

AUTOMATIC EYE TRACKING AND INTERMEDIATE VIEW
RECONSTRUCTION FOR 3D IMAGING SYSTEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

YUSUF BEDİZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2006

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan Özgen
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Prof. Dr. İsmet Erkmen
 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Dr. Gözde Bozdağı Akar
 Supervisor

Examining Committee Members

Prof. Dr. Uğur Halıcı (METU,EE)

Assoc. Prof. Dr. Gözde Bozdağı Akar (METU,EE)

Assoc. Prof. Dr. Aydın Alatan (METU,EE)

Assist. Prof. Dr. İlkay Ulusoy (METU,EE)

Dr. Adem Mülayim (MILSOFT INC.)

PLAGIARISM

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

 Name, Last name : Yusuf Bediz

 Signature :

iii

ABSTRACT

AUTOMATIC EYE TRACKING AND INTERMEDIATE VIEW
RECONSTRUCTION FOR 3D IMAGING SYSTEMS

Bediz, Yusuf
M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Gözde Bozdağı Akar

July 2006, 76 pages

In recent years, the utilization of 3D display systems became popular in many

application areas. One of the most important issues in the utilization of these

systems is to render the correct view to the observer based on his/her position. In

this thesis, we propose and implement a single user view rendering system for

autostereoscopic/stereoscopic displays. The system can easily be installed on a

standard PC together with an autostereoscopic display or stereoscopic glasses

(shutter, polarized, pulfrich, and anaglyph) with appropriate video card.

Proposed system composes of three main blocks: view point detection, view point

tracking and intermediate view reconstruction. Haar object detection method,

which is based on boosted cascade of simple feature classifiers, is utilized as the

view point detection method. After detection, feature points are found on the

detected region and accordingly they are fed to the feature tracker. View point of

the observer is calculated by using the tracked position of the observer on the

image. Correct stereoscopic view is, then, rendered on the display. A 3D warping-

based method is utilized in the system as the intermediate view reconstruction

method. System is implemented on a computer with Pentium IV 3.0 GHz

processor using E-D 3D shutter glasses and Creative NX Webcam.

iv

Keywords: View rendering, View point detection, view point tracking and

intermediate view reconstruction.

v

ÖZ

3 BOYUTLU GÖRÜNTÜLEME SİSTEMLERİ İÇİN OTOMATİK GÖZ
TAKİBİ VE ARA GÖRÜNTÜ OLUŞTURULMASI

Bediz, Yusuf
Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Gözde Bozdağı Akar

Temmuz 2006, 76 sayfa

Son yıllarda 3 boyutlu görüntüleme sistemlerin kullanımı bir çok uygulama

alanlında popülerlik kazanmıştır. Bu sistemlerin kullanımı sırasındaki en önemli

sorunlardan biri kullanıcının posizyonuna göre doğru görüntünün oluşturulup

ekranda gösterilebilmesidir. Bu tezde tek kullanıcılı bir görüntüleme sistemi

önerilmekte ve gerçeklenmektedir. Sistem kolaylıkla standard bir bilgisayar

üzerine oto-stereoskopik monitör veya stereoskopik gözlük (kepenk, polarize,

pulfrik, ve anaglif) kullanılarak kurulabilir. Önerilen sistem üç ana parçadan

oluşmaktadır: bakış açısı bulma, bakış açısı takip etme ve ara görüntü oluşturma.

Basit öznitelik sınıflandırıcıların desteklenmiş kademeli dizilerine dayanan Haar

nesne bulma yöntemi sistemde bakış noktası bulma yöntemi olarak kullanılmıştır.

Bu method kullanılarak iki sınıflandırıcı eğitilmiştir. Bakış noktası bulma

işleminden sonra bulunan bölge içerisindeki öznitelikler bulunup öznitelik

takipçisine verilmektedir. Kullanıcının bakış açısı görüntü üzerinde takip edilen

bakış noktası kullanılarak hesaplanmaktadır. Bakış açısı bulunduktan sonra

doğru stereoskopik görüntü oluşturulup ekrana çizilmektedir. 3B eğriltmeye

dayalı bir method, ara görüntü oluşturma metodu olarak kullanılmıştır. Sistem

vi

Pentium IV 3.0 GHz işlemciye sahip bir bilgisayar üzerinde E-D 3D kepenk

gözlükler ve Creative NX Webcam kullanılarak gerçeklenmiştir.

Anahtar Kelimeler: Görüntüleme sistemi, bakış noktası bulma, bakış noktası takip

etme, ara görüntü oluşturulması.

vii

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my supervisor Assoc. Prof. Dr.

Gözde Bozdağı Akar for her guidance, advice, criticism, encouragements and

insight throughout the research.

This thesis work is supported by “3DTV” project which is funded by European

commission 6th framework.

Thanks go to Multimedia Research Group (MMRG) members for their technical

support. Besides, I spent great time in all our activities.

I would like to express my thanks to my friends Ali Ünal and Adem Mülayim.

Their support and assistance was invaluable.

I would like to thank my dear friends Erol Aran and Çağdaş Altın. It is a great

feeling to know that somebody cares about you and will be by your side in every

situation.

Finally, I would like to thank my family for their understanding, support and

patience; especially to my father and mother.

viii

TABLE OF CONTENTS

PLAGIARISM ...iii

ABSTRACT ... iv

ÖZ...vi

ACKNOWLEDGEMENTS..viii

TABLE OF CONTENTS .. ix

LIST OF FIGURES.. xi

LIST OF ABBREVIATIONS ..xiii

1. INTRODUCTION .. 1

1.1 General .. 1

1.2 Scope of the thesis.. 2

1.3 Outline of the dissertation.. 3

2. VIEW POINT DETECTION.. 4

2.1 Eye Region Detection .. 4

2.1.1 Active IR Illumination Based Methods .. 5

2.1.2 Image Based Passive Methods... 6

2.2 Haar Object Detection... 7

2.2.1 Features... 7

2.2.2 Training .. 16

3. VIEW POINT TRACKING.. 24

3.1 Eye Region Tracking ... 24

3.2 Pyramidal Implementation of Lucas-Kanade Feature Tracker............... 25

3.2.1 Image Pyramid Representation... 26

ix

3.2.2 Pyramidal Feature Tracking .. 27

3.2.3 Pseudo-Code of the Algorithm ... 28

3.2.4 Tracking at the Boundaries .. 29

3.2.5 Declaring a Feature “Lost”... 30

3.2.6 Feature Selection.. 30

4. INTERMEDIATE VIEW RECONSTRUCTION ... 32

4.1 Intermediate View Reconstruction.. 32

4.2 Camera Model.. 33

4.2.1 Finite Projective Camera Model .. 34

4.2.2 Intrinsic Parameters .. 36

4.2.3 Extrinsic Parameters ... 37

4.3 Intermediate View Reconstruction Algorithm .. 38

4.3.1 Outline of the Algorithm.. 41

5. PROPOSED SYSTEM... 47

5.1 System Architecture .. 47

5.1.1 Hardware Architecture .. 47

5.1.2 Software Architecture... 49

6. CONCLUSION... 68

6.1 Summary of the Thesis ... 68

6.2 Discussions and Future Work.. 69

REFERENCES.. 72

x

LIST OF FIGURES

Figure 2.1: Feature prototypes... 9

Figure 2.2: Example of an upright and 45° rotated rectangle. 10

Figure 2.3: Uprigth Summed Area Table (SAT) ... 12

Figure 2.4: The sum of the pixels within area A can be computed with four array

references : (4) + (1) – (2) – (3).. 13

Figure 2.5: Rotated Summed Area Table (RSAT) ... 14

Figure 2.6: Calculation scheme for Rotated Summed Area Table............................ 14

Figure 2.7: Calculation scheme for 45° rotated areas ... 15

Figure 2.8: Gentle AdaBoost training algorithm [16]... 18

Figure 2.9: Schematic depiction of the detection cascade.. 19

Figure 2.10: Training algorithm for building a cascaded detector. 21

Figure 2.11: Sample positive images for training an eye detector. All samples are

scaled to resolution 35 x 16 pixels... 22

Figure 2.12: Sample negative images for training an eye detector. Images are

arbitrary images at arbitrary resolution... 23

Figure 4.1 – Pinhole camera geometry... 35

Figure 4.2 – Camera intrinsic parameters.. 36

Figure 4.3 – Side view of the projection of a 3-D point.. 37

Figure 4.4 – Transformation between world and camera coordinate systems....... 38

Figure 4.5: Virtual camera position .. 39

Figure 4.6 – Multiple views of a scene and depth maps.. 40

Figure 4.7: Camera b is selected as the first view. Camera c is not selected as the

second view because its distance to the first selected camera is smaller than the

distance to the virtual camera. Instead of c, camera a is selected as the second

view... 42

xi

Figure 4.8 - Back projected 3D points using one view... 43

Figure 4.9 - Re-projection of 3rd camera view to 4th camera position in ballet

sequence ... 43

Figure 4.10 - Occluded regions are filled by using the second view as 5th view of

ballet sequence... 44

Figure 4.11 – Real 4th camera view (on the top) and constructed virtual 4th camera

view (on the bottom). PSNR value is 33.39 dB.. 46

Figure 5.1: System hardware setup ... 48

Figure 3.2: E-D 3D Shutter glasses.. 49

Figure 5.3: Flow chart of the software operation.. 51

Figure 5.4: Some of the positive eye sample images .. 53

Figure 5.5: Some of the negative samples.. 53

Figure 5.6: Some of the test results for eye classifier... 54

Figure 5.7: Eye detection results for different resolution faces................................. 56

Figure 5.8: Some positive sample images for stereoscopic glasses 57

Figure 5.9: Stereoscopic glasses detection results for different people and different

eye glasses .. 59

Figure 5.10: Output frames of the tracked video. Output frames are taken at every

30 frames. ... 61

Figure 5.11: Position of the observers on the detected regions................................. 62

Figure 5.12: Position of the observers while tracking features 62

Figure 5.13: θ and φ... 63

Figure 5.15: Calculation of φ.. 64

Figure 5.16: Position of the virtual cameras .. 66

Figure 5.17: Sample frames from 8 virtual constructed videos. 67

xii

LIST OF ABBREVIATIONS

2D 2 Dimensional

3D 3 Dimensional

API Application Programming Interface

FERET Facial Recognition Technology

IR Infrared

OpenCV Open Computer Vision

OpenGL Open Graphics Library

PC Personel Computer

RSAT Rotated Summed Area Table

SAT Summed Area Table

SVM Support Vector Machine

USB Universal Serial Bus

xiii

CHAPTER 1

INTRODUCTION

1.1 General

During the last years, the utilization of 3D Display Systems considerably

increased in applications of education, entertainment and presentation. The one

which has the most widespread usage and is the most economical system among

3D Display Systems is the stereoscopic eyeglasses. However the utilization of

brand new and popular autostereoscopic display systems is also growing with its

price getting cheaper. Autostereoscopic displays make the 3D viewing experience

more pleasant by eliminating the necessity of glasses to be used. They can be

categorized into two main groups: Two-view and multi-view autostereoscopic

displays. Two-view autostereoscopic displays render one stereoscopic image at

maximum resolution of the display. However observers do not perceive true 3D

sense as they move in front of the display for the reason that they see the same

image from all positions. This problem is also valid for stereoscopic eye glasses

Multi-view autostereoscopic displays present a large number of views so that as

the observer moves, a different pair of the views is seen from each new position.

