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ABSTRACT 

 
 
 

APPLICATION OF SLEUTH MODEL IN ANTALYA 
 
 

ŞEVİK, ÖZLEM 
M.Sc., Department of Geodetic and Geographic Information Technologies 

Supervisor: Assist. Prof. Dr. Zuhal Akyürek 
 
 

April 2006, 112 pages 
 
 

In this study, an urban growth model is used to simulate the urban growth in 2025 

in the Antalya Metropolitan Area. It is the fastest growing metropolis in Turkey with 

a population growth of 41,79‰, although Turkey’s growth is 18,28‰ for the last 

decade. 

 

An Urban Growth Model (SLEUTH, Version 3.0) is calibrated with cartographic 

data. The prediction is based on the archived data trends of the years of the 1987, 

1996, and 2002 images, which are extracted from Landsat Thematic Mapper and 

Enhanced Thematic Mapper satellite images and the aerial photographs acquired 

in 1992 and the data are prepared to insert them as input into the model. The urban 

extent is obtained through supervised classification of the satellite images and 

visual interpretation of aerial photographs. 

 

The model calibration, where a predetermined order of stepping through the 

“coefficient space” is used is performed in order to determine the best fit values for 

the five growth control parameters including the coefficients of diffusion, breed and 

spread, slope and road gravity with the historical urban extent data. The 

development trend in Antalya is simulated by slowing down growth by taking into 

consideration the road development and environmental protection. After the 

simulation for a period of 23 years, 9824 ha increased in urban areas is obtained 

for 2025. 

 

Keywords: Urban growth, simulation, prediction, supervised classification, Antalya. 
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ÖZ 

 
 

SLEUTH MODELİNİN ANTALYADA UYGULANMASI  
 
 
 

ŞEVİK, ÖZLEM 
Yüksek Lisans, Jeodezi ve Coğrafi Bilgi Teknolojileri Ana Bilim Dalı 

Tez Yöneticisi: Yrd. Doç. Dr. Zuhal Akyürek 
 
 

Nisan 2005, 112 sayfa 
 
 

Bu çalışmada, Antalya metropoliten alanının 2025 yılındaki kentsel büyüme 

tahmini için  bir kentsel büyüme modeli kullanılmıştır. Türkiye’nin son on yıldaki 

toplam nüfus artış hızı ‰18,28 iken Antalya, ‰41,78’lik nüfus artış hızı ile 

Türkiye’de en hızlı nüfus artış hızına sahip metropoldür.  

 

Bir kentsel büyüme modeli (Sleuth V 3.0) kartografik veriler ile kalibre edilmiştir. 

Kentsel büyüme tahmini, 1987, 1996 ve 2002 yıllarının Landsat TM ve ETM 

görüntülerinden ve 1992 hava fotoğraflarından elde edilen arşiv veri eğilimlerine 

dayandırılmaktadır. Kentsel büyüme alanı uydu görüntülerinin sınıflandırılması ve 

hava fotoğraflarının görsel değerlendirilmesi ile elde edilmiş ve veriler modele 

girdi olarak sokulmak üzere hazırlanmıştır. 

 

Model kalibrasyonu, difüzyon, breed ve spread, eğim ve yol katsayılarını içeren, 

beş büyüme kontrol parametreleri için en uygun olan değerleri elde etmek 

amacıyla gerçekleştirilmiştir. Antalya’daki büyüme eğilimi, yol gelişmesini ve 

çevresel korumayı göz önünde bulundurarak, büyümeyi yavaşlatarak simüle 

edildi. Simülasyon periyodu olan 23 yıl boyunca, 2025 yılına kadar kentsel 

alanlarda 9824 hektarlık bir artış elde edildi. 

 
Anahtar Kelimeler: Kentsel büyüme, simülasyon, tahmin, kontrollü 

sınıflandırma, Antalya. 
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CHAPTER 1 

 

 

INTRODUCTION 
 
 

 
The human population is increasing gradually from day to day. As a result, the 

requirement for the settlement areas is increasing in all excessively populated 

world cities. Over the last century, the increase and the intensification of 

urbanization has become one of the most cited and discussed subjects all over 

the world. 

 

Clarke et al. (1997) describes urbanization as the conversion of natural to 

artificial land cover characterized by human settlements and workplaces. This 

single transformation involves a wholesale modification of natural processes 

such as runoff and transpiration, and the short-term and long-term impacts 

touch every member of the human race every day. In a longer timescale, 200 

years, total global population has increased six times and the earth's urban 

population has increased over 100 times. Driven by the Industrial Revolution, 

cities have gone from being a minor feature to a major one. Nowadays, human 

beings are trying to control the urban growth because the population is 

increasing rapidly during the last 50 years. It is an important problem for the 

world and it should be examined for a spacious life in the future. If the future of 

urban growth can be seen, this problem can be solved easily.  

 

According to United Nations Population Division of the Department of Economic 

and Social Affairs (URL 1) official estimates and projections of urban, rural and 

city populations, all the population growth expected at the world level during the 

next 30 years will be concentrated in urban areas. Also, for the first time in the 

world’s history, the number of urban dwellers will equal the number of rural 

dwellers in 2007. The world’s urban population reached 2.9 billion in 2000 and is 

expected rise to 5 billion by 2030. Whereas 30 per cent of the world population 

lived in urban areas in 1950, the proportion of urban dwellers rose to 47 percent 

by 2000 and is projected to attain 60 percent by 2030. 
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With 26.5 million inhabitants, Tokyo is the most populous urban agglomeration 

in the world, followed by Sao Paulo (18.3), Mexico City (18.3), New York (16.8) 

and Mumbai (16.5). By 2015, Tokyo will remain the largest urban agglomeration 

with 27.2 million inhabitants, followed by Dhaka, Mumbai, Sao Paulo, Delhi and 

Mexico City, all of which are expected to have more than 20 million inhabitants. 

In Turkey, İstanbul will be the 19th in the most populous urban list with the 11,4 

million inhabitants in the year 2015 (URL 1). However, Antalya is one of the 

fastest growing metropolises in Turkey with a population growth of 41,79‰ 

although İstanbul’s growth is 33,09‰ and Turkey’s is 18,28‰ for the last 

decade. 

 

Substantial growth in cities first occurred in Western Europe, America, and 

Japan, but spread in the latter part of this century throughout Asia, South 

America, and Africa (Candau, 2002). It is still spreading continuously. Until 

today, urban growth has not shown any sign of slowing, even in nations where 

population growth has stabilized. 

 

Understanding the dynamics of complex urban systems and evaluating the 

impact of urban growth on the environment involve procedures of modeling and 

simulation, which require innovative methodology and robust techniques. A 

number of analytical and static urban models have been developed to explain 

urban expansion and evolving patterns rather than to predict future urban 

development. Among all the documented dynamic models, those based on 

Cellular Automata (CA) are probably the most impressive in terms of their 

technological evolution in connection to urban applications. 

 

The study focus here is not the creation of a new model but understanding and 

exploration of an existing dynamic model for problem solving in applied urban 

studies. This is built upon a self-modifying CA urban growth model namely 

SLEUTH originally developed by Keith Clarke at the University of California at 

Santa Barbara. 

 

Goldstein (2004) examines SLEUTH’s main properties, which cause to be 

chosen by researchers. It runs with a series of growth rules that form modified 

 2



CA. During SLEUTH run time, the growth rules of the CA are calibrated to 

archive the extent of the urban spatial data. Then it can be used to forecast and 

predict urban extent under different scenarios. It is a scale independent, 

transportable, and transparent model. It can also be used as a planning tool by 

incorporating different human perceptions into the data used for predicting the 

future footprint of a city 

 

This study is the first application of SLEUTH model in Antalya in Turkey. The 

primary objective of this study is to simulate the spatial consequences of future 

urban growth in Antalya. Furthermore, the model’s effectiveness when applied 

to the Antalya area is analyzed and future research directions for more accurate 

simulations are suggested. The study is presented in six chapters. In the first 

chapter the importance of the urban growth and the main properties of the 

SLEUTH, are identified. 

 

Theoretical and practical view on urban growth detection and prediction is 

defined in the second chapter under three themes. First, the urban area 

detection by means of remote sensing is determined. Then the other CA urban 

growth models are presented. Finally, the SLEUTH model definition and urban 

growth predictions with SLEUTH Model are examined.  

 

In the third chapter, materials and the used methodology, the case study area, 

preparation of the input data within GIS and Remote Sensing (RS) analysis 

required for the model implementation, including the classification analysis of 

the satellite images, post classification methods, accuracy assessment of the 

classification analyses are described. 

 

In the fourth chapter, urban growth analyses are described. The structure of the 

model run and the required coefficients, the modes of the model (test, 

calibration, and prediction) adapted to Antalya are explained. In addition, 

running of the modes and selection of the coefficients from each run, finally, the 

outputs of the prediction mode are examined clearly in this chapter. 
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The results obtained in this study are examined in the fifth chapter. Growth 

probabilities of each year from the prediction start date through the prediction 

stop date are described with figures and tables. In addition to these the urban 

growth quantities, situation of the urban growth rates and the reasons for this 

situation are examined. 

 

In the conclusion chapter, an evaluation of the study and the significant findings 

and some impediments of the study are explained. Finally, the 

recommendations for the further studies are given.  
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CHAPTER 2 

 
 

THEORETICAL AND PRACTICAL VIEW ON URBAN GROWTH DETECTION 
AND PREDICTION 

 

 

 

In this chapter, the previous studies about urban area detection by means of 

remote sensing, urban growth models, and the studies on urban growth 

prediction by using SLEUTH Model (Clarke, 1996) are presented. There are 

numerous references of urban growth contention, urban growth detection from 

satellite images to predict the urban growth by means of the models. 
 
 
2.1. Urban Area Detection by Means of Remote Sensing 
 

Urban Growth Modeling and prediction history essentially started in 1950s, 

showed less activity in 1970s and 80s but revived vigorously in the 1990s by the 

help of spatial data availability and GIS. 

 

Urban growth is an essential environmental issue to be monitored and 

forecasted in order to think about alternatives that could lead to a more 

sustainable future urban development. Hung (2002) explained that satellite 

imagery has been a useful tool for monitoring environments since early 70's 

when MSS (Multispectral Scanner)  provided the first commercial satellite 

image.  

 

In the past three decades, the remote sensing field and other disciplines witnessed 

remarkable improvements in satellite image quality and quantity, in terms of 

spectral resolution and spatial resolution. These improvements in satellite images 

and digital image processing algorithms, exposed some opportunities to do 

environmental quantitative analysis, rather than just land classification or object 

identification (Hung, 2002). Unfortunately, some problems reported decades ago 

remain unsolved, especially in urban areas (Forster, 1985). 
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The most significant problem from remote sensing of urban areas is mixed 

pixels. Mixed pixels refer to pixels having more than one land cover material. 

They are caused by various factors. It is inevitable to have mixed pixels. How to 

handle them may be a key factor to the success of any urban remote sensing 

research. Fuzzy representation may be a solution (Zhang and Foody, 1998). In 

addition, there is a need for a model to simplify heterogeneous urban 

environments so that they could be represented by a limited number of end 

members, and quantitative analysis could be performed. 

 

Hung (2002) modeled urban environments from TM satellite images in Salt Lake 

City. He declares that urban environments are very heterogeneous. The model 

he used is a conceptual model to simplify urban environments as combination of 

three basic ground components that are vegetation, impervious surface, and 

soil. Hung (2002) studied six ground components (two for vegetation, three for 

impervious surface, and one  for soil) are selected as basic components of 

urban environments. The data used in this study are 1990 TM image of partial 

Salt Lake City area. Percentages of the six ground components are extracted 

from a previously developed supervised classifier. In detail these six classes 

are; healthy green grass vegetation (V_gr); tree and/or shrub vegetation (V_tr); 

bright impervious surface (I_br), such as rooftop, metal, and tile; medium 

impervious surface (I_md), such as concrete and weathered asphalt; dark 

impervious surface (I_dr), such as asphalt and darkened concrete; and soil 

and/or dry vegetation (S_dv). Soil and dry vegetation are put together as one 

component, because these two land cover types are quite similar in their 

spectral reflectance characteristics, as well as the brightness values from 

satellite images. A supervised classifier was applied then various charts and 

plots of mean brightness values are generated to demonstrate the capacity of V-

I-S composition on urban land cover analysis. As a result, a six-channel image 

with each channels indicating the percentages of one predefined land cover 

type are acquired. Hung (2002) adds that it is not very easy to identify all the 

classes one by one, or to distinguish one from the other, without prior 

information of the study area. The resultant image provides sub-pixel 

information about V-I-S components of urban areas. By this representation, 

heterogeneous urban areas are simplified to combinations of basic ground 
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components. Various urban land cover types can be displayed on a V-I-S 

diagram. The resultant image contains considerable biophysical information that 

is not usually extracted from satellite images with per-pixel classifier.  

 
Esch et al. (2004) use radar data (TerraSAR-X data), which are hardly 

employed for the built-up area detection by using an object-oriented 

classification. Their study aims to develop a concept for an automated extraction 

of built-up areas based on very high resolution, single polarized Xband imagery. 

They mentioned that for a robust object oriented analysis accurate and reliable 

image segmentation is required. In their study, they used three image 

segmentation levels in different spatial scales for the identification of built-up 

areas. It is realized from the previous studies (Esch et al., 2004; Karakış, et al., 

2005) that image segmentation gives productive results when applied on the 

high-resolution images as QuickBird, Ikonos and TerraSAR-X data. Moreover, 

according to them image segmentation is an appropriate way before an object-

oriented classification. On the other hand, it is realized that the image 

segmentation involves significant difficulties, as determination of the optimum 

number of levels for segmentation and being the corresponding segmentation 

parameters very complex and therefore time-consuming. In addition, the 

segmentation of the individual structures in the scene is strongly affected by 

local characteristics (Esch et al., 2004). 

 

Bauer et al., (2003) use Landsat TM and ETM+ images. They focus on the 

classification of Landsat data to acquire the land cover changes in Minnesota 

with an acceptable accuracy. They describe the methods and results of 

classifications of multi-temporal Landsat TM / ETM+ data of the seven-county  

of Twin Cities Metropolitan Area of Minnesota for 1986, 1991, and 1998.  

 

The advantages of satellite imagery are discussed in Bauer et al. (2003). 

Historically, remote sensing in the form of aerial photography has been an 

important source of land cover and land use information. However, they say that 

the cost of aerial photography acquisition and interpretation of cover types is 

prohibitively expensive for large geographic areas. They all say in their study in 

2003 that digital satellite imagery such as Landsat TM and ETM+ are 
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alternatives to acquire the needed information. They touch on the advantages of 

satellite imagery in their study; (1) the sensor provides coverage of large 

geographic areas, (2) the digital form of the data lends itself to more efficient 

analysis and the classified data are compatible with geographic information 

systems, eliminating the need to digitize interpreted information, and (3) land 

cover maps can be generated at considerably less cost than by other methods 

(albeit at 30-meter spatial resolution). The area used in Bauer et al., (2003) 

study includes a diversity of land cover classes as core urban areas, rural land 

uses, including agricultural fields, grasslands, wetlands, and forests. The 

combination of early summer (late May or early June) with mid to late summer 

(August or early September) images provides the highest classification accuracy 

(Bauer et al., 2003). Yang and Lo (2002) also use this most common approach 

to detect land changes in Atlanta, Georgia Area. Then a comparison is done 

between the area estimates from Landsat classifications, change maps, and 

U.S. Dept. of Agriculture’s Natural Resources Inventory (NRI). The change 

detection maps are also compared to high resolution, IKONOS, satellite imagery 

acquired in 2000 and to 1991. In addition to this, another comparison is done to 

1998 parcel maps in a GIS database. 

