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ABSTRACT 

AUTOMATIC EYE TRACKING AND INTERMEDIATE VIEW 
RECONSTRUCTION FOR 3D IMAGING SYSTEMS 

 
 

Bediz, Yusuf 
M.S., Department of Electrical and Electronics Engineering 

Supervisor : Assoc. Prof. Dr. Gözde Bozdağı Akar 
 

July 2006, 76 pages 
 

 

In recent years, the utilization of 3D display systems became popular in many 

application areas. One of the most important issues in the utilization of these 

systems is to render the correct view to the observer based on his/her position. In 

this thesis, we propose and implement a single user view rendering system for 

autostereoscopic/stereoscopic displays. The system can easily be installed on a 

standard PC together with an autostereoscopic display or stereoscopic glasses 

(shutter, polarized, pulfrich, and anaglyph) with appropriate video card. 

Proposed system composes of three main blocks: view point detection, view point 

tracking and intermediate view reconstruction. Haar object detection method, 

which is based on boosted cascade of simple feature classifiers, is utilized as the 

view point detection method. After detection, feature points are found on the 

detected region and accordingly they are fed to the feature tracker. View point of 

the observer is calculated by using the tracked position of the observer on the 

image. Correct stereoscopic view is, then, rendered on the display. A 3D warping-

based method is utilized in the system as the intermediate view reconstruction 

method. System is implemented on a computer with Pentium IV 3.0 GHz 

processor using E-D 3D shutter glasses and Creative NX Webcam. 

iv 



 

Keywords: View rendering, View point detection, view point tracking and 

intermediate view reconstruction. 
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ÖZ 

3 BOYUTLU GÖRÜNTÜLEME SİSTEMLERİ İÇİN OTOMATİK GÖZ 
TAKİBİ VE ARA GÖRÜNTÜ OLUŞTURULMASI 

 
 

Bediz, Yusuf 
Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Gözde Bozdağı Akar 
 

Temmuz 2006, 76 sayfa 
 

 

Son yıllarda 3 boyutlu görüntüleme sistemlerin kullanımı bir çok uygulama 

alanlında popülerlik kazanmıştır. Bu sistemlerin kullanımı sırasındaki en önemli 

sorunlardan biri kullanıcının posizyonuna göre doğru görüntünün oluşturulup 

ekranda gösterilebilmesidir. Bu tezde tek kullanıcılı bir görüntüleme sistemi 

önerilmekte ve gerçeklenmektedir. Sistem kolaylıkla standard bir bilgisayar 

üzerine oto-stereoskopik monitör veya stereoskopik gözlük (kepenk, polarize, 

pulfrik, ve anaglif) kullanılarak kurulabilir. Önerilen sistem üç ana parçadan 

oluşmaktadır: bakış açısı bulma, bakış açısı takip etme ve ara görüntü oluşturma. 

Basit öznitelik sınıflandırıcıların desteklenmiş kademeli dizilerine dayanan Haar 

nesne bulma yöntemi sistemde bakış noktası bulma yöntemi olarak kullanılmıştır. 

Bu method kullanılarak iki sınıflandırıcı eğitilmiştir. Bakış noktası bulma 

işleminden sonra bulunan bölge içerisindeki öznitelikler bulunup öznitelik 

takipçisine verilmektedir. Kullanıcının bakış açısı görüntü üzerinde takip edilen 

bakış noktası kullanılarak hesaplanmaktadır. Bakış açısı bulunduktan sonra 

doğru stereoskopik görüntü oluşturulup ekrana çizilmektedir. 3B eğriltmeye 

dayalı bir method, ara görüntü oluşturma metodu olarak kullanılmıştır. Sistem 

vi 



Pentium IV 3.0 GHz işlemciye sahip bir bilgisayar üzerinde E-D 3D kepenk 

gözlükler ve Creative NX Webcam kullanılarak gerçeklenmiştir. 

 

 

Anahtar Kelimeler: Görüntüleme sistemi, bakış noktası bulma, bakış noktası takip 

etme, ara görüntü oluşturulması. 
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CHAPTER 1 

INTRODUCTION 

1.1 General 

During the last years, the utilization of 3D Display Systems considerably 

increased in applications of education, entertainment and presentation. The one 

which has the most widespread usage and is the most economical system among 

3D Display Systems is the stereoscopic eyeglasses. However the utilization of 

brand new and popular autostereoscopic display systems is also growing with its 

price getting cheaper. Autostereoscopic displays make the 3D viewing experience 

more pleasant by eliminating the necessity of glasses to be used. They can be 

categorized into two main groups: Two-view and multi-view autostereoscopic 

displays. Two-view autostereoscopic displays render one stereoscopic image at 

maximum resolution of the display. However observers do not perceive true 3D 

sense as they move in front of the display for the reason that they see the same 

image from all positions. This problem is also valid for stereoscopic eye glasses 

Multi-view autostereoscopic displays present a large number of views so that as 

the observer moves, a different pair of the views is seen from each new position. 

On the other hand, the resolution of the display split between the multiple views 

and image quality falls on these displays. A solution to this problem is to utilize a 

two-view display or a stereoscopic eyeglass with head tracking. In this way, the 

correct view can be rendered to the observer at full display resolution based on 

his/her position while observer moves freely in front of the display.  Head 

tracking can be done in an active way that the observer wears some special 
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sensors, such as infrared sensors or reflectors, ultrasonic wave receivers and 

electromagnetic wave sensor. However this kind of methods is uncomfortable 

and inconvenient. Therefore, video based methods are preferable for tracking 

observers in a passive manner. 

 

Recently, researches have developed video-based trackers for autostereoscopic 

displays [1] [2]. In [1] an eye tracking system using two webcam has been 

proposed. The eyes are detected by fast pattern recognition. They additionally use 

color information in the images. However, this makes their system very sensitive 

to lighting conditions. Another eye tracking system has been proposed in [2] 

where the face of the observer is detected by using multiple eigenspaces of 

various lighting conditions and then the eyes are located in the obtained face by a 

convolution based method. Tracking is done with fast block matching in this 

system.  

 

Besides eye trackers, complete autostereoscopic displays systems with observer 

tracking has also been proposed. Fraunhofer Heinrich-Hertz-Institut (HHI) 

developed a system with a special head-tracking lenticular-screen [3]. This screen 

is mechanically adjusted according to the position of the observer while the 

observer is tracked. Current products also started to include eye tracking systems 

like SeeReal C-i 3D Display [4]. However this further increases the price.  

 

1.2 Scope of the thesis 

This thesis deals with the problem of developing a real-time view rendering 

system that detects and tracks the position of the observer and renders the correct 

view to the observer based on his/her position. System is aimed to work with 

both autostereoscopic displays and stereoscopic glasses and it is restricted to a 

single user. 
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Main building blocks of the system are defined as view point detection, view 

point tracking and intermediate view reconstruction. Implementation of these 

blocks are done with Haar  object detection method, pyramidal implementation of 

Lucas Kanade feature tracker and a 3D warping based method respectively. 

System is implemented on a computer with Pentium IV 3.0 GHz processor using 

E-D 3D shutter glasses and Creative NX Webcam. 

 

1.3 Outline of the dissertation 

In Chapter 2, Haar object detection method is described. It is the method that is 

utilized as the implementation of view point detection component in the 

proposed system. 

 

Pyramidal implementation of the Lucas-Kanade Feature Tracker which is utilized 

as the view point tracker is described in Chapter 3. 

 

The intermediate view reconstruction method used in the system implementation 

can be found in Chapter 4. This chapter also includes some background 

information about camera geometry which is nessesary to understand the 

explained method. 

 

Chapter 5 explains the proposed system and gives detailed information about the 

implemantation of each block in the system. Results of the blocks and comments 

on the results are also given in this chapter. 

 

Finally, Chapter 6 gives the summary of the thesis and concluding remarks. Some 

future work is also suggested in this chapter.  
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CHAPTER 2 

VIEW POINT DETECTION 

For 3D display systems, tracking of the observer’s view point is necessary to 

render the correct stereoscopic view according to the observer position. View 

point is the eye region of the observers for autostereoscopic displays or the 

eyeglasses of the observer for the stereoscopic glasses (shutter, polarized, pulfrich 

and anaglyph).  

 

Detection of the view point is the first step in tracking of the view point and very 

important for the system performance. In the literature, a number of techniques 

are available for the eye region detection. These techniques are thoroughly 

described in section 2.1. However, there is no specific algorithm for the detection 

of stereoscopic glasses. Generic object detection methods can, thus, be used for 

the detection of stereoscopic glasses. 

