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A B S T R A C T  

AIRFOIL BOUNDARY LAYER CALCULATIONS USING  
INTERACTIVE METHOD AND en TRANSITION PREDICTION TECHNIQUE 

 

MERSİNLİGİL, Mehmet 

M.S., Department of Aerospace Engineering 

Supervisor: Assoc. Prof. Dr. Serkan Özgen 

 

September, 2006, 102 pages 

 

Boundary layer calculations are performed around an airfoil and its wake. Smith-van Ingen 

transition prediction method is employed to find the transition from laminar to turbulent 

flow. First, potential flow around the airfoil is solved with the Hess-Smith panel method. 

The resulting velocity distribution is input to the boundary layer equations in order to find 

a so called blowing velocity distribution. The output of the boundary layer equations are 

also used to compute the location of onset of transition using the Smith-van Ingen en 

transition prediction method. The obtained blowing velocity distribution is fed back to the 

panel method to find a velocity distribution which includes the effects of viscosity. The 

procedure described is repeated until convergence is observed. A computer program is 

developed using the theory. Results obtained are in good accord with measurements. 
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Ö Z  

KANAT PROFİLİ SINIR TABAKASININ ETKİLEŞİMLİ METOD VE en GEÇİŞ 
TAHMİN TEKNİĞİ KULLANILARAK HESAPLANMASI 

 

MERSİNLİGİL, Mehmet 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Anabilim Dalı 

Tez Danışmanı: Doç. Dr. Serkan Özgen 

 

Eylül, 2006, 102 sayfa 

 

Kanat profili ve ard iz bölgesinde sınır tabakası hesaplamaları yapılmıştır. Geçiş tahmini 

için Smith-van Ingen geçiş tahmin metodu kullanılmıştır. İlk önce Hess-Smith panel 

metodu kullanılarak kanat profili etrafındaki potansiyel akım çözülmüş ve hız dağılımı 

hesaplanmıştır. Elde edilen hız dağılımı ile sınır tabakası denklemleri çözülmüş ve yüzey 

üfleme hızları bulunmuştur. Sınır tabakası denklemlerinin sonuçları, Smith-van Ingen en 

metodu ile türbülansa geçiş noktasının belirlenmesi için kullanılmıştır. Elde edilen yüzey 

üfleme hızları potansiyel akım çözümünde sınır şartları olarak kullanılmış ve sınır 

tabakasının etkilerini de içeren potansiyel akım bulunmuştur. Bu yöntem, yakınsama 

gözlemleninceye değin sürdürülmüştür. Söz konusu teori kullanılarak bir bilgisayar 

programı yazılmış ve iki adet kanat profili etrafında denenmiştir. Sonuçlar deneysel 

ölçümler ile uyumludur.  
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C H A P T E R  1  

INTRODUCTION 

As lifting sections play an essential role in performance of any aerodynamic system, two 

questions are of particular importance. First is the problem of designing lifting sections, 

where the second is to analyze performance characteristics. Analysis of lifting sections is 

crucial from design of an airfoil to design of an aircraft. 

In order to analyze a lifting section, mainly two approaches are applicable. One is to solve 

either full Navier-Stokes (N-S) equations or to solve them in a simplified manner, which is 

called the thin-layer Navier-Stokes equations, where diffusion terms in the mean flow 

direction are neglected. The main complexity of the so called thin layer Navier-Stokes 

equations arise from the fact that, the whole flow field has to be treated simultaneously, 

since these equations are not parabolic in nature and therefore does not allow one to use 

techniques such as marching technique. Obviously, since one has to handle the whole 

flow field at once, this method requires some large amount of computational power and 

storage space, which makes it unfeasible. 

An alternative method is the so called Interactive Boundary Layer method. In this 

method, the major assumption is the one suggested by Prandtl, which implies that for 

sufficiently high Reynolds numbers, flow over a lifting section can be considered as 

superposition of two different layers, a thin boundary layer, or viscous layer, where all the 

viscous effects are included, and an inviscid outer layer. As stated in [1], it is assumed that 

the thickness of the boundary layer is very small compared to the characteristic length 

scale of the flow ( Lδ ). Using this assumption, Navier-Stokes equations can be further 

simplified. Adding the assumptions that diffusion in the mean flow direction, normal 

pressure gradient are neglected and also convection terms in the normal direction are 

negligible compared to convection terms in the mean flow direction; one can obtain a 

resultant flow in which pressure across the boundary layer can be considered constant. 

The advantage that these equations bring is their parabolic nature, which enables one to 

solve them using the so called marching technique. 
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In order to keep an uncoupled flow, thermal effects are neglected which yields the fact 

that variations in fluid properties like density and viscosity are not accounted for. Such 

flows can be expected in incompressible flows where the Mach number less than a 

predetermined value of 0.3 in order to keep the errors due to this assumption less than 

10% ( 0.3M ≤ ), and of course an adiabatic wall, where the wall of the lifting section does 

not allow any thermal flux to flow.  

Inclusion of the wake region enables one to conform to the Kutta condition in the wake, 

when it is not possible to satisfy it at the trailing edge at high angles-of-attack mainly due 

to a separation at either one of the surfaces. Also as noted in references [2,3,4] when the 

wake is not taken into account, the coefficient of lift, LC , and the stall angle, stallα , are 

overestimated.  

In order not to overestimate the section lift coefficient and the stall angle-of-attack, the 

blowing velocity distribution has to be calculated precisely, as the above explained 

overestimation is due to underestimation of the blowing velocity distribution as cited in 

[1]. 

The blowing velocity itself, creates the dividing streamline which approximately describes 

the edge of the boundary layer and starts from the stagnation point proceeding in the 

downstream direction. The blowing velocity is defined by the below formula: 

*( )n e
dV U
d

δ
ξ

=  (1.1) 

Where eU is the edge velocity, ξ  is the non-dimensional surface distance, and *δ  is the 

displacement thickness. 

In addition to work done by Özgen in 1994 as a Master’s Thesis study [1], in which wake 

region was added to the interactive boundary layer solver enabling it to result in rational 

solutions at high angles-of-attack; this work is aimed to introduce a useful method for 

calculating the laminar to turbulent transition point for the above explained solver, so that 

transition prediction is based on methods that have stronger physical foundations and to 

standardize this procedure. 
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As this thesis is a continuation to the Master’s Thesis of Özgen [1], chapters 2, 3 and 5, 

and appendices A and B are taken form reference [1]. 

The methodology used in this study may be summarized as follows: First, the inviscid 

flow equations are solved in order to obtain an edge-velocity distribution throughout the 

chord-wise stations of a lifting section, which are then input into a boundary layer solver. 

The two solvers, namely the potential and boundary layer solvers, are communicated via 

the so called blowing velocity distribution. Each communication of the potential and the 

boundary layer solver is called a cycle. After certain number of cycles, as the results 

converge to some values, with the input from the user that the flow field is fully laminar, 

the boundary layer solver is modified to output the values of the non-dimensional velocity 

and some of its derivatives as required by the solution of the Orr-Sommerfeld equation. 

The en technique is based on solution of the Orr-Sommerfeld (O-S) equation and is 

explained in detail in Chapter 4. After the solution of the O-S equation is obtained, one 

may choose to obtain the neutral stability curve, or to carry on to find amplification rates, 

which constructs the basis for Smith-van Ingen en transition prediction technique. After 

the transition is found, a new boundary layer solution is then obtained with the value of 

transition location given externally. 

 

Figure 1.1 Brief Flowchart of the Solution Procedure  

     Airfoil      
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+ Conditions 
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Potential Flow Solver Boundary Layer Solver

Last Cycle?

No
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 Stability Transition 
         Program 
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Aside from correlation methods, for predicting transition, the available methods can be 

listed as en method which is based on solution of linear stability equations, another 

method based on parabolized stability equations (PSE), and finally Direct Navier Stokes 

(DNS) method based on the solution of unsteady Navier-Stokes equations. 

As DNS method has a potential, its requirement of huge computational power which 

yields in large computing times, and large storage brings the fact that this method requires 

time in order to achieve such high computational power, and therefore it will not become 

a standard for transition prediction in the near future. As noted by Cebeci and Cousteix in 

reference [5], another approach is the parabolized stability equations method, which is still 

under development, and hence is not mature yet, and therefore the only way of solution 

available immediately is the Smith-van Ingen en method, which is based on the solutions 

of the linear stability equations. 

In two-dimensional incompressible flows, the linear stability equations are embedded into 

a single 4th order ordinary differential equation called the Orr-Sommerfeld equation which 

is given below: 

2 4 2( 2 ) [( )( ) ]iv iR u uφ α φ α φ α ω φ α φ α φ′′ ′′ ′′− + = − − −  (1.2) 

In the above formulation, primes stand for derivation with respect to y , u  denotes the 

velocity profile in the main stream direction, and φ  is the complex amplitude of the 

stream function, therefore consists of a real and an imaginary part. α  is the wave number 

of the disturbance, and ω  stands for the circular frequency. Finally, ν  is the kinematic 

viscosity of the Newtonian fluid, in which the flow is investigated. 

There are two possibilities to solve for the Orr-Sommerfeld equation. In the first case, 

α is real and ω  is complex, where the amplitude changes with time according to the 

formulation exp( )itω− and is named as the temporal amplification theory. The second 

case is the one where ω  is real but α  is complex ( )r iiα α α≡ + . In the latter case, 

amplitude of the disturbance varies with distance as exp( )itα− , and is called the spatial 

amplification theory. 
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The mean flow is assumed to be steady and spatial amplification theory is used, since it 

represents the disturbance growth in a steady-boundary layer more faithfully. Hence, in 

spatial amplification theory, the amplification rate and amplitude of a disturbance wave is 

independent of time but is a function of the distance from the stagnation point measured 

in downstream direction, the change of amplitude can be analyzed in a point by point 

manner. 
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C H A P T E R  2  

BOUNDARY LAYER EQUATIONS FOR 2D FLOWS 

Although integral methods such a Pohlhausen method or Thwaites method are still used 

for calculating initial laminar regions up to the onset of transition, they are only good for 

quick and rough estimates for a restricted class of laminar flows and their popularity in the 

pre-computer era have ended due to recent development of high speed computers as 

discussed in ref [5]. As differential methods are more general and accurate, such a method 

is preferred for this study. 

In a differential method, continuity and momentum equations, and their corresponding 

boundary conditions have to be solved in partial differential equation form, with an 

accurate term for the Reynolds shear stress. 

2.1 Continuity Equation 

The compressible continuity equation is given below as: 

0D V
Dt
ρ ρ+ ∇ =i  (2.1) 

One shall note that in the above equation the capital letter D denotes total derivative. 

Bearing in mind that incompressible flow cases are investigated, in this study one can 

assume that if the fluid density remains unchanged, the continuity equation can be 

simplified to the below format. In the below expression, ρ  and t denotes the density and 

time, where V  represents the velocity field with ∇  being the divergence operator. 

0 0D V
Dt
ρ
= ⇒∇ =i  (2.2) 

This can also be written in Cartesian coordinates as: 

0u v w
x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

 (2.2) 
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In the above formulation; u , v  and w  stand for velocity components in x , y  and z  

directions respectively. 

2.2 Momentum Equation 

The general momentum equation for constant density and viscosity flow is given below. 

Note that in the below equation, f  represents the net body force per unit mass exerted 

on the fluid as defined in reference [6]. 

2DV f p V
Dt

ρ ρ µ= −∇ + ∇  (2.3) 

Taking the curl of the above equation, one obtains the vorticity transport equation with 

the additional knowledge: Vω = ∇× . One has to note that the term ω  is the vorticity 

transport equation, but not the frequency term which will be introduced later in chapter 4. 

2D V f
Dt
ω ω ν ω= ∇ + ∇ +∇×i  (2.4) 

In equation 2.4, term in the left hand side and the first term in the right hand side stands 

for vortex stretching, while the second is for viscous diffusion and the last one represents 

body forces. Note that in a two-dimensional flow, the vorticity has no components in x 

and y directions, but only in z-direction, which results in the vortex stretching term to 

disappear so that the above equation becomes; 

2D f
Dt
ω ν ω= ∇ +∇×  (2.5) 

Interpreting equation 2.5, one may conclude that in the flow of our particular interest, 

which is two-dimensional, incompressible and with constant viscosity, the vorticity of 

fluid elements are constant in stream-wise directions except for the body forces and 

viscous diffusion cases. 
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In order to make equation 2.5 valid for turbulent flow cases, one may replace the fluid 

property terms and dependent variables with their unsteady versions. These are shown 

below in equation 2.6. 

ˆu u u= +  (2.6a) 

ˆv v v= +  (2.6b) 

ˆw w w= +  (2.6c) 

ˆρ ρ ρ= +  (2.6d) 

ˆp p p= +  (2.6e) 

One shall note that the unsteady versions of the above variables, in other terms, the 

instantaneous quantities consist of a mean part denoted by bars, and a fluctuating part 

denoted by hats. It is important to recall that when one applies time averaging to any of 

the above perturbation quantities, the result is zero shown for velocity component u 

below in equation 2.7. Note that in the below equation, the term T  denotes the time 

segment in which the averaging is done. 

0

1 ˆ 0
T

udt
T

=∫  (2.7) 

Substituting these values to conservation equations given by eqn.2.2 and 2.5, one gets the 

below equations; 

0u v w
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (2.8a) 

22 ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )x
Du p u f u uv uw
Dt x x y z

ρ µ ρ ρ ρ ρ∂ ∂ ∂ ∂
= − = ∇ + − − −

∂ ∂ ∂ ∂
 (2.8b) 

22 ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )y
Dv p v f vu v vw
Dt y x y z

ρ µ ρ ρ ρ ρ∂ ∂ ∂ ∂
= − = ∇ + − − −

∂ ∂ ∂ ∂
 (2.8c) 
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22 ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )z
Dw p w f wu wv w
Dt z x y z

ρ µ ρ ρ ρ ρ∂ ∂ ∂ ∂
= − = ∇ + − − −

∂ ∂ ∂ ∂
 (2.8d) 

Noting that the continuity equation remains the same, the momentum equations in the x, 

y, and the z-directions gained some extra terms, which are basically multiplications of two 

fluctuating velocity components. These are additional terms called the Reynolds stress 

terms. If a term consists of multiplication of two velocity components in the same 

direction, they are referred to as Reynolds normal stresses, otherwise they are named 

Reynolds shear stress terms. 

This additional information lets one to visualize stresses caused by turbulence and hence 

define stress as superposition of laminar and turbulent stress components as follows: 

t l
ij ij ijσ σ σ= +  (2.9) 

Where superscript t denotes turbulent and superscript l denotes laminar. Also the 

turbulent stress component can be written in general form as defined below. The first 

term in the RHS denotes turbulent stresses, where the second is for laminar stresses. 

ˆ ˆ ji
ij i j

j j

uuu u
x x

σ ρ µ
⎛ ⎞∂∂

= − + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
 (2.10) 

2.3 Boundary Layer Equations 

Navier-Stokes equations can be simplified by neglecting some of the viscous terms and 

yield to special simplified versions of the N-S equations such as, Thin Layer N-S 

equations, Parabolized N-S equations, Euler Equation of Boundary Layer Equations as 

derived in [7]. Essentially the neglecting process is accomplished via an order of 

magnitude analysis, and terms that have a lower order of magnitude are dropped to 

achieve a simplified form. 

In the case of deriving Boundary Layer Equations, as noted in Chapter 1, the major 

assumption is that in both laminar and turbulent flows, the thickness of the boundary 

layer is very small compared to the characteristic length scale of the flow ( Lδ ). This 
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assumption leads to an unchanged continuity equation, disappearance of the y-

momentum equation and to the fact that pressure is constant along the boundary layer, i.e. 

pressure is dependent only on the stream wise distance. 

The resultant equations for a steady, two dimensional and incompressible flow, are given 

below. Derivations of these equations starting from Reynolds averaged Navier-Stokes 

equations can be found in many books including references [8, 9]. 

Continuity Equation: 0u v
x y
∂ ∂

+ =
∂ ∂

 (2.11) 

Momentum equation in x-direction: 1 1 ˆ ˆu u p uu v uv
x y x y y

µ ρ
ρ ρ

⎛ ⎞∂ ∂ ∂ ∂ ∂
+ = − + −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (2.12) 

Momentum equation in y-direction: 0p
y
∂

=
∂

 (2.13) 

Terms at the LHS of equation 2.12 are the convection terms, where the first term at the 

RHS is the pressure term followed by viscous diffusion terms. Note that the last term 

includes the Reynolds shear stress term. 

