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ABSTRACT

IMPLEMENTATION OF DIFFERENT FLUX EVALUATION SCHEMES INTO A
TWO-DIMENSIONAL EULER SOLVER

ERASLAN, Elvan
M.Sc., Department of Mechanical Engineering
Supervisor: Prof. Dr. M. Haluk AKSEL

September 2006, 139 pages

This study investigates the accuracy and efficiency of several flux splitting
methods for the compressible, two-dimensional Euler equations. Steger-Warming
flux vector splitting method, Van Leer flux vector splitting method, The Advection
Upstream Splitting Method (AUSM), Artificially Upstream Flux Vector Splitting
Scheme (AUFS) and Roe’s flux difference splitting schemes were implemented
using the first- and second-order reconstruction methods. Limiter functions were
embedded to the second-order reconstruction methods. The flux splitting methods
are applied to subsonic, transonic and supersonic flows over NACA0012 airfoil, as
well as subsonic, transonic and supersonic flows in a channel. The comparison of
the obtained results with each other and the ones in the literature is presented.

The advantages and disadvantages of each scheme among others are identified.

Keywords: Two-dimensional Euler Equations, Flux Splitting Schemes,

Reconstruction Methods, Limiter Functions



Oz

iKi BOYUTLU EULER COZUCUSUNE DEGISIK AKI HESAPLAMA
YONTEMLERININ EKLENMESI

ERASLAN, Elvan
YUksek Lisans, Makina Mihendisligi Bolima
Tez Yoneticisi: Prof. Dr. M. Haluk AKSEL

Eyliil 2006, 139 sayfa

Bu calismada sikistirilabilir, iki boyutlu Euler denklemleri igin, aki ayristirma
yontemleri hassasiyet ve verimlilik acisindan incelenmigtir. Birinci ve ikinci
dereceden yeniden yapilandirma yontemleri kullanilarak Steger-Warming aki
vektoru ayriklastirma yontemi, Van Leer aki vektori ayriklastirma yontemi, yukari
iletimli ayristirma yoéntemi (AUSM), ileri yonli yapay aki vektéri ayristirma
yontemi (AUFS) ve Roe aki farki ayriklastirma yéntemi uygulanmistir. ikinci
dereceden yeniden yapilandirma yontemlerine sinirlayici fonksiyonlar eklenmistir.
Aki ayristirma yontemleri ses-altl, ses seviyesi ve ses-ustu hizlarda NACA0012
kanat etrafinda ve ses-altl, ses seviyesi ve ses-Ustl hizlarda kanal iginde
denenmistir. Elde edilen sonuglar birbirleriyle ve literatirdeki sonuglarla
karsilasgtiriimistir. Kullanilan yontemlerin birbirlerine gére avantaj ve dezavantajlari

incelenmistir.

Anahtar Kelimeler: iki-boyutlu Euler Denklemleri, Aki Ayristirma Ydntemleri,

Yeniden Yapilandirma Yoéntemleri, Sinirlayici Fonksiyonlar
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My, =14a=0 obtained using second-order reconstruction without a limiter
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Figure 5.88: Distribution of Mach number in the channel having a circular bump at
M., =05a=0 obtained using second-order reconstruction with a limiter

10T oY1 ([0 o TP 126

Figure 5.89: Distribution of Mach number in the channel having a circular bump at
My, =0.675a=0 obtained using second-order reconstruction with a limiter

{0113 (1o ] o TP 127

Figure 5.90: Distribution of Mach number in the channel having a circular bump at
My, =14a=0 obtained using second-order reconstruction with a limiter
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CHAPTER 1

INTRODUCTION

1.1 General

In science, there exist three distinct ways to obtain information about physical
phenomena. First of them is the analytical method which involves the solution of
the governing partial differential equations that describes the physical
phenomena. The advantage of this method is that if these equations can be
solved, they give the exact behaviour of the phenomena. The drawback is,
however, these equations are very cumbersome and even impossible to solve
since most of the time they contain non-linear terms. The second method to
explain the physical phenomena is to perform experiments. When properly
conducted, these experiments can give very good results despite the small
disturbances that occur during the data acquisition session. On the other hand,
these experiments can be very costly or even impossible to perform. Moreover,
some of these experiments shall not be feasible to perform. The last tool to
examine physical phenomena is the computational method, which involves
computers to simulate the phenomena and provide the desired information.
Nevertheless, the advantage of being simple is confronted by the need of a
powerful system in order to analyze complex situations. However, with the
developments in the computer technology, they are used widely by scientists and

engineers.

1.2 Computational Fluid Dynamics

In fluid mechanics, the area in which computers are used to simulate the

problems is called Computational Fluid Dynamics (CFD). As Malalasekera [1]



stated, “CFD is the analysis of systems involving fluid flow, heat transfer and
associated phenomena such as chemical reactions by means of computer based
simulation”. A CFD code is made up of three main elements which are (i) pre-

processor, (ii) solver and (iii) post-processor.

1.2.1 Pre-processor

The procedure of solving the problem starts with the definition of the
computational domain. After this step, the computational domain is divided into a
number of sub-domains which are known as a grid or mesh. Then, the fluid
properties are defined. Finally, the appropriate boundary conditions at cells which

coincide with or touch the domain boundary are specified at pre-processing step.

[1]

1.2.2 Solver

There exist four different techniques for numerical solution of partial differential
equations: finite difference method, finite element method, spectral methods and
finite volume method. This latter technique is firstly developed as a special finite
difference formulation, but being more physically based, this method distinguished

among the other techniques.

Finite difference method (FDM) is based on expanding the derivatives in partial
differential equations. There are two approaches to calculate the derivatives of the
functions. First one is to use Taylor series approximations. An alternative
approach for this method is to use polynomials of degree n to expand functions.
[2] In Taylor series approximation approach; there exist three schemes to
calculate the derivatives. The first one is the forward differentiation, which uses
the point under consideration and succeeding points to calculate derivative at any
point. The next scheme is backward differentiation method, which calculates the
derivative of the function using the desired point and previous points. The last
scheme is the central differentiation method, which uses the previous and

succeeding points both, to calculate the value of derivative at any point. In Taylor



series approach, the generated error is due to the truncation of higher order
terms. Although this method is easy to apply, it requires a highly regular grid,

hence limiting the application of the formulation to simple geometries. [3, 4]

The second formulation technique is the finite element method (FEM). It was
initially developed for structural stress analysis, however during the last two or
three decades this technique is extended to several other disciplines. [1, 2] The
advantage of this system over FDM is that it can be applied with the use of
unstructured grids, i.e. with complex geometries. The idea behind this technique
is that it develops local element equations on each element. Then, the technique
minimizes the errors of the solution based on an optimization technique. Lastly, all
the element equations are combined to form a system of linear algebraic

equations [2].

Spectral methods (SM) are based on the idea to approximate the unknowns by
using truncated Fourier series or series of Chebyshev polynomials. The

approximations are valid throughout the computational domain. [1]

Finite volume method (FVM) originated from FDM. FVM uses the conservative
form of the conservation equations. In this discretisation technique, the
conservation statement of the property ® is applied in a form that is applicable to
a region in space. This enables the formal integration of the governing equations
of the flow over all the control volumes of the computational domain [1-5]. The
above statement provides that the independent values are integrated directly on
the physical domain. Thus, the domain needs only to be discretised successfully,
i.e. structured grids are not mandatory. Once the unknowns in each control
volume are obtained by an initial condition, the equations are solved iteratively to
obtain the final result. Although, it is difficult to implement second and higher order
methods in three-dimensional domains, it gained much popularity among

engineers. This is due to the physical basis of the terms that are approximated. [4]

Finite volume method is used in this study in order to solve the conservation

equations. Once the surface and volume integrals in the conservative form of the



equations are approximated by using suitable quadrature formulas, differential
equations in time and space are obtained. The conservative variables appear as
unknowns in these equations. Time derivative of these unknowns are
approximated by temporal discretisation methods, and the space derivatives are
approximated by spatial discretisation methods. Applying separate discretisation
in space and time is named as method of lines. Handling the space and time
terms separately allows approximating the corresponding terms at different levels.
The above procedure is repeated for the whole domain and by iteration the
steady-state result is obtained. The solution domain consists of cells formed by

the grids and there are mainly two types of grids [3, 6].