 

Haar object detection method is used in the proposed system for the view point 

detection. It is a generic object detection framework and can be used both for 

detection of eyes and stereoscopic glasses. Detailed description of the Haar object 

detection method is given in section 2.2 

 

2.1 Eye Region Detection  

Eye region detection techniques can be categorized into two main groups: Active 

Infrared (IR) illumination based methods and image based passive methods. 
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Methods mentioned in the first group exploit the spectral properties of pupil 

under near IR illumination. It is usually called the bright pupil effect of eyes (Eyes 

look bright when illuminated by an IR light source). In the second group, 

detection is performed on a priory detected frontal face image. These methods are 

passive methods and do not utilize an external light source or a special 

equipment. 

 

2.1.1 Active IR Illumination Based Methods 

Active IR based methods are widely used in eye detection and tracking 

applications. There has been a lot of work using this technique and there are some 

commercial eye tracking systems such as produced by ISCAN Incorporated, LC 

Technologies and Applied Science Laboratories (ASL) [5], [6], [7], [8]. These 

methods use the special bright pupil effect, which can be obtained in daylight by: 

An IR light source, illuminating the scene, is located near to the camera and a 

visible light filter is attached to the camera lens. Under IR illumination a very 

high contrast between eyes (pupils) and the rest of the face can be obtained. Using 

this contrast, eyes can easily be detected. Although Active IR based methods 

enable the easy detection of eyes, these methods have some drawbacks. Rapid, 

large and fast head movements of the observer may cause troubles. The use of 

thick eye glasses may turn out to be also a problem in that they disturb the 

infrared light and cause weak pupil appearance. The performance of these 

methods depends on lighting conditions and the pupil size. Lighting conditions 

should be stable and the observer should be close to the camera. In order to 

overcome these drawbacks people have combined the IR illumination with other 

methods. Zhu proposed an IR illumination based method, which works under 

variable realistic lighting conditions and is based on combining the bright-pupil 

effect resulted from IR light and the conventional appearance-based object 

recognition technique [6]. De Liefde overcame the problem occurred by rapid 

head movement by the use of probabilistic principal component analysis based 

classifier in the results of IR illumination [7]. The method proposed by Ramadan 
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also eliminated the effect of the dynamics of head movements. Proposed method 

uses IR illumination with active deformable models [5]. 

 

2.1.2 Image Based Passive Methods 

Image based methods become more popular with the development of the video 

and image analysis technology. In these methods a frontal face is first detected 

and then eyes are located inside the detected region. Eye detection can be 

performed by using different methods. These methods can be classified into three 

categories: template based methods [9], [10], appearance based methods [11], [12] 

and feature based methods [13], [14]. 

 

In the template based methods [9] [10], first a generic eye model, based on the eye 

shape, is designed. Then template matching is utilized to search for the eyes on 

the face. Although these methods can detect eyes accurately, they are normally 

time-consuming because they match the whole face with an eye template pixel by 

pixel to improve the accuracy. 

 

The appearance based methods [11] [12] use photometric properties to detect 

eyes. They usually need large amount of training data. Data should include the 

eyes of different people under different face orientations and illumination 

conditions. They use these data to train a classifier like a neural network or a 

support vector machine. Consequently detection procedure becomes a 

classification procedure of eye and non-eye regions. 

 

In feature based methods [13] [14], some distinctive features around eyes are 

identified. These features use the characteristics of the eyes such as edge and 

intensity of iris, the color distribution of the sclera and the flesh. These methods 

are usually efficient but the disadvantage is their lack of performance. The 

accuracy for the detection of the images that have low contrast can not be ensured 

 

 
6



2.2 Haar Object Detection  

Haar Object Detection Method is chosen as the view point detection method in 

the system. This method describes a framework for robust and extremely rapid 

object detection. It has been first proposed by Viola [15] and improved by 

Lienhart [16]. They have used their framework to train a frontal face detector. 

Based on their results, the detector is the fastest frontal face detector and its 

performance is comparable to much slower and more complex detectors [18]. 

 

In this method, first a classifier is trained with hundreds of positive and negative 

samples. Positive samples are sample views of a particular object and negative 

samples are any other arbitrary images of those which do not contain that object. 

After a classifier is trained, it can be used to detect an object in a region (same size 

as the positive samples) on the input image. If the region contains the object, 

classifier outputs ‘1’ or ‘0’ otherwise. To search the object in the whole image, one 

can move the search window across the image and check for the object using the 

classifier. Classifier can be easily resized. Search procedure can be repeated with 

the classifier of different sizes to find the objects of unknown size.  

Classifier is actually a cascade of simple feature classifiers. These simple feature 

classifiers are weak classifiers. They are built by haar-like features through 

boosting technique called Adaboost. However, feature calculation is very fast. 

Cascade structure of the final classifier increase accuracy and decrease the 

processing time by discarding the background regions quickly. 

 

2.2.1 Features 

Haar Object Detection method uses very simple features. These features are 

inspired by the over-complete reminiscent of Haar basis functions used by 

Papageorgiou et al [17]. There are two most important reasons for using features 

instead of raw pixel values. The first reason is that features can encode 

information about the domain that is difficult to be recognized from a raw and 

finite set of input data. Second one is that features used by detection method can 
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be computed much faster than a pixel based method. By the help of two auxiliary 

images of SAT and RSAT (see Section 2.2.1.1), features can be computed with at 

most 8 table lookups at any position and scale. Haar Object Detection method 

uses feature prototypes to produce these features. There are 14 feature prototypes 

(see Figure 2.1) and these prototypes are grouped into 3 categories: Edge features, 

line features and center-surround features. 
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1. Edge Features 

(a) (b) (c) (d) 

2. Line Features 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

3. Center-surround features 

(a) (b) 

 

Figure 2.1: Feature prototypes. 
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The features are produced out of these prototypes and defined in a window of W 

x H pixels in the image. A specific feature is produced from a prototype according 

to its shape, position and scale within the window.  

 

All of the features are the combination of two rectangles and can be defined as the 

weighted sum of two rectangles. Features are calculated by subtracting the sum of 

the pixels within the white rectangle from the sum of the pixels within the black 

rectangle. 

 

The rectangles are specified in the window by the tuple r = (x, y, w, h,α) with 0 ≤ x, 

x+w ≤ W, 0 ≤ y, y+h ≤ H, w > 0 and h > 0. α ∈ { 0°, 45° } for the upright and 45° 

rotated rectangles (see Figure 2.2).  

 

 

W 

H 

Sub-Window 

 

α 

w h (x,y) 

w 

 
(x,y) 

w 

h 
h 

Upright rectangle 

 
45

 

Figure 2.2: Example of an upright and 4

 

 

° rotated rectangle  

 

5° rotated rectangle. 
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The sum of the pixels in a rectangle is represented by RecSum(r). Then the features 

can be shown as weighted sum of different rectangles. 

)()( 1100 rSumRecwrSumRecwfeatureı ⋅+⋅=    (2.1) 

The weights have opposite signs, and are used to compensate for the difference of 

the two rectangles in area and size. Hence, we can set 10 −=w  

and . For instance, a feature produced from line feature 

prototype (2.b) (see Figure 2.1) with total height of 4 and width of 12 at the top left 

corner (5, 6) can be written as: 

)(/)( 101 rArearAreaw =

)) 0° 4, 6, 6, 9,( ⋅2 + °⋅= SumRec0 4, 12, 6, 5, (SumRec 1-  feature1  (2.2) 

These rectangular features are primitive relative to other alternative features like 

steerable filters [19], [20]. However, the number of features in a window is quite 

large and calculation of these features is extremely fast relative to other 

alternatives. These advantages compensate for their limited flexibility. 

 

2.2.1.1 Number of Features 

We can generate a rich, over-complete set of features by using feature prototypes 

by translating and scaling in horizontal and vertical directions independently. 

The number of features derived from a prototype can be calculated as follows. Let 

W and H be the width and height of the sub-window respectively (see Figure 2.2) 

and  and ⎣ wWX /= ⎦ ⎣ ⎦hHY /=  be the maximum scaling factors in x and y 

direction. An upright feature of size w x h then generates  

)
2

11)(
2

11( +
−+

+
−+

YhHXwWXY   (2.3) 

features for an image of size W x H, while 450 rotated features generates 

hwzYzHXzWXY +=
+

−+
+

−+  with )
2

11)(
2

11(   (2.4) 

features. For a search window with resolution 24 x 24 pixels, the total set of 

features is very large, as being 117.941. This is far larger than the number of pixels 

within the window. 
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2.2.1.2 Fast Feature Computation 

Haar Object Detection method introduces two intermediate image representation 

“Summed Area Table (SAT)” and “Rotated Summed Area Table (RSAT)”. SAT and 

RSAT are calculated once from the original image utilizing a few number of 

operations per pixel. Then, all of the features can be calculated very fast within a 

fixed and short time period at anywhere and at any scale by the assistance of 

these images. 

