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Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

Prof. Dr. Gerhard Wilhelm WEBER

Supervisor

Examining Committee Members

Prof. Dr. Bülent Karasözen
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Abstract

DISCRETE TOMOGRAPHIC RECONSTRUCTION

METHODS FROM THE THEORIES OF

OPTIMIZATION AND INVERSE PROBLEMS:

APPLICATION IN VLSI MICROCHIP PRODUCTION

Osman Özgür

M.Sc., Department of Scientific Computing

Supervisor: Prof. Dr. Gerhard Wilhelm Weber

January 2006, 127 pages

Optimization theory is a key technology for inverse problems of reconstruction

in science, engineering and economy. Discrete tomography is a modern research

field dealing with the reconstruction of finite objects in, e.g., VLSI chip design,

where this thesis will focus on. In this work, a framework with its supplemen-

tary algorithms and a new problem reformulation are introduced to approxi-

mately resolve this NP-hard problem. The framework is modular, so that other

reconstruction methods, optimization techniques, optimal experimental design

methods can be incorporated within. The problem is being revisited with a new

optimization formulation, and interpretations of known methods in accordance

with the framework are also given. Supplementary algorithms are combined or

incorporated to improve the solution or to reduce the cost in terms of time and

space from the computational point of view.

Keywords: Discrete Tomography, Reconstruction, Inverse Problems, VLSI

Microchip Design, Constrained Optimization, Derivative Free Optimization.
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Öz

OPTİMİZASYON VE TERS PROBLEMLER

TEORİSİNDEN AYRIK TOMOGRAFİ

YENİDEN OLUŞTURMA METODLARI:

VLSI MİKROÇİP ÜRETİMİNDE UYGULAMASI

Osman Özgür

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi: Prof. Dr. Gerhard Wilhelm Weber

Ocak 2006, 127 sayfa

Optimizasyon teorisi bilim, teknoloji ve ekonomideki ters problemler için anahtar

bir teknolojidir. Ayrık Tomografi, sonlu objelerin yeniden oluşturulması ile il-

gilenen yeni bir araştırma alanıdır. Bu tezde, Ayrık Tomografinin VLSI çip

dizayn ve üretiminde uygulanmasına yer verilecektir. Bu tezde, farklı bir opti-

mizasyon formülasyonu, bu formülasyonun kullanıldığı yeni bir çerçeve, ve bu

çerçevede kullanılmak üzere bazı yardımcı algoritmalar sunarak NP-hard olan

bu probleme (Ayrık Tomografi) bir çözüm buluyoruz. Yeni yaklaşımımız, diğer

yeniden oluşturma metodlarının, optimizasyon tekniklerinin, optimum deneysel

dizayn metodlarının da kullanılabileceği modüler bir yapıya sahiptir. Problem

yeni bir optimizasyon formülasyonu ile incelenmiş ve ayrıca bilinen bazı diğer

çözüm metodlarının da bu yeni çerçevede kullanımı değerlendirilmiştir.

Anahtar Kelimeler: Ayrık Tomografi, Ters Problemler, VLSI Mikroçip Dizaynı,

Koşullu, Türevsiz Optimizasyon.
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vi



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
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Chapter 1

Introduction

The word tomography is derived from the combination of the Greek words tomos

(meaning slice), and graphia (meaning describing). So, tomography, as a

word can be considered as ’reconstruction from projections’. In other words,

reconstructing the inner structure of the object just using cross sections without

scattering or damaging the object. The word ”object” here, may be a function,

or a mathematical model of a real object. So, tomography can be thought of as

a reconstruction of a function from its line or hyperplane integrals, which is an

inverse problem [45].

The process of obtaining the density distribution within the an object from

multiple projections (i.e., images from different angles) is called reconstruc-

tion. Because, only the projections (images obtained from different angles) are

known, and we want to obtain the density distribution. A known example from

brain tomography consists of obtaining some cross section images and trying to

reconstruct the actual structure as in Figure 1.1:

Figure 1.1: 2D cross section images are used to reconstruct 3D structure [33].
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1.1 Technology Used in Tomography

The problem of tomography has been studied by many researchers. Mathemat-

ical model of the problem has been developed and many algorithms have been

introduced together with their theoretical aspects. Since the process of this

reconstruction is hard to solve, in practice, computer help is needed. Therefore,

with the computer usage, the problem sometimes makes use of computerized(or

computed) tomography (CT) or computer-assisted tomography (CAT).

The internal property of the object to be reconstructed, such as density, space

dependent attenuation coefficient, molecular or atomic distribution, etc., is gen-

erally referred to as internal distribution.

The fundamental idea of the tomography depends on the fact that, objects

consist of different types of atoms or molecules. So, any object to be investi-

gated has different physical properties, such as electrical resistivity, magnetic

flux response, conductivity. Using this fact, instruments have been developed

to measure these differences and values of the object. With these instruments,

the values such as electrical resistivity, magnetic flux response, or conductivity

(according to the instrument used) of the object are measured. Then using the

measured values, the object’s internal distribution is tried to be reconstructed.

Figure 1.2: Illustration of a simple X-ray measurement.
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The physical instruments to obtain the cross sections may differ from X-rays,

gamma rays, visible light, electrons or neutrons to ultrasound waves or nuclear

magnetic resonance signals. Figure 1.2 illustrates a simple X-ray measurement.

Figure 1.3: Illustration of line sums of a 2-dimensional object.

The instruments take measurements from different angles, distances, and pow-

ers. The instruments make use of the values such as latency of the ray from

source to detector, attenuation values and the physical properties of the object

to output cross sectional values. Using these information, the atomic or molec-

ular density of the object along a ray (line) can be obtained. Here, the density

may be the inverse of the ray’s latency, the number of atoms each ray touched,

etc. The density along a line is called line integral or line sum . In Figure

1.3, the line sums of a 2-dimensional object is illustrated. In the figure, the

red points represent the particles of the object, and the line sums correspond

to the ”number of atoms each ray touched or hit”. Using electron microscopy,

with nowadays technology, it is possible to count the number of atoms in each

atomic column of a crystal, in the case there is only one type of atom ([30, 48]).
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Figure 1.4: Types of beam geometries: Left: parallel beam, Right: fan beam [45].

Here, line integrals or sums can be obtained in two different beam geometries:

Parallel beam or fan beam geometries are used to obtain the line integrals or

sums, as illustrated in Figure 1.4.

The tomographic reconstruction problem is concerned with the reconstruction

of an object from a set of line integrals or line sums through the object. After

obtaining the projections (line sums or integrals) from different angles, these

are used to reconstruct the original object’s density distribution or atomic (or

molecular) structure of it.

Mathematically, the object corresponds to a real-valued function defined over a

subset of n-dimensional space, and the so-called reconstruction problem, is to

reconstruct the function from its integrals or sums over subsets of its domain.

The mathematical model and its correspondence to this context will be given

in Section 2.1.
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Figure 1.5: Line sums of a 2-dimensional object [33].

According to the probe of the region, there are mainly 2 types of tomography.

If the probe is outside the object, then this type of tomography is called trans-

mission computerized tomography (TCT). If the probe is inside the object to be

reconstructed, then this type of tomography is called emission computerized to-

mography (ECT). The ECT has also 2 variants: SPECT (single particle ECT)

where the radiation along a half line is detected, and PET (positron emission

tomography) in which radiation emitted along opposite direction is detected.

There are also other types of tomography [45], such as reflection tomography

[28], electric impedance tomography [52], biomagnetic imaging [26], and diffrac-

tion tomography [22, 23].

1.2 Applications of Computerized Tomography

In general terms, computerized tomography is used in geology, geodesics, med-

ical imaging, diagnostic medicine, industrial manufacturing, electron microscopy,

crystallography, combinatorics, computer vision, and many other areas. For ex-

amples of applications of computerized tomography, the reader is referred to

[23], and applications of discrete tomography can be found in [25].
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1.3 Difficulties of Computerized Tomography

Although today’s technology offers more accurate imaging and high computa-

tion power, there are still difficulties to be solved in most practical applications

of computerized tomography.

Remark 1.1. Here, by ”computational complexity of the problem”, it is meant

that, ”computational complexity of the algorithms that solves the problem”.

Computational complexity of an algorithm can be considered roughly as the

time it takes the algorithm to solve the problem . This computation

time is usually measured by a function of the algorithm’s input length. Mostly

used functions as a computational complexity are polynomial, exponential, log-

arithmic functions. If an algorithm finds the solution of the problem in n2 + n

steps where n is the input length, then it is said that its computational com-

plexity is polynomial of order 2. As input length (data) given to an algorithm

increases, the computation of a solution will increase according to the com-

putational complexity function of the algorithm. For a detailed description of

computational complexity and NP-completeness, you can refer to the excellent

source [15].

One of the important difficulties is that, in most real life tomography problems

(such as reconstruction), the problem is NP-complete or NP-hard [25] (Remark

1.1). Roughly speaking, NP-complete or NP-hard problems are the class of

problems whose exact solutions require too much time. Therefore, finding an

exact solution becomes infeasible in practice because of the high computational

complexity of the algorithms. This infeasibility is finding a solution in a rea-

sonable time with less storage requirements of computers.

Increasing the number of projections to be taken can yield better solutions,

but the trade-off in this point is that, the intensive radiation of the rays may

damage the object which is being investigated, or it would cost time. Especially

in non-destructive testing, reverse engineering of fragile materials, and more

importantly, investigation of human body with harmful rays or instruments,
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this becomes an issue.

As it will be explained in Section 2.2, even the problem of reconstruction can

be expressed as a linear system of equations, the problem is an inverse problem.

Moreover, like most of the inverse problems suffer from being ill-conditioned,

reconstruction with the linear system of equations also suffers from this aspect.

For inverse problems, some alternative solutions of them, and solutions for the

ill-conditioned problems can be found in [1].

1.4 Discrete Tomography: Intuitive Definition

When the object to be reconstructed is considered to be a real-valued function

defined over a subset of n-dimensional space, the domain of the function is said

to be continuous if it contains all points in a region. Similarly, the range of the

function is continuous if it can have any value in an interval.

The tomographic inversion problem may be continuous or discrete. In con-

tinuous tomography, both the domain and the range is continuous, however,

in discrete tomography, the domain of the function can be either discrete or

continuous, but the range is a finite subset of real numbers.

Assume, an unknown function f which has a domain either discrete or contin-

uous, and has a discrete range whose values are known. The main problems of

discrete tomography are about determining the function f from weighted inte-

grals or line sums. So, the problem is inverse, where only the values at some

points are known and even the function f is not known, we try to construct

either f (if it is possible), or an approximate one.

1.5 Brief History of Discrete Tomography

The name discrete tomography (DT) is due to Larry Shepp in 1994. DT has

its own mathematical theory based mostly on discrete mathematics and has
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connections with combinatorics and geometry.

Many problems of DT were first discussed as combinatorial problems between

1950 and 1960. In 1957, Ryser [46] published a necessary and sufficient consis-

tency condition for a pair of integral vectors of a (0− 1)-matrix, which is a spe-

cial case of Lorentz’s result [34]. First reconstruction algorithm is due to Ryser

[46, 47], with a reconstructive algorithm. The 2-dimensional case on (0 − 1)-

matrices has been studied by him and the concepts related to variances and

invariants, namely, interchange operators, interchange operations, and structure

matrix have been introduced by Ryser [47].

Some theoretical studies have been performed for the three main problems of

DT, namely, consistency, uniqueness, reconstruction [4, 7, 6, 13, 14, 17, 25, 57].

These are studied with their algebraic solutions and computational complexities.

Theoretical results have been found for the reconstruction problem subject to

some constraints such as (non-)orthogonality of projections [7, 6], limited num-

ber of projections [27, 31, 32], horizontal/vertical convexities [3], polyominoes

[2, 8, 54], connectedness, different geometries of beam scans. These are studied

with their algebraic and approximate solutions and computational complexities.

Some studies are on applications of DT results to medical and industrial fields.

These applications include medical imaging (e.g., angiography of heart chamber

[42]), computer vision, pattern recognition, electron microscopy and many other

applications [53, 55, 56].

1.6 Objective and Scope of the Thesis

This thesis focuses on the application of Discrete Tomography in VLSI (Very

Large Scale Integrated Circuit) microchip design. In VLSI technology,

the microchips are printed on a silicone material. The silicone material should

be very homogenous and must not contain any holes or impurities. Therefore,

the density distribution and the atomic structure of the silicone material should

be investigated before production of VLSI microchip. Moreover, after the pro-
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duction, the quality of the product may also be required. For these two cases,

the advances in Discrete Tomography can be used. In this thesis, reconstruc-

tion of the density distribution (atomic structure) of the silicone material will

be investigated, treating as any object. Here, X-rays with parallel beam geome-

try will be used and the line sums are considered to be number of particles along

a ray. However, there are constraints on this problem. Some of these are: the

number of projections should be minimal, to prevent damaging the object from

the intensive X-ray beams, the solution must be found in a reasonable time and

space limit, and the solution must reveal as much information as possible of the

material investigated.

1.7 Outline of the Thesis

The organization of this thesis will be as follows:

In Chapter 2, the mathematical model and the main definitions will be intro-

duced. These are presented with the notation presented in G. T. Herman and A.

Kuba’s book ([25]). In Section 2.2, the main problems of Discrete Tomography

will be given with its mathematical definition.

In Chapter 3, some of the solutions of reconstruction problems have been given.

In each section, a different solution from the literature is introduced. In Section

3.9, I comment on the studies presented throughout the chapter.

In Chapter 4, some information on VLSI microchip production will be given.

Section 4.3, introduces the application areas of Discrete Tomography in VLSI

microchip production.

Finally, in Chapter 5, I present my solution proposal and the experimental

results of it. In Section 5.3, a small comparison with my proposed method and

some of the existing methods, in terms of reconstruction results will be given.
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Chapter 2

Mathematical Model and

Foundations

2.1 Definitions

Let Z stand for the set of integers, and N0 denotes the set of natural num-

bers including 0. The following definitions are generally used in literature with

different notation [25].

Remark 2.1. In this chapter and in Chapter 5, the notation presented here will

be used. However, in Chapter 3, the works of the researchers will be presented

with their notation.

Definition 2.2. Discrete sets F , F ⊆ Zd which are finite subsets of integer

vectors are called lattice sets .

Definition 2.3. The embedding set Zd, called a lattice , or a rectangular subset

of it containing a given lattice set F can be considered as a regular grid of points

or positions. The latter ones are also called cells .

Remark 2.4. In DT, we work on d-dimensional Euclidean space. In Euclidean

space, a lattice is defined as the set of all linear combinations with integer

coefficients of a fixed set of d linearly independent vectors. Since any such lattice

is isomorphic to the integer lattice Zd under a nonsingular transformation, in

DT it is enough to study the case of the integer lattice set Zd ([25]).

Definition 2.5. Lattice directions are nonzero vectors v in the lattice Zd,

but over the field Q of rational numbers, which implies v ∈ Qd. A finite sequence
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of distinct lattice directions will be denoted by D, hence, for some q ∈ N, q ≥ 2,

these are vj ∈ Qd, (j = 1, ..., q) such that

D = (v1, v2, . . . , vq). (2.1.1)

Definition 2.6. A lattice line l is parallel to a vector vk where vk is the kth

component of a sequence of D of lattice directions and, furthermore, it has a

nonempty intersection with the lattice: l ∩ Zd 6= ∅.

Remark 2.7. In this context, ”vk ∈ D” will be used instead of ”vk is the kth

component of a sequence of D of lattice directions” for simplification.

For a visualization of lattice lines and vectors see Figure 2.1.

Figure 2.1: Lattice lines l1 and l2 in the lattice directions v1 and v2.

The set of all lattice lines which are parallel to vk ∈ D (Remark 2.7) is denoted

by Lk, and E will be a class of finite sets in Zd.

The collection of a set of lattice lines determined by D is represented by

L = (L1, L2, . . . , Lq). (2.1.2)

Definition 2.8. The projection of a lattice set in direction vk is p
(k)
F :

L(k) → N0 such that

p
(k)
F (l) = |F ∩ l| =

∑

x∈l

f(x), (2.1.3)
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where f is the characteristic function of F , i.e., f(x) = 1 if x ∈ F , and f(x) = 0

if x /∈ F .