The grid cells in structured grids are quadrilaterals in 2-D and hexahedra in 3-D
and are ordered as the name implies. The nodes or the cell centres are uniquely
defined by the indices i, j, k in an order. The neighbor of the cell (i, j, k) in the x-
direction is the cell indicated by (i+1, j, k). The structured grids can be formed by
following the geometry contour and it is named as the body-fitted (curvilinear)
grid. On the other hand, the grid can be formed in the Cartesian coordinates
without taking care of the geometry in the domain. If the grid is formed in such a
manner then it is named as the Cartesian grid. The second type of the grids is the
unstructured grids. Unstructured grids usually consist of a mixture of
quadrilaterals and triangles in 2D and of hexahedra, tetrahedra, prisms and
pyramids in 3D. They are not ordered and the definition of the neighbor cells in
unstructured grids is litle more complicated than that in the structured grids.
Although implementation of the solver is rather easy in structured grids, the
unstructured grids are preferred for complex geometries for more accurate
results. In simple geometries such as single element airfoils, structured grids are
used, whereas the domain with a multi-element airfoil is meshed by unstructured
grids [3, 6].

Temporal discretisation methods are distinguished into two; explicit and implicit
methods. When a direct computation of the dependent variables can be made in
terms of known quantities, the computation is said to be explicit. Hence, explicit

methods make use of the known data at the current time step in order to find the



unknown data at the next time step. The unknown conservative variables can be
found by using a single-stage time-stepping; however this method is only
applicable for first-order upwind schemes. On the other hand, the multistage time-
stepping schemes, called Runge-Kutta schemes, introduced by Jameson et al. [7]
are very popular since the solution is advanced in several stages. The obtained
residuals are weighted by the specified coefficients. By changing the weight
coefficients and expanding the number of stages, the order of temporal
discretisation can be increased. Although the explicit multistage time-stepping
schemes are very cheap and easy to implement, the drawback of this method is
the restrictions of the permissible time step due to stability conditions. In this
study, local time-stepping, which is based on the determination of the maximum
permissible time step for each control volume, is used. In order to have a stable
explicit time-stepping scheme, time step, should fulfill Courant-Friedrichs-Lewy
(CFL) criteria. This condition is satisfied when the time step is equal to or smaller
than time required for transforming information across the stencil. In this case, it is
guaranteed that the associated error remains in the order of the truncation error
[3]. In contrast to the explicit schemes, when the dependent variables are defined
by coupled sets of equations and either a matrix or iterative technique is needed
to obtain the solution, the numerical method is said to be implicit. The advantage
of the implicit methods over the explicit methods is that, implicit methods do not
limit time steps and which lead to a faster convergence [3, 6]. In this study, three-
stage Runge-Kutta time-stepping scheme, one of the explicit time-stepping

methods, is used.

The residual terms used in the temporal discretisation, are the differences
obtained from the spatial discretisation. The spatial discretisation techniques are
used to approximate the convective and viscous terms. There are varieties of
spatial discretisation schemes in the literature, and researches still continue to
find more accurate, robust and cheap schemes. These techniques actually apply
for the convective terms, since the viscous terms are handled by central

differencing due to their physical nature.

Schemes for handling the convective terms in the Euler equations are mainly



divided into two categories.

Before giving information about the discretisation schemes, it would be
convenient to give broad information about the definition of control volumes and
the storage points of the flow data. There exist three major methodologies of
discretisation which are the cell-centered scheme, cell vertex scheme with
overlapping control volumes and cell vertex scheme with dual control volumes.
Cell-centered scheme, which is used in this study, uses the cells defined by the
grid as control volumes. The flow variables are stored at the centroid of each
control volume, whereas the cell-vertex schemes store the flow data at the
vertices of each control volume as the name implies. Overlapping control volumes
are the cells formed by the grid, just as in the case of cell-centered schemes, but
the data obtained for a vertex is influenced by the neighboring cells. Dual control

volumes are formed by connecting the midpoints of the cells surrounding a vertex.

[6]

First one of the spatial discretisation schemes is the group of central difference
schemes. The basic idea of the central scheme is finding the conservative
variables at the face of a control volume, by arithmetically averaging the
corresponding values at the left and right of the cell face. This may lead to odd-
even decoupling of the solution, meaning that there may be more than one
solution to an equation, and solution may overshoot at discontinuities. Numerical
dissipation models are also included in the schemes in order to prevent these
oscillations at shock waves, and to make the scheme more stable [8]. Although
the central scheme is less accurate in handling the discontinuities, researchers
have spent too much time on improving the basic scheme, because it is
computationally cheaper. The central difference schemes are of mainly two types,
the first type handles the space and time integration together, and the second
type approximates the space and time integrals separately. The first of the former
type was introduced by Lax in 1954 [9], which was a first order and explicit
scheme. In 1960, Lax-Wendroff introduced a second-order, explicit scheme of the
same kind [10]. Two-step explicit central difference schemes were presented by

MacCormack [11], LeRat -Peyret [12], and an implicit scheme of this type was



presented by LeRat [13]. Central difference schemes of the second type have
both implicit and explicit examples in the literature. Beam and Warming [14]
introduced an implicit scheme, and Jameson et al. introduced an explicit scheme
using a multi-stage Runge-Kutta scheme in 1981 [7] as stated in [15]. On top of
these, Swanson and Turkel introduced matrix dissipation schemes, which use the
diagonalized Jacobian matrix using the absolute values of the eigenvalues for
each conservation equation separately, to scale the dissipation [8]. The scheme
which applies the idea of limiters for overcoming the problem at discontinuities,
switches from second-order to first-order accuracy. Another central-difference
scheme which uses the limiter idea for each conservation equation is the

Symmetric Limited Positive scheme introduced by Jameson et al. [16].

The second type of spatial discretisation schemes is the upwind schemes, which
are the most widely used ones. Upwind schemes use the concept of the
characteristic theory for determining the direction of spatial differencing.
Characteristic theory predicts that all information flows from upstream to
downstream, for supersonic flow. For subsonic flow, however, information is
propagated in such a way that waves can travel in both directions i.e. upstream to
downstream and downstream to upstream. Upwind schemes handle both of these
cases successfully by calculating the flux at a given cell boundary based on the
direction of the eigenvalues. Moreover, contrary to central difference schemes,
the dissipative terms are embedded in the upwind schemes providing the terms to
be scaled by the appropriate eigenvalue. Upwind schemes are divided into four

sub-categories. These are:

1. Flux vector splitting schemes

2. Flux-difference splitting schemes

3. Total variation diminishing schemes



4. Fluctuation-splitting schemes

The flux vector splitting schemes, the first level of upwind schemes, only takes the
direction of eigenvalues into consideration. The split fluxes in each direction are
handled separately as if the flow is one-dimensional. One class of flux vector
splitting schemes decomposes the flux vector according to the sign of the
eigenvalues and the other type splits the flux term into convective and pressure

parts. Some of the flux vector splitting schemes will be introduced briefly.

