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abstract

SCALAR WAVES IN SPACETIMES WITH CLOSED

TIMELIKE CURVES

Necmi Buğdaycı

Ph. D., Department of Physics

Supervisor: Prof. Dr. Sibel Başkal (METU, Phys.)

December 2005, 60 pages

The existence and -if exists- the nature of the solutions of the scalar wave equa-

tion in spacetimes with closed timelike curves are investigated. The general proper-

ties of the solutions on some class of spacetimes are obtained.

Global monochromatic solutions of the scalar wave equation are obtained in flat

wormholes of dimensions 2+1 and 3+1. The solutions are in the form of infinite

series involving cylindirical and spherical wave functions and they are elucidated

by the multiple scattering method. Explicit solutions for some limiting cases are

produced as well. The results of 2+1 dimensions are verified by using numerical

methods.

Keywords:

Wave Equation, Helmholtz Equation, Wormhole Spacetimes, Closed Timelike Curves,

Non-Globally Hyperbolic Spacetimes, Bessel functions, Addition Theorems, Spher-

ical Waves..

iv



öz

KAPALI ZAMANSAL EĞRİLER İÇEREN

UZAYZAMANLARDA SKALER DALGALAR

Necmi Buğdaycı

Doktora, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Sibel Başkal (METU, Phys.)

Aralık 2005, 60 sayfa

Kapalı zamansal eğriler içeren uzay-zamanlarda varolabilecek dalgaların doğası

araştırılmaktadır. Bu sınıfa giren uzay-zamanların belli bazı türlerinde dalga den-

kleminin çözümlerinin karakteristik özellikleri elde edilmiştir.

2+1 ve 3+1 boyutlu düz solucan deliği uzayzamanlarda dalga denkleminin global

çözümleri bulunmuştur. Çözümler silindirik ve küresel Bessel fonksiyonları cin-

siden sonsuz seri toplamı olarak ifade edilmiş ve çoklu saçılım yöntemiyle hesa-

planmışlardır. Bazı limit durumlar için açık çözümler verilmiş, ayrıca 2+1 boyutta

elde edilen çözümler sayısal yöntemler kullanılarak doğrulanmıştır.

Anahtar Kelimeler:

Dalga denklemi, Helmholtz denklemi, solucan-deliği uzay-zamanları, Kapalı za-

mansal eğriler, Global hiperbolik olmayan uzay-zamanlar, Bessel fonksiyonları, toplama

teoremleri, küresel dalgalar
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chapter 1

INTRODUCTION

In this thesis, the effect of existence of closed timelike curves on the solutions of scalar

wave equation is investigated. The main motivation is the problematic nature of

the closed timelike curves -which results from their causality violating property- in

physics . It is investigated whether this problematic nature shows itself in the waves

propagating in this kind of spacetimes.

In spacetimes admitting closed timelike curves, it is possible to travel to the

past as time propagates in future direction. Therefore closed timelike curves can be

interpreted as time-machines. This means past and future are not separated from

each other. A point on such a spacetime can be both at the chronological future,

and at the chronological past of another point. Causality issues arise due to this

property, and the classical cause and effect relation between events are no longer

definite.

Existence of closed timelike curves contradicts with the strong belief of common

sense which states that there exists only one copy of an object in the space at a

specific time. Following a timelike curve in future direction, if an object may return

infinitesimally close to its original spacetime point, a local observer will be able to

observe two instances of the same object at the same time.

Another questionable issue regarding to the closed timelike curves is the com-

mon notion of free will. It is customary to believe that the past has passed away

and cannot be changed anymore, but we can effect the future by our intentional

behaviors. In a universe where closed timelike curves can exist, the future and the

past are not distinguishable from each other. In such a spacetime either one has no

control on future which means there is no free will, or one can change the past with

his actions at present time. This second alternative falls into a logical contradiction

1



called grandfather paradox. By changing the past from present time, the conditions

that created present time would be altered, hence present time would not be the

same. Therefore the person that changes the past through his actions would not

exist in present time.

The entropy law is still another problem regarding time travel physics. Accord-

ing to second law of thermodynamics, entropy always increases with time which

flows in one direction, namely future direction. Therefore past and future is clearly

distinguisable in terms of entropy, and a spacetime where past and future are inter-

changeable contradicts with the entropy law.

Despite all these paradoxes and unreasonable consequences, there is no law for-

bidding the chronology violating spacetimes within the context of general relativity.

Einstein field equations, which are the main equations of General Relativity theory,

put no restriction on the causal structure of the spacetime. The chronology vio-

lating spacetimes, may violate the so called ”energy conditions”. However energy

conditions are not physical laws, they are just conjectures that universe believed by

most of the physicists to obey.

In the mathematical structure of General Relativity, time and space coordinates

are distinguished from each other by means of a minus sign present in the Lorentzian

metric of the spacetime. Also the fact (which is apparent from everyday experience)

that time is in continuous flow, and locally every moment is lived only once, is

accommodated in relativity theory by postulating that every particle follows a time-

like curve in spacetime. Except these two differences, the role of time and space

is symmetric the framework of General relativity. If it is possible to find out the

mathematical anomalies/inconsistencies of chronology violating spacetimes within

the boundaries of current physics, the mathematical tools we have are the unique

time direction of the Lorentzian spacetime and the timelike curves.

In this context the waves propagating in chronology violating universes are worth

to study. If we can find out the some characteristic common properties of the so-

lutions of the wave equation in the chronology violating spacetimes, at least theo-

retically, this can be used to get a clue about whether our universe admits closed

timelike curves and time travel.

For simplicity, only homogenous classical scalar wave equation is considered. The
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theory of tensor wave equations is closely related to that of scalar wave equations

and can be considered only a simple extension of it [1]. Therefore solutions of vector

(or more generally tensor) wave equations are not expected to have significantly

different qualitative properties from solutions of the scalar wave equation.

Throughout the thesis, a spacetime (M, g,D) will be defined as ”a connected,

oriented and time oriented Lorentzian manifold (M, g) together with the Levi-Civita

connection D of g on M” [2] [3]. With this definition, the universe models that

admit more than one timelike direction are excluded since they fail to be Lorentzian.

Gödel’s universe which admits two timelike direction (and therefore not Lorentzian)

is an exception which is considered in section II. On the other hand the dimension

is not required to be four and different dimensional spacetimes will be allowed in

order to investigate the effect of closed timelike curves in simpler lower dimensional

models.

In chapter 2, general properties of the solutions of wave equation on some class

of spacetimes are studied. It is very difficult to find out general rules (if there

exist any) that are valid for all spacetimes that admit closed timelike curves. What

determines the causal character of a spacetime is (1) its topology and (2) its metric

tensor. In section 2.1, a class of spacetimes are treated in which existence of closed

timelike curves are a natural consequence of the their topology. These spacetimes

are compact in time direction and closed timelike curves exist globally all over the

spacetime. The characteristic property of these solutions is that their frequency

spectrum are a discrete set instead of continuum. This brings a severe restriction on

the solution set. However the same type of restriction is also present for the globally

hyperbolic spacetimes when the space dimensions form a compact manifold.

In section 2.2 manifolds of more trivial topology (Rn or (Rn−1 − {0}) × R) are

considered. In these class of spacetimes, the tip of the null cone changes direction

in time and bends to make a close loop. Suitable metric tensors are written for

these spacetimes and separation of variables is used to obtain the solutions. Godel’s

universe is also discussed as an example of the same kind of manifold.

It is remarkable that again in these kind of spacetimes, only a discrete set of

frequencies are allowed as solutions of the wave equation.

Chapter 3 is dedicated to wormholes, in particular 2+1 and 3+1 dimensional
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flat wormholes. As a significant consequence of their non-trivial topology, worm-

holes also admit closed timelike curves (CTC’s). As such they constitute a suitable

framework for the study of the solutions of the scalar wave equation in a spacetime

admitting closed timelike curves.

Due to the topology of a wormhole, no single coordinate chart is sufficient to

express the global geometry of the whole wormhole spacetime and it becomes neces-

sary to develop techniques to handle global issues on the one hand and to investigate

the propagation of scalar waves near closed timelike curves. It should be mentioned

that there are works that study the scalar and electromagnetic waves that are valid

locally in a certain region (such as may be termed the “throat”) of the wormhole or

that study waves in similar spacetimes [4],[5],[6],[7],[8],[9],[10].

Wormholes are widely studied and discussed, especially after the paper of Morris

and Thorne, in the context of time travel [11],[12],[13],[14],[15],[16]. Cauchy prob-

lem of the scalar wave equation in the flat wormhole considered here is studied

throughout by Friedman and Morris with a variety of other spacetimes admitting

closed timelike curves [17],[18]. They also proved that there exist a unique solution

of Cauchy problem for a class of spacetimes, including our case, with initial data

given at past null infinity [19].

Due to the wormhole structure, the boundary conditions imposed in solving the

Helmholtz equation depends on the frequency. Therefore spectral theorem is not

applicable in a straight forward manner to express the solution of the wave equation

as a superposition of monochromatic wave solutions. However, in [19], it is proved

using limiting absorption method that, the superpositions of the monochromatic

wave solutions of the problem converge to the solution of wave equation.

The problem can be handled as a Cauchy problem with given initial data at past

null infinity or alternatively as a scattering problem, i.e. finding scattered waves

from the wormhole handle for a given incident wave.

The approach used in section III is similar to that used in scattering from infinite

parallel cylinders [20]. Ψ1 and Ψ2 represents outgoing cylindrical ( for 3+1 dimen-

sions spherical) waves emerging from the first and the second wormhole mouth

respectively. In order to be able to apply the boundary conditions conveniently

which arise from the peculiar topology of the wormhole in our case, it is necessary
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to express Ψ1 in terms of cylindrical (spherical) waves centered at second mouth

and vice versa. Addition theorems for cylindrical and spherical wave functions are

employed for this purpose.

