317

33,34926 34,24678 34,19885

34,04169 33,77413 33,39249

 

 

 

Variance of the ground points’ coordinates are given as; 

 

Table 8.27 Variance of the UTM x coordinate in meter 

940,432 3517,139 56199,137

84114,023 96757,481 941,369

3517,881 56209,352 84149,282

96798,876 945,873 3518,667

56220,260 84187,716 96845,007

 

 

 

Table 8.28 Variance of the UTM y coordinates in meter 

9546,721 24215,459 39155,049

87855,562 64318,090 9546,893

24164,339 38272,615 82581,426

43446,433 9546,904 24115,024

37421,542 77472,673 23053,435

 

 

As mentioned before description of the data set by mean value and variance causes considerable 

amount of data loss. For this reason mean and variance are not adequate for the data analysis in Monte 

Carlo sensitivity analysis method. For an efficient analysis of the data, probability distribution functions 

should be generated. 
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Figure 8.23 Cumulative Distribution Function of Latitude for the pixel coordinates of (2500, 1000). 
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Figure 8.24 Cumulative Distribution function of Longitude for the pixel coordinates of (2500, 1000) 
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 Examining scatterplots is a common way to interpret the relations between the parameters and the 

output. But since there are 23 parameters for the Pushbroom case, examining the relationships one by one 

by means of scatterplots will not be feasible. For this reason, scatterplots of the parameters versus the 

computed ground coordinates will not be printed. The relation between parameters and ground coordinates 

will be tried to find out by regression analysis. 

 

 In the first regression analysis raw data is analyzed and for the pixel position (2500, 2000) 

following R2 values are obtained; 

 

0,5298 for the latitude 

0,5254 for the longitude 

 

 R2 values are satisfactory for a non linear model. The high R2 value can be explained as taking 23 

parameters for the regression analysis. It should be mentioned that during the computation of the regression 

parameters, the matrix inverse required for the solution of the coefficients of the parameters could not be 

computed by ordinary methods and Tikhonov regularization is used for the computation of the regression 

parameters. At the end of the computation, the following regression parameters are obtained for the phi and 

lambda coordinates respectively; 
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 As mentioned before, coefficients of the parameters do not directly indicate the variable 

importance because coefficients of the parameters depend on the unit of the parameter. For this reason the 

parameter with highest coefficient is not the most sensitive parameter. However, coefficients indicate the 

change in the ground coordinates if a unit change is occurred in the parameter. When the coefficients are 

examined it is seen that the latitude is very sensitive to the focal length of the camera. Second important 

parameter is the yaw angle. For longitude, again focal length is an important parameter but right ascension 

of the ascending node, pitch, yaw and theta angle of the camera are more sensitive. Furthermore, lens 

parameter k1 and pitch and yaw change rates are also important for longitude. Their changes effect the 

ground coordinates considerably. 

 

 Standardized regression coefficients are a better way to represent the parameter importance since 

they do not depend on the unit of the parameter. As performed for the CCD cameras, parameters are 
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standardized by subtracting their mean value and dividing to their standard deviation. After the regression 

analysis the following coefficients are obtained; 
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with R2 values of 

0,5624 for the latitude 

0,5273 for the longitude 

 

 When the regression coefficients are analyzed, it is seen that latitude generally depends on the 

attitude and attitude rates. There is no significant difference between the sensitivities of the attitude angles. 

Although roll angle is expected to have considerable effect on the latitude, at the end of the analysis it is 

seen that it does not have significant effect. Ground elevation has least effect on latitude. 

 

 For longitude, besides the attitude angles orbital parameters, such as right ascension of the 

ascending node and argument of perigee have considerable effect on the longitude. Similarly, elevation of 

ground point has very little effect on the longitude. Longitude is affected more than latitude by the interior 

camera parameters such as principle coordinate of pushbroom camera and tangential lens distortion 

parameters. 

 

 The coefficients computed after the regression analysis can not be said to be true coefficients of 

the model. There are several reasons for this proposal, the first one is that the model is not linear and for 

this reason finding a true relationship by a linear regression analysis is not expected. But the results will 

give a rough idea about the parameters of the model. However, the results obtained cannot be dependable. 

Another reason that can reduce the reliability of the analysis results is that in the model there were 24 

parameters which are somehow correlated with each other either in the sampling process or in the 

mathematical model. This situation reduces the accuracy of the solution of the regression model because of 

the rank deficiency in the model. Analyzing the model with more parameters may give higher R2 values 

but the solution of the model may not be accurate because of the rank deficiency. This can be the 

explanation of the unexpected results. 

 

 Besides standardized regression analysis, rank transformed and standardized rank transformed 

data can be analyzed also. To perform this regression analysis, original data is replaced with its rank value 
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and the rank transformed data is analyzed. Following coefficients are computed after the analysis of rank 

transformed data; 
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with R2 values of 

0,5360 for the latitude 

0,5174 for the longitude 

 

 Rank transformed data represents the relationship between the parameters and the output variables 

better than the data itself if the relationship is nonlinear and monotonic. The regression analysis performed 

with the rank transformed data is expected to give better results than the original data. 

 

 When the results of analysis are examined; for latitude, roll and pitch angles have considerable 

effect on the results. Surprisingly elevation of the ground point has more effect on the output than it has on 

the previous regression results.  

 

 For the longitude orbit perturbation parameters have considerable impact on the output and the 

inner orientation parameters have lower effect compared with the previous regression results. Furthermore 

longitude is sensitive to attitude change rates especially the omega angle. 

 

 The regression analysis is repeated by standardizing the rank transformed data and following 

results are obtained; 
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with R2 values of 

0,4676 for the latitude 

0,4358 for the longitude 

 

 In the standardized rank transformed data an unexpected result is obtained. 9 parameters both for 

the latitude and longitude have the same coefficients. There are little differences at these coefficients that 

fractional part is same up to six or seven digits. The explanation of this event can be the ill conditioned 

situation of the solution that every parameter sample set has same values ranging from zero to one. This 

may cause an inaccurate solution for the last ten parameters. For the other parameters the output result is 

sensitive for the attitude angles and the orbit perturbation parameters which is an expected result. 

 

 Partial correlation coefficient is a good representation of variable importance too. To examine the 

effect of the parameter on ground coordinate by a different method, partial correlation coefficients are 

computed. 

 

 

Table 8.29 Correlation coefficients of the parameters for the latitude (See Equation 8.41). 

Parameter 
Correlation  
Coefficient 

True Anomaly 0,0634
Right Ascension 0,0311
Roll -0,0017
Pitch -0,005
Yaw 0,0833
Theta 0,068
Roll Rate -0,0271
Roll Rate Change 0,0305
Pitch Rate 0,0074
Pitch Rate Change -0,0276
Yaw Rate 0,053
Yaw Rate Change -0,0195
Theta Rate 0,0073
Theta Rate Change -0,031
Phi Anomaly 0,0447
Phi A. Rate -0,0389
Phi A. Rate Change 0,0089
Lambda Anomaly -0,0283
L. A. Rate -0,0495
L. A. Rate Change 0,0604
Focal Length -0,0036
Principle Coordinate 0,0028
Lens D. Parameter -0,0248
DEM Error -0,012
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Figure 8.25 Bar chart of the correlation coefficients for latitude 

 

 

 

In Figure 8.25 absolute values of the correlation coefficients are plotted in order to represent the 

magnitude of correlation. 

 

 When the correlation coefficients are examined it is seen that true anomaly and right ascension of 

the ascending node have significant importance on the latitude (Table 8.29). This means that the Kepler 

Elements are important parameters that they can not be expressed in terms of other parameters. Pitch and 

Yaw are the important attitude angles of the camera while Roll angle is not as important as Pitch and Yaw 

angles for latitude. Theta is also an important parameter for the latitude; it is one of the highest correlated 

parameter. Furthermore, changes of attitude angles and change rates of attitude angles are highly correlated 

also. They have strong correlation with latitude so they can be considered as important parameters for the 

rectification. 

 

 Position anomalies and their rates are highly correlated also. Although they are not correlated as 

high as attitude parameters they can still be considered as important parameters. Interior camera parameters 

have moderate correlation with latitude, especially focal length and principle point coordinate have very 

little correlation. Radial lens distortion parameter k1 has strong correlation with latitude. Additionally 

elevation anomaly can be considered as slightly correlated with latitude. 
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Table 8.30 Correlation Coefficients of the parameters for the longitude (See Equation 8.41) 

Parameter 
Correlation  
Coefficient 

True Anomaly 0,0652
Right Ascension 0,0204
Roll 0,0003
Pitch -0,0118
Yaw 0,0732
Theta 0,0577
Roll Rate -0,0283
Roll Rate Change 0,0308
Pitch Rate -0,0016
Pitch Rate Change -0,0367
Yaw Rate 0,0576
Yaw Rate Change -0,0073
Theta Rate -0,0017
Theta Rate Change -0,0166
Phi Anomaly 0,0316
Phi A. Rate -0,0304
Phi A. Rate Change 0,0018
Lambda Anomaly -0,0263
L. A. Rate -0,0507
L. A. Rate Change 0,0508
Focal Length -0,0006
Principle Coord 0,0083
Lens D. Parameter -0,0466
DEM Error 0,023
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Figure 8.26 Bar chart of the correlation coefficients for longitude 

 

 

In Figure 8.26 absolute values of the correlation coefficients are plotted in order to represent the 

magnitude of correlation. 
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 Right ascension of the ascending node and true anomaly have high correlation with longitude also 

(Table 8.30). However, for the right ascension of the ascending node it is expected to be more strongly 

correlated with longitude. Pitch and yaw angles are highly correlated, while roll angle has almost no 

correlation with longitude. For the roll angle it is expected to have higher correlation with longitude. 

Furthermore theta angle is highly correlated with longitude which was also highly correlated with latitude. 

Additionally attitude angles’ rate and change rate are highly correlated with longitude also. Both anomaly 

of the camera position for latitude and longitude are correlated with longitude of the ground point. 

Additionally, rate and change rate of the longitude of the position anomaly are more correlated with 

longitude of the ground point than the other parameters. For the intrinsic parameters focal length and 

principle point location have slightly weak correlation with longitude which was observed in the analysis 

for latitude also. Lens distortion parameter has strong correlation with longitude. Anomaly of elevation has 

stronger correlation with longitude than it has with latitude. 

 

 

Table 8.31 Correlation Coefficients of the parameters for the latitude with rank transformed data 

Parameter 
Correlation  
Coefficient 

True Anomaly 0,0332
Right Ascension 0,0309
Roll -0,0103
Pitch -0,0028
Yaw 0,0251
Theta -0,0271
Roll Rate 0,0091
Roll Rate Change -0,0207
Pitch Rate -0,0142
Pitch Rate Change -0,0074
Yaw Rate 0,0014
Yaw Rate Change 0,0228
Theta Rate 0,0374
Theta Rate Change 0,0534
Phi Anomaly 0,0123
Phi A. Rate 0,0123
Phi A. Rate Change 0,0123
Lambda Anomaly 0,0123
L. A. Rate 0,0123
L. A. Rate Change 0,0123
Focal Length 0,0123
Principle Coordinate 0,0123
Lens D. Parameter 0,0123
DEM Error 0,0579

 

 

Besides partial correlation coefficients of the original data, correlation coefficients of the rank transformed 

data are computed as in the case of Monte Carlo Analysis for CCD frame cameras. The reason of this, it is 
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expected that the rank transformed data represent the relationship between the parameters and the model 

output in non linear monotonic models better than the original data. The computed partial correlation 

coefficients of the rank transformed data are shown in Table 8.31; 

 

 Rank transformed form of the Kepler parameters are highly correlated with latitude. The same 

relationships were observed in the analysis performed with original data. When attitude angles of the 

satellite are examined it is seen that roll and yaw angles are highly correlated with latitude. Pitch angle has 

very weak correlation with latitude of the ground point. Theta angle, which is the attitude of the camera, is 

strongly correlated with latitude. Rate and change rate of the attitude angles of the camera and satellite also 

have strong correlation with latitude. Among the rate and change rates of the attitude angles, theta’s rate 

and change rate are observed to be the most correlated ones. Surprisingly anomalies of the satellite position 

have same correlation with latitude. This unexpected result can be explained as their correlations with the 

latitude are the same if the portion of the relationship which can be expressed by the remaining parameters 

are subtracted. Exactly the same correlation coefficients for the position anomalies may be caused by the 

regularization method that Tikhonov number may not be selected properly for these parameters. When the 

intrinsic camera parameters are examined it is seen that their importance has increased after the application 

of rank transformation. Additionally same result can be concluded by examining the correlation coefficient 

of anomaly of the elevation. 
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Table 8.32 Correlation Coefficients of the parameters for the longitude with rank transformed data 

