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ABSTRACT 
 
 

AN ASYNCHRONOUS SYSTEM DESIGN  
AND  

IMPLEMENTATION ON AN FPGA 
 
 
 

AYYILDIZ, Nizam 

MS, Department of Electrical and Electronics Engineering 

Supervisor      : Prof. Dr. Hasan GÜRAN 

 

September 2006, 109 pages 
 
 
 
Field Programmable Gate Arrays (FPGAs) are widely used in prototyping digital 

circuits. However commercial FPGAs are not very suitable for asynchronous design. 

Both the architecture of the FPGAs and the synthesis tools are mostly tailored to 

synchronous design. Therefore potential advantages of the asynchronous circuits 

could not be observed when they are implemented on commercial FPGAs. This is 

shown by designing an asynchronous arithmetic logic unit (ALU), implemented in 

the style of micropipelines, on the Xilinx Virtex XCV300 FPGA family. The hazard 

characteristics of the target FPGA have been analyzed and a methodology for self-

timed asynchronous circuits has been proposed. The design methodology proposes 

first designing a hazard-free cell set, and then using relationally placed macros 

(RPMs) to keep the hazard-free behavior, and incremental design technique to 

combine modules in upper levels without disturbing their timing characteristics. The 

performance of the asynchronous ALU has been evaluated in terms of the logic slices 

occupied in the FPGA and data latencies, and a comparison is made with a 

synchronous ALU designed on the same FPGA.  

 
 
 
Keywords: Asynchronous, self-timed, micropipeline, FPGA, incremental design 
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ÖZ 
 
 

FPGA ÜZERİNDE BİR ASENKRON SİSTEM TASARIMI VE YAPIMI 
 
 
 

AYYILDIZ, Nizam 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi          : Prof. Dr. Hasan GÜRAN 

 

 
Eylül 2006, 109 sayfa 

 
 

Alan programlamalı kapı dizinleri (FPGA) sayısal devre prototip tasarımlarında 

yaygın olarak kullanılmaktadır. Ancak ticari FPGA’ler asenkron tasarım için çok 

uygun değildir. FPGA’lerin mimari yapıları ve sentez araçları daha çok senkron 

tasarımlara uygundur. Bu yüzden asenkron devrelerin potansiyel avantajları ticari 

FPGA’ler üzerinde gerçekleştirildiklerinde görülememektedir. Bu çalışmada mikro 

ardışık düzen tarzında gerçekleştirilmiş bir asenkron aritmetik ve mantık biriminin 

(AMB) Xilinx Virtex XCV300 FPGA ailesi üzerinde tasarlanmasıyla gösterilmiştir. 

Hedef FPGA’in zamanlama karakteristiği incelenmiş ve kendinden zamanlı asenkron 

devre tasarımı için bir yöntem öne sürülmüştür. Yöntem, ilk olarak zaman-hasarsız 

bir hücre kümesi tasarlamayı, daha sonra ilişkisel yerleşimli makrolar (RPM) 

kullanarak zaman-hasarsız özellikleri korumayı, ve artımsal tasarım tekniğiyle 

modüllerin üst seviyede zamanlama karakteristikleri kaybolmadan birleştirilmesini 

ileri sürmektedir. Asenkron AMB’nin performansı FPGA içerisinde kapladığı mantık 

parçaları ve veri gecikmesi bakımından değerlendirilmiş ve aynı FPGA üzerinde 

gerçeklenen senkron bir AMB’yle karşılaştırılmıştır. 

 
 
 
Anahtar Kelimeler: Asenkron, kendinden-zamanlı, mikro ardışık düzen, FPGA, 

artımsal tasarım 
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CHAPTER 1  
 
 
 

INTRODUCTION 

 

The main points considered in digital circuit design are speed, the space occupied by 

the circuit, the power consumption, reliability, adaptivity, modularity and finally the 

cost. Circuit designers have searched for many years whether the synchronous or 

asynchronous design methodology is more advantageous in fulfilling these 

requirements.  

 

Asynchronous circuits, in which the synchronization of the system components is 

done without a global clock, can offer significant advantages over their synchronous 

counterparts, which can be listed as elimination of clock skew problems, average 

case performance instead of worst case performance, adaptivity to processing and 

different environment variations, component modularity and reuse, lower system 

power requirements, and reduced noise [1]. Main disadvantage of the asynchronous 

circuits, however, is the design complexity. Eliminating hazards, critical races and 

metastable states [2] in asynchronous circuits is a challenging task, especially in 

large designs, and hence discourages the designers. The ease of synchronous design 

attracts the designers also, since the time spent in design process is very crucial in 

today’s industrial competition circumstances. As a result, asynchronous design is not 

much preferred and the commercial devices and tools for circuit design and 

simulation environments have been mostly tailored to synchronous circuits. 

However, the potential advantages of the asynchronous circuits listed above have 

always kept the interest of many researchers alive, who have been searching for an 

alternative design technique.  
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1.1. ASYNCHRONOUS DESIGN METHODOLOGIES  

 

Huffman and Muller are two pioneers who have established the base of the 

asynchronous design methodologies in 1950s [1]. Huffman introduced a design 

methodology, for what is known today as fundamental mode circuits [3], and Muller 

developed the theoretical basics of the speed-independent circuits [4]. Any 

asynchronous design methodology developed afterwards was inspired from one of 

these two methodologies [1]. The study of Scott Hauck summarizes some of the more 

notable asynchronous design methodologies [5]. 

1.1.1. BOUNDED DELAY MODELS 

 

In Huffman’s methodology the circuits are designed under the bounded delay model, 

that is, it is assumed that the delay in all circuit elements and wires is known [3]. The 

circuits designed under this model are guaranteed to work regardless of the gate and 

wire delays as long as the delay bound is known [1]. However, there are some 

constraints to be met, which are; the input change is not allowed before the circuit 

reaches stable state, and only single input change at a time is allowed [3]. 

 

The method, described by Hollaar [6] is an extension of Huffman circuits to non-

fundamental mode [5]. In that method the arrivals of new transitions are allowed to 

be earlier than that allowed in fundamental mode assumptions. 

 

Another design methodology, referred to as burst-mode was developed by Nowick, 

Yun and Dill [7-10] allows multiple input changes as a burst in any order, but only 

after the system has completely reacted to the previous input burst [5].  

1.1.2. DELAY-INSENSITIVE CIRCUITS 

 

Unlike the bounded-delay model, delay insensitive circuits are based on unbounded 

gate delay model, that is, delays in both circuit elements and wires are assumed to be 

unbounded [5]. In this model completion detection circuitry is required in order the 



 

 

3 

receiver to inform the sender that it has received the data properly, since there is no 

guarantee that a wire will reach its proper value at any specific time due to 

uncertainty in the delays, and hence a communication protocol (handshaking) is 

established between data sender and receiver. 

 

Martin has developed a design methodology for delay insensitive circuits with only 

single-output gates [11], which is unsuitable for general circuit design [5]. 

 

A methodology, which makes delay insensitive circuit design practical for general 

computations, has been proposed by Molnar et. al. [12]. This methodology is found 

upon use of an I-Net, a model based on Petri Nets [13]. Via I-Net descriptions, delay 

insensitive modules can be constructed, which eases the design of large systems 

based on delay insensitivity concept. These modules are designed such that, all 

timing constraints are encapsulated in them, hence the designer should not deal with 

hazard problems during circuit construction. 

 

The main power of module-based systems, however, is seen when they are coupled 

with a high level language and automatic translation software, as described by 

Brunvand and Sproull [14]. In this approach it is necessary to choose a language to 

describe asynchronous circuits, and then provide delay-insensitive modules for each 

of the language constructs. 

 

Another methodology for delay-insensitive circuit design, based on trace theory, has 

been proposed by Ebergen [15, 16], which uses a unified model for both module 

specification and circuit design.  

1.1.3. SPEED-INDEPENDENT AND QUASI-DELAY-INSENSITIVE 
CIRCUITS 

 

As mentioned earlier speed-independent circuits are associated with D. E. Muller for 

his pioneering work [4] on this model. This model assumes that while gate delays are 

unbounded, all wire delays are negligible (less than the minimum gate delay) [5]. 

The quasi-delay insensitive circuits are a subclass of delay-insensitive circuits, 
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assuming both gate and wire delays are unbounded, augmenting this with isochronic 

forks [17]. Isochronic wires are forking wires, where the delays between the branches 

of this fork are negligible. The speed-independent and quasi-delay-insensitive 

circuits are identical for all practical purposes [5]. 

 

Signal transition graphs (STGs) is a design methodology, introduced by Chu et. al. 

[18, 19]. Like I-Nets, STGs specify asynchronous circuits with Petri-Nets [13] whose 

transitions are labeled with signal names.  

 

Change diagrams (CDs) [20] is another methodology similar to STGs, but avoid 

some of the restrictions found in STGs.  

 

The methodology, named as communicating process compilation technique [17], 

developed by Martin, translates the program written in a language into asynchronous 

circuits.  

1.1.4. MICROPIPELINES 

 

The micropipelines introduced by Sutherland offered an easy and simple way of 

asynchronous design [21]. This work has brought to Sutherland the Turing Award, 

and popularized the notion of a modular approach to control, focusing attention on 

pipeline operations with transition signaling (2-phase handshaking). The 

methodology explained in Sutherland’s study offers the opportunity of building up 

complex systems by hierarchical composition of smaller and simpler pieces.  

1.2. IMPLEMENTING ASYNCHRONOUS CIRCUITS USING FPGAS 

 

With the improvement in VLSI technology, the designers have found the opportunity 

to build faster, larger and more complex circuits. Field Programmable Gate Arrays 

(FPGAs) offer an excellent alternative for rapid and inexpensive development of 

these kinds of designs. While FPGAs can be directly used in the systems, they can 
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also be replaced by faster and smaller custom VLSI circuits (ASICs) after 

prototyping has been completed. 

 

While commercial FPGAs are utilized widely in synchronous designs, they are not 

very suitable for asynchronous designs [22-25]. There are inconveniences for some 

of the methodologies listed above in applying them in FPGAs. For example, the 

speed-independent wire delay assumption is unrealistic in FPGAs, since wire delays 

can often dominate logic delays. Also, the isochronic fork assumption, which is 

easier to handle than speed independent wires, may not be handled in FPGAS, since 

the equal delay between fork branches constraint may not be achieved due to 

automatic routing. In bounded delay models, the feedback delays are very crucial, 

but in FPGAs a feedback signal is routed like any other signal and it is difficult to 

ensure that the feedback is fast enough for a changing element to stabilize before 

another input arrives. Micropipelines are the most appropriate methodology among 

the methodologies listed, since the implementation of micropipelines is very similar 

to clocked systems. In micropipelines the control circuits take the place of global 

clock for data synchronization. However the basic cell set proposed for control 

circuits by Sutherland [21], is not directly available in conventional FPGAs, and their 

design must be done first carefully. Also the delay between communicating modules 

must be carefully handled for proper operation. 

 

There are two types of approaches to utilize FPGAs in asynchronous circuit design. 

The first one is developing specific circuit library in commercial FPGAs, and 

constraining the place and route phase in order to avoid timing problems. And the 

other one is offering a new type of FPGA architecture, which is suitable for 

asynchronous design needs. 

