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ABSTRACT 

ABSTRACT 

IMPLEMENTATION OF DIFFERENT FLUX EVALUATION SCHEMES INTO A 

TWO-DIMENSIONAL EULER SOLVER 

 

ERASLAN, Elvan 

M.Sc., Department of Mechanical Engineering 

Supervisor: Prof. Dr. M. Haluk AKSEL 

 

September 2006, 139 pages 

 

This study investigates the accuracy and efficiency of several flux splitting 

methods for the compressible, two-dimensional Euler equations. Steger-Warming 

flux vector splitting method, Van Leer flux vector splitting method, The Advection 

Upstream Splitting Method (AUSM), Artificially Upstream Flux Vector Splitting 

Scheme (AUFS) and Roe’s flux difference splitting schemes were implemented 

using the first- and second-order reconstruction methods. Limiter functions were 

embedded to the second-order reconstruction methods. The flux splitting methods 

are applied to subsonic, transonic and supersonic flows over NACA0012 airfoil, as 

well as subsonic, transonic and supersonic flows in a channel. The comparison of 

the obtained results with each other and the ones in the literature is presented. 

The advantages and disadvantages of each scheme among others are identified. 

 

Keywords: Two-dimensional Euler Equations, Flux Splitting Schemes, 

Reconstruction Methods, Limiter Functions  
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ÖZ 

ÖZ 

İKİ BOYUTLU EULER ÇÖZÜCÜSÜNE DEĞİŞİK AKI HESAPLAMA 

YÖNTEMLERİNİN EKLENMESİ 

 

 

ERASLAN, Elvan 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi:  Prof. Dr. M. Haluk AKSEL 

 

Eylül 2006, 139 sayfa 

 

Bu çalışmada sıkıştırılabilir, iki boyutlu Euler denklemleri için, akı ayrıştırma 

yöntemleri hassasiyet ve verimlilik açısından incelenmiştir. Birinci ve ikinci 

dereceden yeniden yapılandırma yöntemleri kullanılarak Steger-Warming akı 

vektörü ayrıklaştırma yöntemi, Van Leer akı vektörü ayrıklaştırma yöntemi, yukarı 

iletimli ayrıştırma yöntemi (AUSM), ileri yönlü yapay akı vektörü ayrıştırma 

yöntemi (AUFS) ve Roe akı farkı ayrıklaştırma yöntemi uygulanmıştır. İkinci 

dereceden yeniden yapılandırma yöntemlerine sınırlayıcı fonksiyonlar eklenmiştir. 

Akı ayrıştırma yöntemleri ses-altı, ses seviyesi ve ses-üstü hızlarda NACA0012 

kanat etrafında ve ses-altı, ses seviyesi ve ses-üstü hızlarda kanal içinde 

denenmiştir. Elde edilen sonuçlar birbirleriyle ve literatürdeki sonuçlarla 

karşılaştırılmıştır. Kullanılan yöntemlerin birbirlerine göre avantaj ve dezavantajları 

incelenmiştir.  

 

Anahtar Kelimeler: İki-boyutlu Euler Denklemleri, Akı Ayrıştırma Yöntemleri, 

Yeniden Yapılandırma Yöntemleri, Sınırlayıcı Fonksiyonlar 
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1 INTRODUCTION 

CHAPTER 1 

INTRODUCTION 

1.1 General 

In science, there exist three distinct ways to obtain information about physical 

phenomena. First of them is the analytical method which involves the solution of 

the governing partial differential equations that describes the physical 

phenomena. The advantage of this method is that if these equations can be 

solved, they give the exact behaviour of the phenomena. The drawback is, 

however, these equations are very cumbersome and even impossible to solve 

since most of the time they contain non-linear terms. The second method to 

explain the physical phenomena is to perform experiments. When properly 

conducted, these experiments can give very good results despite the small 

disturbances that occur during the data acquisition session. On the other hand, 

these experiments can be very costly or even impossible to perform. Moreover, 

some of these experiments shall not be feasible to perform. The last tool to 

examine physical phenomena is the computational method, which involves 

computers to simulate the phenomena and provide the desired information. 

Nevertheless, the advantage of being simple is confronted by the need of a 

powerful system in order to analyze complex situations. However, with the 

developments in the computer technology, they are used widely by scientists and 

engineers. 

1.2 Computational Fluid Dynamics 

In fluid mechanics, the area in which computers are used to simulate the 

problems is called Computational Fluid Dynamics (CFD). As Malalasekera [1] 
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stated, “CFD is the analysis of systems involving fluid flow, heat transfer and 

associated phenomena such as chemical reactions by means of computer based 

simulation”. A CFD code is made up of three main elements which are (i) pre-

processor, (ii) solver and (iii) post-processor. 

1.2.1 Pre-processor 

The procedure of solving the problem starts with the definition of the 

computational domain. After this step, the computational domain is divided into a 

number of sub-domains which are known as a grid or mesh. Then, the fluid 

properties are defined. Finally, the appropriate boundary conditions at cells which 

coincide with or touch the domain boundary are specified at pre-processing step. 

[1] 

1.2.2 Solver 

There exist four different techniques for numerical solution of partial differential 

equations: finite difference method, finite element method, spectral methods and 

finite volume method. This latter technique is firstly developed as a special finite 

difference formulation, but being more physically based, this method distinguished 

among the other techniques. 

Finite difference method (FDM) is based on expanding the derivatives in partial 

differential equations. There are two approaches to calculate the derivatives of the 

functions. First one is to use Taylor series approximations. An alternative 

approach for this method is to use polynomials of degree n to expand functions. 

[2] In Taylor series approximation approach; there exist three schemes to 

calculate the derivatives. The first one is the forward differentiation, which uses 

the point under consideration and succeeding points to calculate derivative at any 

point. The next scheme is backward differentiation method, which calculates the 

derivative of the function using the desired point and previous points. The last 

scheme is the central differentiation method, which uses the previous and 

succeeding points both, to calculate the value of derivative at any point. In Taylor 
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series approach, the generated error is due to the truncation of higher order 

terms. Although this method is easy to apply, it requires a highly regular grid, 

hence limiting the application of the formulation to simple geometries. [3, 4]  

The second formulation technique is the finite element method (FEM). It was 

initially developed for structural stress analysis, however during the last two or 

three decades this technique is extended to several other disciplines. [1, 2] The 

advantage of this system over FDM is that it can be applied with the use of 

unstructured grids, i.e. with complex geometries. The idea behind this technique 

is that it develops local element equations on each element. Then, the technique 

minimizes the errors of the solution based on an optimization technique. Lastly, all 

the element equations are combined to form a system of linear algebraic 

equations [2].  

Spectral methods (SM) are based on the idea to approximate the unknowns by 

using truncated Fourier series or series of Chebyshev polynomials. The 

approximations are valid throughout the computational domain. [1]  

Finite volume method (FVM) originated from FDM. FVM uses the conservative 

form of the conservation equations. In this discretisation technique, the 

conservation statement of the property Φ is applied in a form that is applicable to 

a region in space. This enables the formal integration of the governing equations 

of the flow over all the control volumes of the computational domain [1-5]. The 

above statement provides that the independent values are integrated directly on 

the physical domain. Thus, the domain needs only to be discretised successfully, 

i.e. structured grids are not mandatory. Once the unknowns in each control 

volume are obtained by an initial condition, the equations are solved iteratively to 

obtain the final result. Although, it is difficult to implement second and higher order 

methods in three-dimensional domains, it gained much popularity among 

engineers. This is due to the physical basis of the terms that are approximated. [4]   

Finite volume method is used in this study in order to solve the conservation 

equations. Once the surface and volume integrals in the conservative form of the 
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equations are approximated by using suitable quadrature formulas, differential 

equations in time and space are obtained. The conservative variables appear as 

unknowns in these equations. Time derivative of these unknowns are 

approximated by temporal discretisation methods, and the space derivatives are 

approximated by spatial discretisation methods. Applying separate discretisation 

in space and time is named as method of lines. Handling the space and time 

terms separately allows approximating the corresponding terms at different levels. 

The above procedure is repeated for the whole domain and by iteration the 

steady-state result is obtained. The solution domain consists of cells formed by 

the grids and there are mainly two types of grids [3, 6]. 

The grid cells in structured grids are quadrilaterals in 2-D and hexahedra in 3-D 

and are ordered as the name implies. The nodes or the cell centres are uniquely 

defined by the indices i, j, k in an order. The neighbor of the cell (i, j, k) in the x- 

direction is the cell indicated by (i+1, j, k). The structured grids can be formed by 

following the geometry contour and it is named as the body-fitted (curvilinear) 

grid. On the other hand, the grid can be formed in the Cartesian coordinates 

without taking care of the geometry in the domain. If the grid is formed in such a 

manner then it is named as the Cartesian grid. The second type of the grids is the 

unstructured grids. Unstructured grids usually consist of a mixture of 

quadrilaterals and triangles in 2D and of hexahedra, tetrahedra, prisms and 

pyramids in 3D. They are not ordered and the definition of the neighbor cells in 

unstructured grids is little more complicated than that in the structured grids. 

Although implementation of the solver is rather easy in structured grids, the 

unstructured grids are preferred for complex geometries for more accurate 

results. In simple geometries such as single element airfoils, structured grids are 

used, whereas the domain with a multi-element airfoil is meshed by unstructured 

grids [3, 6]. 

Temporal discretisation methods are distinguished into two; explicit and implicit 

methods. When a direct computation of the dependent variables can be made in 

terms of known quantities, the computation is said to be explicit. Hence, explicit 

methods make use of the known data at the current time step in order to find the 



 

 

5

unknown data at the next time step. The unknown conservative variables can be 

found by using a single-stage time-stepping; however this method is only 

applicable for first-order upwind schemes. On the other hand, the multistage time-

stepping schemes, called Runge-Kutta schemes, introduced by Jameson et al. [7] 

are very popular since the solution is advanced in several stages. The obtained 

residuals are weighted by the specified coefficients. By changing the weight 

coefficients and expanding the number of stages, the order of temporal 

discretisation can be increased. Although the explicit multistage time-stepping 

schemes are very cheap and easy to implement, the drawback of this method is 

the restrictions of the permissible time step due to stability conditions. In this 

study, local time-stepping, which is based on the determination of the maximum 

permissible time step for each control volume, is used. In order to have a stable 

explicit time-stepping scheme, time step, should fulfill Courant-Friedrichs-Lewy 

(CFL) criteria. This condition is satisfied when the time step is equal to or smaller 

than time required for transforming information across the stencil. In this case, it is 

guaranteed that the associated error remains in the order of the truncation error 

[3]. In contrast to the explicit schemes, when the dependent variables are defined 

by coupled sets of equations and either a matrix or iterative technique is needed 

to obtain the solution, the numerical method is said to be implicit. The advantage 

of the implicit methods over the explicit methods is that, implicit methods do not 

limit time steps and which lead to a faster convergence [3, 6]. In this study, three-

stage Runge-Kutta time-stepping scheme, one of the explicit time-stepping 

methods, is used. 

The residual terms used in the temporal discretisation, are the differences 

obtained from the spatial discretisation. The spatial discretisation techniques are 

used to approximate the convective and viscous terms. There are varieties of 

spatial discretisation schemes in the literature, and researches still continue to 

find more accurate, robust and cheap schemes. These techniques actually apply 

for the convective terms, since the viscous terms are handled by central 

differencing due to their physical nature.  

Schemes for handling the convective terms in the Euler equations are mainly 
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divided into two categories.  

Before giving information about the discretisation schemes, it would be 

convenient to give broad information about the definition of control volumes and 

the storage points of the flow data. There exist three major methodologies of 

discretisation which are the cell-centered scheme, cell vertex scheme with 

overlapping control volumes and cell vertex scheme with dual control volumes. 

Cell-centered scheme, which is used in this study, uses the cells defined by the 

grid as control volumes. The flow variables are stored at the centroid of each 

control volume, whereas the cell-vertex schemes store the flow data at the 

vertices of each control volume as the name implies. Overlapping control volumes 

are the cells formed by the grid, just as in the case of cell-centered schemes, but 

the data obtained for a vertex is influenced by the neighboring cells. Dual control 

volumes are formed by connecting the midpoints of the cells surrounding a vertex. 

[6]  

First one of the spatial discretisation schemes is the group of central difference 

schemes. The basic idea of the central scheme is finding the conservative 

variables at the face of a control volume, by arithmetically averaging the 

corresponding values at the left and right of the cell face.  This may lead to odd-

even decoupling of the solution, meaning that there may be more than one 

solution to an equation, and solution may overshoot at discontinuities. Numerical 

dissipation models are also included in the schemes in order to prevent these 

oscillations at shock waves, and to make the scheme more stable [8]. Although 

the central scheme is less accurate in handling the discontinuities, researchers 

have spent too much time on improving the basic scheme, because it is 

computationally cheaper. The central difference schemes are of mainly two types, 

the first type handles the space and time integration together, and the second 

type approximates the space and time integrals separately. The first of the former 

type was introduced by Lax in 1954 [9], which was a first order and explicit 

scheme. In 1960, Lax-Wendroff introduced a second-order, explicit scheme of the 

same kind [10]. Two-step explicit central difference schemes were presented by 

MacCormack [11], LeRat -Peyret [12], and an implicit scheme of this type was 
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presented by LeRat [13]. Central difference schemes of the second type have 

both implicit and explicit examples in the literature. Beam and Warming [14] 

introduced an implicit scheme, and Jameson et al. introduced an explicit scheme 

using a multi-stage Runge-Kutta scheme in 1981 [7] as stated in [15]. On top of 

these, Swanson and Turkel introduced matrix dissipation schemes, which use the 

diagonalized Jacobian matrix using the absolute values of the eigenvalues for 

each conservation equation separately, to scale the dissipation [8]. The scheme 

which applies the idea of limiters for overcoming the problem at discontinuities, 

switches from second-order to first-order accuracy. Another central-difference 

scheme which uses the limiter idea for each conservation equation is the 

Symmetric Limited Positive scheme introduced by Jameson et al. [16]. 

The second type of spatial discretisation schemes is the upwind schemes, which 

are the most widely used ones. Upwind schemes use the concept of the 

characteristic theory for determining the direction of spatial differencing. 

Characteristic theory predicts that all information flows from upstream to 

downstream, for supersonic flow. For subsonic flow, however, information is 

propagated in such a way that waves can travel in both directions i.e. upstream to 

downstream and downstream to upstream. Upwind schemes handle both of these 

cases successfully by calculating the flux at a given cell boundary based on the 

direction of the eigenvalues. Moreover, contrary to central difference schemes, 

the dissipative terms are embedded in the upwind schemes providing the terms to 

be scaled by the appropriate eigenvalue. Upwind schemes are divided into four 

sub-categories. These are: 

1. Flux vector splitting schemes 

2. Flux-difference splitting schemes 

3. Total variation diminishing schemes 
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4. Fluctuation-splitting schemes 

The flux vector splitting schemes, the first level of upwind schemes, only takes the 

direction of eigenvalues into consideration. The split fluxes in each direction are 

handled separately as if the flow is one-dimensional. One class of flux vector 

splitting schemes decomposes the flux vector according to the sign of the 

eigenvalues and the other type splits the flux term into convective and pressure 

parts. Some of the flux vector splitting schemes will be introduced briefly.  

Steger-Warming (SW) flux vector splitting scheme is developed as an implicit 

scheme, and splits the flux vector into non-positive and non-negative parts, each 

associated with the signal propagation direction using the homogeneity property 

of the Euler equations. [17] The split fluxes are handled by the use of backward 

and forward differences which leads to the occurrence of sudden, unphysical 

changes in the flow around sonic points. Although the presented algorithm is 

implicit, there are many explicit applications in the literature. [3, 6, 18, 19, 20]  

Due to the deficiencies in the Steger-Warming scheme, Van Leer [21] introduced 

an alternative flux vector splitting scheme which is good in handling the sonic 

points. The Van Leer (VL) splitting approximates the split Mach number using a 

second order polynomial, which offers the first and second derivatives to be 

continuous. This continuity corrects the oscillation problem through sonic and 

stagnation points. Van Leer flux vector splitting also provides standard upwinding 

in the supersonic region and also the uniqueness of the solution by adding some 

restrictions to the split fluxes. Large errors at the viscous region are identified by 

some researchers and Van Leer himself recognized that the scheme fails to 

capture the contact discontinuities which lead the scheme to be improved [5].  

Liou and Steffen [22] states that the SW and VL schemes are simple and useful in 

some cases but are not accurate enough due to the high numerical diffusion. As it 

will be explained flux difference splitting schemes are at the expense of high 

calculation time. Liou and Steffen [22] aimed to develop a new flux splitting 

scheme, which has the efficiency of the flux vector splitting schemes on top of the 
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accuracy of the flux difference splitting schemes. The Advection Upstream 

Splitting Method (AUSM) basically differs from the introduced flux vector splitting 

methods by the splitting methodology. AUSM splits the flux vector into a pressure 

and a convective part. The scheme handles the convective terms by the face 

velocity obtained by the Van Leer’s Mach number splitting, and pressure terms 

are governed by the acoustic wave speeds. The flow variables at the interfaces 

are calculated according to the sign of the velocity at the face. The split pressure 

is weighted by the Mach number. It is stated in [22] that, the AUSM gives as 

accurate results as the Roe’s flux difference splitting scheme, and overcome the 

weaknesses of VL scheme. But, the scheme generates oscillations at shocks 

where the flow is aligned with the grid [6]. Liou [23] presented AUSM+ as an 

improvement on the pre-existing AUSM scheme, by modifying the definition of the 

Mach and pressure splittings. Liou and Wada [24] proposed AUSMDV that shows 

high-resolution for contact discontinuities, conservation of enthalpy for steady 

flows, numerical efficiency and applicability to chemically reacting flows. AUSM+ 

up scheme is again introduced by Liou [25] which is capable of handling the low 

Mach number flows. In [26] it is stated that “Typical symptoms appearing in the 

application of AUSM type schemes for high-speed flows, such as pressure 

wiggles near a wall and overshoots across a strong shock, are cured by 

introducing weighting functions based on pressure (AUSMPW)”, and a new 

AUSM type scheme overcoming the difficulties observed in hypersonic flows is 

introduced and named as AUSMPW+. A robust and more accurate 

multidimensional compressible flow scheme by redefining the prediction of the 

interface states is introduced by Kim and Kim [27]. Liou published a comparison 

of the AUSM type schemes. [28]  

Jameson [16, 29] introduced an AUSM like scheme, named Convective Upwind 

Split Pressure (CUSP), which is the remedy for the flow alignment case. CUSP 

approximates the convective flux by simple arithmetic averaging, and subtracts a 

diffusion term which includes the pressure flux. The definition of the diffusion term 

makes the scheme similar to AUSM, with the difference is that it is not weighted 

by Mach number. E-CUSP scheme is introduced [30] aiming to remove the 

temperature oscillations. Comparison between CUSP and the matrix dissipation 
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scheme is undertaken, and it is concluded that the matrix dissipation scheme 

leads to more accurate results than CUSP in coarse meshes for transonic airfoil 

flows [31].  