In order to simplify the last term on the RHS of equation 2.12, one can embed the 

division by density term into the terms inside the parenthesis to obtain: 

ˆ ˆu uv
y y
ν
⎛ ⎞∂ ∂

−⎜ ⎟∂ ∂⎝ ⎠
 (2.14) 

And also using information provided by equation 2.13, the partial differentiation at the 

first term in the RHS of equation 2.12 may be replaced as an ordinary differentiation, and 

further may be combined with the Bernoulli’s equation to yield the following relation. The 

interpretation of the resultant relation yields the fact that pressure is not a variable through 

the solution process but absorbed within the boundary conditions. 

e
e
dUdp U

dx dx
ρ= −  (2.15) 
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Rewriting equation 2.12 including the above relations: 

ˆ ˆe
e
dUu u uu v U uv

x y dx y y
ν
⎛ ⎞∂ ∂ ∂ ∂

+ = + −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (2.16) 

The last term at the RHS of the above equation can be expressed according to 

Boussinesque’s relation, introducing the eddy viscosity concept, which implies: 

ˆ ˆ m
uuv
y

ε ∂
− =

∂
 (2.17) 

If we define a variable b  such that 

mb ν ε= +  (2.18) 

Then equation 2.16 becomes: 

e
e
dUu u uu v U b

x y dx y y
⎛ ⎞∂ ∂ ∂ ∂

+ = + ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (2.19) 

It shall be clarified that the above equation is valid both for laminar and turbulent flows 

through the proper values of b . 

In case of no mass transfer across the wall, the associated boundary conditions for 

eqs.2.11 and 2.13 become: 

Wall B.C.         0u = , 0v =  at the wall ( 0)y≡ =  (2.20a) 

Edge B.C.        ( )eu U x→            as        y→∞  (2.20b) 

In the wake region, things get more complicated as one has no solid wall. Therefore, one 

has to introduce a dividing streamline where 0y = , which enables one to distinguish the 

difference between upper and lower surfaces. It is of particular importance that as there 

exist a requirement for inclusion of the wake region at high the angles-of-attack. The 

reason for this is the assumption mentioned above stating that pressure is independent of 
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y becomes invalid since as separated regions occur. In addition to this, the boundary-layer 

assumption explained above also becomes invalid as the displacement thickness, *δ , 

which is explained in section 3.1 becomes as high as 5-6% of the chord length. In order to 

keep simplicity, the dependence of pressure in the normal direction is omitted and so that 

the boundary conditions used become: 

( )eu U x→        as            y→∞  (2.21a) 

0v =                  at            0y =  (2.21b) 

( )eu U x−→       as            y→−∞  (2.21c) 

In order to solve equation 2.19 around any lifting section, one has to divide the section 

into two as upper and lower surfaces, each starting from the stagnation point proceeding 

downstream. After solving for the boundary layer through these surfaces, the solutions are 

merged into the wake region and solutions along the wake region are carried for about 

three chord-lengths downstream. 
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C H A P T E R  3  

SOLUTION OF 2D BOUNDARY LAYER EQUATIONS 

Among several different methods for solving differential boundary layer equations, two of 

them are very popular, namely the Crank-Nicholson method and the Keller’s box scheme 

as described in [10] and they are compared briefly in reference [8]. Keller’s box scheme is 

used in this study. The same method can be applied to three-dimensional boundary layer 

equations and both two and three-dimensional linear stability equations. As a result, the 

same method is used for solving stability equations described later in appendix A. Further 

in formation is available in references [1, 5, 7, 11]. 

Recalling the continuity and momentum equations for a two dimensional boundary layer: 

0u v
x y
∂ ∂

+ =
∂ ∂

 (2.11) 

e
e
dUu u uu v U b

x y dx y y
⎛ ⎞∂ ∂ ∂ ∂

+ = + ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (2.19) 

The above equation that is equation 2.19 is applicable to both internal and external flows. 

On the other hand, in order to solve for external flows, which is essentially the case 

investigated throughout this study, the edge velocity distribution, ( )eU x , must be 

supplied. Via the Bernoulli’s equation given below: 

1 e
e
dUp U

x dxρ
∂

− =
∂

 (3.1) 

If in a solution, one specifies the edge velocity distribution or equivalently the pressure 

distribution, the approach is defined as the standard problem, requiring that no separated 

regions within the solution domain exist, that is the wall shear stress shall never be zero 

( 0)wτ≡ ≠ . This is referred to as the singular behavior of boundary layer solutions in case 

a separation exists as described in [7]. 
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In order to solve for the cases when there exists a separated region, the methodology 

applied to the solution of the boundary layer equations given above shall be altered. In 

order to treat the problem in a different manner, one does not input neither the edge 

velocity distribution nor the pressure distribution, but tries to solve for them also. In this 

case, one has to specify the displacement thickness distribution, *( )xδ , as a boundary 

condition and solve for the edge velocity distribution, which is referred to as the inverse 

method or inverse problem. 

Obviously, as the displacement thickness distribution also being unknown, one has to find 

another way to overcome this new problem. The solution is reached through leaving these 

quantities as a part of the solution, and finding the correct, converged values in a manner 

where inviscid and viscous solutions, which are essentially potential and boundary layer 

solutions are interacted successively until convergence is achieved. 

3.1 Interaction Mechanism between Inviscid and Viscous Solutions 

There are two different approaches that may be used to assure interaction between 

inviscid and viscous solutions. The first one is called the weak interaction problem in 

which, the displacement thickness distribution is used as the interacting agent, and the 

second is called the strong interaction problem in which the blowing velocity concept is 

used. 

In the first approach, the computation starts as if a standard problem is solved. First the 

inviscid solver is run, and the resulting edge velocity distribution is input to the boundary 

layer solver, from which a displacement thickness distribution is obtained, which is then 

used as a boundary condition for the inviscid solver. At the point where a separation is 

observed ( 0)wτ≡ ≤ , extrapolation for the displacement thickness is done. This procedure 

is repeated until convergence is achieved. 

Major drawback of this method is that it can handle small separated zones, essentially 

separation bubbles, but is not good enough for long separated regions such as stalled 

airfoils, since the obtained results will deviate significantly from the correct ones. 
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The latter method is the employment of the blowing velocity concept which is referred to 

as the strong interaction problem and is used commonly by T. Cebeci et al [3, 4, 12, 13, 

14]. In this method, both the edge velocity distribution and the displacement thickness 

distribution are treated as unknowns. Equations are solved in inverse mode applying 

successive sweeps to the calculations. The idea is to alter the inviscid edge velocity 

distribution using Veldman’s relation which is described thoroughly in reference [15]. 

0( ) ( ) ( )e e eU x U x U xδ= +  (3.2) 

In the above formulation, the first term in the RHS represents inviscid velocity 

distribution where the second represents the perturbation velocity distribution which is 

caused by viscous effects, and may be calculated using the Hilbert Integral which is given 

below: 

( ) ( )
*1( )

b

a

x

e e
x

d dU x U
d x

ξδ δ
π ξ ξ

=
−∫  (3.3) 

In the above formulation the bounds of the integral are actually the start and end points 

of the interacting region. The term x  is the stream wise distance where ξ  stands as a 

dummy variable used for integration. Apparently, ( )eU x  is the edge velocity distribution 

and *δ  represents the displacement thickness.  Solution procedure is explained in detail in 

reference [1]. The Hilbert Integral is based upon thin airfoil theory and the blowing 

velocity nV  which is: 

( )*
n e

dV U
d

δ
ξ

=  (1.1) 

Blowing velocity distribution is used as a boundary condition for the potential flow solver 

in order to include the effects of boundary layer in the inviscid flow solutions. Since the 

blowing velocity concept employs both the displacement thickness and the edge velocity 

distribution, it is superior to weak interaction approach which takes into account only the 

displacement thickness distribution. Thus, the blowing velocity concept provides a more 

complete mathematical model. 
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In order to clarify the definition one shall explain the displacement thickness 

phenomenon in more detail. The displacement thickness is defined by the expression 

shown in equation 3.4. 

( )
( )

*

0

,
1

e

u x y
dy

U x
δ

∞ ⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∫  (3.4) 

Where in the above expression, ( ),u x y represents the velocity component tangent to the 

wall. The physical meaning of the above relation may be explained as described in [1]. 

That is if the flow was purely inviscid, the mass flow rate through the boundary layer 

would be eUρ δ , where δ represents the actual boundary layer thickness, normal to the 

wall. However, the flow being viscous, clearly much lesser amount of mass is passing 

through the same control volume. The thickness if the inviscid profile which would allow 

the same amount of mass transfer along itself is shown below in figure 3.1 with dashed 

line. Distance of this dashed line from the wall is called the displacement thickness and 

denoted by *y δ= . It shall also be noted that area I is equivalent to area II. This is shown 

by equation 3.5. 

( )*

0
e eU U u dy

δ

ρ δ ρ= −∫  (3.5) 

 

Figure 3.1 Definition of Displacement Thickness 

Inviscid profile
( ),u x y

y δ=

0y =
eu U=

Viscous profile

I 

II
*y δ=
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Changing the upper limit of the integral in equation 3.5 from δ to infinity has no 

significant effect since at the edge of the boundary layer, it can be told that: 

( ), ( )eu x y U x≅  (3.6) 

The reasoning of the use of strong interaction approach can be explained as it simplifies 

the process bringing a relation between displacement thickness and edge velocity 

distribution as shown above. 

3.2 Solution of the Standard Problem 

Since the boundary layer equations are parabolic, marching technique is applicable starting 

from a known solution at say 0x x= . As one proceeds in downstream direction, since the 

thickness of the boundary layer increases, one has to maintain sufficiently high resolution, 

in order to keep increments in stream-wise direction small, in order to maintain 

computational accuracy. In order to solve equation 2.19, one may solve it as it is, or 

introduce a more convenient form by using a similarity transformation which eliminates 

the problems related to the boundary layer growth phenomenon and therefore the 

restrictions in stream-wise grid spacing.  

A widely used similarity transformation is the Falkner-Skan transformation, which is a 

consequence of group theoretic method described by Hansen in reference [16]. In 

Falkner-Skan transformation, x values remain unchanged, even in some cases they are 

denoted by the Greek letter ξ .  The similarity variables used in Falkner-Skan 

transformation is the dimensionless distance in normal direction that is y-direction, η  

which is given below in equation 3.7. 

eU y
x

η
ν

=  (3.7) 

And the corresponding dimensionless stream function ( , )f x η  is given in equation 3.8 

below. 
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( ) ( ), ,ex y U x f xψ ν η=  (3.8) 

In equation 3.8, ψ  is the dimensional stream function, from which the velocity 

components may be written as shown below in equation 3.9. 

u
y
ψ∂

=
∂

 (3.9a) 

v
x
ψ∂

= −
∂

 (3.9b) 

Using the prescribed similarity transformation, differentiation with respect to x and y 

terms become: 

y xx x x ηη
⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

 (3.10a) 

xxy yη
⎛ ⎞ ⎛ ⎞∂ ∂ ∂

=⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠
 (3.10b) 

Falkner-Skan transformation enables one to generate initial condition at and near the 

stagnation point, and results in the boundary layer equations to become ordinary 

differential equations rather than partial ones for similar flows. However, its use is not 

limited to similar flows since even if it does not eliminate, it significantly decreases the 

dependence in stream-wise position. The latter is valid for the case investigated as the 

presence of x as a variable can be recognized from equation 3.10. 

Defining ξ  as the dimensionless surface distance as /x Lξ = , L  being the characteristic 

length of the flow, and applying the above transformation to equation 2.19 yields equation 

3.11 which is given below. 

( ) ( )21 1
2
m f fbf ff m f f fξ

ξ ξ
′⎛ ⎞+ ∂ ∂′ ⎡ ⎤′′ ′′ ′ ′ ′′+ + − = −⎜ ⎟⎣ ⎦ ∂ ∂⎝ ⎠

 (3.11) 

And the corresponding boundary conditions are given below in equation 3.12. 
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0f ′ = ,  0f =  at   0η =  (3.12a) 

1f ′ =  at   eη η=  (3.12b) 

In equation 3.12, eη  is the dimensionless coordinate corresponding to the edge of the 

boundary layer as stated in [7]. The definition is given below in equation 3.13. 

L e
e

R U
L
δη

ξ
=  (3.13) 

In equation 3.11, primes denote differentiation with respect to the transformation variable 

η . Also one shall note that m  is the dimensionless pressure gradient defined below in 

equation 3.14 and tν
+  being the fraction of eddy viscosity to kinematic viscosity of the 

fluid. Notice that, definition for the term b is altered to make it also dimensionless as 

defined by equation 3.16. 

e

e

dUm
U d
ξ

ξ
=  (3.14) 

m
t

εν
ν

+ =  (3.15) 

1 tb ν += +  (3.16) 

Equation 3.16 is valid both for laminar and turbulent flows, and its value becomes unity in 

case of laminar flows. 

In order to solve equation 3.11 together with its boundary conditions, Keller’s box 

scheme is employed as explained above. This scheme is essentially a two point finite-

difference scheme, in which the equation itself and the boundary conditions are expressed 

as a system of three equations of the first-order. In order to achieve this goal, new 

variables are introduced to express derivatives of f . In Keller’s box scheme, the variables 

are evaluated at the vertices, where the equations are written for the center of the box.  
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Figure 3.2 Rectangular grid used for centered difference approximation. 

The nodes of the above rectangular grid are chosen as: 

1n n nkξ ξ −= +  1,2,3, ,n N=  (3.17a) 

1j j jhη η −= +  1,2,3, ,j J=  (3.17b) 

As the resultant system of equations is non-linear, Newton’s method, which is introduced 

in subsection 3.2.2 is used for linearization, and then solved by the block elimination 

method described in subsection 3.2.3. 

3.2.1 Numerical Scheme 

As described above in section 3.2 new variables are introduced to represent derivatives of 

f , enabling one to write equation 3.11 and its associated boundary conditions 3.12 as a 

system of first order equations. Note that the newly introduced variables are not velocity 

components but the derivatives of the non-dimensional stream function f  with respect 

to similarity variable η . Defining ( , )u x η  and ( , )v x η  such that: 

f u′ =  (3.18a) 

f u v′′ ′= =  (3.18b) 

η

jη

1jη −

ξ1nξ − nξ

jη

1jη −

1nξ − nξ
1/ 2nξ −

1/ 2jη − jh

nk



 

21 
 

Using these new variables, eqs.3.11 and 3.12 are rewritten as eqs.3.19 and 3.20.  

( ) 21 1
2
m u fbv fv m u u vξ

ξ ξ
⎛ ⎞+ ∂ ∂′ ⎡ ⎤+ + − = −⎜ ⎟⎣ ⎦ ∂ ∂⎝ ⎠

 (3.19) 

0u = ,   0f =  at   0η =  (3.20a) 

1u =  at   eη η=  (3.20b) 

Writing equation 3.18 in discrete form using Keller’s box method yields: 

1 1
1/ 22

n n n n
j j j j n

j
j

f f u u
u

h
− −

−

− +
= ≡  (3.21a) 

1 1
1/ 22

n n n n
j j j j n

j
j

u u v v
v

h
− −

−

− +
= ≡  (3.21b) 

With L  denoting the LHS, and R  denoting the RHS, equation 3.19 can be approximated 

at the center of the rectangle by first centering in ξ  direction as shown below in equation 

3.22. 

( )
1 1

1 1/ 2 1/ 2 1/ 21
2

n n n n
n n n n n

n n

u u f fL L u v
k k

ξ
− −

− − − −⎡ ⎤⎛ ⎞ ⎛ ⎞− −
+ = −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
 (3.22) 

Where: 

( ) 21 1
2

n
n mL bv fv m u+⎡ ⎤′ ⎡ ⎤= + + −⎣ ⎦⎢ ⎥⎣ ⎦

 (3.23a) 

( )
1

1 21 1
2

n
n mL bv fv m u

−
− +⎡ ⎤′ ⎡ ⎤= + + −⎣ ⎦⎢ ⎥⎣ ⎦

 (3.23b) 

Defining nα  as in equation 3.24 one can rewrite equation 3.22 as shown in equation 3.25. 
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1/ 2n
n

nk
ξα

−

=  (3.24) 

( ) ( ) 12 1 1 1 2 1 1n nn n n n n n n n n n n nL u v f v f v f L u f vα α
−− − − − −⎡ ⎤ ⎡ ⎤− − − + = − + − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (3.25) 

Since the values having the superscript ( )1n−  are known from the previous station, and 

one is trying to obtain the values of current station, one may rearrange terms in equation 

3.22 and obtain: 

( ) ( ) ( ) ( )2 1 1 1
1 2

n
nn n n n n n nbv fv u f v v f Rα α α − − −⎡ ⎤′ ⎡ ⎤+ − + − =⎣ ⎦⎢ ⎥⎣ ⎦

 (3.26) 

In the above equation the newly introduced variables are: 

1
1

2

n
nmα α+

= +  (3.27a) 

2
n nmα α= +  (3.27b) 

( ) 11 1 1 1 2 nn n n n n nR L v f u mα
−− − − −⎡ ⎤= − + − −⎢ ⎥⎣ ⎦

 (3.27c) 

As now the equation 3.19 is centered in ξ  direction, one may proceed to center it in η  

direction, that is to write it at 1/ 2jη − . 