 

Brunvand has designed a library of circuit primitives for building self-timed (term 

used for asynchronous circuits in which the synchronization is performed by 

enforcing a simple communication protocol between circuit elements) circuits and 

systems using Actel FPGAs [22]. The library modules use two-phase handshaking 

protocol for control signals and bundled protocol for data signals. Brunvand and 

Richardson have implemented the prototype of a comprehensive general purpose 
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processor, named as NSR (Non-synchronous RISC) [32], using Actel FPGAs, 

assembling the two-phase transition control modules and bundled data modules of 

the processor from that library. The deficiency of the study is that, hazard behavior 

of the library modules has not been characterized. Moreover Actel FPGAs are not 

suitable for prototyping, since they cannot be re-programmed, once programmed, 

since they are based on anti-fuse architecture.  

 

Maheswaran, in his MS. thesis study, implemented a hazard-free cell set for self-

timed circuits, based on the macromodules outlined in [21], in LUT (Look Up Table) 

based Xilinx FPGAs [23]. He showed that, circuits designed using LUTs are logic-

hazard free, but could produce function- hazards for multiple-input changes. He also 

formulated a set of feedback delay constraints for each of the self-timed elements 

that are necessary to achieve hazard-free behavior. These constraints must be met 

when placing and routing these modules for proper operation. Maheswaran also 

proposed a new FPGA architecture, naming PGA-STG (Programmable Gate Array 

for Implementing Self-Timed Circuits), which involves a logic block architecture 

that is capable of satisfying all of the asynchronous necessities. The synthesis tool 

corresponding to this architecture has been given in this study as well. 

 

Moore and Robinson have proposed a solution for equipotential regions and 

isochronic forks by combining floor and geometry planning tools [24]. With 

constraining relative placement of the latches in the module to be designed, they 

have achieved more predictable routing. They also have tackled the design of a 

reliable arbiter, which is essential for many self-timed systems, by using the 

technique they have developed. However, commercial floor planning tools are not 

sufficient to avoid hazards, and automatic timing-driven FPGA implementation 

cannot ensure hazard-free logic, although timing constraints are well described [25]. 

 

Ho et. al. developed a methodology presenting an alternative to enforce the mapping 

in FPGAs to avoid hazard [25]. They developed a technique based on the use and 

design of Muller gate library. Their approach is a combination of using standard 

FPGAs and the TAST (TIMA Asynchronous Synthesis Tool) [26] developed at 

TIMA (Techniques of Informatics and Microelectronics for Computer Architecture). 
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Several FPGA families, like Xilinx X4000, Xilinx Virtex, Altera Flex and Altera 

Apex have been targeted in this study. They implemented a quasi-delay-insensitive 

dual rail adder automatically, to demonstrate the potential of the methodology they 

developed. 

 

The FPGA architectures dedicated to asynchronous circuits are MONTAGE [27], 

PGA-STG [23], GALSA [28], STACC [29], PAPA [30] and finally the architecture, 

that has not a special name, developed by Huot et. al.[31]. Unfortunately, none of 

these architectures have reached the chance to be produced commercially, since the 

synchronous design is still more popular for designers. 

1.3. SCOPE OF THE THESIS 

 

In this thesis, an alternative methodology for implementing self-timed circuits on 

commercial FPGAs is introduced. The basic asynchronous macromodule set 

described in Sutherland [21], Brunvand [22] and Maheswaran [23], is re-

implemented using Xilinx Virtex XCV300 [33] series FPGAs. An asynchronous 

ALU (Arithmetic Logic Unit) is constructed using this cell set, in a hierarchical 

design flow. It is showed how to keep the delay properties of individual modules, 

when they are instantiated in upper modules. The design is tested under simulation 

environment (Modelsim) and also a hardware realization is performed on a printed 

circuit board designed for this purpose. 

 

This thesis consists of six chapters. Chapter 2 gives the principles of the self-timed 

design and micropipelines, which describe the operation of the circuits constructed in 

this thesis. In chapter 3 the implementation of the modules is explained in a 

hierarchical order (from bottom to top). The key points of the design methodology 

are also given in this chapter. The performance of the implemented modules is 

evaluated in chapter 4 according to speed and area criteria. A comparison between 

the asynchronous modules and their synchronous counterparts, implemented in the 

same FPGA family, is done as well. The details of the printed circuit board are given 

in chapter 5. Finally in chapter 6 the thesis is concluded and it is discussed what can 

be done as future work. 
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CHAPTER 2  
 
 
 

SELF-TIMED CIRCUITS 

 

Self-timed circuits are asynchronous circuits, in which the data synchronization is 

done by enforcing a simple communication protocol between circuit elements. Two 

dominant handshaking protocols are two-phase (transition) and four-phase (level-

based) signaling. In two-phase signaling each transition, either rising or falling, on 

the request (REQ) or acknowledge (ACK) signals represents an event. In four-phase 

signaling only a positive-going transition on REQ or ACK initiates an event, and 

each signal must be “restored to zero” before the handshake cycle is completed 

(Figure 2.1).  

 

 

 

i) Two-phase handshaking   ii) Four-phase handshaking 

Figure 2.1 Two-phase and four-phase handshakings 

 

 

In two-phase handshaking since there is no need to return the control signal to a 

neutral or low state, transition signaling saves the time and energy costs of the return 

transitions, as well as design confusion of an unnecessary event [21]. Prosser, 

Winkel, and Brunvand, who have made a comparison of modular self-timed design 

styles [33], also showed that two-phase design is faster, easier and more attractive 

than four-phase. 
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The coherence of control signals with data signals is also an important point in self-

timed circuit design. Data must be valid before the request is done. There are two 

widely used protocols for data handling: 

 

i) the dual-rail data convention, in which each data bit is represented by two signals;  

ii) the bundled-data convention, in which each bit is represented by a single signal 

and delays are inserted in the control paths to assure that data has settled before its 

use (Figure 2.2). 

 

In the dual-rail convention, a data bit is represented by one of the signal values 00 

(meaning invalid data), 01 (bit is a valid 0), and 10 (bit is a valid 1). While this 

convention has the advantage of providing a definite indication of the status of the 

bit, its main disadvantage is doubling of the number of signal paths required for each 

data bit. 

 

In the bundled-data convention, the designer must determine worst-case estimates of 

each data path for individual bits and groups of bits, and must insert appropriate 

delays in the handshake control signals to assure that data is stable before a request is 

asserted (the “bundling constraint”). 

 

 

 

i) Bundled Data interface   ii) Bundled Data Convention 

Figure 2.2 Bundled Data Interface and Convention 
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The bundled data interface is easier to implement and takes less space when 

compared to dual rail data interface [33].  

2.1. CONTROL CIRCUITS FOR TRANSITION SIGNALING 

 

The control circuits for transition signaling are built out of modules that form various 

combinations of events. Here are the main control units taken from [21]: 

 

XOR: 

 

XOR provides the OR function for events. If any one of the inputs 

changes states then the output also changes states, producing an 

event. 

 

MULLER-C: 

 

When both inputs of the Muller-C are ‘0’ then the output is also ‘0’, 

and when both inputs are ‘1’ the output is ‘1’, otherwise the output 

remains same as previous value. Muller-C elements provide the 

AND function for events. Assuming initially both inputs are at the 

same state an event at the output only occurs when both inputs change. 

 

TOGGLE: 

 

TOGGLE steers events to its outputs alternately starting with 

the dot. It is used mainly when one event is meaningful for two 

different purposes, which should occur sequentially. 

 

SELECT: 

 

SELECT steers events according to the Boolean value of its 

diamond input. It is used when a decision should be made, and 

according to result different jobs are performed. 
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CALL: 

 

CALL remembers which client, R1 or R2 called the procedure, 

R, and after the procedure is done, D, returns a matching done 

event on D1 or D2. The memory in the CALL element serves the 

role of subroutine return address.  

 

 

ARBITER: 

 

ARBITER grants service G1 or G2, to only one input request, R1 

or R2, at a time, delaying subsequent grants until after the 

matching event done, D1 or D2. 

 

 

 

2.2. EVENT-CONTROLLED STORAGE ELEMENT 

 

Sutherland introduced in [21] a storage element suitable for use with a transition 

signaling control system. An event controlled register made from ordinary latches 

requires an XOR module and a TOGGLE module for control. A two-bit register is 

shown in Figure 2.3, taken from [21]. Capture (C) is the event of rising transition in 

the latch control wire and flips the switch, causing the latches to capture data. Pass 

(P) is the event of falling transition in the latch control wire and flips the switches 

back, making the latches transparent again. C and P events arrive alternately at the 

separate control inputs. XOR merges C and P. The TOGGLE module separates the 

capture and passes events back into two separate outputs Cd (Capture done) and Pd 

(Pass done), after the register has done its action.  
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Figure 2.3 Latches Used as an Event Controlled Storage Register 

 

 

The implementations of the control circuits and storage element described here are 

given in chapter 3. 

2.3. CONSTRUCTION OF MICROPIPELINES 

 

A string of Muller-C elements with inverters inserted between them is the only logic 

required to control the micropipelines (Figure 2.4) [21]. Request and acknowledge 

signals pass between adjacent stages, data wires also pass between stages but they 

are not shown in the figure. For a correct operation all outputs of the Muller Gates 

must be set to same initial value with the first request signal or a global reset signal. 
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Figure 2.4 Control Circuit for a Micropipeline 

 

 

The simplest micropipeline structure can be seen in Figure 2.5. In this configuration 

there is no processing and it is also simply a FIFO. The length of the FIFO can be 

increased by adding more basic register blocks. If processing is needed, logic blocks 

can be inserted between the register blocks (Figure 2.6). In this case the delays 

between stages must be calculated according to the process time of the combinational 

logic blocks between the registers. 

 

 

 

Figure 2.5 Micropipeline without Processing 

 



 

 

14 

 

 

Figure 2.6 Micropipeline with Processing 
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CHAPTER 3  
 
 
 

FPGA IMPLEMENTATION 

 

An asynchronous system must be hazard-free for proper operation. Hazard-free 

asynchronous circuits are assured by implementing them using a hazard-free cell set, 

which are used according to constraints they enforce on the environment [16, 21, 22, 

23, 25]. The design environment in this thesis is Xilinx XCV300 series FPGA which 

is a member of Xilinx Virtex FPGA family [34].  

 

This chapter consists of 5 sections. Section 3.1 gives a brief background on hazards 

and hazard elimination techniques. In section 3.2 the characteristics of the target 

FPGA family are given and it discusses the constraints under which the cell set 

implemented on this FPGA will be hazard-free. In section 3.3 the basic cell set 

implemented is presented. In section 3.4 the design of a 4-bit ALU is explained, 

which is implemented using this cell set. The problems encountered during design 

process for keeping the hazard-free behavior on the whole system, and how they are 

handled, are explained in section 3.5. 

3.1. HAZARDS AND HAZARD ELIMINATION METHODS 

3.1.1. DEFINITIONS 

 

The following definitions are taken from [1]. 

 

An incompletely specified Boolean function f of n variables x1, x2, … xn is a 

mapping: f: {0,1}n →  {0,1,−}. 