A newly proposed flux vector splitting scheme, Artificially Upstream Flux Vector 

Splitting Scheme (AUFS), is developed to overcome all deficiencies of flux vector  

splitting schemes and flux difference splitting schemes in resolving shock waves, 

computation efficiency and time. AUFS introduces two artificial wave speeds such 

that one flux vector has either non-positive or non-negative eigenvalues. This 

allows the fluxes to be approximated by one-side differencing. Extensions of the 

scheme to multi-dimensions and higher orders are also presented. The scheme 

serves more accurate results than the compared schemes, Roe’s flux difference 

splitting scheme and SW flux vector splitting scheme. It resolves the shocks 

sharper, and does not create oscillations at the sonic points. [32] 

The schemes like the AUSM, CUSP, and AUFS can be named as hybrid flux-

splitting scheme since they combine the superior parts of the flux vector and flux 

difference splitting schemes. Their goal is to reach the accuracy of the Roe’s flux 

splitting scheme with low computational cost. Another hybrid flux-splitting scheme 

is introduced by Rossow for compressible flows, Mach number-based advection 

pressure splitting, MAPS [33]. He expanded introduced scheme with the capability 

of solving incompressible flow by using the Roe’s flux splitting scheme in the low 

Mach number regions and named it as MAPS+ [34]. Both of the schemes show 

comparable accuracy with the Roe’s flux splitting scheme and MAPS+ do not 

show any superiority on the MAPS for compressible flows. The convergence of 

both schemes is proved to be independent of the Mach number. 

Extensions of the flux vector splitting schemes to real gas flows are available in 

the literature [35, 36]. 

After introducing the well-known flux vector splitting schemes, a step further can 

be taken. Flux difference splitting schemes are based on the solution of the local 

Riemann problem at each interface. The first exact Riemann solver was 
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developed by Godunov [37]. He proposed that the non-linear superposition of the 

Riemann problems lead to the general initial value problem. Thus the exact 

solution of Riemann problem gives almost the exact results. But this method is 

computationally expensive, and to reduce excessive the computational time, 

approximate Riemann solvers are developed. The well-known approximate 

Riemann solvers are developed by Roe [38] and Osher [39]. Roe found that a 

properly selected approximate problem does the job just as well in most cases 

and saves on calculation complexity. Roe’s approximate Riemann solver resolves 

the boundary layers and shocks with a high accuracy however it does not 

recognize the sonic point leading the carbuncle problem. Harten’s entropy 

correction overcomes this problem. The disadvantage of the Roe’s solver is that, 

the extension to real gas flows is very difficult. Extension of Roe’s flux difference 

splitting scheme to real gas flow can be found in [35]. Dick [40] developed a flux-

difference splitting scheme based on the scheme of Lombard [41], the tests made 

lead to very accurate results. Hybrid implicit-explicit Godunov type schemes can 

be found in [42] and the references cited therein.  

TVD (total variation diminishing) schemes are based on the concept of avoiding 

the creation of new extreme points in the solution. TVD schemes are 

monotonocity preserving schemes, meaning that the local minimum and the local 

maximum in the solution are non-decreasing and non-increasing, respectively, 

and with no change in the number of local extreme points. This property allows 

the TVD schemes to capture the shocks more accurately. Although the scheme 

serves superior properties in handling the flow, the extension to higher order 

accuracies is not very easy [3, 6, 43]. 

The last type of flux splitting schemes is the fluctuation splitting schemes. All the 

flux-splitting schemes introduced so far, splits the fluxes according to the 

orientation of the grid. The advantage of the scheme is the elimination of the grid 

alignment problem. The fluctuation splitting schemes are developed for cell vertex 

schemes. Although the fluctuation splitting schemes are said to be accurate, due 

to the complexity of implementation they are not widely used. Detailed information 

about the fluctuation splitting schemes can be found in [44, 45] and the references 
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cited therein.  

Researches, aiming to increase the accuracy of the above presented schemes, 

lead to higher-order schemes. The higher-order schemes obtain at least second 

order truncation errors, but lead to oscillations. The well-known higher order 

reconstruction scheme MUSCL (Monotone Upstream-Centered Schemes for 

Conservation Laws), presented by Van Leer [46], is based on the Taylor series 

expansion. The general formula given for MUSCL in the literature [46, 6, 47] 

serves for the uniform structured grids. The formula can be applied to structured 

grids in general coordinates only by transforming the physical domain to the 

computational domain, and there is no way of using the general formula in 

unstructured tetrahedral grids without modification. Since the complex geometries 

need the grid to be body-fitted structured or unstructured, researchers worked on 

the extension of the MUSCL scheme on these types of grids. The higher-order 

scheme for reconstruction logic for these grids is the summation of the 

corresponding data with the gradient of that data over the control volume. The 

detailed information of the higher-order methods for unstructured and body-fitted 

structured grids can be found in [6, 47-55]. The use of higher order schemes 

makes the use of limiters compulsory. As Berger and Aftosmis states “Limiters 

suppress the oscillations, and maintain the monotonocity condition, whereas they 

reduce accuracy and hamper convergence” [56]. Limiters pass to first-order from 

second-order in the vicinity of discontinuities. Two types of limiters are used; flux 

limiters and slope limiters. It is stated that these two types are equivalent, and 

they are related to each other with a simple equation. [56] All the publications on 

the higher-order schemes give detailed information on the limiter functions. The 

reader may refer to the references on higher-order schemes, for the limiter 

functions.     

1.2.3 Post-processor 

The last part of a CFD study is to visualization of the problem itself and the 

proposed solution. This is taken care of by the post-processor part. In this part, 

the geometry and grids are displayed and the examined properties are plotted as 
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vectors or line and shaded contours. The developments in this field are also 

continuing as in the pre-processor and solver fields and recently the post-

processor facilities may include dynamic result display and even data export 

capabilities for further manipulation to the code [1]. 

1.3 Present Study 

The aim of this study is to develop a two-dimensional Euler solver that enables to 

make a comparison between different flux evaluation schemes on the basis of 

effectiveness and accuracy. 

As a starting point, the two-dimensional Euler solver developed by Şişman [58] 

and Özdemir [61] using first order, cell-centered scheme with Roe’s flux difference 

splitting for external flows, is investigated.  The code is rewritten and afterwards, 

the code is improved by adding necessary arrangements that can offer an option 

to impose different flux evaluation schemes and higher-order reconstruction 

schemes. Moreover, the redeveloped code is aimed at an efficient use of 

computer memory resources and to satisfy the convergence criteria much faster 

compared to the original code.   

Following the embodiment of the code, different flux evaluation schemes which 

are explained briefly in the preceding sections, are embedded in the code by 

using the corresponding references for each scheme as a basis. [17, 21, 22, 32, 

38, 57] 

In order to improve the accuracies of the results for various schemes, a second-

order reconstruction scheme is set in the code. The basis for this higher-order 

accuracy reconstruction method is presented in [6]. A limiter function is added to 

the code, in order to suppress spurious oscillations occurring due to higher-order 

reconstruction.  

Following the study for external flows, the two-dimensional Euler solver for 

internal flows, developed by Şişman [58] is investigated. The prewritten 
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external flow solver is modified by changing the boundary conditions, and it is 

made capable of handling internal flows.    

After obtaining the results of these different flux evaluation schemes, a 

comparison between the obtained results and the ones presented in the literature 

are performed. With this step, the strengths and weaknesses are studied and the 

limits of the code is tried to be assessed. 

This thesis consists of six chapters. The first chapter reviews the literature. The 

second chapter gives the derivation of the governing equations and the Euler 

equations. Chapter 3 explains the general solution principle of the flow, gives a 

detailed description of the geometrical quantities that should be used during the 

solution. Moreover, the used boundary conditions are explained in this chapter.  In 

Chapter 4, the flux evaluation schemes used in this study are given in detail with 

the necessary references. Results obtained from the two-dimensional Euler solver 

are given and discussed by comparing with the results in the literature in Chapter 

5. The last chapter consists of the summary of the results and recommendations 

for the improvement of the present code. 
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2 GOVERNING EQUATIONS 

CHAPTER 2 

GOVERNING EQUATIONS 

2.1 Conservation Law 

The conservation of a certain physical quantity in an arbitrary control volume Ω 

bounded by a control surface, S, states that the total time variation of the quantity 

is due to fluxes, amount of the quantity being transported across the boundary, 

external sources acting on the control volume, and internal sources. [3, 6] 

2.1.1 General Conservation Law 

The variation of a certain scalar quantityQ , in the control volume Ω, per unit time; 

dQ
t Ω

∂
Ω

∂ ∫          (2.1) 

should be equal to the net contribution from the fluxes, and volume and surface 

sources; 

F.dS d Q .dSS
S S

Qν
Ω

− + Ω+∫ ∫ ∫
G G JG G
v v       (2.2) 

The first term in Equation (2.2) represents the net contribution due to the incoming 

fluxes across the surface S, which consists of the diffusive and convective terms.  

F = F + Fc d
G G G

        (2.3) 
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Convective flux is due to the transport of the scalar quantity in consideration 

across the surface S, with the velocity V
JG

; 

( )F V.n dSc

S

Q= − ∫
G JG G G

v        (2.4) 

on the other hand, diffusive flux, which is due to the molecular motion of the fluid 

particles even at rest, is defined by the Fick’s gradient law. [6]  

( )F / .n dSd

S

Qκρ ρ⎡ ⎤= ∇⎣ ⎦∫
G G G
v        (2.5) 

where κ is the diffusivity constant of the transported quantity. As stated in 

Equation (2.5) diffusive flux is proportional to the gradient of the quantity 

considered and it will vanish for a homogenous flow.  

General form of conservation law for a certain scalar quantity Q  is; 

( ) ( ){ }d v.n / .n dS d Q .dSS
S S

Q Q Q Q
t νκρ ρ
Ω Ω

∂ ⎡ ⎤Ω+ − ∇ = Ω+⎣ ⎦∂ ∫ ∫ ∫ ∫
G G G G JG G

v v   (2.6) 

Applying the Gauss’s theorem to Equation (2.6), by assuming that the volume Ω  

is fixed, and the fluxes and sources are continuous, conservation law takes the 

following form; 

d .Fd d .Q dSv
Q Q
tΩ Ω Ω Ω

∂
Ω+ ∇ Ω = Ω+ ∇ Ω

∂∫ ∫ ∫ ∫
JG G JG JG

     (2.7) 

Equation (2.7) leads to the differential form of conservation law for an arbitrary 

control volumeΩ ; 
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Q .F .QSvQ
t

∂
+∇ = +∇

∂

JG JG G JG JG
        (2.8) 

 If the conserved quantity is not a scalar but a vector, the principle of the 

conservation law is still applicable. In this case, the vector variables, flux and the 

surface forces, become tensors, and the scalar variables, the volume sources 

become vectors which is given by the following equation; [3, 6] 

( ) ( )Qd F F .n dS Q d Q .n .d SC D S
S St ν

→ →

Ω Ω

∂ ⎡ ⎤Ω+ − = Ω+⎢ ⎥⎣ ⎦∂ ∫ ∫ ∫ ∫
G G JGG G G G JG JG G

v v    (2.9) 

Applying Gauss’s theorem and assuming that the sources and the fluxes are 

continuous for a fixed control volume, Equation (2.9) takes the form  

Qd .Fd Q d .Q dv St Ω Ω Ω Ω

∂
Ω+ ∇ Ω = Ω+ ∇ Ω

∂ ∫ ∫ ∫ ∫
G JGJG JG G JG JG JG

     (2.10) 

for an arbitrary control volume, which can be expressed in the differential form as 

( )Q . F Q QS vt
∂

+∇ − =
∂

JG G JGJJG G JG JG
        (2.11) 

The convective and diffusive flux terms in Equation (2.9), which are the parts of 

the total flux term in Equations (2.10) and (2.11), can be defined as [3] 

F V Qc = ⊗
GG JG JG

        (2.12) 

F ij

j
d

j

q
x

ρκ
∂

= −
∂

GG
        (2.13) 
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where   

j
j

Q
q

ρ
=          (2.14) 

2.1.2 Conservation of Mass 

Mass can neither be created nor destroyed in a system unless a nuclear reaction 

exists within the system. This fact is governed by the conservation of mass. The 

general law of conservation applies for the kinematic property mass, with mass 

per unit volume, density, ρ, as the scalar quantityQ . [3] 

As stated above, diffusive flux identifies the molecular motion of fluids. Since any 

flux created by the specific mass implies the displacement of particles, which is 

known as the convective flux, there is no diffusive flux contribution to the 

conservation of mass.  

In this study, single phase fluid flow is examined, ensuring that there is no 

chemical reaction possibility for the fluid. Chemical reactions are the only sources, 

when mass is considered. So, in the absence of chemical reactions, the source 

term in the conservation of law drops. [3, 6, 58] 

Using Equation (2.6), the conservation of mass is represented in integral form as; 

( )d V.n dS 0
St

ρ ρ
Ω

∂
Ω+ =

∂ ∫ ∫
JG G G

v       (2.15) 

Equation (2.15) can be stated in differential form as 

( ). .V 0
t
ρ ρ∂
+∇ =

∂

JG JG
        (2.16) 
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2.1.3 Conservation of Momentum 

Momentum is a vector quantity, thus conservation law for the vector quantities 

given by Equation (2.9) will be used. The conserved quantity, momentum per unit 

volume Vρ
JG

 will replace the vector quantity Q
JG

.  

Variation of momentum is due to the net force acting on the system, as stated in 

the Newton’s second law. In other words, if no force is applied on the system, 

momentum of the system does not change. [6] 

Some external sources of volume or body forces acting on the control volume are 

gravitational, buoyancy, centrifugal forces. Internal sources cancel in the volume, 

and they act as surface forces. [6] 

Body force per unit volume, f bρ
G

 contributes to the conservation law as; [3, 6] 

f dbρ
Ω

Ω∫
G

         (2.17) 

Pressure imposed by the surrounding fluid on the control volume and the normal 

& shear force caused by friction between fluid and the surface are the sources 

that create surface force. Surface force is expressed with the stress tensor, σ
JGJG

, 

which is defined as; [3, 6] 

Ipσ = − + τ
JG G GJG G G

        (2.18) 

where I
GG

 is the identity tensor and τ
GG

 is the viscous shear stress tensor. 

Coming to the flux term, no diffusive flux contribution to the conservation of 

momentum since no diffusion of a fluid at rest is possible. The convective flux 

term consists of three components in x, y, and z-direction Cartesian coordinate 
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system [3] 

Using conservation law for a vector quantity, conservation of momentum is written 

in integral form as; 

( ) ( )Vd V V.n d f d nd .n db

S S S

S p S S
t

ρ ρ ρ
Ω Ω

∂
Ω+ = Ω− + τ

∂ ∫ ∫ ∫ ∫ ∫
GJG JG JG G JG G G JG G G JG

v v v   (2.19) 

Applying Gauss’s theorem to Equation (2.19), the following equation can be 

obtained 

( )Vd . V V d f d . db
t
ρ ρ ρ σ

Ω Ω Ω Ω

∂
Ω+ ∇ ⊗ Ω = Ω+ ∇ Ω

∂∫ ∫ ∫ ∫
JGJG JG JG JG G JG JG

   (2.20) 

Equation (2.20) can be stated in differential form as; 

( ) ( )V . V V I f bp
t
ρ ρ ρ∂

+∇ ⊗ + − τ =
∂

G GJG JG JG JG G G G
     (2.21) 

2.1.4 Conservation of Energy 

The first law of thermodynamics states that total variation of energy is equal to the 

net heat transferred into the system and the net work is done on it by the 

surrounding sources. It means that energy is conserved in case no work done on 

the system and no heat transfer occurred between the system and the 

surrounding medium. [6] 

Total energy per unit mass, E, in a fluid system is the sum of the internal energy 

per unit mass, e, and the kinetic energy per unit mass.  