On the other hand, the resolution of the display split between the multiple views

and image quality falls on these displays. A solution to this problem is to utilize a

two-view display or a stereoscopic eyeglass with head tracking. In this way, the

correct view can be rendered to the observer at full display resolution based on

his/her position while observer moves freely in front of the display. Head

tracking can be done in an active way that the observer wears some special

1

sensors, such as infrared sensors or reflectors, ultrasonic wave receivers and

electromagnetic wave sensor. However this kind of methods is uncomfortable

and inconvenient. Therefore, video based methods are preferable for tracking

observers in a passive manner.

Recently, researches have developed video-based trackers for autostereoscopic

displays [1] [2]. In [1] an eye tracking system using two webcam has been

proposed. The eyes are detected by fast pattern recognition. They additionally use

color information in the images. However, this makes their system very sensitive

to lighting conditions. Another eye tracking system has been proposed in [2]

where the face of the observer is detected by using multiple eigenspaces of

various lighting conditions and then the eyes are located in the obtained face by a

convolution based method. Tracking is done with fast block matching in this

system.

Besides eye trackers, complete autostereoscopic displays systems with observer

tracking has also been proposed. Fraunhofer Heinrich-Hertz-Institut (HHI)

developed a system with a special head-tracking lenticular-screen [3]. This screen

is mechanically adjusted according to the position of the observer while the

observer is tracked. Current products also started to include eye tracking systems

like SeeReal C-i 3D Display [4]. However this further increases the price.

1.2 Scope of the thesis

This thesis deals with the problem of developing a real-time view rendering

system that detects and tracks the position of the observer and renders the correct

view to the observer based on his/her position. System is aimed to work with

both autostereoscopic displays and stereoscopic glasses and it is restricted to a

single user.

2

Main building blocks of the system are defined as view point detection, view

point tracking and intermediate view reconstruction. Implementation of these

blocks are done with Haar object detection method, pyramidal implementation of

Lucas Kanade feature tracker and a 3D warping based method respectively.

System is implemented on a computer with Pentium IV 3.0 GHz processor using

E-D 3D shutter glasses and Creative NX Webcam.

1.3 Outline of the dissertation

In Chapter 2, Haar object detection method is described. It is the method that is

utilized as the implementation of view point detection component in the

proposed system.

Pyramidal implementation of the Lucas-Kanade Feature Tracker which is utilized

as the view point tracker is described in Chapter 3.

The intermediate view reconstruction method used in the system implementation

can be found in Chapter 4. This chapter also includes some background

information about camera geometry which is nessesary to understand the

explained method.

Chapter 5 explains the proposed system and gives detailed information about the

implemantation of each block in the system. Results of the blocks and comments

on the results are also given in this chapter.

Finally, Chapter 6 gives the summary of the thesis and concluding remarks. Some

future work is also suggested in this chapter.

3

CHAPTER 2

VIEW POINT DETECTION

For 3D display systems, tracking of the observer’s view point is necessary to

render the correct stereoscopic view according to the observer position. View

point is the eye region of the observers for autostereoscopic displays or the

eyeglasses of the observer for the stereoscopic glasses (shutter, polarized, pulfrich

and anaglyph).

Detection of the view point is the first step in tracking of the view point and very

important for the system performance. In the literature, a number of techniques

are available for the eye region detection. These techniques are thoroughly

described in section 2.1. However, there is no specific algorithm for the detection

of stereoscopic glasses. Generic object detection methods can, thus, be used for

the detection of stereoscopic glasses.

Haar object detection method is used in the proposed system for the view point

detection. It is a generic object detection framework and can be used both for

detection of eyes and stereoscopic glasses. Detailed description of the Haar object

detection method is given in section 2.2

2.1 Eye Region Detection

Eye region detection techniques can be categorized into two main groups: Active

Infrared (IR) illumination based methods and image based passive methods.

4

Methods mentioned in the first group exploit the spectral properties of pupil

under near IR illumination. It is usually called the bright pupil effect of eyes (Eyes

look bright when illuminated by an IR light source). In the second group,

detection is performed on a priory detected frontal face image. These methods are

passive methods and do not utilize an external light source or a special

equipment.

2.1.1 Active IR Illumination Based Methods

Active IR based methods are widely used in eye detection and tracking

applications. There has been a lot of work using this technique and there are some

commercial eye tracking systems such as produced by ISCAN Incorporated, LC

Technologies and Applied Science Laboratories (ASL) [5], [6], [7], [8]. These

methods use the special bright pupil effect, which can be obtained in daylight by:

An IR light source, illuminating the scene, is located near to the camera and a

visible light filter is attached to the camera lens. Under IR illumination a very

high contrast between eyes (pupils) and the rest of the face can be obtained. Using

this contrast, eyes can easily be detected. Although Active IR based methods

enable the easy detection of eyes, these methods have some drawbacks. Rapid,

large and fast head movements of the observer may cause troubles. The use of

thick eye glasses may turn out to be also a problem in that they disturb the

infrared light and cause weak pupil appearance. The performance of these

methods depends on lighting conditions and the pupil size. Lighting conditions

should be stable and the observer should be close to the camera. In order to

overcome these drawbacks people have combined the IR illumination with other

methods. Zhu proposed an IR illumination based method, which works under

variable realistic lighting conditions and is based on combining the bright-pupil

effect resulted from IR light and the conventional appearance-based object

recognition technique [6]. De Liefde overcame the problem occurred by rapid

head movement by the use of probabilistic principal component analysis based

classifier in the results of IR illumination [7]. The method proposed by Ramadan

5

also eliminated the effect of the dynamics of head movements. Proposed method

uses IR illumination with active deformable models [5].

2.1.2 Image Based Passive Methods

Image based methods become more popular with the development of the video

and image analysis technology. In these methods a frontal face is first detected

and then eyes are located inside the detected region. Eye detection can be

performed by using different methods. These methods can be classified into three

categories: template based methods [9], [10], appearance based methods [11], [12]

and feature based methods [13], [14].

In the template based methods [9] [10], first a generic eye model, based on the eye

shape, is designed. Then template matching is utilized to search for the eyes on

the face. Although these methods can detect eyes accurately, they are normally

time-consuming because they match the whole face with an eye template pixel by

pixel to improve the accuracy.

The appearance based methods [11] [12] use photometric properties to detect

eyes. They usually need large amount of training data. Data should include the

eyes of different people under different face orientations and illumination

conditions. They use these data to train a classifier like a neural network or a

support vector machine. Consequently detection procedure becomes a

classification procedure of eye and non-eye regions.

In feature based methods [13] [14], some distinctive features around eyes are

identified. These features use the characteristics of the eyes such as edge and

intensity of iris, the color distribution of the sclera and the flesh. These methods

are usually efficient but the disadvantage is their lack of performance. The

accuracy for the detection of the images that have low contrast can not be ensured

6

2.2 Haar Object Detection

Haar Object Detection Method is chosen as the view point detection method in

the system. This method describes a framework for robust and extremely rapid

object detection. It has been first proposed by Viola [15] and improved by

Lienhart [16]. They have used their framework to train a frontal face detector.

Based on their results, the detector is the fastest frontal face detector and its

performance is comparable to much slower and more complex detectors [18].

In this method, first a classifier is trained with hundreds of positive and negative

samples. Positive samples are sample views of a particular object and negative

samples are any other arbitrary images of those which do not contain that object.

After a classifier is trained, it can be used to detect an object in a region (same size

as the positive samples) on the input image. If the region contains the object,

classifier outputs ‘1’ or ‘0’ otherwise. To search the object in the whole image, one

can move the search window across the image and check for the object using the

classifier. Classifier can be easily resized. Search procedure can be repeated with

the classifier of different sizes to find the objects of unknown size.

Classifier is actually a cascade of simple feature classifiers. These simple feature

classifiers are weak classifiers. They are built by haar-like features through

boosting technique called Adaboost. However, feature calculation is very fast.

Cascade structure of the final classifier increase accuracy and decrease the

processing time by discarding the background regions quickly.

2.2.1 Features

Haar Object Detection method uses very simple features. These features are

inspired by the over-complete reminiscent of Haar basis functions used by

Papageorgiou et al [17]. There are two most important reasons for using features

instead of raw pixel values. The first reason is that features can encode

information about the domain that is difficult to be recognized from a raw and

finite set of input data. Second one is that features used by detection method can

7

be computed much faster than a pixel based method. By the help of two auxiliary

images of SAT and RSAT (see Section 2.2.1.1), features can be computed with at

most 8 table lookups at any position and scale. Haar Object Detection method

uses feature prototypes to produce these features. There are 14 feature prototypes

(see Figure 2.1) and these prototypes are grouped into 3 categories: Edge features,

line features and center-surround features.

8

1. Edge Features

(a) (b) (c) (d)

2. Line Features

(a) (b) (c) (d)

(e) (f) (g) (h)

3. Center-surround features

(a) (b)

Figure 2.1: Feature prototypes.

9

The features are produced out of these prototypes and defined in a window of W

x H pixels in the image. A specific feature is produced from a prototype according

to its shape, position and scale within the window.

All of the features are the combination of two rectangles and can be defined as the

weighted sum of two rectangles. Features are calculated by subtracting the sum of

the pixels within the white rectangle from the sum of the pixels within the black

rectangle.

The rectangles are specified in the window by the tuple r = (x, y, w, h,α) with 0 ≤ x,

x+w ≤ W, 0 ≤ y, y+h ≤ H, w > 0 and h > 0. α ∈ { 0°, 45° } for the upright and 45°

rotated rectangles (see Figure 2.2).

W

H

Sub-Window

α

w h (x,y)

w

(x,y)

w

h
h

Upright rectangle

45

Figure 2.2: Example of an upright and 4

° rotated rectangle

5° rotated rectangle.