Definition 2.9. Two lattice sets F and F ′ are said to be tomographically

equivalent with respect to the directions D, if the following equality is satisfied:

p
(k)
F = p

(k)
F ′ (k = 1, . . . , q). (2.1.4)

Here, the relation between the mathematical model (definitions above) and

tomography in real life (Section 1.1) is as follows:

• Z3 is the lattice corresponding to space,

• F is the object to be reconstructed (F ⊆ Z3 in real life),

• Cells or points of F are the particles of the object,

• Lattice directions, D = (v1, ..., vq) corresponds to the directions from which

the projections will be obtained,

• Lattice line l, corresponds to the X-rays,

• p
(k)
F is the projection (line sum/integral) at direction vk.

2.2 Main Problems of Discrete Tomography

Now, the three main problems which discrete tomography is concerned with can

be defined: consistency, uniqueness, and reconstruction.

Consistency (E , L)

Given: Functions p(k) : L(k) → N0 (k = 1, . . . , q), with finite support (i.e., for

every k: p(k)(l) 6= 0 for finitely many l ∈ L(k) only).

The consistency problem is being investigated by Gardner and Gritzmann [14].

A fundamental result there is thatConsistency (E , L) is NP-complete for q ≥ 3.

In the case of q = 2, the problem can be solved in polynomial time (Table 3.1).
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Question: Does there exist an F ∈ E such that p
(k)
F = p(k) for k = 1, . . . , q?

Uniqueness (E , L)

Given: An F ∈ E .

Question: Does there exist a different F ′ ∈ E such that F and F ′ are disjoint

and tomographically equivalent with respect to the directions of D?

If a set is nonunique, then it cannot be distinguished by its projections from

some other set in Zd.

The problems of Uniqueness (E , L) and Consistency (E , L) with their relation

are discussed in [14]. Kong and Herman [57] proved that in case of q ≥ 3

the uniqueness of a discrete set can not be decided by simply finding certain

patterns of 0’s and 1’s unlike in the case of q = 2. From Ryser [47], it was known

that for the case of q = 2, existence of certain type of (2 × 2)-submatrices is

equivalent to non-uniqueness.

Reconstruction (E , L)

Given: Functions p(k) : L(k) → N0 (k = 1, . . . , q), with finite support.

Task: Construct a finite set F ∈ E such that p
(k)
F = p(k) for k = 1, 2, . . . , q.

In this thesis, the emphasis will be on reconstruction. Since from projections,

a unique solution can not be reconstructed always, a priori information may be

needed in the field of VLSI microchip production. The atomic density of the

silicone, approximate number of particles in the material, an estimate of the

ingredients of the material, an approximate value for the purity of the material,

dimensions and the geometry of the material, etc. can be considered as a priori

information in this context.

Suppose that there are given functions p(k) : L(k) → N0 (k = 1, . . . , q) having

finite support with cardinalities mk (k = 1, ..., q). Let M = m1 + ... + mq. It

is clear that if F is a finite set having projections p(1), ..., p(q) in the directions

v(1), ..., v(q), respectively, then F ⊆ G, where G consists of lattice directions

z ∈ Zd for which p(k)(l) > 0, l being the lattice line passing through z in direction
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v(k) (k = 1, ..., q). Because the functions p(k) have finite support, G is also finite,

|G| = N . Then, the discrete reconstruction problem can be reformulated as the

following linear feasibility problem (if the object is known to be composed

of d̄ different types of particles, atoms , molecules, pixels, etc.):

find Px = b, such that x ∈ {0, ..., d̄}N , (2.2.5)

where P ∈ {0, 1}M×N and b ∈ NM
0 . Namely, if the smallest rectangular box

containing the finite set to be reconstructed has dimension n1 × n2, then, M =

n1 + n2 and N = n1 × n2. Hence, M is the number of lattice lines, in this case

being parallel to the directions (1, 0) and (0, 1) on which there is at least one

element from our discrete set, and N is the total number of points or positions

considered in our reconstruction problem.

According to the projections taken we define the matrix P , sometimes referred

to as a view matrix [19]. The matrix P describes the geometric relation between

the points of G and the lattice line l; that is, it specifies which points of G are

on a line l. Each equation in (2.2.5) corresponds to a line sum on a lattice line.

The vector x represents the set G. The non-negative integral vector b consists of

the raywise recorded experimental data, that is, the values of the functions p(k),

(k = 1, ..., q). Considering that the surface or tissue to become reconstructed is

discretized by cells, this matrix will consist of rows whose components are 1 for

any cell where the ray (represented by a row of P ) goes through, and 0 if the

ray does not meet that cell. More generally, coming from an underlying and

discretized continuous problem, P may also have non binary values of distance

or values of further physical, biological or chemical dimensions [1].

Example 2.10. (From [53, 55, 56]). Consider the lattice set given in Figure

2.2, which consists of only d̄ = 1 type of atom or molecule. It is contained in a

(3 × 2)-rectangle, hence, M = 5 and N = 6. If we choose D = (v1, v2) where

v1 = (1, 0), v2 = (0, 1), then L1 = (l1, l2, l3), L2 = (l4, l5) and L = (L1, L2).

Here, we know the projections along 3 horizontal and 2 vertical directions.
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Figure 2.2: Illustration of the projections on two lattice lines in the directions (1, 0)

and (0, 1).

For this instance we have the following system of equations

x1 + x2 = 1

x3 + x4 = 1

x5 + x6 = 2

x1 + x3 + x5 = 2

x2 + x4 + x6 = 2.

Here, P, x and b are

P =




1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

1 0 1 0 1 0

0 1 0 1 0 1




, x =




x1

x2

x3

x4

x5

x6




, b =




1

1

2

2

2




.

Since the object consists of only d̄ = 1 type of atom or molecule, a solution to

the system will be x = (1, 0, 0, 1, 1, 1) ∈ {0, 1}6. This solution tells that, there

are atoms or molecules at the locations x1, x4, x5, x6.

Example 2.11. Consider the lattice set given in Figure 2.3, which consists of
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d̄ = 2 type of atom or molecule. Moreover, assume that the atom shown with

big circle contributes 2 to the line sums. This object is also contained in a

(3 × 2)-rectangle, hence, M = 5 and N = 6. If we choose D = (v1, v2) where

v1 = (1, 0), v2 = (0, 1), then L1 = (l1, l2, l3), L2 = (l4, l5) and L = (L1, L2).

Here, we know the projections along 3 horizontal and 2 vertical directions.

Figure 2.3: Illustration of a 2 valued lattice and its 2 orthogonal projections.

For this instance, the system of equations is the same with the system of equa-

tions of the previous example (Example 2.10). However, note that, since the

object consists of 2 different types of atoms, the solution x will be a member of

{0, 1, 2}6. A possible solution therefore will be x = (0, 1, 0, 1, 2, 0). This solution

tells us that at locations x1, x3, x6 no particles, at locations x2, x4 a particle of

type 1, and at location x5 a particle of type 2 exist.

2.3 Main Theorems

In this section, main results for the 2-dimensional binary case will be given.

Here, the problem is restricted to 2-dimensional space and two direction vectors,

i.e., the projection function gives the values of the lines in two directions, namely,

in x-axis direction and in y-axis direction. In this case, the problem can be

modeled by linear algebra. So, we are actually trying to find a binary (m× n)-

matrix F , which corresponds to our discrete set, whenever a projection function

and two vectors R and S representing the value of row sums and column sums,
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are given. The 1’s in the binary matrix denote the existence of a tissue (in

the case of VLSI microchip design tissue will be the atoms or molecules of the

silicone material) in that entry and 0’s denote nonexistence.

In this section, the fundamentals will be presented for binary case, in Z2 only.

That is, the subjects will be explained for objects, which lie in Z2 and the

objects are assumed to contain only 2 values, i.e. it contains only 1 type of

particle (d̄ = 1).

2.3.1 Fundamentals on Consistency

The consistency problem deals with the problem, given the projection function,

p, whether we can find a discrete set F which satisfies p. The solution depends

on the number of direction vectors and the dimension of our space. Here, I am

going to explain and illustrate the results given in [25].

Definition 2.12. Let R = (r1, ..., rm) and S = (s1, ..., sn) be nonnegative inte-

gral vectors. The class of all binary matrices A = (aij) satisfying the equations

n∑
j=1

aij = ri (i = 1, ..., m), (2.3.6)

m∑
i=1

aij = sj (j = 1, ..., n). (2.3.7)

is denoted by U(R, S). The vectors R and S are called the row and column

sum vectors of any matrix A ∈ U(R, S).

Remark 2.13. Here, A is the binary model of the object to be reconstructed,

that is, it represents F . On the other hand, P , in Equation 2.2.5 represents

the relation between the points of G and the lattice line l. Therefore, the

view matrix P presented in the previous section, and the binary

matrices A and Ā which will be presented in this section should not

be confused .
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Definition 2.14. A pair (R, S) of vectors is said to be compatible if there

exist positive integers m and n such that

(i) R ∈ Nn
0 ;

(ii) ri ≤ n (i = 1, ...,m), sj ≤ m (j = 1, ..., n);

(iii)
∑m

i=1 ri =
∑n

j=1 sj.

Clearly, if U(R,S) is not empty, then (R, S) is compatible. Ryser and Gale

[46], gave a necessary and sufficient condition under which the class U(R, S) is

nonempty.

Definition 2.15. Consider the matrix Ā in which, for i = 1, ..., m, row i consists

of ri 1’s followed by n−ri 0’s. A matrix having this property is called maximal .

A maximal binary matrix Ā is uniquely determined by its row sum vector. Let

its column sum vector be denoted by S̄. Furthermore, let us denote the non-

increasing permutations of the elements of R and S, by R′ and S ′, respectively,

that is, r′1 ≥ r′2 ≥ ... ≥ r′m and s′1 ≥ s′2 ≥ ... ≥ s′n.

Theorem 2.16. Let R = (r1, ..., rm) and S = (s1, ..., sn) be a pair of compat-

ible vectors. The class U(R, S) is non-empty if and only if

n∑

j=l

s′j ≥
n∑

j=l

s̄j (l = 2, ..., n). (2.3.8)

Proof. Suppose that U(R, S) contains binary matrix A. Then, the class

U(R, S ′) contains a binary matrix A′ constructed from A by a suitable permu-

tations of the columns. Now, Ā can be obtained from A′ by shifting 1’s to the

left in the rows of A′. So, it follows that we have Equation 2.3.8. 2

Example 2.17. Let (R, S) be given as R = (2, 3, 4, 1) and S = (4, 2, 1, 2, 1),

then, Ā would be
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2

3

4

1




1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 0 0 0 0




= Ā.

The binary matrix Ā is a requested maximal matrix, since in each row all

1’s are shifted to the very left of the matrix. Hence, S̄ = (4, 3, 2, 1, 0) and

S ′ = (4, 2, 2, 1, 1).

Example 2.18. Assume (R,S) is given as in Example 2.17. The following

observation can be deduced:

s′5 ≥ s̄5

s′4 + s′5 ≥ s̄4 + s̄5

s′3 + s′4 + s′5 ≥ s̄3 + s̄4 + s̄5

s′2 + s′3 + s′4 + s′5 ≥ s̄2 + s̄3 + s̄4 + s̄5.

Hence, by Theorem 2.16, U(R, S) is non-empty.

Now, with the knowledge of compatible vectors, a reconstruction algorithm

([25]) can be given. This algorithm assumes a pair of compatible vectors (R,S)

satisfying (2.3.8) is given, and outputs a binary matrix A, solving the recon-

struction problem.

Algorithm 2.19.

Input : Compatible pair of vectors (R, S) satisfying (2.3.8)

Step 1. Construct S ′ from S by permutation π

Step 2. Let B = Ā and k = n

Step 3. while(k > 1)

{
while(s′k >

∑m
i=1 bik)

{
j0 ← max1≤i≤m { j < k|bij = 1, bi,j+1 = ... = bik = 0 }
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i0 ← index(j0)

bi0j0 ← 0 and bi0k ← 1 (i.e., shift the 1 to right)

}
k ← k − 1

}
Step 4. Construct the matrix A from B by permutation π−1 of the columns [25].

Output : Matrix A

Example 2.20. Let the compatible pair of row and column sum vectors be

given as (R,S), with R = (2, 3, 3, 1) and S = (4, 2, 1, 1, 1). The binary matrix

A, reconstructed by Algorithm 2.19 will be:

2

3

3

1

1 0 1 0 0

1 1 0 0 1

1 1 0 1 0

1 1 0 0 0

4 2 1 1 1

Example 2.21. Assume the compatible pair of row and column sum vectors be

given as (R,S), with R = (2, 4, 3, 4, 1) and S = (3, 4, 3, 2, 1, 1) are given. Using

Algorithm 2.19, a stepwise reconstruction will be as shown in the Figures 2.4,

2.5, 2.7, 2.7:
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Figure 2.4: Illustration of the reconstruction progress with Algorithm 2.19 [33];

(Part 1 of 4 of Example 2.20).

Figure 2.5: Illustration of the reconstruction progress with Algorithm 2.19 [33];

(Part 2 of 4 of Example 2.20).
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Figure 2.6: Illustration of the reconstruction progress with Algorithm 2.19 [33];

(Part 3 of 4 of Example 2.20).

Figure 2.7: Illustration of the reconstruction progress with Algorithm 2.19 [33];

(Part 4 of 4 of Example 2.20).

Remark 2.22. Theorem 2.16 provides an answer to the consistency problem for
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binary matrices with special projections, and the proof of it contains Algorithm

2.19. By this property, it gives a solution to the reconstruction problem.

1. The computational complexity of Algorithm 2.19 is O(n(m + log n)) [25].

2. There are several alternatives of Algorithm 2.19 including Ryser’s method

[46, 47], which differ in selection of the row i0.

3. The determination of the precise number of matrices in U(R, S), is an

open problem.

2.3.2 Fundamentals on Uniqueness

Definition 2.23. A binary matrix A is non-unique (with respect to its row

and column sums), if there is a binary matrix B 6= A having the same row and

column sums as A. Otherwise, A is unique .

At this point it would be useful to give further insights of Ryser [46, 47].

Definition 2.24. The sub-matrices of a binary matrix A to be reconstructed,

S1 and S2 defined by Equation (2.3.9) are called switching operators (due

to Ryser [46]).

S1 =


 1 0

0 1


 , S2 =


 0 1

1 0


 . (2.3.9)

Definition 2.25. Replacing the sub-matrix S1 to S2, or S2 to S1 in a binary

matrix A, is called switching .

A switching is a transformation of the elements of A that interchanges the

submatrices S1 and S2, which preserves the row and column sums.

Theorem 2.26. (Ryser’s Theorem): If A and B are two binary matri-

ces with the same standard projections (orthogonal projections in the directions

(1, 0) and (0, 1)), then A can be transformed into B by a finite number of switch-

ings.
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Theorem 2.27. A binary matrix is non-unique (with respect to its row and

column sums) if and only if it has a switching component.

Now, consider the special case of Theorem 2.16, in which the Equation (2.3.8)

is replaced by

n∑

j=l

s′j =
n∑

j=l

s̄j, (l = 2, 3, ..., n). (2.3.10)

Using the constructive method of Algorithm 2.19, it can be shown that, if (R,S)

satisfies the conditions of Theorem 2.16 with (2.3.8) replaced by (2.3.10), then

there is a unique matrix with respect to R and S.

Conversely, if the binary matrix A is unique, then it has no switching compo-

nent. Consider two columns of A, j1 and j2. Suppose that sj1 ≤ sj2 . If aij1 = 1

for some i, then aij2 = 1. Otherwise, if aij1 = 1 and aij2 = 0, there is at least

one row i′ such that ai′j1 = 0 and ai′j2 = 1, which contradicts to the assumption

that A has no switching component. In other words, the 1’s in column j1 are in

the rows in which there is also a 1 in column j2. This means that if the columns

of A are permuted non-increasingly, then we get just the maximal matrix Ā.

Therefore, S ′ = S̄ and so (2.3.10) is true.

This leads to the following result: If A is unique binary matrix, then it can be

recovered from its row sum R and column sum S using Algorithm 2.19 without

Step 3. That is, we can construct the maximal matrix Ā from R and then recover

A by a permutation π−1 at the columns of Ā (where π is the permutation that

produce S ′ from S). Again, this leads us the following results.

Lemma 2.28. If A is a maximal binary matrix, then

aij = 1 ⇔ sj ≥ |{k|rk ≥ ri}|. (2.3.11)

From this, for a unique binary matrix A in U(R, S), the maximal matrix Ā is

the unique element of U(R, S̄) = U(R, S ′). Since A is obtained from Ā by the

permutation π−1 of the columns, it follows that for a unique binary matrix A
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in U(R, S), Equation (2.3.11) holds (even if A is not maximal). This leads to

the following results on uniqueness.