2

2
VE e= +         (2.22) 
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Volume source terms for the conservation of energy consist of the work done by 

volume forces on the system, and the heat transferred to or from the system. [3, 

6] 

f .Vbv hQ qρ= +
G JG

        (2.23) 

Surface forces are due to the work done on the system by pressure and viscous 

forces. [3, 6] 

Q .V V .VS p= σ = − + τ
JG GJG JG JG JG G JG

       (2.24) 

Diffusive flux is only contributed by the internal energy, since, by definition, there 

is no diffusive flux associated with the motion. [3] 

Fd eγρκ= − ∇
G JG

        (2.25) 

where γ  is the ratio of specific heat coefficients under constant pressure and 

constant volume. Diffusive flux term in conservation of energy defines the 

diffusion of heat. Due to the nature of diffusion, it is by the molecular motion and 

molecular motion means conduction in case of heat transfer. So, diffusive flux can 

be expressed by Fourier’s law of conduction 

Fd k T= − ∇
G

        (2.26) 

where T is the absolute temperature and k is the thermal conductivity, which is 

pk cρ κ=          (2.27) 

Defining all the terms in the conservation law, Equation (2.6) can be rewritten as; 
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( ) ( )d V.dS .dS f .V d σ.V dSb h
S S S

E E k T q
t

ρ ρ ρ
Ω Ω

∂
Ω+ = ∇ + + Ω+

∂ ∫ ∫ ∫ ∫ ∫
GJG G JG G G JG G JG G

v v v  (2.28) 

And in differential form; 

( ) ( ) ( ) ( ). V . . σ.V f .Vb hE E k T q
t
ρ ρ ρ∂

+∇ = ∇ ∇ +∇ + +
∂

GJG JG JG JG JG G JG G JG
   (2.29) 

2.2 Complete System of the Euler Equations 

In the previous section, conservation laws for mass, momentum and energy are 

derived separately. In this section, they are to be combined into a complete 

system of equations to have a better understanding of the flow variables. 

Complete system of equations can be written in a compact form using the 

conservation of mass (2.15), conservation momentum (2.19), and conservation of 

energy (2.28) as; 

Qd Fd Q dsc
S S

S S
t Ω

∂
Ω+ =

∂ ∫ ∫ ∫
JG G JG

v v       (2.30) 

In Equation (2.30) Q
JG

 represents the vector of conservative variables, and have 

five components for three dimensions. 

u
Q v

w
E

ρ
ρ
ρ
ρ
ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

JG
        (2.31) 

The second term on the left hand side of Equation (2.30) represents the 

convective fluxes. Flux vector, F
G

, represents the convective flux vector. It is due to 
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the convective transport of flow variables is given as; 

u
F Uv

w
E

ρ
ρ
ρ
ρ
ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

G JG
        (2.32) 

U
JG

 is the contravariant velocity, which is the perpendicular velocity to the control 

volume surface, and is defined as  

U V.n=
JG JG G

         (2.33) 

The term on the right hand side of Equation (2.30), represents the volume and 

surface source terms, and can be defined as, 

� �

� �

0

f τ.

Q f τ.

f τ.

f V τ.V

b

bsc

b

b h

pı ı

p j j

pk k

q p k T

ρ

ρ

ρ

ρ

⎡ ⎤
⎢ ⎥

− +⎢ ⎥
⎢ ⎥

= − +⎢ ⎥
⎢ ⎥

− +⎢ ⎥
⎢ ⎥

+ − + + ∇⎢ ⎥⎣ ⎦

GG G� �
GJG G G

GG G

GG JG G JG JG

     (2.34) 

The pressure terms in Equation (2.34) can be included in the convective flux term, 

after rearranging accordingly, Equations (2.32) and (2.34) become 

�

�

0

u
F Uv

w

V

ı

pj

k
E

ρ
ρ
ρ
ρ
ρ

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

�
G JG

JG

       (2.35) 
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�

�

0

f τ.

Q f τ.

f τ.

f τ.V

b

bsc

b

b h

ı

j

k

q k T

ρ

ρ

ρ

ρ

⎡ ⎤
⎢ ⎥

+⎢ ⎥
⎢ ⎥

= +⎢ ⎥
⎢ ⎥

+⎢ ⎥
⎢ ⎥

+ + + ∇⎢ ⎥⎣ ⎦

GG G �
GJG G G

GG G

GG G JG JG

      (2.36) 

Euler equations represent the pure convection properties of inviscid and non-

heat-conducting flow. The system of equations is still represented in Equation 

(2.30) for Euler equations, F
G

 is still defined by Equation (2.35) but definition of 

Qsc

JG
 changes as;[3] 

0

f

Q f

f

f

b

bsc

b

b hq

ρ

ρ

ρ

ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

G

JG G

G

G

        (2.37) 

Investigating the system of Euler equations, it is seen that there are six physical 

variables, three of which are thermodynamic variables being the density, ρ; 

pressure, p; internal energy, e and the other three kinematical variables being the 

velocity components u, v and w. However, in the above system of equations, there 

exist five equations to be used to determine these six variables It is obvious that 

there is a need for an additional equation in order to determine the variables. A 

relation for the thermodynamic variables, relating one of them to the other two, will 

be solution to this problem. [58] 

In many cases, compressible fluid can be assumed to be a perfect gas. Equation 

of state is written as; 

p RTρ=          (2.38) 
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where, R is the universal gas constant per unit mass. Internal energy, is defined 

as 

ve c T=          (2.39) 

where vc  is the constant volume specific heat for a thermally perfect gas, and 

represented as; [58, 59] 

( )/ 1vc R γ= −         (2.40) 

Using Equations (2.39) and (2.40), Equation (2.38) becomes 

( )1p eρ γ= −         (2.41) 

However, energy of a fluid flow is defined as the total energy, which is the sum of 

the internal energy and the kinetic energy. For consistency, internal energy in the 

pressure definition should be expressed in terms of the total energy.  Then 

Equation (2.41) becomes 

( )
2

1
2

Vp Eγ ρ
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

       (2.42) 
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3 PRINCIPLES OF SOLUTION 

CHAPTER 3 

PRINCIPLES OF SOLUTION 

In Chapter 2, complete system of Euler equations is obtained and thermodynamic 

relations for a perfect gas are introduced. In this chapter, methodologies for 

solving this set of equations will be introduced, other than the analytical methods 

which have a very limited range application.  

The overwhelming number of numerical schemes employs separate discretisation 

in space and time for the solution of Euler equations, which is called the method 

of lines. Dependent on the numerical method chosen, grid is used to construct the 

control volumes and evaluate the fluxes on the control volume faces. Resulting 

time dependent equations are advanced in time by the use of appropriate time 

discretisation method, starting with an initial solution. [3, 6]  

Firstly, the assumptions used in this study will be introduced and the Euler 

equations will be rewritten.  

Secondly, the spatial discretisation techniques used to evaluate flux term of the 

Euler equations will be explained broadly, which will be explained in detail in 

Chapter 3. Two important concepts, the physical space used to solve the flow and 

the geometrical quantities of the domain will be introduced under the heading of 

spatial discretisation. Advantages of the grid used over the other types of grids 

will be explained. More information on grids can be found in Chapter 1.  

Having introduced the spatial discretisation techniques, the flux terms are handled 

and only time derivatives are to be handled. The temporal discretisation technique 
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used in this study will be introduced next to handle the term remaining. 

Finally, the initial and boundary conditions will be explained in order to examine 

the flow completely.  

3.1 Euler Equations 

In this study, two dimensional, compressible, adiabatic, inviscid flow of ideal 

gases is investigated under no body forces.  

The flow characteristics of this study leads to the use of Euler equations with 

additional assumptions. The properties of the fluid in consideration lead to some 

simplifications in the conservation equations. Inviscid flow assumption removes 

the viscous terms, adiabatic flow assumption yields the removal of heat transfer 

terms, and no body force assumption removes the body forces from the 

momentum and energy conservation equations. Considering all simplifications, 

Qsc

JG
 term cancels in Equation (2.30), and becomes 

Qd Fd 0
S

S
t Ω

∂
Ω+ =

∂ ∫ ∫
JG G

v          (3.1) 

Applying Gauss’s theorem to (3.1), 

Qd .Fd 0
t Ω Ω

∂
Ω+ ∇ Ω =

∂ ∫ ∫
JG JG G

        (3.2) 

Q Fand   
JG G

are defined as; 
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u
Q

v
E

ρ
ρ
ρ
ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

JG
          (3.3)   

�

0

u
F U

v

V

ı
p

j
E

ρ
ρ
ρ
ρ

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

�G JG

JG

       (3.4)  

Equation (3.2) is rewritten in the following form, in order to show the contents of 

the flux term in x and y directions.  

Q f g 0
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂

JG G G
        (3.5) 

Although Q
JG

 is still defined by Equation (3.3), f gand 
G G

 being the vector of 

conserved fluxes in the x and y directions, respectively, are defined by; 

2

u
u

f
uv

u u

p

E p

ρ
ρ
ρ

ρ

⎡ ⎤
⎢ ⎥+⎢ ⎥=
⎢ ⎥
⎢ ⎥+⎣ ⎦

G
        (3.6) 

2

v
uv

g
v

v v
p

E p

ρ
ρ

ρ
ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥+
⎢ ⎥+⎣ ⎦

G
        (3.7) 
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3.2 Spatial Discretisation 

Having generated the grid, and defined the geometrical quantities the next step is 

to discretise the governing equations.  

Spatial discretisation is a numerical approximation to the convective and viscous 

fluxes as well as of the source terms.  

In this study, finite volume method is used as the spatial discretisation scheme. 

The finite volume method (FVM) is a technique introduced in the early 70’s by Mc 

Donald and Mac-Cormack & Paullay to solve two-dimensional, time-dependent 

Euler equations. FVM takes the advantage of arbitrary mesh and doesn’t need the 

physical domain to be converted to the computational domain. Discretisazing the 

conservation laws directly in the physical domain leads the conservation of basic 

quantities mass, momentum and energy by the numerical scheme also. [3, 6] 

The conservation law for an arbitrary control volume is expressed by (3.1) in 

integral form.   

Qd Fd 0
S

S
t Ω

∂
Ω+ =

∂ ∫ ∫
JG G

v        (3.8) 

The surface integral in Equation (3.8) is approximated by the sum of fluxes 

crossing each face of the control volume. The conservation law for an arbitrary 

control volume shown in Figure 3.1 is defined as; 

4

, ,,
1,

Q F .S 0k kI J I JI J
kI J

t =

⎛ ⎞∂
Ω + =⎜ ⎟

∂⎝ ⎠
∑

JG G G
      (3.9) 

In the above equation k represents the individual faces of the control volume (I, J), 

and , kI JS
JG

stands for the face vector of the corresponding face. 
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The integration is based on the assumption that the fluxes are constant on the 

face in consideration. The conserved variables are taken to be uniform in the 

control volume, and the basis is taken at the centroid in this study, which is 

named as cell-centered as stated in Section 3.2.1.  

There are a number of numerical schemes for evaluating the convective fluxes. 

The schemes used in this study will be explained in detail in Chapter 4. Broad 

information about the flux evaluation schemes can be found in Chapter 1.  

 

Figure 3.1: Control volume in a 2-D space 

3.2.1 Physical Space 

The physical space where the flow is examined is divided into a number of 

geometric elements, called grids. Types and properties of the grids are described 

in detail in Chapter 1.  

Body-fitted structured O-grid is used in this study to analyze external flow over an 

airfoil. Figure 3.2 is a sample of body-fitted structured grid. Outer boundary of the 

(I, J) 

(i+1, j) (i, j) 

(i, j+1) 
(i+1, j+1) 
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S4 

∆l 

∆m 

x 



 

 

31

flow domain is a circle as the name implies. Outer boundary is taken at a 20 chord 

length distance from the airfoil in order to avoid reflections, in the absence of 

characteristic boundary conditions.  

Based on the grid, control volumes are determined. The possibilities of assigning 

the control volumes are explained in Chapter 1. Control volume is selected to be 

the region surrounded by the lines connecting the nodes as shown by the hatched 

area in Figure 3.3, meaning that the control volume is identical to the grid cells. 

This is named as cell-centered scheme. Lowercase letters in the figure represent 

the cell vertices, while capital letters represent the cell centers. 

 

Figure 3.2: Body-fitted structured grid 

 

Figure 3.3: Mesh structure of control volume (I, J) 
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Evaluation of fluxes at cell faces in body-fitted grids is somewhat difficult than the 

evaluation in Cartesian grids. Despite this complexity, the difficulty of handling the 

boundaries in the Cartesian grids make body-fitted structured grids preferable.  

3.2.2 Geometrical Quantities  

Solving Euler equations by using finite volume method requires the use of unit 

normal vector, surface area of the cell faces and volume of the control volume in 

consideration.  

While calculating the volume of the control volume and the area of the cell face a 

dept of unity for the control volume is assumed, representing the third dimension, 

in order to have consistent units. 

The volume of an arbitrary control volume is the product of its area and its depth. 

Since the depth is unity, the volume of the quadrilateral control volume is 

numerically equal to its area. The volume can be calculated by taking the cross 

product of the diagonals of the control volume as represented by the following 

equation referring to Figure 3.1 [60] 

( )( ) ( )( ), , 1, 1 1, , 1 , 1 1, , 1, 1
1
2I J i j i j i j i j i j i j i j i jx x y y x x y y+ + + + + + + +
⎡ ⎤Ω = − − + − −⎣ ⎦  (3.10) 

The area of a surface is simply the length of the face as long as the dept is unity. 

As an example the area, ∆S, of face 2, in Figure 3.1 is; 

( ) ( )2 2

2 1, 1 1, 1, 1 1,i j i j i j i jS x x y y+ + + + + +∆ = − + −     (3.11) 

The unit normal vector of a face is obtained by using the face vector, S
JG

, shown in 

Figure 3.3. The face vector of a control volume shown in Figure 3.1 is represented 

as; [6] 
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,

,

.
x m

m m m
y m

S
S n S

S

⎡ ⎤
= = ∆⎢ ⎥
⎢ ⎥⎣ ⎦

JG
JG G

JG        (3.12) 

where mn
G

 is the unit normal vector, and mS∆ is the face area represented by 

Equation (3.11). All the face vectors are written in an open form as;  

, , 1
1

, 1 ,

1, 1 1,
2

1, 1, 1

1, ,
3

, 1,

, 1 1, 1
4

1, 1 , 1

i j i j

i j i j

i j i j

i j i j

i j i j

i j i j

i j i j

i j i j

y y
S

x x

y y
S

x x

y y
S

x x

y y
S

x x

+

+

+ + +

+ + +

+

+

+ + +

+ + +

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

JG

JG

JG

JG

       (3.13) 

Computing all the face vectors for a control volume is a lack of computational time 

and memory. Thus, the face vectors 2 4& S S
JG JG

 are stored in this study and in the 

need of face vector 1S
JG

, the reverse of 2S
JG

 from the appropriate neighboring cell is 

used. The same holds in the case of 3 4& S S
JG JG

 also.  

3.3 Temporal Discretisation  

The use of method of lines leads separate discretisation of flux and time 

dependent terms. Referring to the separate discretisation, the conservation 

equations can be written in the following form; [6] 

,,
,

0I JI J
I J

Q R
t

∂⎛ ⎞Ω + =⎜ ⎟∂⎝ ⎠

JG
       (3.14) 
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where ,I JR
JG

 stands for the complete finite volume spatial discretisation, called the 

residual term, and defined as; 

4

, , ,
1

.k kI J I J I J
k

R F S
=

= ∑
JG JG JG

       (3.15) 

Explicit multistage time-stepping technique is used in this study. Explicit time-

stepping uses the known data at the time level n, in order to calculate the time 

level n+1. The multistage advances the solution in a number of steps, updating 

the solution at every step. The multistage time-stepping concept is first introduced 

by Jameson et al. in [7] 

The time derivative in Equation (3.14) is discretised as; [6, 58] 

1
, ,

,

,

1 0
n n

nI J I J
I J

I J

Q Q
R

t

+ −
+ =

∆ Ω

JG
      (3.16) 

The residual term at the time level n is a function of the conservative variables at 

time level n. Equation (3.16) can be rearranged to obtain 1
,

n
I JQ +  as; 

1
,, ,

,

nn n
I JI J I J

I J

tQ Q R+ ∆
= −

Ω

JG
       (3.17) 

Applying multistage time-stepping, specifically three-stage Runge-Kutta 

formulation, it is possible to obtain 
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0
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Q Q R

t
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Q Q

α

α

α

+

=

∆
= −

Ω

∆
= −

Ω

∆
= −

Ω

=

JG

JG

JG

       (3.18)    

where the stage coefficients, α are used in this study as; [58, 61] 

1 2 31/ 3 1/ 2 1          α α α= = =       (3.19) 

Having defined the stage coefficients, the remaining is to define the time step in 

Equation (3.18). In order to have a stable explicit time-stepping scheme, time 

step, ∆t, should fulfill Courant-Friedrichs-Lewy (CFL) criteria. This condition 

satisfies the time step to be equal to or smaller than time required for transforming 

information across the stencil, and guarantees that the associated error remains 

of the order of truncation error. Referring to Figure 3.1, the CFL condition is 

expressed as; [60]       

, , , ,

, ,

, ,

, ,
,

, ,

2 2
,

2 2
,

min ,
u v u v

( )

( )

I J I J I J I J

I J I J

I J I J

I J I J
I J

l l I J m m I J

I J l l

I J m m

t CFL
y x c l y x c m

l x y

m x y

⎧ ⎫Ω Ω⎪ ⎪∆ = ⋅ ⎨ ⎬
∆ − ∆ + ∆ ∆ − ∆ + ∆⎪ ⎪⎩ ⎭

∆ = ∆ + ∆

∆ = ∆ + ∆

(3.20) 
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where c is the speed of sound, ∆m and ∆l are defined in Figure 3.1.  

The CFL coefficient should have values between zero and one. As it gets smaller, 

the information travels smaller distances and increases the convergence time. 

The CFL coefficient takes different values at different numerical schemes, 

physical spaces, free stream values etc. 

3.4 Initial Conditions 

The input flow variables of the study are the freestream values. All the variables in 

the flow field are set equal to the freestream values as an initial condition. The 

input variables are the stagnation temperature, To, stagnation pressure, Po, angle 

of attack, α, and the Mach number, M. Using these input variables, following 

dependent variables are calculated. [62] 

2

1

11
2

u cos( )

v sin( )

O

O

O

TT
M

pp
T
T

c RT

Mc

Mc

γ
γ

γ

γ

α

α

−

=
−⎛ ⎞+⎜ ⎟

⎝ ⎠

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

=

=

=

       (3.21) 

3.5 Boundary Conditions 

The applied boundary conditions change according to the considered problem, 

computational domain and the flow characteristics. Implementation of the 

boundary conditions to the solver is important as well as the selection of the 
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boundary conditions.  