Parameter 
Correlation  
Coefficient 

True Anomaly 0,0393
Right Ascension -0,0415
Roll 0,009
Pitch -0,0657
Yaw -0,0212
Theta -0,0322
Roll Rate 0,0338
Roll Rate Change 0,0129
Pitch Rate -0,0713
Pitch Rate Change 0,0273
Yaw Rate 0,0255
Yaw Rate Change 0,0432
Theta Rate 0,0622
Theta Rate Change 0,0281
Phi Anomaly 0,0439
Phi A. Rate 0,0439
Phi A. Rate Change 0,0439
Lambda Anomaly 0,0439
L. A. Rate 0,0439
L. A. Rate Change 0,0439
Focal Length 0,0439
Principle Coordinates 0,0439
Lens D. Parameter 0,0439
DEM Error -0,0185

 

 

True anomaly and right ascension of the ascending node have considerably strong correlation with 

longitude (Table 8.32). In the analysis with the original data, correlation of right ascension of the ascending 

node was computed weaker than the expected. However, with the rank transformed data more realistic 

results are obtained if the Kepler parameters are considered. When the attitude angles of the satellite are 

considered, it is seen that pitch angle has the highest correlation with the longitude of the ground 

coordinate. Furthermore, theta angle is highly correlated with longitude also. As in the case of the previous 

analysis rate and change rate of the attitude angles are highly correlated with longitude. Among these pitch 

rate and theta rate have the highest correlation coefficients. Similar to the previous analysis camera 

position anomaly parameters have same correlation coefficients. The result can not be explained as a 

coincidence. This shows that uncorrelated relationship of the position anomalies for both latitude and 

longitude are the same for the rank transformed data. Intrinsic camera parameters have slightly stronger 

correlation in the case of rank transformed data. However, elevation anomaly has weaker correlation 

coefficients. 
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8.3.3 Fourier Amplitude Sensitivity Test (FAST) 

 

Besides Differential and Monte Carlo Sensitivity Analysis, the sensitivity of the parameters for the 

Pushbroom scanner model is tested by FAST. Implementation of FAST is performed by 11 parameters, 

since the application of the model requires the generation of same amount of linear independent integer 

numbers. Since only 11 linear independent integer numbers can be obtained, accordingly sensitivity of only 

11 parameters is analyzed. 

 

Implementation of the FAST will be the same with the implementation of FAST for CCD cameras. 

The parameters to be analyzed are; 

 

ν  true anomaly 

Ω  right ascension of the ascending node 

f focal length of the camera 

y∆  Principal coordinate of the camera 

sφ  position correction for the camera latitude 

sλ  position correction for the camera longitude 

a'1 roll angle between SO and SB 

a’2 pitch angle between SO and SB 

a’3 yaw angle between SO and SB 

a’4 attitude angle of the camera between SB and SC 

k1 lens distortion parameter 

 

Frequencies assigned for the parameters are as following; 

 

145 177 199 41 67 105 219 229 235 243 247 

 

The 11 parameter integral is reduced to one parameter integral by the transformation explained in 

Equation 8.31. Assigned vi values for the transformation are listed in Table 8.33; 
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Table 8.33 Assigned vi values to the parameters 

Parameter Value 

 1v  4,63E-05 
 2v  3,93E-05 
 3v  1,4 
 4v  3,43E-07 
 5v  4,03E-09 
 6v  2,50E-08 
 7v  1,28E-04 
 8v  1,89E-04 
 9v  9,06E-05 
 10v  1,37E-04 
 11v  1,00E-05 
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Figure 8.27 Sensitivity Indexes for longitude computed by FAST 

 

 

 

Sensitivity analysis with FAST method is performed for 36 image points. Analysis results for the 

image point (2000,2000) is given in Table 8.34; 
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Table 8.34 Sensitivity indexes of latitude of pushbroom model (see p. 167) 

Parameter Sensitivity 

ν  0,0023091

Ω  0,0043536

 f  0,012822

y∆   0,023876

sφ  0,014567

sλ  0,0098141

a'1  0,0052627

a’2  0,0033327

a’3  0,0023154

a’4  0,0016547

k1  0,0014188

 

 
 

 

 When the sensitivity indices computed after the FAST are examined, it is seen that among the 

orbital parameters right ascension of the ascending node affects the output more than the true anomaly 

(Table 8.34). Focal length of the camera also has significant effect on the latitude of the rectified ground 

coordinates. y∆ , principle point of the sensor has the highest importance on the latitude. Position 

anomalies of the satellite influence the latitude of the ground point. Anomaly in the latitude has higher 

influence than the anomaly in longitude. Among the attitude angles of the satellite and camera roll and 

pitch angles have the highest effect on the latitude. Lens distortion parameter k1 has moderate effect on the 

latitude. 
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Table 8.35 Sensitivity indexes of longitude of pushbroom model (see p. 167) 

Parameter Sensitivity 

 ν  0,00137

 Ω  0,00079

 f  0,00216

y∆   0,00970

sφ  0,00372

sλ  0,00228

a'1  0,00101

a’2  0,00049

a’3  0,00051

a’4  0,00043

k1  0,00038
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Figure 8.28 Sensitivity Indexes for longitude computed by FAST 

 

 

 When the results in Table 8.35 are examined it is seen that both latitude and longitude are 

sensitive to focal length, to attitude angles and to orbit perturbation parameters. Longitude is very sensitive 

to principal point. On the other hand, latitude is not, as expected. Additionally, k1 which is the lens 

distortion parameter is thought to be more sensitive to longitude, but the results showed that it has very 

little sensitivity for both, especially for the longitude. 
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 Roll and theta angles have considerable impact on latitude, however only roll angle have notable 

effect on longitude. Sensitivity of the parameters do not depend on the pixel position. When the FAST 

analysis results of the other pixel locations are examined which are presented in Appendix B, it will be 

seen that sensitivity indexes of the same parameter for different pixel locations are almost the same. This 

property of FAST reduces the number of model implementations considerably. However, implementation 

of one model in FAST is computationally more demanding than one implementation of both Differential 

and Monte Carlo Sensitivity Analysis. 
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CHAPTER 9 

 

 

DISCUSSION OF RESULTS AND CONCLUSIONS 

 

 

 
 In this chapter an overall discussion of the analysis and the thesis will be performed and some 

recommendations will be made for the future studies. Discussions and suggestions will be made for 

each chapter separately and an overall conclusion will be written for the thesis study. 

 

 In chapter 1, a brief literature survey is given for rectification, error analysis and sensitivity 

and uncertainty analysis. Apart from literature survey, rectification steps are basically introduced. 

 

 In chapter 2, reference systems and time systems used in the thesis is briefly explained. 

Besides, assumptions while defining reference systems such as; image coordinate system, camera 

coordinate system, etc. are explained and illustrated by figures. By these explanations, any possible 

misunderstanding is prevented. 

 

 In chapter 3, study area, image and DEM used in the analysis is briefly explained.  

Furthermore, technical properties of the satellites that take the images are briefly introduced. By the 

help of this information, imaging geometry can easily be identified and the analysis results of 

sensitivity and uncertainty can easily be commented. 

 

 In chapter 4, algorithm of DRM is explained in detail. Every step of DRM is clearly explained 

and illustrated that it can easily be implemented. In this work, special effort is spent on the atmospheric 

refraction correction, which is skipped for coarse spatial resolution satellite images. Additionally relief 

displacement correction and resampling algorithms are stated clearly. Besides, convergence of the 

DRM is improved by modifying the relief displacement correction algorithm. 

 

 DRM is adopted for pushbroom scanners in Chapter 4. Since rectification of pushbroom 

images requires continuous camera position and attitude data, interpolation methods are introduced for 

this purpose. Both rectification methods for CCD frame cameras and pushbroom scanners require 

position and attitude data from telemetry. If these data are not available, by means of space resection, 

position and attitude should be estimated. 
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 Algorithm of DRM can be improved by using better lens distortion and atmosphere refraction 

models. Current algorithm does not check for the possible blunders can be present in position and 

attitude data. For the future studies, the model can be improved and the telemetry file can be checked 

for the blunders. 

 

 In chapter 5, parameter estimation algorithms used in this thesis are explained. Gauss Helmert 

(Mixed Model) model is applied for parameter estimation. In this model besides fixed parameters, 

random parameters are introduced to the system. For random parameters; correction to elevation 

obtained from SRTM DEM and correction to pixel coordinates of GCPs are assigned. At the end of the 

parameter estimation corrections for random and fixed parameters are computed. Because of the camera 

geometry and correlations between the parameters resulting equation system in parameter estimation 

procedure was “ill-conditioned”. To stabilize the system three regularization algorithms are introduced 

to the system and their performances are compared. For a detailed analysis, atmospheric refraction 

parameters can be added to the system as random parameters. Temperature, humidity and air pressure 

are the parameters which can be considered as “random parameters” for different portion of the satellite 

image. 

 

 Additionally in chapter 5, improvement gained by introducing regularization methods are 

examined. For this analysis fictitious observation regularization methods is applied. The test includes 

the not only the effect of regularization but also the effect of GCP distribution and correlations between 

parameters. The improvement in the solution accuracy is measured by the condition number of the 

matrix to be inverted. In the first analysis, 14 parameters model is tested and for the second analysis 12 

parameters model is tested. By examining the results of analysis, it is concluded that if the GCPs are 

narrowly distributed it reduces the accuracy of the solution but if a regularization method is introduced 

to the system this effect diminishes. Regularization methods significantly increase the accuracy of the 

solution, but it can not completely remove the effect of correlation between the parameters. At the end 

of the analysis it is seen that there was significant difference between the 14 parameters model and 12 

parameters model. For this reason, to obtain an accurate solution at the end of the parameter estimation, 

uncorrelated analytical model should be derived even regularization methods are implemented. 

Additionally, for slightly correlated models as in the case of 12 parameter model, if GCPs are widely 

distributed with the improvement in the computation precision of computers without any regularization 

algorithm accurate solutions can be obtained in the future. 

 

 In chapter 6, parameter estimation and the DRM both for CCD frame camera and pushbroom 

scanners are implemented. Parameter estimation procedure is implemented three times with different 

regularization methods to compare the results and performance of the regularization methods. For this 

reason, scope of the parameter estimation procedure was not only to correct the parameters but also to 

test the performance of the regularization methods.  
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 Among the three regularization methods introduced, singular value decomposition (SVD) gave 

the smallest residuals. Furthermore convergence of SVD was the fastest however, estimated parameters 

with SVD was not realistic. In other words, focal length and satellite position was not properly 

estimated. This can be caused by improper selection of regularization factor, α  or the inaccurate 

singular value decomposition. This can be possible, because of the very high condition number of the 

system to be decomposed. Remaining methods; Tikhonov regularization and fictitious observation 

solutions are similar to each other. Fictitious observation uses cofactor matrix of parameters, while 

Tikhonov regularization uses identity matrix for stabilizing the system. For this reason, it is expected to 

end up with smaller residuals for Tikhonov regularization since it estimates the parameters more freely. 

On the other hand, cofactor matrix of the parameters behaves like a weight matrix and adds restrictions 

to the parameter estimation procedure. Because of this, error function cannot converge to minima as 

small as in the case of Tikhonov regularization. However, if initial values of the parameters are precise, 

then fictitious observation should be selected for regularization. In this thesis, results of Tikhonov 

regularization method are used because the initial values for the parameters were not precise and it is 

not necessary to estimate parameters by assigning weights. 