Definition 2.29. An (m×n) binary matrix A = (aij) (i = 1, ..., m) (j = 1, ..., n)

is additive if there are vectors X = (x1, ..., xm) ∈ Rm and Y = (y1, ..., yn) ∈ Rn

such that, for i = 1, ..., m and j = 1, ..., n, aij = 1 if and only if xi + yj ≥ 0.

Theorem 2.30. A binary matrix is unique if and only if it is additive.

Proof. Let A be an (m×n) binary matrix with row and column sum vectors

R and S. If A is unique, then it satisfies (2.3.11). This implies that A is additive

with respect to the vectors X and Y , where xi = −|{k|rk ≥ ri}| (i = 1, ...,m)

and yj = sj (j = 1, ..., n).

Suppose that A is additive with respect to the vectors X ∈ Rm, Y ∈ Rn. Let

B ∈ U(R, S). Consider the function

K(A,B) =
m∑

i=1

n∑
j=1

(xi + yj)(aij − bij). (2.3.12)

From Definition 2.29, each term in the sum on the right-hand side of Equation

(2.3.12) is non-negative. Furthermore,

K(A,B) =
m∑

i=1

xi

n∑
j=1

(aij − bij) +
n∑

j=1

yj

m∑
i=1

(aij − bij)

=
m∑

i=1

xi(ri − ri) +
n∑

j=1

yj(sj − sj) = 0.

This implies that each term in the sum on the right-hand side of Equation

(2.3.12) is in fact zero. From Definition 2.29 this implies that if aij = 0, then

bij = 0. However, A and B have the same number of 0’s, therefore A = B, i.e.,

A is unique. 2

All the findings about uniqueness of a non-empty class U(R,S) can be summa-

rized in the following theorem.
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Theorem 2.31. Let R = (r1, ..., rm) and S = (s1, ..., sn) be vectors of non-

negative integers such that there is a binary unique matrix A ∈ U(R, S). The

following conditions are equivalent:

(1.) A is unique with respect to R and S

(2.) A has no switching component

(3.) Equation (2.3.10) is satisfied

(4.) A is additive.

If it is known that there is a unique binary matrix A in U(R, S), then the

Equation (2.3.11) must be satisfied. Using this and the theorems stated about

uniqueness, this special case can be solved by the following algorithm.

Algorithm 2.32.

Input : Compatible pair of vectors (R, S) satisfying (2.3.10)

Step 1. A = 0 (zero matrix)

Step 2. Find i1, i2, ..., im such that ri1 ≥ ri2 ≥ ... ≥ rim

Step 3. for(j = 1 to n)

{
for(k = 1 to sj)

{
aikj ← 1

}
}

Output : Matrix A
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Chapter 3

State of the Art

From the arise up to now, some important results have been found in the three

basic problem of DT theoretically, namely, for consistency, uniqueness and re-

construction. For 2-dimensional objects (discrete sets), there are algorithms

with polynomial-time computational complexity. However, for 3-dimensional

objects (discrete sets), usually the problems are NP-complete or NP-hard, or

even not solved yet. There are only a few polynomial-time algorithms under

some assumptions or special cases. In the following paragraphs, I will present

some of the examples of these results.

In 1957, Ryser [46] published a necessary and sufficient consistency condition

for a pair of integral vectors being the row and column sum vectors of a binary

matrix. By giving a constructive proof of his theorem, he provided the first

reconstruction method (Algorithm 2.26). He also recognized the switching op-

erators and operations Definition 2.25, so that any two binary matrices can be

transformed into each other if they have the same row and column sums.

Then this problem arose: When is a planar convex body uniquely determined

from its projections? For projections along parallel lines, an answer is given as

follows: For any planar convex body, there exist 3 projections which uniquely

determine it. Moreover, it has been proved that it is possible to find 4 pro-

jections that will uniquely determine all planar convex bodies. Although these

results of convex geometry, more exactly, geometric tomography, are about the

reconstruction of convex bodies, there are corresponding results for discrete

sets.

Obviously, a finite number of projections are not generally sufficient to recon-
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struct discrete sets uniquely. However, it has been proved that, if the number

of points in the discrete set to be reconstructed is known, it is possible to find

finitely many projections that will guarantee uniqueness.

In the following, we come to complexity results for the reconstruction problems

by lattice lines. Table 3.1, below, complexity results are given. Here, PTA

stands for the existence of a corresponding polynomial-time algorithm.

Consistency Uniqueness Reconstruction

q = 2, d = 2 PTA PTA PTA

q ≥ 3 NP Complete NP Complete NP Hard

Table 3.1: Computational complexities of consistency, uniqueness, reconstruction

[25].

The complexity of the problem is not in general developed yet for r-dimensional

X-rays when r > 1. Only a few results are known. For instance, when r =

2, d = 3, and L consists of the 3 coordinate planes, the problems still remain

open.

If we have q = 2 lattice directions only, then, due to Ryser’s Theorem 2.26 (cf.

[46]), by checking whether a known sub-matrix is contained in a binary matrix

or not, we can say whether it is unique or not. On the other hand, it is known

that one cannot check uniqueness with the same procedure if there are q ≥ 2

directions.

Another studied case is the computational complexity of the problem of the

reconstructing a set from its horizontal and vertical projections with respect to

some classes of sets on which some connectivity constraints are imposed. In

particular, horizontally convex (or h-convex), vertically convex (or v-convex),

and 4-connectivity (or polyomino). Below, Table 3.2 shows the computational

complexities of these cases for reconstruction. PTA stands for existsnce of a

polynomial-time algorithm, while NP-C stands for NP-complete [15])
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hv-convex h-conv v-conv No restriction

Polyomino PTA NP-C NP-C NP-C

No restriction NP-C NP-C NP-C PTA

Table 3.2: Computational complexities of hv-, h-, v-convex, with respect to con-

nectivity [25].

Since the problem of reconstruction in higher dimensions becomes NP-complete

or NP-hard, most of the research focus on some approximate solutions. Unless

P = NP , the search for approximate solutions is suitable for real-world prob-

lems, instead of trying all the possible solutions, or running exponential time

algorithms. Some of such works are mentioned shortly in the following sections.

3.1 Simple Slice Reconstruct-Merge Approach

The objects being inspected are 3-dimensional if the object being inspected is a

real-world object. If the object is 2-dimensional there are algorithms (Algorithm

2.19, Algorithm 2.32) as presented in Section 2.3.2.

Figure 3.1: Illustration of a 2D slice reconstruction and 3D merge.

Ryser [46] introduced a reconstruction algorithm which gives a solution to the

inverse problem of DT. There are also Kaczmarz’s algorithm, ART (cf. [17]) and

SIRT algorithms for solving the inverse problem of Px = b. A good reference for

these algorithms is the book [1]. Since in DT, the problem is of a 3-dimensional
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nature, the most common method is to use 2-dimensional reconstructions (using

Ryser’s algorithm, Kaczmarz’s algorithm, ART, or SIRT) and to merge them

into a 3 dimensional solution, see the figure, Figure 3.1. However, merging the

2 dimensional solutions as in the traditional method would give non-matching

results.

There are difficulties of this approach in practice. Since the object to be recon-

structed from the projections is not known, the actual dimensions of it are also

unknown. Therefore, the reconstructed 2D slices can be merged inaccurately.

The planes of 2D slices should be rotated, scaled, or shifted to place them into

a correct space. Otherwise, the 3D solution might be far from representing the

object to be reconstructed.

3.2 Probabilistic Modeling of Discrete Images

Probabilistic methods are studied widely by Gabor T. Herman, Avi Vardi,

Michael T. Chan, and Emanuel Levitan [24]. In their study, the objects are

images. Their work is for reconstruction of a particular family of images. That

is, reconstruction with probabilistic modeling is suitable if an image to be re-

constructed is suited for some distributions. If an image to be reconstructed is

not suitable for the distribution used, then a well-suited distribution should be

found.

In probabilistic methods, Gibbs distributions (Equation 3.2.1) are used as prior

image models. The Gibbs priors describe the local behavior of a binary im-

age. The outline is as follows: The images to be reconstructed are assumed to

consist of piecewise-homogenous regions, which are again assumed to resemble

some images which have Gibbs distributions. Based on this assumption, by

projections such piecewise-homogenous regions are tried to be found. That is,

sub-regions of the image to be reconstructed are approximated by predefined

images whose distributions match with Gibbs distributions:
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Π(w) =
1

Z
eβ
PH

h=1 Ih(w). (3.2.1)

Here,

• Π(w) is the probability of occurrence of image w,

• Z is a normalizing factor so that the sum of Π(w) over all possible images

is 1,

• β is a parameter defining the peakedness of the distribution,

• Ih(w) is the local energy function for the pixel indexed by h.

For the local energy function Ih(w), two possible approaches are used. The first

one is a lookup table derived from some previously studied images, or an image

model which is an expectation of the image to be reconstructed is used. The

other one is an image model of free parameters.

When an image model of free parameters is used, the function Ih(w) can take

these values:

• k1 for convex values of 0’s,

• k2 for edges,

• k3 for uniform regions of 1’s,

• k4 for uniform regions of 0’s,

• k5 otherwise.

Now, here is the algorithm for reconstruction of an image:

Algorithm 3.1.

Reconstruction of a binary image:

w1 ← A Random Image
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do

w2 ← w1

invert a randomly chosen sub-region h1 in w2

p ← Π(w2)/Π(w1)

if (p ≥ 1) then

w1 ← w2

end if

until a desired image is obtained [25]

Here, to penalize the images (images produced in each iteration) that are in-

consistent with the projections, p calculated as:

p := eβ
P

h∈N(h1)(Ih(w2)−Ih(w1))−α(Fh1
(w2)−Fh1

(w1)), (3.2.2)

where Fh1(w) denotes the difference between the projection and the image w

for the lines passing through the sub-region h1. N(h1) represents 6 neighbors

of h1 on a hexagonal grid.

By applying penalization, i.e., checking its consistency with the projections and

discarding the inconsistent ones, the initially chosen random image converges to

an image whose sub-regions have Gibbs distributions, and also becomes more

consistent to the projections in each step. In Figure 3.2, an example result

obtained for a 64× 64 image is shown.
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Figure 3.2: Illustration of a reconstruction of a 64× 64 image using Algorithm 3.1.

Left: The original image, Right: Reconstruction result [25].

3.3 Bayesian Methods for Discrete Tomogra-

phy

In Bayesian approach, the focus is on the discrete-valued reconstruction from

noisy projections using statistical methods. Statistical methods model the ran-

dom nature of the physical data collection process, then they seek the solution

which best matches the probabilistic features of the data.

The statistical method which is used is Bayesian maximum a posteriori (MAP)

estimation. Bayesian MAP estimation reconstructs the image as a tradeoff

between matching the projection data and regularizing the distribution by a

prior probability distribution. MAP estimation formulates the reconstruction

by treating the original image as a random field X, whose prior distribution is

given by p(x).

In order to write the probability density for the measurements, define X as the

N -dimensional vector of pixels (original image). Let Y (projections) denote the

vector of lines-sums for all M projections. Let Pij correspond to the length

of the intersections between the jth pixel and the ith projection. Then, P is
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the matrix of elements Pij and Pi∗ denotes the vector formed by its ith row.

With this notation, the atom count for Yi corresponds to projection i and the

distribution of of Yi given x being an entry of X is defined by:

P(Y = y|x) =
M∏
i=1

e−yT e(−Pi∗x)
(yT e(−Pi∗x))yi

yi!
. (3.3.3)

Since X is not known, for reconstruction an a posteriori distribution of X

(original image) given the projections Y . It is computed using Bayes’ formula.

Then, using Equation (3.3.3), the logarithm of the a posteriori distribution of

X given Y is obtained:

Pp(x|y) = logP(X = x|Y = y). (3.3.4)

The MAP reconstruction itself is considered and formulated as an optimiza-

tion problem. Therefore, the maximum a posteriori (MAP) estimate x̂, which

maximizes the a posteriori density given the observations y, can be defined as:

x̂ := arg max
x
Pp(x|y), (3.3.5)

where the optimization problem can be written as:

(P) maximize Pp(x|y). (3.3.6)

There are two commonly used different techniques for solving the optimization

problem (P). These are:

• Expectation-maximization (EM ) (cf. Section 3.4)

• Iterative coordinate descent (ICD): a pixel-wise update method.

Because of implementation difficulties and computational simplicity, ICD is

preferred rather than EM. The ICD method sequentially updates each pixel of
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the image. With each update, the current pixel is chosen to maximize Pp(x|y).

Algorithm 3.2.

Reconstruction of a binary image using Bayesian approach:

1. Compute an estimate image X using (3.3.5)

2. do

Update the pixels of X using ICD (or EM)

until no pixel update occurs

The computational complexity of Algorithm 3.2 is NKM0O(OP), where N is

the number of pixels in reconstruction, K is the number of discrete values, M0

is the average number of projections intersecting a pixel, and O(OP) is the

complexity of the optimization problem (Equation 3.3.6). In Figure 3.3, the

original image and the reconstruction result is shown.

Figure 3.3: Illustration of a reconstruction of a 64 × 64 non-binary image using

Algorithm 3.2. Left: The original image, Right: Reconstruction result [24, 25].
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3.4 Reconstruction of Binary Images via EM

Algorithm

The approach is based on (a) relaxing the binary constraints x(i) = 0 or x(i) = 1

to interval constraints 0 ≤ x(i) ≤ 1 (i ∈ Z) , and (b) applying a minimum

distance method (Kullback-Leibler distance) [18, 51] to find such an x̂ for which

the distance between the observed and the theoretical partials is as small as

possible.

Let x be a binary function defined on a finite subset of a lattice, x(i) = 0 or

x(i) = 1 (i ∈ Z). Let L1, ..., Lm be a collection of subsets of the lattice Z, let

the line-sums be

yj =
∑
i∈Lj

x(i) (j = 1, ..., m) (3.4.7)

and consider the problem of reconstructing the function f from the knowledge

of the partial sums y1, ..., ym.

Here, Kullback-Leibler distance (KL-distance) is used as a minimum distance

function.

Definition 3.3. (KL-distance):

The KL-distance between two probability vectors p = (p1, p2, ..., pm) and q =

(q1, q2, ..., qm) is

KL(p, q) =
m∑

j=1

pj log pj/qj. (3.4.8)

Rewriting (3.4.7) as

yj =
k∑

i=1

xiAij (j = 1, ..., m), (3.4.9)

where i = 1, ..., m is a labeling of the set Z, xi := x(i) and Aij = 1Lj
, where

i = 1 if i ∈ Lj, and i = 0 if i 6∈ Kj). Then, the interval constraints are xi ∈ [0, 1]
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(i = 1, ..., k). Before giving the EM algorithm, the following definitions will be

necessary:

ĝj := yj/

m∑

j′=1

yj′ , (3.4.10)

hij := Aij/

m∑

j′=1

Aij′ , (3.4.11)

fi := xi(
m∑

j′=1

Aij′)/
m∑

j′=1

yj′ . (3.4.12)

Algorithm 3.4.

Simple EM/ML Algorithm:

1. Initialize

f (0) = (f
(0)
1 , ..., f

(0)
k ), ai ≤ f

(0)
i ≤ bi, such that

∑k
i=1 f

(0)
i = 1.

2. Iterate E-Step and M-Step for n ≥ 0

E-Step (Expectation)

f (n+1/2) = fi

∑m
j=1 hij

ĝj

gj(f)
(i = 1, ..., k)

M-Step (Maximization)

maxp

∑k
i=1 f

(n+1/2)
i log pi

It has been proved that Algorithm 3.4 converges monotonically. You can see

the experimental results in [18, 51].
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3.5 Iterative Methods for Discrete Tomogra-

phy

A process, called binary steering [5], designed to intervene between the iterative

steps of any non-binary algorithm for solving Px = b in a way that would

gradually steer the iterates towards a binary solution. This heuristic process is

applicable to a plethora of non-binary iterative reconstruction algorithms which

solve (asymptotically, depending on the relevant solution concept adopted) the

system Px = b. Some of these non-binary iterative algorithms perform very well

on non-binary image reconstruction problems, efficiently generating acceptable

reconstructed images (i.e., approximations to the solution vector x), some of

them lend themselves to parallel computations or have other favorable features

such as guaranteed convergence even if the system Px = b is inconsistent.