The equations for the scattering coefficients of Ψ1 and Ψ2 that result from the

boundary conditions in question are in general not amenable to direct algebraic

manipulation . The multiple scattering method is applied to obtain an infinite series

solution. On the other hand for some important limiting cases the equations solved

explicitly. The solutions by these both methods are consistent with one another.

In section 3.1, the spacetime is described and the general formulation of the

problem is presented. In section 3.2, 2+1 dimensional case is studied. The equations

are presented, explicit solutions for two limiting cases are obtained, and finally the

multiple scattering solution is applied. In Section 3.3, the same scheme as section

3.2 is followed for 3+1 dimensional case. In section 3.4 numerical verifications of

the results obtained in section 3.2 are presented. In section 3.5 the solution for

different wormhole parameters are presented and finally in section 3.6 the scattering

coefficients of the wormhole is compared with that of scattering from a infinite

conducting cylinder.

5



chapter 2

GENERAL RESULTS ON SOME

CLASS OF SPACETIMES

ADMITTING CLOSED

TIMELIKE CURVES

2.1 Spacetimes that are compact in Time direc-

tion:

The existence of closed timelike curves in a spacetime emerges in different ways.

One class of spacetimes that admit closed timelike curves are those spacetimes which

are compact in time direction. The generic topology for this kind of spacetimes can

be considered as M × S1where M . is an arbitrary Riemannian manifold. In this

class of spacetimes, time is vicious. Every timelike curve advancing to future returns

back to past after some time.

Every non-compact manifold admits some Lorentzian metric defined on it, how-

ever this is not true in general for compact manifolds [21]. Some compact manifolds

does not admit Lorentzian metric, and hence they are excluded from being spacetime

according to our definition. The simplest examples of this kind are S4 and S2× S2.

The manifolds considered in this section are product manifolds and they are compact

iff both manifolds entering to the product are compact. For the spacetimes analyzed

here, one of the manifolds entering the product is one dimensional representing the

time direction. Although not every compact manifold admit a Lorentzian metric

defined on it, all compact manifolds of product type where one of the products is
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one dimensional manifold and represent the timelike direction, admits some Lorentz

metric defined on it.

If the metric is flat in such a cylindrical spacetime, it is well known that the

possible wave solutions are limited to certain discrete frequencies. An important

question is whether this restriction is a result of existence of closed timelike curves.

The compactness of the spacetime manifold in space direction may result exactly

the same kind of restriction on solutions of wave equation.

Consider a spacetime manifold M̂ = M×N where M is a Riemannian 3 manifold

and N is an one dimensional Riemannian manifold. The metric of the product

spacetime is considered not to be warped, i.e., in the expression of the metric tensor,

the coefficients of time variable dt ⊗ dt is independent of space variables ~x, and

coefficient of d~x ⊗ d~x is independent of t. In this case it is natural to assume a

solution that is separable into time and space coordinates:

Let F : M̂ → C, u : M → C and v : N → C be functions on M̂, M and N .

F (x, t) = u(x)v(t) (2.1.1)

∆F = ∆u(x)v(t)− u(x)∆v(t) = 0 (2.1.2)

2.1.2 gives two equations for u(x) and v(t):

∆uλ(x) = λuλ(x) (2.1.3)

∆vλ(t) = λvλ(t) (2.1.4)

The solution of 2.1.4 is:

u(t) = eiλt (2.1.5)

Therefore the eigenvalues λ are indeed the frequencies of monochromatic wave

solutions to the wave equation on M̂ .

Given any compact Riemannian manifold, it is well known that the eigenvalues

7



of Laplacian ∆, forms a discrete set [22]. Thus if N is compact, λ = ωn, n ∈ Z.

Therefore there is solution to wave equation only for discrete frequencies.

On the other hand the same result applies also to M. If M is compact, 2.1.3 has

discrete eigenvalues and again λ = ωn, n ∈ Z.

If both M and N are compact, the solution set has the common elements of the

set of eigenvalue of 2.1.3 and 2.1.4. If the intersection of the eigenvalue sets is empty,

there is no non-constant solution for wave equation. Similar method of separation

of variables can be extended to warped product manifolds [23].

A simple example of a spacetime which is compact in either directions is a two

dimensional torus spacetime given in [17]. In this case the eigenvalues of 2.1.3 are
2πm

L
, m ∈ Z, where L is the length of the torus in space dimensions and eigenvalues

of 2.1.4 are
2πn

T
, n ∈ Z, where T is the length in time direction. Therefore a non-

constant solution exists only when
2πm

L
=

2πn

T
. Therefore there exist no solution

when
L

T
is irrational.

This simple example suggests that the effect of closed timelike curves does not

have a distinguishable effect on solutions of the wave equation.

2.2 Spacetimes of trivial topology with metric ten-

sors admitting closed timelike curves:

Closed timelike curves can also appear in manifolds of topology Rn. The metric

of the spacetime can be adjusted such that the tip of the null cone deflects and

make a loop. One simplest way of producing closed timelike curves is to assign the

angular coordinate θ direction to be timelike direction in a cylindrical coordinate

system (r, θ, t) where θ = 0 and θ = 2π is identified.

2.2.1 2+1 dimensional sample spacetimes

Consider the spacetime M = (R2 − {0}) × R and the cylindrical coordinates

system (r, θ, t) defined on it. In usual flat Minkowski spacetime, the tip of the null

8



cone always points the t direction. When the time direction is chosen as θ, there

exist closed timelike curves. Alternatively time direction can be chosen as r which

does not admit closed timelike curves either. These spacetimes will be denoted by

M t, M θ and M r, respectively.

Figure 2.1: Null cones of M t

Figure 2.2: Null cones of M r

The metric tensor in (r, θ, t) coordinates for M t is

gijdxidxj = dr2 + r2dφ2 − dt2 (2.2.6)

The homogenous wave equation for a general metric is:

9



Figure 2.3: Null cones of M θ

∆F =
1√

| det(gij)|
∂

∂xi
(
√
| det(gij)|gij ∂F

∂xj
) = 0 (2.2.7)

Since the metric coefficients are independent of t and θ, it is natural to separate

the variables in t and θ direction and assume a solution of the type:

F (r, θ, t) = u(r)eimθe−iωt (2.2.8)

Periodicity of θ with 2π forces m to be an integer. The resulting equation

d2

dr2
u(r) +

1

r

d

dr
u(r) + (ω2 − m2

r2
)u(r) = 0 (2.2.9)

is the famous Bessel’s differential equation with solution:

u(r) = Jm(ωr) (2.2.10)

F (r, θ, t) = Jm(ωr)eimθe−iωt (2.2.11)

For M r the metric tensor is:

gijdxidxj = −dr2 + r2dφ2 + dt2 (2.2.12)

and the differential equation for r is:

10



d2

dr2
u(r) +

1

r

d

dr
u(r) + (ω2 +

m2

r2
)u(r) = 0 (2.2.13)

The solution to 2.2.13 is again in terms of Bessel functions, but this time with

imaginary order:

F (r, θ, t) = Jim(ωr)eimθe−iωt (2.2.14)

Finally the metric and radial equation for M θ are:

gijdxidxj = dr2 − r2dφ2 + dt2 (2.2.15)

d2

dr2
u(r) +

1

r

d

dr
u(r) + (ω2 +

m2

r2
)u(r) = 0 (2.2.16)

and the solution reads:

F (r, θ, t) = Jim(iωr)eimθe−iωt (2.2.17)

The Bessel function can be generalized for complex order and complex argument

[24]. The solutions for M θ and M r are expressed in terms of these Bessell functions

of imaginary order and imaginary argument in (2.2.14) and (2.2.17).

For M θ, since timelike direction is θ, m can be interpreted as frequency, and

it is discrete. Therefore only discrete frequencies can propagate in this kind of a

spacetime. It is noteworthy that, the restriction on the solution of the wave equation

is the same with that of spacetimes that are compact in time direction.

A more general class of spacetimes can be defined that have closed timelike

curves in certain region of the spacetime. Consider R3 equipped with the metric in

cylindrical coordinates as:

gijdxidxj = dr2 + cos(2α(r))r2dθ2 − cos(2α(r))dt2 − 2 sin(2α(r))dtdθ (2.2.18)

where θ = 0 is identified with θ = 2π.
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Figure 2.4: Variation of timelike direction with r

The orientation of null cone for this type of metric is shown in the figure 2.4.

When r = 0, null cone is indefinite unless α(0) = 0. Therefore α(r) will be choosen

to satisfy α(0) = 0.

When α(r) < π/4 for all r, there exist no closed timelike or null curves. When

π/4 < α(r) < 3π/4, time coordinate is not t anymore; instead θ.is the time coor-

dinate. Since θ coordinate is cyclic with period 2π, closed timelike curves exists in

this case.

Homogenous wave equation in for this metric is:

1

r
(

∂

∂r
r
∂F

∂r
) +

cos(2α)

r2

∂2F

∂θ2
− cos(2α)

∂2F

∂t2
− 2

r
sin(2α)

∂2F

∂θ∂t
= 0 (2.2.19)

Again the separation of variables in θ and t can be used:

F (t, r, θ) = e−iωteik1θu(r) (2.2.20)

2.2.19 gives:
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d2

dr2
u(r) +

1

r

d

dr
u(r) + [(ω2 − m2

r2
) cos(2α) +

2mω

r
sin(2α)]u(r) = 0 (2.2.21)

For |α(r)| < π/4, or |π−α(r)| < π/4, timelike direction is t, and ω represents the

frequency. However, when π/4 ≤ α(r) ≤ 3π/4 since timelike direction is switched

to be θ, k1 represents the frequency of the wave.