 

 Additionally, restriction equations are appended to parameter estimation procedure to obtain 

better estimations to parameters. For this purpose, by using geometrical relationship between focal 

length, spatial resolution, satellite altitude and size of the sensing element a restriction equation is 

generated. It has turned out that, estimated parameters were better than the result of the parameter 

estimation without restriction, although residuals were larger. This was an expected result since adding 

restrictions to the system increases the residuals. This can be explained by the restriction equation 

which prevents the error function (sum of the squares of the residuals) converging to minima if the 

restriction equation is violated. For this reason, restriction equation put restrictions to the possible 

values that can be assigned to focal length while preventing the error function to converge to minima. 

 

 Furthermore an outlier test is performed to check if there is a blunder in the coordinate 

measurements of GCPs. When the result of analysis was examined, it was found that there is not any 

blunder in the measurements. But the equation system was computed to be highly sensitive on the error 

of the ground coordinates. This means that error in the ground coordinates of the GCPs effect the 

parameter estimation result significantly which was expected because the equation system is “ill-

conditioned”. Contribution of bad satellite geometry to the sensitivity is significant. 

  

 Parameter estimation procedure is also applied to DRM for pushbroom scanners. In this case 

only Tikhonov regularization method is employed. Unfortunately, since initial values for the parameters 

were not available, initial values are assigned roughly. Additionally parameters of the rectification 

method were highly correlated i.e. attitude angles and position anomaly parameters were correlated. 

Because of these two reasons residuals were not pleasing. Ironically additional parameters added to the 

system can not decrease the residuals, since they reduce the accuracy of the solution considerably. 
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From the results of the analysis it can be concluded that for DRM for pushbroom scanners, initial 

values of the parameters must be close to their “true values” to obtain a proper estimation at the end. 

 

 At the end of the parameter estimation, with the corrected parameters DRM both for CCD 

frame cameras and pushbroom scanners are implemented. By Nearest Neighbor resampling algorithm, 

image maps are produced from the raw satellite images. It is seen that the computational demand and 

storage requirement of the DRM is very high. Especially for the pushbroom scanners generation of an 

image map on a 1 GHz computer took almost 16 hours. Additionally, storage of the ground coordinates 

of the ASTER image requires more than 600 MB. For BilSAT images implementation of the algorithm 

takes less than 3 hours and the storage requirement is slightly less than 100 MB. Storage amount will 

not cause any problem when the present storage media is considered. However, computational demand 

of the DRM, especially for the pushbroom images is very high that even a workstation may be required. 

The algorithm is implemented by using Matlab, however on executable software, computation time will 

decrease significantly.  

 

 DRM provides valuable information after the rectification. Resulting product has accurate 

registered coordinates and has 3D position data: horizontal coordinates and elevation. Furthermore, 

accurate 3D terrain views can be generated with DRM depending on the accuracy of DEM. If the 

computational cost and the benefits of DRM is compared it is seen that the benefits are highly 

dominant. 

 

 As a final analysis in chapter 6, convergence of DRM is tested. Furthermore differences in 

result of the rectification are measured with respect to different threshold values. Besides these analyses 

by assigning highly oblique attitude angles, the convergence performance of DRM is tested for oblique 

images. To conclude the analysis results, re-computing the ellipsoidal normal does not provide a 

notable improvement in the rectification accuracy. Also assigning very small threshold values for the 

convergence criteria does not improve the accuracy. For a reasonable threshold value, 0,1 meter can be 

proposed. 

 

 Convergence of the relief displacement algorithm is relatively fast for attitude angles less than 

15 degrees. However, for the attitude angles more than 20 degrees convergence of the algorithm 

significantly slows down. In the analysis, as a limit case 25 degrees are assigned for roll and pitch 

angles leading to very slow convergence of DRM. For some points an iterative relief displacement 

correction was stopped, since it reached the maximum allowable iteration number. However, this 

analysis proved that DRM can be applied to the rectification of highly oblique images successfully with 

only a small amount of rectification error for steep sloped portions of the image. 

 

In chapter 7, accuracy of DRM for both CCD frame cameras and pushbroom scanners are 

compared with some of the existing methods. Results of comparison indicate that DRM has higher 

accuracy for CCD frame cameras and slightly accurate results for pushbroom images. Unpleasing 
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results of the DRM for pushbroom scanners are probably caused by assigning improper initial values 

for the parameters. The performance of the method is tested with simulation data in which the elevation 

differences between ground control points are exaggerated. DRM method performance was very 

pleasing while affine transformation method showed significant decrease in accuracy. This shows that 

DRM can be implemented for the rectification of mountainous areas with confidence. 

 

 

 
 

(a) Classical differential rectification procedure 

 

 
 

(b) DRM method 

 

Figure 9.1 Comparison of the DRM with classical differential rectification method [4]. 

 

 As shown in Figure 9.1 DRM maps the image coordinates directly on to the reference ellipsoid 

while the classical rectification methods project the pixels on a plane. Although earth curvature 
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corrections are applied after the projection, error caused by the assumption can not be completely 

removed. Furthermore if image is not taken in nadir direction, error caused by the classical rectification 

methods increase considerably. However, oblique images do not introduce significant errors in DRM, 

the only error is the effect of elevation anomaly on the horizontal coordinates. This can easily be 

overcome by using precise DEM.  

 

 Besides error analysis, in chapter 7 sensitivity of parameter estimation procedure with respect 

to blunders in the initial values of the parameters are examined. It is seen that yaw angle is significantly 

affected by the blunders. It is known that the sensitivity of yaw angle is more than interior camera 

parameters which are not affected as much as yaw angle. This shows that it can not be said that high 

sensitive parameters can be estimated accurately and low sensitive parameters can not be estimated as 

high accurate as high sensitive parameters. Accuracy of parameter estimation depends on the 

correlation of the parameter with the remaining parameters and the effect of the errors of the initial 

values assigned to parameters. However, it is expected to estimate high sensitive parameters accurately 

if it is not highly correlated with the other parameters. This can easily be seen by examining the 

cofactor matrix of the estimated parameters. 

 

 In chapter 8, a detailed sensitivity and uncertainty analysis of the DRM for both CCD frame 

cameras and pushbroom scanners is performed. In the analysis three sensitivity analysis methods are 

implemented which can be listed as; Differential Analysis, Monte Carlo Sensitivity Analysis and 

FAST. Besides sensitivity of the parameters, performances of the methods are compared. 

 

 Differential Analysis is a local sensitivity analysis method that one parameter is free to change 

while the remaining parameters are kept constant. To predict the sensitivity of the parameter, base value 

(true value) of the parameters should be known accurately. If this can not be known, based on the 

sensitivity of the remaining parameters the model can behave considerably different and lead to an 

irrelevant sensitivity index. Furthermore if the model is complex or parameter number is relatively 

high, computing the partial derivatives analytically will be very demanding. If the partial derivatives are 

computed numerically, then inaccurate computation of partial derivatives may be faced because of the 

limitation of the computer. Differential Analysis had shown that uncertainty in the rectified images 

increases at the pixel positions further from the image center. Furthermore it is seen that Bilsat images 

can be rectified by DRM method better than 3 pixel accuracy without using any GCP if the exterior 

camera parameters are obtained from telemetry. 

 

 Monte Carlo Sensitivity Analysis does not require computing partial derivatives and it is a 

global sensitivity analysis method. Furthermore, it requires several implementation of the method based 

on a random sampling of the domain of the parameters. These properties of the Monte Carlo Sensitivity 

Analysis present very precious information about uncertainty of the model output. Especially 

cumulative probability distribution functions of the model output is significantly important information 

provided by the method. However, sensitivity analysis of the method is not as valuable as uncertainty 
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analysis. Sensitivity analysis is based on regression analysis of the parameters and model output. Linear 

relationship is derived by means of coefficient at the end of the analysis, and sensitivity of the 

parameter is assigned by considering the coefficient of the parameter. Since the relationship is 

nonlinear, linear regression analysis can not model the relationship between the parameters and output 

variable properly. Low R2 values obtained at the end of the analysis can be the proof of this comment. 

Additionally, although the sample set of the parameters are sampled randomly, for the systems having 

relatively more parameters the coefficients of the parameters can not be computed accurately because 

of the correlation. Furthermore regularization methods may lead to inaccurate solution for the 

coefficients of the parameters. To conclude, valuable information about the sensitivity of the 

parameters could not be obtained by regression analysis. 

 

 FAST method requires assigning linearly independent integer number for each parameter 

which is labeled as the parameters frequency. Then the Fourier transformation of the model is 

computed and sensitivity of each parameter is obtained by its frequency amplitude. Drawback of FAST 

can be counted as its complex theory and linearly independent number requirement. Because of the 

second drawback, parameter number to be analyzed is decreased to 11. If the assigned frequencies of 

the parameters are somehow correlated, FAST will give completely irrelevant sensitivity indexes. 

Furthermore, for complex models integral of the Fourier transform is evaluated numerically and this 

may cause computational errors. On the other hand, FAST gave very similar sensitivity indexes for 

different pixel locations. This property of FAST reduces the required analysis number, thus reducing 

the computation amount. 

 

 For the overall comparison of the three methods Monte Carlo Sensitivity Analysis, provided 

valuable information about the uncertainty of the model. Although it is a local sensitivity analysis 

method, differential analysis presented meaningful and valuable sensitivity indexes for the parameters. 

 

 For future studies some recommendations can be made concerning the DRM. The convergence 

criteria of the method can be increased by adding logical statements. Furthermore, it is possible that for 

highly oblique images the algorithm may converge to more than one elevation value for a ground 

coordinate. This may be prevented by checking the neighboring pixels’ ground coordinates. The 

algorithm may be extended and improved for bundle block adjustment. Mosaics can be produced from 

sequential satellite images after performing a parameter estimation procedure. Additionally DRM 

provides very accurate results, so this can be especially useful for producing super resolution images 

especially for the mountainous regions. Furthermore, DRM can be implemented in a GIS software. 
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APPENDIX A 

 

 

TERMINOLOGY  

 

 

 
Some of the terms used in the thesis and derivation of some equations are briefly introduced in 

this appendix. 

 

• Image Maps: Rectified images can be used as maps after the rectification, because the rectified 

images will have same scale and direction at every pixel. Maps produced by this way save time and 

money compared with the classical map production methods [2, p. 293]. An example of an image 

map is shown in the Fig 1. Rectified images provide a basis for image maps and can be used as a data 

source for GIS applications.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1 Example of an image map, it has a scale and a legend. Courtesy of İşlem Şirketler Grubu 

“Bosporus and Environ”. 
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In the image map shown in Figure A.1 has same scale at every pixel. In other words each 

picture element of the image covers same area on ground. Furthermore, north direction is same at every 

location in the image. This is sustained by rectifying the image. Besides, the map has a legend for 

specific areas inside the image, such as lakes, forests, urban areas, harbors and etc. for this reason the 

rectified image can be used as a map and called as image map. 

 

 

• DEM (Digital Elevation Model): DEM is a coordinated elevation data collected at regular 

grids and stored in a specific format. DEM has certain accuracy which depends on the method 

it is produced [2, p11]. 

• Rectification: Process of assigning coordinates with respect to a certain datum for all pixels of 

the image taken from airplane or satellite.. This may be achieved by performing an affine 

transformation or by differential rectification [2, p.189]. 

• Rank Transformation: Replacement of numeric data with its rank is called rank 

transformation. In rank transformed data, smallest number is assigned as 1, second smallest 

data is assigned as 2 and the largest number is assigned as the size of the sample set. Rank 

transformed data is expected to give better results than original data for non linear models.  

• Base Value: Most probable value of a parameter. 

 

 

Derivation of R213(-ω, -φ, -κ)  Rotation Matrix 

 

R213(-ω, -φ, -κ) rotation matrix is constructed by rotating the 3 axes in an order 2, 1 and 3. Conventions 

of the rotation are as follows; 

 

• The coordinate system is Right Handed reference system 

• No 1 axis is X, No 2 axis is Y and No 3 axis is Z axis. 

• Angles are measured as positive, when looking from the positive side of the principle rotation 

axis and rotating the axes in counter clockwise direction. 

 

Rotation in X direction, (rotation of 1) by –ω angle; 

 

ωω
ωω

cos*sin*
sin*cos*

ZYZ
ZYY

XX

+=′
−=′

=′
       (A.1) 

 

In matrix form 
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ωω
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sincos0
001

        (A.2) 

Rotation in Y direction, rotation of 2 axis by –φ angle. 