 

As a result they obtained the accuracy statistics from the comparison of parcel 

maps in a GIS database; the overall accuracies are 95.2% for 1986, 94,6% for 

1991 and 95.9% for 1998, respectively, user’s accuracy of individual classes 

that they acquired range from 85 and 98%, producer’s accuracy range from 85 

to 98%. A Comparison of Landsat and NRI (Natural Resources Inventory) is 

also done to evaluate the classification accuracy. The two evaluation results are 

similar. As a result, they obtained a map displaying the urban growth from 1991 

to 1998.  

 

The aim of examining these examples is to stiffen that the urban area detection 

can be done by using high or low-resolution satellite images, and some vector 

data. 
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2.2. CA Urban Growth Models  
 
Modeling cities with cellular automata is a popular and spreading approach, and 

it is virtually impossible without the data management capabilities of GIS and 

powerful workstation technology (Wolfram, 1994; Clarke and Gaydos, 1998).  

Cellular automata (CA) were developed by Ulam in 1940s and soon used by 

Von Neumann to investigate the logical nature of self-reproducible systems (Li 

and Yeh, 1998). As Torrens (2000) cited, the CA system’s basic elements are 

cells, states, neighborhoods, and rules. Torrens (2000), and Li and Yeh (1998) 

explain the cells as the smallest units which expose some adjacency or 

proximity. The state of a cell can change according to transition rules, which are 

defined in terms of neighborhood functions. The notion of neighborhood is 

central to the CA paradigm (Torrens, 2000).  

 

The rapid development of GIS helps to foster the application of CA in urban 

simulation. Current GIS are not designed for fast iterative computation, but 

cellular automata can be used by creating batch files that contain iterative 

command sequences. By linking cellular automata to GIS some of the 

limitations of current GIS can be overcome, in addition to this CA can benefit 

from the useful information provided by GIS in defining transition rules. The data 

requirement of CA can be best satisfied with the aid of GIS. In integration of GIS 

with CA, CA serves as an analytical engine to provide a flexible framework for 

the programming and running of dynamic spatial models. Also it is possible to 

put and arrange some constraints in the transition rules of cellular automata so 

that urban growth can be rationalized according to a set of predefined 

sustainable criteria (Li and Yeh, 1998).  

 

Cellular automata have been used for simulating urban development (Clarke et 

al., 1997), as well as for other applications such as simulating change in land 

cover, freeway traffic, or the spread of wildfires. 

 

The most famous and simply described instance of a CA is the mathematician 

John Conway’s Game of Life (URL 2). The Life CA was developed by Conway 

to explore the simplest possible configuration for a universal computer. Its 
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specifications are very simple. Only two possible states are permitted in the 

game of life: alive and dead. The lattice of the CA is a square grid of infinite 

dimensions. In other words in its classic form, a cellular automaton consists of a 

regular array of cells, each of which has a finite number of states. Each state 

change must be local, depending only on the states of neighboring cells. 

URL 2 describes the neighborhoods of the Life CA that are consisting of nine 

cells and says that the transition rules are straightforward. According to 

Conway, there are three rules that govern dynamics (‘life’) in the game: birth, 

death, and survival. The birth rule specifies that a cell will be born (i.e., that it will 

transition from a state of ‘dead’ to ‘alive’) if it has three ‘alive’ cells in its nine-cell 

neighborhood. Cells die (they transition from a state of ‘alive’ to one of ‘dead’) 

from overcrowding between time steps if they have more than three live 

neighbors. Cells die by exposure if there are fewer than two live neighbors. The 

survivor rule specifies that a live cell should remain alive in the next time step if 

it has either two or three live cells in its neighborhood. Conway’s game of life is 

given in the Table 2.1. 

 

In his game of life, he also built a configuration by the help of R. Wilson Gosper 

at the Massachusetts Institute of Technology and his team, within the game that 

could generate moving configurations of stable patterns called ‘glider guns’ that 

were capable of firing a steady stream of wandering gliders. MIT team had 

demonstrated that the Life CA was capable of generating a machine that could, 

in turn, reproduce copies of itself that were as complicated in their structure. 

 

For some time now, cellular automata (CA) have been in popular use for urban 

simulation. Based on the Torrens’s paper (2000), it is relatively easy to 

generalize the basic specification of CA to represent urban systems. Cellular 

automata are simple models for the simulation of complex systems (Wolfram, 

1994) and cellular model assumes only an action space (usually a grid), a set of 

initial conditions, and a set of behavior rules. 
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Table 2.1. Conway’s Game of Life; birth, death, and survival rule, (URL 2).   
 

Birth rule 

if [cell state is “dead” in time t] 

and if [the number of cells with state “alive” in neighborhood >3] 

then [set state of cell to “alive” in time (t+1)] 

end 

 

Death rule 

if [cell state is “alive” in time t ] 

and if [the number of cells with state “alive” in neighborhood >3] 

        or [the number of cells with state “dead” in neighborhood < 2] 

then [set state of cell to “dead” in time (t+1) ] 

end 

 

Survival rule 

if [cell state is “alive” in time t ] 

and if [the number of cells with state “alive” in neighborhood >2<3] 

then [set state of cell to “alive” in time (t+1) ] 

end 

 
 
 

Torrens (2000) likens the cell space, on which a cellular automaton operates, to 

an urban sense in an environment, a landscape, or a territory. The CA lattice  
can also be generalized to represent urban spatial structures, networks of 

accessibility, or the physical infrastructure of the city (particularly when the 
lattice is specified as an irregular tessellation). “CA cells operate just like the 
pixels that comprise a television screen, except that each cell is capable of 

processing information, as well as visualizing its state. Cells can correspond to 

any zonal geography within a city: parcels of land, administrative boundaries, 

traffic analysis zones, etc. The cell state offers a flexible framework for encoding 

attributes of a city into the simulation model (O’Sullivan and Torrens, 2000).  
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By the help of cell state, the attributes of a city can be encoded for the 

simulation model. In an urban context a cell state can be the representer of any 

attribute of the urban environment as land use (residential or commercial), 

density (high density or low density), land cover (forested or concrete), etc. 

Neighborhoods in urban CA represent the area of influence or activity within the 

city, e.g., market catchment areas, the walking radius of individual pedestrians, 

the commuting watershed, etc. The rules of a CA drive the dynamics of change 

in the model. CA rules can be devised to mirror how phenomena in the real 

world operate, and can then be coded as algorithms within the simulation. 

 

 
i. The Complex Characteristics of Cellular Automata (CA) 
 
For a successful modeling process, the identification of key variables or 

components, and their interrelations that truthfully represent the urban reality 

are needed.  

 

According to O’Sullivan and Torrens (2000), CA is a good mechanism for 

exploring emergence in complex adaptive systems as urban areas. They are 

dynamic and fine-scaled in resolution. In addition, the use of neighborhoods is a 

good encapsulation of interaction among system elements. In addition to these, 

CA also exhibit many of the signature trademarks of complex adaptive systems, 

such as phase shifts, power laws, self-organization, self-similarity, and fractal 

dimensions.  

 

Rank-size rules or power laws (as they pertain to complexity and CA) link the 

frequency of occurrence of phenomena to their unit size with linear, consistent 

relationships across scales. There are many small-sized cities in the world, but 

only a few large cities. Of course, this makes intuitive sense, but what is 

remarkable is that the relationship between the population size of a city and the 

frequency of occurrence of cities of certain sizes is linear (Torrens, 2000). 

 

Things tend to disintegrate over time according to second law of 

thermodynamics in physics. Many natural systems tend towards disorder, but 

 12



other, often open systems (and particularly biological systems) show the reverse 

tendency. They generate structure rather than disorder as they develop over 

time, even when starting from disordered or even structureless initial states. 

Such systems may be regarded as self-organizing. Self-organization is one of 

the characteristics of complex adaptive systems of CA (Wolfram, 1994; Torrens, 

2000). 

 

The patterns that CA generates often exhibit a degree of regularity in structure. 

Often these regularities are self-similar portions of the evolved pattern of a 

structure are indistinguishable from the whole, because the CA has a self-

similarity characteristic. Cities often exhibit a bi-fractal structure, characterized 

by two or more zones. Inner zones are the well-developed core of cities and in 

these parts of the cities urbanization process are essentially completed. Outer 

fringe zones sprawling and urbanization is still underway (Torrens, 2000).  

 
 
 
ii. Advantages of a CA 
 
Torrens (2000) and Wolfram (1994) listed the advantages of the CA as follows:  

 

• Flexible 

• Connection of form with function and pattern with process    

• Applicable with remotely sensed data and GIS  

• Advantages of using cellular automata for urban simulation 

• Weaknesses of traditional models 

• Spatiality 

• Decentralized approach 

• Affinity with geographic information systems and remote sensing 

• Attention to detail 

• Function and form 

• Dynamics 

• Infusion of complexity theory 

• Simplicity 

• Linking macro- to micro-approaches 
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• Visualization (Torrens, 2000; Wolfram, 1994) 

 

The Role of GIS in Urban Cellular Modeling can be listed as follows (Torrens, 

2000): 

 

• Storing and Managing Input Data and Results 

• Pre-processing of input data (editing, transformation, interpolation, 

derivation of parameters) 

• Analysis and visualization of results 

• Providing computational environment and tools for simulations 

 
For better urban forms for sustainable development and for helping planners, 

CA can be extended and integrated with GIS (Li and Yeh, 1998). The objective 

of their research is to develop an operational CA model for sustainable urban 

development. They generalized the standard cellular automata as follows: 

 
 
S  t+1 = f (S t, N )                       (2.1) 
 
S is a set of all possible states of the cellular automata, f is a transition function 

that defines the change of the state from t to t+1 time, and N is a neighborhood 

of all cells providing input values for the function f (Li and Yeh, 1998). 

 

According to Li and Yeh (1998), cellular automata can be explained as three 

kinds; state based cellular automata, suitability based cellular automata and 

constrained cellular automata. In a standard (state-based) CA model, the state 

is the main attribute to describe the development of a cell. A cell cannot take on 

more than one state simultaneously. However, a state can change from one to 

another in different periods. In urban simulation through such a CA, the most 

general state for a cell is developed (alive) or not developed (dead). In the state 

based cellular automata model, the state of a central cell uses a 3 x 3 window to 

count the distribution of states in its neighboring cells. These models indicate 

that cells developed in the neighborhood cells can add some probability for 

development in the central cell. A suitability based cellular automata is a more 

sophisticated one. This kind of system simulate urban growth through the 

concepts of “development probability” and “development suitability” and it 

 14



assumes a relation between the states (developed or not), development 

probability and development suitability. The constraints are used to make more 

reliable and reproducible predictions of actual urban land use patterns. They are 

mainly related to land suitability according to accessibility that affects land 

development probability, such as cost distance to city centers, roads and 

railways. Dependent on the study area more constraints as local, regional and 

global can be added to cellular automata for a satisfactory sustainable urban 

growth form (Li and Yeh, 1998). Li and Yeh used a constrained CA in their 

study. The model is implemented in the Arc/Info Grid environment. Therefore, 

the CA model is developed within a GIS to facilitate the convenient access to 

the land use information in the GIS database.  The GIS database consist of land 

use maps, soil maps, economic data and the monitoring results of land use 

change detected from remote sensing for the Pearl River Delta. The model is 

applied to Dongguan City in this delta, the fastest growing region in China. The 

main point of constraint CA model is its being straightforward in allowing 

constraints to shape urban growth. Thus, a better urban form can be obtained 

by reducing urban encroachment on the restricted areas according to the 

constraint scores. Li and Yeh (1998) cite that circular neighborhood is better 

than a rectangular neighborhood (the Moore neighborhood) because no bias 

exits in all directions (Figure 2.1). 

 
In Figure 2.1 (a), the points of A, B, A’, and B’ should have the same neighborhood 

for a circular object. Nevertheless, the configuration of neighborhood by rectangles 

produces a discrepancy of neighborhood between A and B. As it is seen from the 

Figure 2.1 (b), the simulation from the rectangle neighborhood can produce 

significant distortions, compared with that from the circular neighborhood (Li and Yeh, 

1998). 

 

The basic data used in the sudy of Li and Yeh (1998) are Landsat TM with 30-

meter ground resolution for the years 1988 and 1993. Agricultural suitability 

maps are produced from soil and slope maps. All the data layers are converted 

to ground resolution of 50 m with 619 pixels x 889 pixels and their CA model 

used a circular neighborhood with a radius of two pixels. The simulation start 

year is 1988 and urban areas of this year are acquired from the classification of 

1988 Landsat TM image. Three scenarios are thought by means of three 
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different agricultural land constraint values. First, the constraint score k=0 is 

used. In the output of this scenario, a lot of agricultural land loss takes place in 

the west part of the city where best agricultural lands exist. Then iteratively 

constraint scores k=1 as a normal constraint and k=2 with a stricter constraint 

are used. So the minimum agricultural land consumption is seen in the third 

value scenario.  

 

 

 
 
(a) Rectangular and Circular neighborhood  
                                               

                                            
Initial stage                    Growth based on                            Growth based on                                  
                                Rectangular neighborhood circular neighborhood 
                                      (3x3; time=20)                           (Radius=2; time=20)  
                             
(b) Simulation based on rectangular and circular neighborhood 
 
Figure 2.1. Rectangle and Circular Neighborhood for the CA Model: (a) 
Rectangle and Circular Neighborhood. (b) Simulation Based on Rectangle and 
Circular Neighborhood (Li and Yeh, 1998). 
 
 
 

Li and Yeh (1998) state that more complicated factors besides agricultural 

suitability can be embedded into the constrained CA model to reflect other 

environmental settings for sustainable urban forms. They give examples of land 

resources and economic factors, which vary regionally and globally. Per-capita 
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agricultural land resources are not same among towns and this affect land 

supply regionally. Land supply may also change globally because of 

government policies and intervention. Li and Yeh (1998) cite that development 

suitability and constraints can be defined with reference to these changeable 

regional and global factors. Therefore, it can be understood from this study that 

the integration of CA and GIS provides a useful tool to explore sustainable 

urban forms under different development scenarios. Moreover, research on 

geographic modeling with CA is still exploring and building upon modeling 

capabilities (Clarke et al., 1996; Clarke and Gaydos, 1998; Li and Yeh, 1998). In 

their study, Li and Yeh (1998) focus on the agricultural land loss but it is 

considered that local, regional, and global constraints embedded in this model 

are most important in generating sustainable urban growth in many developing 

countries where the loss of agricultural land to urban development is serious. Li 

and Yeh (1998) conclude their study with the thought of that the constrained CA 

for modeling the sustainable urban growth can be defined using GIS and 

Remote sensing data. They also added that remote sensing could be used to 

obtain land use information, which is then transformed into GIS for analysis and 

modeling. 

 

A GIS based model is used to predict urban growth in terms of land use change 

and calibrated in the Charleston region of South Carolina by Allen and Lu in 

2003. As Wolfram (1994), Clarke et al. (1996), Torrens (2000), Allen and Lu 

(2003) state that urbans are complex systems and this complexity makes it 

difficult to figure out their changes using a model based on a single approach. 

