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ABSTRACT

DIRECT PERCEPTION OF TRAVERSIBILITY AFFORDANCE ON RANGE

IMAGES THROUGH LEARNING ON A MOBILE ROBOT

Uğur, Emre

M.S., Department of Computer Engineering

Supervisor : Assist. Prof. Dr. Erol Şahin

September 2006, 85 pages

In this thesis, we studied how physical affordances of the environment, such as

traversibility for a mobile robot, can be learned. In particular, we studied how the

physical properties of the environment, as acquired from range images obtained from

a 3D laser scanner mounted on a mobile robot platform, can specify the traversibility

affordance. A physics based simulation environment is used during exploration tri-

als, where the traversibility affordances and the relevant features for each behavior

are learned through physical interactions with the environment. The prediction accu-

racy in perceiving the traversibility affordances of the world, which includes several

spherical, cylindrical and box shaped objects, is found to be 94%. Furthermore, it

is observed that the robot uses only 1.1% of extracted features while perceiving the

affordances. This in turn saves the time 76.6% in scanning and 81% in feature pro-

cessing. The robot is later tested in a simulated cluttered environment, surrounded

by walls. It is able to successfully traverse in the environment, by selecting its behav-

iors based on the affordances provided, and performing them. The robot was able to

avoid from the box shaped objects, and push-roll the spherical ones without making

any object detection. In the last set of experiments, the trained affordance-based be-

havior selection scheme is partially verified in the real world with the Kurt3D robot.

Keywords: Affordances, Robotics, Traversibility, Direct perception
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ÖZ

GEZGİN BİR ROBOTTA, ÖĞRENME YOLUYLA, UZAKLIK

GÖRÜNTÜLERİNDEN ORTAMIN GEZİLEBİLİRLİĞİNİN DOLAYSIZ ALGISI

Uğur, Emre

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Assist. Prof. Dr. Erol Şahin

Eylül 2006, 85 sayfa

Bu tezde, ortamın gezer bir robota sunduğu fiziksel sağlarlıklar (geçilebilirlik gibi)

çalışılmıştır. Özel olarak ise, 3-boyutlu lazer tarayıcı yardımıyla elde edilen uzaklık

resimlerinden hesaplanan ortamın fiziksel özelliklerinin geçilebilirliğe etkisi incelen-

miştir. Keşif deneyleri için fizik tabanlı bir simülatör kullanılmış ve ortamın sağlarlık-

larıyla beraber değişik davranışlar için hangi özelliklerin ilgili olduğu öğrenilmiştir.

Küre, silindir ve kutu şeklindeki nesnelerin olduğu bir ortamın geçilebilirliği % 94

oranında başarı ile tahmin edilebilmiştir. Ayrıca, robotun hesaplanan ortam özellikle-

rinin sadece % 1.1’ini kullanacak geçilebilirliği algıladığı gözlenmiştir. Bu da tarama

zamanında % 76.6, özellik hesaplama zamanında ise % 81’lik bir kazanç sağlamakta-

dır. Robot daha sonrasında etrafı duvarlarla çevrili kalabalık bir ortamda test edilmiş-

tir. Robot, ortamın sağlarlıklarına göre davranışlarını seçerek ve uygulayarak, bu

ortamı başarılı bir şekilde dolaşabilmiştir. Son deney kümesinde ise, öğrenilmiş

sağlarlık tabanlı yöntem gerçek dünyada, Kurt3D isimli robot kullanılarak kısmen

doğrulanmıştır.

Anahtar Kelimeler: Sağlarlık, Robotbilim, Geçilebilirlik, Doğrudan algı
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Şahin for his supervision, advice, and guidance. He gave me the chance to participate

in several state-of-the-art projects, work in a superb environment, enrich my growth

as a student and researcher, and taste the beers of various countries. I learnt almost

everything about research and academic ethics from him. In every sense, none of this

work would have been possible without him.
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ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

DEDICATON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 THE THEORY OF AFFORDANCES . . . . . . . . . . . . . . . . . . . . 4

2.1 The Evolution of the Theory . . . . . . . . . . . . . . . . . . . . 5

2.2 Attempts to clarify and/or extend theory of affordances . . . . 7

2.3 Experiments in Ecological Psychology . . . . . . . . . . . . . . 8

2.4 Cognitive Science . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Kurt3D MOBILE ROBOT PLATFORM . . . . . . . . . . . . . . . . . . . 20

3.1 The Robot Body . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 2D Laser Scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 3D Laser Scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 MACSim: A PHYSICS-BASED KURT3D SIMULATOR . . . . . . . . . 25

4.1 Overview of the Existing Simulation Environments . . . . . . . 26

4.2 Simulated Model of the Kurt3D Platform . . . . . . . . . . . . . 29

4.2.1 Robot Body . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.2 Wheel Systems . . . . . . . . . . . . . . . . . . . . . . 31

4.2.3 3D Laser Scanner . . . . . . . . . . . . . . . . . . . . . 32

4.3 Environment Modelling . . . . . . . . . . . . . . . . . . . . . . . 33

ix



4.3.1 Loading World Configuration Files . . . . . . . . . . . 35

4.3.2 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 AFFORDANCE BASED CONTROL OF THE ROBOT . . . . . . . . . . 39

5.1 Behavioral Repertoire . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 The Environment and Its Perception . . . . . . . . . . . . . . . 41

5.3 Exploration Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.1 Selection of Relevant Features . . . . . . . . . . . . . . 50

5.3.2 Classification of Features . . . . . . . . . . . . . . . . . 53

5.4 Execution Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.1 Parameterization of the laser scanner . . . . . . . . . 55

5.4.2 Filtering Out Irrelevant Features . . . . . . . . . . . . 55

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Learning in Complex Environments . . . . . . . . . . . . . . . . 59

6.3 Learning in Simple Environment (for Evaluation of the Gener-
alization Performance) . . . . . . . . . . . . . . . . . . . . . . . 63

6.4 Systematic Analysis of the Learned Model . . . . . . . . . . . . 65

6.5 Traversibility in a cluttered environment in MACSim . . . . . . 72

6.6 Perceiving Traversibility on the Real Robot Kurt3D . . . . . . . 75

7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

APPENDIX

A XML FILE HIERARCHY . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

x



LIST OF TABLES

TABLES

Table 4.1 Comparison of the existing simulation environments . . . . . . . . . 28

Table 5.1 The actuator parameters and success criteria for each behavior. . . . 41

Table 6.1 The parameters of environment construction . . . . . . . . . . . . . . 58
Table 6.2 The optimized threshold values . . . . . . . . . . . . . . . . . . . . . . 62
Table 6.3 The distribution of the samples for simple environment . . . . . . . . 64
Table 6.4 Generalization performance of the learned model . . . . . . . . . . . 66

xi



LIST OF FIGURES

FIGURES

Figure 3.1 Kurt3D mobile robot platform. . . . . . . . . . . . . . . . . . . . . . . 21
Figure 3.2 The rotating 2D laser scanner . . . . . . . . . . . . . . . . . . . . . . 22
Figure 3.3 The operation principle ofthe 2D laser scanners . . . . . . . . . . . . 23
Figure 3.4 A sample range image . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 4.1 The simulated Kurt3D robotic platform . . . . . . . . . . . . . . . . . 29
Figure 4.2 The construction of simulated robot body . . . . . . . . . . . . . . . 31
Figure 4.3 The simulated robot body and wheel system . . . . . . . . . . . . . 32
Figure 4.4 Modelling of the laser scanner . . . . . . . . . . . . . . . . . . . . . . 33
Figure 4.5 Simualtion of 2D scan . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 4.6 Sample basic and composite objects . . . . . . . . . . . . . . . . . . . 35
Figure 4.7 Sample scenarios for liftability . . . . . . . . . . . . . . . . . . . . . . 36
Figure 4.8 Interactions with fixed circular obstacles . . . . . . . . . . . . . . . . 38

Figure 5.1 Illustration of the behaviors . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 5.2 Sample interactions with objects . . . . . . . . . . . . . . . . . . . . . 42
Figure 5.3 Illustration of a 3D laser scan using range images . . . . . . . . . . . 43
Figure 5.4 Down-scaling the image, and dividing it with rectangular grids . . 44
Figure 5.5 The coordinate system of 3D scanning . . . . . . . . . . . . . . . . . 45
Figure 5.6 Surface normal vectors and distance features . . . . . . . . . . . . . 46
Figure 5.7 Sample angularhistograms in channels θ and ϕ . . . . . . . . . . . . 46
Figure 5.8 Construction of the feature vector . . . . . . . . . . . . . . . . . . . . 49
Figure 5.9 Diagram of exploration and learning of affordances . . . . . . . . . 50
Figure 5.10 A sample trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 5.11 Optimization of ReliefF threshold . . . . . . . . . . . . . . . . . . . . 53
Figure 5.12 Robot control architecture in execution mode . . . . . . . . . . . . . . 54
Figure 5.13 Parametrization of the laser scanner . . . . . . . . . . . . . . . . . . . 55

Figure 6.1 Snapshots from training environments . . . . . . . . . . . . . . . . . 58
Figure 6.2 The accuracy in predicting affordances . . . . . . . . . . . . . . . . . 59
Figure 6.3 Change in feature count for forward and move-left . . . . . . . . . . 60
Figure 6.4 Change in feature count for move-right . . . . . . . . . . . . . . . . . 61
Figure 6.5 The relevant grids in the range image for each behavior . . . . . . . 63
Figure 6.6 Irrelevant grids that do not need scanning . . . . . . . . . . . . . . . 64
Figure 6.7 The results for thin plate experiments . . . . . . . . . . . . . . . . . . 67
Figure 6.8 The effect of the orientation of thin boxes . . . . . . . . . . . . . . . . 69
Figure 6.9 Affordances of standard objects in various positions . . . . . . . . . 70
Figure 6.10 The effect of radial scanning . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 6.11 The affordances of cylindrical objects . . . . . . . . . . . . . . . . . . 72
Figure 6.12 The effect of orientations of cylinders . . . . . . . . . . . . . . . . . . 73

xii



Figure 6.13 The robot in execution mode . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 6.14 Encountered situations for cluttered room experiments . . . . . . . 75
Figure 6.15 The real world experiments with box shaped object . . . . . . . . . . 76
Figure 6.16 The real world experiments with cylindrical shaped objects . . . . . 77
Figure 6.17 The real world experiments with two boxes . . . . . . . . . . . . . . 78

xiii



CHAPTER 1

INTRODUCTION

Do we perceive all the qualities of the environment to accomplish a simple task like

walking around? Do we detect the objects in our path, distinguish all their properties,

and only then infer whether we can go over them or not? Do we think“there is 80-cm

high wooden object with four legs ahead, it should be a table, therefore I cannot walk

over a it” or“this circular gray object towards my right is a stone, and I know that the

stones that are smaller than my leg length can be walked over, thus I can safely walk

over it”?

In 1970’s classical theories of perception in Psychology suggested that perception

is a generic information processing system that generates a model of the world us-

ing sensory inputs. They claimed that actions, which rely on the world knowledge,

would use these generic world models, and would require an additional mental in-

ference process to extract the necessary knowledge.

J.J. Gibson, one of the most influential figures in the field of psychology, claimed

that this traditional view of perceptual processing is invalid, and proposed a radi-

cally different perspective to the perception problem. According to him [1], the in-

puts that come from the passive sensors are not processed as described in traditional

theories. Instead, he claimed, the required information is directly picked up from the

environment, without any intermediate step. Such a direct perception is only possible

with a richer input concept and specially attuned detectors in the perception system.

Thus, instead of relying on the two-dimensional image that is sensed by the eye, the

information is perceived over various structures and the perceptual system is able to

detect the relevant characteristics during information pickup.

J.J. Gibson coined the term affordances to describe the directly perceivable action

possibilities that environment offers to the animals. In his words:

1



“The affordances of the environment are what it offers the animal, what it
provides or furnishes, either for good or ill. The verb to afford is found in
the dictionary, but the noun affordance is not. I have made it up. I mean by
it something that refers to both the environment and the animal in a way
that no existing term does. It implies the complementarity of the animal
and the environment.”[1].

A stone offers throw-ability affordance and a stair provides the climbability affor-

dance if the observing agent possess the capabilities to perform the correspond ac-

tions. The concept of affordances is deliberately defined over the animal-environment

ecological system, thus it includes the properties of both the animal and the environ-

ment. As a result, same object or environmental situation affords different actions for

different agents. For example, a table which does not offer traversibility affordance for

an adult may offer traversibility to a crawling-infant.

Although J.J. Gibson studied only human visual perception, and described the

characteristics of the affordances concepts only over visual variables and examples,

the theory provides valuable insights for the field of autonomous robotics as stated

in [2].

The work reported in this thesis is carried out within the MACS (Multi-Sensory

Autonomous Cognitive Systems interacting with dynamic environments for perceiv-

ing and using affordances) project 1, which specifically aims to “explore and exploit

the concept of affordances for the design and implementation of autonomous mo-

bile robots acting goal-directedly in a dynamic everyday environment.” In order to

attain such an objective, a completely new control architecture is being designed to

fully utilize affordances in a goal-oriented perspective. As a result, “by interfacing

perception and action in terms of affordances, a new way for reasoning and learning

will be provided to connect with the reactive robot”.

Traversibility is a fundamental affordance for autonomous robots, since most ac-

tions depend on their mobility. The traversibility problem becomes very interesting

case for studying affordances when one does not limit himself/herself with simple

obstacle avoidance. The classic approach to traversibility treats all objects around as

obstacles, where the robot tries to avoid making any physical contact with the en-

vironment, and only heads for open-spaces to traverse. In general, the proximity

sensors are employed to detect whether there is an object or not. When such ap-

1 http://macs-eu.org
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proaches are used, the robot’s response would be same whether it encounters with

a wall that is unpenetrable or a balloon that can be just pushed aside without any

damage. Although such modifications can always be made to the classical approach,

the traversibility affordance depends highly on the interaction of the robot with its

environment and is difficult to manually implement. A stair may be traversible for an

hexapod robot, while it may not afford traversibility for a wheeled one. Likewise, a

small stone might afford the traversibility for a wheeled robot, whereas it may afford

non-traversibility for the indoor version of the same robot since the wheel structures

are different. Therefore, each different robot should be hand-coded independently by

considering the dynamics between it and the objects in the environment. A method

that can automatically learn the traversibility affordance from its interactions with

the world through learning is an important problem that needs to be tackled.

In this thesis, we studied how physical affordances of the environment, such as

traversibility for a mobile robot, can be learned. In particular, we studied how the

physical properties of the environment, as acquired from range images obtained from

a 3D laser scanner mounted on a mobile robot platform, can specify the traversibility

affordance.

