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ABSTRACT 

 

 

INFERENTIAL MODEL PREDICTIVE CONTROL OF 
POLY(ETHYLENE TEREPHTHALATE) DEGRADATION 

DURING EXTRUSION 
 

 

 

Özbek, Murat Oluş 

   M. S., Department of Chemical Engineering 

   Supervisor: Prof. Dr. Canan Özgen 

   Co-Supervisor: Assoc. Prof. Dr. Göknur Bayram 

 

August 2006, 91 pages 

 

 

Poly(ethylene terephthalate), PET, which is commonly used as a packaging material, is not 

degradable in nature. As an issue of sustainable development it must be recycled and 

converted into other products. During this process, extrusion is an important unit operation. 

In extrusion process, if the operating conditions are not controlled, PET can go under 

degradation, which results in the loss of some mechanical properties. 

  

In order to overcome the degradation of recycled PET (RPET), this study aims the control of 

the extrusion process. Dynamic models of the system for control purposes are obtained by 

experimental studies. In the experimental studies, screw speed, feed rate and barrel 

temperatures are taken as process variables in the ranges of 50 – 500 rpm, 3.85 – 8.16 

g/min and 270 – 310 oC respectively. Singular value decomposition (SVD) technique is used 

for the best pairing between the manipulated – controlled variables, where screw speed is 

taken as the manipulated variable and molecular weight of the product is taken as the 

controlled variable. PID and model predictive controller (MPC) are designed utilizing the 

dynamic models in the feedback inferential control algorithm. In the simulation studies, the 

performance of the designed inferential control system, where molecular weight (Mv) of the 

product is estimated from the measured intrinsic viscosity ([η]) of the product, is 

investigated. 
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The controller utilizing PID and MPC control algorithms are found to be robust and 

satisfactory in tracking the given set points and eliminating the effects of the disturbances.  

 

Keywords: extrusion, modeling, MPC, inferential control, PET recycling.  
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ÖZ 

 

 

EKSTRÜZYON İŞLEMİNDE 

POLY(ETİLEN TEREFTALAT) BOZUNMASININ 

ALGISAL MODEL ÖNGÖRÜMLÜ DENETLEÇ İLE DENETLENMESİ 

 

 

Özbek, Murat Oluş 

   Yüksek Lisans, Kimya Mühendisliği Bölümü 

   Tez Yöneticisi: Prof. Dr. Canan Özgen 

   Ortak Tez Yöneticisi: Doç. Dr. Göknur Bayram 

 

Ağustos 2006, 91 sayfa 

 

 

Genellikle, paketleme malzemesi olarak kullanılan polietilen tereftalat’ın (PET) doğada bozunma özelliği 

yoktur. Bu nedenle, sürdürülebilir gelişme sürecinde PET’in geri kazanılması ve yararlı ürünlere 

dönüştürülmesi gerekir. Bu işleme süreçlerinde ekstrüzyon yöntemi önemli bir temel işlemdir. Ancak, 

ekstrüzyon sürecinde koşulların iyi ayarlanamadığı durumlarda, PET, bozunmaya (degradation) 

uğrayabilir ve bunun sonucunda mekanik bazı özelliklerini kaybedebilir. 

  

Bu çalışmada, PET’in bozunmasının önlenebilmesi için ekstrüzyon sürecinin denetimi amaçlanmıştır. 

Denetimde kullanılmak üzere, sistemin dinamik modelleri deneysel çalışmalar yardımıyla elde edilmiştir. 

Deneysel çalışmalarda süreç değişkenleri olarak 270 - 310 oC aralığında kovan sıcaklığı (T),  50 – 500 

dev/dak aralığında vida hızı (SS), 3.85 - 8.16 g/dak aralığında besleme oranı (FR) seçilmiştir. En iyi 

ayarlanan-denetlenen değişken eşleştirmesi için Tekil Değer Ayrıştırma (SVD) tekniği kullanılmış ve 

ayarlanan değişken olarak vida hızı (SS), denetlenen değişken olarak ürünün molekül ağırlığı (Mv) 

seçilmiştir. Elde edilen dinamik modellerle geleneksel (PID) ve model öngörümlü denetleçler (MÖD) 

tasarlanmış ve geri beslemeli, algısal denetim algoritmasında kullanılmıştır.  Benzetim çalışmalarında, 

ürünün molekül ağırlığının (Mv) ölçülen içsel viskozite ([η]) değerlerinden tahmin edildiği algısal 

denetim yapısının performansı incelenmiştir. 

 

PID ve MÖD denetim algoritmaları kullanan denetleçlerin hem gürbüz hem de ayar noktası izleme ve 

bozan etkenin etkisini uzaklaştırma konularında başarılı oldukları irdelenmiştir.  
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Anahtar Sözcükler: ekstrüzyon, modelleme, model öngörümlü denetim, algısal denetim, geri 

dönüşümlü PET. 
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CHAPTER I 

 

 

INTRODUCTION 

 

 

 

PET, which is a thermoplastic resin of polyester family, has become one of the major 

packaging materials due to its good barrier and mechanical properties. Due to its non-

degradable nature, PET must be recycled for sustainable development and must be used to 

obtain other byproducts. Today, PET is one of the most recycled materials world wide. 

 

The major drawback in PET recycling is the loss of the molecular weight, a phenomenon 

known as degradation. Heat, mechanical effects, contaminants and water moisture are the 

important factors of degradation. Degradation has an adverse effect on the mechanical 

properties of the product. Therefore, degradation amount should be reduced to preserve the 

mechanical properties. Molecular weight can be used to express the degradation amount. 

 

Extruders are commonly used machinery in plastics processing and recycling industries. 

Previous studies [Incarnato et al., 2000; Spinace et al., 2000; Assadi et al., 2004; Ajawa and 

Pawel, 2004] showed that the degradation of RPET is caused mainly by processes taking 

place in the extruder. Furthermore, the quality of an extruded product is directly related to 

its rheological properties such as melt viscosity of the material in the extruder. Thus, 

extrusion process should be controlled in order to reduce the degradation amount. 

 

Previous studies [Parnaby et al., 1975; Smith et al., 1978; Hassan and Parnaby, 1981, Costin 

et al., 1982; Yang and Lee, 1986; Tanttu et al., 1989; Pabendiskas et al., 1989; Nied et al., 

2000; Xiao et al., 2001; Previdi et al., 2006] on the control of an extruder or extrusion 

process mainly focused on regulating the process parameters like screw speed, barrel 

temperatures or barrel/die temperature or pressure on defined preset values. However, in 

such a regulation, expert knowledge on the operation and on the relations between the 

process conditions and product properties is required. In order to eliminate the requirement 

of such an expert knowledge, by using the secondary measurements, an inferential control 
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scheme can be designed for the control of desired product property whose online 

measurement is not possible. 

 

Product property is important for the downstream operations of the extruder and can be 

kept constant at a desired point by designing a proper control mechanism for the extruder. 

Among the different types of controllers, model predictive controller (MPC) has proven itself 

worthy and being used in the industry for the last two decades. Although different 

algorithms exist for MPC, the name basically refers to a family of controllers in which the 

future behavior of the plant is predicted using a dynamic model of the plant and necessary 

control actions are calculated in an optimal manner.  

 

In this study, the control of product quality in terms of molecular weight of extruded RPET is 

aimed.  The system parameters affecting the molecular weight (Mv) are screw speed (SS), 

feed rate (FR) and temperature (T). Thus the inputs are considered to be SS, FR and T, and 

the output as Mv. The die temperature, die pressure and torque which are additional 

parameters are not taken as variables in the scope of this study. Nominal operating point in 

term of SS, FR and T, suitable for fiber production is determined by using the steady state 

experimental data. Dynamic experiments are conducted to obtain the relations between the 

inputs (SS, FR and T) and the output (molecular weight of the extruded product) of the 

extruder. These data are used to obtain the dynamic models of the process. An inferential 

control scheme is designed to control the molecular weight of the product for different 

disturbances by simulation studies by using dynamic models. In the designed control 

scheme, performances of PID and MPC controllers are studied. 

  

The outline of this work is as follows. A literature survey on previous studied on related 

subjects is given in Chapter 2. Background information about PET and control techniques are 

given in Chapter 3. Experimental studies including the set-up and procedures are 

summarized in Chapter 4. Chapter 5 includes the results of all the experimental, modeling 

and control studies with discussions. Conclusions are given in the last chapter, Chapter 6. 
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CHAPTER II 

 

 

LITERATURE SURVEY 

 

 

 

PET is one of the commonly recycled industrial plastics. However, in order to overcome the 

phenomenon of loosing material property during recycling, one option is to control the 

process to obtain a product with desired property. Control of product property in an 

extrusion process is a challenging one as the aimed product property cannot be measured 

online in most of the cases. This problem can be overcome by building an inferential control 

scheme by measuring the viscosity of the product on-line and predicting the molecular 

weight from this measurement. Furthermore, using a model based controller seems 

promising to yield more successful results. A literature survey about these subjects is 

presented in this chapter. 

 

2.1 Extrusion, Extruder Modeling and Extruder Control 

 

Parnaby et al. (1975) studied the automatic control of an extruder. Their work mainly 

outlines the basics of the development of a feed-forward adaptive predictive control 

strategy. Also system identification and modeling were done such as stochastic identification 

techniques, step and impulse models. The basic structure for the extruder control scheme 

and the interaction between the extruder and the die variables were illustrated. In their 

work screw speed was accepted as the manipulated variable and the die pressure, as a 

measure of degree of mixing, which indirectly gives the product quality, as the controlled 

variable. The melt temperature was also monitored to understand the dynamics better. It is 

also stated that by on-line updating the model, small changes in model can be compensated. 

 

Smith et al. (1978) explained the operating characteristics of twins screw extruders (TSE). 

The study focused on the interrelationships between the design parameters (such as screw 

design, die geometry, feed zone geometry), material properties, and operation variables 
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(such as screw speed, barrel and die temperatures). The effects of these variables and 

parameters on the product and product quality during operation are also reviewed. In the 

work, first, the effects of the parameters were explained mathematically under certain 

assumptions. Finally, these parameter based mathematical models were illustrated for 

control purposes. Neither experimental nor simulation studies were carried out. Only the 

responses to changes in screw speed and feed rate were illustrated using the obtained 

models. 

 

Hassan and Parnaby (1981) experimentally constructed a cascade (hierarchical) control loop 

on a laboratory scale extruder and studied the feed-back and feed-forward control 

strategies. The constructed system measured barrel and die wall temperatures and 

pressures, screw speed and the ‘restrictor valve’ position on the die. Measuring these, the 

control system sent set points to screw speed, die restrictor valve, barrel and die wall 

temperatures. To achieve this goal, the controller used the constructed model of the 

extruder and die behavior, and an optimization function to calculate the control action. Also, 

in the work two aims of the extruder control are specified as set point tracking (steady-state 

control) and disturbance rejection (dynamic control). 

 

Costin et al. (1982) published a review on the present literature about the dynamic modeling 

and control of plasticizing extruder. They developed the subject into three headings, which 

were extruder disturbance studies, classical control studies and stochastic control studies. It 

was pointed that the previous works were mainly focused on long-term disturbances related 

with the melt temperature, melt pressure or extrudate thickness.  

 

Costin et al. (1982) studied the effects of the screw speed on the die pressure and 

temperature. System dynamics were modeled as first order with dead time and time series 

models. Die pressure was controlled by manipulating screw speed. The disturbance was 

introduced to the system as difference in feed material composition. Digital PI, self tuning 

regulator (STR) and minimum variance controllers (MVC) were studied and compared. The 

results of the study showed that instead of eliminating the disturbances, the STR tuned itself 

to eliminate the flight noise, which is caused due to the rotation of the screw. 

 

Yang and Lee (1986) proposed several feedback and feed-forward control methods to 

control long term and short term disturbances and evaluated these methods using various 

load changes. The aim was to control the extrudate thickness by manipulating the take-up 

speed against the screw speed load. A first order model was developed and PI controller 
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with Smith predictor and digital noise filters were tested for load and set-point changes. The 

experimental results showed that the control structure was good at set-point changes but its 

performance was low at load changes due to the inaccuracy of the model. 

 

Tanttu et al. (1989) planted STR on extruder in simulation level in order to control the start-

up period of the extruder by regulating the barrel temperatures. For mathematical 

description of the system a distributed parameter model was used. For parameter estimation 

different algorithms were tested. The simulation results showed that STR can be used with a 

proper parameter estimation algorithm for the start-up and normal operation. 