Periodicity of θ with 2π requires k1 to be an integer: k1 = m, m ∈ Z. Therefore

the frequency switches from being discrete to continuum as α changes with r.

2.2.2 Gödel’s universe:

Gödel’s universe is another famous example that admit closed timelike curves

[25]. Gödel’s universe is an exact solution of Einstein Field equations. However it is

not a spacetime in the sense of the definition because it is not everywhere Lorentzian:

Gödel’s universe admits two timelike directions at some part of the universe. Closed

timelike curves exist with the appearence of this second timelike direction.

The metric of Gödel’s universe is [3]:

gijdxidxj = −dt2 + dx2 − 1

2
e2
√

2Ωxdy2 + dz2 − 2e
√

2Ωxdtdy (2.2.22)

where Ω is a constant.

After a coordinate transformation to cylindrical coordinates, in new coordinates

the metric takes the form:

gijdxidxj = 2Ω−2(−dt′2+dr2−(sinh4 r−sinh2 r)dθ2+2
√

2 sinh2 rdθdt′+dz2 (2.2.23)

This behaviour of the null cones in this metric is similar to that of 2.2.18 and

closed timelike curves appears when r > log(1 +
√

2).

The solution of scalar wave equation in Gödel’s universe is given in [26]. In

agreement with the above results, the frequency can take discrete values in Gödel’s

universe:
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ω = (1 + 2n)Ω +
√

(2n2 + 2n + 1)Ω + k2
3, n ∈ Z (2.2.24)

where k3 is the wavenumber in z direction. The solution for a more general class of

universes with papapetrou metic has similar properties [27].

In all these class of spacetimes where closed timelike curves are admissible

throughout the manifold, the common property is frequency selection. Frequency is

not continuum and only a discrete set of frequencies can exist in these universes.
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chapter 3

SCALAR WAVES IN A

WORMHOLE SPACETIME

Wormholes are another very important class of spacetimes that may admit closed

timelike curves (CTC). In wormholes, however closed timelike and null curves are

restricted to pass around the throat of the wormhole and in general there does not

exist a CTC passing from an arbitrary point of wormhole.

3.1 Flat wormhole

Given a Riemannian manifold M , a solution F : M ×R → C of the scalar wave

equation

∆F =
∂2F

∂t2

is said to be a monochromatic solution with angular frequency ω ∈ R− {0} if it is

of the form F (m, t) = Ψ(m)eiωt for some Ψ : M → C. Clearly Ψ is a solution of the

Helmholtz equation

∆Ψ + ω2Ψ = 0. (3.1.1)

On a general Lorentzian spacetime the concept of monochromatic solution makes

sense provided the spacetime has an almost product structure that singles out the

time direction locally.

A simple example of a wormhole topology is the flat wormhole described in

[19]. This 3+1 dimensional flat wormhole spacetime is constructed as follows: Let
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Figure 3.1: 2+1 dimensional flat wormhole. P is identified with Q. Arrows indicate
the direction of the identification.

a, d, τ ∈ R with d > 2a > 0. Consider

N = R3 − (∆+ ∪∆−),

M̂ = N × R,

where ∆+, ∆− are open balls of radius a > 0 and respective centers (0, 0, d/2), (0, 0,−d/2)

in R3. The boundaries of ∆+ and ∆− are designated as Σ+ and Σ− respectively. The

wormhole spacetime M of width d, radius a, and lag τ is the Semi-Riemannian mani-

fold obtained as the quotient space of M̂ by identifying events P, Q on Σ+×R, Σ−×R
respectively if P is the reflection of Q in the xyt- hyperplane after a translation by

τ along the t- axis, the Semi-Riemannian metric being naturally inherited from the

ordinary Minkowski metric on R4. M is clearly a flat Lorentzian spacetime. To be

precise:

Σ+ = {(x, y, z) ∈ R3|x2 + y2 + (z − d/2)2 = a2},

Σ− = {(x, y, z) ∈ R3|x2 + y2 + (z + d/2)2 = a2}.

For (x, y, z) ∈ Σ+, P and Q are identified where
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P = (x, y, z, t),

Q = (x, y,−z, t + τ).

In 2+1 dimensions the manifold is defined in the same way except that:

N =
(

R2 − (∆+ ∪∆−)
)
,

∆+, ∆− are open disks of radius a > 0 with respective centers (d/2, 0), (−d/2, 0) in

R2 and P is the reflection of Q in the yt- plane after a translation by τ along the t-

axis.

The geometry for 2+1 dimensions is shown in fig. 3.1.

Two wormhole conditions arise from this identification map defining the topol-

ogy. These conditions will function as boundary conditions imposed on the general

solution of Helmholtz equation in a flat spacetime.

The two wormhole conditions will be denoted as C-1 and C-2. C-1 is

F (P ) = F (Q),

and C-2 is

n̂P · ∇F (P ) = −n̂Q · ∇F (Q).

where n̂Q is the unit outward normal to Σ− at Q and n̂P is the unit outward normal

to Σ+ at P . In terms of Ψ, C-1 and C-2 are:

Ψ(ω, p) = eiωτΨ(ω, q),

n̂P · ∇Ψ(ω, p) = −eiωτ n̂Q · ∇Ψ(ω, q),

where p and q are the projections of P and Q on N respectively.

The solution will be expressed in three components: An everywhere regular part

of the wave, Ψ0, which may be considered as originating from the sources at past

null infinity (or alternatively as the incident wave if the problem is considered as a

17



Figure 3.2: Coordinates used for 2+1 dimensions.

scattering problem), and two outgoing waves originating from each wormhole mouth

(or scattered waves from each mouth), Ψ1 and Ψ2 Obviously Ψ = Ψ0 + Ψ1 + Ψ2.

There are two wormhole conditions that enable one to determine two of Ψ0, Ψ1

and Ψ2. The problem will be handled like a scattering problem and the scattered

waves Ψ1 and Ψ2. will be solved given the incident wave Ψ0.

3.2 2+1 Dimensions:

In 2+1 dimensions, solution of Helmholtz equation in cylindrical coordinates

yields Bessel (or Hankel) functions. Being everywhere regular, Ψ0 is expressed in

terms of Jn(r),while Ψ1and Ψ2 represent outgoing waves radiating from the worm-

hole mouths ∆− and ∆+, respectively. Outgoing waves are expressed by Hankel

functions of the first kind, H
(1)
n (r). Referring to fig. 3.2, Ψ1 has its natural coordi-

nates (r, θ) centered at (−d/2, 0), and Ψ2 has its natural coordinates (R, φ) centered

at (d/2, 0). The coordinate variables, θ and φ are chosen in this way to make use of

the mirror symmetry of the geometry of the wormhole with respect to y axis. Since

Ψ0, Ψ1and Ψ2 are valid in exterior domain, they are expressed in terms of integer

order Bessel (Hankel) functions only. Therefore the expansion of Ψ0, Ψ1and Ψ2 in

terms of Bessel (Hankel) functions are:
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Ψ0 =
∞∑

n=−∞

AnJn(ωr)einθ,

Ψ1 =
∞∑

n=−∞

BnH
(1)
n (ωr) · einθ,

Ψ2 =
∞∑

n=−∞

CnH
(1)
n (ωR) · einφ.

Bn and Cn will be found given the coefficients of the incident wave An. The two

wormhole conditions supply the two equations to determine the unknown coefficients

Bn and Cn.

The wormhole conditions C-1 and C-2 are:

Ψ|R=a,φ=θ = eiωτΨ|r=a − π < θ ≤ π,

∂

∂R
Ψ|R=a,φ=θ = −eiωτ ∂

∂r
Ψ|r=a − π < θ ≤ π.

To compute Ψ at R = a and r = a it is necessary to write down Ψ0, Ψ1 in

(R, φ) coordinates and Ψ2 in (r, θ) coordinates. The addition theorem for cylindrical

harmonics is used for expressing a cylindrical wave in terms of cylindrical waves of a

translated origin [24]. It should be noted that, unlike the everywhere regular Bessel

functions Jn(ωr), there are two different versions of the addition theorems of Hankel

functions. For ~r = ~d + ~R, addition theorems yield
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H(1)
n (ωR)ein(π−φ) =


∞∑

k=−∞
Jk(ωd)H

(1)
n+k(ωr)ei(n+k)θ if r > d

∞∑
k=−∞

H
(1)
k (ωd)Jn+k(ωr)ei(n+k)θ if r < d

, (3.2.2)

H(1)
n (ωr)ein(θ−π) =


∞∑

k=−∞
Jk(ωd)H

(1)
n+k(ωR)e−i(n+k)φ if R > d

∞∑
k=−∞

H
(1)
k (ωd)Jn+k(ωR)e−i(n+k)φ if R < d

, (3.2.3)

Jn(ωr)ein(θ−π) =
∞∑

k=−∞

Jk(ωd)Jn+k(ωR)e−i(n+k)φ. (3.2.4)

Wormhole conditions require the expression at r = a and R = a. Since a < d,

r < d versions of (3.2.2) and (3.2.3) should be used.

Accordingly, the wave functions are expressed as a sum of Bessel functions at

translated origin as

∞∑
n=−∞

AnJn(ωr)einθ =
∞∑

n=−∞

Ān · Jn(ωR)einφ,

∞∑
n=−∞

BnH
(1)
n (ωr)einθ =

∞∑
n=−∞

B̄n · Jn(ωR) · einφ,

∞∑
n=−∞

CnH
(1)
n (ωR)einφ =

∞∑
n=−∞

C̄n · Jn(ωr) · einθ.

The expressions for Ān, B̄n and C̄n are found using (3.2.2), (3.2.3) and (3.2.4).