 

For upright rectangles Summed Area Table SAT (x, y) is used. SAT (x, y) is 

defined as the sum of the pixels above and left of to the pixel coordinate (x, y). Let 

I be an image and I(x’,y’) is a pixel on the image, then SAT(x, y) is defined as: 

∑
≤≤

=
yyxx

yxIyxSAT
','

)','(),(     (2.5) 

 

 

SAT(x,y) 

 

Figure 2.3: Uprigth Summed Area Table (SAT) 

 

SAT (x, y) can be calculated with one pass from left to right and top to bottom by 

the equation below: 

)1,1(),(),1()1,(),( −−−+−+−= yxSATyxIyxSATyxSATyxSAT  

with 0)1,1()1,(),1( =−−=−=− SATxSATySAT   (2.6) 
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By using SAT pixel sum of any of the upright rectangles )0,,,,( °= hwyxr  can be 

computed in four array references such as: 

 
)1,1()1,1(

)1,1()1,1()(Re
−+−−−−+−

−+−++−−=
hyxSATywxSAT

hywxSATyxSATrcSum
  (2.7) 

 

1 2 

A 
3 4 

 

Figure 2.4: The sum of the pixels within area A can be computed with four array 

references : (4) + (1) – (2) – (3). 

 

For 45° rotated rectangles Rotated Summed Area Table RSAT (x, y) is used. RSAT 

(x, y) is defined as the sum of the pixels of a 45° rotated rectangle with the bottom 

most corner at (x, y) and extending upwards till the boundaries of the image. Let I 

be an image and I(x’,y’) is a pixel on the image, then RSAT(x, y) is defined as: 

 

∑
−−≤≤

=
'||','

)','(),(
xxyyyy

yxIyxRSAT     (2.8) 
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RSAT(x,y) 

 

Figure 2.5: Rotated Summed Area Table (RSAT) 

 

RSAT (x, y) can be calculated with one pass from left to right and top to bottom 

by the equation below: 

 

)1,(),()2,()1,1()1,1(),( −++−−−++−−= yxIyxIyxRSATyxRSATyxRSATyxRSAT
with  

0)2,()1,(),1( =−=−=− xRSATxRSATyRSAT  and 

0)2,1()1,1( =−−=−− RSATRSAT    (2.9) 

 

-RSAT(x,y-2) 

 

Figure 2.6: Calculation scheme for Rotated Summed Area Table 

+RSAT(x-1,y-1) +RSAT(x+1,y-1) 

+I(x,y-1)+I(x,y) 
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By using RSAT pixel sum of the any of the 45° rotated rectangles 

 can be computed in four array references )0,,,,( °= hwyxr

)1,()1,(
)1,()1,()(Re

−++−−+−
−−+−+++−=

wywxRSAThyhxRSAT
yxRSAThwywhxRSATrcSum

 (2.10) 

 

Figure 2.7: Calculation scheme for 45° rotated areas 

 

2.2.1.3 Feature Normalization 

All features used in training and detection must be variance normalized in order 

to minimize the effect of different lighting and contrast circumstances. Let µ be 

the mean and σ be the variance of the pixel values, then the process can be 

performed very fast by the equation below: 

RccyxIyxI ∈−= ),/()),((),(' σµ    (2.11) 

µ can be easily computed by the help of SAT(x,y) image. However, computation 

of σ requires the sum of squared pixels. σ can also be easily calculated by SAT and 

RSAT of image I2(x,y). If this computation procedure is utilized, then computation 

of σ requires only 4 array references. 

 

w h (x, y) + RSAT(x, y-1) 

w 

h 

- RSAT(x-h, y+h-1) - RSAT(x+w, y+w-1) + RSAT(x-h+w, y+w+h-1) 
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2.2.1.4 Feature Scaling 

For training purpose, all positive samples have the same dimensions yielding the 

final detector operates for a fixed scale. Thus, in order to perform a search for 

multi-scale objects, one should scale either the image or the features used in 

classifier. Scaling the features used by the classifier is much more efficient than 

scaling the whole image. Haar-like features can be easily rescaled by the help of 

intermediate image representations. But a problem arises when fractional 

rescaling is performed because new positions become fractional. Rounding all 

fractional positions to the nearest integer positions can solve this problem. Due to 

rounding the weights of the different rectangle sums must also be corrected to 

protect the original area ratio between them. 

 

2.2.2 Training 

The aim of training is to find a small set of features in the complete large set of 

features to form an effective classifier. Each image sub-window contains quite 

large number of features, even larger than the number of pixels (24 x 24 window 

contains 117.941 features). Although one can compute each feature very 

efficiently, computation of all these features is quite expensive and not necessary. 

A small number of important features can be combined to form an effective 

classifier leading a fast classification. Therefore, the problem is to eliminate the 

large majority of the features and find out the critical features. 

 

In Haar Object Detection, Gentle AdaBoost (see figure 2.8) is used to train the 

classifiers and to select the critical features [21]. There are different boosting 

algorithms (Discrete, Real and Gentle AdaBoost) and according to Rainer Lienhart 

[16] Gentle Adaboost outperforms the other algorithms. AdaBoost is an efficient 

procedure for selecting a small set of useful classification functions. It assigns 

large weights to each useful classification function and smaller weights to non-

useful functions. Modified Gentle AdaBoost algorithm is used in the training. The 

modification to the procedure is to restrict the learner to use a set of classification 
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functions each depending on a single feature. Therefore, each stage of the 

boosting process is a feature selection process. 

 

In the boosting language the simple learning algorithm is called the weak learner. 

The reason why the learner is called weak is that with this learner one does not 

expect to classify most of the training data correctly (A classifier can classify % 51 

of the data correctly). It is only required to be better than chance. However, 

weighted combination of many of them can form a strong classifier and can beat 

the ‘monolithic’ strong classifiers such as SVMs and Neural Networks [22], [23]. 

Each weak classifier hj(x) (x is a sub-window of an image) consists of a single 

feature (fj), a threshold (θj) and a parity (pj) indicating the direction of the 

inequality sign: 

 

 

(2.12) 
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rates. A classifier m

false positive rate
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Gentle AdaBoost 

Given N examples (x1,y1), ..., (xN, yN) with xi Є Rk , yi Є {-1,1} 

Start with weights wi =1/N, i=1, ..., N 

Repeat for m=1, ..., M 

Fit the regression function hm(x) by weighted least-squares of yi to xi with weights 

wi

Set , i=1, ..., N, and renormalize weights so that 

.  

))(exp( imiii xhyww ⋅−⋅←

∑ =
i

iw 1

Output the classifier . ])([
1

∑
=

M

m

m xhsign

Figure 2.8: Gentle AdaBoost training algorithm [16] 

2.2.2.1 Cascade of Classifiers 

A degenerated decision tree where each stage is a classifier trained to detect 

objects is called a “cascade”: 

  
 Stage2:   … 

   Classifier21: 

     Feature21

     ... 

   ... 

 

 

 

 

 

 

 

 

Using a cascade of classifiers increases the detection performance and decreases 

the computation time. A positive result received from one classifier triggers the 

next classifier which is adjusted to achieve very high detection rates. A sub-

window is immediately rejected if any of the stages gives negative result. An 

object must receive positive results from all stages in order to be marked as an 

object. This allows the background regions to be rejected rapidly and to give 

much effort on promising object-like regions. The first stages in the cascade are 

Cascade: 

    Stage1: 

      Classifier11: 

        Feature11

      Classifier12: 

        Feature12

      ... 
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simple classifiers and reject the most of the background sub-windows before 

using more complex classifiers.  

hitrate = hN

 

Figure 2.9: Schematic depiction of the detection cascade. 

 

False positive rate of the trained cascade can be calculated by the formula 

, where F is the false positive rate, K is the number of classifiers and f∏
=

=
K

i

ifF
1

i is 

the false positive rate of the ith classifier. Detection rate of the cascade can be 

calculated by the formula , where D is the detection rate, K is the 

number of classifiers and d

∏
=

=
K

i

diD
1

i is the detection rate of the ith classifier. Utilizing these 

formulas arranging the number of stages and the stage sizes, a cascade can be 

designed with the desired detection and performance goals.  

Stages in the cascade are constructed by the classifiers trained using adaboost. 

These classifiers are weak and simple classifiers. They can be trained with a % 40 

false positive and % 0.1 false negative values by arranging threshold in such a 

way that it will give the minimum false negative value. With a % 40 false negative 

value, a simple classifier can eliminate % 60 of the background sub-windows 

before using more complex classifiers. If 20 stages were trained with the same 

false positive and false negative values, cascade can achieve a false alarm rate of 

0.420 = 1.099e-08 and a hit rate of 0.99920 = 0.98. 