In the rest of this thesis, first the theory of affordances will be discussed in detail

and its applications in various fields will be provided. In Chapters 3 and 4, the mobile

robot platform and its physics based simulation environment will be given. Next, the

proposed affordance-based perception, learning and control of the robot is presented

in Chapter 5. Lastly, experimental results are reported and discussed in Chapter 6.
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CHAPTER 2

THE THEORY OF AFFORDANCES

“Each thing says what it is . . . a fruit says ‘Eat me’; water says ‘Drink

me’; thunder says ‘Fear me’; and woman says ‘Love me’ ”

— Kurt Koffka

Originally coined by J.J. Gibson, the concept of affordance has been one of most

elusive yet confusing concepts originated in Psychology, influencing fields from Robotics

to Cognitive Science. J.J. Gibson argued that, what we perceive from the environ-

ment, when acting upon it, is not each tiny bit of information that we are able to

sense. Instead, he claimed, we directly perceive what the environment affords or

what it offers for our particular action. For example, if we need a rest, we look for a

surface which provides support for sitting on it, not more. This view was proposed

in reaction to the traditional view, which asserts that, “we perceive the objects as

objects, and extract their meanings as they are stored in our mind’. J.J.Gibson ar-

gued that the affordances (or meanings) of objects are directly perceivable without any

recognition or reasoning stage.

This chapter reviews the concept of affordances, its interpretations and applica-

tions in different areas. In the next section, the evolution of the term in Gibson’s

thinking, is reviewed. Then, the discussions in the Ecological Psychology commu-

nity will be provided in Section 2.2, and the experiments that are done to study the

mechanisms of affordances in the same community will be described. In the last

section, affordance-related studies in autonomous robotics are reviewed.
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2.1 The Evolution of the Theory

J.J. Gibson incrementally constructed his theory of affordances starting from the va-

lence term of Gestalt psychology, which coarsely refers to some type of emotional re-

sponse based on the stimulus received. For example in J.J. Gibson’s words, “The field

of safe travel has a positive valence” for an automobile-driving agent. As summa-

rized in Jones’s article [3], J.J. Gibson, in his very early publications, is talking about

positive or negative inherent meanings of objects, the reciprocal relation between en-

vironment and agent during perception, and the existence and effect of environmen-

tal proportions on animal actions. But all of these concepts, which will become the

main components of the affordances theory, are formulated very abstractly in these

publications.

An important stage in development of affordances, although the term not appear

yet, corresponds to the years of World War II [4], where J.J. Gibson was assigned with

the task to evaluate the performance of pilots and other members of air crew. While

all his colleagues tried to test the depth and distance perceptual abilities with stan-

dard methods mostly in stationary conditions, he questioned the value of such tests

for an agent moving in high speeds. As a result, he concentrated on “the nature of

information for perceiving the layout in motion and events occurring over time”, and

studied on the optical variables, which are used to directly perceive the affordances

of the environment 1.

The concept of affordances first appears in his 1966 book [5], and is further re-

fined in his later (and unfortunately last) book in 1979 [1]. Although J.J. Gibson could

not finish the formulation of the theory, in his second book, he devoted a complete

chapter to the description of the concept, laying out the fundamental aspects of af-

fordances. His most frequently quoted definition of affordances is:

The affordances of the environment are what it offers the animal, what it
provides or furnishes, either for good or ill. The verb to afford is found
in the dictionary, but the noun affordance is not. I have made it up. I
mean by it something that refers to both the environment and the animal
in a way that no existing term does. It implies the complementarity of the
animal and the environment. (J.J. Gibson, 1979/1986, p. 127)

As Gibson had put it, affordances do not belong to the objective environment,
1 For example, optical center of expansion is identified as an optical variable, which is an indicator of

the direction of a glide, and a means of seeing whether the present line of flight is correct or not.
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or to the subjective world of the animal. They belong to ecological system that the

animal and its environment forms. Therefore, in the perception of affordances one

does not only perceive things of the environment, but perceive some combination of

features of the environment and of himself.

In order to understand the background where the concept of affordances were

born, and how the concept of affordances radically challenges the existing views,

one can read J.J. Gibson’s writing:

. . . Orthodox psychology asserts that we perceive objects insofar as we
discriminate their properties and qualities. . . . But what I now suggest
that what we perceive when we look at objects are their affordances, not
their qualities. We can discriminate the dimensions of difference if re-
quired to do so in an experiment, but what the object affords us is what
we normally pay attention to.(J.J. Gibson, 1979/1986, p. 134)

Thus, we do not i) perceive all the properties of an object, ii) classify these proper-

ties into abstract objects, and iii) infer how these objects could be employed in certain

circumstances. Instead, we perceive the invariant combination of variables, defined as

affordances, and utilize them without use of any object recognition or labeling stage
2.

According to Gibson, perception of affordances also entails the economical usage

of perceptual resources. For example, in order to throw a stone to an approaching

dog, we try to find an object, which is large enough to hurt the dog, but not so large,

in order to be graspable. But the color of the stone, or even the abstract type of

the object have no importance in such a situation. We might also use our mobile

phone as well, if it includes the specific combination of features for “throwability”

and “hurtability”.

An affordance is an invariant combination of variables, and one might
guess that it is easier to perceive such an invariant unit than it is to per-
ceive all the variables separately. It is never necessary to distinguish all
the features of an object, and in fact, it would be impossible to do so.
Perception is economical.

2 Invariance is defined as “persistence under change” in broad terms. J.J. Gibson mentioned the
concept in many contexts through his book and devoted one section in Appendices for it. These invari-
ants correspond to the properties which remain constant under various transformations, ie. invariants
of optical structure under changing illumination conditions or under change of observation point. Al-
though J.J. Gibson did not explicitly provide what these invariances are, he gave some clues on the
perception and usage of them. “. . . There must be invariants for perceiving the surfaces, their relative
layout, and their relative reflectances. They are not yet known, but they certainly involve ratios of in-
tensity and color among parts of the array.”(J.J. Gibson, 1979/1986, p. 310)
Likewise, J.J. Gibson is not clear about what he exactly meant by the term variable, and what is the
relation between object properties and variables.
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The discussions on the perception of object affordances naturally includes some

philosophical consequences on the perception of object meanings.

The theory of affordances rescues us from the philosophical muddle of
assuming fixed classes of objects, each defined by it common features and
then given a name. . . . You do not have to classify and label things in order
to perceive what they afford. (J.J. Gibson, 1979/1986, p. 134)

When he includes the “object” term into his discussions, J.J. Gibson is not really talk-

ing on the objects that are defined with the names given by people, but instead with

their concrete existence without use of any label:

. . . it refers only to persisting substance with a closed or nearly closed sur-
face and can either be detached or attached. I always refer to a “concrete”
object, not an “abstract” one. (J.J. Gibson, 1979/1986, p. 39)

After J.J. Gibson, discussions on the concept of affordance and on its place in

Ecological Psychology have continued. Also attempts to formalize the concept has

been made, since it had an ambiguous description as Gibson had left it. In the next

section, some of the most recent attempts from the EC community will be provided.

2.2 Attempts to clarify and/or extend theory of affordances

There has been a vast amount of discussion on the exact meaning of affordance, the

contents of the term in the community of ecological psychology. The discussions

have been intensified on the gaps of J.J. Gibson’s description. Jones, in 2002, orga-

nized a symposium pertaining the topic of affordances, and a special issue in the

Journal of Ecological Psychology was published based on the presented ideas during

this meeting. In this symposium, especially two of the presented ideas include more

concrete definitions of the concept.

In Stoffregen’s formal definition [6], affordance is described as a higher order

property, h = p/q, which is a (special) relation between properties of the environment

(p), and properties of the animal (q). Based on this definition, the animal perception

does not only include perception of the environment, but it also embodies the percep-

tion of self. Additionally, these two categorically different properties are integrated.

Stoffregen asserts that, direct perception is not only fed from optic or acoustic array,

but from global array, which includes self-information like somatosensory arrays.
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Anthony Chemero, in [7], also tries to clarify the theory, by explicitly defining

the affordances as “the relations between the animal’s and environment properties”.

This is a similar definition with Stoffregen’s. From animal’s side, this relation in-

cludes the abilities of the self, and the physical properties like body dimensions.

The effect of geometrical dimensions of bodies and parts of the environment are the

most studied aspect of the affordances. The next section includes experiments, which

study the affect of such dimensions on human affordance perception.

2.3 Experiments in Ecological Psychology

Following the formulation of the theory of affordances, Ecological Psychology com-

munity started to conduct experiments in order to verify that people are able to per-

ceive the affordances of the environment and to understand the mechanisms under-

lying it. We must mention that, although the number of these experiments is quite

high, the diversity is narrow and the research can not go beyond experimenting on

already tested ideas in different contexts.

Since affordances can be roughly defined as the properties of the environment

taken relative to the animal acting in it, there have been efforts to show that the

ratio between an environmental property and a bodily property of the animal have

consequences for behavior. This ratio must also be perceivable, so that the animal is

aware of this measure which, in a way, determines its behavior’s success. Warren’s

stair-climbing experiments (1984) [8] have generally been accepted as a seminal work

on the analysis of affordances, constituting a baseline for later experiments which

seek to understand this affordance based perception. In these studies Warren showed

that animals perceive their environment in terms of intrinsic or body-scaled metrics,

not in absolute or global dimensions. So, my judgment of whether I can climb a stair

step is not determined by the global dimension of the height of the stair step, but

by its ratio to my leg-length. These refer to functionally relevant variables3 in the

animal-environment system. These variables and some constant ratios of them help

the animal to determine whether an action is afforded or not4.
3 Different from J.J. Gibson, “variables” term here, directly corresponds to some physical properties

of the animal and objects. In Gibson’s terminology, the concept of “variable” refers to some “high-
order” information embedded in the light.

4 These ratios which determined whether an action was afforded or not were called the critical
points by Warren; also, the ratios which determined whether an action can be performed with minimum
energy consumption and maximum ease were called the optimal points
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This intrinsic nature of human perception is further elaborated in Warren and

Whangs’s walking through aperture [9]. As noted by Warren, “affordances could be

perceived on the basis of intrinsic information, which specifies environmental dimen-

sions relative to the dimensions of the observer in units of some body-scaled or, more

generally, action-scaled metric”. For example, eyeheight5 is such an intrinsic metric,

which is believed to affect the perception of geometric dimensions such as size and

distance. In other words, size and distance of objects are directly perceived as they

are already scaled with reference to observer’s eyeheight. To understand the effect

of this metric on width and height of objects, “perceived eyeheight” information is

changed in these studies. In the experiments, when observers could not recognize

these changes, they made contradicting judgments for objects with constant absolute

values. Mark explicitly studied the factor of awareness in the change of this metric

in [10]. In the experiments, human subjects wore 10cm blocks, and were asked to

determine whether the heights of various surfaces afforded sitting or climbing. Since

the subjects could recognize their eyeheight is changed, they are successfully able to

perceive correct critical points. The results show that perception is based on body-

scaled information, and humans are able to adapt themselves when they recognize

any change in this information.

This view of affordance-perception has been studied from many different aspects.

Some of these studies[11, 12] criticized former studies because they limited them-

selves to only one perceptual source, namely visual information. Instead of limiting

themselves to visual perception, they studied haptic perception in infant traversibility

of surfaces and critical slant judgment for walking on sloped surfaces. These studies are

important because they underlined the fact that all available relevant sensor chan-

nels are employed during affordance perception. While in these experiments human

subjects were asked to judge whether a certain affordance exists or not in a static

environment, Chemero et. al. [13] conducted other experiments, in order to prove

that changes in the layout of affordances 6 are perceivable in dynamic environments,

and found out that the results are compatible with critical ratio values. Another im-

portant work is Oudejans et. al.’s [14] study of street-crossing behavior and perception

5 In [9], eyeheight is defined as the height at which a person’s eyes would pass through the wall
while walking and looking straight in a natural and comfortable position

6 Chemero et. al. categorized events in two groups: physical, and ecological events, where later
refer to the changes in the layout of affordances.
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of critical time-gap for safe crossing. It is shown that not only static properties of the

agent, but also his/her dynamic state is important when deciding on his/her actions.

All referred experiments are performed in one shot manner, and either the subject

is stationary or moving [9], either monocular or binocular vision [15] is employed,

either haptic or visual information [11] is used, either the critical or optimal points

[8] are determined, either searching for affordance or change in the layout of an affor-

dance [16] is examined. In all cases, observers are asked to judge if the environment

affords a particular action or not, and this is isolated from all other cognitive pro-

cesses. Although the study on “detection of change in the layout of affordances”

includes some discussions on human decision mechanisms, it does not provide any

qualitative expansion, and limits itself to the iterative question of “whether this en-

vironment affords X or not?”.

Despite their narrow scope, we can extract some concrete ideas from the experi-

ments in our own application field. First of all, it is shown that both haptic and visual

information is employed in the perception of environment, and in case of one of the

information source is blocked, the remaining one is able to manage the situation.

Additionally, there are clues how human perception system copes with contradic-

tory or incorrect information. The results of these experiments may be employed in

the design of multi-sensory perception system in a robotic platform.

The emphasis given to intrinsic and action-relevant measures also includes impor-

tant ramifications for an affordance-based robotics research, since experiments show

that instead of absolute or global measures, a body-scaled viewpoint should be employed

in representation of any perceptual process. Additionally, in the experiments, au-

thors were able to calculate the constant, so called π proportions, that depend on

specific properties of the animal-environment system. There exists one such ratio

per each affordance, and they solely depend on the functionally relevant variables

of corresponding actions.

An overview of the related experiments shows that they are mostly employed

only as test-beds to validate the existing ideas, and their scope is severely restricted

by the perception of affordances. Other cognitive processes such as learning, high

level reasoning and inference mechanisms are simply untouched, and the link be-

tween affordances and these higher level processes is not established. In the next

section, we will try to close this gap, by presenting some existing studies on learning
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of affordances, and relation of affordances to high-level perception.

2.4 Cognitive Science

The concept of affordances has also been studied within Cognitive Science. In this

section we will review studies on i) learning of affordances, and ii) relation of affor-

dances to high-level perception.

E. Gibson was one of the few people, who tried to explain the mechanisms of

learning of affordances. She claimed that[17], J.J. Gibson was not particularly interested

in development, and “his concern was with perception” only. As a result, he did not

discuss the concept of affordances from a developmental point of view, and only

mentioned that affordances are learned in children [1].

Within her research, E. Gibson defines learning as a process of selection (differen-

tiation), not construction from smaller pieces (association) [18] in her research on de-

velopmental psychology. This point of view entails “discovering distinctive features

and invariant properties of thing and events”, while perceiving their affordances. In

the experiments performed with infants, exploration is found to be crucial that, even

newborns have active probing in order to i) gather environment information, and

ii) explore their own capabilities. Furthermore, it is shown that when infants are

presented the same information over and over, and then an opportunity is given to

choose between that and a new information, they reliably attend the novel informa-

tion. Additionally, as another principle of perceptual learning, organisms use short-

cuts like perceiving an object as a unity or discovering order in events, in order to

benefit from economy in actions and reduction of perceptual information. Many of

the results of these experiments already exist in the original affordances theory of

J.J. Gibson, however they include more concrete ideas that might be used while de-

signing an affordance based control architecture.