There are two boundaries in the domain (O-grid is used), which are the solid wall 

and farfield boundary. The boundary conditions are applied by using the concept 

of ghost cells. Ghost cells are the artificial cells defined around the physical 

domain in order to calculate the flow variables at the boundaries. Flow is solved in 

the whole domain including the ghost cells.   

3.5.1 Farfield Boundary Condition 

The distance between the boundary of the computational domain and airfoil 

defines the type of the farfield boundary condition to be applied. This distance 

determines the effect of the boundary to the flow field. Use of characteristic 

boundary conditions is a must if the farfield boundary is close to the airfoil. 

However, if the boundary is located far enough, then it is assumed that the 

disturbances do not affect the flow field, and the flow variables at the farfield 

boundary can be set equal to the freestream values.  

In this study, the boundary of the computational domain is located at a distance of 

20 chord lengths from the airfoil and the flow variables are set equal to the 

freestream values at the boundary. 

3.5.2 Solid Wall Boundary Condition  

The flow variables in the ghost cell are determined by using the cell in the flow 

domain at the boundary. All the flow variables in the ghost cell, except the normal 

velocity, are taken to be equal to the ones in the boundary cell. The normal 

velocity in the boundary cell is assigned to the ghost cell with an opposite sign. 

This leads to zero normal velocity component at the boundary preserving no mass 

flux through the wall.  
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4 FLUX EVALUATION SCHEMES 

CHAPTER 4 

FLUX EVALUATION SCHEMES 

The majority of numerical schemes employ separate discretisation in space and 

time, namely method of lines, for the solution of Euler equations as stated in 

Chapter 2. This separate discretisation allows using different levels of accuracy 

for approximating the time and space derivatives. The main idea of this chapter is 

the explanation of the spatial discretisation techniques used in this study and the 

evaluation of the flux quantities at the left and right cell face boundaries. Since the 

solution is known and stored only at the cell average points (assumed to be the 

cell centers), neither the conservative variables nor the fluxes are known at the 

interface boundaries.   

The chapter begins with the quasi-linear formulation of the Euler equations which 

will lead to the derivation of the Jacobian matrices and the eigenvalues of Euler 

equations.  

Flux evaluation schemes starting with the flux vector splitting schemes will be 

introduced next. Detailed description of the flux vector splitting schemes such as; 

Steger-Warming Flux Vector Splitting Scheme, Van-Leer Flux Vector Splitting 

Scheme, Advection Upstream Splitting Method (AUSM), and Artificially Upstream 

flux vector splitting (AUFS) scheme will be given. 

Having introduced the flux vector splitting schemes, flux difference splitting 

schemes is left as flux evaluation schemes used in this study. Basis of the flux 

difference splitting schemes, Riemann problem and the Godunov approach will be 

explained as an introduction. These will be followed by the description of the 
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Roe’s approximate Riemann solver. 

Finally, reconstruction techniques that should be used to evaluate the face fluxes 

and limiter functions used to eliminate non-physical oscillations will be defined.  

4.1 The Quasi-Linear Formulation of the Euler Equations 

The Euler equations should be written in a quasi-linear form in order to investigate 

its mathematical properties. Euler equations defined by Equation (3.5) are of first 

order in the variables Q
JG

, and are written in a quasi-linear form as; [3] 

Q F . Q 0
Qt

⎛ ⎞∂ ∂
+ ∇ =⎜ ⎟

∂ ∂⎝ ⎠

JG G JGJG
       (4.1) 

or 

Q A. Q 0
t

∂
+ ∇ =

∂

JG JG JGJG
        (4.2) 

or explicitly, 

Q f Q g Q 0
Q Qt x y

∂ ∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂∂ ∂

JG G JG G JG
JG JG       (4.3) 

4.1.1 The Jacobian Matrices 

Equation (4.2) includes the Jacobian matrix, a
G

, of flux vector F
G

. Equation (4.2) is 

written explicitly in Equation (4.3) to show the components of the Jacobian matrix 

due to the x and y components of the flux vector. From Equation (4.3) it can be 

written that 
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 [ ] [ ]f gA B
Q Q

 and ∂ ∂
= =
∂ ∂

G G
JG JG       (4.4) 

Expressing the conservative variables, Q
JG

 (3.3) in the following form: [3]  

u m
Q

v n
E

ρ ρ
ρ
ρ
ρ ε

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

JG
         (4.5) 

The flux vector components can be written in the form,  

( ) ( )

2

2

m n
mnm

f gmn n

m n

p

p

p p

ρρ

ρ ρ

ε ε
ρ ρ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥+
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ +
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

G G
      and          (4.6) 

where, 

( )
2 2 2 2m n m n1
2 2

e pε ρ γ ε
ρ ρ

⎛ ⎞+ +
= + = − −⎜ ⎟

⎝ ⎠
    and       (4.7) 

Then the components of the Jacobian matrix due to the x and y components of 

the flux vector are written as follows: 
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[ ] [ ]

f g

f g
f gA B
Q Qf g

f g

    and    m m

n n

ρ ρ

ε ε

∂ ∂⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∂ ∂⎢ ⎥ ⎢ ⎥
∂ ∂⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥∂ ∂∂ ∂= = = =⎢ ⎥ ⎢ ⎥
∂ ∂∂ ∂⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥∂ ∂
⎢ ⎥ ⎢ ⎥∂ ∂⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

G G
JG JG     (4.8) 

Derivation of the derivatives constructing [A] matrix leads to,  

( )

2

2

2

2

0
m

f
mn

m m

p

pp

ρ ρ

ρ
ρ

ε
ρ ρ ρ

⎡ ⎤
⎢ ⎥∂⎢ ⎥− +
⎢ ⎥∂

∂ ⎢ ⎥= ⎢ ⎥−∂
⎢ ⎥
⎢ ⎥

∂⎢ ⎥− + +⎢ ⎥∂⎣ ⎦

G
      (4.9) 

( )

( ) ( )2 2
2

1
m m2 1

f n
m

1
3m n

2

γ
ρ ρ

ρ
γγε

ρ ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥− −
⎢ ⎥

∂ ⎢ ⎥= ⎢ ⎥∂ ⎢ ⎥
⎢ ⎥

−⎢ ⎥− +⎢ ⎥⎣ ⎦

G
      (4.10) 

( )

( ) 2

0
n1

f
m

n

mn1

γ
ρ

ρ

γ
ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥− −
⎢ ⎥

∂ ⎢ ⎥= ⎢ ⎥∂
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥⎣ ⎦

G
       (4.11) 
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( )
0

1f
0
u

γ
ε

γ

⎡ ⎤
⎢ ⎥−∂ ⎢ ⎥=
⎢ ⎥∂
⎢ ⎥
⎣ ⎦

G
        (4.12) 

Combining Equations (4.9), (4.10), (4.11), and (4.12) leads to the general form of 

the Jacobian matrix [A] of a 2-D Euler equation. [A] matrix in the explicit form can 

be written as follows, [3] 

[ ]
( ) ( )

( ) ( ) ( ) ( )

2 2

2 2 2 2

0 1 0 0
3 1u v 3 u 1 v 1

2 2A
uv v u 0

1u 1 u u v 3u v 1 uv u
2

E E

γ γ γ γ γ

γγ γ γ γ γ

⎡ ⎤
⎢ ⎥− −⎢ ⎥+ − − − −
⎢ ⎥= ⎢ ⎥−
⎢ ⎥

−⎢ ⎥− + − + − + − −⎢ ⎥⎣ ⎦

(4.13) 

The derivation of the [A] matrix is complete. [B] matrix is derived in the same 

manner as, [3]  

[ ] ( ) ( )

( ) ( ) ( ) ( )

2 2

2 2 2 2

0 1 0 0
uv v u 1

1 3B u v 1 u 3 u 0
2 2

1v 1 v u v 1 uv u 3v v
2

E E

γ
γ γ γ γ

γγ γ γ γ γ

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −= + − − −⎢ ⎥
⎢ ⎥

−⎢ ⎥− + − + − − − +⎢ ⎥⎣ ⎦

 (4.14) 

Further details on the Jacobian matrix evaluation can be found in Rohde [63], 

Hirsch[3] and Toro [18].  

The Euler equations (3.3), with Equations (3.5), (3.6) and (3.7) are homogenous 

in the case of a perfect gas, (2.38). [3, 17, 18] this implies that  

( ) ( )F Q F Qλ λ λ=
G G

   for any       (4.15) 
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Meaning that 

( ) [ ]

[ ] [ ]

FF Q Q a Q
Q

f A Q g B Q     

∂
= =
∂

= =

G JG JG
JG

G JG G JG
       (4.16) 

To prove this property, one can multiply the Jacobian matrix (4.13) or (4.14) by 

matrix Q
JG

 (4.5) to obtain f
G

, (3.6) and g
G

, (3.7) matrices, respectively. This property 

forms the basis of flux vector splitting schemes. [17, 18] 

4.1.2 Eigenvalues of Euler Equations 

The eigenvalues of the Jacobian matrix, [a] , are the roots iλ of the characteristic 

equation, 

( )det a I 0λ− =         (4.17)  

where [ ]I  is the identity matrix. It turns out four eigenvalues, three of which are 

distinct and one is repeated.  

[ ] { }u u uk n n n, c, c,λΛ = = + −      (4.18) 

The homogeneity property of the hyperbolic Euler equations leads to, 

[ ] [ ][ ] [ ]1T a T− = Λ         (4.19)  

where [ ]T  is the matrix of whose columns are the right eigenvectors, [ ] 1T −  is the 

inverse of matrix [ ]T , which is the matrix whose rows are the left eigenvectors 

and [ ]Λ is the diagonal matrix of eigenvalues. The matrices of the left and right 
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eigenvectors can be found in the literature. [3, 63]  

The thi equation of one dimensional quasi-linear Euler equations (4.20),  

Q Q 0i i
it x
λ∂ ∂

+ =
∂ ∂

JJG JJG
        (4.20) 

has a wave solution represented by 

Q constant  for   i
dx i
dt

λ= =
JG

      (4.21) 

Curves represented by Equation (4.21) are the characteristic curves and iλ  are 

the eigenvalues or characteristic speeds. Information is carried along the 

characteristic curves with the characteristic speed. Referring to (4.21) it can be 

said that, ith characteristic variable is constant along the corresponding 

characteristic curve. [3, 17, 64]  

4.2 Upwind Schemes 

Eigenvalues of Euler equations, as stated in the previous section; represent the 

velocity thus the direction of propagation of information in the flow field. The 

central difference schemes, as stated in Chapter 1; does not distinguish upstream 

from downstream influences. Although central schemes can be applied at any 

order of accuracy in the smooth flow regions, these schemes are not good for 

handling shock waves without artificial dissipation terms. Artificial dissipation 

terms leads to excessive numerical dissipation, which needs to be limited even in 

the smooth flow regions. The numerical dissipation model is improved with the 

assistance of upwind schemes. Upwind schemes numerically simulate the 

direction of propagation of information in the flow field. [3, 8, 20] 

For supersonic flows, characteristic theory predicts that all information 
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transmission flows from upstream to downstream. For subsonic flow, however, 

information is propagated in such a way that waves can travel both upstream to 

downstream and downstream to upstream. Thus, a flux calculation algorithm must 

be of such a form that it calculates the flux at a given cell boundary based on cell 

values only to the upstream side of the boundary for supersonic flows, and from 

both sides of the boundary for subsonic flows. This procedure is further 

complicated by the fact that a shock wave will create a situation where supersonic 

flow is present on one side of the shock and subsonic flow is on the other side. 

The presence of the shock must be correctly admitted by the conservative flux 

scheme as well. [3, 8] 

Following subsections will introduce the upwind discretisation techniques used in 

this study. 

4.2.1 Flux Vector Splitting 

The flux vector splitting methods are considered as the first level of upwind 

schemes. They only account for the sign of the eigenvalues, namely the wave 

propagation direction. The well-known splitting schemes presented by Steger-

Warming [17], and Van Leer [21] splits the fluxes into two, according to the sign of 

the eigenvalues. Schemes offered by Liou et al. [22]; Advection Upstream 

Splitting Method (AUSM) and Jameson et al. [29]; Convective Upwind Split 

Pressure (CUSP) splits the flux into a convective and a pressure part.  

4.2.1.1 Steger-Warming Flux Vector Splitting 

Steger-Warming aimed to extend the class of spatial differencing schemes for 

more robust algorithms and improve the efficiency of implicit methods by 

developing a new flux splitting method. Although the method is developed for 

implicit schemes, there are many applications of explicit schemes even presented 

in the publication of Steger-Warming. [17] 

Steger-Warming states that the flux vector F
G

 is homogenous of degree one in Q
JG
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if the equation of state is of the form; [17] 

( )p f eρ=         (4.22) 

Since equation of state in the set of Euler equations is written as shown by 

Equation (2.42), the inviscid flux vector in the set of Euler equations are 

homogenous of degree one in Q
JG

. [17] 

Steger-Warming flux vector splitting scheme uses the property of inviscid flux 

vectors being homogenous of degree one and splits the flux vectors f
G

 and g
G

 into 

subvectors; a positive and a negative part according to the sign of the 

eigenvalues. [17]  

As previously shown, the homogeneity lets the flux vector written in the form; 

[ ]F a Q=
G JG

         (4.23) 

and the system of Euler equations, which are hyperbolic, lets the matrix of real 

eigenvalues written in the form 

[ ] [ ] [ ] [ ]1T a T− = Λ        (4.24) 

Combining Equations (4.23) and (4.24), F
G

 is written as  

[ ] [ ][ ][ ] 1F a Q T T Q−= = Λ
G JG JG

      (4.25) 

Splitting the eigenvalues according to their signs [a] matrix is written as follows 
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[ ] [ ] [ ] [ ] [ ]1 1a a a T T T T− −+ − + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + = Λ + Λ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦    (4.26) 

Inserting the above equation into F
G

 equation 

[ ] [ ] [ ] [ ]1 1F F F T T Q T T Q
+ − − −+ −⎡ ⎤ ⎡ ⎤= + = Λ + Λ⎣ ⎦ ⎣ ⎦

G G G JG JG
   (4.27) 

As stated in Section 3.1, inviscid flux vector F
G

 has components f
G

 and g
G

 in x and 

y directions, respectively. The subvectors of the inviscid flux vector also have 

Jacobian, [A] and [B] respectively, and eigenvalue matrices of each Jacobian is 

[Λ1] and [Λ2]   respectively. [3] 

[ ] [ ][ ] [ ]1
1 1 1

u 0 0 0
0 u 0 0

T A T
0 0 u 0
0 0 0 u

c
c

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= Λ =
⎢ ⎥+
⎢ ⎥−⎣ ⎦

    (4.28) 

[ ] [ ][ ] [ ]1
2 2 2

v 0 0 0
0 v 0 0

T B T
0 0 v 0
0 0 0 v

c
c

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= Λ =
⎢ ⎥+
⎢ ⎥−⎣ ⎦

    (4.29) 

The relations written above for the flux vector F
G

 are also applicable for the x- and 

y- components, f
G

 and g
G

 respectively, of the flux vector F
G

. 

[ ] [ ] [ ] [ ]1 1
1 1 1 1 1 1f f f A Q A Q T T Q T T Q

+ − − −+ − + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + = + = Λ + Λ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
G G G JG JG JG JG

    (4.30) 

[ ] [ ] [ ] [ ]1 1
2 2 2 2 2 2g g g B Q B Q T T Q T T Q

+ − − −+ − + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + = + = Λ + Λ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
G G G JG JG JG JG

 (4.31) 

The split fluxes f
+G

, f
−G

, g
+G
and g

−G
are also homogenous functions of degree one 
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in Q
JG

. [Λ1
+] represents the eigenvalues matrix of the Jacobian of f

G
 with only 

positive elements, [Λ1
-] represents the eigenvalues matrix of the Jacobian of f

G
 

with only negative elements, [Λ2
+] represents the eigenvalues matrix of the 

Jacobian of g
G

 with only positive elements, [Λ2
-] represents the eigenvalues matrix 

of the Jacobian of g
G

 with only negative elements such that,  [3, 17] 

[ ] [ ] [ ] [ ] [ ] [ ]Λ = Λ + Λ Λ = Λ - Λ+ - + -               (4.32) 

or 

             λ λ λ λ λ λ+ − + −= + = −       (4.33) 

The positive and negative eigenvalues are defined as  

2
           

2
kk

k
kk

k

λλ
λ

λλ
λ

−
=

+
= −+      (4.34) 

The conservative form of Euler equations using the split-fluxes is written as 

+ - + -Q f f g g 0
t x x y y

∂ ∂ ∂ ∂ ∂
+ + + + =

∂ ∂ ∂ ∂ ∂

JJG JG JJG JJGJG
      (4.35) 

where the plus and minus signs designate the flux components due to the waves 

propagating in the positive and negative directions, respectively.      

a) Subsonic flow 

For subsonic flow, un<c meaning that the fourth eigenvalue, un-c, both in [Λ1] and 

[Λ2] are negative, and the other three are positive with un being positive. 
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Consequently, for the general eigenvalue matrix 

[ ]

u 0 0 0
0 u 0 0

Λ
0 0 u 0
0 0 0 0

n

n

n c
+

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥+
⎢ ⎥
⎣ ⎦

      (4.36) 

[ ]

0 0 0 0
0 0 0 0

Λ
0 0 0 0
0 0 0 un c

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

      (4.37) 

The corresponding Jacobians are found using Equations (4.28) and (4.29), for f
G

 

and g
G

, respectively, with [T]  and [T]-1 defined by Equation (4.19). These will lead 

to the split fluxes, with 1 2and  λ λ∓ ∓   being the same for Euler equations,  

( )

( ) ( )

3 4

2 2
3 42

3 4

u

f v
2

u v u
2 1

c

c c

α

α λ λ
ρ

α
γ

λ λ
α λ λ

γ

⎡ ⎤
⎢ ⎥

+ +⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥++⎢ ⎥+ + +
⎢ ⎥−⎣ ⎦

∓ ∓

∓

∓ ∓
∓ ∓

G
   (4.38) 

( )

( ) ( )
3 4

2 2
3 42

3 4

u

vg
2

u v v
2 1

c

c c

α
α

ρ α λ λ
γ

λ λ
α λ λ

γ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+ −= ⎢ ⎥
⎢ ⎥++⎢ ⎥+ − +
⎢ ⎥−⎣ ⎦

∓ ∓ ∓

∓ ∓
∓ ∓

G
   (4.39) 

where 
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( ) ∓∓∓
43112 λλλγα ++−=       (4.40) 

b) Supersonic flow 

For supersonic flow, un>c meaning that all the eigenvalues are in the same 

direction. With un being positive, all the eigenvalues are positive.  Then, 

+ -F = F       F = 0and
JJG JJGG

       (4.41) 

or 

+ -f = f        f = 0and
JJG JGG

       (4.42) 

+ -g = g       g = 0and
JJG JJGG

       (4.43) 

4.2.1.2 Van-Leer Flux Vector Splitting 

The Van Leer (1979) flux vector splitting is one of a large body of similar 

techniques. Since a general fluid flow contains wave speeds that are both positive 

and negative (so that eigenvalue information can pass both upstream and 

downstream), the basic idea behind all of these techniques is that the flux can be 

split into two components so that each may be properly discretised using 

relatively upwind stencils to maintain stability and accuracy. 