For Ān :

Ψ0 =
∞∑

n=−∞

AnJn(ωr)einθ =
∞∑

n=−∞

An(−1)n

∞∑
k=−∞

Jk(ωd)Jn+k(ωR)e−i(n+k)φ (3.2.5)

Renaming the index −(n+k) = n on the right hand side and using (−1)nJn(x) =

J−n(x) :
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∞∑
n=−∞

AnJn(ωr)einθ =
∞∑

n=−∞

∞∑
k=−∞

A−n−k(−1)−n−kJk(ωd)J−n(ωR)einφ (3.2.6)

=
∞∑

n=−∞

(
∞∑

k=−∞

A−n−kJ−k(ωd))Jn(ωR)einφ (3.2.7)

=
∞∑

n=−∞

(
∞∑

k=−∞

Ak−nJk(ωd))Jn(ωR)einφ (3.2.8)

Similarly for B̄n :

Ψ1 =
∞∑

n=−∞

BnH
(1)
n (ωr) · einθ =

∞∑
n=−∞

Bn(−1)n

∞∑
k=−∞

H
(1)
k (ωd)Jn+k(ωR)e−i(n+k)φ

=
∞∑

n=−∞

∞∑
k=−∞

B−n−k(−1)−n−kH
(1)
k (ωd)J−n(ωR)einφ

=
∞∑

n=−∞

(
∞∑

k=−∞

B−n−kH
(1)
−k(ωd))Jn(ωR)einφ

=
∞∑

n=−∞

(
∞∑

k=−∞

Bk−nH
(1)
k (ωd))Jn(ωR)einφ (3.2.9)

The translation direction for C̄n is reverse and translation formula is slightly

different. However choosing the φ mirror image of θ, results in the same formula for

C̄n either:

Ψ2 =
∞∑

n=−∞

CnH
(1)
n (ωR) · einφ =

∞∑
n=−∞

Cn

∞∑
k=−∞

H
(1)
k (ωd)J−n+k(ωr)ei(−n+k)θ (3.2.10)

Renaming the index −n + k = n on the right hand side:

Ψ2 =
∞∑

n=−∞

(
∞∑

k=−∞

Ck−nH
(1)
k (ωd))Jn(ωr)einθ (3.2.11)
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Therefore the formulas for Ān, B̄n and C̄n are:

Ān =
∞∑

k=−∞

Ak−nJk(ωd), (3.2.12)

B̄n =
∞∑

k=−∞

Bk−nH
(1)
k (ωd), (3.2.13)

C̄n =
∞∑

k=−∞

Ck−nH
(1)
k (ωd). (3.2.14)

Having obtained the expression of the wave in the coordinates centered at each

mouth, application of wormhole conditions give necessary equations for the unknown

coefficients Bn and Cn.

C-1 leads to

∞∑
n=−∞

(An · Jn(ωa) + Bn ·H(1)
n (ωa) + C̄nJn(ωa))einθ

= eiωτ

∞∑
n=−∞

(ĀnJn(ωa) + B̄nJn(ωa) + C ·H(1)
n (ωa))einθ,

Bn − eiωτCn = − Jn(ωa)

H
(1)
n (ωa)

(An − eiωτ Ān + C̄n − eiωτ B̄n), (3.2.15)

and C-2 leads to

∞∑
n=−∞

(
An ·

∂

∂r
Jn(ωr)|r=a + Bn ·

∂

∂r
H(1)

n (ωr)|r=a + C̄n
∂

∂r
Jn(ωr)|r=a

)
einθ

= −eiωτ

∞∑
n=−∞

(
Ān

∂

∂r
Jn(ωr)|r=a + B̄n

∂

∂r
Jn(ωr)|r=a + Cn

∂

∂r
H(1)

n (ωr)|r=a

)
einθ,
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Bn + eiωτCn = −

∂

∂r
Jn(ωr)|r=a

∂

∂r
H

(1)
n (ωr)|r=a

(An + eiωτ Ān + C̄n + eiωτ B̄n). (3.2.16)

Solving (3.2.15) and (3.2.16) for Bn and Cn, one finds

Bn = −γ+
n (ωa)C̄n + eiωτγ−n (ωa)B̄n − γ+

n (ωa)An + eiωτγ−n (ωa)Ān, (3.2.17)

Cn = −γ+
n (ωa)B̄n + e−iωτγ−n (ωa)C̄n − γ+

n (ωa)Ān + e−iωτγ−n (ωa)An, (3.2.18)

where

γ+
n (ωa) ,

1

2

 Jn(ωa)

H
(1)
n (ωa)

+

∂

∂r
Jn(ωr)|r=a

∂

∂r
H

(1)
n (ωr)|r=a

 ,

γ−n (ωa) ,
1

2

 Jn(ωa)

H
(1)
n (ωa)

−

∂

∂r
Jn(ωr)|r=a

∂

∂r
H

(1)
n (ωr)|r=a

 .

For the sake of simplicity the known parts of (3.2.17) and (3.2.18) will be denoted

by En and Fn respectively.

En = −γ+
n (ωa)An + eiωτγ−n (ωa)Ān, (3.2.19)

Fn = −γ+
n (ωa)Ān + e−iωτγ−n (ωa)An. (3.2.20)

This pair of equations (3.2.17) and (3.2.18) are not solvable explicitly; however

it is possible to solve them for the limiting cases a � d and a � 1.
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3.2.1 Solutions for a � d and a � 1 :

The difficulty in solving (3.2.17) and (3.2.18) arises from the convolution sum

present in the expressions of B̄n and C̄n. However this term can be evaluated for

special forms of H
(1)
n (ωd), namely when it is in complex exponential e−inα form.

When |n| � ωd, asymptotically H
(1)
n (ωd) becomes e−inπ/2 as a function of n.

γ+
n (ωa) and γ−n (ωa) are almost zero for |n| & 2ωa, and so are Bn and Cn. Thus

when a � d, the only terms that contribute to γ±n (ωa)B̄n (γ±n (ωa)C̄n) are those

satisfy |n| . 2ωa � ωd. The a � d case is of practical importance in physics. In

a wormhole universe, this corresponds to the case that the wormhole is connecting

regions of the universe that are spatially far from each other compared to the radius

of the wormhole.

This approximation is not valid for the high frequency limit in general.

When a � 1, γ±n (ωa) tends to zero unless n 6= 0, regardless of d. Accordingly,

so are Bn and Cn.

These two cases in which approximate solutions are possible, a � d and a � 1,

are examined below.

a � d

For large ωd, asymptotic formula for H
(1)
n (ωd) is

H(1)
n (ωd) = z(ωd)e−inπ/2 (3.2.21)

× (1 + i
4n2 − 1

1!(8ωd)
+ i2

(4n2 − 1)(4n2 − 9)

2!(8ωd)2
+ i3

(4n2 − 1)(4n2 − 9)(4n2 − 25)

3!(8ωd)3
+ ...),

z(ωd) ,

√
2

πωd
ei(ωd−(π/4)).

For n2 � ωd, the infinite sum inside the brackets can be approximated to 1 :

H(1)
n (ωd) ≈ z(ωd)e−inπ/2

This form of H
(1)
n (ωd) allows one to evaluate the sum B̄n:
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∞∑
k=−∞

B(k−n)H
(1)
k (ωd) =

∞∑
m=−∞

BmH
(1)
n+m(ωd) ≈ z(ωd)(

∞∑
m=−∞

Bme−imπ/2)e−inπ/2

= z(ωd)B̂(π/2)e−inπ/2

where hat denotes the Fourier sum:

X̂(α) ,
∞∑

m=−∞

Xme−imα.

Substituting into (3.2.17) and (3.2.18)

Bn = z(ωd)[−Ĉ(π/2)γ+
n + eiωτ B̂(π/2)γ−n ]e−inπ/2 + En, (3.2.22)

Cn = z(ωd)[−B̂(π/2)γ+
n + e−iωτ Ĉ(π/2)γ−n ]e−inπ/2 + Fn. (3.2.23)

The right hand sides of (3.2.22) and (3.2.23) involves Ĉ(π/2) and B̃(π/2) which

are unknown yet. Multiplying each side by e−inπ/2 and sum over n’s gives a pair of

equations for Ĉ(π/2) and B̃(π/2) :

[
B̂(π/2)

Ĉ(π/2)

]
=

[
1− z(ωd)eiωτ γ̃−(π) z(ωd)γ̃+(π)

z(ωd)γ̃+(π) 1− z(ωd)e−iωτ γ̃−(π)

]−1 [
Ê(π/2)

F̂ (π/2)

]
(3.2.24)

The numerical results comparing the solutions obtained by these formulae and

by the multiple scattering method is presented in the appendix.

To have a better approximation, the second term i
4n2 − 1

1!(8ωd)
in the infinite sum of

in (3.2.21) can be included:

H(1)
n (ωd) ≈

√
2

πωd
ei(ωd−(π/4))e−inπ/2(1 + i

4n2 − 1

1!(8z)
)

In this case, the expression for H
(1)
n (ωd) involves n2e−inπ/2. This form of H

(1)
n (ωd)

still enables one to evaluate B̄n and C̄n, explicitly. This time there arise 6 unknowns
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and (3.2.24) is replaced by a 6x6 matrix equation. In this way it is possible to have

better approximations by taking more terms into account in (3.2.21). The number of

the linear equations is 4k− 2 when the first k term is taken into account in (3.2.21).

a � 1 :

At ωa = 0, the Bessel function Jn(ωa) is a discrete delta function with respect

to variable n, and its derivative is zero for all n :

Jn(0) =

{
1 if n = 0

0 otherwise
;

∂

∂r
Jn(ωr)|r=0 = 0 for all n. (3.2.25)

Therefore, in the limit a goes to zero, γ+
n (ωa) and γ−n (ωa) become discrete delta

functions:

γ+
n (ωa) ≈ γ−n (ωa) ≈ J0(ωa)

H
(1)
0 (ωa)

δn,

where [28],

J0(ωa)

H
(1)
0 (ωa)

, γ0 =
1

1 +
2i

π
(ln(

ωa

2
) + 0.5772)

. (3.2.26)

The γ±n (ωa) factors standing in front of each term on the right hand sides of

(3.2.17) and (3.2.18) make Bn and Cn delta functions as well.