The model that Allen and Lu used in 2003 is coupled with a rule based suitability 

module and is designed to predict land transition probabilities and simulate 

urban growth under different scenarios. The prediction year of their study is 

2030. In Charleston region from 1960 to 1990, the population increased 41% 

(Allen and Lu, 2003). To develop an operational model, to simulate future urban 

growth based on different scenarios and to predict future urban spatial 

expansions through to the year 2030 is aimed in Allen and Lu’s study (2003). 

The model used in their study (2003) is the integration of three different 

modeling schemes: 
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a) Logistic regression models: It is used to identify the significant 

variables and rules that differentiate urban or city from rural and forest 

environments 

 

b) Relative probability model (Piyanowski et al., 1997): It uses spatial 

interactions of neighborhood, distance, patch size (parcels) and site-

specific characteristics. 

 

c) The focus group model: It is used to create a human input layer, set 

the growth scenarios, evaluate predictions, and disseminate the 

information. 

 

The modeling system is developed as an extension of ArcView and integrated 

with SPSS statistical software package. 

 

The outputs of these three models are linearly combined in an integrated model 

to generate a hybrid transition probability grid for the final prediction. As the 

input data, urban areas are derived from the Landsat MSS and Landsat TM 

according to Anderson et al. (1976) land use (manmade) and land cover 

(natural or semi-natural) classification system. This land category includes 

residential, commercial and services, industrial, transportation, communication, 

utilities, industrial and commercial complexes, and mixed urban or built-up land. 

Other remaining land uses are grouped into a single category as non-urban. 

The reason for using the binary land use classification as urban and non-urban 

is to emphasize the urban growth similar to the data used for Antalya. Three 

different resolutions are used. First, all variable grids are prepared at 30 x 30 m, 

equivalent to the spatial resolution of the Landsat TM imagery used to derive 

urban land use data. Then they are resampled at 100 and 200 m to create table 

data sets for conducting statistical analysis (model calibration) at the county and 

regional levels, respectively. The main purpose of their study is to maintain the 

data sets at manageable sizes, while keeping the resolution as high as possible. 

Higher resolution grids (30 x 30 m) are used for the final prediction and mapping 

in order to obtain a better visual effect. Allen and Lu (2003) state that some 

constraint areas as environmentally important areas, on which the urban 
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development is not allowed, can be introduced to the model by the rule-based 

model. Due to the complexity of land use systems, many factors, or variables 

cannot be defined or measured, or their relationships cannot be modeled, but 

their overall intangible effects may well be perceived by people, particularly local 

planners, developers, or experts with years of experience. In this case Allen and 

Lu (2003) create a focus group consisted of local experts, planners, developers, 

landowners, conservationists, and community leaders who have a profound 

knowledge of the region and urban growth factors. Finally, the outputs of these 

three models are linearly combined in an integrated model to generate a hybrid 

transition probability grid for the final prediction. The final prediction result is the 

year 2030. According to the prediction, the total population of the region will 

increase from 532,600 in 1994 to 795,800 in 2030. The net growth is about 

263,000 people, or 49.41% within a 36-year period, about 7500 people per year. 

The population growth rate is 1.41% annually.  

 

As a result, Allan and Lu (2003) achieved that the logistic model is useful for 

identifying significant predictors and it can obtain high prediction success rates. 

In addition to this, they also acquired that the results of temporal validations 

indicate the logistic model is statistically reliable for short-term prediction, but 

becomes less reliable once the time-span becomes longer.  

 

 

2.3. SLEUTH Model Definition and Urban Growth Predictions with SLEUTH 
Model 
 
In recent years, dynamic modeling has become a primary research field in 

Geographical Information Science. It is rapidly gaining popularity among urban 

planners and geographers for simulating urban and landscape. (Turner, 1987; 

Pijanowski et al,, 1997; Clarke and Gaydos, 1998; Bell et al., 1999; Çelikoyan et 

al., 2003; Xie, 2003). 

 

SLEUTH is one of the popular urban growth models (Clarke et al., 1996). There 

are a number of reasons for choosing this model for the current research. It is 

composed of a series of growth rules and formed modified Cellular Automata 
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(CA). It accommodates CA rules, which are also growth rules calibrated to 

historical urban spatial data. Due to its scale independence, dynamic and future 

oriented structure, transportability, use of under different conditions by modifying 

some initial conditions and changing input data layers and application of all 

regions with different data sets, SLEUTH has become a popular tool in modeling 

urban spreading extent over time or forecasting growth into the future (Yang and 

Lo, 2003; Goldstein, 2004). Yang and Lo cite the ability of SLEUTH’s growth 

rules for the future prediction, deviating from ordinary line-fitting urban models. 

Thus, SLEUTH can be used as a powerful planning tool by incorporating 

different human perceptions into the data used for predicting the future of a city. 

SLEUTH has been used to model a growing number of geographical regions; 

Chester County (Arthur, 2001), Washington-Baltimore metropolitan region 

(Clarke and Gaydos, 1998), Porto and Lisbon, Portugal (Silva and Clarke, 

2002), San Francisco (Clarke et al., 1997) are some of the applications of 

SLEUTH. For understanding the model precisely, the SLEUTH applications in 

different areas and continents are examined. 

 

Urban and regional models are usually supported by a set of variables and 

parameters that feed system dynamics and process interactions built into the 

models. Depending on which variables are required by the model and for policy 

manipulation, common elements can be defined and assigned behavior and 

significance, such as the importance of roadways, urban extent, topographic 

slope, parks, and reserves. Most urban and regional models incorporate these 

general characteristics of urban settlement (Silva and Clarke, 2002). 

 

The model is written in the C language computer program and it operates as a 

set of nested loops. The outer loop repeatedly executes each growth “history”, 

retaining cumulative statistical data and the inner loop executes the growth rules 

for a single ‘year’. The starting point for urban growth is an input layer of ‘seed’ 

cells from the urban extent identified from historical maps or other sources. The 

rules apply to a cell at a time and the whole grid is updated as the ‘annual’ 

iterations are completed. The basis for urban expansion in each succeeding 

year is formed by the modified array. Potential cells for urbanization are 

selected and the growth rules evaluate the properties of the cell and its 
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neighbors as if they are already urban or not, what their topographic slope is 

how close they are to a road (Clarke et al., 1997; Clarke and Gaydos, 1998). In 

the model there are five factors controlling the behavior of the system:  

 

• Breed Factor (Coefficient) determines how likely a newly generated, 

detached or road-influenced settlement is to begin its own growth cycle. 

• Diffusion Factor (Coefficient) controls the overall dispersiveness of 

growth. 

• Spread Coefficient controls how much diffusion expansion occurs from 

existing settlements. 

• Slope Resistance influences the likelihood of settlement extending up 

steeper slopes 

• Road Gravity encourages new settlements to develop near the 

transportation network (Clarke and Gaydos, 1998; URL3, 2006). 

 

According to Clarke (1996), urbanization is the sum of the four types of the 

growth: 

 

• Spontaneous Growth models the development of urban settlements in 

undeveloped areas. 

• Diffusive Growth permits the urbanization of isolated cells, which are flat 

enough to be desirable locations for new urban spreading centers. 

• Organic Growth promotes the expansion of established urban cells to 

their surroundings. 

• Road Influenced Growth promotes the urbanization along the 

transportation network because of increased accessibility. 

 

Newly urbanized cells must pass the random tests of breed and diffusion 

coefficient, slope resistance and road gravity. During the urban growth 

computation, a second level of growth rules called “self-modification” prompted 

by an unusually high or low growth rate above or below a threshold or critical 

number (Clarke et al., 1996). In that case, the model modifies certain 

parameters to emphasize trend. Therefore, self-modification is quite important to 

ensure reasonable results (Yang and Lo, 2003). The finishing values of all the 
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coefficients (located in a file called param.log) were used to find the final best 

values that describe the boom and boost periods in the system. This utility 

averages the finishing coefficient values stored in the param.log file, and returns 

a set of five integers that represent the best coefficient values resulting from the 

entire process of calibration, reflecting both the growth rules, and the self-

modification rules (Silva and Clarke, 2002).  

 

The growth rate is computed by comparing the number of new pixels urbanized 

in any period to the total existing urban area. It can be summarized from the 

Silva and Clarke’s study in 2002 that the self-modification of the rules changes 

the control parameters when modeled growth rates are exceeded, so that the 

model’s behavior includes feedback. The limits of "critical high" and "critical low" 

initiate an increase or decrease in three of the growth control parameters: 

diffusion, breed, and spread. The increase to the parameters is by a multiplier 

greater than one, "boom," imitating the tendency of an expanding system to 

grow ever more rapidly, while the decrease is by a multiplier less than one, 

"bust", causing growth to taper off as it does in a depressed or saturated 

system. By summarizing from Silva and Clarke’s study (2002), each time the 

model records rapid growth, or little or no growth, the model adapts itself to this 

new set of conditions. In the case of rapid growth, the model multiplies the 

growth control parameters by a multiplier greater than one. Little or no growth 

causes the control parameters to be multiplied by values less than one. The 

parameter values increase most rapidly at the beginning of the growth cycle 

when there are many cells available to urbanization, and then, with time, the 

parameters are decreased as expansion levels of and the growth rate falls 

below the critical low. However, to prevent uncontrolled exponential growth as 

the system increases in overall size, the multiplier applied to the factors is 

slightly decreased or lagged in every subsequent growth year. Self-Modification 

can also increase the road-gravity factor as the road network enlarges, 

prompting a wider band of urbanization around the roads, and decrease the 

slope resistance factor as the percentage of land available for development 

decreases, permitting expansion onto steeper slopes. By means of self-

modification, the parameter values increase most rapidly in the beginning of the 

growth cycle when many cells are available for urbanization, and decrease as 
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urban density increases in the region. Therefore, without self-modification the 

model produces linear or exponential growth (Clarke et al, 1996). 

 

The model runs in three modes; test mode, calibration mode and the prediction 

mode. By means of the test mode, you can test your data whether ready for the 

calibration then the prediction. Prior to calibration, the first step in the application 

of the SLEUTH model is the verification of the data sets and their initial reaction 

to the input data, called test mode, including assuring that they conform to data 

input specifications. A minimum of four urban years, two road years and at least 

one excluded layer, one hill shade image and one slope layer are required, and 

the code verifies the correct input of each of these data sets (Clarke et al., 1996; 

URL 3). The importance of this step can be understood from Silva and Clarke’s 

study (2002) in the Lisbon Metropolitan Area. The water bodies and land outside 

the Porto Metropolitan Area was initially not defined correctly in the excluded 

layer, and consequently the model was seen expanding urbanization to these 

areas. It was also observed during this test phase that the slope layer was not 

contributing to the model calibration, for the test mode statistics did not seem to 

be sensitive to changes in slope. It was found that the percent slope image had 

been altered during its conversion from TIF to GIF format. Without this initial 

test, the model could run for days during calibration, and the time would be 

unnecessarily lost. 

 

Once the test mode is completed, the next phase is the calibration mode that is 

the most important step for the success of model prediction. The purpose of the 

model calibration phase is to determine the best-fit values for the five growth 

control parameters including coefficients of diffusion, breed and spread, slope 

resistance and road gravity with historical urban extent data. Calibration relies 

on statistical measures of historical fit. It is the key component of the modeling 

process by which numerical values are assigned to the model parameters in 

such a way that the model accurately reproduces the real patterns (Clarke et al., 

1996; Clarke et al., 1997; Yang and Lo, 2003). Calibration mode has three 

phases; coarse, fine and final calibrations as told in Silva and Clarke’s study in 

2001. Yang and Lo (2003) also have the calibration results comprising the three 

phases. In the “coarse calibration” input data are resampled to four times of their 
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initial resolution (100 m resolution data is resampled to 400 m) and the model 

attempts to simulate the historical growth patterns for a wide range of parameter 

values across the entire parameter space. “In the fine calibration” the input data 

are resampled to twice of their original resolution (100 m resolution data is now 

resampled to 200 m). Using this half resolution data, the narrowed range of 

parameters from the previous step are used to simulate the historical growth 

patterns. Results of these simulations are evaluated using spatial metrics of fit, 

and the range of parameters is narrowed. Finally, in the “final calibration” the 

input data are used at their full resolution. The first year provides a seed for the 

set of parameters tested, which then simulate urban growth and then evaluate it 

compared to the actual control data. The set of parameters that best recreates 

the urban growth is then used in model forecasting (Dietzel and Clarke, 2004). 

 

In these calibration results for Lisbon the set of initial control parameter values 

are ranging from 1 (in the case of the diffusion coefficient) to 100 as the 

maximum values for each of diffusion, breed, spread, slope resistance and road 

gravity. In the coarse calibration, the resulting values were narrowed to 1, 100, 50, 

25, and 20. With the final calibration, the values became more sensitive, 

respectively, values of 16, 57, 50, 25, and 30. 

 
The comparison of the model final “population’’ (number of urban pixels) and the 

urbanization for the control years gives a high summary correlation of 0.90 

(compare_score). This means the prediction of the model based on the initial 

seed year of the present urban pattern using those refined values is very similar 

to what happened in reality. The shape and form of urbanization seems also to 

confirm that calibration adjusts the values to reflect local characteristics. The 

final calibration correlations are 0.78 in the case of the score r2_edges (modeled 

urban edges against the urban edges of control years), and 0.87 in the case of 

the cluster_r2 score (modeled urban clustering against known urban clustering). 

For Lisbon, leesalle (degree of shape match between the modeled growth and 

the known urban extent) is 0.35 in the final calibration but it is very hard to 

obtain high values of shape match (Clarke and Gaydos, 1998). Therefore, a 

value of 0.35 is very good for the Lisbon Metropolitan Area (Silva and Clarke, 

2002). General meanings of these parameters are given in Table 2.2. 
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The comparison of the five coefficients that control the system is discussed very 

clearly in Silva and Clarke (2002), Candau (2002), and Goldstein (2004) that if a 

diffusion value is high it is a sign of the scattering urbanization of the area where 

SLEUTH applied, the breed value shows the amount of vacant land suitable for 

development and it is high when this kind of lands are abundant in a case. If the 

spread coefficient is high, with a high probability it shows us that the 

transportation infrastructure is recently built in the region with a high capacity, 

which is an invitation for the spread urbanization. In that case, the road value is 

also high. Finally, the slope coefficient is low if the area has fewer constraints to 

urbanization due to slope. The result of these three phases comprise of the 

optimum values for the diffusion, spread, slope and road gravity parameters.  

 

When the calibration mode is completed, the results are used for forecasting 

studies in the prediction mode. Prediction Mode is used to project future 

scenarios of urban growth. 

 

Sleuth is a CA based model. A typical CA consists of four primary components: 

 

1. Cells                          

2. States                        

3. Neighborhoods          

4. Transition rules  

 

The state of a cell can change in relation to its neighboring cells when a set of 

transition rules are applied uniformly (Candau, 2002; O’Sullivan and Torrens, 

2000).  
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Table 2.2. General Meanings of the Calibration Parameters (Candau, 2002; Silva 
and Clarke, 2002). 
 

composite score 

Acquired by multiplying all the scores together, then 

by multiplying this value by a ratio, which is the 

comparison of model final urban areas to the actual 

urban areas. 

