

AN ASYNCHRONOUS SYSTEM DESIGN
AND

IMPLEMENTATION ON AN FPGA

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

NİZAM AYYILDIZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2006

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan ÖZGEN

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

 Prof. Dr. İsmet ERKMEN
 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Hasan GÜRAN
 Supervisor

Examining Committee Members

Asst. Prof. Dr. Cüneyt BAZLAMAÇCI (METU,EE)

Prof. Dr. Hasan GÜRAN (METU,EE)

Asst. Prof. Dr. İlkay ULUSOY (METU,EE)

Dr. Şenan Ece SCHMIDT (METU,EE)

M.S. İbrahim Serdar TANER (ASELSAN)

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

 Nizam AYYILDIZ

iv

ABSTRACT

AN ASYNCHRONOUS SYSTEM DESIGN
AND

IMPLEMENTATION ON AN FPGA

AYYILDIZ, Nizam

MS, Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Hasan GÜRAN

September 2006, 109 pages

Field Programmable Gate Arrays (FPGAs) are widely used in prototyping digital

circuits. However commercial FPGAs are not very suitable for asynchronous design.

Both the architecture of the FPGAs and the synthesis tools are mostly tailored to

synchronous design. Therefore potential advantages of the asynchronous circuits

could not be observed when they are implemented on commercial FPGAs. This is

shown by designing an asynchronous arithmetic logic unit (ALU), implemented in

the style of micropipelines, on the Xilinx Virtex XCV300 FPGA family. The hazard

characteristics of the target FPGA have been analyzed and a methodology for self-

timed asynchronous circuits has been proposed. The design methodology proposes

first designing a hazard-free cell set, and then using relationally placed macros

(RPMs) to keep the hazard-free behavior, and incremental design technique to

combine modules in upper levels without disturbing their timing characteristics. The

performance of the asynchronous ALU has been evaluated in terms of the logic slices

occupied in the FPGA and data latencies, and a comparison is made with a

synchronous ALU designed on the same FPGA.

Keywords: Asynchronous, self-timed, micropipeline, FPGA, incremental design

v

ÖZ

FPGA ÜZERİNDE BİR ASENKRON SİSTEM TASARIMI VE YAPIMI

AYYILDIZ, Nizam

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Hasan GÜRAN

Eylül 2006, 109 sayfa

Alan programlamalı kapı dizinleri (FPGA) sayısal devre prototip tasarımlarında

yaygın olarak kullanılmaktadır. Ancak ticari FPGA’ler asenkron tasarım için çok

uygun değildir. FPGA’lerin mimari yapıları ve sentez araçları daha çok senkron

tasarımlara uygundur. Bu yüzden asenkron devrelerin potansiyel avantajları ticari

FPGA’ler üzerinde gerçekleştirildiklerinde görülememektedir. Bu çalışmada mikro

ardışık düzen tarzında gerçekleştirilmiş bir asenkron aritmetik ve mantık biriminin

(AMB) Xilinx Virtex XCV300 FPGA ailesi üzerinde tasarlanmasıyla gösterilmiştir.

Hedef FPGA’in zamanlama karakteristiği incelenmiş ve kendinden zamanlı asenkron

devre tasarımı için bir yöntem öne sürülmüştür. Yöntem, ilk olarak zaman-hasarsız

bir hücre kümesi tasarlamayı, daha sonra ilişkisel yerleşimli makrolar (RPM)

kullanarak zaman-hasarsız özellikleri korumayı, ve artımsal tasarım tekniğiyle

modüllerin üst seviyede zamanlama karakteristikleri kaybolmadan birleştirilmesini

ileri sürmektedir. Asenkron AMB’nin performansı FPGA içerisinde kapladığı mantık

parçaları ve veri gecikmesi bakımından değerlendirilmiş ve aynı FPGA üzerinde

gerçeklenen senkron bir AMB’yle karşılaştırılmıştır.

Anahtar Kelimeler: Asenkron, kendinden-zamanlı, mikro ardışık düzen, FPGA,

artımsal tasarım

vi

To my family, Cem Boran and Asya

vii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Prof. Dr. Hasan GÜRAN

for his guidance, advice, criticism, encouragements and insight throughout the

research.

I would like to express my special thanks and gratitude to Asst. Prof. Dr. Cüneyt

BAZLAMAÇCI, Asst. Prof. Dr. İlkay ULUSOY, Dr. Şenan Ece SCHMIDT and

M.S. İbrahim Serdar TANER for showing keen interest to the subject matter and

accepting to read and review the thesis.

I would like to thank ASELSAN Inc. for letting me involve in this thesis study and

for the facilities provided for the completion of this thesis.

I am grateful to my friends Erdinç ERÇİL, Can Barış TOP, Burak ALİŞAN, Bülent

ALICIOĞLU and Necip ŞAHAN for their help and morale support.

A very special gratitude goes to my family for their love and support throughout all

my life.

Finally, I would like to thank anybody that I might have mistakenly disregarded.

viii

TABLE OF CONTENTS

PLAGIARISM.. iii

ABSTRACT.. iv

ÖZ... v

ACKNOWLEDGEMENTS.. vii

TABLE OF CONTENTS... viii

LIST OF FIGURES .. x

LIST OF TABLES .. xii

LIST OF ABBREVIATIONS ... xiii

CHAPTERS

1. INTRODUCTION... 1

1.1. ASYNCHRONOUS DESIGN METHODOLOGIES....................................... 2

1.1.1. BOUNDED DELAY MODELS .. 2

1.1.2. DELAY-INSENSITIVE CIRCUITS ... 2

1.1.3. SPEED-INDEPENDENT AND QUASI-DELAY-INSENSITIVE

CIRCUITS ... 3

1.1.4. MICROPIPELINES ... 4

1.2. IMPLEMENTING ASYNCHRONOUS CIRCUITS USING FPGAS 4

1.3. SCOPE OF THE THESIS... 7

2. SELF-TIMED CIRCUITS ... 8

2.1. CONTROL CIRCUITS FOR TRANSITION SIGNALING 10

2.2. EVENT-CONTROLLED STORAGE ELEMENT... 11

2.3. CONSTRUCTION OF MICROPIPELINES .. 12

3. FPGA IMPLEMENTATION... 15

3.1. HAZARDS AND HAZARD ELIMINATION METHODS........................... 15

3.1.1. DEFINITIONS... 15

3.1.2. HAZARDS... 17

3.2. VIRTEX FPGA FAMILY ARCHITECTURE... 20

3.2.1. HAZARD BEHAVIOR OF XILINX FPGAS ... 23

ix

3.3. IMPLEMENTED HAZARD-FREE CELL SET .. 25

3.3.1. MULLER-C ... 25

3.3.2. TOGGLE.. 26

3.3.3. SELECT ... 27

3.3.4. CALL ... 29

3.3.5. OPAQUE LATCH ... 30

3.4. FOUR-BIT ASYNCHRONOUS ALU ... 31

3.4.1. ONE-BIT REGISTER.. 31

3.4.2. FOUR-BIT REGISTER ... 32

3.4.3. FOUR-BIT AND.. 34

3.4.4. FOUR-BIT OR... 35

3.4.5. FOUR-BIT COMPLEMENT... 36

3.4.6. PROGRAMMABLE DELAY ELEMENT (PDE) 37

3.4.7. LOADABLE SHIFT REGISTER.. 38

3.4.8. MY_MODULE_HF ... 43

3.4.9. ADDER/SUBTRACTER... 45

3.4.10. MULTIPLIER.. 47

3.4.11. DIVIDER ... 54

3.4.12. I/Os of ALU ... 61

3.5. INCREMENTAL DESIGN USING RELATIONALLY PLACED MACROS

.. 62

3.5.1. RELATIONALLY PLACED MACROS (RPMS) 65

3.5.2. INCREMENTAL DESIGN FLOW... 66

4. NUMERICAL RESULTS .. 68

5. HARDWARE IMPLEMENTATION ... 75

5.1. OPERATION MANUAL ... 76

6. CONCLUSION.. 81

REFERENCES.. 83

APPENDICES

A. SIMULATION WAVEFORMS OF ASYNCHRONOUS MODULES 88

B. CIRCUIT SCHEMATICS OF THE IMPLEMENTED PCB............................ 97

C. DESIGN FILES... 109

x

LIST OF FIGURES

Figure 2.1 Two-phase and four-phase handshakings .. 8

Figure 2.2 Bundled Data Interface and Convention.. 9

Figure 2.3 Latches Used as an Event Controlled Storage Register........................... 12

Figure 2.4 Control Circuit for a Micropipeline ... 13

Figure 2.5 Micropipeline without Processing ... 13

Figure 2.6 Micropipeline with Processing .. 14

Figure 3.1 Static hazards ... 17

Figure 3.2 Dynamic hazards ... 18

Figure 3.3 A flow table with essential hazard... 19

Figure 3.4 Virtex Architecture Overview ... 20

Figure 3.5 2-Slice Virtex CLB .. 21

Figure 3.6 Detailed view of Virtex slice ... 22

Figure 3.7 LUT-Based Implementation .. 23

Figure 3.8 MULLER-C module and its truth function.. 26

Figure 3.9 Black Box Representation of MULLER-C with Clear............................ 26

Figure 3.10 TOGGLE module and its truth function .. 27

Figure 3.11 Black Box Representation of TOGGLE Module................................... 27

Figure 3.12 SELECT module and its truth function ... 28

Figure 3.13 Black Box representation of SELECT Element 28

Figure 3.14 CALL module and its truth function.. 29

Figure 3.15 Black Box Representation of CALL element .. 29

Figure 3.16 OPAQUE LATCH module and its truth function 30

Figure 3.17 Black Box Representation of OPAQUE LATCH Element 30

Figure 3.18 Circuit diagram of one-bit register .. 32

Figure 3.19 Black Box Representation of one-bit register.. 32

Figure 3.20 Circuit diagram of four-bit register.. 33

Figure 3.21 Black Box Representation of four-bit register....................................... 33

Figure 3.22 Circuit Diagram of four-bit AND .. 34

xi

Figure 3.23 Black Box Representation of four-bit AND .. 35

Figure 3.24 Circuit diagram of four-bit OR .. 35

Figure 3.25 Black Box Representation of four-bit OR ... 36

Figure 3.26 Circuit Diagram of four-bit COMPLEMENT 36

Figure 3.27 Black Box Representation of four-bit COMPLEMENT 37

Figure 3.28 Circuit diagram of PDE ... 37

Figure 3.29 Black Box Representation of PDE... 38

Figure 3.30 Circuit diagram of loadable shift register (type 1)40

Figure 3.31 Black Box Representations of loadable shift register (type 1) 41

Figure 3.32 Circuit diagram of loadable shift register (type 2)…………………….42

Figure 3.33 Black Box Representation of loadable shift register (type 2)................ 43

Figure 3.34 Circuit diagram of my_module_hf .. 44

Figure 3.35 Black Box Representation of my_module_hf.. 45

Figure 3.36 Circuit diagram of ADD/SUB…………………………………………46

Figure 3.37 Black Box Representation of ADD/SUB module 47

Figure 3.38 Required Hardware for Signed-Magnitude Multiplication.................... 48

Figure 3.39 Hardware Flow Chart for Multiplication ... 50

Figure 3.40 Circuit diagram of special modulo-4 counter .. 51

Figure 3.41 Black Box Representation of special modulo-4 counter 52

Figure 3.42 4-bit Signed-Magnitude Multiplier…………………………………….53

Figure 3.43 Required Hardware for Signed-Magnitude Division............................. 55

Figure 3.44 Hardware Flow Chart for Signed-Magnitude Division 57

Figure 3.45 Four-bit Signed-Magnitude Divider…………………………………...60

Figure 3.46 Floorplanner view of the logic groups... 67

Figure 5.1 Layout of the board (top view) .. 77

Figure 5.2 Top view of the board.. 79

xii

LIST OF TABLES

Table 3.1 State transition table of my_module_hf .. 44

Table 3.2 Input Decoding .. 61

Table 3.3 ALU Function Selection Opcode Decode Table....................................... 62

Table 3.4 Output Decoding ... 62

Table 4.1 Area and latency results of the self-timed modules 70

Table 4.2 Function latencies of asynchronous ALU (Top level implementation) 71

Table 4.3 Area and latency results of the synchronous modules 72

Table 4.4 Function latencies of synchronous ALU (Top level implementation) 72

Table 5.1 Location references of the main integrated circuits of the PCB................ 78

xiii

LIST OF ABBREVIATIONS

ACK : Acknowledge

ALU : Arithmetic Logic Unit

ASIC : Application Specific Integrated Circuit

CLB : Configurable Logic Block

EDIF : Electronic Design Interchange Format

FPGA : Field Programmable Gate Array

IOB : Input/Output Block

LC : Logic Cell

LUT : Look-up Table

MIC : Multiple Input Change

PAR : Place and Route

PCB : Printed Circuit Board

REQ : Request

RPM : Relationally Placed Macro

SIC : Single Input Change

SOP : Sum of Products

STG : State Transition Graph

UCF : User Constraints File

VHDL : Very High Speed Integrated Circuit Hardware Description Language

VLSI : Very Large Scale Integrated Circuit

XST : Xilinx Synthesis Technology

1

CHAPTER 1

INTRODUCTION

The main points considered in digital circuit design are speed, the space occupied by

the circuit, the power consumption, reliability, adaptivity, modularity and finally the

cost. Circuit designers have searched for many years whether the synchronous or

asynchronous design methodology is more advantageous in fulfilling these

requirements.