This method is to reconstruct binary images, by using non-binary iterative

reconstruction algorithms in conjunction with an additional mechanism to steer

the non-binary iterates towards an acceptable binary solution.

Remark 3.5. The non-binary algorithms, to which binary steering will be

applied, should have the following general form:

Algorithm 3.6.

Initialization: x0 ∈ U , where U ⊆ Rn is the initialization set dictated by the

specific non-binary algorithm.

Iterative Step: Given the kth iterate xk, and the data of the problem d ∈
D, where D is the data space dictated by the specific non-binary algorithm,

calculate:

(1) Correction calculation: The kth correction vector ck is calculated by a

formula of the form ck = fk(x
k, d), where the functions fk are dictated by

the specific non-binary algorithm.

(2) Correction application: The next iterate xk+1 is calculated by a formula

of the form xk+1 = gk(x
k, ck), where the functions gk are dictated by the
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specific non-binary algorithm.

The term data (d ∈ D) in this (and the next) algorithm is meant to include

not only the measured data (such as b in Px = b) but all measured as well as

design data, i.e., both P and b in the case of linear equations (Figure 3.4).

Figure 3.4: Illustration of iterative step of steering mechanism [5].

Definition 3.7. Let α = (αk)k≥0, β = (βk)k≥0, and t = (tk)k≥0 be three

sequential sequences such that 0 ≤ αk ≤ tk ≤ βk ≤ 1, and βk+1 < βk for all

k ≥ 0. Given any sequence (xk)k≥0 of vectors xk = (xk
j )

n
j=1 ∈ Rn, the sequence

(x̃k)k≥0 defined for all k ≥ 0 and j = 1, 2, ..., n, by

x̃k
j =





0 if xk
j ≤ αk,

1 if xk
j ≥ βk,

xk
j otherwise,

(3.5.13)

is called a sequential binarization of (xk)k≥0 with respect to the triplet of se-

quences (α, β, t).

Definition 3.8. Let α = (αk)k≥0, β = (βk)k≥0, and t = (tk)k≥0 be three

sequential sequences as in Definition 3.7, and let ε be an arbitrarily small but

fixed real number with 0 < ε < 1/10. Given any two vector sequences (xk)k≥0

and (yk)k≥0, the sequence (zk)k≥0, defined for all k ≥ 0 and j = 1, 2, ..., n, by
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z̃k
j =





tk − ε if xk
j ≤ αk, y

k
j ≥ tk,

tk + ε if xk
j ≥ βk, y

k
j ≤ tk,

yk
j otherwise,

(3.5.14)

is said to settle sequentially the conflict between (xk)k≥0 and (yk)k≥0 with respect

to triplet of sequences (α, β, t) and ε.

Algorithm 3.9.

Initialization: x0 ∈ U where U ⊆ Rn is the initialization set dictated by the

specific non-binary algorithm in use.

Iterative Step: Given the kth (current) iterate xk, do the following:

(1) Sequential binarization: Use the sequences (α, β, t) of Definition 3.7 to

perform a sequential binarization on xk to obtain x̃k.

(2) Non-binary algorithmic step: Use the kth sequentially binarized iterate x̃k

and the data of the problem d ∈ D, where D is the data space dictated

by the specific non-binary algorithm in use, to calculate:

(2.a) Correction calculation: The kth correction vector ck is calculated by

a formula of the form ck = fk(x̃
k, d), where the functions fk are

dictated by the specific non-binary algorithm in use.

(2.b) Correction application: The output iterate yk of the non-binary al-

gorithmic step is calculated by a formula of the form yk = gk(x̃
k, ck),

where the functions gk are dictated by the specific non-binary algo-

rithm in use.

(3) Conflict resolution: Use the sequences (α, β, t) and the parameter ε of

Definition 3.8 to calculate the next iterate xk+1 of the binary steering

process by settling the conflict between yk and xk, if any, according to

Definition 3.8.
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3.6 Reconstruction by Shape Estimation from

Projections

An interesting and promising work due to Ali Mohammad-Djafari and Charles

Soussen [12, 11] will be presented in this section.

In their work, it is assumed that the object to be reconstructed is a compact

homogeneous object and the object lies in a homogeneous background. A re-

construction method is presented for reconstructing the compact homogeneous

object from its X-ray projections. The method presented can reconstruct 3-

dimensional objects.

The researchers categorize the methods into 3 main groups:

1. Methods which discretize the object into cells and use an appropriate model

for the distribution: This approach has the advantage of the assumption

that the relation between data and the unknowns are linear. As pointed

out in [12], one of the major drawbacks of this approach is, the number

of cells to be reconstructed increases as the object size increases.

2. Methods which make the simplification that the object is approximated by

a level set of continuous functions : This is done by estimating the closed

contour of the object. The difficulty of this approach is, for 3-dimensional

objects finding an estimate of a closed contour has too much computation

cost.

3. Methods which estimate the geometrical shape of the object from its pro-

jections : This approach reduces the number of unknown parameters but

the relation between the data and the unknown parameters cannot be

assumed linear. In [12], this type of methods can be categorized into 2

subclasses, namely those

3.a. which use simple shapes as a model in the estimation, and those

3.b. which use deformable shapes as a model in the estimation.
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In [12], it is shown that exact reconstruction via methods of class 3 above is im-

practical. The proposed method is an approximation method which uses poly-

hedral shapes to estimate the shape of the object directly from its projections.

Consider the parallel-beam projections model. Let P be the 2-dimensional ob-

ject and f be the density function of P . Then, Rr,φ, X-ray transform of f ,

can be defined as:

Rr,φ :=

∫ ∫

R2

f(x, y)δ(r − x cos φ− y sin φ)dxdy, (3.6.15)

where φ ∈ [0, π), r ∈ R and δ is the Dirac delta function [1].

With the notation of Equation (3.6.15), the formulation of problem is given as:

p(r, φ) = Rr,φ(f) + n(r, φ), (3.6.16)

where p is the projection data and n represents the errors of modeling and

measurement. In Figure 3.5, an example of a projection of a polygonal shape

is given.
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Figure 3.5: Illustration of a projection of a polygonal shape [12].

If the domain is assumed to be discrete, then simply taking the density function

f as a discrete valued function, the problem will be a DT problem. An example

of a binary density function of a 2-dimensional object P might be:

f(x, y) =





1 if (x, y) ∈ P,

0 otherwise.
(3.6.17)

They proved that, theoretically, it is possible to estimate exactly a polygonal

shape from the moments [12] of its projections. However, in practice to fulfill

the sufficient conditions to do an estimation will be satisfied if at least 2nv − 1

(where nv is the number of vertices of the polygonal shape) projections are

needed. If the situation is a non-destructive testing (NDT ), then this is almost

impossible.

Because of these restrictions in practice, an exact 3-dimensional reconstruction
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becomes very hard. In [49], Mohammad Djafari proposed methods to approx-

imately solve this problem based on the regularization theory or its Bayesian

estimation interpretation. From these results, the proposed method for a 3-

dimensional reconstruction will be explained here.

Assumption 3.6.1. Assume that the polyhedron has the following properties:

1. the polyhedron is composed of only triangular facets,

2. the neighborhood relations between the vertices themselves and between the

vertices and the facets of the polyhedron are already defined.

With Assumption 3.6.1, the polyhedron can be represented by only its vertices.

Let nv denote the number of vertices and vj = (xj, yj, zj) their coordinates

(j = 1, ..., nv). Denote the set of vertices by v = {vj|j = 1, ..., nv}. Then simply

with Assumption 3.6.1, the coordinates of the vertices are estimated by the

solution of minimization problem:

minimize J(v) = ‖p− h(v)‖2 + λΩ(v), (3.6.18)

where h is a function which computes the projections for any given set v. The

chosen regularization function is

Ω(v) :=
nv∑
j=1

‖vj − 1

Kj

∑
i∈νj

vi‖2, (3.6.19)

where νj stands for the neighborhood of vj and Kj is the number of vertices that

belong to this neighborhood. Here, vj − 1
Kj

∑
i∈νj

vi represents the geometric

center of all the neighbors of vj. Computing the optimal solution corresponding

to its global minimum is solved by one of the following 2 alternatives:

1. Simulated Annealing (SA): This technique is iterative and involves

a parameter Tn called temperature at the iteration n. The sequence of

temperatures (Tn) decreases, and converges to 0 as n goes to infinity. For
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a fixed value of n, the vertices vj is modified, according to a random pro-

cedure. Furthermore, vj is generally sampled from a uniform, a Gaussian

or using its prior probability distribution. Let vj denote the vector v, in

which vj has been replaced by its new value. A decision rule indicating

which of the configurations v and vj has to be kept is the following:

– if J(vj) < J(v), then accept the modification of vj. The new value

is v := vj;

– if J(v) < J(vj), then accept the configuration vj with a probability

proportional to

exp(−J(vj)− J(v)

Tn

). (3.6.20)

There exist sufficient conditions on the sequence (Tn), which insure that

this optimization algorithm converges to one of the global minima of J ,

whatever the initial condition is. In practice, this technique gives satis-

factory results [12], but requires a large number of iterations and choosing

initial temperature T0 and the cooling schedule is not obvious.

2. Use of a local optimization technique with an initial solution is used as

another alternative. Here, a good initial solution becomes important.

– The initial solution is estimated by calculating its moments from

projections. Then, a polygonal or polyhedral shape whose vertices

are on an ellipsoid is reconstructed as the initial solution.

– The SA technique with a slight modification is used. Here, the dif-

ference from SA is that the new configuration after modification of

v to vj is accepted if and only if J(vj) < J(v). This technique is

called Iterated Conditional Modes (ICM ).
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Figure 3.6: Experimented 3-dimensional object and the 9 projections used [12].

A 3-dimensional object is studied and the results are given in [12]. The object

to be reconstructed is a compact homogenous object with 40 vertices and the

projections are parallel beam geometry with 9 directions as shown in Figure

3.6.

The object in Figure 3.6 has been reconstructed by the proposed methods of

Djafari and Soussen [12, 11, 49]. The results are shown in Figure 3.7.

Figure 3.7: Reconstructions of the object after 0, 40 and 100 iteratioins [12].
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3.7 Reconstruction by Optimization, Equivari-

ance Analysis and Statistical Learning

It is studied by Gerhard Wilhelm Weber and Öznur Yaşar [53, 55, 56]. In this

work, new approaches are brought to DT, such as using statistical learning,

coding theory and optimal experimental design in an optimization framework.

Here, one problem of reconstruction is considered as an optimization problem

by imposing the maximization of f(x), defined as the sum of the components

xi (i = 1, ..., N) with respect to Equation (2.2.5), i.e.,

(P1) maximize f(x) :=
N∑

j=1

xj, subject to Px = b and x ∈ {0, 1}N .

Further optimization problems are coming from the use of coding theory or

optimal experimental design.

One of the optimization approaches presented is being developed on equivari-

ant analysis. In the following paragraphs, the outline of this approach will be

presented.

The possible cluster is embedded into a little bigger discrete set. Using a se-

ries of X-ray measurements, the equivariants (or symmetrical) properties are

discovered. This can be done globally, but also locally or partially for a finite

number of subsets. Such discrete subsets are called windows .

Then, finally, these equivariances, if verified by the X-ray measurements, help

to simplify the representation of the atom (sub-)cluster or of its estimate (it-

erate) and, herewith, globally, partially or locally to dimensionally reduce the

complexity of the reconstruction problem. Later on, when the reconstruction

problem is approximately resolved, obits or discrete trajectories are followed

back, and the problem result from the points on the section to all the other

points on the corresponding orbit are assigned back. This backward assignment

will orbitwise be done by the same values, or up to a regular change of coordi-
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nates of the measurement vector, e.g., by a permutation of the components or

another transformation related with the group of orbits.

Now, at this point coding theory is incorporated to reduce the dimension of

the problem and for efficient equivariance analysis. Consider a sufficiently large

rectangular subset of the lattice with the unknown atom cluster included (to

be studied by rays, mainly, X-rays), as a word being close to one or another

element of a finite linear space C. This word can be easily found by aligning

the columns (or rows) of the binary matrix given by the rectangular set and

the lattice directions. This initial linear code incorporates any pre-information

about the possible location of the atom cluster. At first, there is only a vague

initial guess about the atom distribution. The codeword which is closest to the

initial guess is tried to be found by decoding (or reconstructing).

A training set and a test set of measurements are generated. By training, a

code which is supposed to be an element in or approximated is refined and

suitably built up. Afterwards, but iteratively coupled with training, by testing

the validation and improvement of the code and, herewith, the approximation

of the real atom cluster is done successively. Within of this learning process,

step by step the dimension or complexity of the code becomes reduced . This

implies an alternating sequence of training and test errors being analyzed.

Since a linear code is defined as a vector space over some finite field Zp, where p

is some prime number, coding theory is used to find geometrical properties of the

atom cluster in a step by step process of measurement and improvement. For

the case of discrete tomography in VLSI chip design, the code is over the field

Z2, hence p = 2. Here, 1 means existence and 0 means nonexistence of an atom

at a lattice point. So, for measuring the difference between the approximative

iterate and the closest codewords, Hamming distance is used.

For the equivariance detection and processing cyclicity (or in terms of coding

theory, cyclic codes) can be used,

(i) for making simplifications in decoding,
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(ii) for finding error-correcting code associated,

(iii) for calculating its minimum distance easily.

Since usually the set to be reconstructed is nonsymmetric, i.e., not ideally

equivariant, the following treatment is used: Include those lattice points which

are neighboring but not necessarily expected to be in the atom cluster, by giv-

ing them zero weights. (In fact, orbits g, e.g., rotations, perturbations or sign

changes can still be applied.) Namely, some small neighboring parts of the lat-

tice to get more symmetries can be added. This means a preprocessing which

may, in addition, also be made at the beginning of every iteration step. At the

end of the algorithm, these further auxiliary points are deleted. Moreover, a

backward assignment is performed by means of all the equivariance condi-

tions used, including a successive increase of the dimensions. This concludes

the algorithmic concept.

Optimal experimental design is the other ides presented in their work from opti-

mization point of view. Here, statistical learning concepts have been emphasized

in the logic of optimal experimental design.

3.8 General Inverse Problems Algorithms

Since a reconstruction problem is an inverse problem, direct application of in-

verse problem solution methods are also applicable. In this section, some it-

erative methods which are used for solving general inverse problems will be

presented based on [1].

Kaczmarz’s algorithm, and the variations of it, namely, ART and SIRT will be

presented. These algorithms were originally developed for tomographic appli-

cations and are particularly effective for such problems. On the other hand,

conjugate gradient least squares (CGLS), which is a general inverse problem

solving method by regularization, will be presented.

49



3.8.1 Kaczmarz’s Algorithm

Kaczmarz’s algorithm is an easy to implement algorithm for solving a linear

system of equations Px = b (P is assumed to be (M × N) matrix as given in

2.2.5). Let Kaczmarz’s algorithm starts with an initial solution x(0), and then

moves to a solution x(1) by projecting the initial solution onto the line sum

defined by the first row in P . Next, x(1) is similarly projected onto the line sum

defined by the second row in P , and so forth. The process is repeated until

the solution has been projected onto all M line sums defined by the system of

equations. At that point, a new cycle of projections begins. These cycles are

repeated until the solution has converged sufficiently.

Let Pi,. be the ith row of P , and bi be the ith row of b. Consider the hyperplane

defined by Pi+1,.x = bi+1. Because the vector P T
i+1,. is perpendicular to this

hyperplane, the update to xi from the constraint due to row i + 1 of P will be

proportional to P T
i+1,.. Denote this proportion by β. Then, the update formula

of the Kaczmarz’s algorithm will be:

x(i+1) = x(i) + βP T
i+1,.. (3.8.21)

Using Pi+1,.x
(i+1) = bi+1, and Equation (3.8.21), the solution for β will be:

β = −Pi+1,.x
i − bi+1

Pi+1,.P T
i+1,.

. (3.8.22)

Then, substituting β into the Equation (3.8.21), the update formula will be

x(i+1) = x(i) − Pi+1,.x
(i) − bi+1

Pi+1,.P T
i+1,.

P T
i+1,.. (3.8.23)

Algorithm 3.10.

Input : P (M ×N matrix) and b (N × 1 matrix) (2.2.5)

Step 1. Let x(0) = 0 be the initial solution

Step 2. for i = 0, ...,M
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{
x(i+1) ← x(i) − Pi+1,.x

(i)−bi+1

Pi+1,.P T
i+1,.

P T
i+1,.