 

Pabendinskas et al. (1989) studied the degradation of polypropylene (PP) in a reactive 

extrusion process to produce PP with a specified molecular weight (Mw). The measured and 

manipulated variables were die pressure drop and initiator concentration, respectively. The 

initiator (peroxide) concentration was manipulated via syringe pump. Online measured 

viscosity via die pressure drop, and melt flow index (MFI), measured via online rheometer, 

were used to determine the amount of degradation. Step tests were performed to find the 

relation between the die pressure drop and degradation, and this relation was modeled with 

a first order with dead time model. The implemented controller scheme was consisted of a 

gain scheduling controller with Smith dead time compensator and a PI controller. The PI 

controller was used in a cascade manner to control the syringe pump. The results of the 

study indicated that the desired Mw could be achieved by the control of the pressure drop. 

 

Boadhead et al. (1996) developed an in-line rheometer (ILR), which had a ‘partial Couette’ 

geometry, to reduce the measurement delay, and described its use. The reactive extrusion 

process was modeled as a first order with dead time process. PI and minimum variance 

controllers were tested. The results showed that there was a considerable dead time in spite 

of the ILR advantages. It is also offered that the use of adaptive techniques for such a 

system could improve the controller performance, because the tested controllers’ 

performances were not good due to the non-linearity of the process. 

 

De Ruyck (1997) developed a residence time distribution (RTD) model for a twin screw food 

extruder. The model was constructed as series of CSTRs with recycling flows and different 

volumes. Effects of the variables (screw profile, screw speed, water supply, feed supply and 

die diameter) on RTD were observed experimentally and compared with the model results 

and seen to be in agreement. By using the model the effect of different screw designs were 

also studied. 
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Elsey et al. (1997) developed a dynamic model that predicts the variables affecting the 

product quality in a single screw food extruder. The model was fitted to experimental data 

and it was used in an inferential control algorithm. PI and MPC controllers were tested on 

simulation level. MPC results came out to be much better than that of PI controller. 

 

Nield et al. (2000) constructed a two input two output MIMO MPC scheme with constraints, 

to control the product property (weight average molecular weight (Mw) and high molecular 

weight end of molecular weight distribution) of LDPE in a reactive extrusion process by 

manipulating the width and amplitude of square peroxide waves. The product property of 

LDPE was inferred by using the measurements of an ‘inline wedge rheometer’. The controller 

scheme was tested on actual plant. The results showed that, the control of consistency 

index was good however power law index was not, due to the imposition of input 

constraints, tuning of the controller for slow closed loop response and ill conditioning of the 

system. 

  

Haley and Mulvaney (2000) implemented a non-linear MPC on a food extruder in a cascade 

manner. The objective was to obtain the product with the minimum piece density with the 

constraint, where the other quality attributes should be acceptable. Responses of ‘specific 

mechanical energy (SME)’ to screw speed and feed rate were modeled. Operating point set 

points were obtained by an inferential model. In the cascade strategy, MPC was placed on 

the inner loop and the cascade controller on the outer loop. Also a ratio controller was 

utilized in a feed-forward manner to control the moisture content, and to eliminate the 

disturbances in the feed. Furthermore the whole scheme was supplied with a feedback 

algorithm on output, which corrects the model errors and disturbances. The results showed 

that the scheme performed well for both disturbance rejection and set point tracking. 

 

Wang and Tan (2000) developed a ‘dual-target predictive control strategy’, which could 

track both the input and output set points in an optimal manner and applied to food 

extruder. Die pressure and die temperature were the constructed model’s inputs and screw 

speed, feed rate and moisture addition were the outputs. The case which the both input and 

output set-points can be followed was called as ‘realizable case’ and the results showed that 

the controller achieved its goal for this case. 

 

Xiao et al. (2001) studied the control of coating properties of low-density polyethylene 

(LDPE). The controlled and manipulated variables were the melt strength and the screw 
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speed respectively. The melt strength was measured by passing the extrudate through a 

pulley system connected to a balance. The disturbance was introduced by changing the type 

of LDPE fed, while the feed rate was kept unchanged. The PI and MPC were tuned offline 

and their on-line performances were tested individually. In the work it was pointed that 

there is a high order relation between the input and the output, which resulted in MPC’s 

better performance. 

 

Lee et al. (2002) tried to improve a previous work on the same subject where a blockage 

phenomenon encountered in a food extruder. In order to prevent this phenomenon screw 

speed was controlled by fuzzy reasoning. The fuzzy inputs were screw speed percentage and 

torque percentage and the manipulated variables were water and feed flow and screw speed 

and torque percentages. The study achieved its goal and the blockage was prevented. 

 

Chen et al. (2003) proposed an ‘empirical viscosity model for quality control in the polymer 

extrusion process’. In this work the viscosity was calculated using the parameters; screw 

speed, melt temperature, geometric dimensions of the extruder and experimentally 

determined material constants. The method was offered as an alternate and to overcome 

the disadvantages of in-line capillary rheometer. The results of the work showed that the 

proposed models can be applied to the product quality control using viscosity as the main 

control parameter in the polymer extrusion process without implementing an in-line 

rheometer, which would influence the output of the product. 

 

Mudalamane and Bigio (2003) developed a first principles model and studied the effects of 

external disturbances on the output fluctuations and transient behavior of extruders. Based 

on the previous work, disturbances were categorized as high, medium and low frequency 

disturbances. By using the model, damping effects of extruder design parameters on these 

disturbances were studied. The simulation studies showed that, for a given screw design, 

the process had a characteristic critical frequency above which the disturbances with higher 

frequencies were damped out, however the ones with lower frequencies were not. 

 

Choulak et al. (2004) developed a dynamic model for reactive extrusion in a twin screw 

extruder, that predicted pressure, filling ratio, temperature and molar conversion. The model 

was built as series of CSTRs that could be partially filled or fully filled with back flow. 

Validation of the model was carried out by comparing the simulation data and the 

experimental data. A good agreement between these data sets was observed. Aim of 
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automatic control of polymerization conditions in a twin screw extruder was mentioned but 

no control studies were carried out. 

 

Wang et al. (2004) presented a ‘three-stage approach to system identification in the 

continuous time’. The three stages are; data acquisition using relay feedback, non-

parametric identification of the system step response, and parametric model fitting of the 

identified step response. In the work discrete time noise model was integrated into 

continuous time system identification. Experimental results were obtained by applying the 

proposed method on a pilot scale food extruder and the results were presented in 

comparison with model data. 

 

Previdi et al. (2006) experimentally tested a prototype feedback control system for the 

control of volumetric flow in a single screw extruder. The manipulated variables were the 

barrel temperatures and die pressure. The work presents all the steps of the controller from 

modeling to experimental testing. The results of the tests showed that the control scheme 

responded well to disturbance rejections with small offsets on temperature and pressure. 

 

2.2 PET Recycling and PET Degradation 

 

Tanrattanakul et al. (1996) studied ‘toughening of PET by blending with a functionalized 

polystyrene-poly(ethylene-co-butylene)-polystyrene (SEBS) block copolymer’. The aim was 

to increase fracture strain that was affected by both blend composition and degradation 

caused by process conditions. The processes utilized were extrusion and injection molding. 

The intrinsic viscosity of PET was measured by Ubbelohde type viscometer using 60w/40w 

phenol/tetracholoroethane as solvent. Results shoved that the blending increased the 

fracture strain of PET. Torres et al. (2001) also made a similar study. They tried to improve 

the thermal and mechanical properties of PET and recycled PET using chain extenders. They 

also used the same solvent and equipment type for solution viscosity measurements. 

 

Incarnato et al. (2000) aimed to increase the Mw of recycled PET to make it suitable for film 

blowing and blow molding, by using pyromellitic dianhydrate (PDMA) as chain extender, in a 

single step reactive extrusion. Effect of PDMA content on molecular structure was 

investigated by using different concentrations of chain extenders, and then the extruded PET 

samples were characterized. Results showed that a certain amount of PDMA increased Mw 

and branching, broadened Mw/Mn, making recycled PET suitable for film blowing and blow 
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molding. Awaja and Davier (2004) made a similar study on an industrial scale extruder, 

where PET was recycled by PDMA chain extender. In this work, effects of residence time and 

temperature were also studied. 

 

Pawlak et al. (2000) made a study on the ‘characterization of scrap PET’ in order to find 

methods of characterization of recycled polymers and to show ‘general tendencies in 

property change’. Applied techniques to achieve this goal were; differential scanning 

calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TGA), 

dilute solution viscometry and dynamic viscosity measurement via capillary die. In the work, 

it was pointed out that the main problem in polymer recycling was the segregation, which 

was caused by the impurities that catalysis hydrolysis. In the study, scrap PET from 

beverage bottles were obtained from different sources, and extruded in a laboratory scale 

single screw extruder. Results showed that the presence of more than 50 ppm PVC made 

PET unsuitable for more advanced processes such as film blowing. 

  

Spinace et al. (2000) processed the PET used for production of soft drink bottles for five 

times using SSE, and characterized rheological, mechanical and thermal properties of the 

product including carboxylic end group number and melt flow index (MFI) analysis. The 

study showed that after three processing cycles, changes in the crystallinity degree and in 

the mechanical properties were occurred. It was pointed that the increase in MFI and 

carboxylic end group concentration was a sign of mechanical degradation. The experiments 

showed that the temperature profile changes were more affective using low screw speed, 

which shows that the residence time has a direct affect on polymer degradation. Another 

result of the study was that even after five processing cycles, thermal degradation behavior 

of PET did not change. 

 

Chelsea Center For Recycling And Economic Development (University of Massachusetts), 

published the results of their laboratory study about “potential end uses for polyester fiber 

waste”, on their technical report no.33 (2000). The PET fiber wastes were extruded using 

different compositions of materials such as PET bottle waste, glass fiber and polycarbonate. 

Products of these different compositions were tested separately with and without further 

processing like molding. The effects of different factors, such as processing conditions, 

presence of impurities and additive types, on the product’s quality and properties were 

discussed. 
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Oromiehie and Mamizadeh (2004) studied PET beverage bottle recycling and methods to 

improve its properties. The aim was to process and modify the mixture of virgin and recycled 

grade PETs, with and without chain extender (PP-graft-MA) by different extrusion methods 

and then to characterize the samples. Determination of tensile and thermal properties, 

viscosity and Mw, and impact tests were carried out. Results showed that the intrinsic 

viscosity ([η]) decreased as thermal process cycles and amount of recycled PET 

concentration increased. Also, the chain extender improved the properties of the blends. 

 

Assadi et al. (2004) studied the degradation types of PET during recycling by extrusion. The 

experiments were performed using scraps of post-consumer PET, in a single screw extruder 

at different temperatures. The Mw of the extruded samples were determined using steric 

exclusion chrotomography (SEC), rheological tests and infrared measurements (IR). The 

experiments were carried out using nitrogen and air environments with different air 

pressures. A kinetic model for PET degradation was built, and results obtained from the 

model were compared with the experimental ones. This comparison showed that model 

results were in good match for nitrogen and oxygen environments. 

 

Ajawa and Pawel (2005) made a brief review of PET recycling, taking the subject starting 

from the synthesis of virgin PET, its properties, processing and applications. Use of chain 

extenders was discussed, with the available machinery such as extruders to overcome the 

molecular weight loss problem during recycling. Finally, to convert the RPET to a valuable 

product, processes such as injection stretch blow molding (ISBM), which is a way to produce 

PET bottles, were reviewed. 

 

2.3 Model Predictive Control (MPC) 

 

Marchetti et al. (1983) described the basics of a predictive control algorithm that was based 

on discrete convolution models. Developed SISO predictive controller was compared to a 

PID controller for three process models on simulation levels, and for an experimental 

continuous stirred tank heater. Although predictive controller was superior on simulations, a 

significant improvement was not observed in the experimental system. However, it was 

pointed that the real advantage of predictive controllers was for MIMO cases. 

 

Maurath et al. (1989) discussed the effects of the controller design parameters on closed 

loop performance and robustness for an unconstrained SISO linear process. A stability 
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analysis that considers the plant/model mismatch was developed. Effects of design 

parameters on controller’s performance were illustrated on several examples. 

 

Brengel and Seider (1989) developed a model predictive algorithm for nonlinear MIMO case. 

The control actions were calculated with a multi step predictor by linearizing ODEs. The 

proposed algorithm was capable of easily handling of input and output constraints. In 

simulation studies, the multi step predictor out performed the single step predictor. 

  

Garcia et al. (1989) published a survey paper about MPC and compared several predictive 

controller algorithms such as DMC, MAC and IMC. They pointed that the significant 

advantage of MPC was the ‘flexible constraint handling capability’. Applications of MPC on 

nonlinear systems were also investigated and concluded that the adjustment of MPC was 

easier although it was not more robust than conventional feed-back controllers. 

 

Morningred et al. (1992) developed an adaptive nonlinear controller similar to standard 

linear model predictive controller. In the algorithm the number of tuning parameters could 

be reduced to one. For the developed algorithm, effects of the modeling errors were shown, 

and it was compared to PI, adaptive linear predictive controller and non-adaptive nonlinear 

predictive controller, on a CSTR model. Results showed that the controller was 

computationally efficient and could perform well even initially designed with modeling errors. 