10

The sum of the pixels in a rectangle is represented by RecSum(r). Then the features

can be shown as weighted sum of different rectangles.

)()(1100 rSumRecwrSumRecwfeatureı ⋅+⋅= (2.1)

The weights have opposite signs, and are used to compensate for the difference of

the two rectangles in area and size. Hence, we can set 10 −=w

and . For instance, a feature produced from line feature

prototype (2.b) (see Figure 2.1) with total height of 4 and width of 12 at the top left

corner (5, 6) can be written as:

)(/)(101 rArearAreaw =

)) 0° 4, 6, 6, 9,(⋅2 + °⋅= SumRec0 4, 12, 6, 5, (SumRec 1- feature1 (2.2)

These rectangular features are primitive relative to other alternative features like

steerable filters [19], [20]. However, the number of features in a window is quite

large and calculation of these features is extremely fast relative to other

alternatives. These advantages compensate for their limited flexibility.

2.2.1.1 Number of Features

We can generate a rich, over-complete set of features by using feature prototypes

by translating and scaling in horizontal and vertical directions independently.

The number of features derived from a prototype can be calculated as follows. Let

W and H be the width and height of the sub-window respectively (see Figure 2.2)

and and ⎣ wWX /= ⎦ ⎣ ⎦hHY /= be the maximum scaling factors in x and y

direction. An upright feature of size w x h then generates

)
2

11)(
2

11(+
−+

+
−+

YhHXwWXY (2.3)

features for an image of size W x H, while 450 rotated features generates

hwzYzHXzWXY +=
+

−+
+

−+ with)
2

11)(
2

11((2.4)

features. For a search window with resolution 24 x 24 pixels, the total set of

features is very large, as being 117.941. This is far larger than the number of pixels

within the window.

11

2.2.1.2 Fast Feature Computation

Haar Object Detection method introduces two intermediate image representation

“Summed Area Table (SAT)” and “Rotated Summed Area Table (RSAT)”. SAT and

RSAT are calculated once from the original image utilizing a few number of

operations per pixel. Then, all of the features can be calculated very fast within a

fixed and short time period at anywhere and at any scale by the assistance of

these images.

For upright rectangles Summed Area Table SAT (x, y) is used. SAT (x, y) is

defined as the sum of the pixels above and left of to the pixel coordinate (x, y). Let

I be an image and I(x’,y’) is a pixel on the image, then SAT(x, y) is defined as:

∑
≤≤

=
yyxx

yxIyxSAT
','

)','(),((2.5)

SAT(x,y)

Figure 2.3: Uprigth Summed Area Table (SAT)

SAT (x, y) can be calculated with one pass from left to right and top to bottom by

the equation below:

)1,1(),(),1()1,(),(−−−+−+−= yxSATyxIyxSATyxSATyxSAT

with 0)1,1()1,(),1(=−−=−=− SATxSATySAT (2.6)

12

By using SAT pixel sum of any of the upright rectangles)0,,,,(°= hwyxr can be

computed in four array references such as:

)1,1()1,1(

)1,1()1,1()(Re
−+−−−−+−

−+−++−−=
hyxSATywxSAT

hywxSATyxSATrcSum
 (2.7)

1 2

A
3 4

Figure 2.4: The sum of the pixels within area A can be computed with four array

references : (4) + (1) – (2) – (3).

For 45° rotated rectangles Rotated Summed Area Table RSAT (x, y) is used. RSAT

(x, y) is defined as the sum of the pixels of a 45° rotated rectangle with the bottom

most corner at (x, y) and extending upwards till the boundaries of the image. Let I

be an image and I(x’,y’) is a pixel on the image, then RSAT(x, y) is defined as:

∑
−−≤≤

=
'||','

)','(),(
xxyyyy

yxIyxRSAT (2.8)

13

RSAT(x,y)

Figure 2.5: Rotated Summed Area Table (RSAT)

RSAT (x, y) can be calculated with one pass from left to right and top to bottom

by the equation below:

)1,(),()2,()1,1()1,1(),(−++−−−++−−= yxIyxIyxRSATyxRSATyxRSATyxRSAT
with

0)2,()1,(),1(=−=−=− xRSATxRSATyRSAT and

0)2,1()1,1(=−−=−− RSATRSAT (2.9)

-RSAT(x,y-2)

Figure 2.6: Calculation scheme for Rotated Summed Area Table

+RSAT(x-1,y-1) +RSAT(x+1,y-1)

+I(x,y-1)+I(x,y)

14

By using RSAT pixel sum of the any of the 45° rotated rectangles

 can be computed in four array references)0,,,,(°= hwyxr

)1,()1,(
)1,()1,()(Re

−++−−+−
−−+−+++−=

wywxRSAThyhxRSAT
yxRSAThwywhxRSATrcSum

 (2.10)

Figure 2.7: Calculation scheme for 45° rotated areas

2.2.1.3 Feature Normalization

All features used in training and detection must be variance normalized in order

to minimize the effect of different lighting and contrast circumstances. Let µ be

the mean and σ be the variance of the pixel values, then the process can be

performed very fast by the equation below:

RccyxIyxI ∈−=),/()),((),(' σµ (2.11)

µ can be easily computed by the help of SAT(x,y) image. However, computation

of σ requires the sum of squared pixels. σ can also be easily calculated by SAT and

RSAT of image I2(x,y). If this computation procedure is utilized, then computation

of σ requires only 4 array references.

w h (x, y) + RSAT(x, y-1)

w

h

- RSAT(x-h, y+h-1) - RSAT(x+w, y+w-1) + RSAT(x-h+w, y+w+h-1)

15

2.2.1.4 Feature Scaling

For training purpose, all positive samples have the same dimensions yielding the

final detector operates for a fixed scale. Thus, in order to perform a search for

multi-scale objects, one should scale either the image or the features used in

classifier. Scaling the features used by the classifier is much more efficient than

scaling the whole image. Haar-like features can be easily rescaled by the help of

intermediate image representations. But a problem arises when fractional

rescaling is performed because new positions become fractional. Rounding all

fractional positions to the nearest integer positions can solve this problem. Due to

rounding the weights of the different rectangle sums must also be corrected to

protect the original area ratio between them.

2.2.2 Training

The aim of training is to find a small set of features in the complete large set of

features to form an effective classifier. Each image sub-window contains quite

large number of features, even larger than the number of pixels (24 x 24 window

contains 117.941 features). Although one can compute each feature very

efficiently, computation of all these features is quite expensive and not necessary.

A small number of important features can be combined to form an effective

classifier leading a fast classification. Therefore, the problem is to eliminate the

large majority of the features and find out the critical features.

In Haar Object Detection, Gentle AdaBoost (see figure 2.8) is used to train the

classifiers and to select the critical features [21]. There are different boosting

algorithms (Discrete, Real and Gentle AdaBoost) and according to Rainer Lienhart

[16] Gentle Adaboost outperforms the other algorithms. AdaBoost is an efficient

procedure for selecting a small set of useful classification functions. It assigns

large weights to each useful classification function and smaller weights to non-

useful functions. Modified Gentle AdaBoost algorithm is used in the training. The

modification to the procedure is to restrict the learner to use a set of classification

16

functions each depending on a single feature. Therefore, each stage of the

boosting process is a feature selection process.

In the boosting language the simple learning algorithm is called the weak learner.

The reason why the learner is called weak is that with this learner one does not

expect to classify most of the training data correctly (A classifier can classify % 51

of the data correctly). It is only required to be better than chance. However,

weighted combination of many of them can form a strong classifier and can beat

the ‘monolithic’ strong classifiers such as SVMs and Neural Networks [22], [23].

Each weak classifier hj(x) (x is a sub-window of an image) consists of a single

feature (fj), a threshold (θj) and a parity (pj) indicating the direction of the

inequality sign:

(2.12)

Important key mea

rates. A classifier m

false positive rate

between false pos

changing the thre

higher detection r

lower detection rat

hj (x) = 1 if pj fj (x) < pj θj

 0 otherwise
{
sures of t

ust achie

 below %

itives and

shold. Lo

ates. Hig

es.
he classifiers are “false negative” and “false positive”

ve very low false negative rate (fewer than % 1) and a

50 in order to be successful. There is a trade off

 detection rates. This trade off can be adjusted by

wer thresholds yield more false positive rates but

her thresholds yield fewer false positive rates but

17

Gentle AdaBoost

Given N examples (x1,y1), ..., (xN, yN) with xi Є Rk , yi Є {-1,1}

Start with weights wi =1/N, i=1, ..., N

Repeat for m=1, ..., M

Fit the regression function hm(x) by weighted least-squares of yi to xi with weights

wi

Set , i=1, ..., N, and renormalize weights so that

.

))(exp(imiii xhyww ⋅−⋅←

∑ =
i

iw 1

Output the classifier .])([
1

∑
=

M

m

m xhsign

Figure 2.8: Gentle AdaBoost training algorithm [16]

2.2.2.1 Cascade of Classifiers

A degenerated decision tree where each stage is a classifier trained to detect

objects is called a “cascade”:

 Stage2: …

 Classifier21:

 Feature21

 ...

 ...

Using a cascade of classifiers increases the detection performance and decreases

the computation time. A positive result received from one classifier triggers the

next classifier which is adjusted to achieve very high detection rates. A sub-

window is immediately rejected if any of the stages gives negative result. An

object must receive positive results from all stages in order to be marked as an

object. This allows the background regions to be rejected rapidly and to give

much effort on promising object-like regions. The first stages in the cascade are

Cascade:

 Stage1:

 Classifier11:

 Feature11

 Classifier12:

 Feature12

 ...

18

simple classifiers and reject the most of the background sub-windows before

using more complex classifiers.

hitrate = hN

Figure 2.9: Schematic depiction of the detection cascade.

False positive rate of the trained cascade can be calculated by the formula

, where F is the false positive rate, K is the number of classifiers and f∏
=

=
K

i

ifF
1

i is

the false positive rate of the ith classifier. Detection rate of the cascade can be

calculated by the formula , where D is the detection rate, K is the

number of classifiers and d

∏
=

=
K

i

diD
1

i is the detection rate of the ith classifier. Utilizing these

formulas arranging the number of stages and the stage sizes, a cascade can be

designed with the desired detection and performance goals.

Stages in the cascade are constructed by the classifiers trained using adaboost.