Asynchronous circuits, in which the synchronization of the system components is

done without a global clock, can offer significant advantages over their synchronous

counterparts, which can be listed as elimination of clock skew problems, average

case performance instead of worst case performance, adaptivity to processing and

different environment variations, component modularity and reuse, lower system

power requirements, and reduced noise [1]. Main disadvantage of the asynchronous

circuits, however, is the design complexity. Eliminating hazards, critical races and

metastable states [2] in asynchronous circuits is a challenging task, especially in

large designs, and hence discourages the designers. The ease of synchronous design

attracts the designers also, since the time spent in design process is very crucial in

today’s industrial competition circumstances. As a result, asynchronous design is not

much preferred and the commercial devices and tools for circuit design and

simulation environments have been mostly tailored to synchronous circuits.

However, the potential advantages of the asynchronous circuits listed above have

always kept the interest of many researchers alive, who have been searching for an

alternative design technique.

2

1.1. ASYNCHRONOUS DESIGN METHODOLOGIES

Huffman and Muller are two pioneers who have established the base of the

asynchronous design methodologies in 1950s [1]. Huffman introduced a design

methodology, for what is known today as fundamental mode circuits [3], and Muller

developed the theoretical basics of the speed-independent circuits [4]. Any

asynchronous design methodology developed afterwards was inspired from one of

these two methodologies [1]. The study of Scott Hauck summarizes some of the more

notable asynchronous design methodologies [5].

1.1.1. BOUNDED DELAY MODELS

In Huffman’s methodology the circuits are designed under the bounded delay model,

that is, it is assumed that the delay in all circuit elements and wires is known [3]. The

circuits designed under this model are guaranteed to work regardless of the gate and

wire delays as long as the delay bound is known [1]. However, there are some

constraints to be met, which are; the input change is not allowed before the circuit

reaches stable state, and only single input change at a time is allowed [3].

The method, described by Hollaar [6] is an extension of Huffman circuits to non-

fundamental mode [5]. In that method the arrivals of new transitions are allowed to

be earlier than that allowed in fundamental mode assumptions.

Another design methodology, referred to as burst-mode was developed by Nowick,

Yun and Dill [7-10] allows multiple input changes as a burst in any order, but only

after the system has completely reacted to the previous input burst [5].

1.1.2. DELAY-INSENSITIVE CIRCUITS

Unlike the bounded-delay model, delay insensitive circuits are based on unbounded

gate delay model, that is, delays in both circuit elements and wires are assumed to be

unbounded [5]. In this model completion detection circuitry is required in order the

3

receiver to inform the sender that it has received the data properly, since there is no

guarantee that a wire will reach its proper value at any specific time due to

uncertainty in the delays, and hence a communication protocol (handshaking) is

established between data sender and receiver.

Martin has developed a design methodology for delay insensitive circuits with only

single-output gates [11], which is unsuitable for general circuit design [5].

A methodology, which makes delay insensitive circuit design practical for general

computations, has been proposed by Molnar et. al. [12]. This methodology is found

upon use of an I-Net, a model based on Petri Nets [13]. Via I-Net descriptions, delay

insensitive modules can be constructed, which eases the design of large systems

based on delay insensitivity concept. These modules are designed such that, all

timing constraints are encapsulated in them, hence the designer should not deal with

hazard problems during circuit construction.

The main power of module-based systems, however, is seen when they are coupled

with a high level language and automatic translation software, as described by

Brunvand and Sproull [14]. In this approach it is necessary to choose a language to

describe asynchronous circuits, and then provide delay-insensitive modules for each

of the language constructs.

Another methodology for delay-insensitive circuit design, based on trace theory, has

been proposed by Ebergen [15, 16], which uses a unified model for both module

specification and circuit design.

1.1.3. SPEED-INDEPENDENT AND QUASI-DELAY-INSENSITIVE
CIRCUITS

As mentioned earlier speed-independent circuits are associated with D. E. Muller for

his pioneering work [4] on this model. This model assumes that while gate delays are

unbounded, all wire delays are negligible (less than the minimum gate delay) [5].

The quasi-delay insensitive circuits are a subclass of delay-insensitive circuits,

4

assuming both gate and wire delays are unbounded, augmenting this with isochronic

forks [17]. Isochronic wires are forking wires, where the delays between the branches

of this fork are negligible. The speed-independent and quasi-delay-insensitive

circuits are identical for all practical purposes [5].

Signal transition graphs (STGs) is a design methodology, introduced by Chu et. al.

[18, 19]. Like I-Nets, STGs specify asynchronous circuits with Petri-Nets [13] whose

transitions are labeled with signal names.

Change diagrams (CDs) [20] is another methodology similar to STGs, but avoid

some of the restrictions found in STGs.

The methodology, named as communicating process compilation technique [17],

developed by Martin, translates the program written in a language into asynchronous

circuits.

1.1.4. MICROPIPELINES

The micropipelines introduced by Sutherland offered an easy and simple way of

asynchronous design [21]. This work has brought to Sutherland the Turing Award,

and popularized the notion of a modular approach to control, focusing attention on

pipeline operations with transition signaling (2-phase handshaking). The

methodology explained in Sutherland’s study offers the opportunity of building up

complex systems by hierarchical composition of smaller and simpler pieces.

1.2. IMPLEMENTING ASYNCHRONOUS CIRCUITS USING FPGAS

With the improvement in VLSI technology, the designers have found the opportunity

to build faster, larger and more complex circuits. Field Programmable Gate Arrays

(FPGAs) offer an excellent alternative for rapid and inexpensive development of

these kinds of designs. While FPGAs can be directly used in the systems, they can

5

also be replaced by faster and smaller custom VLSI circuits (ASICs) after

prototyping has been completed.

While commercial FPGAs are utilized widely in synchronous designs, they are not

very suitable for asynchronous designs [22-25]. There are inconveniences for some

of the methodologies listed above in applying them in FPGAs. For example, the

speed-independent wire delay assumption is unrealistic in FPGAs, since wire delays

can often dominate logic delays. Also, the isochronic fork assumption, which is

easier to handle than speed independent wires, may not be handled in FPGAS, since

the equal delay between fork branches constraint may not be achieved due to

automatic routing. In bounded delay models, the feedback delays are very crucial,

but in FPGAs a feedback signal is routed like any other signal and it is difficult to

ensure that the feedback is fast enough for a changing element to stabilize before

another input arrives. Micropipelines are the most appropriate methodology among

the methodologies listed, since the implementation of micropipelines is very similar

to clocked systems. In micropipelines the control circuits take the place of global

clock for data synchronization. However the basic cell set proposed for control

circuits by Sutherland [21], is not directly available in conventional FPGAs, and their

design must be done first carefully. Also the delay between communicating modules

must be carefully handled for proper operation.

There are two types of approaches to utilize FPGAs in asynchronous circuit design.

The first one is developing specific circuit library in commercial FPGAs, and

constraining the place and route phase in order to avoid timing problems. And the

other one is offering a new type of FPGA architecture, which is suitable for

asynchronous design needs.

Brunvand has designed a library of circuit primitives for building self-timed (term

used for asynchronous circuits in which the synchronization is performed by

enforcing a simple communication protocol between circuit elements) circuits and

systems using Actel FPGAs [22]. The library modules use two-phase handshaking

protocol for control signals and bundled protocol for data signals. Brunvand and

Richardson have implemented the prototype of a comprehensive general purpose

6

processor, named as NSR (Non-synchronous RISC) [32], using Actel FPGAs,

assembling the two-phase transition control modules and bundled data modules of

the processor from that library. The deficiency of the study is that, hazard behavior

of the library modules has not been characterized. Moreover Actel FPGAs are not

suitable for prototyping, since they cannot be re-programmed, once programmed,

since they are based on anti-fuse architecture.

Maheswaran, in his MS. thesis study, implemented a hazard-free cell set for self-

timed circuits, based on the macromodules outlined in [21], in LUT (Look Up Table)

based Xilinx FPGAs [23]. He showed that, circuits designed using LUTs are logic-

hazard free, but could produce function- hazards for multiple-input changes. He also

formulated a set of feedback delay constraints for each of the self-timed elements

that are necessary to achieve hazard-free behavior. These constraints must be met

when placing and routing these modules for proper operation. Maheswaran also

proposed a new FPGA architecture, naming PGA-STG (Programmable Gate Array

for Implementing Self-Timed Circuits), which involves a logic block architecture

that is capable of satisfying all of the asynchronous necessities. The synthesis tool

corresponding to this architecture has been given in this study as well.

Moore and Robinson have proposed a solution for equipotential regions and

isochronic forks by combining floor and geometry planning tools [24]. With

constraining relative placement of the latches in the module to be designed, they

have achieved more predictable routing. They also have tackled the design of a

reliable arbiter, which is essential for many self-timed systems, by using the

technique they have developed. However, commercial floor planning tools are not

sufficient to avoid hazards, and automatic timing-driven FPGA implementation

cannot ensure hazard-free logic, although timing constraints are well described [25].

Ho et. al. developed a methodology presenting an alternative to enforce the mapping

in FPGAs to avoid hazard [25]. They developed a technique based on the use and

design of Muller gate library. Their approach is a combination of using standard

FPGAs and the TAST (TIMA Asynchronous Synthesis Tool) [26] developed at

TIMA (Techniques of Informatics and Microelectronics for Computer Architecture).

7

Several FPGA families, like Xilinx X4000, Xilinx Virtex, Altera Flex and Altera

Apex have been targeted in this study. They implemented a quasi-delay-insensitive

dual rail adder automatically, to demonstrate the potential of the methodology they

developed.

The FPGA architectures dedicated to asynchronous circuits are MONTAGE [27],

PGA-STG [23], GALSA [28], STACC [29], PAPA [30] and finally the architecture,

that has not a special name, developed by Huot et. al.[31]. Unfortunately, none of

these architectures have reached the chance to be produced commercially, since the

synchronous design is still more popular for designers.

1.3. SCOPE OF THE THESIS

In this thesis, an alternative methodology for implementing self-timed circuits on

commercial FPGAs is introduced. The basic asynchronous macromodule set

described in Sutherland [21], Brunvand [22] and Maheswaran [23], is re-

implemented using Xilinx Virtex XCV300 [33] series FPGAs. An asynchronous

ALU (Arithmetic Logic Unit) is constructed using this cell set, in a hierarchical

design flow. It is showed how to keep the delay properties of individual modules,

when they are instantiated in upper modules. The design is tested under simulation

environment (Modelsim) and also a hardware realization is performed on a printed

circuit board designed for this purpose.

This thesis consists of six chapters. Chapter 2 gives the principles of the self-timed

design and micropipelines, which describe the operation of the circuits constructed in

this thesis. In chapter 3 the implementation of the modules is explained in a

hierarchical order (from bottom to top). The key points of the design methodology

are also given in this chapter. The performance of the implemented modules is

evaluated in chapter 4 according to speed and area criteria. A comparison between

the asynchronous modules and their synchronous counterparts, implemented in the

same FPGA family, is done as well. The details of the printed circuit board are given

in chapter 5. Finally in chapter 6 the thesis is concluded and it is discussed what can

be done as future work.

8

CHAPTER 2

SELF-TIMED CIRCUITS

Self-timed circuits are asynchronous circuits, in which the data synchronization is

done by enforcing a simple communication protocol between circuit elements. Two

dominant handshaking protocols are two-phase (transition) and four-phase (level-

based) signaling. In two-phase signaling each transition, either rising or falling, on

the request (REQ) or acknowledge (ACK) signals represents an event. In four-phase

signaling only a positive-going transition on REQ or ACK initiates an event, and

each signal must be “restored to zero” before the handshake cycle is completed

(Figure 2.1).

i) Two-phase handshaking ii) Four-phase handshaking

Figure 2.1 Two-phase and four-phase handshakings

In two-phase handshaking since there is no need to return the control signal to a

neutral or low state, transition signaling saves the time and energy costs of the return

transitions, as well as design confusion of an unnecessary event [21]. Prosser,

Winkel, and Brunvand, who have made a comparison of modular self-timed design

styles [33], also showed that two-phase design is faster, easier and more attractive

than four-phase.

