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ABSTRACT 
 
 
 

LEO SATELLITES: ATTITUDE DETERMINATION AND 
CONTROL COMPONENTS ; SOME LINEAR ATTITUDE 

CONTROL TECHNIQUES 
 
 

 
Kaplan, Ceren 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Erol Kocaoğlan 

 

April  2006,  129 pages 
 
 
 

In this thesis, application of linear control methods to control the  attitude of a Low-

Earth Orbit satellite is studied. Attitude control subsystem is first introduced by 

explaining attitude determination and control components in detail. Satellite dynamic 

equations are derived and linearized for controller design. Linear controller and 

linear quadratic regulator are chosen as controllers for attitude control. The actuators 

used for control are reaction wheels and magnetic torquers. MATLAB-SIMULINK 

program is used in order to simulate satellite dynamical model (actual nonlinear 

model) and controller model. In simulations, the satellite parameters are selected to 

be similar to the actual BILSAT-1 satellite parameters. In conclusion, simulations 

obtained from different linear control methods are compared within themselves and 

with nonlinear control methods, at the same time with that obtained from BILSAT-1 

satellite log data.  

 

 
 
Key Words: Low-Earth Orbit Satellite, Attitude Determination and Control      
                    Components, Linear Controller, Linear Quadratic Regulator. 
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ÖZ 
 
 

 
ALÇAK YÖRÜNGE UYDULARI: KONUM BELİRLEME VE 
DENETLEME ELEMANLARI ; BAZI DOĞRUSAL KONUM 

DENETLEME TEKNİKLERİ 
 

 

Kaplan, Ceren 

Yüksek Lisans, Elektrik –Elektronik Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. Erol Kocaoğlan 

 

Nisan 2006,  129 sayfa 
 
 
 
Bu tezde alçak yörünge Dünya uydusunun davranış hareketini  denetlemek amacıyla 

doğrusal denetim yöntemlerinin uygulanması üzerinde çalışılmıştır. İlk olarak,  

davranış denetim alt sistemi, davranış belirleme ve denetim elemanları detaylı bir 

şekilde anlatılarak tanıtılmıştır. Denetleyici tasarımı için, uydunun dinamik denklem- 

leri çıkarılmış ve doğrusallaştırılmıştır. Davranış denetimi için doğrusal denetleyici 

ve doğrusal kuadratik regülatör denetleyiciler olarak seçilmiştir. Denetimi sağlamak 

amacıyla tetikleyici olarak reaksiyon tekerleri ve manyetik tork vericiler 

kullanılmıştır. Uydunun dinamik (asıl doğrusal olmayan model) ve denetleyici 

modellemesi  MATLAB-SIMULINK programı kullanılarak gerçekleştirilmiştir. 

Simülasyonlarda kullanılan uydu modelinin özellikleri gerçek BILSAT-1 uydu 

parametreleri ile benzer olacak şekilde seçilmiştir. Sonuç olarak, farklı denetim 

yöntemlerinden elde edilen simulasyonlar birbirleriyle ve doğrusal olmayan denetim 

yöntemleriyle, aynı zamanda BİLSAT-1 uydu kayıt bilgisinden elde edilen verilerle   

karşılaştırılmıştır. 

 
Anahtar Kelimeler: Düşük Yörünge Dünya Uydusu,  Davranış Belirleme ve Denetim   
                               Elemanları, Doğrusal Denetleyici, Doğrusal Kuadratik Regülatör.  
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CHAPTER I 
 
 

 
INTRODUCTION 

 
 
 

This chapter, briefly describes the Low_Earth Orbit satellites. BILSAT-1 satellite 

and its attitude determination and control subsystem is introduced in order to give an 

example for Low-Earth Orbit (LEO) satellites. Literature survey on the attitude 

control of satellites is also a subject of this chapter. Generally, this work is about the 

attitude determination and control subsystem components of a satellite and linear 

control techniques designed for attitude control. 
 
 
1.1 Low-Earth Orbit Satellites and BILSAT-1 Attitude    

Determination and Control Subsystem 
 
 

In 21th century, the use of Low-Earth Orbit (LEO) satellites has increased with the 

great development of space technology. These satellites, ranging from micro to mini 

types, are now popular mostly for telecommunication, weather forecasting, taking 

images of Earth, ship movement surveillance, obtaining digital elevation maps of 

disaster areas, environmental tracking of some animals for scientific research and so 

on. LEO satellites fly between 600 km. and 1000 km. above the Earth. Unlike 

geostationary satellites, they travel across the sky. A typical LEO satellite takes less 

than two hours to orbit the Earth. A single satellite is in view of ground equipment 

for only a few minutes. 

 
Turkish researchers in the fields of near Earth space technologies have started the 

microsatellite project, BILSAT-1, in August 2001 in order to perform some of the 

missions described above with a satellite belonging to Turkey. Also this project was 

a first step in planning to produce its own satellites from design to in-orbit operation 
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for Turkey. BILSAT-1 was manufactured within a Know–How Transfer and 

Training (‘KHTT’) program between Surrey Satellite Technology Limited (UK) and 

TUBITAK-BILTEN (Turkey). The satellite was launched by a COSMOS 3M launch 

vehicle from the Plesetsk Cosmodrome in Russia on September 27, 2003.  

 

BILSAT-1 is an Earth observation satellite in a sun synchronous Low-Earth orbit at a 

686 km. altitude and has a mass of 129 kg. The orbit is called sun synchronous 

because the orientation of the orbit plane will remain nearly fixed relative to the sun 

as Earth moves in its orbit. Thus, the spacecraft will continously view the surface of 

the earth at the same local time at any given latitude. BILSAT-1 has an average orbit 

period of about 97.7 minutes. It spends nearly 32 minutes in Earth eclipse. This orbit 

gives a contact time of about 40 minutes per day, divided into four equal portions of 

about 10 minutes each during the day. BILSAT-1 is followed up succesfully via 

ground control station at TUBITAK-BILTEN. BILSAT-1 is a member of DMC 

(Disaster Management Constellation) which is an international consortium of which 

the member countries are UK, Algeria and Nigeria. The DMC satellites share the 

same orbit and are seperated from each other with a phase angle of  90 degrees. This 

constellation guarantees to image any location on the globe at least once per day. 

Figure 1.1 shows BILSAT-1 microsatellite. 

 

 

                         
  

         Figure 1.1: BILSAT-1 Satellite Launched on Sept. 27, 2003. 
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Attitude determination and control subsystem (ADCS) plays an important role in the 

design steps of a satellite. Attitude determination process simply determines the 

orientation of the spacecraft with respect to a reference frame. The data taken 

from the sensors of the satellite helps to determine the location of the satellite. 

Attitude control mechanism works in cooperation with attitude determination 

process to maintain and achieve the determined orientation in space. This work 

basically is about the attitude control of a Low-Earth Orbit satellite. Satellite 

attitude dynamics and kinematics are modelled in order to determine the angular 

velocity and position of a satellite with respect to Earth. The equations used in 

this thesis include disturbances due to Earth’s gravitational field and 

aerodynamic torque. Since the simulations in this work are based on the real 

parameters taken from the BILSAT-1, the ADCS subsystem of BILSAT-1 is 

explained briefly in the following paragraphs. 

 

The attitude determination and control subsystem of BILSAT-1 is composed of  

four sun sensors, four rate sensors, two magnetometers and two star cameras as 

sensors. Four reaction wheels, three torque rods, and a gravity gradient boom are 

designed to act as the actuators. A block diagram of this system is shown in Figure 

1.2 [1], [2], [3]. 

 

Actuators and sensors  provides full three-axis control to the satellite. Control 

accuracy of ±0.02 degrees shall be maintained, along with attitude knowledge of ± 

0.006 degrees during this control mode according to BILSAT-1 mission requirements. 

 

The reaction wheels of BILSAT-1 are arranged in a tetrahedral formation, with one 

of the wheels being mounted in line with the pitch axis. The wheels will run with 

a momentum bias, but the overall momentum of the system will be zero which 

means that the satellite will operate with zero momentum bias. Configuration of the 

wheels is shown in Figure 1.3 [1], [2], [3]. 
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   Figure 1.2 : ADCS Block Diagram of BILSAT-1. 

 
     

                                        
        

           Figure 1.3 : Four Wheels in a Tetrahedral Configuration. 
 

Reaction  
Wheels 

Reaction  
Wheels 
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Each wheel is capable of delivering a torque around 6-7 mNm in air, up to 10 mNm 

in vacuum. 

 

The three-axis control mode gives the satellite the ability to slew about a defined 

axis. The satellite is also able to slew up to +/- 30 degrees around the pitch axis to 

take pictures of a defined location on earth from different angles. This is shown in 

Figure 1.4  [1], [2], [3]: 

 

       
        
    Figure 1.4 : Illustration of 30 Degree Slewing about Pitch Axis. Arrow Illustrates  
                        the Movement Direction on Ground. (+x=roll , +y=pitch , +z=yaw 
                         axes). 
 
 
The reaction wheels on the satellite are expected to operate for a minimum of five 

years. Gravity-gradient boom will be deployed after this period. The satellite will 

perform a nadir pointing mission with +/- 0.3 degrees pointing accuracy during the 

remaining life time period. This mode will effect the spacecraft’s three axis control 

capabilities like thrust vector alignment which helps slewing operation, stereoscopic 

imaging and off-track imaging. On the other hand, it can still take images in nadir 

pointing direction. 

 

Torque rods are used to dump the excess momentum, which is caused by the 

external disturbances, accumulated on the wheels . The momentum on the wheels 

will reach saturation because of which their angular velocity can no longer be 
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increased. Before saturation occurs, magnetic torquers supply torque to bring the 

angular velocity of the wheels back to normal operating values. 

 

To perform orbital maneuvers, BILSAT has a propulsion system which is shown in 

Figure 1.5 [1], [2], [3]. 

 

                       

                        Figure 1.5: Propulsion System on the Satellite. 

 

 

In the propulsion system, "butane" is used as the propellant. It can supply a thrust of 

around 50 Nm. 

 

There are  two SSTL Altair HB star cameras on the spacecraft as given in Figure 

1.6 [1], [2], [3]. Processed attitude information is provided to the ADCS by these 

cameras, which can be used to compute the attitude.  
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     Figure 1.6 : SSTL Altair HB Star Cameras (Processing Unit and        
             Camera Head) 

 
 
The satellite is equipped with four micro-electro-mechanical systems (MEMS) 

gyros in order to be employed as rate sensors in fast attitude maneuvres. They are 

the complements of star cameras.  

 
 

     
 
 Figure 1.7 : MEMS Gyros as Rate Sensors, [1], [2], [3]. 
 
 

When Star tracker fails to give rate information during high slew rates above 0.5 

deg/sec., rate gyros are essential sources of reference for rate information. Because 

of this reason, the rate gyros on BILSAT-1 are particularly important during 

stereoscopic imaging maneuvers. 

 

MEMS 
Gyro 
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The GPS receivers on the satellite, are capable to supply a position knowledge of 

+/- 50 m. There are four GPS antennas on the satellite. It is possible to determine 

the attitude  up to +/- 1 degree. 

 
 

                         
 
             Figure 1.8: The SSTL SGR-20 GPS Receiver Determines the Attitude with            
                                 Position Information, [1], [2], [3]. 
 
 
In summary, the satellite makes the maximum use of imaging capability installed on 

board. There are star cameras and reaction wheels to control the satellite in three 

axis mode with an attitude control accuracy of ± 0.02 deg. and with an attitude 

knowledge of ±0.006 deg. SGR-10 GPS receiver is used in order to to determine its 

orbital position to within ±50m. The spacecraft is equipped with a set of solid-state 

data recorders to store the images generated by the imaging subsystem, linked to the 

RF communications and imaging systems by very high speed data links. Some of the 

data sheets of the components explained above are given in Appendix B. For more 

information on the BILSAT-1, see References  [1], [2], [3]. 

 
 
1.2 Previous Background 
 
 
This section summarizes the recent knowledge on attitude dynamics and control of 

satellites. The publications from 1990 up to 1996 have been investigated from the 

thesis written by Özge Uslu, [15] and Hakkı Özgür Derman, [9].  
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This paragraph simply summarizes the work done for the development of the satellite 

technology. The next paragraphs give information about the thesis searched in order 

to design the controller plant for the satellite system. Hughes (1986) and Wie (1998) 

are well-kown references on spacecraft dynamics. Wie, Weiss and Arapostathis 

(1989) prove that a PD controller stabilizes a spacecraft in a manner of attitude 

control. In their work, spacecraft model is taken as a classical one with no moving 

parts. In 1997, Hall investigated that reaction wheels can be used in energy storage. 

After this investigation, Hall (2000) control the spacecraft by using reaction wheels 

as actuators. In 2001, Hall, Tsiotras and Shen  use modified Rodrigues parameters to 

describe the attitude of a spacecraft and model the nonlinear attitude control system 

with thrusters and reaction wheels. Lee, Park and Park (1993) propose a nonlinear  

sliding mode controller. The use of Euler parameters or unit quaternions in attitude 

control problems, is started by Fjellstad and Fossen (1994), but they apply the results 

to underwater vehicles sliding mode controller. Show, Juang and Jan (2003) present a 

nonlinear attitude controller based on a linear matrix inequality method. This historical 

summary for the studies on attitude control is also mentioned in Reference [20]. 

 

James R. Wertz [8]  explains nearly all of the topics regarding the design of attitude 

determination and control subsystems in his book named as spacecraft attitude 

determination and control. He gives information about attitude geometry, attitude 

hardware, attitude determination, attitude dynamics and control. His book is very 

useful for understanding the design steps for attitude control and determination 

systems of the satellites. Mission analysis of different satellite applications can also be 

found in his book. 

 

Özge Uslu [15] worked on the orbit dynamics, attitude dynamics and control of a 

geostationary satellite. She simulated the translational and rotational motion of 

TURKSAT 1-B. She developed control laws for pitch, which uses momentum wheel 

and for roll, which uses thrusters as actuators. In her thesis, she also gives literature 

survey on attitude dynamics and control which helped us to follow the historical 

development of the attitude control schemes. 
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Hakkı Özgür Derman [9] demonstrated the 3-axis attitude control of a geostationary 

satellite. He introduced the attitude control of a satellite platform similar to 

TURKSAT-1B. He applied PD controller for pitch attitude with strapdown momentum 

wheels and he designed an integral plus full state-feedback controller for yaw/roll 

regulation. In his thesis, he used pole placement technique and tested the effects of 

various pole locations to the control scheme. Pulse width modulated thrusters were 

used as actuators. He worked on tuning the activation period of thrusters for fuel 

consumption. Similar to Özge Uslu, he gives literature survey which describes  several 

different control algorithms applied through the period from 1990 to 1999. 

 

Emre Yavuzoğlu [29]  presents the singularity problem on the steering laws for 

control moment gyroscope systems used in spacecrafts. He describes different 

steering laws to avoid singularity problems in angular momentum trajectory of the 

maneuver for control moment gyroscope systems. 

 

At the Norwegian University of Science and Technology (NTNU), Soglo (1994), 

Kristiansen (2000), Fauske (2002), Busterud (2003), Ythreus (2003), Overby (2004), 

have studied attitude control of small satellites with magnetic coils and reaction 

wheels as actuators. They apply their investigations to the NCUBE, NSAT-1 

satellite projects. 

 
Bjorn Even Busterud [21] studies the mathematical model and attitude control for 

microsatellites. He proposes linear quadratic regulator and energy based regulator 

for attitude control with magnetic torquers as actuators. In magnetic field 

modelling, he uses two different methods which are IGRF (International 

Geomagnetic Reference Field) and DIPOL modelling. He simulates his foundations 

for two satellites, NCUBE and NSAT-1. 

   
The implementation of reaction wheels as actuators in satellite design can be found 

in the thesis of Geir Ythreus [23]. He models the reaction wheels in tetrahedral 

configuration. He introduces reference model for obtaining smooth trajectory of 

controlled parameters. The ideas presented in his work are used in this thesis with 
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modifications. He designs a linear regulator according to linearization principles. 

Sliding mode controller and nonlinear regulator are applied according to the results 

of the Lyapunuv analysis. His simulations are based on the NSAT-1 environment. 

 
The effect of  environmental disturbances and noise is studied in the thesis of Eli 

Jerpseth Overby [7]. Mathematical modellings of Earth’s magnetic field and 

disturbance torques are described in his thesis. Stabilization of linear and nonlinear 

systems are defined. Energy based angular velocity feedback controller and energy 

based attitude feedback controller are introduced as nonlinear controllers and linear 

quadratic optimal gain is given as linear controller. He compares the linear and 

nonlinear controllers in his simulations for NCUBE. He recommends to use 

Wisniewski [22] controller for stabilization. Magnetic torquers are the actuators of 

the design. 

 
Stian Sondersrod Ose [17] presents an attitude determination system for satellites. He 

implements a Kalman filter to produce the estimated states needed by the controller. 

His thesis is useful for obtaining some definitions and notations about sensors, 

reference models, mathematical modelling and attitude representations. 

 
Nonlinear control of the microsatellite European Student Earth Orbiter (ESEO) is 

studied by Mortar Pedersen Topland [20]. He derived two linear and four nonlinear 

controllers as a result of his studies about linearization and Lyapunov theory. These 

controllers also work for different inertia matrix values applied to the system. The 

fourth nonlinear controller is the sliding mode controller. A bang bang controller 

with dead zone is used for thruster modelling. He also applies  reaction wheels as 

actuators and states that reaction wheels are actively used in the nonlinear 

controllers.  

 

Oyvind Hegrenaes [30] connects the controller within a closed loop with nonlinear 

system and checks the effectiveness through simulations. In his thesis, model 

predictive control problem is formulated and explicit model predictive control 

controller is derived. He uses linear control techniques such as PD control and linear 

quadratic regulator with the purpose of comparing these with other techniques. 
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Wisniewski [22] suggests a new controller which is shown to be locally and globally 

stable for the 3-axis attitude control based on magnetic torquing applied in Orsted 

satellite. 