 

All sub-

windows 

h h h h h 

Rejected sub-windows 

1 2 3 ... N 

1-f 1-f 1-f 1-f 

  false alarms = fN
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2.2.2.2 Training Algorithm 

Training of each stage in the cascade requires some care. Adaboost only attempts 

to minimize errors and is not specifically designed to achieve high detection rates 

with large false positive rates. One way of providing this property is adjusting the 

threshold of the perceptron produced by the Adaboost. Higher thresholds yield 

classifiers with fewer false positives and a lower detection rate. Lower thresholds 

yield classifiers with more false positives and a higher detection rate. 

 

The overall training process involves two types of tradeoffs. In most cases 

classifiers with more features will achieve higher detection rates and lower false 

positive rates. At the same time classifiers with more features require more time 

to compute. In principle one could define an optimization framework in which 

• the number of classifier stages, 

• the number of features, ni_ , of each stage, 

• the threshold of each stage 

are traded off in order to minimize the expected number of features N  given a 

target for F (false positive rate)  and D (detection rate). Unfortunately finding this 

optimum is a tremendously difficult problem. 

 

In practice a very simple framework is used to produce an effective classifier 

which is highly efficient. The user selects the minimum acceptable rates for fi 

(false positive rate of the ith stage) and di (detection rate of the ith stage). Each 

layer of the cascade is trained by AdaBoost with the number of features used 

being increased until the target detection and false positive rates are met for this 

level. The rates are determined by testing the current detector on a validation set. 

If the overall target false positive rate is not yet met then another layer is added to 

the cascade. The negative set for training subsequent layers is obtained by 

collecting all false detections found by running the current detector on a set of 

images which do not contain any instances of the object. This algorithm is given 

more precisely in Figure 2.10. 
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User selects values for f , the maximum acceptable false positive rate per stage 

and d, the minimum acceptable detection rate per stage. 

 

User selects target overall false positive rate, Ftarget

 

P = set of positive examples 

 

N = set of negative examples 

 

F0 = 1.0; D0 = 1.0 

 

i = 0 

 

while Fi > Ftarget

 

i <- i + 1 

 

ni = 0; Fi = Fi-1

 

while Fi > f x Fi-1

 

ni <- ni + 1 

 

Use P and N to train a classifier with ni features using Adaboost 

 

Evaluate current cascaded classifier on validation set to determine Fi and Di  

 

Figure 2.10: Training algorithm for building a cascaded detector.  
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2.2.2.3 Training Set 

Training is done with a set of positive (object) and negative (non-object) images. 

Positive samples are sample views of a particular object and negative samples are 

any other arbitrary images those do not contain that object. All of the positives 

samples are scaled to same base resolution (w x h). Negative samples are of 

arbitrary size. The base resolution is also that of the detector. Detector cannot 

detect objects of smaller size than this base resolution. However, objects of higher 

resolution can be detected by scaling the detector.  

 

 

 

Figure 2.11: Sample positive images for training an eye detector. All samples are 

scaled to resolution 35 x 16 pixels. 
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Figure 2.12: Sample negative images for training an eye detector. Images are 

arbitrary images at arbitrary resolution. 
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CHAPTER 3 

VIEW POINT TRACKING 

Tracking is the most important part of the proposed system regarding 

performance. Tracking algorithm should be robust, accurate and fast in order to 

achieve a reliable system performance.  

 

In the proposed system Pyramidal Implementation of the Lucas-Kanade Feature 

Tracker is utilized as the tracking algorithm [24]. It is a very robust and fast 

algorithm enabling sufficient tracking accuracy. Details of the algorithm are 

described in section 3.2. 

 

3.1 Eye Region Tracking 

In the literature, there are alternative methods for facial feature tracking. Several 

general-purpose point trackers can be used for this purpose. Lucas and Kanade 

[25] have worked on the tracking problem and proposed a method that is based 

on a translation model between images in order to be used for registering two 

images for stereo matching. Utilizing the initial work of Lucas and Kanade, 

Tomosi and Kanade [26] developed a feature tracker upon the sum of squared 

intensity differences (SSD) matching measure using a translation model. 

Afterwards, Shi and Tomasi [27] proposed an affine transformation model. Over 

small inter-frame motion, the translation model has higher reliability and 

accuracy than that of the affine model. However, the affine model is preferable 

and more adequate over a longer time span. 
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A number of specific facial feature trackers have also been proposed by 

researchers. McKenna [28] proposed an approach based on a point distribution 

model (PDM) and Gabor wavelets in order to track rigid and non-rigid facial 

motion. Huang and Huang [29] also use a PDM approach to extract facial 

features. Their method measures the variation of the position of each point. 

Petajan [30] uses facial feature tracking to track eyes and the nostrils.  

 

3.2 Pyramidal Implementation of Lucas-Kanade Feature 

Tracker 

Lucas-Kanade Feature Tracker, which is based on optical flow algorithm, is a 

powerful and popular technique used in feature tracking. It is a fast algorithm 

and provides sufficient accuracy and robustness. Their approach is to define a 

match measure between fixed-size feature windows in the past and current image 

as the sum of the squared intensity differences. The motion is modeled as pure 

translation. The displacement vector, then, d = (dx, dy) is defined as the one that 

minimizes this sum.  Let u = (ux,uy) a point on the first image and wx and wy be 

two integers, then d the vector that minimizes the residual function defined as 

follows: 

∑ ∑
+

−=

+

−=

++−=
xx

xx

yy

yy
yx

wu

wux

wu

wuy
dydxJyxIde 2)),(),(()(   (3.1) 

where I and J are the past and current images and where the feature window size 

is (2wx+1) x (2wy+1).  

 

Although this is an efficient and widely preferred algorithm, it suffers from large 

motions. It can be a problem for the rapid head movements in our case. In order 

to overcome this problem Bouguet [24] proposed the pyramidal implementation 

of the Lucas-Kanade Feature Tracker method. In the pyramidal approach image 

pyramids are formed. They consist of filtered and sub sampled versions of the 
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original images. The displacement vectors are found iteratively upward from the 

coarsest level to the original level. At each level, displacement vector is calculated 

by maximizing a correlation measure over a small window.  

 

3.2.1 Image Pyramid Representation 

Image pyramids are formed by filtering and sub sampling the original image. 

Before sub sampling, original images are filtered by a low pass filter to avoid 

image anti-aliasing. Images in the pyramid are shown as IL where L = 1, 2 …., Lm. 

I0 is the original image and has the highest resolution. Lm is the height of the 

pyramid and m is the highest level.  Then, IL is computed from IL-1 as 

))12,12()12,12()12,12(             

)12,12((
16
1))12,2()12,2(              

)2,12()2,12((
8
1)2,2(

4
1),(

111

111

111

−+++−+++

+−−+++−

+++−+=

−−−

−−−

−−−

yxIyxIyxI

yxIyxIyxI

yxIyxIyxIyxI

LLL

LLL

LLLL

 (3.2) 

 

The pixels at the image borders are handled according to the following formulas: 

),0(),1( 11 yIyI LL −− =−     (3.3) 

)0,()1,( 11 xIxI LL −− =−     (3.4) 

),1(),( 1111 ywIywI LLLL −= −−−−     (3.5) 

)1,(),( 1111 −= −−−− LLLL hxIhxI     (3.6) 

)1,1(),( 111111 −−= −−−−−− LLLLLL hwIhwI    (3.7) 

The width and height of image IL are wL and hL respectively.  

 

The height of the pyramid should be chosen according to the largest expected 

optical flow in the image. Practical values for the height are 3 and 4.  
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3.2.2 Pyramidal Feature Tracking 

For a given point u in an image I, our goal is to find its corresponding point v = u 

+ d (d is the displacement vector) in the next image J.  u and v are defined as 

 and  for image pyramid levels, L = 0, …, L[ L
y 

L
x uuu L = ] ][ L

y 
L

x vvvL = m. The 

vectors uL are computed as follows: 

L
L uu

2
=      (3.8) 

The vectors vL are computed iteratively from the deepest level Lm to L0 (original 

image). At each level, the result of the previous is used as an initial guess. These 

initial guesses  are, then, included in the optical flow calculation 

at each level. Initial guess at the deepest level of the pyramid is 0 (no initial guess 

is available at the deepest level of the pyramid). Afterwards, displacement vectors 

 are calculated as follows: 

[ L
y 

L
x ggg L = ]

][ L
y 

L
x ddd L =

∑ ∑
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++++−=
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yx
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wu

wux

wu

wuy
dgydgxJyxIde

L

L

L

L

LL 2)),(),(()(  (3.9) 

Observing that the size of the search window at each level is fixed. Since the 

initial guess vector gL is used in order to pre-translate the image patch, the 

residual flow vector dL comes out to be small and easy to be computed through a 

standard Lucas Kanade step. After dL is calculated, the result is propagated to the 

next level L-1 by passing the new initial guess gL-1: 

)dg(g LLL +=− 21    (3.10) 

Then, the next optical flow residual vector dL-1 is calculated through the same 

way. Same procedure continues until the original image is reached (L=0). Solution 

vector d is then available after the final optical flow calculation: 