Neisser, in his “Cognition and Reality” book [19], employed the concept of affor-

dances in perception of the object meanings. According to him, J.J. Gibson was right,

while stating that meanings of the environment are directly available, and information

is not processed, but it is directly picked up since it is already there (in the light). The invari-

ance attuned detectors are used for this purpose. However, he claimed Gibsonian

view of affordances of perception was inadequate, since “it says so little about per-
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ceiver’s contribution to the perception act”. Instead, he suggests a perceptual system

where a cycling continuous activity over time and space occurs. This cycle “prepares

the perceiver to accept certain kinds of information. . . At each moment the perceiver

is constructing anticipations of certain kinds of information, that enable him to ac-

cept it (information) as it becomes available.” Since every natural object has infinite

number of affordances, this cycle could also be employed to prepare the perceiver

to search for particular affordances at each moment, and attune specific detectors to

perceive these affordances.

According to Neisser, both constructivist7 and direct theories of perception should

be integrated. As a result, in a later paper [20], he constructed a three-layered percep-

tual system, whose first and third layers correspond to direct perception and recog-

nition, respectively8. While direct perception system is identified by the perception

of the local environment, recognition refers to identification of familiar objects and

situations. Contrary to J.J. Gibson, who states that affordances of environment are

directly perceived, according to Neisser, affordances are also perceived by high level

perceptual systems.

J. Norman [21] also “attempts to reconcile the constructivist and ecological ap-

proaches,”, based on evidences from human dorsal and ventral systems. To do this,

he suggests a perceptual system, where two different and interacting visual systems

works. While the dorsal system is mainly responsible from pickup of information

from light to modulate actions, the ventral system is concerned with high level per-

ceptual tasks, like recognition and identification. Thus, according to Norman, it is

straightforward to conclude that “the pickup of affordances can be seen as the prime

activity of the dorsal system”. He additionally limits the concept of affordances to

situations where an action potential exists. To support his two perceptual system

idea, he presents examples from a patient, who lacks a ventral system. The patient is

able to successfully avoid obstacles around, or insert mails into slots in correct orien-

tation using her dorsal system. However, while performing actions successfully, she

is not aware of the objects she is interacting with, thus cannot report them.

J.J. Gibson was aware of the dual-process of perceptual system, while stating

“The verb to perceive has two meanings, one being that of ordinary usage
and the other coming from a puzzle in philosophy and psychology. . . The

7 Constructivist theories favor a model construction phase in processing of the sensory input.
8 The second layer is about inter-personal perception and will not be discussed here.
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two meanings need to be kept separate in the investigation of perceiv-
ing. The act of a perceiver and the content of his mind should not be
confused.”

While Gibson’s affordance theory deals with first meaning, he left out the second

meaning which has a content of “awareness, or of consciousness” out of his affor-

dance concept.

2.5 Robotics

In this section, a number of related robotic studies and how they utilized the affor-

dances concept will be presented. However, a rough overview of the history of au-

tonomous robotics should be provided to prepare the readers for latter discussions.

When whole history of robotic applications is considered, robot paradigms might

be divided into three broad categories, as stated by Murphy in [22]. The oldest ap-

proach, hierarchical paradigm, where the robot is controlled using AI problem solving

techniques, classical AI problem solving techniques, suffer from many problems in

real world conditions like frame problem, and they cannot react in a timely manner in

dynamic environments with inconsistent and noisy sensing. Since the deficiencies in

hierarchical architectures mainly stem from the slow planning module which locates

between perception and action modules, in mid-80’s, researchers tried to eliminate

this heavy component. Influenced from robustness and flexibility in actions, and fast

response abilities of animals and other biological systems, reactive architectures are

emerged as a result. By direct coupling of sensing and action in terms of behaviors,

and by means of interactions between concurrent behaviors, very successful real-

time robotic controls systems were constructed and applied to various domains [2].

However, the absence of a planning module made it impossible to deal with com-

plex tasks, and limited the application areas critically. Thus, in the very beginning of

90’s, third generation architectures emerged from the need of putting planning com-

ponent back into the control mechanism. Hybrid architectures integrate deliberative

component with behavioral modules while not degrading the reactive performance,

and become standard in modern robot control.

The concept of affordances is highly related to autonomous robot control and

influenced studies in this field. The paralellism between the theory of affordances

and reactive/behavior-based robotics has already been pointed out(pp 244,[2];[23]).
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A similar parallelism also exists with studies carried under the heading of action-

oriented perception (pp. 267, [2]). These studies suggested a “qualitative” repre-

sentation of the environment based on the task/intention at hand, and criticized the

classical approach to perception (particularly computer vision) which aimed to re-

cover a metric model of the environment [24].

Many concepts within affordances theory are inherently included in reactive robo-

tics, but they are implemented in these systems in an ad-hoc manner, bringing forth

the famous “art more than science” argument. Although some of these reactive con-

trol systems are explicitly supported by the theory of affordances, since only certain

aspects of the original theory as formulated by J.J. Gibson are used, and modern

discussions of the concept are not utilized in these studies, they are extremely lim-

ited. The use of affordances are restricted to some modules, which are the compo-

nents of already constructed systems. In this perspective, while a number of the con-

trol systems are solely designed to test the ideas on affordances, others do not have

an explicit affordance-related component, but implicitly follow an affordances-based

methodology.

To the best of our knowledge, existing robotic studies utilize affordances in order

to either release or guide their behaviors, but not both. Thus, in this section, we

decided to categorize these works based on this distinction.

Affordances for guiding behaviors

Murphy [23] and Duchon et. al. [25] applied affordances to guide the behaviors, and

did not consider it as a behavior selection mechanism. Since all these studies include

valuable discussions about affordances, we will describe them in detail.

Murphy [23] studied affordances in reactive robotics domain, in order to guide

tracking and fine positioning behaviors in a number of navigation tasks. Arguing

that “progress in mobile robotics relies on progress in perception”, Murphy discussed the

application of a reactive “affordance-based control”, where tasks are accomplished

without the use of explicit perceptual models. In general, the discussions on the pa-

per were focused on the advantages and limits of such methodologies in robotics. For

example, although a much more simple methodology which relies on direct percep-

tion is employed in can collection task, it was found out to work as good as other ap-

plications which use heavy feature extraction and inference mechanisms. However,
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Murphy pointed out that affordances could be applied to only a set of simple prob-

lems, where great care should be taken while designing the behaviors. Additionally,

she argued about the flexibility of the control systems in the face of novel environ-

ment conditions, and how brittle they may become when the robot is expelled from

its ecological niche. Many ideas already included in the ecological and developmen-

tal psychology literature, such as the ones reviewed in this paper, are simply ignored

by Murphy in her discussion of affordance based control architecture.

Like Murphy, Duchon et. al. [25] also studied affordances as a means of hand-

crafted low level motor control mechanisms based on direct perceptual information.

They defined ecological robotics, as “the practice of applying ecological principles to

the design of a mobile robot”, and used a number of optic flow based control laws

for implementing obstacle avoidance behavior in a wandering task, and escaping,

chasing and docking behaviors in game of tag. They benefited the direct relation

between perception and action (direct perception) by mapping perceptual informa-

tion to control parameters of the behaviors, based on the current goals of the robot.

According to Duchon et. al. , some task-specific memory and learning could be incor-

porated, but no central model should be employed in ecological robotics. This work

includes implications on the relation of goal-directed behaviors, decision processes,

and affordances, however the practical application is limited to direct perception of the

environment.

In summary, Murphy, in three case studies, try to incorporate direct perception

in certain reactive modules, while hand-crafting all behaviors in advance. A similar

precoding is employed in Duchon et. al. ’s work, but different from Murphy, other

aspects of affordances are discussed, and explicitly embedded into the system, like

egocentric view of the world. These works show that these type of controllers could

only be employed in reactive modules of an affordance based system, since they

have very loose relation with other aspects of the control like behavior modulation

or high level inference mechanisms. In the next subsection, we will review the robotic

studies, where affordances are used in behavior selection, thus have implications on

many other aspects as well.
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Affordances for releasing behaviors

This section will review the robotic studies, where affordances are used to select ap-

propriate behaviors based on the perceived environment. Utilizing affordances in

such a way seems to better fit to the definition of J.J. Gibson, which states “The af-

fordances of the environment are what it offers the animal, what it provides or fur-

nishes,. . . ”. Additionally, as described in Section 2.3, experiments in ecological psy-

chology examine the role of affordances in releasing human behaviors, not in guiding

them.

Cooper and Glasspool enhanced their existing action selection methodology, by

utilizing the learned affordances of the environment. In their system [26], actions

are organized in an interactive activation network, where both environment condi-

tions and excitation of other nodes in the network determine the activation of each

action. Through unguided exploration trials, robot learns which actions are afforded

in which environmental situations using reinforcement learning. Although this ap-

proach, which learns environment/action associations, includes the basics of learn-

ing of affordances, the cognitive modelling environment, where experiments are con-

ducted, severely limits the value of this study. This environment provides objects,

actions, and interactions, which are all defined over symbolic representations. For

example, when any object is inserted into the environment, its properties are inserted

in it as well, like its shape and color, and the robot is able to acquire this information

exactly in world reference frame. Likewise, the preconditions of actions and the con-

sequences of them are defined precisely, which is unrealistic in real world situations.

Additionally, the relation between their framework and the concept of affordances is

loose since in Gibsonian view, “the concept of affordances went hand in hand with

that of direct perception.” Contrary to this view, their method relies on a heavy mod-

elling process of the environment, where state of the world transduces to internal

representations.

Affordances are utilized in behavior selection, also by Cos-Aguilera et. al. [27, 28]

in a motivation-driven robotic architecture. Different from previous work, a kine-

matic simulation environment is used, and furthermore, not only perceived object

features, but also low level simulated sensor data are employed while learning and

then detecting the affordances of the immediate environment. The central tenet of
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their approach is that, the behavior is determined based on the motivations of the

agent, however if the environment does not afford that action, robot should not at-

tempt it, and seek for objects that provide corresponding affordance. In their former

study, high-level features are extracted from objects, as size and shape information,

and the mapping from these features to the actions are learned through the back-

propagation learning method, in a two-layer feed-forward neural network. In the

latter study, they tried to obtain the invariancy, which is an important concept in the

theory of affordances, in the feature space by clustering the sensor data in an unsu-

pervised fashion. Then, by interacting with the environment and carrying out each

behavior in various objects, the robot learns affordances of clusters for each action in

an incremental fashion. Though the navigation task suits well with the direct usage

of raw sensor data, how this approach could be generalized to other domains is not

clear. Additionally, searching invariant data solely within feature array without any

reference to behavior of the robot has some drawbacks, ie. different affordances are

related to different invariances, thus one such clustering cannot be applied to more

than one action. MacDorman also spent special effort to explicitly extract invariant in-

formation from perceptual features and to use them while detecting the affordances

of navigable environments [29]. To do this, he proposed a method where i) seg-

mentation is performed on potential sources, ii) signatures of the segmented images

are extracted as potential features for invariance, and iii) affordance categories are

found by “statistically filtering out all signature values except those that tend not

to vary among signatures of same affordance category but vary among signatures

of different affordance categories”. In this way, he used both feature array and the

consequences of actions while extracting the invariant data, which persists constant

within same affordance category.

Affordance representation

In [30], Fitzgerald et. al. set forth to construct a system, which elicits an action, with-

out any object recognition stage, but instead by using some (visual) characteristics

of the objects, inline with the affordance concept. The added value of this work is

the explicit representation (although not formally defined) of affordances of objects,

incorporating perception and action in this representation. During the experiments,

the arm of a upper torso of humanoid robot, Cog, is used to poke the objects ahead.
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Experimental setup is limited to four actions (pull in, side tap, push away, back tap)

and four different objects (bottle, cube, car, ball). The aim is to first learn the ob-

jects’ unique motion signatures for certain actions, and then select appropriate ac-

tions to make a given object roll in a certain direction. Since they use constant objects

which are categorically different, they decided to use objects’ orientation informa-

tion in their representation. This feature might be used to distinguish the roll-ability

affordance of “these” objects, ie. a bottle rolls perpendicular to its principle axis of

inertia, where a car’s movement would be parallel to this axis. As a result, the mo-

tion signature of an <object,action> pair is defined as the angle of movement relative

to its principle axis of inertia. During test phase, when a particular object (in a cer-

tain orientation) is required to roll in a certain direction, the motion signatures of

<object,action> pairs are searched, and an appropriate action is selected based on

previous experience. Two points are important here: First, in affordance percep-

tion, only functionally relevant features are used. Since the objects are different from

each other, the principle axis of inertia is important, and motion signature of vari-

ous objects are differently related to this feature. The other point is that, although

the formal representation of affordance is not explicitly done, it can be derived that,

actions are embedded in affordance representation, by means of angle of movement.

Although, actions and functionally relevant features are successfully included in af-

fordance representation, all components are too task-specific. They don’t provide

any general framework, where these components are extracted automatically, thus

the approach could not be applied to different domains.

Implications on affordance utilization in planning

As described above, affordances could be utilized in releasing and guiding the behav-

iors, based on the immediate environment. Thus, the concept have relations to both

preconditions and consequences of the actions executed, having the potential of con-

necting and sequencing different behaviors to acquire a certain goal. In many robotic

studies that deal with affordances, actions are either sequenced based on other exist-

ing mechanisms (ie. activation networks, robot’s homeostatic systems), or they are

not sequenced at all. Similar to ecological psychology field, relation of affordances

with high level processes like planning is very loose. In this respect, MacDorman [29]

studied low level learning of navigability affordances of the environment, and used
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the learned relation between actions, its preconditions and consequences, sensori-

motor mapping in short, in planning of a navigation task. However, his application

could hardly be generalized to other domains since planning was based on low level

sensorimotor mapping.
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CHAPTER 3

Kurt3D MOBILE ROBOT PLATFORM

A mobile robotic platform, Kurt3D, (Figure 3.1) and its physics based simulated

model is used in this work. This chapter provides the specifications of the robot

and its utilized components. The detailed description of its simulator will be given

in the next chapter. Kurt3D robot platform is an extended version of Kurt 2, which

was mainly designed for sewerage inspection task, and commercially available from

KTO - Kommunikation und Technologietransfer Odenthal 1. As the 3D tag in its

name implies, this robot is equipped with a 3D laser range finder, which is a product

of Fraunhofer Institut für Autonome Intelligente Systeme2.