 
This thesis is based on the previous work done on the ADCS which is accomplished 

by the Surrey Space Center (SSC), in conjuction with Surrey Satellite Technology 

Ltd. (SSTL) and TUBITAK (Technical Research Council of Turkey) –BILTEN (The 

Information Technologies and Electronics Research Institute). The knowledge 

obtained from the literature survey is used on the design of linear controllers when 

magnetic torquers and reaction wheels are selected as actuators. Also mathematical 

equations and assumptions to derive satellite’s dynamical and kinematic equations 

are studied from the theses written  by the researchers mentioned above. 

 
 
1.3 Scope of this Thesis 
 
                                                          
This thesis gives a presentation of the attitude determination and control components 

of a satellite system in detail. It does also inform us about the linear attitude control 

design of a spacecraft using different actuators such as magnetic coils and reaction 

wheels. A nonlinear mathematical model of a spacecraft is developed with the 

assumption that the satellite is a rigid body. Linearization is used to derive linear 

controllers. Throughout this thesis, linear regulator is applied for attitude control 

when reaction wheels are the actuators of the satellite system and linear quadratic 

regulator is selected as controller when magnetic torquer behaves as the actuator of 

the system. Controllers are tested in MATLAB/SIMULINK environment. System 

performance is evaluated by the help of the simulations. The results of the 

simulations are also compared with the results obtained from the nonlinear control 

techniques explained in the thesis of Soner Karataş [26] and simulations taken from 

BILSAT-1 ground station. The satellite parameters are selected similar to the actual 

BILSAT-1 satellite platform and are also used in simulations. BILSAT-1 attitude 

determination and control subsystem is described briefly. This thesis does also focus 

on evaluation of environmental forces that influence the orientation of the spacecraft. 
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1.4 Outline of the Thesis 
 
 
In Chapter II, attitude determination and control components are described in detail. 

It explains several types of sensors and actuators. It also briefly describes the main 

properties of the actuators and sensors. Mathematical modelling of the satellite is 

given in Chapter III. Linearization of the satellite model and information about the 

environmental and internal torques effecting the attitude control of the satellite is 

also given in this chapter. Linear control techniques applied in the present study are 

explained in Chapter III. Simulation results are shown in Chapter IV. Lastly, Chapter 

V includes the conclusion of the thesis and future work to improve the controllers or 

satellite model similar to BILSAT-1 environment. 

 

Lastly, it is worth mentioning that the controllers and attitude control system are 

designed and simulated in MATLAB 7.0 and SIMULINK 6.0 R14.  
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CHAPTER 2 
 
 
 

ATTITUDE DETERMINATION AND CONTROL 
COMPONENTS 

 
 
 

Attitude determination is the process of  determining the orientation and location 

of the spacecraft relative to some reference frame, [8]. The most commonly used 

reference vectors are the unit vectors directed toward the Sun, the center of the Earth, 

a known star, or the magnetic field of the Earth. An Attitude sensor measures the 

orientation of a given reference vector relative to the spacecraft reference frame, 

[8]. Sun sensors, rate sensors, magnetometers, Star cameras, Star sensors are 

different types of sensors which can be used in attitude determination [8]. The 

orientation of the spacecraft relative to the reference vectors can be computed 

after the orientation of these vectors are determined relative to the spacecraft 

frame [8]. 

   

The process of achieving and maintaining an orientation in space is called 

attitude control. Spacecraft is reoriented from one attitude to another with 

attitude maneuvering process. After reorientation or an action that causes a 

change in attitude, the existing attitude shall be maintained relative to some 

defined reference frame. This is defined as attitude stabilization. Actuators are 

used for attitude control, stabilization or maneuvering actions, [8].  They supply 

the desired control torque needed to perform actions defined above. 

 

Different types  of sensors and actuators are explained in the sections given below. 

Advantages and disadvantages of various reference sources is given in Table 2.1, [8]. 
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     Table 2.1 : Reference Sources Used in Attitude Determination. 
 

REFERENCE ADVANTAGES DISADVANTAGES 

SUN 

Bright, low power and weight. 
Shall be known for solar cells 
and equipment protection. 

May not be visible 
during parts of the 
orbit. Accuracy 
limitation to 1 arc 
minute. 

EARTH OR OTHER 
CENTRAL BODY 

Available for nearby  satellite. 
Bright,necessary for many 
sensor and antenna coverage, 
easy analysis. 

Requires scan motion 
to sense. Horizon 
sensors must be 
protected from sun. 
Resolution limited to 
0.1 deg. 

MAGNETIC FIELD 

Economical, low power 
requirements. Available for 
LEOs 

Poor resolution. Good 
only near Earth. 
Limited by field 
strength and modelling 
accuracy, sensitive to 
biases. 

             STARS 

High accuracy, available 
anywhere in sky, orbit 
independent 

heavy, complex, and 
expensive sensos. 
Identification of stars is 
complex and time 
consuming, usually 
requires second attitude 
system for initial 
attitude estimates. 

   INERTIALSPACE 
(MAGNETOMETERS, 
ACCELEROMETERS)

Requires no external sensors, 
orbit independent, high 
accuracy for limited time 
intervals 

Senses change in 
orientation only- no 
measurement; Subject 
to drift. Relatively high 
power and large mass. 

 
 
 
2.1 Attitude Sensors 
 
 
Throughout this part, different types of sensors used in attitude determination are 

explained. The mechanisms behind these sensors are mentioned briefly. This section 

is a simple guide for the selection of sensors in the design phase of the spacecraft 

system.  
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2.1.1 Sun Sensors 
 
 
Sun sensors are one of the most widely used attitude determination sensors. They 

are also used to protect Star trackers, to provide a reference for attitude control, 

and to position solar arrays. Brightness of the sun permits the use of simple, 

inexpensive, reliable equipment with minimal power requirements. In summary, 

Sun sensors are basically required in spacecraft operations since most missions 

require solar power and have sun-sensitive equipment which needs protection 

against sunlight or sun heat. 

 

There are wide range of Sun sensors with Fields Of View (FOV) ranging from 

several square arc-minutes (10-7 sr) to 128 by 128 degrees( approximatelyπ sr) 

and resolutions of several degrees to less than arc-second. Solid angle or 

steradian (sr) is the area of the spherical triangle measured on the curved surface 

of the unit sphere. In order to convert deg2 to sr unit, the value in degrees is 

calculated by 2)180(π . Angular seperation between two objects as seen from the 

spacecraft is measured in arc minute unit and 1 arc minute is equal to the 60
1  th 

of 1 degree. The conversions between all the units dealed in this section and the 

other sections can be found in Reference [8] in detail. The accuracy range of 

Sun sensors changes from 0.25 degrees to 6 degrees depending on the type and 

number of sun sensors applied. 

 

Three main types of sun sensors are analog sensors, sun-presence sensors and digital 

sensors. 
 
 
2.1.1.1 Analog Sensors 
 
 
Analog sensors are sometimes called cosine detectors since their working principle is 

based on the sinusoidal variation of the output current of a silicon solar cell as a 
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function of the sun incidence angle, [8]. Typical cosine detector sun sensor is shown 

in Figure 2.1, [8]. 

 
 

            
 

 Figure 2.1 : Cosine Detector Sun Sensor. 
 
 

The output  current of one photocell is proportional to the cosine of the angle of 

incidence of solar radiation as given in Equation 2.1. When a solar cell is  

exposed to light at a certain frequency, it produces power. The amount of current 

depends on the light’s frequency and brightness. 

 

     θθ cos)0()( II =              (2.1) 

 

To achieve accuracy over a wide angular range, several cosine detectors can be   

combined such that each gives a summed output as shown in Figure 2.2, [8] and 

Figure 2.3, [8]. 
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          Figure 2.2 : Two Cosine Detectors Combined to Provide Wide Sun Angle  

                   Measurement Range.  
   
 
Figure 2.3 shows the output of the two cosine detectors located as given in Figure 

2.2. 

 

      
 
Figure 2.3 :  Summation of the Outputs from Two Sensors. The Solid line    

          Represents the Summed Output. 
 
 

Unlike other sensors, analog sensors use onboard solar cells of the satellite without 

the need of additional hardware. But they are extremely inaccurate with 1o  

accuracy in Field Of View (FOV) of 30o.  
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2.1.1.2 Sun Presence Sensors 
 
 
Sun presence detectors generate a step function response whenever the Sun is within 

the  FOV of the detector. These sensors are generally used to protect instrumentation 

and to position the spacecraft. There are different applications of Sun presence 

sensors. A typical shadow bar detector shown in Figure 2.4, [8] has a steep output 

slope with a limited FOV and 1-arc-minute accuracy. When sunlight enters to the 

region limited by the help of shadow bars in an appropriate angle, photo cells sense 

the presence of sunlight. 

 

 

       
                           

                 Figure 2.4:  Simple Shadow Bar Sun Sensor. 
 
 

Some spacecrafts sometimes employ one or more Sun presence detectors composed 

of two slits and a photocell as shown in Figure 2.5, [8].  

 

                     
                                

 Figure 2.5:  Two Slit Sun Presence Detector. 
 



 20

When  Sun lies in the plane formed by the entrance and reticle slits with the required 

angle, the photocell will indicate the Sun presence. When two sensors are combined 

in a V shaped position, the time between sun pulses is a measure of the Sun angle, as 

shown in Figure 2.6, [8]. 

 
 

        
 
        Figure 2.6: Sun Angle as a Function of Spin Angle for Typical Solar V-Beam 

                Sensor with 45-Deg Tilt. 
 

 
2.1.1.3 Digital Sensors  
 
 
Digital Sun sensors are commonly composed of two parts: the command unit and the 

measurement unit as given in Figure 2.7, [8].  

 

The command unit basically acts as a Sun presence detector, and the measurement 

unit provides a digital output which is a representation of the Sun incidence angle 

relative to the normal of the sensor face whenever the Sun is in the FOV of the 

command unit. 
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          Figure 2.7:  A Simple Digital Sensor.  
 
 

Figure 2.8, [8] gives an illustration of the Sun sensor command component FOV for 

spinning spacecraft.  

 
 

                       
  

   
    Figure 2.8:  Field of View of Sun Sensor Command Component. 
 
 

Meanwhile, Figure 2.9, [8] shows in detail how the digital Sun sensor generates its 

output in binary and gray codes. 
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           Figure 2.9: Sun Sensor Measurement Component Detail and Output, [8]. 
 
 
The Sun image, after sunlight goes through the measurement component entrance slit, 

is refracted and illuminates a pattern of slits. There are photocells beneath each row of 

slits which essentially generate a digital output. The four groups of slits include an 

automatic threshold adjust (ATA), a sign bit, encoded bits, and fine bits. Reticle 

patterns can be illustrated with different coding schemes such as gray code or 

binary code.  

 

Also, Figure 2.10, [8] illustrates plot of output from photocells versus Sun angle for 

Adcole digital Sun sensors. 

 

 



 23

     
 
Figure 2.10: Plot of Output from Photocells Versus Sun Angle for Adcole Digital  

          Sensor. 
 
 

In digital sensors, almost a Sun angle with accuracy of 0.125 degree can be 

computed. If the nominal FOV for digital sensors, for example, is limited to ± 64 

deg., full 180 degree coverage can be accomplished by mounting two or more 

sensors  in such a way that their FOVs overlap to increase the total FOV area. 
 

In summary, Figure 2.11 is introduced to give an example for a Sun sensor. The 

basic properties of the Barnes 13-517 coded Sun sensor is illustrated below the 

figure. 
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       Figure 2.11: Barnes 13-517 Sun Sensor. 

 
 
2.1.2 Horizon Sensors 
 
 
The essential way for directly determining the attitude of a spacecraft relative to 

the Earth is to use horizon sensors (Earth sensors), [8]. For payloads like attitude 

determination and control, communications or weather forecasting, determining 

the attitude of spacecraft relative to Earth has an extreme importance. Earth 

covers about 40% of the sky for near Earth orbit satellites so Earth can not be 

treated as a point source like the Sun. Hence most sensors are designed to detect 

the Earth's horizon instead of Earth. Horizon sensors use the Earth’s horizon to 

determine the orientation of the spacecraft with respect to Earth. They are  

infrared devices that detect a temperature contrast between deep space and the 

Earth’s atmosphere. The main difficulty encountered in horizon sensors includes 

setting triggering thresholds to distinguish between the true horizon and the 

edge of the atmosphere. Sun rejection capability which is provided by redundant 

sensors or optical systems is important when horizon sensors are used for 
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onboard control. Reference [8] includes detailed information about horizon 

sensors. 

 

Figure 2.12 and Figure 2.13 show different types of horizon sensors. 
 
 

                            

                    
                   
       Figure 2.12: Barnes 13-470-RH Horizon Sensor and Technical Properties. 
 

 

          
   
   Figure 2.13: Ithaco Horizon Crossing Indicator. 
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2.1.2.1 Sensor Components 
 
 
A scanning mechanism, an optical system, a radiance detector, and signal 

processing electronics are the basic components of horizon sensor. Horizon 

sensors are usually classified by the method they use to search the celestial 

sphere which is also called scanning mechanism. The simplest method used for 

scanning mechanism is to attach the sensor to the body of the spinning 

spacecraft. That’s the sensor is fixed to the body of the spinning spacecraft and 

this spin provides the scanning action. The body-mounted horizon sensor and 

the wheel-mounted horizon sensor work with the principle explained above. 

Another way of performing scanning action is to rigidly attach the sensor to a 

momentum wheel of the spacecraft so that the rotation of the wheel provides 

the scanning mechanism. The latter way, however, consists of integrated 

systems, such as scanwheels. They include a momentum wheel, horizon 

sensor, and the electronics, all in one unit. They can be used both in attitude 

determination and control. Figure 2.14 gives an example illustration for 

scanwheels. 

 
 

 

 
 
 

 

     
 

 
         
 
       
       Figure 2.14: Ithaco Type Scanwheel Model. 

 
 

Figure 2.15, [8] shows an example operating schematic of a scanwheel. 
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               Figure 2.15: SEASAT Scanwheel Operating Principle. 
 
 
The optical system includes a filter that limits the observed spectral band and a 

focusing lens which  focuses the target image on the radiance detector. 

 

Radiance detectors detect the presence of a horizon. Energy radiated from the 

scanned body is focused by the optical system on the radiance detector which in 

turn produces a voltage. Photodiodes (which respond to visible light), 

thermistors, thermo-couples, and pyroelectric crystals (which all respond to red 

or infrared part of the light spectrum), and bolometers (a very sensitive 

resistance thermometer) are some types of radiance detectors classified 

according to their region of spectral sensitivity. The detailed information 

about these systems can be obtained from Reference [8]. 

 

Wertz [8] gives the possible output responses obtained from a horizon scanner as 

stated below. The output from a scanning horizon sensor is a measure of the time 

between the sensing of a reference direction and the electronic pulse generated 

when the radiance detector output reaches or falls below a selected threshold. The 

reference direction for a body-mounted sensor is generally a Sun pulse from a  
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separate sensor, meanwhile wheel-mounted sensors typically uses a magnetic 

pickoff fixed in the body. An increase in the detector output voltage over the 

threshold indicates a dark-to-light transition. This is called acquisition of signal 

(AOS), also referred to as in-crossing or in-triggering. A decrease in the output 

voltage, on the other hand, over the threshold indicates a light-to-dark transition. 

This is called loss of signal (LOS), also referred to as out-crossing or out-

triggering. The percentage of the scan period that the radiance is above threshold 

is the duty cycle. Knowledge of the scan rate or duty cycle allows the conversion 

from time to angle either onboard or in ground. The horizon crossing times 

depend on the sensor FOV, the radiance profile of the scanned body, the transfer 

function, which is the relation between the radiation pulse incident on the 

dedector, the electronic output of the horizon sensor, and locator, which is an 

electronic technique used to define the threshold for horizon detection. Locator 

can significantly affect the overall attitude accuracy of the system. Illustrations of 

various possible outputs are given in Figure 2.16, [8] where the reference to AOS 

time( REFAOSI ttt −≡ ), the reference to LOS time ( REFLOSO ttt −≡ ), the Earthwidth 

( AOSLOSW ttt −≡ ), and the reference to midscan time ( REF
AOSLOS

M tttt −+≡ 2
)( ) can 

be provided by various electronic systems. 

 
  

  
                     
           Figure 2.16: Output of Scanning Horizon Sensor. 
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Signal Processing Electronics process the time signals generated as above to be 

used in attitude determination software to generate attitude data.  

 
 
2.1.3 Magnetometers 
 
 
Magnetometers are vector sensors which measure the strength and direction of the 

Earth's magnetic field to determine the orientation of a spacecraft with respect to 

the local magnetic field. Magnetometers are widely used as attitude sensor since 

they are inexpensive, lightweight, have low power requirements, can operate 

over a wide range of temperatures and lastly, they have no moving parts. On 

the other hand, magnetometers are not accurate inertial attitude sensors since 

they are reliable up to some altitude. Due to a lack of complete knowledge of 

the magnetic field model, the predicted direction and magnitude of the field at 

the spacecraft's position are subject to errors. The measurements are limited by 

the strength of the local field strength, as well as the accuracy of the magnetic 

field model. For altitudes above 1000 km. where magnetic field strength 

becomes small enough, errors become substantial (magnetic field strength is 

inversely proportional to the cube of the distance from the center of Earth). 

They often have poor resolution and do not give good results if they are far from the 

Earth.  

 

A magnetometer has two parts: a magnetic sensor and an electronics unit for 

signal processing. Figure 2.17, [8] shows the general magnetometer block 

diagram. 
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Figure 2.17: Generalized Magnetometer Block Diagram. 
 
 

2.1.3.1 Sensor Components 
 
 
As shown in Figure 2.17, magnetometers are basically composed of two parts: a 

magnetic sensor and an electronics unit that transforms the sensor measurement 

into a usable format. Quantum magnetometers, which utilize fundamental atomic 

properties such as nuclear magnetic resonance; and induction magnetometers, 

which are based on Faraday’s Law of Magnetic Inductance; are two main 

categories of magnetic field sensors. There are also two types of induction 

magnetometers: search-coil magnetometer and fluxgate magnetometer. Figure 

2.18, [8] shows a dual-core fluxgate magnetometer. 