( ) ( ) ( ) ( )1 1 2 1 1 1
1 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 21/ 2 1/ 2

n n
nnj j j j n n n n n n

j j j j jj j
j

b v b v
fv u f v f v R

h
α α α− − − − −

− − − − −− −

−
⎡ ⎤+ − + − =⎣ ⎦  (3.28) 

Where: 

( ) 11 1 1 1 2
1/ 2 1/ 2 1/ 2 1/ 2 1/ 2

nn n n n n n
j j j j j
R L v f u mα

−− − − −
− − − − −

⎡ ⎤= − + − −⎢ ⎥⎣ ⎦
 (3.29a) 
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( ) ( ) ( ) ( )
1

1 11 2
1/ 2 1/ 2 1/ 2

1 1
2

n

j j j jn
j j j

j

b v b v mL fv m u
h

−

− −−
− − −

⎧ ⎫− +⎪ ⎪⎡ ⎤= + + −⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭
 (3.29b) 

Note that equations 3.21 and 3.28 are imposed for 1,2,3, , 1j J= −  at any given η . For 

0j =  and j J= , the boundary conditions given in equation 3.20 are used. The 

transformed boundary layer thickness, eη , has to be sufficiently large, so that 1eU →  

asymptotically. This is usually satisfied when ( ) 310ev η −< . 

Also the boundary conditions given in equation 3.20 can be written in discrete form as 

shown in equation 3.30. 

0 0nf =    0 0nu =  at   0j =  (3.30a) 

1n
Ju =  at   j J=  (3.30b) 

3.2.2 Newton’s Method 

As the above derived discretized system of equations is non-linear, one has to linearize 

them in order to solve them in matrix form. In order to accomplish this objective, small 

perturbation quantities for all of the variables are introduced, and an iterative scheme 

called Newton’s method is employed. 

As an initial guess, values of the variables at the previous station are used. Note that in the 

below expression, k  stands for the order of iteration, δ  represents perturbation 

quantities. 

1k k k
j j jf f fδ+ = +  (3.31a) 

1k k k
j j ju u uδ+ = +  (3.31b) 

1k k k
j j jv v vδ+ = +  (3.31c) 
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After substituting the above quantities into eqns.3.21 and 3.28, one obtains the following 

set of equations after neglecting higher order terms. 

( ) ( ) ( ) ( )1 1 1 1 12 2
j jn n n n n n n n

j j j j j j j j j

h h
f f u u u u f f rδ δ δ δ− − − −− − + = − − − =  (3.32) 

( ) ( ) ( ) ( )1 1 1 1 3 12 2
j jn n n n n n n n

j j j j j j j j j

h h
u u v v v v u u rδ δ δ δ− − − − −

− − + = − − − =  (3.33) 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 3 4 1 5 6 1 2
n n n n n n
j j j j j jj j j j j j j

s v s v s f s f s u s u rδ δ δ δ δ δ− − −+ + + + + =  (3.34) 

Where r  terms are: 

( ) ( )1 1 1/ 2j j j jj
r f f h u− −= − +   (3.35a) 

( ) ( )3 1 1/ 2j j j jj
r u u h v− −= − +   (3.35b) 

( ) ( ) ( ) ( )1 11 2 1 1
2 1/ 2 1 2 1/ 2 1/ 2 1/ 2 1/ 21/ 2 1/ 2

n
nnj j j jn n n n n n n

j j j j jj j
j

b v b v
r R fv u v f f v

h
α α α α− −− − −

− − − − −− −

−
= − − + − + (3.35c) 

The coefficients of the perturbation quantities appearing above in equation 3.34 are as 

given in equation 3.36. 

( ) 1 11
1 1/ 22 2

n
n n n

j j j jj
s h b f fα α− −

−= + −  (3.36a) 

( ) 1 11
2 1 1 1 1/ 22 2

n
n n n

j j j jj
s h b f fα α− −

− − − −= − + −  (3.36b) 

( ) 11
3 1/ 22 2

n
n n
j jj

s v vα α −
−= +  (3.36c) 

( ) 11
4 1 1/ 22 2

n
n n
j jj

s v vα α −
− −= +  (3.36d) 
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( )5 2
n
jj

s uα= −  (3.36e) 

( )6 2 1
n
jj

s uα −= −  (3.36f) 

The boundary conditions also change as the perturbation equations applied, and become 

as shown below: 

0 0
n n

wf f fδ+ =  0 0nfδ =  (3.37a) 

0 0 0n nu uδ+ =  0 0nuδ =  (3.37b) 

1n n
J Ju uδ+ =  0n

Juδ =  (3.37c) 

Equations 3.32-3.34 are written for each j-station starting from the wall, extending to the 

edge of the boundary layer and will be represented in matrix notation as in equation 3.38. 

[ ] { } { }A rδ⋅ =  (3.38) 

Defining terms in the above equation: 

A  is the tri-diagonal coefficient matrix defined as: 

[ ]

0

1 1 1

2 2 2

1 1 1

o

j j j

J J J

J J

A C
B A C

B A C

A
B A C

B A C
B A

− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.39) 

And δ  is the vector of unknowns. 
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[ ]

0

1

j

J

δ
δ

δ
δ

δ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 [ ]

0

1

j

J

r
r

r
r

r

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 (3.40a,b) 

The elements in equation 3.40 are vectors defined as follows: 

j

j u

j

f
u
v

δ
δ δ

δ

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

 
1

2

3

( )
( )
( )

j

j j

j

r
r r

r

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

  0 j J≤ ≤  (3.41a,b) 

In addition, elements of matrix A shown in equation 3.39 are sub-matrices for which 

definitions are given below in equation 3.42. 

0

1

1 0 0
0 1 0
0 1 / 2

A
h

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

 (3.42a) 

( ) ( ) ( )3 5 1

1

1 / 2 0

0 1 / 2

j

j j j j

j

h
A s s s

h +

⎡ ⎤− −
⎢ ⎥

= ⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦

 1 1j J≤ ≤ −  (3.42b) 

( ) ( ) ( )3 5 1

1 / 2 0

0 1 0

J

J J J J

h
A s s s

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  (3.42c) 

( ) ( ) ( )4 6 2

1 / 2 0

0 0 0

j

j j j j

h
B s s s

⎡ ⎤− −
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

 1 j J≤ ≤  (3.42d) 
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1

0 0 0
0 0 0
0 1 / 2

j

j

C
h +

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

 0 1j J≤ ≤ −  (3.42e) 

3.3 Inverse Problem 

Since the standard problem can not handle separated regions as in attached regions, the 

edge velocity can not be calculated, one has to switch from the standard problem to the 

inverse problem. In this study, this switching is automatically done by the computer code 

utilized after a few stations in x-direction. For further information see reference [1].  

The procedure described above in section 3.2 will be modified to handle the inverse 

problem. When the displacement thickness is specified, one can establish a relationship 

between the displacement thickness and the edge velocity. In order to establish such a 

relationship the solution procedure is modified as described in subsection 3.3.1. 

3.3.1 Solution Procedure for Specified Displacement Thickness 

Consider an external flow case where the displacement thickness distribution is given as 

( )* xδ . The boundary conditions for such a problem would be: 

0y = ; 0u = , 0v =  (3.43a) 

y δ= ; eu u= , ( )* xδ  as specified. (3.43b) 

One shall follow the same procedure described in section 3.2 and start with a 

transformation. The difference is that, in this case, since the edge velocity distribution eU , 

is unknown and therefore can not be used in the definition of the transformation variable. 

For this reason, the edge velocity distribution is replaced by the free-stream velocity, U∞ , 

so that the new transformation becomes: 

UY y
xν
∞=  (3.44a) 
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( , )U xF Yψ ν ξ∞=  (3.44b) 

Using these new transformation variables, the boundary layer equations and the 

corresponding boundary conditions are rewritten as below. 

( ) 1
2

e
e
dUF FbF FF F F U
d

ξ ξ
ξ ξ ξ
′⎛ ⎞∂ ∂′′′ ′′ ′ ′′+ = − −⎜ ⎟∂ ∂⎝ ⎠

 (3.45) 

0Y =  0F ′ = , 0F =  (3.46a) 

eY Y=  ( )e eF U ξ′ = , ( ) ( )
*

Le
e

e

RF Y e
F L

δ ξ
ξ

ξ
= − ≡
′

 (3.46b) 

Where in the above formulations, L is the characteristic length and primes denote 

differentiation with respect to transformation variable, Y. Other newly introduced 

variables are given in equation 3.47. 

x
L

ξ = ,  (3.47a)  

L
U LR
ν
∞= ,  (3.47b)  

e
e
UU
U∞

=  (3.47c)   

For the edge boundary condition, we may use the definition of displacement thickness as 

shown in equation 3.48 if its value is known prior to these calculations. 

( )* e
e

eL

L FY
FR

ξ
δ ξ

⎛ ⎞
= −⎜ ⎟′⎝ ⎠

 (3.48) 

Since in the inverse problem value of eU  is unknown, it has to be integrated into the 

solution. In order to do it, a new variable is introduced. 
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( )ew U ξ=  (3.49) 

And since the edge velocity is a function of ξ  only: ( )w ξ , one may write the following 

equation. 

0w′ =  (3.50) 

The next step is to reduce the order of the partial differential equation (PDE) of equation 

3.45 as in equation 3.51. 

F U′ =  (3.51a) 

F U V′′ ′= =  (3.51b) 

( ) 1
2

U F dwbV FV U V w
d

ξ ξ
ξ ξ ξ

⎛ ⎞∂ ∂′ + = − −⎜ ⎟∂ ∂⎝ ⎠
 (3.51c) 

0w′ =  (3.51d) 

According to the new PDE, the new boundary conditions are: 

0Y =  0F U= =  (3.52a) 

eY Y=  U w= ,  ( )F e wξ=  (3.52b) 

In order to solve these equations in a rectangular grid, one has to discretize them by 

employing finite difference approximations. 

1
1/ 2

j j
j

j

F F
U

h
−

−

−
=  (3.53a) 

1
1/ 2

j j
j

j

U U
V

h
−

−

−
=  (3.53b) 
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1 0
n n
j j

j

w w
h

−−
=  (3.53c) 

( ) ( ) ( )1 1 1 1
1 1 1/ 2 1/ 2 1/ 2 1/ 2 1/ 21/ 2

1
2

nn n n n n n n n n n n
j j j j j j j j j jj
h b V b V FV V F F V Rα α− − − −

− − − − − − −−

⎛ ⎞− + + + − =⎜ ⎟
⎝ ⎠

 (3.53d) 

Where 

( ) ( ) 11 2
1/ 2 1/ 2 1/ 2 1/ 2

nnn n n
j j j j
R L FV uα

−−
− − − −

⎡ ⎤= − + −⎢ ⎥⎣ ⎦
 (3.54a) 

( ) ( ) ( )
1

1 11 2
1/ 2 1/ 2 1/ 2

1
2

n

j j j jn n
j j j

j

b V b V
L FV w

h
α

−

− −−
− − −

⎧ ⎫−⎪ ⎪= + −⎨ ⎬
⎪ ⎪⎩ ⎭

 (3.54b) 

Note that in equation 3.54b, 1n −  in the RHS means, value at station n-1.  

If one compares these equations with those of equation 3.26, it is clear that of one sets 

0m =  in eqs.3.27, the results will be: 

1
1
2

nα α= +  (3.55a) 

2
nα α=  (3.55b) 

The final step is to linearize these equations in the same manner as in subsection 3.2.2. 

Note that there is one new variable w , and hence a corresponding perturbation has to be 

introduced for w . 

( ) ( ) ( ) ( )1 1 1 1 12 2
j jn n n n n n n n

j j j j j j j j j

h h
F F U U U U F F rδ δ δ δ− − − −− − + = − − − =  (3.56a) 

( ) ( ) ( ) ( )1 1 1 1 3 12 2
j jn n n n n n n n

j j j j j j j j j

h h
U U V V V V U U rδ δ δ δ− − − − −

− − + = − − − =  (3.56b) 

( )1 1j j j jw w w wδ δ − −− = −  (3.56c) 
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Recall that r  terms are: 

( ) ( )1 1 1/ 2j j j jj
r F F h U− −= − +   (3.35a) 

( ) ( )3 1 1/ 2j j j jj
r U U h V− −= − +   (3.35b) 

( ) ( ) ( ) ( )1 11 2 1 1
2 1/ 2 1 2 1/ 2 1/ 2 1/ 2 1/ 21/ 2 1/ 2

n
nnj j j jn n n n n n n

j j j j jj j
j

b V b V
r R FV U V F F V

h
α α α α− −− − −

− − − − −− −

−
= − − + − +  (3.35c) 

Equation 3.57 is written very much like equation 3.34 except for two additional terms 

coming from the introduction of our new variable. 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
1 2 1 3 4 1 5

6 1 7 8 1 2

j j j j jj j j j j

j j jj j j j

s V s V s F s F s U

s U s w s w r

δ δ δ δ δ

δ δ δ

− −

− −

+ + + +

+ + + =
 (3.57) 

And the definitions of the s  terms are given by equation 3.36, except for ( )7 j
s  and 

( )8 j
s , which are given by equation 3.58. 

( ) 1 11
1 1/ 22 2

n
n n n

j j j jj
s h b f fα α− −

−= + −  (3.36a) 

( ) 1 11
2 1 1 1 1/ 22 2

n
n n n

j j j jj
s h b f fα α− −

− − − −= − + −  (3.36b) 

( ) 11
3 1/ 22 2

n
n n
j jj

s v vα α −
−= +  (3.36c) 

( ) 11
4 1 1/ 22 2

n
n n
j jj

s v vα α −
− −= +  (3.36d) 

( )5 2
n
jj

s uα= −  (3.36e) 

( )6 2 1
n
jj

s uα −= −  (3.36f) 
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( )7
n

jj
s wα=  (3.58a) 

( )8 1
n

jj
s wα −=  (3.58b) 

The new, linearized boundary conditions are as of equation 3.59. 

0 0Fδ =  (3.59a) 

0 0Uδ =  (3.59b) 

J J J JU w w Uδ δ− = −  (3.59c) 

( )n n
J J J JF e w e w Fδ δ− = −  (3.59d) 

The above discrete equation set is written in matrix form just as in section 3.2. except that 

sub-matrices in [ ]A  will be 4×4 rather that 3×3.  

[ ] { } { }A rδ⋅ =  (3.38) 

[ ]A  is a tri-diagonal matrix with the same form of equation 3.39, except that sub-matrices 

in [ ]A  will be 4×4 rather that 3×3. Fist two rows of the element matrices 0A  and 0C , 

and the last two rows of the element matrices JB  and JA  constitute the boundary 

conditions. Likewise, the vectors { }δ  and { }r  remain the same with element vectors of 

them jδ  and jr  are now 4×1 vectors. 

The solution method is again the block elimination method, which is explained in 

appendix A. 

3.3.2 Interaction Procedure 

In order to solve separated flows with the inverse method described above, one has to 

specify either the displacement thickness or the wall shear as noted in [9]. In order to 
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solve for external flows as intended in this study, a potential flow solver is required to 

calculate the edge velocity distribution, which enables one to solve the boundary layer 

equations in inverse mode. The interaction is accomplished via the blowing velocity 

distribution as described in equation 1.1. The blowing velocity itself, serves as a boundary 

condition for the next step of the potential flow calculations. 

In order to solve the boundary layer equations, the blowing velocity concept in Veldman’s 

suggestion is used as discussed in section 3.1. Rewriting equation 3.2 using definition 

given in equation 3.3, one obtains equation 3.60. 

0( ) ( ) ( )e e eU x U x U xδ= +  (3.2) 

( ) ( )
*1( )

b

a

x

e e
x

d dU x U
d x

ξδ δ
π ξ ξ

=
−∫  (3.3) 

( ) ( )
0 *1( ) ( )e i e i e

i

d dU x U x U
d x

ξδ
π ξ ξ

= +
−∫   (3.60) 

The Hilbert integral in the above equation can be approximated as described in appendix 

B, to yield: 

( ) ( ) ( ) ( )0 *

1

N

e i e i ij i j
j

U x U x C x xδ
=

= +∑  (3.61) 

( ) ( ) ( ) ( )* 0 *
e i ii i e i ij j i

j i

U x C x U x C x gδ δ
≠

− = + =∑  (3.62) 

Rewriting equation 3.48 as in equation 3.63 and substituting into equation 3.62, one may 

get equation 3.64. 