 

φφ
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in matrix form 
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Rotation in Z direction, rotation 3 by –κ angle 
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in matrix form 
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Then the multiplication of these three matrixes will form R213 rotation matrix; 
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Lens Distortion 

 

 The mathematical equations for the model of lens distortions typically comprise two 

components: symmetric radial distortion and decentering distortion [2, p. 64].  

 

Radial Lens Distortion 

 

Symmetric radial lens distortion is the symmetric component of distortion that occurs along 

radial lines from the principal point (Figure A.2). Although the amount may be negligible, this type of 

distortion is theoretically always present even if the lens system is perfectly manufactured to design 

specifications. Distortion occurs in a direction inward toward or outward from the center of the image. 

In this thesis radial distortions are corrected by a two parameter polynomial considering the distance of 

the image point with respect to principal point [2]. 

 

 
 

Figure A.2 Symmetric radial lens distortion effects [2, p. 65] 

 

 

Decentering Lens Distortion 

 

Decentering lens distortion is the lens distortion that remains after compensation for symmetric 

radial lens distortion (Figure A.3). Decentering distortion can be further broken into asymmetric radial 

and tangential lens distortion components. These distortions are caused by imperfections in the 

manufacture and alignment of the lens system. In this thesis decentering lens distortions are modeled 

with two parameters also. 
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Figure A.3 Decentering lens distortion [2, p. 65] 

 

Symmetric radial lens distortion and decentering lens distortion effects are usually present in 

every camera and their superposition is shown in Figure A.4. The superposed effect is corrected by 

means of a polynomial function whose coefficients are determined after a camera calibration procedure. 

 

 
 

Figure A.4 Combined symmetric radial and decentering lens distortion effect [2, p. 65]. 
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APPENDIX B 
 
 
 

RESULTS OF ANALYSES 
 
 
 
 

Analysis results for the Mixed Model with fictitious observations 
 
 

Table B.1 Corrections to the pixel values obtained after the Mixed Model with fictitious observations 
 
 

X Y Elevation 
0,0856 -0,2278 1,4346
0,5668 -0,6219 8,3557
0,5506 -0,9736 8,5932

-0,2730 -0,1243 -3,4418
-0,2904 0,2225 -4,1192
0,9439 0,2746 12,0127
0,9619 0,5150 11,9228

-0,0033 0,0424 -0,1021
0,9441 -0,6274 13,3334

-0,3288 0,6754 -5,3105
-0,3306 0,0960 -4,4644
0,1859 1,1821 0,7741
0,7498 1,1475 8,1578
0,7672 0,4439 9,3579

-0,1529 -0,9531 -0,8435
-0,4502 -0,3045 -5,5091
-0,9727 -0,1679 -12,5532
-0,8157 -0,3565 -10,3112
-0,1069 0,5891 -2,1757
-0,6884 0,3295 -9,5828
0,3825 0,4421 4,5314
0,0730 -1,3223 2,7295

-0,4291 -0,2462 -5,3598
-0,7255 0,2164 -9,9031
-0,6663 -0,2830 -8,4362
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Analysis results for the Mixed Model with Tikhonov regularization method 
 
 

Table B.2 Corrections to pixel coordinates and elevation of GCPs computed after Mixed Model 
analysis with Tikhonov regularization method 

 
 
 

X Y Elevation 
0,0899 0,4039 0,80487523
0,4628 0,0339 6,29381961
0,4107 -0,3056 5,93652936

-0,8222 -0,2702 -10,845288
-0,7689 0,3086 -10,688376
0,4972 0,2745 6,36043459
0,6772 0,3156 8,72586453

-0,2972 -0,1669 -3,7961352
1,0021 -1,2512 14,9763047

-0,1637 0,1311 -2,363846
-0,3665 -0,3265 -4,5249452
-0,0984 0,7850 -2,2331912
0,4081 0,7851 4,53453508
0,3918 0,4242 4,75688551

-0,1591 -0,9716 -1,1839371
-0,3420 -0,3412 -4,2461055
-0,7077 -0,2147 -9,2971991
-0,4119 -0,5886 -4,9785595
0,3939 0,4326 4,90206592

-0,1864 0,2666 -2,8162941
0,7776 0,3216 10,2841212
0,3508 -0,7585 5,6001475

-0,0899 0,1815 -1,4239973
-0,5455 0,4767 -7,926503
-0,5026 0,0440 -6,860747
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Analysis results for the Mixed Model with Singular Value Decomposition. 
 
 
 

Table B.3 Corrections to pixel coordinates and elevation of GCPs computed after Mixed Model 
analysis with Singular Value Decomposition 

 
 
 
 

X Y Elevation 
0,1246 0,2629 1,3171
0,5580 -0,1022 7,5648
0,5337 -0,4492 7,6904

-0,6711 -0,4279 -8,2883
-0,7229 0,6486 -10,3725
0,5040 0,3104 6,1836
0,6329 0,5706 7,5171

-0,3447 0,0474 -4,5878
0,8552 -1,1146 12,8482

-0,2818 0,2191 -4,0250
-0,3909 -0,3743 -4,5808
-0,0452 0,6724 -1,5211
0,4796 0,6591 5,3171
0,4793 0,2509 5,8752

-0,1580 -0,9903 -0,8653
-0,3637 -0,3381 -4,3354
-0,7503 -0,1956 -9,5924
-0,4678 -0,4404 -5,6188
0,3653 0,5365 4,1560

-0,2062 0,3171 -3,1517
0,8453 0,4274 10,7210
0,3421 -0,9726 5,8448

-0,1481 0,0141 -1,9840
-0,6097 0,4667 -8,7100
-0,5596 0,0087 -7,4163
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Residuals of the parameter estimation with fictitious observation 
 
 

Table B.4 Residuals of the GCPs with respect to geodetic and UTM coordinates are shown 
 
 
 

Latitude Longitude  X Y 
1,08E-06 4,10E-07 6,9102 2,0029 
3,18E-06 3,25E-06 20,2718 15,8407 
4,77E-06 2,93E-06 30,3574 14,2880 
3,99E-07 -1,84E-06 2,5394 -8,9623 

-1,20E-06 -1,74E-06 -7,6711 -8,4723 
-6,82E-07 6,29E-06 -4,3452 30,7018 
-1,78E-06 6,56E-06 -11,3188 32,0171 
-1,97E-07 5,64E-09 -1,2534 0,0275 
3,42E-06 5,70E-06 21,8087 27,8279 

-3,26E-06 -1,70E-06 -20,7697 -8,2921 
-6,35E-07 -2,09E-06 -4,0455 -10,2049 
-5,25E-06 1,92E-06 -33,4394 9,3908 
-4,74E-06 5,59E-06 -30,2100 27,2815 
-1,52E-06 5,28E-06 -9,6964 25,7861 
4,27E-06 -1,51E-06 27,1873 -7,3808 
1,09E-06 -3,10E-06 6,9531 -15,1161 
1,20E-07 -6,40E-06 0,7642 -31,2516 
1,09E-06 -5,47E-06 6,9288 -26,6960 

-2,74E-06 -3,46E-07 -17,4523 -1,6892 
-1,93E-06 -4,23E-06 -12,2934 -20,6180 
-1,75E-06 2,71E-06 -11,1192 13,2005 
5,98E-06 -3,24E-07 38,0851 -1,5805 
8,41E-07 -2,91E-06 5,3559 -14,1874 

-1,42E-06 -4,54E-06 -9,0688 -22,1450 
8,67E-07 -4,46E-06 5,5213 -21,7872 
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Table B.5 Estimated parameters after the parameter estimation with fictitious observation 

 
 
 

 Parameters
Estimated  
Value 

 X 4496830,4
 Y 3021719,0
 Z 4534207,9
 ω  0,147532
 φ  -0,038086
 κ  0,112314
 f 176,153596
 x∆  0,001784
 y∆  -0,365364
 k1 0,000355
 k2 -0,000004
 p1 -0,000507
 p2 0,000584
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Table B.6 Corrected GCP coordinates after the parameter estimation with fictitious observation 
 
 
 

X Y Z 
4126272,656 2645481,229 4068886,962 
4128644,784 2644301,205 4067351,983 
4129406,774 2643774,527 4066981,403 
4132631,257 2650464,290 4059747,586 
4128760,341 2654853,979 4060538,708 
4127390,933 2657052,192 4060463,680 
4124621,792 2658297,927 4062427,989 
4124735,636 2658567,385 4062105,210 
4119026,068 2663727,719 4064732,366 
4114329,127 2665950,876 4067878,960 
4110720,994 2667733,116 4070308,206 
4108988,665 2668723,875 4071361,420 
4108559,218 2668714,475 4071783,984 
4106679,985 2666053,549 4075558,864 
4106318,780 2660000,084 4079598,212 
4106814,376 2658851,938 4079967,429 
4107776,273 2657065,044 4080129,215 
4108822,447 2654036,046 4081215,130 
4111674,443 2650510,834 4080440,152 
4112819,465 2649553,487 4079838,383 
4115760,192 2645691,402 4079419,512 
4120479,837 2646573,865 4073896,908 
4117762,702 2650915,543 4073829,649 
4119545,667 2652998,066 4070764,588 
4120404,334 2651703,569 4070704,864 
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Table B.7 Residuals of the GCPs with respect to geodetic and UTM coordinates with Tikhonov 

regularization are shown 
 
 

Phi Lambda  X Y 
-6,759E-07 1,096E-06  -4,3057 5,3470 
1,448E-06 4,103E-06  9,2225 20,0222 
3,006E-06 3,935E-06  19,1473 19,2000 
6,176E-07 -4,061E-06  3,9341 -19,8145 

-5,140E-07 -4,840E-06  -3,2743 -23,6159 
2,209E-07 3,081E-06  1,4071 15,0321 

-8,284E-07 3,869E-06  -5,2768 18,8779 
7,905E-07 -2,746E-06  5,0352 -13,4015 
4,663E-06 4,619E-06  29,7062 22,5403 

-2,161E-06 -1,836E-06  -13,7672 -8,9606 
1,205E-07 -2,290E-06  0,7674 -11,1735 

-4,737E-06 1,221E-06  -30,1723 5,9599 
-4,314E-06 4,77E-06  -27,4802 23,2956 
-1,54E-06 4,81E-06  -9,8360 23,4954 
4,59E-06 -4,73E-07  29,2588 -2,3103 
1,49E-06 -1,73E-06  9,5086 -8,4191 
5,71E-07 -4,67E-06  3,6375 -22,8010 
1,86E-06 -3,23E-06  11,8715 -15,7667 

-2,41E-06 1,98E-06  -15,3681 9,6566 
-1,93E-06 -1,97E-06  -12,2773 -9,5949 
-2,08E-06 5,00E-06  -13,2744 24,3964 
4,18E-06 1,03E-06  26,5956 5,0206 

-2,97E-07 -2,14E-06  -1,8940 -10,4544 
-2,06E-06 -4,86E-06  -13,1157 -23,7110 
3,36E-09 -4,70E-06  0,0214 -22,9226 

 
 
 
Table B.8 Estimated parameters after the parameter estimation with Tikhonov regularization. 
 
 

 Parameters 
Estimated  
Value 

 X 4496191,626
 Y 3024516,853
 Z 4532983,158
 ω  0,14746
 φ  -0,03813
 κ  0,11231
 f 175,92984
 x∆  0,63002
 y∆  -0,83923
 k1 0,00036
 k2 -4,44E-06
 p1 -0,00051
 p2 0,00058
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Table B.9 Corrected GCP coordinates after the parameter estimation with Tikhonov regularization. 
 
 
 

X Y Z 
4126276,841 2645488,043 4068878,345 
4128648,427 2644308,665 4067343,493 
4129410,109 2643782,659 4066972,789 
4132636,354 2650454,734 4059748,63 
4128766,164 2654839,767 4060542,056 
4127396,323 2657037,071 4060468,067 
4124625,653 2658284,853 4062432,594 
4124739,522 2658553,98 4062110,005 
4119024,667 2663720,637 4064738,386 
4114325,688 2665947,999 4067884,288 
4110718,894 2667730,749 4070311,853 
4108988,739 2668719,977 4071363,884 
4108559,883 2668710,298 4071786,036 
4106681,259 2666051,802 4075558,724 
4106314,843 2660003,755 4079599,77 
4106809,293 2658856,808 4079969,358 
4107770,069 2657071,279 4080131,387 
4108813,783 2654043,646 4081218,886 
4111667,106 2650519,785 4080441,721 
4112813,422 2649562,886 4079838,37 
4115755,239 2645701,705 4079417,839 
4120482,408 2646583,532 4073888,087 
4117764,536 2650921,325 4073824,071 
4119548,651 2652998,266 4070761,459 
4120407,866 2651704,634 4070700,624 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 201

Residuals of the parameter estimation process with SVD. 
 