3.1 The Robot Body

With a size of 45 cm (length) x 33 cm (width) x 47 cm (height) and a weight of 22.6 kg,

robot’s elongated rectangular base body carries several sensors and actuators on top

of it. The robot’s locomotion system is composed of six identical wheels, with diam-

eters of 11 cm, three on the left, and three on the right sides of the base body. The

wheels, which reside on the same side of the body, are connected by a toothed belt

drive, resulting in a differential drive system. Besides its fundamental sensor, laser

scanner, Kurt3D is equipped with a number of additional sensor modalities, includ-

ing two pan-tilt color cameras, eight infrared proximity sensors, and two tilt sensors.

While its 3D laser scanner is principally utilized to construct the 3D model of the

environment in various applications, cameras might be used both in object recogni-

tion and to guide the driver of the robot in teleoperation tasks. Furthermore, laser

scanner readings could be fused with camera data, to acquire a rich model of the

1 http://www.kurt2.de/
2 http://www.ais.fraunhofer.de/ARC/kurt3D/
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(a) Front view (b) Side view

Figure 3.1: The actuator and sensor modalities of the Kurt3D mobile robot platform
are illustrated.

environment.

Although several sensors are provided with Kurt3D robot platform, since only

3D laser scanner is used in perception of the traversibility affordance of the environ-

ment, only this sensor will be described in the next section. [31] includes detailed

specifications of all sensor modalities.

3.2 2D Laser Scanner

Since the information about shape and distance of objects in the environment is cru-

cial for most of the applications in mobile robotics, laser scanners have become pop-

ular in the community. They are used in a broad range of applications, from obstacle

avoidance [32] and feature extraction [33], to map building [34] and self localization

[35]. They are also suitable for outdoor robotic tasks, since some of them have a range

up to 100 meters [Cyrax 2500], and roughness of the terrain is explicitly available.

When compared with other sensor modalities, laser scanners provide more ro-

bust, accurate, dense, and reliable data. For example, unlike camera sensors, they are

robust in the face of illumination changes. Moreover, while many proximity sensors

are highly sensitive to material characteristics and surface orientations (ie. sonar sen-

sor), these properties have negligible effect on the range image obtained from laser

scanners. As a disadvantage, although laser scanners are quite fast in 2D mode, they
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Figure 3.2: The rotating 2D laser scanner.

might become too slow for fast real-time robotic systems, when they are used in 3D

mode (because of the slow vertical rotation). The details of 2D and 3D scanning will

be provided in the next section.

3.3 3D Laser Scanner

In this section, how laser beams are utilized in distance measurements will be de-

scribed, and then operation principles of laser scanners will be presented.

A broad range of scanning hardwares and methods are available in the market,

to obtain the 3D range map of the environment. While some of them are able to fire

their laser beams in 3D directly, by swapping the area of a cone 3, their lower cost

alternatives utilize one or more 2D laser scanners in various setups. For example in

[36], two 2D laser scanners, one mounted horizontally, and other vertically, are used,

and their readings are combined to obtain 3D data. In our case, the 3D laser scanner

of the Kurt3D robot platform is based on SICK LMS 200 2D laser scanner, which is

mounted on the robot with a standard RC-servo motor. Having a horizontal rotation

axis, the 2D laser scanner pitches up and down (Figure 3.2), scanning the 2D slice of

the environment in each pitch angle.

The range of the objects are calculated by measuring the time interval between

an emitted laser pulse and reception of the reflected pulse. A laser beam is emitted

from the sensor, when it meets with an obstacle, it is reflected back, and received by

the photo detector. The time between emission and reception, time-of-flight (TOF)

3 http://www.neigps.com/products_cy_2500.php (Last accessed on August 28, 2006)
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Figure 3.3: The operation principle of the 2D laser scanners. The mirror, which rotates
(with 4500 rpm) around its vertical axis, allows the laser beams to be reflected in
different directions, and and its 45◦ constant slope with the horizontal plane enforces
the laser beams to be transmitted along the same scanning plane.

of the laser beam in other words, gives an estimate on the distance to the obstacle.

However in this way, the range information in only one direction is obtained. Thus,

in order to acquire the measurements in various angles (directions), a rotating mirror

is utilized, which redirects the beams in successive angles. In this way, a rotating

laser beam in a plane produces the 2D slice of the environment, a range value for

each angle in this plane. This plane is horizontal relative to the scanner body, when

SICK LMS 200 is considered. Figure 3.3 demonstrates the operation principle of the

2D scanner.

The SICK LMS 2D laser scanner has a horizontal range of 180◦, with resolution

choices of 0.25◦, 0.50◦, and 1.00◦, resulting in 721 range readings at maximum in a

two-dimensional scan. Using the pitch mechanism that is described above, in its 3D

mode, the scanner is able to sweep a vertical range of ±82.8◦, with a resolution 0.23◦

at maximum. Figure 3.4 shows a range image of an outdoor 3D scan, where the

grayness corresponds to the distances of the objects.
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Figure 3.4: The range image obtained from 3D scan, and the photograph of the cor-
responding environment.
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CHAPTER 4

MACSim: A PHYSICS-BASED KURT3D SIMULATOR

MACSim is a high fidelity simulation environment that models the Kurt3D robotic

platform and its environment. Built on top of a commercial quality open-source en-

gine, ODE1 (Open Dynamics Engine) , MACSim accurately simulates the objects,

robot parts, and their dynamics in a 3D world. MACSim additionally benefits from

the functionalities of KODEX (Kovan ODE eXtension)[37], which extends the capa-

bilities of ODE in many aspects.

Simulation model provided in MACSim matches closely to the real Kurt3D robot

in many aspects. Based on their physical properties, such as mass, size, and center of

mass, all parts that constitute the robot are modelled as rigid bodies. Later, junction

locations of these components are measured, and they are assembled with appro-

priate joints to acquire the complete simulated robot. In order to simulate different

actuators of the robot, such as wheel systems or camera servo motors, the joints are

virtually constrained and motorized with the parameters obtained from real robot.

Realistic sensor modelling is also very crucial, since robot actions and control

relies on its perception of the world. While ODE provides excellent support for mod-

elling rigid body dynamics 2 based on laws of physics, similar to many low level

engines, virtual sensors are not explicitly supported. For example, there is no ready-

to-use acoustic signal or infrared beam that could be sent or received. Kurt3D is

equipped with three major sensor modalities, as described in Chapter 3, and all of

these sensors are simulated in MACSim. For laser scanner and infrared proximity

sensors, ODE’s ray geometry and collision detection routines are utilized, and ray

1 http://ode.org
2 The flexible or deformable bodies, like ropes and cloths are not supported in ODE. “Dynamics”

is the key word here, which refers to the modelling based on physics laws. Movements of the objects
and the collisions between them are computed relying on physical properties like mass , center of mass,
inertia, gravitational force, frictions, etc.
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intersection method is used. For color cameras, OpenGL’s backbuffer data is em-

ployed. Since real world images and the data acquired from OpenGL rendering are

qualitatively different, KODEX’s shading, shadow rendering, and easy-to-use texture

rendering features are utilized. Moreover, in order to close the gap between reality

and simulation, sensor and actuator parameters are calibrated, based on the “same

setup experiments” in virtual and real worlds.

It is very important to support easy maintenance of the whole simulation envi-

ronment, such as creating a virtual world, accessing and changing any simulation

element during simulation, etcetera. For these reasons, MACSim provides a very

elegant interface for simulation supervisor functions. First, an artificial 3D world

with a robot inside can easily be created by editing configuration files3, which are

loaded using KODEX’s file loading module. Through this, users are able to construct

the robot and environment according to their requirements, in a modular fashion.

Moreover, both simple and complex objects can be inserted into or deleted from the

virtual world during execution of the simulator. Using MACSim’s supervisor inter-

face functions, users are able to access all information about the objects, their sizes,

geometries, or colors, and it is possible to change these properties in run-time. In

summary, all these interface functions are extremely useful, for especially training

experiments, where the environment should be created and changed dynamically

according to the needs. Note that, various sample ready-to-use objects, from simple

ones like boxes, and cola cans, to more complex ones like ramps, doors, and tables

are included in simulator software as XML configuration files.

One other important characteristic of MACSim is that it shares same interface

functions with real Kurt3D robot platform. This enables easy and very fast code

migration from simulation to real world, and vice versa.

4.1 Overview of the Existing Simulation Environments

Table 4.1 presents an overview of the comparison among the software packages that

are either designed as general purpose modelling tools, or for specifically robotic

applications. Since the table intends to give a general and rough overview, all com-

parisons are performed on Yes/No basis. For example, although they have same No

3 Configuration files are kept ing XML file structure
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label, the cost of Karma physics engine, when used with UsarSim, would be much

cheaper than other commercial products.

First major distinction appears on their design considerations, and how they

model the world and time. Some software packages, that simulate the world only

based on kinematic laws4 provide models in very low fidelity. When compared with

dynamics simulators, they provide very fast simulation environments. Articulated

rigid body dynamics on the other hand, is a very crucial requirement for KURT3D

simulation environment, in order to model the realistic interactions with world.

The cost of the simulation software is very important as well. Commercial pack-

ages generally provide many features, like realistic 3D world models, fast and ac-

curate methods, and elegant graphics. They are specialized for different application

environments like games (Havok), industry mechanical design (Adams), or robotics

(Webots). Although they are appealing, we decided against their use, since the sim-

ulators built using commercial packages, often require renewal of licenses, which

limits the use of developed simulators to the duration of the project that it was de-

veloped for. Open Dynamics Engine on the other hand, as a free and open-source

software, provides 3D dynamic world models, which are compatible with most of

the commercial packages, like Karma (of UsarSim) and Vortex. Additionally, many

commercial softwares (ie. Webots and many games in the market5) use ODE as their

core physics engine.

Another criteria is the general structure of the software packages. Some mod-

elling environments are designed as general purpose simulators, and others are robot

platform oriented. The construction of KURT3D and its environment requires flexi-

bility, thus general purpose softwares are favored.

Besides their technical properties, the activity level of the developer and user

community of the software packages is also very important. Recent open-source

softwares (especially ODE with approximately 10 mails per day in its mail-list) are

very active, when compared with older ones. The support for commercial ones are

mostly based on the licence agreement.

4 In kinematic simulators, objects are massless entities, thus object motions and interactions are
poorly modelled. However in dynamics simulators, the physical properties of the world like mass in
objects, a gravitational force, the frictions between objects are all modelled. As a result, they provide
high fidelity in modelling of motion of the object and their interactions.

5 http://www.team6-games.com/, http://www.bloodrayne2.com/
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Table 4.1: Comparison of the existing simulation environments. The robotic centered packages limit their environment with simulated robot
platforms and focus on the features of the robot. On the contrary, general purpose platforms are able to simulate both robotic and non-
robotic systems, allowing more flexible (and realistic) modelling of environment objects. NA means not applicable for KURT3D modelling.
In some simulations (with non-flexible overall architectures), the target robotic domain is so specific, that, it is almost impossible or very
hard to implement your own robot control architecture.

Teambots Swarm Stage Gazebo Darwin Sigel Dyna MDP Adams Dymola Havok Karma Vortex Webots ODE
Rigid
body
dynamics

No No No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Free Yes Yes Yes Yes Yes Yes Yes Yes No No No No No No Yes
Active Yes Yes Yes Yes No No No No Yes Yes Yes Yes Yes Yes Yes
Robotic
centered

Yes Yes Yes Yes Yes Yes Yes Yes No No No No No Yes No

Sensor
support

Yes Yes Yes Yes No No No No NA NA No No No Yes No

Flexible
architec-
ture

Yes No Yes Yes No No Yes Yes Yes Yes Yes Yes Yes Yes Yes
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Figure 4.1: The simulated Kurt3D robotic platform.

Either 2-D or 3-D, almost all robotic-centered architectures provide sensor sup-

port, based on robot platforms, they already simulated. Gazebo, Webots, and Us-

arSim are among these platforms, which models the world with high fidelity. They

use the exact data of the objects around, and simulate the sensors accordingly. Like-

wise, we will extract the environment data from ODE, create our own virtual sensor

models, and perform experiments for calibration of them with real ones.

Based on all the discussions above, there remains two feasible choices, general

purpose ODE, and robotic-centered Gazebo. Although Gazebo provides many re-usable

features that could be employed to simulate KURT3D, like laser scanners or cameras,

or data visualization tools, it was in version 0.4 and was not mature enough at the

start of the development of MACSim.

4.2 Simulated Model of the Kurt3D Platform

The hardware overview of the Kurt3D robot platform is given in Chapter 3. All sen-

sor and actuator modalities are simulated in MACSim, as demonstrated in Figure
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4.1. However, since solely 3D laser scanner is employed for perception of the world

in traversibility experiments, other sensors and how they are modelled will not be

described in this section. Likewise, the robot crane arm is not used, and thus mod-

elling of this actuator system is not in the scope of this document. In this section, the

construction of the simulated robot body, the modelling of the drive system, and the

modelling of the 3D laser scanner will be described.

4.2.1 Robot Body

The robot body is the most important part of the robot since all sensors and actu-

ators are placed to different locations on it. Additionally, because the interactions

with the environment is done through this part, and the dynamics of the complete

robot is mostly based on it (moment of inertia, mass etc.), physical modelling of this

component has crucial importance.

As shown in Figures 4.2 (a) and (b), the robot body is roughly composed of two

rectangular prisms, which are stacked together, and combined with a fixed and rigid

joint. From now on, we will call the upper portion as the bulk, and the lower one as

the base. While the base is responsible from the working of the locomotion system

(since the wheels are attached to it), all other modalities reside on the bulk. Thus,

both cameras, the laser scanner, the metallic frame which carries the notebook PC,

and the simulated crane arm as well, are all mounted on top of the bulk. It also

houses the infrared proximity sensors at its periphery.

The bulk and the base have similar geometrical shapes, and they are modelled

as a rectangular prisms with rounded corners. Modelling these components with

simple, ready-to-use rectangular prisms with sharp corners is not sufficient, since

this would decrease the fidelity of the simulated interactions with the environment.

Thus, these portions are simulated as composite bodies, which are composed of sev-

eral basic geometries, two rectangles and four cylinders in our case. As shown in

Figures 4.2 (c) and (d), two overlapping rectangular prisms with the same height but

with different width and depths are combined in a plus shape, and then the cylin-

ders are placed to the empty corners, resulting in a rectangular prism with smooth

corners. Although the corners of the real Kurt3D’s rectangular body is not exactly

spherical shaped, we did not consider other alternatives such as meshes, since they

are computationally too expensive.
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(a) (b) (c) (d)

Figure 4.2: The construction of simulated robot body. In (a) and (b), modeling of the
Kurt3D base body by combining upper and lower parts are demonstrated. (c) and (d)
illustrates the construction of the these elongated prisms, where former one shows
top view of the sketch of this construction, and latter one gives a dismantled view in
MACSim’s 3D world.