 

           
 
    Figure 2.18: Dual-Core Fluxgate Magnetometer with Primary and Secondary       
                          Induction Coils. 
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The presence of any ambient magnetic field may be observed as the second 

harmonic of the current induced in the secondary coil with leads S1 and S2. Two 

saturable cores wound in opposite directions for secondary coil to be insensitive 

to the primary frequency.  

Figure 2.19, [8] illustrates the operating principle of the fluxgate magnetometer 

where,  frequency of the primary coil’s voltage is π2 /T ; amplitude of resultant 

magnetic intensity is HD ; Saturation flux density of core elements is SB±  when 

the magnetic intensity reaches ±  HC ; and secondary coil’s induced EMF, SV , 

consists of pulses of width K1T, seperated by time intervals K2T. K1T and K2T  

are computed by the relations between HD and HC. These definitions are taken 

from Wertz [8], pages 182 and 183. 

Once the magnetic field sensor signals are processed by the electronics unit, they are 

transferred to the attitude determination subsystem. These signals are compared with 

the predicted magnetic field data (based on the location of the spacecraft) and the 

orientation of the spacecraft can then be determined. 
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        Figure 2.19: Fluxgate Magnetometer Operating Principle and Output                              
                             Configurations. 

 
 
2.1.4 Star Sensors 
 
 
James R. Wertz, at his book, Spacecraft Attitude Determination And Control; defines 

the star sensors as given below, [8]: 

 



 33

      Star sensors measure the star coordinates in the spacecraft frame and 

provide attitude information when these observed coordinates are compared 

with known star  directions obtained from star catalog. 

 

Star sensors are heavy, expensive, require more power, and subject to interference 

from  Sun, Earth, and other bright light sources. In spite of these disadvantages, they 

are the most accurate means of attitude determination with accuracies down to arc 

seconds. 

 
 
2.1.4.1 Sensor Components 
 
 
Regardless of the type, a Star sensor commonly has the following components: Sun 

shade, optical system, image definition device, detector, and electronics assembly. 

Gimbaled Star trackers have gimbal mounts for angular positioning in addition to the 

above mentioned components. Figure 2.20, [8] shows a simple version of Star sensor 

hardware. 

 

 
     

     Figure 2.20: Simplified Version of a Star Sensor Hardware. 
 
 
Star sensors are very sensitive to stray light. Sun shades are designed to improve 

sensor performance by protecting the optical system from sunlight and scattered light 

reflected by dust particles, jet exhaust particles, and other parts of the spacecraft itself.  

The optical system mainly consists of a lens. This lens projects the star image on the 

focal plane. The image definition device selects a small portion of the sensor's FOV 

(called instantaneous field of view, IFOV) which contains the star image. This can 
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either be a retile on an opaque plate or an image dissector tube. In an image dissector 

tube, IFOV electronically scans the FOV. The detector (for instance, a photomultiplier) 

transforms the optical signal (light) to an electronic signal. The electronics assembly 

receives the signal from the detector and processes it before sending it to the attitude 

determination software. 

 
 
2.1.4.2 Sensor Types 
 
 
There are generally three types of Star sensors; Star scanners, which use the 

spacecraft rotation to provide searching and sensing function; gimbaled Star trackers, 

which search out and acquire stars using mechanical action; fixed head Star trackers, 

which have electronic searching and tracking capabilities over a limited field of 

view. All Star sensors must be protected from bright objects by use of a bright 

object sensor which closes a shutter as long as the object is present in the FOV. 

 

The simplest Star sensors are the Star scanners used on spinning spacecraft. 

The spacecraft's spinning motion results in the scanning of the celestial sphere 

by the sensor. 

 

As shown in Figure 2.21, [8], a gimbaled Star tracker typically has a very small 

FOV (usually less than one degree) and through the gimbal assembly it 

maintains a centered star image. The gimbaled angle read-out position is used 

to determine the star's direction. They are usually used by the spacecraft whose 

mission requires operation in a variety of attitude positions. The disadvantage of 

these sensors is that the mechanical motion of the gimbal assembly limits their 

long-term use and accuracy. Typical accuracies range from one to sixty arc-

seconds. 
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   Figure 2.21: Gimbaled Star Tracker. 
 
 

A fixed head Star tracker has no moving parts and is typically smaller and 

lighter than the gimbaled Star trackers. In this sensor, IFOV scans the sensor 

FOV in a search pattern using electronics. After acquiring a Star, IFOV tracks it 

until either the Star moves out of the FOV or IFOV is commanded to resume 

searching for another star. Figure 2.22, [8] shows a simplified diagram of a 

fixed-head Star tracker. 

 
 

     
 
               Figure 2.22: Cutaway Diagram of a Fixed-Head Star Tracker. 
 
 
A disadvantage of this tracker is that the image dissector is subject to errors due 

to stray in electric and magnetic fields. The choice of Star brightness sensitivity 

and FOV size are mission dependent. Typical FOV size for fixed-head Star 
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trackers using image dissectors range from 16 arc-minute circle to 8 x 8 degree 

squares. 

 

Figure 2.23 shows different types of star trackers and characteristics of these 

sensors. 

 
 

 
        Figure 2.23: Different Types of Star Trackers and Characteristics of These     
                             Sensors. 
 
 
2.1.5 Rate Sensors (Gyroscopes) 
 
 
Rate sensors determine the attitude by measuring the rate of rotation of the 

spacecraft. They are located internal to the spacecraft and work at all points in an 

orbit. Since they measure a change instead of absolute attitude, gyroscopes 

must be used along with other attitude hardware to obtain full measurements. 

They are subject to drift, and since they have moving parts, they are more 

complex instruments. 
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Three basic types of gyroscopes are; rate gyros (RGs), rate-integrating gyros (RIGs), 

control moment gyros (CMG). RGs and RIGs are attitude sensors used to measure 

changes in the spacecraft orientation while CMGs are used to generate control 

torques to change and maintain spacecraft’s orientation. Figure 2.24, [8] shows the 

construction geometry of mechanical gyros. 

      

     
     
   Figure 2.24: Basic Single-Degree-of-Freedom Gyroscope Construction Geometry. 
 
 
The angular momentum of a gyro, in the absence of an external torque, 

remains constant in magnitude and direction in space. Therefore, any rotation 

of the spacecraft about the gyro's input axis results in a precession of the gimbal 

about the output axis. Motion of the gimbal about the output axis will then 

cause an output signal from the RG or RIG. If a gyro spin axis is supported by 

only one gimbal, it is sensitive in only one direction, and hence it is a single 

degree of freedom (SDOF) gyro. Figure 2.24 is an example of such a gyro. If, 

however, the spin axis is supported by two gimbals, the sensor sensitivity is 

supported in two directions, it is a two degree of freedom, or TDOF, gyro. Three 
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or more SDOF gyros or two or more TDOF gyros provide attitude information 

about all three axes. 

 
 
2.1.5.1 Sensor Types 
 
 
Rate Gyros measure spacecraft’s angular rates and frequently part of a feedback 

system for either spin rate control or attitude stabilization. If the spacecraft rotates 

about the RG input axis, the gimbals rotate about the output axis and hence the 

gyros generate an output signal. This output is proportional to the spacecraft 

rotation rate about the gyro input axis. That’s the output of a rate gyro is 

obtained by measuring the rotation of the gimbal about the rotation axis. The 

relationship between the rate about the input axis and the angular 

displacement, θ , about the output axis may be derived by the total angular 

momentum , H, of the gyro system, [8]. The related mathematical equations 

can be found in Appendix A. 

 

Rate gyros are simplest and least expensive gyros and their accuracy is usually good 

enough for spin rate control. But their integrated output requires frequent 

correction for precise attitude determination using other sensors such as Sun 

sensors or Star trackers. Although RGs only provide rotation rate information, 

their output could be fed into on board computers and integrated to give 

angular displacement from some reference time or position. 

 

Rate integrating gyros have high accuracy and low drift characteristics. 

Therefore, they are more frequently used in spacecraft attitude determination. The 

output of a RIG is not an angular rate but an angular displacement. This output is 

proportional to the spacecraft angular displacement about the sensor input axis 

relative to some reference position. Different mechanical or electrical methods 

can be used to measure the rotation of the spacecraft about the input axis. As in 

RGs, Star tracker data can be used to calibrate and correct RIG output 

periodically. Since RIG output is an angular displacement, small angular 
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displacements over small time intervals are measured electronically and divided by 

the time increment to obtain an average rotation rate over that time interval. 

 

Control moment gyros (CMG) are not attitude sensors like RIG but are used to 

generate attitude control torques in response to onboard or ground command. Control 

moment gyros operates essentially in reverse manner when compared to RGs or 

RIGs. A commanded displacement of the gimbal and the resultant change in the 

angular momentum vector causes a control torque above the gyro’s input axis. The 

magnitude of this torque depends on the speed of the rotor and the gimbal rotation 

rate. Gimbal rotation rates must not exceed specified maximum values so a 

partitioning among several CMGs is often required. If undesirable momentum 

configurations result in momentum dumping, an auxiliary control system (e.g. gas 

thrusters) must be added to the system design. CMGs work much like reaction 

wheels. They may be used in conjuction with RGs or RIGs. Because their weight and 

expense, they are generally used on large spacecrafts. Two, three or more gyros can 

be used to provide control and sensing about all three axis. So complete three-axis 

information is provided. Figure 2.25 shows an example of configuration of control 

moment gyros. 

 

Sometimes, several (up to four) RIGs are applied together to sense position and 

velocity more accurately. The combination of these RIGs are called as Inertial 

Reference Unit (IMU) and they work with accelerometers. Figure 2.26 gives 

examples for these units. 

 

Gyroscope’s mathematical model and calculation of angular velocity can be found in 

Appendix A in detail. 
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            Figure 2.25: Configuration of Control Moment Gyros in Three Axis. 
 
 
 
 

 
 
           Figure 2.26: Different IMU Configurations and Their Technical Data.  
  
  



 41

In conclusion, Table 2.2 [25] gives typical performances and technical properties of  

some sensor types. 

 
 
       Table 2.2: Typical Performance Ranges and Technical Properties of Sensors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Accuracy of different types of sensors are given in  Table 2.3 [8]. 
 

 
                Table 2.3:  The Accuracy of Different Types of Sensors. 
  

Sensor Accuracy Characteristics and Applicability 

MAGNETOMETERS 1.0° (5,000 km alt) 
5° (200 km alt) 

Attitude measured relative to Earth's local 
magnetic field. Magnetic field 

uncertainties and variability dominate 
accuracy. Usable only below ~6,000 km.

EARTH SENSORS 
0.05° (GEO) 0.1° 

(low altitude) 
Horizon Uncertainties dominate 

accuracy. Highly accurate units use 
scanning. 

SUN SENSORS 0.01° Typical field of view ±130° 
STAR SENSORS 2 arc sec Typical field of view ±16° 
GYROSCOPES 0.001°/hour Normal use involves periodically 

resetting the reference position. 
 
 
 
 
 
 

Sensor Typical Performance 
Range Weight (kg) Power(W) 

Inertial Measurement 
Unit (Gyros and 
accelerometres) 

Gyro Drift=0.003 deg/hr to 
1 deg/hr 2 to 25 10 to 2000 

Sun Sensors 0.005 deg to 3 deg 0.5 to 2 0 to 3 
Star Trackers 
(scanners and 
mappers) 

0.000278 deg to 0.0167 deg 3 to 7 5 to 20 

Horizon Sensor       
Scanners 0.1 deg t0 1 deg 2 to 5 5 to 10 
Fixed Head (-0.1)deg 2.5 to 3.5 0.3 to 5 
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2.2. Attitude  Actuators 
 
 
As mentioned before, an actuator is the mechanism that supplies control 

torque for the attitude control system. In active control systems, continous 

decision making and hardware operation is needed. The most common 

sources of torque are gas jets, electromagnets and reaction wheels. Passive 

attitude control makes use of environmental torques to maintain spacecraft 

orientation. Gravity gradient boom and solar sails are common passive  

actuators. Decision to use either active, passive methods depends on mission 

pointing and stability requirements, interaction of control system with 

onboard experiments or equipment, power requirements, weight restrictions, 

mission orbital characteristics, and the control system’s response time.   

  
 
2.2.1 Momentum and Reaction Wheels 
 
 
Reaction wheels, momentum wheels, or control momentum gyros are devices used 

for the storage of angular momentum. They are simply used on spacecraft for several 

aims: to add stability against disturbance torques, to absorb cyclic torques, and to 

transfer momentum to the satellite body for slewing maneuvers. They usually depend 

on the momentum of a spinning wheel, ωIh = , where I  is the moment of inertia 

about the rotation axis and ω  is the angular velocity. A flywheel is any rotating 

wheel or disk used to transfer or store momentum, [8]. Momentum wheel is a 

flywheel which operates at a biased momentum. It is capable of storing a variable 

momentum about its rotation axis, which is usually fixed in the vehicle. Reaction 

wheel is also a flywheel which operates at zero bias. Control moment gyro consists 

of a single- or double-gimbaled wheel spinning at a constant rate. The gimbal rings 

allow the control of the direction of the flywheel momentum vector in the spacecraft 

body. As stated above, under the name of momentum wheels, these devices are 

generally used to control the spin rate and attitude about the wheel axis. 
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Momentum wheel assembly consists of a flywheel and its components: bearings, 

torque motors, tachometers, control electronics, and other sensing devices, [8]. 

Torque motors are used to transfer momentum between the wheel and the spacecraft 

body. Tachometers measure the wheel speed. They are usually consist of a wheel-

mounted magnet and a fixed sensor, such as a simple pick off coil. The output of the 

tachometer, which is a pulse train, can be converted to a DC voltage to use as a 

controlling error signal for either a constant speed or variable speed mode. DC 

tachometer uses the back electromotive force generated by the armature winding to 

produce an analog voltage proportional to the rotational speed, [8]. 

 

Bearing noise, jitter, quantization, variation of the bearing friction with temperature, 

offset of the wheel axis from the body principal axis are the practical problems in the 

design of momentum wheel systems. Also, in switching from the spinning to the 

despun mode, attitude control problems may occur. This is because of the difficulty 

in achieving pitch lock if the body rate is too high. The problems stated above are 

explained in Reference [8].  

 
 
2.2.1.1 Momentum Wheels 
 
 
Momentum wheels are similar to reaction wheels except their spin rate can not be 

varied or reversed. The concept behind this device is that by adding or removing 

energy from a flywheel, a torque is applied to a single axis of the spacecraft, causing 

it to react by rotating, [8]. A typical momentum wheel is given in Figure 2.27.  

 
 
 
 
 
 
                     
 
  
 
                   Figure 2.27: A Typical Momentum Wheel Configuration.  
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In some satellites horizon scanners are incorporated as an integral part of the 

momentum wheel assembly. 

 

A momentum bias design is common for dual-spin Earth-orbiting spacecraft. This 

kind of spacecraft has two sections with different spin rates. These sections are 

usually a despun section and a flywheel. A momentum wheel is mounted along the 

pitch axis, which is controlled to orbit normal. This allows the instruments to scan 

over the Earth. For example, the SAS-3 spacecraft uses its reaction wheel for 

different modes: spin rate control mode using gyro rate sensing, Earth-oriented mode 

using horizon scanner pitch data, and a three axis stabilized mode using star camera 

data for pitch control [Mobley, et al., 1974]. 

 
 
2.2.1.2 Reaction Wheels 
 
 
Reaction wheels are simple disks (rotors) that are spun by an electric motor. When 

the motor applies a torque to speed up or slow down the rotor, it produces a reacting 

torque on the body of the satellite, [8]. Since the satellite is essentially a closed 

system, the total angular momentum of the satellite body plus the reaction wheels is 

constant. Thus any change in the angular momentum of a reaction wheel results in an 

equal and opposite change of the angular momentum of the satellite body. Figure 

2.28 illustrates a typical reaction wheel. Figure 2.29 simply shows the configuration 

of Ithaco type reaction wheel. 

 

Reaction wheels are effective active control elements. They are particularly good for 

variable spin rate control. Active control of spacecraft by using reaction wheels is a  

fast, flexible, precise  way  of  attitude control and stabilization. On the other hand, it 

requires rapidly moving parts which implies problems of support and friction. A 

second control system may be needed to control the overall angular momentum in 

response to changes in the environmental torques. An essential difference between 

momentum wheels and reaction wheels is that reaction wheels operate with zero 
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momentum bias. They are used primarily for absorbing cyclic torques and 

temporarily storing momentum from the body during slew, or reorientation 

maneuvers. On the other hand, secular disturbance torques can cause saturation in the 

momentum storage capacity. 

 
          

 
 
Figure 2.28:   Typical Reaction Wheel Configuration. 

  
  
                                  

                                        
          
 

 Figure 2.29:   Ithaco Type Reaction Wheel Configuration and Physical    
                        Properties.  
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One reaction wheel can affect the satellite’s momentum along only one axis. To 

control the satellite along all three axes at least three reaction wheels are required. A 

system of four reaction wheels can be used to provide redundancy and also makes it 

possible to change the reaction wheel speeds without causing any net torque (By 

making the torques from the four reaction wheels cancel each other). In Figure 2.30, 

reaction wheels in tetrahedral configuration is shown, [26]. 

 

                                            
              Figure 2.30: Typical Tetrahedral Configuration of Reaction Wheels, [26]. 
 
 
In three axis stabilized systems, gyroscopes are usually used to sense and feedback 

any motion to the wheel motors on each axis. Then, the torque motors apply a 

compensating torque to each reaction wheel, which absorbs the effect of the 

disturbance torques such as secular disturbance torques. When the wheels are near 

saturation , the angular momentum is adjusted using gas jets or magnetic coils.  

 
A slew, or attitude reorientation maneuver, can be applied using the set of reaction 

wheels to rotate the body about the given axis. The angular momentum vector 

inertially remains fixed, on the other hand the attitude angles change as the angular 

momentum vectors change in body-fixed coordinate system as shown in Figure 2.31, 

[8]. 
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Figure 2.31: A Slew Rotation about z Axis in Inertial Space: x Axis has to absorb   
                     additional momentum when moving to its location at t2. 