}
Step 3. If the solution has not yet converged, go to Step 2.

Output : x, solution of Px = b

It can be shown that if the system of equations Px = b has a unique solution,

then Kaczmarz’s algorithm (Algorithm 3.10) will converge to this solution. If

the system of equations has many solutions, then the algorithm will converge

to the solution that is closest to the point x(0). In particular, if x(0) = 0

is used, then a minimum length solution will be obtained. If there is no exact

solution to the system of equations, then the algorithm will fail to converge, but

will typically bounce around near an approximate solution. Since Kaczmarz’s

algorithm makes use of projections of previous step’s solution onto hyperplanes

(line sums) of P , the convergence becomes slow if the hyperplanes (line sums)

described by the system of equations are nearly parallel. Indeed, if the rows of

P are nearly parallel, then the system of equations tend to be rank deficient as

most of the inverse problems.

3.8.2 ART

The Algebraic Reconstruction Technique (ART ) is a version of Kaczmarz’s al-

gorithm that has been modified especially for the tomographic reconstruction

problem [17]. A rough approximation to the Kaczmarz update, used in ART,

is to replace all of the nonzero elements in row i + 1 of P with 1s.

Let σi+1 be the approximation to the travel time along ray path i + 1. Define

σi+1 as:

σi+1 :=
∑

cell j in ray path i+1

xjc. (3.8.24)
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The difference between σi+1 and bi+1 is roughly the residual for the predicted

travel time of ray i + 1. ART takes the total error in the travel time for ray

i + 1 and divides it by the number of cells in ray path i + 1, Σi+1, and by the

cell dimension, c. This correction factor is then multiplied by a vector that has

ones in cells along the ray path i + 1.

Taking into account that the ray path lengths actually will vary from cell to

cell, and denoting Li+1 as the length of ray path i+1, the corresponding update

formula for the tomography problem can be written as:

x
(i+1)
j =





x
(i)
j + bi+1

Li+1
− σi+1

cΣi+1
cell j in ray path i + 1,

x
(i)
j cell j not in ray path i + 1.

(3.8.25)

Algorithm 3.11.

Input : P (M ×N matrix) and b (N × 1 matrix) (2.2.5)

Step 1. Let x(0) = 0 be the initial solution

Step 2. for i = 0, ...,M − 1, j = 1, ..., N

{
Calculate x(i+1) using Equation (3.8.25)

}
Step 3. If the solution has not yet converged

{
let x(0) ← x(M), go to Step 2

}
Else

{
return the solution x = x(M)

}
Output : x, solution of Px = b
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3.8.3 SIRT

The Simultaneous Iterative Reconstruction Technique (SIRT ) is a variation on

ART which gives slightly better images in practice, at the expense of a slightly

slower algorithm [1]. In the SIRT algorithm, all (up to M nonzero) updates are

computed for each cell j of the model, for each ray that passes through cell j.

The set of updates for cell j are then averaged before updating the appropriate

model element (solution element) xj.

Let Kj (j = 0, ..., N) be the number of ray paths that pass through cell j and

∆xj =





∆xj + bi+1

Li+1
− σi+1

cΣi+1
cell j in ray path i + 1,

∆xj cell j not in ray path i + 1.
(3.8.26)

Algorithm 3.12.

Input : P (M ×N matrix) and b (N × 1 matrix) (2.2.5)

Step 1. Let x = 0 be the initial solution

Step 2. Let ∆x = 0

Step 3. for i = 0, ...,M − 1, j = 1, ..., N

{
Calculate ∆xj using Equation 3.8.26

}
Step 4. for j = 1, ..., N

{
xj ← xj + (∆xj)/Kj

}
Step 5. If the solution has not yet converged, go to Step 2.

Output : x, solution of Px = b
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3.8.4 CGLS Method

The Conjugate Gradient (CG) method by itself can only be applied to positive

definite systems of equations, and is thus not directly applicable to general least

squares problems. In the Conjugate Gradient Least Squares (CGLS ) method,

the least squares problem:

(P) minimize ‖Px− b‖2, (3.8.27)

by normal equations:

minimize ‖P T Px− P T b‖2. (3.8.28)

Then, by iterating the equation P T Px − P T b, the residual is tried to be mini-

mized. To avoid round off errors, in the iterations, at iteration step k, s(k) :=

Px(k) − b is used. The details can be found in [1] (Section 6.3).

3.9 Observations about Existing Works

In this subsection, I will give observations and comments on the existing works

from the literature. Here, I will present some challenges which I worked out

and will make some constructive proposals.

Early methods for discrete-valued reconstruction aimed at reconstructions of

binary arrays by horizontal and vertical projections only. The deterministic

projections were treated as a system of linear equations. Attention was paid

particularly on ambiguity of the reconstruction. Algorithms for unambiguous

reconstruction have been developed under some assumptions, such as connect-

edness in 2D, or convexity in 3D. However, such assumptions may not hold

in real world problems. So, a lot of prior knowledge is needed (h-convexity,

v-convexity, hv-convexity, etc.).
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Probabilistic methods try to satisfy some probability distribution under the

projection constraints (Section 3.2, Section 3.3). Therefore, the resulting recon-

struction is a mixture between an image that has the probability distribution

used in the method, and the projection information.

Moreover, they do not initially start with a reconstruction using the projections.

In the iteration, they eliminate (penalize as in Section 3.2) or modify (using

ICD/EM as in Section 3.3) the images that do not match projections. Although

they give results that match projection information, the result may not reflect

the real density distribution. Because, the main aim is to produce images

that converge to an image which has the desired probability distribution. If the

probability distribution used is not convenient for the object, then a probability

distribution which gives good approximation to the real object must be found.

To get such a distribution itself is also another hard problem to solve.

There is a known disadvantage of the probabilistic approach mentioned in Sec-

tion 3.2, namely, the algorithm may get stuck in local minima. To resolve this

problem, additional prior information, such as the typical number and sizes of

objects may be needed (cf. [24]).

For the work discussed in Section 3.7, it can be said that, there are new ideas

from different areas, and the works introduces pioneering approaches to DT. If

some comments needs to be stated, at first glance, I find the (a) preprocessing

(adding and removing additional pixels), (b) finding symmetries, (c) transfor-

mation from lattice set to the linear code-words (encoding) and the other-way

(decoding), and (d) error analysis, may introduce expensive computation cost.

On the other hand, the authors use statistical learning methods which aim at

a saving of unnecessary costs also.
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Chapter 4

Semi-conductors and VLSI

Microchip Design

4.1 Introduction

The birth of the transistor in 1947 represents the start of the semiconductor

industry. Since then, semiconductor manufacturing and fabrication techniques

have advanced significantly (Figure 4.1). Many individual transistors can now

be fabricated and interconnected to form complex ”integrated circuits”. Semi-

conductors called Very Large Scale Integration circuits (VLSI ), often containing

millions of transistors, are presently being manufactured. Image on the top left

of Figure 4.1 is a Triode due to Lee De Forest in 1906. The top right image in

that figure if the first point contact transistor(germanium) developed by John

Bardeen and Walter Brattain in Bell Laboratories in 1947. The image on the

lower left is the first integrated circuit(germanium) developed by Jack S. Kilby

at Texas Instruments in 1958. The lower right image shows one of the today’s

chips manufactured by Intel Corporation.
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Figure 4.1: Illustration of development of transistor technology up to semiconductor

chips era [39].

The electronics industry has achieved a phenomenal growth over the last two

decades, mainly due to the rapid advances in integration technologies, large-

scale systems design, in short, due to the advent of VLSI. The number of ap-

plications of integrated circuits in high-performance computing, telecommuni-

cations, and consumer electronics has been rising steadily, and at a very fast

pace. Typically, the required computational power of these applications is the

driving force for the fast development of this field.

As more and more complex functions are required in various data processing

and telecommunications devices, the need to integrate these functions in a small

system/package is also increasing. The level of integration as measured by the

number of logic gates in a monolithic chip has been steadily rising for almost

three decades, mainly due to the rapid progress in processing technology and

interconnect technology. Table 4.1 shows the evolution of logic complexity in

integrated circuits over the last three decades, and marks the milestones of
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each era. Here, the numbers for circuit complexity should be interpreted only

as representative examples to show the order-of-magnitude. A logic block can

contain anywhere from 10 to 100 transistors, depending on the function.

ERA DATE COMPLEXITY (logic blocks per chip)

Single transistor 1959 less than 1

Unit Logic(1 gate) 1960 1

Multi-function 1962 2-4

Complex function 1964 5 - 20

Medium Scale Integration 1967 20 - 200 (MSI)

Large Scale Integration 1972 200 - 2000 (LSI)

Very Large Scale Integration 1978 2000 - 20000 (VLSI)

Ultra Large Scale Integration 1989 20000 - ? (ULSI)

Table 4.1: Evolution of logic complexity in integrated circuits [35].

The design flow starts from the algorithm that describes the behavior of the

target chip. The corresponding architecture of the processor is first defined. It

is mapped onto the chip surface by floor planning. The next design evolution

in the behavioral domain defines finite state machines which are structurally

implemented with functional modules such as registers and arithmetic logic units

(ALUs). These modules are then geometrically placed onto the chip surface

using CAD tools for automatic module placement followed by routing, with a

goal of minimizing the area and signal delays. The third evolution starts with

a behavioral module description. Individual modules are then implemented

with leaf cells. At this stage, the chip is described in terms of logic gates,

which can be placed and interconnected by using a cell placement and routing

program. The last evolution involves a detailed Boolean description of leaf cells

followed by a transistor level implementation of leaf cells and mask generation.

In standard-cell based design, leaf cells are already pre-designed and stored in

a library for logic design use.
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Figure 4.2: Simplified linear VLSI design flow [35].

This thesis is concerned with the production of VLSI chips from the point of

view of material testing and after production testing, which is in the production

and packaging phase.

4.2 Fabrication: From Silicone to VLSI

Semiconductor circuits are initially manufactured in what is called wafer form.

A wafer is a circular slice of silicon used as a foundation upon which many

individual circuits are built. An individual circuit within a wafer is called a

die, with dice being the plural form of the word. Each die is isolated from, and

completely independent of, all other dice contained within the wafer.
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Figure 4.3: Illustration of a wafer and dice on it. Right : A 300mm diameter wafer

(Intel Corp.) [37].

Figure 4.4: Illustration of a silicone ingot and cut wafers [37].

Wafers are obtained by cutting circular slices from a silicone ingot (Figure 4.4).

A wafer has a flat spot or notch which is used to insure proper orientation

during the fabrication and testing process. Wafers often have process monitor

dice which are the same on all wafers regardless of the product (Figure 4.5).

Since these process monitor dice are the same on all wafers, their electrical

characteristics are known and checked at specific points during the fabrication

process to verify that the process is being performed correctly. Ink dots mark

bad dice.
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Figure 4.5: Illustration of a wafer with flat spot, monitor dice and ink dots (bad

dice) [41].

When the manufacturing process is complete, each die must be thoroughly

tested. Testing a wafer is called wafer probing or die sort. During this process,

each die is tested to insure that it properly meets its device performance spec-

ification. This involves verifying voltages, currents, timings and functionality.

When a die does not meet its specification, it is marked to indicate that it has

failed the test process. Failures are typically indicated by placing an ink dot on

defective dice.

After all dice on the wafer are probed, the wafer is cut to separate the dice.

This is known as sawing the wafer. Any defective dice shown by an ink dot are

thrown away. The production may be summarized as shown in Figure 4.6.
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Figure 4.6: Illustration of a fabrication from silicone to VLSI chips [40].

The key material in VLSI production are Polysilicon, Silicon Dioxide

(SiO2), Aluminium , Copper . Typical impurities that can be found in semi-

conductor is the presence of Arsenic and Boron . SiO2 is used to insulate

transistor gates and to insulate layers of wires. The insulators can be grown

on Silicon or chemically deposited. Polysilicon (polycrystalline silicon) is the

key material for transistor gates and also it is used for short wires by adding

chemical deposition. Aluminum or Copper metals are used for wiring between

transistors.

Transistors and wiring are made from many layers (usually between 10 and 15)

built on top of one another. The first half-dozen or so layers define transistors,

and the second define the metal wires between transistors. Lambda (λ) is

the smallest resolvable feature size imprinted on the integrated circuit (IC ).

Roughly λ is half the length of the smallest transistor, approximately 0.2µm in

current technology.
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Figure 4.7: Illustration of a silicone wafer patterning via UV or X-rays [37].

In processing wafers, the wafers are patterned. The approach is roughly as

follows (in order):

1. Adding materials (such as metal wires, polysilicon gates, oxide) on to

silicone wafer surface,

2. Coating the materials with a kind of filter called photoresist (PR),

3. Coating the PR with a mask which filters the materials from light source

(e.g., UV, X-rays),

4. Exposing light (e.g., UV, X-rays) to the surface of the filter (Figure 4.7),

5. Removing exposed PR and material.

So, another application area of DT can be detecting the material exposed in

the patterning of a wafer.

4.3 Applications of Discrete Tomography in VLSI

Microchip Production

After computer usage has started to increase and the computer prices dropped to

manageable prices for personal use, the production has also increased. However,

while this need was increasing, although the prices of the chips seemed to drop,

the producers started to investigate the ways of lowering the prices.
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In the process of VLSI production, silicone material plays an important role.

To be able to print a circuit on the silicone material, the wafers should be

homogenous and must not contain any holes, cracks, or impurities. Otherwise,

most of the effort will be wasted. Table 4.2 shows the importance of the cost of

the production per die.

Chip Wafer Defect Area Dies/Wafer Yield Die

($) per cm2 (mm2) ($)

386DX $900 1.0 43 360 71% $4

486DX2 $1200 1.0 81 181 54% $12

PowerPC 601 $1700 1.3 121 115 28% $53

HP PA 7100 $1300 1.0 196 66 27% $73

DEC Alpha $1500 1.2 234 53 19% $149

SuperSPARC $1700 1.5 256 48 13% $272

Pentium $1500 1.5 296 40 9% $417

Table 4.2: Die cost of different manufacturers measured in 1993 [20].

A formulation which can be found in [20], is as follows, which underlines the

importance of die yield.

DieCost =
WaferCost

DiesPerWafer×DieYield
, (4.3.1)

where die yield is,

DieYield = WaferYield×
(

1 +
DefectsPerUnitArea×DieArea

α

)−α

, (4.3.2)

with α ≈ 4. So, from Equation (4.3.1), die cost goes up with the order of 4

of defects per die area. To lower the costs, one possible way is to detect the

defects on the wafer, before it goes to production, or after the production for the

physical material testing as shown in Figures 4.5 and 4.6. To detect the defects
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X-ray tomography can be used [50]. This is where discrete tomography

comes in to play. Another application area of X-ray tomography, specific to

VLSI production, is the wafer patterning as described in Section 4.2 (Figure

4.7).

The wafers being inspected have to be analyzed with special instruments (Figure

4.8). These systems take projections (line sums) of the material, and by using

these projections the inner structure is tried to be reconstructed.

Figure 4.8: Illustration of an X-ray system used in tomography of silicone wafers

[50].

Some approximate silicone surface reconstructions will reveal the necessary in-

formation of the quality of the material. The applicability of the X-ray tomog-

raphy together with discrete tomography can also be used after the production

(Figure 4.9). Then, although the tests are not limited to surface and material

testing, this would save time and minimize the costs.
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Figure 4.9: Illustration of defected integrated circuit (IC) [50].

Besides the applications of quality testing, with the use of X-rays in wafer

patterning on exposing onto photoresist (PR), Discrete Tomography can be

used to selectively remove materials in the production also (Section 4.2, Figure

4.7).
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Chapter 5

Proposed Solution

5.1 Motivation

In the following sections I will present my ideas. Before entering into details, I

want to make clear the objective, scope of the thesis and the connection between

DT and VLSI microchip design. In this way, a small summary will also be given.

In VLSI microchip production, one of the main materials is the silicone material

on which the VLSI chips are printed (Section 4.1, Figure 4.6). The silicone

material should not contain too much defects (e.g., impurities, holes) in order

to produce a quality product and to increase the yield. If a low quality silicone

material is used, the yield from a silicone wafer decreases and because of this,

the cost of a single chip increases as given in Table 4.2. Therefore, the silicone

should be investigated, and any defects should be revealed before and after the

production.

To investigate the silicone material, a good technique that can be used is X-ray

tomography. The process is simply:

1. Obtaining the projections from different angles,

2. Using the projections, reconstructing an approximation to the original

material is performed using a reconstruction algorithm.
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Figure 5.1: Illustration of obtaining 3 orthogonal projections from a silicone wafer.