 

Each element m of {0,1}n is called a minterm. 
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The ON-set of f is the set of minterms which return 1. 

 

The OFF-set of f is the set of minterms which return 0. 

 

The don’t care (DC)-set of f is the set of minterms which return −. 

 

A literal is either the variable, xi, or its complement xi′. The literal xi evaluates to 1 in 

minterm m when m(i) = 1. The literal xi′ evaluates to 1 when m(i) = 0.  

 

A product is a conjunction (AND) of literals. A product evaluates to 1 for a given 

minterm if each literal evaluates to 1 in minterm, and the product is said to contain 

the minterm. 

 

A set of minterms which can be represented with a product is called a cube.  

 

The transition cube is the smallest cube that contains both m1 and m2 where m1 and 

m2 are start and end points of the transition. A transition cube is denoted [m1, m2].  

 

A product Y contains another product X (i.e., X ⊆ Y) if the minterms contained in x 

are a subset of those in Y.  

 

An implicant of a function is a product that contains no minterms in the OFF-set of 

the function. 

 

A prime implicant is an implicant which is contained by no other implicant. 

 

A cover of a function is a SOP which contains the entire ON-set and none of the 

OFF-set.  
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3.1.2. HAZARDS  

3.1.2.1. COMBINATIONAL HAZARDS 

 

In combinational circuits, due to the relative delay values along various paths, 

spurious pulses, often termed glitches, may occur after input changes and this 

situation results in unwanted output waveforms. This behavior is called 

combinational hazard in the design [2]. Combinational hazards are classified as 

either static or dynamic; depending upon the output is specified to remain constant 

after the input change. 

 

A circuit has static-0 hazard between the adjacent minterms m1 and m2 that differ 

only in xj iff f(m1)=f(m2)=0, there is a product term, pi in the circuit that includes xj 

and xj′, and all other literals in pi have value in m1 and m2 [35] (Figure 3.1). 

 

A circuit has static-1 hazard between the adjacent minterms m1 and m2 where 

f(m1)=f(m2)=1 iff there is no product term that has the value 1 in both m1 and m2 [35] 

(Figure 3.1). 

 

 

 

(i) Static-0 hazard  (ii) Static-1 hazard 

Figure 3.1 Static hazards 

 

 

A SOP realization of f (assuming no product terms with complementary literals) will 

be free of all static logic hazards iff the realization contains all prime implicants of f. 

[36].  
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A SOP circuit has a dynamic hazard between adjacent minterms m1 and m2 that 

differ only in xj iff f(m1) ≠ f(m2), the circuit has a product term pi that contains xj and 

xj′, and all other literals of pi have value 1 in m1 and m2 [35] (Figure 3.2).  

 

 

 

Figure 3.2 Dynamic hazards 

 

 

For a multiple-input change (MIC) case, a function f has function hazard during 

transition from m1 to m2 if there exist an m3 and m4 such that: 

 

1. m3 ≠ m1 and m4 ≠m2 

2. m3 ∈ [m1, m2] and m4 ∈ [m3, m2] 

3. f(m1) ≠ f(m3) and f(m4) ≠f(m2) 

 

If f( m1) = f(m2), it is a static function hazard, and if f(m1) ≠ f(m2), it is a dynamic 

function hazard. 

 

If there is a hazard in the circuit, although it could be implemented without that 

hazard (i.e., the hazard is not a function hazard), then it is the characteristic of the 

logic design, and is referred to as logic hazard [2].  

 

If a Boolean function, f, contains a function hazard for the input change m1 to m2, it 

is impossible to construct a logic gate network realizing f such that the possibility of 

a hazard pulse occurring for this transmission is eliminated [36]. 
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However, the synthesis method for expended burst mode (XBM) machines, 

developed by Yun and Dill [37], never produces a design with a transition that has a 

function hazard. 

3.1.2.2. SEQUENTIAL HAZARDS 

 

The violation of the assumption that outputs and state variables stabilize before either 

new inputs or fed-back state variables arrive at the input to the logic can result in a 

sequential hazard. The presence of a sequential hazard depends on the timing of the 

environment, circuit and feedback delays.  

 

A flow table has an essential hazard if after three changes of some input variable x, 

the resulting state is different than the one reached after a single change (Figure 3.3).  

 

 

 

Figure 3.3 A flow table with essential hazard 

 

 

If the resulting malfunction is an output glitch, then it is a transient essential hazard. 

If the system reaches a wrong stable state, then this is a steady state essential hazard 

[2]. 

 

Essential hazards can be defeated by fulfilling the feedback delay requirement, which 

can be set conservatively as follows: 

Df  ≥ dmax − dmin 

Where Df is the feedback delay, dmax is the maximum delay in the combinational 

logic, and dmin is the minimum delay through the combinational logic [1]. 
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Another timing problem in sequential circuits is critical races. A race condition 

occurs when more than one state variables are excited simultaneously and the delays 

associated with the excited state variables are different. The race is a critical race if 

the state ultimately reached depends on the outcome of the race [2]. Critical races are 

considered design defects, and they can always be eliminated by appropriate choices 

of state assignments [2]. 

3.2. VIRTEX FPGA FAMILY ARCHITECTURE 

 

Virtex devices feature a flexible, regular architecture that comprises an array of 

configurable logic blocks (CLBs) surrounded by programmable input/output blocks 

(IOBs), all interconnected by a rich hierarchy of fast versatile routing resources 

(Figure 3.4). 

 

 

 

Figure 3.4 Virtex Architecture Overview 

 

 

CLBs, which provide the functional elements for constructing logic, interconnect 

through a general routing matrix (GRM). The GRM comprises an array of routing 

switches located at the intersections of horizontal and vertical routing channels. 
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The basic building block of the Virtex CLB is the logic cell (LC). A LC consists of a 

4-input function generator, carry logic and a storage element. The output of the 

function generator in each LC drives both CLB output and D input of the flip-flop. 

Each Virtex CLB comprises 4 LCs, organized in two similar slices (Figure 3.5). 

Figure 3.6 shows a more detailed view of a single slice. 

 

 

 

Figure 3.5 2-Slice Virtex CLB 

 

 

Virtex function generators are implemented as 4-input look-up tables (LUTs). An n-

input LUT-based implementation can be modeled as a combination of a memory of 

2n depth, and an 2n : 1 multiplexer (Figure 3.7 shows 4-input LUT case as an 

example). The content of the memory is the truth table of the function implemented, 

and the memory content is fed to the data input of the multiplexer, which takes the 

input of the functions as select inputs to it. Xilinx LUT architecture has a balanced 

design with almost equal propagation delay from its inputs to its output. 
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F5 multiplexer in each slice combines the outputs of the function generators. This 

combination provides either a function generator with 5 inputs, or a 4:1 multiplexer, 

or selected functions up to 9 inputs. Similarly F6 multiplexer combines the outputs of 

the F5 multiplexers in a CLB, hence all four outputs of the function generators. As a 

result a function generator that accepts 6 inputs, or an 8:1 multiplexer or selected 

functions up to 19 inputs can be implemented in a Virtex CLB. 

 

 

 

Figure 3.6 Detailed view of Virtex slice 
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Figure 3.7 LUT-Based Implementation 

 

 

3.2.1.  HAZARD BEHAVIOR OF XILINX FPGAS 

 

The hazard elimination methods, which are proposed for gate-level implementations, 

are not valid for LUT-based implementations. This phenomenon has been 

investigated comprehensively in Maheswaran’s thesis [23]. The following statements 

are derived from that study. 

 

If a function f has a function hazard during a transition [m1,m2] and if a set of 

multiple input changes causes a transition from m1 to m2, then it may produce a 

glitch at the LUT output. When more than one input changes simultaneously, the 

presence of any intermediate code that produces a different result may cause a 

decoding glitch. The glitch might be only a few nanoseconds long, but that is long 

G1 G2 G3 G4 Z 

0 0 0 0 D0 

0 0 0 1 D1 

0 0 1 0 D2 

0 0 1 1 D3 

0 1 0 0 D4 

0 1 0 1 D5 

0 1 1 0 D6 

0 1 1 1 D7 

1 0 0 0 D8 

1 0 0 1 D9 

1 0 1 0 D10 

1 0 1 1 D11 

1 1 0 0 D12 

1 1 0 1 D13 

1 1 1 0 D14 

1 1 1 1 D15 
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enough to upset an asynchronous design, since the delays in the FPGA are pure, not 

inertial. This can be avoided by using appropriate delay elements, but as there is no 

user control over the delays inside of a function generator, function hazards cannot 

be eliminated. 

 

However, a function f is logic hazard-free for any transition for multiple input 

changes when implemented using a Xilinx LUT. Logic hazards are defined in the 

absence of function hazards, and therefore the transition should not consist of any 

intermediate code that produces a different result. Since LUT produces output and 

holds it steady during transition, the logic hazards are eliminated.  

 

The LUT based asynchronous circuit implementations are essential hazard-free as 

well. The essential hazards are caused by a change in the input reaching different 

parts of the circuit at different times. These timing problems due to propagation 

delays are possible in gate-level, but not in LUT-based implementations. In the case 

of a LUT, a change in the input is detected by the function generator, which 

implements the entire function at the same time and then the corresponding output is 

selected from the configuration bits. Therefore, the new output is not fedback until 

the entire circuit has detected the input change. 

 

According to the findings above, it can safely be said and proven that all functions 

implemented using a Xilinx LUT are hazard-free for single input changes as well. 

 

The multiplexers in the CLB are also hazard-free, because the select inputs of the 

multiplexers are hardwired when a function is mapped onto the CLB, which means 

one of the inputs is transferred to the output, while the other one has no effect on the 

output. In such a case there cannot be a transition that can produce any kind of 

hazard.  

 

Since CLB implements any combinational logic in a static, dynamic and essential 

hazard-free manner, the only effect, which can still cause hazards to occur, is the 

routing delay. All elements in the cell-set, except XOR, are sequential, and thus have 

feedback. The feedback has to be available and stable, before new inputs arrive, in 
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order to preserve the hazard-free behavior. However the inputs are not changed until 

the output is detected due to input/output mode of behavior, but can be changed 

immediately after detection. Therefore the delay in the feedback line has to be less 

than or equal to the sum of the minimal delay in detecting the output change and 

producing a new input, and the minimal delay on the input line [23]. 

3.3. IMPLEMENTED HAZARD-FREE CELL SET 

 

According to criteria described above, the basic asynchronous macromodule set 

described in [21] has been implemented on Xilinx Virtex FPGA. The cell-set 

includes MULLER-C, TOGGLE, SELECT, CALL, and OPAQUE LATCH. As 

development environment ISE 6.3 (Xilinx Inc.), and as simulation tool Modelsim 5.7 

SE (Mentor Graphics) have been utilized. The elements of the cell set have been 

implemented with default properties of the ISE, the hazard-freeness of the elements 

has been ensured according to the simulation results trying all possible input 

configuration and transitions.  