 

Table B.10 Residuals of the GCPs with respect to geodetic and UTM coordinates are shown 
 
 

Phi Lambda  X Y 
-9,856E-07 3,531E-07  -6,2784 1,7232 
8,542E-07 2,802E-06  5,4413 13,6713 
2,387E-06 2,398E-06  15,2057 11,7030 
1,968E-06 -4,471E-06  12,5331 -21,8176 

-4,149E-06 -3,729E-06  -26,4308 -18,1972 
-1,337E-06 3,975E-06  -8,5196 19,3970 
-2,523E-06 4,871E-06  -16,0688 23,7709 
-6,534E-07 -1,804E-06  -4,1621 -8,8034 
5,744E-06 4,554E-06  36,5878 22,2207 

-1,301E-06 -2,310E-06  -8,2904 -11,2730 
1,317E-06 -3,443E-06  8,3894 -16,8025 

-3,081E-06 -4,558E-07  -19,6237 -2,2243 
-2,678E-06 3,051E-06  -17,0589 14,8904 
-7,936E-07 3,532E-06  -5,0552 17,2355 
4,658E-06 -8,276E-07  29,6689 -4,0386 
1,488E-06 -1,854E-06  9,4804 -9,0459 
4,999E-07 -4,384E-06  3,1846 -21,3915 
1,840E-06 -2,711E-06  11,7222 -13,2292 

-2,155E-06 2,923E-06  -13,7301 14,2655 
-1,529E-06 -9,867E-07  -9,7410 -4,8146 
-1,320E-06 5,591E-06  -8,4097 27,2809 
4,802E-06 1,208E-06  30,5865 5,8941 

-1,127E-07 -1,035E-06  -0,7178 -5,0507 
-2,554E-06 -3,609E-06  -16,2689 -17,6090 
-3,837E-07 -3,638E-06  -2,4444 -17,7548 
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Estimated parameters after the parameter estimation method with SVD 
 
 
Table B.11 Estimated parameters after the parameter estimation with SVD 
 
 
 

Parameters 
Estimated  

Value 
 X 4509500,482
 Y 3080868,378
 Z 4481833,738
 ω  0,188215
 φ  0,044602
 κ  0,114253
 f 175,502284
 x∆  0,000552
 y∆  -0,366332
 k1 0,000355
 k2 -0,000004
 p1 -0,000387
 p2 0,000440
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Table B.12 Corrected GCP coordinates after the parameter estimation with SVD 
 
 
 

X Y Z 
4126225,757 2645536,613 4068898,435
4128598,719 2644356,178 4067362,929
4129360,975 2643829,309 4066992,221
4132586,540 2650521,405 4059755,763
4128714,258 2654912,646 4060547,150
4127344,351 2657111,631 4060472,078
4124574,229 2658357,783 4062437,051
4124688,120 2658627,328 4062114,166
4118976,483 2663789,379 4064742,139
4114277,905 2666013,279 4067889,796
4110668,483 2667796,116 4070319,867
4108935,535 2668787,227 4071373,432
4108505,932 2668777,830 4071796,145
4106626,017 2666115,948 4075572,333
4106264,745 2660060,393 4079613,176
4106760,515 2658911,835 4079982,508
4107722,773 2657124,324 4080144,371
4108769,310 2654094,258 4081230,666
4111622,354 2650567,871 4080455,487
4112767,795 2649610,199 4079853,537
4115709,566 2645746,790 4079434,565
4120430,888 2646629,606 4073910,115
4117712,783 2650972,786 4073842,769
4119496,365 2653056,042 4070776,615
4120355,341 2651761,102 4070716,896
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Residuals of the parameter estimation process with restriction. 
 

Table B.13 Residuals of the GCPs with respect to geodetic and UTM coordinates are shown 
 
 

Latitude Longitude X Y 
3,07E-06 1,85E-05 19,547 90,3787
7,47E-06 2,46E-05 47,5743 120,0869
9,58E-06 2,56E-05 61,044 124,7898
1,75E-05 1,36E-05 111,158 66,5793
1,52E-05 5,27E-06 96,92 25,7055
1,60E-05 9,64E-06 102,0324 47,0274
1,20E-05 6,65E-06 76,556 32,4686
1,41E-05 -1,18E-07 89,6533 -0,5752
1,39E-05 -3,85E-06 88,5621 -18,7876
2,36E-06 -1,70E-05 15,0592 -82,836
1,22E-06 -2,22E-05 7,7549 -108,2135

-4,99E-06 -2,09E-05 -31,7597 -101,7304
-5,12E-06 -1,75E-05 -32,6131 -85,6165
-7,23E-06 -1,56E-05 -46,0471 -75,8929
-6,72E-06 -1,44E-05 -42,8292 -70,381
-1,03E-05 -1,41E-05 -65,7261 -68,9128
-1,16E-05 -1,45E-05 -74,0448 -70,965
-1,18E-05 -9,04E-06 -75,4655 -44,1355
-1,54E-05 1,98E-06 -97,9489 9,6796
-1,41E-05 -3,07E-08 -90,0623 -0,1497
-1,37E-05 1,35E-05 -87,5489 65,6518
4,31E-07 1,24E-05 2,7482 60,7289

-4,08E-06 2,41E-06 -26,0057 11,7412
-1,41E-06 -8,89E-07 -8,9904 -4,3391
7,71E-07 1,40E-06 4,9134 6,8216
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Table B.14 Estimated parameters after the parameter estimation with restriction. 
 
 
 

 Parameters 
Estimated  
Value 

 X 4496564,668
 Y 3022658,349
 Z 4533847,454
 ω  0,14744
 φ  -0,03814
 κ  0,11231
 f 177,22806
 x∆  0,62988
 y∆  -0,83915
 k1 0,00036
 k2 -4,44E-06
 p1 -0,00051
 p2 0,00058
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Registration with Affine Model. 
 

Table B.15 Estimated paramters of the Affine Transformation after the parameter estimation 
 

Parameters 
Estimated 

 Value 
a 3,181E-05
b 2,592E-04
c 39,7894
d 3,451E-04
e -3,787E-05
f 32,7307

 
. 
 
 
Residuals of the parameter estimation process of Affine Transformation. 
 

Table B.16 Residuals of the GCPs with respect to geodetic and UTM coordinates are shown 
 
 
 

Phi lambda  X Y 
-8,889E-06 4,336E-06  -56,625 21,159 
-2,303E-06 7,626E-06  -14,667 37,215 
1,883E-06 5,282E-06  11,992 25,774 
8,455E-06 -9,245E-06  53,855 -45,112 
1,847E-06 -8,233E-06  11,763 -40,175 
3,598E-06 5,031E-06  22,920 24,549 

-4,795E-06 5,353E-06  -30,544 26,123 
-4,556E-07 -7,631E-06  -2,902 -37,237 
7,424E-06 -1,356E-06  47,288 -6,614 

-5,528E-06 -4,173E-07  -35,210 -2,036 
2,774E-06 -3,546E-06  17,668 -17,302 

-5,033E-06 3,617E-06  -32,057 17,650 
-4,059E-06 1,082E-05  -25,857 52,821 
-1,241E-06 7,319E-06  -7,904 35,714 
8,412E-06 4,229E-07  53,586 2,064 
2,226E-06 -3,956E-06  14,179 -19,302 
1,586E-06 -8,109E-06  10,105 -39,569 
3,700E-06 -1,056E-05  23,571 -51,529 

-1,586E-06 3,227E-06  -10,104 15,749 
-4,147E-09 -3,678E-06  -0,026 -17,949 
5,056E-07 4,161E-06  3,221 20,302 
4,554E-06 4,466E-06  29,011 21,794 

-6,538E-06 2,955E-06  -41,649 14,419 
2,628E-07 -5,129E-06  1,674 -25,026 

-6,795E-06 -2,763E-06  -43,286 -13,480 
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Residuals of the Ground Check Points of the Affine Model. 
 

Table B.17 Residuals of the Ground Check Points with respect to geodetic and UTM coordinates are 
shown 

 
 
 

Phi Lambda  X Y 
2,440E-06 8,795E-07  15,5420 4,2916 

-1,580E-06 -7,095E-06  -10,0614 -34,6236 
8,479E-07 3,791E-06  5,4013 18,4997 
5,891E-06 4,894E-06  37,5269 23,8821 

-1,904E-05 -8,373E-06  -121,2976 -40,8593 
-1,951E-05 -2,866E-06  -124,2791 -13,9847 
-9,689E-06 -6,231E-06  -61,7190 -30,4042 
-5,929E-06 -9,396E-06  -37,7667 -45,8518 
2,638E-05 5,875E-06  168,0590 28,6673 
5,153E-06 1,945E-05  32,8222 94,9173 

-7,752E-06 -1,267E-05  -49,3827 -61,8198 
 
 
 
 
Registration with 3D Affine Model 
 
Table B.18 Estimated parameters of the 3D Affine Transformation after the parameter estimation 
procedure of Least Squares. 
 
 
 

parameters 
Estimated  

Values 
a1 -108583,069
a2 25111,387
a3 161346,701
a4 -561,477
a5 -1244,994
a6 2491,929
b1 143496,402
b2 -221285,498
b3 19629,346
b4 -2331,218
b5 2882,303
b6 555,155
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Residuals of the parameter estimation process of 3D Affine Transformation. 
 

Table B.19 Residuals of the GCPs with respect to geodetic and UTM coordinates are shown 
 
 

x y  X Y 
0,0405 -1,2289  1,1743 -35,6375 

-1,0633 -0,2533  -30,8348 -7,3460 
-1,0818 0,3682  -31,3727 10,6787 
0,1897 -0,5049  5,5000 -14,6423 
1,1463 0,5036  33,2422 14,6040 

-0,9796 0,9058  -28,4092 26,2678 
-0,8262 -0,8166  -23,9604 -23,6825 
1,1996 0,6375  34,7885 18,4876 
0,4670 0,9283  13,5421 26,9199 
0,4030 -1,1635  11,6870 -33,7410 
0,6412 0,8341  18,5944 24,1880 

-0,4934 -0,9239  -14,3082 -26,7935 
-1,7617 -0,8434  -51,0898 -24,4574 
-0,7983 -0,4885  -23,1512 -14,1653 
-0,6044 1,5512  -17,5281 44,9849 
0,3486 0,3089  10,1093 8,9580 
1,0095 0,1952  29,2752 5,6598 
1,0832 0,7028  31,4130 20,3820 

-0,7715 -0,8658  -22,3721 -25,1096 
0,5556 -0,3433  16,1132 -9,9568 

-0,7968 -0,4291  -23,1067 -12,4447 
0,0502 1,4940  1,4547 43,3253 
0,1156 -0,9295  3,3537 -26,9569 
0,9893 0,9046  28,6900 26,2335 
0,9383 -0,5430  27,2106 -15,7484 

 
 
 
Residuals of the Ground Check Points of the 3D Affine Model. 
 