4.2.2 Wheel Systems

Kurt3D is a differential drive robotic platform, with three wheels on the left and three

on the right side. All wheels have identical shape and size, as discussed in detail in

Section 3.1. The wheels are modeled using ODE’s basic collision primitive, cylinder,

and they are connected to the base body using motorized hinge joints6. Figure 4.3

shows a snapshot where textured wheels are attached to the robot body.

The real wheel is a solid cylinder with hollow parts, and surrounded by the shell

of a torus. Since ODE does not support torus geometrical primitive, the wheel is

modelled by simply a cylinder. Using other alternatives such as meshes would slow

down the simulation unnecessarily.

After each wheel is created, a hinge joint with a horizontal rotational axis (vertical

rotation plane) is generated between the wheel and the base, thus it is connected

to the body with the ability to rotate 360 degrees in both clockwise and counter-

clockwise directions. ODE provides the capability to motorize these joints, a desired

velocity with a maximum force could be set for each wheel. However, since the real

wheels on the same side are connected by the same belt drive, and driven by the same

motor, it is not necessary to control each wheel individually. Therefore, similar to the

interface functions that control real robot, three wheels on the same side are viewed

as a wheel system, and they are controlled together (ie. when a desired velocity for

the left wheel system is set, all three wheels on the left side are set to that desired

6 Hinge joints connects the articulated bodies, in such a way that the bodies are allowed to rotate
only around a certain axis, just like the function of the hinges of doors.
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Figure 4.3: The simulated robot body and wheel system. In (a), the body of the
simulated robot, after wheels are attached is demonstrated and the locations of the
junction points are roughly shown. Additionally, the structures which are used to
mount the laser scanner and cameras are illustrated.

velocity).

Since the motors have an output power of 90 W., real robot and its simulated

counterpart are able to reach the specified speed in a short time.

4.2.3 3D Laser Scanner

As demonstrated in Figure 4.4, scanner is roughly a box-shaped object. The sim-

ulated counterpart is generated by combining a number of box and cylinders, for

illustration purposes. Like its real counterpart, it is mounted on a supporting body

(which is glued to the robot bulk) with a hinge joint that allows rotation only around

horizontal axis. Similar to the wheels, the hinge joint of the laser scanner is also vir-

tually motorized, enabling the user to set a vertical angle (range). The virtual motor

mechanism rotates the sensor, making a 3D scan. However, unlike the wheel joints,

which are not constrained, the laser scanner’s motion is limited to an angular range

[−90◦,+90◦] in order to prevent any collision with robot body during rotation.

ODE’s ray collision primitives are used to simulate the laser beams. In the simu-

lation, instead of time of travel, direct distance is obtained using low level functions.
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(a) (b) (c)

Figure 4.4: Modelling of the laser scanner. The front(a) and side views(b) of the laser
scanner, and (c)its simulated counterpart.

To do this, the emission points and directions of the laser beams are computed dur-

ing the simulation, and from that point, 8 meter long rays are generated. When the

ray collides with an object, it’s first contact point is taken from ODE, and the distance

between emission and contact point is computed.

Unlike the real laser scanner, where one laser beam is transmitted to different

directions by a rotating mirror, in MACSim, the 2D scan is acquired in one shot. This

is performed by generating all rays in a plane, which is perpendicular to front surface

of the laser scanner, as shown in Figure 4.5. However, after this level, the procedure

is same: In both real and simulated robot, the scanner is rotated, and in each step, a

slice of the environment is taken. Later, these 2D scans are combined to perceive the

world in 3D.

In order to model the noise in the scanner, a Gaussian noise with a zero mean and

0.25 cm of standard deviation was added to each distance.

4.3 Environment Modelling

Modeling of the environment has great importance because the aim is the direct

transfer of robot control code, from simulator to real world. Both the quality in dis-

play and reality of physical interactions in the simulator depend on many factors,

like illumination conditions, the details on object surfaces, material types, etcetera.

The environmental objects are designed mainly to study different types of af-

fordances, thus many different objects are included into the simulation. Some ob-

jects are attached to the environment, and might be used for navigation experiments.
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Figure 4.5: A snapshot of how simulated 2D scan is performed to acquire the range
values of a planar slice.

Pushability or liftability affordances might be studied with portable objects around.

Additionally, since our environment does not consist of only simple geometries, like

boxes or cylinders, composite objects such as chairs and tables are incorporated into

the environment. These objects, contrary to simple ones, are constructed from many

different basic (collision) geometries. From now on, we will call the objects with one

basic geometry as basic objects, and the others with more than one geometry as com-

posite objects. In composite objects, the connections among the components are rigid,

and the composite behaves as a single body with single mass, and center of iner-

tia. Figure 4.6 show some basic and composite object samples, that are used during

experiments.

During learning experiments, access to exact environment state will be required.

Additionally, in successive trials, one would need to change the objects around and

their properties on-fly. Working in information-rich and diverse environments is es-

pecially important in studying affordances of the objects. For example, in order to

learn the traversibility affordances in the environment, learning module should be

fed by objects, whose numbers, shapes and dimensions are changed between trials.

MACSim gives its user the ability to insert new objects into the environment, delete

existing ones, and change the properties, all on-the-fly.
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Figure 4.6: Some basic and composite environment objects that can be used in affor-
dance test scenarios, are demonstrated.

4.3.1 Loading World Configuration Files

Environment is constructed using XML file loading module. The accepted format of

the XML structure is given Appendix A and all XML descriptions which obey this

format will be loaded in the virtual world.

4.3.2 Objects

As described in previous section, general purpose objects may be either basic or com-

posite, depending on their geometries. In principle, there is no distinction between

these two classes, and the interface functions applied to them. Below, you will find

the functionalities that MACSim provides.

Insertion to/deletion from the environment is possible for both object types. While

all basic objects can be created and destroyed during simulation (on-fly), only means

of creating composite objects are through XML files. Manipulation with objects is

also possible through appropriate interface functions, by obtaining the pointer of the

object, and calling various functions that are described in the following paragraphs.

Color/texture information of objects are extremely useful when camera modality is

used during perception. Thus, it is important to set new colors to objects, and cover

with different textures. MACSim provides methods to learn the unique texture id
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(a) (b) (c)

Figure 4.7: Sample scenarios for liftability. The density and weight are important
object features for certain affordances.

(and its corresponding .bmp filename) of any texture, or to change it with available

textures during runtime.

Changing position/orientation of any object is supported in MACSim. However,

no additional check is performed regarding to possible unstable conditions. Relo-

cated objects may appear inside other objects or in penetration with them. The behav-

ior of the dynamics engine in such situations is unpredictable, and whole program

might collapse in an instant. Thus, users should make their own collision check, prior

to the use of these interface control functions.

Dynamic dimension change in objects is another supported functionality for both

basic and composite bodies in MACSim. The former case is straightforward, since

basic objects include only one collision geometry. In order to access or change any

dimension, user should check the geometry first, and then call appropriate function

specialized to that geometry type. Box, cylinder and sphere bodies are all handled in

this way. Setting dimensions of composite objects is a more complex process, since

they are constructed from many objects with different collision geometries. To ac-

cess and change dimension of any component, users should find the geometry type

of that component, and call the appropriate method for that geometry. Besides its

complexity, since relative positions of components cannot be changed in the current

version of MACSim, dimension changing might not used as conveniently as in basic

objects’ case. The general shape of the body does not remain constant after dimen-

sions of the components are modified.

36



Weight and density is realistically modeled by underlying physics engine in MAC-

Sim. These properties might appear as invariant features for various affordances, like

Pushability and liftability. The heavy objects are difficult to push, if it is not circular

in rotation direction, and the friction with surface is not so low. Likewise, although

magnetizable, some objects may be so heavy that magnetic arm could not lift them.

Figure 4.7 shows a hypothetical scenario, where blue objects are too heavy and learn-

ing module should extract the color as invariant feature. Setting mass of the objects

without changing their volumes will refer to direct changes in densities, and vice

versa. Providing the ability to change the weight and density of objects gives users

the ability to model the environment more realistically, since different real world ob-

jects have different densities. In the current version of this simulator, although direct

setting of mass is correctly modeled, mass computation is not performed in high

fidelity when densities of composite objects are changed.

Force and torque that accumulated over any object can be extracted by using ap-

propriate functions.

Velocity of any object can be obtained or changed by the given interface functions.

When absolute linear velocity for a particular body is set, the object will try to move

in the given direction with constant speed. The collision situations are not tested,

and most probably instabilities will occur, if this function is used carelessly.

Fixed objects

Obstacles are modeled as fixed objects in MACSim. They are attached to the envi-

ronment, thus it is impossible to relocate them during simulations, based on physical

laws. They can only be replaced by using appropriate simulation control interface func-

tions, which corresponds to human intervention to the environment in real world

conditions. Obstacles might be in form of both basic geometric shapes, like boxes

or cylinders, or they might be constructed as composite objects. In Figure 4.8, some

fixed objects are demonstrated. They might be used as circular small obstacles to be

used in navigation experiments.
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Figure 4.8: Interactions with fixed circular obstacles.

Portable objects

These objects are not attached to any body or surface, thus free to move around.

Their behaviors are determined according to physical laws when any interaction with

other bodies occurs. As in the case of fixed objects, they can be constructed by one

basic object, or a number of basic geometries which are combined to form one solid

composite portable object. Different perception and action experiments regarding

to the provided affordances in the environment are possible with portable objects in

various positions, orientations and shapes.
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CHAPTER 5

AFFORDANCE BASED CONTROL OF THE ROBOT

In this chapter, the architecture of the affordance-based robot control will be pro-

vided. First of all, how the robot acts to and perceives its environment, with the

description of the general characteristics of the world will be described. Then, how

the robot learns the traversibility affordance of the environment with respect to its

actions will be described. Lastly, how robot selects its behaviors based on the learned

affordances will be presented.

Currently learning is not integrated into the online control of the robot, thus

Kurt3D has two modes of operation: It could be either in exploration mode, or in execu-

tion mode. In exploration mode, the robot moves in an environment full of objects, and

it tries to learn the traversibility affordance of the environment. In different trials, it

performs various behaviors, and by physically interacting with the objects around, it

learns a mapping between the environmental situations and the results of its actions.

After this exploration phase, it is placed in a room cluttered with various objects

(some of them not seen before). A “high-level” motivation module gives the robot

a preferred movement direction. The robot tries to go in that direction by selecting

appropriate behaviors, that are afforded by the immediate environment.

In this chapter, the behavior repertoire of the robot will be described first. Then, a

description of its world, and how Kurt3D perceives its environment will be provided.

Later, the setup for robot exploration will be given, and how learning is performed in

this setup will be described. In the last section, the control of the robot in execution

mode will be given.
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Figure 5.1: Illustration of the behaviors. The trajectory for each behavior, and the
length of the paths are shown where 3rd movement corresponds to move-forward be-
havior. The 0 and 6 numbered movements, which correspond to turn-sharp-left and
turn-sharp-right behaviors, have a smaller movement range than others. See Table 5.1
for details.

5.1 Behavioral Repertoire

The robot is provided with a set of pre-coded move behaviors, to go in certain di-

rections, like go-to-left, go-forward etc. Each behavior takes control of the robot for a

certain amount of time. As a result, the command that are sent the wheel actuators

will remain same for that period, independent of any response from the environment.

Left and right wheels are set to fixed speeds for each behavior, restricting the robot

to follow a circular arc during any behavior (or forward linear path). Thus the over-

all movement of the robot is the combination of these discrete behaviors, where the

traversed path will be the composition of individual arc segments in the end. Since

the robot is desired to move in certain directions on approximately linear paths, the

execution times are kept small. Such an open-loop control and discrete behaviors are

utilized to ease the design of the affordance based system.

Figure 5.1 illustrates seven simple hand-coded behaviors, which result in move-

ment in seven different directions. As shown, there are three left, three right, and

one forward move behaviors. From now on, these will be called as turn-sharp-left(0),

turn-left(1), turn-smooth-left(2), move-forward(3), turn-smooth-right(4), turn-right(5), and

turn-sharp-right(6) from left to right. The behaviors, numbered between [0 − 6], are

designed such that the total displacement is same in all of them. However, since a
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Table 5.1: The actuator parameters and success criteria for each behavior.

Action Vl Vr t d1 d2

Turn-Sharp-Left 0.06m/s 0.3m/s 30 steps 0.5m −0.33m

Turn-Left 0.15m/s 0.3m/s 40 steps 0.47m −0.49m

Turn-Smooth-Left 0.21m/s 0.3m/s 40 steps 0.72m −0.36m

Move-Forward 0.25m/s 0.25m/s 40 steps 0.8m 0m

Turn-Smooth-Right 0.3m/s 0.21m/s 40 steps 0.72m 0.36m

Turn-Left 0.3m/s 0.15m/s 40 steps 0.47m 0.49m

Turn-Sharp-Right 0.3m/s 0.06m/s 30 steps 0.5m 0.33m

• Vl and Vl : left and right wheel speeds,

• t: execution time,

• d1 and d2: required displacements in longitudinal and lateral axis for a success-
ful behavior.

• One step of simulator corresponds to 80 ms in real world.

turn-sharp-X behavior, which is executed for a long time, would result in a circular

path (instead of an approximately linear path like others), it’s execution time (and

length of the traversed path) is smaller when compared to others. The parameters

that are used in the simulator are summarized in Table 5.1, together with the tra-

versed distances for all behaviors. Along with each behavior, a success criteria is also

provided in terms of the displacement the robot made.

5.2 The Environment and Its Perception

The environment is said to be traversible in a certain direction, if the robot (moving

in that direction) is not enforced to stop as a result of contact with an obstacle. Thus,

if the robot can push an object (ie. by rolling it away), that environment would be

traversible even if the object is on robot’s path, and a collision with it occurs. This

point of view is quite different from classical object avoidance approaches where any

collision with any object is avoided. The physical properties of the objects become

important in our case, and as a result, several objects with various geometries and

dimensions should be included in the world.

In our environment, the objects might have one of the following three geometrical

shapes:

• rectangular boxes ( ) that are not-traversible,
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Figure 5.2: Sample interactions with objects. The snapshots in each row corresponds
to interaction with a different object. The left-most and right-most columns show the
initial and final positions of the robot and objects for the move-forward behavior. The
first contact during behaviors are demonstrated in the middle column. As seen, top-
most two objects afford traversibility. On the contrary, the robot is not able to roll the
object in the bottom, even it is a cylinder.

• spherical objects ( ) that could roll in all directions,

• cylindrical objects

– cylindrical objects that are placed in upright position ( ), thus non-

traversible, and

– cylindrical objects that lie on the ground ( ), and can roll in one axis.

Unlike above ones, these objects do not have a fixed affordance. Their

affordances depend on the orientation of the object relative to the robot’s

collision direction.

Figure 5.2 shows some possible interactions with various objects.

