

USING COLLABORATION DIAGRAMS IN COMPONENT ORIENTED
MODELING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MEHMET BURHAN TUNCEL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JANUARY 2006

Approval of the Graduate School of Natural and Applied Sciences.

 Prof. Dr. Canan Özgen
 Director

I certified that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

 Prof. Dr. Ayşe Kiper
 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Dr. Ali Hikmet Doğru
 Supervisor

Examining Committee Members

Prof. Dr. Volkan Atalay (METU,CENG)

Assoc. Prof. Dr. Ali Hikmet Doğru (METU,CENG)

Dr. Ayşenur Birtürk (METU,CENG)

Dr. Cevat Şener (METU,CENG)

Kurtcebe Eroğlu (HAVELSAN)

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Last Name: Mehmet Burhan Tuncel

Signature………..:

ABSTRACT

USING COLLABORATION DIAGRAMS IN COMPONENT ORIENTED
MODELING

Tuncel, Mehmet Burhan

M. S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Ali Hikmet Dogru

January 2006, 80 pages

Component Oriented Software Engineering (COSE) seems to be the future of

software engineering. Currently, COSEML is the only modeling language that

completely supports the COSE approach. Abstract decomposition of the system and

their representing components are shown in a hierarchy diagram to support the COSE

process model. In COSEML, only static modeling is supported through this single

diagram. However, software is about behavior and static modeling is not sufficient to

describe the system. The aim of this thesis is providing the benefits of dynamic

modeling to COSEML by adopting collaboration diagrams. For this purpose, first,

specification of modified collaboration diagrams is made for COSEML. Then

software is developed for supporting collaboration diagrams in COSECASE. Also, an

e-store application is modeled with COSEML using the collaboration diagrams. With

this work, modeling the dynamic behavior of the system in both abstract and

component levels is made possible. Furthermore, use case realization is enabled in the

COSE modeling. More important, modeling the sequential interactions among

components is made possible. Consequently, a suitable environment is provided for

automated testing and application generation from the model.

Keywords: Component Oriented Software Engineering, COSEML, Component

Oriented Software Modeling Language, Collaboration Diagrams

iv

ÖZ

İŞBİRLİĞİ DİYAGRAMLARININ BİLEŞEN YÖNELİMLİ MODELLEMEDE

KULLANIMI

Tuncel, Mehmet Burhan

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Danışman: Assoc. Prof. Dr. Ali Hikmet Doğru

Ocak 2006, 80 sayfa

Bileşen Yönelimli Yazılım Mühendisliği (BYYM), yazılımın geleceği olarak

görülmektedir. Şu an BYYM yaklaşımını destekleyen tek modelleme dili

COSEML’dir. Sistemin soyut ayrışımı ve bunu temsil eden bileşenler, BYYM süreç

modelini desteklemek amacıyla bir hiyerarşi diyagramı üzerinde gösterilmektedir.

COSEML’de modelleme, bu statik diyagram üzerine dayanmaktadır. Ancak, yazılım

davranışla ilgilidir ve statik modelleme sistemi anlatmak için yeterli değildir. Bu tezin

amacı, işbirliği diyagramlarını kullanarak dinamik modellemenin faydalarını

COSEML'e sağlamaktır. Bu amaçla, önce işbirliği diyagramlarının COSEML için

belirtimi yapılmıştır. Ardından bu diyagramların COSECASE’de kullanımını

destekleyen yazılım geliştirilmesi yapılmıştır. Bunu takiben, bir sanal mağaza

uygulaması, işbirliği diyagramları kullanılarak COSEML ile modellenmiştir. Bu

çalışmayla birlikte, sistemin dinamik davranışının hem soyut seviyede, hem de bileşen

seviyesinde modellenmesi mümkün kılınmıştır. Ayrıca BYYM modellemesinde

kullanıcı senaryolarının gerçekleştirimine olanak sağlanmıştır. Daha önemlisi,

bileşenler arasındaki sırasal etkileşimin modellenebilmesine imkan verilmiştir. Bunun

bir sonucu olarak, model üzerinden otomatik yazılım testi yapılmasına ve uygulama

üretilmesine uygun bir ortam sağlanmıştır.

Anahtar Kelimeler: Bileşen Yönelimli Yazılım Mühendisliği, COSEML, Bileşen

Yönelimli Yazılım Modelleme Dili, İşbirliği Diyagramları

v

To My Parents

vi

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Assoc. Prof. Dr. Ali Hikmet Dogru, for his

guidance and encouragement throughout the research. To my family, I offer sincere

thanks for their emotional support.

vii

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ.. v

ACKNOWLEDGEMENTS... vii

TABLE OF CONTENTS..viii

LIST OF TABLES.. xi

LIST OF FIGURES ... xii

CHAPTER

1. INTRODUCTION.. 1

1.1. Motivation for Using Collaboration Diagrams in COSEML....................... 2

1.2. Organization of the Thesis... 3

2. BACKGROUND.. 4

2.1. Software Reuse .. 4

2.2. Components and Current Component Technologies 5

2.2.1. Common Object Request Broker Architecture (CORBA) 6

2.2.2. Component Object Model and Distributed COM (DCOM) 6

2.2.3. JavaBeans and Enterprise JavaBeans .. 7

2.2.4. Comparison among Current Component Technologies 8

2.3. Component Based Software Engineering (CBSE) 9

2.4. Component Oriented Software Engineering (COSE)................................ 10

2.5. Software Modeling .. 11

2.6. Unified Modeling Language (UML) ... 12

2.7. COSE Modeling Language (COSEML).. 16

3. COLLABORATION DIAGRAMS IN COSEML ... 19

viii

3.1. Specification .. 19

3.1.1. Abstract Collaboration Diagrams .. 19

3.1.2. Run Time Collaboration Diagrams.. 20

3.1.3. Sequence Numbering... 21

3.1.4. Conditions and Loops.. 22

3.1.5. Message Types .. 25

3.2. Benefits of Collaboration Diagrams to COSE Modeling 29

3.2.1. Use Case Realization... 30

3.2.2. Improved Hierarchy Diagram.. 33

3.2.3. Automated Software Test .. 37

3.2.4. Automated Application Generation... 38

4. IMPLEMENTING COLLABORATION DIAGRAMS IN COSECASE........ 40

4.1. Code Review and Improvements on COSECASE 41

4.1.1. Code Improvements with Eclipse.. 41

4.1.2. CVS ... 43

4.2. Implementation of Collaboration Diagrams .. 43

4.2.1. Links.. 46

4.2.2. Dialog Windows.. 48

5. CASE STUDY: E-STORE APPLICATION.. 50

5.1. Logical Decomposition.. 50

5.2. Use Cases Realizations with Abstract Collaboration Diagrams. 57

5.3. Physical Composition .. 68

5.4. Runtime Collaboration Diagrams.. 76

6. CONCLUSIONS AND FUTURE WORK... 79

6.1. Conclusions ... 79

6.2. Future Work... 80

 REFERENCES ... 81

ix

APPENDICES

A. A BRIEF USER MANUAL FOR USING COLLABORATION DIAGRAMS IN
COSECASE... 84

A.1. Diagram Tree... 84

A.2. Modeling Tool Bar .. 88

A.3. Inserting Elements to Collaboration Diagrams.. 89

A.4. Sequence Messages ... 90

A.5. Editing Sequence Messages... 92

A.6. Properties of Sequence Messages.. 94

A.6.1. Segmented Structure.. 94

A.6.2. Custom Message Text Positioning .. 94

A.7. Modeling the Collaboration... 95

x

LIST OF TABLES

TABLES

Table 1. Comparison of current component technologies ... 8

Table 2. Lifetime of the messages in automatic door application 25

Table 3. Description of buttons of the modeling tool bar .. 89

Table 4. Managing sequence messages with the tool bar buttons. 92

xi

LIST OF FIGURES

FIGURES

Figure 1. UML 2 diagrams .. 14

Figure 2. COSEML symbols ... 17

Figure 3. Decomposition checking using abstract collaboration diagrams.................. 20

Figure 4. Use of flat numbering on message sequences .. 21

Figure 5. Use of nested decimal numbering on message sequences............................ 22

Figure 6. A conditional message.. 23

Figure 7. Conditional branching .. 23

Figure 8. A message with a loop condition.. 24

Figure 9. Run time collaboration for automatic door application................................ 24

Figure 10. Message types... 25

Figure 11. Concurrent message types .. 26

Figure 12. Car rental scenario.. 27

Figure 13. Car rental scenario with asynchronous messages....................................... 28

Figure 14. Seismic activity monitoring scenario ... 29

Figure 15. Abstract collaboration diagram of the mobile translation service 32

Figure 16. Runtime collaboration diagram of the mobile translation service.............. 33

Figure 17. Decomposition model of Telephone System.. 34

Figure 18. Collaboration diagram of “Call a Person” use case.................................... 36

Figure 19. Improved decomposition model of Telephone System 37

Figure 20. Eclipse development environment ... 41

Figure 21. Re-factoring functionalities in Eclipse ... 42

Figure 22. New diagram structure in COSEML .. 44

xii

Figure 23. Diagram model contained in DiagramTree.. 45

Figure 24. DiagramTree .. 45

Figure 25. Old structure of link classes in COSEML .. 46

Figure 26. Segmented links ... 47

Figure 27. A sequence message... 47

Figure 28. New structure of link classes in COSEML... 48

Figure 29. New dialog classes in COSEML .. 49

Figure 30. First level decomposition of the e-store application................................... 51

Figure 31. Decomposition of the Account package ... 52

Figure 32. Decomposition of the Product Catalog package.. 53

Figure 33. Decomposition of the Shopping Cart package ... 53

Figure 34. Decomposition of the Order package... 54

Figure 35. Decomposition of the Payment package .. 55

Figure 36. Decomposition of the Shipping package .. 55

Figure 37. First level decomposition of the e-store application................................... 56

Figure 38. Abstract collaboration diagram of “Create Account”................................ 58

Figure 39. Abstract collaboration diagram of “Login” .. 59

Figure 40. Abstract collaboration diagram of “Browse Products” 60

Figure 41. Abstract collaboration diagram of “Search by Product Property”.............. 61

Figure 43. Abstract collaboration diagram of “Edit Shopping Cart”........................... 64

Figure 44. Abstract collaboration diagram of “Proceed to Checkout” 66

Figure 45. Abstract collaboration diagram of “Update Shipping Preferences” 67

Figure 46. Abstract collaboration diagram of “Update Payment Preferences” 68

Figure 47. Account component and its interface.. 69

Figure 48. Product component and its interface.. 70

Figure 49. Shopping component and its interface.. 71

Figure 50. Payment, Order, Shipping components and their interfaces 72

xiii

Figure 51. E-store Web component and its three interfaces .. 73

Figure 52. Components of the e-store application ... 75

Figure 53. First phase of the run time collaboration .. 76

Figure 54. Second phase of the run time collaboration ... 77

Figure 55. Third phase of the run time collaboration .. 78

Figure 56. Main window in COSEML .. 85

Figure 57. Add new diagram pop-up in DiagramTree .. 86

Figure 58. Add new diagram dialog .. 86

Figure 59. Pop-up menu for managing diagram in DiagramTree 87

Figure 60. Rename diagram dialog.. 87

Figure 61. Save diagram to disk dialog ... 88

Figure 62. Collaboration diagram tool bar... 88

Figure 63. Add elements to diagram dialog... 90

Figure 64. Different message types on Collaboration Diagram................................... 91

Figure 65. Pop-up menu for sequence managing... 92

Figure 66. Self calling sequence messages .. 93

Figure 67. Edit message dialog.. 93

Figure 68. Segment drag points on a sequence message link 94

Figure 69. Pop-up menu to align text with segment drag points 94

Figure 70. Connections in abstract collaboration diagrams... 95

Figure 71. Connections in run time collaboration diagrams.. 96

xiv

CHAPTER 1

INTRODUCTION

Today, in the information age, there is an exponential increase on the demand

for software. Scope and complexity of the software have dramatically increased.