 

Table B.20 Residuals of the GCPs with respect to geodetic and UTM coordinates are shown 
 
 
 

x y  X Y 
9,8377 1,2881  285,2921 37,3555 

12,5121 0,7080  362,8505 20,5315 
11,3659 1,0180  329,6125 29,5224 
10,1018 2,1648  292,9511 62,7781 

5,6651 -3,2643  164,2886 -94,6655 
3,3998 -3,4695  98,5942 -100,6159 
2,3818 -1,3644  69,0730 -39,5685 
0,6542 -0,3904  18,9726 -11,3221 

-6,1486 5,5447  -178,3103 160,7953 
-8,1160 1,3091  -235,3637 37,9626 
-7,6136 -2,5219  -220,7939 -73,1355 
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Registration with Projective Transformation 
 
Table B.21 Estimated parameters of the projective transformation model with least squares 
 
 

Parameters 
Estimated 

Value 
a1 2,2878E-04
a2 2,0982E-04
a3 39,7893
b1 5,0751E-04
b2 -7,8750E-05
b3 32,7309
c1 4,9349E-06
c2 -1,2413E-06

 
 
 
 
Residuals of the parameter estimation process of projective transformation 
 
 
 

Table B.22 Residuals of the GCPs with respect to geodetic and UTM coordinates are shown 
 
 
 

Phi Lambda  X Y 
9,164E-06 -9,703E-07  58,3737 -4,7346 
3,441E-06 -2,157E-06  21,9220 -10,5232 

-4,573E-07 1,109E-06  -2,9130 5,4112 
-5,386E-06 1,051E-05  -34,3060 51,3037 
-1,069E-06 5,813E-06  -6,8073 28,3640 
-3,755E-06 -8,423E-06  -23,9209 -41,1007 
3,938E-06 -9,066E-06  25,0827 -44,2399 

-4,714E-07 3,879E-06  -3,0027 18,9283 
-9,703E-06 -1,162E-06  -61,8069 -5,6692 
3,777E-06 3,695E-07  24,0588 1,8031 

-3,521E-06 6,222E-06  -22,4267 30,3628 
4,876E-06 7,611E-07  31,0585 3,7140 
4,160E-06 -6,207E-06  26,5014 -30,2905 
3,225E-06 -3,987E-06  20,5423 -19,4530 

-5,978E-06 -7,463E-07  -38,0783 -3,6415 
-1,065E-07 2,989E-06  -0,6783 14,5857 
-8,651E-08 6,327E-06  -0,5510 30,8721 
-3,181E-06 8,127E-06  -20,2632 39,6554 
5,748E-07 -5,516E-06  3,6616 -26,9161 

-1,400E-06 1,693E-06  -8,9211 8,2606 
-3,306E-06 -3,967E-06  -21,0615 -19,3593 
-5,987E-06 -3,765E-06  -38,1383 -18,3696 
5,694E-06 -5,022E-06  36,2694 -24,5076 

-7,539E-07 2,518E-06  -4,8022 12,2879 
6,312E-06 6,676E-07  40,2096 3,2575 
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Residuals of the Ground Check Points of the Projective transformation 
 
 
 

Table B.23 Residuals with respect to geodetic and UTM coordinates are shown 
 
 

Phi Lambda  X Y 
-2,899E-06 -1,670E-06  -18,4670 -8,1506 
1,142E-06 7,436E-06  7,2767 36,2875 

-6,664E-07 -2,335E-06  -4,2449 -11,3950 
-5,480E-06 -2,588E-06  -34,9045 -12,6302 
1,860E-05 5,665E-06  118,4511 27,6440 
1,902E-05 -1,657E-07  121,1762 -0,8085 
9,212E-06 3,113E-06  58,6796 15,1911 
5,487E-06 6,236E-06  34,9491 30,4316 

-2,670E-05 -8,862E-06  -170,0803 -43,2462 
-5,326E-06 -2,219E-05  -33,9242 -108,2760 
6,547E-06 9,330E-06  41,7033 45,5271 

 
 
 
Residuals of the Space Resection Model computed after the parameter estimation procedure 
 
 

Table B.24 Residuals of the GCPs with respect to geodetic and UTM coordinates are shown 
 
 

x y  X Y 
0,7928 1,0216  22,9903 29,6264 
1,4957 -0,1766  43,3753 -5,1217 
1,2378 -1,0603  35,8962 -30,7487 

-1,8686 -1,4068  -54,1894 -40,7972 
-1,7348 -0,0809  -50,3092 -2,3468 
0,5710 -0,0560  16,5576 -1,6244 
0,6205 1,2987  17,9945 37,6623 

-1,3949 0,1940  -40,4521 5,6266 
0,1733 -1,5290  5,0243 -44,3410 
0,2432 1,0371  7,0540 30,0759 
0,0132 -0,8267  0,3814 -23,9749 
1,0579 1,0913  30,6791 31,6477 
2,2401 1,0131  64,9629 29,3799 
1,0480 0,3611  30,3920 10,4719 

-0,2743 -1,6358  -7,9547 -47,4382 
-1,2504 -0,2225  -36,2616 -6,4537 
-1,9062 -0,1753  -55,2798 -5,0837 
-2,3093 -0,2204  -66,9697 -6,3919 
0,2293 0,9072  6,6497 26,3091 

-0,7207 0,2216  -20,9000 6,4264 
0,9927 0,3875  28,7886 11,2372 
1,1849 -1,8133  34,3621 -52,5857 
0,4115 0,4457  11,9335 12,9256 

-0,8027 -1,3296  -23,2792 -38,5584 
-0,5530 0,2369  -16,0379 6,8710 
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Residuals of the Ground Check Points of the Space Resection model. 
 
 

Table B.25 Residuals of the GCPs with respect to geodetic and UTM coordinates are shown 
 
 

x y  X Y 
-0,3069 -1,7492  -8,90126 -50,7268 
-1,6409 -1,0162  -47,5861 -29,4698 
0,1721 -1,2530  4,98974 -36,337 
0,4872 -2,2883  14,12735 -66,3607 

-2,4492 2,7578  -71,0268 79,9762 
-1,5608 2,9743  -45,2632 86,2547 
-1,8866 0,7905  -54,7114 22,92508 
-2,3041 -0,0821  -66,8189 -2,38119 
0,8780 -6,6418  25,46055 -192,6122 
2,6926 -1,8059  78,0854 -52,3711 

-2,9255 0,8839  -84,8395 25,63339 
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Sensitivity Indexes computed after the differential Sensitivity Analysis 
 
 
Table B.26a Sensitivity of the parameters for the 9 different pixel locations computed by Differential Sensitivity 

Analysis for latitude. 
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Table B.26b Sensitivity of the parameters for the 9 different pixel locations computed by Differential Sensitivity 
Analysis for longitude. 
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Table B.27 Corrected GCP coordinates for pushbroom scanner 
 

Point ID X Y Z 
1 4128670 2644278 4067342 
2 4129436 2643762 4066960 
3 4132622 2650480 4059746 
4 4128749 2654871 4060539 
5 4127397 2657033 4060470 
6 4124552 2658338 4062458 
7 4124730 2658578 4062104 
8 4119052 2663688 4064732 
9 4114304 2665940 4067911 

10 4110716 2667729 4070317 
11 4108982 2668701 4071383 
12 4108555 2668671 4071816 
13 4106689 2666030 4075565 
14 4106334 2660041 4079557 
15 4106805 2658885 4079955 
16 4107747 2657105 4080133 
17 4108792 2654063 4081228 
18 4111660 2650486 4080471 
19 4112786 2649578 4079856 
20 4115766 2645660 4079434 
21 4120502 2646579 4073871 
22 4117770 2650925 4073816 
23 4119531 2653001 4070777 
24 4120394 2651716 4070707 
25 4121963 2649512 4070587 
26 4122930 2648046 4070530 
27 4124024 2647886 4069616 
28 4125270 2647335 4068683 
29 4126173 2646659 4068208 
30 4119923 2653403 4070148 
31 4118332 2654569 4070966 
32 4117765 2655222 4071138 
33 4116878 2656130 4071404 
34 4115568 2657810 4071884 
35 4114813 2658209 4072077 
36 4114385 2658435 4072416 
37 4113532 2659086 4072884 
38 4113425 2659599 4072715 
39 4126996 2660102 4058806 
40 4131570 2664174 4051606 
41 4133570 2666322 4048141 
42 4135090 2669677 4044541 
43 4098010 2659316 4088391 
44 4095156 2660130 4090743 
45 4092969 2665583 4089402 
46 4090196 2668612 4090314 
47 4111435 2626949 4096021 
48 4112732 2634318 4089602 
49 4107873 2641445 4090148 
50 4118060 2630971 4086372 
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Table B.28 Residuals of the GCPs with respect to geodetic and UTM coordinates are shown 
 

Point ID Latitude Longitude X Y 
1 -2,21E-06 6,88E-06 -14,099 33,56
2 -5,92E-07 4,97E-06 -3,771 24,243
3 -2,45E-07 -3,65E-06 -1,563 -17,811
4 2,32E-06 -4,62E-06 14,782 -22,539
5 -1,42E-06 -4,61E-06 -9,043 -22,485
6 -3,48E-06 -3,99E-06 -22,151 -19,481
7 7,83E-07 -4,98E-06 4,99 -24,304
8 -6,73E-06 8,07E-06 -42,84 39,386
9 -6,55E-06 1,61E-06 -41,702 7,831

10 -2,16E-06 4,56E-06 -13,759 22,227
11 1,48E-06 2,61E-06 9,451 12,749
12 -3,63E-06 2,79E-06 -23,139 13,594
13 7,11E-07 -4,66E-07 4,526 -2,273
14 8,58E-06 -7,67E-06 54,657 -37,437
15 2,89E-06 -7,22E-06 18,397 -35,237
16 -1,59E-06 -7,21E-06 -10,133 -35,165
17 -7,49E-06 -5,29E-06 -47,699 -25,796
18 -7,09E-06 6,01E-06 -45,166 29,318
19 -3,35E-06 -7,42E-06 -21,318 -36,196
20 -2,55E-06 6,53E-06 -16,262 31,878
21 -1,37E-06 3,75E-06 -8,755 18,317
22 3,90E-06 4,39E-06 24,86 21,443
23 -2,37E-06 5,03E-06 -15,087 24,565
24 -2,64E-06 2,26E-06 -16,801 11,013
25 -6,21E-06 -4,04E-06 -39,553 -19,694
26 -1,06E-06 5,26E-06 -6,739 25,648
27 2,46E-06 6,49E-06 15,668 31,647
28 -1,09E-06 6,25E-06 -6,92 30,473
29 2,83E-06 -2,43E-06 18,012 -11,871
30 4,26E-06 3,10E-06 27,152 15,102
31 1,62E-06 -2,89E-07 10,321 -1,412
32 -3,66E-08 -9,05E-07 -0,233 -4,414
33 -1,24E-06 -4,19E-06 -7,892 -20,431
34 4,76E-06 -6,11E-06 30,342 -29,83
35 6,14E-06 1,05E-06 39,09 5,136
36 5,67E-06 -1,49E-06 36,105 -7,274
37 3,60E-06 -4,38E-06 22,905 -21,368
38 3,05E-06 -3,55E-06 19,446 -17,34
39 2,61E-06 -5,46E-07 16,628 -2,664
40 3,23E-06 -3,23E-06 20,547 -15,765
41 2,89E-06 1,74E-06 18,397 8,513
42 -3,28E-06 9,35E-07 -20,903 4,56
43 -2,36E-07 -9,50E-07 -1,503 -4,637
44 4,20E-06 -1,91E-06 26,743 -9,331
45 4,01E-06 5,46E-06 25,527 26,62
46 -6,15E-06 6,59E-06 -39,176 32,16
47 -2,11E-06 1,41E-06 6,877 6,877
48 5,71E-06 -8,41E-06 -41,014 -41,014
49 -3,65E-06 6,75E-06 32,922 32,922
50 2,82E-06 -4,92E-06 -24,01 -24,01
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Table B.29 Residuals of the ASTER image with 3D affine rectification method 
 

Point ID Latitude Longitude X Y 
1 -1,80E-06 6,23E-06 -11,481 30,421
2 -2,62E-07 4,42E-06 -1,672 21,566
3 6,69E-08 -3,17E-06 0,426 -15,456
4 1,90E-06 -4,09E-06 12,135 -19,948
5 -1,05E-06 -4,08E-06 -6,682 -19,897
6 -3,00E-06 -3,49E-06 -19,13 -17,042
7 4,44E-07 -4,43E-06 2,829 -21,627
8 -6,09E-06 7,37E-06 -38,785 35,951
9 -5,92E-06 1,22E-06 -37,708 5,976