Bn = B0δn,

Cn = C0δn;

so that,

Ψ1 = B0 ·H(1)
0 (ωr),

Ψ2 = C0 ·H(1)
0 (ωR).

B0 and C0 are found by substitution to (3.2.17) and (3.2.18):
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γ±n (ωa)B̄n ≈ (γ0δn)(B0H
(1)
n (ωd)) = γ0B0H

(1)
0 (ωd)δn,

γ±n (ωa)C̄n ≈ γ0C0H0(ωd)δn,

[
B0

C0

]
=

[
1− γ0H0(ωd)eiωτ γ0H0(ωd)

γ0H0(ωd) 1− γ0H0(ωd)e−iωτ

]−1 [
E0

F0

]
,

where

E0 = γ0(−A0 + eiωτ

∞∑
m=−∞

AmJm(ωd)),

F0 = γ0(−
∞∑

m=−∞

AmJm(ωd) + e−iωτA0).

3.2.2 Multiple scattering

An alternative approach is the use of multiple scattering [20],[29]. In the multiple

scattering method, the scattered waves are decomposed into lower order scattered

waves from each mouth. Initially each wormhole mouth is considered to be excited

by only the incident wave and first order scattering coefficients are found by imposing

wormhole conditions. Then each wormhole is considered to be excited by only the

first order scattered wave from the other mouth and the second order scattering

coefficient are found imposing wormhole conditions. kth order scattering coefficients

are found by continuing the same procedure. The scattered wave from each mouth

is the sum of these kth order scattering coefficients.

Ψ1 =
∞∑

k=1

Ψk
1

where
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Ψk
1 =

∞∑
n=−∞

Bk
nH(1)

n (ωr) · einθ and Bn =
∞∑

k=1

Bk
n.

Similarly,

Ψ2 =
∞∑

k=1

Ψk
2,

Ψk
2 =

∞∑
n=−∞

Ck
nH(1)

n (ωR) · einφ.

Wormhole conditions for the first order scattering coefficients are:

(Ψ0 + Ψ1
1)r=a = eiωτ (Ψ0 + Ψ1

2)R=a,φ=θ, (3.2.27)

∂

∂r
(Ψ0 + Ψ1

1)|r=a = −eiωτ ∂

∂R
(Ψ0 + Ψ1

2)|R=a,φ=θ. (3.2.28)

Similarly for the (k + 1)th order coefficients:

(Ψk+1
1 + Ψk

2)r=a = eiωτ (Ψk
1 + Ψk+1

2 )|R=a,φ=θ,

∂

∂r
(Ψk+1

1 + Ψk
2)|r=a = −eiωτ ∂

∂R
(Ψk

1 + Ψk+1
2 )|R=a,φ=θ.

It is easy to see that when 1st and kth order scattered waves satisfy wormhole

conditions, total scattered wave satisfies as well.

Ψ|r=a = (Ψ0 + Ψ1 + Ψ2)|r=a = (Ψ0 + Ψ1
1 +

∞∑
k=1

(Ψk+1
1 + Ψk

2))|r=a

= eiωτ (Ψ0+Ψ1
2)|R=a,φ=θ+eiωτ

∞∑
k=1

(Ψk
l +Ψk+1

2 )|R=a,φ=θ = eiωτ (Ψ0+Ψ1+Ψ2)|R=a,φ=θ.

Imposing wormhole conditions to (3.2.27) and (3.2.28), first order scattering
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coefficients are obtained.

C-1 yields:

∞∑
n=−∞

An·Jn(ωa)einθ+B1
n·H(1)

n (ωa)·einθ = eiωτ (
∞∑

n=−∞

ĀnJn(ωa)einθ+
∞∑

n=−∞

C1
nH

(1)
n (ωa)·einθ),

B1
n − eiωτC1

n = − Jn(ωa)

H
(1)
n (ωa)

(An − eiωτ Ān).

C-2 yields:

B1
n + eiωτC1

n = −

∂

∂r
Jn(ωr)|r=a

∂

∂r
H

(1)
n (ωr)|r=a

(An + eiωτ Ān).

Solving for B1
n and C1

n :

B1
n = −γ+

n (ωa)An + eiωτγ−n (ωa)Ān, (3.2.29)

C1
n = −γ+

n (ωa)Ān + e−iωτγ−n (ωa)An. (3.2.30)

Note that B1
n and C1

n are equal to the known parts of (3.2.17) and (3.2.18), En

and Fn, respectively.

kthorder scattering coefficients are obtained similarly as:

Bk+1
n = −γ+

n (ωa)C̄k
n + eiωτγ−n (ωa)B̄k

n, (3.2.31)

Ck+1
n = −γ+

n (ωa)B̄k
n + e−iωτγ−n (ωa)C̄k

n. (3.2.32)
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Figure 3.3: Coordinates used for 3+1 dimensions.

3.3 3+1 Dimensions

In 3+1 dimensions, the solutions of wave equation in spherical coordinates, i.e.

spherical wave functions, involve spherical Bessel functions and spherical harmonics

[30]. In agreement with the 2+1 dimensional case, Ψ0 is expressed in terms of usual

spherical Bessel functions, while Ψ1 and Ψ2 are expressed in terms of spherical

Hankel functions. Referring to fig.3.3,

Ψ0 =
∞∑

l=−∞

l∑
m=−l

Alm · jl(ωr)Ylm(θ, ϕ), (3.3.33)

Ψ1 =
∞∑

l=−∞

l∑
k=−l

Blm · h(1)
l (ωr)Ylm(θ, ϕ), (3.3.34)

Ψ2 =
∞∑

l=−∞

l∑
m=−l

Clm · h(1)
l (ωR)Ylm(Θ, ϕ), (3.3.35)

and the wormhole conditions are,

30



Ψ|r=a = eiωτΨ|R=a,Θ=θ; 0 ≤ θ ≤ π, −π < ϕ ≤ π,

∂

∂r
Ψ|r=a = −eiωτ ∂

∂R
Ψ|R=a,Θ=θ; 0 ≤ θ ≤ π, −π < ϕ ≤ π.

The addition theorems for the spherical wave functions, for ~r = ~d+ ~R are [31],[32]:

jl(ωr)Ylm(θ, ϕ) =
∑
l′m′

αlm+
l′m′ (~d)jl′(ωR)Yl′m′(π −Θ, ϕ), (3.3.36)

h
(1)
l (ωr)Ylm(θ, ϕ) =

∑
l′m′

αlm
l′m′(~d)jl′(ωR)Yl′m′(π −Θ, ϕ) for R < d, (3.3.37)

h
(1)
l (ωR)Ylm(π −Θ, ϕ) =

∑
l′m′

αlm
l′m′(−~d)jl′(ωr)Yl′m′(θ, ϕ) for r < d, (3.3.38)

where

αlm+
l′m′ (~x) ,

∑
λµ

c(lm|l′m′|λµ)jλ(ω |x|)Yλµ(x̂), (3.3.39)

αlm
l′m′(~x) ,

∑
λµ

c(lm|l′m′|λµ)h
(1)
λ (ω |x|)Yλµ(x̂).

The coefficients c(lm|l′m′|λµ) in terms of 3-j symbols are:

c(lm|l′m′|λµ) = il+λ−1(−1)m[4π(2l+1)(2l′+1)(2λ+1)]1/2

(
l l′ λ

0 0 0

)(
l l′ λ

m −m′ µ

)
(3.3.40)

The expansion (3.3.37) and (3.3.38) are valid for R < d and r < d, respectively

and they cover region where the wormhole conditions are imposed: R = a and r = a,

(a < d).

Using (3.3.36), (3.3.37) and (3.3.38), Ψ0, Ψ1 and Ψ2 are expressed as a sum of

wave functions at translated origin as:
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∑
lm

Alm · jl(ωr)Ylm(θ, ϕ) =
∑
lm

Ālmjl(ωR)Ylm(Φ, ϕ),∑
lm

Blm · h(1)
l (ωr)Ylm(θ, ϕ) =

∑
lm

B̄lmjl(ωr)Ylm(Φ, ϕ),∑
lm

Clm · h(1)
l (ωR)Ylm(Φ, ϕ) =

∑
lm

C̄lmjl(ωr)Ylm(θ, ϕ).

where the analogues of the formulas (3.2.12), (3.2.13) and (3.2.14) are (see appendix

A)

Ālm = (−1)l+m
∑

l′

Al′mαl′m+
lm (~d), (3.3.41)

B̄lm = (−1)l+m
∑

l′

Bl′mαl′m
lm (~d), (3.3.42)

C̄lm = (−1)l+m
∑

l′

Cl′mαl′m
lm (~d). (3.3.43)

3-j symbols are zero unless m−m′ = µ [33]. Furthermore, ~d = ẑd, and Yλµ(d̂) =

Yλµ(0, ϕ) is nonzero only when µ = 0. Thus m′ = m and that’s why the summation

over m′ drops in (3.3.41), (3.3.42) and (3.3.43)

Yλ0(0, ϕ) =

√
2λ + 1

4π
,

αl′m′

lm (~d) = αl′m
lm (~d) =

∑
λ,µ

c(l′m|lm|λ0)h
(1)
λ (ωd)

√
2λ + 1

4π
,

αl′m′+

lm (~d) = αl′m+

lm (~d) =
∑
λ,µ

c(l′m|lm|λ0)jλ(ωd)

√
2λ + 1

4π
.