Compare value 
Comparison of the modeled final population to real 

data final population. 

r2  Population 

It is the least squares regression score for modeled 

urbanization compared with actual urbanization for 

the control years 

r2  Urban Regression score for urbanization 

r2  Urban Edges Regression score for Urban edges 

r2  Urban Clusters Regression score for Urban Clusters 

Mean cluster size 

r2

Least squares regression score for modeled average 

urban cluster size compared with known mean urban 

cluster size for the control years  

Leesallee Score 

Measures the degree of shape match between the 

modeled growth and the known urban extent for the 

control years 

Average Slope r2

The least squares regression of average slope for 

modeled urbanized cells compared with average 

slope of known urban cells for the control years 

pct Urban_r2

The least squares regression of percent of available 

pixels urbanized compared with the urbanized pixels 

for the control years 

xmu and r2

These values are the (center of gravity [x] and [y]) 

least squares regression of average x and y values 

for modeled urbanized cells compared with average 

x and y values of known urban cells. 

Sdist_ r2 Standard deviation averaged over (XY) 
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Advantages of the Model (SLEUTH): 

 

• Scale independent 

• Dynamic and future oriented 

• Can be used under different conditions by modifying some initial 

conditions and changing input data layers 

• Can be applied to all regions with different datasets (Candau 2002; Yang 

and Lo, 2003, URL 3, 2005) 

 

In the SLEUTH model, the growth rules are uniform throughout a gridded 

representation of geographical space and are applied on a cell-by-cell basis. A 

single time span is one iteration of the CA, and all changes are applied 

synchronously at the end of each period (Clarke et al., 1997). 

 

The current version of the urban growth model can drive a land use/cover 

transition model, which is called land cover deltatron model, but the urban 

growth model can run independently.  

 

Yang and Lo (2003) simulated the urban growth in Atlanta metropolitan area, 

one of the fastest growing metropolises in the United States during the past 

three decades, by using SLEUTH model coupled with a land transition model. 

Yang and Lo (2003) calibrated the model with historical data that are extracted 

from a time series of satellite images. Three specific scenarios to simulate the 

spatial consequences of urban growth under different environmental conditions 

are applied. Their first scenario is to simulate the continued growth trend by 

maintaining the unchanged current conditions. The second scenario is to project 

the growth trend by taking into consideration the road development and the 

environmental protection. In these two scenarios, the unchecked urban growth 

would result in the displacement of almost all the natural vegetation and all the 

open space in Atlanta. The third scenario is to simulate the development trend 

by slowing down growth and changing growth pattern. In contrast to first two 

scenarios, the result from the third scenario displays much more greenness and 

open space, including buffer zones of large streams and lakes could be 
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preserved. Consequently, the last scenario is the most desirable for the future 

urban growth of Atlanta.  

 

Clarke and Gaydos (1998) applied a CA model, which is applied to two rapidly 

growing, but remarkably different urban areas: the San Francisco Bay region in 

California and the Washington / Baltimore corridor in the Eastern United States. 

The calibration and prediction results for both regions are presented, and their 

data requirements are reviewed, the differences in the initial configurations and 

control parameters for the model in the two settings are compared, and the role 

of GIS in the applications are discussed. As a result, the model has generated 

some long-term predictions that appear useful for urban planning. 

 

Silva and Clarke (2002) examined differences in the model’s behavior when the 

model obviously applied to different environments of two European cities, which 

are captured in the data and modeled. They interpreted and evaluated the 

model’s portability and universality of application.  

 

Data assembly problems are revealed as in other SLEUTH applications. The 

problems that Clarke and Gaydos (1998) encountered with are inconsistent 

feature definitions, especially for urban areas and major roads, extensive 

manual generalization in historical maps, integration of multiple image and map 

sources from different projections, datums, and coordinate systems. After 

assembly of the various data sets and their conversion to the input format for 

the model in Clarke and Gaydos (1998), the model calibration is done for the 

two study areas to find the best fit of observed historical data.  

 
Although the calibration phase is slow and highly dependent on the size of the 

input data set and on the quality and quantity of historical data, the model can 

produce useful results. Clarke and Gaydos (1998) think that the model should 

be applied to new different areas and at different map scales and they plan to 

test the model at about 1 km resolution for the entire lower 48 United States for 

the full Anderson Level I classification (Anderson et al., 1976), and for 

applications in New York, Chicago, Philadelphia, and Portland. 
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For Lisbon and Porto, as done in the other SLEUTH applications (Clarke and 

Gaydos, 1998; Yang and Lo, 2003) all data layers for two metropolitan areas 

required for SLEUTH model are collected (slope, excluded areas, urban extent 

for the control years of 1984, 1995, 1997, and the seed year of 1975 

transportation and hill shade). These data are prepared in ArcInfo GIS format 

and converted into the 8-bit GIF format. First, the calibration result metrics are 

compared in Silva and Clarke’s study (2002). The metrics acquired from the 

calibration that best describe each system are explained in terms of their 

behavior according to the landscape characteristics and history. The scores and 

coefficients of both metropolitan areas are compared to understand what extent 

the model reflects different realities, and which metrics are more sensitive. 

Therefore, some events including different political, socio-economic, and cultural 

changes during recent times are crisscrossed for both metropolitan area and the 

country. The first event period is chosen as the period before the 1974 

revolution. The second period comprises the years between 1974 and the end 

of the 1980s (Silva and Clarke, 2002). 

 

Until now, all the existed important periods are determined to use in the 

crisscross comparison. In addition to these political effects, housing market and 

rental laws are also taken into consideration. As a result, they acquired the 

tables of three calibration phases for both cities. Then they compared these two 

cities by interpreting the parameters in these tables. The result comparison is 

shown in Figure 2.2 (Silva and Clarke, 2002). 

 

The numbers acquired from the detailed and exhaustive calibration can be used 

to predict future growth in the SLEUTH model prediction mode. From Silva and 

Clarke’s (2002) study it can be observed that, cities may show a higher degree 

of influence of infill from a relatively modest number of existing centers (as in 

Porto) or stronger impact of transportation on growth (Lisbon). Throughout 

calibration, these different characteristics can be captured in the set of final 

coefficients that best describe the specific system/reality under study at the 

same time, and so can predict future developments. 
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Figure 2.2. The Behavior of Each Metropolitan Area to the Different 
Coefficients, AML: Lisbon Metropolitan Area, AMP: Porto Metropolitan Area 
(Silva and Clarke, 2001) 
 
 
 

 30



 
CHAPTER 3 

 
 

MATERIALS AND METHODOLOGY 
 
 
 

In this chapter, the case study area, the preparation of the input data required 

for the model SLEUTH and the methodology used in this study are described. 

 
 
3.1. Definition of the Study Area 
 
The study area is located in Antalya. It is in the Mediterranean Region of 

Turkey, between the 30o32’ E-36o59’ N, 30o52’E-37o0’N, 30o32’E-36o49’N, 

30o52’E-36o49’N lat/long units. Except centre district, Antalya has fourteen 

districts, which are Akseki, Alanya, Elmalı, Finike, Gazipaşa, Gündoğmuş, 

İbradi, Kale, Kaş, Kemer, Korkuteli, Kumluca, Manavgat, and Serik. In addition 

to this, it has a centre district in which the case study area of this study takes 

part (Figure 3.1). The modeled area is a rectangle including west part of the 

Municipality of Çalkaya, whole Muratpaşa Municipality, northeast part of the 

Municipality of Konyaaltı, and the south part of the Municipality of Kepez (Figure 

3.2) 

 
For the last decade, Antalya has been the fastest growing metropolitan city in 

Turkey as it emerged the premier tourism and industrial urban centre of the 

Mediterranean Region. The total population of Antalya was 1.132.211 in the 

year of 1990 and the most crowded district was the Central district with its total 

population of 448.773 (DİE, 1990). 
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TURKEY 

Antalya 

Antalya Centre District 

Antalya Centre District 

 
Figure 3.1. Location of the Study Area 
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By the year 2000, the total population of Antalya rose to 1.719.751 and the 

population of the central district increased to 714.129. While the total growth 

rate of Antalya for the last decade is 41, 79‰ (Figure 3.3), it is 46, 44‰ for the 

central district. Beside this, Turkey’s growth rate for the last decade is 18, 78‰. 
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(DİE, 2000) This uncontrolled population increase because of the development 

of the tourism, commerce and industry activities in Antalya has pulled the 

migration to the city and has caused the city’s expanding greatly as urbanization 

consumes large areas of agricultural and forest land (UTTA Planning, 1995). As 

it is given in the Table 3.1 while the density of population in Antalya in one 

square kilometer is 83 (population/km 2), in the central district it is 354 

(population/km2) (DİE, 2000). The main element that affects the environmental 

and physical structure of Antalya is the migration fact. Under the pressure of 

social-economic factors of migration, the urban structure of Antalya has an 

unhealthy and unstable growing tendency. Consequently, the quality of life in 

this city is degraded. By the effect of the population pulled by the tourism activity 

to the area, urban environment, natural resources, cultural worth, and the 

ecosystem has begun to loose quality (URL 4, 2005). Thus, Antalya is chosen 

as the study area due to these effects and its fast growing trend. 

 

 

COMPARISON OF GROWTH RATE OF POPULATION OF 
ANTALYA TO TURKEY BETWEEN 1990 AND 2000 (%o)
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Figure 3.3. Comparison of the Growth Rate of Population of Antalya to Turkey 
for the last decade (‰), (DİE, 2000). 
 
 
Table 3.1. Density comparison of Antalya and the Centre district, (DİE, 2000) 
 

 Density 
(population/square kilometer) 

Surface area 
(square kilometer) 

Antalya 83 20.723 

Centre District 354 2020 
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3.2. Data Used in the Study  
 
Similar to other predictive models (Hung, 2002; Yang and Lo, 2003; Allen and 

Lo, 2003; Silva and Clarke, 2002; Dietzel and Clarke, 2004; Li and Yeh, 1998; 

Clarke and Gaydos, 1998), SLEUTH requires some input data in order to initiate 

the simulation. The 3.0-beta version of SLEUTH requires an input of at least five 

types of unsigned 8-bit GIF format data; urban extent, road, slope, excluded 

areas, and hill shade. In addition to these data if land use/cover is being 

analyzed for land use prediction of the study area in the future, the land 

use/cover datum can also be used as input for the model. Data used in the 

study are collected from governmental organizations, private companies, and 

internet. The list and the sources of the input data themes are given in Table 

3.2. 

 

At least four years of urban extent data are required for the model calibration 

(URL 3, 2005). For Antalya, four years of Antalya data (three satellite images 

and air photos) are obtained. The urban extent themes are produced from 

satellite images and air photos. The urban extents of 1987, 1996, and 2003 are 

produced from satellite image classifications. All the satellite images are 

obtained during the summer time namely June, July, or August. The year of 

1987 satellite image (Thematic Mapper (TM) Landsat 30 meter image with 7 

bands) is downloaded from internet address (URL 5) (Figure 3.4). For the urban 

extent of the year 1992, air photos obtained from General Command of Mapping 

are used (Figure 3.5). They are purchased as 18 pieces air photos. Then they 

are all scanned and georeferenced individually in respect of the coordinate 

system of the satellite images which have the projection system of UTM WGS 

84, Zone 36. Not only air photos and satellite images, but also all the other data 

sets are projected into the same projection system. The 20-meter SPOT of 1996 

image with 3 bands is acquired from INTA Spaceturk (Figure 3.6). The year of 

2002 satellite image (Enhanced Thematic Mapper (ETM) Landsat 30 meter 

image with 8 bands) is also downloaded from the same address (URL 5) (Figure 

3.7).  

 
For the road theme at least two road layers are required and the dates of the 

road themes do not need to match exactly with the dates of urban extent 
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themes (Yang and Lo, 2003). In this study, the theme of roads contains two 

layers. These road layers are produced for 1995 and 2003. They contain 4 

grade road types which are 1st, 2nd, 3rd and 4th degree of roads in the case study 

area. Generally these grades represent the importance, occupancy and 

consequently, relative urban attractiveness of roads (Yang and Lo, 2003). 

 

In Antalya, the first-degree roads connect the city’s main development directions 

to the Centre, in which the other degree roads are included. While the first-

degree roads represent the most important and occupied roads, the fourth 

degree ones represent the least occupied roads. However, for Antalya in 1995 

the roles of these graded roads are not represented as well. Elker (1995) 

studied the planning at transportation of Antalya. The road data of the year 1995 

is digitized (Figure 3.8) from the existing transportation map of the year 1995 

which is prepared by Elker (1995), and the 1996 satellite image is also used in 

this stage. For the year 2003, transportation plan of Antalya for 2003 prepared 

by DAMPO Planning is used. The transportation plan, which is in CAD format is 

converted to shape file (Figure 3.9). The degrees of roads are querried and the 

unnecessary data are eliminated. 
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Table 3.2. List of the Model Input Data, Naming Format 
 

Theme Year Source Format Naming Format for the 
model 

1987 

Classified from 
1987 Satellite 

Image (Landsat 
TM30m) 

Raster antalya.urban.1987.gif 

1992 Digitized from 
1992 Air photos Rasterized antalya.urban.1992.gif 

1996 

Classified from 
1996 Satellite 
Image (Spot 

20m) 

Raster antalya.urban.1996.gif 

Urban 
Extent 

2002 

Classified from 
2002 Satellite 

Image (Landsat 
ETM 30m) 

Raster antalya.urban.2002.gif 

1995 

Digitized from 
Antalya 

Transportation 
Map and 

Satellite Image 
of 1996 

Rasterized 
(originally 
cad data) 

antalya.road.1995.gif 

Roads 

2003 

Digitized from 
DAMPO 
Planning, 
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Figure 3.4. 1987 Landsat TM satellite imagery of the study area with 30 meter 
spatial resolution. 
 
 
 

 
 
Figure 3.5. 1992 Aerial photograph mosaic of the study area with a scale of 
1/40.000 
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Figure 3.6. 1996 Spot satellite imagery of the study area with 20-meter spatial 
resolution. 
 
 
 

 
 

Figure 3.7. 2002 Landsat ETM satellite imagery of the study area with 30-meter 
spatial resolution. 
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Figure 3.8. Road Data for the Year 1995 
 
 
 

 
 
Figure 3.9. Road Data for the Year 2003 
 
 
 
The roads can be weighted according to their relative urban attractiveness. This 

can be done by adding a width dimension to highways that are the centre line of 

roads, and nodes, which are points. Thus, weighting buffers can be applied to 

the highways and the nodes. Then the buffered features can be assigned 
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different values (0<n<255) according to their relative importance before being 

converted into raster format (Yang and Lo, 2003). This method was not applied 

in this study. 

 

For the excluded areas, one layer is produced from the Antalya 1/5000 

Development Plan (DAMPO Planning, 2003) which is approved by the 

government. In respect of this plan, there are unresidential areas in Antalya and 

those must be preserved. Thus, natural conservation areas, forest covered 

areas, military zones, first and second-degree productive agricultural areas, 

airport, and riverbeds are digitized (Figure 3.10). The Mediterranean Sea by the 

Antalya also digitized in this layer as the attribute name with water. Not all these 

areas in this layer are allowed for urban development. In addition, a second 

layer of the excluded areas that contains three levels of buffer zones around 

rivers, forests, riverbeds, and conservation areas could be put into the model. 

The buffer zone within 50 meter could be assigned a value of 100, meaning that 

this area is not allowed for urban development at all; the buffer between 50 and 

100 meter could be assigned a value of 60, indicating a 60% probability of 

exclusion; and the buffer zone between 100 and 200 meter could be assigned a 

value of 20, indicating a 20% probability of exclusion. 

 
The slope should be derived from a digital elevation model (DEM). A layer of 

terrain slope is computed from the SRTM 90 meter DEM data that is obtained 

from URL 5. Cell values must be in percent slope, not in degree (Figure 3.11). 