( )* e e
i e e

e eL

L Fx y Y
U UR

ξψδ
⎛ ⎞

= − = −⎜ ⎟
⎝ ⎠

 (3.63) 

( ) e
e i ii e i

e

U x C y g
U
ψ⎡ ⎤

− − =⎢ ⎥
⎣ ⎦

 (3.64) 
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Since the above formulation is non-linear, one has to linearize it in eψ  and eU  to use as a 

boundary condition. 

[ ]e e ii iU U C p p gδ δ+ − + =  (3.65) 

Where the term p  and pδ  in the above equation is defined by equation 3.66 

( )
( )

e i
e

e i

x
p y

U x
ψ

= −  (3.66a) 

2
e e

e
e e

p U
U U
δψ ψδ δ−

= +  (3.67b) 

Hence the linearized equation becomes equation 3.68. 

21ii e e
e ii e i e ii e

e e e

C C U g U C y
U U U

ψ ψδψ δ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ + = − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (3.68) 

From the above equations, one can easily note that in order to calculate ig , ijC  and 

( )*
jxδ  have to be known. In order to calculate them, sweeps within the boundary layer 

are performed. For j i> , the displacement thickness values are taken from the previous 

sweep and in case j i< , values calculated in the current sweep are used. With this 

additional information, one can now proceed to calculate the summation term in equation 

3.62 in an iterative manner. Once it is converged, the calculations proceed to the next x 

station where the whole process is repeated. For calculation of coefficients iiC , refer to 

appendix B. 

3.4 Solution Procedure for the Wake Region 

As described thoroughly in [1], solution procedure for the wake region is much more 

complex compared to solution on the body itself. In order to eliminate problems related 

to transition from no-slip wall boundary condition to smooth flow in the wake region, 

one has to prepare an extremely fine grid near the trailing edge of a lifting section in order 
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to impose this change gradually to the solution domain. One of the major difficulties in 

wake calculation is that since at high angles-of-attack, the boundary layer coming from the 

upper surface is turbulent, separated and thick compared to a thin, laminar or transitional 

boundary layer coming from the lower surface, merging process of these boundary layers 

is complicated, and may be considered like a mixing layer with considerable backflow. 

In order to solve the boundary layer equations within the wake region, one has to recall 

equation 2.19. 

e
e
dUu u uu v U b

x y dx y y
⎛ ⎞∂ ∂ ∂ ∂

+ = + ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (2.19) 

As in the case of wall boundary layers, the above equation is written as a system of first 

order equations as shown in equation 3.51. 

F U′ =  (3.51a) 

U V′ =  (3.51b) 

( ) 1
2

U F dwbV FV U V w
d

ξ ξ
ξ ξ ξ

⎛ ⎞∂ ∂′ + = − −⎜ ⎟∂ ∂⎝ ⎠
 (3.51c) 

0w′ =  (3.51d) 

However, the boundary conditions for the wake region are different, and are given as: 

F w′ =  at eY Y−=  (3.69a) 

0F =  at 0Y =  (3.69b) 

F w′ =  at eY Y=  (3.69c) 

( ) ( )ii e e e e iw C w Y Y F F g− −− − − − =⎡ ⎤⎣ ⎦    (3.69d) 
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Where 

1
2

0
ii iiC C

U
νξ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

   (3.70) 

Where eY  and eY−  are the values of the transformation variable at the upper and lower 

edges of the boundary layer for the wake region respectively. Similarly, eF  and eF−  are the 

values for the dimensionless stream function for the upper and lower edges. In order to 

stabilize the solutions of the above system, its sensitivity to the boundary conditions 

involving the dimensionless stream function is reduced by employing the so called Mechul 

function prescribed in reference [3]. With the introduction of Mechul function, eF−  is 

denoted by s . And as s  is a function of x only one may write, 

0s′ =  (3.71) 

The boundary conditions for the system given in equation 3.69 can now be rewritten as: 

F w′ = , es F−=  at eY Y−=  (3.72a) 

0F =  at 0Y =  (3.72b) 

( ) ( )ii e e e i

F w

w C w Y Y F s g−

′ = ⎫⎪
⎬− − − − =⎡ ⎤ ⎪⎣ ⎦ ⎭

 at eY Y=  (3.72c) 

The solution procedure is pretty much the same as of the above sections, expect that the 

elements of matrix [ ]A , which are sub-matrices are now 5×5. Accordingly the vectors 

{ }δ  and { }r  become 5×1 vectors, and solved using the block elimination method 

described in appendix A. 
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C H A P T E R  4  

TRANSITION METHOD IN 2D INCOMPRESSIBLE FLOWS 

Early attempts to understand turbulence phenomenon focused on the original laminar 

flow, and tried to explain the reasons of its end, which is the start of the turbulent flow.  

Rayleigh introduced the inflectional instability and worked mainly on inviscid flows until 

Taylor and Prandtl introduced the effects of viscosity. A complete boundary layer 

instability theory was first introduced by Tollmien and Schlichting, who also calculate the 

amplification rates for most of the unstable frequencies. After the experiments carried out 

by Schubauer and Skramstad in 1947, which demonstrated the presence of two 

dimensional sinusoidal instability waves within a boundary layer, their connection with 

transition and quantitative description were given by the theory of Tollmien and 

Schlichting. It was in 1956 that the en transition prediction method was introduced by 

Smith, Gamberon and van Ingen, which is still in use today and is the basis of this study. 

Pretch provided a large amount of numerical results by calculating the stability 

characteristics of Falkner-Skan velocity profiles in 1942. Further reading is available in 

reference [17]. 

The balance between stabilizing viscous forces and destabilizing shear forces are 

represented by the critical Reynolds number. Perturbations that lead to instabilities arise 

from small changes in the boundary conditions which may be due to free-stream 

turbulence, surface roughness, noise, etc. which constitute the so called disturbance 

environment. The problem about how these disturbances are entrained in the flow is 

related to the subject of receptivity. 

Receptivity may be defined as the mechanisms that cause the above described 

disturbances to enter the flow which yield the creation of the initial amplitudes for the 

waves generating instabilities. These disturbances are usually very small so that they can 

not be measured using the modern instruments until the instabilities are developed. To 

date, this mechanism still remains as not fully understood. 
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The initial growth of the two dimensional Tollmien-Schlichting waves can be described by 

the linear stability theory which constitutes the basis of the famous Smith-van Ingen en 

transition prediction method. After their growth, three dimensional waves and/or non-

linear interactions are observed, which means that normally the linear stability theory can 

no longer be used. However, a bracketing assumption that extends the use of linear 

stability theory until transition is employed. The transition data obtained from such an 

approach has been shown to agree acceptably for most of the engineering problems of 

interest. 

Currently the most popular method for predicting transition which is accepted as an 

engineering tool is the so called Smith-van Ingen en transition prediction method. As 

briefly discussed in chapter 1, it is based on solution of two-dimensional linear stability 

equations which are given by the fourth order ordinary differential equation (ODE) called 

the Orr-Sommerfeld equation given in equation 1.2. Derivation of this equation is 

explained in detail in Appendix C. 

2 4 2( 2 ) [( )( ) ]iv iR u uφ α φ α φ α ω φ α φ α φ′′ ′′ ′′− + = − − −  (1.2) 

In the above equation, primes denote differentiation in the normal direction, u  denotes 

the velocity profile in the stream-wise direction. Finally ( ) ( )r iy iφ φ φ≡ +  represents the 

complex amplitude of the disturbance stream function ψ̂  defined by the fluctuating 

velocity components û  and v̂  defined as shown in equation 4.1. In the below equation, 

hats stand for fluctuating quantities. 

ˆ
û

y
ψ∂

=
∂

 
ˆ

v̂
x
ψ∂

= −
∂

 (4.1) 

The parameter α  is the wave-number of the disturbance which is related to the 

wavelength λ  via equation 4.2, where ω  is the circular frequency, whose unit is either 

radians per second or Hertz. 

2πλ
α

=  (4.2) 
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 The case where the wave-number is complex ( )r iiα α α≡ +  but the circular frequency is 

real is called the spatial amplification theory in which the amplitude of the disturbance 

varies with stream-wise position as ( )exp i xα− . On the other hand the case when the 

circular frequency is complex ( )r iiω ω ω≡ + , but the wave-number is real is called the 

temporal amplification theory in which the amplitude varies with time as ( )exp itω− . 

These two may be related to each other using the Gaster’s transformation. These theories 

are discussed in great detail in references [5, 11, 17 and 18]. Also some more information 

is available in references [19, 20]. 

For the sake of convenience, quantities are transformed into their respective 

dimensionless forms. In order to non-dimensionalize the Orr-Sommerfeld equation given 

above, a dimensionless time variable is introduced as: 

Ut
L

τ ∞=  (4.3) 

Where L  is the reference length, defined as the characteristic length of the flow in the 

above sections, namely chord for external flows. Dividing all the velocity terms by the 

reference velocity, which is the free-stream velocity for external flows, and all lengths by 

the reference length, the dimensionless Orr-Sommerfeld equation becomes: 

( )( )2 4 22iv
L L L L LiR u uφ α φ α φ α ω φ α φ α φ⎡ ⎤′′ ′′ ′′− + = − − −⎣ ⎦  (4.4) 

Note that in the above equation primes denote differentiation with respect to 

dimensionless distance in the normal direction as 
y
∂
∂

 where y bar term is defined as 

yy
L

= . With the proper choice of L , the non-dimensional distance in the normal 

direction becomes the same as the one used in the boundary layer calculations. Also 

( )yφ  is the complex amplitude of the disturbance stream function ( ), ,x yψ τ′  defined 

as shown in equation 4.5. 
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( ) ( ) ( ), , exp Lx y y i xψ τ φ α ωτ′ = −⎡ ⎤⎣ ⎦  (4.5) 

Where 

L Lα α=  (4.6a) 

uu
U∞

=  (4.6b) 

U
L

ω ω∞=  (4.6c) 

U LR
ν
∞=  (4.6d) 

In order to solve for equation 4.4, the boundary conditions are given in equation 4.7. 

Wall B.C.: 0y =  0y = , 0φ = , 0φ′ =  (4.7a) 

Infinity B.C.: y→∞  ˆ ˆ 0u v= =  (4.7b) 

It is convenient to write the infinity boundary condition by taking into account that 

perturbation velocities will decay as the edge of the boundary layer is approached. In this 

case, the infinity boundary condition may be satisfied at the edge of the boundary layer by 

equation 4.8. 

( ) ( )( )
( )( )

2
1 1 2 1

2 2
2 1

0

0

D D

D D

ε φ ε ε ε φ

ε ε φ

⎫− + + + = ⎪
⎬

+ − = ⎪⎭
 at y

L
δ

=  (4.8) 

Where 

dD
dy

=  (4.9a) 

2
1 Lε α=  (4.9b) 
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( )2 2
2 1 LiR uε ε α ω= + −  (4.9c) 

The onset of transition is obtained by solving the dimensionless Orr-Sommerfeld 

equation with give boundary conditions and following the en procedure. The solution 

procedure may either be based on the spatial amplification theory or the temporal 

amplification theory. 

In this study, the former one is preferred since the amplification of a disturbance can be 

measured in a steady mean flow. Since in the spatial amplification theory, the amplitude at 

a fixed point is independent of time, calculations of group velocities are not required. Also 

the spatial amplification theory gives the change in amplification values in a more direct 

manner than does the temporal theory as noted in [11]. 

4.1 Smith-van Ingen en Procedure 

The en procedure requires the calculation of the amplification factors denoted by ( )iα−  

as a function of either the stream-wise position or Reynolds number based on the stream-

wise distance for a range of dimensional frequencies defined by equation 4.10. 

* U
L

ω ω ∞=  (4.10) 

The laminar boundary layer equations for a given external velocity distribution denoted by 

( )eU x  and the free-stream Reynolds number denoted by R  are solved to obtain stream-

wise velocity distribution u  and its second derivative u′′ . Note that the amplification rate 

term ( )iα− , represents damping if it is negative, a neutrally stable condition of it is zero, 

and amplification when it is positive.  

At a point where the instabilities begin say at 1x x=  , shown in figure 4.1 by point 1, 

where the amplification rate term transits from negative to positive, the eigenvalues rα  

and ω  are computed provided that the local velocity distribution, its second derivative 

and the local Reynolds number are known. The dimensional frequency computed from 

equation 4.10 is kept constant along line 1 which is determined by this frequency itself. 
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Figure 4.1 Schematic of transition calculation using en method 

 At the next location say 2x , two separate calculations are performed for the boundary 

parameters which are newly computed. In one set of calculations the new eigenvalues are 

computed on the neutral curve as shown by point 2 in the figure using the same 

procedure explained for the prior station, so that a new dimensional frequency is obtained 

which defines line 2. In the second set of calculations, point 1a, the dimensionless 

frequency ω  together with L  and U∞  being known, is determined from the dimensional 

frequency of line 1. With ω  and the local Reynolds number of point 2 known, α  is 

obtained using the eigenvalue procedure. 

The above explained procedure for point 1a is then repeated for points 2b and 1b 

respectively and a dimensional frequency is computed for line 3. For example, at point 1b, 

the values rα  and iα  are computed with the known dimensional frequency of line 1 and 

the specified local Reynolds number at point 3. At point 2b, they are computed with the 

known dimensional frequency of line 2 and specified Reynolds number of point 3. 

This procedure is repeated for several number of lines (i.e. frequencies) specified by the 

user and the variation of the integrated amplification rate defined by n  is computed along 

each line with 0x  corresponding to the first value of x  on the neutral stability curve. 

line 1
line 2

line 3 

1
2

3

1a
1b

2b

rα

xR
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0

iRn d
ξ

ξ

α ξ
ξ

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∫  (4.11) 
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Figure 4.2 Change in integrated amplification factor with respect to distance for Blasius 

Flow 

 This procedure leads to curves of constant frequency, with each curve defining the 

amplification rate as a function of the Reynolds number as shown in figure 4.2 and their 

envelope corresponds to maximum amplification factors from which transition is 

computed with a value of n which is commonly assumed between 8 and 9. Note that in 

the above figure, the y-axis corresponds to amplification factor, where the x-axis 

corresponds to the Reynolds number. As the figure shows Blasius flow, the Reynolds 

number is defined as square root of local Reynolds number based on the stream-wise 

distance due to the definition of Blasius length scale. 

4.2 Numerical Scheme 

Since the solution of the Orr-Sommerfeld equation is required in order to predict 

transition, one has to apply a numerical scheme. The problem that requires attention is 
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that, since both the equation itself and all the boundary conditions are homogeneous; one 

faces the problem of obtaining trivial solutions. It is only possible to end up with a non-

trivial solution, for some combinations of the Reynolds number, circular frequency and 

the wave-number. Hence the problem becomes an eigenvalue problem in which values of 

R , α  and ω  are the eigenvalues and the corresponding amplitude functions are 

eigenfunctions. Note that subscript l  in α , and bar on top of ω  are dropped for the 

sake of simplicity. Summarizing, there exists non-trivial solutions of the famous Orr-

Sommerfeld equation. In order to find such a solution, one has to define a relation such as 

that of equation 4.12 

( ), , 0F Rα ω =  (4.12) 

In this study, a finite difference method is employed which is again based on Keller’s box 

scheme. Numerical formulation can be found below recalling again that subscript l  in α , 

and bar on top of ω  are dropped for the sake of simplicity. 