Traversibility affordance of the environment highly depends on distance and shape

of the objects around, and laser scanner readings suit well for this task. Thus, al-
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Figure 5.3: Illustration of a 3D laser scan using range images. Range value in each
laser beam direction is coded as gray-scale values in the image (closer points are
darker, and further ones are whiter). Each row in this image corresponds to one
planar slice of the environment, read by the 2D laser scanner in a specific horizontal
angle (step). Thus, each pixel (x, y) corresponds to one direction, a (α, β) angle pair
more concretely.

though Kurt3D is equipped with many other sensor modalities, only the 3D laser

scanner is utilized in our experiments. In detecting the traversibility affordance, the

robot makes a full 3D scan of the environment, and decides in which direction it is

able to move. From this scan, the robot should extract a set of features, and make its

decisions based on these features. Figure 5.3 shows the result of a laser scan, which

is represented as a gray-scale range image. As seen from the figure, there are two

objects in front of the robot, one spherical object in its front, and one box on the left

of this object. In such an environment, the movement directions except left-forward,

would be afforded, based on the extracted distance and shape features. Next section

describes how the laser scanner data is processed in order to extract these features.

Feature Set

In extracting the features, the range image is processed locally, thus no object or

background detection phase is involved. The raw range data is processed in three

sequential steps, where i) the range image is first down-scaled, ii) this lower reso-

lution image is divided into rectangular grids, and iii) some features that include

distance and shape related information for these grids are computed.

Figure 5.4 shows a 720×720 range image, and its down-scaled counterpart, where
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Figure 5.4: Down-scaling the image, and dividing it with rectangular grids.

four pixels in the first image are averaged into one. The motivation behind averaging

is to decrease the noise in individual laser readings.

The obtained range image is later split into uniform size rectangular grids. As

illustrated in Figure 5.4, each rectangular grid corresponds to one part of the whole

3D scan, which includes distance of the points in that local grid. These rectangular

grids are then studied independent to each other, and from each grid a number of

distance and shape related features are extracted.

Computing features from rectangular grids

There are two feature sets that are obtained for each grid, distance related ones, and

shape related ones. Since, the data explicitly provides the distance information, the

computation of the first feature set is straightforward: i) the closest point in the grid

is found, and its range value is assigned as minimum, ii) the distance value of the

farthest point is assigned as maximum, and iii) the average of all the range value in

the grid is the third distance related feature.

In order to obtain the second feature set, which includes shape information , the

surface characteristics of corresponding grid, are employed. The local shape of any

object could be represented by the normal vector of the surface in that point. In our

case, in order to extract some shape features from the rectangular grid, the distribu-

tion of the normal vectors over this segment is utilized (Figure 5.6). Thus, for each
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Figure 5.5: The coordinate system of 3D scanning. The laser beam (reflected from
P) and its corresponding angles in the coordinate system. (The figure is reproduced
with permission from Stefan Gächter [38].)

point, a normal vector is found, and the distribution of these normals represent the

overall shape of the local grid.

Computing the normal vector For each point in the range image, a normal vector

is computed using the parameters (angles) of the corresponding laser beam. In Fig-

ure 5.5, P is such a point. In this figure, β corresponds to the vertical angle of the

physical rotation of the scanner, and α is the angle of the rotating mirror that redi-

rects the beam in 2D mode. In order to obtain the normal vector, the p vector should

be computed first:

px = r.sin(α).cos(β)

py = r.sin(α).sin(β)

pz = r.cos(α)

where r is the range value, obtained for that point.

We compute the normal vector over three points, two more , p1,p2 for each P are

selected in 3 × 3 neighborhood. The normal vector for each point is computed by

cross-producting vectors p1 − p and p2 − p 1:

N p = (p1 − p)× (p2 − p)

1 The points p1 and p2 are selected such that the p1 → p → p2 are traversed in counter-clockwise
direction
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Figure 5.6: Surface normal vectors and distance features. The block arrows demon-
strate that the features are extracted from the whole of the image, where features
shown with thin arrows, are obtained from individual pixels (points).

Figure 5.7: Sample angular histograms in channels θ and ϕ. (a) and (b) represents the
grids on vertical and horizontal planar surfaces, (c) shows a grid which covers a part
of a spherical surface.

At the end, for each point, 4 different normals are computed (from 4 different <

p1, p2 > pairs), and they are averaged to obtain the normal vector for that point.
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Since the normal vector could be represented by two angles, θ and ϕ (Figure 5.5),

two angular histograms (one for θ and one for ϕ channels) are computed using the

normal vectors in the corresponding grid. Figure 5.7 shows some hypothetical sur-

faces and their corresponding angular histograms. As illustrated, a spherical, a hor-

izontally planar, and a vertically planar surface could be differentiated using these

histograms. For example, the histograms of planar surfaces are more compact, and

the histograms for spherical surfaces are more scattered. Moreover, the horizontal

and vertical grids in the figure, could be differentiated in their ϕ channel, since in

this channel, there is a 90◦ degree difference.

After the angular histograms in both channels are computed for each grid, the

frequency values (for each degree interval) will be provided as features. Thus, if the

interval size of the histogram is h, 2 × h shape features will be computed for each

grid, where 2 refers the two angle channels. As a result, if there are p grids, the size

of whole feature vector would be:

d = p× (3 + 2× h)

where 3 corresponds to the three distance values (minimum, maximum, and mean).

Figure 5.8 shows how the feature vector is formed from these grids.

The histogram is divided into 18 intervals (h = 18), and the range image if split

into 30 × 30 grids (p = 900) so that total number of features computed over a down-

scaled range image of 360 × 360 is:

900× (3 + 2× 18) = 35100

After the features are computed from the 3D laser range scan, the mapping be-

tween these features and traversibility affordances will be learned, as will be de-

scribed in the next section.

5.3 Exploration Mode

In the beginning of its exploration mode, the robot has no prior-knowledge about

the world, it does not even know that movement over a flat ground surface is possi-

ble. By executing its behaviors, and observing success/fail, it gradually learns which

environmental situations afford which behaviors.
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Algorithm 1 Learning by exploration

1: {Exploration phase}

2: for each trial k (from 1 to m) do

3: Put the robot in a randomly constructed environment.

4: Make a 3D scan

5: Compute feature vector, fk

6: for each behavior bi do

7: Perform bi

8: Find result of behavior, ri
k.

9: Put < bi,fk, ri
k > into repository.

10: Reset robot and object positions.

11: end for

12: end for

13: {Learning phase}

14: for each behavior bi do

15: Fetch samples < fk, ri
k > from repository for behavior bi.

16: Find a set of relevant features F i.

17: Train the SVM model, M i, with relevant features.

18: Store F i and M i for perception of affordances in execution mode.

19: end for

48



(a)

(b)

Figure 5.8: Construction of the feature vector.

Algorithm 1 describes how the robot is trained by the means of exploration trials

and a batch learning phase. In the rest of this section, the modules of the learning

architecture (Figure 5.9) will be provided.

In each trial of the learning phase, the robot is placed in a different environment,

where objects are distributed around, with random positions and orientations. Fig-

ure 5.10 shows a sample learning setup. Prior to its action, the robot performs a 3D

scan, and the features are computed using the method in the previous section. Then,

the behavior is executed for a certain amount of time, and the result of this action, in

terms of success or failure is found. In order to find the success of the behavior, the
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Figure 5.9: Diagram of exploration and learning of affordances.

displacement of the robot is extracted from the simulator, and it is compared with a

pre-defined success criteria specified by d1 and d2 in Table 5.1. A more straightfor-

ward alternative, the collision check, would not give the true success of the behavior,

since the robot could collide with an object, roll it, and proceed on its path. Figure 5.10

illustrates some snapshots from intermediate steps of these trials2.

5.3.1 Selection of Relevant Features

When the feature vector is formed using the method described earlier, the size of this

vector would be on orders of tens of thousands. Most of the features in this vector

would be irrelevant for a particular affordance, thus do not require to be further

processed. For example, if the robot looks for the affordance to move in forward

direction, only the grids, which are horizontally centered in the range image would

be relevant. The features, which are computed from other grids do not need to be

processed, and should be filtered out. In the following section, the feature selection

2 The corresponding movie can be downloaded from http://kovan.ceng.metu.edu.tr/
˜emre/setup.mpg
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Figure 5.10: A sample trial. The left-most snapshot shows the initial position of the
robot. The two snapshots in the middle shows the successful traversing trials when
move-forward and turn-sharp-right are applied. The figures on the right corresponds
to unsuccessful trials, where robot performs turn-left and turn-smooth-left behaviors.

method, which automatically selects the relevant features, will be described.

ReliefF Method

Originally proposed by Kira and Rendell [39], ReliefF [40] algorithm aims to esti-

mate the quality of each feature in a feature set, based on its impact on the target

category of particular samples of this set. In [41] the family of ReliefF algorithms

are systematically analyzed, and proved to be robust in the face of noise and incom-

plete data. Unlike many other heuristic methods, which work with the assumption

of conditional independence of the feature, ReliefF Method is able to deal with the

conditional dependencies between features, thus is very popular in the literature.

Furthermore, it is successfully applied to huge datasets with feature numbers on the

order of thousands, for example in order to select the relevant pixels in images that

distinguish between cats and dogs [42].

In ReliefF algorithm, if a feature is important, then it should be able to distinguish

very similar samples with different target values (categories). Thus, the weight of

any feature is increased, if it has similar values for the samples in same categories,

and it has distinct values for samples in different categories, especially for samples

that seem to be very similar to each other. The ReliefF algorithm, which is the two-

category case of Kononenko’s extended version [40], is presented in Algorithm 2. We

employed this modified version because it is able to tackle with noise in the data, by

computing the weights over several (K) similar samples.
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Suppose S contains n samples, s1, ..sn, where each sample corresponds to a fea-

ture vector in d-dimensional space. The target values (categories) of these samples,

namely traversibility and non-traversibility, are given in vector c, where ck corre-

sponds to the category of the sample k. Given the set of feature vectors, and their

target values, ReliefF algorithm first computes the weights of each feature, w1, ..wd.

Then, it filters out some of the features, if their weight (or relevance) is smaller than

a pre-determined threshold, τ .

Algorithm 2 ReliefF
1: wf ← 0, where 1 ≤ f ≤ d (initialize weights)

2: for i = 0 to m do

3: Select a random sample feature vector sr from S

4: Compute distance of sr to all other samples in S

5: Find k nearest samples, which are categorized as cr, and put them into set of

nearest hits,H. (H = {h1, ..hk})

6: Find k nearest samples, whose categories are different from cr, and put them

into set of nearest misses,M. (M = {m1, ..mk})

7: for f = 0 to d do

8: wf ← wf −
1

m·k

∑k
j=1
| srf

− hjf
| + 1

m·k

∑k
j=1
| srf

−mjf
|

9: end for

10: end for

As described in Algorithm 2, if the value of a feature is different in its nearest

misses, then this feature is thought to have impact on the target value differences,

and its weight is increased. However, if a feature’s value is same in the samples,

whose categories are different, then, this feature’s weight is decreased, since it has no

effect on the target value.

There are two main parameters which affect the results of this algorithm. k, which

is used to deal with noise, is one of these parameters. 10 is found to be a reason-

able value for k, as suggested in [40] (increasing and decreasing of this value do not

change the performance much in our experiments). However, the threshold value,

τ , directly determines which features to be filtered out. Selection of a wrong τ could

filter out very important features. Therefore, we optimized this parameter for each

sample set (behavior type). Figure 5.11 illustrates our approach.
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Figure 5.11: Optimization of ReliefF threshold.

5.3.2 Classification of Features

In this study, Linear Support Vector Machines (SVMs) are used to label the relevant

features as traversible and non-traversible. SVMs, which are introduced by Vladimir

Vapnik in 1998 [43], are powerful supervised learning tools used in classification and

regression problems. They are very robust when the input data is noisy, and able

to deal with large datasets and input spaces. In SVMs, the input space is converted

into a high-dimensional feature space, where a hyperplane that best separates the

two classes, is computed for a training sample set. Then, the prediction is performed

over this hyperplane. An external library [44] is utilized in learning from the training

samples that are obtained during exploration trials.
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Figure 5.12: Robot control architecture in execution mode.

5.4 Execution Mode

In this mode, the robot is governed by a “high-level” motivation module. The be-

haviors, whose affordances will be searched, are selected based on a preferred direc-

tion, that is sent from this module. After the desired behavior is selected, the fea-

tures which are relevant to this behavior (identified during exploration trials), are

fetched from the repository. Later, these features are used in determining (predict-

ing) whether the behavior is afforded or not. If it is afforded in robot’s immediate

environment, the behavior will be performed. If not, a new behavior, which would

move the robot close to the preferred direction, is requested. The control architecture,

during the execution mode is provided in Figure 5.12.

The set of relevant features are utilized in three different levels, i) in parameter-

ization of physical sensors, ii) in identifying relevant rectangular grids, thus only

computing features over these grids, and i) in filtering out the individual irrelevant

features on the relevant grids, while predicting based on the learned SVM and de-

tecting the affordances.
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Figure 5.13: Parametrization of the laser scanner. Parametrization is based on the rel-
evant grids of range image. The left figure illustrates a hypothetical relevant feature
set, and right figure shows the horizontal range of laser scanning.

5.4.1 Parameterization of the laser scanner

Some parts of the environment would affect the affordance of a behavior, and some

parts have no relation with that behavior. Therefore, in order to save the physical

resources and time, these parts should not be scanned. In our case, the range of scan-

ning angles could be constrained based on the relevant angular segments. Figure 5.13

demonstrates a hypothetical relevant feature set, where grids, that locate in vertically

middle region of the range image, are relevant. As a result, the horizontal scanning

range is not limited, but the laser scanner is modulated to scan a constrained vertical

angular range.

5.4.2 Filtering Out Irrelevant Features

After the physical sensing is constrained and only a constrained part of the range

image is acquired, the remaining irrelevant features are filtered out. This is done in

two stages:

1. The grids that contain relevant features are found, and shape and distance re-

lated features are computed over only these grids.

2. Since some grids may include relevant and irrelevant features, the later ones

should be filtered out.
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5.5 Discussion

As discussed in Chapter 3, laser scanners become very slow when they are used in

3D mode. For example, our sensor make a full 3D scan in 45 seconds. However,

the world part, which have relations with the desired behavior, are some behaviors

might not require such a full scan. As illustrated in Figure 5.13
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CHAPTER 6

EXPERIMENTAL RESULTS

In this chapter we first describe the experiments conducted towards the learning of

traversibility of the KURT3D robot from range images, and present the results. In

the rest, first, the two experimental environments in which the training of the robot

is carried out is described. Then, the results of the method used for learning relevant

features is presented and described. The learned knowledge and the generalization

performance of the method is systematically evaluated, using different training cases

and evaluating the learned knowledge against different novel objects and surfaces.

Finally the results of the learning, which is carried out in MACSim, is tested on the

real KURT3D robot on a number of experiments.