 
 
The advantages of a three-axis stabilized reaction wheel system are: (1) achieving 

continous high-accuracy pointing control, (2) compensation of disturbance torques, 

(3) Angle slewing maneuvers without fuel consumption. 

 
Models of reaction wheel torque and friction characteristics are needed to model the 

reaction wheel control system. The torque level in reaction wheel is controlled by 

varying the duty cycle, or fraction of each half-cycle in which the applied square-

wave voltage is non-zero. In Figure 2.32, duty cycle, Xdc, as a function of control 

voltage, V is shown, [8]. 
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                Figure 2.32: Duty Cycle, Xdc, as a Function of Control Voltage, V. 
 
 
The net torque on the wheel is given by, [8], 

 

    frictionemdc NNXN −=                             (2.2) 

 

where emN  , is the applied electromagnetic torque when the duty cycle is unity, 

frictionN  is the bearing friction torque, depending on the wheel speed, s. For less 

precise calculations, [8]; 

 
122 )(2 −+= rrNN oem αα                                (2.3) 

 

The dependence of emN  on  s  is shown in Figure 2.33, [8]. 

 

 

 

                  



 49

              
 
Figure 2.33: Applied Torque as a Function of  Wheel Speed. 
 
 

Where max1 ssr −=  for 0>dcX   ;  max1 ssr +=   for  0<dcX . oN  is the 

maximum magnitude of  emN  [8]. 

 

The friction torque can be modelled as [8], 

 

      scfriction fsNN += )sgn(                   (2.4) 

 

cN  is the Coulomb friction coefficient and f  is the viscous friction 

coefficient. 

 

Configurations of four reaction wheels provide control even if one wheel 

fails. If more than more than three wheels operate simultaneously, a steering 

law is needed to distribute the momentum between wheels during a 

maneuver. An example steering law is given below in Equation 2.22. The 

total angular momentum of the four wheel  is expressed as , [23], [8] : 

 

     [ ]Ttot hhhhAh 4321 ,,,=                                          (2.5) 
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where ih  is the magnitude of the momentum of ith wheel and the 

transformation matrix, A,  depend only on the mounting angles of the wheels. 

Pseudoinverse of A, where 1)( −≡ TTR AAAA  is used in steering law. The 

wheel torque four-vector, N, is given by [23], [8], 

 

    T
C

R kNAN )1,1,1,1( −−+=            (2.6) 

 

where CN  is the control torque vector in body coordinates, the vector 

T)1,1,1,1( −−  shows the specific wheel geometry along the diagonals of 

octants with positive x, and k is an arbitrary scalar which signifies the one 

remaining degree of freedom. For detailed information please see References 

[23], [8]. 

 
 
2.2.2 Magnetic Torquers 
 
 
Magnetic torquers are generally coils of uniform wire, [8]. When a voltage is 

applied across a coil winding, a current is created, which creates a magnetic 

dipole. The strength and the direction of the dipole depends on the amount 

and direction of the current flowing through windings, the number of turns of 

wire, and the total area enclosed by the coil. Magnetic moment for a coil of 

one turn is given by [8],  

 

IAnm =             (2.7) 
 
 

where current I is flowing through wire loop enclosing an area of A and n is 

a unit vector normal to the plane of the loop. 

 

The magnetic dipole moment depends on the material enclosed by the current 

carrying loop and is given by , [8], 
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md μ=                       (2.8) 

 
where μ  is the permeability of the core material. So magnetic dipole 

moment turns out to be, [8] ; 

 
AnNId )(μ=            (2.9) 

 
Parameters such as coil configuration, N  and A ; current level I  ; and the 

core material μ  must be selected properly in order to generate a proper 

amount of dipole. In design level, limitations on  weight, power consumption 

should be considered.  Core material selection is the most essential decision. 

Materials with high permebalities will result in loss of power.  Ferromagnetic 

materials can cause nonlinearity and hysteresis as these materials have 

magnetization curves which saturate at relatively low values of applied 

magnetic field intensity. Air cores are generally applied in satellites. The 

material of current-carrying element is chosen according to weight 

restrictions and ability to dissipate the heat generated by the current. 

 

Magnetic torquers are generally used to generate magnetic dipole moments 

for attitude and angular momentum control. They are also used to 

compensate residual spacecraft biases and to counteract attitude drift due to 

environmental disturbance torques. They are widely preferred since they are 

reliable and accurate according to the mission of the satellite. They have low 

power consumption. On the other hand, they are effective in near Earth orbit 

only and applicability is limited by the direction of the external magnetic 

field. Figure 2.34 shows a magnetic torquer with the resultant magnetic field 

vector and force.  
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       Figure 2.34: Magnetic Torquer with Resultant Force Vector. 

 
 

2.2.3 Gravity Gradient Boom 
 
 
Gravity gradient is used in stabilization mode as a passive attitude control method. 

Basic requirement in applying gravity boom is that the gravity gradient torque must 

be greater than all other environmental torques. They require no power from satellite 

and maintain stable orientation relative to central body such as Earth, or Moon. But 

their control accuracy is limited to 1 degree.  

  

Figure 2.35  gives an illustration of the SSTL-Weitzmann 6 m deployable boom used  

in BILSAT-1. 

 

                  
 
                      Figure 2.35: SSTL-Weitzmann 6 m. Deployable Boom. 
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2.2.4 Gas Jets 
 
 
All jets or thrusters produce thrust by expelling propellant in the opposite direction. 

Gas jets can be hot gas, when energy is derived from a chemical reaction or cold gas 

type when energy is derived from the latent heat of a phase change. 

 

The obtained torques or forces can be used to control attitude, spin rate, nutation, 

speed of momentum wheels, and to adjust orbits. Gas jets or magnetic coils can be 

used for the same purposes at low Earth orbits. The control algorithms are simpler 

than those for magnetic coils since jets produce larger torques. The magnetic torque 

produced by magnetic coils depends on the local magnetic field. The local magnetic 

field varies as the spacecraft moves in its orbit. On the other hand, jets don’t change 

behavior according to the environment. The main limitation on the use of jets is the 

required propellant supply. Fuel budget is an important part of mission planning for 

any system using gas jets. Gas jets also have complex and expensive plumbing 

systems. In higher orbits, gas jets are used for interchanging momentum with the 

environment.  

  

Figure 2.36 gives an example of cold gas jet. 

  
  
 
 
 
 
 
 
 
 
 
 

 
 
 

                                              Figure 2.36: Cold Gas Jet. 
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Table 2.4, [25], generally summarizes the properties of  some of the actuators. 

 
 
Table 2.4: Typical Actuators and Their Technical Properties  
 

Actuator Typical Performance 
Range Weight (kg) Power(W) 

Thrusters       
Hot Gas 0.5 t0 9000 N Variable n/a 
Cold Gas <5 N Variable n/a 

Reaction and 
Momentum Wheels 

0.4 to 400 Nms for 
momentum wheels at 1200 
to 5000 rpm Max. Torques 

from 0.01 to 1 Nm 

2 to 20 10 to 110 

Control Moment 
Gyros 0.25 to 500 Nm of torque >40 90 to 150 

Magnetic Torquers 10 to 4000 Am2 0.4 to 50 0.6 to 160 
 
 
 
2.3 Summary 
 
 
In summary, the sections expressed above briefly describes the attitude control and 

determination components. The facts given above can be applied in design steps for 

the selection of correct components through mission constraints. Data sheets of some 

of the attitude control and determination components applied in BILSAT-1 project 

are given in Appendix B.  
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CHAPTER III 
 
 
 

ATTITUDE DYNAMICS AND SOME LINEAR 
CONTROL TECHNIQUES 

 
 
 

This chapter gives information about the mathematical modelling of a satellite and its 

environment. It briefly explains reference frames for attitude modelling, attitude 

representations, environmental torques and Earth’s magnetic field. Being informed 

about the basic definitions about satellite, dynamics and kinematics of the satellite 

are investigated. Lastly, some linear control techniques, applied in this thesis, are 

defined. The techniques studied for attitude control are linear controller and linear 

quadratic regulator.  

 
 
3.1 Mathematical Definitions 
 
 
In order to design a reliable attitude model for the spacecraft, careful development of 

motion equations are needed. The mathematical model of the satellite and it’s 

environment can be developed in a number of different reference frames. In this part, 

mathematical knowledge to develop the satellite’s mathematical model is explained 

in a short manner. Detailed information about these definitions can be found in 

Reference [7], [23], [21], [26]. 

 
 
3.1.1 Keplerian Orbits 
 
 
Predicting the motion of the Sun, Moon, and planets was a major part of the 

scientific revolution of the Sixteenth and Seventeenth centuries. In the Keplerian 

model, satellites orbit in an ellipse of constant shape and orientation. The Earth is at 

one focus of the ellipse, not the center (unless the orbit ellipse is actually a perfect 
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circle). Newton derived Kepler’s three laws of planetry motion by using gravitational 

theory and his law of mechanics. These three laws are summarized below: 

 
First Law: The orbit of each planet is an elipse, with the Sun at one 

focus. 

 
 

 
 

        Figure 3.1 : Configuration of Kepler’s First Law. 
 
 

Second Law: The line joining the planet to the Sun sweeps out equal 

areas at equal times. 

 
 

                                   
 
                               Figure 3.2: Configuration of Kepler’s Second Law.  
 
 

Third Law: The square of the period of a planet is proportional to the 

cube of its mean distance from the Sun. ( 3
2

2
2

3
1

2
1

A
P

A
P

= ) 
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                               Figure 3.3: Configuration of Kepler’s Third Law. 

 
 

These laws also can be applied to the satellite motion in Earth orbit. For further 

information on Keplerian orbits and a satellite in elliptical Earth orbit see Reference 

[8]. 

 
 
3.1.2 Reference Frames 
 
 
This section explains different reference frames for representing satellite’s position 

and attitude. 

 
 
3.1.2.1     Earth-Centered Inertial (ECI) Frame 
 
 
The Earth-centered inertial frame (ECI) is an inertial frame for terrestrial navigation. 

The frame is fixed in space, which means that it is a non-accelerated reference frame 

in which Newton’s Laws are valid. The origin of the frame is oriented at the center of 

Earth. The x-axis points toward the point where the plane of the Earth’s orbit toward 

Sun, crosses the Equator going from South to North, z-axis points toward the North 

pole and y-axis completes the right hand Cartesian coordinate system. Velocity of the 

orbit frame and the motion of the Sun can be directly compared to this frame and all 

different satellite motions can be presented in this frame. This frame is denoted by I. 
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3.1.2.2 Earth-Centered Earth Fixed (ECEF) Frame 
 
 
The origin of this frame is located at the center of the Earth. The x- and y-axes rotate 

about the z-axis relative to the ECI frame. Rotation has a rate of ωe = 7.2921∗10-5 

rad/s. Magnetic field around the Earth, IGRF, can be used with an orbit estimator to 

create a reference model by the help of this frame. The frame is denoted by E. 

 
 
3.1.2.3 Earth-Centered Orbit Frame 
 
 
The Keplerian elements are given in this frame. Then Keplerian elements can be 

used with an orbit estimator to model the magnetic field. The x-axis points toward 

the perigee, y-axis along the semiminor axis and z-axis is perpendicular to the plane. 

The frame is denoted as OC. 

 
 
3.1.2.4 Orbit Frame 
 
 
Orbit frame rotates relative to the ECI frame, with a rate  of  ωo  depending on the 

altitude of the satellite. The origin is at the center of mass of the satellite. The y-axis 

is toward the direction of motion tangentially to the orbit. The tangent is only 

perpendicular to the radius vector in circular orbit , not align with the velocity vector 

of the satellite in elliptical orbits. The z-axis points toward the center of Earth, and 

the x-axis completes the right hand system. The orbit frame is denoted as O. Figure 

3.4 shows the axis notation. 
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     Figure 3.4 : The Body and Orbit Reference Frames. 
 
 
3.1.2.5 Body Frame 
 
 
This frame is a moving reference frame which is fixed on the satellite. The 

orientation of the satellite is determined relative to the Orbit frame, while angular 

velocities are expressed in Body frame. The x-axis forward and z-axis is downward , 

y-axis completes the right hand orthogonal system. The origin is at the center of the 

mass of the satellite. It is denoted as B. Figure 3.5 shows the axis notation. For 

further information on reference frames, see Reference [26]. 

 
 
3.2 Attitude Representation 
 
 
This section describes the transformation principals between different reference 

frames,  and it also expresses Euler equations, quaternions, inertia matrix. 

 
 
3.2.1 Representing Attitude Information 
 
 
The satellite attitude is referenced to Earth-Fixed reference frame in order to obtain 

angle data from angular velocity in body fixed frames,  so a conversion method is 

needed to demonstrate the velocity vector correctly. Euler angle transformation is 
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one of the methods applied in transformation. Although this method is reliable, 

simple and accurate enough for applications, sometimes singularities occur in 

coordinate transformations. In order to avoid singularities, Quaternion representation 

can be used as representation method. Also it increases the computation speed, which 

is critical for navigation applications. On the other hand, it’s sometimes hard to 

visualise the actual angles. In below sections, both representations are expressed 

briefly. In this thesis, quaternion method is used to represent attitude information. 

 
 
3.2.1.1 Euler Angle Representation 
 
 
Euler [17],  reasoned that any rotation from one frame to another can be visualized as 

a sequence of three simple rotations about base vectors. The other Euler contribution 

is the theorem [17] given below that tells us that only one rotation is necessary to 

reorient one frame to another.  

 

Euler’s Theorem . The most general motion of a rigid body with a 

fixed point is a rotation about a fixed axis. 

 

Euler angle transformation can be presented by using roll, pitch, yaw angles. These 

angles help to determine the attitude of the satellite relative to the Orbit frame. The 

roll angle is a rotation angle θ about the xo-axis, the pitch angle a rotation 

angle φ about the yo-axis and lastly, the yaw angle is a rotation angle ψ about 

the zo-axis. The main problem with Euler angles is the existence of 

singularities. To avoid the problem of singularities, a fourth parameter to 

represent the attitude is introduced. For BILSAT-1 model the roll, yaw, pitch 

angles are only used as input and output to the simulation, internally 

quaternions are used. 
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3.2.1.2 Unit Quaternions 
 
 
Quaternions or Euler parameters are used in computations in order to overcome 

the singularity problem in the attitude representation. Euler parameter, q is a 

complex number with one real part,  η, and three imaginary parts, ε, defined  

by [7], 

[ ]
2

sin;
2

cos 321

θλεεεεθη === T                       (3.1) 

[ ]Tq 221 εεεη=                                                            

 

where θ is the rotation about the unit vector λ. The unit quaternions satisfy 

the constraint qTq= 1, which means that 

12
3

2
2

2
1

2 =+++ εεεη                           (3.2) 

The conversions between unit quaternions and Euler angles are given in Appendix A.  

 
3.3 Rotation Matrix 
 
 
The rotation matrix can behave as a transformation of a vector represented in 

one coordinate frame to another frame, as a rotation of a vector within the same 

frame and finally as a description of mutual orientation between two frames. The 

rotation matrix R from frame a to b is denoted b
aR . The rotation of a vector 

from one frame is written with the following notation:  

 

fromto
from

to xRx =                                                    (3.3) 

 

Angle-axis parameterization, is a way of parameterization of the rotation matrix, 

given in Equation 3.3 as to
fromR  , θλ ,R , corresponding to a rotation θ about the λ-

axis [8], [26]: 
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        )()cos1(sin)( 2
, λθθλθλ SSIR −++=                       (3.4) 

where S is the skew-symmetric operator and defined in Appendix A. The rotation 

matrix also satisfies : 

        Ta
b

a
b

b
a RRR )()( 1 == −                           (3.5) 

Rotations using Euler angles, are defined as : 
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The rotation matrix has the ortogonality property, 

                           IRR Ta
b

b
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3.3.1 Transformation Between Different Frames 
 

The different rotations between frames are described briefly here. 
 

3.3.1.1 Transformation from Earth Centered-Orbit to ECI And 
ECEF Frames 

 
The rotation transformation between these frames is done by using the orbit 

estimator. The rotation, [19] is done, 
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                     (3.10) 

 

where Ω  is the right ascension of ascending node, ι  is the inclination of the satellite, 

ω   is argument of perigee, and θ  is the ascension of the zero meridian. 

 

3.3.1.2 Transformation from ECEF to ECI Frame 

 
This transformation is a rotation about the coincident zI and zE-axes, equal to an  

angle teωα =   where  ω e  is the Earth rotation rate, and t is the time passed until 

the ECEF and ECI frame were aligned. The rotation is [18],   
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3.3.1.3 Transformation from ECI to Orbit Frame 
 
 
The orbit frame is rotated about yI axis with an angle of β  and is expressed as 

t00 ωββ += , where 0ω  is the satellite rotation velocity, 0β  is lattitude position ( 

drop angle) and t is the time since last passing of 0o latittude. The rotation is defined 

as, [18], 
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According to the relation between Orbit frame and ECI frame, the following rotation 

about xI axis can be obtained: 
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combining with Equation 3.17, total rotation to transform a vector in ECI frame to 

Orbit frame: 
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where β  is the lattitude of the satellite. 
 
 
 
 
 
 



 65

3.3.1.4 Transformation from Orbit to Body Frame 

 
The attitude of the satellite can be determined by estimating the rotation matrix 

between Orbit and Body frame, B
OR . A representation of the rotation from Orbit to 

Body frame can be calculated as, (Appendix A), [7], [23], [26]:  
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For more details see Reference [26]. 

 
Another way to represent the rotation vector is given below : 

 

   

                   [ ]BBBb
o cccR 321=                        (3.17) 

 

 

where  [ ]TB
iz

B
iy

B
ix

B
i cccc =  are column vectors, representing the projections of xo, 

yo and zo axes in the body frame. [ ]TBc 1003 ±=  means that the zo-axis and zb-

axis are aligned. This vector is assumed to be deviation between zo-axis and zb-axis , 

and this is a sign of the performance of the control system. 
 