2
1ε α=  (4.9b) 

( )2 2
2 1 iR uε ε α ω= + −  (4.9c) 

3 iR uε α ′′=  (4.13) 

With the introduction of 3ε  the Orr-Sommerfeld equation can be written in a compact 

form as below: 

( )2 2 2
1 2 1 3 0ivφ ε φ ε φ ε φ ε φ′′ ′′− − − + =  (4.14) 

In order to write the above equation as an equivalent system of equations of the first 

order, new parameters are defined. It is important to distinguish the newly introduced f  

from the prior one used for the dimensionless stream-function.  

fφ′ =  (4.15a) 
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2
1f s ε φ′ = +  (4.15b) 

s g′ =  (4.15c) 

Hence the above equation 4.14 and its boundary conditions reduce to: 

2
2 3g sε ε φ′ = −  (4.16) 

0y = ; { 0φ = , 0f =  (4.17a) 

y
L
δ

= ; 
( ) ( )1 2 1 1 2

2

0
0

s f
g s

ε ε ε ε ε φ
ε

⎧ + + + + =⎪
⎨

+ =⎪⎩
 (4.17b) 

In order to approximate the quantities ( ), , ,f s g φ , a mesh grid same as that of the 

boundary layer solution is applied in the y-direction, where the edge of the boundary layer 

is represented by Jy . As explained in the sections above, equation 4.15 is approximated 

using a finite-difference method to yield: 

( ) ( ) ( )
1 3 1 1 0

jj j jj j
c f f rφφ φ

− −− − + = =  (4.18a) 

( ) ( ) ( ) ( ) ( )1 3 1 1 1 3 1
0j j j j j jj j j

f f c s s c rφ φ− − − −
− + + + + + = =  (4.18b) 

( ) ( ) ( )1 3 1 2 0j j j jj j
s s c g g r− −− − + = =  (4.18c) 

( ) ( ) ( ) ( ) ( )1 4 1 2 1 4 1 0j j j j j jj j j
g g c s s c rφ φ− − − −

− + + + + + = =  (4.18d) 

With 

( ) ( )2
1 1 3j j
c cε= , ( ) ( ) ( )2 3 31/ 2j j j

c cε
−

= −  (4.19a, b) 

( ) 1 1
3 2 2

j j j
j

h y y
c − −−

= = , ( ) ( ) ( )2
4 2 31/ 2j jj
c cε

−
= −  (4.19c, d) 
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It is important to emphasize that, equations 4.18 are written in such a sequence that the 

solution matrix [ ]A  is non-singular, which means it has a non-zero determinant. In 

addition, note that equations 4.18 are written for all values of j  as: 1,2, , 1j J= −  

where to values at 0j =  and j J=  are obtained from the boundary conditions which are 

given below. 

( )0 1 0
0rφ = = , ( )0 2 0

0f r= =  (4.20a, b) 

( ) ( ) ( )3 1 3 0J J JJ J J
f c s c rφ+ + = =  (4.20c) 

( ) ( )4 4J JJ J
g c s r+ =  (4.20d) 

Where 

( )1 1J
c ε= , ( )3

1 2

1
J

c
ε ε

=
+

, ( )4 2J
c ε=  (4.21) 

Extensive care must be given for the solutions of these equations, since the Orr-

Sommerfeld equation itself and its boundary conditions are homogeneous, therefore 

trivial solutions such as 0j j j jf s gφ= = = =  are valid for all j  for all values of α , ω  

and R .  In order to obtain a non-trivial solution, the eigenvalues and eigenfunctions have 

to be calculated using an iteration procedure to find the values of parameters α , ω  and 

R  to ensure that such a solution exists. Also one has to supply an external non-

homogeneous boundary condition to be satisfied. A clever idea offered by Cebeci et al. is 

to change the boundary condition ( ) ( )00 0 0fφ′ = ≡ =  with ( ) ( )00 1 1sφ′′ = ≡ = , so that 

the difference equations may have a non-trivial solution since ( )0 0φ′′ ≠ . If one 

determines the values of parameters using this suggestion, the original boundary condition 

is satisfied and a non-trivial solution is obtained. This is achieved by an iterative scheme, 

again based on Newton’s method as described in detail in sub-section 3.2.2 using equation 

4.18 and wall boundary conditions given below: 

( )0 1 0
0rφ = = , ( )0 2 0

1s r= =  (4.22) 
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Also the edge boundary conditions given in equation 4.20 are written in matrix form as in 

equation 3.38. 

[ ] { } { }A rδ⋅ =  (3.38) 

However, in this case the vectors { }δ  and { }r  are different and given in equation 4.23. 

j

j
j

j

j

s
f
g

φ

δ

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

( )
( )
( )
( )

1

2

3

4

j

j
j

j

j

r

r
r

r

r

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 (4.23a, b) 

The sub-matrices jA , jB  and jC , which are coefficients of matrix [ ]A  (previously 3×3 

but now 4×4 matrices) are given below in equation 4.24. 

( ) ( )
( ) ( )

0
1 31 1

2 41 1

1 0 0 0
0 1 0 0

1 0
0 1

A
c c
c c

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (4.24a) 

( )
( )

( ) ( )
( ) ( )

3

3

1 31 1

2 41 1

1 0 0

0 1 0

1 0

0 1

j

j
j

j j

j j

c

c
A

c c

c c
+ +

+ +

⎡ − ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 11 j J≤ ≤ −  (4.24b) 

( )
( )

( ) ( )
( )

3

3

1 3

4

1 0 0
0 1 0

1 0
0 0 1

J

J
J

c
c

A
c c

c

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (4.24c) 
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( )
( )

3

3

1 0 0

0 1 0

0 0 0 0
0 0 0 0

j

j
j

c

c
B

⎡− − ⎤
⎢ ⎥

− −⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 1 j J≤ ≤  (4.24d) 

( ) ( )
( ) ( )

1 31 1

3 41 1

0 0 0 0
0 0 0 0

1 0

0 1

J
j j

j j

C c c

c c
+ +

+ +

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

 0 1j J≤ ≤ −  (4.24e) 

In order to solve equation 3.38, block algorithm is utilized as explained in appendix A. As 

the solution is also dependent on α , ω  and R  as ( ), ,Rδ δ α ω=  with α  complex and 

ω  real in case of spatial amplification theory implies that the solution of equation 3.38 

depends upon 4 scalars. With any two of these fixed, the solution procedure can be 

carried out to determine the other two in order to satisfy the unmodified boundary 

conditions.  

4.3 Calculation of the Neutral Stability Curve and the Dimensional Frequencies 

The calculated eigenvalues of the Orr-Sommerfeld equation define whether the 

disturbances are damped, or amplified as explained in section 4.1. For two dimensional 

flows, locus defined by 0iα =  is named the neutral stability curve which separates the 

amplified region from damped region. If imaginary part of the wave-number is plotted 

against Reynolds number, the point on the curve with the smallest Reynolds number is of 

particular interest, since all frequencies prior to this point are stable, and this value is 

named as the critical Reynolds number. 

As described in the above section 4.2, the dimensional frequencies are required in order to 

use the en method, and it is found from the solution of the eigenvalue problem in which 

the solution parameters are the real part of the wave-number and the dimensionless 

frequency where the Reynolds number and the imaginary part of the wave-number is 

specified on the neutral curve. Note that this method yields no valid solution if the given 

Reynolds number is less than the critical Reynolds number. Since in the neutral stability 
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curve, the complex part of the wave-number is nil, and furthermore the dimensionless 

frequency is real because of the use of spatial amplification theory, the below given 

equation 4.25 represents two equations with two unknowns as described at the end of 

section 4.1, and can be solved using Newton’s method in two variables. 

( )0 , , 0f Rα ω =  (4.25) 

In order to obtain values for the (k+1)th iteration, the values obtained in the kth iteration 

are used as shown below. 

1k k k
r r rα α δα+ = +  (4.26a) 

1k k k
r r rω ω δω+ = +  (4.26b) 

Expanding equation 4.25 at the kth iterate around k
rα  and k

rω  by Taylor series and 

neglecting the non-linear terms, one may obtain the following linear system of equations: 

0k k kr r
r r

r

f ff δα δω
α ω

⎛ ⎞∂ ∂⎛ ⎞+ + =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
 (4.27a) 

0k k k
i r

r

f ff δα δω
α ω

⎛ ⎞∂ ∂⎛ ⎞+ + =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
 (4.27b) 

And the solution to the above system of linear equations is given by equation 4.28. 

0

1 k k
k k kr r
r i r

f ff fδα
ω ω

⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟∆ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 (4.28a) 

0

1
k k

k k ki r
r r i

r r

f ff fδω
α α

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂
⎢ ⎥= −⎜ ⎟ ⎜ ⎟∆ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (4.28b) 

Where 0∆  is the Jacobian of the linear system of equations of equation 4.27, and it is 

defined by equation 4.28c. 
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0

k kk k
i ir r

r r

f ff f
α ω α ω

⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂⎛ ⎞ ⎛ ⎞∆ = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠
 (4.28c) 

Equation 3.38 is differentiated with respect to rα  and ω  in order to evaluate the 

derivatives noticed in equation 4.28c.  

[ ] { } { }A rδ⋅ =  (3.38) 

Noting that the vector r  is independent of our variables, one obtains the following 

equations named as the variational equations of equation 3.38 with respect to variables rα  

and ω . 

k k
k

r r

AA δ δ
α α

⎛ ⎞ ⎛ ⎞∂ ∂
= −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (4.29a) 

k k
kAA δ δ

ω ω
∂ ∂⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (4.29b) 

For the former one, vectors at the RHS are found form equations 4.18, 4.20 and 4.22. 

Also ( ) ( )1 2 0
j j

r r= =  for 0 j J≤ ≤  where the other terms of the vector r  are given by 

equation 4.30 are valid for 1 j J≤ ≤ . 

( ) 1
3 1/ 21

2 jj
r j

cr φ
α −−

⎛ ⎞∂
= − ⎜ ⎟∂⎝ ⎠

 (4.30a) 

( ) 4 2
4 1/ 2 1/ 21

2 2j jj
r rj j

c cr s φ
α α− −−

⎛ ⎞ ⎛ ⎞∂ ∂
= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (4.30b) 

( ) 3 1
3 J JJ

r rJ J

c cr s φ
α α

⎛ ⎞ ⎛ ⎞∂ ∂
= − −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (4.30c) 
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( ) 4
4 JJ

r J

cr s
α

⎛ ⎞∂
= −⎜ ⎟∂⎝ ⎠

 (4.30d) 

For the latter one, that is equation 4.28b, again ( ) ( )1 2 0
j j

r r= =  for 0 j J≤ ≤  where the 

other terms of the vector r  are given by equation 4.31 valid for 1 j J≤ ≤ . 

( )3 1
0

j
r

−
=  (4.31a) 

( ) 4
4 1/ 21

2 jj
j

cr s
ω −−

∂⎛ ⎞= − ⎜ ⎟∂⎝ ⎠
 (4.31b) 

( ) 3
3 JJ

J

cr s
ω
∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠

 (4.31c) 

( ) 4
4 JJ

J

cr s
ω
∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠

 (4.31d) 

Using assumed values of rα  and ω , at a fixed R , if equation 4.25 is satisfied, and also to 

a good approximation if 0 0f = , one may ensure that assumed values are good enough so 

that no further computation of rα  and ω  is required. But if 0 0f ≠ , one has to compute 

new values of rα  and ω  using Newton’s method.  After solving equation 4.29, one may 

obtain the derivatives of f  with respect to rα  and ω . Using this new information, 

equation 4.28 may be solved. The iteration process is repeated until the values of 

parameters in equation 4.28 are less than a specified value to check for convergence. 

After a valid solution for equation 4.25 is obtained, one seeks for the values for the 

derivatives of  rα  and ω  with respect to Reynolds number at a specific location 0R R= . 

One gets the following equation after taking the total derivative of equation 4.25. 

00 0 00

r r r r

r

f f f
R R R
α ω

α ω
⎛ ⎞∂ ∂ ∂ ∂∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞+ = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (4.32a) 
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00 0 00

i i ir

r

f f f
R R R
α ω

α ω
⎛ ⎞∂ ∂ ∂∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (4.32b) 

In addition, 

0 0 00 00

1 i ir r rf ff f
R R R
α

ω ω
⎡ ⎤∂ ∂∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∆ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

 (4.33a) 

0 0 00 0 0

1 i ir r

r r

f ff f
R R R
ω

α α
⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂∂ ⎛ ⎞⎛ ⎞⎛ ⎞ = −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∆ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (4.33b) 

Where the term 0∆  is given in equation 4.33c. 

0
000 0

i ir r

r r

f ff f
α ω ω α

⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂⎛ ⎞ ⎛ ⎞∆ = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠
 (4.33c) 

In order to evaluate the derivatives with respect to Reynolds number in equation 4.33, 

variational equations with respect to Reynolds number are written in equation 4.34. 

kk AA
R R
δ δ

⎛ ⎞∂ ∂⎛ ⎞= −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
 (4.34) 

Vectors at the RHS are ( ) ( )1 2 0
j j

r r= =  for 0 j J≤ ≤  where the other terms of the 

vector r  are given by equation 4.35 valid for 1 j J≤ ≤ . 

( )3 1
0

j
r

−
=  (4.35a) 

( ) 4 2
4 1/ 2 1/ 21

2 2j jj

c cr s
R R

φ− −−

∂ ∂⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (4.35b) 

( ) 3
3 JJ

J

cr s
R

∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠
 (4.35c) 
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( ) 4
4 JJ

J

cr s
R

∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠
 (4.35d) 

Derivatives of f  with respect to R  are obtained from the solution of the variational 

equation with respect to Reynolds number. 

4.4 Calculating the Onset of Transition 

In order to calculate the onset of transition, a slightly different eigenvalue problem has to 

be imposed. In the case of calculating neutral stability, the methodology used is to set the 

imaginary part of the wave-number as zero at a fixed position that is a local Reynolds 

number and solve for the other two unknown eigenvalues. However, this case differs 

from the previous one at the point where the two eigenvalues are input in order to solve 

for the other two. In the previous case, the frequencies are determined, and therefore 

value of ω  is known. The procedure is to check each point until a station where transition 

is found. Therefore, two unknown eigenvalues are needed to be found for fixed ω  and 

R . 

Expanding equation 4.25 at the kth iterate again using Taylor series, but this time with 

other variables, as our problem is different, and furthermore neglecting the non-linear 

terms, one obtains: 

0k k kr r
r r i

r i

f ff δα δα
α α

⎛ ⎞⎛ ⎞∂ ∂
+ + =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (4.36a) 

0k k ki i
i r i

r i

f ff δα δα
α α

⎛ ⎞⎛ ⎞∂ ∂
+ + =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (4.36b) 

Also the solution to the above set of linear equations is very similar to those of equation 

4.27. 

0

1
k k

k k kr r
r i r

i i

f ff fδα
α α

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂⎢ ⎥= −⎜ ⎟ ⎜ ⎟∆ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (4.37a) 
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0

1
k k

k k ki r
i r i

r r

f ff fδα
α α

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂
⎢ ⎥= −⎜ ⎟ ⎜ ⎟∆ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (4.37b) 

Where 0∆  is given in equation 4.37c 

0

k kk k

i ir r

r i r i

f ff f
α α α α

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂
∆ = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (4.37c) 

This time, equation 3.38 is differentiated with respect to α  in order to evaluate the 

derivatives noticed in equation 4.37c.  

[ ] { } { }A rδ⋅ =  (3.38) 

Again the vectors at the RHS are found form equations 4.18, 4.20 and 4.22. 

( ) ( )1 2 0
j j

r r= =  for 0 j J≤ ≤  where the other terms of the vector r  are given again by 

equation 4.30 valid for 1 j J≤ ≤ . Note that the )r  terms in coefficients must be dropped, 

since the differentiation is not done with respect to rα , but for ( )r iiα α α≡ +  itself. 
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C H A P T E R  5  

TURBULENCE MODEL 

5.1 Turbulence Model Used for the Boundary Layer 

Since the viscosity term ν  is replaced by a b  as defined in equation 2.18, which includes 

the eddy viscosity term, the equations written are valid for both laminar and turbulent 

flows. However, this brings the requirement to introduce an appropriate definition of the 

eddy viscosity term, mε . This is achieved by introduction of a turbulence model, which in 

this study is selected as the Cebeci and Smith algebraic turbulence model. The model used 

was first introduced by Cebeci and Smith [21]. This method is feasible and it is shown that 

for external flows, use of higher order models does not bring much more accuracy [22, 

23]. 

First person to assume that turbulent stresses act like laminar stresses was Boussineque. 

This implies the fact that turbulent stresses also can be explained with respect to the 

velocity gradient. In this case, the proportionality constant is named as the eddy viscosity 

and is defined below in equation 2.17. 

ˆ ˆ m
uuv
y

ε ∂
− =

∂
 (2.17) 

In the above equation, eddy viscosity is assumed to be a product of a length and a 

velocity. The trick is to select the proper length and velocity scales for turbulent flow. The  

mixing length concept follows this fact. In mixing length theory, motions of fluid eddies 

are considered to be analogous to motions of the free gas molecules. It is assumed that, 

after the fluid eddies travel for some distance they breakdown and new eddies are formed 

from those which have broken down. The distance traveled in transverse direction is 

named the mixing length denoted by l  and the velocity at which they move is 

proportional to the fluctuation velocity. Therefore the eddy viscosity is defined as shown 

in equation 5.1. 
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ˆm vlε =  (5.1) 

Generalizing this idea, Prandtl has introduced a mixing length theory with the following 

formulation: 

2ˆ ˆ u uuv l
y y
∂ ∂

− =
∂ ∂

 (5.2) 

As described in [21], the fluctuation velocity v′  is approximated by the following relation: 

uv l
y

⎛ ⎞∂′ ⎜ ⎟∂⎝ ⎠
∼  (5.3) 

So that equation 5.1 can be written as: 

2
m

ul
y

ε ∂
=

∂
 (5.4) 

According to van Driest, the mixing length is: 

0.4 1 exp yl y
A

⎡ ⎤⎛ ⎞= − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (5.5) 

Where A  is the damping factor defined in equation 5.6. 