6.1 Experimental Setup

The learning and a number of systematic evaluations of learning is carried out only

in MACSim. Two types environments called, simple and complex, are used for the

experiments. In the simple environment, a single random object is randomly placed

in front of the robot whereas in the complex environment, a number of random objects

are randomly placed in front of the robot.

In the simple environment, the robot tests the existence of traversibility affordance

for only move-forward behavior, whereas in the complex environment all the behaviors

in robot’s repertoire are tested. A summary of the parameters that are used for the

construction of these environments are presented in Table 6.1 and snapshots from the

two types of environments are shown in Fig. 6.1.

In order to learn the perception of traversibility affordances of a complex envi-

ronment in different instances, the robot should be provided with a crowded world
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Table 6.1: The parameters of environment construction.

Simple Environment Complex Environment
Angular Range 0◦ (fixed) [−90◦,+90◦] of robot’s

frontal area
Orientation random rotation in ver-

tical axis
random rotation in ver-
tical axis

Distance 40cm from robot body
(fixed)

[ 20cm − 170cm] from
robot body

Object number 1 object 10 objects
Shapes randomly select among

( , , , )
randomly select among
( , , , )

Dimensions 1 [20cm− 40cm] [20cm − 40cm]

(a) Simple Environment (b) Complex Environment

Figure 6.1: Snapshots from training environments. In the particular sample environ-
ment, demonstrated in (a), a cylinder is placed in front of the robot. However since
the object category is randomly selected, it could have been any of the ( , , ,

).

during its exploration trials. The complex environment is designed for this purpose.

Contrary to its complex counterpart, simple environment set is specially designed

to show the generalization capability of the affordance based approach. In this set,

one of the four different types of objects is inserted in an instance. Thus, we can train

our model, using only a subset of these objects, and later test the model by other

subset. In this way, we can show that, if possible, the robot is able to generalize the

learned model, to novel objects.

1Dimensions refer to diameter, width, height, and depth for different geometries.
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Figure 6.2: The accuracy in predicting affordances.

6.2 Learning in Complex Environments

3000 different setups are used in this experiment, 2000 of them are utilized for train-

ing of the model, and 1000 for testing the performance. As shown in Figure 6.2, the

prediction accuracy of the robot for all different behaviors is around 94%.

Learned Relevant Features

In this section, the relevant features that are obtained by optimizing the threshold

parameter of ReliefF algorithm, will be presented. In Figure 6.4, the performance

change during this optimization phase is demonstrated. Additionally, the mapping

between relevant feature numbers and their corresponding performances are pro-

vided. As shown in the figures, between 100− 400 features among 35100 features are

found to be relevant for perception of the traversibility affordance for various behav-

iors. In other words, at most, 1.1% of the whole feature set is found to be relevant in

detection of affordance of any behavior.

Table 6.2 provides the optimized threshold values and the number of relevant

features. Similar values for symmetric actions might have been expected, however

it did not appear in the table. Since, the size of the training set is not high relative

to the space it represents, we think that it becomes more similar if training set size is

increased.
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Figure 6.3: The change in relevant feature count and performances during optimiza-
tion of threshold value of ReliefF for behaviors in forward and left.

Learned Relevant Grids

In order to identify the important regions in the images for different behaviors, the

relevancy in rectangular grids will be examined. The grids, which include relevant

features are marked as relevant. In Figure 6.5, the relevant grids for all behaviors are
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Figure 6.4: The change in relevant feature count and performances during optimiza-
tion of threshold value of ReliefF for behaviors in right.

shown over a two-dimensional image, where the darker areas correspond to relevant

grids, and lighter areas correspond to irrelevant grids. As shown, only one region of

the whole image is found to be relevant for each behavior. Moreover, the relevant

grids shift from left to right, when the movement directions vary from left to right.

For example, in forward movement, only the grids which locate in the middle of the

range image are relevant, and none of these grids are relevant for a turn-sharp-X

behavior.
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Table 6.2: The optimized threshold values and the number of relevant features.

Behavior Optimized threshold Number of relevant features

0.025 121

0.03 106

0.01 341

0.0175 146

0.0125 250

0.0125 355

0.02 207

Learned Relevant Features

In order to determine exactly which features are relevant, the relevancy is examined

by grouping features as i) distance related ones, ii) shape related ones in ϕ channel,

and iii) shape related ones in θ channel. For the move-forward behavior, 12% of the

relevant features are distance related ones, 66% are the frequencies from ϕ channel,

and 22% are the frequencies from θ channel. The relevant intervals are [80◦, 180◦] for

ϕ and [−20◦,+20◦] for θ channels. This can be interpreted as the vertical shape of the

objects are more important than horizontal shapes in determining their traversibility

affordances. This agrees with the physical properties of the objects and their relation

to affordances. and have different shapes in horizontal, but same affordances.

But the shape in vertical distinguishes the traversibilities of the objects , , and

.

Efficiency in affordances perception

The economy in affordance perception is acquired in three levels:

• Sensor level: The 3D laser scanner is parameterized based on the vertical range

of relevant grids. The bottom and top regions, which correspond to the base

body of the robot, and sky (or ceiling) are found to be irrelevant for traversing
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Figure 6.5: The relevant grids in the range image for each behavior. From left to
right: Turn-Sharp-left, Turn-Left, Turn-Smooth-Left, Move-Forward, Turn-Smooth-Right,
Turn-Right, Turn-Sharp-Right.

over the ground (Figure 6.6). In order to obtain the horizontal band in the range

image, it is adequate to make a vertical scan between angles [50◦ − 90◦], saving

76.6% scanning time.

• Feature extraction level: Since 2D scanning of the laser scanner could not be

adjusted (ie. by defining a horizontal angular range), many irrelevant grids are

also read. For example, 45 grids are relevant for move-forward behavior, and a

total of 8 × 30 = 240 grids are scanned. Approximately 81% of these grids are

not required to be processed to extract distance and shape features.

• Affordance Prediction level: After the features are computed over the relevant

grids, only a small amount of them are used in predicting affordances. For

example, 146 features among 45 × 39 = 1755 features are relevant for move-

forward behavior. (39 is the number of features for each grid, and 45 is the

number of relevant grids, mentioned in previous item). Thus, 91% of them are

only employed in prediction level.

6.3 Learning in Simple Environment (for Evaluation of the Generaliza-

tion Performance)

A total of 1000 samples are used in training and test trials. In each sample, only one

randomly selected object is placed in front of the robot. Thus, the whole set is the

union of samples taken for each object category: , , , and . Table 6.3

summarizes how the objects are distributed in the whole sample set, and the success

rate of the move-forward actions within the sets of object categories. As seen, while

object is always traversible, and objects do not afford traversibility for the
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Figure 6.6: The irrelevant grids need not to be scanned. The left figure is the range
image of a full scan and the right figure is the range image when the 3D scanner
is adjusted to vertically scan only relevant grid region. The black rectangular and
triangular shaped regions on the bottom of the left image are produced by the com-
ponents of the robot. The limitation in rotation of the 3D laser scanner is the reason
of the black band on the top of the left image.

Table 6.3: The distribution of the samples for simple environment

Count Success rate
276 0%

233 100%

238 0%

253 53%

simple environments, and is successfully traversed approximately half of the time.

As presented in Table 6.4, 16 different set of object categories are used to train

16 different models. This provides us a means of constraining the learning space to

certain object types. For example, in case 0, no object is included into the training

set, case 2 is trained only with box objects, case 6 with box and sphere, and in case

16, all objects are included while training. Next, each model is tested with all object

categories one by one, and the prediction accuracy regarding to the traversibility

affordances for that object categories’ are computed. No sample is placed both in

train and test sets in any situation. When there is overlapping in object categories in

training and test sets, same sample is not allowed to be placed in both sets. Thus, in

such situations, the samples of the same category are randomly selected for training

and test sets.

When the training set includes only one category of affordances, the model pre-

dicts same affordance on all objects:

• In cases 2,4, and 7 training is performed with only not-traversible object, thus
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all test objects are perceived as not-traversible (completely false predictions for

and ).

• In case 3 only traversible objects are included into training set, thus all test

objects are perceived as traversible. (completely false predictions for and

, and partly false for ).

As presented in the table, the method is able to predict the affordances of the

novel objects when the training set includes samples from traversed and non-traversed

situations:

• Although in case is trained with only object, it is able to predict the af-

fordances of all other objects that are not included in training set with high

accuracy. Cases 8, 10, 11, 13, 14, 15, and 16 are similarly successful in prediction

of novel objects because is included in the training of these cases.

• The remaining cases 6, 9, and 12 which do not include object in their training

set are found to be successful in predicting the affordances of novel objects

include object.

The generalization ability of the model that is trained in case 5 is especially very

successful. Although only one object, , was included in the training set, all other

object affordances ( , , ) are correctly predicted.

Case 6 also provides similar results. In this case, and are included in the

training set, where traversibility is never afforded and always afforded, respectively.

Since this training set includes samples for both success and fail, the affordances of

novel objects ( and ) are correctly predicted.

6.4 Systematic Analysis of the Learned Model

In this section, a number of experiments are conducted to systematically analyze

“what is really learned” during exploration trials. There are three sets of experiments

conducted for this purpose:

1. A very thin rectangular plate is used to analyze which surfaces of boxes were

learned to be important in affordance perception.
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Table 6.4: Generalization performance of the learned model. The left-most two
columns show case number and the set of objects in the environment, where the
corresponding model is trained. The second row shows which objects are included
into the test sample set, where each set contains only one object category. For each of
the given training set, and test object, the accuracy of the learned model’s predictions
are given in the rest of the table.

Case Training objects Accuracy in prediction

1 100 0 100 53.4

2 100 0 100 53.4

3 0 100 0 46.6

4 100 0 100 53.3

5 100 83.8 100 94.7

6 100 100 100 86.4

7 100 0 100 53.4

8 100 83.8 100 95.6

9 99.2 100 100 85.9

10 100 100 100 93.8

11 100 83.8 100 94.7

12 100 100 100 86.4

13 100 100 100 95.6

14 100 83.8 100 95.6

15 100 100 100 94.7

16 100 100 100 94.7
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Figure 6.7: The results of the experiments, which are conducted with a thin plate.
Filled squares for not afforded situations, and circles for afforded ones.

2. All ( , , , and ) objects are shifted in two different axis, and the

change in their affordances are analyzed.

3. The role of the horizontal cylinder’s ( ) orientation with respect to the robot,

will be inspected.

For all experiments, the prediction of the traversibility for move-forward behavior is

studied. These objects are placed, either shifted or rotated in various amounts. The

robot then applies its standard procedure to perceive their affordances: i) a 3D scan of

the environment is done, ii) irrelevant features for move-forward behavior are filtered

out, iii) the affordance is predicted based on the learned SVM model. Next, the result

of these experiments will be discussed.
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Experiments with the thin plate Box objects have many surfaces. These experi-

ments are conducted to identify which surfaces are important in perception of the

not-traversibility affordance for a box object. Thus, we employed a very thin plate,

which is not included in learning trials. In this way, only one surface is perceived

and used in detection of the traversibility, since there is only one plane. This plate

is placed parallel and perpendicular to the ground surface, respectively, as shown in

Figure 6.7.

The parallel plane is shifted in two axis, one movement makes a vertical shift and

the other is in lateral axis with respect to the robot. The object is lifted at most 60

cm, and it is shifted in [−60, 60] cm range. Both extremes make the object disappear

from the relevant region for move-forward behavior, since the robot has a width of 35

cm. However, the parallel plate, independent of its vertical or lateral position, always

predicted to afford traversibility in the forward direction. We think that the similarity

between the ground and parallel plate affected this result. During the exploration,

the ground was learned to provide traversibility affordance.

In the second set of experiments, the thin plate is placed perpendicular to the

ground surface. It is rotated around its vertical axis in [−90◦,+90◦] range, and shifted

in lateral direction. As shown in the Figure 6.7 (b), although the robot has not en-

countered with such a thin object before, the affordance of this object are correctly

predicted. In this figure, the middle columns correspond to the objects that are placed

in front of the robot, such that some parts of these objects impede the forward action.

When inspected in detail, one point in the 4th column and three points in the 8th

column do not afford traversibility, unlike the majority in these columns. Since the

orientation angle of the object in these points is approximately 0◦, and this angle cor-

responds to a situation where the face of the object is fully exposed to the movement

path of the robot, the forward action is not afforded. Same discussion is valid for

the minorities in 5th, 6th, and 7th columns. In these situations, the object is hardly

detected by the 3D laser scanner, since the plane becomes almost perpendicular to

the robot in these cases. The two objects in Figure 6.8 (a) and (b) afford traversibility

even they are on the path of the robot. In these cases, because of the orientations of

the objects (with α = 90◦ and α = 72◦), they are simply not detected.
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(a) α = 90
◦, z = 0 (b) α = 72

◦, z = −0.12 (c) α = 90
◦, z = −0.12

Figure 6.8: The effect of the orientation of thin boxes. Since the number of laser beams
that are reflected from the two objects (a) and (b) is very small, affordances of these
objects are not correctly predicted. However, although the object in the (c) is rotated
in the same amount with (a), it is detected by the laser scanner, since the relative
orientations of the objects are important.

Experiments with standard objects, which are gradually shifted in different direc-

tions The motivation behind these experiments is to analyze i) how the traversibil-

ity affordances are affected with the distances to the objects, and ii) how the system

is affected when never seen scenes (the lifted objects) are provided. In this respect, all

object in different categories are separately placed in front of the robot. The four set

of experiments for these objects are shown in Figure 6.9, where the vertical distance

of these objects from the ground is in the range [0 − 150] cm, and they are placed in

[30 − 150] cm range from the robot in longitudinal axis. In these experiments, the

orientations of the objects with respect to robot, and on their own axis are fixed.

As seen from the figure, the cylinders and spheres afford the move-forward

behavior, independent of their distances or vertical positions. The predictions are

correct since spheres are always traversible. Likewise, in this setup where orientation

is fixed, robot will push the cylinder from the same surface, and roll it, thus are

also traversible. The effect of the cylinder’s orientation on affordance perception will

be inspected in the next experiment set. However, we should first examine the results

obtained from other two objects.

Although they have different surface characteristics, the boxes and the cylin-

drical objects provide similar results for this experiment. When they are placed close

to the robot, the environment does not afford the traversibility, and when they are

out of the robot’s movement range, environment becomes traversible. The triangular

region of non-traversibility in both figures seem interesting. The objects, which are
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Figure 6.9: Affordances of standard objects in various positions. Filled squares for
not afforded situations, and circles for afforded ones.

lifted same amount (in any column), afford traversibility when they are distant, and

do not afford the action when they are close to the robot. Since, exploration trials do

not contain any object that hang in the air, the system make wrong (and contradic-

tory) predictions with these objects. Any object, that could be traversible when close

to the robot, should also be traversible when it is a little further away, and vice versa.