Steger-Warming (SW) flux vector splitting scheme is developed as an implicit
scheme, and splits the flux vector into non-positive and non-negative parts, each
associated with the signal propagation direction using the homogeneity property
of the Euler equations. [17] The split fluxes are handled by the use of backward
and forward differences which leads to the occurrence of sudden, unphysical
changes in the flow around sonic points. Although the presented algorithm is

implicit, there are many explicit applications in the literature. [3, 6, 18, 19, 20]

Due to the deficiencies in the Steger-Warming scheme, Van Leer [21] introduced
an alternative flux vector splitting scheme which is good in handling the sonic
points. The Van Leer (VL) splitting approximates the split Mach number using a
second order polynomial, which offers the first and second derivatives to be
continuous. This continuity corrects the oscillation problem through sonic and
stagnation points. Van Leer flux vector splitting also provides standard upwinding
in the supersonic region and also the uniqueness of the solution by adding some
restrictions to the split fluxes. Large errors at the viscous region are identified by
some researchers and Van Leer himself recognized that the scheme fails to

capture the contact discontinuities which lead the scheme to be improved [5].

Liou and Steffen [22] states that the SW and VL schemes are simple and useful in
some cases but are not accurate enough due to the high numerical diffusion. As it
will be explained flux difference splitting schemes are at the expense of high
calculation time. Liou and Steffen [22] aimed to develop a new flux splitting

scheme, which has the efficiency of the flux vector splitting schemes on top of the



accuracy of the flux difference splitting schemes. The Advection Upstream
Splitting Method (AUSM) basically differs from the introduced flux vector splitting
methods by the splitting methodology. AUSM splits the flux vector into a pressure
and a convective part. The scheme handles the convective terms by the face
velocity obtained by the Van Leer's Mach number splitting, and pressure terms
are governed by the acoustic wave speeds. The flow variables at the interfaces
are calculated according to the sign of the velocity at the face. The split pressure
is weighted by the Mach number. It is stated in [22] that, the AUSM gives as
accurate results as the Roe’s flux difference splitting scheme, and overcome the
weaknesses of VL scheme. But, the scheme generates oscillations at shocks
where the flow is aligned with the grid [6]. Liou [23] presented AUSM+ as an
improvement on the pre-existing AUSM scheme, by modifying the definition of the
Mach and pressure splittings. Liou and Wada [24] proposed AUSMDV that shows
high-resolution for contact discontinuities, conservation of enthalpy for steady
flows, numerical efficiency and applicability to chemically reacting flows. AUSM+
up scheme is again introduced by Liou [25] which is capable of handling the low
Mach number flows. In [26] it is stated that “Typical symptoms appearing in the
application of AUSM type schemes for high-speed flows, such as pressure
wiggles near a wall and overshoots across a strong shock, are cured by
introducing weighting functions based on pressure (AUSMPW)”, and a new
AUSM type scheme overcoming the difficulties observed in hypersonic flows is
introduced and named as AUSMPW+. A robust and more accurate
multidimensional compressible flow scheme by redefining the prediction of the
interface states is introduced by Kim and Kim [27]. Liou published a comparison
of the AUSM type schemes. [28]

Jameson [16, 29] introduced an AUSM like scheme, named Convective Upwind
Split Pressure (CUSP), which is the remedy for the flow alignment case. CUSP
approximates the convective flux by simple arithmetic averaging, and subtracts a
diffusion term which includes the pressure flux. The definition of the diffusion term
makes the scheme similar to AUSM, with the difference is that it is not weighted
by Mach number. E-CUSP scheme is introduced [30] aiming to remove the

temperature oscillations. Comparison between CUSP and the matrix dissipation



scheme is undertaken, and it is concluded that the matrix dissipation scheme
leads to more accurate results than CUSP in coarse meshes for transonic airfoil
flows [31].

A newly proposed flux vector splitting scheme, Artificially Upstream Flux Vector
Splitting Scheme (AUFS), is developed to overcome all deficiencies of flux vector

splitting schemes and flux difference splitting schemes in resolving shock waves,
computation efficiency and time. AUFS introduces two artificial wave speeds such
that one flux vector has either non-positive or non-negative eigenvalues. This
allows the fluxes to be approximated by one-side differencing. Extensions of the
scheme to multi-dimensions and higher orders are also presented. The scheme
serves more accurate results than the compared schemes, Roe’s flux difference
splitting scheme and SW flux vector splitting scheme. It resolves the shocks

sharper, and does not create oscillations at the sonic points. [32]

The schemes like the AUSM, CUSP, and AUFS can be named as hybrid flux-
splitting scheme since they combine the superior parts of the flux vector and flux
difference splitting schemes. Their goal is to reach the accuracy of the Roe’s flux
splitting scheme with low computational cost. Another hybrid flux-splitting scheme
is introduced by Rossow for compressible flows, Mach number-based advection
pressure splitting, MAPS [33]. He expanded introduced scheme with the capability
of solving incompressible flow by using the Roe’s flux splitting scheme in the low
Mach number regions and named it as MAPS+ [34]. Both of the schemes show
comparable accuracy with the Roe’s flux splitting scheme and MAPS+ do not
show any superiority on the MAPS for compressible flows. The convergence of

both schemes is proved to be independent of the Mach number.

Extensions of the flux vector splitting schemes to real gas flows are available in
the literature [35, 36].

After introducing the well-known flux vector splitting schemes, a step further can
be taken. Flux difference splitting schemes are based on the solution of the local

Riemann problem at each interface. The first exact Riemann solver was
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developed by Godunov [37]. He proposed that the non-linear superposition of the
Riemann problems lead to the general initial value problem. Thus the exact
solution of Riemann problem gives almost the exact results. But this method is
computationally expensive, and to reduce excessive the computational time,
approximate Riemann solvers are developed. The well-known approximate
Riemann solvers are developed by Roe [38] and Osher [39]. Roe found that a
properly selected approximate problem does the job just as well in most cases
and saves on calculation complexity. Roe’s approximate Riemann solver resolves
the boundary layers and shocks with a high accuracy however it does not
recognize the sonic point leading the carbuncle problem. Harten’s entropy
correction overcomes this problem. The disadvantage of the Roe’s solver is that,
the extension to real gas flows is very difficult. Extension of Roe’s flux difference
splitting scheme to real gas flow can be found in [35]. Dick [40] developed a flux-
difference splitting scheme based on the scheme of Lombard [41], the tests made
lead to very accurate results. Hybrid implicit-explicit Godunov type schemes can

be found in [42] and the references cited therein.

TVD (total variation diminishing) schemes are based on the concept of avoiding
the creation of new extreme points in the solution. TVD schemes are
monotonocity preserving schemes, meaning that the local minimum and the local
maximum in the solution are non-decreasing and non-increasing, respectively,
and with no change in the number of local extreme points. This property allows
the TVD schemes to capture the shocks more accurately. Although the scheme
serves superior properties in handling the flow, the extension to higher order

accuracies is not very easy [3, 6, 43].

The last type of flux splitting schemes is the fluctuation splitting schemes. All the
flux-splitting schemes introduced so far, splits the fluxes according to the
orientation of the grid. The advantage of the scheme is the elimination of the grid
alignment problem. The fluctuation splitting schemes are developed for cell vertex
schemes. Although the fluctuation splitting schemes are said to be accurate, due
to the complexity of implementation they are not widely used. Detailed information

about the fluctuation splitting schemes can be found in [44, 45] and the references
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cited therein.