10 -1,75E-06 4,03E-06 -11,16 19,652
11 1,11E-06 2,18E-06 7,069 10,649
12 -3,15E-06 2,35E-06 -20,074 11,451
13 3,75E-07 -1,43E-07 2,389 -0,696
14 7,85E-06 -6,99E-06 50,011 -34,101
15 2,44E-06 -6,56E-06 15,566 -32,011
16 -1,21E-06 -6,55E-06 -7,717 -31,941
17 -6,81E-06 -4,72E-06 -43,403 -23,04
18 -6,44E-06 5,41E-06 -40,994 26,387
19 -2,88E-06 -6,75E-06 -18,343 -32,924
20 -2,13E-06 5,91E-06 -13,538 28,821
21 -1,01E-06 3,27E-06 -6,404 15,939
22 3,41E-06 3,87E-06 21,708 18,905
23 -1,95E-06 4,48E-06 -12,425 21,872
24 -2,21E-06 1,84E-06 -14,053 8,999
25 -5,60E-06 -3,53E-06 -35,663 -17,246
26 -7,05E-07 4,69E-06 -4,491 22,901
27 2,04E-06 5,86E-06 12,976 28,603
28 -7,32E-07 5,63E-06 -4,661 27,486
29 2,39E-06 -2,01E-06 15,203 -9,815
30 3,75E-06 2,64E-06 23,887 12,884
31 1,24E-06 2,52E-08 7,892 0,123
32 2,65E-07 -5,59E-07 1,689 -2,729
33 -8,77E-07 -3,68E-06 -5,587 -17,946
34 4,22E-06 -5,51E-06 26,912 -26,874
35 5,53E-06 7,00E-07 35,227 3,418
36 5,08E-06 -1,12E-06 32,389 -5,448
37 3,12E-06 -3,86E-06 19,85 -18,836
38 2,60E-06 -3,08E-06 16,564 -15,011
39 2,18E-06 -2,19E-07 13,883 -1,067
40 2,76E-06 -2,77E-06 17,611 -13,509
41 2,44E-06 1,35E-06 15,566 6,602
42 -2,82E-06 5,88E-07 -17,944 2,87
43 7,58E-08 -6,03E-07 0,483 -2,94
44 3,69E-06 -1,51E-06 23,493 -7,39
45 3,51E-06 4,89E-06 22,337 23,847
46 -5,54E-06 5,96E-06 -35,306 29,085
47 -1,70E-06 1,04E-06 -10,84 5,072
48 5,13E-06 -7,69E-06 32,661 -37,522
49 -3,17E-06 6,11E-06 -20,195 29,827
50 2,38E-06 -4,37E-06 15,13 -21,344
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Table B.30 Analysis results of ASTER image rectification by DRM with simulated elevation 
 

Point ID Latitude Longitude X Y 
1 1,40E-06 7,46E-06 8,918 36,403
2 4,48E-06 3,84E-06 28,512 18,738
3 -4,87E-06 -1,34E-06 -30,998 -6,539
4 -1,20E-06 -3,18E-06 -7,644 -15,517
5 2,90E-06 -3,16E-06 18,473 -15,42
6 -1,00E-06 -1,98E-06 -6,37 -9,662
7 -4,11E-06 -3,86E-06 -26,193 -18,836
8 -7,18E-06 9,74E-06 -45,737 47,528
9 -6,84E-06 -2,56E-06 -43,571 -12,492

10 1,50E-06 3,06E-06 9,555 14,932
11 -2,78E-06 -6,40E-07 -17,709 -3,123
12 -1,30E-06 -3,00E-07 -8,281 -1,464
13 -4,25E-06 4,71E-06 -27,073 23,003
14 1,07E-05 -8,98E-06 68,159 -43,82
15 -1,20E-07 -8,12E-06 -0,764 -39,623
16 2,58E-06 -8,10E-06 16,435 -39,526
17 -8,62E-06 -4,44E-06 -54,909 -21,666
18 -7,88E-06 5,82E-06 -50,196 28,4
19 -7,60E-07 -8,50E-06 -4,841 -41,477
20 7,40E-07 6,82E-06 4,714 33,28
21 2,98E-06 1,54E-06 18,983 7,515
22 1,82E-06 2,74E-06 11,593 13,37
23 1,10E-06 3,96E-06 7,007 19,324
24 5,80E-07 -1,32E-06 3,695 -6,441
25 -6,20E-06 -2,06E-06 -39,494 -10,052
26 3,59E-06 4,38E-06 22,868 21,373
27 -9,20E-07 6,72E-06 -5,86 32,792
28 3,54E-06 6,26E-06 22,524 30,547
29 -2,20E-07 9,80E-07 -1,401 4,782
30 2,50E-06 2,80E-07 15,925 1,366
31 -2,52E-06 -4,95E-06 -16,052 -24,153
32 -4,47E-06 3,88E-06 -28,474 18,943
33 3,25E-06 -2,36E-06 20,677 -11,516
34 3,44E-06 -6,02E-06 21,913 -29,376
35 6,06E-06 -3,60E-06 38,602 -17,567
36 5,16E-06 2,76E-06 32,869 13,468
37 1,24E-06 -2,72E-06 7,899 -13,273
38 2,00E-07 -1,16E-06 1,274 -5,66
39 -6,40E-07 4,56E-06 -4,077 22,261
40 5,20E-07 -5,40E-07 3,312 -2,635
41 -1,20E-07 -2,30E-06 -0,764 -11,223
42 -6,40E-07 -3,82E-06 -4,077 -18,66
43 -4,85E-06 3,79E-06 -30,884 18,514
44 2,38E-06 1,98E-06 15,161 9,662
45 2,02E-06 4,78E-06 12,867 23,325
46 -6,08E-06 6,92E-06 -38,73 33,768
47 1,60E-06 -2,92E-06 10,192 -14,249
48 5,26E-06 -1,04E-05 33,506 -50,651
49 -1,34E-06 7,22E-06 -8,536 35,231
50 -2,40E-07 -3,74E-06 -1,529 -18,25

 
 
 



 218

Table B.31 Analysis results rectified by 3D Affine transformation. 
 

Point ID Latitude Longitude X Y 
1 1,95E-06 1,24E-05 12,422 60,74
2 6,95E-06 6,57E-06 44,262 32,035
3 -7,58E-06 -2,50E-06 -48,301 -12,211
4 -1,63E-06 -5,49E-06 -10,351 -26,802
5 4,39E-06 -5,46E-06 27,948 -26,643
6 -1,95E-06 -3,54E-06 -12,422 -17,286
7 -6,36E-06 -6,60E-06 -40,494 -32,194
8 -1,20E-05 1,62E-05 -76,392 78,819
9 -1,14E-05 -3,84E-06 -72,873 -18,714

10 2,11E-06 5,30E-06 13,457 25,85
11 -4,19E-06 -7,15E-07 -26,706 -3,489
12 -2,44E-06 -1,63E-07 -15,527 -0,793
13 -6,58E-06 7,34E-06 -41,923 35,794
14 1,77E-05 -1,49E-05 112,829 -72,793
15 1,30E-07 -1,35E-05 0,828 -65,974
16 3,87E-06 -1,35E-05 24,636 -65,815
17 -1,43E-05 -7,54E-06 -91,298 -36,793
18 -1,31E-05 9,78E-06 -83,638 47,736
19 -1,56E-06 -1,41E-05 -9,937 -68,987
20 8,78E-07 1,14E-05 5,59 55,665
21 4,52E-06 2,83E-06 28,776 13,797
22 3,28E-06 4,78E-06 20,91 23,313
23 1,46E-06 6,76E-06 9,316 32,987
24 6,18E-07 -1,82E-06 3,933 -8,881
25 -1,04E-05 -3,67E-06 -66,248 -17,921
26 5,51E-06 7,44E-06 35,091 36,317
27 -1,17E-06 1,12E-05 -7,453 54,872
28 5,42E-06 1,05E-05 34,532 51,225
29 -3,25E-08 1,27E-06 -0,207 6,185
30 4,39E-06 7,80E-07 27,948 3,806
31 -3,77E-06 -7,72E-06 -24,015 -37,662
32 -6,94E-06 5,98E-06 -44,2 29,196
33 4,95E-06 -4,16E-06 31,53 -20,3
34 5,92E-06 -1,01E-05 37,679 -49,322
35 1,02E-05 -5,53E-06 64,799 -26,96
36 8,71E-06 4,16E-06 55,483 20,3
37 2,34E-06 -4,75E-06 14,906 -23,154
38 6,50E-07 -2,21E-06 4,141 -10,784
39 -7,15E-07 7,09E-06 -4,555 34,589
40 1,17E-06 -1,20E-06 7,453 -5,868
41 1,30E-07 -3,41E-06 0,828 -16,652
42 -1,37E-06 -5,89E-06 -8,695 -28,737
43 -7,55E-06 5,84E-06 -48,117 28,499
44 4,19E-06 2,89E-06 26,706 14,115
45 3,61E-06 8,09E-06 22,98 39,489
46 -1,02E-05 1,16E-05 -65,006 56,458
47 2,28E-06 -4,42E-06 14,492 -21,568
48 8,87E-06 -1,72E-05 56,518 -83,894
49 -2,50E-06 1,21E-05 -15,941 58,837
50 -6,50E-08 -6,40E-06 -0,414 -31,242
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Table B.32 Outlier test results 
 

Point ID Weight Qii ri Comment Dli Doli Doxi 
1 1 0,1526 0,8474 Well 7,98E-07 1,54E-05 1,7528 
2 1 0,19 0,81 Well -1,35E-06 1,58E-05 2,0003 
3 1 0,2309 0,7691 Well -1,88E-06 1,62E-05 2,2627 
4 1 0,2591 0,7409 Well -5,54E-06 1,65E-05 2,4425 
5 1 0,2895 0,7105 Well -4,23E-06 1,68E-05 2,6365 
6 1 0,3396 0,6604 Well -5,96E-06 1,75E-05 2,9619 
7 1 0,3416 0,6584 Well -9,38E-07 1,75E-05 2,9746 
8 1 0,4553 0,5447 Well 7,46E-06 1,92E-05 3,7761 
9 1 0,1944 0,8056 Well 6,38E-07 1,58E-05 2,0289 

10 1 0,2623 0,7377 Well 6,56E-06 1,65E-05 2,4629 
11 1 0,1862 0,8138 Well -2,71E-07 1,57E-05 1,9757 
12 1 0,2308 0,7692 Well -4,01E-06 1,62E-05 2,2624 
13 1 0,1922 0,8078 Well 1,03E-06 1,58E-05 2,0145 
14 1 0,1957 0,8043 Well -4,81E-06 1,58E-05 2,0375 
15 1 0,1874 0,8126 Well -9,73E-07 1,57E-05 1,9836 
16 1 0,2047 0,7953 Well 3,45E-06 1,59E-05 2,0953 
17 1 0,341 0,659 Well -7,08E-06 1,75E-05 2,9708 
18 1 0,4483 0,5517 Well -8,37E-06 1,91E-05 3,7228 
19 1 0,1975 0,8025 Well 2,69E-06 1,58E-05 2,0491 
20 1 0,2792 0,7208 Well 2,55E-06 1,67E-05 2,5703 
21 1 0,1875 0,8125 Well -1,48E-07 1,57E-05 1,9838 
22 1 0,2171 0,7829 Well 2,93E-06 1,60E-05 2,1746 
23 1 0,2391 0,7609 Well 6,23E-06 1,63E-05 2,3151 
24 1 0,2682 0,7318 Well -1,67E-06 1,66E-05 2,5003 
25 1 0,2461 0,7539 Well 5,72E-06 1,63E-05 2,3594 
26 1 0,2773 0,7227 Well -6,61E-06 1,67E-05 2,5585 
27 1 0,2578 0,7422 Well 2,08E-06 1,65E-05 2,434 
28 1 0,2573 0,7427 Well -6,48E-06 1,65E-05 2,4309 
29 1 0,2467 0,7533 Well -6,10E-06 1,64E-05 2,3638 
30 1 0,2079 0,7921 Well 5,98E-07 1,59E-05 2,1159 
31 1 0,2136 0,7864 Well -1,90E-06 1,60E-05 2,1523 
32 1 0,1771 0,8229 Well 2,10E-06 1,56E-05 1,9162 
33 1 0,1558 0,8442 Well -6,76E-07 1,54E-05 1,7743 
34 1 0,1451 0,8549 Well 5,47E-06 1,54E-05 1,7016 
35 1 0,2387 0,7613 Well -2,45E-06 1,63E-05 2,3125 
36 1 0,1733 0,8267 Well 3,91E-06 1,56E-05 1,8907 
37 1 0,1982 0,8018 Well 3,01E-06 1,59E-05 2,0532 
38 1 0,1659 0,8341 Well -2,37E-06 1,55E-05 1,8416 
39 1 0,2042 0,7958 Well 2,42E-06 1,59E-05 2,092 
40 1 0,1585 0,8415 Well 2,34E-06 1,55E-05 1,7927 
41 1 0,418 0,582 Well 3,58E-06 1,86E-05 3,5004 
42 1 0,2428 0,7572 Well -6,60E-06 1,63E-05 2,3386 
43 1 0,2123 0,7877 Well -5,30E-06 1,60E-05 2,144 
44 1 0,1601 0,8399 Well -1,23E-06 1,55E-05 1,803 
45 1 0,2847 0,7153 Well 4,16E-07 1,68E-05 2,6056 
46 1 0,2098 0,7902 Well 2,71E-06 1,60E-05 2,1278 
47 1 0,266 0,734 Well 2,81E-06 1,66E-05 2,4861 
48 1 0,2709 0,7291 Well 6,67E-06 1,66E-05 2,5175 
49 1 0,2472 0,7528 Well -4,46E-09 1,64E-05 2,3669 
50 1 0,2743 0,7257 Well 6,47E-06 1,67E-05 2,5394 
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Table B.33 Conformity test results of the measurements 
 