00 gdd +=  or    (3.11) ∑
=

=
mL

L

LL dd
0
2

As seen from the second equation, d is expressed as the sum of the residual 

optical vectors dL. Since residual flow vectors dL are small and easy to be 

computed through a standard Lucas Kanade step, pyramidal implementation can 

handle large overall pixel displacement vector.  
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3.2.3 Pseudo-Code of the Algorithm 

Let u be a point on image I, then the pseudo code of the entire algorithm that 

finds the corresponding location v on image J is as follows: 

 

- Build pyramid representations of I and J:   {IL} L=0,…, Lm and {JL}L=0,…,Lm             (3.12) 

- Initialization of pyramidal guess:   [ ] [ ]TTLm Lm
y

Lm
x gg 0 0g  ==     (3.13) 

 

For L = Lm down to 0 with step of -1: 

 - Location of point u on image IL:   [ ] L
T

y x
L uppu

2
==         

(3.14) 

- Derivative of IL with respect to x: 

2
),1(),1(),( yxIyxIyxI

LL

x
−−+

=  (3.15) 

 - Derivative of IL with respect to y:  

2
11 )y,x(I)y,x(I)y,x(I

LL

y
−−+

=  (3.16) 

 - Spatial gradient matrix: 

∑ ∑
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 (3.17) 

 - Initialization of iterative L-K:    [ ]T v 000 =        

(3.18) 

  

For k=1 to K with step of 1 (or until kη < accuracy threshold): 

  - Image difference:  

)vgyvgx(J)y,x(I)y,x(I kLkL
yy,xx

LL
k

11 −−
++++−=∂  (3.19) 

  - Image mismatch vector: 
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  - Optical flow (Lucas-Kanade):  

k
k bG 1−=η   (3.21) 

  - Guess for next iteration:  

kkk vv η+= −1  (3.22) 

 End of for loop on k 

 

 - Final optical flow at level L:  

KL vd =  (3.23) 

 - Guess for next level L-1:  

[ ] )dg(g gg LLTL
y

L
x

L +== −−− 2111  (3.24) 

End of for loop on L 

 

- Final optical flow vector:           (3.25) 00 gdd +=

- Location of point on J:       duv +=        (3.26) 

 

The corresponding point is at location v on image J. It is possible to make 

computations at sub-pixel accuracy. Algorithm uses bilinear interpolation in 

order to compute image brightness at sub-pixel locations. 

 

3.2.4 Tracking at the Boundaries 

It is necessary to process points that are close to the boundaries of the image since 

some part of their integration window lies outside of the image. For an 

integration window (2wx+1) x (2wy+1), there is a forbidden band of width wx (and 

wy) around the image. In the pyramidal implementation, this corresponds an 

effective forbidden band of width 2Lm wx (Lm is the height of the pyramid). This 

band can be very significant for large integration windows and for large values of 
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Lm. For example, for wx = wy = 5 pixels and Lm = 4, forbidden band occurs to be 80 

pixels around the image. 

 

Solution to this problem is to calculate the summations in the equations (see 

section 2.2.3) only for the valid portion of the image neighborhood, i.e. for valid 

entries of Ix(x, y), Iy(x, y) and δIk(x, y) (see section 2.2.3).  

 

3.2.5 Declaring a Feature “Lost” 

Algorithm declares a feature as lost for two cases. In the comparatively simple 

case, a feature is declared as lost if the feature point falls out of image boundaries, 

whereas in the second case, which is more complicated, feature is declared as lost 

if the image patch around the feature point differs too much between the images I 

and J. This usually happens due to occlusion in the image. However, observing 

the occlusion is a quite challenging problem, which can be simply overcome by 

thresholding the cost function )(dε . In this case, determining the threshold, 

though, comes out to be another problem.  

 

3.2.6 Feature Selection 

Until now it is described how to track feature points yet mentioned how to select 

these points. Every point on the image is not suitable for tracking and thus can 

not be a feature point. Feature points must be selected according to some 

mathematical criteria. Optical flow vector computation k
k bG 1−=η  (eq. 3.21)is 

the core step of the algorithm. In the formula the matrix G must be invertible 

meaning that the minimum eigenvalue of G must be sufficiently large (larger than 

a threshold). Pixels satisfying this condition are called “easy to track”. Overall 

process is as fallows: 

1. At every pixel on the image I, compute G matrix and its minimum 

eigenvalue λm. 

2. Find the maximum value of all λm and call it λmax. 
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3. Choose the pixels that have larger λm value than a certain percentage value 

of λmax. (Can be %10 or %5). 

4. Choose local max. pixels among the found in (3). (A pixel is local max if its 

λm value is maximum in its 3 x 3 neighborhood). 

5. Eliminate the pixels, distance of which to another pixel of a large λm value 

is smaller than a threshold (e.g. 10 or 5). 

After this process, remaining pixels are called “good to track” and can be fed to 

the tracking algorithm. 
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CHAPTER 4 

INTERMEDIATE VIEW RECONSTRUCTION  

 

This chapter presents a 3D warping based intermediate view reconstruction 

algorithm from multiple calibrated views and depth maps. Calibrated views 

mean that camera calibration parameters, the interior and exterior parameters, of 

the cameras capturing the images are known and depth maps are used in the 

construction of scene in 3D. 

 

This chapter is organized as three main sections. First section discusses the 

previous work about intermediate view reconstruction. Second section includes 

background information about camera model, which is necessary to understand 

the presented algorithm. Detailed description of the algorithm is given in section 

three. 

 

4.1 Intermediate View Reconstruction 

Creating virtual views using stereoscopic views is called intermediate view 

reconstruction. There are a number of techniques available in the literature for 

creating virtual views.  A simple case of the problem is the perfectly parallel 

cameras. In this case virtual view can be computed by weighted averaging 

between other views. There are methods that utilize this approach [31] [32] [33]. 
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Havaldar et al. proposed a view synthesis technique in [34] which uses projective 

invariants. They do not require knowledge of the camera positions. An invariant, 

defined with respect to a transformation T, is a property which remains 

unchanged under transformation T. For example, parallel lines always map to 

parallel line under orthographic projection. Also, the ratio of line segments with 

respect to each other named cross ratio remains unchanged. 

 

Another work by Irani et al. proposes to reconstruct views at any point in the 

scene without computing any correspondence estimation [35]. In their algorithm, 

they first align and compare all the projections of each line of sight emerging from 

the virtual camera center in the input views and then they create the virtual view. 

They describe the line-of-sight as the sight of the viewpoint along the line that 

stretches from the point to the direction desired. 

 

Another approach in intermediate view reconstruction used especially in 

computer vision area is to reconstruct a 3D volumetric model of the scene and 

then to use this model to map new virtual views. They first relate the images with 

correspondence estimation and then work towards view reconstruction. 

Volumetric methods first create a 3D model of the scene and then manipulate and 

transform the object and easily create new views. However, these methods’ 

execution speed is dependent on scene complexity. Moreover, they require 

sophisticated software and hardware for a realistic result. 

 

Image-based rendering techniques are also popular in intermediate view 

reconstruction. The term image-based is used here to describe that the methods 

use explicit images rather than volumetric 3D models. A survey by Kang [36] 

gives details about image-based rendering techniques. 

 

4.2 Camera Model 

Modeling the camera provides us the relation between 3D world coordinate 

system and 2D image coordinate system. Camera is usually modeled in matrix 
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form called as the Camera Matrix. This matrix maps 3D points in world 

coordinates system to 2D points on the image plane. 

 

In this thesis, finite projective camera model is used. This model is described in the 

next sections. 

 

4.2.1 Finite Projective Camera Model 

Finite projective camera model is also known as the pinhole camera model. Most of 

the cameras are described relatively well by this model. In the model, light enters 

the camera through an infinitesimally small hole and forms an inverted image on 

the camera surface facing the hole. To simplify things, image plane can be placed 

between the focal point of the camera and the object, so that the image is not 

inverted. The projection of 3D points to 2D points is called perspective projection. 

Focal point of the camera is the perspective projection center ( C – Camera center ). 

The ray passing through the camera center, which is perpendicular to the image 

plane, is called principle axis and the point of intersection of this ray with the 

image plane is known as principal point. 
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Figure 4.1 – Pinhole camera geometry 

 

Finite projective camera model is described by a 3 x 4 matrix called camera 

projection matrix (P matrix). P Matrix can be defined as the product of two matrixes 

K and M ( [ tRKKMP |= ]= ). K matrix is known as the camera calibration matrix 

and includes the intrinsic parameters of the camera. M matrix includes the 

extrinsic parameters, rotation and transformation.  