 
3.4 Inertia Matrix 
 
 
The inertia matrix Io 33xℜ∈  about origin is defined according to [7]: 
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If principal axes of inertia and the axes of the body frame coincides, then the inertia 

matrix reduces to : 
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Throughout this thesis, inertia matrix is assumed to be diagonal matrix and defined 

by I. BILSAT-1 inertia matrix parameters are given as, Ixx=9,8194; Iyy=9,7030; 

Izz=9,7309 and applied as the diagonal elements of I in simulations. 

 
 
3.5 Modelling the Earth’s Magnetic Field 
 
 
The performance of the attitude control system can be utilized by the measurement of 

geomagnetic field with the related sensors, magnetometers. This part briefly 

describes the two basic magnetic field models; IGRF Model and Dipole Model. 
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3.5.1 The Earth’s Magnetic Field 
 
 
The magnetic field is highly varies over the Earth’s surface as can be seen in Figure 

3.5. The Earth’s magnetic field changes between 25000 nT (nano Tesla) in equatorial 

regions and 70000 nT at poles. 

 

 
 

          Figure 3.5: The Distribution of Earth’s Magnetic Field. 
 

 
3.5.1.1 Mathematical Model 
 
 
The Earth’s magnetic field can be found by the help of the equations expressed 

below: 
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where B  is the Earth’s magnetic field, ∇  is the gradient operator and V  is the 

scalar potential function and given in Equation 3.25. 
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where ),,( φθrV , is the potential function of the field about the Earth expressed  in 

spherical harmonics form, a  is the mean radius of Earth, )cos(θm
np   are Schmidt 

quasinormalized associated Legendre functions of degree n and order m, m
ng  and 

m
nh  are the constant gaussian, φ  and θ  are the longitude and colatitude (collatitude= 

900-lattitude). 

 
 
3.5.1.2 IGRF Model 
 
 
The International Geomagnetic  Reference Field , IGRF, computes the theoretical 

undisturbed Earth’s magnetic field at any point on the Earth’s surface. IGRF 

determines the numerical coefficients of the spherical harmonics series given in 

Equation 3.25. It is updated every fifty year. In simulations, IGRF 2000 model is  

used. General mathematical equations related to this section can be found in 

Appendix A. 

 
 
3.5.1.3 Dipole Model 
 
 
Dipole Model is an alternative way to calculate magnetic field. Although it is not 

accurate as IGRF model, it can stil be applied to the models. 

 

Dipole model of magnetic field is calculated by using  the spherical harmonic 

model to the first degree (n = 1) and all orders (m = 0,1). 
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Earth’s magnetic field can also be found by the following equation. More detailed 

equations can be found in Reference [21]. 
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            (3.27) 

where M  is the Magnetic dipolar moment ( 157.9577 *10 ), mμ  is the magnetic 
latitude and R  is the radial coordinate ( 36971.2 *10 ). 
 
 
3.6 Modelling Environmental and Actuator Torques 
 
 
In order to design the attitude control and prediction system, environmental 

disturbance torques acting on the spacecraft shall be modelled sufficiently. The 

torques must be modelled as a function of time, the spacecraft’s position and attitude 

so that they can be integrated to Euler’s equations and any other mathematical 

models. 

 

The dominant sources of environmental disturbance torques on the spacecraft 

attitude are the solar radiation pressure, aerodynamic drag and Earth’s gravitational 

and magnetic fields. There are also internal torques primarily resulted from internal 

moving hardware, propellant leakage, thrust misalignment and so on. 

 

The solar radiation pressure is effective on attitude of the satellite for altitudes higher 

than 1000 km. The gravity gradient disturbance  are most significant below 1000 km. 
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Aerodynamic perturbations are most effective below 500 km and negligible over 

1000 km altitudes. The effects are shown on Figure 3.6 ( [9] , [10] and  [11] ).  

  

The actuators of the satellite produce torques that shall be included in the general 

equations of motion of the satellite attitude. In this work, torques produced by 

reaction wheels and magnetic torquers are taken into consideration in mathematical 

model derivations. 

 

                    
 
                       Figure 3.6 : Disturbance Torques as a Function of Altitude. 
 
 
 
3.6.1 Mathematical Models For Environmental Disturbance     

Torques 
 
 

The mathematical modeling of environmental torques are presented in this section. 

Ideally, the internal torques are avoided in the simulation model of the BILSAT-1. 

The effects of  gravity gradient and aerodynamic flag is taken into consideration at 

the simulation stage since BILSAT-1 has an altitude of 686 km. 
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3.6.1.1 Gravity Gradient Torque 
 
 
Any non-symmetrical object in the orbit is affected by a gravitational torque because 

of the variation in the Earth’s gravitational force over the object, [8]. There are many 

mathematical models for gravity gradient torque, [8]. The most common one is 

derived by assuming homogeneous mass distribution of the Earth. It is given as, [23],  

[26] : 

 

                        )(3
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O
grav Iuu

R
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μτ                                   (3.28) 

where  μ =3.986x 2314 /10 sm  is the Earth‘s gravitational coefficient, 0R  is the 

distance from Earth’s center (m), I is the inertia matrix and finally, eu  is the unit 

vector toward nadir , [12], [13]. 

 

When 2
0ω  which is defined in Equation 3.29, is applied to Equation 3.28 with the 

unit vector toward nadir expressed in body frame, gravτ  becomes,  
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bc3  is the third column of the rotation matrix, b
oR .  It transforms the bz axis to the oz  

axis and defined in Equation 3.30. 
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Then, Equation 3.29 becomes as  [26], [8], 



 72

            
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−−
+−−−
+−+−

=
)))()((2
))(21)()((2
))(21)()((2

3

132231

2
2

2
1231

2
2

2
1132

2

ηεεεηεεε
εεηεεε
εεηεεε

ωτ

xy

zx

yz

o
b
grav

II
II
II

             (3.31) 

 

For the detailed deviation of the equations, see [8], [12], [13], [26]. 
 
 
3.6.1.2 Solar Radiation Pressure 
 
 
The photons from the sun produces a force which results in a torque about the center 

of mass of the satellite. The solar radiation pressure has more effect on light objects 

with relatively high surface. 

 

Mathematical model of the solar radiation pressure in most general form is given, 

[8], 
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        (3.32) 

 

Differential force vector can be modelled assuming that the incident radiation is 

either absorbed, reflected, or some combination of these. The coefficients dsa CCC ,,  

define the percentage of the absorbed, specularly reflected and diffusively reflected 

radiation, respectively. P is the mean momentum flux, 
→

S  is the unit vector from 

satellite to the Sun, 
→

N   is the unit vector along the normal of the exposed surface, 

and  θ  is the angle between 
→

S  and 
→

N  . Solar radiation pressure is most effective 

at high altitudes. The surface area of the satellite which faces the Sun is taken 

into consideration to calculate the torque caused by solar radiation. 

  

In Reference [7]  , solar radiation is modelled as: 
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Θ⊕Θ−= rAcRSRSRF ***ρ             (3.33) 

where 

   2
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c
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−===ρ            (3.34) 

 

and where ΘA  is the exposed area to the Sun. The reflectivity ,  Rc  , shows how the 

satellite reflects incoming radiation, and its value is between 0.0 and 2.0. SRρ  is solar 

radiation pressure. SF  is the solar radiation constant , 21353 /SF W m= , and c is 

the speed of the light, 83 10 /c m s= × .  

 

For the detailed deviation of the equations, see [8], [12], [13], [26]. 
 
 
3.6.1.3 Aerodynamic Drag 
 
 
This disturbance is most effective on satellites orbiting below 400-500 km. The drag 

force created by the air molecule interaction with satellite body produce a torque on 

the satellite, thus reducing its velocity and resulting in a lower orbit for the satellite.  

The torque is derived as: 

 

          incdaerogpavincdaero ACVFccuACV 22

2
1)),((

2
1 ρρτ =−×=           (3.35) 

 

where  ρ  is the atmospheric density( 3m
kg ),   incA  is the area perpendicular to  

)( 2muv ,   vu  is the unit vector in velocity direction,  dC  is drag coefficient, V  is  

velocity,  pac  center of pressure and finally, gc  is center of gravity. BILSAT-1 

satellite is affected by the aerodynamic torque. The aerodynamic torque is added to 

the system in MATLAB-SIMULINK model when actuators are reaction wheels. On 

the other hand, aerodynamic torque is neglected in mathematical model of the 

satellite when magnetic torquers are actuators. The maximum torque delivered by 
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magnetic torquers is selected to be as 0.1 Am2  in simulations. This gives a good 

margin to counteract the total disturbing torques (only gravity gradient torque) 

effecting the satellite model environment. If desired and needed, one can add the 

aerodynamic torque to the mathematical model in case of magnetic torquers for more 

realistic applications. But it is worth to mention that maximum torque to overcome 

the effect of the disturbing torques shall be checked and increased by finding the 

magnitude of the total control torque  required which is ideally expressed as: 
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In BILSAT-1 , the values given to parameters in Equation 3.35 are: 
 

1310*89.2 −=ρ ,  242.0 mAinc =  , gapa cc = , )]()*2[( 3 a
mu

r
musqrtV −=  where 

2
31510*986005.3 s

kmmu =  , kmr )6866378( += ; distance of the satellite from 

the center of Earth, ra =  for circular orbit and a  represents  semimajor axis. 
 
For the detailed deviation of the equations, see [8], [12], [13], [26]. 
 
 
3.6.1.4 Magnetic Disturbance Torque 
 
 
This torque is resulted from the interaction of the geomagnetic field and spacecraft’s 

residual magnetic field. If  M  is the sum of all magnetic moments in the satellite , 

the torque acting on the satellite  [10], [16] : 

 
                                               BMT m ×=)(              (3.36) 

 
where B is the geomagnetic field vector. M is caused by satellite generated current 

loops,  permanent magnets or induced magnets. 

 

In the following equation, torque produced by the magnetic torquers is defined. 

mb b b
mτ = ×B                                                       (3.37) 
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where, b
mτ  is the torque which is generated by the magnetic torquer, bm  is the 

magnetic dipole moment generated by the torquer, [ ]Tb
z

b
y

b
x

b BBBB =   is the 

local geomagnetic field vector, relative to the satellite. Local geomagnetic field 

vector can be found using some models such as IGRF or Dipole Model. 

 

Magnetic dipole moment is given below :  
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where, kN  is number of windings in the torquer, kA  is the span area of the coil, 

and, ki  is the torquer current.  

 

Magnetic torque can also be expressed as shown below, by the using skew-

symmetric matrix formulation. 
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For the detailed deviation of the equations, see [8], [12], [13], [26]. 

 
 
3.6.2 Reaction Wheel Torque 
 
 
The reaction wheel configuration in x, y, z axes is generally modelled by the 

following equation, [23], [26]:  
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b
rτ  is the torque caused by reaction wheel, rr

T
rzryrxr ILLLL ω== ][  is the 

total moment vector of reaction wheel, b
frictionτ  is the frictional torque caused by 

wheels and usually assumed to be zero. Then Equation 3.40 turns out to be: 
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                                              [ ]Tzyx
b
bi ωωωω =                         (3.42) 

 

As stated before in Chapter II, reaction wheels can produce moment on the axis 

they are mounted on. Mounting reaction wheels at each of the three axis makes it 

possible to rotate the satellite according to the desired orientation. Challenge here 

lies on the development a robust, rapid and effective regulator. Reaction wheels 

are placed in tetrahedral configuration for extra robust regulation and for the 

reasons given in Chapter II and III. Figure 3.7 shows an example for the 

tetrahedral configurated of the reaction wheels. In this work, as actuating 

torquers, the mathematical model given in Equation 3.43 is applied to the satellite 

model.  

 

                  

                                 

           

  

       Figure 3.7: Example for the Tetrahedral Configurated Reaction Wheels. 
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In some satellites, like BILSAT-1, there are three angles to be visualized; roll, 

pitch, yaw and there are four reaction wheels. Therefore, the parameter n is 

selected to be as three and the parameter r is selected as four. The contribution of 

the four wheels along three axes (x, y, z) can be expressed as, [23]: 
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where  [ ]ziyixii rrrt ,,,=  is the vector representing the location of each 

reaction wheel with the related axis.  

  
The vectors in tetrahedral formation satisfy the following  equations, [23] : 
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Equation (3.44) states that each reaction wheel in tetrahedral formation produces  

zero moment on each axis totally. Since then, each column vector shall be unit 

vector and satisfy the following equation.  

                  4,3,2,11)()()( 2
,

2
,

2
, ==++ irrr ziyixi            (3.45) 

The angle between the actuators in tetrahedral formation is given as 109.470, [23] 

then , )
3

1(cos2 1−=ϕ . Then the dot product between two vector, it  and jt  

becomes: 

 
                                     ϕcosjiji tttt =                                                (3.46) 
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where 1== ji tt  and ϕ  is the angle between them. Combining Equations 3.44, 

3.45 and 3.46 is enough to determine the tetrahedral formulation matrix.  By 

placing 1t  along  z axis like [ ]1001 −=t  , the remaining values in Equation 

3.44  can be settled as 
3
1

,4,3,2 === zzz rrr ,  then T becomes, 
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All other vectors t2, t3, t4  form an angle of )
3

1(cos2 1−=ϕ  with t1 by  x and y 

components independently. 
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xr ,2  is considered to be to zero for finding  t2. When  i=2 , yr ,2  component will be as 

given below (from Equation 3.45): 
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One possible solution is, 2
3
2

,2 −=yr . According to Equation 3.44, the other 

parameters become as, 2
3
1

,4,3 == yy rr . Then , T becomes: 
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Vectors t3 and t4 form an angle of )
3

1(cos2 1−=ϕ  with vector t2 

independently by x component. 
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,,2,,2 −=+−=+ zjzyjy rrrr             (3.53) 

Finally,  xr ,3  and xr ,4  satisfies,  

                             
22
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22
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2
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3
1(1)2
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1)
3
1()()2

3
1(

−+−±=

=++

xi

xi

r

r
                                      (3.54) 

Hence,  6
3
1

,3 +=xr   and  6
3
1

,4 −=xr . Finally, T becomes: 
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Tetrahedral configuration is used for the robust control and continuity of the control 

operation during failure in the any reaction wheel. For example, if any of the reaction 

wheels fails, remaining three stil could supply the desired torque. Allocation matrix 

for the tetrahedral configuration can be found as given above. The torques produced 

by four wheels are converted to torques in three reference axes. 

 

In fact, T stands for the tetrahedral configuration allocation matrix in the design 

scheme. Tetrahedral configuration of reaction wheels is usually preferred for the 

following reasons. First of all, four reaction wheeled structure provides an accurate 

control of the three axis in case of failure of one of the reaction wheels on any axis. 

The other advantage of this configuration comes from the geometry of the location of 

the angular momentum vectors. That’s, it is possible to obtain twice as much as 

torque in one axis with this configuration. The vectoral addition of four reaction 

wheels according to one axis leads to this result. See Appendix A for more details. 

 

Steering law is needed to distribute the momentum between the wheels during a 

maneuver. It realizes the torque commanded. There are several steering laws. The 

steering law applied in this thesis is given as below, [23]: 

fKuKuT == ;)(ατ                                          (3.56) 

where pr andu ℜ∈ℜ∈ α  and can be determined as given below: 

             [ ] [ ]Tr
T

p uuu ..,,.., 11 == ααα                     (3.57) 
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rrK ×ℜ∈  is a diagonal matrix as: 

          { }rKKdiagK ,........1=                  (3.58) 

)(αT  defines the actuator distribution along axes and defined as: 

              [ ]rttT ..)( 1=α                                 (3.59) 

Given the three dimensioned torque, one should find the four u term which 

correspond to four actuator inputs.  

Let n be the number of axes angles (n=3) and r be the number of actuators (r=4). 

If  r>n, system becomes overactuated and this problem can be solved by finding 

an optimal solution. That is problem becomes an LS optimization problem. In 

order to solve, minimization function should be applied as given in Equation 

3.59, [23]: 

           { }WffJ Tmin=                                               (3.59) 

With lagrange multiplicator; 

τ111 )( −−−= TT TTWTWf                                             (3.60) 

111 )( −−−Τ = TT
W TTWTWT                                              (3.61) 

where W is a diagonal positive definite matrix and can be taken to be equal to I.  

According to Moore-Penrose pseudo inverse law:  

        1)( −ΤΤΤ = TTTT                                                   (3.62) 

Then, torque becomes as input u, 
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                τTWTKu 1−=             (3.63) 

Notice that, in simulation at MATLAB, u is defined as : 

u=alloc(K,T,W,tau)              (3.64) 

The input torque, u, represents the model for tetrahedral configurated reaction 

wheels’ torque and is applied to the satellite dynamic equations in control model. 

Details of the equations and expressions given above can be found in Reference 

[23], [26]. Derivations for tetrahedral configuration (the angle between reaction 

wheels etc.) are given in Appendix A. 

 
 
3.7 General Mathematical Modelling of a  Satellite 
 
 
In this part, general mathematical modelling of a satellite is expressed. Mathematical 

modelling concerns kinematic equations, dynamic equations and linearization of 

these equations. Dynamic equations describe how velocity changes for a given force. 

Kinematics differential equations express how position changes for a given velocity. 

For the detailed derivation of the equations, see [7], [8], [12], [13], [23], [26]. 

 
 
3.7.1 Dynamic Model of a Satellite 
 
 
Some assumptions are made for the dynamic modelling of the satellite. For 

example, satellite is assumed to act as a rigid body. Spacecraft is assumed to 

behave as a point mass model for orbital dynamics. According to Newton-Euler 

formulation angular momentum changes according to applied torque. With these 

assumptions, the dynamic model is given below [7], [26]: 

                                      bb
bi

b
bi

b
bi II τωωω =×+ )(&                             (3.65) 
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where, b
m

b
grav

b τττ +=  when magnetic torquers are selected as actuators for 

stabilization mode , or  reacaero
b
grav

b ττττ ++=  when reaction wheels act as 

actuators in maneuver control, I  is the moment of inertia, b
biω  is the angular 

velocity of the body frame with respect to the inertial frame in the body 

frame, bτ  are the torques acting on the satellite in body frame, b
gravτ   is the 

gravitational torque on the satellite body, b
mτ  is the torque applied by the 

magnetic torquer, reacτ  is the reaction wheel torque and aeroτ , is the aerodynamic 

torque. Total torque changes according to the selection of actuator. In this 

section, related equations and linearizations are given for both cases, either 

magnetic torquer or reaction wheel  selected as actuator. 