Researches, aiming to increase the accuracy of the above presented schemes,
lead to higher-order schemes. The higher-order schemes obtain at least second
order truncation errors, but lead to oscillations. The well-known higher order
reconstruction scheme MUSCL (Monotone Upstream-Centered Schemes for
Conservation Laws), presented by Van Leer [46], is based on the Taylor series
expansion. The general formula given for MUSCL in the literature [46, 6, 47]
serves for the uniform structured grids. The formula can be applied to structured
grids in general coordinates only by transforming the physical domain to the
computational domain, and there is no way of using the general formula in
unstructured tetrahedral grids without modification. Since the complex geometries
need the grid to be body-fitted structured or unstructured, researchers worked on
the extension of the MUSCL scheme on these types of grids. The higher-order
scheme for reconstruction logic for these grids is the summation of the
corresponding data with the gradient of that data over the control volume. The
detailed information of the higher-order methods for unstructured and body-fitted
structured grids can be found in [6, 47-55]. The use of higher order schemes
makes the use of limiters compulsory. As Berger and Aftosmis states “Limiters
suppress the oscillations, and maintain the monotonocity condition, whereas they
reduce accuracy and hamper convergence” [56]. Limiters pass to first-order from
second-order in the vicinity of discontinuities. Two types of limiters are used; flux
limiters and slope limiters. It is stated that these two types are equivalent, and
they are related to each other with a simple equation. [56] All the publications on
the higher-order schemes give detailed information on the limiter functions. The
reader may refer to the references on higher-order schemes, for the limiter

functions.

1.2.3 Post-processor

The last part of a CFD study is to visualization of the problem itself and the
proposed solution. This is taken care of by the post-processor part. In this part,

the geometry and grids are displayed and the examined properties are plotted as
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vectors or line and shaded contours. The developments in this field are also
continuing as in the pre-processor and solver fields and recently the post-
processor facilities may include dynamic result display and even data export

capabilities for further manipulation to the code [1].

1.3 Present Study

The aim of this study is to develop a two-dimensional Euler solver that enables to
make a comparison between different flux evaluation schemes on the basis of

effectiveness and accuracy.

As a starting point, the two-dimensional Euler solver developed by Sisman [58]
and Ozdemir [61] using first order, cell-centered scheme with Roe’s flux difference
splitting for external flows, is investigated. The code is rewritten and afterwards,
the code is improved by adding necessary arrangements that can offer an option
to impose different flux evaluation schemes and higher-order reconstruction
schemes. Moreover, the redeveloped code is aimed at an efficient use of
computer memory resources and to satisfy the convergence criteria much faster

compared to the original code.

Following the embodiment of the code, different flux evaluation schemes which
are explained briefly in the preceding sections, are embedded in the code by
using the corresponding references for each scheme as a basis. [17, 21, 22, 32,
38, 57]

In order to improve the accuracies of the results for various schemes, a second-
order reconstruction scheme is set in the code. The basis for this higher-order
accuracy reconstruction method is presented in [6]. A limiter function is added to
the code, in order to suppress spurious oscillations occurring due to higher-order

reconstruction.

Following the study for external flows, the two-dimensional Euler solver for

internal flows, developed by Sisman [58] is investigated. The prewritten
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external flow solver is modified by changing the boundary conditions, and it is

made capable of handling internal flows.

After obtaining the results of these different flux evaluation schemes, a
comparison between the obtained results and the ones presented in the literature
are performed. With this step, the strengths and weaknesses are studied and the

limits of the code is tried to be assessed.

This thesis consists of six chapters. The first chapter reviews the literature. The
second chapter gives the derivation of the governing equations and the Euler
equations. Chapter 3 explains the general solution principle of the flow, gives a
detailed description of the geometrical quantities that should be used during the
solution. Moreover, the used boundary conditions are explained in this chapter. In
Chapter 4, the flux evaluation schemes used in this study are given in detail with
the necessary references. Results obtained from the two-dimensional Euler solver
are given and discussed by comparing with the results in the literature in Chapter
5. The last chapter consists of the summary of the results and recommendations

for the improvement of the present code.
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CHAPTER 2
GOVERNING EQUATIONS

2.1 Conservation Law

The conservation of a certain physical quantity in an arbitrary control volume Q
bounded by a control surface, S, states that the total time variation of the quantity
is due to fluxes, amount of the quantity being transported across the boundary,

external sources acting on the control volume, and internal sources. [3, 6]

2.1.1 General Conservation Law

The variation of a certain scalar quantity O, in the control volume Q, per unit time;

G
Eigdg (2.1)

should be equal to the net contribution from the fluxes, and volume and surface

sources;
—<j> F.dS+ jQVdQ + gSGS.c@ (2.2)
S Q S

The first term in Equation (2.2) represents the net contribution due to the incoming

fluxes across the surface S, which consists of the diffusive and convective terms.

F=F.+F, (2.3)
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Convective flux is due to the transport of the scalar quantity in consideration

across the surface S, with the velocityv ;

F.= —gﬁg(vﬁ)dﬁ (2.4)

N

on the other hand, diffusive flux, which is due to the molecular motion of the fluid

particles even at rest, is defined by the Fick’s gradient law. [6]
Fi = @Kp[V(Q/p).ﬁ] ds (2.5)
N

where « is the diffusivity constant of the transported quantity. As stated in
Equation (2.5) diffusive flux is proportional to the gradient of the quantity

considered and it will vanish for a homogenous flow.

General form of conservation law for a certain scalar quantity Q is;

2 [0s+§{o(v)-wp[v(0/p) 1]} 8= [040+§T.aS  (26)

Applying the Gauss’s theorem to Equation (2.6), by assuming that the volume Q
is fixed, and the fluxes and sources are continuous, conservation law takes the

following form;

Q

j aa—f?dQJr j V.EdQ = ijdQ+W.6SdQ (2.7)

Equation (2.7) leads to the differential form of conservation law for an arbitrary

control volume Q ;
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4VE-0+74, (2.8)

If the conserved quantity is not a scalar but a vector, the principle of the
conservation law is still applicable. In this case, the vector variables, flux and the
surface forces, become tensors, and the scalar variables, the volume sources

become vectors which is given by the following equation; [3, 6]

ﬁjadm@s[(ﬁc_f:D).ﬁ}dé=jévdg+¢(65.ﬁ).d§ (2.9)

Q N Q N

Applying Gauss’s theorem and assuming that the sources and the fluxes are

continuous for a fixed control volume, Equation (2.9) takes the form
2 j QdQ+ j V.FQ = j 6Vd9+ﬁ.68dg (2.10)
8t Q Q Q Q

for an arbitrary control volume, which can be expressed in the differential form as

‘2—?+€.(1§—6S)=(3v 2.11)

The convective and diffusive flux terms in Equation (2.9), which are the parts of

the total flux term in Equations (2.10) and (2.11), can be defined as [3]

Fe=VOO (2.12)

. g

Fy, = —pr 0 (2.13)
ox

17



where

9 (2.14)
P

q; =

2.1.2 Conservation of Mass

Mass can neither be created nor destroyed in a system unless a nuclear reaction
exists within the system. This fact is governed by the conservation of mass. The
general law of conservation applies for the kinematic property mass, with mass

per unit volume, density, p, as the scalar quantity O . [3]

As stated above, diffusive flux identifies the molecular motion of fluids. Since any
flux created by the specific mass implies the displacement of particles, which is
known as the convective flux, there is no diffusive flux contribution to the

conservation of mass.