Since the silicone ingot has been processed to purify it before cutting the sil-

icone wafers, the silicone material contains smaller number of different atoms

or molecules. So, this makes modeling the object, as a finite set over the inte-

ger lattice set, possible. Using the prior knowledge that the object has smaller

number of possible values, the results of DT can be used.

In Section 2.2, the problem has been expressed as a linear system of equations.

Equation (2.2.5) (Px = b) is this system of equations. Here, P is an (M ×
N) matrix whose rows represent the line sums for each ray. So, M is the

number of rays sent, and N is the number of cells of a rectangular grid which

contains the object. Example 2.10 and Example 2.11 are illustrating this for

2-dimensional object. For the 3-dimensional case, the situation is similar. Since

reconstruction is an inverse problem [19, 1] if the system of equations

Px = b has less number of rows than the number of columns, this system usually

tends to be rank-deficient and ill-conditioned . This is usually the case,

because available number of projections is usually small. To avoid this, more

projections from different angles can be obtained. However, obtaining a lot of

68



projections has a drawback: Excessive radiation from UV light or X-rays may

be harmful to the object being inspected. Therefore, the reconstruction methods

should be able to solve the problem using less number of projections.

Another difficulty, to mention, is the computational complexity of reconstruc-

tion (Table 3.2) of 3-dimensional objects which have more than 1 different

types of atoms or molecules. Since the reconstruction of 3-dimensional objects

which have more than 1 different types of atoms or molecules, is NP-complete

[14, 25, 15], finding an exact solution in a feasible time and computer storage be-

comes almost impossible. Therefore, instead of trying to find an exact solution,

an approximate solution is tried to be found via optimization techniques .

In this thesis, I will reformulate the reconstruction problem as a constrained

optimization problem. Techniques for solving inverse problems (with examples

dedicated to tomography) via optimization methods and regularization can be

found in [1]. Optimization for more general problems can be found in [21, 38].

Since the domain is discrete and the reconstruction problem of DT is an in-

verse problem, optimization techniques which make use of derivatives are not

applicable here. Because there is no derivative to be used. This is another

important point to consider. Therefore, optimization techniques which do not

depend on the derivatives would be more convenient. Such methods, i.e., meth-

ods which do not make use of derivatives directly (or use only a rough ap-

proximation of derivatives), are called derivative free optimization (DFO)

methods . Some of these DFO methods are trust-region method, simplex

method, simulated annealing, genetic algorithms . These methods are

very promising in practice. In this thesis, I will reformulate the reconstruction

problem as a constrained optimization problem and solve the problem with a

genetic algorithms approach. For more and detailed information on trust-region

methods, there is a very good book of A.R. Conn, N.I.M. Gould and P.L. Toint

[10].
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5.2 Proposed Solution

In this section, I will present my ideas, the implementation of them and the

results of the experiments.

I will map the real-world problem into the mathematical model given in Section

2.1 with the notation presented there. Before mapping the real world to a

mathematical model, I want to state a few basic assumptions which hold in this

section and the following sections. (Indeed, these assumptions are made in real

world problems also):

1. Parallel X-ray beams are assumed as the projection instrument.

2. It is assumed that the dimensions of the object being inspected is approx-

imately known (also dimensions of its minimum bounding box).

3. It is assumed that the number of different types of atoms or molecules is

approximately known.

Recalling the mathematical model and the definitions given in Chapter 2, the

mapping from real world to the mathematical model is done as follows:

• Z3 is the lattice corresponding to space,

• F is the 3-dimensional grid where the object to be investigated (e.g.,

silicone wafer) is contained in,

• Lattice directions, D = (v1, ..., vq) (q ≥ 2), correspond to the directions

from which the projections will be obtained,

• Lattice line l, corresponds to one X-ray,

• p
(k)
F is the projection (line sum) at direction vk (k = 1, ..., q).

To be familiar with the notation and the mathematical model mapping given

above, I will give a 3-dimensional example which is similar to Example 2.10
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given in Section 2.2. In this example (Example 5.1), reconstruction of the

lattice set, F , will be transformed into a linear system of equations of the form

2.2.5 (Px = b) given in Section 2.2.

Example 5.1. Consider the grid F (lattice set) given in Figure 5.2. F contains

an imaginary object whose atoms are represented by circles. The dimensions of

F are: width = 4 (x− axis), height = 3 (y − axis), depth = 3 (z − axis). So,

F has 4× 3× 3 = 36 points. For each point c of F , define the mapping c ↔ xj,

with j ← ((cz − 1) ∗ width ∗ height + (cy − 1) ∗ width + (cx − 1) + 1, where

(cx, cy, cz) are the Cartesian coordinates of points c.

Figure 5.2: Illustration of a 3-dimensional grid and the atoms of an imaginary

object.
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Here, the vector x = (x1, ..., x36)
T is the unknown vector of the reconstruction

problem Px = b (Equation 2.2.5). The atoms of the object reside at the Carte-

sian coordinates: (1, 0, 0), (1, 1, 0), (2, 1, 0), (0, 1, 1), (2, 1, 1), (3, 2, 1), (0, 2, 2),

(1, 1, 2).

Figure 5.3: Illustration of a 3-dimensional grid and 2 orthogonal X-ray beams.

If the vector x = (x1, ..., x36)
T can be found, then by using the inverse map, it is

possible to recover F and therefore the object residing in it. To do this, let us

take 2 orthogonal projections with parallel-beam geometry. Choosing the set of

projection directions D = (v1, v2) (set of lattice directions) with v1 = (1, 0, 0)

and v1 = (0,−1, 0) will accomplish these 2 orthogonal projections. Then, the

collection of the set of lattice lines determined by D will be L = (L1, L2), where

L1 is the set of lattice lines parallel to v1 and L2 is the set of lattice lines parallel

to v2. In Figure 5.3, L1 = l1, ..., l9, and L2 = l10, ..., l21.
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Let Pi,. be the ith row of P . As explained in Section 2.2, each row of P , i.e., Pi,.

is the information; which points of F does ray i passes through. To be precise,

if N is the number of points of F , Pi,. = (Pi,1, ..., Pi,N), where Pi,j = 1 if li

passes through xj, and Pi,j = 0 if li does not pass through xj (j = 1, ..., 36). For

example, in Figure 5.3, l13 passes through the point x8, so, P13,8 = 1. With the

lattice directions determined, there will be 21 rays. So, P will be a (21 × 36)-

matrix of 0’s and 1’s.

After taking lines sums, the data will be obtained. This is the projection data

required. Here, the number of atoms each ray touched will be used, i.e., the

projection functions will be p
(k)
F : L(k) → N0, where k is the index of lattice

direction used (|D| = 2 k = 1, 2 in this example). Using the equation given

in Section 2.1 (Equation 2.1.3), the projections are calculated. That is, for

each lattice direction v1 and v2, the projections p
(1)
F and p

(2)
F are found. In this

example, for direction v1, the lattice lines L1 = (l1, ..., l9) are used: p
(1)
F (li1) =

|F ∩ li1|, (i1 = 1, ..., 9). For direction v2, the lattice lines L2 = (l10, ..., l21) are

used: p
(2)
F (li2) = |F ∩ li2|, (i2 = 10, ..., 21). Inspecting Figure 5.3, p

(2)
F (l11) =

|F ∩ l11| = 2, because the ray l11 touches 2 atoms of the object. Furthermore,

p
(1)
F (l3) = |F ∩ l3| = 0, because the ray, l3, does not touch any atoms of the

object.

After obtaining the projection data p
(k)
F , the right hand side of the linear system

of equations Px = b, namely b, can be formed. Since b consists of raywise

projection data, it is a (21 × 1)-vector in this example. Each row of b, bi,

corresponds to the projection value of ray (lattice line) li. So, bi = pF (li)

(i = 1, ..., 21). For this example (Figure 5.3), p
(2)
F (l11) = 2, so, b11 = pF (l11) = 2.

Finally, p
(1)
F (l3) = 0, so, b3 = pF (l3) = 0.

My solution proposal consists of :

1. Reformulation of the reconstruction problem by a constrained

optimization formulation,

2. A new framework which is based on the reformulation (i.e., designed
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for the reformulation),

3. A new algorithm to be used in the framework to obtain an initial solu-

tion which uses geometric information.

5.2.1 Problem Reformulation

In this section, I will present my problem reformulation. Before presenting my

reformulation, I will mention the variations of the feasibility problem given in

Section 2.2 by (2.2.5). In literature, for the linear feasibility problem given in

Section 2.2 by (2.2.5), different interpretations have been given in terms of re-

formulations of linear programming (LP). That is, the linear feasibility problem

(2.2.5) is transformed into the LP problem. The problem of reconstruction is

considered as a LP problem as follows:

maximize
N∑

j=1

xj, subject to Px = b where x ∈ {0, d̄}N . (5.2.1)

Here, N is the number of points of F , and d̄ is the number of different types

of atoms or molecules of the object. By relaxing the constraint x ∈ {0, d̄}N ,

to x ∈ [0, d̄]N by a suitable mapping, the LP problem Equation (5.2.1), the

problem turns to be:

maximize
N∑

j=1

xj, subject to Px = b and x ∈ [0, d̄]N . (5.2.2)

Now, I will present my reformulation of the reconstruction problem. My refor-

mulation is a constrained optimization problem formulation.

Before presenting my reformulation, I will define minimum bounding object

(MBO) of the object which will be reconstructed. Minimum bounding object
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(MBO) will be used in my reformulation and it functions as a boundary con-

dition in the reformulation. Moreover, it is used as an initial solution in the

framework. In Section 5.2.3, an algorithm is given to construct the MBO.

Definition 5.2. Let F be a lattice set, and O be the object contained in the

lattice set F . The minimum bounding object (MBO) of O, is the object

when it is embedded into F , it gives projections values greater or equal to

the projection values of O. Let p
(k)
FO

(l) be the projection of F , with the original

object O embedded, and let p
(k)
FMBO

(l) be the projection of F , with the minimum

bounding object MBO embedded. Then, minimum bounding object , MBO,

of O, is a wrapping object which satisfies the Inequality (5.2.3), when embedded

into F instead of O.

p
(k)
FMBO

(l) ≥ p
(k)
FO

(l). (5.2.3)

To have more idea about minimum bounding object, Figure 5.4 will be useful.

Figure 5.4: Illustration of a minimum bounding box (MBO) of an object O. Left:

Original object O, Middle: MBO covering O, Right: MBO.

Now, my reformulation will be presented. Let the solution be x∗, and let the

lattice set and the object corresponding to x∗ be denoted as F ∗, and O∗. My

reformulation depends on the following:

1. Minimizing ‖Px = b‖1 as the objective function,

2. The solution, x∗, cannot have any points outside of the MBO

(Constraint 1).
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3. The solution, x∗, must have non-negative integer values, and the

maximum entry of x∗, cannot be greater than the number of

different types of atoms found in original object O (Constraint

2).

4. The solution, x∗, should not contain less cells than the sums of

line sums (Constraint 3).

To be precise, my reformulation of the reconstruction problem of DT, is:

(P)





minimize ‖Px− b‖1

subject to p
(k)
FMBO

(l) ≥ p
(k)
F ∗

O∗
(l),

x ∈ {0, 1, ..., d̄}N ,

∑N
j=1 χj ≥

∑M
i=1 bi, χj =





0, if xj = 0,

1, otherwise.

(5.2.4)

5.2.2 A New Framework

My reformulation is a constrained optimization interpretation of the reconstruc-

tion problem of DT. There are known methods to solve constrained optimization

problems. However, some methods can be applied to unconstrained problems

more suitably. To make use of those methods, constrained optimization prob-

lems can be transformed into unconstrained optimization problems. Although

some restrictions may apply for some problems, there are effective ways of this

transformation. For the details of such transformations, [21, 38] can be referred.

Here, before introducing my proposed framework, I want to give a transforma-

tion to transform (P) (constrained optimization problem) into a unconstrained

optimization problem. Although, generic methods can be used [21, 38], it will

be more suitable to do the transformation according to the domain of this thesis.

Definition 5.3. Denote the algorithm chosen to solve (P), by A. Let xcurrent

be the solution at the current iteration of the algorithm A. Then, the func-
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tion, fitnessMBO(xcurrent) : RN → N0, is fitness of the solution to the

constraint 1 of (P), and is defined by:

fitnessMBO(xcurrent) := ‖p(k)
FMBO

(l)− Pxcurrent‖1. (5.2.5)

Definition 5.4. Denote the algorithm chosen to solve (P) by A. Let xcurrent

be the solution at the current iteration of the algorithm A. Then, the function,

fitnessDiscrete(xcurrent) : RN → N0, called the fitness of the solution to the

constraint 2 of (P), is defined by:

fitnessDiscrete(xcurrent) :=





0, if xj ∈ {0, 1, ..., d̄}
1, otherwise.

(5.2.6)

Definition 5.5. Denote the algorithm chosen to solve (P) by A. Let xcurrent

be the solution at the current iteration of the algorithm A. Then the function,

fitnessCellCount(xcurrent) : RN → N0, called the fitness of the solution to

the constraint 3 of (P), is defined by:

fitnessCellCount(xcurrent) := (
N∑

j=1

χj−
M∑
i=1

bi), χj =





0, if xj = 0

1, otherwise.
(5.2.7)

Definition 5.6. Denote the algorithm chosen to solve (P) by A. Let xcurrent

be the solution at the current iteration of the algorithm A. Let ω, α, β, γ ∈ R
be real-valued constants. Then, the function, fitnessP (xcurrent) : RN → N0,

called the fitness of the solution of (P), is defined by:

fitnessP (xcurrent) := ω ‖Pxcurrent − b‖1+

α fitnessMBO(xcurrent)+

β fitnessDiscrete(xcurrent)+

γ fitnessCellCount(xcurrent).

(5.2.8)

Definition 5.7. Choosing ω, α, β, γ ∈ R suitably according to the algorithm

A, the constrained optimization problem can be converted to an unconstrained
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form. Denote the unconstrained form of (P) (Definition 5.2.4) by (PU).

Then, it will be:

(PU) : minimize fitnessP(x). (5.2.9)

With these definitions, my framework can be presented.

Algorithm (Framework) 5.8.

Step 1. Form the matrices P , b as illustrated by Example 5.1

Step 2. Construct an initial solution x(0), satisfying constraints of (P)

Step 3. Choose an algorithm A to solve (P)

Step 4. if A can solve constrained optimization problems (like (P))

{
Solve (P), using A

}
else

{
Transform (P) into (PU)

Solve (PU), using A
}

5.2.3 Supplementary Algorithm

Algorithm 5.9. MBO Construction:

Input : P , b, d̄, (width, height, depth) of F , lattice directions D

Step 1. Let FMBO
L(k)

← [0](width×height×depth) (k = 1, ..., |D|)
Step 2. for k = 1, ..., |D|

{
for each l ∈ L(k)
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{
if l passes through xj

{
cx ← mod(j − 1, width) + 1

cy ← mod((j − cx)/width, height) + 1

cz ← (j − cx − (cy − 1)width)/(width× height) + 1

FMBO
L(k)

[cx, cy, cz] ← d̄

}
}

}
Step 3. Let FMBO ← [0](width×height×depth) (k = 1, ..., |D|)
Step 4. for j = 1, ..., N

{
cx ← mod(j − 1, width) + 1

cy ← mod((j − cx)/width, height) + 1

cz ← (j − cx − (cy − 1)width)/(width× height) + 1

if for all k = 1, ..., |D|, FMBO
L(k)

[cx, cy, cz]) = d̄

{
FMBO[cx, cy, cz] ← d̄

}
}

Output : FMBO grid (lattice set) containing MBO of O.

To make the MBO Construction Algorithm (5.9) clear, an example will be

given.

79



Figure 5.5: Illustration of F , O, v1, v2, p
(1)
F and p

(2)
F used in Example 5.10.

Example 5.10. Let O (cylindrical shape) be the object residing in the grid

(lattice set) F as illustrated in Figure 5.5. Assume, two lattice directions v1 =

(1, 0, 0), and v2 = (0,−1, 0) were chosen and let p
(1)
F and p

(2)
F be the line sums

(projections) in the directions v1 and v2.