As Anderson, Thomas and Van Leer [20] stated the split fluxes of Steger-

Warming are not continuously differentiable at sonic and stationary points, where 

an eigenvalue changes sign. This leads to the occurrence of small glitches or 

oscillations in the corresponding regions. The Van Leer flux splitting sought to 

correct some problems found at sonic and stagnation points in order to lead 

smoother solutions at those points, for an earlier splitting called Steger-Warming. 

[5]  
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Van Leer bases his flux vector splitting on Mach number splitting and imposed 

number of conditions on the split fluxes, namely. 

The first recommendation is that, the split Jacobian matrices 

[ ] [ ]

[ ] [ ]

+ -

+ -

f fA A
Q Q

gB B
Q Q

and

and

      

      g

+ −

+ −

∂ ∂
= =
∂ ∂

∂ ∂
= =
∂ ∂

JJG JG
JG JG

JJG JJG
JG JG

      (4.44) 

should be continuous functions of Mach number and expressed as lowest 

possible order. The second one is that the split Jacobian matrices [A]+ and [B]+ 

should be formed of positive or zero eigenvalues and [A]- and [B]- should be 

formed of negative or zero eigenvalues, with one eigenvalue equal to zero in the 

subsonic flow range. [3,18]    

Hirsch states that the requirements of the splitting leads the flux components to 

be proportional to (M±1)n, and the lowest possible order satisfying the above rules 

is n=2. Positive flux components are proportional to (M+1)2 and negative ones are 

proportional to (M-1)2. The second order approximation of the Mach number 

insures zero and first order continuity at the sonic points, M = +1 and M = -1. [3] 

The Mach number for supersonic flow is simply the full scalar Mach number in the 

downwind direction, and zero in the upwind direction.  For subsonic flow, the 

Mach number is slightly more complex. 

L RM M M+ −= +         (4.45) 
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( )

( )

21 1 1
4

1
2

for

otherwise

,   M M
M

M M ,

±

⎧± ± ≤⎪⎪= ⎨
⎪ ±
⎪⎩

      (4.46) 

a) Subsonic Flow 

For subsonic flow, un<c meaning that the fourth eigenvalue, un-c, both in [Λ1] and 

[Λ2] are negative, and the other three are positive with un being positive. 

Consequently the split fluxes of Van Leer are written as; 

( )

( )
( )

1

2
2

2

1
1 u 2

f f v

1 u 2v
2 2 1

VL ,VL

c

c

γ
γ

γ
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⎢ ⎥
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G G
     (4.47) 

with 

( )2
1f u

4
,VL c

c
ρ±

= ± ±
G

        (4.48) 

Similarly the split flux in the y direction is; 
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g g

1 v 2u
2 2 1
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with 

( )2
1g v

4,VL c
c
ρ±

= ± ±
G

       (4.50) 

b) Supersonic flow 

For supersonic flow, un>c meaning that all the eigenvalues are in the same 

direction. With un being positive, all the eigenvalues are positive. Then, as in the 

Steger-Warming Flux vector splitting; 

+ -F = F       F = 0and
JJG JJGG

       (4.51) 

or 

+ -f = f        f = 0and
JJG JGG

       (4.52) 

+ -g = g       g = 0and
JJG JJGG

       (4.53) 

4.2.1.3 Advection Upstream Splitting Method (AUSM) 

The Advection Upstream Splitting Method (AUSM) is a method similar in principle 

to the Van Leer flux splitting and introduced by Liou and Steffen in 1993. Van Leer 

flux splitting has a significant defect in resolving the stationary contact 

discontinuities. For this reason Liou and Steffen aimed to develop a scheme that 

has a satisfactory resolution of stationary contact discontinuities. Liou and Steffen 

states that their goal is to design a new algorithm which is more accurate and 

more efficient than other flux vector splitting schemes and simpler than and as 

accurate as the flux difference schemes. [22]  

Since the convective terms in the flux term are “passive scalar quantities” 

convected by the velocity at the cell interface and the pressure flux terms are 
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governed by the acoustic wave speeds, the flux term is split into these two 

separate components so that each one may be properly upwind stenciled. The 

flux term is written as 

0
u

f f f u +
v 0

0

c p
p

H

ρ
ρ
ρ
ρ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= + =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

G G G
      (4.54) 

where H is the total enthalpy per unit mass, and defined by 
pH E
ρ

= + . 

The convective flux terms are discretised in purely upwind manner depending on 

the velocity at the cell interface which carries the “passive scalar quantities”.    

L/R L/R

u u
f u =

v v
c

a
a

M
a

H aH

ρ ρ
ρ ρ
ρ ρ
ρ ρ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

G
      (4.55) 

where 

( ) ( )
( )
. 0

.
.

if
otherwise

 
L

L / R
R

M⎧ ≥⎪= ⎨
⎪⎩

      (4.56) 

The advection Mach number is evaluated as a sum of the left and right split Mach 

numbers just as in the Van Leer’s flux vector splitting, according to the relations 

(4.45) and (4.46).  

After defining the method of handling the convective flux term, Liou and Steffen 

defines the pressure term in the flux. The pressure term is split by using the 

polynomial expansions of the (M±1). The pressure term can be expressed using 
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the first or second order polynomials of (M±1). Although it is stated in [22] that 

both of these two splittings give almost the same results, the second order 

polynomial of (M±1) is used in this study.  

L Rp p p+ −= +         (4.57) 

( ) ( )

( )

21 2 1
2

2

p M M M
p

p M M / M ,

±

⎧± ± ± ≤⎪⎪= ⎨
⎪ ±
⎪⎩

for

otherwise

,   
     (4.58) 

The flux term, using the above definitions, can be expressed as 

1/ 2

0
u u u1 1f

2 2v v v 0
0L R

a a a
a a a p

M M
a a a
aH aH aH

ρ ρ ρ
ρ ρ ρ
ρ ρ ρ
ρ ρ ρ

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

= + − ∆ +
G

   (4.59) 

where 

( ) ( ) ( )1/ 2 . . .R L∆ = −         (4.60) 

The first term on the right hand side of Equation (4.59) represents the Mach 

number-weighted average of fluxes, while the second term accounts for the 

numerical dissipation which has a dissipative character.  

The g
G

 flux term is expressed similarly, 
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1/ 2g
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⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

= + − ∆ +
G

   (4.61) 

Although the original AUSM scheme has proven to be robust, accurate and 

simple, it has some drawbacks such as generating pressure oscillations at shocks 

where the flow is aligned with the grid [28]. Researchers have been studying on 

the original scheme for years to overcome the deficiencies of the original AUSM 

scheme by mainly changing the pressure and Mach splitting, and many versions 

of the original scheme come into view. Details of these schemes can be found in 

the cited references. [23, 24, 25, 26, 27, 28]   

4.2.1.4 Artificially Upstream Flux Vector Splitting Scheme (AUFS) 

Artificially Upstream Flux Vector Splitting Scheme is a newly introduced scheme 

by Sun and Takayama in 2003. Their aim is to develop a new scheme that 

overcomes all deficiencies of flux vector splitting schemes and flux difference 

splitting schemes in resolving shock waves, computation efficiency and time, like 

Liou and Steffen.   

AUFS introduces two artificial wave speeds for splitting the flux vector. The 

artificial wave speeds are selected such that one flux vector has either non-

positive or non-negative eigenvalues, and the other one has two waves and two 

stationary discontinuities for two dimensional flows. This decomposition of the flux 

vector leads the flux vector that has unidirectional eigenvalues to be solved by 

one-side differencing.  [32] 

The flux term can be splitted as: 
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G
  (4.62) 

Mach number, for consistency, is defined as: 

1

1 2

sM
s s

=
−

        (4.63) 

Equation (4.62) can be expressed more clearly in the following form:  

( ) 1 2f 1 f fM M= − +
G JG JG

       (4.64) 

where 
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G
      (4.65) 

Since these two flux vectors are different from the original one, their eigenvalues 

are also different. The eigenvalues of flux vectors 1,2f
G

 are 

1 2

1 2
1 2

1 2

1 2

u 0 0 0
0 u 0 0
0 0 u 0
0 0 0 u

,

,
,

,

,

s c
s

s
s c

− −⎡ ⎤
⎢ ⎥−⎢ ⎥Λ =
⎢ ⎥−
⎢ ⎥− +⎢ ⎥⎣ ⎦

   (4.66) 

Sun and Takayama introduces two ways of defining the artificial wave speeds 

1 2and,s s . The first method introduced in [32] selects 1 2and,s s , such that the 
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eigenvalues in Equation (4.66) are either non-positive or non-negative. The 

second one on the other hand, selects 1 2and,s s , such that one set of eigenvalues 

is unidirectional and the other one consists of two symmetric sound waves and 

two stationary contact waves. The latter one is more efficient in resolving contact 

discontinuities and it is used in this study.   

( )

( )
( )

1

1

2

1

u u
2

0 u u 0

0 u u 0

for

for

 

 

L R

* *
L L

* *
R R

s

min , c , c s
s

max , c , c s

+
=

⎧ − − >⎪= ⎨
+ + ≤⎪⎩

     (4.67) 

The speed u*  and speed of sound *c  are obtained by the use of isentropic gas 

dynamics equations and are defined as follows; 

( ) ( )1u u u
2 1

L R*
L R

c c
γ
−

= + +
−

      (4.68) 

( ) ( )( )1 1 1 u u
2 4

*
L R L Rc c c γ= + + − −      (4.69) 

Zeros are added to the definition of 2s , in Equation (4.67), in order to guarantee 

the one-sided approximation. 

The eigenvalues obtained for the first flux vector by using Equation (4.67) become 

( )0 0c, , , c− + ; two symmetric isentropic waves, and two stationary contact waves. 

Then the first flux vector is written using Equation (4.65) as follows; 
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The first flux vector is evaluated using the Steger-Warming approach [17]. 

Equation (4.30) is used to obtain the above definition. The second term on the 

right hand side of Equation (4.70) is the artificial viscosity, and it is expressed as; 
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JG
   (4.71) 

where 2 2 2u vq = + , c  is the average of sound speeds and defined as 

( )1
2 L Rc c c= + . 

Having defined the first flux term, the second term is left. The second flux term 

has unidirectional eigenvalues, ( )0 2,c,c, c  when 1 0s >  and ( )2 0c, c, c,− − −  when 

1 0s ≤ . Using one-side differencing, the second flux term is obtained.  
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G
       (4.72) 

α defines the direction where the information will be taken.  
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Using Equations (4.71), (4.72) and (4.64), the flux term is obtained as follows:  
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G

(4.74) 

The flux in the y-direction, g
G

, can be obtained in a similar way.  

4.2.2 Flux Difference Splitting 

Flux vector splitting schemes presented in the previous section transport the 

particles according to the characteristic information. Dick [40] states that the flux 

vector splitting schemes have some shortcomings in the discontinuous shock 

regions. The appearance of the so-called undifferenced terms in the conservative 

formulation causes oscillations in the vicinity of shock waves.  

The solution of Riemann problem and Godunov’s approach are the basis of the 

flux difference splitting schemes. Splitting the difference flux vectors instead of the 

flux vectors themselves is a remedy for the shock oscillations. Flux difference 

splitting schemes take the waves into consideration in stead of the direction of the 

waves. [3, 18]  
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The exact solution of the Riemann problem is a very tedious calculation.  The 

approximate Riemann solvers like the ones developed by Roe [38] and Osher 

[39], reduces the computational effort. The Roe’s approximate Riemann solver 

resolves the boundary layers with a high accuracy in addition to its accuracy in 

handling the shock regions.  

Firstly, the Riemann problem and the Godunov approach will be introduced in this 

section, which are basis of the Roe’s approximate Riemann solver. The section 

will be finalized with the presentation of the Roe’s approximate Riemann solver.  

4.2.2.1 Riemann Problem or Shock Tube Problem 

The Riemann problem is the simplest possible initial value problem for hyperbolic 

systems, and non-linear superposition of local Riemann problems lead to the 

solution of the general initial value problem.  

The Riemann problem at the point (x0, y0) at time t0, for the one-dimensional Euler 

equations is governed by the following equation  

Q F 0
t x

∂ ∂
+ =

∂ ∂

JG G
        (4.75) 

by the initial conditions stated as: 

0
0

0

Q
Q( , )

Q

 if 

 if 
L

R

x x
x t

x x

⎧ <⎪= ⎨
>⎪⎩

JG
JG

JG        (4.76) 

In case of Euler equations, Riemann problem is best experienced in a flow field 

called the shock tube. If the viscous effects are neglected and an infinitely long 

tube is taken into consideration, the flow characteristics of the shock tube 

represents the   exact solution of the Euler equations consisting of a combination 
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of three wave types: shocks, expansion waves, and contact discontinuities. [3]            

 

Figure 4.1   Shock Tube 

The shock tube shown in Figure 4.1 is initially divided into two regions, which are 

filled with the same gas in two different physical states, divided by the diaphragm, 

shown with dotted lines in the figure. The fluid in the tube is initially at rest, and 

the left hand side of the diaphragm is at a higher pressure than the right hand 

side. After the sudden rupture of the diaphragm, expansion waves move to the 

high-pressure side in order to decrease the pressure; and a normal shock wave 

moves to the low-pressure side to increase the pressure. A contact surface is 

formed between the normal shock wave and the tail of the expansion waves. [3, 

18, 62, 64] 

Although the fluid is at the same pressure and moves with the same velocity in 

regions 2 and 3, there are discontinuities in the temperature and density. The 

temperature in region 3 is lower than in region 2, since expansion waves cool the 

fluid in region 3. Hence, the temperature in region 4 is higher than the 

temperature in region 3. While pressure and temperature vary discontinuously 

across the normal shock wave, they vary continuously across the expansion 

waves. The fluid properties in the tube before the rupture determine the strength 

of the shock wave and the velocities of the fluid in regions 2 and 3. [3, 18, 62, 64] 

The exact solution of the shock tube problem requires writing the flow relations 

Contact 
Surface

Normal    
Shock   
Wave 

Expansion 
Waves 

3 2 1 4 

Diaphragm 
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between regions 1 and 4 across the expansion waves, contact discontinuity and 

the normal shock wave. Further information about the exact solution can be found 

in [18] and [3].  

4.2.2.2 Godunov Approach 

Finite difference formulations assume that the functions are sufficiently smooth, 

continuous and continuously differentiable at the order of accuracy. This 

assumption is not true when discontinuities like shock waves are present in the 

flow field. Godunov has suggested a finite volume method to overcome this 

problem by handling the flow field by evaluating the fluxes by the solution of 

Riemann problem. [3, 18, 64] 

Godunov recommended representing the solution in the flow field by adding up 

the local exact solutions to the Euler equations. The method considers the 

solution to be constant over a cell at a fixed time, t, as shown in Figure 4.2. The 

cell interfaces are assumed to be separating the fluid at different states, like the 

diaphragm in the shock tube. The flow properties at the next time step are 

evaluated by the wave interaction at the cell interfaces of the adjacent cells. [3, 

18, 64] 

As stated in the previous subsection, the general solution of the shock tube 

problem consists of an expansion wave, a contact discontinuity and a normal 

shock wave. Each of these waves carries information in the upwind direction. In 

order to clarify this, suppose that the wave directions are as shown in Figure 4.3. 

The updated value at the next time step, t+∆t, is calculated by the information 

carried from the upstream cell of the expansion wave, (i+1, j) and the information 

carried from the upstream cell of the normal shock wave, (i-1, j). The use of this 

methodology makes the time step, ∆t, over which the waves are allowed to 

propagate, important. Time step, ∆t, should be limited by the condition that the 

adjacent Riemann problems do not interfere.  [3, 18, 64] 
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Figure 4.2   Piecewise constant distribution 

 

Figure 4.3   Exact solution of Riemann problem at cell interfaces 

4.2.2.3 Roe’s Approximate Solver 

As stated previously, obtaining the exact solution of Riemann problem is costly 

and approximate solvers are preferred. The most well-known of all approximate 

Riemann solvers is Roe’s approximate solver, which was first presented in 1981. 