In this study, single phase fluid flow is examined, ensuring that there is no
chemical reaction possibility for the fluid. Chemical reactions are the only sources,
when mass is considered. So, in the absence of chemical reactions, the source

term in the conservation of law drops. [3, 6, 58]

Using Equation (2.6), the conservation of mass is represented in integral form as;

%g{pdﬂ+g§p(v.ﬁ)d§=0 (2.15)

Equation (2.15) can be stated in differential form as

z_/t’ﬁ.(p.V):o (2.16)
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2.1.3 Conservation of Momentum

Momentum is a vector quantity, thus conservation law for the vector quantities

given by Equation (2.9) will be used. The conserved quantity, momentum per unit

volume pv will replace the vector quantitya.

Variation of momentum is due to the net force acting on the system, as stated in
the Newton’s second law. In other words, if no force is applied on the system,

momentum of the system does not change. [6]

Some external sources of volume or body forces acting on the control volume are
gravitational, buoyancy, centrifugal forces. Internal sources cancel in the volume,

and they act as surface forces. [6]

Body force per unit volume, pfb contributes to the conservation law as; [3, 6]
j pfdQ (2.17)
Q

Pressure imposed by the surrounding fluid on the control volume and the normal

& shear force caused by friction between fluid and the surface are the sources

that create surface force. Surface force is expressed with the stress tensor, 3,
which is defined as; [3, 6]

o=—pl+1 (2.18)
where 1 is the identity tensor and 7 is the viscous shear stress tensor.

Coming to the flux term, no diffusive flux contribution to the conservation of
momentum since no diffusion of a fluid at rest is possible. The convective flux

term consists of three components in x, y, and z-direction Cartesian coordinate
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system [3]

Using conservation law for a vector quantity, conservation of momentum is written

in integral form as;
2 [ pVdQ+§ pV (Vi) dS = [ pfsd2 G pidS + (2 i3 @2.19)
at Q S Q N N

Applying Gauss’s theorem to Equation (2.19), the following equation can be

obtained

[ pVaa+ [V.(pV ®V)da= [ pf.da+ [V.odo (2:20)
ot o Q Q

Q

Equation (2.20) can be stated in differential form as;

Z(pV)+ 9 (pV OV + pi-3) = ol @21)

2.1.4 Conservation of Energy

The first law of thermodynamics states that total variation of energy is equal to the
net heat transferred into the system and the net work is done on it by the
surrounding sources. It means that energy is conserved in case no work done on
the system and no heat transfer occurred between the system and the

surrounding medium. [6]

Total energy per unit mass, E, in a fluid system is the sum of the internal energy

per unit mass, ¢, and the kinetic energy per unit mass.
E=e +V7 (2.22)
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Volume source terms for the conservation of energy consist of the work done by
volume forces on the system, and the heat transferred to or from the system. [3,
6]

0 =pfsV+g, (2.23)

Surface forces are due to the work done on the system by pressure and viscous
forces. [3, 6]

—

Qy =0V =—pV+1V (2.24)

Diffusive flux is only contributed by the internal energy, since, by definition, there

is no diffusive flux associated with the motion. [3]

Fu =—ypxVe (2.25)

where y is the ratio of specific heat coefficients under constant pressure and
constant volume. Diffusive flux term in conservation of energy defines the
diffusion of heat. Due to the nature of diffusion, it is by the molecular motion and

molecular motion means conduction in case of heat transfer. So, diffusive flux can

be expressed by Fourier's law of conduction

Fo=—kVT (2.26)

where T is the absolute temperature and £ is the thermal conductivity, which is

k= pc,k (2.27)

Defining all the terms in the conservation law, Equation (2.6) can be rewritten as;
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2 [ PEAQ+§ pEV.4S = GVT.dS + [(pFsV +4,)d02+ <j>(§.\7)d§ (2.28)
at Q S S Q S
And in differential form;

E(pE)+V.(pVE)=V.(k9T)+7 (0 |+ oV 44, (2:29)

2.2 Complete System of the Euler Equations

In the previous section, conservation laws for mass, momentum and energy are
derived separately. In this section, they are to be combined into a complete

system of equations to have a better understanding of the flow variables.

Complete system of equations can be written in a compact form using the
conservation of mass (2.15), conservation momentum (2.19), and conservation of

energy (2.28) as;
2 [QdQ+§Fds = Q,.ds (2.30)
at Q N N

In Equation (2.30) 6 represents the vector of conservative variables, and have

five components for three dimensions.

Yo
Lou
pv (2.31)
PW
PE |

©)
I

The second term on the left hand side of Equation (2.30) represents the

convective fluxes. Flux vector, F, represents the convective flux vector. It is due to
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the convective transport of flow variables is given as;

P
pu
pv |U (2.32)
LW
pE

sl
I

U is the contravariant velocity, which is the perpendicular velocity to the control

volume surface, and is defined as

U=Vn (2.33)

The term on the right hand side of Equation (2.30), represents the volume and

surface source terms, and can be defined as,

0
ot — pi+ts
Q. = pls—pj+r) (2.34)
oty — ph+ 1k
_pfb +q, —pv+¥.v+k§T_

The pressure terms in Equation (2.34) can be included in the convective flux term,

after rearranging accordingly, Equations (2.32) and (2.34) become

- ?
pu !

F=| pv [U+| j|p (2.35)
pwW k
| PE | Vi
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Q. = pfs 1. (2.36)

_pf‘b +4q, +i.V+k§T_

Euler equations represent the pure convection properties of inviscid and non-

heat-conducting flow. The system of equations is still represented in Equation
(2.30) for Euler equations, F is still defined by Equation (2.35) but definition of
6“, changes as;[3]

0
s
Q.=| pfs (2.37)
pfb

| pfr+q, ]

Investigating the system of Euler equations, it is seen that there are six physical
variables, three of which are thermodynamic variables being the density, p;
pressure, p; internal energy, e and the other three kinematical variables being the
velocity components u, v and w. However, in the above system of equations, there
exist five equations to be used to determine these six variables It is obvious that
there is a need for an additional equation in order to determine the variables. A
relation for the thermodynamic variables, relating one of them to the other two, will
be solution to this problem. [58]

In many cases, compressible fluid can be assumed to be a perfect gas. Equation

of state is written as;

p=pRT (2.38)
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where, R is the universal gas constant per unit mass. Internal energy, is defined

as

e=cT (2.39)

where ¢, is the constant volume specific heat for a thermally perfect gas, and

represented as; [58, 59]

¢, =R/(y-1) (2.40)

Using Equations (2.39) and (2.40), Equation (2.38) becomes

p=pe(r-1) (2.41)

However, energy of a fluid flow is defined as the total energy, which is the sum of
the internal energy and the kinetic energy. For consistency, internal energy in the
pressure definition should be expressed in terms of the total energy. Then
Equation (2.41) becomes

p =(7—1)p(E—V7) (2.42)
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CHAPTER 3

PRINCIPLES OF SOLUTION

In Chapter 2, complete system of Euler equations is obtained and thermodynamic
relations for a perfect gas are introduced. In this chapter, methodologies for
solving this set of equations will be introduced, other than the analytical methods

which have a very limited range application.

The overwhelming number of numerical schemes employs separate discretisation
in space and time for the solution of Euler equations, which is called the method
of lines. Dependent on the numerical method chosen, grid is used to construct the
control volumes and evaluate the fluxes on the control volume faces. Resulting
time dependent equations are advanced in time by the use of appropriate time

discretisation method, starting with an initial solution. [3, 6]

Firstly, the assumptions used in this study will be introduced and the Euler

equations will be rewritten.