9

The coherence of control signals with data signals is also an important point in self-

timed circuit design. Data must be valid before the request is done. There are two

widely used protocols for data handling:

i) the dual-rail data convention, in which each data bit is represented by two signals;

ii) the bundled-data convention, in which each bit is represented by a single signal

and delays are inserted in the control paths to assure that data has settled before its

use (Figure 2.2).

In the dual-rail convention, a data bit is represented by one of the signal values 00

(meaning invalid data), 01 (bit is a valid 0), and 10 (bit is a valid 1). While this

convention has the advantage of providing a definite indication of the status of the

bit, its main disadvantage is doubling of the number of signal paths required for each

data bit.

In the bundled-data convention, the designer must determine worst-case estimates of

each data path for individual bits and groups of bits, and must insert appropriate

delays in the handshake control signals to assure that data is stable before a request is

asserted (the “bundling constraint”).

i) Bundled Data interface ii) Bundled Data Convention

Figure 2.2 Bundled Data Interface and Convention

10

The bundled data interface is easier to implement and takes less space when

compared to dual rail data interface [33].

2.1. CONTROL CIRCUITS FOR TRANSITION SIGNALING

The control circuits for transition signaling are built out of modules that form various

combinations of events. Here are the main control units taken from [21]:

XOR:

XOR provides the OR function for events. If any one of the inputs

changes states then the output also changes states, producing an

event.

MULLER-C:

When both inputs of the Muller-C are ‘0’ then the output is also ‘0’,

and when both inputs are ‘1’ the output is ‘1’, otherwise the output

remains same as previous value. Muller-C elements provide the

AND function for events. Assuming initially both inputs are at the

same state an event at the output only occurs when both inputs change.

TOGGLE:

TOGGLE steers events to its outputs alternately starting with

the dot. It is used mainly when one event is meaningful for two

different purposes, which should occur sequentially.

SELECT:

SELECT steers events according to the Boolean value of its

diamond input. It is used when a decision should be made, and

according to result different jobs are performed.

11

CALL:

CALL remembers which client, R1 or R2 called the procedure,

R, and after the procedure is done, D, returns a matching done

event on D1 or D2. The memory in the CALL element serves the

role of subroutine return address.

ARBITER:

ARBITER grants service G1 or G2, to only one input request, R1

or R2, at a time, delaying subsequent grants until after the

matching event done, D1 or D2.

2.2. EVENT-CONTROLLED STORAGE ELEMENT

Sutherland introduced in [21] a storage element suitable for use with a transition

signaling control system. An event controlled register made from ordinary latches

requires an XOR module and a TOGGLE module for control. A two-bit register is

shown in Figure 2.3, taken from [21]. Capture (C) is the event of rising transition in

the latch control wire and flips the switch, causing the latches to capture data. Pass

(P) is the event of falling transition in the latch control wire and flips the switches

back, making the latches transparent again. C and P events arrive alternately at the

separate control inputs. XOR merges C and P. The TOGGLE module separates the

capture and passes events back into two separate outputs Cd (Capture done) and Pd

(Pass done), after the register has done its action.

12

Figure 2.3 Latches Used as an Event Controlled Storage Register

The implementations of the control circuits and storage element described here are

given in chapter 3.

2.3. CONSTRUCTION OF MICROPIPELINES

A string of Muller-C elements with inverters inserted between them is the only logic

required to control the micropipelines (Figure 2.4) [21]. Request and acknowledge

signals pass between adjacent stages, data wires also pass between stages but they

are not shown in the figure. For a correct operation all outputs of the Muller Gates

must be set to same initial value with the first request signal or a global reset signal.

13

Figure 2.4 Control Circuit for a Micropipeline

The simplest micropipeline structure can be seen in Figure 2.5. In this configuration

there is no processing and it is also simply a FIFO. The length of the FIFO can be

increased by adding more basic register blocks. If processing is needed, logic blocks

can be inserted between the register blocks (Figure 2.6). In this case the delays

between stages must be calculated according to the process time of the combinational

logic blocks between the registers.

Figure 2.5 Micropipeline without Processing

14

Figure 2.6 Micropipeline with Processing

15

CHAPTER 3

FPGA IMPLEMENTATION

An asynchronous system must be hazard-free for proper operation. Hazard-free

asynchronous circuits are assured by implementing them using a hazard-free cell set,

which are used according to constraints they enforce on the environment [16, 21, 22,

23, 25]. The design environment in this thesis is Xilinx XCV300 series FPGA which

is a member of Xilinx Virtex FPGA family [34].

This chapter consists of 5 sections. Section 3.1 gives a brief background on hazards

and hazard elimination techniques. In section 3.2 the characteristics of the target

FPGA family are given and it discusses the constraints under which the cell set

implemented on this FPGA will be hazard-free. In section 3.3 the basic cell set

implemented is presented. In section 3.4 the design of a 4-bit ALU is explained,

which is implemented using this cell set. The problems encountered during design

process for keeping the hazard-free behavior on the whole system, and how they are

handled, are explained in section 3.5.

3.1. HAZARDS AND HAZARD ELIMINATION METHODS

3.1.1. DEFINITIONS

The following definitions are taken from [1].

An incompletely specified Boolean function f of n variables x1, x2, … xn is a

mapping: f: {0,1}n → {0,1,−}.

Each element m of {0,1}n is called a minterm.

16

The ON-set of f is the set of minterms which return 1.

The OFF-set of f is the set of minterms which return 0.

The don’t care (DC)-set of f is the set of minterms which return −.

A literal is either the variable, xi, or its complement xi′. The literal xi evaluates to 1 in

minterm m when m(i) = 1. The literal xi′ evaluates to 1 when m(i) = 0.

A product is a conjunction (AND) of literals. A product evaluates to 1 for a given

minterm if each literal evaluates to 1 in minterm, and the product is said to contain

the minterm.

A set of minterms which can be represented with a product is called a cube.

The transition cube is the smallest cube that contains both m1 and m2 where m1 and

m2 are start and end points of the transition. A transition cube is denoted [m1, m2].

A product Y contains another product X (i.e., X ⊆ Y) if the minterms contained in x

are a subset of those in Y.

An implicant of a function is a product that contains no minterms in the OFF-set of

the function.

A prime implicant is an implicant which is contained by no other implicant.

A cover of a function is a SOP which contains the entire ON-set and none of the

OFF-set.

17

3.1.2. HAZARDS

3.1.2.1. COMBINATIONAL HAZARDS

In combinational circuits, due to the relative delay values along various paths,

spurious pulses, often termed glitches, may occur after input changes and this

situation results in unwanted output waveforms. This behavior is called

combinational hazard in the design [2]. Combinational hazards are classified as

either static or dynamic; depending upon the output is specified to remain constant

after the input change.

A circuit has static-0 hazard between the adjacent minterms m1 and m2 that differ

only in xj iff f(m1)=f(m2)=0, there is a product term, pi in the circuit that includes xj

and xj′, and all other literals in pi have value in m1 and m2 [35] (Figure 3.1).

A circuit has static-1 hazard between the adjacent minterms m1 and m2 where

f(m1)=f(m2)=1 iff there is no product term that has the value 1 in both m1 and m2 [35]

(Figure 3.1).

(i) Static-0 hazard (ii) Static-1 hazard

Figure 3.1 Static hazards

A SOP realization of f (assuming no product terms with complementary literals) will

be free of all static logic hazards iff the realization contains all prime implicants of f.

[36].

18

A SOP circuit has a dynamic hazard between adjacent minterms m1 and m2 that

differ only in xj iff f(m1) ≠ f(m2), the circuit has a product term pi that contains xj and

xj′, and all other literals of pi have value 1 in m1 and m2 [35] (Figure 3.2).

Figure 3.2 Dynamic hazards

For a multiple-input change (MIC) case, a function f has function hazard during

transition from m1 to m2 if there exist an m3 and m4 such that:

1. m3 ≠ m1 and m4 ≠m2

2. m3 ∈ [m1, m2] and m4 ∈ [m3, m2]

3. f(m1) ≠ f(m3) and f(m4) ≠f(m2)

If f(m1) = f(m2), it is a static function hazard, and if f(m1) ≠ f(m2), it is a dynamic

function hazard.

If there is a hazard in the circuit, although it could be implemented without that

hazard (i.e., the hazard is not a function hazard), then it is the characteristic of the

logic design, and is referred to as logic hazard [2].

If a Boolean function, f, contains a function hazard for the input change m1 to m2, it

is impossible to construct a logic gate network realizing f such that the possibility of

a hazard pulse occurring for this transmission is eliminated [36].

19

However, the synthesis method for expended burst mode (XBM) machines,

developed by Yun and Dill [37], never produces a design with a transition that has a

function hazard.

3.1.2.2. SEQUENTIAL HAZARDS

The violation of the assumption that outputs and state variables stabilize before either

new inputs or fed-back state variables arrive at the input to the logic can result in a

sequential hazard. The presence of a sequential hazard depends on the timing of the

environment, circuit and feedback delays.

A flow table has an essential hazard if after three changes of some input variable x,

the resulting state is different than the one reached after a single change (Figure 3.3).

Figure 3.3 A flow table with essential hazard

If the resulting malfunction is an output glitch, then it is a transient essential hazard.

If the system reaches a wrong stable state, then this is a steady state essential hazard

[2].

Essential hazards can be defeated by fulfilling the feedback delay requirement, which

can be set conservatively as follows:

Df ≥ dmax − dmin

Where Df is the feedback delay, dmax is the maximum delay in the combinational

logic, and dmin is the minimum delay through the combinational logic [1].

20

Another timing problem in sequential circuits is critical races. A race condition

occurs when more than one state variables are excited simultaneously and the delays

associated with the excited state variables are different. The race is a critical race if

the state ultimately reached depends on the outcome of the race [2]. Critical races are

considered design defects, and they can always be eliminated by appropriate choices

of state assignments [2].

3.2. VIRTEX FPGA FAMILY ARCHITECTURE

Virtex devices feature a flexible, regular architecture that comprises an array of

configurable logic blocks (CLBs) surrounded by programmable input/output blocks

(IOBs), all interconnected by a rich hierarchy of fast versatile routing resources

(Figure 3.4).

Figure 3.4 Virtex Architecture Overview

CLBs, which provide the functional elements for constructing logic, interconnect

through a general routing matrix (GRM). The GRM comprises an array of routing

switches located at the intersections of horizontal and vertical routing channels.

21

The basic building block of the Virtex CLB is the logic cell (LC). A LC consists of a

4-input function generator, carry logic and a storage element. The output of the

function generator in each LC drives both CLB output and D input of the flip-flop.

Each Virtex CLB comprises 4 LCs, organized in two similar slices (Figure 3.5).

Figure 3.6 shows a more detailed view of a single slice.

Figure 3.5 2-Slice Virtex CLB

Virtex function generators are implemented as 4-input look-up tables (LUTs). An n-

input LUT-based implementation can be modeled as a combination of a memory of

2n depth, and an 2n : 1 multiplexer (Figure 3.7 shows 4-input LUT case as an

example). The content of the memory is the truth table of the function implemented,

and the memory content is fed to the data input of the multiplexer, which takes the

input of the functions as select inputs to it. Xilinx LUT architecture has a balanced

design with almost equal propagation delay from its inputs to its output.

22

F5 multiplexer in each slice combines the outputs of the function generators. This

combination provides either a function generator with 5 inputs, or a 4:1 multiplexer,

or selected functions up to 9 inputs. Similarly F6 multiplexer combines the outputs of

the F5 multiplexers in a CLB, hence all four outputs of the function generators. As a

result a function generator that accepts 6 inputs, or an 8:1 multiplexer or selected

functions up to 19 inputs can be implemented in a Virtex CLB.

Figure 3.6 Detailed view of Virtex slice

23

Figure 3.7 LUT-Based Implementation

3.2.1. HAZARD BEHAVIOR OF XILINX FPGAS

The hazard elimination methods, which are proposed for gate-level implementations,

are not valid for LUT-based implementations. This phenomenon has been

investigated comprehensively in Maheswaran’s thesis [23]. The following statements

are derived from that study.