126A uτν −=  (5.6) 

With newly introduced terms defined in equation 5.7. 

1/ 2

max

lamuτ
τ
ρ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 lam
u
y

τ µ ∂
=

∂
 (5.7a, b) 

It is of particular importance that in a turbulent boundary layer as 0y→ , that is as the 

laminar sub-layer is approached, the mixing length approaches zero and hence the eddy 

viscosity vanishes. Therefore, the expression of eddy viscosity given above is only 
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acceptable at the inner layer, wherein according to Klebanoff, both mixing length and the 

eddy viscosity are linear functions of the distance from the wall, which is y . 

As departed from the wall that is in the outer layer, non-linear effects gain higher 

importance for the eddy viscosity, and the eddy viscosity decreases slowly according to 

Klebanoff. On the other hand, the mixing length remains the same, and according to [21], 

the eddy viscosity in the outer layer may be given as: 

*
m eUε α δ=  (5.8) 

In the above formulation, the factor α  is a coefficient defined as: 

0.0168α =  for 5000Rθ ≥  (5.9a) 

1.550.0168
1

α
π

=
+

 elsewhere (5.9b) 

Where the term π  is called the Cole’s wake function and given by equation 5.10. 

( )1/ 2
1 10.342 0.2980.55 1 z zeπ − −⎡ ⎤= −⎢ ⎥⎣ ⎦

 (5.10) 

Where 

1 1
425
Rz θ= −  for 425Rθ >  (5.11) 

It is literally impossible to determine whether the edge of the boundary layer is reached or 

not, since it is hard to distinguish the very outer end of the boundary layer from the free-

stream. In order to eliminate problems related to this situation, Klebanoff introduced a so 

called intermittency factor as shown in equation 5.12. 

16

1 5.5 yγ
δ

−
⎡ ⎤⎛ ⎞= +⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
 (5.12) 
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And using the above factor, equation 5.8 is rewritten as equation 5.13. 

*
m eUε α δ γ=  (5.13) 

Therefore, with cy  denoting the point at which inner layer is separated from the outer 

layer, the eddy viscosity is given by equation 5.14. The definition of cy  is that it is the 

point at which the inner and outer eddy viscosity formulations gives the same result. 

( )

( ) ( )

2

0

0tr c

m

e tr c

y y
ul
y

U u dy y y

γ

ε
α γ γ δ

∞

≤ ≤
⎧ ⎫∂
⎪ ⎪∂⎪ ⎪= ⎨ ⎬
⎪ ⎪− ≤ ≤⎪ ⎪
⎩ ⎭
∫

 (5.14) 

Where the term trγ  is the factor which accounts for smooth transition from laminar to 

turbulent flow and it is given by equation 5.15. 

( )1 exp
tr

x

tr tr
ex

dxG x x
U

γ
⎡ ⎤

= − − −⎢ ⎥
⎢ ⎥⎣ ⎦

∫  with  
3

1.34
2 2

2
tr

e
x

UG R
C ν

−=  (5.15, 16) 

In the above equation, the term 
trx

R  is the transition Reynolds number. The parameter C  

is a coefficient which is given below: 

60C =  for 64.5 10cR > ×  (5.17a) 

2 213 log 4.7323
trx

C R⎡ ⎤= −⎣ ⎦  for 64.5 10cR < ×  (5.17b) 

For the case of flows with strong pressure gradient, the value of coefficient alpha has to 

be a variable dependent on Rθ  even if it is larger than 5000. In order to take this case into 

account, Simpson’s suggestion as described in [24] is used.  For further information refer 

to reference [25] also. Simpson’s suggestion relates to value of α  to F ; which represents 

the ratio of the turbulent energy multiplied by normal stresses to the turbulent energy 

multiplied by shear stress, evaluated where the shear stress is maximum. 
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2.5

0.0168
F

α =  (5.18) 
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ˆ ˆ
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∂⎪ ⎪⎩ ⎭

 (5.19) 

Also defining a parameter β  as: 

( )max

2 2

ˆ ˆ

ˆ ˆ
ˆ ˆ

uv

u v
uv

β
−

⎧ ⎫−⎪ ⎪= ⎨ ⎬
−⎪ ⎪⎩ ⎭

 (5.20) 

Which according to Nakayama as referenced in [26] is expressed as a function of TR  

defined in equation 5.21. 

( )
max

ˆ ˆ
w

TR
uv
τ

=
−

 (5.21) 

So that β  becomes: 

( )
6

1 2 2T TR R
β =

+ −
 for 1.0TR <  (5.22a) 

2
1

T

T

R
R

β =
+

 for 1.0TR ≥  (5.22b) 

Combining all these relations in a single one written for α , one gets equation 5.23. 

2.51

0.0168

1 u u
x y

α

β
−

=
⎡ ⎤⎛ ⎞∂ ∂⎛ ⎞−⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

 (5.23) 
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5.2 Turbulence Model Used for the Wake Region 

Like the boundary layer equations for the wake region, the turbulence model for the wake 

region has to be modified since the wake is not a wall bounded flow. Also analogous to 

the change of boundary conditions from no-slip conditions to smooth flow conditions, 

the change on the eddy viscosity must be applied gradually. The eddy viscosity shall be 

close to that of the wall near the trailing edge, and gradually approach the far-wake value 

as proceeded in the downstream direction. Chang et al. suggests applying the following 

relation as referenced in [22]. 

( ) 1
. .

B
m w T E w eε ν ν ν −= + −  (5.24) 

Where in the above formulation, . .T Eν  represents the value of eddy viscosity at the trailing 

edge. The term wν  stands for value of the eddy viscosity at the far wake region, and has it 

maximum values for the upper and lower parts of the wake defined as shown in equation 

5.25. The location miny corresponds to the point on the velocity profile with minimum 

velocity value. 

( )

( )

min

min

0.064

0.064

l

u

y

w e

w e
y

U u dy

U u dy

ν

ν

−∞

∞

⎫
= − ⎪

⎪
⎬
⎪= − ⎪
⎭

∫

∫
 (5.25) 

The coefficient 1B  is defined as shown below in equation 5.26. 

( ). .
1

. .20
T E

T E

x x
B

δ
−

=  (5.26) 
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C H A P T E R  6  

RESULTS AND DISCUSSION 

Theory explained in Chapters 3, 4 and 5 are applied to a computer program suite written 

in Fortran 77 programming language. The IBLWEN Suite is combining interactive 

boundary layer methods with the Smith-van Ingen Method for prediction of the onset of 

transition. The stability transition method is first demonstrated on a flat plate with Blasius 

and Falkner Skan flows. Following, the whole suite is tested on two different airfoils up to 

stall angles of attack. Among these, the first one is the NACA 0012 Airfoil, and the 

second one is the NACA 4412 airfoil. Two airfoils have the same thickness ratio of 12% 

with the same thickness distribution; and the only difference is that the latter one has a 

camber ration of 4 percent. It shall also be noted that compressibility effects are neglected, 

which limits the use of the method prescribed to Mach numbers essentially less than 0.3, 

where errors due to compressibility effects are acceptable. 

In order to obtain external velocity distribution and the stagnation point for the airfoil 

supplied, the Hess-Smith panel method is employed. Preceding that, the boundary layer 

method is employed to solve for the upper and lower surfaces starting from the stagnation 

point up to the trailing edge. 

Location for the transition from laminar to turbulent flow is either input, or calculated 

using the en method. When the Reynolds number is high, and angles of attack are low to 

moderate, the onset of transition occurs before the separation point, and the extent of the 

transition region is confined to a relatively small region. Sometimes, however before 

transition location can be computed with the procedure explained, laminar separation 

takes place. In that case the separation location may be assumed to correspond to the 

onset of transition as stated in reference [5]. Therefore, if no transition is found until a 

laminar separation occurs, this point is assumed to be the point of laminar to turbulent 

transition. 

In the en method, laminar velocity profiles are analyzed with the linear stability approach 

and the amplification rates are computed from the physical frequencies of the instability 
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waves as described in Chapter 4. When the n-factor, that is the integrated amplification 

rate, reaches a value between 8 and 10 upon preference of the user, transition is assumed 

to be found. 

After the onset of transition is determined, the value is supplied to the program suite 

externally and inviscid-viscous calculations are carried on to obtain the flow field around 

the airfoil. Given an external velocity distribution, each boundary layer solution starting 

form the stagnation point and ending in the wake region is called a sweep. After a number 

of sweeps are accomplished, the blowing velocity distribution is found and is used to 

obtain a new external velocity distribution using the Hess-Smith panel method. This 

whole procedure including the updating of the external velocity distribution and doing 

some number of sweeps is called a cycle. One must set the number of cycles to a high 

enough value to ensure convergence. 

Number of iterations
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l
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Figure 6.1 Convergence history for NACA 0012 Airfoil ( cR =6×106, α =12 ° ) 
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While calculating the potential flow around the airfoil at high angles of attack (i.e. when a 

separated zone exists near the trailing edge, one has to evaluate the velocities and supply 

the Kutta condition at the edge of the displacement thickness as stated in references [1] 

and [3]. On the other hand, even if this is the case, the blowing velocity distribution 

obtained from the boundary layer solutions are applied on to the airfoil surface as 

boundary conditions. An over relaxation scheme which is taken from the work done by 

Özgen is applied in order to accelerate convergence. A sample convergence history plot is 

given in figure 6.1. As seen in figure 6.1, after 20 cycles, one obtains the final converged 

result. 

6.1 Falkner Skan Flow 

In order to demonstrate the transition prediction procedure, the en program was first run 

using Falkner-Skan velocity profiles, for which after transformation of variables, velocity 

profile is the same for all stations. Calculations are carried out for Falkner-Skan parameter 

β  which is defined in equation 6.1, ranging from -0.1988 to 0.5. Note that the parameter 

m  seen in equation 6.1 is the pressure gradient parameter. 

2
1
m

m
β =

+
 (6.1) 

e

e

dUxm
U dx

=  (6.2) 

Neutral stability calculations agree very well with Özgen and Mack as in figure 6.2 given 

for Blasius flow, which is a Falkner-Skan flow with no pressure gradient. Figures from 6.3 

to 6.13 are the integrated amplification factor, n , plotted against the local Reynolds 

number. It shall once again be emphasized that the local Reynolds number used is based 

on the Falkner-Skan length scale, which is the square root of actual (i.e. non-transformed) 

Reynolds number. One may easily notice that the transition location moves downstream 

as the pressure gradient parameter increases, that is pressure gradient changes from 

adverse to favorable. Values of the parameter β  indicate an adverse pressure gradient if it 

is less than zero, no gradient if it is equal to zero and a favorable pressure gradient if it is 

greater than zero. 
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Figure 6.2 Neutral Stability Curve for Blasius Flow 
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Figure 6.3 Change in integrated amplification factor with respect to distance for Falkner 

Skan Flow with β =-0.1988 
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Figure 6.4 Change in integrated amplification factor with respect to distance for Falkner 

Skan Flow with β =-0.15 
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Figure 6.5 Change in integrated amplification factor with respect to distance for Falkner 

Skan Flow with β =-0.1 
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Figure 6.6 Change in integrated amplification factor with respect to distance for Falkner 

Skan Flow with β =-0.05 
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Figure 6.7 Change in integrated amplification factor with respect to distance for Blasius 

Flow 
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Figure 6.8 Change in integrated amplification factor with respect to distance for Falkner 

Skan Flow with β =0.05 
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Figure 6.9 Change in integrated amplification factor with respect to distance for Falkner 

Skan Flow with β =0.1 
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Figure 6.10 Change in integrated amplification factor with respect to distance for Falkner 

Skan Flow with β =0.2 
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Figure 6.11 Change in integrated amplification factor with respect to distance for Falkner 

Skan Flow with β =0.3 
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Figure 6.12 Change in integrated amplification factor with respect to distance for Falkner 

Skan Flow with β =0.4 
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Figure 6.13 Change in integrated amplification factor with respect to distance for Falkner 

Skan Flow with β =0.5 
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6.2 Airfoil Flow 

The program suite developed is tested on two airfoils as mentioned above. The first one 

tested is the NACA 0012 airfoil, which is 12% thick, with maximum thickness located at 

30%, and having no camber. The second airfoil is the NACA 4412 airfoil again 12% thick 

with maximum thickness located at 40%, plus having 4% camber ratio located at 30% 

chord wise distance. 

While performing calculations around an airfoil, provided that there is no or very little 

separated zone on the airfoil, wake calculations can be neglected on choice. Since no harm 

to overall result is made, wake region is included in all calculations done. As emphasized 

in reference [28], since the viscous effects are introduced into the panel method through 

the blowing velocity distribution and off-body Kutta condition, both of which involve the 

displacement thickness, the accuracy of the inviscid flow depends on the accuracy of 

determining the displacement thickness distribution everywhere in the flow field, 

especially at the airfoil trailing edge and the wake. 
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Figure 6.14 Variation of lift coefficient with respect to angle of attack for NACA 0012 

airfoil for cR =2×105 and cR =6×106 
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Figure 6.14 shows coefficient of lift against angle of attack for NACA 0012 airfoil. Results 

obtained at cR =6×106 for coefficient of lift is in perfect accord with measurements, 

although post stall solutions can not be obtained due to growth of the separated region. 

Even there is no experimental data found for cR =2×105, it can be told that the code 

developed accounts for the Reynolds number effects acceptably. As seen in figure 6.14, 

Reynolds number affects both the maximum coefficient of lift and the stall attack 

significantly. 

Prediction of transition location is important in calculation of the flow field and therefore 

performance characteristics of an airfoil. The en method gives very good results, but may 

only be used from low to moderate angles of attack. At high angles of attack, the 

transition location moves upstream and it is not possible to find transition in the attached 

laminar zone. Therefore, the laminar separation point is assumed to be the transition 

location. In table 6.1, transition locations found on the upper surface of NACA 0012 

airfoil at chord Reynolds numbers and three angles-of-attack are compared to those 

calculated by Cebeci et al from reference [28]. Figure 6.15 shows the amplification rates as 

a function of chord-wise distance from the leading edge for three physical frequencies for 

the lower surface of NACA 0012 airfoil at α =4°  for a chord wise Reynolds number of 

6×106. For this case, the transition is found using the en method at 53.28% of the chord. 

 

 

Table 6.1 Comparison of transition locations on the upper surface of a NACA 0012 
Airfoil at two chord Reynolds numbers and three angles-of-attack. 

 α =0°  α =2°  α =4°  
 Calculated Cebeci et al Calculated Cebeci et al Calculated Cebeci et al 

cR  ( ) ( )
tr tr

s x
c c−  ( ) ( )

tr tr
s x
c c− ( ) ( )

tr tr
s x
c c− ( ) ( )

tr tr
s x
c c− ( ) ( )

tr tr
s x
c c−  ( ) ( )

tr tr
s x
c c−

1×106 0.502-0.486 0.505-0.49 0.329-0.307 0.33-0.31 0.168-0.141 0.16-0.13 
3×106 0.353-0.336 0.355-0.34 0.206-0.184 0.21-0.19 0.107-0.08 0.10-0.075 
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Figure 6.15 Amplification rates calculated using the en method for lower surface of 

NACA 0012 Airfoil at cR =6×106 and α =4 ° . 

Figure 6.16 shows the variation of drag coefficient with respect to lift coefficient. Drag is 

estimated using the formulation by Squire and Young [24] which is given below in 

equation 6.3. In equation 6.5 the same formula is given in another form. 

. . 5
2

. . . .2
T EH

T E T E
d

uC
c U
θ

+

∞

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (6.3) 

*
. .

. .
. .

T E
T E

T E

H δ
θ

=  (6.4) 

2
dC c

θ∞=  (6.4) 

In equation the terms . .T Eθ  and . .T Eu  are the momentum thickness and the edge velocity 

at the trailing edge respectively. Free stream velocity is U∞ , while . .T EH  is the shape factor 

at the trailing edge and is defined in equation 6.4. In equation 6.5, the term θ∞  denotes 

the momentum thickness at the far wake. 
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Figure 6.16 Drag polar for NACA 0012 airfoil for cR =2×105 and cR =6×106 

As seen in figure 6.16, the estimated drag value agrees well with the measurements except 

for slight underestimation at moderate to high lift values. The maximum deviation is 

observed at a lift coefficient value of 1.25 as 12.5%. 