At Step 2 of Algorithm 5.9, for each lattice direction vk, the grid (lattice set)

FMBO
L(k)

is filled with the value d̄, along the lattice lines, l, as if the lattice

set F is full of that object in the direction vk. Figure 5.6 shows FMBO
L(1)

in

direction v1, and Figure 5.7 shows FMBO
L(2)

in direction v2.
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Figure 5.6: Illustration of FMBO
L(1)

used in Example 5.10, showing Step 2 of

Algorithm 5.9.

Figure 5.7: Illustration of FMBO
L(2)

used in Example 5.10, showing Step 2 of

Algorithm 5.9.

At Step 4 of Algorithm 5.9, in fact, intersection
⋂|D|

k=1 FMBO
L(k)

is calculated.

The resulting intersection is the desired FMBO. A geometric illustration is given

in Figure 5.8.
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Figure 5.8: Illustration of intersection of FMBO
L(1)

and FMBO
L(2)

, showing Step 4

of Algorithm 5.9.

The resulting MBO, the lattice set F and the original object O will be as shown

in Figure 5.9:

Figure 5.9: Illustration of the resulting MBO, the lattice set F and the original

object O for Example 5.10.
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5.2.4 Implementation Details

5.2.4.1 Framework

The proposed solution with its supplementary algorithm is implemented in

MATLAB.

The algorithm, A, used in the framework (Framework 5.8) is a Genetic Algo-

rithm (GA). The pool size of GA is chosen as 100. The MBO of the object to

be reconstructed is chosen as the initial solution x(0) and the first two entries

of the pool is initialized with MBO.

The number of mutations to perform is determined by ‖Px(0) − b‖1, where x(0)

is MBO of the object to be reconstructed.

The coefficients ω, α, β and γ of the unconstrained optimization problem (PU)

given in Equation (5.2.8) are determined by experimenting exhaustively in the

interval (0, 1]. According to these experiments, on the average for ω = 0.8,

α = 0.6, β = 0.5 and γ = 0.3, the solution converges better to the original

object. It has also been observed that, when the noise increases, the ω should

be decreased and α should be increased to obtain better results.

5.2.4.2 Experiment Data

The objects to be reconstructed in the experiments are hand-made binary 3-

dimensional objects. The experiments are done with 5 different types of sample

binary 3-dimensional objects with lattice dimensions (10×10×10), (50×50×50),

(16× 16× 3), and (16× 16× 10).

One of the sample binary (has only d̄ = 1 type of atom) object is shown in

Figure 5.10. It is a cylindrical shape with dimensions (16× 16× 3).
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Figure 5.10: Illustration of 3-dimensional binary sample object used in experiments.

5.2.4.3 Projections

The projections are simulated, since no real data could be obtained. The lattice

directions D = (v1, ..., vq) (q ≥ 2) are given to the simulation program as (θ, φ),

where 0 ≥ θ ≥ 90 is the angle of the direction on xy − plane, and 0 ≥ φ ≥ 90

is the angle of the direction on xz − plane, and both are in degrees.

Figure 5.11 shows 3 orthogonal projection images of the binary sample object

given in Figure 5.10. The gray-scale coloring shows the projections values. The

”black” pixels represent non-existence of atoms or particles, while the lighter

colors represent higher intensity of atoms on that ray of projection.

Figure 5.11: Projections of the sample object (Figure 5.10), Left: (θ = 0, φ = 0),

Middle: (θ = 0, φ = 90), Right: (θ = 90, φ = 0).
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The projection resolution is determined by the minimum distance of projected

points on the projection plane.

5.2.4.4 Error and Noise

To simulate the measurement errors, zero-mean Gaussian noise is added to the

projections. That is, the noise is added to b of the system of equations Px = b.

Let e be the zero-mean Gaussian noise vector. After obtaining the projections

b which do not contain any error, the simulated error e is added to b. Then, the

experiments are done with the updated b.

The error measure used is signal-to-noise ratio, often written S/N or SNR.

It is defined as the measure of signal strength relative to background noise. The

ratio is usually measured in decibels (dB).

SNR := 20 log10(
‖b‖2

‖e‖2

). (5.2.10)

For SNR measurement, Equation (5.2.10) is used. Here, the projection data b

is the signal and e is the noise. The experiments are done with 3 SNR values

of 20 dB, 15 dB, 10 dB and without noise.

5.2.5 Experiment Results

The experiments are done with 5 different types of sample binary 3-dimensional

objects with lattice dimensions (10 × 10 × 10), (50 × 50 × 50), (16 × 16 × 3),

and (16 × 16 × 10). The lattice directions for projection simulations chosen

were: 3 orthogonal, and equally spaced 9 and 16 directions. Because of memory

issues arising from my inefficient implementations, neither with my proposed

method, nor with the methods presented in Chapter 3 were successful. How-

ever, smaller sized problems have been solved with satisfactory results. Here, I

will present the experiment results of only 2 sample objects with 3 orthogonal

projections and 16 projections of equally spaced directions. These objects to
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be reconstructed will be denoted as Sample Object 1 and Sample Object 2. The

samples are 3-dimensional, and binary (has only d̄ = 1 type of atom). In the

experiments, ω = 0.8, α = 0.6, β = 0.5 and γ = 0.3 values are used.

5.2.5.1 Experiment Results on Sample Object 1

Figure 5.12: Sample object experiment (16× 16× 3).

Consider the sample object, shown in Figure 5.12, used for experimenting. This

sample object to be reconstructed has the following properties:

1. Sample object is in a (16× 16× 3) grid F .

2. Sample object has 1 type of atom (i.e. d̄ = 1, or binary).

3. Sample object is a cylindrical shape with a cylindrical hole in it.

The sample object shown in Figure 5.12, has been experimented with 3 orthog-

onal and 16 projections using my framework (Framework 5.8) with A chosen as

a genetic algorithms.
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Here, I will present the reconstruction of sample object shown in Figure 5.12

using 3 orthogonal projections with lattice directions D = (v1 = (θ = 0, φ =

0), v2 = (θ = 0, φ = 90), v3 = (θ = 90, φ = 0)).

Figure 5.13: 3 orthogonal projection images of the sample object shown in Figure

5.12.

The 3 orthogonal projections are simulated and for each lattice direction, (v1, v2, v3),

the line sums are calculated. In Figure 5.13, the projection images are shown

for each of the lattice directions.

Reconstruction of sample object shown in Figure 5.12 from 3 orthogonal projec-

tions defined above is done using my framework (Framework 5.8) with A chosen

as a genetic algorithm. The genetic algorithm A is run for 10 iterations.

Noise Correctly Rec. (%) ‖Px− b‖1 Running Time (sec.)

No Noise 85 115 5.54

20 dB 80 153 5.48

15 dB 77 176 5.63

10 dB 75 192 5.59

Table 5.1: Reconstruction results of sample object shown in Figure 5.12 using my

framework (Framework 5.8) from 3 orthogonal projections, for different noise values.

For each iteration, some measures are taken. Table 5.1 lists these results. The

second column of Table 5.1, namely ”Correctly Rec. (%)”, is the percentage

of correctly reconstructed number of atoms over the total number of cells of
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the grid (lattice set F ). That is, if xreconstructed is the reconstruction result and

xoriginal is the original object model, then the correctly recovered percentage is

calculated by:

100(1− ‖xreconstructed − xoriginal‖1

N
). (5.2.11)

Here, N is the number of cells of the lattice set F . The total time for this

reconstruction was around 5.6 seconds.

Figure 5.14: Reconstruction of object shown in Figure 5.12 from 3 orthogonal

projections using my proposed solution. Top Left: No Noise, Top Right: 20 dB

SNR, Bottom Left: 15 dB SNR, Bottom Right: 10 dB SNR.

Figure 5.14 shows the reconstruction results of Sample Object 1 (shown in Figure

5.12) from 3 orthogonal projections for different noise values using my proposed

solution.
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Here, I will present the reconstruction of sample object shown in Figure 5.12 us-

ing 16 projections with lattice directions D = (v1, ...v16) where vk = {0, 30, 60, 90}2,

(k = 1, ..., 16).

Figure 5.15: 16 projection images of the sample object shown in Figure 5.12.

The 16 projections are simulated and for each lattice direction, (v1, ..., v16), the

line sums are calculated. In Figure 5.15, the projection images are shown for

each of the lattice directions.

Reconstruction of sample object shown in Figure 5.12 from 16 projections with

equal interval lattice directions is done using my framework (Framework 5.8)

with A chosen as a genetic algorithm. The genetic algorithm A is run for 10

iterations.

For each iteration, some measures are taken. Table 5.2 lists these results. The

values of the column ”Correctly Rec. (%)” are calculated by using Equation

(5.2.11).
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Noise Correctly Rec. (%) ‖Px− b‖1 Running Time (sec.)

No Noise 98 15 66.05

20 dB 93 53 65.67

15 dB 89 84 65.74

10 dB 83 130 66.81

Table 5.2: Reconstruction results of sample object shown in Figure 5.12 using my

framework (Framework 5.8) from 16 projections, for different noise values.

Figure 5.16: Reconstruction of object shown in Figure 5.12 from 16 projections

using my proposed solution. Top Left: No Noise, Top Right: 20 dB SNR, Bottom

Left: 15 dB SNR, Bottom Right: 10 dB SNR.

Figure 5.16 shows the reconstruction results of Sample Object 1 (shown in Figure

5.12) from 16 projections for different noise values using my proposed solution.
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5.2.5.2 Experiment Results on Sample Object 2

Figure 5.17: Sample object experiment (16× 16× 10).

Consider the sample object, shown in Figure 5.17, used for experimenting. This

sample object has the following properties:

1. Sample object is in a (16× 16× 10) grid F .

2. Sample object has 1 type of atom (i.e. d̄ = 1, or binary).

3. Sample object is a cylindrical shape with a torus shaped hollow residing

on the outer boundary of the cylindrical shape.

The sample object shown in Figure 5.17, has been experimented with 3 orthog-

onal and 16 projections using my framework (Framework 5.8) with A chosen as

a genetic algorithms.

Here, I will present the reconstruction of sample object shown in Figure 5.17

using 3 orthogonal projections with lattice directions D = (v1 = (θ = 0, φ =

0), v2 = (θ = 0, φ = 90), v3 = (θ = 90, φ = 0)).
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Figure 5.18: 3 orthogonal projection images of the sample object shown in Figure

5.17.

The 3 orthogonal projections are simulated and for each lattice direction, (v1, v2, v3),

the line sums are calculated. In Figure 5.18, the projection images are shown

for each of the lattice directions.

Reconstruction of sample object shown in Figure 5.17 from 3 orthogonal projec-

tions defined above is done using my framework (Framework 5.8) with A chosen

as a genetic algorithm. The genetic algorithm A is run for 10 iterations.

Noise Correctly Rec. (%) ‖Px− b‖1 Running Time (sec.)

No Noise 79 537 38.12

20 dB 75 640 39.71

15 dB 73 698 39.38

10 dB 71 742 38.24

Table 5.3: Reconstruction results of sample object shown in Figure 5.17 using my

framework (Framework 5.8) from 3 orthogonal projections.

For each iteration, some measures are taken. Table 5.3 lists these results. The

values of the column ”Correctly Rec. (%)” are calculated by using Equation

(5.2.11). Using only 3 orthogonal projections in the lattice directions v1 = (θ =

0, φ = 0), v2 = (θ = 0, φ = 90), v3 = (θ = 90, φ = 0), at least 71% of the object

could be reconstructed for different noise values.
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Figure 5.19: Reconstruction of object shown in Figure 5.17 from 3 orthogonal

projections using my proposed solution. Top Left: No Noise, Top Right: 20 dB

SNR, Bottom Left: 15 dB SNR, Bottom Right: 10 dB SNR.

Figure 5.19 shows the reconstruction results of Sample Object 2 (shown in Figure

5.17) from 3 orthogonal projections for different noise values using my proposed

solution.

Here, I will present the reconstruction of sample object shown in Figure 5.17 us-

ing 16 projections with lattice directions D = (v1, ...v16) where vk = {0, 30, 60, 90}2,

(k = 1, ..., 16).

The 16 projections are simulated and for each lattice direction, (v1, ..., v16), the

line sums are calculated. In Figure 5.20, the projection images are shown for

each of the lattice directions.
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Figure 5.20: 16 projection images of the sample object shown in Figure 5.17.

Reconstruction of sample object shown in Figure 5.17 from 16 projections de-

fined above is done using my framework (Framework 5.8) with A chosen as a

genetic algorithm. The genetic algorithm A is run for 10 iterations.

Noise Correctly Rec. (%) ‖Px− b‖1 Running Time (sec.)

No Noise 93 179 1015.89

20 dB 86 350 1017.65

15 dB 83 435 1012.37

10 dB 79 537 1016.15

Table 5.4: Reconstruction results of sample object shown in Figure 5.17 using my

framework (Framework 5.8) from 16 projections.

For each iteration, some measures are taken. Table 5.4 lists these results.
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Figure 5.21: Reconstruction of object shown in Figure 5.17 from 16 projections

using my proposed solution. Top Left: No Noise, Top Right: 20 dB SNR, Bottom

Left: 15 dB SNR, Bottom Right: 10 dB SNR.

Figure 5.21 shows the reconstruction results of Sample Object 2 (shown in Figure

5.17) from 16 projections for different noise values using my proposed solution.

5.3 Comparative Study: Proposed Solution vs

Existing Works

In this section, I will present comparisons between my ideas and some of the

existing works presented in Chapter 3, experimented over some set of sample

data.
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5.3.1 Polyhedral Shape Estimation

In this section, I will give my reconstruction result which has been applied to

sample data shown in Figure 3.6 of Section 3.6. This sample object is in a

(15 × 15 × 10) grid and has been experimented by Djafari [12, 11, 49] with 9

projections. To simulate the measurement errors zero-mean Gaussian noise is

added with SNR equal to 40 dB with the Equation (5.2.10).

The methods introduced by Djafari and Soussen’s work, yield the reconstruction

results shown in Figure 5.22. In that experiment, 9 projections have been used

and a polyhedral shape has been reconstructed.

Figure 5.22: Reconstructions of the object from 9 projections after 0, 40 and 100

iterations with SNR 40 dB, using methods presented in [12, 11, 49].

The data shown in Figure 3.6 has been simulated in the geometric sense. I

have used (16 × 16 × 10) grid and 9 lattice directions D = (v1, ...v9) where

vk = {0, 45, 90}2, (k = 1, ..., 9). To make an intuitive comparison I used my

proposed framework with A being a genetic algorithms and with the initial

reconstruction of MBO Algorithm (5.9).
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Figure 5.23: 9 projection images of the sample object shown in Figure 3.6.

The 9 projections are simulated and for each lattice direction, (v1, ..., v9), the

line sums are calculated. In Figure 5.23, the projection images are shown for

each of the lattice directions.

Figure 5.24: Left: MBO, Right: Reconstruction of the sample object shown in

Figure 3.6 from 9 lattice directions using my proposed methods with 40 dB SNR.

Using my MBO construction algorithm (Algorithm 5.9) with 9 projections de-
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fined by lattice directions D = (v1, ...v9) where vk = {0, 45, 90}2, (k = 1, ..., 9),

the MBO is obtained as shown in left of Figure 5.24.

Reconstruction of sample object shown in Figure 3.6 from 9 projections defined

above is done using my framework (Framework 5.8) with A chosen as a genetic

algorithm. The genetic algorithm A is run for 10 iterations. Even with 10

iterations, the result seems very promising as shown in right of Figure 5.24.

5.3.2 Comparison with SIRT

Here, I will show the experiment results of SIRT (Algorithm 3.12) with the

Sample Object 1 and Sample Object 2.

The first experiments were on the sample object shown in Figure 5.12 in

Section 5.2.5.1. It has been experimented with 3 orthogonal, and 16 projections.

The 16 projections are chosen as D = (v1, ...v16) where vk = {0, 30, 60, 90}2,

(k = 1, ..., 16) and the projection images are shown in Figure 5.13 and in Figure

5.15.

Firstly, the reconstruction results of SIRT from 3 orthogonal projections will be

given. The reconstructed objects for different noise values are shown in Figure

5.25. Table 5.5 shows the results of reconstruction percentage and running times

of SIRT from 3 orthogonal projections for different noise values.

Secondly, the reconstruction results of SIRT from 16 projections in the directions

of equal interval lattice directions will be given. The reconstructed objects for

different noise values are shown in Figure 5.26. Table 5.6 shows the results of

reconstruction percentage and running times of SIRT from 16 projections for

different noise values.
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Noise Correctly Rec. (%) ‖Px− b‖1 Running Time (sec.)