If a function f has a function hazard during a transition [m1,m2] and if a set of

multiple input changes causes a transition from m1 to m2, then it may produce a

glitch at the LUT output. When more than one input changes simultaneously, the

presence of any intermediate code that produces a different result may cause a

decoding glitch. The glitch might be only a few nanoseconds long, but that is long

G1 G2 G3 G4 Z

0 0 0 0 D0

0 0 0 1 D1

0 0 1 0 D2

0 0 1 1 D3

0 1 0 0 D4

0 1 0 1 D5

0 1 1 0 D6

0 1 1 1 D7

1 0 0 0 D8

1 0 0 1 D9

1 0 1 0 D10

1 0 1 1 D11

1 1 0 0 D12

1 1 0 1 D13

1 1 1 0 D14

1 1 1 1 D15

24

enough to upset an asynchronous design, since the delays in the FPGA are pure, not

inertial. This can be avoided by using appropriate delay elements, but as there is no

user control over the delays inside of a function generator, function hazards cannot

be eliminated.

However, a function f is logic hazard-free for any transition for multiple input

changes when implemented using a Xilinx LUT. Logic hazards are defined in the

absence of function hazards, and therefore the transition should not consist of any

intermediate code that produces a different result. Since LUT produces output and

holds it steady during transition, the logic hazards are eliminated.

The LUT based asynchronous circuit implementations are essential hazard-free as

well. The essential hazards are caused by a change in the input reaching different

parts of the circuit at different times. These timing problems due to propagation

delays are possible in gate-level, but not in LUT-based implementations. In the case

of a LUT, a change in the input is detected by the function generator, which

implements the entire function at the same time and then the corresponding output is

selected from the configuration bits. Therefore, the new output is not fedback until

the entire circuit has detected the input change.

According to the findings above, it can safely be said and proven that all functions

implemented using a Xilinx LUT are hazard-free for single input changes as well.

The multiplexers in the CLB are also hazard-free, because the select inputs of the

multiplexers are hardwired when a function is mapped onto the CLB, which means

one of the inputs is transferred to the output, while the other one has no effect on the

output. In such a case there cannot be a transition that can produce any kind of

hazard.

Since CLB implements any combinational logic in a static, dynamic and essential

hazard-free manner, the only effect, which can still cause hazards to occur, is the

routing delay. All elements in the cell-set, except XOR, are sequential, and thus have

feedback. The feedback has to be available and stable, before new inputs arrive, in

25

order to preserve the hazard-free behavior. However the inputs are not changed until

the output is detected due to input/output mode of behavior, but can be changed

immediately after detection. Therefore the delay in the feedback line has to be less

than or equal to the sum of the minimal delay in detecting the output change and

producing a new input, and the minimal delay on the input line [23].

3.3. IMPLEMENTED HAZARD-FREE CELL SET

According to criteria described above, the basic asynchronous macromodule set

described in [21] has been implemented on Xilinx Virtex FPGA. The cell-set

includes MULLER-C, TOGGLE, SELECT, CALL, and OPAQUE LATCH. As

development environment ISE 6.3 (Xilinx Inc.), and as simulation tool Modelsim 5.7

SE (Mentor Graphics) have been utilized. The elements of the cell set have been

implemented with default properties of the ISE, the hazard-freeness of the elements

has been ensured according to the simulation results trying all possible input

configuration and transitions.

3.3.1. MULLER-C

Assuming both inputs (A and B) are at same logic level initially, a transition occurs

at the Q output only when both inputs change. When both inputs are ‘1’ then the

output is also ‘1’, and when both inputs are ‘0’ the output is ‘0’. In other cases the

output remains at previous state. The CLR input is added in order to make determine

the initial state of the output. The schematic and truth function can be seen in Figure

3.9. Black box representation of the module is shown also in Figure 3.9.

26

Q = CLR.(A.Q + B.Q + A.B)

Figure 3.8 MULLER-C module and its truth function

Figure 3.9 Black Box Representation of MULLER-C with Clear

3.3.2. TOGGLE

After initialization of the module, the transitions on INPUT cause transitions to occur

on OUT0 and OUT1 alternately. If the initial value of INPUT is ‘1’ then the first

transition occurs on OUT0. The schematic and truth function can be seen in Figure

3.10. Black box representation of the module is shown also in Figure 3.11.

27

OUT0 = CLR.(INPUT′.OUT0 + INPUT.OUT1′)

OUT1 = CLR.(INPUT′.OUT0 + INPUT.OUT1)

Figure 3.10 TOGGLE module and its truth function

Figure 3.11 Black Box Representation of TOGGLE Module

3.3.3. SELECT

According to SEL input, the transitions on EVENT_IN result in a transition on either

OUT_T or OUT_F. If SEL is ‘1’ then the transition occurs on OUT_T, and if SEL is

‘0’ the transition occurs on OUT_F. CLR input is used for initialization purposes.

The schematic and truth function can be seen in Figure 3.12. Black box

representation of the module is shown also in Figure 3.13.

28

OUT_F=CLR.(EVENT_IN′.OUT_T.OUT_F + EVENT_IN.OUT_F.OUT_T′ + SEL.OUT_F +

EVENT_IN.SEL′.OUT_T′)

OUT_T=CLR.(EVENT_IN′.OUT_T.OUT_F + OUT_T.SEL′ + OUT_F.SEL.EVENT_IN′ +

SEL.EVENT_IN.OUT_F′ + EVENT_IN.OUT_T.OUT_F′)

Figure 3.12 SELECT module and its truth function

Figure 3.13 Black Box representation of SELECT Element

29

3.3.4. CALL

CALL is used when there are two modules sharing one resource. It acts like a switch

between the client, who makes the request, and the shared resource. RS and AS are

request and acknowledge ports of the shared module, respectively. If there is an

event on R1 or R2 it is routed to RS, and the AS is routed back to A1 or A2, in

correspondence with which request has been done. The schematic and truth function

can be seen in Figure 3.14. Black box representation of the module is shown also in

Figure 3.15.

RS = R1 ⊕ R2

A1 = ((A1.(R2 ⊕ AS) + A1.R1 + R1.(R2 ⊕ AS))

A2 = ((A2.(R1 ⊕ AS) + A2.R2 + R2.(R1 ⊕ AS))

Figure 3.14 CALL module and its truth function

Figure 3.15 Black Box Representation of CALL element

30

3.3.5. OPAQUE LATCH

This module is used for data latching. When C (capture) and P (Pass) are at the same

logic level, the output Q is preserved. When they are at different logic levels, the data

input D is transferred to the output. Assuming both C and P are at the same logic

level initially, consecutive transition on C and P will cause the data to be captured

and preserved until next transition on C. The schematic and truth function can be

seen in Figure 3.16. Black box representation of the module is shown also in Figure

3.17.

Q = (P.(C.Q + C′D) + P′.(C.D + C′.Q)

Figure 3.16 OPAQUE LATCH module and its truth function

Figure 3.17 Black Box Representation of OPAQUE LATCH Element

31

3.4. FOUR-BIT ASYNCHRONOUS ALU

A four-bit asynchronous ALU has been constructed, in order to demonstrate how

transition signaling and bundled data protocol are handled when designing a self-

timed system on an FPGA.

The ALU comprises the following units:

• 4-bit AND

• 4-bit OR

• 4-bit COMPLEMENT

• 4-bit LOADABLE SHIFT REGISTERS

• 4-bit ADDER/SUBTRACTOR

• 4-bit MULTIPLIER

• 8-bit by 4-bit DIVIDER

• additional logic for CONTROL purposes.

When implementing these units a hierarchical design flow has been followed. In the

following sections the modules designed in this thesis are explained in an order

somehow increasing complexity.

3.4.1. ONE-BIT REGISTER

It performs the function of event controlled storage element described in chapter 2.

When data is available at the input an event (transition) on C (capture) input causes

the latch to be transparent, i.e., the data passes to the output. The event, which occurs

on P (pass) after the transition on C, causes the data to be stored. The latch is closed

to new inputs until a transition occurs again on C. The acknowledgements of C and P

events are produced through a TOGGLE element. XOR element in front of the

TOGGLE transfers the transition on whichever of its inputs. Since the first transition

occurs always on C, the OUT0 output of the TOOGLE produces CD (capture done)

and the OUT1 output produces PD (pass done), which is the acknowledgement of

second transition. In the applications the CD output is directly connected to P input,

32

building a self-control mechanism for storing data after capture as quickly as

possible. The circuit diagram and black box representation of one-bit register can be

seen in Figure 3.18 and Figure 3.19 respectively.

Figure 3.18 Circuit diagram of one-bit register

Figure 3.19 Black Box Representation of one-bit register

3.4.2. FOUR-BIT REGISTER

Four-bit register is constructed by simply combining four latches, with the control

circuitry the same as in one-bit register. The circuit diagram and black box

representation of four-bit register can be seen in Figure 3.20 and Figure 3.21

respectively.

33

Figure 3.20 Circuit diagram of four-bit register

Figure 3.21 Black Box Representation of four-bit register

34

3.4.3. FOUR-BIT AND

This module performs logical AND of two four-bit inputs. The inputs are ANDed

combinational and the output of AND gates are registered using a four-bit register. A

transition on start input is the request for the module, after the data has been

available at the inputs. The start signal is connected to the capture (C) input of the

four-bit register. The acknowledge of the capture (Cd) is directly connected to the

pass (P) input of the register. Hence one transition is sufficient for both capturing

and passing the data. By the way there is no need to insert a delay element on the

request signal paths, since the transition on AND gates lasts less than the capture

acknowledgement generation. The final acknowledgement (Pd) indicates the end of

operation, and data is available at the output. The schematic and black box

representation of the four-bit AND is shown in Figure 3.22 and Figure 3.23

respectively.

Figure 3.22 Circuit Diagram of four-bit AND

35

Figure 3.23 Black Box Representation of four-bit AND

3.4.4. FOUR-BIT OR

This module is constructed similar to four-bit AND module except, OR gates are

used instead of AND gates. The schematic and black box representation of four-bit

OR is shown in Figure 3.24 and Figure 3.25 respectively.

Figure 3.24 Circuit diagram of four-bit OR

36

Figure 3.25 Black Box Representation of four-bit OR

3.4.5. FOUR-BIT COMPLEMENT

The concept of this module is not very different than AND and OR modules. The

four-bit input is inverted using NOT gates and then the output is registered. The

control signals are the same as those in AND and OR modules. The schematic and

black box representation of four-bit COMPLEMENT is shown in Figure 3.26 and

Figure 3.27 respectively.

Figure 3.26 Circuit Diagram of four-bit COMPLEMENT

37

Figure 3.27 Black Box Representation of four-bit COMPLEMENT

3.4.6. PROGRAMMABLE DELAY ELEMENT (PDE)

It is designed to use for delaying the control signal between processing units, in order

to implement bundled-data protocol. This module is simply serially connected

inverter chain. Each second inverter’s output is taken out of the module. There are

totally 16 inverters, hence 8 outputs, with an increasing delay. The programmability

comes from the selection option of one out of 8 different delayed versions of the

input signal. The circuit diagram and black box representation of PDE are as follows

shown in Figure 3.28 and Figure 3.29 respectively.

Figure 3.28 Circuit diagram of PDE

38

Figure 3.29 Black Box Representation of PDE

3.4.7. LOADABLE SHIFT REGISTER

The shift register is one of the basic modules of multiplier and divider. It is also used

stand alone as an ALU function. In this thesis two different shift register designs

have been implemented.

The first one is similar to conventional synchronous shift register. Four one bit

registers are connected serially, connecting the output and input of the neighboring

registers to each other. While the idea of the synchronous register is to apply a global

clock to all the registers and let the data progress in parallel, for an asynchronous

shift register, this is no longer the case since there is no such a global clock. The

registers cannot be triggered concurrently, since when they are made transparent to

data, there is no guarantee for only single bit transfer between them. Until they are

closed to data transfer with the second transition on their P input, there may occur

more than one data shift operations. The synchronization is achieved by making

neighboring stages communicate with each other. The rightmost register gets the

output of the register left of it and then acknowledges this operation; this is also a

request for the register left of it. The same procedure is repeated by all other

registers. Finally when the leftmost register acknowledges the transfer operation, the

shift process is done.

This shift register can also be loaded with a new data. Load operation has to be

differentiated from shift operation. However because of the serial connection of the

registers load operation is also achieved like a shift operation, with a difference; the

registers did not acquire the output of the previous register, but the load input,

sequentially. For the input differentiation of the registers for load and shift operation

39

a 2:1 multiplexer is put in front of each register. One input of the multiplexer is the

output of the previous register, and the other is the loadable bit. For the select input

of the multiplexers a specific module has been designed, which produces a “1”

output for load transitions, and a “0” output for shift operations (the design of this

module, named as my_module_hf, is described in the next section). The output of this

module is used as the select input of the multiplexer. Before shift or load operation

starts the inputs to the registers must be available. Therefore a delay element is put in

front of the first registers request input, so that the necessary time is given for the

settlements of both select input and hence the data. The acknowledgements of shift

and load operations are also differentiated, using a SELECT element. The select

input of this module is the same as the select input of the multiplexers, and the event

input is the acknowledgement signal of the last register. If the most significant bit

(MSB) of the input data is connected to the leftmost register, this is a shift right

register; and if the MSB of the input data is connected to the rightmost register, then

this is a shift left register. The schematic and black box representations of this type of

shift register are shown in Figure and Figure 3.31 respectively.