 

The camera center can be found as the right null vector of the projection matrix, 

PC = 0; 

 

Pseudo-inverse of the matrix P is called back-projection matrix (P+). P+ is 

calculated as  for which1)( −+ = TT PPPP IPP =+ . 
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4.2.2 Intrinsic Parameters 

Camera calibration matrix is composed of 5 intrinsic parameters: 

1) Focal length, ( f ) 

2) Principal point, ( u0, v0 ) 

3) Aspect ratio, ( α ) 

4) Skew, ( s ) 

Y 

X 

X 
y x 

Z x’ 
C 

f ( uo, vo ) 
θ

 

Figure 4.2 – Camera intrinsic parameters 

 

Focal length ( f ) of the camera is the most important intrinsic parameter.  

If 3D point X is taken as [ ]T 1  C  B  A , then the projected coordinate 2D point x’ 

can be calculated as x’ = [  from the similarity of triangles. ]T     )C/B(f)B/A(f

X 

x’ B 
f B/C 

P C 

C 
f 
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Figure 4.3 – Side view of the projection of a 3-D point 

 

Principal point is assumed as the origin of the image plane. However, image 

origin is usually taken as the upper left corner of the image. This case adds a shift 

to the formula of x as: 

 

[ 00 v)C/B(fu)B/A(f'x         ]++=    (4.1) 

 

Aspect ratio is the ratio of the width of a pixel to the height of the pixel. In the 

case that pixels are not square but rectangular, i.e., we have an aspect ratio (αx /αy) 

different from unity. As scaling by pixel dimensions and scaling by focal length is 

algebraically the same, therefore, we express the focal length in terms of pixel 

dimensions as xx af /=α  and yy af /=α . Then the formula becomes as: 

[ ]00 v)C/B(u)B/A('x y        x ++= αα   (4.2) 

Skew parameter is added to the formula in case when the angle (θ) between 

optical axes is not 90-degrees: 

 

[ ]00 v)C/B)(sin/(u)C/B(cot)B/A('x y        xx ++−= θαθαα      (4.3) 

 

This transformation can be explained in matrix form as: 

[ ] [ ]X|Iv
sin

ucot

X|IK'x y
xx

0

100

00 0

0

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

==
θ

α
θαα

  (4.4) 

Parameters in the K matrix are called the intrinsic parameters and estimation of 

these parameters is called the interior calibration of the camera. 

 

4.2.3 Extrinsic Parameters 

Extrinsic parameters are used when the 3D point coordinates are measured 

according to a coordinate system other than the camera coordinate system.  
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Figure 4.4 – Transformation between world and camera coordinate systems  

 

In that case, the translation (t) and rotation (R) between the two coordinate 

systems must be added to the formula: 

[ ][ ] [ ] KMXXt|RKXt|R|IK'x === 0    (4.5) 

and hence 

PX'x =  with [ ]tRKP |=     (4.6) 

Parameters in the M matrix are called the exterior parameters and estimation of 

these parameters is called the exterior calibration of the camera. There are 6 exterior 

parameters, 3 rotations and 3 translations. Together with the 5 internal 

parameters, P matrix has eleven degrees of freedom.  

 

4.3 Intermediate View Reconstruction Algorithm 

Intermediate view reconstruction algorithm used in the system is a 3D warping 

based algorithm that uses multiple calibrated views of a scene and a related depth 

map for each view. It is a simple and straightforward method. However, 

satisfactory results can be obtained. Calibrated views mean that camera 

calibration parameters, the interior and exterior parameters, of the cameras 

YcamX 

Zcam

Xcam
R, t 

World coordinate system 

C 

Camera coordinate system 
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capturing the images are known. Exterior parameters donate the camera position 

for that view.  

 

Each view has a related depth map image. Depth value of a pixel on the view can 

be calculated by using the intensity value at the same coordinate on the depth 

map image. By using the depth value and camera calibration parameters, 3D 

point for that pixel can be calculated.  

 

Intermediate view is constructed for a virtual camera position. Projection matrix 

for the virtual camera is constructed using the same internal parameters for the 

calibrated views and virtual camera position (external parameters). 

Virtual camera 
1. 2. 

 

Figure 4.5: Virtual camera position 

 

In the implementation of method, 3D Video Color and Depth Sequences (Ballet 

and Break dancing) from Sing Bing Kang (Microsoft research) [37] is used. These 

sequences contain 100 frames and depth maps for 8 calibrated cameras. 
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Figure 4.6 – Multiple views of a scene and depth maps 
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4.3.1 Outline of the Algorithm 

For a given virtual camera position, outline of the algorithm can be described in 5 

steps: 

 

1) Find the two views taken at nearest camera positions to the virtual camera 

position. 

2) Find the 3D points for the first nearest view by using the back projection 

matrix and depth map of the view. 

3) Project 3D points on the virtual image plane using the virtual camera 

matrix. 

4) Repeat step 2 and 3 for the second nearest view but fill only the gaps on 

the virtual view.  

5) Fill the remaining gaps by interpolation. 

 

4.3.1.1 Choosing the views 

In order to calculate the intermediate view, two views among the calibrated views 

are used in the algorithm. First view is chosen according to its camera position 

that is the nearest to the virtual camera position. Distance is measured as the 

Euclidean distance between camera centers. The nearest positions are used because 

these views are the most similar views to the virtual view. Therefore, there would 

be less occluded regions. Second view is selected as the first one among the 

remaining views but with a constraint that the distance of the selected camera 

position to the virtual camera position must be smaller than the distance to the 

first selected camera position. This constraint is applied in order to be sure that 

the occluded regions for the second view are different than the first one. 
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Figure 4.7: Camera b is selected as the first view. Camera c is not selected as the 

second view because its distance to the first selected camera is smaller than the 

distance to the virtual camera. Instead of c, camera a is selected as the second 

view 

 

4.3.1.2 Back-Projection and Forming the Virtual View 

Pixels of the first selected view are back projected to the 3D points using the back 

projection matrix and the depth map of the view. This is also known as 3D 

reconstruction of the scene (see Figure-4.8). Virtual view is constructed by 

projecting 3D points on the virtual image plane. If more than one point is 

projected to the same pixel coordinate, the point with the smaller depth value is 

chosen because the point which has smaller depth value is the nearest point to the 

camera and occludes the other points. This process forms most of the virtual 

view, but there remain gaps in the image because of occlusions (see Figure-4.9).  

In Figure-4.9, virtual camera position is taken as the position of the 4th camera 

position in the Ballet sequence [37] and the first selected view is the 3rd view. 

 

Virtual camera 
1. 

a 

2. 

c b 
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Figure 4.8 - Back projected 3D points using one view 

 

 

 

Figure 4.9 - Re-projection of 3rd camera view to 4th camera position in ballet 

sequence 
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Second selected view is used to fill the gaps in the virtual image. Points on the 

view are back-projected and then projected on the virtual image plane if it falls in 

a gap. In Figure-4.10, 5th camera view is selected as the second view on the result 

shown in Figure-4.9.  

 

 

 

Figure 4.10 - Occluded regions are filled by using the second view as 5th view of 

ballet sequence 

 

4.3.1.2.1 Back Projection Using Depth Map 

Each point on the image plane maps a ray passing through camera center and 

point itself in 3D world, i.e. the projected 3D point X is somewhere but on the ray. 

This ray can be calculated from the two points that are on the ray: camera center 

C and the point P+x’: 

 

C'xP)(X λλ += +     (4.2.1) 
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This equation itself does not enough to find the projected 3D point X. But if the 

depth value ( ) of the point is known, one can find λ: )/( DCZ =

3

)(
CZ
Zts

−
−

=λ      (4.2.3) 

Once λ is known, equation 4.2.2 can be solved for the 3D point X. 

 

4.3.1.3 Interpolation 

In order to fill out the holes in the image, some interpolation/extrapolation or 

patching methods are used in the literature.  These methods fill such holes by 

using the intensity information of the nearest rendered region to avoid disturbing 

effects [38] [39]. In the method that is used in the thesis, remaining gaps in the 

virtual image is filled by interpolation using the adjacent pixels. Finally, 3x3 

median filter is applied on the image. Figure-4.11 shows the resulted image after 

interpolation step and 4th view of the ballet sequence. The PSNR of the 

constructed view is 33.39 dB. 
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Figure 4.11 – Real 4th camera view (on the top) and constructed virtual 4th camera 

view (on the bottom). PSNR value is 33.39 dB. 
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CHAPTER 5 

PROPOSED SYSTEM  

 

In this chapter, detailed description of the proposed system and system 

components are given. The chapter includes system architecture, system 

algorithmic flow and implementation of the system blocks.  

 

5.1 System Architecture  

The proposed system consists of hardware and software parts. Hardware and 

software architectures can be seen in sections 5.1.1 and 5.1.2 respectively.  

 

5.1.1 Hardware Architecture 

System hardware consists of three main parts: 

1) Computing unit, 

2) 3D Display, 

3) Camera. 

 

A camera is mounted on top of the display in such a way that it can track the user. 