These classifiers are weak and simple classifiers. They can be trained with a % 40

false positive and % 0.1 false negative values by arranging threshold in such a

way that it will give the minimum false negative value. With a % 40 false negative

value, a simple classifier can eliminate % 60 of the background sub-windows

before using more complex classifiers. If 20 stages were trained with the same

false positive and false negative values, cascade can achieve a false alarm rate of

0.420 = 1.099e-08 and a hit rate of 0.99920 = 0.98.

All sub-

windows

h h h h h

Rejected sub-windows

1 2 3 ... N

1-f 1-f 1-f 1-f

 false alarms = fN

19

2.2.2.2 Training Algorithm

Training of each stage in the cascade requires some care. Adaboost only attempts

to minimize errors and is not specifically designed to achieve high detection rates

with large false positive rates. One way of providing this property is adjusting the

threshold of the perceptron produced by the Adaboost. Higher thresholds yield

classifiers with fewer false positives and a lower detection rate. Lower thresholds

yield classifiers with more false positives and a higher detection rate.

The overall training process involves two types of tradeoffs. In most cases

classifiers with more features will achieve higher detection rates and lower false

positive rates. At the same time classifiers with more features require more time

to compute. In principle one could define an optimization framework in which

• the number of classifier stages,

• the number of features, ni_ , of each stage,

• the threshold of each stage

are traded off in order to minimize the expected number of features N given a

target for F (false positive rate) and D (detection rate). Unfortunately finding this

optimum is a tremendously difficult problem.

In practice a very simple framework is used to produce an effective classifier

which is highly efficient. The user selects the minimum acceptable rates for fi

(false positive rate of the ith stage) and di (detection rate of the ith stage). Each

layer of the cascade is trained by AdaBoost with the number of features used

being increased until the target detection and false positive rates are met for this

level. The rates are determined by testing the current detector on a validation set.

If the overall target false positive rate is not yet met then another layer is added to

the cascade. The negative set for training subsequent layers is obtained by

collecting all false detections found by running the current detector on a set of

images which do not contain any instances of the object. This algorithm is given

more precisely in Figure 2.10.

20

User selects values for f , the maximum acceptable false positive rate per stage

and d, the minimum acceptable detection rate per stage.

User selects target overall false positive rate, Ftarget

P = set of positive examples

N = set of negative examples

F0 = 1.0; D0 = 1.0

i = 0

while Fi > Ftarget

i <- i + 1

ni = 0; Fi = Fi-1

while Fi > f x Fi-1

ni <- ni + 1

Use P and N to train a classifier with ni features using Adaboost

Evaluate current cascaded classifier on validation set to determine Fi and Di

Figure 2.10: Training algorithm for building a cascaded detector.

21

2.2.2.3 Training Set

Training is done with a set of positive (object) and negative (non-object) images.

Positive samples are sample views of a particular object and negative samples are

any other arbitrary images those do not contain that object. All of the positives

samples are scaled to same base resolution (w x h). Negative samples are of

arbitrary size. The base resolution is also that of the detector. Detector cannot

detect objects of smaller size than this base resolution. However, objects of higher

resolution can be detected by scaling the detector.

Figure 2.11: Sample positive images for training an eye detector. All samples are

scaled to resolution 35 x 16 pixels.

22

Figure 2.12: Sample negative images for training an eye detector. Images are

arbitrary images at arbitrary resolution.

23

CHAPTER 3

VIEW POINT TRACKING

Tracking is the most important part of the proposed system regarding

performance. Tracking algorithm should be robust, accurate and fast in order to

achieve a reliable system performance.

In the proposed system Pyramidal Implementation of the Lucas-Kanade Feature

Tracker is utilized as the tracking algorithm [24]. It is a very robust and fast

algorithm enabling sufficient tracking accuracy. Details of the algorithm are

described in section 3.2.

3.1 Eye Region Tracking

In the literature, there are alternative methods for facial feature tracking. Several

general-purpose point trackers can be used for this purpose. Lucas and Kanade

[25] have worked on the tracking problem and proposed a method that is based

on a translation model between images in order to be used for registering two

images for stereo matching. Utilizing the initial work of Lucas and Kanade,

Tomosi and Kanade [26] developed a feature tracker upon the sum of squared

intensity differences (SSD) matching measure using a translation model.

Afterwards, Shi and Tomasi [27] proposed an affine transformation model. Over

small inter-frame motion, the translation model has higher reliability and

accuracy than that of the affine model. However, the affine model is preferable

and more adequate over a longer time span.

24

A number of specific facial feature trackers have also been proposed by

researchers. McKenna [28] proposed an approach based on a point distribution

model (PDM) and Gabor wavelets in order to track rigid and non-rigid facial

motion. Huang and Huang [29] also use a PDM approach to extract facial

features. Their method measures the variation of the position of each point.

Petajan [30] uses facial feature tracking to track eyes and the nostrils.

3.2 Pyramidal Implementation of Lucas-Kanade Feature

Tracker

Lucas-Kanade Feature Tracker, which is based on optical flow algorithm, is a

powerful and popular technique used in feature tracking. It is a fast algorithm

and provides sufficient accuracy and robustness. Their approach is to define a

match measure between fixed-size feature windows in the past and current image

as the sum of the squared intensity differences. The motion is modeled as pure

translation. The displacement vector, then, d = (dx, dy) is defined as the one that

minimizes this sum. Let u = (ux,uy) a point on the first image and wx and wy be

two integers, then d the vector that minimizes the residual function defined as

follows:

∑ ∑
+

−=

+

−=

++−=
xx

xx

yy

yy
yx

wu

wux

wu

wuy
dydxJyxIde 2)),(),(()((3.1)

where I and J are the past and current images and where the feature window size

is (2wx+1) x (2wy+1).

Although this is an efficient and widely preferred algorithm, it suffers from large

motions. It can be a problem for the rapid head movements in our case. In order

to overcome this problem Bouguet [24] proposed the pyramidal implementation

of the Lucas-Kanade Feature Tracker method. In the pyramidal approach image

pyramids are formed. They consist of filtered and sub sampled versions of the

25

original images. The displacement vectors are found iteratively upward from the

coarsest level to the original level. At each level, displacement vector is calculated

by maximizing a correlation measure over a small window.

3.2.1 Image Pyramid Representation

Image pyramids are formed by filtering and sub sampling the original image.

Before sub sampling, original images are filtered by a low pass filter to avoid

image anti-aliasing. Images in the pyramid are shown as IL where L = 1, 2 …., Lm.

I0 is the original image and has the highest resolution. Lm is the height of the

pyramid and m is the highest level. Then, IL is computed from IL-1 as

))12,12()12,12()12,12(

)12,12((
16
1))12,2()12,2(

)2,12()2,12((
8
1)2,2(

4
1),(

111

111

111

−+++−+++

+−−+++−

+++−+=

−−−

−−−

−−−

yxIyxIyxI

yxIyxIyxI

yxIyxIyxIyxI

LLL

LLL

LLLL

 (3.2)

The pixels at the image borders are handled according to the following formulas:

),0(),1(11 yIyI LL −− =− (3.3)

)0,()1,(11 xIxI LL −− =− (3.4)

),1(),(1111 ywIywI LLLL −= −−−− (3.5)

)1,(),(1111 −= −−−− LLLL hxIhxI (3.6)

)1,1(),(111111 −−= −−−−−− LLLLLL hwIhwI (3.7)

The width and height of image IL are wL and hL respectively.

The height of the pyramid should be chosen according to the largest expected

optical flow in the image. Practical values for the height are 3 and 4.

26

3.2.2 Pyramidal Feature Tracking

For a given point u in an image I, our goal is to find its corresponding point v = u

+ d (d is the displacement vector) in the next image J. u and v are defined as

 and for image pyramid levels, L = 0, …, L[L
y

L
x uuu L =]][L

y
L

x vvvL = m. The

vectors uL are computed as follows:

L
L uu

2
= (3.8)

The vectors vL are computed iteratively from the deepest level Lm to L0 (original

image). At each level, the result of the previous is used as an initial guess. These

initial guesses are, then, included in the optical flow calculation

at each level. Initial guess at the deepest level of the pyramid is 0 (no initial guess

is available at the deepest level of the pyramid). Afterwards, displacement vectors

 are calculated as follows:

[L
y

L
x ggg L =]

][L
y

L
x ddd L =

∑ ∑
+

−=

+

−=

++++−=
xx

xx

yy

yy

y
L

yx
L

x
LLLL

wu

wux

wu

wuy
dgydgxJyxIde

L

L

L

L

LL 2)),(),(()((3.9)

Observing that the size of the search window at each level is fixed. Since the

initial guess vector gL is used in order to pre-translate the image patch, the

residual flow vector dL comes out to be small and easy to be computed through a

standard Lucas Kanade step. After dL is calculated, the result is propagated to the

next level L-1 by passing the new initial guess gL-1:

)dg(g LLL +=− 21 (3.10)

Then, the next optical flow residual vector dL-1 is calculated through the same

way. Same procedure continues until the original image is reached (L=0). Solution

vector d is then available after the final optical flow calculation:

00 gdd += or (3.11) ∑
=

=
mL

L

LL dd
0
2

As seen from the second equation, d is expressed as the sum of the residual

optical vectors dL. Since residual flow vectors dL are small and easy to be

computed through a standard Lucas Kanade step, pyramidal implementation can

handle large overall pixel displacement vector.

27

3.2.3 Pseudo-Code of the Algorithm

Let u be a point on image I, then the pseudo code of the entire algorithm that

finds the corresponding location v on image J is as follows:

- Build pyramid representations of I and J: {IL} L=0,…, Lm and {JL}L=0,…,Lm (3.12)

- Initialization of pyramidal guess: [] []TTLm Lm
y

Lm
x gg 0 0g == (3.13)

For L = Lm down to 0 with step of -1:

 - Location of point u on image IL: [] L
T

y x
L uppu

2
==

(3.14)

- Derivative of IL with respect to x:

2
),1(),1(),(yxIyxIyxI

LL

x
−−+

= (3.15)

 - Derivative of IL with respect to y:

2
11)y,x(I)y,x(I)y,x(I

LL

y
−−+

= (3.16)

 - Spatial gradient matrix:

∑ ∑
+

−=

+

−=
⎥
⎦

⎤
⎢
⎣

⎡
=

xx

xx

yy

yy

wp

wpx

wp

wpy yyx

yxx

yxIyxIyxI
yxIyxIyxIG 2

2

),(),(),(
),(),(),(

 (3.17)

 - Initialization of iterative L-K: []T v 000 =

(3.18)

For k=1 to K with step of 1 (or until kη < accuracy threshold):

 - Image difference:

)vgyvgx(J)y,x(I)y,x(I kLkL
yy,xx

LL
k

11 −−
++++−=∂ (3.19)

 - Image mismatch vector:

28

∑ ∑
+

−=

+

−=
⎥
⎦

⎤
⎢
⎣

⎡
=

xx

xx

yy

yy

wp

wpx

wp

wpy yk

xk
k

yxIyxI
yxIyxI

b
),(),(
),(),(

δ
δ

 (3.20)

 - Optical flow (Lucas-Kanade):

k
k bG 1−=η (3.21)

 - Guess for next iteration:

kkk vv η+= −1 (3.22)

 End of for loop on k

 - Final optical flow at level L:

KL vd = (3.23)

 - Guess for next level L-1:

[])dg(g gg LLTL
y

L
x

L +== −−− 2111 (3.24)

End of for loop on L

- Final optical flow vector: (3.25) 00 gdd +=

- Location of point on J: duv += (3.26)

The corresponding point is at location v on image J. It is possible to make

computations at sub-pixel accuracy. Algorithm uses bilinear interpolation in

order to compute image brightness at sub-pixel locations.