Imposing the wormhole conditions and using the orthogonality of Ylm(θ, ϕ) for

different l,m, yields the 3+1 dimensional analogues of the equations found for 2+1

dimensions:
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Blm − eiωτClm = − jl(ωa)

h
(1)
l (ωa)

(C̄lm − eiωτ B̄lm + Alm − eiωτ Ālm),

Blm + eiωτClm = −

∂

∂r
jl(ωr)|r=a

∂

∂r
h

(1)
l (ωr)|r=a

(C̄lm − eiωτ B̄lm + Alm − eiωτ Ālm),

giving

Blm = −γ+
l (ωa)C̄lm + eiωτγ−l (ωa)B̄lm + Elm, (3.3.44)

Clm = −γ+
l (ωa)B̄lm + e−iωτγ−l (ωa)C̄lm + Flm, (3.3.45)

where Elm and Flm are known functions of Alm :

Elm = −γ+
l (ωa)Alm + eiωτγ−l (ωa)Ālm,

Flm = −γ+
l (ωa)Ālm + e−iωτγ−l (ωa)Alm,

and γ±l (ωa) are defined similar to 2+1 dimensional case:

γ+
l (ωa) ,

1

2

 jl(ωa)

h
(1)
l (ωa)

+

∂

∂r
jl(ωr)|r=a

∂

∂r
h

(1)
l (ωr)|r=a

 ,

γ−l (ωa) ,
1

2

 jl(ωa)

h
(1)
l (ωa)

−

∂

∂r
jl(ωr)|r=a

∂

∂r
h

(1)
l (ωr)|r=a

 .

Similar to the 2+1 dimensional case, (3.3.44) and (3.3.45) can be solved for a � 1

and a � d cases.
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Solutions for a � d and a � 1 :

The asymptotic form of h
(1)
l (ωd) for l � ωd allows us to compute αl′m′

lm (~d).

The similarity between 2+1 and 3+1 dimensional cases are remarkable. Indeed

for 2+1 dimensional case, if we consider X̄n =
∞∑

k=−∞
Xk−nH

(1)
k (ωd) as an opera-

tor on H
(1)
n (ωd), the asymptotic form of H

(1)
n (ωd) for n � ωd is an eigenvalue

of this operator. Similarly in the passage to the 3+1 dimensions, considering

X̄lm = (−1)l+m
∑
l′m′

Xl′m′αl′m′

lm (~d) as an operator on h
(1)
l (ωd), asymptotic form of

h
(1)
l (ωd) for l � ωd is an eigenfunction of X̄lm.

As in the 2+1 dimensional case, the presence of the γ±n (ωa) factor at each term

of the right hand sides of (3.3.44) and (3.3.45), makes Blm and Clm vanish when

ωa � l. Thus when a � d the asymptotic form of h
(1)
λ (ωd) for l � ωd can be used.

For a � 1, just like 2+1 dimensions, h
(1)
l (ωd) is zero unless l = 0 and (3.3.44)

and (3.3.45) can be solved.

a � d:

γ+
l (ωa) and γ−l (ωa) filter the terms with l > 2ωa, thus when a � d the only

terms that contribute to B̄lm and C̄lmare l � ωd. In this case h
(1)
λ (ωd) has the

asymptotic expression:

h
(1)
λ (ωd) ≈ i−(λ+1) e

iωd

ωd

Then,

B̄lm ≈
∑
l′m′

∑
λ

Bl′m′c(l′m|lm|λ0)i−(λ+1) e
iωd

ωd

√
2λ + 1

4π

Substituting

c(l′m|lm|λ0) = il
′+λ−1(−1)m[4π(2l+1)(2l′+1)(2λ+1)]1/2

(
l l′ λ

0 0 0

)(
l l′ λ

m −m 0

)
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gives:

B̄lm ≈ −eiωd

ωd

∑
l′

Bl′mil
′
(−1)m[(2l + 1)(2l′ + 1)]1/2δm0

where in the last step the orthogonality property of the 3-j symbols is used [34]:

∑
λµ

(2λ + 1)

(
l l′ λ

m1 m2 µ

)(
l l′ λ

p1 p2 µ

)
= δm1p1δm2p2.

Thus,

B̄lm ≈ −eiωd

ωd

√
(2l + 1)

∑
l′

Bl′0i
l′
√

(2l′ + 1)δm0 = −eiωd

ωd

√
(2l + 1)T (Bl0)δm0,

where, for Xl being any function of l, the functional T (Xl) is defined as:

T (Xl) ,
∑

l′

Xl′i
l′
√

(2l′ + 1)

If m 6= 0; Blm = Elm, Clm = Flm and if m = 0 :

Bl0 = −eiωτ eiωd

ωd
(−1)l

√
(2l + 1)γ−l (ωa)T (Bl0) +

eiωd

ωd
(−1)l

√
(2l + 1)γ+

l T (Cl0) + El0,

Cl0 = −e−iωτ eiωd

ωd
(−1)l

√
(2l + 1)γ−l (ωa)T (Cl0) +

eiωd

ωd
(−1)l

√
(2l + 1)γ+

l T (Bl0) + Fl0.

Multiplying each side of these equations by il
√

(2l + 1) and summing over l gives

T (Bl0) and T (Cl0) :

[
T (Bl0)

T (Cl0)

]
=

1− eiωτ eiωd

ωd
T ((−i)l(2l + 1)γ−l (ωa))

eiωd

ωd
T ((−i)l(2l + 1)γ+

l (ωa))

eiωd

ωd
T ((−i)l(2l + 1)γ+

l (ωa)) 1− e−iωτ eiωd

ωd
T ((−i)l(2l + 1)γ−l (ωa))


−1 [

T (El0)

T (Fl0)

]
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a � 1:

Similar to the 2+1 dimensional case, for a � 1, γ±l (ωa) becomes a discrete delta

function, δl. Due to the factors of γ±l (ωa) in each term, Blm and Clm are nonzero

for only l = m = 0. The problem reduces to finding the constants B00 and C00.

γ+
l (ωa) ≈ γ−l (ωa) ≈ ωa

i + ωa
δl,

Blm = B00δlδm,

Clm = C00δlδm.

l = 0 implies m = 0 and l′ = λ, so that

B̄00 =
∑

λ

B00δλc(λ0|00|λ0)h
(1)
λ (ωd)

√
2λ + 1

4π
= B00h

(1)
0 (ωd),

C̄00 =
∑

λ

C00δλc(λ0|00|λ0)h
(1)
λ (ωd)(−1)λ

√
2λ + 1

4π
= C00h

(1)
0 (ωd).

B00 and C00 are found as:

[
B00

C00

]
=

[
1− eiωτh

(1)
0 (ωd) h

(1)
0 (ωd)

h
(1)
0 (ωd) 1− e−iωτh

(1)
0 (ωd)

]−1 [
E00

F00

]
.

Multiple scattering

Multiple scattering formulae for the 3+1 dimensions can be found by the same

steps followed as the 2+1 dimensional case. The multiple scattering expansion of

3+1 dimensional wave functions are:

36



Ψk
1 =

∑
lm

Bk
lm · h

(1)
l (ωr)Ylm(θ, ϕ),

Ψk
2 =

∑
lm

Ck
lm · h

(1)
l (ωR)Ylm(Θ, ϕ),

The wormhole conditions for the 1st and the kth order scattering coefficients for

3 dimensional case are:

(Ψ0 + Ψ1
1)r=a = eiωτ (Ψ0 + Ψ1

2)R=a,Θ=θ,

∂

∂r
(Ψ0 + Ψ1

1)|r=a = −eiωτ ∂

∂R
(Ψ0 + Ψ1

2)|R=a,Θ=θ,

(Ψk+1
1 + Ψk

2)|r=a = eiωτ (Ψk
1 + Ψk+1

2 )|R=a,Θ=θ,

∂

∂r
(Ψk+1

1 + Ψk
2)|r=a = −eiωτ ∂

∂R
(Ψk

1 + Ψk+1
2 )|R=a,Θ=θ,

When the 1st and the kth order scattering coefficients satisfies the wormhole

conditions, total wave satisfies wormhole conditions as well:

Ψ|r=a = (Ψ0 + Ψ1 + Ψ2)|r=a = (Ψ0 + Ψ1
1 +

∞∑
k=1

(Ψk+1
1 + Ψk

2))|r=a

= eiωτ (Ψ0+Ψ1
2)|R=a,Θ=θ+eiωτ

∞∑
k=1

(Ψk
l +Ψk+1

2 )|R=a,Θ=θ = eiωτ (Ψ0+Ψ1+Ψ2)|R=a,Θ=θ.