We think that the wrong predictions (in such unrealistic environments where ob-

jects are hung in the air) have roots in robot’s 3D scanning mechanism. Since it scans

the environment in angular steps, the closer objects correspond to larger regions in

the range image, and further objects generate smaller regions. Suppose that the close
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Figure 6.10: The effect of radial scanning. A sketch of how the perspective in laser
scanning, affects the number of laser rays and grids that represent the close and distant
objects.

object is covered with n grids, and the distance object with only 1 grid in the most

extreme case. This means that the perception of affordances of these objects are per-

formed over n and 1 grids, respectively. When the distant object is lifted a small

amount, it will be covered by n′ grids, where n > n′ and n′ > 0. As a result, some

grids (n′) and their representative feature values will remain same in close object, not

degrading its prediction capability. However, when the distant objects are lifted in

the same amount, since there was 1 grid before, the none of the feature values will

remain same. In short, there is redundancy in the perception of close objects, and

change in grid number did not affect the system. However, for the distant objects,

the prediction highly depends on small number of grids (which are changed when

lifting occurs).

Figure 6.10 demonstrates the geometrical sketch, where prior to lifting the object,

close one have a region of vertically 6 grids width, and distant one have 1 grid on the

range image. After they are lifted, 66% of these grids and their values would remain

same in close object, and the 100% of the grid values, corresponding to the distant

object will be changed.

The effect of horizontal cylinder orientation in affordance prediction The hori-

zontal cylinder ( ), based on its orientation, might provide both traversibility and
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Figure 6.11: The affordances of cylindrical objects The objects are placed in various
orientations with respect to the robot. Filled squares for not afforded situations, and
circles for afforded ones.

not-traversibility affordances in different circumstances. The aim of these experi-

ments is to examine whether the dynamics of the system is correctly learned. To do

this, a cylindrical object, which lies over its circular surface, is placed in front of the

robot. Later it is shifted in robot’s lateral axis and rotated around its own vertical axis,

in certain amounts. The predictions of the traversibility affordance for move-forward

behavior are demonstrated in Figure 6.11.

As shown, the move-forward action is afforded when the object is not in the path

of the robot. However, when it is on robot’s movement path, the perception of the

affordance changes based on object’s orientation and position. When the cylindrical

surfaces of the cylinders are in the robot’s collision path, it becomes traversible. Fig-

ure 6.12 shows 36◦ rotated cylinders, which are shifted in the [−0.24,+0.24]. Since the

robot makes contact with different sides of the cylinder, the traversibility affordance

gradually disappears from (a) to (e).

6.5 Traversibility in a cluttered environment in MACSim

In all the previous experiments, the robot was placed in a fixed position, the objects

around the robot are changed randomly, and the robot performs its actions only from

this position. In this section, the robot which was trained in a complex environment,

is placed in a virtual room, full of obstacles in different sizes and types. Then, in its
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(a) (b) (c)

(d) (e)

Figure 6.12: The effect of orientations of cylinders. By shifting the object in lateral
axis, its orientation with respect to robot is changed.

execution mode, which was described in Section 5.4, the robot

• perceives the traversibility affordances of the environment,

• selects an afforded behavior where the priority is on “more ” forward move-

ments,

• performs its behavior for the fixed amount of time,

• stops and perceives the traversibility affordance for the changed environment

The trajectory of the robot in such a room, with 40 objects included, is shown

in Figure 6.13. As shown, it successfully predicts the affordances of the spherical

and lying cylindrical objects by driving towards them, and the boxes and upright

cylindrical objects by avoiding them. The four affordance perception instances are

identified in Figure 6.13 and their snapshots are demonstrated in Figure 6.14. 1.

1 The movie of the robot navigation can be downloaded from http://kovan.ceng.metu.edu.
tr/˜emre/virtual_room.mpg
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Figure 6.13: The execution of the robot is demonstrated The robot has a motivation
to go forward as most as possible. In the figure, the trails of the wheels are demon-
strated. The robot is able to successfully perceive the traversibility affordance of the
environment, and selects behaviors accordingly.

When inspected in detail, the robot is generally able to avoid from the fixed ob-

jects. However there is a minor difference between interactions with cylinders and

boxes. While the robot is able to pass the cylinders without any scratch, the perfor-

mance decreases for box objects: The robot in many situations comes into contact

with the edges of the boxes. We think that, the curved and sharp edges could not be

differentiated by the robot with this feature set and learning setup. During learning

trials, such small collisions that did not change the robot’s path in large amounts,

were labelled as successful trials. Likewise, as seen from the trials, the robot was

always able to traverse the objects, and did not stuck in any point.
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(a) (b)

(c) (d)

Figure 6.14: Encountered situations for cluttered room experiments. In (a) the turn-
left behavior is afforded, and the robot drove towards the spherical object. In (b),
although the robot made a contact with the right wall, it selected move-forward action.
In (c), the only action that is afforded was turning left sharply, and turn-sharp-left is
performed without any scratch. In (d), none of the behaviors were afforded, so the
robot made a random turn. Note the slight difference between (c) and (d), where
robot was able to find out the small open-space on the left in (c).

6.6 Perceiving Traversibility on the Real Robot Kurt3D

The Kurt3D robot is used to validate the results in the real world where the robot

was trained in MACSim complex environment. Various objects, including simple

geometrical ones, and office environment object like trash bins, and PC cases are

placed in the frontal area of the robot. Two sets of experiments are conducted where

boxes are used in the first set and cylinders are employed in the second one.

As shown in Figure 6.15, the robot is able to correctly perceive the affordances of

box shaped objects. The traversibility affordances of the objects, which are placed in
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Figure 6.15: The real world experiments with box shaped object.

different distances and angles, are correctly perceived (a,b,c). Moreover, the perfor-

mance of these predictions are not affected when more objects are included into the

environment (d).

The effect of the rotation of cylinders are also studied in real world experi-

ments (Figure 6.16). The robot is found to be successful in predicting the affordances

in various orientations. Without training, the robot through simulated physical in-

teractions, designing the affordances by hand would be very hard brittle especially

for these situations.

Lastly, the perception of the affordances for different width apertures are studied.
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Figure 6.16: The real world experiments with cylindrical shaped objects.

The successful results obtained from these experiments (Figure 6.17) was unexpected.

The robot has no notion of width, but it is able to perceive the traversible aperture

widths.
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Figure 6.17: The real world experiments with two boxes. In this experiment, it is
shown that when the aperture width is changed, the affordance of traversibility dis-
appears. The robot has no notion of “width” of the objects, and it does not even
know its own width. The robot is able to correctly predict its own aperture width
and successfully perceive the affordances of apertures in various widths.
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CHAPTER 7

CONCLUSION

In this thesis, traversability affordances of the environment for a mobile robot is

learned through physical interactions in a physics based simulation environment.

Since the traversability depends on the location of the objects and their geometrical

properties, range images are used to perceive the physical affordances of the im-

mediate environment. A simple perceptual representation is proposed, where inter-

mediate high-level processes like object detection or world modeling are not utilized,

thus favoring Gibsonian direct perception view. Since complex actions which require

higher level processes are not in the scope of this study, perception is used solely to

select a low-level behavior, and it might be utilized as the lower layer of a layered

perceptual system in future.

Based on the low-level features that are perceived and the results of the inter-

actions with the world, the robot is able to learn i) relevant features for different

actions, and ii) the affordances provided. The prediction accuracy in perceiving the

traversability affordances of the environment, which include several boxes, cylin-

ders, and spheres is found to be around 95%. Furthermore, it is presented that the

robot uses only 1.1% of the extracted features while perceiving the affordances. This

in turn save the time 76.6% in scanning and 81% in feature processing, and J.J. Gib-

son’s perceptual economy is obtained through learning to use relevant features.

After learning the affordances of the environment, the robot is tested in various

setups. It is placed in a virtual cluttered room, and controlled with a simple mo-

tivation system. In this environment, the robot was able to traverse the environ-

ment, by successfully selecting its actions based on the perceived affordances. In the

next experiment set, the generalization performance of the learned affordance based

perception system is analyzed. It is shown that the robot was able to perceive the
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traversability affordances of the novel objects that it has never seen before. In the

last set of experiments, the affordance-based action selection scheme that is learned

in simulator is successfully transfered to real robot without any further modifica-

tion. Although there is no concept of object or width in any representation level, and

the robot has no awareness of its own body dimensions, it is able to perceive the

traversability affordances of the apertures between the objects. In other words, the

affordances of the apertures, which depend on the relation between the width of the

apertures and the shoulder width of the robot, are directly perceived without recogniz-

ing them.

80



REFERENCES

[1] J. Gibson, The Ecological Approach to Visual Perception. Lawrence Erlbaum Asso-
ciates, 1986. Originally published in 1979.

[2] R. C. Arkin, Behavior-based Robotics. Cambridge, MA, USA: MIT Press, 1998.
ISBN:0262011654.

[3] K. Jones, “What is an affordance?,” Ecological Psychology, vol. 15, no. 2, pp. 107–
114, 2003.

[4] E. Gibson, “Where is the information for affordances?,” Ecological Psychology,
vol. 12, no. 1, pp. 53–57, 2000.

[5] J. Gibson, The senses considered as perceptual systems. Boston: Houghton Mifflin,
1966.

[6] T. Stoffregen, “Affordances as properties of the animal environment system,”
Ecological Psychology, vol. 15, no. 2, pp. 115–134, 2003.

[7] A. Chemero, “An outline of a theory of affordances,” Ecological Psychology,
vol. 15, no. 2, pp. 181–195, 2003.

[8] W. Warren, “Perceiving affordances: Visual guidance of stair climbing,” Journal
of Experimental Psychology, vol. 105, no. 5, pp. 683–703, 1984.

[9] W. Warren and S. Whang, “Visual guidance of walking through apertures: body-
scaled information for affordances,” Journal of Experimental Psychology, vol. 13,
no. 3, pp. 371–383, 1987.

[10] L. Mark, “Eyeheight-scaled information about affordances: A study of sitting
and stair climbing,” Journal of Experimental Psychology: Human Perception and
Performance, vol. 13, no. 3, pp. 361–370, 1987.

[11] E. Gibson, G. Riccio, M. Schmuckler, T. Stoffregen, D. Rosenberg, and
J. Taromina, “Detection of the traversability of surfaces by crawling and walking
infants,” Journal of Experimental Psychology, vol. 13, no. 4, pp. 533–544, 1987.

[12] J. Kinsella-Shaw, B. Shaw, and M. Turvey, “Perceiving walk-on-able slopes,” Eco-
logical Psychology, vol. 4, no. 4, pp. 223–239, 1992.

[13] A. Chemero, “What events are,” Ecological Psychology, vol. 12, no. 1, pp. 37–42,
2000.

[14] R. Oudejans, C. Michaels, B. vanDort, and E. Frissen, “To cross or not to
cross: The effect of locomotion on street-crossing behavior,” Ecological Psychol-
ogy, vol. 8, no. 3, pp. 259–267, 1996.

81



[15] S. Cornus, G. Montagne, and M. Laurent, “Perception of a stepping-across af-
fordance,” Ecological Psychology, vol. 11, no. 4, pp. 249–267, 1999.

[16] A. Chemero, C. Klein, and W. Cordeiro, “Events as changes in the layout of
affordances,” Ecological Psychology, vol. 15, no. 1, pp. 19–28, 2003.

[17] A. Szokolszky, “An interview with Eleanor Gibson,” Ecological Psychology,
vol. 15, no. 4, pp. 271–281, 2003.

[18] E. Gibson, “Perceptual learning in development: Some basic concepts,” Ecologi-
cal Psychology, vol. 12, no. 4, pp. 295–302, 2000.

[19] U. Neisser, Cognition and Reality: Principles and Implications of Cognitive Psychol-
ogy. 0716704773, W.H. Freeman and Co, 1976.

[20] U. Neisser, “Multiple systems: A new approach to cognitive theory,” The Euro-
pean Journal of Cognitive Psychology, vol. 6, pp. 225–241, 1994.

[21] J. Norman, “Ecological psychology and the two visual systems: Not to worry!,”
Ecological Psychology, vol. 13, no. 2, pp. 135–145, 2001.

[22] R. R. Murphy, Introduction to AI Robotics. MIT Press, 2000. ISBN:0262133830.

[23] R. Murphy, “Case studies of applying Gibson’s Ecological Approach to Mo-
bile Robots,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 29, no. 1,
pp. 105–111, 1999.

[24] Y. Aloimonos, C. Fermüller, and A. Rosenfield, “Seeing and understanding:
Representing the visual world,” ACM Computing Surveys, vol. 27, no. 3, pp. 307–
309, 1995.

[25] A. Duchon, W. Warren, and L. Kaelbling, “Ecological robotics,” Adaptive Behav-
ior, vol. 6, no. 3, pp. 473–507, 1998.

[26] R. Cooper and D. W. Glasspool, “Learning action affordances and action
schemas,” in Connectionist Models of Learning, Development and Evolution (R. M.
French and J. P. Sougne, eds.), Perspectives in Neural Computing, (London),
pp. 133–142, Sixth Neural Computation and Psychology Workshop, Springer-
Verlag, 2001.

[27] I. Cos-Aguilera, L. Canamero, and G. Hayes, “Motivation-driven learning of
object affordances: First experiments using a simulated khepera robot,” in In
Proceedings of the 9th International Conference in Cognitive Modelling (ICCM’03),
(Bamberg, Germany), 4 2003.

[28] I. Cos-Aguilera, L. Canamero, and G. M. Hayes, “Using a sofm to learn object
affordances,” in In Proceedings of the 5th Workshop of Physical Agents, (Girona,
Catalonia, Spain), 3 2004.

[29] K. MacDorman, “Responding to affordances: Learning and projecting a sensori-
motor mapping,” in Proc. of 2000 IEEE Int. Conf. on Robotics and Automation, (San
Fransisco, California, USA), pp. 3253–3259, 2000.

82



[30] P. Fitzpatrick, G. Metta, L. Natale, A. Rao, and G. Sandini, “Learning about ob-
jects through action -initial steps towards artificial cognition,” in Proceedings of
the 2003 IEEE International Conference on Robotics and Automation, ICRA, pp. 3140–
3145, 2003.
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World

environment_00

environment_01

environment_99

robots ground walls

box_000

box_999

cylinder_000

cylinder_999

cylinder_000

cylinder_000

cylinder_999

sphere_000

sphere_999

cylinder_000

cylinder_999

composite_000

B
o
d
y,

 G
e
o
m

e
tr

y 
a
n
d
 G

ra
p

h
ic

s

kurt_0

body_and_wheels

crane

frame

scanner

camera_right

camera_left

base_composite

bulk_composite

left_wheels

right_wheels

kurt_9

...

...

...

...
middle rearfront

plane

ramp_00

ramp_99

...

... ...

doors

door_00

door_01

door_99
...
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