It is connected to the computing unit. A standard webcam can be used as camera. 

Whereas, a camera with a frame grabber could be utilized as a better solution. 

Images are captured from the camera by the software running on the computing 

unit. Software detects and tracks the view point of the observer by using the 
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captured images. Afterwards, correct stereoscopic image is rendered by the 

software on the 3D Display according to the view point of the observer. 3D 

display can be an autostereoscopic display or stereographic glasses  

 

In the system, the following hardware components are used: 

Camera: Creative NX Webcam. 

Computing unit: Computer with Pentium IV 3.0 GHz processor. 

3D Display: E-D 3D shutter glasses with NVIDIA Quadro2 MX graphics card on 

19’’ monitor. 

 

 

 

Webcam 

Stereoscopic glasses 

Figure 5.1:  System hardware setup 
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Figure 3.2: E-D 3D Shutter glasses 

 

5.1.2 Software Architecture 

System software consists of six main parts: 

1) Image Acquisition: Captures images from the camera. 

2) View Point Detection: Detects the view point of the observer from the 

captured images. 

3) View Point Tracking: Tracks the view point of the observer from the 

captured images. 

4) View Point Calculation: Extract the view point of the observer. 

5) Intermediate View Reconstruction: Construct the correct stereoscopic 

image pair. 

6) Rendering: Render the stereoscopic view on the 3D Display. 

 

Detailed implementations of each part are described in sections 5.1.2.2 through 

5.1.2.7. 
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5.1.2.1 Software Operation 

Software operation starts with acquiring an image from webcam. The next step 

depends on to the current mode of the software. Software has two modes of 

operation: detection or tracking. Starting mode is the detection mode. View point 

detection component is called in this mode. Software continues its operation in 

detection mode until a successful output is obtained. Afterwards, features are 

found in the detected region and software changes its mode to tracking. View 

point tracking component is called in this mode. Tracking continues while the 

number of features is more than 2 or the number of tracked images is below 100. 

Otherwise, the software resets itself and changes its modes to detection. After a 

successful detection or tracking step view point of the observer is calculated. 

Then, correct stereoscopic image pair is formed by the intermediate view 

reconstruction component and rendered on the display.   
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5.1.2.2 Image Acquisition 

This part of the software is dependent to the camera used in the system. A 

webcam connected to the computer via USB is used in the system 

implementation. Image Acquisition part is implemented by using Intel Open 

Source Computer Vision Library (OpenCV) Video I/O API . 

 

Image capture resolution is 320 x 240 pixels and this is the image resolution used 

by other algorithms in the system. In this resolution, maximum frame rate of the 

camera is 30 Hz and this is the upper bound for the system frame rate.  

 

5.1.2.3 View Point Detection 

View Point Detection is implemented by using the Haar Object Detection Method. 

Details of the algorithm are described in Chapter 2. Implementation of the 

algorithm is done by using OpenCV Library (see Appendix A). In order to detect 

a specific object, first a classifier is trained and then the classifier is applied on the 

image to detect the object. Two classifiers are trained by using this method. One 

of them is trained for autostereoscopic displays, while the other is trained for 

stereoscopic glasses. Classifier for the autostereoscopic displays detects the eyes 

of a person on an image. On the other hand, classifier for stereoscopic glasses 

detects the face of the user wearing glasses. 

 

Classifier used for eye detection is trained with 3305 positive samples and 1105 

negative samples by using Gentle Adaboost. Positive samples are obtained from 

Facial Recognition Technology (FERET) Database [40]. FERET Database actually 

contains only facial images. However, eye coordinates for some of the images are 

also given in the database. Positive samples are obtained from those images by 

cropping an area of 35 x 16 pixels size around the eye locations. All of the positive 

sample images have the same resolution of 35 x 16 pixels and they are grayscale 

images. Some of the eye sample images can be seen in Figure 5.4. 
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Figure 5.4: Some of the positive eye sample images 

 

Negative samples for the training are selected from any arbitrary images which 

do not contain eyes of a person. They do not have a fixed resolution unlike in the 

case of positive samples. Some of the negative sample images can be seen in 

Figure 5.5. 

 

 

Figure 5.5: Some of the negative samples 
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Training parameters (see section 2.2.2.2) f, the maximum acceptable false positive 

rate per stage, and d, the minimum acceptable detection rate per stage, are chosen 

as 0.5 and 0.995 respectively as suggested by [18]. 16 stages are trained with these 

parameters and finally, detection rate of 0.931619 and false alarm rate of 0.000018 

are obtained.  

 

Trained classifier is tested on MIT+CMU frontal face set [41] for comparison. In 

the test, 66 images with 122 labeled frontal faces are used which are suitable for 

the eye detection. Even though MIT+CMU database is created for evaluating 

algorithms for detecting frontal views of human faces, detection rate of 0.795 and 

false alarm rate of 0.07377 are obtained. 

 

 

 

Figure 5.6:  Some of the test results for eye classifier 
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The output images of Image Acqusition block are used for the eye detection. They 

are 8-bit grayscale images. Classifier trained for eye detection is applied on these 

images in order to detect the eyes. Scale parameter (see section 2.2.1.3) for the 

classifier is set to be 1.1 in order to detect objects at multiple scales. Eye detection 

results for different people can be seen in Figure 5.7. Average speed of the 

detection with on the images having resolution of 320 x 240 pixels is measured as 

62 milliseconds. 
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Figure 5.7: Eye detection results for different resolution faces. 
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Classifier used for stereoscopic glasses detection is trained with 67 positive 

samples and 1105 negative samples by using Gentle Adaboost. The number of 

positive samples is quite low compared to the eye case since there is no specific 

image database for the stereoscopic glasses. Therefore, positive samples are 

formed by taking the photographs of the people wearing stereoscopic glasses in 

the laboratory environment. Resolution for the positive samples is 30 x 40 pixels. 

Some of the positive sample images can be seen in Figure 5.8. Negative samples 

for the training are the same with the ones used for the eye case. 

 

 

 

Figure 5.8: Some positive sample images for stereoscopic glasses 

 

Training parameters (see section 2.2.2.2) f, the maximum acceptable false positive 

rate per stage, and d, the minimum acceptable detection rate per stage, are chosen 

as 0.5 and 0.995 respectively as suggested by [18]. 12 stages are trained with these 

parameters and finally, detection rate of 1.000000 and false alarm rate of 0.000006 

are obtained.  

 

Performance of the trained classifier is tested on the 43 test image. Detection rate 

of 0.95 and false positive rate of 0.004 are obtained as the test result. Trained 

classifier can detect different types of stereoscopic glasses which have black color. 

 

The output images of Image Acqusition block are used for the detection of 

stereoscopic glasses. Trained classifier is applied on these images in order to 
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detect stereoscopic glasses. Scale parameter (see section 2.2.1.3) for the classifier is 

set to be 1.1 in order to detect objects at multiple scales. Stereoscopic glasses 

detection results for different people and different eyeglasses can be seen in 

Figure 5.9. Average speed of detection on the images having resolution of 320 x 

240 pixels is measured as 24 milliseconds. This result is better compared to that of 

the eye classifier (62 milliseconds). The reason why different results are obtained 

is the complexity and base resolutions of the classifiers. Eye classifier contains 16 

stages and it is much more complex than the other classifier which contains 12 

stages. The base resolution of the stereoscopic glasses classifier is 30 x 40 pixels 

whereas the other has the resolution of 35 x 16 pixels which is nearly at half size. 

For this reason, eye classifier runs on two times more search windows for the 

same image. This process requires two times more time since computation of the 

features is scale independent.  
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Figure 5.9: Stereoscopic glasses detection results for different people and different 

eye glasses 
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5.1.2.4 View Point Tracking 

 

View Point Tracking is implemented by using the Pyramidal Implementation of 

the Lucas-Kanade Feature Tracker. Details of the algorithm can be seen in 

Chapter 3.  

 

Tracking is performed after a positive result of the detection part. First, 10 feature 

points are identified in the detected region (see section 3.2.6). Then, these points 

are fed to the tracking algorithm. 3 pyramid levels are used. Search window size 

is determined to be as 15 x 15 pixels.   

 

Speed of the implementation is extremely high. For the frame resolution of 320 x 

240 pixels, average tracking time is found to be 8.3 milliseconds on a Pentium IV 

3.0 GHz computer. Eventually 60 fps is achieved together with other jobs (e.g. 

frame capture from video file, render on a window, etc.). 

 

In the experiments, tracker is tested on a 330 frames length video. In the video, a 

person looks at the monitor and moves his head. In the first frame, eyes of the 

person are detected and then feature points are identified on the detected area. 