Current software industry mostly deals with huge government and military

applications. Because of the high competition in the industry, such software systems

should be built in less time with less cost.

Moreover, technological and business requirements change frequently in these

systems. For these reasons, today's software systems are more likely to face the

software crisis. Obviously, traditional software approaches that are built on code

development are becoming less efficient.

To respond to the demand and overcome the software crisis, new approaches

have been developed that benefit from component technologies. Among these

approaches, Component Oriented Software Engineering (COSE) [1] proposes building

software by integrating existing components.

A modeling language, COSEML [2], and a graphical modeling editor

COSECASE [3] were developed for COSE approach. This modeling language is

based on a single hierarchy diagram. This static diagram offers "divide and conquer"

capabilities to system design on modeling environment. In this static diagram,

modeling starts by decomposing the system structure hierarchically. This activity

continues until the decomposition model arrives at existing components. Relations

among these components are also shown on the model. Then in the integration phase

of COSE, these components are integrated to build the desired system.

1

1.1. Motivation for Using Collaboration Diagrams in COSEML

In the hierarchy diagram of COSEML, messages are not allowed among

abstract elements. Only connectors are used to show the relations [2]. It is not possible

to show the dynamic behavior. However, software is mostly about dynamic behavior

and emphasizes only on static modeling is not appropriate.

In fact, static and dynamic models support each other. Without dynamic

models, validity of the static model is left to the intuition of the model designer and its

accuracy cannot be proven true. Apparently, a new diagram for modeling dynamic

behavior is needed in the component oriented modeling language. Two candidates for

this diagram are collaboration and sequence diagrams, which are used to model

dynamic interactions in Unified Modeling Language (UML) [4]. Both diagrams are

equal concerning their semantic expressiveness but they stress two different views.

The sequence diagram emphasizes the temporal perspective of interaction. On the

other hand, the collaboration diagram emphasizes the various kinds of relationships

among the interacting objects [5].

The collaboration diagrams emphasize on the structural organization of the

elements. Since COSE is a structure-oriented approach, using collaboration diagrams

in COSEML is more appropriate.

Collaboration diagrams provide a clear picture of collaborating elements and

their roles in the model. They are useful to visualize the collaborating parties

executing a scenario in terms of a sequence of messages [6]. Therefore, using

collaboration diagrams improve the expressiveness of the model. Besides, they allow

use case realization, which is important both in analysis and implementation phase of

any software engineering process. Allowing use case realization is important for

validating and improving the static hierarchy diagram of the COSEML. More

importantly, collaboration diagrams contain the information about the sequence of

message calls among the components, which creates a potential for automated testing

and application generation from COSEML models.

2

1.2. Organization of the Thesis

In this thesis, first, background information is given in Chapter 2. Then in

Chapter 3, specification of collaboration diagrams is defined and their possible

benefits to COSE modeling are explained. In Chapter 4, their implementation to

COSECASE is described. After that, a case study: E-store Application is modeled

using collaboration diagrams, to show the improved COSE modeling activity. Finally,

conclusions of the work are expressed.

3

CHAPTER 2

BACKGROUND

2.1. Software Reuse

Software reuse is the only solution to the software crisis problem. The main

idea is to build systems using already developed software pieces. This idea was

pointed out by McIlroy in the early ages of software engineering. “Develop systems of

components of reasonable size and reuse them. Then extend the idea of component

systems beyond code alone to requirements, analysis models, design and test. All the

stages of the software development process are subject to reuse” [7]. Reuse is still in

the center of attention in software engineering. Although the principle is simple, it has

been shown that the process is hard and tedious.

There have been different levels of software reuse. Lowest level of them is the

source code copy. In this usage, copied parts are spread like a virus in the software. If

a requirement changes or a bug is found in the copied code, all clients are required to

update the changes.

Next level is the function-libraries, which provides a better form of reuse. Code

is central and any internal change does not affect the clients. However, function-

libraries are not extensible. Clients are effected with any change made to the input or

output parameters.

Class-libraries offer a higher level of reuse. It has the benefits of OO approach

and they are extensible. However, it requires a lot of understanding before classes can

be reused. Moreover, it supports only white-box reuse, which means some

modifications are required on the software unit to adapt it to the other software. In an

OO language, derived classes are coupled to the base class implementation. Any

change made to the base classes directly affects derived classes.

4

To this point, all the mentioned types of reuse are language specific. Reuse is

not supported across code in other languages Components are the solution to this

problem and they offer the highest level of software reuse. Components provide

services to the clients through their interfaces and support black-box reuse. Inner

implementation of the components is hidden to the outer world. It is the highest level

of information hiding. Clients only rely on interfaces. As long as the interfaces remain

unchanged, components can be changed internally without affecting clients. For this

reason, using components for system development is the most promising approach for

utilizing the full power of reuse in software systems.

2.2. Components and Current Component Technologies

A software component is an independent, encapsulated software piece with a

well-defined functionality. Internal implementation of a component is hidden from the

user. They provide their functionality through their interfaces. The goal of component

approach is to standardize the interfaces among software components so that they can

work together efficiently.

Advances in component technologies in the last decade bring the components in

to the real life. Although there is not a unique, comprehensive standard for

components, they are made available to usage with the name commercial off-the-shelf

(COTS) components. These COTS components can be developed by different

developers using different languages and different platforms.

There have been some approaches to share and distribute application pieces, but

most of these approaches rely on certain underlying services to provide the

communication and coordination necessary for the application. Three of the

component infrastructure technologies have become rather standardized: OMG’s

CORBA, Microsoft’s Component Object Model (COM) and Distributed COM

(DCOM), and Sun's JavaBeans and Enterprise JavaBeans. Brief information about

these component technologies, which is provided in [11], is given in the following

sub-sections.

5

2.2.1.

2.2.2.

Common Object Request Broker Architecture
(CORBA)

CORBA [8] is an open standard for application interoperability that is defined

and supported by the Object Management Group (OMG), an organization of over 400

software vendor and object technology user companies. CORBA manages details of

component interoperability, and allows applications to communicate with one another

despite of different locations and designers. The interface is the only way that

applications or components communicate with each other. The most important part of

a CORBA system is the Object Request Broker (ORB). The ORB is the middleware

that establishes the client-server relationships among components. Using an ORB, a

client can invoke a method on a server object, whose location is completely

transparent. The ORB is responsible for intercepting a call and finding an object that

can implement the request, pass its parameters, invoke its method, and return the

results. The client does not need to know where the object is located, its programming

language, its operating system, or any other system aspects that are not related to the

interface. In this way, the ORB provides interoperability among applications on

different machines in heterogeneous distributed environments and seamlessly

interconnects multiple object systems.

CORBA is widely used in Object-Oriented distributed systems including

component-based software systems because it offers a consistent distributed

programming and run-time environment over common programming languages,

operating systems, and distributed networks

Component Object Model (COM) and Distributed COM
(DCOM)

Introduced in 1993, Component Object Model (COM) is a general architecture

for component software [9]. It provides a component-based software architecture that

is language-independent and platform-dependent (Windows systems). COM defines

how components and their clients interact. This interaction is defined such that the

client and the component can connect without the need of any intermediate system

component. Specially, COM provides a binary standard that components and their

6

clients must follow to ensure dynamic interoperability. This enables on-line software

update and cross-language software reuse.

As an extension of the Component Object Model (COM), Distributed COM

(DCOM) [9] is a protocol that enables software components to communicate directly

over a network in a reliable, secure, and efficient manner. DCOM is designed for use

across multiple network transports, including Internet protocols such as HTTP. When

a client and its component reside on different machines, DCOM simply replaces the

local inter-process communication with a network protocol. Neither the client nor the

component is aware the changes of the physical connections.

2.2.3. JavaBeans and Enterprise JavaBeans

Sun’s Java-based component model consists of two parts: the JavaBeans for

client-side component development and the Enterprise JavaBeans (EJB) for the server-

side component development [10]. The JavaBeans component architecture supports

applications of multiple platforms, as well as reusable, client-side and server-side

components.

Java platform offers an efficient solution to the portability and security

problems using portable Java byte codes and the concept of trusted and untrusted Java

applets. Java provides a universal integration and enabling technology for enterprise

application development. Following list contains most important benefits of Java

platform.

1. Interoperability across multi-vendor servers

2. Propagating transaction and security contexts

3. Servicing multilingual clients

4. Supporting ActiveX via DCOM/CORBA bridges

JavaBeans and EJB extend all native strengths of Java including portability and

security into the area of component-based development. The portability, security, and

reliability of Java are well suited for developing robust server objects independent of

operating systems, Web servers and database management servers.

7

2.2.4. Comparison among Current Component Technologies

None of the current component technologies is superior to others. All have their

strong sides on different aspects. Table 1 presents a brief comparison of these

component technologies [11].

Table 1. Comparison of current component technologies

 CORBA EJB COM/DCOM

Development

Environment

Underdeveloped Emerging Supported by a

wide range of

strong

development

environments

Binary

Interfacing

Standard

Not binary

standards

Based on COM;

Java specific

A binary standard

for component

interaction is the

heart of COM

Compatibility and

Portability

Particularly strong

in standardizing

language bindings;

but not so portable

Portable by Java

language

specification; but

not very

compatible.

Not having any

concept of source-

level standard of

standard language

binding.

Modification and

Maintenance

CORBA IDL for

defining

component

interfaces, need

extra modification

& maintenance

Not involving IDL

files, defining

interfaces between

component and

container. Easier

modification &

maintenance.

Microsoft IDL for

defining

component

interfaces, need

extra modification

& maintenance

8

Table 1 (Continued)

 CORBA EJB COM/DCOM

Services Provided A full set of

standardized

services; lack of

implementations

Neither

standardized nor

implemented

Recently

supplemented by a

number of key

services

Platform

dependency

Platform

independent

Platform

independent

Platform

dependent

Language

dependency

Language

independent

Language

dependent

Language

independent

Implementation Strongest for

traditional

enterprise

computing

Strongest on

general Web

clients.

Strongest on the

traditional desktop

applications

2.3. Component Based Software Engineering (CBSE)

Modern software systems are large-scale and very complex. Controlling such

systems is not easy in an environment where technologies and requirements change

frequently. Results are high development cost, low productivity and unmanageable

software quality. Moreover, complexities of the systems are increasing exponential.

On the other hand, development time should be shortened because of the high

competition in the software sector. It is obvious that, traditional approaches do not

have a chance in the future of software industry.

One of the most promising solutions today is the component-based software

development approach. This approach intends to accelerate software development and

9

to reduce costs by using prefabricated software components. CBSE practices

increases as the COTS components are becoming more available.

This approach can significantly reduce development cost and time-to- market,

and improve maintainability, reliability and overall quality of software systems. It has

raised a tremendous amount of interests both in the research community and in the

software industry.

Component-based software systems are developed by selecting various

components and assembling them together rather than programming an overall system

from scratch, thus the life cycle of component-based software systems is different

from that of the traditional software systems.