 

Meziou et al. (1996) used a dynamic CSTR model of an ethylene-propylene-diene 

polymerization reactor to simulate the servo and regulatory performance of three input three 

output MIMO DMC. Polynomial equations that relate the process’s gains to the magnitude of 

the input change were derived, because the amplitude of the change in the input caused 

variations in the gains of the process. Simulation results showed that the capability of MIMO 

DMC to reduce the off-spec product amount caused by the set point changes and/or 

disturbances. 

 

Özkan et al. (2003) controlled the polymerization reaction in a CSTR with the developed MPC 

algorithm that different linear models instead of a non-linear model. The objective function 

included finite and infinite horizon cost components. The finite component made the system 

move towards the desired operating point and the infinite component, having an upper 

bound, brought the system to desired steady state operating point. Simulation results 

showed that the proposed controller was successful at achieving the control goals. 
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Biagiola et al. (2005) published their case study about ‘use of state estimation for inferential 

non-linear MPC’. The proposed non-linear estimator updates the state vector and estimates 

the unmeasured disturbances where feed concentration was not measured. In the algorithm 

concentration was inferred via temperature measurements. In simulation studies the 

proposed non-linear observer non-linear controller structure is found to have good 

performance to reject disturbances even in the presence of significant disturbance variations 

and noisy measurements. 

 

2.4 Inferential Control 

 

Doyle III (1998) published a review in which inferential control, linear and non-linear 

estimation techniques like moving horizon estimation methods or linearization by output 

injection were presented and discussed. New theoretical approaches were presented on a 

simple chemical reactor example. 

 

Ogawa et al. (1999) built an inferential control scheme to control the melt index (MI) of the 

product of a HDPE process. The MI was estimated by using the measurements of feed and 

co-catalyst concentration and temperature measurements. The constructed inferential model 

was based on a previous work of writers, simplifying it by means of computational burden. 

The calculation of the control law was based on the relations of inferential model. The 

system showed good regulatory and set point tracking responses on an industrial polyolefin 

production. 

 

Wang et al. (2001) implemented an inferential MPC algorithm on a food extruder, where 

screw speed was manipulated variable and the bulk density of the product was controlled 

variable, in order to control the product quality. The work also demonstrates the building a 

continuous time dynamic model based on multi-rate sampled data. Experimental application 

of the algorithm showed that the inferential control system maintains the product quality 

within the specific ranges. 

 

Bahar et al. (2004) utilized MPC to build an inferential control loop of an industrial multi 

component batch distillation column. The MIMO MPC controlled the product compositions in 

a feed-back manner, using the estimated values of the product compositions coming from 

the artificial neural network (ANN) estimator. The estimator used the temperature 

measurements from the selected trays. Simulation results showed that the unconstrained 
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and constrained MPC performances using ANN estimator, could be alternative to the 

controller using direct composition values. 

 

2.5 Singular Value Decomposition (SVD) 

 

Klema and Laub (1980) have given a descriptive introduction to the singular value 

decomposition (SVD) from the point of view of its computation and potential 

applications. They emphasized certain important details of the implementation of 

SVD on a digital computer. They also included a number of illustrative examples and 

computed solutions, and concluded that singular value analysis forms a fundamental 

basis of modern numerical linear algebra. 

 

Rojas et al. (2004) proposed a strategy for the solution of quadratic performance index of 

the optimal control law with constraints on inputs. A MIMO system whose Hessian of the 

performance index had a large condition number was chosen for the illustration. Sub-optimal 

control laws were obtained using SVD on Hessian matrix. Proposed strategy was compared 

against MPC. Although the results were similar, proposed strategy held the advantage of 

requiring no solution to the quadratic programming problem. 

 

Zheng and Hoo (2004) used SVD technique to reduce the order of a distributed parameter 

system (DPS). The system at hand was a tubular reactor, which was modeled as time series 

model (infinite order). Order of this dynamic model was reduced to 3rd order in temperature 

and 1st order in concentration. This linear model was then used as the plant model in a 

quadratic dynamic model based controller (QDMC) and results were illustrated. 

 

Luyben (2006) quantitatively compared the effectiveness of five different criteria for 

selecting the temperature control trays in a distillation column. Their effectiveness were 

tested on several systems ranging from ideal binary to azeotropic multi-component. Results 

showed that among the tested criteria, SVD analysis provides a simple and effective method 

for selecting tray locations. 
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CHAPTER III 

 

 

BACKGROUND INFORMATION ON PET AND CONTROL TECHNIQUES 

 

 

 

The detailed information about PET (synthesis, recycling and degradation), control 

techniques (MPC and inferential control) and SVD analysis used in the study are given 

below. 

 

3.1 Poly(ethylene terephthalate) (PET) 

 

PET is a thermoplastic resin of polyester family. It was patented in 1941 and was 

commercially introduced as a textile fiber in 1953. The first PET bottle was patented in 1973. 

 

PET has become a very important packaging material due to its good barrier and mechanical 

properties. It makes a good barrier to gas, to alcohol (requires additional treatment) and to 

many of the solvents. Furthermore semi-crystalline PET presents good thermal and 

mechanical properties such as high melting temperature (approximately 250 oC). 

 

PET can be synthesized by trans-esterification and/or condensation reactions as shown in 

Figure 3.1. Depending on its processing conditions, amorphous (transparent) or semi-

crystalline (opaque and white) PET can be obtained. 

 

The bulk synthesis of PET is carried out at 270 to 285 oC, with continuous removal of gas to 

pressure below 1 mm Hg. The removal of methanol or water increases the molecular weight 

of the polymer. If the methanol or the water were left in the same system, they would cause 

a reverse reaction which would cause depolymerization. 
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The polymerization of PET can be carried out in the presence of a catalyst such as Sb, Ba, 

Ca, Cd, Co, Pb, Mn, Mg, Ti, and Zn. 

 

 

 

Figure 3.1: PET synthesis reactions: (a) trans-esterification reaction and (b) condensation 

reaction [Ajawa and Pavel, 2005]. 

 

3.1.1 Recycling 

 

PET recycling is the activity in which “post-consumer PET” or “recycled PET (RPET)”, mainly 

formed of the collected beverage bottles, is reprocessed to a valuable product. 

 

PET is non-degradable in nature, and its recycling is forced by environmental laws. 

Furthermore, post-consumer PET is cheaper than virgin (non-processed) PET. For these 

reasons PET recycling represents one of the most successful and widespread example of 

polymer recycling. Today, approximately 1.5 million tons of PET is collected worldwide per 

year. Petcore, the European trade association that fosters the collection and recycling of 

PET, forecasts that in Europe alone, collection will exceed one million tons by 2010 

[petcore.org]. 
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During thermal recycling process, mechanical effects, moisture and presence of impurities 

(PVC, adhesives, dyes, etc.), cause the loss of molecular weight (degradation) and lead to a 

decrease in intrinsic viscosity ([η]), resulting in decrease in mechanical properties. RPET 

having an intrinsic viscosity about 0.60 dl/g would be appropriate for fiber production, 0.65 

dl/g for film production, 0.76 dl/g for bottle production and 0.85 dl/g for tire cord production 

[Chelsea Center For Recycling And Economic Development, 2000]. 

 

RPET should satisfy the specifications given in Table 3.1 to be used as raw material. 

Table 3.1: Minimum requirements for RPET flakes to be reprocessed [Ajawa and Pavel, 

2005]. 

Property Value 

Intrinsic viscosity ([η]) > 0.7 dl/g 

Melting temperature (Tm) > 240 oC. 

Water content < 0.02 wt.% 

Flake size 0.4 mm < D < 8 mm 

Dye content < 10 ppm 

Yellowing index < 20 

Metal content < 3 ppm 

PVC content < 50 ppm 

Polyolefin content < 10 ppm 

 

3.1.2 Degradation 

 

PET undergoes thermal, mechanical and hydrolytic chain scissions during recycling. Polymer 

chains break by giving the volatile products mainly terephthalatic acid, acetaldehyde and 

carbon monoxide. A sample reaction is given in Figure 3.2. 
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Figure 3.2: Thermal degradation of PET [Karayannidis et al., 2000]. 

 

 

Mechanical degradation occurs due to the physical effects such as shear stress applied by 

the extruder screws. 

 

Hydrolytic degradation can be seen as the major effect reducing the molecular weight. This 

type of chain scission is catalyzed by the impurities readily present in RPET, such as water 

moisture, PVC, acid producing elements, dyes, etc. Acid alcohol condensation, catalyzed by 

water is given in Figure 3.3 as an example. Hydrolytic degradation can be reduced by drying 

the PET prior to processing. 

 

 

Figure 3.3: Acid alcohol condensation of PET [Karayannidis and Psalida, 2000]. 
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3.2 Control Techniques 

 

In the control of the extruder system (see Chapter 4) MPC and PID techniques using 

inferential models are used. A summary on MPC control technique and inferential control will 

be given below. 

 

3.2.1 MPC 

 

Beginning from the late 1970’s predictive control techniques such as ‘Model Algorithmic 

Control (MAC)’ [Richlet et al., 1978] (also known as Model Predictive Heuristic Control or 

MPHC) or ‘Dynamic Matrix Control (DMC)’ [Cutler and Ramaker, 1980] began to gain 

importance with the improving computer technology. Up to now, predictive control 

techniques proved their efficiencies in many applications. 

 

Although different MPC algorithms utilize different computation techniques, all utilize the 

previous knowledge about plant dynamics (plant model) to predict what the plant output will 

be after a definite time (prediction horizon), and calculates the next n number of control 

actions (control horizon) in an optimal manner.  

 

3.2.1.1 MPC Algorithm 

 

 

Time 
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Figure 3.4: Open loop step response of a linear plant [Seborg et al., 1989]. 
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In the MPC algorithm, future projection of the plant is calculated using the step response 

coefficients (see Figure 3.4) in Equation 3.1 [Marchetti, 1981]. 

pTp ÊmAE +∆−=  
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(3.1) 

where subscript R denotes the prediction horizon and n denotes the sampling instant. The 

superscript c denotes the corrected prediction and d denotes the desired value. The letters 

y, m, a and E are used to represent the plant output, plant input, step response coefficients 

and  error respectively. The predicted errors, P, are calculated as follows. 
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If a perfect match between the predicted and the desired values is wanted (Ep = 0) then, 

from Equation 3.1 the control action can simply calculated as, 

pT ÊAm 1
)(

−=∆  (3.3) 

Equation 3.3 gives the control action at present sampling instant by predicting the next R 

number of plant output. By applying the first element of ∆M vector and repeating the 

procedure at every sampling instant the plant output is kept on desired values. But this 

control law does not come out to be satisfactory as it tries to force the output to the desired 

value at one sampling instant. To overcome this problem two proposed approaches are 

Model Algorithmic Control (MAC) [Mehra et al., 1982; Richalet et al., 1978] and Dynamic 

Matrix Control (DMC) [Cutler and Ramaker, 1980]. 

 

DMC reduces the dimension of ∆M from R (prediction horizon) to L (control horizon), and 

only L number of future control actions are calculated. Thus, Equation 3.1 can be rewritten 

as, 

pp ÊMAE +∆−=  (3.4) 
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A being the RxL “Dynamic Matrix” equal to the first L columns of AT. Optimal solution of 

Equation 3.4 is obtained by minimizing the performance index by least squares. The solution 

for the control action gives, 

pTT ÊAAAM 1
)(

−=∆  (3.5) 

“One difficulty with the above control law is that if the ATA matrix is ill conditioned it can 

result in large changes in the manipulated variable (ringing) or even unstable process” 

[Marchetti, 1983]. This problem can be eliminated by introducing “weighting matrices” 1W  

and 2W , which limit the manipulated variable moves, to the performance index. 

pTPTp ÊWMEWEMJ 21)()( ∆+=∆  (3.6) 

which results in the following control law: 

pTT ÊWARAWAM 2

1

1 )(
−+=∆  (3.7) 

Here, again, the first control action is applied and new control law is calculated by observing 

the plant output at each step. As only the first control action, nm∆ is applied, the control law 

can be reduced to, 

pT

nn mm ÊK+= −1  (3.8) 

where elements of KT (gain matrix), are the elements of the first row of (ATA)-1AT in 

Equation 3.5. 

 

3.2.1.2 Constrained MPC 

 

Up to this point no constraints are taken into account in the calculation of the control law. 