These points are being tracked until the end of the video. Tracking results can be 

seen in Figure 5.10. 
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Figure 5.10: Output frames of the tracked video. Output frames are taken at every 

30 frames. 
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5.1.2.5 View Point Calculation 

 

Calculation of the view point of the observer is started after the region of the 

observer on the captured images is detected (View Point Detection). Let w and h 

be the width and height of the detected region respectively. The point at (w/2, h/2) 

is, then, defined as the position of the observer on the image (see Figure 5.11). 

Afterwards, position of the observer is tracked together with the tracking of the 

feature points (View Point Tracking) (see Figure 5.12). The motion vector of the 

observer position is assigned to the median of the feature motion vectors at every 

frame. 

 

 

Position of the observers 

Figure 5.11: Position of the observers on the detected regions 

 

 

 

Position of the observers 

Figure 5.12: Position of the observers while tracking features 
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Position of the observer on the image is used to calculate two angles θ and φ. 

When a coordinate system is attached to the center of the camera as the positive z-

axis is towards the observer, θ becomes the angle between observer and y-z plane 

and φ turnes out to be the angle between the observer and x-z plane (see Figure 

5.13). The relation between image and world coordinates is obtained by internal 

camera calibration. The focal length of the camera, f, and image coordinates of the 

observer position, p(x, y) are used in the calculations that are shown in Figure 

5.14 and Figure 5.15. Focal length of the webcam used in the system is found to be 

258 pixels as the result of the camera calibration 

 

 

Y 
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Figure 5.13: θ and φ 
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Top View 

 
Figure 5.14: Calculation of θ 

 

 

 

Figure 5.15: Calculation of φ 

 f : Camera focal length 

 y:  Y coordinate of the observer on image 

),arctan( fy=ϕ  

 

Monitor 

f 

P’(0,Y,Z) 

φ 
Observer 

Side 

Y 

Z 
o 

y 

Camera sensor 
X 

 f : Camera focal length 

 x:  X coordinate of the observer on image 

),arctan( fx=θ  

Monitor 
f 

P’(X,0,Z) 

θ 
x Camera sensor 

o 
X Y 

Z 

. 

Observer 

 
64



 

View point of the observer can exactly be identified by the two angles θ ,φ and Z 

value being the distance between the observer and monitor. In the proposed 

system Z value is not being calculated. The distance between the observer and 

monitor is assumed to fall between 50-80 cm.  

 

5.1.2.6 Intermediate View Reconstruction 

Intermediate view reconstruction block is implemented by using a 3D warping 

based algorithm as described in chapter 4. However, it is not utilized as a part of 

the whole software, since the algorithm does not operate in real-time. 

Constructing a virtual frame of size 640 x 480 pixels requires 2.13 seconds and this 

is far away from real-time requirements. Consequently, correct virtual 

stereoscopic view can not be constructed in real-time. Instead, 8 pre-constructed 

videos are used in the system. Videos are constructed offline for different view 

points. View point angle φ is taken as 0. The other angle θ is ranging from 

minimum value to maximum value at equal distance. The sight angle of the 

webcam used in the system is 64 degree. Thus, θ is incremented by 8 degrees (see 

Figure 5.16). Finally, distance to the camera is taken as 60 cm. 
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Webcam 

640

 

Figure 5.16: Position of the virtual cameras 

 

As the system is operating, the videos are used to construct stereoscopic images. 

Two nearest virtual camera positions to the view point of the observer are 

selected thus yielding current frame is being constructed from the corresponding 

videos.  
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Figure 5.17: Sample frames from 8 virtual constructed videos. 

 

5.1.2.7 Rendering 

Rendering part of the system is dependent to the 3D display used in the system. 

E-D 3D shutter glasses with NVIDIA Quadro2 MX graphics card is used in the 

system as the 3D display block. E-D 3D shutter glasses require a special graphic 

card with stereo support. NVIDIA Quadro2 MX graphics cards provide a synch 

signal to the eye glasses while rendering images for the left and right eyes on the 

monitor. Left and right images are rendered by using the OpenGL Quad-buffered 

Stereo API that is enabled by the graphics card. 
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CHAPTER 6 

CONCLUSION 

6.1 Summary of the Thesis 

In this thesis, a single user view rendering system is proposed and implemented. 

The system can easily be installed on a standard PC together with an 

autostereoscopic display or stereoscopic glasses (shutter, polarized, pulfrich, and 

anaglyph) with appropriate video card. System is compose of three hardware 

units and six software components.  

 

Hardware components are display unit, computing unit and a single camera. In 

the implementation of the system, they are selected as: E-D 3D shutter glasses 

with NVIDIA Quadro2 MX graphics card, Computer with Pentium IV 3.0 GHz 

processor and Creative NX Webcam. Webcam is mounted on top of the display in 

such a way that it can track the user. Developed software is running on the 

computer. Software captures images from camera and detects and tracks the view 

point of the observer. Correct stereoscopic image is, then, rendered by the 

software on the display based on the observer. 

 

Developed software is compose of six components: Image acquisition, view point 

detection, view point tracking, view point calculation, intermediate view 

reconstruction and rendering. Image acquisition part captures image from 

webcam.  Observer position is then detected on the captured image by the view 

point detection component. Haar object detection method is utilized in the 
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implementation as the view point detection method. Two classifiers are trained 

by using this method. One of them is trained for autostereoscopic displays, while 

the other is trained for stereoscopic glasses. Classifier for the autostereoscopic 

displays detects the eyes of a person on an image. On the other hand, classifier for 

stereoscopic glasses detects the face of the user wearing glasses. After a successful 

detection step, images are fed to view point tracking component. View Point 

Tracking is implemented by using the Pyramidal Implementation of the Lucas-

Kanade Feature Tracker. Tracking continues until the observer is lost or a pre-

determined period is elapsed. System then resets itself and continues with 

detection step. View point calculation is done after a successful detection or 

tracking step. Exact 3D location of the observer is not calculated. Instead, looking 

direction of observer is calculated (two angles, θ and φ) and the distance between 

the observer and monitor is assumed to fall between 50-80 cm. Correct 

stereoscopic view is, then, rendered on the display by using the calculated view 

point. A 3D warping-based method is utilized in the system as the intermediate 

view reconstruction method. Rendering is done by using the OpenGL Quad-

buffered Stereo API that is enabled by the graphics card. 

 

6.2 Discussions and Future Work 

The performance of the classifier which detects the eyes of a person is better than 

the performance of the other which detects the face of the user wearing glasses. 

The reason for this result is the positive samples used for the training. 3305 

positive samples which are obtained from Facial Recognition Technology 

(FERET) Database are used for the eye classifier. However, the number of positive 

samples used for the second classifier is only 67, because there is no specific 

image database for the stereoscopic glasses. Samples are formed by taking the 

photographs of the 12 people wearing stereoscopic glasses in the laboratory 

environment. The number of people was quite low for the classifier to generalize 

the case. As a result, classifier fails more often for the different people. Therefore, 

to form a training set is the vital point of the training a classifier. A more 

comprehensive training set can be formed for the training of the second classifier. 
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Classifier which detects the face of the user wearing glasses is trained with 

sample images of people wearing E-D 3D shutter glasses. However, trained 

classifier can detect different types of stereoscopic glasses which have black color. 

 

The trained classifiers detect the observer only if the frontal face of the user 

appears in the acquired image. They fail for the side views of the face. However, 

the system has to track the observer only when the user is watching the display 

and it is assumed that the observer intends to watch the display in a comfortable 

way. That is, the observer will not look askew at the display. 

 

Lighting conditions affects the performance of the detection and tracking.  

Classifiers fail in the poor lighting conditions. This is due to the fact that features 

which the classifier looks for do not appear in the image. Camera used in the 

system is also related to this issue. The use of a good quality camera may provide 

sufficient images for the classifiers in the poor lighting condition. 

 

People wearing eye glasses may also cause problem in the eye detection step. Eye 

glasses may reflect light coming from the display. In this case, the silhouette of 

the display appears on the eye glasses and the eyes of the person can not be seen 

on the image, so the classifier fails to detect eyes. 

 

In the tracking step, tracked feature points may drift in the long run or may be 

lost if the user points fall out of image or turns his/her head to another location. 

In order to overcome these situations, system resets itself in pre-determined 

periods and continues with the detection step. This property provides the stability 

of the system.   

 

Intermediate view reconstruction part of the system is the only part that does not 

operate in real-time. The construction speed of a virtual view is far away from the 

real-time requirements. Consequently, correct virtual stereoscopic view can not 

be constructed in real-time. Instead, 8 virtual videos are constructed for the 

demonstration of the system. Two nearest virtual camera positions to the view 
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point of the observer are selected thus yielding current frame is being constructed 

from the corresponding videos. However, virtual views should be constructed for 

the view point of the observer in every frame in the ideal system. This can be 

achieved with an intermediate view reconstruction method that operates in real-

time.  As a future work, intermediate view reconstruction can be replaced with a 

new method that operates in real-time. 
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