The focus is on composing and assembling components that are likely to have

been developed separately, and even independently. Component identification,

customization and integration are a fundamental activity in the life cycle of

component-based systems. It includes two main parts. First, evaluation of each

candidate component based on the functional and quality requirements and second,

customization of those candidate components that should be modified before being

integrated into new component-based software systems. Integration is to make key

decisions on how to provide communication and coordination among various

components of a target software system.

2.4. Component Oriented Software Engineering (COSE)

Component oriented software engineering (COSE) is a new approach. Although

CBSE and COSE seem similar, these approaches have some major differences.

CBSE process is built over the OO approach. This is very reasonable because

when the components were arrived the software world; everything was OO, from

analysis to testing in the software process. Currently, there is not much change in the

situation. Standard modeling language of software UML is built on an OO backbone

and current programming languages that are widely used, are all object oriented.

It is obvious that in order to elevate from first floor to the third floor, elevator

must pass through the second floor. CBSE is the second floor built at the top of OO

10

approach. When the software industry and research community realize the reuse

power of components, all of the OO tools, technologies, languages and processes are

adapted to support this magic boxes. Today, OO approaches that support components

are defined as CBSE.

The third floor, COSE, on the other hand is not related to OO approach.

Building by integration of components without writing code is the paradigm that

defines the COSE [1]. Utilization of components is the central concern in the whole

software development process. Idea of building systems completely with components

makes it easy to solve most of the software engineering problems.

COSE approach is based on structural decomposition of the system. It enables

the analysis and design phases of the system to be processed in a higher level of

abstraction. Decomposition of the system is very straight, compared to data oriented

decomposition of OO approaches. Data has a sensitive and dynamic nature. Changes

in the requirements, in the business flow can totally change the way the system

handles data. This is why data oriented models are difficult to maintain in the software

process. On the other hand, structure oriented approach is not affected much from the

changes.

Software process in COSE starts with structural decomposition in a top-down

manner. Decomposition divides the system into logical modules. This process

continues until reaching the existing components. These components then integrated

in a bottom-up fashion in order to build the system.

2.5. Software Modeling

Implementation technologies are not at an enough level of abstraction to

facilitate discussions about design, which creates a need for software models. Models

describe the desired structure and behavior of a system. They are important for

visualizing and controlling the system's architecture. A model is a simplification of

reality [12]. It provides a better understanding of the system, which expose

opportunities for simplification and reuse.

Defining a model makes it easier to break up a complex application or a huge

system into simple, discrete pieces that can be individually studied. It is easy to focus

11

on the smaller parts of a system and understand the "big picture". Hence, the reasons

behind modeling are readability and reusability. Readability makes it easy to

understand, and understanding a system is the first step in either building or improving

a system. This involves knowing what a system is made up of, how it behaves, and so

forth. Modeling a system ensures that it becomes readable and, most importantly, easy

to document. It involves capturing the structure of a system and the behavior of the

system. Reusability is the consequence of making a system readable. After a system

has been modeled, similarities in terms of functionality, features, or structure are

identified.

Modeling has been used in all the engineering disciplines for a long time. In

some disciplines, modeling is highly matured so that, in electrical engineering or civil

engineering, a model has a one to one correspondence to the final product.

Main goal of the software modeling should be reaching the level of CAD

modeling used in civil engineering, which permits one to one modeling of real systems

[13]. Currently there is an approach supported by Object Management Group (OMG),

called Model Driven Architecture (MDA) [14]. In this approach, main idea is building

systems from models, which is independent form implementation technology.

Although there have been considerable work on software modeling, there is still a long

way to go.

Graphical modeling languages have been around in the software industry for a

long time. In following sub-sections, first, standard modeling language, UML, is

briefly described. Then modeling language of the new COSE approach, COSEML and

its modeling tool, COSECASE are explained.

2.6. Unified Modeling Language (UML)

Unified Modeling Language (UML) is the official industry standard for object-

oriented modeling as defined by the Object Management Group (OMG) [4].

The UML is appropriate for modeling systems ranging from enterprise

information systems to distributed Web-based applications. It is a very expressive

language, addressing all the views needed to develop and then deploy such systems.

12

The UML is not limited to modeling software. In fact, it is expressive enough to

model non-software systems.

Multiple models are needed to understand different aspects of a system. UML

addresses the different views of a system's architecture with different diagrams as it

evolves throughout the software development life cycle. Figure 1 shows the formal

diagram hierarchy [4] in UML 2. There are two major kinds of diagram types:

structure diagrams and behavior diagrams in UML 2 specification as it is shown in

figure 1.

Brief description of these UML 2 diagrams can be summarized as follows.

• Structure Diagrams: Structure diagrams show the static structure of the

objects in a system. Elements are described regardless of time. The

elements in a structure diagram represent the meaningful concepts of an

application, and may include abstract, real-world and implementation

concepts. Structure diagrams do not show the details of dynamic behavior,

which are illustrated by behavioral diagrams.

o Class Diagram: A class diagram shows the classes and their

relationships in a system. It is one of the most popular types of

diagram in OO modeling.

o Composite Structure Diagram: A composite structure diagram

shows how objects are composed at runtime

o Component Diagram: A component diagram shows the structural

relationships among the components of a system.

o Deployment Diagram: The deployment diagram depicts the

configuration of the runtime elements of the application. This

diagram is useful when a system is built and ready to be deployed.

13

Fi
gu

re
 1

. U
M

L
2

di
ag

ra
m

s

Figure 1. UML 2 diagrams

14

o Object Diagram: The object diagram shows the state of different

classes in the system. Their relationships or associations can be

captured at a given point of time.

o Package Diagram: A package diagram shows the organization of

packages and their elements. They show compile-time groupings.

• Behavior Diagrams: Behavior diagrams show the dynamic behavior of the

objects in a system, including their methods, collaborations, activities, and

state histories. The dynamic behavior of a system can be described as a

series of changes to the system over time. Behavior diagrams are further

classified into several other kinds.

o Use Case Diagram: The use case diagram is used to identify the

primary elements and behavior that form the system. It shows, what

the actors make, to fulfill a system behavior.

o Activity Diagram: An activity diagram captures the process flows

in the system. It consists of activities, actions, transitions, initial and

final states, and guard conditions

o State Machine Diagram: A state diagram represents the different

states of the objects during their life cycle.

o Interaction Diagrams: Interaction diagrams are used to model the

dynamic aspect of collaborations and the roles of the elements in

the system. An interaction diagram shows an interaction, consisting

of a set of objects and messages between them.

 Sequence Diagram: A sequence diagram represents the

time-ordered interaction between different objects by

showing the messages between them.

 Communication (Collaboration) Diagram: A

communication diagrams is used to model the dynamic

behavior of the use case. Compared to sequence diagram,

15

the communication diagram is more focused on showing

the collaboration of objects rather than the time sequence.

 Interaction Overview Diagram: An interaction overview

diagram is a form of activity diagram in which the nodes

represent interaction diagrams.

 Timing Diagram: A timing diagram shows the behavior of

objects in a given period and it is useful for showing timing

constraints between state changes on different objects.

2.7. COSE Modeling Language (COSEML)

COSEML is a graphical modeling language and it was developed for use in the

COSE approach [2]. The goal of COSEML is to provide the human developer with the

natural “divide and conquer” discipline based on structure [6]. Modeling with

COSEML emphasizes structural decomposition. It is an adaptation of the earlier

structure-based and decomposition oriented specifications [15].

In COSEML, modeling starts with a top-down decomposition of the system. In

this phase, abstract building blocks of the system are found. This top-down activity

continues while searching the representing components. When they are found, a

bottom-up component composition is carried out to reach the desired capability of the

system.

The hierarchy that is a key concept in design cognition is not supported

effectively in UML and other languages [6]. To address this concept, COSEML

utilizes a single hierarchy diagram in which abstract decomposition and component

composition are shown together. COSEML addresses both abstract and physical

components. The higher-level elements represent the abstractions for package, data,

function, and control. Lower-level elements correspond to components and interfaces.

Figure 2 depicts the symbols used in COSEML.

16

Figure 2. COSEML symbols

Physical component and interface symbols are created while the other

appropriate symbols are taken from UML.

These symbols are defined in [6] as follows. Package abstraction groups related

elements in an encapsulation. A package can contain further package, function, data,

and control abstractions. It is the fundamental structural element used in the definition

of part-whole relations. System decomposition is made using packages and

decomposition is detailed using the other abstractions. Data abstractions represent data

structures. In the requirements model they can model high-level entities. Function

abstractions represent high-level system functions. Control abstractions are state

machines, accepting messages that cause state changes and outgoing messages. State

changes can trigger the execution of function abstractions or of operations inside data

abstractions.

Components and their interfaces are represented with symbols as the lowest-

level elements. Figure 2 also shows the graphical representation of physical-level

elements of COSEML.

There are also connectors to represent communications among components,

both in abstract and physical levels. In abstraction, a connector represents many

message or event connections between two components. A connector between two

components is still an abstract element. It represents at least one, but possibly more

than one message (or event) link. A message link represents a function call (local or

17

remote) originating in one component and terminating at the interface of another.

Events are similar to messages but semantically they stand for calls initiated by

external causes in contrast to calls made under program control. Other than this

categorization, messages or events are similar in the way they are represented.

COSEML mainly focuses on the structural decomposition. Components, which

represent the decomposed modules, are also showed on the model. In this thesis work,

modeling with COSEML is extended to show the interactions among those

components

18

CHAPTER 3

COLLABORATION DIAGRAMS IN COSEML

In this work, two types of collaboration diagrams, abstract and run time

collaboration diagrams are proposed. COSEML shows abstract decomposition of the

system and corresponding real components together on the hierarchical diagram.

Emphasis on these two views is supported by defining these two collaboration

diagrams.

In this chapter, a specification is given for their use in COSEML. After that,

possible benefits of collaboration diagrams for COSE modeling are explained.

3.1. Specification

On the definition of collaboration diagram specification, applicable rules and

methods are adapted from UML. Other rules are defined by considering the COSE

approach and the current state of COSEML.

Specification for Abstract Collaboration Diagrams and Run Time Collaboration

Diagrams differs only on the element types that can be added to the diagram. Other

specifications such as sequence numbering, conditional messages, loop structure or

message types are all common for both of the diagram types. These are defined in the

following sub sections.

3.1.1. Abstract Collaboration Diagrams

In abstract levels, abstract collaboration diagrams are utilized for supporting the

decomposition model of the COSEML. High-level requirements and the behavior of

the system can be modeled using this type of collaboration diagram. Utilizing these

diagrams can help to find incompleteness and inconsistency in scenarios and

requirements in the analysis phase. Thus, they are useful for testing the correctness of

19

the structural decomposition. Adding that, they do not contain any technical or

implementation detail. Therefore, they can help to create a common understanding of

a system behavior between different users, ranging from domain experts to end-users.

In this diagram, only abstract elements of COSEML are allowed that exist in the

main hierarchy diagram. If there is a need to add a new element to the collaboration

diagram, then hierarchy diagram should be reconsidered and this new element should

be included. Only after that, it can be used in the collaboration diagram. This process,

which improves the decomposition model, is shown in figure 3. Any element that is

required in the dynamic behavior is forcefully added to the decomposition model.

Figure 3. Decomposition checking using abstract collaboration diagrams

3.1.2. Run Time Collaboration Diagrams

For the physical level, run-time collaboration diagrams are utilized. These

diagrams show behavioral aspects of the system on component level. Interactions

among interfaces are shown using sequence of method calls and event signals in the

diagram. Showing these interactions permit to model the implementation of complex

operations. Run time collaboration diagrams are intended for the implementation

phase and they mostly contain implementation details. These diagrams are suitable for

making wiring-level decisions on the model.