Wormhole conditions for the 1st order coefficients gives:
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∑
lm

Almjl(ωa)Ylm(θ, ϕ) + B1
lm · h

(1)
l (ωa)Ylm(θ, ϕ)

= eiωτ (
∑
lm

Ālmjl(ωa)Ylm(θ, ϕ) +
∑
lm

C1
lmh

(1)
l (ωa)Ylm(θ, ϕ)),

Equating the coefficients of Ylm(θ, ϕ) for each l,m :

B1
lm − eiωτC1

lm = − jl(ωa)

h
(1)
l (ωa)

(Alm − eiωτ Ālm). (3.3.46)

∑
lm

Almjl(ωa)Ylm(θ, ϕ) + B1
lm · h

(1)
l (ωa)Ylm(θ, ϕ)

= eiωτ (
∑
lm

Ālmjl(ωa)Ylm(θ, ϕ) +
∑
lm

C1
lmh

(1)
l (ωa)Ylm(θ, ϕ)),

gives a second equation similar to (3.3.46)

B1
lm + eiωτC1

lm = −

∂

∂r
jl(ωa)

∂

∂r
h

(1)
l (ωa)

(Alm + eiωτ Ālm). (3.3.47)

Solving B1
lm and C1

lm gives:

B1
lm = −γ+

l (ωa)Alm + eiωτγ−l (ωa)Ālm, (3.3.48)

C1
lm = −γ+

l (ωa)Ālm + e−iωτγ−n (ωa)Alm. (3.3.49)

and kth order scattering coefficients are found similarly as:
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Bk+1
lm = −γ+

l (ωa)C̄k
lm + eiωτγ−n (ωa)B̄k

lm,

Ck+1
lm = −γ+

l (ωa)B̄k
lm + e−iωτγ−n (ωa)C̄k

lm.

3.4 Numerical verification of the solution:

In this section, the solutions for certain values of a, d, ω and τ are evaluated

numerically for 2+1 dimensions and it is verified that they satisfy wormhole condi-

tions. Numerical evaluation of solutions are done by using the multiple scattering

results (3.2.29), (3.2.30), (3.2.31) and (3.2.32). Alternatively (3.2.17) and (3.2.18)

are tested by an iteration method. For iteration, two initial test functions B0
n and

C0
n are picked and substituted to right hand sides of (3.2.17) and (3.2.18) to ob-

tain B1
n and C1

n. Similarly B1
n and C1

n are substituted to (3.2.17) and (3.2.18) to

obtain B2
n and C2

n. Continuing this iteration, Bm
n and Cm

n are assumed to converge

to the solution. No proof for the conditions of convergence is given, it is verified

numerically that the solution found by iteration method converges to the multiple

scattering solution for the parameter sets that are considered.

Moreover, to check the formulas found for a � d the solutions found by this

method is compared with the multiple scattering solution.

As the velocity of wave is taken as 1 in equation (3.1.1), ωd = 2πd/λ and

ωa = 2πa/λ where λ is the wavelength of the wave. Practically if when a light wave

in a wormhole universe is considered, these values supposed to be much larger (at

least order of ∼ 1010) compared to what chosen in the below examples. However,

numerical calculations with such large values were beyond the capacity of the PC

used and there is no reason to think that the formulas will fail for large values.

The incident wave Ψ0 is chosen as a plane wave and An = einα, where α is the

angle between direction of the incident wave and the y axis.

Referring to figure 3.2, the wormhole is located symmetrically with respect to the

y axis. Consider the reflection operator R with respect to the y axis, i.e. RΨ(x, y) =
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Figure 3.4: The contour plot of Re(Ψ − eiωτRΨ) in the vicinity of left wormhole
mouth ∆−. The contour circle at r = a shows that (Ψ − eiωτRΨ)|r=a is constant.
(ωa = 20; ωd = 120; τ = 1; α = π/3)
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Figure 3.5: The contour plot of Re(
∂

∂r
(Ψ+eiωτRΨ)) in the vicinity of left wormhole

mouth ∆−. The same contour circle at r = a is evident.(ωa = 20; ωd = 120; τ =
1; α = π/3)
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Figure 3.6: The contour plot of Re(Ψ) in the vicinity of ∆−. The incident wave
is coming from the left with an angle π/3 and the shadow is on the opposite side.
(ωa = 20; ωd = 120; τ = 1; α = π/3).
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Figure 3.7: Comparison of the multiple scattering and the iteration results. The
difference of |Bn| found by these two methods are points with marker ‘x’ which are
zero for all n. (ωa = 20; ωd = 120; τ = 1; α = π/3)

Ψ(−x, y). According to the wormhole conditions C-1 and C-2

(Ψ− eiωτRΨ)|r=a = 0 (3.4.50)

∂

∂r
(Ψ + eiωτRΨ)|r=a = 0 (3.4.51)

It is verified that the solution found satisfies (3.4.50)and (3.4.51) by plotting the

contours at the vicinity of one of the wormhole mouths.

In Figure.3.4, figure 3.5, figure 3.6 and figure 3.7 the parameters are: ωa =

20, ωd = 120, α = π/3, ωτ = 1.Figure 3.4 and figure 3.5 show contour plots of the

multiple scattering solution for real part of Ψ(x, y)+eiωτR(Ψ(x, y) and
∂

∂r
(Ψ(x, y)−

eiωτR(Ψ(x, y)), respectively. In both figures, the contour circles at ωr = ωa = 20

are clearly visible indicating that the values of each function are zero along r = a

circle. This shows that the wormhole conditions are satisfied. The contour plots

of imaginary parts -which are not presented here- give the same contour circles at

r = a. Although the contour is plotted for 0.8a < r < d to make the zero contour
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Figure 3.8: Comparison of the multiple scattering and the a � d approximation.
(ωa = 5; ωd = 1600; ωτ = 1; α = π/5)

circle more visible, it should be remembered that the region r < a is not a part of

the spacetime. Figure 3.6 is a contour plot of the real part of the solution Ψ(r, θ)

to give an example of a visual image of the solution. Figure 3.7 is a comparison of

the multiple scattering solution and the iteration solution. The solid line with ‘+’

markers show the |Bn| that are found by multiple scattering and dashed line with ‘x’

markers are the difference of the absolute values of Bn found by the iteration method

and the multiple scattering method. The difference is zero for all n; i.e. these two

solutions are exactly the same. The results are obtained after 20 iterations. The

test functions are chosen as constant, B0
n = C0

n = 1.

In figure 3.8, the parameters are: ωa = 5, ωd = 1600, α = π/5, ωτ = 1. This is

an example for a � d case. In the figure |Bn| versus n is plotted. The solid line with

‘+’ markers is the multiple scattering solution and the dashed line with ‘x’ markers

is the a � d approximation solutions given by (3.2.22) and (3.2.23).
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3.5 Dependence of the scattered waves to worm-

hole parameters

In this section, the results found for scattered wave solutions from a 2+1 di-

mensional wormhole will be explored for different time lag τ, incidence angle α, and

wormhole parameters a, d. The results will be compared with that of a conducting

sphere of radius equal to radius of wormhole throat. The parameter that distin-

guishes the wormhole from an ordinary globally hyperbolic manifold with an handle

is the time lag τ . First the solutions with different τ are compared.

Effect of τ :

Since τ enters to the equations as exp(iωτ) , the important quantity is ωτ instead

of τ . exp(iωτ) being periodic with 2π , it is sufficient to consider the effect of ωτ

in the range 0 ≤ ωτ ≤ 2π. The coefficients Bn and Cn are obtained for ωτ =

0, ωτ = π/2 and ωτ = π. The other parameters are kept constant: (ωa = 15,

ωd = 200, α = 0).

The geometry of the 2+1 dimensional wormhole has mirror symmetry along y

axis. When the incidence angle α is zero, the incident wave is symmetrical along y

axis also, and the solution will be symmetrical as well. On the contrary when the

incidence angle is π/2, the left wormhole mouth will shadow the right mouth and

symmetry will be lost like any other nonzero incidence angle. Therefore for α = 0,

due to symmetry Bn is equal to Cn. When α 6= 0, changing α to −α interchanges

the role of Bn and Cn. Therefore only Bn is plotted.

The magnitude of Bn for three different values of ωτ is shown in figure 3.8. It

is seen that the coefficients for n > ωa vanishes rapidly as usual, and for the lower

values of n, the envelope of the magnitudes are almost uniform. But at the sides

of the spectrum, there exist one last smaller peak for ωτ = 0, and this peak fades

away as ωτ deflects from zero. The same pattern is observed for another set of

parameters: ωa = 60, ωd = 180, α = 0 with α unchanged (Figure 3.9).

The phase of Bn does not seem to give any significant information and not

plotted. In Figure 3.10 is an example for α 6= 0 case. α = π/3; ωa = 30, ωd = 300.

45



Figure 3.9: Scattering coefficients for different ωτ values: From above to below ωτ
values are π, π/2 and 0, respectively. (ωa = 15, ωd = 200, α = 0).

The contour plot of the real part of the total wave for τ = 0, τ = π/2 and τ = π

are shown in Figure 3.11, Figure 3.12 and Figure 3.13. It is interesting that the

wormhole mouth completely shadows the incident wave and the total wave is almost

zero in the shadowed region. Different set of a and d confirms this observation. The

shadow effect is most strong for τ = π. We have no theoretical explanation so far

for this observation. Not only the real part, imaginary part of the total wave is

also zero in the shadow region. This situation is not specific to α = 0; the same

phenomena is observed in different incident wave directions.

Comparison of the small d/a and large d/a cases.

To observe the effect of moving apart the wormholes mouths, the scattered wave

coefficients are calculated for two different parameter set. The radius of the throat

a is kept constant and d is increased. Figure 3.14 shows the α = 0 case and Figure

3.15 shows α = π/3 case.
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Figure 3.10: From above to below, ωτ values are again π, π/2 and 0, respectively.
(ωa = 60, ωd = 180, α = 0).

3.6 Comparison with the scattering from a con-

ducting cylinder:

The problem of scattering from a wormhole that admit closed timelike curves is

handled identical to scattering from an arbitrary object. The topology of the space-

time itself can be viewed as an scatterer object. If there were a real wormhole in the

universe it would be possible to obtain the radar image of the wormhole by sending

waves and measuring the reflected wave. Considering that the wormhole studied in

this thesis is cylindrical (or spherical for 3+1 dimensional case), the coefficients of

scattering from a cylindrical object satisfying Dirichlet boundary conditions on its

surface can be can be compared with that of wormhole.