[38] 
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The solution of Roe’s approximate Riemann solver is based on solving a localized 

Riemann problem to calculate the flux at a given face of the domain. The solver 

approximates the nonlinear Riemann problem by a linear problem. The linear 

approximation is written as [18] 

Q a . Q 0
t

∂ ⎡ ⎤+ ∇ =⎣ ⎦∂

JG JGJG�         (4.77) 

The Jacobian matrix [a] is replaced with [â] which should satisfy some properties 

presented in [18], and the components of the Jacobian are evaluated using the 

averaged values of Q
JG

 at the interface separating two regions, which is indicated 

by [18] 

( )a a Q QL R,⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦
� �        (4.78) 

For a flow moving from left to right, a positive sense flux will also move from left to 

right.  A negative sense flux will move from right to left.  Thus, to preserve proper 

upwind stenciling, a variable or flux term from the left should be stenciled from the 

left, and a variable or flux from the right should be evaluated using points from the 

right.  Thus, the term "left", "+" and "right", "-" can be used interchangeably.  

Looking from another perspective to the Roe’s approximate Riemann solver, the 

direct evaluation of the Jacobian is not necessary. The solution to the equation 

set changes only across one of the waves presented in Section 4.2.2.2, the 

solution of the Euler equations at any point in space and time can be represented 

by a summation of the state to the extreme left or right of the space, plus (or 

minus) one or more of the state changes across these waves. [19] The method 

De Zeeuw and Powell [57] presented is used in this study and will be explained.  

The flux across a face is represented in Equation (3.9) as:  
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        (4.79) 

The flux can be rewritten as 
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     (4.80) 

Using the concept that Laney [19] introduced, Equation (4.80) is expressed as, for 

a specific face in the solution domain 
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The convective flux through a specific face in the solution domain is a function of 

the variables at both sides of that face, in other words right and left state variables 

are needed to calculate the convective flux across a face. The convective flux 

across a face using the Roe’s approximate Riemann solver is expressed as [57] 

( ) ( ) ( ) � m
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2 2

*
mL R L R m m
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, a V R
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where un and ut are normal and tangential velocities, respectively. Variables in the 

above equations which have cap are defined as follows. 
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The other variables � �u uandn tc ,� are calculated using the above variables. [57] 
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As De Zeeuw and Powell stated in [57] nonphysical expansion shocks are 

prevented by imposing a condition called entropy fix. Entropy fix is imposed on 

the solver of Roe’s approximate Riemann solver by smoothing the �ma  for the two 

acoustic waves given with m=1 and 4 and replacing with �
*

ma , which is defined as 

[57]  
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    (4.87) 

where 

( )4 0
R Lm m m m ma max a , , a a aδ = ∆ ∆ = −      (4.88) 

4.3 Solution Reconstruction  

The flux evaluation schemes introduced in Sections 4.1 and 4.2 require the cell 

center data to be extrapolated to the face of the control volume. The left-right 

states declared in AUSM, AUFS and Roe’s schemes and positive-negative states 

used in Steger-Warming’s and Van-Leer’s schemes are calculated using the 

reconstruction techniques. Although different names are used, the positive and 

left states have the same physical meaning. For a positive velocity (in the positive 

x direction), information is taken from the upwind cell. When the flux at the right 

face of a cell is calculated, the first upwind cell is the cell in consideration. With a 

different approach, the first cell in the left of a face (again the right face of the cell 

is taken into account) is the cell in consideration. Similarly, the negative and right 

states represent the same physical meaning.  

If the solution in a control volume is assumed to be constant, the procedure to 
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obtain the left and right states is very straightforward.  For positive velocity at the 

face of the control volume, the reconstructed conservative variables are 

expressed as;    

Q Q

Q Q

L I

R I +1

=

=

JG JG

JG JG          (4.89)   

Equation (4.89) represents the first-order accurate upwind discretisation. For 

higher-order spatial accuracy, more upwind points should be introduced to the 

schemes. Van Leer suggested to use piecewise linear data distribution instead of 

piecewise constant data distribution to construct fluxes from the flux evaluation 

schemes. [46] Van Leer’s, Monotone Upstream-Centered Schemes for 

Conservation Laws (MUSCL) is a widely used method, which is at first introduced 

for uniform structured grids. MUSCL interpolation is actually a brand name for a 

whole type of reconstruction methods, and all the variations of the method 

invented after the original work, are referred to as “MUSCL”. MUSCL scheme 

determines the conserved variables at the cell faces by an upwind-biased 

interpolation. The scheme gives second-order accurate results if the data is 

assumed to be piecewise-linear and higher-order results if the data is assumed to 

be piecewise-polynomials of orders higher than two over the control volume. The 

scheme is used in many researches and yields accurate and stable results. [20]  

The original form of MUSCL scheme is not used in this study since body-fitted 

structured grid is used to mesh the domain. MUSCL scheme can be derived by 

using the Taylor series expansion. When using Taylor series expansion distances 

between two adjacent cell centers, and distance between the cell center and cell 

face come into scene.  In uniform structured grids, cells are equally spaced and 

the distances in consideration cancel each other in the equation. For a body-fitted 

structured grid, however, cells are not equally spaced. Because of this fact, a 

compact equation like the MUSCL equation can not be obtained for unstructured 

or body-fitted structured meshes.  
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Due to this deficiency of the original MUSCL scheme, there exist extensions for 

unstructured and body-fitted structured meshes in the literature. [6, 51] One way 

of adapting the original MUSCL scheme to unstructured and body-fitted structured 

grids needs phantom cell centers to be introduced. These phantom cell centers 

are defined to be located at a distance equal to the original cell center-face 

distance, to the cell face. By introducing these phantom cells, grid like the 

uniform-structured is obtained, and the original MUSCL equations can be used. 

This technique may cause difficulties at the boundaries due to the phantom cells 

outside the boundaries and needs too many data to be stored for each cell. [6]  

Barth and Jespersen presented a linear reconstruction scheme for unstructured 

flow solvers. This method achieves second-order accuracy by extrapolating from 

the center of the control volume to the face using the value and the gradient at the 

center. [54] Although the technique is verified for triangular control volumes and 

cell-centered schemes in [54], it is extended to arbitrary meshes and schemes. [6, 

51] For a cell-centered, body fitted structured scheme, shown in Figure 3.3, the 

reconstructed conservative variables for positive velocity, are expressed as; 

( )

( )

Q Q Q

Q Q Q

LL I, J I,JI, J

RR I +1, J I +1, JI +1, J

.r

.r

ψ

ψ

= + ∇

= + ∇

JG JG JG G

JG JG JG G       (4.90) 

I, Jψ , in Equation (4.90) represents the limiter function, that should be used to 

eliminate the oscillations near discontinuities. QI,J∇
JG

 is the gradient at the cell 

center (I,J) and its derivation is presented below. Lr
G

 and Rr
G

 are the vectors 

directing from the cell center to the midpoint of the cell face as shown in Figure 4. 

4. 
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Figure 4.4: Typical face and cell-center within a body-fitted structured grid 

The gradient, QI,J∇
JG

, at the cell center of a control volume can be expressed by 

the Green-Gauss  theorem or the least squares approach. The former method is 

used in this study. Green-Gauss theorem states that the surface integral of a 

function is equal to the volume integral (over the volume bound by the surface) of 

the gradient of the function.  

Q QI , J I , J
S

d dS
Ω

∇ Ω =∫ ∫
JG JJJJG

v        (4.91) 

Since QI , J∇
JG

 is assumed to be constant over the control volume, Equation (4.91) 

can be rewritten as; 

1Q QI , J I , J
I , J S

dS∇ =
Ω ∫

JG JG
v        (4.92) 

Finally, the integral over the surface is approximated as a summation of the value 

times the surface vector.  
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neighboring cell in Equation (4.93). All the terms in Equation (4.90) are defined 

except the limiter term, I, Jψ . Limiters are described in the next section. 

4.4 Limiters 

Limiters are used in high resolution schemes with discontinuous solutions. 

Limiters damp oscillations due to shocks, sharp changes in the solution and 

maintain monotonocity. Monotonocity preserving solutions satisfy the following 

conditions 

1. maxima is non-increasing 

2. minima non-decreasing 

3. no new extrema should be created 

Limiters suppress oscillations at the cost of reducing accuracy when 

multidimensional unstructured grids are considered. [56] 

Limiter functions are forced to be greater than or equal to zero. The limiter is 

equal to zero in the region of high gradients and maintain first-order scheme. It 

means that the second-order reconstruction represented in Equation (4.90) 

reduces to Equation (4.89). On the other hand, the limiter term is set to one in 

smooth flow regions and maintain fully second-order scheme meaning that no 

limiting is applied to the reconstruction method.  

There are a variety of limiters presented in the literature. Most of the limiters 

developed are for one-dimensional flow governed by uniform grids. There exist 

fewer extensions to multi-dimensions and non-uniform grids. The 

multidimensional slope limiter developed by Hubbard [48] for unstructured grids is 

used in this study. This limiter constructs a “maximum principle region” for each 

cell in which the gradient defined by Equation (4.93) must lie. The “maximum 
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principle region” limits the gradient operator by [48] 

( ) ( ) ( )0 Q 0LI,Jneigh cell neigh cellmin Q Q , .r max Q Q ,⎡ ⎤ ⎡ ⎤− ≤ ∇ ≤ −⎣ ⎦ ⎣ ⎦
JG G

  (4.94) 

The limiter function, by using the definition of the “maximum principle region”, is 

expressed as [48] 
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5 RESULTS AND DISCUSSION 

CHAPTER 5 

RESULTS AND DISCUSSION 

The flux splitting schemes based on various methods for handling the flux terms 

in Euler equations presented in Chapter 4 are tested here for a variety of flow 

regimes.  

External flow over a NACA0012 airfoil is used with varying freestream Mach 

numbers and angle of attacks. Boundary condition based on ghost cell logic is 

used which is explained in Chapter 3. The farfield boundary is handled by 

assigning the freestream values, which is not based on method of characteristics. 

Using characteristic boundary conditions is known to yield less radius of 

computational domain. In order to eliminate the risk of reaching the disturbances 

to the freestream, the radius of computational domain is taken to be 20 chord 

lengths from the mid-chord. All the cases are initialized with the freestream 

conditions of the stagnation temperature and pressure of 350 K and 150 kPa, 

respectively. Schemes presented herein, are tested using fine as well as coarse 

meshes for showing the grid independency of the methods.  

The most widely used channel which has a circular arc on the lower boundary is 

selected to investigate the behavior of the flux splitting methods in internal flow. 

Two different channel geometries are taken into consideration for subsonic-

transonic flows and supersonic flow as in [60]. Solid wall boundary condition 

explained in Chapter 3 is implemented for lower and upper boundaries, whereas 

farfield boundary conditions are used for inlet and outlet regions. As in the 

external flow case the flow is initialized using the freestream conditions with the 

stagnation temperature and pressure of 350 K and 150 kPa, respectively.  
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Subsonic, transonic and supersonic flows are tested, and compared with the 

experimental data and the numerical results presented in the literature. The same 

test cases are used for second order calculations for external flow, and the results 

are discussed. Finally, convergence times for each flux splitting method are 

compared. The calculation of residuals is given in Appendix A in detail. 

5.1 External Flow 

5.1.1 First Order Calculations 

5.1.1.1 Subsonic Flow 

A subsonic flow case is considered, which has a freestream Mach number of 

0 6M .∞ =  and an angle of attack 0α °= , and the obtained results are compared 

with the experimental results presented in [65] for all flux-splitting schemes. Due 

to the symmetry of the airfoil, in addition with the angle of attack being zero, the 

flow is characterized by the symmetry about the x-axis. 

 

Figure 5.1: 129x65 O-grid over NACA0012 airfoil 
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Figure 5.2: Detailed view of 129x65 O-grid over NACA0012 airfoil 

 

Figure 5.3: 97x65 O-grid over NACA0012 airfoil 
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Figure 5.4: Detailed view of 97x65 O-grid over NACA0012 airfoil 

The case is tested for three different grids. The first grid consists of 129 nodes on 

the body and 65 nodes in the direction towards the farfield boundary, giving a total 

of 8385 grids. The second grid consists of 97 nodes on the body and 65 nodes in 

the direction normal to the body, giving a total of 6305 cells in the physical 

domain. The overall and detailed views of the meshes used are shown in Figures 

5.1 to 5.4.   

The distribution of pressure coefficients CP for all methods, which are obtained by 

using the 97x65 O-grid, is shown in Figure 5.6 with the experimental data in [65]. 

The results obtained by using the 129x65 O-grid is shown in Figure 5.6. It is 

obvious that the finer (129x65) grid leads more accurate results. Additionally, a 

finer mesh with having 257x65 cells is used. However using grids finer than 

129x65 does not change the accuracy of the solutions, but leads to slower 

convergence. Thus, 129x65 O-grid is selected and used in the calculations.  
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Figure 5.5: Distribution of pressure coefficient over NACA0012 airfoil at 

0 6 0M . α= =∞
D using 97x65 O-grid with first-order reconstruction 

All the methods examined yield comparable accuracy with the experimental data, 

as it is seen from Figure 5.6. It can be concluded from the figure that the AUSM 

scheme gives the most accurate results for the case considered. Although Roe’s 

flux difference splitting scheme has higher accuracy than the Steger-Warming and 

Van Leer flux vector splitting schemes as expected, the accuracy of the hybrid 

AUSM scheme cannot be reached. The results agree with the argument that the 

Steger-Warming flux vector splitting has a very dissipative character, since the 

peak of pressure coefficient cannot be caught as good as the other schemes in 

consideration. 

 



 

 

79

 

Figure 5.6: Distribution of pressure coefficient over NACA0012 airfoil at 

0 6 0M . α= =∞
D using 129x65 O-grid with first-order reconstruction 

The convergence history of each method is shown in Figures 5.7 to 5.11. The 

convergence histories show that AUSM converges faster than the other schemes. 

Van-Leer flux vector splitting scheme and AUFS converges slower than Steger-

Warming flux vector splitting scheme and Roe’s flux difference splitting scheme. 

The convergence speed is related with the CFL number. If the CFL number were 

the same for all schemes, the results would be different. But the maximum 

allowable CFL number is defined by characteristics of the scheme and it should 

be used for the fastest convergence. Maximum allowable CFL numbers for this 

test case are shown in Table 5.1. Although the given accuracy is reached at more 

than 2000 iterations, the result is obtained around the 1000th iteration. Generally, 

the Euler solvers are run for 1000 iterations as stated in the literature.     
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Figure 5.7:  Convergence history of 

Steger-Warming FVS Scheme for first-

order subsonic flow using 129x65 O-grid 

 

Figure 5.8:  Convergence history of Van 

Leer FVS Scheme for first-order 

subsonic flow using 129x65 O-grid 

 

Figure 5.9: Convergence history of 

AUFS for first-order subsonic flow using 

129x65 O-grid 

 

Figure 5.10: Convergence history of 

AUSM for first-order subsonic flow using 

129x65 O-grid
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Figure 5.11: Convergence history of Roe’s FDS Scheme for first-order subsonic flow using 

129x65 O-grid  

Table 5.1: Maximum Allowable CFL numbers for 0 6 0M . α= =∞
D  

 SW FVS VL FVS AUSM AUFS Roe’s FDS 

CFL 0.6 0.6 0.99 0.75 0.8 

 

5.1.1.2 Transonic Flow 

A transonic flow case is considered having a freestream Mach number of 

0 8M .∞ =  and an angle of attack 0α °=  and the results are compared with the 

numerical results presented in [66] by Wu and Li. Under the given conditions, a 

shock appears on both the upper and lower surfaces. The shock is located in the 

middle of the airfoil. Due to the symmetry of the airfoil and the angle of attack 

being zero, the shock is symmetric about the x-axis.  

The grid used in this test case is adapted according to the shock. Knowing the 

approximate or exact location of the shock allows the grid to be clustered in the 

corresponding region. A regular grid may be used to test this case, however, the 

use of the adapted grid results in sharper shock definitions and increases the 

convergence speed. The regular grids without shock adaptation should be finer in 
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order to obtain the same accuracy with the adaptive ones, although it is not 

needed in the regions without discontinuities. As a result, the convergence time is 

bound to increase. Thus, shock adapted meshes are preferred when the shock 

locations can be estimated. The grid used is shown in Figures 5.12 and 5.13.  

The distribution of pressure coefficients CP  for all methods is given in Figure 5.14 

with the numerical data in [66]. The results are obtained by using the 185x60 O-

grid. Figure 5.14 shows that, all the methods used in the calculations except 

Steger-Warming flux vector splitting method give acceptable results. Roe’s flux 

difference splitting scheme and AUSM serve the best results in the case of shock 

waves as expected. Although AUSM gives as accurate results as Roe’s FDS 

method for capturing the shock, AUSM could not define the foot of the shock as 

sharp as Roe’s FDS. On the other hand, results obtained by Steger-Warming flux 

vector splitting scheme are worse than expected. Van-Leer FVS and AUFS give 

comparable accuracy. Although both of the schemes could not catch the shock 

exactly, they define the shock in a same number of cells. One advantage of Van-

Leer flux vector splitting over AUFS is that it defines the foot of the shock sharper 

than AUFS. 

 

Figure 5.12: 185x60 O-grid over NACA0012 airfoil for 0 8 0M . α= =∞
D  flow   
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Figure 5.13: Detailed view of 185x60 O-grid over NACA0012 airfoil for 0 8 0M . α= =∞
D  

flow   

 

Figure 5.14: Distribution of pressure coefficient over NACA0012 airfoil at 

0 8 0M . α= =∞
D using 185x60 O-grid with first-order reconstruction  
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Figures 5.15 to 5.19 show the convergence histories of the methods used.  As it is 

observed from the figures, convergence time for AUSM is shorter than the other 

schemes. CFL number used for AUSM is 0.99, which has a great effect on the 

convergence time. The maximum allowable time steps taken do not change flow 

case so the CFL numbers given in Table 5.1 are also valid for this flow case. 