20

Modeling elements in this kind of collaboration diagrams are only the

component interfaces. An interface should exist in the hierarchy diagram in order to be

used in runtime collaboration diagram. If a behavior cannot be modeled using existing

interfaces, new components and interfaces should be found and added. This rule

improves the composition model of the hierarchy diagram by enforcing the addition of

new components to fulfill a required behavior. This diagram type permits modeling

complex implementation details on the model.

3.1.3. Sequence Numbering

Interactions in a collaboration diagram are shown using sequence of messages

among the elements. Order of the messages is indicated by the sequence numbers

defined with the messages. UML suggests nested decimal numbering for sequence

numbering [4]. However if there are two many nested calls, message numbers can

easily get complicated (ex: 1.2.1.1.3). Most of the model designers prefer flat

numbering on collaboration diagrams. This notion is straightforward and easy to

follow. Figure 4 shows this notion. On the other hand, flat numbering has problems on

some situations.

Figure 4. Use of flat numbering on message sequences

21

In figure 4, it is not clear whether get discount is called within calculate price or

within the overall get price method. It is not possible to know if a message is an inner

call or not. Nested calls cannot be tracked with flat numbering. Nested decimal

numbering scheme solves this problem. Figure 5 shows the same diagram with this

numbering scheme.

Figure 5. Use of nested decimal numbering on message sequences

In figure 5, it is clearly seen that, get price is the main method and others are

inner method calls. It is also apparent that get discount method does not belong to the

main get price method. Nested numbering resolves ambiguity and it also covers the

flat numbering notion. For these reasons, nested numbering notion is selected for

message sequencing in COSEML.

3.1.4. Conditions and Loops

Conditional flows are the essential part of dynamic modeling so they are

defined in the specification. A conditional message is denoted by putting the

conditional expression between square brackets as shown in figure 6.

22

Figure 6. A conditional message

This visualization represents a conditional message, which is activated if and

only if the condition between the square brackets evaluates to “true”. Like UML 2

specification, no restriction is defined on the use of logical expressions between the

brackets.

Any conditional branching can be simulated using conditional messages and

concurrency together. Figure 7 shows if / else if / else branching on a collaboration

diagram.

Figure 7. Conditional branching

It is ensured that, only one of the messages in figure 7, which satisfies the

condition, is going to run at time t1. By designing proper message conditions, any

kind of complex branching is possible.

Another structure, which is also essential for modeling complex flows, is loop

structure. When one or more messages are called more than once, these structures are

needed. Notation is similar to that of a conditional message; difference is the asterisk

in front of the brackets as seen in figure 8.

23

Figure 8. A message with a loop condition

Condition between the square brackets is the loop condition and while it

evaluates to true, that message and sub messages are iterated. In order to iterate a

group of messages, setting a loop condition to the parent message is sufficient.

To show the usage of conditional and loop structures, an example run time

collaboration diagram of an automatic door application is shown in figure 9.

Figure 9. Run time collaboration for automatic door application

In step 1, the DoorControl receives movement event from the MovementSensor.

Step 2 is a message with a loop condition. While the system is active,

monitorMovement message is called continuously. In a continuous manner, if there is

a movement then controller opens the door (2.1). Following that, door keeps open for

10 seconds (2.1.1). Then, if there is no movement at that time, controller closes the

door (2.1.2). Until system became passive, step 2 and its sub steps called continuously.

24

When the MovementSensor senses a movement, it informs the listeners and

consequently door opens. Table 2 shows the lifetime of the messages.

Table 2. Lifetime of the messages in automatic door application

Sequence When called

1 One time at the start

2 While the door is active

2.1 While the door is active and there is movement

2.1.1 When 2.1 called

2.1.2 When 2.1.1 called and there is no movement

3.1.5. Message Types

The links between the participants in the diagram are annotated with the

messages. Messages can be synchronous, asynchronous or flat. Figure 10 shows the

message symbols used in COSEML collaboration diagrams.

Figure 10. Message types

25

Different kinds of arrows allow distinguishing between message types. The

normal arrowhead stands for simple message, filled arrowhead for synchronous and

the half filled arrowhead for asynchronous one.

Concurrent messages between the interfaces are also supported. All message

types can also be concurrent. Modeling concurrency is needed especially in

distributed, multithreaded and reactive systems. Concurrency is shown by using

alphabetic characters next to the sequence numbers. Figure 11 shows two concurrent

messages on the first sequence level.

Figure 11. Concurrent message types

In a synchronous message, caller who sends it must wait until the message is

done, such as invoking a subroutine. If a caller sends an asynchronous message, it can

continue processing and does not have to wait for a response. Concurrent messages are

used when a caller needs to send more than one message at the same time. Supporting

synchronous, asynchronous and concurrent type of messages is important for

modeling complex operations. Asynchronous and concurrent messages are used

especially in multithreaded and message oriented applications. It is not possible to

model real applications without having such message types on the diagram.

An example model can clarify the necessity of asynchronous messages. Figure

12 shows a collaboration diagram of a car rental scenario [5]. Here all messages are

modeled as synchronous which means a message call waits until previous message

completes. In the scenario, a customer comes to car rental office and requests a car

(1:walkInRequest). After that, the desk first, checks the credibility of the customer

(1.1:checkCredibility), second, it checks the garage for the availability of the

requesting car (1.2:checkAnswer) and then keeps the availability info for making

decision (1.3:keepAvailAnswer). If nothing is wrong after those processes, customer

26

gets information about insurance (2:getInsuranceInfo). If she finds the insurance plan

suitable, then she asks for picking up the car she selected (3:pickUpCar). Following

that, desk selects the car (3.1:selectCar) and takes it from the garage (3.2:carTaken).

Figure 12. Car rental scenario

At the end of the rental period, customer returns the car to the office

(4:returnCar). Then desk checks the car (4.1:statusCheck), adds information about the

rental to customer’s file (4.2:add) and returns the car to the garage (4.3:carReturned).

In the model, it seems that, getInsuranceInfo cannot be called until

walkInRequest operation is completed. However, these are independent operations.

Operation pickUpCar is dependent only on the answer of the walkInRequest operation.

This model can be fixed using asynchronous messages. Figure 13 shows the revised

diagram.

27

Figure 13. Car rental scenario with asynchronous messages

In figure 13, walkInRequest and getInsurenceInfo messages are made

asynchronous. This means, customer can get information about insurance while desk

processes the rental request. In addition, customer can pick up the car as soon as

request operations returns positive answer (1.3:keepAvailAnswer). Asynchronous

method calls improves the performance. Modeling a behavior with a collaboration

diagram and examining the interactions make it easy to figure out the possible

asynchronous method calls.

Following example scenario is given to show the concurrency modeling. Figure

14 depicts the abstract collaboration diagram of this scenario.

28

Figure 14. Seismic activity monitoring scenario

This scenario describes the steps of monitoring seismic activity. A seismic

sensor continuously sends seismic activities to the central computer (1.1 at time t1).

Computer shows it on the monitor (1.2a at time t2) and if it is larger than a threshold

value, this data is added to database (1.2b at time t2), printed (1.2c at time t2) and

updated on the web page (1.2d at time t2) concurrently.

Concurrency is important in multi threaded and reactive applications. However,

concurrency is error prone especially on shared resources. For this reason it is useful

to model such behavior and study all possibilities on the model.

3.2. Benefits of Collaboration Diagrams to COSE Modeling

In this section, possible benefits of collaboration diagrams to COSE modeling

are explained.

29

3.2.1. Use Case Realization

Use cases are a technique for capturing the functional requirements of a system.

They describe the typical interactions between the users of a system and the system

itself, and provide a description of how a system is used [16].

A use case captures the intended behavior of the system. It specifies this

behavior using sequences of actions. They can be considered as the foundation for the

rest of development process. As the system evolves, they help to validate the

development. They also provide a common understanding of the system to developers,

end users and domain experts. For these reasons, use case approach plays a key role in

a software development process.

Use cases do not specify implementation details. However, they have to be

implemented and in COSE, implementation is the connection of the components

through interfaces. For this purpose, collaboration diagrams, which show the sequence

of connections, are very suitable for use case realization. They provide a complete

path for the realization of use cases [17].

Two collaboration diagram types, introduced in this thesis can be used for use

case realizations in different levels.

Abstract collaboration diagrams are closer to the analysis phase of the

development. This diagram type describes the externally visible actions and their

sequences and it does not get into the implementation details. For this reason, use case

realizations with abstract collaboration diagrams are useful for validating and

improving abstract decomposition of the system and requirement refinement. In

addition, they are useful for showing the behaviors of the system.

On the other hand, run time collaboration diagrams are closer to the integration

phase of the COSE. When they are used to describe the realization of a run time level

use case, they provide information that is more specific and detailed. Sequence of

method calls, event subscriptions and data flow between the interfaces of components,

can be modeled using run time collaboration diagrams.

30

Following section is a textual description of the use case of a mobile translation

service example [13]. In this use case scenario, a picture message, containing an

English text, is translated to Turkish and sent to the customer.

Translate Picture Message

Main Path:

1. Customer takes a picture of an English text with mobile phone.

2. Customer sends the picture to the translation service.

3. Service processes the image and converts it into text.

4. Service translates the text to Turkish language.

5. Service sends this translated text to the customer as an SMS.

6. Service bills the customer for 10 SMS.

Extensions:

3a. Service could not recognize image

3a.1. Service bills the customer for 1 SMS.

3a.2. Service sends error message to the customer as an SMS

4a. Service could not translate text.

4a.1. Service bills the customer for 1 SMS

4a.2. Service sends error message to the customer as an SMS

31

Figure 15. Abstract collaboration diagram of the mobile translation service

Abstract elements in this scenario are MMS, OCR, Translator and Account

components [13] as show in the collaboration diagram in figure 15. This diagram

presents a graphical description of the use case. It shows the high-level system

functionality and hides the implementation details. This abstract picture of the use

case helps the system designer to review and validate the scenario. End users, domain

experts and developers can efficiently negotiate system requirements on this diagram.

To build the system, behaviors should be implemented. Implementation phase

in COSE is indeed the integration of the components. Run time collaboration diagrams

are very suitable environment for integrating the components through their interfaces.

Figure 16 shows the run time collaboration diagram of the “Translate Picture

Message” use case.

32

Figure 16. Runtime collaboration diagram of the mobile translation service

As it is clearly seen from the figure, implementation level details can be

modeled using run time collaboration diagrams. Method calls, event subscriptions and

data flows can be modeled. In addition, implementation level issues such as

concurrency, asynchronous calls, conditional calls, looping are supported. Such

supports enable the construction of wiring-level decisions. Furthermore, these

diagrams can be extended so that they can be used for application generation from the

model.

3.2.2. Improved Hierarchy Diagram

COSEML emphasizes modeling the structural view of the system. The

hierarchy diagram, which was the only diagram in COSEML, has been used for

abstract decomposition of the system. This diagram also shows the components and

component compositions that represent the decomposition elements. It shows a static

model of the system. However, accuracy and efficiency of the static models cannot be

33

proven true without the help of dynamic models [18]. To prove this claim, a telephone

system given in [18] is modeled with COSEML.

A telephone system consists of elements like speaker, microphone, buttons,

dialer, display and a network. Therefore, the first decomposition model that comes to

mind is, creating a telephone entity and connecting mentioned elements using

composition links as shown in figure 17.