3.2.4 Tracking at the Boundaries

It is necessary to process points that are close to the boundaries of the image since

some part of their integration window lies outside of the image. For an

integration window (2wx+1) x (2wy+1), there is a forbidden band of width wx (and

wy) around the image. In the pyramidal implementation, this corresponds an

effective forbidden band of width 2Lm wx (Lm is the height of the pyramid). This

band can be very significant for large integration windows and for large values of

29

Lm. For example, for wx = wy = 5 pixels and Lm = 4, forbidden band occurs to be 80

pixels around the image.

Solution to this problem is to calculate the summations in the equations (see

section 2.2.3) only for the valid portion of the image neighborhood, i.e. for valid

entries of Ix(x, y), Iy(x, y) and δIk(x, y) (see section 2.2.3).

3.2.5 Declaring a Feature “Lost”

Algorithm declares a feature as lost for two cases. In the comparatively simple

case, a feature is declared as lost if the feature point falls out of image boundaries,

whereas in the second case, which is more complicated, feature is declared as lost

if the image patch around the feature point differs too much between the images I

and J. This usually happens due to occlusion in the image. However, observing

the occlusion is a quite challenging problem, which can be simply overcome by

thresholding the cost function)(dε . In this case, determining the threshold,

though, comes out to be another problem.

3.2.6 Feature Selection

Until now it is described how to track feature points yet mentioned how to select

these points. Every point on the image is not suitable for tracking and thus can

not be a feature point. Feature points must be selected according to some

mathematical criteria. Optical flow vector computation k
k bG 1−=η (eq. 3.21)is

the core step of the algorithm. In the formula the matrix G must be invertible

meaning that the minimum eigenvalue of G must be sufficiently large (larger than

a threshold). Pixels satisfying this condition are called “easy to track”. Overall

process is as fallows:

1. At every pixel on the image I, compute G matrix and its minimum

eigenvalue λm.

2. Find the maximum value of all λm and call it λmax.

30

3. Choose the pixels that have larger λm value than a certain percentage value

of λmax. (Can be %10 or %5).

4. Choose local max. pixels among the found in (3). (A pixel is local max if its

λm value is maximum in its 3 x 3 neighborhood).

5. Eliminate the pixels, distance of which to another pixel of a large λm value

is smaller than a threshold (e.g. 10 or 5).

After this process, remaining pixels are called “good to track” and can be fed to

the tracking algorithm.

31

CHAPTER 4

INTERMEDIATE VIEW RECONSTRUCTION

This chapter presents a 3D warping based intermediate view reconstruction

algorithm from multiple calibrated views and depth maps. Calibrated views

mean that camera calibration parameters, the interior and exterior parameters, of

the cameras capturing the images are known and depth maps are used in the

construction of scene in 3D.

This chapter is organized as three main sections. First section discusses the

previous work about intermediate view reconstruction. Second section includes

background information about camera model, which is necessary to understand

the presented algorithm. Detailed description of the algorithm is given in section

three.

4.1 Intermediate View Reconstruction

Creating virtual views using stereoscopic views is called intermediate view

reconstruction. There are a number of techniques available in the literature for

creating virtual views. A simple case of the problem is the perfectly parallel

cameras. In this case virtual view can be computed by weighted averaging

between other views. There are methods that utilize this approach [31] [32] [33].

32

Havaldar et al. proposed a view synthesis technique in [34] which uses projective

invariants. They do not require knowledge of the camera positions. An invariant,

defined with respect to a transformation T, is a property which remains

unchanged under transformation T. For example, parallel lines always map to

parallel line under orthographic projection. Also, the ratio of line segments with

respect to each other named cross ratio remains unchanged.

Another work by Irani et al. proposes to reconstruct views at any point in the

scene without computing any correspondence estimation [35]. In their algorithm,

they first align and compare all the projections of each line of sight emerging from

the virtual camera center in the input views and then they create the virtual view.

They describe the line-of-sight as the sight of the viewpoint along the line that

stretches from the point to the direction desired.

Another approach in intermediate view reconstruction used especially in

computer vision area is to reconstruct a 3D volumetric model of the scene and

then to use this model to map new virtual views. They first relate the images with

correspondence estimation and then work towards view reconstruction.

Volumetric methods first create a 3D model of the scene and then manipulate and

transform the object and easily create new views. However, these methods’

execution speed is dependent on scene complexity. Moreover, they require

sophisticated software and hardware for a realistic result.

Image-based rendering techniques are also popular in intermediate view

reconstruction. The term image-based is used here to describe that the methods

use explicit images rather than volumetric 3D models. A survey by Kang [36]

gives details about image-based rendering techniques.

4.2 Camera Model

Modeling the camera provides us the relation between 3D world coordinate

system and 2D image coordinate system. Camera is usually modeled in matrix

33

form called as the Camera Matrix. This matrix maps 3D points in world

coordinates system to 2D points on the image plane.

In this thesis, finite projective camera model is used. This model is described in the

next sections.

4.2.1 Finite Projective Camera Model

Finite projective camera model is also known as the pinhole camera model. Most of

the cameras are described relatively well by this model. In the model, light enters

the camera through an infinitesimally small hole and forms an inverted image on

the camera surface facing the hole. To simplify things, image plane can be placed

between the focal point of the camera and the object, so that the image is not

inverted. The projection of 3D points to 2D points is called perspective projection.

Focal point of the camera is the perspective projection center (C – Camera center).

The ray passing through the camera center, which is perpendicular to the image

plane, is called principle axis and the point of intersection of this ray with the

image plane is known as principal point.

34

Y

X

X
y x

Z
x’

PC

Principal axis
Camera center

Image plane

x’ = PX, x’ Є P2, X Є P3

x’ = [a b 1]T (2D image corrdinate)

X = [A B C 1]T (3D points)

Figure 4.1 – Pinhole camera geometry

Finite projective camera model is described by a 3 x 4 matrix called camera

projection matrix (P matrix). P Matrix can be defined as the product of two matrixes

K and M ([tRKKMP |=]=). K matrix is known as the camera calibration matrix

and includes the intrinsic parameters of the camera. M matrix includes the

extrinsic parameters, rotation and transformation.

The camera center can be found as the right null vector of the projection matrix,

PC = 0;

Pseudo-inverse of the matrix P is called back-projection matrix (P+). P+ is

calculated as for which1)(−+ = TT PPPP IPP =+ .

35

4.2.2 Intrinsic Parameters

Camera calibration matrix is composed of 5 intrinsic parameters:

1) Focal length, (f)

2) Principal point, (u0, v0)

3) Aspect ratio, (α)

4) Skew, (s)

Y

X

X
y x

Z x’
C

f (uo, vo)
θ

Figure 4.2 – Camera intrinsic parameters

Focal length (f) of the camera is the most important intrinsic parameter.

If 3D point X is taken as []T 1 C B A , then the projected coordinate 2D point x’

can be calculated as x’ = [from the similarity of triangles.]T)C/B(f)B/A(f

X

x’ B
f B/C

P C

C
f

36

Figure 4.3 – Side view of the projection of a 3-D point

Principal point is assumed as the origin of the image plane. However, image

origin is usually taken as the upper left corner of the image. This case adds a shift

to the formula of x as:

[00 v)C/B(fu)B/A(f'x]++= (4.1)

Aspect ratio is the ratio of the width of a pixel to the height of the pixel. In the

case that pixels are not square but rectangular, i.e., we have an aspect ratio (αx /αy)

different from unity. As scaling by pixel dimensions and scaling by focal length is

algebraically the same, therefore, we express the focal length in terms of pixel

dimensions as xx af /=α and yy af /=α . Then the formula becomes as:

[]00 v)C/B(u)B/A('x y x ++= αα (4.2)

Skew parameter is added to the formula in case when the angle (θ) between

optical axes is not 90-degrees:

[]00 v)C/B)(sin/(u)C/B(cot)B/A('x y xx ++−= θαθαα (4.3)

This transformation can be explained in matrix form as:

[] []X|Iv
sin

ucot

X|IK'x y
xx

0

100

00 0

0

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

==
θ

α
θαα

 (4.4)

Parameters in the K matrix are called the intrinsic parameters and estimation of

these parameters is called the interior calibration of the camera.

4.2.3 Extrinsic Parameters

Extrinsic parameters are used when the 3D point coordinates are measured

according to a coordinate system other than the camera coordinate system.

37

Z

Y

O

Figure 4.4 – Transformation between world and camera coordinate systems

In that case, the translation (t) and rotation (R) between the two coordinate

systems must be added to the formula:

[][] [] KMXXt|RKXt|R|IK'x === 0 (4.5)

and hence

PX'x = with []tRKP |= (4.6)

Parameters in the M matrix are called the exterior parameters and estimation of

these parameters is called the exterior calibration of the camera. There are 6 exterior

parameters, 3 rotations and 3 translations. Together with the 5 internal

parameters, P matrix has eleven degrees of freedom.

4.3 Intermediate View Reconstruction Algorithm

Intermediate view reconstruction algorithm used in the system is a 3D warping

based algorithm that uses multiple calibrated views of a scene and a related depth

map for each view. It is a simple and straightforward method. However,

satisfactory results can be obtained. Calibrated views mean that camera

calibration parameters, the interior and exterior parameters, of the cameras

YcamX

Zcam

Xcam
R, t

World coordinate system

C

Camera coordinate system

38

capturing the images are known. Exterior parameters donate the camera position

for that view.

Each view has a related depth map image. Depth value of a pixel on the view can

be calculated by using the intensity value at the same coordinate on the depth

map image. By using the depth value and camera calibration parameters, 3D

point for that pixel can be calculated.