Moreover, the pixel value range must be between 0 and 100. A layer of the hill-

shaded image is computed from SRTM 90 meter DEM (Figure 3.12). This image 

shows the topographic relief in the study area and it is used in the model in 

order to give spatial context to the urban extent data as a background image for 

visualization purposes. This must be a grayscale image as it is given in the 

following figure (Figure 3.12). 
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Figure 3.10. Excluded Areas (unresidential areas) 
 
 
 

 
 
Figure 3.11. The Layer of Terrain Slope. 
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Figure 3.12. Layer of the Hillshade (URL 5, 2004). 
 
 
 
Addition to all these data, a land use data of the year 2003 (Figure 3.13) is used 

to assess the accuracy of the classification results. It is obtained from DAMPO 

Planning Firm, which is the latest Antalya Development Plan of Antalya. It 

contains all the existing land use and land cover features of the study area as 

settlement areas, active green areas as parks in the city and the passive green 

areas as forest, watery agriculture areas, dry agriculture areas, empty spaces, 

and airport. 

 

3.3. Analyses of the Satellite Images 
 
Anderson et al. (1976) stated that there is no one ideal classification of land use 

and land cover, and it is unlikely that one could ever be developed. He notices 

that there are different perspectives in the classification process and says that in 

almost any classification process, it is rare to find the clearly defined classes that 

one would like. For the SLEUTH model as it is told in the literature survey 

(chapter two), generally the Landsat satellite images are used because of their 

medium resolution (Yang and Lo, 2003). For the model, exposing the urban 

extent and non-urban extent classes are sufficient. There is no need to expose 

the details of the urban features. 
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2002 and the SPOT satellite image with 20 meter resolution for the year of 1996 
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are classified to obtain the urban extent input data. For the urban extent of the 

year 1992, there is no need for the classification because aerial photographs with 

a scale of 1/40.000 are used in order to extract the built up areas as urban 

extent. 

 
 
3.3.1. Classification Analyses of the Satellite Image of the Year 2002 
 
To obtain the urban and non-urban classes Landsat 2002 satellite image is 

classified into five classes, which are urban, green areas together with the active 

(used in daily life) and passive ones (not in used in daily life), agricultural areas, 

empty spaces, and water. The classification is performed with PCI Geomatica 

V9.1. The training areas were collected according to these five classes. 

However, the result was not acceptable because of the mixed pixels. The water 

pixels were not identified precisely and were mixed to the agriculture and urban 

pixels. In addition to this, the empty spaces were mixed with agricultural areas. 

Therefore, a rule for water, which is valid for Landsat, is applied to the 2002 

satellite image. In Landsat Images, water is the unique land cover type such that 

the band reflectance values always decrease as the band number increases, 

ignoring the thermal band (band 6). In other words, if pixel (i, j) lies entirely within 

a water region then b ij 
1 > b ij 

2 > b ij 
3 > b ij 

4 > b ij 
5 > b ij 

7   (Avcı, 2000). There were 

many water pixels in the output so a low pass mode filter with 3 x 3 window is 

applied. The filter output was not satisfactory. Following, a 5 x 5 window low pass 

mode filter is applied but the result was not as expected. So it is decided to put water 

into the excluded area layer. It is understood that to expose the water class from a 

30 meter Landsat image is complicated. However, an accuracy assessment by 

using 2003 land use map is realized to test the classification result. In PCI, 510 

random points are appointed. Before the random appointment of the points, 

Mediterranean Sea is masked from the satellite image. The random points are 

not allowed to be assigned on this water mask in order not to affect the accuracy 

of the result. The numbers of samples chosen randomly from each class are 

proportional to the percentage of the image occupied by each class. As a result, 

the overall accuracy is determined as 61.644%. It was very low for an acceptable 

accuracy level according to Anderson et. al., (1976). As Hung (2002) clarified, it 
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is not very easy to identify all the classes one by one, or to distinguish from each 

other, without prior information of the study area. 

 

The study area comprises of many land use features. As a stipulation of a 

supervised classification, the training areas are collected. After collecting the 

training areas for five classes, it is decided that increasing the number of classes 

would be useful to identify the features clearly. If the satellite image and the land 

use map are examined the abundance of the land use classes can be seen 

frankly. Therefore, for the classification of the satellite image of the year 2002, 

the numbers of classes are extended from 5 to 13 (Bauer et al., 2003). 

Therefore, the confusion of the land classes would be minimum. In the study 

area, four different urban textures are determined. Areas with label of urban_1 

represent the obvious urban areas particularly in the Centre of the city and the 

areas with the most density of the population. Urban_2 areas are the areas near 

the urban_1 areas with the less population of density. Urban_3 includes the 

industrial areas as small industrial complexes as a part of urban. Urban_4 

represents the least population density areas. In addition to these urban areas, 

the airport in the east part of the Centre is completely labeled as urban 5 

because it is also a built up area which reflects as urban texture. Following, three 

different green area textures are determined from the satellite image and the land 

use map as green_1, green_2, and green_3. Here, the green 3 represents the 

darkest green lands which belongs to forest reflectance, green_2 represents the 

green areas with less darker reflectance than the green_3 and green_1 

represents the green areas with the least green reflectance and which 

particularly belongs to the agricultural green and the green areas inside the 

urban areas. From the satellite image, two different empty spaces or barelands 

are determined. One is the obvious empty spaces represented as bareland_1 

and the other is the bareland_2.  

 
The training areas for all the classes are collected precisely. It was noticed that the 

minimum number of training area pixels are collected as the 10% of the total number 

of the pixels of the involved class. For example for the class urban_1, the collected 

training area pixels were the 10% of the total urban_1 reflected pixels in the satellite 

image.  
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The classification method used in this thesis is the Supervised Maximum Likelihood 

Classification, which is the most common method as Bauer et al. (2003) applied in 

their study in Minnesota. The resultant thematic map of the classification is displayed 

in Figure 3.14. The classes were aggregated to 5 land use classes and the resultant 

map is shown in Figure 3.15. The three types of green areas were aggregated to 1 

green class, the five types of urban areas were aggregated to one urban class, and 

the three types of agricultural areas were aggregated to one agriculture class. Water 

and bareland were the other two classes. 

 
If the aggregation result (Figure 3.15) is compared to land use map (Figure 3.13) of 

the year 2003 by the human view, the strong similarity can be realized easily. 

However, to maintain this similarity the accuracy assessment of this classification 

was also realized by means of the land use map. Before the accuracy assessment, 

a low pass mode filter with a window of 7 x 7 is applied to the aggregation result to 

obtain the integrity of the classes (Figure 3.16). A mode filter computes the mode, 

most occurring value, of the pixel values and replaces the least occurring value with 

the most occurring value. 

 
 
3.3.1.2. Recoding of the Raster Layer of the Year 2002 
 
The model requires the urban extent layer as urban and non-urban binary layer. 

Therefore, in ArcGIS 8.3 and ERDAS 8.6, mode7 x 7 filtered layer is converted to 

raster imagine format then the pixel values of all classes except urban are recoded 

as zero and the urban layer is recoded as one because of the urban extent 

requirement of the model. The recoded new image is shown in Figure 3.17. In the 

figure, the black pixels are recoded as the pixel value zero and they represent the 

non-urban areas, and the white pixels are recoded as the pixel value 1 and they 

represent the urban pixels. 
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Figure 3.16. Mode 7 x 7 Filter Application to the Aggregation Result of the year 
2002. 
 
 
 

 
 

Figure 3.17. 2002 Urban Extent Layer after Recoding the Mode Filtered 2002 
Image (white is urban, black is non-urban pixels).  
 
 
 
3.3.1.3. Accuracy Assessment of the Classification Result of the Year 2002 
 
Assessing the accuracy of a remote sensing application is one of the most 

important steps in any classification exercise. Without an accuracy assessment the 

output or results is of little value (URL 6, 2005). Therefore, 510 random points are 
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assigned to this recoded binary layer in order to obtain the accuracy assessment 

statistics. As a result, overall accuracy is obtained as 91.720% at the 95% 

confidence interval. The producer’s accuracy is obtained as 92.4% for non-urban 

areas, 88.8% for the urban areas. According to Anderson (1976), accuracy 

statistics over 85% are adequate. Here, the overall accuracy is the sum of the 

diagonal elements divided by the total number in the sample. The producer’s 

accuracy represents the percentage of a given class that is correctly identified on 

the map (the percentage correct for a given row divided by the total for that row) 

(Lecture Notes of the Integration of RS and GIS, 2004).  

 

On the base of these statistics, this classification methodology steps were 

decided to be used for the year of 1987, 30 meter of resolution Landsat image 

and for the year of 1996, 20 meter of resolution SPOT image. The flowchart of the 

methodology from the step of data acquisition to the step of accuracy assessment 

of the recoded image is shown in the Figure 3.18. 

 
 
3.3.2. Classification of the Satellite Images of the Year 1987 and 1996 
 
For the classification of the satellite images of the years 1987 and 1996, the 

above flowchart is used as a guide. The ancillary data as land use or vector 

data could not be found for these years so it is thought that the methodology 

used for the year of 2002 could guide these years classification analysis 

because the accuracy assessment result for this year was very high as 

91.720%. After the registration and subsetting the images of the years 1987 and 

1996, the training areas for these years are collected precisely for the same 

thirteen classes. Then the maximum likelihood classification method is run. The 

results of the classifications are shown in Figure 3.19 and Figure 3.20. 
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Figure 3.18. The Flowchart of the Methodology of the Classification Analysis 

from the Data Acquisition Step to the Accuracy Assessment Step  

 
 
 
From the classification result of the year 1987, it can be figured out that the 

empty spaces with yellow color are much dominant than the ones in 2002. 

When the classification results are examined, it was found that the mixed pixels 

appeared a lot in the satellite image of the year 1996 because of the better pixel 

resolution of 20 meter (Figure 3.20). 
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Figure 3.19. The Resultant Thematic Map of the Supervised Maximum Likelihood 
Classification Analysis of the Year 1987  
 
 
 

 

 
 
Figure 3.20. The Resultant Thematic Map of the Supervised Maximum Likelihood 
Classification Analysis of the Year 1996  
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3.3.2.1. Post Classification Analyses of the Years 1987 and 1996 
 

After the classification analysis, the post classification steps of aggregation for 

these two years are performed (Figures 3.21 and 3.22). 

 

 

 

 
 
Figure 3.21. Aggregation of the Maximum Likelihood Classification for the year 
1987. 
 
 
 
After the aggregation step, number of classes 13 is decreased to 5 as displayed 

in Figures 3.21 and 3.22. The new classes are green areas with the green color, 

urban and built up areas with the dark brown color, barelands with the yellow 

color, agriculture with the light brown color, and the water with the blue color. In 

addition to these classes, the black color is the bitmap of the Mediterranean 

Sea. For the integrity of the classification classes of these two years, the next 

post classification step of filtering is produced (Figure 3.23 and 3.24). The low 

pass 7 x 7 pixel window filter is applied. 
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Figure 3.22. Aggregation of the Maximum Likelihood Classification for the year 
1996. 
 
 
 
3.3.2.2. Recoding of the Raster Layers of the Years 1987 and 1996 
 
As the last step of the classification methodology, raster conversion is realized 

in ArcGIS 8.3 and Erdas 8.6 in order to recode the urban extent layers. They are 

converted to Erdas imagine raster format. Following, these raster layers are 

recoded in Erdas as binary urban and non-urban pixels (Figure 3.25 and 3.26). 

The pixel values of all classes except urban are recoded as zero and the urban 

layer is recoded as one because of the urban extent requirement of the model. 
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Figure 3.23. Mode 7 x 7 Filter Application to the Aggregation Result of the year 
1987. 
 
 
 
3.3.2.3. Generation of the Model Function for the Classification Results of 
the Years 1987 and 1996 
 
It must be known that the urban extent of the year 2002 is the guide and the 

correct one. When the Figures 3.25 and 3.26 are examined, it can be seen that 

some parts of the images 1987 and 1996 are more built up than the ones in 2002 

image (Figure 3.17). As an instant, the North West part and East part of the 

image of 1987 is whiter than the image of the year 2002. In addition, all the east 

part of the image 1996 is whiter than the image 2002. It can be understood that 

the classification methodology of the 2002 image with the high accuracy 

statistics, did not work for the 1987 and 1996 images. It is thought that if the 

urban pixels of the 1996 image are not present in 2002 image, then these pixels 

are incorrectly classified and could not be removed by the filtering.  
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Figure 3.24. Mode 7 x 7 Filter Application to the Aggregation Result of the year 
1996. 
 
 
 

 
 
Figure 3.25. 1987 Urban Extent Layer after Recoding the Mode Filtered 1987 
Image (white is urban, black is non-urban pixels).  
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Figure 3.26. 1996 Urban Extent Layer after Recoding the Mode Filtered 1996 
Image (white is urban, black is non-urban pixels).  
 
 
 
For the consistency of the urban extent layers, a function definition is produced; 
 
“EITHER 0 IF ($n1_02wgs_bm== 0 and $n2_96wgs_bm == 1) OR $n2_96wgs_bm 

OTHERWISE” 

 

The function above stipulates that if the urban pixels found in the 1996 layer, 

cannot be found in the 2002 layer, then recode them as non-urban pixels, as 

zero. 

 
According to this model function, the wrongly classified urban pixels in the 1996 

image are corrected in respect to the urban pixels in the 2002 image. The urban 

extent pixels of the year 1996 could not be more than the ones in 2002 because 

any earthquake or a disaster, which could destroy the built up areas, did not 

occur during this time. The corrected 1996 urban extent layer is shown in Figure 

3.27. 
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Figure 3.27. The Model Applied and Corrected 1996 Urban Extent Layer (white 
is urban, black is non-urban pixels).   
 
 
 
The same model function is applied to the 1987 urban extent layer in respect to 

corrected new 1996 urban extent layer. Thus, the wrongly classified 1987 urban 

pixels are removed and converted to non-urban pixels by means of this model 

function; 

 

“EITHER 0 IF ($n1_96new== 0 and $n2_87bm == 1) OR $n2_87bm 

OTHERWISE” 

 

The function above stipulates that “if the urban pixels found in 1987 layer, cannot 

be found in 1996 layer, then recode them as non-urban pixels”. 

 
The new 1987 corrected urban extent layer is displayed in the Figure 3.28. So, 

the consistency of the urban extent layers is obtained. 
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Figure 3.28. The Model Applied and Corrected 1987Urban Extent Layer (white is 
urban, black is non-urban pixels).   
 
 
 
3.4. Analyses of the 1992 Aerial Photographs 
 
For urban extent of the year 1992, the satellite images could not be found. 

Therefore, aerial photographs of the study area were obtained from the General 

Command of Mapping. First, with the scale of 1/40.000, 18 pieces of aerial 

photographs were registered one by one. Following, they were clipped and then 

mosaic application in TNT was done for their integrity of the view (Figure 3.5). 

 
 

3.4.1. The Generation of the Urban Extent Layer of the Year 1992 
 
The urban extent of the layer 1992 is precisely digitized from the mosaic image in 

ArcGIS. The similar process is realized for Istanbul for monitoring the landuse 

dynamics (Çelikoyan et al., 2003). The urban extent of the year 1992 is displayed 

in the Figure 3.29. 
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Figure 3.29. The Layer of the Urban Extent of the Year 1992 (Red Polygons are 
the urban extents) 
 
 
 
3.4.2. Vector to Raster Conversion and the Recoding of the Urban Extent 
Layer of the Year 1992 
 
The vector layer of the urban extent of the year 1992 is converted to image 

format in ArcGIS and Erdas. Following, the image pixels are recoded in Erdas. In 

order to be read by the model, the urban pixels are recoded as the pixel value 

one, and the non-urban pixels are recoded as the pixel value zero. The recoded 

layer is shown in Figure 3.30. 