However, in most processes, constraints should be imposed to the control actions, due to 

the physical limitations and/or safety margins of the plant. Constraints may also be placed to 

the plant output in order to prevent high deviations on product quality. When the constraints 

are introduced, then the solution of the objective function becomes an optimization problem 

in the following form: 
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3.2.3 Inferential Control 

 

In order to build a feed-back control algorithm, regardless of the controller type, on-line 

measurement of the controlled output(s) is required. However, in quite a large number of 

chemical process applications direct on-line measurement of the controlled output is late, 

expensive or not available at all, which are the cases that limits the construction of the feed-

back control scheme [Seborg et al., 1989]. Feed-forward control could be utilized in such 

cases being limited to the presence of measured disturbances and an appropriate model. For 

the cases where neither on-line measurement of output nor unmeasured disturbances is 

available, inferential control can be used to keep track of the unmeasured output. A block 

diagram of inferential control loop is given in Figure 3.5. 

 

 

Figure 3.5: Block diagram for inferential control loop. 
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3.3 Singular Value Decomposition (SVD) 

 

SVD is an extension of singular value analysis (SVA). It is used to determine the rank and 

condition of a matrix and also to determine the strengths and weaknesses of a set of 

equations [wikipedia.org]. In control point of view, SVD is utilized for controlled-manipulated 

variable pairing for a MIMO system. In the frame of this work, only control aspect of SVD 

will be given. 

 

In the simplest form, SVD is the factorization of a rectangular matrix, as follows: 

TVUK Σ=     (3.10) 

Where K is the mxn matrix, U is the nxm orthonormal matrix called left singular matrix 

that contains output basis vector directions forK ,Σ  is an nxm diagonal matrix of singular 

values that can be thought as  scalar gains, and V is an mxm orthonormal matrix called 

right singular matrix that contains input basis vector directions for K . 

 

Steady state relations of a MIMO system, with n number of outputs and m number of inputs, 

can be expressed in vector-matrix form as: 

  GMY =   (3.11) 

Where, Y is the output vector, G is the steady state gain matrix and M is the input vector. 

 

It is possible to find which output is sensitive to which input by applying SVD toG . From the 

resulting U andV matrices, largest element of 1st column of U ( ny∆ ) is most sensitive to 

the changes in the largest element of 1st column of V ( mm ), largest element of 2nd column 

of U to the largest element of 2nd column ofV , etc. 

 

For the cases where number of inputs and outputs of the system are not equal to each 

other, the pairings corresponding to the zero elements of Σ does not have to be calculated. 

Such a calculation is called as the compact SVD. 

 

Another aspect of SVD is the Condition Number, CN. It is defined as the ratio of the largest 

and the smallest non-zero singular values: 
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r

lCN
σ

σ
=   (3.12) 

For a large CN of G, the system is said to be ill-conditioned. Furthermore, if G is singular, 

then it is ill-conditioned. 
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CHAPTER IV 

 

 

EXPERIMENTAL STUDIES 

 

 

 

In the experimental studies done, RPET is extruded at different processing conditions and 

samples are collected for molecular weight determination to obtain degradation data. 

Materials used, experimental procedure, setup and machinery are presented in this chapter.  

 

4.1 Properties of RPET and Trifluoroacetic Acid (TFA) 

 

RPET is used in the form of flakes in the experiments. The properties of the RPET as 

specified by the supplier (AdvanSA, Adana) are presented in Table 4.1. 

 

Two commonly used solvents for PET are, 40wt% tetracholoro ethane – 60wt% phenol 

mixture and trifluoroacetic acid (TFA). Being carcinogenic, the first one is eliminated and 

TFA is used as the solvent. Figure 4.1 shows the molecular structure of TFA. 

 

 

Figure 4.1: Molecular formula of trifluoroacetic acid (TFA). 

 

 

Mark Hauwing constants for PET-TFA solution at 25 oC are 4
1014

−= xK and 65.0=α  

[Brandrub and Immergut, 1989]: 
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Table 4.1: Properties of RPET resin (AdvanSA) 

PVC 60 

Polyethylene 5 

Metal pieces 0 

Adhesive 10 

Contaminants (ppm) 

Paper pieces 3 

Value L, Shining 66.1 

Value B, Yellowness 2.6 Lighting Characteristics 

Value A, Redness -2.0 

Intrinsic Viscosity ([η]) 0.750 dl/g 

Glass Transition Temperature (Tg) 60 ºC Material Properties 

Melting Temperature (Tm) 255 ºC – 260 ºC 

 

4.2 Experimental Setup 

 

RPET is extruded using a laboratory scale co-rotating twin screw extruder (Thermoprism TSE 

16TC, L/D = 24) as shown in Figure 4.2 to obtain degradation data. The schematic drawing 

for the extruder system is given in Figure 4.3. 

 

The extruder had five electrical heaters through the barrel, whose temperatures can be set 

separately. The cooling is provided by passing through cooling water in the barrel. The feed 

is supplied via a brabender type feeder whose screw speed can be adjusted. The parameters 

that can be set from the control panel of the extruder are screw speed, feed rate (feeder 

screw speed), and temperatures of each 5 heating zones. 

 

The available measurements from the control panel are screw speed, temperatures of each 

five heating zones, melt temperatures from four distinct points, die pressure and 

temperature. A photograph of the control panel is given in Figure 4.4. 
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Figure 4.2: Extruder used for experiments. 

 

 

Figure 4.3: Schematic drawing for the experimental setup. 
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Figure 4.4: Control panel of the extruder (a: die temperature and pressure, b: melt 

temperatures, c: barrel temperatures, d: screw speed and torque, e: main feed rate). 

 

4.3 Experimental Procedure 

 

The experiments are carried out in two phases. In the first phase preliminary and steady 

state experiments are done and in the second phase dynamic experiments are carried out. 

 

4.3.1 Preliminary Experiments 

 

In the preliminary experiments the effect of temperature on viscosity and molecular weight 

is investigated. Also the calibration of the extruder is done. 

 

Effect of Temperature: The effect of temperature on RPET degradation is studied by 

eliminating other parameters. Samples are packed firmly in aluminum foil and are held in oil 

bath at 4 different temperatures (270, 280, 290, 300oC) for 1, 3 and 5 minutes. The intrinsic 

viscosities ([η]) of these 12 samples are determined by dilute solution viscometry (see 

Appendix A). 
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The choice of studied temperature and time ranges are based on the studied temperature 

and residence time range of extrusion. The residence time range of the extrusion depends 

upon the screw speed in a twin screw extruder (see Appendix B). Thus in these 

experiments, effect of screw speed in means of residence time is also included indirectly. 

Auto ignition temperature of silicone oil limited the testing of higher temperatures. 

 

Calibration of the Extruder: In order to find the flow rate (g/min) equivalent of feed rate 

setting of extruder control panel, the feed flow is collected for one minute intervals and 

weighted. Different feed rate settings such as 25, 50, 75 and 100, are used and average 

values for flow rates are found by repeating the experiments. 

 

The residence times for the studied screw speeds (50, 125, 200, 275, 350, 425 and 500 

rpm) are measured by using carbon-black containing polyethylene (PE) pellets as indicator. 

The indicator pellets are dropped manually into the feeding point while the main feed 

(RPET) is being fed. The time when the product color (originally semi-transparent or opaque 

white) changed from gray to black is recorded as the average residence time (ART). 

 

4.3.2 Steady State Experiments 

 

The aim of these experiments is to determine the intrinsic viscosities ([η]) and 

corresponding molecular weights (Mv) of products processed at different operating 

conditions. 

 

RPET is extruded at 3 different temperatures1, 270, 290 and 310 oC; 4 different feed rate 

settings, 25, 50, 75 and 100; and 7 different screw speeds, 50, 125, 200, 275, 350, 425 and 

500 rpm, resulting in 84 samples. 

 

After the system is reached its steady state operating conditions (t >> ART) (see Appendix 

B) 25-30 grams of samples are collected from the extruded product. The samples are too 

                                                

 
1 The barrel temperatures’ setting is a parameter itself for output properties. In this study, the temperature of each 

zone is set constant and equal to each other, to eliminate the effect of this parameter. For example, T = 270 
oC 

means that all the temperatures along the barrel are set to 270 
oC. 
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thin and elastic to be pelletized in the pelletizer, thus they are cut into small pieces at hand 

to homogenize. From homogenized sample particles, 0.06 gram is weighed for intrinsic 

viscosity ([η]) measurements. 

 

4.3.3 Dynamic Experiments 

 

These experiments are aimed to collect the necessary data to model the dynamic response 

of the system output (Mv) to the changes in the process parameters (SS, FR and T). In other 

words aim is to find out the pattern that Mv follows from one operating condition to other. 

 

Using the data obtained from steady state experiments, operating conditions are selected as 

SS = 100 rpm, FR = 7.12 g/min (feed rate setting = 75) and T = 270 oC, for a product 

having an intrinsic viscosity value of [η] = 0.6 dl/g, which is suitable for fiber production 

[Chelsea Center For Recycling And Economic Development, 2000]. 

 

Thus, step changes given in Table 4.2 are introduced one at a time starting from this 

operating point. Each step change is given after bringing the system to the initial steady-

state operating point.  

 

Table 4.2: Step changes given to the process variables. 

Variable 

 

Initial steady state 

value 

Plus 

change 

Minus 

change 

Screw speed 100 rpm 25 rpm 50 rpm 

Feed rate1 7.12 g/gmol 1.04 g/gmol 1.42 g/gmol 

Temperature 270 oC 20 oC 20 oC 

 

 

For screw speed and feed rate changes, the samples are collected at 10 second intervals, 

whereas samples are collected at 20 second intervals for temperature changes. This is 

because the system responded to the changes in temperature more slowly. The first sample 

                                                

 
1 It should be noted that, for step changes on feed rate, feed rate setting of the control panel are taken as the 

basis. Calibration data for the feed rate setting and the material flow rate can be found in Appendix C 



 

 

30 

 

 

(sample at t = 0) is collected at the time when the step change is introduced. For every 

sampling time, outcoming product is collected for 5 seconds. Then, these samples are 

broken into small pieces manually for homogenization and 0.06 gram of each sample is 

weighted for intrinsic viscosity measurement. 
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CHAPTER V 

 

 

RESULTS AND DISCUSSIONS 

 

 

 

The results of preliminary experiments for the verification of supplier data for RPET 

specifications and the experiments on the effect of temperature on degradation of PET are 

given below. These will be followed by the results of experiments on the extruder under 

steady-state and transient conditions. The results of simulation and modeling studies will be 

introduced with discussions. 

 

5.1 Preliminary Experimental Results 

 

Verification of Supplier’s Data: The intrinsic viscosity ([η]) and viscosity average molecular 

weight (Mv) of RPET is measured without processing the RPET samples, in order to check 

with the supplier’s data. The results of these experiments are given in Table 5.1. 

 

It is found that the experimentally measured value for [η] = 0.75 and corresponding 

molecular weight value, Mv = 18363 g/gmol are in a very good agreement with the 

supplier’s data with an error of + 0.001 dl/g in [η] and + 26 g/gmol in Mv. 

 

Effect of Temperature on RPET Degradation: As given in Chapter 4, these experiments are 

performed in oil bath where samples of RPET are exposed to temperature in the range of 

270 - 300 oC for different time durations. The results in terms of Mv are given in Figure 5.1. 
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Table 5.1: Measured intrinsic viscosity and molecular weight of unprocessed RPET. 

Sample No. 

Intrinsic viscosity ([η]) 

(dl/g) 

Viscosity average 

molecular weight (Mv) 

(g/gmol) 

1 0.750 18363 

2 0.747 18248 

3 0.751 18401 

Avarage 0.749 18337 

Supplier Data 0.750 18363 

 

 

 

Figure 5.1: The effect of temperature on molecular weight of RPET. 

 

Figure 5.1 shows that Mv does not follow a simple decreasing trend with increasing 

temperature with time. Instead, there exist some optimal points (or regions) where Mv 

increases and then decreases. Although not studied in this work, one possible cause may be 

the branching or crosslinking, which was also observed in the previous studies [Spinace et 

al., 2000; Pawlak et al., 2000; Assadi et al., 2004] on RPET degradation. It is known that 

heat causes the longer polymer chains break into smaller ones. In case of branching or 

crosslinking, these smaller chains form new bonds on the backbone of another chain, as a 

result of coupling alkyl radicals generated by the oxidation chain process, with the effect of 
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temperature [Assadi et al., 2004]. Furthermore, the contaminants of RPET, such as dyes and 

adhesives may have a catalyzing effect on this reaction. 

 

Thus, it can be seen from Figure 5.1, Mv decrease within for temperatures 270, 290 and 300 
oC. The only disagreement with this observation is the trend for 280 oC. 

 

5.2 Steady State Experimental Results 

 

Steady-state experiments with the laboratory scale co-rotating twin screw extruder are done 

in order to find the operating point which will produce an output with the desired intrinsic 

viscosity and molecular weight values of [η] = 0.6 dl/g and Mv = 11500 g/mol [Chelsea 

Center For Recycling And Economic Development, 2000]. A product with these values is 

suitable for the fiber production, one of the most important areas of use of the RPET. 