3.3.1. MULLER-C 

 

Assuming both inputs (A and B) are at same logic level initially, a transition occurs 

at the Q output only when both inputs change. When both inputs are ‘1’ then the 

output is also ‘1’, and when both inputs are ‘0’ the output is ‘0’. In other cases the 

output remains at previous state. The CLR input is added in order to make determine 

the initial state of the output. The schematic and truth function can be seen in Figure 

3.9. Black box representation of the module is shown also in Figure 3.9. 
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Q = CLR.( A.Q + B.Q + A.B) 

Figure 3.8 MULLER-C module and its truth function 

 

 

 

Figure 3.9 Black Box Representation of MULLER-C with Clear 

 

 

3.3.2. TOGGLE 

 

After initialization of the module, the transitions on INPUT cause transitions to occur 

on OUT0 and OUT1 alternately. If the initial value of INPUT is ‘1’ then the first 

transition occurs on OUT0. The schematic and truth function can be seen in Figure 

3.10. Black box representation of the module is shown also in Figure 3.11. 
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OUT0 = CLR.(INPUT′.OUT0 + INPUT.OUT1′) 

OUT1 = CLR.(INPUT′.OUT0 + INPUT.OUT1) 

Figure 3.10 TOGGLE module and its truth function 

 

 

 

Figure 3.11 Black Box Representation of TOGGLE Module 

 

 

 

3.3.3. SELECT 

 

According to SEL input, the transitions on EVENT_IN result in a transition on either 

OUT_T or OUT_F. If SEL is ‘1’ then the transition occurs on OUT_T, and if SEL is 

‘0’ the transition occurs on OUT_F. CLR input is used for initialization purposes. 

The schematic and truth function can be seen in Figure 3.12. Black box 

representation of the module is shown also in Figure 3.13. 
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OUT_F=CLR.(EVENT_IN′.OUT_T.OUT_F + EVENT_IN.OUT_F.OUT_T′ + SEL.OUT_F + 

EVENT_IN.SEL′.OUT_T′) 

OUT_T=CLR.(EVENT_IN′.OUT_T.OUT_F + OUT_T.SEL′ + OUT_F.SEL.EVENT_IN′ + 

SEL.EVENT_IN.OUT_F′ + EVENT_IN.OUT_T.OUT_F′) 

 

Figure 3.12 SELECT module and its truth function 

 

 

 

Figure 3.13 Black Box representation of SELECT Element 

 



 

 

29 

3.3.4. CALL 

 

CALL is used when there are two modules sharing one resource. It acts like a switch 

between the client, who makes the request, and the shared resource. RS and AS are 

request and acknowledge ports of the shared module, respectively. If there is an 

event on R1 or R2 it is routed to RS, and the AS is routed back to A1 or A2, in 

correspondence with which request has been done. The schematic and truth function 

can be seen in Figure 3.14. Black box representation of the module is shown also in 

Figure 3.15. 

 

 

 

RS = R1 ⊕  R2 

A1 = ((A1.(R2 ⊕ AS) + A1.R1 + R1.(R2 ⊕ AS)) 

A2 = ((A2.(R1 ⊕ AS) + A2.R2 + R2.(R1 ⊕ AS)) 

Figure 3.14 CALL module and its truth function 

 

 

 

Figure 3.15 Black Box Representation of CALL element 
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3.3.5. OPAQUE LATCH 

 

This module is used for data latching. When C (capture) and P (Pass) are at the same 

logic level, the output Q is preserved. When they are at different logic levels, the data 

input D is transferred to the output. Assuming both C and P are at the same logic 

level initially, consecutive transition on C and P will cause the data to be captured 

and preserved until next transition on C. The schematic and truth function can be 

seen in Figure 3.16. Black box representation of the module is shown also in Figure 

3.17. 

 

 

 

Q = (P.(C.Q + C′D) + P′.(C.D + C′.Q) 

Figure 3.16 OPAQUE LATCH module and its truth function 

 

 

 

Figure 3.17 Black Box Representation of OPAQUE LATCH Element 
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3.4. FOUR-BIT ASYNCHRONOUS ALU  

 

A four-bit asynchronous ALU has been constructed, in order to demonstrate how 

transition signaling and bundled data protocol are handled when designing a self-

timed system on an FPGA.  

 

The ALU comprises the following units: 

• 4-bit AND 

• 4-bit OR 

• 4-bit COMPLEMENT 

• 4-bit LOADABLE SHIFT REGISTERS 

• 4-bit ADDER/SUBTRACTOR 

• 4-bit MULTIPLIER 

• 8-bit by 4-bit DIVIDER 

• additional logic for CONTROL purposes. 

 

When implementing these units a hierarchical design flow has been followed. In the 

following sections the modules designed in this thesis are explained in an order 

somehow increasing complexity. 

3.4.1. ONE-BIT REGISTER 

 

It performs the function of event controlled storage element described in chapter 2. 

When data is available at the input an event (transition) on C (capture) input causes 

the latch to be transparent, i.e., the data passes to the output. The event, which occurs 

on P (pass) after the transition on C, causes the data to be stored. The latch is closed 

to new inputs until a transition occurs again on C. The acknowledgements of C and P 

events are produced through a TOGGLE element. XOR element in front of the 

TOGGLE transfers the transition on whichever of its inputs. Since the first transition 

occurs always on C, the OUT0 output of the TOOGLE produces CD (capture done) 

and the OUT1 output produces PD (pass done), which is the acknowledgement of 

second transition. In the applications the CD output is directly connected to P input, 
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building a self-control mechanism for storing data after capture as quickly as 

possible. The circuit diagram and black box representation of one-bit register can be 

seen in Figure 3.18 and Figure 3.19 respectively. 

 

 

 

Figure 3.18 Circuit diagram of one-bit register 

 

 

 

Figure 3.19 Black Box Representation of one-bit register 

 

 

3.4.2. FOUR-BIT REGISTER 

 

Four-bit register is constructed by simply combining four latches, with the control 

circuitry the same as in one-bit register. The circuit diagram and black box 

representation of four-bit register can be seen in Figure 3.20 and Figure 3.21 

respectively. 
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Figure 3.20 Circuit diagram of four-bit register 

 

 

 

Figure 3.21 Black Box Representation of four-bit register 
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3.4.3. FOUR-BIT AND 

 

This module performs logical AND of two four-bit inputs. The inputs are ANDed 

combinational and the output of AND gates are registered using a four-bit register. A 

transition on start input is the request for the module, after the data has been 

available at the inputs. The start signal is connected to the capture (C) input of the 

four-bit register. The acknowledge of the capture (Cd) is directly connected to the 

pass (P) input of the register. Hence one transition is sufficient for both capturing 

and passing the data. By the way there is no need to insert a delay element on the 

request signal paths, since the transition on AND gates lasts less than the capture 

acknowledgement generation. The final acknowledgement (Pd) indicates the end of 

operation, and data is available at the output. The schematic and black box 

representation of the four-bit AND is shown in Figure 3.22 and Figure 3.23 

respectively. 

 

 

 

Figure 3.22 Circuit Diagram of four-bit AND 
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Figure 3.23 Black Box Representation of four-bit AND 

 

 

3.4.4. FOUR-BIT OR 

 

This module is constructed similar to four-bit AND module except, OR gates are 

used instead of AND gates. The schematic and black box representation of four-bit 

OR is shown in Figure 3.24 and Figure 3.25 respectively. 

 

 

 

Figure 3.24 Circuit diagram of four-bit OR 
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Figure 3.25 Black Box Representation of four-bit OR 

 

 

3.4.5. FOUR-BIT COMPLEMENT 

 

The concept of this module is not very different than AND and OR modules. The 

four-bit input is inverted using NOT gates and then the output is registered. The 

control signals are the same as those in AND and OR modules. The schematic and 

black box representation of four-bit COMPLEMENT is shown in Figure 3.26 and 

Figure 3.27 respectively. 

 

 

 

Figure 3.26 Circuit Diagram of four-bit COMPLEMENT 
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Figure 3.27 Black Box Representation of four-bit COMPLEMENT 

 

 

3.4.6. PROGRAMMABLE DELAY ELEMENT (PDE) 

 

It is designed to use for delaying the control signal between processing units, in order 

to implement bundled-data protocol. This module is simply serially connected 

inverter chain. Each second inverter’s output is taken out of the module. There are 

totally 16 inverters, hence 8 outputs, with an increasing delay. The programmability 

comes from the selection option of one out of 8 different delayed versions of the 

input signal. The circuit diagram and black box representation of PDE are as follows 

shown in Figure 3.28 and Figure 3.29 respectively. 

 

 

 

Figure 3.28 Circuit diagram of PDE 
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Figure 3.29 Black Box Representation of PDE 

 

 

3.4.7. LOADABLE SHIFT REGISTER 

 

The shift register is one of the basic modules of multiplier and divider. It is also used 

stand alone as an ALU function. In this thesis two different shift register designs 

have been implemented.  

 

The first one is similar to conventional synchronous shift register. Four one bit 

registers are connected serially, connecting the output and input of the neighboring 

registers to each other. While the idea of the synchronous register is to apply a global 

clock to all the registers and let the data progress in parallel, for an asynchronous 

shift register, this is no longer the case since there is no such a global clock. The 

registers cannot be triggered concurrently, since when they are made transparent to 

data, there is no guarantee for only single bit transfer between them. Until they are 

closed to data transfer with the second transition on their P input, there may occur 

more than one data shift operations. The synchronization is achieved by making 

neighboring stages communicate with each other. The rightmost register gets the 

output of the register left of it and then acknowledges this operation; this is also a 

request for the register left of it. The same procedure is repeated by all other 

registers. Finally when the leftmost register acknowledges the transfer operation, the 

shift process is done. 

 

This shift register can also be loaded with a new data. Load operation has to be 

differentiated from shift operation. However because of the serial connection of the 

registers load operation is also achieved like a shift operation, with a difference; the 

registers did not acquire the output of the previous register, but the load input, 

sequentially. For the input differentiation of the registers for load and shift operation 
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a 2:1 multiplexer is put in front of each register. One input of the multiplexer is the 

output of the previous register, and the other is the loadable bit. For the select input 

of the multiplexers a specific module has been designed, which produces a “1” 

output for load transitions, and a “0” output for shift operations (the design of this 

module, named as my_module_hf, is described in the next section). The output of this 

module is used as the select input of the multiplexer. Before shift or load operation 

starts the inputs to the registers must be available. Therefore a delay element is put in 

front of the first registers request input, so that the necessary time is given for the 

settlements of both select input and hence the data. The acknowledgements of shift 

and load operations are also differentiated, using a SELECT element. The select 

input of this module is the same as the select input of the multiplexers, and the event 

input is the acknowledgement signal of the last register. If the most significant bit 

(MSB) of the input data is connected to the leftmost register, this is a shift right 

register; and if the MSB of the input data is connected to the rightmost register, then 

this is a shift left register. The schematic and black box representations of this type of 

shift register are shown in Figure  and Figure 3.31 respectively. 
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Figure 3.30 Circuit diagram of loadable shift register (type 1) 
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Figure 3.31 Black Box Representations of loadable shift register (type 1) 

 

The shift register introduced above has a major drawback, latency. This latency 

arises from the propagation delays of acknowledge signals through the blocks of 

registers. As the size of the shift register increases the latency will increase as well. 

Moreover, load operation is done like shift operation, exposed to same latency 

problem as shift operation. The second type design proposes a solution to the latency 

problem. 