Given in figure 6.17 is the variation of displacement thickness at the trailing edge with 

respect to the angle of attack. Notice that slope of the curve increases with increasing 

angle of attack. At 17 degrees, the displacement thickness value reaches approximately 

about 6% of the chord. 

Figure 6.18 shows the viscous and inviscid pressure distribution. Since the area enclosed 

by inviscid pressure distribution is slightly higher than the area enclosed by the viscous 

one, the inviscid method overestimates the lift coefficient, as expected. 

In figure 6.19, the displacement thickness distribution on the upper surface of the NACA 

0012 airfoil at α =10°  is shown. The displacement thickness first rises in the stream wise 

direction until trailing edge and then falls as going towards the far wake. 
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Figure 6.17 Variation of the displacement thickness with respect to angle of attack at the 

trailing edge for NACA 0012 airfoil for cR =6×106 
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Figure 6.18 Inviscid and viscous pressure distribution around NACA 0012 airfoil for 

cR =6×106 at α =14°  
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Figure 6.19 Displacement thickness distribution at the upper surface of NACA 0012 

airfoil and its wake for cR =6×106 and α =10°  

Figure 6.20 shows velocity profiles at some selected stations. As seen in the figure, flow 

accelerates until approximately 6% of the chord and the starts to decelerate. As expected, 

the boundary layer thickness also increases traversing in the downstream direction. 
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Figure 6.20 Selected velocity profiles at the upper surface of NACA 0012 airfoil for 

cR =6×106 and α =15°  



 

76 
 

In figures 6.21 to 6.23, velocity profiles in the wake region are shown for NACA 0012 

airfoil at cR =6×106 with angles of attack values of 0° , 8 °  and 15°  respectively. 

Velocity profiles for α =0 °  shown in figure 6.21 are perfectly symmetrical as expected. 

One other important result is that the high velocity gradients no longer exist in the far 

wake and are replaced by smooth gradients. At 3 chords downstream from the trailing 

edge, where the calculations end, maximum deviation from the free stream velocity is 

found to be approximately 5%. In figure 6.22, which is for α =8° , it is not possible to 

mention about symmetry but the far wake velocity profiles are very close to the free 

stream profile as expected.  

Figure 6.23 shows the wake velocity profiles for α =15° . In this figure, flow at the lower 

surface is laminar where the upper surface is turbulent. Moreover, the last 10% of the 

flow is separated. Therefore the thickness of the boundary layer coming from the upper 

surface is approximately 20 times larger than that of the lower surface. As desired, the two 

velocity profiles merge and result in a free stream like velocity profile at the far wake. 
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Figure 6.21 Velocity profiles in the wake for NACA 0012 airfoil for cR =6×106 and 

α =0°  
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Figure 6.22 Velocity profiles in the wake for NACA 0012 airfoil for cR =6×106 and 

α =8°  
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Figure 6.23 Velocity profiles in the wake for NACA 0012 airfoil for cR =6×106 and 

α =15°  
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Given in figure 6.24 is the variation of surface friction coefficient with respect to distance 

traversed in downstream direction measured from the stagnation point for upper surface 

of the NACA 0012 airfoil with Reynolds number based on chord of  2×105. The jumps in 

fC  values show transition. fC  values less than zero show separation. For α =12° , 

approximately 26% of the flow is separated. Also one may notice the laminar separation 

taking place at s c=0.82 for α =0°  
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Figure 6.24 Variation of drag surface friction coefficient against surface distance 

traversed for NACA 0012 airfoil for cR =2×105 
 

The other airfoil tested is the NACA 4412 airfoil with 4% of camber. The test were 

carried out for cR =6×106 and for cR =2×105. Lift coefficient with respect to angle of 

attack is plotted in figure 6.25. Again, the results obtained are in good accord with 

measurements. Like in NACA 0012 airfoil, large separated regions on the upper surface at 

high angles of attack prevent to find solutions for post stall cases. 
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Figure 6.26 shows variation of drag coefficient with respect to lift coefficient. For 

moderate values of lift coefficient, a slight overestimation of drag coefficient is observed. 

On the other hand for low and high values the values are slightly underestimated. Overall, 

the drag polar is within acceptable values. Maximum deviation between measured 

calculated values of drag coefficient is found to be 15%. 
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Experimental Results at RL=6e6 [26] at RL=6E6

 
Figure 6.25 Variation of lift coefficient with respect to angle of attack for NACA 4412 

airfoil for cR =2×105 and cR =6×106 

Given in figure 6.27 is the variation of surface friction coefficient with respect to distance 

traversed in downstream direction measured from the stagnation point for upper surface 

of the NACA 4412 airfoil with Reynolds number based on chord of  2×105. The jumps in 

fC  values show transition. fC  values less than zero show separation. For α =12° , 

approximately 32% of the flow is separated. Also one may notice the laminar separation 

taking place at s c=0.16 for α =12°  
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Figure 6.26 Drag polar for NACA 4412 airfoil for cR =2×105 and cR =6×106 
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Figure 6.27 Variation of drag surface friction coefficient against surface distance 

traversed for NACA 4412 airfoil for cR =2×105 
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C H A P T E R  7  

CONCLUSION 

In this study, Smith-van Ingen transition prediction procedure is implemented into the 

previous study carried out by Özgen. The resultant program suite is tested for Falkner 

Skan flows and two airfoils. For airfoil solutions, the results are in good accord with 

measurements until the stall angle of attack. 

At high angles of attack, due the growth of the boundary layer and the displacement 

thickness, constant pressure assumption across the boundary layer becomes less accurate. 

Due to this reason and excessive separated regions in the flow, post stall solutions can not 

be performed. 

In this study, Cebeci-Smith algebraic turbulence model is used. Any empirical model 

which formulated the turbulent viscosity may easily be implemented to the computer 

program. On the other hand, in order to solve for largely separated flows, employment of 

a higher order turbulence model may be more suitable.  

As stated in reference [1], determination of transition plays a key role in obtaining correct 

solutions. Implementing a more concrete physical means to calculate transition was aimed 

in this study. For moderate Reynolds numbers, results show that use of Smith-van Ingen 

transition prediction procedure does not bring much compared to empirical correlations 

such as Michel’s formula. On the other hand, it proved to be useful for low Reynolds 

numbers where Michel’s formula failed. Since the en transition prediction method is valid 

for both incompressible and compressible flows, its applicability ranges from low to high 

Reynolds numbers where empirical correlations are not valid. Another advantage is that en 

transition procedure used in this study may easily be extended to three dimensional flows 

without much effort, where in such a case using such a method is essential since no 

empirical correlation is present for 3D flows. 

In terms of computational time, solving for a single angle of attack varies from 3 to 8 

minutes depending on the value of angle of attack. Time required increases with 
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increasing angle-of attack. The reasoning for this is that separated flows require much 

more cycles to be done and also it is necessary to use the Homotopy continuation method 

for largely separated flows which also requires additional computational time. However, 

compared to thin-layer Navier Stokes solutions, this method is much faster and therefore 

proves that it is useful. 

The computer program presented in this study currently applies to single element airfoils 

with incompressible flows. In the future, modifications such as adding the ability of 

solving flow around multi-element airfoils, including compressibility effects or making the 

program suite able to handle three dimensional flows may be done. The author hopes that 

this study may be a reliable basis for such studies. 
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A P P E N D I X  A  

BLOCK ELIMINATION METHOD 

To solve the system constructed above in sub-section 3.2.2, a technique called the block 

elimination method is used. The method is explained in detail in references [7],[8] and 

[27]. The method is analogous to the Gaussian elimination technique.  

First step is to decompose the coefficient matrix [ ]A , into lower and upper triangular 

matrices as: 

[ ] { } { }A rδ⋅ =  (3.38) 

[ ] [ ] { } { }   . L U rδ =  (A.1) 

The tri-diagonal coefficient matrix can be written as: 

0 0

1 1 1 1 1 1

2 2 2 2

1 1 1 1 1 1

0 0 0 0 0 0
0 0 0

0 0 0
0 0 0 0 0 0

   

o o

j j j j j j

J J J J J J

J J J J

I C A C
I C B A C

I B A C

I C B A C

I C B A C
I B A

− − − − − −

∆⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥Γ ∆⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥Γ
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢Γ ∆
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢Γ ∆
⎢ ⎥ ⎢ ⎥ ⎢

Γ ∆⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥

 (A.2) 

Where I  is the identity matrix. The solution procedure consists of two major steps: the 

forward sweep and the backward sweep. 
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A.1. Forward Sweep 

A.1.1. First Step of Forward Sweep 

From equation A.2 noting that 0 0A∆ = , 

1 0 1

1J J J

B

B−

Γ ∆ = ⎫
⎪
⎬
⎪Γ ∆ = ⎭

 1j j jB−Γ ∆ =  1,2,.....,j J=  (A.3) 
 

 

1 0 1 1

2 1 2 2

1J J J J

C A
C A

C A−

Γ + ∆ = ⎫
⎪Γ + ∆ = ⎪
⎬
⎪
⎪Γ + ∆ = ⎭

 
1j j j jC A−Γ + ∆ =

 
1,2,....,j J=  (A.4)

  

Matrices jΓ  and  j∆  are defined as follows: 

11 12 13

21 22 23

0 0 0
j

γ γ γ
γ γ γ
⎡ ⎤
⎢ ⎥Γ = ⎢ ⎥
⎢ ⎥⎣ ⎦

 
11 12 13

21 22 23

10 1
2

j

jh

α α α
α α α

+

⎡ ⎤
⎢ ⎥
⎢ ⎥

∆ = ⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎣ ⎦

 

(A.5, 6) 
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A.1.2.  Second Step of Forward Sweep 

Letting: 

{ } [ ] { }w U δ= ⋅  (A.7) 

equation A.1 becomes: 

[ ] { } { }L w r⋅ =  (A.8) 

or: 

0  0

1 1  1

2

 

 

0 0
0

0
0 0

j j j

J J J

I w r
I w r

I

I w r

I w r

⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎪ ⎪Γ⎢ ⎥ ⎪ ⎪ ⎪ ⎪
⎢ ⎥ ⎪ ⎪ ⎪ ⎪Γ
⎢ ⎥ ⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪ ⎪⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥Γ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪Γ⎢ ⎥⎣ ⎦ ⎩ ⎭ ⎩ ⎭

  (A.9)

 

From the above expression: 

0 0w r=  

1 0 1  1

2 1 2  2

1  J J J J

w w r
w w r

w w r−

Γ + = ⎫
⎪Γ + = ⎪
⎬
⎪
⎪Γ + = ⎭

 1jj j jw r w −= −Γ     1,2,.....,j J=  (A.10)

 

All the terms on the right hand side of the above equation are known so jw  vectors can 

be easily found. With this, the forward sweep is completed. 



 

89 
 

A.2. Backward Sweep 

Recalling: 

{ } [ ] { }w U δ= ⋅  (A.11) 

or: 

0 0 0 0

1 1 1 1

1

0 0
0

0
0 0

j j j j

J

J J J

C w
C w

C w

C
w

δ
δ

δ

δ
−

∆⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎪ ⎪∆⎢ ⎥ ⎪ ⎪ ⎪ ⎪
⎢ ⎥ ⎪ ⎪ ⎪ ⎪
⎢ ⎥ ⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪ ⎪⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥∆ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪∆⎢ ⎥⎣ ⎦ ⎩ ⎭ ⎩ ⎭

 (A.12)

 

From the above expression: 

J J Jwδ∆ =  

1 1 1 1

0 0 0 1 0

J J J J JC w

C w

δ δ

δ δ

− − − −∆ + = ⎫
⎪
⎬
⎪∆ + = ⎭

 1j j j j jw Cδ δ +∆ = −  1, 2,....,0j J J= − −  (A.13) 

In the above expression, everything except the jδ  vector is known, so it is easy to extract 

jδ . In this way, the perturbation quantities which are searched for are solved. This step 

completes the block elimination method. 
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A P P E N D I X  B  

APPROXIMATION OF THE HILBERT INTEGRAL 

Recalling the definition of the Hilbert integral: 

( )
1

1( ) ( )
Lx

e i
ix

dU x G
x
ξδ ξ

π ξ
=

−∫  (B.1) 

Where ( ) dFG
d

ξ
ξ

= , and ( )*
e

i
F U δ= . 

Where ξ is a dummy variable over the integration range 1 Lx xξ≤ ≤  within ix  is 

confined. Over each subinterval ( )1,k kx x− , ( )G ξ  will be approximated by its midpoint 

value: 

( ) ( )
1

1
1/ 2 ln

k

k

x
i k

k
i i kx

x xdG G
x x x
ξξ
ξ

−

−
−

⎡ ⎤−
= ⎢ ⎥− −⎣ ⎦

∫  (B.2) 

where: 

1
1/ 2

11/ 2

k k
k

k kk

F FdFG
d x xξ

−
−

−−

⎛ ⎞ −
= =⎜ ⎟ −⎝ ⎠

 

(B.3) 

Replacing 1/ 2kG −  by its equivalent expression given by equation B.3, equation B.2 can be 

written as: 

( ) ( )
1

1 1

1

ln
k

k

x
k k i k

i k k i kx

F F x xdG
x x x x x
ξξ
ξ

−

− −

−

⎡ ⎤− −
= ⎢ ⎥− − −⎣ ⎦

∫  (B.4) 
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Letting: 

( ) 1 1
1 ln i k

k k k
i k

x xE x x
x x

− −
−

⎡ ⎤−
= − ⎢ ⎥−⎣ ⎦

 (B.5) 

equation B.4 can be further written as: 

( ) ( ) ( ) ( )
1

* *
1 1

k

k

x

e ek k k k k k
ix

dF d F F E E U U
d x

ξ δ δ
ξ ξ

−

− −
⎡ ⎤= − = −⎣ ⎦−∫  (B.6) 

Within the subinterval ( ) ( )1 , 1i i− +⎡ ⎤⎣ ⎦ , the calculation will be performed assuming a 

linear variation of  ( )G ξ  as: 

( ) ( )iG A x Bξ ξ= − +  (B.7) 

Then: 

( ) 1
1/ 2 2

i i
i i

x xG x A x Bξ −
−

+⎛ ⎞= = − +⎜ ⎟
⎝ ⎠

 (B.8a) 

1
-1/ 2 2

i i
i

x xG A B− −⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (B.8b)
 

and in the same manner, 1/ 2iG +  can be written as: 

1
1/ 2 2

i i
i

x xG A B+
+

−⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (B.9) 

Solving for A  and B : 

( )-1/ 2 1/ 2

1 1

2 i i

i i

G G
A

x x
+

− +

−
=

−
 (B.10) 
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( ) ( )1/ 2 1 1/ 2 1

1 1

i i i i i i

i i

G x x G x x
B

x x
+ − − +

+ −

− − + −
=

−
 (B.11) 

Hence equation B.7 can be written as: 

( ) ( )
( ) ( ) ( ) ( )

( )
1/ 2 1/ 2 1/ 2 1 1/ 2 1

1 1 1 1

2 i i i i i i i i
i

i i i i

G G G x x G x x
G x

x x x x
ξ ξ+ − + − − +

+ − + −

− − − + −
= − +

− −
 (B.12) 

So the expression for the Hilbert Integral becomes: 

( ) ( ) ( ) ( )
( ) ( )

( )
( ) ( )

1
1

1
1

1

1

1
1/ 2 1/ 2 1/ 2

! 1

1
1/ 2

1 1

2 ln

                                                          ln

i
i

i
i

i

i

x
xi i

i i i i x
i i ix

xi i
i i x

i i

x xdG G G G x
x x x

x x
G x

x x

ξξ ξ
ξ

ξ

+
+

−
−

+

−

−
+ − +

+ −

+
−

+ −

−
= − − − −

− −

−
− −

−

∫
 

( ) ( ) ( ) ( ) ( )
( )

1

1

1/ 2 1 1/ 2 1 1
1/ 2 1/ 2

1 1 1

2 ln
i

i

x
i i i i i i i i

i i
i i i i ix

G x x G x x x xdG G G
x x x x x
ξξ
ξ

+

−

+ − − + −
+ −

+ − +

⎡ ⎤− + − ⎡ ⎤−
= − − + ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦⎣ ⎦

∫ (B

.13) 

Now, G  can be expressed in terms of /dF dξ : 

1
1/ 2

11/ 2

i i
i

i ii

F FdFG
d x xξ

+
+

++

⎛ ⎞ −
= =⎜ ⎟ −⎝ ⎠

 1
1/ 2

11/ 2

i i
i

i ii

F FdFG
d x xξ

−
−

−−

⎛ ⎞ −
= =⎜ ⎟ −⎝ ⎠

  (B.14, 15) 

Equation B.13 can be written as: 

( ) ( )
( )
( )

( )
( )

( )
( )

( )
( )

1

1

1 11 1 1

1 1 1 1 1 1

1 1

1 1 1

2 ln

                                                                   

i

i

x
i i i ii i i i i i

i i i i i i i i i i ix

i i i i

i i i i

F F x xF F F F x xdG
x x x x x x x x x x x

F F x x
x x x x

ξξ
ξ

+

−

+ −+ − −

+ − + + − +

− +

− + −

− −⎡ ⎤− − −
= − − +⎢ ⎥− − − − − −⎣ ⎦

− −
+

− −

∫

1

1

ln i i

i i

x x
x x

−

+

−
−

 (B.16) 

Let ( )
( )( ) ( )

1 1

1 1 1 1 1

2lni ii i i
i

i i i i i i i i

x x x xE
x x x x x x x x

+ −

− + − + −

− −
= +

− − − −
 (B.17) 
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And ( )
( )( ) ( )

1 1
1

1 1 1 1 1

2lni ii i i
i

i i i i i i i i

x x x xE
x x x x x x x x

− −
+

+ + − + +

− −
= −

− − − −
 (B.18) 

Therefore, Hilbert Integral can be approximated by the formula: 

( ) ( ) ( ) ( )
( ) ( )

2 2 1 3 3 2 1 1 2 1

2 1 2 3 2 1 1

..........