Figure 17. Decomposition model of Telephone System

This model shows the components in a telephone system and it seems a valid

static model. However, as explained above, without examining a dynamic model of

the system, one cannot ensure that this model is valid. A system is not only a static

structure; its functioning is determined by the dynamic aspects. For this reason

dynamic behavior should be investigated.

34

Dynamic behavior is explored by use case analysis. Most obvious function of a

telephone system is calling a person. Therefore, studying the “Call a Person” use case

is appropriate. Steps of this use case are as follows.

• Caller presses the buttons on the telephone to call the desired number

• Caller presses dial button.

• Dialer dials the number.

• While dialing, dialer creates a tone on the speaker.

• While dialing, dialer display digits on the display.

• Dialer sends the number to the network.

• Network sends ringing status tone to speaker.

• When called person responds, network sends the voice to the speaker.

• Caller speaks to the microphone

• Microphone sends the voice to the network.

• Caller presses the close button

• Dialer sends close message to network and call ends.

Figure 18 shows the representing collaboration diagram. This diagram clearly

shows the sequence of actions and communication among components. For example,

it is obvious that Button only interacts with Dialer and isolated from the rest of the

system. Similarly, Microphone component interacts only with Network. The previous

static model in figure 17 was not containing such information. For this reason,

previous decomposition model was not complete.

35

Figure 18. Collaboration diagram of “Call a Person” use case

After observing the dynamic behavior using the collaboration diagram,

chang

ing the previous decomposition model is straightforward. Figure 19 shows the

improved decomposition model of the telephone system. This decomposition model

now contains more information about the system. It is clear that, modeling the

dynamic behavior of a system with logic level collaboration diagrams helps to validate

and improve the abstract decomposition part of the hierarchy diagram. As the number

of abstract collaboration diagrams increase in the model, decomposition part becomes

more complete. What this means is improving the static model by exploring behaviors

of the system.

36

Figure 19. Improved decomposition model of Telephone System

This is also true for the component composition part of the hierarchy diagram of

COSE

A static model that is produced without the benefit of dynamic analysis is bound

to be i

3.2.3. Automated Software Test

There is an increasing need for effective testing of software. In the domain of

milita

ML. In that part, links are used to show the relations among interfaces. These

links can be improved by exploring the dynamic behavior at the run time level. Run

time collaboration diagrams, which show the sequence of messages among the

component interfaces, can be utilized for this purpose.

ncomplete. The appropriate static relationships are a result of the dynamic needs

of the application. Collaboration diagrams are a good way to depict dynamic models

and compare them to the supporting static models [18].

ry and e-government applications, reliability and robustness of the software is

very important. Some software testing approaches focus on test generation from

source code. However in the component oriented approaches, source code is hidden in

a black box, which is not accessible for testing purposes.

37

In [17], advantages of generating test data from high-level design notations over

code-based generation were proposed. It is claimed that, one of the major costs of

testing can be significantly reduced by using design notations as a basis for output

checking. Design problems can also be discovered within such a testing process. This

eliminates the problems in the early stages, which means saving time and resources. In

addition, early testing allows more effective planning and utilization of resources. It is

also underlined that testing from design makes the testing process independent from

any particular implementation of the design.

Such design oriented testing approach is adaptable to the work cited in this

thesis. Collaboration diagrams represent a significant opportunity for testing because

they precisely describe how the provided software functions are connected in a form

that can be easily manipulated by automated means [17]. Static and dynamic testing of

the system can be handled using abstract and run time collaboration diagrams that are

provided with this work. Tests can be generated automatically from these diagrams.

Such an approach, the utilization of COSEML collaboration diagrams for software

testing, creates an open research area in COSE.

3.2.4. Automated Application Generation

There is an increasing interest on the idea of creating applications from the

software models both in the research community and in the software industry. Model

Driven Architecture (MDA) is currently the most popular approach on this subject.

The aim in MDA is to build systems from models, which is independent from

implementation technology [14]. From a given model, code is generated by MDA-

CASE tools. However, there is a problem in this approach. Quality, robustness and

reliability of the generated software are left to the tool, which cannot guarantee the

standards required by the current software systems.

In the next generation of software engineering, existing components should be

used and there should be no coding. Components have proven quality, robustness and

reliability. Therefore, application generation approach could utilize existing

components as an alternative to the model transformation. Collaboration diagrams

proposed in this thesis provide a good opportunity for application generation from a

model using components.

38

In [19], collaboration diagrams were proposed for java code generation from the

model. Their appropriateness for code generation is also explained in that work.

COSEML collaboration diagrams are built on the component approach and the

problems cited in [19] are not valid for these diagrams. There are no low-level coding

issues in a component-oriented approach. This makes use of COSEML collaboration

diagrams very feasible for application generation.

Run time collaboration diagrams enable inputting all the necessary information

such as event transactions, sequence of method calls, control and loop structures. With

this information, a run time collaboration diagram can generate a specific functionality

of the system. Later these generated application parts can be combined to generate the

final application.

39

CHAPTER 4

IMPLEMENTING COLLABORATION DIAGRAMS
IN COSECASE

Before this work, COSECASE was based on a single diagram concept. For this

reason, implementation was not generic enough to extend the editor and to support

multiple diagrams. Another problem was, high coupling among the irrelevant types of

classes. Any code change made on a single object was affecting the many others.

Furthermore, readability of the source codes was poor. Since more than one developer

had worked on the development on different times, there was no consistent code style.

Variable naming was improper; there were unused variables and methods. In addition,

objects in the code were taking irrelevant responsibilities. Such factors were

complicating the development efforts. These problems are investigated with the help

of Eclipse, which is a highly functional development environment.

After solving these problems, some sorts of precautions are taken for preventing

similar problems in future. One of the most important problems is the versioning.

COSECASE is a research project and there is an ongoing development on it. Multiple

developers are working on this project at different times and a versioning system is

mandatory. To solve this problem, source codes of COSECASE are put into an online

repository, which supports version controlling. In addition, requirement and feature

tracking is made possible on this online repository.

After creating a robust foundation for development, new features that are

required by collaboration diagrams are added to the modeling tool. These are

explained in this chapter.

40

4.1. Code Review and Improvements on COSECASE

In the previous version, development was made on the single hierarchy diagram

idea. For this reason, most of the objects were designed around this single diagram

concept. Even the simplest objects, symbol and link objects were keeping the

reference to the hierarchy diagram. These objects were accessing the global resources

provided by this diagram. To support new diagram types, these objects should be

made independent. An object should not keep the reference of an unrelated object. For

these reasons, all the unrelated references are removed. While doing that, some

business functionality were also moved to more responsible objects.

4.1.1. Code Improvements with Eclipse

Eclipse is an open source software development project, which provides a high

quality, full-featured Integrated Development Environment (IDE) [20]. This IDE has a

high level of code re-factoring support.

Figure 20. Eclipse development environment

41

Figure 20 shows a snapshot of the development environment. Source codes of

COSECASE are reviewed using rich set of code improvement functionalities provided

by this environment. There were unused variables and methods in the code. They were

making the code unreadable and difficult to understand. Using eclipse, they are

detected and totally removed from the source code. Another readability problem was

the format of the codes. Different parts of the software were having different code

style. With this tool, all of the source codes are reformatted using the conventional

code styles.

High number of source files was another problem. It was difficult to distinguish

which classes were related. This problem also is solved by creating logical groups of

packages and putting the related classes to the same packages. Figure 21 shows the

use of packages.

Figure 21. Re-factoring functionalities in Eclipse

With this package use, classes, which are related to a specific functionality are

grouped so that a novice COSECASE developer can easily locate them.

42

To sum up, readability and understandability of the COSECASE codes are

highly improved using the functionalities provided by the Eclipse development

environment.

4.1.2. CVS

Concurrent Versions System (CVS) is an open source version control system

[21]. It is widely used by software development teams.

Version controlling is an important component of source code management and

is necessary even for a single developer. Changes made on source codes may need to

be rolled back. In addition, before a risky code review, a tag may be given to a group

of source files. This is similar to creating a backup disk and putting it in a safe place.

When there are multiple developers, situation is more critical as in the case of

COSECASE. Changes made by a developer should be synchronized by others in order

to keep the integrity of the software. When multiple developers work on a single

source, conflicts can be solved and changes can be merged by using the facilities

provided by CVS.

There has been no version controlling on the development of COSECASE. As a

result, there have been different versions of COSECASE that have different

functionalities, different bugs and different solutions. This was slowing the

development of COSECASE project. For these reasons, source files of COSECASE

were put on an online CVS server for the sake of current and future development of

the modeling editor.

4.2. Implementation of Collaboration Diagrams

Previous version of the COSECASE was built on the single hierarchy diagram

concept. There was a single diagram class, CosemlDrawPanel, which was handling all

of the modeling work. This class is replaced by a hierarchy of classes. New structure

supports collaboration diagrams and other types of diagrams to be used in

COSECASE. Figure 22 shows the new implementation of the diagrams in

COSECASE. DrawPanel is the base class and it contains the common properties of

diagrams that can be used in the tool. It supports use of any modeling symbols without

43

any constraints. Also all common drawings, mouse and keyboard events are handled

in this class.

DrawPanel

MainHierarchyDiagram CollaborationDiagram

RuntimeCollaboration
Diagram

AbstractCollaboration
Diagram

Figure 22. New diagram structure in COSEML

As its name implies, MainHierarchyDiagram is the new implementation of the

previous CosemlDrawPanel class. Its functionality and the user interface remained

same. In addition, two new diagram types, RuntimeCollaborationDiagram and

AbstractCollaborationDiagram are added to the diagram structure.

To enable browsing the diagrams in the model, a component, which is a floating

window, is designed. This component, DiagramTree, is a JTree structure that

contains a main hierarchy diagram and zero or more collaboration diagrams. Other

than browsing, DiagramTree also responsible for adding and managing diagrams.

New collaboration diagrams can be added; existing ones can be renamed or removed.

On the other hand, main hierarchy diagram can only be renamed. It cannot be removed

from the diagram. Functionalities such as duplicating a collaboration diagram or

saving it to disk are also supported in the DiagramTree.

44

Figure 23. Diagram model contained in DiagramTree

Tree model of the DiagramTree is shown in figure 23. All these functionalities

are accessed via pop-up menus to save space. In addition, DiagramTree can be made

invisible with a menu item defined in View Menu.

Each model in COSECASE has a default hierarchy diagram. Collaboration

diagrams are added by the model designer and they are optional. Model can have as

many collaboration diagrams as needed. Figure 24 shows a snapshot of the

DiagramTree on the COSECASE. In figure 24, diagram with the name “Online

Banking” is the main hierarchy diagram and it is always shown at the top of the

diagram tree.

Figure 24. DiagramTree

45

While implementing collaboration diagrams, some infrastructural changes are

made to COSECASE. For those changes, general diagramming guidelines [22] and

UML collaboration diagrams are observed.

4.2.1. Links

Links are used to connect elements for showing relations between them. A class

diagram for the old link classes of the previous COSECASE is shown in figure 25.

In this work, two major additions are made to the link structure. First is the

support for segmented-lines. One of the diagramming principles suggests avoiding

diagonal and curved lines for connecting elements. They are difficult to follow on a

diagram and model can easily become complicated. For this reason segmented-lines

are implemented.