 

In the second type of design the load and shift operations are performed parallel, 

hence the time spent on any operation does not depend on the register length. The 

selection of the operation (load or shift), and acknowledgement generation is done 

like in the previous type of design. The data, which will be loaded to the registers 

according to the selected operation, are also differentiated using 2:1 multiplexers 

(multiplexers have been implemented explicitly). The difference is on the 

connections of the data bits, which will be loaded to the registers in the shift 

operation. The output of the 4-bit register is fed-back to the input. However the 

problem of assuring only single bit shift at one step is still valid, therefore delay 

elements are inserted on the feedback lines. The delay value must be greater than the 

time between the registers being transparent to data and closed again. Hence the 

communication burden between the neighboring stages is eliminated on the cost of 

extra delay elements (Figure 3.3 and Figure 3.33). According to simulation results, 

which will be given detailed in chapter 5, about two times improvement in latency 

has been achieved with this type of design.  
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Figure 3.32 Circuit diagram of loadable shift register (type 2) 
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Figure 3.33 Black Box Representation of loadable shift register (type 2) 

 

 

3.4.8. MY_MODULE_HF 

 

The purpose of this module is to differentiate between two transitions, and produce 

an output indicating at which of the inputs a transition has occurred. If there is a 

transition on L input, then a ‘1’ is produced at the output. If there is a transition on S 

input then a ‘0’ is produced at the output. Actually this element could be added to the 

basic cell set as well, since it can be used in many applications. For example, in this 

thesis it is used not only in shift registers, but also used in multiplier, divider and 

adder/subtracter modules.  

 

Great attention has been given for the design to be hazard-free. The state assignments 

(Table 3.1) and output function implementations have been done according to 

fundamental-mode assumptions and the criteria explained above. The adjacent states 

in the flow table are encoded such that only one bit changes during transitions. The 

last two rows have been added in order to ensure race-free transition. Also the output 

function is constructed as a logic covering all prime-implicants (Figure 3.34 and 

Figure 3.35). The CLR input, which is not shown in flow table, is used for 

initialization purpose only, and when it is ‘0’, the circuit gives a ‘1’ output regardless 

of the other inputs. 
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Table 3.1 State transition table of my_module_hf 

 

PS: Present State NS:Next State 

 

 

 

Figure 3.34 Circuit diagram of my_module_hf 
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Figure 3.35 Black Box Representation of my_module_hf 

 

 

3.4.9. ADDER/SUBTRACTER 

 

This module is used for addition and subtraction. For both operations it uses 

basically a conventional adder. For addition, the operands are taken as they are and 

carry-in of the adder is set to ‘0’. For subtraction 1’s complement of the second 

operand (here minuend) is taken, and carry-in input is set to ‘1’, so subtrahend is 

added with the 2’s complement of the minuend. Therefore for second input and 

carry-in input of the adder multiplexers are used. The select inputs of these 

multiplexers are produced by again my_module_hf modules like in the shift 

registers. Similarly request signals are delayed, so that the necessary time is given for 

the settlements of both select input and hence the data. The data input are registered 

before addition/subtraction operation is performed, in order to eliminate false 

outputs, which can be produced due to changes in the input data during 

addition/subtraction process. The acknowledgements of the input registers are 

ANDed via a MULLER-C element. The output of this MULLER-C element is used 

as request input for the sum and carry-out registers. Again a delay element is inserted 

between the MULLER-C output and register request inputs, in order to wait the sum 

and carry-out outputs of the adder to be available. The value of the delay inserted has 

to be greater than the process time of the adder, which is a combinational logic.  

 

For two different request signals (add and sub) two different acknowledgement 

signals (add_done, sub_done) are produced as well. This is accomplished by using a 

SELECT module whose select input is the output of my_module_hf and event input 



 

 

46 

is the ANDed (via MULLER-C) acknowledgement signals of the output registers. 

Figure 3.36 shows the schematic of the ADD/SUB module and Figure 3.37 shows 

the black box representation of this module. 
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Figure 3.37 Black Box Representation of ADD/SUB module 

 

 

3.4.10. MULTIPLIER 

 

The multiplier designed in this thesis implements conventional shift and add 

algorithm. This algorithm actually does what people are doing when they multiply 

two binary numbers with paper and pencil. The conventional process can be 

illustrated with a numerical example as follows. 

 

 

 

The process consists of looking at successive bits of multiplier, least significant bit 

(LSB) first. If the multiplier bit is a ‘1’, the multiplicand is copied down, and if ‘0’ 

zeros are copied down. The numbers copied down in successive lines are shifted one 

position to the left from the previous number. Finally they are added, and their sum 

gives the product. 

 

In digital systems this algorithm is performed with a slight change. Instead of storing 

all shifted multiplicands and adding them at the end of the operation, they are added 
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at the end of each shift operation producing partial products. And also instead of 

shifting multiplicand left, partial product is shifted right, leaving the partial product 

and multiplicand in the required relative positions [38]. If a signed-magnitude 

multiplication is performed, the sign bit is determined aside from this operation. The 

sign bit of the product is simply found by XORing the sign bits of the multiplicand 

and multiplier.  

 

The required hardware for n-bit signed magnitude multiplication is as follows shown 

in Figure 3.38. 

 

 

 

Figure 3.38 Required Hardware for Signed-Magnitude Multiplication 

 

 

Multiplication process is performed according to hardware flow chart shown in 

Figure 3.39. Initially, multiplicand is stored in B register (sign bit in Bs), and 

multiplier in Q register (sign bit in Qs). The sign of the product is determined just 

XORing the sign bits of the multiplicand and multiplier. For magnitude 

multiplication A and E registers are initialized setting them to ‘0’, and the sequence 

counter is loaded with the number of magnitude bits. After initialization according to 

the value of the LSB of multiplier (Q register) a shift or an addition and a shift after 

the addition is performed. For each process, the sequence counter is decremented by 

1. As the value of the sequence counter gets ‘0’, the multiplication finishes and the 
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product is stored in A and Q registers, while most significant part resides in A, least 

significant part resides in Q. The sign of the product is kept in As register. 

 

The self-timed version of this architecture, implemented in this thesis as four-bit 

signed-magnitude multiplier, consists of the following components: 

• a four-bit register for multiplicand (B), 

• two four-bit loadable shift registers for multiplier (Q) and partial product (A),  

• four one-bit registers for sign bits (Bs, As and Qs) and for E, 

• a four-bit adder (it has no infrastructure for subtraction, since there is no 

need), 

• a modulo-4 counter instead of a sequence counter (SC), 

• two four-bit registers for registering the final content of A and Q registers 

(the content of these registers are not visible at the output during the 

multiplication process), 

• basic cell-set elements and delay blocks for control and data handling. 
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Figure 3.39 Hardware Flow Chart for Multiplication 

 

 

Multiplication begins with a transition on the start input. With this transition A, B, 

Q, E, As and Bs registers are loaded with initial values. A and E registers are loaded 

initially with ‘0’s, but during the multiplication process if an addition is performed, 

A register is loaded with the sum output of the adder and E is loaded with the carry-

out output of the adder. Moreover E register must take a ‘0’ before a shift operation 

is performed. Therefore the input data of A and E registers are selected according to 

the process being performed. For this purpose multiplexers are utilized. The select 

inputs of the multiplexers are generated by my_module_hf modules. So the initial 

load request (start) and load requests after additions are differentiated from each 

other. For E register also the shift operation is differentiated from load operations. 

The requests which are wanted to be differentiated from each other, arrives both the 
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load or shift request input pins of the registers and L and S inputs of the 

my_module_hf. The delay elements are inserted on the load request and shift request 

paths of the registers, in order to wait for data to be available at the output of the 

multiplexers before the requests reach the registers. 

 

The number of shift and add operations is counted by a special modulo-4 counter 

instead of a sequence counter. The modulo-4 counter (Figure 3.40 and Figure 3.41) 

takes the transitions and steers every fourth transition to its mod_4 output while first, 

second and third transitions are steered to mod_4_PRIME output. This module is 

triggered after each shift operation. Since a shift occurs regardless of the value of the 

LSB of Q register, the end of the operation can be determined by simply counting the 

shift operations. So the shift acknowledge is connected to the input of modulo-4 

counter. While the first three acknowledgements are directed to the module which 

checks the LSB of Q register and determines accordingly whether a shift or addition 

is done, the fourth transition is sent to the registers which will hold the final content 

of As, A and Q registers as product output. When these registers acknowledge the 

storage operation, by combining their acknowledge outputs to a MULLER-C element 

a finish signal is generated to indicate the end of the operation and the product is 

available at the output. The schematic design of 4-bit signed-magnitude multiplier 

can be seen in Figure 3.42. 

 

 

 

Figure 3.40 Circuit diagram of special modulo-4 counter 
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Figure 3.41 Black Box Representation of special modulo-4 counter 
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Figure 3.42 4-bit Signed-Magnitude Multiplier 
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3.4.11. DIVIDER 

 

The divider designed in this thesis performs 4-bit signed-magnitude binary numbers 

division. Like multiplier, the conventional algorithm, what people do when they 

divide two binary numbers with paper and pencil, has been implemented. The 

conventional algorithm is simply a process of successive compare, shift and subtract 

operations. The division process is illustrated by a numerical example as follows: 

 

 

 

For a 2n-bit dividend by n bit divisor case the process starts with comparing most 

significant n bits of dividend with divisor. If divisor is greater, then a ‘0’ is put for 

quotient and the divisor is shifted once to the right (this process can be thought as if 

adding a ‘0’ in front of the MSB of divisor). Otherwise a ‘1’ is put for quotient and 

the divisor is subtracted from the part of the dividend with which it is compared. The 

divisor is shifted again after subtraction. The difference is called a partial remainder 

[38] because the division could have stopped here to obtain a quotient of ‘1’ and a 

remainder equal to the partial remainder. The process is continued by comparing 

partial remainder with the divisor. If the partial remainder is greater than or equals 

the divisor, the quotient bit is equal to ‘1’. The divisor is then shifted right and 

subtracted from the partial remainder. If the partial remainder is smaller than the 

divisor, the quotient bit is ‘0’ and no subtraction is needed. The divisor I shifted once 

to the right in any case. 

 

In digital systems this algorithm is performed with a slight change. Instead of 

shifting the divisor to the right, the dividend or partial remainder is shifted to the left, 

thus leaving the two numbers in the required relative positions. The hardware 
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required for division, and the hardware flow chart for signed-magnitude division can 

be seen in Figure 3.43 and Figure 3.44 respectively.  

 

 

 

Figure 3.43 Required Hardware for Signed-Magnitude Division 

 

 

The dividend is contained in AsAQ and the divisor is contained in BsB. The sign of 

the quotient (Qs) is determined by XORing the sign bits of the dividend and divisor. 

If the sign bits are not counted, the dividend is of length 2n and divisor is of length n. 

The register dedicated for quotient (Q) is also of length n. If the higher order half bits 

of dividend constitute a number greater than or equal to divisor, then divide overflow 

condition occurs. This means the quotient cannot be fit into n-bit register, it is at least 

of length n+1. At the beginning of the operation this condition is checked, and if a 

divide overflow condition exists, the process is exited by setting the DVF bit. If there 

is no overflow condition the process is continued by magnitude division.  