40

Figure 3.30 Circuit diagram of loadable shift register (type 1)

41

Figure 3.31 Black Box Representations of loadable shift register (type 1)

The shift register introduced above has a major drawback, latency. This latency

arises from the propagation delays of acknowledge signals through the blocks of

registers. As the size of the shift register increases the latency will increase as well.

Moreover, load operation is done like shift operation, exposed to same latency

problem as shift operation. The second type design proposes a solution to the latency

problem.

In the second type of design the load and shift operations are performed parallel,

hence the time spent on any operation does not depend on the register length. The

selection of the operation (load or shift), and acknowledgement generation is done

like in the previous type of design. The data, which will be loaded to the registers

according to the selected operation, are also differentiated using 2:1 multiplexers

(multiplexers have been implemented explicitly). The difference is on the

connections of the data bits, which will be loaded to the registers in the shift

operation. The output of the 4-bit register is fed-back to the input. However the

problem of assuring only single bit shift at one step is still valid, therefore delay

elements are inserted on the feedback lines. The delay value must be greater than the

time between the registers being transparent to data and closed again. Hence the

communication burden between the neighboring stages is eliminated on the cost of

extra delay elements (Figure 3.3 and Figure 3.33). According to simulation results,

which will be given detailed in chapter 5, about two times improvement in latency

has been achieved with this type of design.

42

Figure 3.32 Circuit diagram of loadable shift register (type 2)

43

Figure 3.33 Black Box Representation of loadable shift register (type 2)

3.4.8. MY_MODULE_HF

The purpose of this module is to differentiate between two transitions, and produce

an output indicating at which of the inputs a transition has occurred. If there is a

transition on L input, then a ‘1’ is produced at the output. If there is a transition on S

input then a ‘0’ is produced at the output. Actually this element could be added to the

basic cell set as well, since it can be used in many applications. For example, in this

thesis it is used not only in shift registers, but also used in multiplier, divider and

adder/subtracter modules.

Great attention has been given for the design to be hazard-free. The state assignments

(Table 3.1) and output function implementations have been done according to

fundamental-mode assumptions and the criteria explained above. The adjacent states

in the flow table are encoded such that only one bit changes during transitions. The

last two rows have been added in order to ensure race-free transition. Also the output

function is constructed as a logic covering all prime-implicants (Figure 3.34 and

Figure 3.35). The CLR input, which is not shown in flow table, is used for

initialization purpose only, and when it is ‘0’, the circuit gives a ‘1’ output regardless

of the other inputs.

44

Table 3.1 State transition table of my_module_hf

PS: Present State NS:Next State

Figure 3.34 Circuit diagram of my_module_hf

45

Figure 3.35 Black Box Representation of my_module_hf

3.4.9. ADDER/SUBTRACTER

This module is used for addition and subtraction. For both operations it uses

basically a conventional adder. For addition, the operands are taken as they are and

carry-in of the adder is set to ‘0’. For subtraction 1’s complement of the second

operand (here minuend) is taken, and carry-in input is set to ‘1’, so subtrahend is

added with the 2’s complement of the minuend. Therefore for second input and

carry-in input of the adder multiplexers are used. The select inputs of these

multiplexers are produced by again my_module_hf modules like in the shift

registers. Similarly request signals are delayed, so that the necessary time is given for

the settlements of both select input and hence the data. The data input are registered

before addition/subtraction operation is performed, in order to eliminate false

outputs, which can be produced due to changes in the input data during

addition/subtraction process. The acknowledgements of the input registers are

ANDed via a MULLER-C element. The output of this MULLER-C element is used

as request input for the sum and carry-out registers. Again a delay element is inserted

between the MULLER-C output and register request inputs, in order to wait the sum

and carry-out outputs of the adder to be available. The value of the delay inserted has

to be greater than the process time of the adder, which is a combinational logic.

For two different request signals (add and sub) two different acknowledgement

signals (add_done, sub_done) are produced as well. This is accomplished by using a

SELECT module whose select input is the output of my_module_hf and event input

46

is the ANDed (via MULLER-C) acknowledgement signals of the output registers.

Figure 3.36 shows the schematic of the ADD/SUB module and Figure 3.37 shows

the black box representation of this module.

F
ig
u
re
 3
.3
6
C
ir
cu

it
 d
ia
gr
am

 o
f
A
D
D
/S
U
B

m
od

ul
e

47

Figure 3.37 Black Box Representation of ADD/SUB module

3.4.10. MULTIPLIER

The multiplier designed in this thesis implements conventional shift and add

algorithm. This algorithm actually does what people are doing when they multiply

two binary numbers with paper and pencil. The conventional process can be

illustrated with a numerical example as follows.

The process consists of looking at successive bits of multiplier, least significant bit

(LSB) first. If the multiplier bit is a ‘1’, the multiplicand is copied down, and if ‘0’

zeros are copied down. The numbers copied down in successive lines are shifted one

position to the left from the previous number. Finally they are added, and their sum

gives the product.

In digital systems this algorithm is performed with a slight change. Instead of storing

all shifted multiplicands and adding them at the end of the operation, they are added

48

at the end of each shift operation producing partial products. And also instead of

shifting multiplicand left, partial product is shifted right, leaving the partial product

and multiplicand in the required relative positions [38]. If a signed-magnitude

multiplication is performed, the sign bit is determined aside from this operation. The

sign bit of the product is simply found by XORing the sign bits of the multiplicand

and multiplier.

The required hardware for n-bit signed magnitude multiplication is as follows shown

in Figure 3.38.

Figure 3.38 Required Hardware for Signed-Magnitude Multiplication

Multiplication process is performed according to hardware flow chart shown in

Figure 3.39. Initially, multiplicand is stored in B register (sign bit in Bs), and

multiplier in Q register (sign bit in Qs). The sign of the product is determined just

XORing the sign bits of the multiplicand and multiplier. For magnitude

multiplication A and E registers are initialized setting them to ‘0’, and the sequence

counter is loaded with the number of magnitude bits. After initialization according to

the value of the LSB of multiplier (Q register) a shift or an addition and a shift after

the addition is performed. For each process, the sequence counter is decremented by

1. As the value of the sequence counter gets ‘0’, the multiplication finishes and the

49

product is stored in A and Q registers, while most significant part resides in A, least

significant part resides in Q. The sign of the product is kept in As register.

The self-timed version of this architecture, implemented in this thesis as four-bit

signed-magnitude multiplier, consists of the following components:

• a four-bit register for multiplicand (B),

• two four-bit loadable shift registers for multiplier (Q) and partial product (A),

• four one-bit registers for sign bits (Bs, As and Qs) and for E,

• a four-bit adder (it has no infrastructure for subtraction, since there is no

need),

• a modulo-4 counter instead of a sequence counter (SC),

• two four-bit registers for registering the final content of A and Q registers

(the content of these registers are not visible at the output during the

multiplication process),

• basic cell-set elements and delay blocks for control and data handling.

50

Figure 3.39 Hardware Flow Chart for Multiplication

Multiplication begins with a transition on the start input. With this transition A, B,

Q, E, As and Bs registers are loaded with initial values. A and E registers are loaded

initially with ‘0’s, but during the multiplication process if an addition is performed,

A register is loaded with the sum output of the adder and E is loaded with the carry-

out output of the adder. Moreover E register must take a ‘0’ before a shift operation

is performed. Therefore the input data of A and E registers are selected according to

the process being performed. For this purpose multiplexers are utilized. The select

inputs of the multiplexers are generated by my_module_hf modules. So the initial

load request (start) and load requests after additions are differentiated from each

other. For E register also the shift operation is differentiated from load operations.

The requests which are wanted to be differentiated from each other, arrives both the

51

load or shift request input pins of the registers and L and S inputs of the

my_module_hf. The delay elements are inserted on the load request and shift request

paths of the registers, in order to wait for data to be available at the output of the

multiplexers before the requests reach the registers.

The number of shift and add operations is counted by a special modulo-4 counter

instead of a sequence counter. The modulo-4 counter (Figure 3.40 and Figure 3.41)

takes the transitions and steers every fourth transition to its mod_4 output while first,

second and third transitions are steered to mod_4_PRIME output. This module is

triggered after each shift operation. Since a shift occurs regardless of the value of the

LSB of Q register, the end of the operation can be determined by simply counting the

shift operations. So the shift acknowledge is connected to the input of modulo-4

counter. While the first three acknowledgements are directed to the module which

checks the LSB of Q register and determines accordingly whether a shift or addition

is done, the fourth transition is sent to the registers which will hold the final content

of As, A and Q registers as product output. When these registers acknowledge the

storage operation, by combining their acknowledge outputs to a MULLER-C element

a finish signal is generated to indicate the end of the operation and the product is

available at the output. The schematic design of 4-bit signed-magnitude multiplier

can be seen in Figure 3.42.

Figure 3.40 Circuit diagram of special modulo-4 counter

52

Figure 3.41 Black Box Representation of special modulo-4 counter

53

Figure 3.42 4-bit Signed-Magnitude Multiplier

54

3.4.11. DIVIDER

The divider designed in this thesis performs 4-bit signed-magnitude binary numbers

division. Like multiplier, the conventional algorithm, what people do when they

divide two binary numbers with paper and pencil, has been implemented. The

conventional algorithm is simply a process of successive compare, shift and subtract

operations. The division process is illustrated by a numerical example as follows:

For a 2n-bit dividend by n bit divisor case the process starts with comparing most

significant n bits of dividend with divisor. If divisor is greater, then a ‘0’ is put for

quotient and the divisor is shifted once to the right (this process can be thought as if

adding a ‘0’ in front of the MSB of divisor). Otherwise a ‘1’ is put for quotient and

the divisor is subtracted from the part of the dividend with which it is compared. The

divisor is shifted again after subtraction. The difference is called a partial remainder

[38] because the division could have stopped here to obtain a quotient of ‘1’ and a

remainder equal to the partial remainder. The process is continued by comparing

partial remainder with the divisor. If the partial remainder is greater than or equals

the divisor, the quotient bit is equal to ‘1’. The divisor is then shifted right and

subtracted from the partial remainder. If the partial remainder is smaller than the

divisor, the quotient bit is ‘0’ and no subtraction is needed. The divisor I shifted once

to the right in any case.

In digital systems this algorithm is performed with a slight change. Instead of

shifting the divisor to the right, the dividend or partial remainder is shifted to the left,

thus leaving the two numbers in the required relative positions. The hardware

55

required for division, and the hardware flow chart for signed-magnitude division can

be seen in Figure 3.43 and Figure 3.44 respectively.

Figure 3.43 Required Hardware for Signed-Magnitude Division

The dividend is contained in AsAQ and the divisor is contained in BsB. The sign of

the quotient (Qs) is determined by XORing the sign bits of the dividend and divisor.

If the sign bits are not counted, the dividend is of length 2n and divisor is of length n.

The register dedicated for quotient (Q) is also of length n. If the higher order half bits

of dividend constitute a number greater than or equal to divisor, then divide overflow

condition occurs. This means the quotient cannot be fit into n-bit register, it is at least

of length n+1. At the beginning of the operation this condition is checked, and if a

divide overflow condition exists, the process is exited by setting the DVF bit. If there

is no overflow condition the process is continued by magnitude division.

The division of magnitudes starts by shifting the dividend in AQ to the left with

high-order bit shifted into E. If the content of E is ‘1’, then it is obvious that EA > B,

since EA consists of a ‘1’ followed by n bits while B consists of only n bits. In this

case B is subtracted from A and a ‘1’ is inserted to Qn for quotient bit.

56

If the shift-left operation inserts a ‘0’ into E, then the contents of the A and B

registers are compared by subtracting B from A. The subtraction is done by adding

2’s complement of B to A. If the carry-out of the adder is ‘1’, it signifies that A ≥ B;

therefore a ‘1’ is inserted to Qn . If E is ‘0’ then it means that A < B, so in order to

restore original number B is added to A. There is no need to set Qn to ‘0’, since a ‘0’

is already inserted during the shift operation.