 

Thus, RPET is extruded at three different barrel temperatures (270, 290 and 310oC), four 

different feed rates (3.85, 5.70, 7.12 and 8.16 g/min), and seven different screw speeds 

(50, 125, 200, 275, 350, 425 and 500 rpm). The viscosities of the samples from these 84 

runs are measured to obtain the Mv relations as a function of process parameters. The 

results are given in Figures 5.2 to 5.4. 

 

Figures 5.2 to 5.4 indicate that molecular weights of samples (see Appendix C) are as a 

function of screw speed at different temperatures and feed rates. The range of molecular 

weight of samples are approximately 2000 - 15000 for 270 oC, 6000 - 13000 for 290 oC, and 

2000 - 11000 for 310 oC. These trends prove the degradation of Mv with temperature. 

 

A similar generalization cannot be done for the effect of screw speed and feed rate on Mv. 

Shear stress exerted by the screws and the filling ratio, which is a function of both the screw 

speed and the feed rate are the two most probable effects on Mv degradation. The effect of 

filling ratio can be explained with the heat and shear consumed by unit amount of material 

in the extruder. Thus, oscillatory behavior of molecular weight can be due to the adverse 

effects of these two variables. Increasing the screw speed increases the shear stress applied 

and decreases the filling ratio, ending up in a decrease in Mv. 
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Figure 5.2: Effect of SS and FR on Mv at T = 270 
oC. 

 

 

 

Figure 5.3: Effect of SS and FR on Mv at T = 290 
oC. 
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Figure 5.4: Effect of SS and FR on Mv at T = 310 
oC. 

 

 

After the steady state measurements are completed, intrinsic viscosities of randomly 

selected nine samples are measured again to check the consistency of the previous 

measurements. As can be seen from Table 5.2, the precision of the measurements are 

acceptable. 

 

In order to produce a product with a Mv of 11500 g/mol, it can be concluded from Figures 

5.2 to 5.4 (◊ marked points) that, this value can be obtained by the parameters SS = 100 

rpm, FR = 7.12 g/min and T = 270 oC. It is important to note that the operating point must 

be such that possible variations in the variables must not result in degradation in Mv. This is 

a required flexibility for a safe operation. If, for example, process temperature is chosen as 

290 oC, then Mv for the product can only be achieved in a very restricted range. Due to large 

oscillation in the behavior of Mv as a function of SS and FR, at T = 310 
oC Mv = 11500 

g/gmol cannot be obtained for any of the SS and FR values in the selected ranges. 
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Table 5.2: Results of consistency check 

Previous measurement Consistency measurement 

Sample from: 

[η] 

(dl/g) 

Mv 

(g/gmol) 

[η] 

(dl/g) 

Mv 

(g/gmol) 

T: 270 oC, FR: 25, SS: 200 rpm 0.526 10549 0.523 10221 

T: 270 oC, FR: 75, SS: 125 rpm 0.632 14053 0.634 14123 

T: 270 oC, FR: 100, SS: 500 rpm 0.570 11966 0.563 11731 

T: 290 oC, FR: 25, SS: 50 rpm 0.393 6689 0.392 6657 

T: 290 oC, FR: 50, SS: 425 rpm 0.614 13344 0.614 13426 

T: 290 oC, FR: 100, SS: 500 rpm 0.550 11310 0.558 11565 

T: 310 oC, FR: 25, SS: 200 rpm 0.350 5584 0.347 5497 

T: 310 oC, FR: 25, SS: 200 rpm 0.479 9116 0.483 9241 

T: 310 oC, FR: 25, SS: 200 rpm 0.484 9250 0.486 9307 

 

5.3 Dynamic Experimental Results 

 

The dynamic experiments which are aimed to find dynamic models for the process under the 

change of the manipulated variables and in the presence of disturbances are done with the 

changes of screw speed from 100 rpm to 125 rpm and from 100 rpm to 50 rpm, feed rate 

setting from 75 (7.12 g/min) to 100 (8.16 g/min) and from 75 (7.12 g/min) to 50 (5.70 

g/min), barrel temperatures from 270 oC to 290 oC and from 270 oC to 250 oC. Each change 

is introduced while keeping the other parameters constant at operating point. 

 

The step sizes are chosen to keep the changes in the variables in the range of steady-state 

experiments. The results of dynamic experiments are given in Figures 5.5 to 5.7 for positive 

and negative step changes in screw speed, feed rate and temperature respectively.  

 

It is observed from the Figures 5.5 to 5.7 that, the system responds differently for different 

inputs proving the highly non-linear structure of the process. In Figure 5.5.a response of the 

system to a positive deviation in screw speed is given while in Figure 5.5.b response in Mv to 

a negative deviation in SS is given. The natures of Figure 5.5.a and Figure 5.5.b are 

completely different. This trend is also seen in Figure 5.6 and 5.7. Accordingly, it is decided 

to use different process models depending upon the input deviations or simply depending 

upon the deviation in the output, Mv.  
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Figure 5.5: System responses to (a) positive (+25 rpm) and (b) negative (-50 rpm) steps 

on screw speed. 

 

 

Figure 5.5 shows that screw speed or simply average residence time (ART) for the RPET in 

the extruder (see Table B.1) is more dominant on Mv than other mechanical effects in terms 

of degradation. 

 

Considering Figure 5.6, as feed rate increases, amount of material in the extruder (filling 

ratio) increases, therefore heat and shear consumed per unit amount of material decreases, 

resulting in a increase in Mv of the product. Thus, as feed rate increases (Figure 5.6.a) Mv 

will increase (less degradation occurs), and as feed rate decreases (Figure 5.6.b) Mv will 

decrease (more degradation occurs). 

 

In Figure 5.7 effect of temperature on Mv degradation is shown at constant screw speed and 

feed rate. The explanation of this trend cannot be done with the results of steady-state 

experiments and with the known literature, except that the formation of new bonds 

(branching/crosslinking) is lower (or does not exist at all) at 250 oC compared to 290 oC. 
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Figure 5.6: System responses to (a) positive (+1.04 g/min) (+25) and (b) negative (-1.42 

g/min) (-25) steps on feed rate. 

 

 

 

Figure 5.7: System responses to (a) positive (+20 oC) and (b) negative (-20 oC) steps on 

temperature. 
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5.4 Modeling Studies 

 

As stated before, the experimental data obtained from the dynamic experiments are aimed 

to construct dynamic models of the process for control purposes. The experimental results 

which are illustrated in Figures 5.5 to 5.7 are revealed that the system behavior is highly 

nonlinear in nature. Therefore, the process needed to be modeled separately for the 

different changes in inputs as positive or negative. Thus, two separate models, one 

representing the response to positive and the other one to negative changes are obtained 

for screw speed, feed rate and temperature inputs separately and named as ‘SS Model’, ‘FR 

Model’ and ‘T Model’. This model representation is shown in Figure 5.8. 

 

As can be seen from the Figure 5.8, the input of each dynamic model is a different input 

variable of the extruder and the output of the model is the molecular weight of the product 

representing the dynamic behavior of the extruder machinery as a whole.  

 

The experimental data must be represented analytically by a suitable model in order to be 

used in the control algorithm. Thus, in the modeling studies three different modeling 

techniques (single transfer functions, dual transfer functions and convolution models) are 

tried in order to obtain the best fit. In the first technique a transfer function is used for 

input-output relationship for the extrusion. In the second technique, two different transfer 

functions are used for two different consecutive periods throughout the transient response 

of the system. In the third technique, discrete convolution model is used. MATLAB software 

is utilized in all these studies. 

 

In the modeling studies, experimental data are normalized with respect to initial steady state 

operating point. In normalization, each deviation variable (difference from the initial steady-

state value) is divided by the magnitude of the step input. Consequently, it is assumed that 

the process is behaving linearly in the inputs’ magnitude ranges. This assumption will be 

verified by the simulation studies done for different magnitudes of the inputs. 
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Figure 5.8: Model representation of the system. 

 

 

The formulation of the normalization can be expressed as: 

m

MM
M

vnvN

v
∆

−
=∆ 0       (5.1) 

where N

vM∆ is the normalized molecular weight of the product, m is the magnitude of the 

input (SS, FR or T) and n is the data points. 
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5.4.1 Modeling Technique 1: Single Transfer Functions 

 

In this method, the process is tried to be modeled by a single transfer function. Different 

forms of transfer functions tested by changing the order (1st, 2nd and 3rd) and by changing 

the nature (integrator, dead-time and zero-poles). 

 

‘System identification toolbox’ of MATLAB is used to identify the system automatically. 

However, toolbox failed in identification and custom codes (see Appendix D) are generated. 

  

In modeling studies, for every parameter of the transfer function utilized a step response of 

the transfer function is obtained for a specific input and the absolute error, between it and 

the experimental data points are evaluated. The best fits giving the minimum integral 

absolute error (IAE) scores are given in Table 5.3 with their normalized IAE scores (divided 

by steady-state gains). The response curves to unit step changes are given in Figures 5.9 to 

5.11 in terms of normalized molecular weight ( N

vM∆ ) as a function of time. 

 

 

Figure 5.9: Plant and model responses to a (a) positive and (b) negative unit step 

changes in SS (single transfer function case). 
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          Table 5.3: Single transfer function models and their normalized IAE scores. 
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Figure 5.10: Plant and model responses to a (a) positive and (b) negative unit step 

changes in FR (single transfer function case). 

 

 

Figure 5.11: Plant and model responses to a (a) positive and (b) negative unit step 

changes in T (single transfer function case). 
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As can be seen from Figures 5.9 to 5.11 the system dynamics can be modeled by a single 

transfer function for each input. However the errors between the experimental data points 

and the models are large (large IAE scores) especially for the positive input in SS and 

negative input in FR. 

 

5.4.2 Modeling Technique 2: Dual Transfer Functions 

 

In the second method, two transfer functions are used to model the system. As stated 

before, the system under study is highly non-linear (Figures 5.5 to 5.7). Although transient 

positive and negative responses are considered differently, in modeling, also they can be 

modeled using different transfer functions for the whole time domain for a single input. 

Thus, for each of the six experimental data, two transfer functions can be used in such a 

way that, at the point where first transfer function looses the track of the experimental data, 

second one activates by deactivating the first one. Parameters of these transfer functions 

are adjusted by trial and error procedure as in the case of single transfer function modeling. 

In Figures 5.12 to 5.14 the response curves to unit step inputs are given using this 2nd 

modeling technique and in Table 5.4 the transfer function models, their acting time domains 

and normalized IAE scores (divided by steady-state gains) are given. 

 

Table 5.4: Dual transfer function models and their normalized IAE scores. 

Model TF1 TF2 Switch Time IAE Scores 

SS+ 

1222486

4.1024593
2 ++

+−

ss

s
 

11155

12.7458
2 ++

+

ss

s
 

120th sec. 0.25 

SS- 
s

e
ss

9

2
1762100

1.192 −

++
 

1554

4.6
2 ++ ss

 
200th sec. 0.80 

FR+ 

1483008

8.47
2 ++ ss

 
124245

12.2
2 ++

−

ss
 

130th sec. 0.34 

FR- 
s

e
ss

5

2
11685903

64.341 −

++
 

1979

36.210
2 ++

−

ss
 

110th sec. 0.38 

T+ 

122843

4.66
2 ++ ss

 
1251262

55.23
2 ++

−

ss
 

120th sec 0.39 

T- 

1284818

4.160
2 ++ ss

 
125287

7.682816
2 ++

+−

ss

s
 

180th sec. 0.45 

  



 

 

45 

 

 

 

Figure 5.12: Plant and model responses to a (a) positive and (b) negative unit step 

changes in SS (dual transfer functions case). 

 

 

Figure 5.13: Plant and model responses to a (a) positive and (b) negative unit step 

changes in FR (dual transfer functions case). 
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Figure 5.14: Plant and model responses to a (a) positive and (b) negative unit step 

changes in T (dual transfer functions case). 

 

 

As can be seen from the Figures 5.12 to 5.14 and considering the IAE scores from Table 5.4, 

these models fit the experimental data much better than single transfer functions. However, 

during the control operation, manipulated variable (SS) changes and the controlled variable 

(Mv) is tried to be kept constant or to track the set point. In these manipulations the model 

based controller has to be switched on different models (positive/negative/TF1/TF2). This 

cannot be solved by a single algorithm. Therefore, this modeling technique is not considered 

to be user friendly. 

  

5.4.3 Modeling Technique 3: Discrete Convolution Models 

 

It is well known that in the model predictive control, MPC, algorithm discrete convolution 

models are widely and effectively used. In the convolution model, the output is evaluated by 

using the experimentally obtained step response coefficients (see Figure 3.4) and the past 

values of the manipulated variables. The model equation is given in Equation 5.2 [Seborg et 

al., 1989]. Thus, the model is considered to represent linearly the responses to all different 

inputs in the range studied. 
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where y∆ is the output in deviation form, a is the step response coefficient and m∆ is the 

manipulated variable (model input) in deviation form. 