Intermediate view is constructed for a virtual camera position. Projection matrix

for the virtual camera is constructed using the same internal parameters for the

calibrated views and virtual camera position (external parameters).

Virtual camera
1. 2.

Figure 4.5: Virtual camera position

In the implementation of method, 3D Video Color and Depth Sequences (Ballet

and Break dancing) from Sing Bing Kang (Microsoft research) [37] is used. These

sequences contain 100 frames and depth maps for 8 calibrated cameras.

39

Figure 4.6 – Multiple views of a scene and depth maps

40

4.3.1 Outline of the Algorithm

For a given virtual camera position, outline of the algorithm can be described in 5

steps:

1) Find the two views taken at nearest camera positions to the virtual camera

position.

2) Find the 3D points for the first nearest view by using the back projection

matrix and depth map of the view.

3) Project 3D points on the virtual image plane using the virtual camera

matrix.

4) Repeat step 2 and 3 for the second nearest view but fill only the gaps on

the virtual view.

5) Fill the remaining gaps by interpolation.

4.3.1.1 Choosing the views

In order to calculate the intermediate view, two views among the calibrated views

are used in the algorithm. First view is chosen according to its camera position

that is the nearest to the virtual camera position. Distance is measured as the

Euclidean distance between camera centers. The nearest positions are used because

these views are the most similar views to the virtual view. Therefore, there would

be less occluded regions. Second view is selected as the first one among the

remaining views but with a constraint that the distance of the selected camera

position to the virtual camera position must be smaller than the distance to the

first selected camera position. This constraint is applied in order to be sure that

the occluded regions for the second view are different than the first one.

41

Figure 4.7: Camera b is selected as the first view. Camera c is not selected as the

second view because its distance to the first selected camera is smaller than the

distance to the virtual camera. Instead of c, camera a is selected as the second

view

4.3.1.2 Back-Projection and Forming the Virtual View

Pixels of the first selected view are back projected to the 3D points using the back

projection matrix and the depth map of the view. This is also known as 3D

reconstruction of the scene (see Figure-4.8). Virtual view is constructed by

projecting 3D points on the virtual image plane. If more than one point is

projected to the same pixel coordinate, the point with the smaller depth value is

chosen because the point which has smaller depth value is the nearest point to the

camera and occludes the other points. This process forms most of the virtual

view, but there remain gaps in the image because of occlusions (see Figure-4.9).

In Figure-4.9, virtual camera position is taken as the position of the 4th camera

position in the Ballet sequence [37] and the first selected view is the 3rd view.

Virtual camera
1.

a

2.

c b

42

Figure 4.8 - Back projected 3D points using one view

Figure 4.9 - Re-projection of 3rd camera view to 4th camera position in ballet

sequence

43

Second selected view is used to fill the gaps in the virtual image. Points on the

view are back-projected and then projected on the virtual image plane if it falls in

a gap. In Figure-4.10, 5th camera view is selected as the second view on the result

shown in Figure-4.9.

Figure 4.10 - Occluded regions are filled by using the second view as 5th view of

ballet sequence

4.3.1.2.1 Back Projection Using Depth Map

Each point on the image plane maps a ray passing through camera center and

point itself in 3D world, i.e. the projected 3D point X is somewhere but on the ray.

This ray can be calculated from the two points that are on the ray: camera center

C and the point P+x’:

C'xP)(X λλ += + (4.2.1)

44

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
3

2

1

C
C
C

t
s
r
p

D
C
B
A

λ (4.2.2)

This equation itself does not enough to find the projected 3D point X. But if the

depth value () of the point is known, one can find λ:)/(DCZ =

3

)(
CZ
Zts

−
−

=λ (4.2.3)

Once λ is known, equation 4.2.2 can be solved for the 3D point X.

4.3.1.3 Interpolation

In order to fill out the holes in the image, some interpolation/extrapolation or

patching methods are used in the literature. These methods fill such holes by

using the intensity information of the nearest rendered region to avoid disturbing

effects [38] [39]. In the method that is used in the thesis, remaining gaps in the

virtual image is filled by interpolation using the adjacent pixels. Finally, 3x3

median filter is applied on the image. Figure-4.11 shows the resulted image after

interpolation step and 4th view of the ballet sequence. The PSNR of the

constructed view is 33.39 dB.

45

Figure 4.11 – Real 4th camera view (on the top) and constructed virtual 4th camera

view (on the bottom). PSNR value is 33.39 dB.

46

CHAPTER 5

PROPOSED SYSTEM

In this chapter, detailed description of the proposed system and system

components are given. The chapter includes system architecture, system

algorithmic flow and implementation of the system blocks.

5.1 System Architecture

The proposed system consists of hardware and software parts. Hardware and

software architectures can be seen in sections 5.1.1 and 5.1.2 respectively.

5.1.1 Hardware Architecture

System hardware consists of three main parts:

1) Computing unit,

2) 3D Display,

3) Camera.

A camera is mounted on top of the display in such a way that it can track the user.

It is connected to the computing unit. A standard webcam can be used as camera.

Whereas, a camera with a frame grabber could be utilized as a better solution.

Images are captured from the camera by the software running on the computing

unit. Software detects and tracks the view point of the observer by using the

47

captured images. Afterwards, correct stereoscopic image is rendered by the

software on the 3D Display according to the view point of the observer. 3D

display can be an autostereoscopic display or stereographic glasses

In the system, the following hardware components are used:

Camera: Creative NX Webcam.

Computing unit: Computer with Pentium IV 3.0 GHz processor.

3D Display: E-D 3D shutter glasses with NVIDIA Quadro2 MX graphics card on

19’’ monitor.

Webcam

Stereoscopic glasses

Figure 5.1: System hardware setup

48

Figure 3.2: E-D 3D Shutter glasses

5.1.2 Software Architecture

System software consists of six main parts:

1) Image Acquisition: Captures images from the camera.

2) View Point Detection: Detects the view point of the observer from the

captured images.

3) View Point Tracking: Tracks the view point of the observer from the

captured images.

4) View Point Calculation: Extract the view point of the observer.

5) Intermediate View Reconstruction: Construct the correct stereoscopic

image pair.

6) Rendering: Render the stereoscopic view on the 3D Display.

Detailed implementations of each part are described in sections 5.1.2.2 through

5.1.2.7.

49

5.1.2.1 Software Operation

Software operation starts with acquiring an image from webcam. The next step

depends on to the current mode of the software. Software has two modes of

operation: detection or tracking. Starting mode is the detection mode. View point

detection component is called in this mode. Software continues its operation in

detection mode until a successful output is obtained. Afterwards, features are

found in the detected region and software changes its mode to tracking. View

point tracking component is called in this mode. Tracking continues while the

number of features is more than 2 or the number of tracked images is below 100.

Otherwise, the software resets itself and changes its modes to detection. After a

successful detection or tracking step view point of the observer is calculated.

Then, correct stereoscopic image pair is formed by the intermediate view

reconstruction component and rendered on the display.

50

Acquire image

from camera

Tracking Detection
 Mode?

Figure 5.3: Flow chart of the software operation

Detect View Point

 Output?

Detect features

1

Track features

Check features

Feature

count ?

Change mode to

tracking

Change mode to

detection

Tracked

frames ?

2 > 3 <

= 100

Calculate view point

Construct stereoscopic image

< 100

Render stereoscopic image

51

5.1.2.2 Image Acquisition

This part of the software is dependent to the camera used in the system. A

webcam connected to the computer via USB is used in the system

implementation. Image Acquisition part is implemented by using Intel Open

Source Computer Vision Library (OpenCV) Video I/O API .

Image capture resolution is 320 x 240 pixels and this is the image resolution used

by other algorithms in the system. In this resolution, maximum frame rate of the

camera is 30 Hz and this is the upper bound for the system frame rate.

5.1.2.3 View Point Detection

View Point Detection is implemented by using the Haar Object Detection Method.

Details of the algorithm are described in Chapter 2. Implementation of the

algorithm is done by using OpenCV Library (see Appendix A). In order to detect

a specific object, first a classifier is trained and then the classifier is applied on the

image to detect the object. Two classifiers are trained by using this method. One

of them is trained for autostereoscopic displays, while the other is trained for

stereoscopic glasses. Classifier for the autostereoscopic displays detects the eyes

of a person on an image. On the other hand, classifier for stereoscopic glasses

detects the face of the user wearing glasses.

Classifier used for eye detection is trained with 3305 positive samples and 1105

negative samples by using Gentle Adaboost. Positive samples are obtained from

Facial Recognition Technology (FERET) Database [40]. FERET Database actually

contains only facial images. However, eye coordinates for some of the images are

also given in the database. Positive samples are obtained from those images by

cropping an area of 35 x 16 pixels size around the eye locations. All of the positive

sample images have the same resolution of 35 x 16 pixels and they are grayscale

images. Some of the eye sample images can be seen in Figure 5.4.

52

Figure 5.4: Some of the positive eye sample images

Negative samples for the training are selected from any arbitrary images which

do not contain eyes of a person. They do not have a fixed resolution unlike in the

case of positive samples. Some of the negative sample images can be seen in

Figure 5.5.

Figure 5.5: Some of the negative samples

53

Training parameters (see section 2.2.2.2) f, the maximum acceptable false positive

rate per stage, and d, the minimum acceptable detection rate per stage, are chosen

as 0.5 and 0.995 respectively as suggested by [18]. 16 stages are trained with these

parameters and finally, detection rate of 0.931619 and false alarm rate of 0.000018

are obtained.

Trained classifier is tested on MIT+CMU frontal face set [41] for comparison. In

the test, 66 images with 122 labeled frontal faces are used which are suitable for

the eye detection. Even though MIT+CMU database is created for evaluating

algorithms for detecting frontal views of human faces, detection rate of 0.795 and

false alarm rate of 0.07377 are obtained.

Figure 5.6: Some of the test results for eye classifier

54

The output images of Image Acqusition block are used for the eye detection. They

are 8-bit grayscale images. Classifier trained for eye detection is applied on these

images in order to detect the eyes. Scale parameter (see section 2.2.1.3) for the

classifier is set to be 1.1 in order to detect objects at multiple scales. Eye detection

results for different people can be seen in Figure 5.7. Average speed of the

detection with on the images having resolution of 320 x 240 pixels is measured as

62 milliseconds.

55

Figure 5.7: Eye detection results for different resolution faces.