Secondly, the spatial discretisation techniques used to evaluate flux term of the
Euler equations will be explained broadly, which will be explained in detail in
Chapter 3. Two important concepts, the physical space used to solve the flow and
the geometrical quantities of the domain will be introduced under the heading of
spatial discretisation. Advantages of the grid used over the other types of grids

will be explained. More information on grids can be found in Chapter 1.

Having introduced the spatial discretisation techniques, the flux terms are handled

and only time derivatives are to be handled. The temporal discretisation technique
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used in this study will be introduced next to handle the term remaining.

Finally, the initial and boundary conditions will be explained in order to examine

the flow completely.

3.1 Euler Equations

In this study, two dimensional, compressible, adiabatic, inviscid flow of ideal

gases is investigated under no body forces.

The flow characteristics of this study leads to the use of Euler equations with
additional assumptions. The properties of the fluid in consideration lead to some
simplifications in the conservation equations. Inviscid flow assumption removes
the viscous terms, adiabatic flow assumption yields the removal of heat transfer
terms, and no body force assumption removes the body forces from the

momentum and energy conservation equations. Considering all simplifications,

Q,. term cancels in Equation (2.30), and becomes

0 r— -
— Q+PFIS =0 3.1
-~ j Qd oﬁ (3.1)
Applying Gauss’s theorem to (3.1),
0 r— —
— Q+|VFQ=0 3.2
- j Qd j (3.2)

6 and F are defined as;
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(3.3)

p (3.4)

i
<
< o~ o

Equation (3.2) is rewritten in the following form, in order to show the contents of
the flux term in x and y directions.

Q. of %_, (3.5)
o Ox Oy

Although 6 is still defined by Equation (3.3), fandé being the vector of

conserved fluxes in the x and y directions, respectively, are defined by;

pu

u’ +
puTp (3.6)
puv

| PUE +up |

fo)s
Louv

pvi+p

| PVE +Vp |

oQ |
I

(3.7)
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3.2 Spatial Discretisation

Having generated the grid, and defined the geometrical quantities the next step is

to discretise the governing equations.

Spatial discretisation is a numerical approximation to the convective and viscous

fluxes as well as of the source terms.

In this study, finite volume method is used as the spatial discretisation scheme.
The finite volume method (FVM) is a technique introduced in the early 70’s by Mc
Donald and Mac-Cormack & Paullay to solve two-dimensional, time-dependent
Euler equations. FVM takes the advantage of arbitrary mesh and doesn’t need the
physical domain to be converted to the computational domain. Discretisazing the
conservation laws directly in the physical domain leads the conservation of basic

guantities mass, momentum and energy by the numerical scheme also. [3, 6]

The conservation law for an arbitrary control volume is expressed by (3.1) in

integral form.
O r— -
— Q+PFdS =0 3.8
- j Qd <j> (3.8)

The surface integral in Equation (3.8) is approximated by the sum of fluxes
crossing each face of the control volume. The conservation law for an arbitrary

control volume shown in Figure 3.1 is defined as;

oQ Lo
o, |R +3 Frs, 81, =0 (3.9)
61‘ 17 k=1

In the above equation & represents the individual faces of the control volume (7, J),

and Ez,Jk stands for the face vector of the corresponding face.
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The integration is based on the assumption that the fluxes are constant on the
face in consideration. The conserved variables are taken to be uniform in the
control volume, and the basis is taken at the centroid in this study, which is

named as cell-centered as stated in Section 3.2.1.

There are a number of numerical schemes for evaluating the convective fluxes.
The schemes used in this study will be explained in detail in Chapter 4. Broad

information about the flux evaluation schemes can be found in Chapter 1.

L.

X

Figure 3.1: Control volume in a 2-D space

3.2.1 Physical Space

The physical space where the flow is examined is divided into a number of
geometric elements, called grids. Types and properties of the grids are described

in detail in Chapter 1.

Body-fitted structured O-grid is used in this study to analyze external flow over an

airfoil. Figure 3.2 is a sample of body-fitted structured grid. Outer boundary of the
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flow domain is a circle as the name implies. Outer boundary is taken at a 20 chord
length distance from the airfoil in order to avoid reflections, in the absence of

characteristic boundary conditions.

Based on the grid, control volumes are determined. The possibilities of assigning
the control volumes are explained in Chapter 1. Control volume is selected to be
the region surrounded by the lines connecting the nodes as shown by the hatched
area in Figure 3.3, meaning that the control volume is identical to the grid cells.
This is named as cell-centered scheme. Lowercase letters in the figure represent

the cell vertices, while capital letters represent the cell centers.

solid body

Figure 3.2: Body-fitted structured grid

(i1, j+1) (. j+1) (i+1,j+1)

L ()
(-1, J) J)
(i1,)) @ (+1.))
0 (]
(-1, J-1) (LJ-1)

(i-1,j-1) @i j-1) (i+1,7-1)

Figure 3.3: Mesh structure of control volume (/, J)
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Evaluation of fluxes at cell faces in body-fitted grids is somewhat difficult than the
evaluation in Cartesian grids. Despite this complexity, the difficulty of handling the

boundaries in the Cartesian grids make body-fitted structured grids preferable.

3.2.2 Geometrical Quantities

Solving Euler equations by using finite volume method requires the use of unit
normal vector, surface area of the cell faces and volume of the control volume in

consideration.

While calculating the volume of the control volume and the area of the cell face a
dept of unity for the control volume is assumed, representing the third dimension,

in order to have consistent units.

The volume of an arbitrary control volume is the product of its area and its depth.
Since the depth is unity, the volume of the quadrilateral control volume is
numerically equal to its area. The volume can be calculated by taking the cross
product of the diagonals of the control volume as represented by the following

equation referring to Figure 3.1 [60]

Q,,= %[(xi,j _xi+l,j+l)(yi+l,j _yi,j+1)+(xi,j+l _xi+1,j)(yi,j _yi+l,j+l):| (3.10)

The area of a surface is simply the length of the face as long as the dept is unity.

As an example the area, AS, of face 2, in Figure 3.1 is;

2

AS, = \/(le,jH X, )2 + (yi+l,j+l _yi+1,j) (3.11)

The unit normal vector of a face is obtained by using the face vector, S, shown in
Figure 3.3. The face vector of a control volume shown in Figure 3.1 is represented
as; [6]
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~ | S| -

where 7, is the unit normal vector, and AS is the face area represented by

Equation (3.11). All the face vectors are written in an open form as;

< YV
Sl — J J
xi,j+1 _‘xi,j

- Yierjr1 = Viej
S) =

_le,j = X4l

(3.13)

- Yie,j = Vi
Ss =

_xi,j X,
- Yij+1 = Vis jn
S4=

| Xivt o ~ Xy

Computing all the face vectors for a control volume is a lack of computational time
and memory. Thus, the face vectors S, & S4 are stored in this study and in the
need of face vector§1, the reverse of S, from the appropriate neighboring cell is

used. The same holds in the case of §3 & 54 also.