 

In this study the experimentally obtained step response data can be curve fitted as ‘shape 

preserving function’ using ‘curve fit toolbox’ of MATLAB and step response coefficients (an) 

are obtained as a function of time. Comparison of model and actual system outputs are 

given in Figures 5.15 to 5.17. 

 

 

 

Figure 5.15: Plant and model responses to a (a) positive and (b) negative unit step 

changes in SS (discrete convolution models case). 
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Figure 5.16: Plant and model responses to a (a) positive and (b) negative unit step 

changes in FR (discrete convolution models case). 

 

 

Figure 5.17: Plant and model responses to a (a) positive and (b) negative unit step 

changes in T (discrete convolution models case). 
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In Figures 5.15 to 5.17, the digital model outputs (in 1 second intervals) are shown in 

comparison to experimental data given in 10 seconds intervals. The disadvantage using this 

method is that, they are not compatible with MATLAB, i.e. there does not exist a pre-

constructed library, function or toolbox for the discrete convolution models. Thus, codes 

working in continuous time have to be written for this case (see Appendix D). 

 

5.5 Control Studies 

 

After the dynamic behavior of the plant is modeled, the final step is to design a proper 

controller in a control loop. In the design of the control loop, the first step is the choice of 

manipulated variable(s) for the control of system output. After deciding on manipulated and 

controlled variable pair, a control scheme is designed and on this scheme, MPC and PID 

controllers are tested and compared. The system under study (Figure 5.8) is a multi input 

single output (MISO) system. The inputs are SS, FR and T, and the output is the product 

property. The output, which is the product property, is determined in terms of molecular 

weight (Mv) and this is measured by intrinsic viscosity ([η]). 

 

5.5.1 Singular Value Decomposition 

 

The design of a control system, when there are more than one input, necessitates the use of 

the singular value decomposition, SVD, technique for the selection of the manipulated – 

controlled variable pairs. By this method, it is possible to find out which output is most 

sensitive to which input. SVD analysis calculations for the system under study are given 

below. 

 

As stated before, the system is highly non-linear and can only be represented by different 

models (positive and negative) for different inputs (as positive and negative). 

 

The steady-state Mv can be expressed in terms of input variables for positive and negative 

models as given in Equations 5.3.a and 5.3.b respectively. 
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where K+ and K- symbols denote the steady state gains for the corresponding inputs, and 

superscripts ‘+’ and ‘-’ denotes the relevant model parts. Replacing steady state gain values 

in Equations 5.3.a and 5.3.b gives: 
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(5.4.b) 

Decomposing steady state gain matrices (K+ and K-) in Equation 5.4.a and 5.4.b gives: 
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0.2087-   0.9074    0.3647

0.8223-   0.3647-   0.4368

00439.78871K  

(5.5.a) 

 

 

(5.5.b) 

SVD1 shows that the best pair is screw speed – molecular weight for positive model and 

temperature – molecular weight for negative model, considering the largest elements in the 

first columns of VT matrices in the Equations 5.5.a and 5.5.b. 

 

However, in control it is not possible to change the manipulated variable when the input 

changes. Thus, beside SVD recommendation, choice of the variables must also be based on 

expert knowledge of the process. Among the inputs, manipulating the screw speed is the 

fastest and the easiest. The extruder responds to the changes in the screw speed setting 

                                                

 
1 Second and the third column of the VT matrices should be ommitted as they correspond to the zero elements of 

the singular value vector (Σ ). 
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almost instantaneously. On the other hand, the changes in the temperature are responded 

much more slowly. Furthermore, in an actual plant, the feed flow rate is kept constant for 

the sake of the operations following the extrusion. For these reasons, screw speed is chosen 

as the manipulated variable, while temperature and feed rate are considered to be 

disturbances. 

 

The choice of the disturbances is based on the facts that a blockage or disorder in the feed 

flow is always possible. Also, there can be failures in the heaters or changes in cooling 

water, resulting in unwanted changes in the barrel temperature. 

 

It should be noted that no measurement of input FR is available in the process other than 

the adjustment of the extruder. But having the model, disturbances on the feed flow is also 

tested as if measurements are available. 

 

5.5.2 Design of Control Scheme 

 

As stated before, the objective of the control system is to control the molecular weight (Mv) 

of the product leaving the extruder under the effect of disturbances or in the case of set 

point changes. However, as in this study, online measurement of the desired property (Mv) 

may not be possible. Thus, a modified inferential control scheme can be used, in which an 

estimator estimates the desired property by using the secondary online measurements 

available from the plant and supplies necessary feedback data. The product quality can be 

determined by on-line viscosity measurements which can give the Mv of the product. Thus, a 

feedback control loop is designed as shown in Figure 5.18. In this scheme among the input 

variables such as SS, FR and T; SS is chosen as the manipulated variable (see Chapter 

5.5.1) while FR and T are chosen as probable disturbances. Other disturbances to the 

system may be the PET composition. This, of course, can be measured from the batch 

introduced and this information can be used for first settings of the operation for a required 

product quality. As it is found experimentally that the system is highly non-linear, the 

controllers are made of two compartments, +
cG and −

cG . +
cG is using of the ‘positive’ process 

model and the other, −
cG , is using of the ‘negative’ process model. A ‘switch’ in the entrance 

of the controller decides which model to run, basing on the deviation of Mv from its initial 

desired value. 
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Figure 5.18: Designed control system. 

 

 

Also, both in the disturbance models +
pG and −

pG , and in the estimator +
EG and −

EG exist. 

 

5.5.3 PID Control 

 

PID controllers are used in the designed control system. PID controllers are designed using 

the convolution models of the system by utilizing ‘continuous cycling’ or ‘Ziegler-Nichols’ 

method with ‘modified Z-N settings’. PID parameters are calculated by using the 

relationships given in the literature [Seborg et al., 1989] (see Appendix E), and the results 

are given in Table 5.5. In Figure 5.19 responses of set point tracking for the PID controllers 

are given. The set points are the 10% of the model gains. The normalized IAE scores for 

positive and negative models are given in Table 5.5. IAE scores are normalized with respect 

to steady-state gains and time ranges. 

 

Table 5.5: PID settings utilizing modified Z-N method (Some Overshoot) [Seborg et al., 

1989], and normalized IAE scores of set point tracking (Figure 5.19). 

 
cK  iτ  Dτ  IAE Score 

PID+ 0.0025 2.7399x105 0.1513 4.85 

PID- 0.0058 1.0357x104 0.2165 0.01 
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Figure 5.19: Set point tracking of PID controllers of (a) positive and (b) negative models, 

tuned using modified Z-N settings (Some Overshoot) [Seborg et al., 1989]. 

 

As can be seen from the Figure 5.19 the system shows an unstable performance for both 

positive and negative inputs and settling times are very large for these settings. Therefore, 

the controllers are further fine tuned by trial – error procedure. The fine tuned PID settings 

are given in Table 5.6. 

 

Table 5.6: Fine tuned PID settings for PID+ and PID-. 

 
cK  iτ  Dτ  

PID+ 2.50x10-3 6.85x10-5 3.03x10-2 

PID- 3.50x10-3 6.21x10-5 2.60x10-2 

 

These PID settings are very small and cannot be implemented on a nominal operating 

industrial plant controller. However, if a computer is used for the PID controller, then these 

settings can be implemented. Therefore, in this study, for comparison with the MPC, which 

can only be implemented via computers, the PID settings as given in Table 5.6 are used. 

Furthermore, constraints are also placed on PID outputs (SS) to be able to compare PID 
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controller with the MPC. The lower limit implemented on PID+ is 0 rpm and the upper and 

lower limits for PID- are 0 rpm and -50 rpm respectively. 

 

In order to observe the set point tracking response of the controller, step changes listed in 

Table 5.7 are introduced. For the disturbance studies, the disturbances are introduced as  

+25 in FR (corresponding to +1.04 g/gmol and -1.42 g/gmol), and +10 oC in T. 

 

Table 5.7: The magnitudes and the time of changes of the given set point changes. 

Time (s) 0 1000 2000 3000 4000 5000 

Magnitude (g/mol) +1200 

(+10.4%) 

-550 

(-4.8%) 

-650 

(-5.7%) 

-9050 

(-78.7%) 

+7450 

(+64.8%) 

+1600 

(+13.9%) 

 

 

Control loop is built using ‘SIMULINK toolbox’ of MATLAB for the PID controller (see 

Appendix D). PID performances are tested for set point tracking and disturbance rejection 

cases. The results are given in Figures 5.21 to 5.29. 

 

5.5.4 Model Predictive Control (MPC) 

 

In the design and testing of MPC, as for PID controllers, two parallel working SISO MPCs are 

constructed using the ‘model predictive control toolbox’ of MATLAB, for non-linear 

constrained MPC. 

 

5.5.4.1 Process Models for MPC 

 

In order to generate a step response process model that can be used in MPC algorithm, ARX 

models are formulated and used to obtain the molecular weight response to a step change 

in screw speed. This is shown in Figure 5.20 for the positive and the negative inputs. As can 

be seen from the Figures 5.5 to 5.7, the system is highly non-linear and the response 

behavior is very different for input values of positive and negative (Figure 5.20.a and 

5.20.b). 
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Figure 5.20: Responses of ARX models to (a) positive and (b) negative unit step changes 

in SS. 

 

5.5.4.2 MPC Tuning 

 

Tuning of predictive controllers are carried out by trial and error procedure, basing on the 

recommendations in the literature [Seborg et al., 1989]. MPC tuning parameters are given in 

Table 5.8. 

 

In the preliminary control studies it is seen that MPC fails to reject the disturbances. This 

problem was also seen in a previous study [Obut, 2005]. MPC algorithm assumes that the 

disturbances have a ‘constant-linear’ nature. However, in this work, the trends of 

disturbances resemble the response of a first order transfer function to a step input. Thus, 

designed MPCs usually fail to handle these disturbances. This problem is solved by changing 

the disturbance estimation type from constant to ‘step’ in +
cG and to ‘ramp’ in −

cG . 
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Table 5.8: MPC tuning parameters. 

Parameter MPC+ MPC- 

Prediction Horizon 200 100 

Control Horizon 1 1 

Output weights / Input weights 1 1 

Disturbance Type And 

Magnitude Step (20) Ramp (10) 

Constraints On Manipulated 

Variables 

Min: 0 

Max: ∞ 

Min:-50 

Max:0 

 

 

Designed MPCs are tested for set point tracking (see Table 5.7) and disturbance rejection 

performances. In Figure 5.21 the MPC responses for set point tracking is given together with 

PID performances for comparison. 

 

 

Figure 5.21: Set point tracking responses of PID and MPC. 

 

Normalized IAE scores calculated from Figure 5.21 are given in Table 5.9. In normalization 

of IAE scores, calculated IAE score is divided by the input magnitude and by the time range 

in which it is calculated. 
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Table 5.9: Normalized IAE scores of controllers throughout set point tracking. 

Time range (s) 0 to 

1000 

1000 to 

2000 

2000 to 

3000 

3000 to 

4000 

4000 to 

5000 

5000 to 

6000 

PID 1.00 1.19 0.01 0.99 0.21 0.00 

MPC 0.99 1.17 0.01 0.99 0.21 0.00 

 

 

The performances of the controllers for tracking the set point for the given step sizes are 

very good and very similar to each other. Although in Figure 5.21 the deviations for larger 

step sizes (3000<t<4000) are larger, this cannot be reflected in normalized IAE scores, 

which is done in order to be able to compare IAE scores for different step sizes. 

 

In Figures 5.22 and 5.23, the controller responses in terms of deviation in molecular 

weight, vM∆ , are given for disturbance rejection for 100% of positive and negative FR 

changes used in experiments respectively. 

 

 

Figure 5.22: Disturbance rejection responses of PID and MPC (+25 or +1.04 g/gmol step 

disturbance on FR). 
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Figure 5.23: Disturbance rejection responses of PID and MPC (-25 or -1.42 g/gmol step 

disturbance on FR). 

 

 

It is seen from Figures 5.22 and 5.23 that IAE scores are 0.07 and 0.10 for positive input in 

FR and 0.18 and 0.26 for negative input in FR, for PID and MPC respectively. Besides its 

lower IAE scores, the settling times of the PID controllers are also smaller compared to MPC. 

 

Disturbance rejection performances of the controllers for positive and negative disturbances 

in temperature are given In Figures 5.24 and 5.25. The disturbance magnitudes studied are 

the 50% of the T changes used in the experiments. 