 

The division of magnitudes starts by shifting the dividend in AQ to the left with 

high-order bit shifted into E. If the content of E is ‘1’, then it is obvious that EA > B, 

since EA consists of a ‘1’ followed by n bits while B consists of only n bits. In this 

case B is subtracted from A and a ‘1’ is inserted to Qn for quotient bit.  
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If the shift-left operation inserts a ‘0’ into E, then the contents of the A and B 

registers are compared by subtracting B from A. The subtraction is done by adding 

2’s complement of B to A. If the carry-out of the adder is ‘1’, it signifies that A ≥ B; 

therefore a ‘1’ is inserted to Qn . If E is ‘0’ then it means that A < B, so in order to 

restore original number B is added to A. There is no need to set Qn to ‘0’, since a ‘0’ 

is already inserted during the shift operation. 

 

This process is repeated for n times. The flow control is done by assigning a 

sequence counter initially to n and decrementing it by 1 after one shift, compare and 

subtract cycle. When the content of this counter is ‘0’ then the operation is 

completed, the remainder is in A, and the quotient is in Q. 
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Figure 3.44 Hardware Flow Chart for Signed-Magnitude Division 
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The self-timed version of this architecture, implemented in this thesis as four-bit 

signed-magnitude divider, consists of the following components: 

 

• a four-bit register for divisor (B), 

• two four-bit loadable shift registers for dividend (Q and A), 

• four one-bit registers for sign bits (Bs, As and Qs) and for E, 

• a four-bit adder/subtracter , 

• a modulo-4 counter instead of a sequence counter (SC), 

• two four-bit registers for registering the final content of A and Q registers 

(the content of these registers are not visible at the output during the division 

process), 

• basic cell-set elements and delay blocks for control and data handling. 

 

Division begins with a transition on the start input. With this transition A, B, Q, As 

and Bs registers are loaded with initial values. A and Q registers are loaded initially 

with dividend, but during the division process if an addition or subtraction is 

performed, A register is loaded with the sum output of the add/sub block, and Q is 

reloaded with its LSB set to ‘1’, if partial remainder is greater than or equals to 

divisor. Therefore the input data of A and Q registers are selected according to the 

process being performed. For this purpose multiplexers are utilized. The select inputs 

of the multiplexers are generated by my_module_hf modules. So the initial load 

request (start) and load requests after additions are differentiated from each other. 

The requests which are wanted to be differentiated from each other, arrives both the 

load or shift request input pins of the registers and L and S inputs of the 

my_module_hf. The delay elements are inserted on the load request and shift request 

paths of the registers, in order to wait for data to be available at the output of the 

multiplexers before the requests reach the registers. 

 

The number of shift-compare and subtract operations is counted by the same special 

modulo-4 counter used in multiplier (Figure 3.40). This module is triggered after 

each restore or set Qn to ‘1’ operation. Since one of these operations occurs at the 

end of each comparison, the end of the operation can be determined by simply 

counting the comparison operations. While the first three acknowledgements are 
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directed to initiate shift-left operation, the fourth transition is sent to the registers 

which will hold the final content of A, Q and Qs registers as remainder and quotient 

output. When these registers acknowledge the storage operation, by combining their 

acknowledge outputs to a MULLER-C element a finish signal is generated to 

indicate the end of the operation and the remainder and quotient are available at the 

output. The schematic design of 4-bit signed-magnitude divider can be seen in Figure 

3.45. 
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Figure 3.45 Four-bit Signed-Magnitude Divider 
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3.4.12. I/OS OF ALU 

 

The individual functional units described above have been combined in a top 

module. The top module takes two data input, one of them is of length 8 (REG1) and 

the other is of length 4 (REG2). According to the function implemented the 

meaningful bits differ. Table 3.2 shows which bits of REG1 and REG2 are 

meaningful for which operation. Also for multiplication and division there are two 

one-bit inputs (as and bs) that indicate the sign bits of operands. For other operations 

they are don’t cares. 

 

The top module has also CLR input, for initialization of the modules, and START as 

the external REQUEST input of the ALU.  

 

The function of the ALU is selected through an opcode. The opcode has 5 bits, and 

the least significant three bits determine whether the ALU will perform AND, OR, 

COMPLEMENT, ADD, SUBTRACT, MULTIPLY or DIVIDE operation, while the 

most significant determines whether the output of the operation will be shifted left, 

shifted right or kept as it is. Table 3.3 gives the opcode decoding. 

 

The outputs of the functional units are decoded in eight-bit OUTREG output of the 

ALU. The sign bits of product and division are also multiplexed with the carry-out 

bits of adder/subtracter unit in qs output. The decoding of OUTREG and qs is shown 

in Table 3.4. The ALU has also a DVF output dedicated for divide overflow 

condition of divider and a FINISH signal as external ACKNOWLEDGE of the ALU. 

 

 

Table 3.2 Input Decoding 
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Table 3.3 ALU Function Selection Opcode Decode Table 

 

 

 

Table 3.4 Output Decoding 

 

 

 

3.5. INCREMENTAL DESIGN USING RELATIONALLY PLACED 
MACROS 

 

As mentioned before, the initial step for designing asynchronous systems is to obtain 

a hazard-free cell set. Hazard-free circuits can be obtained by meeting firstly the 

design constraints such as covering all prime implicands in the SOP implementation, 

encoding adjacent states with adjacent code words etc., and secondly the timing 

constraints such as feedback delay constraint, and bundled data constraints in self-

timed systems. While the design defects are independent of the environment on 

which the system is constructed, and can be eliminated on paper before starting 

implementation, the timing problems strongly depend on the design environment, 

and are mostly handled during implementation stage. Actually eliminating timing 

problems means adjusting delays properly.  
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In an FPGA the design can be entered in two different ways, using HDLs (Hardware 

Description Languages) or schematic entry tool. Two widely used HDLs are Verilog 

and VHDL (VHSIC HDL), where VHSIC stands for Very High Speed Integrated 

Circuits. The synthesizers (XST, Examplar, Precision etc.) produce EDIF (Electronic 

Design Interchange Format) files from the design entries. EDIF is a standard 

interface-file specification. EDIF files are used by place-and-route (PAR) tools for 

mapping the logic into the architectural resources of the FPGA (CLBs, IOBs etc.). 

PAR tools then determine the locations for these blocks based on their 

interconnections and finally interconnect the blocks.  

 

The placement and delays depend very much on the performance of the tools used. In 

this thesis, as mentioned before, Xilinx’s ISE (Integrated Software Environment) tool 

has been utilized. ISE provides text and schematic editors for HDL and schematic 

design entries; XST (Xilinx Synthesis Technology) as synthesizer, and PAR tools. 

While PAR tools can implement the designs automatically, they allow the user view 

and modify the placed design (via Floorplanner) as well as view and modify the 

physical implementation, including routing (via FPGA Editor).  

 

At the beginning, basic cell set elements have been entered in schematic editor, and 

placement and routing has been made automatically. The hazard behavior of the units 

has been checked by making simulations. In the simulations all possible input 

combinations have been tried. If a hazard is observed, this is mainly a sequential 

hazard, since there is no possibility for logic-hazards to occur in LUT-base 

implementations (refer to section 3.2.1). The main reason for sequential hazards is 

unfavorable routing. Automatic routing may not satisfy the feedback delay to be less 

than or equal to the sum of the minimal delay in detecting the output change and 

producing a new input, and the minimal delay on the input line. In this case the delay 

constraints can be met either by making the routing by hand using FPGA editor, or 

adding extra delay elements where the delay should be greater than others. In this 

thesis the second approach has been preferred. The only element at which hazard has 

been observed after automatic routing was the TOGGLE element. All of the other 

basic cell set elements were hazard-free. TOGGLE element has also been 

implemented as hazard-free after inserting two buffers on the data paths. An 
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important point which must be considered in buffer insertion is that, the nets before 

and after the buffer must be associated with KEEP property set to TRUE, so that 

synthesis tool does not remove the buffer when it optimizes the circuit, since during 

optimization the synthesis tool appreciates the two nets before and after the buffer 

equal and finds the buffer as an unnecessary gate between these nets.  

 

After obtaining a complete hazard-free cell set, the next step was to implement self-

timed circuits using these elements. The timing problem, which must be handled in 

the self-timed systems, is bundled-data constraint, i.e., the data must be available 

before a request arrives to the processing unit. This constraint can be met by delaying 

control signals for data process time. The control signals are delayed using PDE 

elements, whose structure is described in section 4.6. PDE is a chain of inverters, and 

similar to buffers if the nets between inverter gates are not associated with the KEEP 

property set to TRUE they are removed by the synthesis tool. 

 

During the design process of self-timed circuits, it has been seen that the basic cell 

set elements could exhibit hazardous behavior, when they are instantiated in upper 

level modules, although they were implemented as hazard-free individually. The 

reason for this situation is that, when they are instantiated in upper blocks, their 

placement and routing is different than the placement and routing as they were 

implemented as single blocks. The random behavior of PAR tool also complicates 

the adjusting delays for bundled data protocol. For each new delay value a new 

placement is encountered. While a system can operate correctly for a delay value, it 

may not operate for higher delay values. This is an unexpected case, since for correct 

operation there is only a lower limit for delay and for delay values higher than the 

lower limit the system should operate correctly. When increasing the delay the 

remaining circuit does not keep its placement and routing, and hence the delay 

assumptions made in one case may fail in another case. The unfavorable effect of 

unpredictable routing can be decreased extensively, although not fully eliminated, by 

creating relationally placed macros (RPM) of the design units, and using incremental 

design techniques. 
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3.5.1.  RELATIONALLY PLACED MACROS (RPMS)  

 

An RPM defines the spatial relationship of the primitives that constitute its logic, and 

after an RPM is created it is indivisible any more. Creating RPMs is helpful in 

maintaining the delays in a modular, hierarchical design. And since the basic 

modules are constrained in a predefined area, when they are connected in a higher 

level, internal routing does not differ very much and extra expense of routing 

resources is eliminated. As a result the final design takes also less space compared to 

that not comprised of RPM modules.  

 

The methodology how to create RPMs is explained in an application note [39] 

published by Xilinx. This methodology cannot be applied to schematic designs. 

Therefore all schematic entries have been converted to VHDL counterparts. The ISE 

tool does this process automatically. Before creating RPMs of the modules, their 

VHDL based implementations have been tested again, because the schematic and 

VHDL designs differ in routing, the delay calculations made for schematic design 

may fail for the VHDL design. The delay values have been modified again until 

being satisfied with the automatic placement of the PAR tool according to simulation 

results. Finally hazard-free RPMs of the basic cell set elements have been obtained. 

The relational locations of the primitives are written to a file named as user 

constraint file (UCF), and when the RPM is instantiated in an upper module, the 

content of this file must be copied into the UCF of the upper module, explicitly 

indicating the hierarchical instance name. 