The expression for an incident plane wave making an angle α with y axis is:

eiωr sin(α−θ) =
n=∞∑

n=−∞

e−inαJn(ωr)einθ (3.6.52)
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Figure 3.11: α = π/3. ωτ values are again π, π/2 and 0, respectively from above
to below. (ωa = 30, ωd = 300).

The scattered wave can be expressed as:

Ψs(r, θ) =
n=∞∑

n=−∞

DnH
(1)
n (ωr)einθ (3.6.53)

Applying the Dirichlet boundary condition at r = a gives:

Dn = −e−inαJn(ωa)

H
(1)
n (ωa)

(3.6.54)

The magnitudes of Bn and Dn are shown in figure 3.16 where ωa = 20, ωd = 80,

τ = 0, α = π/3. Figure also shows ωτ = π case. The coefficients Bn and Dn, both

vanishes rapidly for n > ωa and their pattern are similar in this sense.
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Figure 3.12: The Contour plot of the total wave around left wormhole mouth for
ωτ = 0. (ωa = 15, ωd = 40, α = 0)
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Figure 3.13: The Contour plot of the total wave around left wormhole mouth for
ωτ = π/2. (ωa = 15, ωd = 40, α = 0)
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Figure 3.14: The Contour plot of the total wave around left wormhole mouth for
ωτ = π. The effect of the shadow at upper part of the wormhole mouth shows itself
stronger than othe ωτ values. (ωa = 15, ωd = 40, α = 0)
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Figure 3.15: Below: ωa = 15, ωd = 1600; above: ωa = 15, ωd = 30.02. (α = 0)

Figure 3.16: From above to below, ωd = 500, ωd = 200, ωd = 50 and ωd = 42
respectively. (ωa = 15, α = π/3).
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Figure 3.17: From above to below: (1) conducting sphere. (2) wormhole: ωτ = π;
(3) wormhole: ωτ = 0 ; (ωa = 20, ωd = 80, α = 0)
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chapter 4

CONCLUSIONS

The principal purpose of the present work was to investigate the properties of

scalar waves in chronology violating spacetimes and specifically in a wormhole topol-

ogy.

The principal results can be summarized as follows: Existence of closed timelike

curves may force the solution of the wave equation to be composed of frequencies

from a set discrete set: Not all the frequencies which form a continuum can exist

as the solution, instead only certain frequencies that constitute a discrete set are

allowed.

However, this is not true for all spacetimes that admit closed timelike curves.

In the wormhole spacetime analysed in section III, there is no restriction on the

frequency of the waves. The main difference between the spacetimes studied in

section II (which has the frequency selection property) and wormhole spacetime is

that in wormhole spacetime, the region of the spacetime that closed null curves are

confined to a set of measure zero in the spacetime. It can be conjectured that if a

spacetime admits closed null curves and if these curves are not confined to a set of

measure zero within the spacetime the solution of the wave equation has frequency

selection property.

On the other hand frequency selection is not specific to spacetimes admitting

closed timelike curves; the results of Chapter II.A shows that product manifolds

whose space component is compact may also have the same property. Thus it seems

that there is no anomaly specific to existence of closed timelike curves.

Although the wormhole spacetime considered in this work admits CTCs for suffi-

ciently large values of time lag τ , their existence has no influence on monochromatic

waves. The closed timelike curves emerge when time lag τ is greater than d − 2a.

However, τ appears in the equations only as exp(iωτ). Thus the solution remains
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the same for all integer k’s where ωτ = 2kπ + α and increasing τ does not change

the nature of the solutions. This suggests that the presence of closed timelike curves

does not have a dramatic effect on the scalar wave solutions.

This should not be surprising considering that, in a wave equation, what really

matters is presence of closed null curves, rather than closed timelike curves. It is

reasonable to think that the existence of closed timelike curves will not effect the

nature of the solutions as long as closed null curves are not present. CTC’s are

present in the flat wormhole spacetime studied here, but still they don’t have a

significant effect on the solution. The reason is explained in [17]: In this kind of

spacetimes, the closed null curves are a set of measure zero and due to the diverging

lens property of the wormhole, the strength of the field is weakened by a factor a/2d

at each loop in the infinitely looping closed null geodesics [35],[36].

The complications related to closed timelike curves are due to difficulty in spec-

ifying a Cauchy hypersurface when solving the Cauchy problem. Null geodesics are

bicharacteristics of the wave equation and arbitrary initial data cannot be properly

posed in a null direction [1]. A spacelike hypersurface never contains vectors in a

null direction, thus are good candidates for specifying initial data. However there

always exist a null direction on a timelike point of a hypersurface. In the light of

these discussions it can be conjectured that no complications arise on the solution

of wave equation due to CTC’s. The complications are mainly due to the nature of

Cauchy problem approach.

If we consider the question in a purely mathematical point of view, the form of

the wave equation considered is almost symmetric with respect to time and space

variables. For the 1+1 dimensions there is complete symmetry (remembering that

the minus sign on the time derivative does not effect the symmetry since it is al-

ways possible to reverse the signs) and for higher dimensions the only difference

is having more space variables. This suggest that there is no strong mathematical

background for expecting disparate consequences of existence of CTC’s compared

to existence of closed curves along any space direction. On the other hand more

space coordinates give rise to asymmetry between the spacelike hypersurfaces and

the timelike hypersurfaces in Cauchy problem due to the shape of the null cone: Any

timelike hypersurface passing through a spacetime point intersects the null cone of
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that point, while spacelike hypersurfaces does not.

There is a strong analogy between 2+1 and 3+1 cases, which suggests that

the results can be extended to n + 1 dimensions easily. In any dimensions, the

solutions can be expressed in terms of spherical waves, f(r)Y (Ω), where r is the

radial distance and Ω denotes the angular part [24]. In addition, to be able to

apply the same method, an addition theorem similar to that of the 2+1 and 3+1

dimensions is needed for this higher dimension. The similarity of (3.2.17), (3.2.18)

with (3.3.44), (3.3.45) suggests that the solution for higher dimensions are readily

given by these equations where the expressions of B̄ and C̄ in terms of B and C will

be found using addition theorems of those dimensions.
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appendix

Calculation of Ālm, B̄lm and C̄lm

Referring to the equations (3.3.33), (3.3.34) and (3.3.35)

∑
lm

Alm · jl(ωr)Ylm(θ, ϕ) =
∑
lm

Ālmjl(ωR)Ylm(Φ, ϕ),∑
lm

Blm · h(1)
l (ωr)Ylm(θ, ϕ) =

∑
lm

B̄lmjl(ωr)Ylm(Φ, ϕ),∑
lm

Clm · h(1)
l (ωR)Ylm(Φ, ϕ) =

∑
lm

C̄lmjl(ωr)Ylm(θ, ϕ),

(3.3.36), (3.3.37) and (3.3.38) can be employed to calculate Ālm, B̄lm and C̄lm.

Considering Ψ0,

Ψ0 =
∑
lm

Alm · jl(ωr)Ylm(θ, ϕ) =
∑
lm

Alm

∑
l′m′

αlm+
l′m′ (~d)jl′(ωR)Yl′m′(π −Θ, ϕ)

=
∑
lm

Alm

∑
l′m′

αlm+
l′m′ (~d)jl′(ωR)(−1)l′+m′

Yl′m′(Θ, ϕ)

=
∑
lm

(−1)l+m(
∑
l′m′

Al′m′αl′m′+
lm (~d))jl(ωR)Ylm(Θ, ϕ).

In the last step the order of summations and indices lm and l′m′ are interchanged.

It is assumed that these series converge and changing the order of the summations

is valid [32].

Thus
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Ā = (−1)l+m(
∑
l′m′

Al′m′αl′m′+
lm (~d)).

Calculation of the B̄lm is identical except αl′m′+
lm is replaced by αl′m′

lm . To find Clm:

Ψ2 =
∑
lm

Clm · h(1)
l (ωR)Ylm(Θ, ϕ) =

∑
lm

(−1)l+mClm · h(1)
l (ωR)Ylm(π −Θ, ϕ)

=
∑
lm

(−1)l+mClm

∑
l′m′

αlm
l′m′(−~d)jl′(ωr)Yl′m′(θ, ϕ)

=
∑
lm

(
∑
l′m′

(−1)l′+m′
Cl′m′αl′m′

lm (−~d))jl(ωr)Ylm(θ, ϕ)

=
∑
lm

(
∑
l′m′

(−1)l′+m′
Cl′m′αl′m′

lm (−~d))jl(ωr)Ylm(θ, ϕ). (4.0.1)

Recalling (3.3.39):

αl′m′

lm (−~d) = αl′m
lm (−~d)

∑
λµ

c(lm|l′m|λ0)h
(1)
λ (ωd)Yλ0(π, ϕ)

=
∑
λµ

c(lm|l′m|λ0)h
(1)
λ (ωd)(−1)λ

√
2λ + 1

4π
.

The

(
l l′ λ

0 0 0

)
factor in c(lm|l′m|λ0) is zero when l′ + l + λ is odd. Thus

(−1)l+l′+λ = 1 and (−1)λ = (−1)l+l′ , yielding

αl′m′

lm (−~d) = (−1)l+l′
∑
λµ

c(lm|l′m|λ0)h
(1)
λ (ωd)

√
2λ + 1

4π
= (−1)l+l′αl′m

lm (~d).

Substituting in (4.0.1)
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∑
lm

Clm · h(1)
l (ωR)Ylm(Θ, ϕ) =

∑
lm

((−1)l+m
∑

l′

Cl′m′αl′m
lm (~d))jl(ωr)Ylm(θ, ϕ).

Hence

C̄lm = (−1)l+m
∑

l′

Cl′mαl′m
lm (~d).
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