 

Using the skew-symmetric operator, Equation (3.65) turns out to be :  

    bb
bi

b
bi

b
bi ISI τωωω =+ )(&               (3.66) 

To add angular velocity vectors as given in Equation 3.67, transformation of all 

velocity vectors to the same reference frame shall be done. Rotation matrix is applied 

to the below equation in order to carry all vectors to the same reference frame. Body 

frame is usually used as reference frame in attitude dynamics. The rotation matrix 

that changes  angular velocity in orbit frame to body frame is given in Equation 3.16 

[7] , [26]. 

b
biω  , the angular velocity of the satellite , can also be expressed as, [26],  

b
bo

o
oi

b
o

b
oi

b
bo

b
bi R ωωωωω +=+=                                      (3.67) 

where, [ ]00 o
o
oi ωω −=  is the angular velocity of the orbit frame relative to the 

ECI frame, expressed in Orbit frame. Then b
biω  becomes , 
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where 2c  is the second column of the rotation matrix given in Equation 3.16. 

Detailed expressions and derivations for the equations given in this section can be 

found in Reference [26]. 

 
3.7.2 Kinematics for Satellite Model 
 
 
Kinematics of the satellite describes the orientation of the satellite. Kinematics 

is simply integration of the angular velocity. The differential equations are given 

below and detailed information about them can be found in References [12], [22] 

and [26] in detail.  

b
bo

Tωεη
2
1

−=&                                                   (3.69) 

                                        εωηωε ×−= b
bo

b
bo 2

1
2
1

&                                        (3.70) 

 

When Equations 3.69 and 3.70 are combined , they can be represented as in Equation 

3.71: 
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Angular velocity in the body frame relative to the orbit frame is expressed as: 

 

    2cR o
b
bi

o
oi

b
o

b
bi

b
bo ωωωωω +=−=                          (3.72) 
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The details of the equations given above can be found in Reference [26]. 

 

  

3.8 Linearization of Mathematical Model 
 

 
When linear controller techniques are selected for the attitude control system, the 

system mathematical model should be linearized. The linearization points are 

selected as given in Equation 3.73, 

 

⎥
⎦

⎤
⎢
⎣

⎡
=

0
1

q               (3.73) 

 

The idea in selection is to coincide the body frame with the orbit frame for three-axis 

stability. The nadir vector of the satellite points to the center of the Earth. 

 

In the following sections, linearized equations for the mathematical model are 

obtained. Details of  the derivations can be found in Reference [26], [7] , [23] and 

Appendix A.  

 
 
3.8.1 Linearization of Kinematic Equations 
 
 
In Equation 3.74, kinematic model of the satellite is given as [7], [23], [21], 

[26]: 

b
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q ω

εη
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ε
η

⎥
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⎤
⎢
⎣

⎡
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× )(2
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33&

&
&                          (3.74) 

 

System is linearized about the points where 1η =  and 0ε = . Applying these 

linearization points to Equation 3.74, the following equation is obtained [7], [23], 

[21], [26]: 
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It is easy to see from Equation 3.75 that εω &2=b
bo . 

 
 
3.8.2 Rotation Matrix Linearization 
 
 
If the rotation matrix between body and orbit frame given in Equation 3.16 

is linearized around points given as 1η =  and 0ε = , it becomes, 
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3.8.3 Angular Velocity Linearization 
 
 

By applying Equation 3.76 and εω &2=b
bo   into 3.67, linearized model of b

biω  is 

derived as: 
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The time derivative of  b
biω  is hence obtained as: 
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Equations 3.77 and 3.78  will then be used to derive the linearized dynamic equation. 

 
 
3.8.4 Linearization of the Gravitational Torque 
 
 

τ b
grav   in Equation 3.31 is simplified as in Equation 3.79,  when 1η =  and 0ε = : 
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              (3.79) 

 
 
3.8.5 Magnetic Torquer Linearization 
 
 
The  torque from magnetic torquer is given as [26], [7]:  

 

   oboo
b

bbbb
m BSSImSBRmSBmS )](2)(2)[()()( 2

33 εεητ +−=== ×        (3.80) 

 

Linearizing it around 1η =  and 0ε = gives: 
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3.8.6 Linearization of the Reaction Wheel Torque 
 
 
Reaction wheels dynamic equations, which are shown below, is linearized around the 

point where 0=b
biω , 
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The result comes out to be: 
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3.8.7 Linearization of the Satellite Mathematical Model with      

Magnetic Torquer as Actuator 
 
 
Mathematical model of the satellite can also be obtained as, 
 

b
grav

obi
bi

b
bi

b
bi BmSII τωωω ++×−= )()(&            (3.84) 

The time derivative of the Equation 3.84, can be modelled with quaternion 

parameters by the help of the derivations given in Appendix A. Then, the system can 

be represented by state-space representation in linear form given by Equation 3.85. 

                   )()()()( tutBtAxtx +=&                                           (3.85) 
 

 Now, if we define the states to be  [ ]332211 εεεεεε &&&=x   and inputs to 

be  [ ]Tzyx mmmu =  , then,  A matrix can be written as in Equation 3.86 and B 

matrix can be written as in Equation 3.87. 
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and 
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3.8.8 Linearization of the Satellite Mathematical Model with             

Reaction Wheel as Actuator 
 
 
Assuming that the applied torque to be coming from reaction wheels, dynamic 

equation becomes: 

bb
grav

b
bi

b
bi

b
bi dt

dLII )()( ++×−= τωωω&                            (3.88) 

Repeating the steps as done in previous section, the mathematical model of the 

linearized system becomes: 

                 )()()()( tutBtAxtx +=&                                             (3.89) 
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where   [ ]Trzryrx LLLu &&&=  in this model., 

 

The derivation of the state-space representation is given in Appendix A in detail. By 

the help of those derivations, A matrix is found to be: 
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and  B matrix becomes: 
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3.9 Some Linear Control Techniques Applied for Attitude  

Control 
 
 
3.9.1 Attitude Control 
 
 
Wertz [8] defines attitude control, attitude maneuver and attitude stabilization 

processes as stated below: 
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Attitude control is the process of achieving and maintaining an 

orientation in space. An attitude maneuver is the process of reorienting the 

spacecraft from one attitude to another. Attitude stabilization is the process of 

maintaining an existing attitude relative to some external relative frame. 

 
Attitude control system is both the hardware and the software by which spacecraft’s 

attitude is controlled. Attitude control system components are: attitude sensors which 

locate known reference targets such as Earth, Sun to determine the attitude; control 

process that determines when control is required and lastly, control hardware which 

is the mechanism that supplies the control torque. 

Because of the existence of disturbance torques throughout the spacecraft 

environment, some procedure is necessary for attitude control and stabilization. 

Spacecraft stabilization techniques can be listed as: 

1. Spacecraft stabilization by the spacecraft’s angular momentum (spin 
stabilized) .  

2. Spacecraft stabilization by its response to environmental torques, e.g. 
gravity gradient stabilization. 

3. Spacecraft stabilization by active control with reaction wheels, gas jets 
or electromagnets. 

 
In general, active methods of control are more accurate, faster and flexible than 

passive control systems but they consump more power.  

 

In spin stabilization control technique, the entire spacecraft is rotated so that its 

angular momentum remains fixed in inertial space. A gravity-gradient stabilization 

system interacts with the gravitational torque to maintain the spacecraft attitude. The 

basic requirement for gravity-gradient stabilization is that the gravity-gradient torque 

must be larger than all other environmental torques. Because of that reason, it is 

usually preferred in near Earth or Moon satellites as a control technique (e.g. Radio 

Astronomy Explorer-2 satellite). 
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Mass expulsion control systems being an active control method, are generally used 

for attitude maneuvering including gas jets and thrusters. They are simple to operate 

but expensive and sometimes cause orbit changes during maneuvering action. They 

are commonly used in spin-stabilized spacecrafts. For three-axis stabilization, 

minimum six thrusters are needed to maneuver in all directions. Momentum wheel 

control systems can have one or more wheels on axes and require a secondary 

control system, to maintain the wheel and the spacecraft momentum in presence of 

disturbance torques and friction losses. Magnetic coil control system in active 

control, can be used for maneuvers for virtually all orbits less than synchronous 

altitudes below 35,000 km. 

 
 
3.9.2 Some Linear Control Techniques 
 
 
Attitude control techniques can be divided into two categories, attitude stabilization 

and, attitude maneuver. Attitude stabilization consists of maintaining an existing 

orientation. Attitude maneuver control consists of reorienting the spacecraft from one 

attitude to another. In this section, several linear control techniques are investigated 

referring to both categories. Linear controller is applied to attitude maneuvering 

control with reaction wheels as actuators. Linear quadratic regulator is applied as 

controller for attitude stabilization with magnetic torquer as actuator. 

 
 
3.9.2.1 Controllability 
 
 
The linearized system has a model given by: 

 

                                                  
Cxy

BuAxx
=

+=&
                                                      (3.92) 

 

Controllability property is the property to be able to find u such that the states are forced 

to go from initial state, x0, to final desired state, xf, in finite time. By applying the 
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definition given below (Balchen, Andresen and Foss, 2001), verification of this 

property can be checked. 

 

Definition 3.1.  The system states in Equation 3.93 are completely 

controllable if and only if the rank of nQc = , where n  is the dimension of x, and 

cQ  is given by: 

                                 [ ]BABAABBQ n
c

12 ....,,, −=                        (3.93) 

The controllability of the designed system is checked by using Matlab controllability 

function named as ctrlb( ).  Rank of the controllability matrix cQ , is equal to the 

dimension of states in this thesis. That means all states are controllable. 

 
 
3.9.2.2 Linear Controller 
 
 
In fact, linear controller is simply a P controller. In order to find a state feedback value, 

pole placement technique is applied to the plant. The closed-loop pole locations have a 

direct effect on time response characteristics such as settling time, rise time and transient 

oscillations. Pole placement is a  state-space design technique used to assign closed-loop 

poles in Multiple-Input Multiple-Output (MIMO) systems. This technique requires a 

state-space model of the system as given in Equation 3.95. The torque vector, u(t) is the 

input that controls the system. 

 

                                                      
)()(

)()()(
tCxty

tButAxtx
=

+=&
                                        (3.94) 

 

In Equation 3.94, the values of A and B matrices are obtained after linearization process 

which is explained in Section 3.8.8. The  state feedback gain, K, is applied to the system 

such that the control input becomes u=K(r-x) where, r is the desired state vector, usually 

known as reference, and  x  is the actual state vector. 
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As a result, Equation 3.95 turns out to be:  

  )()()())()(()()()()( tBKrtxBKAtxtrBKtAxtButAxtx +−=−+=+=&       (3.95)  

where  ][ 332211 εεεεεε &&&=x   represents the state vector and the control 

input is defined as )( xrKu −= . 

K, state feedback matrix, is found by pole placement technique, with Matlab code 

place as shown below: 

             ),,( pBAplaceK =                        (3.96) 

Place computes a gain matrix K such that the state feedback )( xrKu −−=  places 

the closed-loop poles at the locations of desired self-conjugate closed-loop pole 

locations, p. That is, the eigenvalues of BKA− match the entries of  p. In order to 

use this algorithm, all states should be controllable. In other words, (A,B) pair must 

be controllable.  

Vector of complex conjugate pole pairs, p, is selected after several trials as given 

below. 
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           (3.97) 

The length of p must match the row size of A . In high-order systems, choosing pole 

locations in an unrealistic way results in high gain values. This makes the entire 

closed-loop eigenstructure very sensitive to perturbations.  
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3.9.2.3 Linear Quadratic Regulator 
 
 
In this thesis, Linear Quadratic Regulator (LQR) is a control technique used in 

attitude stabilization. The main idea of the control system is to find a cost function 

and minimize this cost function. First of all, system dynamics is linearized around the 

selected points. The cost function is minimized, and lastly, system states are fed back 

by a gainmatrix. In References [19], [21], [23], LQR technique is explained in detail. 

Since minimizing a cost function is the main aim of the control idea, we need a 

cost function as defined below, [7]: 

[ ]∫ +=
T

t

TT dtPuuxQxuJ
0

~~
2
1)(                       (3.98) 

where  

                                    )()()(~ txtxtx d−=                                                  (3.99) 

and ( )dx t  is the reference trajectory (desired), ( )x t%  is then the error between 

actual and desired states, Q  is the positive semidefinite weight matrix for the 

state deviation and P  is the positive definite weight matrix for the actuator.               

In order to solve this though cost function, Ricatti equation is applied. Below 

Ricatti equation is given: 

)()()()()()()()( 1 tQtRtBPtBtRtRAAtRtR TT −+−−= −&             (3.100) 

Finally, the solution of the LQ-problem results in : 

)()()()( 1 txtRtBPtu T−−=                                (3.101) 

The mean value of oB  in )(tB  is applied to the equation as geomagnetic field is 

assumed to be periodic. This results in a time invariant model, 
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  BuAxx +=&                                (3.102)  

which in turn implies the following algebraic Ricatti Equation: 

QRBRBPRARA TT +−+−= −10                            (3.103) 

The control input then turns out to be : 

)()( 1 tQxBPtu T−−=           (3.104) 

Now, let us mention some properties of Q and P. Weight matrices are 

defined as: 
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where sn  is the number of the  states and an  is the number of actuators.   

According to Kristiansen, [19], weight matrices can be taken as; 
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=                      (3.106) 

where iuΔ is the i th maximum dipole moment of the actuator and ixΔ  is the 

state deviation. 

In LQR control, Matlab code,  lqr is applied to the design as given below: 
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                      [ ] ),,,(,, PQBAlqrESK =                     (3.107) 

lqr(A,B,Q,P) calculates the optimal gain matrix K such that the state-feedback law,  

Kxu −= ,  minimizes the quadratic cost function in Equation 3.107 for the state-

space model. T is taken as the simulation time and t0 is taken as zero in Equation 

3.98. 

lqr also returns the solution S of the Ricatti equation given in Equation 3.107 and the 

closed-loop eigenvalues E=eig(A-B*K). 

 

3.10 Summary 
 
 
Throughout this chapter, mathematical definitions and equations concerning satellite 

dynamics are expressed briefly. After this analysis, linear control techniques applied 

in control scheme are explained. Chapter IV gives the simulation results of these 

control techniques.  
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CHAPTER IV 
 
 
 

SIMULATION RESULTS 
 
 
 
This chapter includes different linear controllers studied throughout this thesis and 

the behavior of the system when these controllers are applied to the satellite model. 

 

In this work, two different modes of the satellite are examined with two different 

actuators. These modes are attitude stabilization and attitude maneuver. In attitude 

stabilization, magnetic torquers are used as actuators and linear quadratic regulator is 

selected as the control method. On the other hand, actuators of the attitude maneuver 

mode are reaction wheels with linear regulator as applied control method. Following 

sections, briefly describes the satellite model used in simulations and gives 

simulation results of the applied controllers. 

 

Controllers are simulated in MATLAB/SIMULINK environment. Simulations time 

scale is given in orbit unit. One orbit unit is equal to  96.6  minutes. This time period 

is nearly equal to the actual period of the BILSAT-1. BILSAT-1 actual satellite 

properties are given in Table 4.1. 

 

                     Table 4.1: BILSAT-1 Satellite Properties 
 
      BILSAT-1 SATELLITE          
               PROPERTIES VALUE 

Weight 120 Kg. 
Inertia Matrix  = = = 29.8194 , 9.7030 , 9.7309x y zI I I kgm

 
                      Orbit  

 
686 km 10:30 AM-10:30 PM Sun Sync. Low 
Earth Orbit. 

Orbit Period 97.7 Min. 
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4.1 Satellite Model with Magnetic Torquers as Actuators 
 
 
The basic block diagram of the Simulink model of the satellite is given below: 
 
 
 
 
 
 
 
 
 
 
 

    Figure 4.1: Generalized Satellite Model with Magnetic Torquers. 
  

 
In this model, magnetic field model calculates the magnetic field, B of Earth. 

Controller is selected as linear quadratic regulator and it is explained in Chapter III in 

detail. The output of the controller is the magnetic moment of the torquer . The 

torque obtained from magnetic torquer model is used in satellite dynamics. Chapter 

III also contains the mathematical derivations for the model given above. The aim of 

the controller is to stabilize the system about the given equilibrium points in order to 

simulate the attitude stabilization mode in real applications. The small angle changes 

around the equilibrium point is compensated with the help of this design. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Magnetic  
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Controller 
Magnetic  
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4.2 Satellite Model with Reaction Wheels as Actuators 
 
 
The basic block diagram of the Simulink model of the satellite is given in Figure 4.2: 
 
 
 
 
 
 
 
 
 
 

        Figure 4.2 : Generalized Satellite Model with Reaction Wheels. 
 
 

Reference input block gives the desired Euler angles that are set for the attitude 

maneuver mode. Reference model takes quaternion form of the reference Euler 

angles as input. The main aim of the reference model is to generate a smooth 

reference trajectory for the controller to follow. It is simply a filter that corrects 

fluctuations of the input in such a way that output trajectory becomes a smooth 

curve. Reference model used in the Simulink model of the satellite is taken from 

Reference [23]. A similar model is also used in Reference [21]. 

 

The transfer function of the model is given as:  
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where diq  is the desired ,smooth output reference vector, riq  is the reference input of 

the system from the reference input block, ς  is the relative damping factor and 

finally, nω  is the resonance frequency of the system. ς  is set to 1 in order to obtain 

critical damping response, nω  is selected as 0.002 rad/sec. after several values 

between 0 and 1 are tried (e.g. nω =0.5,  nω =0.035, nω =0.35).  

Reference 
Input 
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Dynamics
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Control allocation block distributes the torques belonging to reaction wheels, which 

is (3x4) matrix, on to the input torque matrix, which is (1x3) matrix, and sends it to 

the satellite dynamics as input. The distribution matrix which is denoted by T , was 

widely explained  in Chapter III.  
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4321                         (4.2) 

 

where [ ]ziyixii rrrt ,,,=  is the vector representing the location of each actuator 

with the related axis.  