 

Self-timed circuits can be easily implemented using the RPMs of the constituent 

elements. The delay assignments can be made more coherently, since the routing is 

more predictable with RPMs. So, all of the functional units of the ALU, described 

above, have been implemented using RPMs.  
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3.5.2. INCREMENTAL DESIGN FLOW 

 

The incremental design flow is a methodology for processing designs in a 

hierarchical way that reuses results for unchanging portions of the design. The design 

is partitioned into separate logic groups, which are then constrained with an AREA 

GROUP constraint. This constraint packs logic together during the mapping process 

so that each logic group is assigned an area on the device. When a design change is 

made to one of the logic groups, the incremental design flow ensures that unchanged 

logic groups are unchanged in the synthesis output. PAR tools re-place and re-route 

the changed logic within its assigned area, while the unchanged logic groups are 

guided from the previous implementation. So the timing results (placement and 

routing) of unchanged logic groups remain stable. Incremental design flow also 

reduces the implementation runtimes by only re-implementing the changed logic. 

 

Incremental design flow technique is explained in an application note [40] published 

by Xilinx. In this thesis, this methodology has been followed when combining the 

functional units of ALU at the top level. Each unit (AND, OR, COMPLEMENT, 

ADD/SUB, MULTIPLIER, DIVIDER, SHIFT REGISTERS) constitutes a logic 

group and they have been placed on the assigned areas preserving the placement and 

routing as they were implemented individually. The logic blocks, which are used to 

connect these modules, and to control the ALU functions, have also been partitioned 

into logic blocks. While placing area groups, the logic groups which communicate 

with each other have been placed next to each other, and the logic groups which use 

I/Os, have been placed next to I/O blocks of the FPGA. The I/O pin assignments 

have been done according to the layout of the PCB which has been implemented for 

hardware realization of the thesis.  

 

On the PCB, there are seven segment displays to demonstrate inputs and outputs of 

the ALU. The necessary logic for encoding the binary input and output data to seven 

segment displays in BCD (binary coded decimal) format, has been implemented on 

the area which is not occupied by the logic groups. This logic is fully combinational 

and has no effect on the operation of the ALU. The floorplanner view after area 

groups have been assigned for the logic groups can be seen in Figure 3.46. 
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1. ADD/SUB 

2. MULTIPLIER 

3. DIVIDER 

4. COMPLEMENT 

5. OR 

6. AND 

7. LOADABLE SHIFT REGISTER (LEFT) 

8. LOADABLE SHIFT REGISTER (RIGHT) 

9. CONTROL LOGIC AT TOP LEVEL (SELCT, MULLER-C, etc) 

10. BINARY TO SEVEN SEGMENT DISPLAY ENCODER LOGIC 

Figure 3.46 Floorplanner view of the logic groups 
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CHAPTER 4  
 
 
 

NUMERICAL RESULTS 

 

In an FPGA design, there are two main criteria when evaluating the design; area and 

operating speed. Area is evaluated in terms of the number of slices occupied by the 

logic, and operating speed is evaluated in terms of data latency, i.e., the time spent 

from initiating the process until the data is available at the output. In self-timed 

circuits data latency can be given as the time between arrival of request and 

generation of acknowledgement.  

 

In asynchronous sequential circuits the transition delay between any two states are 

not equal. It depends on the state variables that are excited during the transition. 

Therefore in self-timed circuits, which consist of sequential elements, the latency 

between the request and acknowledgement signals does not have a fixed value. For 

example in muller-c element, the response time to change in a input takes 7.191 ns, 

while the response time to change in input b takes 7.348 ns. 

 

For multiplication and division the latency depends also on the inputs. In 

multiplication the addition operation is performed as many times as the number of 

‘1’s in multiplier. Hence, the less number of ‘1’s the multiplier has, the shorter the 

time passes for the multiplication process. In division, if a divide overflow condition 

exists, the operation is exited at that moment and it is the shortest time spent for the 

division. In other cases the operation time also depends on the result of the 

comparisons made. If the partial remainder is less than the divisor, the partial 

remainder must be restored after the subtraction, which is made for comparison. The 

restore operation is not performed if partial remainder is greater than divisor. As a 

result, the latency changes according to input given. 
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Table 4.1 gives a summary of the area occupied by the modules, which are 

implemented in this thesis, and minimum and maximum latencies on these modules. 

The simulation waveforms of the modules can be seen in the Appendix A. The 

values given in Table 4.1 and the simulation outputs in the appendix part correspond 

to the results obtained when these modules are implemented individually. The final 

ALU, comprising these modules, has higher latencies for the given operation, since 

an extra register operation is performed, according to selected function, and if the 

output shift function is selected the latency increases even more, since the output of 

the selected module is registered first, and then shift operation is performed. Table 

4.2 shows the latencies of the functional units of the ALU after combining them at 

the top level.  
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Table 4.1 Area and latency results of the self-timed modules 

Module 

# of 

slices Latency* (ns) 

    min max 

MULLER-C 1 7.191 7.348 

TOGGLE 4 7.720 10.442 

SELECT 2 8.726 8.569 

CALL 2 8.761 13.812 

OPAQUE LATCH 1 7.398 8.060 

ONE-BIT REGISTER 6 27.604 30.080 

FOUR-BIT REGISTER 9 24.587 27.786 

FOUR-BIT AND 13 18.716 21.492 

FOUR-BIT OR 13 18.716 21.492 

FOUR-BIT COMPLEMENT 13 13.461 17.065 

PDE 16 12.535 27.679 

load : 43.784 56.125 LOADABLE SHIFT 

REGISTER (TYPE 1) 
44 

shift : 44.778 57.973 

load : 21.025 23.743 LOADABLE SHIFT 

REGISTER (TYPE 2) 
34 

shift : 21.218 23.936 

MY_MODULE_HF 2 8.313 8.530 

add : 41.070 48.642 
ADD/SUB  81 

sub : 41.444 48.208 

4x4 MULTIPLIER 232 312.914 494.514 

8/4 DIVIDER 328 188.812 1.028.060 
* Latency includes input/output pad delays as well 

 

 

 

 

 

 



 

 

71 

 

 

Table 4.2 Function latencies of asynchronous ALU (Top level implementation) 

Latency (ns) 

no shift shift right/left Function 

min max min max 

COMPLEMENT 49.229 54.509 83.888 86.243 

AND 48.756 55.299 83.415 87.033 

OR 45.963 51.762 80.622 83.496 

ADD 74.832 84.337 109.491 116.071 

SUBTRACT 75.530 85.035 110.189 116.769 

MULTIPLY 331.000 524.377 365.659 556.111 

DIVIDE 232.783 1109.314 266.182 1143.973 

 

 

To make a comparison a synchronous version of the ALU implemented in this thesis 

has also been designed on the same target FPGA. The synchronous ALU performs 

the same algorithms as the asynchronous ALU. Even, it realizes a two-phase 

handshaking between its modules. Synchronous ALU has been implemented fully by 

VHDL, and the synthesis and PAR options have been left at default values, i.e., 

placement and routing have been done fully automatically, without giving any 

constraint. According to PAR report file generated by ISE, the synchronous ALU can 

operate at a frequency of 124 MHz. When ALU components are implemented 

separately, they can operate at higher frequencies, however the operating frequency 

decreases to the frequency of the slowest module, when they are combined in an 

upper level. Table 4.3 shows the occupied area and latencies of the modules when 

they are implemented individually, and Table 4.4 shows the function latencies of the 

top-level implementation of the synchronous ALU. Both results have been obtained 

by a simulation with 100 MHz clock. In synchronous ALU the latency for a given 

function does not depend on the state transitions, since all transitions are quantized 

with clock period. Of course, the latencies of multiplication and division processes 

depend on the input values like in the asynchronous ALU, since synchronous ALU 
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performs the same shift-and-add algorithm for multiplication, and shift-compare-

subtract algorithm for division. 

 

 

Table 4.3 Area and latency results of the synchronous modules 

Module 

# of 

slices Latency (ns) 

    min max 

FOUR-BIT AND 5 17.094 17.094 

FOUR-BIT OR 5 17.097 17.097 

FOUR-BIT COMPLEMENT 1 17.092 17.092 

load : 31.586 31.586 LOADABLE SHIFT 

REGISTER  
10 

shift : 31.586 31.586 

add : 30.000 30.000 
ADD/SUB  13 

sub : 30.004 30.004 

4x4 MULTIPLIER 23 147.092 227.092 

8/4 DIVIDER 38 67.102 347.102 

 

 

Table 4.4 Function latencies of synchronous ALU (Top level implementation) 

Latency* (ns) 

no shift shift right/left Function 

min max min max 

COMPLEMENT 41.603 41.603 41.603 41.603 

AND 41.603 41.603 41.603 41.603 

OR 41.603 41.603 41.603 41.603 

ADD 61.603 61.603 61.603 61.603 

SUB 61.603 61.603 61.603 61.603 

MULTIPLY 171.603 251.603 171.603 251.603 

DIVIDE 91.603 371.603 91.603 371.603 
* Latency includes input/output pad delays as well (at 100MHz) 
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According to simulation results synchronous and asynchronous modules show 

similar performance for small-scaled circuit applications, such as AND, OR and 

COMPLEMENT, when they are implemented individually. Even, asynchronous shift 

register (Type 2) seems to be faster than its synchronous counterpart. However, the 

synchronous modules are implemented similar to the asynchronous modules, and 

thus have extra logic, which increases the latency. The two-phase handshaking 

protocol has been applied to synchronous modules as well. They start with the 

operation as the request arrives, and they produce an acknowledgement signal after 

the data is available at their output. This is not a usual operation flow for 

synchronous circuits. Normally AND, OR, COMPLEMENT, SHIFT, 

ADDITION/SUBTRACTION operations can be done within a clock period, and in 

this case the latency will take no more than 10 ns. for an operation frequency at 100 

MHz. The effect of usual operation of these functions can be seen in the data 

latencies of the multiplier and divider. Synchronous multiplier and divider perform 

almost two times faster than asynchronous ones. The main reason for this is that 

shift, add/sub operations take less time in synchronous modules, and these operations 

consist the majority of the operations performed in multiplication and division 

algorithms. 

 

Aside from latency, the slice utilization is better in synchronous modules. The main 

reason for this is that FPGA architecture and synthesis tools are more suitable for 

synchronous designs. While in a synchronous design the flip-flop in a CLB can be 

used for data storage of the LUT output in the same CLB, in asynchronous design 6 

extra slices are consumed for registering one-bit data (refer to Table 4.1). Moreover, 

basic control modules for two-phase handshaking, and delay elements used for 

satisfying bundled-data constraint, result in extra slice consumption. Another reason 

for asynchronous circuits using more slices is that, for initialization of the 

asynchronous circuits extra gates are used, while in synchronous circuits dedicated 

RESET and SET inputs of the flip-flops are used for initialization and thus no extra 

logic is generated for this purpose.  

 

All the design files can be found in the CD enclosed in an envelope in Appendix C. 

There are three folders in CD. tez_schematic folder contains the schematic entries of 
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the basic cell set elements and ALU components described in chapter 3, 

tez_async_alu folder contains the VHDL versions of the schematic files and top 

module combination of the asynchronous ALU designed with incremental design 

technique. Finally tez_sync_alu folder contains the synchronous version of the ALU 

implemented in this thesis. When the ISE project files contained in these folders are 

opened with an ISE 6.3 program, all the design files and testbench files 

corresponding to VHDL and schematic modules can be observed in a hierarchical 

order. The testbench files can be run with a Modelsim program as well.  
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CHAPTER 5  
 
 
 

HARDWARE IMPLEMENTATION 

 

The asynchronous ALU implemented in this thesis has also been realized on 

hardware. For this purpose a PCB has been designed. The PCB consists of the target 

FPGA (Xilinx Virtex XCV300) and peripheral elements. The peripheral elements are 

as follows: 

• Power Terminals: The power is given trough these terminals. A 5V voltage 

must be supplied to the board, and the supply should be capable of providing 

2A current as well. 