This process is repeated for n times. The flow control is done by assigning a

sequence counter initially to n and decrementing it by 1 after one shift, compare and

subtract cycle. When the content of this counter is ‘0’ then the operation is

completed, the remainder is in A, and the quotient is in Q.

57

Figure 3.44 Hardware Flow Chart for Signed-Magnitude Division

58

The self-timed version of this architecture, implemented in this thesis as four-bit

signed-magnitude divider, consists of the following components:

• a four-bit register for divisor (B),

• two four-bit loadable shift registers for dividend (Q and A),

• four one-bit registers for sign bits (Bs, As and Qs) and for E,

• a four-bit adder/subtracter ,

• a modulo-4 counter instead of a sequence counter (SC),

• two four-bit registers for registering the final content of A and Q registers

(the content of these registers are not visible at the output during the division

process),

• basic cell-set elements and delay blocks for control and data handling.

Division begins with a transition on the start input. With this transition A, B, Q, As

and Bs registers are loaded with initial values. A and Q registers are loaded initially

with dividend, but during the division process if an addition or subtraction is

performed, A register is loaded with the sum output of the add/sub block, and Q is

reloaded with its LSB set to ‘1’, if partial remainder is greater than or equals to

divisor. Therefore the input data of A and Q registers are selected according to the

process being performed. For this purpose multiplexers are utilized. The select inputs

of the multiplexers are generated by my_module_hf modules. So the initial load

request (start) and load requests after additions are differentiated from each other.

The requests which are wanted to be differentiated from each other, arrives both the

load or shift request input pins of the registers and L and S inputs of the

my_module_hf. The delay elements are inserted on the load request and shift request

paths of the registers, in order to wait for data to be available at the output of the

multiplexers before the requests reach the registers.

The number of shift-compare and subtract operations is counted by the same special

modulo-4 counter used in multiplier (Figure 3.40). This module is triggered after

each restore or set Qn to ‘1’ operation. Since one of these operations occurs at the

end of each comparison, the end of the operation can be determined by simply

counting the comparison operations. While the first three acknowledgements are

59

directed to initiate shift-left operation, the fourth transition is sent to the registers

which will hold the final content of A, Q and Qs registers as remainder and quotient

output. When these registers acknowledge the storage operation, by combining their

acknowledge outputs to a MULLER-C element a finish signal is generated to

indicate the end of the operation and the remainder and quotient are available at the

output. The schematic design of 4-bit signed-magnitude divider can be seen in Figure

3.45.

60

Figure 3.45 Four-bit Signed-Magnitude Divider

61

3.4.12. I/OS OF ALU

The individual functional units described above have been combined in a top

module. The top module takes two data input, one of them is of length 8 (REG1) and

the other is of length 4 (REG2). According to the function implemented the

meaningful bits differ. Table 3.2 shows which bits of REG1 and REG2 are

meaningful for which operation. Also for multiplication and division there are two

one-bit inputs (as and bs) that indicate the sign bits of operands. For other operations

they are don’t cares.

The top module has also CLR input, for initialization of the modules, and START as

the external REQUEST input of the ALU.

The function of the ALU is selected through an opcode. The opcode has 5 bits, and

the least significant three bits determine whether the ALU will perform AND, OR,

COMPLEMENT, ADD, SUBTRACT, MULTIPLY or DIVIDE operation, while the

most significant determines whether the output of the operation will be shifted left,

shifted right or kept as it is. Table 3.3 gives the opcode decoding.

The outputs of the functional units are decoded in eight-bit OUTREG output of the

ALU. The sign bits of product and division are also multiplexed with the carry-out

bits of adder/subtracter unit in qs output. The decoding of OUTREG and qs is shown

in Table 3.4. The ALU has also a DVF output dedicated for divide overflow

condition of divider and a FINISH signal as external ACKNOWLEDGE of the ALU.

Table 3.2 Input Decoding

62

Table 3.3 ALU Function Selection Opcode Decode Table

Table 3.4 Output Decoding

3.5. INCREMENTAL DESIGN USING RELATIONALLY PLACED
MACROS

As mentioned before, the initial step for designing asynchronous systems is to obtain

a hazard-free cell set. Hazard-free circuits can be obtained by meeting firstly the

design constraints such as covering all prime implicands in the SOP implementation,

encoding adjacent states with adjacent code words etc., and secondly the timing

constraints such as feedback delay constraint, and bundled data constraints in self-

timed systems. While the design defects are independent of the environment on

which the system is constructed, and can be eliminated on paper before starting

implementation, the timing problems strongly depend on the design environment,

and are mostly handled during implementation stage. Actually eliminating timing

problems means adjusting delays properly.

63

In an FPGA the design can be entered in two different ways, using HDLs (Hardware

Description Languages) or schematic entry tool. Two widely used HDLs are Verilog

and VHDL (VHSIC HDL), where VHSIC stands for Very High Speed Integrated

Circuits. The synthesizers (XST, Examplar, Precision etc.) produce EDIF (Electronic

Design Interchange Format) files from the design entries. EDIF is a standard

interface-file specification. EDIF files are used by place-and-route (PAR) tools for

mapping the logic into the architectural resources of the FPGA (CLBs, IOBs etc.).

PAR tools then determine the locations for these blocks based on their

interconnections and finally interconnect the blocks.

The placement and delays depend very much on the performance of the tools used. In

this thesis, as mentioned before, Xilinx’s ISE (Integrated Software Environment) tool

has been utilized. ISE provides text and schematic editors for HDL and schematic

design entries; XST (Xilinx Synthesis Technology) as synthesizer, and PAR tools.

While PAR tools can implement the designs automatically, they allow the user view

and modify the placed design (via Floorplanner) as well as view and modify the

physical implementation, including routing (via FPGA Editor).

At the beginning, basic cell set elements have been entered in schematic editor, and

placement and routing has been made automatically. The hazard behavior of the units

has been checked by making simulations. In the simulations all possible input

combinations have been tried. If a hazard is observed, this is mainly a sequential

hazard, since there is no possibility for logic-hazards to occur in LUT-base

implementations (refer to section 3.2.1). The main reason for sequential hazards is

unfavorable routing. Automatic routing may not satisfy the feedback delay to be less

than or equal to the sum of the minimal delay in detecting the output change and

producing a new input, and the minimal delay on the input line. In this case the delay

constraints can be met either by making the routing by hand using FPGA editor, or

adding extra delay elements where the delay should be greater than others. In this

thesis the second approach has been preferred. The only element at which hazard has

been observed after automatic routing was the TOGGLE element. All of the other

basic cell set elements were hazard-free. TOGGLE element has also been

implemented as hazard-free after inserting two buffers on the data paths. An

64

important point which must be considered in buffer insertion is that, the nets before

and after the buffer must be associated with KEEP property set to TRUE, so that

synthesis tool does not remove the buffer when it optimizes the circuit, since during

optimization the synthesis tool appreciates the two nets before and after the buffer

equal and finds the buffer as an unnecessary gate between these nets.

After obtaining a complete hazard-free cell set, the next step was to implement self-

timed circuits using these elements. The timing problem, which must be handled in

the self-timed systems, is bundled-data constraint, i.e., the data must be available

before a request arrives to the processing unit. This constraint can be met by delaying

control signals for data process time. The control signals are delayed using PDE

elements, whose structure is described in section 4.6. PDE is a chain of inverters, and

similar to buffers if the nets between inverter gates are not associated with the KEEP

property set to TRUE they are removed by the synthesis tool.

During the design process of self-timed circuits, it has been seen that the basic cell

set elements could exhibit hazardous behavior, when they are instantiated in upper

level modules, although they were implemented as hazard-free individually. The

reason for this situation is that, when they are instantiated in upper blocks, their

placement and routing is different than the placement and routing as they were

implemented as single blocks. The random behavior of PAR tool also complicates

the adjusting delays for bundled data protocol. For each new delay value a new

placement is encountered. While a system can operate correctly for a delay value, it

may not operate for higher delay values. This is an unexpected case, since for correct

operation there is only a lower limit for delay and for delay values higher than the

lower limit the system should operate correctly. When increasing the delay the

remaining circuit does not keep its placement and routing, and hence the delay

assumptions made in one case may fail in another case. The unfavorable effect of

unpredictable routing can be decreased extensively, although not fully eliminated, by

creating relationally placed macros (RPM) of the design units, and using incremental

design techniques.

65

3.5.1. RELATIONALLY PLACED MACROS (RPMS)

An RPM defines the spatial relationship of the primitives that constitute its logic, and

after an RPM is created it is indivisible any more. Creating RPMs is helpful in

maintaining the delays in a modular, hierarchical design. And since the basic

modules are constrained in a predefined area, when they are connected in a higher

level, internal routing does not differ very much and extra expense of routing

resources is eliminated. As a result the final design takes also less space compared to

that not comprised of RPM modules.

The methodology how to create RPMs is explained in an application note [39]

published by Xilinx. This methodology cannot be applied to schematic designs.

Therefore all schematic entries have been converted to VHDL counterparts. The ISE

tool does this process automatically. Before creating RPMs of the modules, their

VHDL based implementations have been tested again, because the schematic and

VHDL designs differ in routing, the delay calculations made for schematic design

may fail for the VHDL design. The delay values have been modified again until

being satisfied with the automatic placement of the PAR tool according to simulation

results. Finally hazard-free RPMs of the basic cell set elements have been obtained.

The relational locations of the primitives are written to a file named as user

constraint file (UCF), and when the RPM is instantiated in an upper module, the

content of this file must be copied into the UCF of the upper module, explicitly

indicating the hierarchical instance name.

Self-timed circuits can be easily implemented using the RPMs of the constituent

elements. The delay assignments can be made more coherently, since the routing is

more predictable with RPMs. So, all of the functional units of the ALU, described

above, have been implemented using RPMs.

66

3.5.2. INCREMENTAL DESIGN FLOW

The incremental design flow is a methodology for processing designs in a

hierarchical way that reuses results for unchanging portions of the design. The design

is partitioned into separate logic groups, which are then constrained with an AREA

GROUP constraint. This constraint packs logic together during the mapping process

so that each logic group is assigned an area on the device. When a design change is

made to one of the logic groups, the incremental design flow ensures that unchanged

logic groups are unchanged in the synthesis output. PAR tools re-place and re-route

the changed logic within its assigned area, while the unchanged logic groups are

guided from the previous implementation. So the timing results (placement and

routing) of unchanged logic groups remain stable. Incremental design flow also

reduces the implementation runtimes by only re-implementing the changed logic.

Incremental design flow technique is explained in an application note [40] published

by Xilinx. In this thesis, this methodology has been followed when combining the

functional units of ALU at the top level. Each unit (AND, OR, COMPLEMENT,

ADD/SUB, MULTIPLIER, DIVIDER, SHIFT REGISTERS) constitutes a logic

group and they have been placed on the assigned areas preserving the placement and

routing as they were implemented individually. The logic blocks, which are used to

connect these modules, and to control the ALU functions, have also been partitioned

into logic blocks. While placing area groups, the logic groups which communicate

with each other have been placed next to each other, and the logic groups which use

I/Os, have been placed next to I/O blocks of the FPGA. The I/O pin assignments

have been done according to the layout of the PCB which has been implemented for

hardware realization of the thesis.

On the PCB, there are seven segment displays to demonstrate inputs and outputs of

the ALU. The necessary logic for encoding the binary input and output data to seven

segment displays in BCD (binary coded decimal) format, has been implemented on

the area which is not occupied by the logic groups. This logic is fully combinational

and has no effect on the operation of the ALU. The floorplanner view after area

groups have been assigned for the logic groups can be seen in Figure 3.46.

67

1. ADD/SUB

2. MULTIPLIER

3. DIVIDER

4. COMPLEMENT

5. OR

6. AND

7. LOADABLE SHIFT REGISTER (LEFT)

8. LOADABLE SHIFT REGISTER (RIGHT)

9. CONTROL LOGIC AT TOP LEVEL (SELCT, MULLER-C, etc)

10. BINARY TO SEVEN SEGMENT DISPLAY ENCODER LOGIC

Figure 3.46 Floorplanner view of the logic groups

68

CHAPTER 4

NUMERICAL RESULTS

In an FPGA design, there are two main criteria when evaluating the design; area and

operating speed. Area is evaluated in terms of the number of slices occupied by the

logic, and operating speed is evaluated in terms of data latency, i.e., the time spent

from initiating the process until the data is available at the output. In self-timed

circuits data latency can be given as the time between arrival of request and

generation of acknowledgement.

In asynchronous sequential circuits the transition delay between any two states are

not equal. It depends on the state variables that are excited during the transition.

Therefore in self-timed circuits, which consist of sequential elements, the latency

between the request and acknowledgement signals does not have a fixed value. For

example in muller-c element, the response time to change in a input takes 7.191 ns,

while the response time to change in input b takes 7.348 ns.