  
The (1x3) controller output torque vector is distributed on to the reaction wheels by 

using T matrix and (1x4) input vector, u(t), is obtained. This is obtained by the 

Alloc command in the Matlab GNC Toolbox, which is written by Fossen, 2002 [16]. 
 
 
4.3 Simulation Results with Reaction Wheels as Actuators 
 
 
4.3.1 Linear Controller 
 
 
Control input in linear regulator controller is defined as: 

 
                                                             u=K(r-x)                                                  (4.3) 

 
where, r is the desired state vector, usually known as reference, and  x  is the actual state 

vector. 

 

Initial conditions and controller parameters used in the simulations are given in Table 

4.2. 
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      Table 4.2: Initial Values of  the Parameters  
 

PARAMETERS INITIAL VALUE 
Angular Velocity  [ ]Tb

b 0000 =ω  

           Euler Angles [ ]ψθφ           [ ]000  

Desired Euler Angles [ ]ψθφ   [ ]604002  

Aerodynamic Torque         3.4245e-07 
                           nω               0.02 
                            ς                  1 
                        Pole p1, p3, p5       -0.1 + 0.1i 
                        Pole p2,p4, p6         -0.1 - 0.1i 

 
 
 
The values of BILSAT-1 inertia matrix is given as; Ixx = 9.8194, Ixy= 0.0721, Ixz= 

0.2893, Iyx = 0.0721, Iyy= 9.7030, Iyz= 0.1011, Izx= 0.2892, Izy= 0.1011, Izz= 

9.7309. Diagonal values Ixx, Iyy, Izz are used as the diagonal elements of I. 

 
K gain matrix is calculated by place command: 

 
      K=place(A,B,p)                            (4.4) 

 
where A and B are found from state-space equations. 

 

Simulations are observed for several cases. Case 1 stands for the simulation with 

aerodynamic disturbance torque effect and without noise effect. The effect of noise is 

given in Case 2. In Case 3, one of the reaction wheels are disabled in order to show 

the effect of tetrahedral configuration of the reaction wheels. Case 4 represents the 

output response of the system when two wheels are disabled. Finally, Case 5 shows a 

maneuver in pitch direction.  

 

Figure 4.3 and 4.4 shows the simulation results of the linear regulator control method 

with aerodynamic torque effect and without noise effect. 
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   Figure 4.3: Satellite Euler Angles and Angular Velocity in Body Frame. 

 

The top view graph in Figure 4.3 shows that Euler angles reach the selected desired 

values at about 0.08 orbits. The system has a long rise time and settling time. If 

desired, this long rise time and settling time can be changed  by adjusting the values 

of  nω  (i.e. nω =0.5  ) . But applying these values results in increase at the torque 

values of reaction wheels which is not desirable in real-life applications. The greater 

torque value needed is, the greater power rating of actuators needed will be. Steady 

state error for the system is minimized by using the reference model as input. The 

bottom view graph in Figure 4.3 shows the angular velocity trajectory of the system. 
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             Figure 4.4: Outputs of  the Reaction Wheels and Regulator. 

The top view graph of the Figure 4.4 represents the output from the regulator, 

which is calculated by -K(x-xd). The trajectory nearly reaches to the value of zero 

after 0.08 orbits as expected. This proves that the error of the states reaches to 

zero. The bottom graph in Figure 4.4 stands for the output from the reaction 

wheels. The wheels never exceed the maximum torque value given as 1 mNm in 

Matlab program. The trajectory for the wheels changes from negative to positive 

torque values or vice versa after 0.02 orbits. This is because of the interaction 

between the output of the regulator, the output of the reaction wheels and K gain 

matrix. 

Figure 4.5 and 4.6 are the results of the Case 2 described below. Uniformly  
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distributed noise which is a replica of the internal noise resulting from reaction 

wheels, is added to the actuator torque  by  tau = tau + r_b_o*(noise) formulation. 

The expression in Matlab codes for uniformly distributed noise modelling, 

sign((2*rand(1)-1)), ensures that the noise is either in the region of –1 or 1 of the 

actuator torque because rand(1) gives numbers in the region of [0.0 1.0]. In this 

work, the expression given above is multiplied with the 40 percent of the 

produced torque to model a realistic internal noise. It is important to mention that 

different noise models can be applied to the satellite model for different 

actuators. Different noise models can be selected by analyzing the internal noise 

produced by the actuators (datasheets, etc.). For example, white gaussian noise 

model can be used in order to model the internal noise resulted from gyroscopes.  

  
 
Figure 4.5: Satellite Desired Euler Angles and Angular Velocity with                
                    Noise Effect. 
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The trajectories for the Euler angles and angular velocity are not effected from the 

noise added to the system. Euler angles reach their final value after 0.08 orbits. On 

the other hand, torque output trajectories given in Figure 4.6 have distortions. The 

ossilations on them do not affect the overall system response. The system 

compensates the noise effect perfectly. 

 

 
 
               Figure 4.6: Outputs from the Regulator and Reaction Wheels with      
                                  Noise Effect. 
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             Figure 4.7: Satellite Desired Euler Angles and Angular Velocity When        

      Wheel 2 is Disabled. 
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    Figure 4.8: Outputs from the Regulator and Reaction Wheels When          
                       Wheel 2 is Disabled. 

 
It can be easily seen that disabling one of the wheels does not affect the response of 

the system for the Case 3. Euler angles reach the desired value at about 0.08 orbits. 

This is mainly because of the tetrahedral configuration of the reaction wheels. 

Disabling one wheel has no effect on the response, since the others can compensate 

this lack on the three axes. This is experimented by disabling wheels one by one and 

examining the results of the simulations. It is observed that disabling one different 

wheel at each time has no effect on the simulation result. So only one of the 

observations is stated here. It is easily seen from the graph that the disabled wheel 

does not produce torque. 
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On the other hand, disabling two wheels causes the system response to fail as shown 

in Figure 4.9. Euler angles, as expected, do not reach their desired values. 

 

 

 
 
   Figure 4.9: Satellite Euler Angles and Angular Velocity When Wheel 2  

                                   and 3 are Disabled. 
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               Figure 4.10: Outputs from the Regulator and Reaction Wheels When            

              Wheel 2 and 3 are Disabled. 

The last case simulates the maneuver of the satellite in only one direction. For 

this case, pitch angle is selected as 300 , roll and yaw angles are set to zero. 

Figure 4.11 represents the Euler angles and angular velocity. The roll angle 

reaches its final value at about 0.08 orbits after the start of the simulation. It is  

smoothly set to the value of 300.  
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Figure 4.11: Satellite Euler Angles and Angular Velocity with Pitch      
        Angle=300. 
 

Figure 4.12 represents the outputs of the regulator and reaction wheels. The 

figure is given on the next page.  
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          Figure 4.12: Outputs of the Regulator and Reaction Wheels with Pitch 
        Angle=300. 

 
 
Lastly, the real response results taken from Tübitak-Bilten for BILSAT-1  are shown 

below. Table 4.3 lists the commands given for a 300 rotation around the pitch axis of 

the satellite. 
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                          Table 4.3:  Command Table for BILSAT-1. 
 

20 March 2006 02:22:00 UTC Pitch=+30 degree command 
20 March 2006 02:37:00 UTC Pitch=0 degree command 
20 March 2006 02:52:00 UTC Pitch=+30 degree command 
20 March 2006 03:07:00 UTC Pitch=0 degree command 
20 March 2006 04:02:00 UTC Pitch=-30 degree command 
20 March 2006 04:17:00 UTC Pitch=0 degree command 
20 March 2006 04:32:00 UTC Pitch=-30 degree command 
20 March 2006 04:47:00 UTC Pitch=0 degree command 
20 March 2006 05:37:00 UTC Pitch=-30 degree command 
20 March 2006 05:52:00 UTC Pitch=0 degree command 
20 March 2006 06:07:00 UTC Pitch=+30 degree command 
20 March 2006 06:22:00 UTC Pitch=0 degree command 

 
 

 

The pitch angle response of BILSAT-1 is shown in Figure 4.13. Horizontal axis 

denotes time and vertical axis denotes pitch angle. 

 

 
 
     Figure 4.13: Pitch Angle vs. Time Graph According to Commands Taken  
                          from Table 4.3. 
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  Figure 4.14: Zoomed Pitch Angle vs. Time Graph. 

 

When the response shown in Figure 4.13 is zoomed to 02:52:00 UTC - 03:06:00 

UTC time segment , the response in Figure 4.14 is obtained. It is interesting to see 

that this real time response from BILSAT-1 is similar to the one obtained in Figure 

4.11. The time needed to reach 300 is nearly 14 minutes which corresponds to  0.1 

orbit time when compared with our simulations. According to our simulation results, 

pitch angle reaches its desired value nearly in about 0.1 orbit time. 

 

Time

Nearly 14 min. 
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4.4 Simulation Results with Magnetic Torquers as Actuators 
 
 
4.4.1 Linear Quadratic Regulator 
 

Control input in linear quadratic regulator controller is given as: 

)()( 1 tRxBPtu T−−=               (4.5) 

Weight matrices Q and P are defined in Equation 3.106 and 3.107. Here, the 

total number of states ( sn ) is equal to six and total number of actuators ( an ) is 

equal to three. 

In LQR control, Matlab code, lqr is applied to the design as given below: 

         [K]= lqr(A,B,Q,P)                                    (4.6) 

lqr(A,B,Q,P) calculates the optimal gain matrix K such that the state-feedback law,  

Kxu −= ,  minimizes the quadratic cost function in Equation 3.105 for the state-

space model. 

 
Initial conditions and controller parameters used in the simulations are given in Table 

4.4. 

       
                           Table 4.4: Initial Values of the Parameters. 
 
 

 

 

 

 

 

 

 

PARAMETERS INITIAL VALUE 

Angular Velocity          [ ]Tb
b 0000 =ω  

Euler Angles [ ]ψθφ                [ ]358 −  

Desired Euler Angles [ ]ψθφ                [ ]000  

Maximum Dipole Moment ( iuΔ )                           0.01 

               State Deviation( ixΔ )                       
180

*10 Π
      

                        Q  diag([1 0 1 0 1 0])*inv(10*pi/180)^2 

                         P  diag([1 1 1])*inv(0.01)^2 
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Figure 4.15 and 4.16 shows the simulation results when the initial conditions given 

above are applied to the system. 

 

           
 

              Figure 4.15: Satellite Euler Angles and Angular Velocity of the System.  
 

The top view graph in Figure 4.15 represents the Euler Angles response according to 

the given initial condition in Table 4.3. It is observed that Euler Angles reach to the 

equilibrium point after 10 orbits. In fact, they are never actually equal to the zero. 

But small deviations can be tolerated. The performance of the system changes 

according to the different values of weight matrices P and Q. The values of the 

weight matrices are decided after several trials.  
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              Figure 4.16: Torque from Magnetic Torquer and Magnetic Moment. 
 

Magnetic moment and torque nearly reach zero after 8 orbit time. Although they 

have an oscillatory response, stability is maintained at the end of the simulation. 

According to Wisniewski [22] and Overby [7], linear quadratic regulator is an 

alternative way to maintain stability  around the equilibrium points. This method is 

tolerable to small angle changes around the equilibrium points. It is useful when it is 

applied to the systems where it is desired to keep the system stable in a small region 

around the equilibrium point. 
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           Figure 4.17: Satellite Euler Angles and Angular Velocity of the System for   
                                Case 2. 
 

Case 2 represents the simulations with Q=diag([1 0 1 0 1 0])*inv(8*pi/180)^2              

and P=diag([1 1 1])*inv(0.1)^2. It is easily observed in Figure 4.17 that the time 

to reach equilibrium points is reduced to 4 orbit time. On the other hand, torque 

produced by magnetic torquers is increased as it is given in Figure 4.18.  
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           Figure 4.18: Torque from Magnetic Torquer and Magnetic Moment for    
                                 Case 2. 
 

In simulations for linear quadratic regulator, aerodynamic torque is not taken into 

consideration. It can be concluded that selection of P and Q depends on the design 

scheme. If it is important to reach equilibrium points as soon as possible , Case 2 can 

be recommended. On the other hand, if power consumption is important design 

criteria, then Case 1 can be taken into consideration. 

4.5 Sensitivity Analysis 

Sensitivity analysis of the system response to different controller parameters is done 

by observing the changes on the settling time, the rise time, the steady state error and 

the torque value obtained from actuators when the control parameters are changed 
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within a range. Table 4.5 and Table 4.6 on the next pages, show the different values 

of the control parameters and system responses corresponding to these values. In 

Table 4.5, the effect of changing the weights in P and Q matrices to the system 

response is analyzed. First the P matrix is kept constant while changing the weights 

of the Q matrix in the range 
)180

13(
1

π  to 
)180

7(
1

π . Then the Q matrix is kept 

constant while changing the weights of P matrix in the range 01.0
1  to 1. When the 

system response is considered, it is observed that system response elements (settling 

time, the rise time, the steady state error and the torque value obtained from 

actuators) are sensitive to changes on the control parameters. 

In Table 4.6, pole values are changed in the range i1.01.0 ±  to i9.09.0 ± . The pole 

values greater than 1 cause oscillations and unstabilities on the system response. 

When the system response is considered, it is observed that system response 

elements (settling time, the rise time, the steady state error and the torque value 

obtained from actuators) do not change due to changes on the control parameters. It 

is worth to mention that the observed changes are so small that they are neglected. 
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Table 4.5 : Sensitivity of the System Response to Control Parameter Changes  
                              for Linear Quadratic Regulator. 
 

CONTROL 
PARAMETERS 

SETTLING 
TIME(ORBIT)

RISE 
TIME(ORBIT)

STEADY 
STATE 
ERROR 

MAX. TORQUE 
FROM 
ACTUATOR(mNm)

Q=diag([1 0 1 0 1 
0])*inv(13*pi/180)^2 
P=diag([1 1 
1])*inv(0.01)^2              

4 2.3 0.002 1.2*10^ -6  

Q=diag([1 0 1 0 1 
0])*inv(12*pi/180)^2 
P=diag([1 1 
1])*inv(0.01)^2              

4 2.5 0.002 1.5*10^ -6  

Q=diag([1 0 1 0 1 
0])*inv(11*pi/180)^2 
P=diag([1 1 
1])*inv(0.01)^2              

5 2.2 0.01 2*10^ -6-oscillations

Q=diag([1 0 1 0 1 
0])*inv(10*pi/180)^2 
P=diag([1 1 
1])*inv(0.01)^2              

10 7 0 1.2*10^ -7  

Q=diag([1 0 1 0 1 
0])*inv(9*pi/180)^2 
P=diag([1 1 
1])*inv(0.01)^2              

3 2 0.005 2*10^ -6-oscillations

Q=diag([1 0 1 0 1 
0])*inv(8*pi/180)^2 
P=diag([1 1 
1])*inv(0.01)^2              

4 3 0.01 2*10^ -6  

Q=diag([1 0 1 0 1 
0])*inv(7*pi/180)^2 
P=diag([1 1 
1])*inv(0.01)^2              

3-oscillations 2 0.03 2*10^ -6-oscillations

Q=diag([1 0 1 0 1 
0])*inv(10*pi/180)^2 
P=diag([1 1 
1])*inv(0.01)^2              

10 7 0 1.2*10^ -7  

Q=diag([1 0 1 0 1 
0])*inv(10*pi/180)^2 
P=diag([1 1 
1])*inv(0.05)^2              

4.2 2.5 0.006 0.8*10^ -6 

Q=diag([1 0 1 0 1 
0])*inv(10*pi/180)^2 
P=diag([1 1 
1])*inv(0.1)^2              

10 8 0.001 1,2*10^ -7  

Q=diag([1 0 1 0 1 
0])*inv(8*pi/180)^2 
P=diag([1 1 
1])*inv(0.5)^2              

oscillations oscillations oscillations oscillations 

Q=diag([1 0 1 0 1 
0])*inv(8*pi/180)^2 
P=diag([1 1 1])*inv(1)^2  

oscillations oscillations oscillations oscillations 
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Table 4.6 : Sensitivity of the System Response to Control Parameter Changes  
                              for Linear Controller. 
 

CONTROL 
PARAMETERS 

SETTLING 
TIME(ORBIT)

RISE 
TIME(ORBIT)

STEADY 
STATE 
ERROR 

MAX. TORQUE 
FROM 
ACTUATOR(mNm)

P1=0.1+0.1i ; P2=0.1-0.1i 0.08 0.04 0 6*10^ -4 
P1=0.2+0.2i ; P2=0.2-0.2i 0.1 0.04 0 2*10^ -4 
P1=0.3+0.3i ; P2=0.3-0.3i 0.1 0.04 0 2*10^ -4 
P1=0.5+0.5i ; P2=0.5-0.5i 0.1 0.04 0 2*10^ -4 
P1=0.9+0.9i ; P2=0.9-0.9i 0.1 0.04 0 2*10^ -4-oscillations
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CHAPTER V 
 
 
 

CONCLUSION AND FUTURE WORK 
 
 
 
In this work,  attitude determination and control components are introduced in detail. 

Mathematical model of the satellite dynamics is derived and linearized. The model is 

modified according to the BILSAT-1 satellite parameters. Linear attitude control 

techniques for a Low-Earth Orbit satellite are considered. Throughout this thesis, two 

different modes of the satellite are examined with two different actuators. These 

modes are attitude stabilization and attitude maneuver. In attitude stabilization, 

magnetic torquers are used as actuators and linear quadratic regulator is selected as 

the control method. On the other hand, actuators of the attitude maneuver mode are 

reaction wheels and  linear state feedback is applied for attitude control. 