56

Classifier used for stereoscopic glasses detection is trained with 67 positive

samples and 1105 negative samples by using Gentle Adaboost. The number of

positive samples is quite low compared to the eye case since there is no specific

image database for the stereoscopic glasses. Therefore, positive samples are

formed by taking the photographs of the people wearing stereoscopic glasses in

the laboratory environment. Resolution for the positive samples is 30 x 40 pixels.

Some of the positive sample images can be seen in Figure 5.8. Negative samples

for the training are the same with the ones used for the eye case.

Figure 5.8: Some positive sample images for stereoscopic glasses

Training parameters (see section 2.2.2.2) f, the maximum acceptable false positive

rate per stage, and d, the minimum acceptable detection rate per stage, are chosen

as 0.5 and 0.995 respectively as suggested by [18]. 12 stages are trained with these

parameters and finally, detection rate of 1.000000 and false alarm rate of 0.000006

are obtained.

Performance of the trained classifier is tested on the 43 test image. Detection rate

of 0.95 and false positive rate of 0.004 are obtained as the test result. Trained

classifier can detect different types of stereoscopic glasses which have black color.

The output images of Image Acqusition block are used for the detection of

stereoscopic glasses. Trained classifier is applied on these images in order to

57

detect stereoscopic glasses. Scale parameter (see section 2.2.1.3) for the classifier is

set to be 1.1 in order to detect objects at multiple scales. Stereoscopic glasses

detection results for different people and different eyeglasses can be seen in

Figure 5.9. Average speed of detection on the images having resolution of 320 x

240 pixels is measured as 24 milliseconds. This result is better compared to that of

the eye classifier (62 milliseconds). The reason why different results are obtained

is the complexity and base resolutions of the classifiers. Eye classifier contains 16

stages and it is much more complex than the other classifier which contains 12

stages. The base resolution of the stereoscopic glasses classifier is 30 x 40 pixels

whereas the other has the resolution of 35 x 16 pixels which is nearly at half size.

For this reason, eye classifier runs on two times more search windows for the

same image. This process requires two times more time since computation of the

features is scale independent.

58

Figure 5.9: Stereoscopic glasses detection results for different people and different

eye glasses

59

5.1.2.4 View Point Tracking

View Point Tracking is implemented by using the Pyramidal Implementation of

the Lucas-Kanade Feature Tracker. Details of the algorithm can be seen in

Chapter 3.

Tracking is performed after a positive result of the detection part. First, 10 feature

points are identified in the detected region (see section 3.2.6). Then, these points

are fed to the tracking algorithm. 3 pyramid levels are used. Search window size

is determined to be as 15 x 15 pixels.

Speed of the implementation is extremely high. For the frame resolution of 320 x

240 pixels, average tracking time is found to be 8.3 milliseconds on a Pentium IV

3.0 GHz computer. Eventually 60 fps is achieved together with other jobs (e.g.

frame capture from video file, render on a window, etc.).

In the experiments, tracker is tested on a 330 frames length video. In the video, a

person looks at the monitor and moves his head. In the first frame, eyes of the

person are detected and then feature points are identified on the detected area.

These points are being tracked until the end of the video. Tracking results can be

seen in Figure 5.10.

60

Figure 5.10: Output frames of the tracked video. Output frames are taken at every

30 frames.

61

5.1.2.5 View Point Calculation

Calculation of the view point of the observer is started after the region of the

observer on the captured images is detected (View Point Detection). Let w and h

be the width and height of the detected region respectively. The point at (w/2, h/2)

is, then, defined as the position of the observer on the image (see Figure 5.11).

Afterwards, position of the observer is tracked together with the tracking of the

feature points (View Point Tracking) (see Figure 5.12). The motion vector of the

observer position is assigned to the median of the feature motion vectors at every

frame.

Position of the observers

Figure 5.11: Position of the observers on the detected regions

Position of the observers

Figure 5.12: Position of the observers while tracking features

62

Position of the observer on the image is used to calculate two angles θ and φ.

When a coordinate system is attached to the center of the camera as the positive z-

axis is towards the observer, θ becomes the angle between observer and y-z plane

and φ turnes out to be the angle between the observer and x-z plane (see Figure

5.13). The relation between image and world coordinates is obtained by internal

camera calibration. The focal length of the camera, f, and image coordinates of the

observer position, p(x, y) are used in the calculations that are shown in Figure

5.14 and Figure 5.15. Focal length of the webcam used in the system is found to be

258 pixels as the result of the camera calibration

Y

P(X,Y,Z) P’(0,Y,Z)

Observer

Figure 5.13: θ and φ

P’(X,0,Z)
θ

φ
X

Camera

Z

63

Top View

Figure 5.14: Calculation of θ

Figure 5.15: Calculation of φ

 f : Camera focal length

 y: Y coordinate of the observer on image

),arctan(fy=ϕ

Monitor

f

P’(0,Y,Z)

φ
Observer

Side

Y

Z
o

y

Camera sensor
X

 f : Camera focal length

 x: X coordinate of the observer on image

),arctan(fx=θ

Monitor
f

P’(X,0,Z)

θ
x Camera sensor

o
X Y

Z

.

Observer

64

View point of the observer can exactly be identified by the two angles θ ,φ and Z

value being the distance between the observer and monitor. In the proposed

system Z value is not being calculated. The distance between the observer and

monitor is assumed to fall between 50-80 cm.

5.1.2.6 Intermediate View Reconstruction

Intermediate view reconstruction block is implemented by using a 3D warping

based algorithm as described in chapter 4. However, it is not utilized as a part of

the whole software, since the algorithm does not operate in real-time.

Constructing a virtual frame of size 640 x 480 pixels requires 2.13 seconds and this

is far away from real-time requirements. Consequently, correct virtual

stereoscopic view can not be constructed in real-time. Instead, 8 pre-constructed

videos are used in the system. Videos are constructed offline for different view

points. View point angle φ is taken as 0. The other angle θ is ranging from

minimum value to maximum value at equal distance. The sight angle of the

webcam used in the system is 64 degree. Thus, θ is incremented by 8 degrees (see

Figure 5.16). Finally, distance to the camera is taken as 60 cm.

65

Webcam

640

Figure 5.16: Position of the virtual cameras

As the system is operating, the videos are used to construct stereoscopic images.

Two nearest virtual camera positions to the view point of the observer are

selected thus yielding current frame is being constructed from the corresponding

videos.

66

Figure 5.17: Sample frames from 8 virtual constructed videos.

5.1.2.7 Rendering

Rendering part of the system is dependent to the 3D display used in the system.

E-D 3D shutter glasses with NVIDIA Quadro2 MX graphics card is used in the

system as the 3D display block. E-D 3D shutter glasses require a special graphic

card with stereo support. NVIDIA Quadro2 MX graphics cards provide a synch

signal to the eye glasses while rendering images for the left and right eyes on the

monitor. Left and right images are rendered by using the OpenGL Quad-buffered

Stereo API that is enabled by the graphics card.

67

CHAPTER 6

CONCLUSION

6.1 Summary of the Thesis

In this thesis, a single user view rendering system is proposed and implemented.

The system can easily be installed on a standard PC together with an

autostereoscopic display or stereoscopic glasses (shutter, polarized, pulfrich, and

anaglyph) with appropriate video card. System is compose of three hardware

units and six software components.

Hardware components are display unit, computing unit and a single camera. In

the implementation of the system, they are selected as: E-D 3D shutter glasses

with NVIDIA Quadro2 MX graphics card, Computer with Pentium IV 3.0 GHz

processor and Creative NX Webcam. Webcam is mounted on top of the display in

such a way that it can track the user. Developed software is running on the

computer. Software captures images from camera and detects and tracks the view

point of the observer. Correct stereoscopic image is, then, rendered by the

software on the display based on the observer.

Developed software is compose of six components: Image acquisition, view point

detection, view point tracking, view point calculation, intermediate view

reconstruction and rendering. Image acquisition part captures image from

webcam. Observer position is then detected on the captured image by the view

point detection component. Haar object detection method is utilized in the

68

implementation as the view point detection method. Two classifiers are trained

by using this method. One of them is trained for autostereoscopic displays, while

the other is trained for stereoscopic glasses. Classifier for the autostereoscopic

displays detects the eyes of a person on an image. On the other hand, classifier for

stereoscopic glasses detects the face of the user wearing glasses. After a successful

detection step, images are fed to view point tracking component. View Point

Tracking is implemented by using the Pyramidal Implementation of the Lucas-

Kanade Feature Tracker. Tracking continues until the observer is lost or a pre-

determined period is elapsed. System then resets itself and continues with

detection step. View point calculation is done after a successful detection or

tracking step. Exact 3D location of the observer is not calculated. Instead, looking

direction of observer is calculated (two angles, θ and φ) and the distance between

the observer and monitor is assumed to fall between 50-80 cm. Correct

stereoscopic view is, then, rendered on the display by using the calculated view

point. A 3D warping-based method is utilized in the system as the intermediate

view reconstruction method. Rendering is done by using the OpenGL Quad-

buffered Stereo API that is enabled by the graphics card.

6.2 Discussions and Future Work

The performance of the classifier which detects the eyes of a person is better than

the performance of the other which detects the face of the user wearing glasses.

The reason for this result is the positive samples used for the training. 3305

positive samples which are obtained from Facial Recognition Technology

(FERET) Database are used for the eye classifier. However, the number of positive

samples used for the second classifier is only 67, because there is no specific

image database for the stereoscopic glasses. Samples are formed by taking the

photographs of the 12 people wearing stereoscopic glasses in the laboratory

environment. The number of people was quite low for the classifier to generalize

the case. As a result, classifier fails more often for the different people. Therefore,

to form a training set is the vital point of the training a classifier. A more

comprehensive training set can be formed for the training of the second classifier.

69

Classifier which detects the face of the user wearing glasses is trained with

sample images of people wearing E-D 3D shutter glasses. However, trained

classifier can detect different types of stereoscopic glasses which have black color.

The trained classifiers detect the observer only if the frontal face of the user

appears in the acquired image. They fail for the side views of the face. However,

the system has to track the observer only when the user is watching the display

and it is assumed that the observer intends to watch the display in a comfortable

way. That is, the observer will not look askew at the display.

Lighting conditions affects the performance of the detection and tracking.

Classifiers fail in the poor lighting conditions. This is due to the fact that features

which the classifier looks for do not appear in the image. Camera used in the

system is also related to this issue. The use of a good quality camera may provide

sufficient images for the classifiers in the poor lighting condition.

People wearing eye glasses may also cause problem in the eye detection step. Eye

glasses may reflect light coming from the display. In this case, the silhouette of

the display appears on the eye glasses and the eyes of the person can not be seen

on the image, so the classifier fails to detect eyes.