No Noise 85 115 5.08

20 dB 81 145 5.11

15 dB 77 176 5.2

10 dB 74 199 5.16

Table 5.5: Reconstruction results of sample object shown in Figure 5.12 using SIRT

from 3 orthogonal projections, for different noise values.

Figure 5.25: SIRT reconstruction of the sample object shown in Figure 5.12 from 3

orthogonal projections. Top Left: No Noise, Top Right: 20 dB SNR, Bottom Left:

15 dB SNR, Bottom Right: 10 dB SNR.
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Noise Correctly Rec. (%) ‖Px− b‖1 Running Time (sec.)

No Noise 97 23 62.17

20 dB 91 69 61.56

15 dB 88 92 60.22

10 dB 85 115 61.36

Table 5.6: Reconstruction results of sample object shown in Figure 5.12 using SIRT

from 16 projections, for different noise values.

Figure 5.26: SIRT reconstruction of the sample object shown in Figure 5.12 from

16 projections. Top Left: No Noise, Top Right: 20 dB SNR, Bottom Left: 15 dB

SNR, Bottom Right: 10 dB SNR.

The next experiments were on the sample object shown in Figure 5.17 in

Section 5.2.5.2. It has been experimented with 3 orthogonal, and 16 projections.

The 16 projections are chosen as D = (v1, ...v16) where vk = {0, 30, 60, 90}2,
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(k = 1, ..., 16) and the projection images are shown in Figure 5.18 and in Figure

5.20.

Firstly, the reconstruction results of SIRT from 3 orthogonal projections will be

given. The reconstructed objects for different noise values are shown in Figure

5.27. Table 5.7 shows the results of reconstruction percentage and running times

of SIRT from 3 orthogonal projections for different noise values.

Secondly, the reconstruction results of SIRT from 16 projections in the directions

of equal interval lattice directions will be given. The reconstructed objects for

different noise values are shown in Figure 5.28. Table 5.8 shows the results of

reconstruction percentage and running times of SIRT from 16 projections for

different noise values.

Noise Correctly Rec. (%) ‖Px− b‖1 Running Time (sec.)

No Noise 78 563 31.95

20 dB 74 665 30.59

15 dB 73 691 30.78

10 dB 70 768 31.46

Table 5.7: Reconstruction results of sample object shown in Figure 5.17 using SIRT

from 3 orthogonal projections, for different noise values.
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Figure 5.27: SIRT reconstruction of the sample object shown in Figure 5.17 from 3

orthogonal projections. Top Left: No Noise, Top Right: 20 dB SNR, Bottom Left:

15 dB SNR, Bottom Right: 10 dB SNR.

Noise Correctly Rec. (%) ‖Px− b‖1 Running Time (sec.)

No Noise 92 204 827.61

20 dB 87 332 830.13

15 dB 82 460 829.01

10 dB 78 563 828.43

Table 5.8: Reconstruction results of sample object shown in Figure 5.17 using SIRT

from 16 projections, for different noise values.
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Figure 5.28: SIRT reconstruction of the sample object shown in Figure 5.17 from

16 projections. Top Left: No Noise, Top Right: 20 dB SNR, Bottom Left: 15 dB

SNR, Bottom Right: 10 dB SNR.

Since SIRT is independent of the initial solution [1], no MBO is supplied as an

initial solution.

5.3.3 Comparison with Kaczmarz’s Algorithm

Here, I will show the experiment results of Kaczmarz’s Algorithm (Algorithm

3.10) with the Sample Object 1 and Sample Object 2.

The first experiments were on the sample object shown in Figure 5.12 in

Section 5.2.5.1. It has been experimented with 3 orthogonal, and 16 projections.

The 16 projections are chosen as D = (v1, ...v16) where vk = {0, 30, 60, 90}2,

(k = 1, ..., 16) and the projection images are shown in Figure 5.13 and in Figure
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5.15.

Firstly, the reconstruction results of Kaczmarz’s Algorithm from 3 orthogonal

projections will be given. The reconstructed objects for different noise values are

shown in Figure 5.29. Table 5.9 shows the results of reconstruction percentage

and running times of Kaczmarz’s Algorithm from 3 orthogonal projections for

different noise values.

Secondly, the reconstruction results of Kaczmarz’s Algorithm from 16 projec-

tions in the directions of equal interval lattice directions will be given. The

reconstructed objects for different noise values are shown in Figure 5.30. Ta-

ble 5.10 shows the results of reconstruction percentage and running times of

Kaczmarz’s Algorithm from 16 projections for different noise values.

Noise Correctly Rec. (%) ‖Px− b‖1 Running Time (sec.)

No Noise 86 107 4.89

20 dB 73 207 4.82

15 dB 68 245 4.85

10 dB 62 291 4.79

Table 5.9: Reconstruction results of sample object shown in Figure 5.12 using

Kaczmarz’s Algorithm from 3 orthogonal projections, for different noise values.
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Figure 5.29: Kaczmarz’s Algorithm reconstruction of the sample object shown in

Figure 5.12 from 3 orthogonal projections. Top Left: No Noise, Top Right: 20 dB

SNR, Bottom Left: 15 dB SNR, Bottom Right: 10 dB SNR.

Noise Correctly Rec. (%) ‖Px− b‖1 Running Time (sec.)

No Noise 97 23 59.43

20 dB 84 122 58.62

15 dB 80 153 59.33

10 dB 75 192 60.04

Table 5.10: Reconstruction results of sample object shown in Figure 5.12 using

Kaczmarz’s Algorithm from 16 projections, for different noise values.
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Figure 5.30: Kaczmarz’s Algorithm reconstruction of the sample object shown in

Figure 5.12 from 16 projections. Top Left: No Noise, Top Right: 20 dB SNR,

Bottom Left: 15 dB SNR, Bottom Right: 10 dB SNR.

The next experiments were on the sample object shown in Figure 5.17 in

Section 5.2.5.2. It has been experimented with 3 orthogonal, and 16 projections.

The 16 projections are chosen as D = (v1, ...v16) where vk = {0, 30, 60, 90}2,

(k = 1, ..., 16) and the projection images are shown in Figure 5.18 and in Figure

5.20.

Firstly, the reconstruction results of Kaczmarz’s Algorithm from 3 orthogonal

projections will be given. The reconstructed objects for different noise values are

shown in Figure 5.31. Table 5.11 shows the results of reconstruction percentage

and running times of Kaczmarz’s Algorithm from 3 orthogonal projections for

different noise values.
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Secondly, the reconstruction results of Kaczmarz’s Algorithm from 16 projec-

tions in the directions of equal interval lattice directions will be given. The

reconstructed objects for different noise values are shown in Figure 5.32. Ta-

ble 5.12 shows the results of reconstruction percentage and running times of

Kaczmarz’s Algorithm from 16 projections for different noise values.

Noise Correctly Rec. (%) ‖Px− b‖1 Running Time (sec.)

No Noise 76 614 29.3

20 dB 67 844 29.17

15 dB 62 972 28.96

10 dB 58 1075 28.82

Table 5.11: Reconstruction results of sample object shown in Figure 5.17 using

Kaczmarz’s Algorithm from 3 orthogonal projections, for different noise values.
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Figure 5.31: Kaczmarz’s Algorithm reconstruction of the sample object shown in

Figure 5.17 from 3 orthogonal projections. Top Left: No Noise, Top Right: 20 dB

SNR, Bottom Left: 15 dB SNR, Bottom Right: 10 dB SNR.

Noise Correctly Rec. (%) ‖Px− b‖1 Running Time (sec.)

No Noise 90 256 798.54

20 dB 74 665 790.13

15 dB 70 768 795.42

10 dB 65 896 796.68

Table 5.12: Reconstruction results of sample object shown in Figure 5.17 using

Kaczmarz’s Algorithm from 16 projections, for different noise values.
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Figure 5.32: Kaczmarz’s Algorithm reconstruction of the sample object shown in

Figure 5.17 from 16 projections. Top Left: No Noise, Top Right: 20 dB SNR,

Bottom Left: 15 dB SNR, Bottom Right: 10 dB SNR.

5.3.4 Comparison with CGLS

Here, I will show the experiment results of CGLS method (Algorithm 3.8.4)

with the Sample Object 1 and Sample Object 2.

The first experiments were on the sample object shown in Figure 5.12 in

Section 5.2.5.1. It has been experimented with 3 orthogonal, and 16 projections.

The 16 projections are chosen as D = (v1, ...v16) where vk = {0, 30, 60, 90}2,

(k = 1, ..., 16) and the projection images are shown in Figure 5.13 and in Figure

5.15.
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Firstly, the reconstruction results of CGLS method from 3 orthogonal projec-

tions will be given. The reconstructed objects for different noise values are

shown in Figure 5.33. Table 5.13 shows the results of reconstruction percentage

and running times of CGLS method from 3 orthogonal projections for different

noise values.

Secondly, the reconstruction results of CGLS method from 16 projections in the

directions of equal interval lattice directions will be given. The reconstructed

objects for different noise values are shown in Figure 5.34. Table 5.14 shows the

results of reconstruction percentage and running times of CGLS method from

16 projections for different noise values.

Noise Correctly Rec. (%) ‖Px− b‖1 Running Time (sec.)

No Noise 84 122 4.76

20 dB 72 215 4.58

15 dB 67 253 4.75

10 dB 63 284 4.49

Table 5.13: Reconstruction results of sample object shown in Figure 5.12 using

CGLS method from 3 orthogonal projections, for different noise values.
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Figure 5.33: CGLS method reconstruction of the sample object shown in Figure

5.12 from 3 orthogonal projections. Top Left: No Noise, Top Right: 20 dB SNR,

Bottom Left: 15 dB SNR, Bottom Right: 10 dB SNR.

Noise Correctly Rec. (%) ‖Px− b‖1 Running Time (sec.)

No Noise 96 30 56.32

20 dB 85 115 57.52

15 dB 79 161 56.46

10 dB 73 207 56.87

Table 5.14: Reconstruction results of sample object shown in Figure 5.12 using

CGLS method from 16 projections, for different noise values.
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Figure 5.34: CGLS method reconstruction of the sample object shown in Figure

5.12 from 16 projections. Top Left: No Noise, Top Right: 20 dB SNR, Bottom

Left: 15 dB SNR, Bottom Right: 10 dB SNR.

The next experiments were on the sample object shown in Figure 5.17 in

Section 5.2.5.2. It has been experimented with 3 orthogonal, and 16 projections.

The 16 projections are chosen as D = (v1, ...v16) where vk = {0, 30, 60, 90}2,

(k = 1, ..., 16) and the projection images are shown in Figure 5.18 and in Figure

5.20.

Firstly, the reconstruction results of CGLS method from 3 orthogonal projec-

tions will be given. The reconstructed objects for different noise values are

shown in Figure 5.35. Table 5.15 shows the results of reconstruction percentage

and running times of CGLS method from 3 orthogonal projections for different

noise values.

Secondly, the reconstruction results of CGLS method from 16 projections in the
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directions of equal interval lattice directions will be given. The reconstructed

objects for different noise values are shown in Figure 5.36. Table 5.16 shows the

results of reconstruction percentage and running times of CGLS method from

16 projections for different noise values.

Noise Correctly Rec. (%) ‖Px− b‖1 Running Time (sec.)

No Noise 77 588 27.53

20 dB 65 896 26.79

15 dB 60 1024 27.93

10 dB 56 1126 27.47

Table 5.15: Reconstruction results of sample object shown in Figure 5.17 using

CGLS method from 3 orthogonal projections, for different noise values.
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Figure 5.35: CGLS method reconstruction of the sample object shown in Figure

5.17 from 3 orthogonal projections. Top Left: No Noise, Top Right: 20 dB SNR,

Bottom Left: 15 dB SNR, Bottom Right: 10 dB SNR.

Noise Correctly Rec. (%) ‖Px− b‖1 Running Time (sec.)

No Noise 91 230 720.64

20 dB 75 640 726.98

15 dB 68 819 723.84

10 dB 63 947 722.73

Table 5.16: Reconstruction results of sample object shown in Figure 5.17 using

CGLS method from 16 projections, for different noise values.
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Figure 5.36: CGLS method reconstruction of the sample object shown in Figure

5.17 from 16 projections. Top Left: No Noise, Top Right: 20 dB SNR, Bottom

Left: 15 dB SNR, Bottom Right: 10 dB SNR.

5.3.5 Comparison: All Methods

In this section the methods are compared according to their reconstruction per-

centages for different noise values. Here, the results of the methods for Sample

Object 1 and Sample Object 2 are tabulated and the graphs of these results

are presented. The figures 5.37, 5.38, 5.39 and 5.40 shows us that Kaczmarz’s

Algorithm and CGLS method are affected more than the proposed solution and

SIRT when some measurement errors are introduced.
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Noise Proposed Solution SIRT Kaczmarz CGLS

No Noise 85 85 86 84

20 dB 80 81 73 72

15 dB 77 77 68 67

10 dB 75 74 62 63

Table 5.17: Comparison of methods in terms of reconstruction percentages of the

sample object shown in Figure 5.12 from 3 orthogonal projections, for different noise

values.

Figure 5.37: Reconstruction of the object shown in Figure 5.12 from 3 orthogonal

projections with compared methods in different noise values.
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Noise Proposed Solution SIRT Kaczmarz CGLS

No Noise 98 97 97 96

20 dB 93 91 84 85

15 dB 89 88 80 79

10 dB 83 85 75 73

Table 5.18: Comparison of methods in terms of reconstruction percentages of the

sample object shown in Figure 5.12 from 16 projections, for different noise values.

Figure 5.38: Reconstruction of the object shown in Figure 5.12 from 16 projections

with compared methods in different noise values.
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Noise Proposed Solution SIRT Kaczmarz CGLS

No Noise 79 78 76 77

20 dB 75 74 67 65

15 dB 73 73 62 60

10 dB 71 70 58 56

Table 5.19: Comparison of methods in terms of reconstruction percentages of the

sample object shown in Figure 5.17 from 3 orthogonal projections, for different noise

values.

Figure 5.39: Reconstruction of the object shown in Figure 5.17 from 3 orthogonal

projections with compared methods in different noise values.
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Noise Proposed Solution SIRT Kaczmarz CGLS

No Noise 93 92 90 91

20 dB 86 87 74 75

15 dB 83 82 70 68

10 dB 79 78 65 63

Table 5.20: Comparison of methods in terms of reconstruction percentages of the

sample object shown in Figure 5.17 from 16 projections, for different noise values.

Figure 5.40: Reconstruction of the object shown in Figure 5.17 from 16 projections

with compared methods in different noise values.
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Chapter 6

Conclusion

In this thesis, Discrete Tomography (DT) has been introduced and one of the

main problems of Discrete Tomography, namely reconstruction has been pointed

out. As an application area of DT, an industrial production area, VLSI pro-

duction has been mentioned. The difficulties of reconstruction problem have

been considered and with these motivation, a new approach has been tried to

be invented. To reach the main aim of the thesis, some existing methods have

been examined.

A new formulation (Section 5.2.1) for an approximate solution of the recon-

struction problem based on constrained and unconstrained optimization has

been introduced. This reformulation is a formulation of an inverse problem in

terms of constrained optimization problem. Moreover, it has been illustrated

that how a reconstruction problem can be converted to this type formulation.

Using the methods from optimization theory and inverse problems theory, a new

framework has been proposed to solve the new reformulation. A new algorithm

(Algorithm 5.9) is introduced to be used as an initial solution and as a geometric

boundary for the formulation.

The experiments show us that the proposed reformulation with the framework

can give good approximate solutions even with less number of projections and

less iterations. The comparison results verify this in an experimental way, such

that in some cases, the proposed solution yields better results than the existing

methods compared in this thesis.

The proposed solution is affected less than Kaczmarz’s Algorithm and CGLS

method when some measurement errors are introduced. SIRT method per-
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formed better in most of the experiments in terms of reconstruction percentage

and durability to noise. Although the proposed solution is slower than other

methods compared, the reconstruction results are geometrically better than

other methods. This might be the effect of geometric constraint imposed by

the MBO in the reformulation. Therefore, proposed reformulation solved with

proposed framework, can be used as an alternative method instead of existing

methods.

However, the implementation should be improved further to use less memory,

and with an improved iteration time. Moreover, instead of a genetic algorithm,

a faster derivative free optimization method is also worth to investigate.
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Tiefenbach, A., On the applied mathematics of discrete tomography, Jour-

nal of Computational Technologies 9, 5, 14-32, 2004.
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