 
 
 
3.5. Analyses of the Roads Layer 
 
As it is explained at the beginning of this chapter, for the road theme at least two 

road layers are required by the model and dates are not expected to match 

exactly  with the urban dates (Yang and Lo, 2003). The road layers are produced 

for 1995 and 2003. They contain 4 grade road types which are 1st, 2nd, 3rd and 4th 

degree of roads in the case study area.  
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Figure 3.30. Recoded Urban Extent Layer of the Year 1992 (white is urban, black 
is non-urban pixels).   
 
 
 
3.5.1. The Generation of the Vector Layers of the Roads  
 
The road layer of the year 1995 is digitized in ArcGIS as 4 degrees from the 

Antalya Transportation Plan of the year 1995 and the road layer of the year 2003 

is digitized in ArcGIS from the transportation plan of Antalya of the year 2003 

prepared by DAMPO Planning (Figure 3.31). 

 
 
3.5.2. Vector to Raster Conversion and the Recoding of the Vector Layers 
of the Roads 1995 and 2003 
 
The digitized road layers are converted to raster format in ArcGIS and then in Erdas. 

Then, these images are recoded in Erdas in order to be read by the model. The model 

requires the road layers as binary images. Therefore, the road pixels are recoded 

as one and the non-road pixels are recoded as zero (Figure 3.32). 
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          a) 

 
b) 

 
 
Figure 3.31. The Digitized Road Layers of the Years 1995 (a) and 2003 (b) 
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          a) 

  

b) 

 
 
Figure 3.32. The Recoded Road Layers of the Years 1995 (a) and 2003 (b) 
 
 
 
3.6. Analyses of the Excluded Area Layer 
 
The model requires also an excluded area layer. This layer guides the model 

not to generate the urban area on these pixels.  
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3.6.1 The Generation of the Excluded Area Layer 
 
The vector layer of the excluded areas is produced from the Antalya 1/5000 

Development Plan (DAMPO Planning, 2003) which is approved by the government. In 

respect of this plan, the unresidential areas as natural conservation areas, forest 

covered areas, military zones, first and second-degree productive agricultural areas, 

airport, riverbeds and Mediterranean Sea are digitized (Figure 3.10).  

 

 
3.6.2. Vector to Raster Conversion and the Recoding of the Vector Layer of 
the Excluded Areas of the Year 2003 
 
The model requires the excluded area layer also as raster format. Therefore, the 

digitized excluded area layer is converted to raster format. Then, all the excluded areas 

are recoded as one and the non-excluded areas are recoded as zero. The white pixels 

represent the excluded areas and the black pixels represent the non-excluded pixels 

(Figure 3.33). 

 

 

 
 
Figure 3.33. The Recoded Excluded Area Layer of the Year 2003 (white is urban, 
black is non-urban pixels). 
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3.7. Slope and the Hillshade Layers 
 

The slope and hillshade layers are produced from the SRTM 90 meter DEM data. 

The model requires the slope layer in percent. Therefore, the slope layer is 

produced as percent value in ArcGIS. Then the pixel value range is arranged 

between 0 and 100 as the model required. The hillshade is computed from the 90 

meter DEM and arranged as a grayscale image for using as a background image 

for visualization purposes. 

 

 

3.8. The Resampling and the Subsetting of the Entire Layers  
 

The model requires the entire input layers in a standardized size. In this thesis for 

the calibration of model, three different resampling resolutions are created in 

Erdas 8.6. In the first one, the pixels are resampled with the nearest 

neighborhood method to 30 meter, in the second one the pixel size is resampled 

with the same method to 60 meter and in the last, the pixel size is resampled to 

120 meter. Then, all the image layers are subsetted to three different sizes for 

the 3 resampling resolutions; 30, 60 and 120 meters. As a result, three different 

row and column sizes are created for the three calibration modes; coarse, fine 

and final, where the calibration of the model is explained in Chapter 4. 

 

 

3.9. The Conversion of the Subsetted Layers to the 8 Bit Unsigned GIF 
Format 
 

The model requires all the layers in a standardized format which is 8 bit unsigned 

GIF. Therefore, all the raster images are converted to 8 bit unsigned format in 

Erdas and then they are converted to GIF format in TNT. 
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3.10. Methodology of the Study 
 
In this study, a CA model integrated with GIS is used. This model requires all 

the input data, which are explained in the data preparation part, to be converted 

into raster format. 

 

To run the model all the input data layers need to be standardized in terms of 

 

• Projection 

• Dimension 

• Data format 

• Resolution 

 

In doing so, all raster input layers are converted to the same projection, UTM 

WGS 84, Zone 36. Finally, the resultant GIF files are named according to the 

convention stipulated by the model (Table 3.2). 

 

After the data preparation in respect of the model requirements, the model can 

be run by these data. The model is operated by Linux version 9.0 on PC 

microcomputer. As it is mentioned in Chapter 2 the model runs in three modes; 

test, calibration and then prediction. The general outline of a SLEUTH model run 

is given in Figure 3.35. By test mode, the data is tested whether it is ready for 

the calibration then the prediction. The calibration process produces initializing 

coefficient values that best simulate historical growth for the study area. The 

purpose of the model calibration phase is to determine the best-fit values for the 

five growth control parameters including coefficients of diffusion, breed and 

spread, slope resistance and road gravity with historical urban extent data. It is 

the most important phase of the model. The five calibration coefficients are all 

integers and range from 1 to 100. By running SLEUTH in Calibration Mode, the 

different combinations of coefficients are used to model the historical urban 

growth. The goal of calibration is to determine which of the 1010 (or 1005) 

possible combinations of coefficients gives the best fit of a specific urban region. 

The term for all the possible coefficient combinations is called the coefficient 

space. It is unknown, but assumed that the coefficient space is a complex 
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surface, due to the unique properties of individual urban extents, the spatial 

scale and resolution chosen for the modeling, but most interestingly, because of 

the combinatory effects of the calibration coefficients with each other (Silva and 

Clarke, 2002). 

 
The model is calibrated with the data, by successively narrowing the range of 

coefficient values. Coarse calibration, takes steps of 25 units through the entire 

coefficient space, for all coefficients. The second step, fine calibration, takes 

steps of 5 or 6 units through the coefficient space and the third, final calibration, 

takes steps of 1 unit through the coefficient space. Self-modification is also 

important during the calibration phase as it is given in Chapter 2. A growth cycle 

is the basic unit of SLEUTH execution. It begins by setting each of the 

coefficients to a unique value. Each of the growth rules is then applied to the 

raster data. Finally, the resulting growth rate is evaluated. It is applied if the 

growth rate exceeds or falls short of limit values. Self-modification slightly alters 

the coefficient values to simulate accelerated or depressed growth that is 

related with system-wide boom and bust conditions in urban development. A 

“boom” state occurs if the growth rate exceeds the “critical-high” value, the 

highest threshold for the urban growth rate, and indicates a period of 

accelerating growth. Each of the coefficients is increased to encourage the 

continuation of this trend. A “bust” state occurs when the growth rate is less than 

the critical-low value, which is the lowest threshold for the urban growth rate. In 

such an instance, the coefficients will be lowered in order to decrease the rate of 

growth throughout the system. In addition, a growth rate is: 

 

Growth rate= ( number_growth_pixels / total_number_urban_pixels) * 100        

(3.1) 

 

where number_growth_pixels is the number of newly urbanized pixels from the 

current growth cycle, total_number_urban_pixels is the amount of urban pixels 

from the current and previous growth cycle (Candau, 2002). 

 

Results obtained from the calibration phases are sorted, and parameters of the 

highest scoring model runs are used to begin the next, more refined sequences 

or permutations over the parameter space. Initial exploration of the parameter 
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space uses a condensed, resampled and smaller version of the data sets, and 

as the calibration closes in on the ‘‘best’’ (final) run, the data are increased in 

spatial resolution. The highest scoring numeric results from each factor that 

control the behavior of the system from each phase of calibration feed the 

subsequent phase, with user-determined weights assigned to the different 

metrics (Goldstein, 2004). 

 

When the calibration mode is completed, the results are used for forecasting 

studies in the prediction mode. As stated in Chapter 2, SLEUTH forecasts rely 

on replicating growth trends from the past. Once a coefficient set is found that 

can best describe how urban change has occurred over time, these values are 

used to forecast future growth. 

 

The calibration process produces initializing coefficient values that best simulate 

historical growth for a region. However, due to SLEUTH’s self-modification 

qualities, coefficient values that initialize the model for a date in the past may be 

altered by the simulation end date. Therefore, for forecast run initialization, the 

coefficient values at the simulation end date are used to initialize a new 

simulation into a future date. Using the best coefficients derived from calibration 

to run a large number of Monte Carlo simulations will produce a single set of 

averaged coefficients for the simulation end date. Using the BSS (Best Solution 

Set) which are the ending coefficient values, parameters derived from the 

simulation end date, a forecast run may be initialized. 
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Figure 3.34. General outline of a SLEUTH model run examined in this study 
(Goldstein, 2004). 
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CHAPTER 4 

 
 

URBAN GROWTH ANALYSES 
 
 
 

In this chapter, Urban Growth Analyses for Antalya are examined. First, the 

structure of the model run and the required coefficients, then the modes of the 

model (test, calibration, and prediction) adapted to Antalya are explained. In 

addition, run of these modes and selection of the coefficients from each run, 

finally, obtaining the outputs of the prediction mode are given in this chapter.  

 
 
4.1. Model Run 
 
SLEUTH trains the four growth rules to their parameters. The coefficients of the 

growth rules are Dispersion, Breed, Spread, Slope, and Road Gravity. They can 

be described together with the five coefficients; 

 

1) Spontaneous Growth Rule 

Spontaneous Growth determines if a random pixel in the urban lattice will be 

urbanized. The Dispersion and the Slope coefficients are used in this rule. 

 

2) New Spreading Centers Rule 

The New Spreading Centers Rule determines if a newly urbanized pixel (from 

the Spontaneous Growth Rule) will be a new urban centre and if so, will 

urbanize land. The Breed and Slope coefficients factor into this growth rule. 

 

3) Edge Growth Rule 

The Edge Growth Rule adds new growth adjacent to existing urban pixels. The 

Spread and Slope coefficients determine the amount of Edge Growth. 

 

4) Road-Influenced Growth Rule 
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This final growth rule determines the extent the road (or transportation) network 

contributes to the urban growth of a city. New urbanized pixels “travel” on the 

road network and urbanize available pixels. This rule is determined by the 

Dispersion, Breed, Slope, and Road Gravity coefficients. 

 
 
4.1.1. Testing the Input Data 
 
In the test mode application, the entire data are tested if they are ready for the 

calibration or not. The names stipulated by the model for each layer are set into 

the test file in Linux and the number of Monte Carlo Iterations are entered as 2. 

It takes very short time as 5 minutes. If the test mode is finished successively, 

then the calibration mode is ready for the run. In other words, the data are ready 

for the calibration and there is not any problem occurred. For the Antalya input 

data there was not any problem.  

 

 

4.1.2. Calibration Analyses 
 

The purpose of the model calibration phase is to determine the best-fit values 

for the five growth control parameters mentioned in Chapter 3 and above, 

including coefficients of diffusion, breed and spread, slope resistance and road 

gravity with historical urban extent data. It is the most important phase of the 

model. The five calibration coefficients are all integers and range from 1 to 100. 

 

Calibration process is accomplished in three phases as coarse, fine, and final. 

The first step, coarse calibration, takes steps of 25 units through the entire 

coefficient space (all the possible coefficient combinations), for all coefficients. 

The second step, fine calibration, takes steps of 4, 5 or 6 units through the 

coefficient space and the third, final calibration, takes steps of 1 through the 

coefficient space. Self-modification is also important during the calibration phase 

as it is explained in chapter two. A growth cycle is the basic unit of SLEUTH 

execution. It begins by setting each of the coefficients to a unique value. Each of 

the growth rules is then applied to the raster data. Finally, the resulting growth 

rate is evaluated. Self-modification is applied if the growth rate exceeds or falls 
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short of limit values. It slightly alters the coefficient values to simulate 

accelerated or depressed growth that is related with system-wide boom and 

bust conditions in urban development. A “boom” state occurs if the growth rate 

exceeds the “critical-high” value, the highest threshold for the urban growth rate, 

and indicates a period of accelerating growth. Each of the coefficients is 

increased to encourage the continuation of this trend. A “bust” state occurs 

when the growth rate is less than the critical-low value, which is the lowest 

threshold for the urban growth rate. In such an instance, the coefficients will be 

lowered in order to decrease the rate of growth throughout the system. In 

addition, a growth rate is: 

 

Growth rate= (number_growth_pixels / total_number_urban_pixels) * 100 

 

where number_growth_pixels is the number of newly urbanized pixels from the 

current growth cycle, total_number_urban_pixels is the amount of urban pixels 

from the current and previous growth cycle (Candau, 2002). 

 

 
4.1.2.1. Coarse Calibration for the Antalya Input Data 
 
For the coarse calibration, the pixel size of the data is resampled to 120 meter 

and renamed as the model stipulated.  

 

For the Antalya study, the first phase of the calibration mode of the model, coarse 

calibration, is operated by a Linux version 9.0 on PC microcomputer with the 

properties of 1GB Operator, 512 Mhz Ram. The inputs are entered in the input 

scenario- calibrate file as stipulated by the model and as shown in Table 4.1. 

 

The flags of the Coefficient file, average file, standard deviation file and the log 

file are set to YES in order to obtain their output files: 

 

WRITE_COEFF_FILE (YES/NO)=YES 

WRITE_AVG_FILE (YES/NO)=YES 

WRITE_STD_DEV_FILE (YES/NO)=YES 
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The output of the coefficient file contains coefficient values for every run, Monte 

Carlo iteration and year. The output of the average file contains measured 

values of simulated data averaged over Monte Carlo iterations for every run 

 

 

Table 4.1. The Naming Format of the Data Stipulated by the Model for the 

Coarse Calibration 

 

antalya.urban.1987.gif 

antalya.urban.1992.gif 

antalya.urban.1996.gif 

antalya.urban.2002.gif 

antalya.road.1995.gif 

antalya.road.2003.gif 

antalya.slope.gif 

antalya.excluded.gif 

antalya.hillshade.gif 

 

 

The output of the standard deviation file contains the standard deviation of 

averaged values. Then the Self Modification Constraints are determined and 

entered (Table 4.2). 

 

The calibration start date is set to the year of 1987, which is the year of the first 

satellite datum, and the calibration stop date is set to year of 2003, which is the 

year of last datum of the area. Scenario file is created and renamed as 

scenario_coarse. The inputs are entered in the input scenario_coarse file as 

stipulated by the model. Input_dir flag and output_dir flag are edited. The flags 

of the coefficient file, average file, standard deviation file and the log file are set 

to YES in order to obtain their output files: 

 74



Table 4.2. Parameters of the Test Run and the Calibartion Runs 
 

Coefficients start-step-stop values 
Test Run Coarse 

Cal. 
Fine 
Cal. 