3.3 Temporal Discretisation

The use of method of lines leads separate discretisation of flux and time
dependent terms. Referring to the separate discretisation, the conservation

equations can be written in the following form; [6]

Q,J(a_Qj +Ris =0 (3.14)
"ot ),
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where ﬁu stands for the complete finite volume spatial discretisation, called the

residual term, and defined as;

—_— 4 —_— —_—
Riy :ZFI,Jk S, (3.15)
k=1

Explicit multistage time-stepping technique is used in this study. Explicit time-
stepping uses the known data at the time level #, in order to calculate the time
level n+1. The multistage advances the solution in a number of steps, updating
the solution at every step. The multistage time-stepping concept is first introduced

by Jameson et al. in [7]

The time derivative in Equation (3.14) is discretised as; [6, 58]

n+l n
— 1 —n

s G, Ris =0 (3.16)
At Q,,

The residual term at the time level n is a function of the conservative variables at

n+l

time level n. Equation (3.16) can be rearranged to obtain Q,"; as;

n+ n At —n
! Q,,J—Q—R],J (3.17)

1J =
1,J

Applying multistage time-stepping, specifically three-stage Runge-Kutta

formulation, it is possible to obtain
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0
QI,J = ;7,1

At, , —o
1 0 1.J
QI,J = QI,J -, R
QI,J
At, , —1
2 0 1,J
QI,J = QI,J —Q, Riy (3.18)
QI,J
At, , —2
3 0 1,J
QI,J = QI,J - Q Ris
1.J

;7;1 = Q131
where the stage coefficients, a are used in this study as; [58, 61]

o,=1/3 a,=1/2 a,=1 (3.19)

Having defined the stage coefficients, the remaining is to define the time step in
Equation (3.18). In order to have a stable explicit time-stepping scheme, time
step, At, should fulfill Courant-Friedrichs-Lewy (CFL) criteria. This condition
satisfies the time step to be equal to or smaller than time required for transforming
information across the stencil, and guarantees that the associated error remains
of the order of truncation error. Referring to Figure 3.1, the CFL condition is

expressed as; [60]

Q

—VAx, |+cAm,,

Q],J
‘uAylu —VAxlu‘+cAl,,J ’ ‘uAy

1,J

At, , = CFL-min

m

AL, = \/( Ax, P+Ay, ) (3.20)

Am, , = \/( Ax, P+Ay, )
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where c is the speed of sound, Am and A/ are defined in Figure 3.1.

The CFL coefficient should have values between zero and one. As it gets smaller,
the information travels smaller distances and increases the convergence time.
The CFL coefficient takes different values at different numerical schemes,

physical spaces, free stream values etc.

3.4 Initial Conditions

The input flow variables of the study are the freestream values. All the variables in
the flow field are set equal to the freestream values as an initial condition. The
input variables are the stagnation temperature, 7,, stagnation pressure, P, angle
of attack, a, and the Mach number, M. Using these input variables, following

dependent variables are calculated. [62]

T
(1+7_1M2j
2
p=—"re
7,
T
c=yRT (3.21)

u = Mccos(a)

v = Mcsin(a)

3.5 Boundary Conditions

The applied boundary conditions change according to the considered problem,
computational domain and the flow characteristics. Implementation of the

boundary conditions to the solver is important as well as the selection of the
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boundary conditions.

There are two boundaries in the domain (O-grid is used), which are the solid wall
and farfield boundary. The boundary conditions are applied by using the concept
of ghost cells. Ghost cells are the artificial cells defined around the physical
domain in order to calculate the flow variables at the boundaries. Flow is solved in

the whole domain including the ghost cells.

3.5.1 Farfield Boundary Condition

The distance between the boundary of the computational domain and airfoil
defines the type of the farfield boundary condition to be applied. This distance
determines the effect of the boundary to the flow field. Use of characteristic
boundary conditions is a must if the farfield boundary is close to the airfoil.
However, if the boundary is located far enough, then it is assumed that the
disturbances do not affect the flow field, and the flow variables at the farfield

boundary can be set equal to the freestream values.

In this study, the boundary of the computational domain is located at a distance of
20 chord lengths from the airfoil and the flow variables are set equal to the

freestream values at the boundary.

3.5.2 Solid Wall Boundary Condition

The flow variables in the ghost cell are determined by using the cell in the flow
domain at the boundary. All the flow variables in the ghost cell, except the normal
velocity, are taken to be equal to the ones in the boundary cell. The normal
velocity in the boundary cell is assigned to the ghost cell with an opposite sign.
This leads to zero normal velocity component at the boundary preserving no mass

flux through the wall.
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CHAPTER 4

FLUX EVALUATION SCHEMES

The majority of numerical schemes employ separate discretisation in space and
time, namely method of lines, for the solution of Euler equations as stated in
Chapter 2. This separate discretisation allows using different levels of accuracy
for approximating the time and space derivatives. The main idea of this chapter is
the explanation of the spatial discretisation techniques used in this study and the
evaluation of the flux quantities at the left and right cell face boundaries. Since the
solution is known and stored only at the cell average points (assumed to be the
cell centers), neither the conservative variables nor the fluxes are known at the

interface boundaries.

The chapter begins with the quasi-linear formulation of the Euler equations which
will lead to the derivation of the Jacobian matrices and the eigenvalues of Euler

equations.

Flux evaluation schemes starting with the flux vector splitting schemes will be
introduced next. Detailed description of the flux vector splitting schemes such as;
Steger-Warming Flux Vector Splitting Scheme, Van-Leer Flux Vector Splitting
Scheme, Advection Upstream Splitting Method (AUSM), and Artificially Upstream

flux vector splitting (AUFS) scheme will be given.

Having introduced the flux vector splitting schemes, flux difference splitting
schemes is left as flux evaluation schemes used in this study. Basis of the flux
difference splitting schemes, Riemann problem and the Godunov approach will be

explained as an introduction. These will be followed by the description of the
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Roe’s approximate Riemann solver.

Finally, reconstruction techniques that should be used to evaluate the face fluxes

and limiter functions used to eliminate non-physical oscillations will be defined.

4.1 The Quasi-Linear Formulation of the Euler Equations

The Euler equations should be written in a quasi-linear form in order to investigate

its mathematical properties. Euler equations defined by Equation (3.5) are of first

order in the variables 6 and are written in a quasi-linear form as; [3]

Q[ 9F |55
Py +[8QJ.VQ—O (4.1)
or
6—Q+K.§6 =0 (4.2)
ot
or explicitly,

o 8Q ox aQ oy

4.1.1 The Jacobian Matrices

Equation (4.2) includes the Jacobian matrix, a , of flux vector F. Equation (4.2) is
written explicitly in Equation (4.3) to show the components of the Jacobian matrix
due to the x and y components of the flux vector. From Equation (4.3) it can be

written that
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[A]=— and [B]=—= (4.4)

P P
— | pu m
Q= = (4.5)
yo)' n
pE &
The flux vector components can be written in the form,
_ . _ _ . _
m? mn
f= mn and g=| npn? (4.6)
P P
—(e+p) —(e+p)
where,
IIl2 2 IIl2 +n2
= pe+ and =(y-1)| - 4.7
&= pe 25 p (;/ )(5 2 J (4.7)

Then the components of the Jacobian matrix due to the x and y components of

the flux vector are written as follows:
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(4.8)

(4.9)

(4.10)

(4.11)



(4.12)

Combining Equations (4.9), (4.10), (4.11), and (4.12) leads to the general form of
the Jacobian matrix [A] of a 2-D Euler equation. [A] matrix in the explicit form can

be written as follows, [3]

0 1 0 0
7_3u2+7—_lvz (3=7)u ~(r-)v y-1
NEES 2 (4.13)
—uv v u 0
—}/uE+(7/—1)u(u2+V2) }/E—yT_l(3u2+V2) —(}/—l)uv yu

The derivation of the [A] matrix is complete. [B] matrix is derived in the same

manner as, [3]

0 1 0 0
-uv v u y—1
[B]= y=1..,7 ~(7-1)u (3-7)u 0 |(4.14)

2

—]/VE+(]/—1)V(U.2+V2) —(y—l)uv }/E—yT_l(u2+3V2) yv

Further details on the Jacobian matrix evaluation can be found in Rohde [63],
Hirsch[3] and Toro [18].