• A Switching Voltage Regulator (SVR) (PT6941C): On the board three 

different voltage levels are used. These are 5V, 3.3V and 2.5V. SVR converts 

5V to 2.5V and 3.3.V.  

• An EEPROM (XC18V02): It is used to keep the configuration file of the 

FPGA. When the card is given power, the data in the EEPROM is transferred 

to the FPGA, and then FPGA performs the operation until the power is off.  

• A connector for JTAG interface: The configuration file is downloaded to the 

EEPROM through this connector. 

• Buffers (74LVT16245): They are used to isolate I/Os of FPGA from external 

environment. 

• Switches: They are used to set the input data, opcode and START signal to 

initiate the operation. 

• Push buttons: There are two push buttons on the board. One of them is used 

to reset the FPGA, i.e., reload the configuration data, and the other is used to 

initialize the ALU by giving a CLR signal. 

• Debounce circuit (MAX6818): This circuit is used to eliminate bouncing on 

CLR and START signals. For two-phase signaling it is very important to 
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have clear transitions especially on request signal, which is here the START 

signal. 

• LEDS: All input and output signals are demonstrated with LEDS. 

• Seven-segment displays: There are nine seven-segment displays, five of them 

are used to demonstrate input data, and the rest four are used to demonstrate 

output data in BCD format. Most of the power is consumed on these displays. 

Transistors have been utilized in order to supply necessary current to 

illuminate the LEDs of these seven-segment displays. 

• A clock generator: This circuit provides a 50 MHz clock and has been placed 

for the case of implementing synchronous ALU as well on the same board. 

However it has no function when the asynchronous ALU configuration file is 

downloaded. 

 

The schematics of the PCB can be seen in Appendix B. Figure 5.1 shows the top 

view layout of the board and Table 5.1 shows the location references of the main 

components on the topside of the board. 

5.1. OPERATION MANUAL 

 

Figure 5.2 shows the top view of the board with the components placed on it. In this 

section the direction references are given according to this view of the board. 

 

When the power is given to the board the FPGA will be loaded with the 

configuration data stored on the EEPROM. Before starting with any operation the 

START signal must be taken to ‘0’ state, and CLR push-button must be pushed, i.e., 

set to ‘0’ for a while to initialize the ALU. After initialization operation is completed 

the input data and function can be selected through the switches. There is a table on 

the board, which describes the operations implemented according to the selected 

opcode. The I/O decoding tables was given in chapter 3, section 3.12. When the 

input data is set their BCD format view can be seen on the seven-segment displays 

placed on the upper side of the board. The left-most three displays show the REG1 

content, while the right-most two displays shows the REG2 content. The operation is 

initiated by changing the state of the START signal (if ‘0’ set to ‘1’; if ‘1’ set to ‘0’). 
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This will generate the necessary request signal for the selected function the output 

will be displayed both on the output LEDs, residing on the right of the board, and on 

the seven-segment displays placed on the bottom of the board. For division, the left-

most two displays show the quotient and the other two displays shows the remainder. 

A sample division operation can be seen in Figure 5.3. For multiplication the left-

most display is don’t cared, and remaining three displays show the product. For other 

operations the left-most two displays are don’t cared, and the result is showed on the 

right-most two displays.  

 

 

 

Figure 5.1 Layout of the board (top view) 
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Table 5.1 Location references of the main integrated circuits of the PCB 

Integrated Circuit Location reference 

FPGA TD21 

EEPROM TD19 

BUFFERS 
TD11, TD12, TD13, TD14, 

TD15, TD16, TD17, TD18 

SWITCHES SW1, SW2, SW3 

7-SEGMENT DISPLAYS 
TD2, TD3, TD4, TD5, TD6, 

TD7, TD8, TD9,TD10 

SWITCHING VOLTAGE REGULATOR CR101 

POWER TERMINALS TE1, TE2 

DEBOUNCE CIRCUIT TD20 

JTAG INTERFACE CONNECTOR KN4 

PUSH BUTTONS A1, A2 
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Figure 5.2 Top view of the board 
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Figure 5.3 A sample operation (103/15, quotient: 6, remainder:13) 
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CHAPTER 6  
 
 
 

CONCLUSION 

 

In this thesis an approach for designing asynchronous circuits in commercial FPGAs 

has been proposed. Also the performance of the asynchronous systems designed in 

FPGAs have been investigated in terms of logic slices occupied and data latencies by 

implementing a sample design which is an ALU. The area and speed performance of 

the asynchronous ALU has been compared with a synchronous ALU having the 

same functionality as the asynchronous one as well. 

 

The first thing, which must be done before starting with an asynchronous circuit 

design, is to characterize the hazard behavior of the environment on which the 

system will be implemented. In this thesis the environment is a Xilinx Virtex series 

FPGA, XCV300. Xilinx FPGAs are based on LUTs and LUTs have different timing 

characteristics than simple gates like AND, OR, NAND etc. In this thesis hazard 

analysis of both gate-level and LUT-based implementations have been investigated. 

Xilinx’s LUT-based FPGAs offer logic hazard-free implementations, but function 

hazards cannot be eliminated.  

 

The asynchronous ALU designed in this thesis has been implemented in the style of 

micropipelines. Two-phase transition signaling has been used for control circuits, 

and bundled-data protocol has been used to handle data timing. For two-phase 

handshaking protocol a basic cell set has been implemented first. This cell set is 

hazard-free provided that they satisfy the feedback delay constraint. If the 

implementation consumes only one logic block of the FPGA, this constraint is 

satisfied automatically, however if an element is implemented on more than one 

logic blocks, the delay constraints may not be satisfied automatically by the synthesis 

tools, and some delay elements need to be inserted. The timing behaviors of the 

hazard-free cell set elements are kept in upper level instantiations by generating 
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relationally placed macro (RPM) modules of these elements. Another timing 

constraint which must be met in self-timed circuits is the bundling constraint, i.e., 

data must be available before the request arrives. This is also handled by inserting 

delay elements (chain of inverters) in the paths of control signals. A module 

satisfying bundling constraint when implemented individually, however, may not 

keep this property when instantiated in upper blocks, since the placement of the 

module may be very different when it is instantiated in upper levels than its 

individual implementation. To prevent this condition incremental design technique 

can be utilized. In this technique the timing results of the modules remain stable 

when they are used or combined in upper levels. 

 

When compared the area and speed performances of the asynchronous and 

synchronous ALUs, the synchronous one has advantages over the asynchronous one. 

Synchronous design is faster and consumes less FPGA resources. This is mainly due 

to being commercial FPGAs and FPGA design tools mostly dedicated to 

synchronous designs. Basic asynchronous design elements are not available in 

FPGAs and for the design of those elements extra logic blocks are consumed. This 

increases both the number of logic blocks utilized and hence the latency of the signal 

propagating through these sources. 

 

This research has showed that commercial FPGAs are not very suitable for 

asynchronous circuit design. While a synchronous design verified on paper could 

possibly function correctly when implemented on a FPGA, the asynchronous circuit 

may not function properly since it may not satisfy the timing constraints after place 

and route process. Therefore asynchronous circuit design takes more time than the 

synchronous counterpart. The designer should apply special techniques to keep 

timing constraints and should assure proper operation for all possible input 

combinations. The time spent for an asynchronous design even is not worthy, since at 

the end the design is not advantageous over the synchronous one. The only expected 

advantage of the asynchronous circuit was that the asynchronous design is still 

modular. Different modules designed by different designers on the same FPGA could 

operate correctly when they are combined using incremental design technique.  
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APPENDIX A 

A. SIMULATION WAVEFORMS OF ASYNCHRONOUS MODULES 

 

In the following waveforms, the declaration given in front of each signal represents 

the name of the testbench file (between two slashes) and the port name of the unit 

under test. The vertical bars are time cursors. The simulation time where the cursors 

exist is shown in the squares under the corresponding cursor. The time difference 

between two consecutive cursors is given near the second cursor for each cursor pair. 

 

 

 

Figure A.1. Simulation Waveform for Muller-C (1 slice) 

 



 

 

89 

 

Figure A.2. Simulation Waveform for TOGGLE (4 slices) 

 

 

 

Figure A.3. Simulation Waveform for SELECT (2 slices) 

 

 

Figure A.4. Simulation Waveform for CALL (2 slices) 
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Figure A.5. Simulation Waveform for OPAQUE LATCH (1 slice) 

 

 

 

Figure A.6. Simulation Waveform for ONE-BIT REGISTER (6 slices) 
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Figure A.7. Simulation Waveform for FOUR-BIT REGISTER (9 slices) 

 

 

 

Figure A.8. Simulation Waveform for FOUR-BIT AND (13 slices) 

 

 



 

 

92 

 

Figure A.9. Simulation Waveform for FOUR-BIT OR (13 slices) 

 

 

 

Figure A.10. Simulation Waveform for FOUR-BIT COMPLEMENT (13 slices) 
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Figure A.11. Simulation Waveform for PDE (16 slices) 

 

 

 

Figure A.12. Simulation Waveform for LOADABLE SHIFT REGISTER (Type 1) 

(44 slices) 
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Figure A.13. Simulation Waveform for LOADABLE SHIFT REGISTER (Type 2) 

(34 slices) 

 

 

 

Figure A.14. Simulation Waveform for MY_MODULE_HF (2 slices) 
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Figure A.15. Simulation Waveform for ADD/SUB (addition) (81 slices) 

 

 

 

Figure A.16. Simulation Waveform for ADD/SUB (subtraction) (81 slices) 
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Figure A.17. Simulation Waveform for MULTIPLIER (232 slices) 

 

 

 

Figure A.18. Simulation Waveform for DIVIDER (328 slices) 
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APPENDIX B 

 

B. CIRCUIT SCHEMATICS OF THE IMPLEMENTED PCB 

 

 

Figure B.1 Regulator Circuit 

 

 

 

Figure B.2 Power Terminals 
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Figure B.3 FPGA  
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Figure B.4 Input Switches and LEDS 

 

 

 

Figure B.5 Debonce Circiut 
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Figure B.6 Input Buffers 
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Figure B.7 Output Buffer and LEDS 

 

 

 

Figure B. 8 High Frequency Integrated Circuit Bypass Capacitors  
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Figure B.9 High Frequency I/O Bypass Capacitors 

 

 

 

Figure B.10 Mid-frequency Bypass Capacitors 
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Figure B.11 FPGA Programming Interface 



 

 

104 

 

Figure B.12 Clock Circuit for Synchronous Operation Option 
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Figure B.13 Output Seven-Segment Displays and Driver Circuits 
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Figure B.14 Input Seven-Segment Displays and Driver Circuits 
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Figure B.14 (continued) 
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Figure B.14 (continued) 
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APPENDIX C 

C. DESIGN FILES  