Final Cal. Forecast 

Run 

CALIBRATION_DIFFUSION_START 25 0 0 1 1 

CALIBRATION_DIFFUSION_STEP 1 25 5 1 1 

CALIBRATION_DIFFUSION_STOP 25 100 20 5 1 

CALIBRATION_BREED_START 10 0 0 10 20 

CALIBRATION_ BREED_STEP 1 25 5 2 1 

CALIBRATION_ BREED_STOP 10 100 20 20 20 

CALIBRATION_SPREAD_START 30 0 20 27 32 

CALIBRATION_ SPREAD_STEP 1 25 5 1 1 

CALIBRATION_ SPREAD_STOP 30 100 40 32 32 

CALIBRATION_SLOPE_START 70 0 75 75 78 

CALIBRATION_SLOPE_STEP 1 25 5 3 1 

CALIBRATION_SLOPE_STOP 70 100 100 90 78 

CALIBRATION_ROAD_START 100 0 25 23 24 

CALIBRATION_ROAD_STEP 1 25 5 1 1 

CALIBRATION_ROAD_STOP 100 100 50 28 24 

Self Modification Constraints      

Critical High 1.500 1.500 1.500 1.500 1.500 

Critical Low 0.050 0.050 0.050 0.050 0.050 

Boom 1.010 1.010 1.010 1.010 1.010 

Bust 0.090 0.090 0.090 0.090 0.090 

Critical Slope 21 21 21 21 21 

The number of Monte Carlo com 2 100 100 100 100 

The Calibration Start Date 1987     

The Calibration Stop Date 2003     

 

 

Following, the coefficient settings are arranged as shown in Table 4.2. The coarse 

calibration execution was run approximately for 1,5 days. During this time the PC 

was connected with a UPS to take care of electricity interruption. When the 

computer is stopped accidentally, the execution stops and the run has to start 

from the beginning. In the coarse phase of calibration, the entire range (0 - 100) of 
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the five coefficients is explored using large increments (for each coefficient, value 

= {0, 25, 50, 75, 100}, Table 4.2). The number of Monte Carlo iterations is set to 

100 for obtaining a more sensitive result. As the result of the coarse calibration, 7 

different files are produced by the model which are avg. file, coeff_file, 

control_stats file, log file, memory file, restart file and the std_dev file. The 

averaged coefficient values are derived from the control_stats (Table 4.3) in order 

to run the fine and final calibrations and then the prediction mode. SLEUTH 

generates best-fit statistics for eleven metrics.  

 

These metrics are; product, compare, pop, edges, clusters, cluster size, leesallee, 

slope, %urban, Xmean, Ymean, and Rad. The description of these metrics are 

given in Appendix A. SLEUTH generates these metrics for each control year. The 

simulated data is then compared to the metrics of the historical data and linear 

regression values are calculated. These best-fit values are written to the 

control_stats.log output file. The control_stats.log file is the main file that is used 

to derive the coefficient ranges for the next calibration phase.  

 
 
 
i. Selecting Coefficient Ranges from Coarse Calibration 
 

In order to select the coefficient ranges as the start and stop value and the step 

number, the Leesallee metric column of the control_ stats file is sorted in 

descending order (Table 4.3). Following, the top three values are picked from the 

Leesallee metric column. The repeating scores downwards are also picked and 

evaluated (URL 3). The diffusion, breed, spread, slope and road gravity values 

corresponds to these Leesallee top values are candidate parameters for the next 

calibration run (Table. 4.4).  
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Table 4.4. Resultant Parameters of the Coarse Calibration

LeeSallee Diffussion Breed Spread Slope RoadGravity
0,46756 1 1 25 100 100
0,46756 1 1 25 100 75
0,46751 1 1 25 100 50
0,4674 1 1 25 75 25
0,4674 1 1 25 75 1

New Parameters
For the next calibration {0-20, 5} {0-20, 5} {20-40, 5} {75-100, 5} {25-50,5}  

 

Then the high and low values of each of the coefficients are taken. For each 

coefficient in the scenario file in order to be used for the fine calibration, low 

values are set to _START, high values are set to _STOP. The STEP value is 

derived from the difference of the Stop and Start values. The difference is 

divided by 4, 5 or 6 and then the step value is acquired (Table 4.5). A step value 

is the increment between the start and stop values 4-6 times. If only one 

coefficient value is appeared as diffusion (1), breed (1) and spread (25), then 

the difference between the start and stop values should be 20. For example in 

the spread column, all the values are 25. Therefore, the start value selected as 

20 and the stop value as 40. If all the values in this column were 50, then the 

start value should be 40 and the stop value 60. 

 

Table 4.5. Start, Stop and Step Values Derived from the Coarse Calibration 

Diffussion Breed Spread Slope RoadGravity
Start Value 0 0 20 75
Stop Value 20 20 40 100 50
Step Value 5 5 5 5

25

5  

 

These values are put in the scenario file in the next (fine) calibration. 
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4.1.2.2. Fine Calibration for the Antalya Input Data 
 
For the fine calibration, the pixel size of the data is resampled to 60 meter 

resolution and renamed as the model stipulated (Table 4.1). 

 
A copy of scenario file used in the previous coarse calibration step is created 

and renamed as scenario_fine. The inputs are entered in the input scenario_fine 

file as stipulated by the model. Input_dir flag and output_dir flag are edited. 

Then, the gif image files with the file name format as described in Table 4.1 are 

written. The flags of the coefficient file, average file, standard deviation file and 

the log file are set to YES in order to obtain their output files. 

 

Following, the coefficient settings are arranged as shown in Table 4.2. These 

values define a narrowed coefficient range derived from the coarse phase of the 

calibration. Then the Self Modification Constraints are determined and entered 

in Linux as done in the previous step. The number of Monte Carlo iterations is 

set to 100 for obtaining a more sensitive result. The fine calibration start date 

1987 and stop date 2003 did not change and entered the same as in the 

previous step. Because the data set did not change. 

 

The fine calibration execution was run approximately for 3 days. As the result of 

the fine calibration, 7 different files are produced by the model which are avg. 

file, coeff_file, control_stats file, log file, memory file, restart file and the std_dev 

file. The averaged coefficient values are derived from the control_stats in order 

to run the final calibration and then the prediction mode. The eleven metrics 

explained in the previous phase are created again. 

 

 

i. Selecting Coefficient Ranges from Fine Calibration 
 

Using the best-fit values found in the control_stats.log file (Table 4.5) produced 

in the coarse calibration phase, the range of possible coefficient values are 

narrowed. In order to select the coefficient ranges as the start and stop 

value and the step number, the Leesallee metric column of the control_ 

stats file is sorted in descending order (Table 4.6).  
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Following, the top three values are picked from the Leesallee metric column. if 

these scores are repeating downwards, they should also be picked and 

evaluated (URL 3). The diffusion, breed, spread, slope and road gravity values 

corresponding to these Leesallee top values are candidate parameters for the 

next calibration run (Table. 4.7).  

 

 

Table 4.7. Resultant Parameters of the Fine Calibration 

LeeSallee Diffussio Bread Spread Slope RoadGravity
0,48995 1 15 30 85 100
0,48992 1 20 30 80 75
0,48992 1 10 30 85 50
0,48987 1 20 30 75 25
0,48987 1 15 30 90 1

New Parameters
For the next calibration {1-5, 1} {10-20, 2} {27-32, 1} {75-90, 3} {23-28,1}  

 

Then the high and low values of each of the coefficients are taken. For each 

coefficient in the scenario file to be used for the final calibration low values are 

set to _START, high values are set to _STOP. The STEP value is derived from 

the difference of the stop and start values. The difference is divided by 4, 5 or 6 

and then the step value is acquired (Table 4.8). A step value is the increment 

between the start and stop values about 4-6 times. If only one coefficient value 

is appeared as in diffusion (1), and in spread (30), then the average value of the 

start and stop values should be nearest to the value in the list. For example in 

the spread column, all the values are 30. Therefore, the start value selected as 

27 and the stop value is 32 (27 + 5). 27 + 32= 59. 5 should be added to 27 

because the increment in fine calibration list is 5. The average of these two 

values is 29.5≈ 30. Therefore, these values are selected to use them in the next 

phase. 
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Table 4.8. Start, Stop, and Step Values Derived from the Fine Calibration 

Diffussion Bread Spread Slope RoadGravity
Start Value 1 10 27 75
Stop Value 5 20 32 90
Step Value 1 2 1 3

23
28

1  

These values are put in the scenario file to use them in the next (final) 

calibration.  

 

4.1.2.3. Final Calibration for the Antalya Input Data 
 
For the final calibration, the pixel size of the data is resampled to 30 meter 

resolution and renamed as the model stipulated (Table 4.1). 

 
A copy of scenario file used in the previous fine calibration step is created and 

renamed as scenario_final. The inputs are entered in the input scenario_final file 

as stipulated by the model Input_dir flag and output_dir flag are edited. Then, 

the gif image files with the file name format are written. The flags of the 

coefficient file, average file, standard deviation file and the log file are set to 

YES in order to obtain their output files: 

 

Following, the coefficient settings are arranged (Table 4.2). These values define 

a narrowed coefficient range derived from the fine phase of the calibration. Then 

the Self Modification Constraints are determined and entered in Linux as done 

in the previous step (Table 4.2). The number of monte carlo iterations is set to 

100 for obtaining a more sensitive result. The fine calibration start date 1987 

and stop date 2003 did not change and entered same as in the previous step. 

Because the data set did not change. 

 

The final calibration execution was run approximately for 8 days. As result of the 

final calibration, 7 different files are produced by the model which are avg. file, 

coeff_file, control_stats file, log file, memory file, restart file and the std_dev file. 

The averaged coefficient values are derived from the control_stats in order to 

run the final calibration and then the prediction mode. The eleven metrics 

explained in the previous phase are created again. 
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i. Selecting Coefficient Ranges from Final Calibration 
 
Using the best-fit values found in the control_stats.log file (Table 4.8) produced 

in the fine calibration phase, the range of possible coefficient values are 

narrowed (Table 4.9). 

 

In order to select the coefficient ranges for the next step as the start and 

stop value and the step number, the Leesallee metric column of the 

control_ stats file is sorted in descending order (Table 4.10).  

 

Following, the top three values are picked from the Leesallee metric column. if 

these scores are repeating downwards, they should also be picked and 

evaluated (URL 3). This time the diffusion, breed, spread, slope, and road 

gravity values, which correspond to the top Leesallee value are the parameters 

for the next run called forecast run (Table. 4.11). 

 
 
 
Table 4.9. Resultant Parameters of the Final Calibration 

LeeSallee Diffussion Bread Spread Slope RoadGravity
0,50298 1 20 32 78 24
0,50294 1 20 32 78 26
0,50289 1 18 32 78 27
0,50289 1 12 32 84 24

New Parameters
For the next step {1-1, 1} {20-20, 1} {32-32, 1} {78-78, 1} {24-24,1}

 

For this step, for each coefficient, the step values are set to 1 and the stop 

and the start values are set to the same value (Table 4.11). 
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Table 4.11. Start, Stop, and Step Values Derived from the Fine Calibration 

Diffussion Bread Spread Slope RoadGravity
Start Value 1 20 32 78 24
Stop Value 1 20 32 78 24
Step Value 1 1 1 1 1  

These values are put in the scenario file to use them in the forecasting step. 

 

4.1.2.4. Forecast Coefficients Run for the Antalya Input Data 
 
As it is explained in the previous chapter, the aim of the calibration process is to 

produce initializing coefficient values that best simulate historical growth for a 

region. For forecast initialization, the stop date values from the best calibrated 

coefficients are desired. Using the best coefficients derived from calibration and 

running SLEUTH for the historical time produce a single set of Stop date 

coefficients to initialize forecasting. In order to run forecasting phase the 

scenario file used in the previous step is created. Input gif images with the full 

resolution are pointed to the Input_dir flag. Output_dir flag is pointed as desired 

and the input format names stipulated by the model are not changed. Monte 

Carlo Iteration flag is set to 100. The flags of the coefficient file, average file, 

standard deviation file and the log file are set to YES in order to obtain their 

output files. Particularly, the Avg_file flag should set to yes in order to use it for 

the prediction mode. The file used to store coefficient values is the avg.log file. 

Following, the coefficient settings are arranged (Table 4.2).These values define 

a single set of best coefficient values derived from the final phase of the 

calibration. Then the Self Modification Constraints are determined and entered 

in Linux as done in the previous step. 

 

i. Selecting Coefficient Ranges from Forecasting Phase 
 
In order to select the coefficient values for the prediction mode there is not any 

start, stop and the step value. In addition, the Leesallee metric column is not 

used. This time the values of the coefficients of the last row of the avg.log file 

(Table 4.12) which is the stop date year is used. These floating values are 

rounded to integers in order to be read by the model (Table 4.13). 
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Table 4.13. Coefficient Values Derived from the Forecast Run. 
 

Coefficient Type
dispersion
spread
breed
slope
road gravity

52
27

Prediction Best Fit Values
1

37
23

 
 

These values are put in the prediction scenario file to reach the growth 

prediction. 

 
 
4.1.3. Urban Growth Prediction Run 
 
In order to run the prediction mode of the model, the scenario file used to derive 

forecasting coefficients, is modified as scenario_predict file and contained in the 

scenario file. The input_dir flag is set to point the full resolution images. The 

output_dir flag is set to point a desired output directory. Then all the output file 

flags are set to yes in order to create desired statistic files, including average .log 

file. Monte Carlo Iterations flag is set to 100. It may be greater than 100. Then 

the coefficients derived from the forecast calibration phase are entered. For the 

start date, the last urban data layer year of 2002 and for the stop date, the year 

of 2025 is given to the scenario prediction file. 

 

PREDICTION START DATE = 2002 

PREDICTION STOP DATE =   2025 

 
The prediction best fit values derived from the forecast run: 

 
PREDICTION_DIFFUSION_BEST FIT = 1 

PREDICTION_SPREAD_BEST FIT = 37 

PREDICTION_BREED_BEST FIT = 23 

PREDICTION_SLOPE_BEST FIT = 52 

PREDICTION_ROAD_BEST FIT = 27 
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The ECHO flag is also set to yes to print the growth years to the screen as the 

model executes. 

 

As a result, an average, coefficient, memory, and log files are created as the 

statistical files. In addition, the urban growths of the years from 2003 to 2025 are 

created in the prediction output file. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
CHAPTER 5 

 
 

RESULTS AND DISCUSSIONS 
 
 
 

One planning scenario for future urban development in Antalya is considered in 

this study. It is predicting the 2025 urban growth of Antalya by protecting all the 

forest, agricultural and natural conservation areas. In addition, the new urban 

pixels are not let to grow into the military zones, riverbeds, and water by using 

the excluded area layer. As the result of this entire urban growth prediction 

study, the urban area prediction results for each year from 2003 to 2025 are 

obtained at the end of the prediction run. Each year’s growth probability pixels 

are colored. The higher the probability value, the more likely urbanization is 

(Figure 5.1). In addition, an average file is produced as an output. Some of the 

most important statistical measures for this run are given in Table 5.1. 

 

 

 
Probabilty Value present urban 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Probability Color  

 
Figure 5.1. Urban Growth Prediction of the year 2025 with the Probability 
Colors 
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Tablo 5.1: Comparison of the Selected Statistical Measures of the Years 2002 
and 2025. 