                          ..........

i i i i
L L L L L L

i i i i i i
L L L L L

Hi E F F E F F E F F E F F

E F E E F E E F E F
− − − −

− −

= − + − + + − + −

= − + − + + − +
 (B.19) 

and 1 0i i
i LE E += = . 

The coefficients ijC  are now defined as: 

( )1
1 i i

ij j jC E E
π += −  and *( ) ( )ej j jF x U xδ=  (B.19, 20) 

Recalling that ieU  can be written as: 

1
i i

No
e e ij j

j

U U C D
=

= +∑  (B.22) 

where ijC  as defined above and *
ejD U δ= . In this form equation B.22 provides a 

boundary condition which represents the viscous/inviscid interaction. It can be 

generalized to the form: 

( ) ( )* *

1

( ) ( )
N

e e e eij j jj

U x U x C U U
κκ

δ δ
=

⎡ ⎤= + −⎢ ⎥⎣ ⎦∑  (B.23) 

where ( )eU x
κ

 corresponds to the inviscid velocity distribution which contains the 

displacement thickness effect ( )* κ
δ  coming from the previous iteration κ . 
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A P P E N D I X  C  

DERIVATION OF THE ORR-SOMMERFELD EQUATION 

In order to derive the stability equations, one starts from the equations of motion written 

in Cartesian coordinates. For viscous and incompressible flows, these are the x-

momentum, y-momentum and z-momentum equations, and the continuity equation. In 

the below equations, * stand for dimensional quantities. 

X-momentum equation: 

* * * * * 2 * 2 * 2 *
* * * *

* * * * * * *2 *2 *2

1u u u u p u u uu v w
t x y z x x y z

ν
ρ

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − = + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (C.1) 

Y-momentum equation: 

* * * * * 2 * 2 * 2 *
* * * *

* * * * * * *2 *2 *2

1v v v v p v v vu v w
t x y z y x y z

ν
ρ

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − = + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (C.2) 

Z-momentum equation: 

* * * * * 2 * 2 * 2 *
* * * *

* * * * * * *2 *2 *2

1w w w w p w w wu v w
t x y z z x y z

ν
ρ

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − = + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (C.3) 

Continuity equation: 

* * *

* * * 0u v w
x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

 (C.4) 

Dividing the flow into a steady, mean flow and unsteady small perturbations: 

( ) ( )* * * * * * * * * *ˆ, , , , ,u U x y z u x y z t= +  (C.5a) 

( ) ( )* * * * * * * * * *ˆ, , , , ,v V x y z v x y z t= +  (C.5b) 
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( ) ( )* * * * * * * * * *ˆ, , , , ,w W x y z w x y z t= +  (C.5c) 

( ) ( )* * * * * * * * * *ˆ, , , , ,p P x y z p x y z t= +  (C.5d) 

In the above formulation, capital lettered terms stand for steady quantities and variables 

with a cap stand for time dependent quantities. (e.g. *U  is steady where *û  is time 

dependent) 

The strong assumption made is the parallel flow assumption, which may be formulated as 
* 0V = , ( )* *U U y=  and ( )* *W W y=  only. Therefore it states that the main flow 

quantities are independent of stream wise distance. Even parallel flow is exactly realized 

for special classes of flows such as Couette and Poiseuille flows, it is at most a good 

assumption for the case of boundary layer flows since * *
* *

U U
x y

∂ ∂
∂ ∂

. 

Using the parallel flow assumption, dropping out the quadratic terms and further 

assuming that the mean flow satisfies the equations of motion, on obtains: 

* * * * * 2 * 2 * 2 *
* * * *

* * * * * * *2 *2 *2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ1u u U u p u u uU v W
t x y z x x y z

ν
ρ

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − = + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (C.6) 

* * * * 2 * 2 * 2 *
* * *

* * * * * *2 *2 *2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ1v v v p v v vU W
t x z y x y z

ν
ρ

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = − = + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (C.7) 

* * * * * 2 * 2 * 2 *
* * * *

* * * * * * *2 *2 *2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1ˆw w w w p w w wU v W
t x y z z x y z

ν
ρ

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − = + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (C.8) 

* * *

* * *

ˆ ˆ ˆ
0u v w

x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

 (C.9) 

Here, it is assumed that the disturbances are small (small disturbance theory) so that the 

quadratic terms are neglected. (e.g. * ** *
* *

ˆ ˆˆ u uu Ux x
∂ ∂

∂ ∂
, etc.) 
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Non-dimensionalizing velocities with *
RU , lengths by *

RL  and pressure terms by 
2* *
RUρ  

one obtains: 

X-momentum equation: 

2 2 2

2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ1ˆu u u dU p u u uU W v
t x z dy x R x y z

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − − + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (C.10) 

Y-momentum equation: 

2 2 2

2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ1v v v p v v vU W
t x z y R x y z

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = − − + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (C.11) 

Z-momentum equation: 

2 2 2

2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ1ˆw w w dW p w w wU W v
t x z dy z R x y z

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − − + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (C.12) 

Continuity equation: 

ˆ ˆ ˆ
0u v w

x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

 (C.13) 

Where the Reynolds number is defined as: 

* * *

*
R RU LR ρ

µ
=  (C.14) 

The mean laminar flow in x-direction is assumed to be influenced by a disturbance 

composed of a number of discrete partial fluctuations each of which is assumed to consist 

of a wave propagating in x-direction. 

( ) ( )ˆ i x z tu u y e α β ω+ −=  (C.15a) 

( ) ( )ˆ i x z tv v y e α β ω+ −=  (C.15b) 
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( ) ( )ˆ i x z tw w y e α β ω+ −=  (C.15c) 

( ) ( )ˆ i x z tp p y e α β ω+ −=  (C.15d) 

In the above equation C.15, ( )u y , ( )v y , ( )w y  and ( )p y  are the disturbance 

amplitude functions with: 

α : Wave number in x-direction and 2πα λ=  with λ  being the wavelength. 

β : Wave number is z-direction. 

ω : Circular frequency (complex) as r iiω ω ω= + . 

The term rω  in the above definition is the frequency and iω  is the amplification rate. 

Substituting the above relations into equations of motion, one obtains equations C.16-19 

which are given below with primes denoting y
∂
∂

 or d dy . 

X-momentum equation: 

( )2 21i u Ui u Wi u vU i p u u uRω α β α α β′ ′′− + + + = − + − + −  (C.16) 

Y-momentum equation: 

( )2 21i v Ui v Wi v p v v vRω α β α β′′− + + = + − + −  (C.17) 

Z-momentum equation: 

( )2 21i w Ui w Wi w i p w w wRω α β β α β′′− + + = − + − + −  (C.18) 

Continuity equation: 

0i u v i wα β′+ + =  (C.19) 
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Now with D  denoting y
∂
∂

 or d dy  and rearranging terms, one obtainsthe following 

system of equations: 

( ) ( )2 2 21DUv i U W u i p D uRα β ω α α β⎡ ⎤+ + − = − + − +⎣ ⎦  (C.20) 

( ) ( )2 2 21           i U W v p D vRα β ω α β⎡ ⎤′+ − = − + − +⎣ ⎦  (C.21) 

( ) ( )2 2 21DWv i U W w i p D wRα β ω β α β⎡ ⎤+ + − = − + − +⎣ ⎦  (C.22) 

( ) 0i u w Dvα β+ + =  (C.23) 

The boundary conditions for the above system of equations are given below in equation 

C.24. 

( ) ( ) ( )0 0 0 0u v w= = =  at 0y =  (no slip) (C.24a) 

0u → , 0v → , 0w→  as y→∞  (free stream) (C.24b) 

C.1. Reduction to a fourth order system 

Multiplying the x-momentum equation by α , and z-momentum equation by β , and 

adding them, one obtains the following equation after rearranging. 

( )( ) ( ) ( )
( ) ( )

2 2

2 2 21

i U W u w DU DW v i p

D u wR

α β ω α β α β α β

α β α β

+ − + + + = − +

⎡ ⎤+ − + +⎣ ⎦
 (C.25) 

Multiplying the x-momentum equation by β  and subtracting the resultant from z-

momentum equation multiplied with α , one obtains equation C.26. 

( )( ) ( ) ( ) ( )2 2 21i U W w u DW DU v D w uRα β ω α β α β α β α β⎡ ⎤+ − − + − = − + −⎣ ⎦  (C.26) 

After these steps, the new equation system becomes: 
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( )( ) ( ) ( )
( ) ( )

2 2

2 2 21

i U W u w DU DW v i p

D u wR

α β ω α β α β α β

α β α β

+ − + + + = − +

⎡ ⎤+ − + +⎣ ⎦
 (C.25) 

( ) ( )2 2 21_i U W v p D vRα β ω α β⎡ ⎤′− = − + − +⎣ ⎦  (C.27) 

( )( ) ( ) ( ) ( )2 2 21i U W w u DW DU v D w uRα β ω α β α β α β α β⎡ ⎤+ − − + − = − + −⎣ ⎦  (C.26) 

( ) 0i u w Dvα β+ + =  (C.23) 

The dependent variables or in other words, the eigenfunctions of the above system of 

equations are: u wα β+ , v , p  and Du Dwα β+ . Above equations C.23, C.25, C.26 and 

C.27 constitute a fourth order system. The variable ( )w uα β−  appears only in equation 

C.26. Therefore, the eigenvalues α , β , ω  and R  can be determined from this fourt 

order system. If one needs to solve the eigenfunctions u  and w , equation C.26 must be 

solved as well. If α  and β  are real, equation C.25 is the momentum equation in the 

direction of wave motion whereas equation C.26 is the momentum equation normal to 

the direction of wave motion in the x-z plane. 

C.2. Special Form of the Stability Equations: Orr-Sommerfeld Equation 

A single fourth order equation is obtained from equations C.23, C.25, C.26 and C.27 by 

eliminating u wα β+  from equation C.25 by equation C.23, and, after differentiation with 

respect to y, eliminating Dp  by equation C.27. The resultant equation is: 

( ) ( ) ( ) ( ){ }22 2 2 2 2 2 2 2D v iR U W D D U D W vα β α β ω α β α β⎡ ⎤ ⎡ ⎤− + = + − − + − +⎣ ⎦ ⎣ ⎦  (C.28) 

With the boundary conditions given below in equation C.29. 

( ) ( )0 0 0v Dv= =  at 0y =  (no slip) (C.29a) 

0v → , 0Dv →  as y→∞  (free stream) (C.29b) 
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For a two dimensional mean flow, 0W =  and hence 0β = . Therefore, equation C.28 

reduces to equation C.30. 

( ) ( )( )2 2 2 2 2 2D v iR U D D U vα α ω α α⎡ ⎤− = − − −⎣ ⎦  (C.30) 

This equation is called the Orr-Sommerfeld equation and it is valid for a two dimensional 

wave in a two dimensional boundary layer.  

With primes rather than the letter D  denoting differentiation in the normal direction,  

and ( ) ( )r iy iφ φ φ≡ +  representing the complex amplitude of the disturbance stream 

function ψ ′  defined by the fluctuating velocity components u′  and v′  defined as shown 

in equation 4.1 with definition given in equation C.31, the Orr-Sommerfeld equation can 

be rewritten in another form given below in equation 1.2.  

u
y
ψ ′∂′ =
∂

 v
x
ψ ′∂′ = −
∂

 (4.1) 

( ) ( )expy i x tψ φ α ω′ = −⎡ ⎤⎣ ⎦  (C.31) 

Note that in the below form of the O-S equation, the velocity component U  are shown 

with small case letter u  for the sake of convenience. 

2 4 2( 2 ) [( )( ) ]iv iR u uφ α φ α φ α ω φ α φ α φ′′ ′′ ′′− + = − − −  (1.2) 
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A P P E N D I X  D  

DESCRIPTION OF THE COMPUTER PROGRAM 

In order to conduct this study, a computer program written before in reference [1] has 

been utilized. The Smith-van Ingen en procedure is implemented through another one 

whish has been written in Fortan 77 programming language. The theory and procedure is 

thoroughly explained in the above chapters 2, 3, 4 and 5. In order to prepare the inputs 

for the en code, the original interactive boundary layer code is altered so that it now prints 

out the boundary layer grid information which is used by the en code. 

The program suite which is used in this study consists of three program codes, from 

which two are essentially the same except for the input and output files are different to 

examine upper and lower surfaces of the airfoil in consideration. The first program 

written originally by Dr. Serkan Özgen during his Master of Science studies in 1994 is the 

interactive boundary layer code with wake effects included is called the IBLW. In order to 

solve for the stability equations and to employ the en procedure, a stability transition code 

is written which originally inputs a single velocity profile and solves for the Falkner-Skan 

profiles which are used to prove the feasibility of the procedure. The other two are altered 

versions of the stability transition code called as ENLO and ENUP, where the only 

difference between the two are the input and output files as mentioned above. These 

altered versions read the velocity profiles stored at each boundary layer grid station which 

are prepared by the IBLW code. The EN code can either be used to solve for the neutral 

stability curve, or to predict transition. 

In order to analyze an airfoil at any given angle of attack, user runs the IBLW code with 

laminar region as long as feasible, and then runs the ENLO and ENUP code for the 

upper and lower surfaces of the airfoil separating from the stagnation point which is also 

calculated by the IBLW program extending through the trailing edge. The codes ENLO 

and ENUP provide the user the physical frequencies, and the amplification rates related to 

these frequencies. Depending on the user’s choice, at a value where the original instability 

is amplified by a factor between e8 to e10, the transition location is determined and fed 

back into the IBLW code as an external input. The actual solution is then obtained. 
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Note that as the compressibility effects are neglected, the solutions are valid only within 

the incompressible range typically where the Mach number is less than 0.3. Therefore the 

solution is limited to low to moderate Reynolds numbers. Also the Smith-van Ingen en 

procedure is feasible for low to moderate angles-of-attack. For high values, laminar 

separation point must be used as the transition mechanism for flows with adverse 

pressure gradient. 

The EN code has a MAIN routine and four subroutines which are briefly described 

below. 

In MAIN routine, the number of stations, their values, and the initial station for starting 

the calculations are inputted. Also the user selects whether neutral stability curve or 

transition is required. If transition is required, number of lines to be followed is entered. 

This is done by giving a value for the mode flag as 0 for neutral stability of any integer less 

than or equal to 20 for transition prediction. Also the non-dimensional station 

coordinates; distances along the surface starting from the stagnation point and the 

external velocity distribution at each station are input. With the additional information 

about the chord Reynolds number, the stability Reynolds number for each station is 

computed. One other input parameter is the initial guesses for eigenvalues α  and ω  to 

be used at initiation. One may find good estimates from the Falkner-Skan solutions after 

determining the pressure gradient. 

The velocity profiles u  and u′′  at stations are read by the subroutine PROFILE, the 

neutral stability calculations are done by subroutine NEWTON, where the amplification 

rated are calculated by the subroutine AMPL. 

The subroutine OS is used to solve for the Orr-Sommerfeld equation, and includes the 

block elimination algorithm described above. In the NEWTON subroutine, the 

eigenvalue procedure explained is done. After convergence is achieved, physical 

frequencies are computed. The AMPL subroutine is used for calculating the amplification 

factor which is the key value in determining the onset of transition. After the code is run, 

the amplification factors are printed at all stations, where the user is responsible to curve-

fit the data and to probe the location where the amplification rate has reached the value 

desired to set the transition point. 
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