 

Figure 5.15: Convergence history for 

Steger-Warming FVS Scheme for first-

order transonic flow using 185x60 O-grid 

 

Figure 5.16: Convergence history for 

Van Leer FVS Scheme for first-order 

transonic flow using 185x60 O-grid  

 

Figure 5.17: Convergence history for 

AUFS for first-order transonic flow using 

185x60 O-grid 

 

Figure 5.18: Convergence history for 

AUSM for first-order transonic flow using 

185x60 O-grid 
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Figure 5.19: Convergence history for Roe’s FDS Scheme for first-order transonic flow 

using 185x60 O-grid 

5.1.1.3 Supersonic Flow 

A supersonic test case of 1 2M .∞ = at a 0° angle of attack is used. The 129x65 

O-grid used in the subsonic flow case is chosen in the solution. The obtained 

solution is compared with the ones in [22]. This supersonic case is tested in order 

to investigate the ability of the methods to capture the strong shocks present in 

the flow.  

Pressure contours around NACA0012 airfoil presented by Liou and Steffen [22] 

by using second-order accurate AUSM is shown in Figure 5.20. The pressure 

contours obtained by using the methods described in this study are given in 

Figures 5.21 to 5.25. It can be concluded that all the schemes give almost 

identical results. Especially, Van Leer FVS scheme and AUFS, likewise AUSM 

and Roe’s FDS scheme gives similar results with each other for the oblique shock 

wave at the trailing edge. It seems that the bow shock at the leading edge is not 

captured accurately. This may be due to the order of reconstruction which will be 

mentioned in the next subsection.   
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Figure 5.20: Pressure contours around NACA0012 at 1 2 0M . α= =∞
D  by AUSM [22] 

 

Figure 5.21: Pressure contours around NACA0012 at 1 2 0M . α= =∞
D  by Steger-

Warming FVS Scheme using 129x65 O-grid with first-order reconstruction 



 

 

87

 

Figure 5.22: Pressure contours around NACA0012 at 1 2 0M . α= =∞
D  by Van Leer FVS 

Scheme using 129x65 O-grid with first-order reconstruction 

 

Figure 5.23: Pressure contours around NACA0012 at 1 2 0M . α= =∞
D  by AUSM using 

129x65 O-grid with first-order reconstruction 
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Figure 5.24: Pressure contours around NACA0012 at 1 2 0M . α= =∞
D  by AUFS using 

129x65 O-grid with first-order reconstruction 

 

Figure 5.25: Pressure contours around NACA0012 at 1 2 0M . α= =∞
D  by Roe’s FDS 

Scheme using 129x65 O-grid with first-order reconstruction 
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Convergence histories of the used methods are shown in Figures 5.26 to 5.30 for 

supersonic flow. AUSM, AUFS and Roe’s flux difference splitting schemes lead to 

the fastest convergence. 

 

Figure 5.26: Convergence history of 

Steger-Warming FVS Scheme for first-

order supersonic flow using 129x65 O-

grid 

 

Figure 5.27: Convergence history of Van 

Leer FVS Scheme for first-order 

supersonic flow using 129x65 O-grid 

 

Figure 5.28: Convergence history of 

AUFS for first-order supersonic flow 

using 129x65 O-grid 

 

Figure 5.29: Convergence history of 

AUSM for first-order supersonic flow 

using 129x65 O-grid 
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Figure 5.30:  Convergence history of Roe’s FDS Scheme for first-order supersonic flow 

using 129x65 O-grid 

5.1.2 Second order calculations 

5.1.2.1 Second order calculations without a limiter function 

5.1.2.1.1 Subsonic Flow 

The first case is the standard subcritical test case at a freestream Mach number 

of 0 63M .∞ =  and an angle of attack 2α °= . Obtained results are compared with 

the numerical results of Anderson & Thomas presented in [22] for Steger-

Warming and Van Leer flux vector splitting schemes. This is selected in order to 

validate the written second order code. Then the obtained second order results for 

this case will be compared with each other for all the methods used. 129x65 O-

grid shown in Figure 5.1 is used in the calculations.  

The comparison of the distribution of pressure coefficients CP   for the first test 

case is given in Figures 5.31 and 5.32 for the Steger-Warming and Van Leer flux 

vector splitting schemes, respectively, with the numerical results of Anderson and 

Thomas.  The second order accuracy is obtained by the linear reconstruction of 

the flow variables to the interfaces of control volumes. No limiters are used in the 

calculations as it is done in [20]. As the figures imply, written code gives results 

which are in close agreement with the ones obtained by Anderson & Thomas.  
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Figure 5.31: Distribution of pressure coefficient over NACA0012 airfoil at 

0 63 2M . α= =∞
D using Steger-Warming FVS Scheme with second-order reconstruction 

by 129x65 O-grid 

 

Figure 5.32: Distribution of pressure coefficient over NACA0012 airfoil at 

0 63 2M . α= =∞
D using Van Leer FVS Scheme with second-order reconstruction by 

129x65 O-grid 
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The results obtained by AUFS, AUSM and Roe’s FDS are also presented for the 

same test case. The coefficient of pressure distributions for all methods is shown 

in Figure 5.33. All the schemes except AUFS give accurate results for this test 

case although it was anticipated that AUFS to give comparable accuracy with 

Roe’s FDS as stated in [32]. 

 

Figure 5.33: Distribution of pressure coefficient over NACA0012 airfoil at 

0 63 2M . α= =∞
D using 129x65 O-grid with second-order reconstruction 

The subsonic flow case considered for the first order calculations with a 

freestream Mach number of 0 6M .∞ =  and an angle of attack 0α °= , is used as 

the second test case for the second order calculations, in order to clarify the effect 

of second order reconstruction. 129x65 O-grid shown in Figure 5.1 is used in the 

calculations. The distribution of pressure coefficients is presented in Figure 5.34. 

Results obtained by using first order reconstruction shows that AUSM is the best 

in this test case. But as far as the second order reconstruction results are 

concerned, it is clearly seen that none of the schemes has superiority. AUSM and 
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Van-Leer FVS gives higher pressure coefficients at the peak point, but this can be 

accepted. For subsonic case, it can be concluded that second order 

reconstruction gives compatible results with the experimental data, even without a 

limiter.    

 

Figure 5.34: Distribution of pressure coefficient over NACA0012 airfoil at 

0 6 0M . α= =∞
D using 129x65 O-grid with second-order reconstruction 

Convergence histories of the second-order solutions are shown in Figures 5.35 to 

5.39 for the second subsonic flow case. Convergence histories of the second-

order transonic and supersonic flows will not be shown, since the subsonic flow 

results give the general idea about the increase in the convergence time when 

using second-order accurate reconstruction. All the methods converge in a longer 

time except AUFS. Actually AUFS converges faster than first order calculations.
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Figure 5.35:  Convergence history of 

Steger-Warming FVS Scheme for 

second-order subsonic flow using 

129x65 O-grid 

 

Figure 5.36:  Convergence history of 

Van Leer FVS Scheme for second-order 

subsonic flow using 129x65 O-grid 

 

Figure 5.37: Convergence history of 

AUFS for second-order subsonic flow 

using 129x65 O-grid 

 

Figure 5.38:  Convergence history of 

AUSM for second-order subsonic flow 

using 129x65 O-grid 
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Figure 5.39:  Convergence history of Roe’s FDS Scheme for second-order subsonic flow 

using 129x65 O-grid 

5.1.2.1.2 Transonic Flow 

The first test case for the transonic flow has a freestream Mach number of 

0 85M .∞ =  and an angle of attack 1α °= . This case is selected in order to 

compare the second-order accuracy, in transonic flow solutions with the ones 

obtained for AUSM and Roe’s FDS in [22]. The grid used is not refined according 

to shocks, since Liou and Steffen have not used such a grid. Various types of 

meshes are used for the calculations. The selected meshes consist of 97x65, 

129x65 and 257x65 cells, with the outer boundary placed at 20 chord lengths 

away from the body. Mesh used in this case does not have the same number of 

cells in the direction perpendicular to the solid body with the one given in [22], 

since the implementation of characteristic boundary conditions leads the outer 

boundary to be placed nearer to the body.   

Figure 5.40 shows the distribution of the pressure coefficient for the above test 

case obtained by handling the flux terms with AUSM using 97x65 grid. The 

computed results are in good agreement with the results of Liou & Steffen in the 

subsonic region. On the other hand, shocks on the upper and lower surfaces can 

not be captured accurately. This is thought to be the effect of the coarse grid and 

solutions are obtained by using finer grids as specified before. Figure 5.41 shows 

comparison of the coefficient of pressure along the body using 257x65 grid and 
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the results obtained by Liou and Steffen. This figure shows that the obtained 

result is superior to the one obtained using the coarse mesh. The results reflect 

the need of a finer mesh since nothing other than the mesh is changed. Although 

the second one is better, the shock on the lower surface can not be captured 

accurately. The Zierep singularity which appears after the shocks on the lower 

and upper surfaces cannot be handled as good as Liou and Steffen. 

    

Figure 5.40: Distribution of pressure coefficient over NACA0012 airfoil at 

0 85 1M . α= =∞
D using AUSM with second-order reconstruction by 97x65 O-grid 
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Figure 5.41: Distribution of pressure coefficient over NACA0012 airfoil at 

0 85 1M . α= =∞
D using AUSM with second-order reconstruction by 257x65 O-grid 

Figure 5.42 shows the pressure coefficient distribution over a NACA0012 airfoil 

obtained by using 257x65 mesh with Roe’s FDS scheme when the freestream 

Mach number is 0.85 and angle of attack is 1˚. Although it was expected to get 

very accurate results by using Roe’s FDS scheme, second order calculations 

leads to spurious oscillations in the vicinity of shock waves. These oscillations 

may be damped by using appropriate flux or slope limiters. Use of finer grids 

having 513x65 cells or shock adapted grids give less oscillatory results, and the 

results obtained are shown in Figures 5.43 and 5.44. Although, shock adaptive 

grid has fewer cells in the overall domain, it slows down the convergence of the 

solution, and does not give sharper definition of the lower surface shock. Use of 

finer grids having 513x65 cells lowers the number of oscillations and carries them 

nearer to the shock wave. But, the convergence time is increased almost 1.5 

times compared to 257x65 O-grid.  
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Figure 5.42: Distribution of pressure coefficient over NACA0012 airfoil at 

0 85 1M . α= =∞
D using Roe’s FDS Scheme with second-order reconstruction by 257x65 

O-grid 

  

Figure 5.43: Distribution of pressure coefficient over NACA0012 airfoil at 

0 85 1M . α= =∞
D using Roe’s FDS Scheme with second-order reconstruction by 317x60 

shock-adapted O-grid 
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Figure 5.44: Distribution of pressure coefficient over NACA0012 airfoil at 

0 85 1M . α= =∞
D using Roe’s FDS Scheme with second-order reconstruction by 513x65 

O-grid 

The second case having a freestream Mach number of 0 8M .∞ =  and an angle of 

attack 1 25.α °=  is used to test the accuracy of the Steger-Warming and Van Leer 

flux vector splitting schemes. The second order results using the corresponding 

schemes are presented by Anderson, Thomas and Van Leer in [20]. Obtained 

pressure coefficient distributions are compared with the ones in [20] and shown in 

Figures 5.45 and 5.46 for Steger-Warming and Van Leer flux vector splitting 

schemes, respectively. Both of the schemes give accurate results in handling the 

upper surface shock. However, shock on the lower surface of the airfoil is not 

captured as accurately as the upper surface one. This accuracy may be increased 

with the use of finer grids. Finally, Steger-Warming and Van Leer flux vector 

splitting schemes do not lead any oscillations in the vicinity of shocks, although 

there was a risk of generation of oscillations in second-order schemes. 
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Figure 5.45: Distribution of pressure coefficient over NACA0012 airfoil at 

0 8 1 25M . .α= =∞
D using Steger-Warming FVS Scheme with second-order reconstruction 

by 257x65 O-grid 

 

Figure 5.46: Distribution of pressure coefficient over NACA0012 airfoil at 

0 8 1 25M . .α= =∞
D using Van Leer FVS Scheme with second-order reconstruction by 

257x65 O-grid 
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Behavior of AUSM, Roe’s flux difference splitting scheme, Steger-Warming and 

Van Leer flux vector splitting schemes with second order reconstruction 

techniques in transonic flow is compared with the results in literature. However, 

second-order performance of AUFS cannot be tested since no results are 

presented in the literature. Instead, this flux splitting scheme is tested by using the 

first-order test results with case of freestream Mach number of 0.8 at an angle of 

attack 0˚. Distribution of pressure coefficients along the airfoil is shown in Figure 

5.47 for all methods. Results show that the Steger-Warming and Van Leer flux 

vector splitting schemes and AUSM lead to accurate results when using second-

order reconstruction methods without limiters and Roe’s flux difference splitting 

schemes lead oscillations as specified before. Surprisingly, AUFS gives less 

accurate results than its first-order reconstruction results.  

 

Figure 5.47: Distribution of pressure coefficient over NACA0012 airfoil at 

0 8 0M . α= =∞
D using 185x60 shock-adapted O-grid with second-order reconstruction 
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5.1.2.1.3 Supersonic Flow 

The same supersonic test case of 1 2M .∞ = at a 0 degree angle of attack as in 

the first-order calculations is used. The 129x65 O-grid used in the subsonic flow 

case, is again chosen for the solution. The obtained solution is compared with the 

ones in [22].  

Figure 5.48 shows the pressure coefficient distribution over the NACA0012 airfoil 

compared with the results obtained from [20]. It is seen from this figure that all 

methods give compatible results. The important aspect for the specified 

supersonic flow is not the pressure distribution over the airfoil, but the behavior of 

the flow at the leading and trailing edges of the airfoil. The bow shock occurs at 

the leading edge, and oblique shock occurs at the trailing edge, as specified in 

subsection 5.1.1.3. The performance of the methods in handling these shocks is 

important in this case. Figures 5.50 to 5.54 show the pressure contours which will 

be compared to Figure 5.49. The pressure distribution given in Figure 5.49 is 

obtained by using second order AUSM in [22]. As seen in Figure 5.53, the 

obtained result greatly agrees with the one in [22]. Steger-Warming and Van Leer 

flux vector splitting schemes and AUSM give very accurate results in the definition 

of the bow and oblique shocks. Although Roe’s flux difference splitting scheme 

resolve the bow shock, the scheme pollutes the flow region, which is named as 

the carbuncle instability. The carbuncle problem is the most common problem that 

researchers face with in the solutions using Roe’s method. The pollution affects 

the flow region in front of the bow shock, and the definition of the oblique shock is 

not very accurate. AUFS does not resolve the shocks at the trailing and leading 

edges very accurately.  
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Figure 5.48: Distribution of pressure coefficient over NACA0012 airfoil at 

1 2 0M . α= =∞
D using 129x65 O-grid with second-order reconstruction 

 

Figure 5.49: Pressure contours around NACA0012 at 1 2 0M . α= =∞
D  by AUSM [22] 
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Figure 5.50: Pressure contours around NACA0012 at 1 2 0M . α= =∞
D  by Steger-

Warming FVS Scheme using 129x65 O-grid with second-order reconstruction 

 

Figure 5.51: Pressure contours around NACA0012 at 1 2 0M . α= =∞
D  by Van Leer FVS 

Scheme using 129x65 O-grid with second-order reconstruction 
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Figure 5.52: Pressure contours around NACA0012 at 1 2 0M . α= =∞
D  by Roe’s FDS 

Scheme using 129x65 O-grid with second-order reconstruction 

 

Figure 5.53: Pressure contours around NACA0012 at 1 2 0M . α= =∞
D  by AUSM using 

129x65 O-grid with second-order reconstruction 
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Figure 5.54: Pressure contours around NACA0012 at 1 2 0M . α= =∞
D  by AUFS using 

129x65 O-grid with second-order reconstruction 

5.1.2.2 Second order calculations with a limiter function 

5.1.2.2.1 Subsonic flow 

The subsonic flow case with a freestream Mach number of 0 6M .∞ =  and an 

angle of attack 0α °= is used for testing the effect of limiters in second order 

calculations. 129x65 O-grid shown in Figure 5.1 is used in the calculations. The 

distribution of pressure coefficients is presented in Figure 5.55. As expected, use 

of limiters does not improve the solution accuracy as the figure implies. Since 

subsonic flow does not include any flow regions with high gradients limiter 

function does not have any effect on the solution, and it guarantees fully second 

order calculation.  
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Figure 5.55: Distribution of pressure coefficient over NACA0012 airfoil at 

0 6 0M . α= =∞
D using 129x65 O-grid with second-order reconstruction with limiter 

function 

5.1.2.2.2 Transonic Flow 

The transonic flow case with a freestream Mach number of 0 8M .∞ =  and an 

angle of attack 0α °= is used for testing the effect of limiters in second order 

calculations. The calculations are performed by using 185x60 shock-adapted O-

grid. The results obtained by second order reconstruction without a limiter function 

for the transonic flow case in consideration were discussed in subsection 

5.1.2.1.2. Roe’s flux difference splitting scheme leads to oscillations in the vicinity 

of shocks when limiters are not used. Figure 5.56 shows the distribution of 

pressure coefficient for second order transonic flow calculation with limiter 

function in comparison with the results of Wu & Li [66].  
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Figure 5.56: Distribution of pressure coefficient over NACA0012 airfoil at 

0 8 0M . α= =∞
D using 185x60 shock-adapted O-grid with second-order reconstruction 

with limiter function 

Figure 5.56 show the effect of the limiter function. Limiter function damps the 

oscillations occurred when using Roe’s flux difference splitting scheme. Roe’s flux 

difference splitting scheme provides a sharp definition of the normal shock wave. 

Van Leer’s flux vector splitting scheme and AUSM provides the most accurate 

results by capturing the normal shock better than the other schemes. Roe’s flux 

difference splitting scheme and Steger-Warming flux vector splitting schemes also 

give accurate results but the location of the normal shock can not be defined as 

accurate as AUSM and Van Leer’s flux vector splitting scheme. AUFS does not 

lead to accurate results as it was the case in the second order calculations 

without a limiter function.  
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5.1.2.2.3 Supersonic Flow 

The supersonic flow case with a freestream Mach number of 1 2M .∞ =  and an 

angle of attack 0α °= is used for testing the effect of limiters in second order 

calculations. 129x65 O-grid is used in the calculations. The obtained results are 

compared with results of Liou & Steffen [22], the pressure contours provided in 

[22] are shown in Figure 5.57. Figures 5.58 to 5.62 show the pressure contours 

obtained by using the flux splitting schemes considered in this study.  