Statistical 
Measures

sng 5,78 5,26
og 2801 3621,26
rt 13,07 28,48
pop 92738,64 201894,3
area 92738,64 201894,3
edges 20731,95 32667,84
clusters 1362,68 1895,96
rad 171,81 253,51
slope 0,73 0,69
diffusion 1,15 1,24
spread 36,78 28,63
breed 22,99 46,05
road_gravity 26,59 37,74
percent_urban 21,8 56,05
growth_rate 3,04 1,81
growth_pixels 2822,23 3659,33

20252002

 
 

 

The definitions of the abbreviations in the Table 5.1 are explained below (URL 

3)  

sng: cumulative number of urbanized pixels by spontaneous neighborhood 

growth (spontaneous growth models the development of urban settlement in 

undeveloped areas).  

og: cumulative number of urbanized pixels by organic growth 

rt: cumulative number of urbanized pixels by road Influenced growth  

pop: total number of urban pixels  

area: total number of urban pixels  

edges: number of urban to nonurban pixel edges  

clusters: number of urban pixel clusters 

rad: the radius of the circle which encloses the urban area 

slope: slope coefficient 

diffusion: diffusion coefficient  

spread:spread coefficient  

breed: breed coefficient  

road gravity: road gravity value 

percent_urban: percent of urbanized pixels divided by the number of pixels 

available for urbanization  

growth_rate:(number_growth_pixels/total_number_urban_pixels)* 100) 
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growth_pixels: number of growth pixels for each year. 

 

 

In Table 5.2, the last column indicates the growing urban hectares for each year 

and calculated by multiplying the growth pixels by one pixel dimension 900m2. 

The decrease of the growing rate through the year 2025 can be seen from the 

table. The reason of this decrease is the maximum protection of the forest 

areas, agricultural areas, and natural conservation areas in this study. The 

growing scenario for Antalya embody an anti-growth strategy, which requires 

slowing down the growth rate (Figure 5.2) and altering the spatial pattern of 

growth while maintaining the liveability of the city. 
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Figure 5.2. Urban Growth Rates through the Year 2025 
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It can be analyzed that the maximum growth rate is 1.89 by the year 2016. After 

this year, the decrease in growing rate can be seen clearly because of the 

environmental protection. 

 

If we examine the urban extent of the years 2003 and 2025 from the Figure 5.3, 

it can be clearly revealed that the growth pixels are taken place in the east part 

of Antalya more than the west part. The results show that the east part of 

Antalya has more potential for development. This may be related to the fact that 

the eastern part is more suitable for future development according to the 

model’s growth controls. 

 

For another study to encourage the development in the west part, the critical 

slope can be reduced to 10 from 21 in order to encourage more development in 

steeper terrain. In this study, the slope coefficient is decreased to 0,69 from 0,73 

because the critical slope value is set up to 21 in the scenario file. The spread 

coefficient measure is also decreasing through the year 2025. This indicates the 

diffusion occurrence from the existing settlement is decreased. Beside this, the 

other three coefficient measures (breed, diffusion, and road gravity) are 

increasing through the year 2025. 

 

As it is seen in Figure 5.4, within the Muratpaşa Municipality the urban pixels 

are seen in the east part, within Konyaaltı Municipality they occurred in the 

northeast part, within the Çalkaya Municipality they occurred in north, east and 

west parts. In the south of Aksu, Varsak, and the Pınarlı Municipalities the urban 

growth pixels are determined. Doyran, Düzlerçam, and Yurtpınar Municipalities 

have very small urban growth pixels because their small parts are within the 

study area. 
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In Yeşilbayır Municipality, the road influenced urban growth is obvious in the 

middle of this municipality (Figure 5.5).  

 

In the figure 5.5.a (2025), the urban growth can be seen obviously, but at the 

beginning (2003) there is not any urban growth pixels in the corresponding area. 

This shows us the road influenced growth. 

 

 

                            a) 

 

b) 

 
Figure 5.5. The Road Influenced Urban Growth in 2025 (a) and 2003 (b).  

 

 

As it is shown in Table 5.1, the sng (spontaneous growth) measure, which is 

5,78 in the year 2002, is decreased to 5,26 in 2025. This indicates the decrease 

of urban development in undeveloped areas.  
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In Figure 5.6, the area in the circle is the undeveloped urban area. In this area, 

there is not any growing urban pixel. This can be evidence to the decrease of 

sng measure. The og (organic growth) measure is increasing from 2801 in the 

year 2002, to 3621,26 in the year 2025 as shown in Figure 5.7. 

 

 

 
 

Figure 5.6. An example of the Decrease of sng (spontaneous growth) Measure 
in Undeveloped Areas. 
 
 
 
The og measure is the organic growth which appears from the existing urban 

pixels. The increase in og measure explains the expansion of existing urban 

cells to their surroundings are increased. In Figure 5.7, the yellow pixels are the 

existing pixels and the massive growth around these pixels can be seen from 

the figure. The rt (road influenced growth) measure is increased from 13,07 in 

2002 to 28,48 in 2025. rt measure is the urban growth pixels influenced by the 

road. The increase in og and rt measures show that, more residential growth will 

be encouraged through the 2025 simulation. Figure 5.8 shows the urban growth 

pixels in 2025 with the current road data. Transportation has always been used 

as a consistent attractive factor for promoting urban development in the model. 

In the study area, transportation has been a driving force for housing 

development. 
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Figure 5.7. An Example of the Increase of og (organic growth) Growth Measure. 
 
 
 
A low diffusion parameter is obtained for Antalya. This shows that there is not 

scattering urbanization in this area. Since the spread coefficient is high, it 

indicates that the transportation invited the urbanization in Antalya. 

 
The pop is the total number of urban growth pixel measure. It is increasing from 

92738,64 in 2002 to 201894,3 in 2025. Each pixel dimension is 30m x 30m, 

900m2. Therefore, in the year 2002, the total urban area is 8347 ha and it is 

increased to 18171 ha in 2025. The difference of the urban areas between 

these two years is 9824 ha.  

 

The increase in percent_urban measure is obvious as 21.80% in 2003 and it is 

56.05% in 2025. By 2025, urban settlements would occupy about 56,05% of the 

entire modeled area. 
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Probabilty Value present urban 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Probability Color  

 
Figure 5.8. The Urban Growth of 2025 with the 2003 Road Data.  
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CHAPTER 6 

 
 

CONCLUSION AND RECOMMENDATIONS 
 
 
 

The escalating urban growth through the world has begun to threaten the 

environmental and ecological health. To understand the dynamic urban systems 

together with environment, modeling and simulation with robust methodology and 

techniques are required. For this reason, dynamic modeling began to gain 

popularity among geographers and urban planners. 

 

This study aimed to integrate an urban growth model to simulate urban growth in 

2025 in the Antalya Metropolitan Area to show the urban growth and urban form of 

Antalya between the years 2003 and 2025 annually. SLEUTH being a CA model 

gives the possibility to predict future urban development rather than to explain 

urban expansion like the other analytical and static urban models. 

 

Being the first application of SLEUTH for a Turkish city, the results are found to be 

quite encouraging. Main findings of the study can be classified into two dimensions 

as technological, and application. At the technological theme, the study has 

demonstrated the usefulness of GIS and the cellular modeling for urban growth 

prediction. In addition, it is understood that for a long-term urban growth prediction, 

SLEUTH is suitable. Beside this, the model allows to produce different scenarios. 

Because the environmental protection is an important concern because of its 

touristic identity and its being natural heritage, for future urban development 

planning in Antalya, the scenario used in the study does not let development of the 

urban growth in the forest, agricultural areas, riverbeds, and natural protective 

areas, as let in the other ones. However, different scenarios represent different 

growth strategies that can be adopted by planners. As Yang and Lo (2003) done, in 

the excluded layer different buffer zones can be applied to the rivers, forests, and 
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agricultural areas in order to let urban growth around them by using some weights 

for the buffer distances according to the coast law. By manipulating input data 

layers, self-modification constraints, and growth control coefficients, different 

scenarios can be designed. On the other hand, the model is integrated with GIS in 

order to use the full advantages of this technology. The role of GIS and RS in 

SLEUTH model is indispensable, especially for input data preparation, model 

calibration, and developed urban spatial pattern analysis. The model’s functionality 

permits to link the simulation, and the historical and the present growth. This 

property distinguishes the model from other simulators, which do not have any 

calibration component. In addition, the model’s source code is open to modify the 

programme system to update the model or add new components for improving the 

model’s performance. 

 

The spatial consequence of urban growth for Antalya is also examined at the 

application dimension. Rapid change of Antalya in both social and spatial structure 

during the past 15 years has enabled the city to become an important area for 

urban dynamic studies. The model’s past to present simulation shows an obvious 

multi-nucleating trend in the evolution of urban spatial form (Figure 5.2). As a 

result, it is revealed that the growth pixels are taken place in the east part of 

Antalya more than the west part. The results show that the east part of Antalya has 

more potential for development. In addition, it is found that the growing rate is 

decreased through the year 2025. Thus, it is extracted that the protection of the 

environment affects the growth rate. In addition, the total number of urban growth 

pixel measures consequently, the total urban area is determined. In the year 2002, 

the total urban area is 8347 ha and it is increasing to 18171 ha in 2025. Since the 

model uses the past urban extent information in predicting the future urban 

development, the development in the 3rd dimension is not considered. This factor 

can be considered in land use predictions of the model. Therefore, the model 

parameters may change from urban area to another since every urban area has its 

own properties. 
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APPENDIX A 

 
 
 

The Definitions;  

 

Coarse phase. See Calibration phase. 

 

Calibration Mode. An automated process of searching through the model 

coefficient space to find a set which best describes historical urban change for a 

study area. Coefficient sets are generated using the coefficient start, step and 

stop values defined in the scenario file. Each set initializes a run. 

 

Calibration phase. One of three steps in brute force calibration (coarse, fine, 

and final) through which coefficient ranges are narrowed. See section 3.2 for 

more information. 

 

Coefficient start value. Initial coefficient value for a model run. The low value 

of a coefficient range. 

 

Coefficient step value. In calibration, an increment value which is added to the 

start value iteratively for all possible permutations of given ranges and 

increments. 

 

Coefficient stop value. Final coefficient value for a model run. The high value 

of a coefficient range. 

Control year. A date for which urban data exists in the historical database. An 

urban layer from the historical database. 

 

CRITICAL_HIGH. The threshold for the urban growth rate above which a boom 

state exists for the system and self-modification will be applied to the 

coefficients. 
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CRITICAL_LOW. The threshold for the urban growth rate below which a bust 

state exists for the system and self-modification will be applied to the 

coefficients. 

 

Derive run. Initialized with the set of best coefficients selected from the 

calibration phases, a large number of Monte Carlo simulations are used to 

simulate growth for the time represented in the historical database. From this 

run, averaged values of the calibration metrics and coefficient values for the 

control years may be derived for analysis. Most importantly, the averaged 

coefficient values from the final control year are used to initialize a calibrated 

forecast run. 

 

Final phase. See Calibration Phase. 

 

Fine phase. See Calibration Phase. 

 

Forecast mode. Initialized with the most recent image data, will perform a 

single run, in Monte Carlo fashion, using the calibrated BSS for initialization. 

 

Growth Cycle. The basic unit of SLEUTH execution. It begins by setting each of 

the coefficients to a unique value. Each of the growth rules are then applied. 

Finally, the resulting growth rate is evaluated. If the growth rate exceeds or falls 

short of the CRITICAL_HIGH or CRITICAL_LOW values, model self-

modification is applied. Selfmodification will slightly alter the coefficient values to 

simulate accelerated or depressed growth that is related with boom and bust 

conditions in urban development. 

 

Prediction Mode. See prediction mode. 

 

ROAD_GRAV_SENSITIVITY. A change value that is applied to the road gravity 

coefficient during self-modification. 

 

Run. An execution of SLEUTH that begins with a single set of coefficient values, 

and performs a designated number of Monte Carlo iterations. May be followed 
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by another run (as in calibration) or finish at the end of the Monte Carlos (as in 

forecasting). 

 

Scenario file. The SLEUTH execution file. 

 

Self-modification. A process of slightly altering SLEUTH coefficient values to 

simulate accelerated or depressed growth that is related with system-wide boom 

and bust conditions in urban development. 

 

SLOPE_SENSITIVITY. A constant value that is applied to the slope resistance 

coefficient during self-modification. 

 

Start date. The first year represented by SLEUTH simulation. In Calibration this 

date corresponds with the date of the earliest (most historical) urban layer. In 

Forecasting, it will correspond to the START_DATE value defined in the run’s 

scenario file, which must also be the date of the most recent urban layer. 

 

Stop date. The final year represented by SLEUTH simulation. In Calibration, 

this date corresponds with the date of the most recent urban layer. In 

Forecasting it will correspond to the STOP_DATE value defined in the run’s 

scenario file. 

 

Simulation. A simulation is a series of growth cycles that begins at a start date 

and completes at a stop date (Candau, 2002). 

 

Products: They are the values obtained from the calibration modes. These are 

the values of the five calibration metrics best-fit scores, which are used to sort 

and identify the best performing coefficient sets. 

 

Compare: It compares the amount of modeled urban area to known urban 

area for the stop date year where Pmodeled is the modeled urban area and 

actual area for final year is Pactual: if (Pmodeled < Pactual) {compare = 

(Pmodeled / Pactual)} else {compare = 1 - (Pmodeled / Pactual)} 
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Pop: It is the least squares regression score for the modeled urban area 

compared to actual urban area for the control years. 

 

Edges: It is the least squares regression score for the modeled amount of 

urban perimeter or edge, compared to actual urban perimeter for the 

control years. 

 

Clusters: It is the least squares regression score for the modeled number 

of urban clusters compared to known number of urban clusters for the 

control years. 

 

Cluster_size: It is the least squares regression score for the modeled 

average urban cluster size compared to known average urban cluster size 

for the control years. 

 

Leesallee: It is a shape index, a measurement of spatial fit between the 

model's growth and the known urban extent for the control years 1 being a 

perfect match and 0 representing a spatial disconnect:  

S= (A∩B) / (AUB) 

where A is modeled and B is actual urban area. 

Slope: It is the least squares regression of average slope for modeled 

urbanized cells compared to average slope of known urban cells for the 

control years 

 
%Urban: It is the least squares regression of percent of available pixels 

urbanized compared to the urbanized pixels for the control years. 

 

Xmean: It is the least squares regression of average longitude (calculated using 

column values) for modeled urbanized locations compared to average longitude 

of known urban locations for the control years. 

 

Ymean: It is the least squares regression of average latitude (calculated using 

row values) compared to average latitude of known urban locations for the 

control years. 
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Rad:  √ (std 2 x + std2 y) is a measure of urban dispersal. 
 
Avg.log. A SLEUTH output file. It contains measured values of simulated data 

averaged over Monte Carlo iterations for every run and control year. 

 

Base statistics. The measurements taken from the control year data. 

 

Best solution set. (BSS) The goal of model calibration. The average of each of 

the five coefficient values from the final simulated year of the derive run. These 

are used to initialize a forecast run. 

 

BOOM. Self-modification parameter applied to the dispersion, breed, and 

spread coefficients when the system is in a boom state. 

 

Boom state. A state of accelerating urban growth entered into the when the 

urban growth rate exceeds the CRITICAL_HIGH. 

 

BUST. Self-modification parameter applied to the dispersion, breed, and spread 

coefficients when the system is in a bust state. 

 

Bust state. A state of decelerated urban growth entered into the when the 

urban growth rate goes below the CRITICAL_LOW. 
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