 

Simulations are done using BILSAT-1 dynamic model, and for different cases all of 

which uses linear controllers. According to the cases explained and simulated in 

Chapter IV, the following concluding remarks can be stated: Euler angles of the 

system satisfy the desired values( [20 40 60]) in 0.08 orbit time nearly in all cases 

except Case 4 which represents the disabling of two reaction wheels at the same 

time. The rise time of the response is about 0.06 orbit time. Addition of uniformly 

distributed noise to the system as an external torque, has an effect on the trajectory of 

the torque obtained from reaction wheels. Although maximum and minimum  torque 

values do not change, distortions take place on trajectories. Since these oscillations 

are very small in value, they do not effect the overall system simulations. If these 

distortions have larger values (because of the effect of the internal disturbance 

torques or vice versa) rather than the small values considered in our simulations, 

reaction wheels can go into saturation. So, if needed, an extra control system should 

be added to the system for limiting and adjusting reaction wheels’ torque values, or  
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dynamic model of the reaction wheels shall be designed in order to overcome the 

effects of the oscillations. In Case 3, one of the reaction wheels is disabled in order to 

prove the effectiveness of the tetrahedral configuration. Simulation results in Chapter 

IV show that Euler angles reach their final value within 0.08 orbit time again for 

Case 3. On the other hand, maximum and minimum torque values for the reaction 

wheels and time to settle are increased. This increase is a result of distributing the 

moments to three reaction wheels rather than four reaction wheels on three axis. In 

other words, distribution matrix torque values are distributed over three remaining 

reaction wheels causing an increase on the torque values. In the case of disabling two 

wheels, the simulation results failed and Euler angles no more reach to the given 

desired values. The last case simulated is an attitude maneuver on pitch direction 

with an angle of 300. It is observed that reaction wheels two and four are effective 

throughout the maneuvering process. Compared with the simulation results taken 

from BILSAT-1 log data, the rise time (0.06 orbit time for BILSAT-1 simulations 

and  nearly 0.06 orbit time for our simulations) and settling time (nearly 0.1 orbit 

time for BILSAT-1 simulations and 0.08 orbit time for our simulations) are found to 

be comparable to our simulations. This comparison is useful to prove that the linear 

controller designed here is applicable although ideal cases (circular orbit instead of 

elliptic, diagonal inertia matrix instead of nondiagonal) for satelllite environment are 

taken into consideration. The last case (Case 5) is also compared with the results 

obtained from nonlinear control methods studied in Reference [26]. Table 4.7 given 

below, summarizes the system responses for different control methods. It can be 

concluded from the table that sliding mode regulator is better way of control 

compared to linear controller in terms of response time. 
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              Table 4.7 : Comparison of the System Response for Different Control    
                                  Methods. 

 

Controller Rise Time Settling Time 

Max-Min 
Reaction 

Wheel 
Torques 

Linear Controller 0.03 0.08 2e-4/-4e-4 
*Quaternion Feedback Controller 0.04 0.09 4.5e-4/-4.5e-4
*Sliding Mode Regulator 0.04 0.07 2e-4/-4e-4 
BILSAT-1 0.04 0.14 ** 
*Control methods applied in Reference [26]     
**The torque values of BILSAT-1 log data are not comparable  
since actuator model is different.  

 

 

Finally, it is worth to mention that K gain matrix value selection and reference model 

design by adjusting the values of nω  are important design criterias in linear 

controller design. The pole values given in this thesis are obtained after several 

experiments and the ideas taken from the Reference [7]. According to Reference [7], 

actuators are saturated and overshoots are exaggerated when pole placement is done 

with poles too much away from origin. Fast oscillations can be introduced to the 

system, if poles have relatively large imaginary roots. This increases the fuel 

consumption in real-life applications. These recommendations are taken into account 

during pole selection and pole values are given as –0.1+0.1j and   –0.1-0.1j in this 

work. The obtained long rise time and settling time values can be reduced by 

adjusting the values of  nω  (i.e. nω =0.5). But this will result in an increase at the 

torque values of reaction wheels which in turn means more power consumption. 

 

The linear controller method is also compared with nonlinear controllers studied in 

Reference [26]. In general, simulations results follow the same trajectory for Euler 

angles except that the roll angle in nonlinear control, maintains its initial value 0.02 

orbits time greater than the one in linear controller simulation results. On the other 

hand, the rise time for Euler angle trajectories in nonlinear control methods are a bit 

smaller (≅ 0.05 orbit time). Also, nonlinear controller methods are more effective in 
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terms of  torque values needed from reaction wheels. Reaction wheels have produced 

less torque values thus, reducing the power consumed. As a result, nonlinear control 

methods are more effective compared to the linear controller. 

  

The controller for attitude stabilization mode is selected as linear quadratic regulator. 

This controller is also examined in Reference [7]. In this controller, choosing the 

proper weight values for P and Q is important to avoid oscillations and to shorten the 

response time. It can easily be seen from Figures 4.15 and 4.16 that system 

converges to the equilibrium point after 8 orbit time. This is a very long response 

time compared to the simulations obtained from linear controller. The reason for that 

is the use of magnetic torquers as actuators. Figures 4.17 and 4.18 are obtained by 

adjusting different values for P and Q weight matrices. In Figure 4.17, Euler angles 

reach to the equilibrium point after 4 orbit time. On the other hand, the torque values 

become larger when compared with the case in Figure 4.16. This simulation shows 

the importance of choosing proper P and Q values. One can select different values 

for weights according to the design criterias (power consumption, fast/slow recovery 

of disturbances.)  

 

For future work,  It is worth to implement a reaction wheel model similar to the one 

used in BILSAT-1 (rather than the method used in this work), and then compare 

results of the simulations with those obtained from BILSAT-1 log data. Also, in this 

work, mathematical modelling of the satellite and environmental torques are derived 

according to the ideal cases. For example, inertia matrix is taken in diagonal form 

and satellite orbit is assumed to be circular. The system can be modelled without 

these assumptions in order to model the satellite and its environment in a more 

realistic way. Lastly, as it was mentioned earlier, linear quadratic regulator is a way 

to maintain stability in a small region around the equilibrium point (as is the case in 

most linearizations, the model gives realistic results for small disturbances around 

equilibrium point). So, It is suggested to find an alternative nonlinear control method 

that maintains stability in case of large angle deviations and existence of the 

environmental disturbances (e.g. aerodynamic torque) in attitude stabilization mode. 
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APPENDIX A 
 
 
 

MATHEMATICAL DERIVATIONS 
 
 
 
A.1 Linearization of Mathematical Model 
 
 
The linearization points are selected as, 
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The kinematic model of the satellite is given in Equation A.2. 
 
 

                                b
bo

T

SI
q ω

εη
ε

ε
η

⎥
⎦

⎤
⎢
⎣

⎡
+

−
=⎥

⎦

⎤
⎢
⎣

⎡
=

× )(2
1

33&

&
&                           (A.2) 

 
 
Applying linearization points to Equation A.2, the following equation is obtained. 
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The rotation matrix in the form of, 
 

  )()(2 2 εεη SSIRo
b ++=             (A.4) 

 
becomes Equation A.5 when linearized , 
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Hence, taking in to account the fact that To
b

b
o RR )(= . The linearized rotation 

matrix , b
oR  becomes: 
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Equation A.6 turns out to be: 
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The linearized model of  b

biω  , angular velocity, ( εω &2=b
bo ) is derived as: 
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The time derivative of  b
biω  is given as : 
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When linearized, gravitational torque simplifies to: 
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Magnetic torquers model  is linearized around 1η =  and 0ε = and gives: 

 

                               
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

==

y
o
xx

o
y

x
o
zz

o
x

z
o
yy

o
z

obb
m

mBmB
mBmB
mBmB

BmS )(τ                                           (A.11) 

 

Reaction wheel dynamic equations is linearized around the point where 0=b
biω  and 

Equation A.12 is obtained. 
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A.2 Satellite Linearized Model for Linear Controller 
 

 

Mathematical model of the satellite when reaction wheels are the actuators of 

the satellite can also be given in the form as :  
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The cross product operator [18], x, is defined by: 
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The skew-symmetric matrix )(λS  is defined as, 
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When Equation A.8, A.9, A.10, A.11, and A.15 are applied to Equation A.13, the 

following equations are obtained. 
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and Equation A.16 becomes:                                                                                                  
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Representing the time derivative of the Equation A.13 with quaternion parameters 

helps to derive the state-space representation in linear form, given below: 

          )()()()( tutBtAxtx +=&                                                   (A.19) 

 

 where [ ]332211 εεεεεε &&&=x   and  [ ]Trzryrx LLLu &&&= . 
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The A matrix is derived as given in Equation A.20. 
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The B matrix turns out to be: 

 

             

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

z

y

x

I

I

I

tB

2
100
000

0
2
10

000

00
2
1

000

)(                                  (A.21) 

 
 
 
A.3 Satellite Linearized Model for Linear Quadratic Regulator 
 
 
Mathematical model of the satellite with magnetic torquers as actuators, 
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Equation A.22 becomes Equation A.23, when Equations A.8, A.9, A.10, A.11,  and 

A.15 are applied to Equation A.22. 
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and Equation A.16 becomes:                                                                                                  
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Equation A.22 is  represented by state-space representation in linear form in 

Equation A.26 
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 where [ ]332211 εεεεεε &&&=x   and  [ ]Tzyx mmmu = . 

 

The A matrix is found as given in Equation A.27. 
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The B matrix is found to be: 

 
 

             

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

=

0
2
1

2
1

000
2
10

2
1

000
2
1

2
10

000

)(

o
x

x

o
y

x

o
x

y

o
z

y

o
y

x

o
z

x

B
I

B
I

B
I

B
I

B
I

B
I

tB                      (A.28) 

 
 
 
A.3 Some Mathematical Models 
 
 
A.3.1 Rate Sensors (Gyroscopes) 
 
 
The relationship between the rate about the input axis and the angular 

displacement, θ , about the output axis may be derived by the total angular 

momentum , H, of the gyro system, [8].  

 

             OILH o
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Where L=L S

)
, is the angular momentum of the rotor, oI  is the moment of 

inertia of the gimbal system about the output axis, O
)

 is a unit vector in the 
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direction of the gyro’s output axis, and S
)

 is a unit vector in the direction of 

the gyro’s spin axis. When Newton’s Laws applied to the system [8] ,  

 

H
dt

dH
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dHTorques Gyroinertial ×+==∑ ω)()(                 (A.30) 

 

The torque on the single-degree-of-freedom gyro is the sum of restoring and viscous 

damping terms,  
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then 
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The steady state solution to equation above : 
 

         
K

LIωθ =                       (A.33)

  
 
 
The output of the RG is proportional to the angular rate about the input axis. 
 
 
In BILSAT, control moment gyros are used. Therefore, below parts expresses 

gyroscope’s mathematical model and calculation of angular velocity in detail. 

 
 
A.3.1.1 Mathematical Models for Gyroscopes 
 
  
As stated before, gyroscopes are used in attitude propogation and control. This 

section describes the mathematical models for the estimation of spacecraft angular 

rates from gyro measurements. 
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The gyro output, θ , represents a voltage proportional to the torque current in an 

analog rebalanced gyro. The relationship between θ  and iω , the angular rate 

component in the direction of the gyros input axis depends on the gyro used. In rate 

gyros , 

 

      RR
M
i K θω =                     (A.34) 

 
 
where M

iω   is the gyro’s measurement of  iω   , and  KR  is the rate gyro scale 

factor. 

 

For rate-integrating gyros , the gyro’s measurement of angular velocity over the 

interval is: 

 

    
I
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K
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where is the rate-integrating scale factor. The interval, Itδ  , typically  200 to 500 ms. 

 

The model for measured spacecraft angular velocity taken from Iwens and 

Farrenkopf [1971], 
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M
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iω  is the spacecraft’s angular velocity in the direction of the gyro’s input axis, M
iω  

gyro’s measurement of this quantity, ki is the small correction to the nominal scale 

factor,  bi  is the drift rate, ni  is the white noise on the gyro output. 

 

If the direction of the gyro’s input axis is given by a unit vector, iÛ , in the 

spacecraft coordinate frame, then 



 139
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where ω  is the true spacecraft angular velocity vector. 

 

N single-degree-of-freedom gyros with input axes oriented to measure the three 

components of angular velocity vector. For N gyros , the following vectors are 

constructed: 
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M
gω  represents the collective output of the gyro configuration. 

 
Below expression is an algorithm for the calculation of spacecraft angular velocities 

from  gyro measurements. 
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                                           1][ −= KUC                     (A.42) 
 
 
in case of three gyros, 
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G is the misalignment/scale factor correction matrix. 
 
 
A.4 Modelling the Earth’s Magnetic Field 
 
 
A.4.1 IGRF Model 
 
 
There are mainly two ways to find the required equations on IGRF. First way is to 

determine the magnetic field equations directly as given in Equation A.44. 
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Second way is to use orbit estimator facts to find magnetic field. Implementation of 

orbit estimator in Earth-Centered Earth Fıxed Frame is expressed in Equation  A.45. 
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where Ω  is the right ascension of Ascending Node,  ω  is the argument of Perigee, 
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 θ  is the ascension of zero meridian , i is the inclination of the satellite, E is the 

eccentric anomaly and e is the eccentricity. The Figure A.1, [17] briefly shows the 

relationship between these parameters. 

 

 
 
Figure A.1: Relationship Between Keplerian Elements. 

 
 
By using Equation A.45 , magnetic field can be expressed as: 
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where ECEFB  is the resultant vector from IGRF Model. 

 

Finally, transformation to get the magnetic field in Orbit frame yields: 
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A.4.2 Dipole Model 
 
 
Dipole Model is an alternative way to calculate magnetic field. Although it is not 

accurate as IGRF model, it can stil be applied to the models. 

 

Dipole model of is calculated by using  the spherical harmonic model to the first 

degree (n = 1) and all orders (m = 0,1). 
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Earth’s magnetic field can also be found by the following equation. More detailed 

equations can be found in Reference [21]. 
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           (A.49) 

where M  is the Magnetic dipolar moment ( 157.9577 *10 ), mμ  is the magnetic 
latitude and R  is the radial coordinate ( 36971.2 *10 ). 
 
 
A.5 Some Facts About Tetrahedral Configuration 
 
 
The general figure of the tetrahedral configuration is shown in Figure A.2.  
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   Figure A.2 : Tetrahedral Configuration. 
 
 
The angle between reaction wheels can be calculated using the model given in Figure 

A.2. By using cosine theorem, the relationship between a and b sides can be derived 

as, 

        

                                   )120cos(2 02222 bbba −+=            (A.50) 

 

Then, 
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Also, 
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Figure A.3 simply shows the geometric relationship between the angle ϕ , angle 

between reaction wheels,  and the sides of the tetrahedral configuration. 
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         Figure A.3: Geometric Relationship Between the Angle ϕ  and the Sides. 
 
 
According to Figure A.3, following equations are derived. 
 
 

222 )( xhbx −+=              (A.53) 
 
Then, 
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By applying Equations A.51 and A.52 to A.54, x can be found as, 
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Figure A.4 shows the geometric relationship between sides a and x. 
 
 
 
 
              
 
 
                                
 
                
                     Figure A.4 : Geometric Relationship Between Sides a and x. 
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Again applying cosine law  to Figure A.4, one obtains, 
 

2222 cos2 axxx =−+ ϕ            (A.56) 
 
 
By applying Equation A.55 to Equation A.56, the angle ϕ  is found as, 
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As stated before, T given in Equation A.58 stands for the tetrahedral configuration 

allocation matrix in the design. 
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The torques produced by four wheels are converted to torques in three reference axes 

by T. Tetrahedral configuration of reaction wheels is usually preferred for the 

following reasons: First of all, four reaction wheeled structure provides an accurate 

control of the three axis in case of failure of one of the reaction wheels on any axis. 

Let us denote the torques produced by four reaction wheels as T1, T2,  T3,  T4  and the 

resulting torques produced in three axes by Tx, Ty  and  Tz. Let A be the maximum 

torque value produced by any reaction wheel. If the torque produced by the fourth 

reaction wheel is considered to be zero, the torque produced by the third reaction 

wheel is considered to be A , the torque produced by the second wheel is taken as     

–0.365A and the torque produced by the first wheel is selected as  -0.604 A, then,  
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Equation A.59 becomes, 
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         (A.60) 

 

The other advantage of this configuration comes from the geometry of the location of 

the angular momentum vectors. That’s, it is possible to obtain twice as much as 

torque in one axis with this configuration. For example, if the torques produced by 

the fourth, the third and the second wheel are taken as A, and the torque produced by 

the first wheel is selected as -A, then Equation A.59 becomes,  
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Also, it’s possible to prove that the net torque on three axis will be zero if all the 

reaction wheels produce same amount of torque, A, as seen from Equation A.61. 
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A.6 Conversions Between Unit Quaternions and Euler Angles 
 
 
Rotations in three dimensions can be represented using both Euler angles and unit 

quaternions.A unit quaternion can be described as: 
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where,  
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α   is a simple rotation angle and xβ ,  yβ  , zβ  are the direction of cosines locating 

the axis of rotation. 

The ortogonal matrix corresponding to a rotation by the unit quaternion q is given by 
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The ortogonal matrix corresponding to a rotation with Euler angles is given by 
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By comparing the terms in the two matrices, we get 
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For Euler angles we obtain: 
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APPENDIX B 
 
 
 

DATASHEETS OF SOME OF THE BILSAT-1’S  ADCS   
COMPONENTS 

 
 
 
In this section, data sheets of  the SSTL 2 axis sun sensor,  Altair-Hb star tracker, 

SSTL 3-axis fluxgate magnetometer, minisatellite reaction wheel and SSTL-

Weitzmann 6 m. deployable boom are given in the next pages. All the information 

given in Appendix B can be found in web page, www.sstl.uk.co . 
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APPENDIX C 
 
 
 

SIMULINK MODELS AND MATLAB CODES 
 
 
 
C.1 Simulink Model of the Linear Controller with Reaction 
          Wheels as Actuators 
 
 
In this section, MATLAB codes and SIMULIINK model of the linear controller with 

reaction wheels is given on the next pages. 
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C.2  Simulink Model of the Linear Quadratic Regulator with   
          Magnetic Torquers as Actuators 
 
 
In below sections, MATLAB codes and SIMULINK model of the linear quadratic 

regulator with magnetic torquers as actuators are given.  
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APPENDIX D 
 
 
 
CD CONTENT 

 
 
 

• LINEAR QUADRATIC REGULATOR SIMULINK MODELS AND 

MATLAB CODES 

• LINEAR CONTROLLER SIMULINK MODELS AND MATLAB CODES 