Point ID Qvivi vi Decision 
1 0,8474 0,0734 concordant 
2 0,8100 0,1218 concordant 
3 0,7691 0,1651 concordant 
4 0,7409 0,4767 concordant 
5 0,7105 0,3566 concordant 
6 0,6604 0,4842 concordant 
7 0,6584 0,0761 concordant 
8 0,5447 0,5502 concordant 
9 0,8056 0,0573 concordant 

10 0,7377 0,5635 concordant 
11 0,8138 0,0245 concordant 
12 0,7692 0,3512 concordant 
13 0,8078 0,0922 concordant 
14 0,8043 0,4314 concordant 
15 0,8126 0,0877 concordant 
16 0,7953 0,3080 concordant 
17 0,6590 0,5745 concordant 
18 0,5517 0,6219 concordant 
19 0,8025 0,2413 concordant 
20 0,7208 0,2163 concordant 
21 0,8125 0,0134 concordant 
22 0,7829 0,2588 concordant 
23 0,7609 0,5430 concordant 
24 0,7318 0,1428 concordant 
25 0,7539 0,4968 concordant 
26 0,7227 0,5616 concordant 
27 0,7422 0,1792 concordant 
28 0,7427 0,5587 concordant 
29 0,7533 0,5292 concordant 
30 0,7921 0,0532 concordant 
31 0,7864 0,1683 concordant 
32 0,8229 0,1902 concordant 
33 0,8442 0,0622 concordant 
34 0,8549 0,5054 concordant 
35 0,7613 0,2136 concordant 
36 0,8267 0,3554 concordant 
37 0,8018 0,2694 concordant 
38 0,8341 0,2167 concordant 
39 0,7958 0,2161 concordant 
40 0,8415 0,2144 concordant 
41 0,5820 0,2732 concordant 
42 0,7572 0,5745 concordant 
43 0,7877 0,4704 concordant 
44 0,8399 0,1123 concordant 
45 0,7153 0,0352 concordant 
46 0,7902 0,2410 concordant 
47 0,7340 0,2403 concordant 
48 0,7291 0,5691 concordant 
49 0,7528 0,0004 concordant 
50 0,7257 0,5514 concordant 
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Table B.34 Sensitivity of the Parameter Estimation Procedure to Initial Values 
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Table B.35 Sensitivity indexes of the DRM pushbroom parameters for latitude 
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Table B.35 Sensitivity indexes of the DRM pushbroom parameters for latitude (continued) 
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Table B.36 Sensitivity indexes of the DRM pushbroom parameters for longitude 
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Table B.36  Sensitivity indexes of the DRM pushbroom parameters for longitude (continued) 
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APPENDIX C 
 
 
 

PARTIAL DERIVATIVES 
 

 

 In this section partial derivatives of DRM for CCD frame cameras with respect to inner and 

outer camera parameters are given. 

 
C.1 Partial Derivative with respect to f 
 
 

0=
∂
′∂

f
x   0=

∂
′∂

f
y   1−=

∂
′∂

f
z  0=

∂
∂
f
r  

 
0=

∂
∂
f
x

 
0=

∂
∂
f
y

 f
z

f
z

∂
′∂

=
∂
∂

 
 

( )
( )222

2
1

222 ***

zyx

x
f
zzzyx

f
SCamerax

++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

++
−=

∂
∂

−

   

( )
( )222

2
1

222

zyx

y
f
zzzyx

f
SCameray

++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∗++
−=

∂

∂

−

 

( )
( )222

2
1

222222

zyx

z
f
zzzyx

f
zzyx

f
SCameraz

++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

++−
∂
∂

++
=

∂
∂

−

 

 

f
S

f
S CxBx

∂
∂

=
∂
∂   

f
S

f
S CyBy

∂

∂
−=

∂

∂
  

f
S

f
S CzBz

∂
∂

−=
∂
∂  

 

( )

( )
f

S
f

S
f

S
f

S

Cameraz

CamerayCameraxOrbitalx

∂
∂

++

∂

∂
−

∂
∂

−=
∂

∂

φωκφκ

ωκφωκφκ

cossinsinsincos

cossinsinsinsincoscos
 

 

( )

( )
f

S
f

S
f

S
f

S

Cameraz

CamerayCameraxOrbitaly

∂
∂

−+

∂

∂
+

∂
∂

+=
∂

∂

φωκφκ

ωκφωκφκ

cossincossinsin

coscossinsincoscossin
 

 

f
S

f
S

f
S

f
S CamerazCamerayCameraxOrbitalz

∂
∂

+
∂

∂
+

∂
∂

−=
∂

∂
φωωφω coscossinsincos  

 
 



 227

f
S

r
f

S
r

f
S

r
f

S OrbitalzOrbitalyOrbitalxxEarthfixed

∂
∂

+
∂

∂
+

∂
∂

=
∂

∂
131211  

 
f

S
r

f
S

r
f

S
r

f
S OrbitalzOrbitalyOrbitalxyEarthfixed

∂
∂

+
∂

∂
+

∂
∂

=
∂

∂
232221    

f
S

r
f

S
r

f
S

r
f

S OrbitalzOrbitalyOrbitalxzEarthfixed

∂
∂

+
∂

∂
+

∂
∂

=
∂

∂
333231    

f
S

sS
f
s

f
X xEarthfixed

xEarthfixed ∂

∂
+

∂
∂

=
∂
∂ 0  

f
S

sS
f
s

f
Y yEarthfixed

yEarthfixed ∂

∂
+

∂
∂

=
∂
∂ 0   

f
S

sS
f
s

f
Z zEarthfixed

zEarthfixed ∂

∂
+

∂
∂

=
∂
∂ 0  

 
 

( ) ( )
2

22
1

2

*4

422*4424
2
1

α

αγββαααγγαββαγββ
−−−

∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

−
∂
∂

−−
∂
∂

−

=
∂
∂

−

fffff
f
s  

 

22

**2**2**2

b
f

S
S

a
f

S
S

f
S

S

f

zearthfixed
zEarthfixed

yearthfixed
yEarthfixed

xEarthfixed
xEarthfixed ∂

∂

+
∂

∂
+

∂

∂

=
∂
∂α   

 

22

***

b
f

S
Z

a
f

S
Y

f
S

X

f

zearthfixed
cam

yearthfixed
cam

xEarthfixed
cam ∂

∂

+
∂

∂
+

∂

∂

=
∂
∂β  

 

0=
∂
∂

f
γ  

 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
∂
∂

−
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
∂
∂

2
0

0
0

0
0

2

0

0

**
*

1

1
X

f
X

Y
f
Y

X

X
Yf

λ  

 
 

( )

( )
( )22

2

2
22

2

2
1

2222

*1*
1

1

**

oo

oo

o

ooo
o

o
o

ooo
o

YX
hN

Ne

hN
NeYX

Z

ZYX
f
Y

Y
f

X
XYX

f
Z

f

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−+
+

⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

−+
∂
∂

=
∂
∂

−

φ  

 
 
 
 
 



 228

C.2 Partial Derivative with respect to ∆x 
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C.3 Partial Derivative with respect to ∆y 
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C.4 Partial Derivative with respect to k1 
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C.5 Partial Derivative with respect to k2 
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C.6 Partial Derivative with respect to p1 
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C.7 Partial Derivative with respect to p2 
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C.8 Partial Derivative with respect to ω 
 
 

0=
∂
′∂
ω
x   0=

∂
′∂
ω
y   0=

∂
′∂
ω
z   0=

∂
∂
ω
r  

 

0=
∂
∂
ω
x   0=

∂
∂
ω
y   0=

∂
∂
ω
z   

 

0=
∂
∂
ω
CxS    0=

∂

∂

ω
CyS

 0=
∂
∂
ω
CzS  

 

0=
∂
∂
ω
BxS  0=

∂

∂

ω
ByS

 0=
∂
∂
ω

BzS  

 

BzByBx
Ox SSS

S
∗+∗+∗−=

∂
∂

φωκωκφωκ
ω

coscossinsinsinsincossin

BzByBx
Oy SSS

S
∗−∗−∗=

∂

∂
φωκωκφωκ

ω
coscoscossincossincoscos

BzByBx
Oz SSS

S
∗−∗+∗=

∂
∂

φωωφω
ω

cossincossinsin  

 

ωωωω ∂
∂

+
∂

∂
+

∂
∂

=
∂
∂ OzOyOxEx S

r
S

r
S

r
S

131211
 

ωωωω ∂
∂

+
∂

∂
+

∂
∂

=
∂

∂ OzOyOxEy S
r

S
r

S
r

S
232221

   

ωωωω ∂
∂

+
∂

∂
+

∂
∂

=
∂
∂ OzOyOxEz S

r
S

r
S

rS
333231    

 

ωωω ∂
∂

+
∂
∂

=
∂
∂ Ex

Ex
S

sSsX 0  

ωωω ∂

∂
+

∂
∂

=
∂
∂ Ey

Ey

S
sSsY0   

ωωω ∂
∂

+
∂
∂

=
∂
∂ Ez

Ez
S

sSsY0  

 

( ) ( )
2

22
1

2

*4

422*4424
2
1

α

αγββ
ω
αα

ω
αγ

ω
γα

ω
ββαγβ

ω
β

ω

−−−−
∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

−
∂
∂

−−
∂
∂

−
=

∂
∂

−

s  

 

22

**2**2**2

b

S
S

a

S
S

S
S Ez

Ez
Ey

Ey
Ex

Ex ωωω
ω
α ∂

∂

+∂

∂
+

∂
∂

=
∂
∂   

 

22

***

b

SZ

a

S
Y

S
X Ez

cam
Ey

cam
Ex

cam ωωω
ω
β ∂

∂

+∂

∂
+

∂
∂

=
∂
∂  

 



 240

0=
∂
∂
ω
γ  

 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
∂
∂

−
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
∂
∂

2
0

0
0

0
0

2

0

0

**
*

1

1
X

X
Y

Y
X

X
Y

ωω
ω
λ  

 

( )

( )
( )22

2

2
22

2

2
1

2222

*1*
1

1

**

oo

oo

o

ooo
o

o
o

ooo
o

YX
hN

Ne

hN
NeYX

Z

ZYX
Y

Y
X

XYX
Z

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−+
+

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

−+
∂
∂

=
∂
∂

−

ωωω
ω
φ  

 
 
C.9 Partial Derivative with respect to φ 
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C.10 Partial Derivative with respect to κ 
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C.11 Partial Derivative with respect to c 
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C.12 Partial Derivative with respect to Xcam 
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C.13 Partial Derivative with respect to Ycam 
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C.14 Partial Derivative with respect to Zcam 
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C.15 Partial Derivative with respect to εh 
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C.16 Partial Derivative with respect to x” (x pixel coordinate) 
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C.17 Partial Derivative with respect to y” (y pixel coordinate) 
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