 

Figures 5.24 and 5.24 show that the controllers’ responses are similar to the cases where 

disturbances are introduced to FR (Figures 5.22 and 5.23). The IAE scores of the controllers 

are 0.08 and 0.16 for positive disturbance in T, and 0.21 and 0.22 for negative disturbance 

in T, for PID and MPC respectively. The reason of larger settling times and IAE scores seem 

to be the slower response of the extruder to the changes in temperature. 
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Figure 5.24: Disturbance rejection responses of PID and MPC (+10 oC step disturbance on T). 

 

 

Figure 5.25: Disturbance rejection responses of PID and MPC (-10 oC step disturbance on T). 
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IAE scores and settling times calculated from Figures 5.24 and 5.25 are given in Table 5.10. 

From Figures 5.22 to 5.25 and Table 5.10 it can be seen that both controllers are successful 

in eliminating the effects of the disturbances, PID being a little better. 

 

Table 5.10: Normalized IAE scores and settling times of controllers in disturbance rejection 

performances. 

MPC PID 

Case IAE Score Settling Time IAE Score Settling Time 

Positive Disturbance on FR 0.10 1200 0.07 1000 

Negative Disturbance on FR 0.26 700 0.18 550 

Positive Disturbance on T 0.16 1200 0.08 1000 

Negative Disturbance on T 0.22 900 0.21 500 

 

 

The performances of the controllers for different step changes in the disturbances (50% of 

the experimentally studied range in FR and 100% in T) are also investigated and the 

responses are given in Figures 5.26 to 5.29.  

 

When Figures 5.22 to 5.25 are compared to Figures 5.26 to 5.29, it can be seen that the 

responses of the controllers, PID and MPC, changes linearly with the magnitude of the 

disturbance. This conclusion can also be observed from the IAE scores given in Tables 5.10 

and 5.11. These results are also in agreement with the assumption that the plant would 

behave linearly in the studied ranges of the inputs. However, the settling times of the 

controllers are not affected much by the magnitude of the disturbance (Tables 5.10 and 

5.11). 
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Figure 5.26: Disturbance rejection responses of PID and MPC (+12.5 or +0.57 g/gmol 

step disturbance on FR). 

 

 

Figure 5.27: Disturbance rejection responses of PID and MPC (-12.5 or -0.71 g/gmol step 

disturbance on FR). 
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Figure 5.28: Disturbance rejection responses of PID and MPC (+20 oC step disturbance on T). 

 

 

Figure 5.29: Disturbance rejection responses of PID and MPC (-20 oC step disturbance on T). 
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5.5.5 Robustness Analysis 

 

The robustness analysis is carried out to observe the performance of the controllers under 

modeling errors. In order to change the plant behavior, the gains of the plant models are 

changed by +10%. 

 

Figures 5.30 and 5.31 show the controllers’ set point tracking performances for the 10% 

increase and 10% decrease in model gains respectively. Normalized IAE scores calculated 

from these figures are given in Tables 5.12 and 5.13. The IAE scores are normalized by 

dividing with the magnitude of the change and corresponding time range. 

 

It is observed from Figure 5.30 that MPC cannot achieve the set point due to the constraints 

on manipulated variable for a relatively large negative set point value (-9050 g/mol). 

However, PID achieves the set point by applying more control actions. Figure 5.31 shows 

the case where the plant model gains are reduced by 10%. In this case, for the same set 

point value, both controllers fail to achieve the set point although PID gives less offset by 

keeping the screw speed on its lower limit. 

 

In set point tracking, the controllers show similar responses in the case of modeling errors 

(Figures 5.30 and 5.31) compared to the case without modeling error (Figure 5.21), 

producing almost the same IAE scores (Tables 5.9, 5.11 and 5.12).  
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Figure 5.30: Set point tracking responses of PID and MPC (10% increase in model gains). 

 

 

Figure 5.31: Set point tracking responses of PID and MPC (10% decrease in model gains). 
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Table 5.11: Normalized IAE scores of controllers throughout set point tracking (10% 

increase in model gains). 

Time range (s) 0 to 

1000 

1000 to 

2000 

2000 to 

3000 

3000 to 

4000 

4000 to 

5000 

5000 to 

6000 

PID 0.99 1.16 0.00 0.99 0.21 0.00 

MPC 0.99 1.17 0.01 0.99 0.21 0.00 

 

Table 5.12: Normalized IAE scores of controllers throughout set point tracking (10% 

decrease in model gains). 

Time range (s) 0 to 

1000 

1000 to 

2000 

2000 to 

3000 

3000 to 

4000 

4000 to 

5000 

5000 to 

6000 

PID 0.99 1.17 0.00 1.00 0.21 0.00 

MPC 0.99 1.17 0.01 0.99 0.21 0.00 

 

 

Figures 5.32 and 5.33 show the controllers’ responses to the disturbances in feed rate for 

the case where the model gains are increased by 10%. Similarly, Figures 5.34 and 5.35 

show the responses to the disturbances in feed rate where the model gains are decreased 

by 10%. The IAE scores calculated from these figures are given in Tables 5.13 and 5.14. 
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Figure 5.32: Disturbance rejection responses of PID and MPC (+1.04 g/gmol step 

disturbance on FR) (10% increase in model gains). 

 

 

Figure 5.33: Disturbance rejection responses of PID and MPC (-1.42 g/gmol step 

disturbance on FR) (10% increase in model gains). 
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Figure 5.34: Disturbance rejection responses of PID and MPC (+1.04 g/gmol step 

disturbance on FR) (10% decrease in model gains). 

 

 

Figure 5.35: Disturbance rejection responses of PID and MPC (-1.42 g/gmol step 

disturbance on FR) (10% decrease in model gains). 
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Figures 5.36 and 5.37 show the controllers’ responses to the disturbances in temperature for 

the case where the model gains are increased by 10%. Similarly, Figures 5.38 and 5.39 

show the responses to the disturbances in temperature where the model gains are 

decreased by 10%. The IAE scores calculated from these figures are given in Tables 5.13 

and 5.14. 

 

It can be seen from Figures 5.32 to 5.35 that the modeling errors do not have strong effect 

on the disturbance rejection behaviors of the controllers. Although there are small 

differences in IAE scores, PID and MPC respond to the disturbances similarly compared to 

the case which there is no modeling error (Figures 5.22 to 5.25). 

 

 

Figure 5.36: Disturbance rejection responses of PID and MPC (+10 oC step disturbance on T) 

(10% increase in model gains). 
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Figure 5.37: Disturbance rejection responses of PID and MPC (-10 oC step disturbance on T) 

(10% increase in model gains). 

 

 

Figure 5.38: Disturbance rejection responses of PID and MPC (+10 oC step disturbance on T) 

(10% decrease in model gains). 
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Figure 5.39: Disturbance rejection responses of PID and MPC (-10 oC step disturbance on T) 

(10% decrease in model gains). 

 

 

From Figures 5.30 to 5.39 and from Tables 5.13 and 5.14 it is seen that, both of the 

controllers are robust and are capable of eliminating the effects of disturbances and tracking 

the given set points even under the modeling errors.  

 

Table 5.13: Normalized IAE scores and settling times of controllers in disturbance rejection 

performances (10% increase in model gains). 

Case MPC PID 

 

IAE 

Score 

Settling 

Time 

IAE 

Score 

Settling 

Time 

Positive Disturbance on FR 0.10 1200 0.07 500 

Negative Disturbance on FR 0.24 650 0.17 650 

Positive Disturbance on T 0.17 1500 0.08 550 

Negative Disturbance on T 0.22 700 0.21 700 
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Table 5.14: Normalized IAE scores and settling times of controllers in disturbance rejection 

performances (10% decrease in models gains). 

Case MPC PID 

 

IAE 

Score 

Settling 

Time 

IAE 

Score 

Settling 

Time 

Positive Disturbance on FR 0.10 1200 0.08 600 

Negative Disturbance on FR 0.29 800 0.20 650 

Positive Disturbance on T 0.16 1200 0.09 600 

Negative Disturbance on T 0.23 650 0.20 650 
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CHAPTER VI 

 

 

CONCLUSIONS 

 

 

 

In this study, experimental and theoretical studies are done to design an inferential control 

scheme for the feedback control of RPET degradation during extrusion process. The basic 

conclusions arrived are as follows: 

  

• Degradation of PET is found to be highly nonlinear and it is affected by different 

variables such as barrel temperatures and residence time spent in the extruder. 

• The product quality is considered to be determined by molecular weight, Mv, and can be 

measured indirectly by intrinsic viscosity ([η]). 

•  Dynamic experiments revealed that the extrusion process is highly nonlinear. It shows 

different behaviors for the positive or negative deviations of the inputs. 

• Convolution models are selected to be the best and to be used in simulations rather 

than single or dual transfer functions of different properties. 

• In the control system screw speed is evaluated to be manipulated variable using the 

SVD analysis while barrel temperature and feed flow rate left to be probable 

disturbances. 

• In the control system designed, two different controllers ( +
cG and −

cG ) are used for 

positive and negative parts of the process model. 

•  PID and MPC controllers’ performances are found to be successful for set point tracking 

and disturbance rejection cases. 

• PID and MPC controllers are proven to be robust under modeling errors (+10%). 

• The designed inferential control scheme can be utilized in controlling the product quality 

in terms of molecular weight both with PID and MPC, once the off-line necessary data 

for the estimator is obtained. 
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APPENDIX A 

 

 

MOLECULAR WEIGHT DETERMINATION 

 

 

 

Viscosities1 of polymer solutions are usually measured in glass viscometers (Figure D.1), in 

which the solution flows through a capillary tube by gravity. Two common types are Ostwald 

and Ubbelohde viscometers. The Ubbelohde viscometer has the advantage that the flowing 

solution is not affected by the amount of the liquid in the reservoir. Thus, the concentration 

of the solution can be changed directly in the viscometer. 

 

A.1 Molecular Weight Determination 

 

The molecular weights (Mv) of the collected samples are determined by dilute solution 

viscometry, using a Ubbelohde type viscometer. 

 

0.06 gram of sample is weighted and dissolved in 6 ml of trifluoroacetic acid (TFA) in a test 

tube, giving 1 g/dl concentration. 

 

Initially, the flow time of pure solvent (t0) between two mark points is measured using a 

chronometer, and recorded. The initial amount of pure solvent (TFA) in the viscometer is 7 

ml. Measurement of t0 is repeated until same ‘minute:second’ value is read with the previous 

flow (or flow time became constant). 

 

                                                

 
1 “Since polymer solutions are non-Newtonian, intrinsic viscosity must be defined, strictly speaking, in terms of the 

zero-shear or lower Newtonian viscosity. This is rarely a problem because the low shear rates in the usual 

glassware viscometers give just that. Occasionally, however, extrapolation to zero-shear condition is required”  

[Rosen, 1982]. 
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Figure A.1: Ostwald and Ubbelohde viscometers. 

 

 

When the flow time of pure solvent (t0) got constant in means of seconds, 1 ml of RPET-TFA 

solution is added from the test tube to the viscometer, and the flow time of this new 

concentration (t1) is measured, again until it got constant in means of seconds. 

 

Above step is repeated 4 times (t1, t2, t3, t4) (see Appendix E). Using these flow times, 

values for reduced viscosity (ηred) were calculated and plotted against corresponding 

concentration ([C]) values. Then the best line (trend line)1 passing through these points is 

calculated and its intercept at zero concentration is taken as intrinsic viscosity ([η]). After 

the intrinsic viscosity value was obtained, Equation A.1 is used to calculate the Mv of the 

sample. 

[ ] αη
1









=

K
M v  (A.1) 

Symbols K andα refer to the Mark Hauwing constants for PET-TFA solution. 
                                                

 
1 For any sample, when the ‘reduced viscosity’ was plotted against ‘concentration’, if the R2 value for the best line 

(trend line) was below 0.98 that molecular weight determination was repeated for that sample. By this way, the 

experimental errors were tried to be kept at minimum. 
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APPENDIX B 

 

 

CALIBRATION FOR RESIDENCE TIME AND FEED RATE  

 

 

 

B.1 Residence Time 

 

Average residence time (ART) measurements for the studied screw speeds are given in 

Table B.1. Same ART values were measured for different feed rates, as pointed in the 

literature [Xanthos, 1992]. 

 

Table B.1: Average residence times for studied screw speeds. 

Screw speed (rpm) Residence time (second) 

50 255 

125 137 

200 122 

275 115 

350 15 

425 13 

500 11 

 

 

In Figure B.1, it is seen clearly that ART changes in steps for screw speed. In other words, 

for a range of screw speed values, ART remains almost unchanged.  
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Figure B.1: Avarage residence times measured at different screw speeds. 

 

 

B.2 Feed Rate 

 

The extruder control panel had the feed rate (FR) setting between the values of 0 and 999. 