Figure 25. Old structure of link classes in COSEML

Figure 26 shows a segmented link. Segmented-lines allow creating a line with

multiple joint points. They allow creating flexible paths on the model. In addition,

auto straightening functionally is added to the segmented-lines. This also improved the

ease of connecting elements on the diagram. Joint points are implemented by segment

drag points. A segment drag point can be added or removed by double-clicking a point

on the segmented-line. Then the line can be shaped by dragging these points using

mouse.

46

Figure 26. Segmented links

Second addition is the support for sequencing messages. They are required for

showing the sequence of messages in a collaboration diagram. Figure 27 shows a

sequence message.

Figure 27. A sequence message

New classes are created for supporting sequence messages and segmented links.

Figure 28 shows the updated state of link classes. As seen in the figure, all previous

link classes are made segmented by extending from the SegmentedLink class. In the

implementation of the SegmentedLink, a new class that handles the drawing is used.

This class, SegmentedArrow, contains two SegmentDragPoints, on it, one at the tail

and the other at the head. Later, any number of SeqgmentDragPoints can be added by

double clicking on the SegmentedLink.

47

Figure 28. New structure of link classes in COSEML

In the new structure, a new link type, SequenceLink is introduced. This link

contains a Sequence class, which handles the decimal number sequencing.

SequencePart class in this class is simply the number parts defined in a sequence. As

an example, “Sequence 2.1.3” contains three SequenceParts.

4.2.2. Dialog Windows

New dialog windows are added to support functionalities of collaboration

diagrams. Figure 29 shows the new dialogs added to COSECASE.

AddDiagramDialog and RenameDiagramDialog are used for adding new

collaboration diagrams and renaming diagrams in the model. SymbolAdder is used to

add symbols from main hierarchy diagram to a collaboration diagram. SequenceEditor

manages the sequence messages in the collaboration diagrams. Defining message

name, message type, condition and loop structures are all handled in this dialog.

48

Figure 29. New dialog classes in COSEML

49

CHAPTER 5

CASE STUDY: E-STORE APPLICATION

In this case study, an e-store application is modeled with COSECASE.

Modeling power of collaboration diagrams in the Component Oriented Software

Modeling approach is clearly illustrated in this work.

An e-store application provides a virtual store for online shopping. A customer

visits the e-store and creates an account in order to benefit from shopping. At this

stage, personal information, contact information (e-mail, phone number) and address

of the customer are saved. After that, customer can browse the product catalog and

examine the features of the products. While browsing, customer makes a selection and

adds them to a virtual shopping cart provided by the e-shop application. During this

process, customer may edit the contents of this shopping cart. Then customer clicks to

“proceed to checkout” button to buy the items in the shopping cart. In the checkout

process, customer selects the shipping and payment options and then approves the

order. Following that, system charges the customer and sends the products to the

shipping address. Meanwhile, customer can track the order status using the system.

When the products arrive, order status is changed as completed and details of this

order are saved in the “order history” of the customer.

5.1. Logical Decomposition

COSE modeling approach starts with system decomposition. Possible packages

at the first level of the decomposition are listed below.

• Account

• Product Catalog

• Shopping Cart

50

• Order

• Customer

• Web

Figure 30 shows the first level decomposition of the e-store application on

COSECASE.

Figure 30. First level decomposition of the e-store application

Creating accounts and login operations are handled in the Account package.

Information about products, prices and product stocks are managed in Product

Catalog package. This package also has search functionality for products, prices and

stocks in the e-shop. Shopping Cart package manages a virtual shopping cart. This

package handles buying decisions of the customers. Products can be added or removed

until payment approval. Another package in the e-store application is the Order

package. This package manages the checkout of the items in the shopping cart,

shipping of the items to the customers and payment process. Keeping the order status

51

is also handled in this package. Customer package represents the real customers and

keeps user preferences and other customer related information in the system. Finally,

Web package represents the web pages on the e-store application. Customers interact

with the system using the web pages provided by this package.

COSE development continues with further decomposition and reviewing of the

system specification. Decomposition of the packages that are shown in figure 30 is

conducted and modeled as follows.

Figure 31 shows the decomposition of the Account package, which is

responsible for the login and registration operations.

Figure 31. Decomposition of the Account package

Figure 31 shows two main functionalities of the Account package. A new

customer first creates an account using Create Account function. Username and

password of the customer are added to the Master Account Table. Then customers log

in the e-store using Log In functionality with their username and password.

52

Figure 32. Decomposition of the Product Catalog package

In figure 32, decomposition of the Product Catalog package is shown. Products

and their properties are stored in the Product data abstraction. Up-to-date prices of the

products are kept in Price and current stock values are maintained in Stock data

abstractions.

Figure 33. Decomposition of the Shopping Cart package

Shopping Cart package contains three main functionalities. Products selected by

the user can be added to the shopping cart using Add to Cart functionality. Updating

or deleting an item is handled by the Edit Cart functional abstraction. Another

functionality of the package, View Cart Details, shows the price, quantity and product

information of the items in the shopping cart. Such information about the items in the

53

cart is stored in Item data abstraction in Shopping Cart package. This decomposition is

shown in figure 33.

Order package is more detailed than the other packages in the application.

Figure 34 shows the decomposition of this package.

Figure 34. Decomposition of the Order package

It encloses two sub packages, three function abstractions and a data abstraction.

Payment and Shipping are the packages defined under the Order package. Reviewing

of an order before payment, confirming the checkout and viewing the order status are

the main functionalities. They are represented by the function abstractions defined in

this package.

54

Figure 35. Decomposition of the Payment package

Figure 35 shows the decomposition of the Payment package. This package

manages the payment methods, and it keeps the customer’s payment preferences.

Security of the payment process, validation of customer’s credit card and

communication with the bank are handled in this package.

Figure 36. Decomposition of the Shipping package

Figure 36 shows the Shipping package defined in the Order package. This

package manages the shipping of the products to customers. Shipping address, invoice

name, selection of shipping company, shipping time and other shipping related issues

are handled in this package. Figure 37 shows the whole decomposition model.

55

Fi
gu

re
 3

7.
 F

irs
t l

ev
el

 d
ec

om
po

si
tio

n
of

 th
e

e-
st

or
e

Figure 37. First level decomposition of the e-store application

56

5.2. Use Cases Realizations with Abstract Collaboration
Diagrams.

Use case analysis helps to figure out the requirements and help to explore the

important behavior. In this section, some of the most important use cases of the system

are observed and their realization is modeled using abstract collaboration diagrams.

To model the realization of a use case using an abstract collaboration diagram,

possible collaborating elements should be identified. After that, their existence in the

main hierarchy diagram should be checked. If these elements do not exist, then they

should be added to the main hierarchy diagram before using in a collaboration

diagram.

Use Case - Create Account

To use the e-store application, customers first need to create an account. A use

case with the name “Create Account” is obvious.

Steps:

• Customer opens the registration page of the e-store.

• Customer enters registration data (username, password, e-mail) to the

registration page.

• Registration page checks the validity of the data.

• If check fails, an error message is displayed.

• If check succeeds, registration page creates the account.

• Account package inserts a new row to the Master Account Table with

given username and password.

• Registration page mails the account details to the customer.

Possible collaboration participants in this use case are Customer, Web, Account

and Master Account Table defined in the main hierarchy diagram. Figure 38 shows the

realization of “Create Account” use case with the abstract collaboration diagram.

57

Figure 38. Abstract collaboration diagram of “Create Account”

Use Case - Login

Registered users should login to system for improved service and security. This

use case assumes that customer has registered to system.

Steps:

• Customer opens login page.

• Customer enters username and password to the login page.

• Login page verifies login data from Account.

• Account checks username and password using the Master Account

Table.

• If login fails, login page displays error.

• If login is successful, login page opens the home page.

Figure 39 shows the abstract collaboration diagram for this use case.

58

Figure 39. Abstract collaboration diagram of “Login”

Use Case – Browse Products

Customers often visit an e-shop for browsing a product category (e.g. video

camera). In this use case scenario, a customer browses the product catalogs by

selecting a product category.

Steps:

• Customer selects a product category from the e-store home page.

• Page selects a category form the Product Catalog.

o If exists, Product Catalog selects subcategories

• Product Catalog searches products for selected categories.

• Search function finds products by the selected category from the

Product table.

• Page displays the product list from the selected category.

Figure 40 shows the representing collaboration diagram.

59

Figure 40. Abstract collaboration diagram of “Browse Products”

Use Case – Search by Product Property

Customers should be able to make a search on a specific product property.

Steps:

• Customer opens the search page of the e-store application.

• Customer enters the product properties to the input fields provided by

the search page and clicks the search button.

• Search page checks the input values for validity.

• Search page asks for the products with given properties from the

Product Catalog.

• Product Catalog uses the search functionality to get the products with

given properties.

60

• Search function makes a query for the given properties on Product

table.

• Search page displays the products with the given properties.

o If products found, Search page activates “Add to Shopping

Cart” use case.

Collaboration diagram of this use case is shown in figure 41.

Figure 41. Abstract collaboration diagram of “Search by Product Property”

Use Case – Add to Shopping Cart

When customers want to buy a product, they add it to the shopping cart

provided by the e-shop and continue shopping. Adding a product to the shopping cart

is given with the following use case steps.

Steps:

• Customer selects a product

61

• Customer inputs the product quantity and clicks the “add to shopping

cart” button.

• Page checks the stock from Product Catalog.

• Product Catalog gets the stock data of the product from Stock table.

• If stock is not available, page displays “Stock not available” error and

use case ends.

• If the requested quantity of the product is available in the stock, page

calls the Add to Cart function.

• Add to Cart function adds the product with given quantity to the Item

table

• Add to Cart function updates the data on the Shopping Cart.

• Page displays the contents of the Shopping Cart.

Figure 42 shows the collaboration diagram for this use case.

62

Figure 42. Abstract collaboration diagram of “Add to Shopping Cart”

Use Case – Edit Shopping Cart

Customers may decide to edit the contents of the shopping cart. They may

cancel the shipping process. Alternatively, they may update the quantity of the

products in the shopping cart. This use case describes the steps of deleting or updating

the items in the shopping cart.

Steps:

• Customer updates the quantity of the selected products on the shopping

cart page.

• Customer deletes the selected products on the shopping cart page.

• If any product quantity increased, page checks the stock from Product

Catalog.

• If any product quantity increased, Product Catalog gets the stock data

from Stock table.

63

• If any product quantity increased and stock is not available, page

displays an error and use case ends.

• Else, page calls Edit Cart function for updating the shopping cart.

• If there is a quantity change, Edit Cart function updates the quantity on

Item table.

• If there is an item deletion, Edit Cart function deletes the item from

Item table.

• Edit Cart function updates the contents of the Shopping Cart.

• Page displays the updates.

This use case is realized with the collaboration diagram shown in figure 43.

Figure 43. Abstract collaboration diagram of “Edit Shopping Cart”

64

Use Case – Proceed Checkout

Checkout is the most complicated use case of the e-shop application. It involves

shipping approval, payment method approval, and finally the checkout. Steps are

defined as follows.

Steps:

• Customer clicks “Proceed to Checkout” button.

• Page gets the saved shipping preferences from Shipping package.

• Shipping package get the saved preferences from Shipping Preferences

table.

• Page displays shipping details.

• If customer wants to change the shipping preferences, page calls the

“Update Shipping Preferences” use case.

• Customer approves the shipping preferences by clicking approve button

on the page.

• Page gets payment preferences from Payment package.

• Payment package retrieves the preferences from Payment Preferences

table.

• Page displays the previously saved payment preferences.

• If customer wants to change the payment preferences, page calls the

“Update Payment Preferences” use case.