The Euler equations (3.3), with Equations (3.5), (3.6) and (3.7) are homogenous
in the case of a perfect gas, (2.38). [3, 17, 18] this implies that

F(1Q)=AF(Q) forany A (4.15)
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Meaning that

Q (4.16)

To prove this property, one can multiply the Jacobian matrix (4.13) or (4.14) by
matrix Q (4.5) to obtain f, (3.6) and g, (3.7) matrices, respectively. This property

forms the basis of flux vector splitting schemes. [17, 18]

4.1.2 Eigenvalues of Euler Equations

The eigenvalues of the Jacobian matrix, [a] , are the roots A of the characteristic

equation,
det(a—iI)zO (4.17)

where [I] is the identity matrix. It turns out four eigenvalues, three of which are

distinct and one is repeated.

[A]l= 4 = {u, . u,+c u,—c | (4.18)
The homogeneity property of the hyperbolic Euler equations leads to,

[T ][] =[A] @.19)

where [T] is the matrix of whose columns are the right eigenvectors, [T]_1 is the
inverse of matrix [T], which is the matrix whose rows are the left eigenvectors

and [A] is the diagonal matrix of eigenvalues. The matrices of the left and right
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eigenvectors can be found in the literature. [3, 63]

The i" equation of one dimensional quasi-linear Euler equations (4.20),

Q% (4.20)
ot ox

has a wave solution represented by

Q, =constant for %zii (4.21)

Curves represented by Equation (4.21) are the characteristic curves and A are

the eigenvalues or characteristic speeds. Information is carried along the
characteristic curves with the characteristic speed. Referring to (4.21) it can be
said that, /™ characteristic variable is constant along the corresponding

characteristic curve. [3, 17, 64]

4.2 Upwind Schemes

Eigenvalues of Euler equations, as stated in the previous section; represent the
velocity thus the direction of propagation of information in the flow field. The
central difference schemes, as stated in Chapter 1; does not distinguish upstream
from downstream influences. Although central schemes can be applied at any
order of accuracy in the smooth flow regions, these schemes are not good for
handling shock waves without artificial dissipation terms. Artificial dissipation
terms leads to excessive numerical dissipation, which needs to be limited even in
the smooth flow regions. The numerical dissipation model is improved with the
assistance of upwind schemes. Upwind schemes numerically simulate the

direction of propagation of information in the flow field. [3, 8, 20]
For supersonic flows, characteristic theory predicts that all information
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transmission flows from upstream to downstream. For subsonic flow, however,
information is propagated in such a way that waves can travel both upstream to
downstream and downstream to upstream. Thus, a flux calculation algorithm must
be of such a form that it calculates the flux at a given cell boundary based on cell
values only to the upstream side of the boundary for supersonic flows, and from
both sides of the boundary for subsonic flows. This procedure is further
complicated by the fact that a shock wave will create a situation where supersonic
flow is present on one side of the shock and subsonic flow is on the other side.
The presence of the shock must be correctly admitted by the conservative flux

scheme as well. [3, 8]

Following subsections will introduce the upwind discretisation techniques used in

this study.

4.2.1 Flux Vector Splitting

The flux vector splitting methods are considered as the first level of upwind
schemes. They only account for the sign of the eigenvalues, namely the wave
propagation direction. The well-known splitting schemes presented by Steger-
Warming [17], and Van Leer [21] splits the fluxes into two, according to the sign of
the eigenvalues. Schemes offered by Liou et al. [22]; Advection Upstream
Splitting Method (AUSM) and Jameson et al. [29]; Convective Upwind Split

Pressure (CUSP) splits the flux into a convective and a pressure part.

4.2.1.1 Steger-Warming Flux Vector Splitting

Steger-Warming aimed to extend the class of spatial differencing schemes for
more robust algorithms and improve the efficiency of implicit methods by
developing a new flux splitting method. Although the method is developed for
implicit schemes, there are many applications of explicit schemes even presented

in the publication of Steger-Warming. [17]

Steger-Warming states that the flux vector F is homogenous of degree one in Q
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if the equation of state is of the form; [17]

p=pf(e) (4.22)
Since equation of state in the set of Euler equations is written as shown by

Equation (2.42), the inviscid flux vector in the set of Euler equations are

homogenous of degree one in Q.[17]

Steger-Warming flux vector splitting scheme uses the property of inviscid flux
vectors being homogenous of degree one and splits the flux vectors f and é into

subvectors; a positive and a negative part according to the sign of the

eigenvalues. [17]
As previously shown, the homogeneity lets the flux vector written in the form;

F=[a]Q (4.23)

and the system of Euler equations, which are hyperbolic, lets the matrix of real

eigenvalues written in the form

[T]"[a] [T]=[A] (4.24)
Combining Equations (4.23) and (4.24), F is written as

-1 =

F=[a]Q=[T][A][T] Q (4.25)

Splitting the eigenvalues according to their signs [a] matrix is written as follows
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[a]=[a" |+[a |=[T][A"][T] " +[T][A"][T]" (4.26)

Inserting the above equation into F equation

F=F +F =[T][A"][T]" Q+[T][A ][T]'Q (4.27)

As stated in Section 3.1, inviscid flux vector F has components f and é in x and

v directions, respectively. The subvectors of the inviscid flux vector also have
Jacobian, [A] and [B] respectively, and eigenvalue matrices of each Jacobian is
[A] and [A,] respectively. [3]

u 0 0 0

_ 0 u 0 0
TT'TAI[T]=[A ]= 4.28
A== o (428)

0 O 0 u-—-c

v 0O 0 0

) 0 v 0 0
T,1'[B][T.]=[A,]= 4.29
S| P O (429)

0 0 0 v—c

The relations written above for the flux vector F are also applicable for the x- and

y- components, f and g respectively, of the flux vector F .

—

f=f +f =[A"]Q+[A]Q=[T][A|[T] Q+[T][A |[T]'Q 430

g=g +g =[B"]Q+[B]Q=[L][A, ][] Q+[L][A, ][T.]'Q @.31)

The split fluxes ?, f_, g and g:,r_ are also homogenous functions of degree one
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in Q. [A"] represents the eigenvalues matrix of the Jacobian of £ with only

positive elements, [A;] represents the eigenvalues matrix of the Jacobian of f

with only negative elements, [A,] represents the eigenvalues matrix of the

Jacobian of g with only positive elements, [A,] represents the eigenvalues matrix

of the Jacobian of g with only negative elements such that, [3, 17]

(A]=[A] +[AT  [A]=[AT-[A] 432)

A=A+ A A=A — A (4.33)

The positive and negative eigenvalues are defined as

+:ﬂ’k+|/’i’k| :ﬂ“k_|ﬂ’k|
¢ 2 ¢ 2

(4.34)

The conservative form of Euler equations using the split-fluxes is written as

6_Q+6f +6f'+8g +6g'
o oOx oOx oy Oy

=0 (4.35)

where the plus and minus signs designate the flux components due to the waves

propagating in the positive and negative directions, respectively.

a) Subsonic flow

For subsonic flow, u,<c meaning that the fourth eigenvalue, u,-c, both in [A,] and

[A,] are negative, and the other three are positive with u, being positive.
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Consequently, for the general eigenvalue matrix

(A= |,
0
0
A=,
0

oS O O O

oS O O O
oS O O O
S

(4.36)

(4.37)

The corresponding Jacobians are found using Equations (4.28) and (4.29), for f

and g, respectively, with [T] a