 

Figure 5.57: Pressure contours around NACA0012 at 1 2 0M . α= =∞
D  by AUSM [22] 
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Figure 5.58: Pressure contours around NACA0012 at 1 2 0M . α= =∞
D  by Steger-

Warming FVS Scheme using 129x65 O-grid with second-order reconstruction with limiter 

function 

 

Figure 5.59: Pressure contours around NACA0012 at 1 2 0M . α= =∞
D  by Van Leer FVS 

Scheme using 129x65 O-grid with second-order reconstruction with limiter function 



 

 

111

 

Figure 5.60: Pressure contours around NACA0012 at 1 2 0M . α= =∞
D  by Roe’s FDS 

Scheme using 129x65 O-grid with second-order reconstruction with limiter function 

 

Figure 5.61: Pressure contours around NACA0012 at 1 2 0M . α= =∞
D  by AUSM using 

129x65 O-grid with second-order reconstruction with limiter function 
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Figure 5.62: Pressure contours around NACA0012 at 1 2 0M . α= =∞
D  by AUFS using 

129x65 O-grid with second-order reconstruction with limiter function 

The obtained results are not much different than the results obtained by using 

second order reconstruction without a limiter function. Using limiter function 

advances the results of Roe’s flux difference splitting scheme only. As seen in 

Figure 5.60 the pollution upstream the bow shock due the carbuncle instability is 

mostly damped by the limiter function.  

5.2 Internal Flow 

Flow in channel having a circular arc in the lower boundary is analyzed. The 

geometry used for subsonic and transonic flows consists of a bump having a 

thickness of 10% of the chord length, while the bump has a thickness of 4% of the 

chord length in the domain for supersonic flows. For both cases, the 

computational domain consists of 129x33 grids as shown in Figure 5.63. 
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Figure 5.63: 129x33 grid for a channel having a circular arc 

5.2.1 First-order Calculations 

5.2.1.1 Subsonic Flow 

The inflow Mach number is given as 0 5M .∞ = , where the theoretical solution 

gives a subsonic, symmetric solution about the bump. The Mach contours 

presented by Ni [60] are shown in Figure 5.64, while Figures 5.65 to 5.69 shows 

the Mach contours obtained by using the flux splitting methods. Figure 5.70 

presents a complete comparison for the distribution of Mach number in the 

computational domain in comparison with Ni’s result.  One may conclude from this 

figure that Roe’s flux difference splitting scheme and AUSM give the most 

accurate results; the results obtained are highly symmetric about the bump which 

is the expected outcome. The dissipative character of Steger-Warming flux vector 

splitting scheme is clearly observed from the Mach number distribution. Van Leer 

flux vector splitting scheme and AUFS result in almost the same Mach number 

distribution. Although the latter three schemes do not lead to symmetric results 

around the bump, the outcome of the schemes has a comparable accuracy. The 

asymmetry occurring at the inlet and outlet, which is identified in the Mach 

contours and the lower boundary Mach number distributions, is thought to be due 

to the boundary conditions. Method of characteristics takes the inlet and outlet 

Mach numbers into concern and could give more accurate results.  
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Figure 5.64: Mach contours in the channel having a circular bump at 0 5 0M . α °= =∞  by 

Ni [60] 

 

Figure 5.65: Mach contours in the channel having a circular bump at 0 5 0M . α °= =∞  

obtained by Steger-Warming flux vector splitting scheme using first-order reconstruction 

 

Figure 5.66: Mach contours in the channel having a circular bump at 0 5 0M . α °= =∞   

obtained by Van Leer flux vector splitting scheme using first-order reconstruction 
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Figure 5.67: Mach contours in the channel having a circular bump at 0 5 0M . α °= =∞  

obtained by Roe’s flux difference splitting scheme using first-order reconstruction 

 

Figure 5.68: Mach contours in the channel having a circular bump at 0 5 0M . α °= =∞  

obtained by AUSM using first-order reconstruction 

 

Figure 5.69: Mach contours in the channel having a circular bump at 0 5 0M . α °= =∞  

obtained by AUFS using first-order reconstruction 
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5.70: Distribution of Mach number in the channel having a circular bump at 

0 5 0M . α °= =∞  using first-order reconstruction 

5.2.1.2 Transonic Flow 

For transonic flow case, the inlet Mach number of 0 675M .∞ =  is used. This leads 

to a transonic flow with a shock located at 72% of the bump chord. The Mach 

contours obtained by Ni [60] are shown in Figure 5.71, whilst Figures 5.72 to 5.76 

presents the Mach contours obtained by using the flux splitting methods. Figure 

5.78 presents the distribution of Mach number in the domain in comparison with 

Ni’s result. The flux splitting schemes presented in this study, except Steger-

Warming flux vector splitting scheme, capture the shock at around 72% of the 

bump’s chord and give accurate results for the transonic flow case. Steger-

Warming flux vector splitting scheme can not catch the shock wave sharply, which 

was the situation for the transonic flow case of first-order calculations. On the 

other hand, as in the subsonic flow case AUSM and Roe’s flux difference splitting 

schemes give the most accurate results compared to the others.  
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Figure 5.71: Mach contours in the channel having a circular bump at 0 675 0M . α °= =∞  

by Ni [60] 

 

Figure 5.72: Mach contours in the channel having a circular bump at 0 675 0M . α °= =∞  

obtained by Steger-Warming flux vector splitting scheme using first-order reconstruction 

 

Figure 5.73: Mach contours in the channel having a circular bump at 0 675 0M . α °= =∞  

obtained by Van Leer flux vector splitting scheme using first-order reconstruction 
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Figure 5.74: Mach contours in the channel having a circular bump at 0 675 0M . α °= =∞  

obtained by Roe’s flux difference splitting scheme using first-order reconstruction 

 

Figure 5.75: Mach contours in the channel having a circular bump at 0 675 0M . α °= =∞  

obtained by AUSM using first-order reconstruction 

 

Figure 5.76: Mach contours in the channel having a circular bump at 0 675 0M . α °= =∞  

obtained by AUFS using first-order reconstruction 
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Figure 5.77: Distribution of Mach number in the channel having a circular bump at 

0 675 0M . α °= =∞  using first-order reconstruction 

5.2.1.3 Supersonic Flow 

Flow with an inlet Mach number of 1 4M .∞ =  is tested in a 4% thick circular arc in 

the channel for the supersonic flow case. The flow is characterized by two oblique 

shock waves at the leading and trailing edges of the bump.  The Mach contours 

shown for each flux splitting method separately in Figures 5.79 to 5.83 are 

compared with the Mach contours presented by Ni [60], shown in Figure 5.78. On 

top of this, Figure 5.84 shows the comparison of the distribution of Mach number 

in the flow field.  Mach number upstream of the first oblique shock wave is the 

inlet Mach number of 1.4 for all schemes.  Steger-Warming flux vector splitting 

scheme gives accurate results in the case of oblique shock waves, although the 

scheme is not accurate in capturing the normal shock waves. AUSM yields the 

most accurate results, whereas the other schemes give comparable accuracy.  
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Figure 5.78: Mach contours in the channel having a circular bump at 1 4 0M . α °= =∞  by 

Ni [60] 

 

Figure 5.79: Mach contours in the channel having a circular bump at 1 4 0M . α °= =∞   

obtained by Steger-Warming flux vector splitting scheme using first-order reconstruction 

 

Figure 5.80: Mach contours in the channel having a circular bump at 1 4 0M . α °= =∞  

obtained by Van Leer flux vector splitting scheme using first-order reconstruction 
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Figure 5.81: Mach contours in the channel having a circular bump at 1 4 0M . α °= =∞  

obtained by Roe’s flux difference splitting scheme using first-order reconstruction 

 

Figure 5.82: Mach contours in the channel having a circular bump at 1 4 0M . α °= =∞  

obtained by AUSM using first-order reconstruction 

 

Figure 5.83: Mach contours in the channel having a circular bump at 1 4 0M . α °= =∞  

obtained by AUFS using first-order reconstruction 
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Figure 5.84: Distribution of Mach number in the channel having a circular bump at 

1 4 0M . α °= =∞  using first-order reconstruction 

5.2.2 Second-order Calculations 

5.2.2.1 Second-order calculations without a limiter function 

5.2.2.1.1 Subsonic Flow 

The inflow Mach number is given as 0 5M .∞ = , where the theoretical solution 

gives a subsonic, symmetric solution about the bump, as stated in subsection 

5.2.1.1. Figure 5.85 presents a complete comparison for the distribution of Mach 

number in the computational domain in comparison with Ni’s result.  It can be 

concluded from the figure that, Roe’s flux difference splitting scheme and AUSM 

leads to the most accurate results as in the first-order case. The results obtained 

by the other schemes, Steger-Warming and Van Leer flux vector splitting 

schemes and AUFS, does not yield to symmetric results around the bump which 

is the indication of accuracy. Although the results are not symmetric they can be 

accepted. Using second-order reconstruction methods does not increase the 

accuracy in this internal flow subsonic test case. Mach contours are not shown 
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since the results are very similar to the ones obtained in the first-order case.  

 

Figure 5.85: Distribution of Mach number in the channel having a circular bump at 

0 5 0M . α °= =∞  obtained using second-order reconstruction without a limiter function 

5.2.2.1.2 Transonic Flow 

The inflow Mach number is given as 0 675M .∞ = , where the theoretical solution 

to transonic flow with a shock located at a 72% of the bump chord, as stated in 

subsection 5.2.1.2. Figure 5.86 presents a complete comparison for the 

distribution of Mach number in the computational domain in comparison with Ni’s 

result.  It can be concluded from the figure that, schemes other than Steger-

Warming flux vector splitting lead to accurate results. Although an increase in 

accuracy was expected, Steger-Warming flux vector splitting scheme does not 

give accurate results as in the case of first-order reconstruction. All the other 

schemes in consideration capture the shock very accurately. The occurrence of 

oscillations is only encountered in the case of AUFS and Roe’s flux difference 

splitting schemes. They can be damped by using limiters. Mach contours are not 

shown since the results are very similar to the ones obtained in the first-order 
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case.      

 

Figure 5.86: Distribution of Mach number in the channel having a circular bump at 

0 675 0M . α °= =∞  obtained using second-order reconstruction without a limiter function 

5.2.2.1.3 Supersonic Flow 

Flow with an inlet Mach number of 1 4M .∞ =  is tested in a 4% thick circular arc in 

the channel for the supersonic flow case. The flow is characterized by two oblique 

shock waves at the leading and trailing edges of the bump. Figure 5.87 presents a 

complete comparison for the distribution of Mach number in the computational 

domain in comparison with Ni’s result. AUFS does not give any results and leads 

to spurious oscillations. None of the other schemes could capture the oblique 

shock waves, accurately. As clearly seen from the figure, Mach number at the 

leading and trailing edges of the bump cannot be obtained. All the schemes lead 

to oscillatory results. Use of limiters is compulsory when second-order 

reconstruction methods are used.  Although, the obtained results are not accurate 

and oscillatory, AUSM leads to the best results among all. 
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Figure 5.87: Distribution of Mach number in the channel having a circular bump at 

1 4 0M . α °= =∞  obtained using second-order reconstruction without a limiter function 

5.2.2.2 Second-order calculations with a limiter function 

5.2.2.2.1 Subsonic Flow 

The inflow Mach number is given as 0 5M .∞ = , where the theoretical solution 

gives a subsonic, symmetric solution about the bump, as stated in subsection 

5.2.1.1. Figure 5.88 presents a complete comparison for the distribution of Mach 

number in the computational domain with Ni’s result. As expected, and as seen in 

the external flow case, using limiter functions in the case of subsonic flows does 

not advance the solution, and there is no need to use one.  
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Figure 5.88: Distribution of Mach number in the channel having a circular bump at 

0 5 0M . α °= =∞  obtained using second-order reconstruction with a limiter function 

5.2.2.2.2 Transonic Flow 

The inflow Mach number is given as 0 675M .∞ = , where the theoretical solution 

to transonic flow with a shock located at a 72% of the bump chord, as stated in 

subsection 5.2.1.2. Figure 5.89 presents a complete comparison for the 

distribution of Mach number in the computational domain with Ni’s result.  Figure 

5.86 implies that AUFS and Roe’s flux difference splitting schemes lead to 

oscillations in the vicinity of normal shock when second-order reconstruction is 

used. Limiter functions damp the oscillations in these schemes but there are still 

some spurious oscillations. Using a different type of limiter function may damp the 

oscillations fully. The results obtained by Steger-Warming flux vector splitting 

scheme are not advanced and they are not accurate. AUSM and Van Leer flux 

vector splitting schemes provides the most accurate results by defining the normal 
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shock wave sharply.   

 

Figure 5.89: Distribution of Mach number in the channel having a circular bump at 

0 675 0M . α °= =∞  obtained using second-order reconstruction with a limiter function 

5.2.2.2.3 Supersonic Flow 

Flow with an inlet Mach number of 1 4M .∞ =  is tested in a 4% thick circular arc in 

the channel for the supersonic flow case. The flow is characterized by two oblique 

shock waves at the leading and trailing edges of the bump. Figure 5.90 presents a 

complete comparison for the distribution of Mach number in the computational 

domain with Ni’s result. Second-order supersonic flow calculations do not lead to 

any solutions when the limiter function is not used. Using a limiter function mostly 

damps the spurious oscillations but still they exist. The best results are obtained 

by using AUSM, but it also gives oscillatory results upstream the oblique shock at 

the leading edge of the bump. The results obtained by the other schemes can not 
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be accepted as accurate.  

 

Figure 5.90: Distribution of Mach number in the channel having a circular bump at 

1 4 0M . α °= =∞  obtained using second-order reconstruction with a limiter function 
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6 CONCLUSION 

CHAPTER 6 

CONCLUSION 

In this study, a two-dimensional Euler solver is developed which is capable of 

handling both internal and external flows. Various upwind flux splitting methods 

are used in the finite volume discretisation of the governing equations. The 

analysis includes different types of flux splitting methods as well as the first- and 

second-order reconstruction schemes. Test calculations for the accuracy and 

efficiency of flux splitting schemes are performed by investigating subsonic, 

transonic and supersonic flows over NACA0012 airfoil and in channel having a 

circular arc on the lower boundary.  

Different grids are used in the tests in order to examine the relation between the 

grid and solution. It is concluded that the denseness of the grid has an effect on 

the result until a sufficiently dense grid is obtained. Once the grid density is 

sufficient enough for accurate and efficient results to be obtained, using finer grids 

does not lead to more accurate results and it increases the convergence time.  

Comparing the flux splitting methods presented in the study, it can be concluded 

that the Advection Upstream Splitting Scheme (AUSM) serves the most accurate 

and efficient results both in external and internal flows, no matter what the order 

of reconstruction and the freestream Mach number is. Roe’s flux difference 

splitting scheme also leads to accurate and efficient results. However, when 

second-order reconstruction is used the solution oscillates in the vicinity of 

discontinuities. Moreover, supersonic flow solutions for external flows show that 

the scheme pollutes the region upstream of the bow shock. More accurate 

solutions are obtained when limiters are used. Although Artificially Upstream Flux 

Splitting (AUFS) scheme gives accurate results when the first-order 
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reconstruction is concerned, the second-order reconstruction does not give 

satisfactory results. Van    

Leer flux vector splitting scheme gives as accurate results as AUFS scheme does 

in the first-order calculations. On the other hand, the second-order results of Van 

Leer flux vector splitting scheme are more accurate than the second-order results 

of AUFS and are comparable with the ones obtained by AUSM. Although Steger-

Warming flux vector splitting scheme does not provide accurate results in the first-

order calculations, the second-order results for external flows are comparable with 

AUSM like Van Leer flux vector splitting scheme. But the results obtained for 

second-order internal flows with Steger-Warming flux vector splitting scheme are 

not accurate. Results obtained with transonic and supersonic speeds for internal 

flows show that, internal flows require characteristic boundary conditions.  

Limiters should not be used in subsonic flows, since they do not have an effect on 

the solution when there is no high gradient region in the flow field. It is known that 

limiters should be used for transonic and supersonic flows, both for internal and 

external flows. However, as long as the test results are concerned, it can be 

concluded that Steger-Warming and Van Leer flux vector splitting schemes do not 

require limiters in external flows for the cases considered. AUSM provide 

acceptable results for external flows, and transonic internal flows. Limiters should 

be used for more accurate results. Roe’s flux difference splitting scheme require 

limiters for transonic and supersonic speeds in both internal and external flows.  

As far as the convergence times are concerned, AUSM gives the fastest 

convergence, AUFS and Roe’s flux difference splitting schemes follow AUSM and 

the flux vector splitting schemes converge more slowly. Convergence time can be 

decreased by the use of characteristic boundary conditions in external flow 

calculations, since the farfield boundary will be closer to the airfoil.  

Further studies based on this study should include implementation of different flux 

splitting schemes, higher-order reconstruction schemes, and different types of 

limiters.  
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A. CALCULATION OF RESIDUALS 

APPENDIX A 

CALCULATION OF RESIDUALS 

The variables that have time dependency are expressed as residual terms. In 

order to reach an acceptable solution, convergence criteria should be employed. 

The ratio of the nth residual term to the 1st term is the basis of the convergence 

criteria. The criteria are defined as follows: [61] 
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In above equations, 1R  represents the residual for the mass conservation. 2R  and 

3R  represent x- and y-momentum conservations residuals, respectively. The last 

equation for 4R  corresponds to the residual for energy conservation. 

Then, the ratios of the above residuals are given in log-scale as: [61] 
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In above equations, when the obtained values are smaller than the specified 

convergence criteria, solution is accepted to converge. 

 