• Customer approves the payment preferences by clicking approve button

on the page.

• Page gets review data from Review Order function.

• Review Order function gets preferences from the Shipping Preferences

table.

65

• Review Order function gets preferences from the Payment Preferences

table.

• Review Order function gets shopping cart contents by calling View Cart

Details function.

• View Cart Details function gets the details from Shopping Cart

package.

• Page displays the review.

• Customer controls the review and clicks the “Checkout” button on the

page.

Updating the shipping and payment preferences process is not included in the

realization diagram. Otherwise, diagram can become complicated and difficult to

understand. For this reason they are modeled as separate collaboration diagrams and

referenced from this diagram as “Call Update xxx Details Collaboration Diagram”.

Collaboration diagram of this use case is shown in figure 44.

Figure 44. Abstract collaboration diagram of “Proceed to Checkout”

66

Use Case – Update Shipping Preferences

A customer may be shopping from a different location. Consequently, she may

update the previously entered shipping preferences. This is a sub use case of the

checkout use case and referenced there. Steps of this operation are as follows. Figure

45 shows the collaboration diagram for this use case.

Steps:

• Customer enters new shipping options to the page.

• Page calls Select Shipping Options function to update the options.

• Select Shipping Options function sends the new options to Shipping

package.

• Shipping package updates the preferences on Shipping Preferences

table.

Figure 45. Abstract collaboration diagram of “Update Shipping Preferences”

67

Use Case – Update Payment Preferences

Customers can change the payment method on the e-shop. This is also

referenced from the checkout use case. Following steps describe the process.

Steps:

• Customers enter new payment preferences to the page.

• Page updates preferences on the Payment package.

• Payment package updates the Payment Preferences table.

Figure 46 shows the collaboration diagram.

Figure 46. Abstract collaboration diagram of “Update Payment Preferences”

5.3. Physical Composition

After decomposition, matching components should be found to build the system

[6]. Then, these physical components should also be added to the hierarchy diagram.

By this way, abstractions and their representing components are shown on the same

model, which provides an overall system structure.

68

Up to this point, decomposition of the e-store application was modeled. In

addition, a use case analysis of the system is made and use cases that are found, are

modeled using abstract collaboration diagrams. Next task is to find the real

components that represent the abstractions defined in the decomposition model. While

selecting components, abstract collaboration diagrams should also be kept in mind.

First of the packages that is found in the decomposition model is Account

Package. This package is further decomposed into two function abstractions and a

data abstraction, which are Create Account, Log In and Master Account Table. This

package can be represented by a component. This component is assumed to have the

same name with the package. Figure 47 shows the representing component.

Figure 47. Account component and its interface

This component has a single interface and satisfies the required functionality of

the Account Package. It has methods that provide login and register functionality.

There are two input functions. In order to execute login method, some other interface

in the system should provide LoginData to this interface by calling setLoginData.

69

Likewise, in order to invoke the register method, setRegistrationData should be called

first with RegistrationData.

Product Catalog Package can also be represented by a single component.

Figure 48 shows the representing component.

Figure 48. Product component and its interface

This component also has a single interface. In this interface, setProductData

and setCategory are the input methods. All other methods require setProductData to

be invoked first. Exception is that, getProductList can be invoked, if the setCategory

method is called previously.

Another package abstraction is Shopping Cart Package. Figure 49 shows the

component that represents this package.

70

Figure 49. Shopping component and its interface

This component also has a single interface. There is a single input method,

setItem that is required by the other methods, defined in the interface. There is also an

output event with the name proceedCheckoutFired. When the user decides to buy the

items in the shopping cart and clicks the “Proceed Checkout” button, this event is

activated.

Most detailed package in the decomposition model is the Order Package. It has

two sub packages and four other abstractions. Payment Package and Shipping

Package are represented by two components with the same name. A component with

the name Order is also added to the model. Figure 50 shows the components that

represent Order Package.

71

Figure 50. Payment, Order, Shipping components and their interfaces

All components shown in the figure have single interface. Shipping Interface

and Payment Interface have similar methods for adding, deleting, and updating the

payment and shipping preferences. The withDrawMoney method in Payment Interface

draws money from customer and pay method in Shipping Interface send money to the

shipping company. The only method in Order Interface is the processOrder. This

method bills the customer, pays the shipping company and ends the shopping.

Interface between the customers and the e-store is the Web Package. The Web

component should have all the functionalities for creating interactions between the

customers and the e-store. Figure 51 shows the corresponding component, and its

three interfaces.

72

Figure 51. E-store Web component and its three interfaces

ShippingPage interface is responsible for displaying the shipping preferences.

Customers can update, delete, or approve the preferences using this interface. In this

interface, before calling displayShippingData, setShippingDataToPage method should

be called first. There are also three events defined in this interface. These events

inform the listeners about user actions on the page. For example,

submitShipingPressed event informs that customer has approved the shipping

preferences and getShippingDataFromPage method can be used to get the approved

preferences.

Similarly, PaymentPage interface is responsible for displaying and managing

the payment preferences. Methods and events defined in this interface are similar to

that of ShippingPage interface.

ReviewPage interface provides the review of shopping cart, shipping and

payment details. When a customer decides to buy and clicks the approve button on the

page, submitOrderPressed event is fired. This event informs the listeners that

73

customer selected the shipping and payment preferences and bought the items in the

shopping cart.

Although there are three interfaces in the figure, E-storeWeb component has

more interfaces like LoginPage or RegistrationPage. However, to keep the things

simple and clear they are omitted. In the following section, only these three interfaces

of the E-storeWeb component are used.

Figure 52 shows all the abstract packages and their representing components

that have been defined in this section.

74

Fi
gu

re
 5

2.
 C

om
po

ne
nt

s o
f t

he
 e

-s
to

re
 a

pp
lic

at
io

n

Figure 52. Components of the e-store application

75

5.4. Runtime Collaboration Diagrams

Runtime collaboration diagrams show implementation details of a system

behavior and they provide a very suitable medium for component wiring. In the

previous section, components of the e-store system are found and included into the

main hierarchy diagram. With run time collaboration diagrams, implementation of the

use cases can be modeled by showing the interactions among the real components. In

this section, the “Proceed to Checkout” use case, which is the most complex scenario

in the e-store application, is modeled using a run time collaboration diagram.

In the “Proceed to Checkout” use case scenario, customer first clicks to

“Proceed to Checkout” button. Then, shipping preferences are displayed on the web

page. Customer updates the preferences if she wants and approves the shipping

preferences. Next, the page displays the payment preferences. Again, customer may

change the preferences and she approves the payment preferences. After that, page

displays the review of items in the shopping cart, shipping and payment details. If

everything is suitable, customer clicks “Submit Order” button and process ends.

Component interfaces, which are required for this scenario, are ShoppingCart,

ShippingPage, Shipping, PaymentPage, Payment, ReviewPage and Order. Figure 53

shows the first phase of the run time collaboration.

Figure 53. First phase of the run time collaboration

76

 ShoppingCart component fires the proceedCheckoutFired event when the

customer clicks the “Proceed to Checkout” button. This event is listened by the

shipping page. When it is fired, use case starts and ShippingPage displays the

preferences by getting the data from Shipping component. If customer wants to update

the preferences, she clicks the update button. Then, the Shipping component fetches

the updated shipping preferences from the ShippingPage and updates it. Figure 54

shows the next phase.

Figure 54. Second phase of the run time collaboration

Customer approves the shipping preferences by clicking submit button on the

shipping page. At this point, ShippingPage fires the submitShippingPressed event.

PaymentPage listens to this and when it is fired, the Payment component fetches the

updated payment preferences from the PaymentPage and updates it.

Figure 55 shows the last phase. When the customer approves the payment

preferences by pressing the submit button, displayReview method in the ReviewPage

is invoked. To display the review, first, ReviewPage fetches the shipping preferences

from the Shipping component. Next, payment preferences are fetched from the

Payment component. Finally, shopping data is fetched from the shopping cart. After

these flows, ReviewPage displays the review. When the customer presses order button,

77

submitOrderPressed event is fired on the ReviewPage. Then, this event calls the

processOrder method in the Order component, which concludes the shopping.

Figure 55. Third phase of the run time collaboration

78

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1. Conclusions

COSEML was proposed before as the primary modeling language for

Component Oriented Software Engineering approach [2]. Since then, some researches

have been continuing for improving this modeling language. However there are still

more areas for enhancement in COSEML. Having a single static hierarchy diagram in

the modeling language is not sufficient. It is not possible to extensively describe a

software system without modeling its dynamic behavior. Before this thesis, practiced

benefits of dynamic modeling in UML were not available to COSEML.

With this thesis, a collaboration modeling is added to the COSE approach.

Supported with the implementation of two levels of collaboration diagrams, the

previous COSECASE tool is now capable of representing dynamic models. The case

studies conducted through modeling example systems showed that it is beneficiary to

include collaboration modeling to a COSE approach. These diagrams give a better

view of system functionalities. They enable visualizing the expected system behavior

on the model. Use case realization, which is a very important requirement capturing

process, is also made possible. It is observed that the sequencing information provided

with the collaboration modeling is very helpful for the construction phase of COSE

based development. This sequencing information also creates a possibility for

generating applications and automated tests from COSEML models. A future

commercial version of this tool can be very instrumental for the industry to adopt

Component Oriented development methodologies.

79

6.2. Future Work

An important motivation for starting this research was the missing sequence

information for the messages, to be used during the composition phase. There have

been different applications of COSE based tools that offered framework kind of

environments where components can be composed to yield executable applications

[23][24]. Such composition, however could not be guided effectively, by the

COSEML model: the order of the messages to be fired were totally left to the

designer's intuition during the composition. Future frameworks can import the

presented collaboration modeling abilities for a further automated and guided

composition. Then, the order of message invocations can be retrieved from the

COSEML model.

Another future work is needed for providing some abstractions on collaboration

diagrams. In complex systems, modeling the dynamic behavior can produce too many

collaboration diagrams. This may create difficulties to see the overall dynamic

behavior of the system. A more abstract view is needed that shows the cooperation

among the collaboration diagrams. In UML 2, interaction overview diagrams [4] are

used for similar approach. Likewise, such a modeling view can be incorporated to

COSEML. Moreover, if executable application generation from collaboration

diagrams is made possible, then this view can also be used for composing those

application parts to build the final application.

80

REFERENCES

[1] A.H. Dogru and M.M. Tanik, “A Process Model for Component Oriented

Software Engineering”, IEEE Software, vol. 20, no 2, pp. 34-41, January 2003.

[2] A.H. Dogru, “Component Oriented Software Engineering Modeling Language:

COSEML”, TR-99-3, Computer Engineering Department, Middle East

Technical University, December 1999.

[3] A. Kara, “A Graphical Editor for Component Oriented Modeling”, M.S. Thesis,

Middle East Technical University, December 2001.

[4] OMG, “Unified Modeling Language: Superstructure”, Version 2.0, Formal/05-

07-04, http://www.omg.org/cgi-bin/doc?formal/05-07-04, August 2005.

[5] G. Engels, L. Groenewegen and G. Kappel, “Coordinated Collaboration of

Objects”, Advances in Object-Oriented Data Modeling, pp. 307-331, The MIT

Press, 2000.

[6] A.H. Dogru, “Component-Oriented Software Engineering”, The Academy of

Learning and Advanced Studies (The ATLAS), to be published in 2006.

[7] M.D. McIlroy, “Mass Produced Software Components”, NATO Conference on

Software Engineering, Garmisch, Germany, October 1968.