For multiplication and division the latency depends also on the inputs. In

multiplication the addition operation is performed as many times as the number of

‘1’s in multiplier. Hence, the less number of ‘1’s the multiplier has, the shorter the

time passes for the multiplication process. In division, if a divide overflow condition

exists, the operation is exited at that moment and it is the shortest time spent for the

division. In other cases the operation time also depends on the result of the

comparisons made. If the partial remainder is less than the divisor, the partial

remainder must be restored after the subtraction, which is made for comparison. The

restore operation is not performed if partial remainder is greater than divisor. As a

result, the latency changes according to input given.

69

Table 4.1 gives a summary of the area occupied by the modules, which are

implemented in this thesis, and minimum and maximum latencies on these modules.

The simulation waveforms of the modules can be seen in the Appendix A. The

values given in Table 4.1 and the simulation outputs in the appendix part correspond

to the results obtained when these modules are implemented individually. The final

ALU, comprising these modules, has higher latencies for the given operation, since

an extra register operation is performed, according to selected function, and if the

output shift function is selected the latency increases even more, since the output of

the selected module is registered first, and then shift operation is performed. Table

4.2 shows the latencies of the functional units of the ALU after combining them at

the top level.

70

Table 4.1 Area and latency results of the self-timed modules

Module

of

slices Latency* (ns)

 min max

MULLER-C 1 7.191 7.348

TOGGLE 4 7.720 10.442

SELECT 2 8.726 8.569

CALL 2 8.761 13.812

OPAQUE LATCH 1 7.398 8.060

ONE-BIT REGISTER 6 27.604 30.080

FOUR-BIT REGISTER 9 24.587 27.786

FOUR-BIT AND 13 18.716 21.492

FOUR-BIT OR 13 18.716 21.492

FOUR-BIT COMPLEMENT 13 13.461 17.065

PDE 16 12.535 27.679

load : 43.784 56.125 LOADABLE SHIFT

REGISTER (TYPE 1)
44

shift : 44.778 57.973

load : 21.025 23.743 LOADABLE SHIFT

REGISTER (TYPE 2)
34

shift : 21.218 23.936

MY_MODULE_HF 2 8.313 8.530

add : 41.070 48.642
ADD/SUB 81

sub : 41.444 48.208

4x4 MULTIPLIER 232 312.914 494.514

8/4 DIVIDER 328 188.812 1.028.060
* Latency includes input/output pad delays as well

71

Table 4.2 Function latencies of asynchronous ALU (Top level implementation)

Latency (ns)

no shift shift right/left Function

min max min max

COMPLEMENT 49.229 54.509 83.888 86.243

AND 48.756 55.299 83.415 87.033

OR 45.963 51.762 80.622 83.496

ADD 74.832 84.337 109.491 116.071

SUBTRACT 75.530 85.035 110.189 116.769

MULTIPLY 331.000 524.377 365.659 556.111

DIVIDE 232.783 1109.314 266.182 1143.973

To make a comparison a synchronous version of the ALU implemented in this thesis

has also been designed on the same target FPGA. The synchronous ALU performs

the same algorithms as the asynchronous ALU. Even, it realizes a two-phase

handshaking between its modules. Synchronous ALU has been implemented fully by

VHDL, and the synthesis and PAR options have been left at default values, i.e.,

placement and routing have been done fully automatically, without giving any

constraint. According to PAR report file generated by ISE, the synchronous ALU can

operate at a frequency of 124 MHz. When ALU components are implemented

separately, they can operate at higher frequencies, however the operating frequency

decreases to the frequency of the slowest module, when they are combined in an

upper level. Table 4.3 shows the occupied area and latencies of the modules when

they are implemented individually, and Table 4.4 shows the function latencies of the

top-level implementation of the synchronous ALU. Both results have been obtained

by a simulation with 100 MHz clock. In synchronous ALU the latency for a given

function does not depend on the state transitions, since all transitions are quantized

with clock period. Of course, the latencies of multiplication and division processes

depend on the input values like in the asynchronous ALU, since synchronous ALU

72

performs the same shift-and-add algorithm for multiplication, and shift-compare-

subtract algorithm for division.

Table 4.3 Area and latency results of the synchronous modules

Module

of

slices Latency (ns)

 min max

FOUR-BIT AND 5 17.094 17.094

FOUR-BIT OR 5 17.097 17.097

FOUR-BIT COMPLEMENT 1 17.092 17.092

load : 31.586 31.586 LOADABLE SHIFT

REGISTER
10

shift : 31.586 31.586

add : 30.000 30.000
ADD/SUB 13

sub : 30.004 30.004

4x4 MULTIPLIER 23 147.092 227.092

8/4 DIVIDER 38 67.102 347.102

Table 4.4 Function latencies of synchronous ALU (Top level implementation)

Latency* (ns)

no shift shift right/left Function

min max min max

COMPLEMENT 41.603 41.603 41.603 41.603

AND 41.603 41.603 41.603 41.603

OR 41.603 41.603 41.603 41.603

ADD 61.603 61.603 61.603 61.603

SUB 61.603 61.603 61.603 61.603

MULTIPLY 171.603 251.603 171.603 251.603

DIVIDE 91.603 371.603 91.603 371.603
* Latency includes input/output pad delays as well (at 100MHz)

73

According to simulation results synchronous and asynchronous modules show

similar performance for small-scaled circuit applications, such as AND, OR and

COMPLEMENT, when they are implemented individually. Even, asynchronous shift

register (Type 2) seems to be faster than its synchronous counterpart. However, the

synchronous modules are implemented similar to the asynchronous modules, and

thus have extra logic, which increases the latency. The two-phase handshaking

protocol has been applied to synchronous modules as well. They start with the

operation as the request arrives, and they produce an acknowledgement signal after

the data is available at their output. This is not a usual operation flow for

synchronous circuits. Normally AND, OR, COMPLEMENT, SHIFT,

ADDITION/SUBTRACTION operations can be done within a clock period, and in

this case the latency will take no more than 10 ns. for an operation frequency at 100

MHz. The effect of usual operation of these functions can be seen in the data

latencies of the multiplier and divider. Synchronous multiplier and divider perform

almost two times faster than asynchronous ones. The main reason for this is that

shift, add/sub operations take less time in synchronous modules, and these operations

consist the majority of the operations performed in multiplication and division

algorithms.

Aside from latency, the slice utilization is better in synchronous modules. The main

reason for this is that FPGA architecture and synthesis tools are more suitable for

synchronous designs. While in a synchronous design the flip-flop in a CLB can be

used for data storage of the LUT output in the same CLB, in asynchronous design 6

extra slices are consumed for registering one-bit data (refer to Table 4.1). Moreover,

basic control modules for two-phase handshaking, and delay elements used for

satisfying bundled-data constraint, result in extra slice consumption. Another reason

for asynchronous circuits using more slices is that, for initialization of the

asynchronous circuits extra gates are used, while in synchronous circuits dedicated

RESET and SET inputs of the flip-flops are used for initialization and thus no extra

logic is generated for this purpose.

All the design files can be found in the CD enclosed in an envelope in Appendix C.

There are three folders in CD. tez_schematic folder contains the schematic entries of

74

the basic cell set elements and ALU components described in chapter 3,

tez_async_alu folder contains the VHDL versions of the schematic files and top

module combination of the asynchronous ALU designed with incremental design

technique. Finally tez_sync_alu folder contains the synchronous version of the ALU

implemented in this thesis. When the ISE project files contained in these folders are

opened with an ISE 6.3 program, all the design files and testbench files

corresponding to VHDL and schematic modules can be observed in a hierarchical

order. The testbench files can be run with a Modelsim program as well.

75

CHAPTER 5

HARDWARE IMPLEMENTATION

The asynchronous ALU implemented in this thesis has also been realized on

hardware. For this purpose a PCB has been designed. The PCB consists of the target

FPGA (Xilinx Virtex XCV300) and peripheral elements. The peripheral elements are

as follows:

• Power Terminals: The power is given trough these terminals. A 5V voltage

must be supplied to the board, and the supply should be capable of providing

2A current as well.

• A Switching Voltage Regulator (SVR) (PT6941C): On the board three

different voltage levels are used. These are 5V, 3.3V and 2.5V. SVR converts

5V to 2.5V and 3.3.V.

• An EEPROM (XC18V02): It is used to keep the configuration file of the

FPGA. When the card is given power, the data in the EEPROM is transferred

to the FPGA, and then FPGA performs the operation until the power is off.

• A connector for JTAG interface: The configuration file is downloaded to the

EEPROM through this connector.

• Buffers (74LVT16245): They are used to isolate I/Os of FPGA from external

environment.

• Switches: They are used to set the input data, opcode and START signal to

initiate the operation.

• Push buttons: There are two push buttons on the board. One of them is used

to reset the FPGA, i.e., reload the configuration data, and the other is used to

initialize the ALU by giving a CLR signal.

• Debounce circuit (MAX6818): This circuit is used to eliminate bouncing on

CLR and START signals. For two-phase signaling it is very important to

76

have clear transitions especially on request signal, which is here the START

signal.

• LEDS: All input and output signals are demonstrated with LEDS.

• Seven-segment displays: There are nine seven-segment displays, five of them

are used to demonstrate input data, and the rest four are used to demonstrate

output data in BCD format. Most of the power is consumed on these displays.

Transistors have been utilized in order to supply necessary current to

illuminate the LEDs of these seven-segment displays.

• A clock generator: This circuit provides a 50 MHz clock and has been placed

for the case of implementing synchronous ALU as well on the same board.

However it has no function when the asynchronous ALU configuration file is

downloaded.

The schematics of the PCB can be seen in Appendix B. Figure 5.1 shows the top

view layout of the board and Table 5.1 shows the location references of the main

components on the topside of the board.

5.1. OPERATION MANUAL

Figure 5.2 shows the top view of the board with the components placed on it. In this

section the direction references are given according to this view of the board.

When the power is given to the board the FPGA will be loaded with the

configuration data stored on the EEPROM. Before starting with any operation the

START signal must be taken to ‘0’ state, and CLR push-button must be pushed, i.e.,

set to ‘0’ for a while to initialize the ALU. After initialization operation is completed

the input data and function can be selected through the switches. There is a table on

the board, which describes the operations implemented according to the selected

opcode. The I/O decoding tables was given in chapter 3, section 3.12. When the

input data is set their BCD format view can be seen on the seven-segment displays

placed on the upper side of the board. The left-most three displays show the REG1

content, while the right-most two displays shows the REG2 content. The operation is

initiated by changing the state of the START signal (if ‘0’ set to ‘1’; if ‘1’ set to ‘0’).

77

This will generate the necessary request signal for the selected function the output

will be displayed both on the output LEDs, residing on the right of the board, and on

the seven-segment displays placed on the bottom of the board. For division, the left-

most two displays show the quotient and the other two displays shows the remainder.

A sample division operation can be seen in Figure 5.3. For multiplication the left-

most display is don’t cared, and remaining three displays show the product. For other

operations the left-most two displays are don’t cared, and the result is showed on the

right-most two displays.

Figure 5.1 Layout of the board (top view)

78

Table 5.1 Location references of the main integrated circuits of the PCB

Integrated Circuit Location reference

FPGA TD21

EEPROM TD19

BUFFERS
TD11, TD12, TD13, TD14,

TD15, TD16, TD17, TD18

SWITCHES SW1, SW2, SW3

7-SEGMENT DISPLAYS
TD2, TD3, TD4, TD5, TD6,

TD7, TD8, TD9,TD10

SWITCHING VOLTAGE REGULATOR CR101

POWER TERMINALS TE1, TE2

DEBOUNCE CIRCUIT TD20

JTAG INTERFACE CONNECTOR KN4

PUSH BUTTONS A1, A2

79

Figure 5.2 Top view of the board

80

Figure 5.3 A sample operation (103/15, quotient: 6, remainder:13)

81

CHAPTER 6

CONCLUSION

In this thesis an approach for designing asynchronous circuits in commercial FPGAs

has been proposed. Also the performance of the asynchronous systems designed in

FPGAs have been investigated in terms of logic slices occupied and data latencies by

implementing a sample design which is an ALU. The area and speed performance of

the asynchronous ALU has been compared with a synchronous ALU having the

same functionality as the asynchronous one as well.

The first thing, which must be done before starting with an asynchronous circuit

design, is to characterize the hazard behavior of the environment on which the

system will be implemented. In this thesis the environment is a Xilinx Virtex series

FPGA, XCV300. Xilinx FPGAs are based on LUTs and LUTs have different timing

characteristics than simple gates like AND, OR, NAND etc. In this thesis hazard

analysis of both gate-level and LUT-based implementations have been investigated.