Thus, the feed rate and corresponding flow rate (g/min) values needed to be calibrated. The 

calibration data for studied feed rate settings is given in Table B.2. 

 

Table B.2: Flow rate calibration data for studied feed rate settings. 

Feed rate reading Flow rate (g/min) 

25 3.85 

50 5.70 

75 7.12 

100 8.16 

 

 

Figure B.2 shows that the relation between the FR and corresponding flow rate can be 

accepted as linear. 
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Figure B.2: Feed rate settings and corresponding flow rates (g/min). 
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APPENDIX C 

 

 

EXPERIMENTAL DATA 

 

 

 

Table C.1: Molecular weight (g/gmol), Mv, change for different SS and FR values at 270 
oC. 

   Screw Speed (rpm)   

FR 50 125 200 275 350 425 500 

25 (3.85 g/min) 7769 7873 10549 9268 10352 6313 9788 

50 (5.70 g/min) 8361 669 12786 12769 6679 9828 12652 

75 (7.12 g/min) 1696 14053 11741 5924 6183 10265 12665 

100 (8.16 g/min) 12521 12226 9467 9146 13177 10221 11966 

Table C.2: Molecular weight (g/gmol), Mv, change for different SS and FR values at 290 
oC. 

   Screw Speed (rpm)   

FR 50 125 200 275 350 425 500 

25 (3.85 g/min) 6689 8774 12239 8520 9194 9913 7322 

50 (5.70 g/min) 8642 10234 8416 10804 13042 13344 9587 

75 (7.12 g/min) 10259 13103 10965 5932 8120 9748 10436 

100 (8.16 g/min) 6809 9506 8572 6949 8355 10744 11310 

Table C.3: Molecular weight (g/gmol), Mv, change for different SS and FR values at 310 
oC. 

   Screw Speed  (rpm)   

FR 50 125 200 275 350 425 500 

25 (3.85 g/min) 4504 3487 5507 2024 4805 5101 5584 

50 (5.70 g/min) 7125 6121 7082 8642 7995 8956 5790 

75 (7.12 g/min) 6034 11201 6890 9116 7218 6049 8680 

100 (8.16 g/min) 9244 9250 7708 9331 6876 9346 7358 
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Table C.4: Mv (g/gmol) change with SS, FR and T (dynamic runs). 

Time 

(s) 

SS 

Plus 

Step 

(25 rpm) 

SS 

Minus 

Step 

(50 rpm) 

FR 

Plus 

Step 

(1.04 g/gmol) 

FR 

Minus 

Step 

(1.42 g/gmol) 

T 

Plus 

Step 

(20 oC) 

T 

Minus 

Step 

(20 oC) 

0 11546 11301 11300 11300 11300 11500 

10   11375 11371   

20 10810 11051   11310 11555 

30   11546 10505   

40 10965 10445   11611 11042 

50   11718 10271   

60 11156 7969   11750 10520 

70 11617  11868 9877   

80 12200 6279   12019 9947 

90 12495  12137 8610   

100 12961 5405   12658 8977 

110 13457  12382 7885   

120 13928 3844  7618 13079 8511 

130 14694  12548 5289   

140 14388 3601  2576 13008 8015 

150 14140  12538 1275   

160 14106 2449  973 12675 7657 

170   12495 1500   

180  2147  2207 12632 6936 

190    2259   

200  1466   12628 5972 

210       

220  1764    7136 

230       

240  1796    8203 

250       

260  1696    8280 

270       

280      8292 
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APPENDIX D 

 

 

PID CONTROL LOOP AND PROGRAM CODES 

 

 

 

PID control loop designed using SIMULINK is given in Figure D.1. 

 

 

Figure D.1: Feedback control loop for PID controllers designed in SIMULINK. 

 

 

Code for the ‘SS+ Model’ is given below as an example for all positive and negative models. 

 

% Screw Speed Dynamic Model (Positive Part) 

 

function [ c_t_SS_Positive ] = SS_Positive_func(input) 

  

delta_input = input(1); 

delta_time  = input(2); 

 

try a_SS_Positive=evalin('base','a_SS_Positive');  catch a_SS_Positive = []; 
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end; 

try delta_m_SS_Positive=evalin('base','delta_m_SS_Positive');  catch 

delta_m_SS_Positive = [];   end; 

  

model=evalin('base','SS_Positive_Fit'); 

  

n = delta_time+1; 

  

a_SS_Positive(n) = model(delta_time); 

delta_m_SS_Positive(n) = delta_input; 

  

if n >=2 

    count = numel(a_SS_Positive); 

    a_vector = a_SS_Positive(2:count); 

    m_vector = delta_m_SS_Positive((count-1):-1:1); 

    summation = a_vector.*m_vector; 

    c_t_SS_Positive = sum(summation); 

else 

    c_t_SS_Positive = 0; 

end 

  

assignin('base','a_SS_Positive',a_SS_Positive); 

assignin('base','delta_m_SS_Positive',delta_m_SS_Positive); 

 

 

Code of the model predictive control part is given below. 

 

% MPC code 

 

clc;clear 

  

addpath Source; 

load Fitted_Models; 

load MPC_Positive_Minus; 

  

  

Stop_Time           = 500;          %Total Simulation Time 

  

delta_input         = 0;            %maginitude of delta input 

delta_input_time    = 0;            %time of delta input 

  

Set_Points          = [0 0    -10  0];    % Set Point(s) vector with 'n' elements 

Set_Point_times     = [0 1000 2000 3000]; % Set Point Time(s) vector with 'n' 

                                            elements 

  

%Disturbance Types -> (0) None || (1) FR Positive || (-1) FR Minus || (2) T Positive 

|| (-2) T Minus 

Dist_Type           = 0;             

Dist_Magnitude      = 0; 

Dist_Time           = 0; 

  

% Initial Values 

  

MPC_Positive_state  = mpcstate(MPC_Positive); 

MPC_Minus_state = mpcstate(MPC_Minus); 

  

u = 0; 

u_prev = 0; 

du = 0; 

  

d_Positive = 0; 

d_Minus = 0; 

Mv_t = 0; 

  

Dist_prev = 0; 

 

% Simulation starts here 

for time = 0:1:Stop_Time 
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    for sp_detect = 1:numel(Set_Point_times)    % Follow Set Points 

        if time == Set_Point_times(sp_detect) 

            Set_Point = Set_Points(sp_detect); 

        end 

    end 

     

    if not(Dist_Type == 0);                     % Disturbance Part 

        if time >= Dist_Time 

            dist_delta_time = time - Dist_Time; 

            Dist_delta_u = Dist_Magnitude - Dist_prev; 

            Mv_dist = disturbance_func(dist_delta_time,Dist_Type,Dist_delta_u); 

            Dist_prev = Dist_Magnitude; 

        else 

            Mv_dist = 0; 

        end 

    else 

        Mv_dist = 0; 

    end 

  

   region = region_select(d_Positive,d_Minus,Mv_t,Set_Point,Mv_dist); 

  

   switch region 

    case 0,                 % No models need to run 

    case 1,                 % SP Positive Region 

         

        clear minus_start_time 

         

        try Positive_start_time; 

        catch Positive_start_time = time; 

        end 

  

        u = mpcmove(MPC_Positive, MPC_Positive_state,Mv_t,Set_Point,[]); 

         

        du = u - u_prev; 

        Mv_t_prev = Mv_t; 

         

        delta_time = time - Positive_start_time; 

  

        Mv_t_Positive = SS_Positive_func([du delta_time]); 

         

        Mv_t = Mv_t_Positive + Mv_dist; 

         

        u_prev = u; 

        d_Positive = Mv_t - Mv_t_prev; 

  

        if abs(d_Positive) < 0.000001 

            d_Positive = 0; 

        end 

         

        if abs(Mv_t) < 0.1 

            Mv_t = 0; 

        end 

         

        assignin('base','Positive_start_time',Positive_start_time); 

  

    case -1,                % SP Minus Region 

  

        clear Positive_start_time 

         

        try minus_start_time; 

        catch minus_start_time = time; 

        end 

         

        u = mpcmove(MPC_Minus,MPC_Minus_state,Mv_t,Set_Point,[]); 

         

        du = u - u_prev; 

        Mv_t_prev = Mv_t; 

         

        delta_time = time - minus_start_time; 

  

        Mv_t_minus = SS_Minus_func([du delta_time]); 
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        Mv_t = Mv_t_minus + Mv_dist; 

         

        u_prev = u; 

        d_Minus = Mv_t - Mv_t_prev; 

         

        if abs(d_Minus) < 0.000001 

            d_Minus = 0; 

        end 

  

        if abs(Mv_t) < 0.1 

            Mv_t = 0; 

        end 

         

        assignin('base','minus_start_time',minus_start_time); 

         

         

    case 10,                % Disturbance Positive Region 

    case -10,               % Disturbance Minus Region 

    end 

  

    

    Mv_hist(time+1) = Mv_t; 

    Mv_dist_hist(time+1) = Mv_dist; 

    u_hist(time+1) = u; 

    du_hist(time+1) = du; 

    SP_hist(time+1) = Set_Point; 

    region_hist(time+1) = [region]; 

     

    MPC_Dist_Response(time+1,:) = [time Set_Point Mv_dist Mv_t u]; 

  

end 

  

  

  

disp 'finished' 

subplot(2,1,1);plot(Mv_hist,'k');hold on;plot(SP_hist,':r');plot(Mv_dist_hist,'r'); 

subplot(2,1,2);plot(u_hist) 

  

figure 

plot(region_hist) 
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APPENDIX E 

 

 

SAMPLE CALCULATIONS 

 

 

 

E.1 Molecular Weight Calculations 

 

In Table E.1 an example of the experimental data collected during the viscosity 

measurements are given. 

Table E.1: Experimental data (an example). 

Sample: steady-state experiments (T: 290 oC, FR: 25, SS: 50 rpm) 

0.0630 grams sample + 6 ml TFA 

Solution in 

reservoir 
tn 

Measured flow times 

(min.sec.milisec) 
Constant flow time (sec) 

Pure Solvent{7 ml} t0 
1) 2.28.12 

2)   2.28.26 
148 

+ 1 ml addition t1 
1) 2.37.91 

2) 2.37.57 

 
157 

+ 1 ml addition t2 

1) 2.47.31 

2) 2.46.72 

3) 2.47.09 

166 

+ 1 ml addition t3 
1) 2.55.38 

2) 2.55.88 
175 

+ 1 ml addition t4 

1) 3.03.16 

2) 3.02.56 

3) 3.02.17 

182 

+ 1 ml addition t5 
1) 3.09.72 

2) 3.09.19 
189 
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Using the measured flow times, calculations are done and results are given in Table E.2. 

 

Table E.2: Reduced viscosity for different concentrations. 

n 

Flow time of 

solution ( 0t ) 

Relative viscosity 

0

0

t

ttn

rel

−
=η  Concentration 

in reservoir [C] 

Reduced Viscosity 

[ ]C

rel

red

η
η =  

0 148 0 0.0000 - 

1 157 0.061 0.131 0.463 

2 166 0.122 0.233 0.521 

3 175 0.182 0.315 0.579 

4 182 0.230 0.382 0.602 

5 189 0.277 0.438 0.633 

 

 

The calculated values for reduced viscosity (ηred) were plotted against corresponding 

concentration ([C]) values, as illustrated in Figure E.1. Then the best line (trend line) passing 

through these points was calculated and its intercept at zero concentration was taken as 

intrinsic viscosity ([η]). 

 

The viscosity average molecular weight (Mv) is calculated using Equation E.1. 

 

[ ] αη
1









=

K
M v  

mol

g

x
M v 8.6689

104.1

393.0
5625.1

3
=








=

−
 

(E.1) 
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Figure E.1: Reduced viscosity change with concentration. 

 

 

E.2 PID TUNING CALCULATIONS 

 

The PID controllers studied are first tuned by modified Ziegler-Nichols method as given in 

the literature [Seborg et al., 1989]. They are then further fine tuned by trial-error procedure. 

 

Table E.3 gives the ultimate gains (Ku) and the ultimate periods (Pu) of the continuous 

oscillations for the positive and negative PID-model pairs. 

 

Table E.3: Ultimate gains and ultimate periods of positive and negative PID-model pairs. 

Pair Ku (rpm.gmol/g) Pu (seconds) 

PID+-SS+ 0.00748 182 

PID--SS- 0.0174 112 

 

The relations between the Ku and Pu and the PID parameters ( DicK ττ ,, ) are given in 

Table E.3. 
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Table E.4: Original and modified Ziegler-Nichols settings for PID controllers [Seborg et al., 

1989]. 

 
cK  iτ  Dτ  

Original (1/4 decay ratio) 0.6Ku Pu/2 Pu/8 

Some Overshoot 0.33Ku Pu/2 Pu/3 

No Overshoot 0.2Ku Pu/2 Pu/3 

 

 

 