[8] OMG, "CORBA Basics", http://www.omg.org/gettingstarted/corbafaq.htm,

2005.

[9] Microsoft, "Component Development", http://msdn.microsoft.com/library/en-

us/dnanchor/html/componentdevelopmentank.asp, 2005.

[10] Sun, "Reference Documentation", http://java.sun.com/products/ejb/index.jsp,

2005.

81

[11] X. Cai, M.R. Lyu, K. Wong, R. Ko, "Component-Based Software Engineering:

Technologies, Development Frameworks, and Quality Assurance Schemes",

Proceedings of the Seventh Asia-Pacific Software Engineering Conference,

p372, 2000.

[12] G. Booch, J. Rumbaugh, I. Jacobson, "The Unified Modeling Language User

Guide", Addison Wesley, April 2000.

[13] M.B. Tuncel, “COSEML’de Isbirligi Diyagramlarinin Kullanimi”, Ulusal

Yazilim Muhendisligi Sempozyumu, September 2005.

[14] OMG, "OMG Model Driven Architecture", http://www.omg.org/mda, 2005.

[15] M.M. Tanik and E.S. Chan, “Fundamentals of Computing for Software

Engineers”, Van Nostrand Reinhold, New York, 1991.

[16] M. Fowler, “UML Distilled”, 3rd Edition, Addison Wesley, 2004.

[17] A. Abdurazik and J. Offutt, “Using UML Collaboration Diagrams for Static

Checking and Test Generation”, Third International Conference on the Unified

Modeling Language, pp. 383-395, York, UK, October 2000.

[18] R.C. Martin, "UML Tutorial: Collaboration Diagrams", Engineering Notebook

Column, November 1997.

[19] G. Engels, R. Hucking, S. Sauer and A. Wagner, “UML Collaboration

Diagrams and Their Transformation to Java”, Proceedings of UML99, Lecture

Notes in Computer Science, vol.1723 pp. 473-488, 1999.

[20] The Eclipse Foundation, "What is Eclipse", http://www.eclipse.org/org, 2005.

[21] Free Software Foundation, "Concurrent Versions System - CVS",

http://www.nongnu.org/cvs, 2005.

[22] S.W. Ambler, "The Elements of UML Style", Cambridge University Press,

2002

[23] E. Ozdogru, "A GIS Domain Framework Utilizing Jar Libraries As

Components", M.S. Thesis, Middle East Technical University, May 2005.

82

[24] M. Ozturk, "Visual Composition in Component Oriented Development", M.S.

Thesis, Middle East Technical University, August 2005.

83

APPENDIX A

A BRIEF USER MANUAL FOR USING
COLLABORATION DIAGRAMS IN COSECASE

COSECASE was first introduced in thesis “A Graphical Editor for Component

Oriented Modeling” by Aydin Kara [6]. A manual for using COSECASE was also

given in that work. Modeling in the main hierarchy diagram was described there.

Here, new implementations are explained.

A.1. Diagram Tree

To support collaboration diagrams and any other diagrams that can be added in

the future, a floating window that contains a tree structure is created. This diagram tree

is responsible for managing the diagrams in the model. It can be visible or hidden by

selecting a menu item in the “view” menu of the main application. In figure 56,

diagram tree is shown at the left side of the main window.

Currently diagram three supports three types of diagram. The first one is the

main hierarchy diagram, located at the top of the tree. This is the default diagram in

the model and it always exists in the diagram tree. Other two types of diagrams are run

time collaboration diagram and abstract collaboration diagram. These diagrams are

located under the “Collaboration Diagrams” node in the diagram tree. Model does not

contain collaboration diagrams at the beginning; they are added, as they are needed.

84

Figure 56. Main window in COSEML

Basic function of the diagram tree is browsing the diagrams in the model.

Double clicking the diagram nodes on the diagram tree shows the selected diagram on

the main window. Other functionalities of the diagram tree are mostly available for

collaboration diagrams. Since the main hierarchy diagram is the default diagram and

there cannot be multiple hierarchy diagrams, only renaming is allowed for this

diagram. On the other hand, new collaboration diagrams can be added to the model.

Selecting the appropriate collaboration diagram type and right clicking on it, opens the

“Add New Diagram” pop-up menu as shown in figure 57.

85

Figure 57. Add new diagram pop-up in DiagramTree

Selecting this menu item opens the “Add New Diagram” dialog window as

shown in figure 58.

Figure 58. Add new diagram dialog

Entering the name of the diagram adds the diagram under the selected

collaboration diagram type in the diagram tree. Right clicking on a collaboration

diagram reveals other functionalities with a pop-up menu. Figure 59 shows this pop-

up menu on the diagram tree.

86

Figure 59. Pop-up menu for managing diagram in DiagramTree

First of these menu items is “Delete Diagram”. When selected, a confirmation

dialog opens and if user confirms the deletion, it deletes the selected diagram

collaboration diagram from the model. Second is the “Rename Diagram” menu item.

When selected, it opens the “Rename Diagram Dialog”. Figure 60 shows this dialog.

As it is obvious, this diagram renames the selected collaboration diagram in the

diagram tree.

Figure 60. Rename diagram dialog

Third menu item is “Add a Copy of Diagram”. This menu item creates the

duplicate of the selected collaboration diagram in the model. This functionality is very

useful when modeling similar collaboration diagrams. With minor changes on the

copied diagram, similar use cases can be modeled efficiently.

The last one is the “Save Diagram to Disk” menu item. When this is selected, it

opens a save dialog as shown in the figure 61.

87

Figure 61. Save diagram to disk dialog

This menu item allows saving a collaboration diagram independently from the

model

A.2. Modeling Tool Bar

Dynamic creation of the tool bar for selected symbols, are made possible in this

work.

. It allows saving different versions of a diagram on the disk. It is also useful for

sending a single collaboration diagram to other users/developers.

This will be also useful when new diagram types are needed in future. Figure 62

shows the tool bar for collaboration diagrams.

Figure 62. Collaboration diagram tool bar

88

Buttons on the toolbar and their brief descriptions are given in the table 3.

Table 3. Description of buttons of the modeling tool bar

Button Meaning

“Select Button” selects elements on the diagram.

“Insert to Collaboration Diagram” button opens a list of elements that exist

in main hierarchy diagram. If the diagram is an abstract collaboration

diagram, list contains only abstract elements. If it is a run time collaboration

diagram, list contains only component interfaces.

“Creates Next Sequence” button creates the next sequence message for the

selected message.

“Creates Child Sequence” button creates child sequence message for the

selected message.

“Insert Between Sequence” button creates the same sequence message for

the selected message and shifts the selected and the following sequences one

step up.

“Insert Next Non Concurrent” button creates the next non concurrent

message for the selected message.

This tool bar is used by both abstract and run time collaboration diagrams. Only

the “Insert to Collaboration Diagram” button behaves differently on these diagrams.

A.3. Inserting Elements to Collaboration Diagrams

All elements should exist in the main hierarchy diagram before using them in

the collaboration diagrams. Then, clicking to “Insert to Collaboration Diagram” button

89

on the tool bar brings a list of elements from the main hierarchy diagram. Figure 63

shows this process on the main window.

Figure 63. Add elements to diagram dialog.

If the active diagram is an abstract collaboration diagram, then the list contains

only abstract elements defined in the main hierarchy diagram, as it is the case in figure

63. If it is a run time collaboration diagram, then the list contains only component

interfaces defined in the main hierarchy diagram.

Selecting the elements on the list and clicking the “Add to Diagram” button,

adds the selected elements to the active collaboration diagram.

A.4. Sequence Messages

To show the interactions among the elements in a collaboration diagram,

sequence messages are used. Figure 64 shows all the possible message types and

90

sequencing in a collaboration diagram. First message is added to diagram by clicking

the “Creates Next Sequence” button on the tool bar and clicking on the diagram. To

add the next messages, an existing message should be selected and the appropriate

button on the tool bar should be clicked.

Figure 64. Different message types on Collaboration Diagram

91

Table 4. Managing sequence messages with the tool bar buttons.

Button Selected Sequence Previous Set Next Set

2 1, 2 1, 2, 3

3 1, 2, 3 1, 2, 3, 3.1

2 1, 2, 3, 3.1 1, 2, 3, 4, 4.1

3a or 3b 1, 2, 3a, 3b 1, 2, 3a, 3b, 4

Table 4 explains how to create desired sequence messages by using the buttons

on the tool bar. By default, all newly added messages are synchronous. However, their

types can be changed by an editor dialog.

A.5. Editing Sequence Messages

Selecting a sequence message and right clicking it opens a pop-up menu. This

menu is showed in figure 65.

Figure 65. Pop-up menu for sequence managing

Clicking the “Delete” menu item on the pop-up menu, deletes the selected

message from the diagram. This action shifts the messages that follow this message

one level up. If the sequence message set is “1, 2, 3, 3.1, 3.2, and 4”, then deleting 2

92

from the diagram makes the set as “1, 2, 2.1, 2.2, 3”. Deleting a message also deletes

its children. Again deleting 2 from “1, 2, 2.1, 2.2, 3” makes the resulting set as “1, 2”.

Selecting “Make Loop (Left)” or “Make Loop (Right)” on the menu changes

the shape of the selected message as shown in figure 66. This option makes it easy to

create self-calling messages. Selecting the “Edit” menu item opens the “Edit Message”

dialog window. This dialog is shown in figure 67.

Figure 66. Self calling sequence messages

Figure 67. Edit message dialog

Message name and type can be updated with this dialog. Possible message types

are “Simple, Synchronous, Asynchronous” that are shown in the combobox. Here, a

message can also be made concurrent by selecting the checkbox. In addition, a

message condition or a loop structure can be constructed with this dialog.

93

A.6. Properties of Sequence Messages

A.6.1. Segmented Structure

Sequence messages are made segmented so that any complex collaboration can

be showed without massing up the diagram. To make segmented messages, segment

drag points are implemented. A segment drag point allows stretching the message with

the mouse. An algorithm is implemented so that segment lines are automatically made

rectangular. Any number of segmented drag points can be added to a sequence

message. Figure 68 shows the drag points on a segmented sequence message link.

Figure 68. Segment drag points on a sequence message link

Drag points are shown as blue rectangles on the message link. Double clicking

on a message link creates a drag point on it. To remove a drag point, double clicking

on that point is sufficient.

A.6.2. Custom Message Text Positioning

 Segment drag points are also used for managing the location of message text.

Right clicking on a segment drag point opens a pop-up as shown in figure 69.

Figure 69. Pop-up menu to align text with segment drag points

94

Selecting first two menu items align the message text to the left or right of the

selected drag point. Selecting “Align String to Center” menu item, places the text

between the selected and the next drag points. This creates many possibilities

((number of drag points –1) * 3) for placing text on the link. So, in complex models,

interference of text messages is minimized.

A.7. Modeling the Collaboration

How to add elements and how to insert sequence messages to a collaboration

diagram are explained in previous sections. However, to model the collaboration,

added elements should be connected using sequence messages. In abstract

collaboration diagrams, connection is made to the element itself. Figure 70 shows the

connection of abstract elements with sequence messages.

Figure 70. Connections in abstract collaboration diagrams

In run time collaboration diagrams, connection is made between the methods

and events of the interfaces. Figure 71 shows the connection of interfaces through

their methods and events.

95

Figure 71. Connections in run time collaboration diagrams

For every method and event in a component interface, two connection points are

defined on the both side of the interface. Therefore, method level messages can be

shown by connecting over these connection points.

96