Xilinx’s LUT-based FPGAs offer logic hazard-free implementations, but function

hazards cannot be eliminated.

The asynchronous ALU designed in this thesis has been implemented in the style of

micropipelines. Two-phase transition signaling has been used for control circuits,

and bundled-data protocol has been used to handle data timing. For two-phase

handshaking protocol a basic cell set has been implemented first. This cell set is

hazard-free provided that they satisfy the feedback delay constraint. If the

implementation consumes only one logic block of the FPGA, this constraint is

satisfied automatically, however if an element is implemented on more than one

logic blocks, the delay constraints may not be satisfied automatically by the synthesis

tools, and some delay elements need to be inserted. The timing behaviors of the

hazard-free cell set elements are kept in upper level instantiations by generating

82

relationally placed macro (RPM) modules of these elements. Another timing

constraint which must be met in self-timed circuits is the bundling constraint, i.e.,

data must be available before the request arrives. This is also handled by inserting

delay elements (chain of inverters) in the paths of control signals. A module

satisfying bundling constraint when implemented individually, however, may not

keep this property when instantiated in upper blocks, since the placement of the

module may be very different when it is instantiated in upper levels than its

individual implementation. To prevent this condition incremental design technique

can be utilized. In this technique the timing results of the modules remain stable

when they are used or combined in upper levels.

When compared the area and speed performances of the asynchronous and

synchronous ALUs, the synchronous one has advantages over the asynchronous one.

Synchronous design is faster and consumes less FPGA resources. This is mainly due

to being commercial FPGAs and FPGA design tools mostly dedicated to

synchronous designs. Basic asynchronous design elements are not available in

FPGAs and for the design of those elements extra logic blocks are consumed. This

increases both the number of logic blocks utilized and hence the latency of the signal

propagating through these sources.

This research has showed that commercial FPGAs are not very suitable for

asynchronous circuit design. While a synchronous design verified on paper could

possibly function correctly when implemented on a FPGA, the asynchronous circuit

may not function properly since it may not satisfy the timing constraints after place

and route process. Therefore asynchronous circuit design takes more time than the

synchronous counterpart. The designer should apply special techniques to keep

timing constraints and should assure proper operation for all possible input

combinations. The time spent for an asynchronous design even is not worthy, since at

the end the design is not advantageous over the synchronous one. The only expected

advantage of the asynchronous circuit was that the asynchronous design is still

modular. Different modules designed by different designers on the same FPGA could

operate correctly when they are combined using incremental design technique.

83

REFERENCES

[1] C. J. Myers, Asynchronous Circuit Design : John Wiley & Sons, Inc, 2001

[2] Stephen H. Unger, Hazards, Critical Races, and Metastability, IEEE

Transactions on Computers, Vol. 44, No. 6, pp. 754-768, June 1995.

[3] D. A. Huffman, The Synthesis of Sequential Switching Circuits, Journal of the

Franklin Institute, March/April 1954.

[4] D. E. Muller and W. S. Bartky, A Theory of Asynchronoous Circuits, In Proc.

International Symposium on the Theory of Switching, pp. 204-243, Cambridge, MA,

April 1959. Harvard University Press.

[5] Scott Hauck, Asynchronous Design Methodologies : An Overview, IEEE

Proceedings, Vol. 83 Issue 1, pp. 69-93, January 1995.

[6] L. A. Hollar, Direct Implementation of Asynchronous Control Units, IEEE

Transactions on Computers, Vol. C-31, No. 12, pp. 1133-1141, Dec. 1982.

[7] S. M. Nowick, D. L. Dill, Automatic Synthesis of Locally-Clocked Asynchronous

State Machines, in Proceedings of ICCAD, pp. 318-321, 1991.

[8] S. M. Nowick, D. L. Dill, Synthesis of Asynchronous State Machines Using a

Local Clock, in Proceedings of ICCAD, pp. 192-197, 1991.

[9] K. Yun, D. Dill, Automatic Synthesis of 3D Asynchronous State Machines, in

Proceedings of ICCAD, pp. 576-580, 1992.

84

[10] K. Yun, D. Dill, S. M. Nowick, Synthesis of 3D Asynchronous State Machines,

in Proceedings of ICCAD, pp. 346-350, 1992.

[11] A. J. Martin, The Limitations to Delay-Insensitivity in Asynchronous Circuits, in

Proceedings of the 1990 MIT Conference on Advanced Research in VLSI, pp263-

278, 1990

[12] C. E. Molnar, T. P. Fang, F. U. Rosenberger, Synthesis of Delay-Insensitive

Modules, in Proceedings of the 1985 Chapel Hill Conference on Advanced Research

in VLSI, pp 67-86, 1985

[13] T. Murata, Petri Nets :Properties, Analysis and Applications, Proceedings of the

IEEE, Vol. 77, No. 4, pp. 541-580, 1989.

[14] E. Brunvand, R. F. Sproull, Translating Concurrent Programs into Delay-

Insensitive Circuits, in Proceedings of ICCAD, pp. 262-265, 1989.

[15] J. C. Ebergen, Translating Programs into Delay-Insensitive Circuits, Center of

Mathematics and Computer Science, Amsterdam, CWI Tract 56, 1989.

[16] J. C. Ebergen, A Formal Approach to Designing Delay-Insensitive Circuits,

Distributed Computing, Vol. 5, No. 33, pp. 107-119, july 1991.

[17] A. J. Martin, Programming in VLSI : From Communicating Processes to Delay-

Insensitive Circuits, in UT Year of Programming Institute on Concurrent

Programming, C. A. R. Hoare, Ed. MA: Addison Wesley, pp. 1-64, 1989.

[18] T. A. Chu, C. K. C. Leung, T. S. Wanuga, A Design Methodology for

Concurrent VLSI Sytems, in Proceedings of ICCAD, pp. 407-410, 1985.

[19] T. A. Chu, Synthesis of Self-Timed Circuits from Graph-Thoeretic

Specifications, M.I.T. Tech. Report MIT/LCS/TR-393, June 1987.

85

[20] M. A. Kishinevsky, A. Y. Kondratyev, A. R. Taubin, V. I. Varshavsky, On Self-

Timed Behavior Verification, in Proceedings of TAU’92, March 1992.

[21] Ivan E. Sutherland, Micropipelines, Communication of ACM, Vol. 32, No. 6,

June 1989.

[22] E. Brunvand, Using FPGAs to Implement Self-Timed Systems, Journal of VLSI

Signal Processing, Vol. 6, pp. 173-190, 1993, Special Issue on FPGAs.

[23] K. Maheswaran, Implementing Self-Timed Circuits in Field Programmable Gate

Arrays, MS Thesis, UC Davis, 1995.

[24] S. W. Moore, P. Robinson, Rapid Prototyping of Self-Timed Circuits, University

of Cambridge, in Proceedings of ICCD’98, 5-7 October in Austin Texas.

[25] Q. T. Ho, J.-B. Rigaud, L. Fesquet, M. Renaudin, R. Rolland, Implementing

Asynchronous Circuits on LUT Based FPGAs, in Proceedings of 12th Conference on

Field Programmable Logic Applications, September 2002.

 [26] A. V. D. Duc, J.-B. Rigaud, A. Rezzag, A. Sirianni, J. Fragoso, L. Fesquet, M.

Renaudin, TAST, ACiD Workshop, Munich, Germany, January 2002.

[27] S. Hauck, S. Burns, G. Borriello, C. Ebeling, A FPGA for Implementing

Asynchronous Circuits, IEEE Design and Test of Computers, Vol. 11, No. 3, pp. 60-

69, 1994.

[28] B. Gao, A Globally Asynchronous Locally Synchronous Configurable Logic

Array Architecture for Algorithm Embeddings, PhD thesis, University of Edinburgh,

December 1996.

[29] R. Payne, Self-Timed Field Programmable Gate Array Architectures, PhD

thesis, Uniiversity of Edinburgh, 1997.

86

[30] J. Teifel, R. Manohar, Programmable Asynchronous Pipeline Arrays, in

Proceedings of 13th Int. Conference on Field Programmable Logic and Applications,

pp. 345-354, Lisbon, Portugal, September 2003.

[31] N. Huot, H. Dubreuil, L .Fesquet, M. Renaudin, FPGA Architecture for Multi-

Style Asynchronous Logic, in Proceedings of Design, Automation and Test in

Europe, 2005.

[32] E. Brunvand, W. F. Richardson, The NSR Processor Prototype, Technical

Report UUCS--92--029, University of Utah, August 1992.

[33] F. Prosser, D. Winkel, E. Brunvand, A Comparison of modular Self-Timed

Design Styles, University of UTAH, 1995.

[34] Virtex 2.5V Field Programmable Gate Arrays, Complete Data Sheet, v.2.5,

April2, 2001.

[35] McCluskey E.J., Introduction to the Theory of Switching Circuits, Mc-Graw

Hill, New York, 1965.

[36] E. B. Eichelberger, Hazard Detection in Combinational and Sequential

Switching Circuits, IBM Journal of Research and Development, No. 9, pp. 90-99,

March 1965.

[37] K. Y. Yun and D. L. Dill, Automatic Synthesis of Extended Burst-Mode Circuits

I : Specification and Hazard-Free Implementation, IEEE Transactions on Computer-

Aided Design, Vol. 18, No. 2, pp. 101-117, February 1999.

[38] M. Morris Mano, Computer System Architecture, Third Edition, Prentice Hall,

1993.

87

[39] Xilinx Application Note 422 (Ver 2.0), Creating RPMs Using 6.2i

Floorplanner, Xilinx, March 10, 2004.

[40] Xilinx Application Note 418 (Ver 1.2), Xilinx 5.1i Incremental Design Flow,

Xilinx, August 25, 2003.

88

APPENDIX A

A. SIMULATION WAVEFORMS OF ASYNCHRONOUS MODULES

In the following waveforms, the declaration given in front of each signal represents

the name of the testbench file (between two slashes) and the port name of the unit

under test. The vertical bars are time cursors. The simulation time where the cursors

exist is shown in the squares under the corresponding cursor. The time difference

between two consecutive cursors is given near the second cursor for each cursor pair.

Figure A.1. Simulation Waveform for Muller-C (1 slice)

89

Figure A.2. Simulation Waveform for TOGGLE (4 slices)

Figure A.3. Simulation Waveform for SELECT (2 slices)

Figure A.4. Simulation Waveform for CALL (2 slices)

90

Figure A.5. Simulation Waveform for OPAQUE LATCH (1 slice)

Figure A.6. Simulation Waveform for ONE-BIT REGISTER (6 slices)

91

Figure A.7. Simulation Waveform for FOUR-BIT REGISTER (9 slices)

Figure A.8. Simulation Waveform for FOUR-BIT AND (13 slices)

92

Figure A.9. Simulation Waveform for FOUR-BIT OR (13 slices)

Figure A.10. Simulation Waveform for FOUR-BIT COMPLEMENT (13 slices)

93

Figure A.11. Simulation Waveform for PDE (16 slices)

Figure A.12. Simulation Waveform for LOADABLE SHIFT REGISTER (Type 1)

(44 slices)

94

Figure A.13. Simulation Waveform for LOADABLE SHIFT REGISTER (Type 2)

(34 slices)

Figure A.14. Simulation Waveform for MY_MODULE_HF (2 slices)

95

Figure A.15. Simulation Waveform for ADD/SUB (addition) (81 slices)

Figure A.16. Simulation Waveform for ADD/SUB (subtraction) (81 slices)

96

Figure A.17. Simulation Waveform for MULTIPLIER (232 slices)

Figure A.18. Simulation Waveform for DIVIDER (328 slices)

97

APPENDIX B

B. CIRCUIT SCHEMATICS OF THE IMPLEMENTED PCB

Figure B.1 Regulator Circuit

Figure B.2 Power Terminals

98

Figure B.3 FPGA

99

Figure B.4 Input Switches and LEDS

Figure B.5 Debonce Circiut

100

Figure B.6 Input Buffers

101

Figure B.7 Output Buffer and LEDS

Figure B. 8 High Frequency Integrated Circuit Bypass Capacitors

102

Figure B.9 High Frequency I/O Bypass Capacitors

Figure B.10 Mid-frequency Bypass Capacitors

103

Figure B.11 FPGA Programming Interface

104

Figure B.12 Clock Circuit for Synchronous Operation Option

105

Figure B.13 Output Seven-Segment Displays and Driver Circuits

106

Figure B.14 Input Seven-Segment Displays and Driver Circuits

107

Figure B.14 (continued)

108

Figure B.14 (continued)

109

APPENDIX C

C. DESIGN FILES