In the tracking step, tracked feature points may drift in the long run or may be

lost if the user points fall out of image or turns his/her head to another location.

In order to overcome these situations, system resets itself in pre-determined

periods and continues with the detection step. This property provides the stability

of the system.

Intermediate view reconstruction part of the system is the only part that does not

operate in real-time. The construction speed of a virtual view is far away from the

real-time requirements. Consequently, correct virtual stereoscopic view can not

be constructed in real-time. Instead, 8 virtual videos are constructed for the

demonstration of the system. Two nearest virtual camera positions to the view

70

point of the observer are selected thus yielding current frame is being constructed

from the corresponding videos. However, virtual views should be constructed for

the view point of the observer in every frame in the ideal system. This can be

achieved with an intermediate view reconstruction method that operates in real-

time. As a future work, intermediate view reconstruction can be replaced with a

new method that operates in real-time.

71

REFERENCES

[1] M. Andiel, S. Hentschke, T. Elle, E. Fuchs, “Eye-Tracking for Autostereoscopic

Displays using Web Cams”, Proceedings of SPIE Vol. 4660, Stereoscopic Displays and

Virtual Reality Systems IX, 2002

[2] Yong-Sheng Chen, Chan-Hung Su, Jiun-Hung Chen, Chu-Song Chen, Yi-Ping

Hung, and Chiou-Shann Fuh, “Video-based Eye Tracking for Autostereoscopic

Displays,” Optical Engineering, Vol. 40, Issue 12, pp. 2726-2734, December, 2001.

[3] Fraunhofer-Institute for Telecommunications – Heinrich-Hertz-Institut (HHI),

“Evaluation of a Single User autostereoscopic Display System for 3D-TV and PC

oriented applications – an example of a user centered design cycle”, ECMAST’98

[4] SeeReal Technologies Inc, http://www.seereal.com, visited 31 July 2006

[5] Samah Ramadan, Wael Abd-Almageed and Christopher Smith, “Eye Tracking

using Active Deformable Models,” The III Indian Conference on Computer

Vision, Graphics and Image Processing, Ahmedabad, India, December 2002.

[6] Zhiwei Zhu , Kikuo Fujimura , Qiang Ji, “Real-time eye detection and tracking

under various light conditions”, Proceedings of the symposium on Eye tracking

research & applications, March 25-27, 2002, New Orleans, Louisiana

[7] Bart de Liefde, Andre Redert, Emile Hendriks, “Eye Tracking for Viewpoint

Adaptive Video Systems in Living Room Situations”, Proceeding WIAMIS, 2003

[8] A. Haro, M. Flickner, and I. Essa, "Detecting and tracking eyes by using their

physiological properties, dynamics, and appearance," in Proceedings IEEE CVPR

2000.

72

http://www.seereal.com/
http://portal.acm.org/citation.cfm?id=507100&dl=GUIDE&coll=GUIDE&CFID=70563658&CFTOKEN=39227324
http://portal.acm.org/citation.cfm?id=507100&dl=GUIDE&coll=GUIDE&CFID=70563658&CFTOKEN=39227324
http://portal.acm.org/citation.cfm?id=507100&dl=GUIDE&coll=GUIDE&CFID=70563658&CFTOKEN=39227324

[9] A.L. Yuille, P.W. Hallinan, D.S. Cohen, Feature extraction from faces using

deformable templates, Int. J. Comput. Vision 8 (2) (1992) 99–111.

[10] X. Xie, R. Sudhakar, H. Zhuang, On improving eye feature extraction using

deformable templates, Pattern Recognit. 27 (1994) 791–799.

[11] A. Pentland, B. Moghaddam, T. Starner, View-based and modular

eigenspaces for face recognition, in: Proc. IEEE Conf. on Computer Vision and

Pattern Recognition (CVPR’94), Seattle, WA, 1994.

[12] W. min Huang and R. Mariani, Face detection and precise eyes location, in:

Proc. Int. Conf. on Pattern Recognition (ICPR’00), 2000.

[13] G.C. Feng, P.C. Yuen, Variance projection function and its application to eye

detection for human face recognition, Int. J. Comput. Vis. 19 (1998) 899–906.

[14] G.C. Feng, P.C. Yuen, Multi-cues eye detection on gray intensity image,

Pattern Recognit. 34 (2001) 1033–1046.

[15] Paul Viola and Michael J. Jones. Rapid Object Detection using a Boosted

Cascade of Simple Features. IEEE CVPR, 2001.

[16] R. Lienhart, A. Kuranov, and V. Pisarevsky. Empirical analysis of detection

cascades of boosted classifiers for rapid object detection. Technical report, MRL,

Intel Labs, 2002

[17] C. Papageorgiou, M. Oren, and T. Poggio. A general framework for object

detection. In International Conference on Computer Vision, 1998.

73

[18] Paul Viola and Michael J. Jones. Rapid Object Detection using a Boosted

Cascade of Simple Features. IEEE CVPR, 2001.

[19] William T. Freeman and Edward H. Adelson. The design and use of steerable

filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(9):891–906,

1991.

[20] H. Greenspan, S. Belongie, R. Gooodman, P. Perona, S. Rakshit, and C.

Anderson. Overcomplete steerable pyramid filters and rotation invariance. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1994.

[21] Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In

Machine Learning: Proceedings of the Thirteenth International Conference,

Morgan Kauman, San Francisco, pp. 148-156, 1996.

[22] Edgar Osuna, Robert Freund, and Federico Girosi. Training support vector

machines: an application to face detection. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 1997.

[23] H. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. In

IEEE Patt. Anal. Mach. Intell., volume 20, pages 22–38, 1998.

[24] Jean-Yves Bouguet, “Pyramidal Implementation of the Lucas Kanade Feature

Tracker Description of the algorithm”, Intel Corporation, Microprocessor

Research Labs, OpenCV Documents, 1999.

[25] B. D. Lucas and T. Kanade. “An iterative image registration technique with

an application to stereo vision”. Proc. International Joint Conference on Artificial

Intelligence, pages 674–679, 1981.

[26] C. Tomasi and T. Kanade. “Detection and tracking of feature points”. Carnegie

Mellon University Technical Report CMU-CS-91-132, Pittsburgh, PA, 1991.

74

[27] J. Shi and C. Tomasi. “Good features to track”. Proc. IEEE Conference on

Computer Vision and Pattern Recognition, pages 593–600, 1994.

[28] S. McKenna, S. Gong, R. P. Wurtz, J. Tanner, and D. Banin. “Tracking facial

feature points with Gabor wavelets and shape models”. Proc. Int. Conf. on Audio-

and Video-Based Biometric Person Authentication, Crans-Montana, Switzerland, pages

35–42, 1997.

[29] C. Huang and Y. Huang. “Facial expression recognition using model-based

feature extraction and action parameters classification”. Journal of Visual

Communication and Image Representation, 8(3):278–290, 1997

[30] E. Petajan and H. P. Graf. “Robust face feature analysis for automatic

speechreading and charcter animation”. Proc. Second International Conference on

Automatic Face and Gesture Recognition, Killington, Vermont, pages 357–362, 1996.

[31] J. Konrad, “View reconstruction for 3-D video entertainment: issues,

algorithms and applications,” in Proc. Int. Conf. on Image Process. and its

Applications, pp. 8–12, July 1999.

[32] A. Mancini and J. Konrad, “Robust quadtree-based disparity estimation for

the reconstruction of intermediate stereoscopic images,” in Proc. SPIE Stereoscopic

Displays and Virtual Reality Systems, vol. 3295, pp. 53–64, Jan. 1998.

[33] A.-R. Mansouri and J. Konrad, “Bayesian winner-take-all reconstruction of

intermediate views from stereoscopic images,” IEEE Trans. Image Process., vol. 9,

pp. 1710–1722, Oct. 2000.

[34] P. Havaldar, M. Lee, and G. Medioni, “View synthesis from unregistered 2D

images,” in Graphics Interface I96, pp. 61–69, 1996.

75

[35] M. Irani, T. Hassner, and P. Anandan, “What does the scene look like from a

scene point?,” in Proc. European Conf. on Computer Vision, vol. 2, pp. 883–897, 2002.

[36] S.-B. Kang, “A survey of image-based rendering techniques,” Tech. Rep. CRL

97/4, Digital Equipment Corp., Cambridge Research Lab, Aug. 1997.

[37] Microsoft Research,

http://research.microsoft.com/vision/InteractiveVisualMediaGroup/3DVideoD

ownload/, visited 31 july 2006

[38] J.I. Park and S. Inoue. Arbitrary view generation from multiple cameras.

Proceedings of International Conference on Image Processing, 1:149–152, 1997.

[39] Paul E. Debevec, Yizhou Yu, and George D. Borshukov. Efficient view

dependent image-based rendering with projective texture-mapping. Eurographics

Rendering Workshop, pages 105–116, 1998.

[40] Face Recognition Technology (FERET) program,

http://www.frvt.org/FERET/, visited 31 july 2006

[41] H. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. In

IEEE Patt. Anal. Mach. Intell., volume 20, pages 22–38, 1998.

76

http://research.microsoft.com/vision/InteractiveVisualMediaGroup/3DVideoDownload/
http://research.microsoft.com/vision/InteractiveVisualMediaGroup/3DVideoDownload/
http://www.frvt.org/FERET/

	General
	Scope of the thesis
	Outline of the dissertation
	Eye Region Detection
	Active IR Illumination Based Methods
	Image Based Passive Methods

	Haar Object Detection
	Features
	Number of Features
	Fast Feature Computation
	Feature Normalization
	Feature Scaling

	Training
	Cascade of Classifiers
	Training Algorithm
	Training Set

	Eye Region Tracking
	Pyramidal Implementation of Lucas-Kanade Feature Tracker
	Image Pyramid Representation
	Pyramidal Feature Tracking
	Pseudo-Code of the Algorithm
	Tracking at the Boundaries
	Declaring a Feature “Lost”
	Feature Selection

	Intermediate View Reconstruction
	Camera Model
	Finite Projective Camera Model
	Intrinsic Parameters
	Extrinsic Parameters

	Intermediate View Reconstruction Algorithm
	Outline of the Algorithm
	Choosing the views
	Back-Projection and Forming the Virtual View
	Back Projection Using Depth Map

	Interpolation

	System Architecture
	Hardware Architecture
	Software Architecture
	Software Operation
	Image Acquisition
	View Point Detection
	View Point Tracking
	View Point Calculation
	Intermediate View Reconstruction
	Rendering

	Summary of the Thesis
	Discussions and Future Work

