USING COLLABORATION DIAGRAMS IN COMPONENT ORIENTED
MODELING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MEHMET BURHAN TUNCEL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
COMPUTER ENGINEERING

JANUARY 2006

Approval of the Graduate School of Natural and Applied Sciences.

Prof. Dr. Canan Ozgen
Director

I certified that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Prof. Dr. Ayse Kiper
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Ali Hikmet Dogru
Supervisor

Examining Committee Members

Prof. Dr. Volkan Atalay (METU,CENG)

Assoc. Prof. Dr. Ali Hikmet Dogru (METU,CENG)

Dr. Aysenur Birtiirk (METU,CENG)

Dr. Cevat Sener (METU,CENG)

Kurtcebe Eroglu (HAVELSAN)

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, | have fully cited and referenced all

material and results that are not original to this work.

Name, Last Name: Mehmet Burhan Tuncel

Signature........... :

ABSTRACT

USING COLLABORATION DIAGRAMS IN COMPONENT ORIENTED
MODELING

Tuncel, Mehmet Burhan
M. S., Department of Computer Engineering
Supervisor: Assoc. Prof. Dr. Ali Hikmet Dogru

January 2006, 80 pages

Component Oriented Software Engineering (COSE) seems to be the future of
software engineering. Currently, COSEML is the only modeling language that
completely supports the COSE approach. Abstract decomposition of the system and
their representing components are shown in a hierarchy diagram to support the COSE
process model. In COSEML, only static modeling is supported through this single
diagram. However, software is about behavior and static modeling is not sufficient to
describe the system. The aim of this thesis is providing the benefits of dynamic
modeling to COSEML by adopting collaboration diagrams. For this purpose, first,
specification of modified collaboration diagrams is made for COSEML. Then
software is developed for supporting collaboration diagrams in COSECASE. Also, an
e-store application is modeled with COSEML using the collaboration diagrams. With
this work, modeling the dynamic behavior of the system in both abstract and
component levels is made possible. Furthermore, use case realization is enabled in the
COSE modeling. More important, modeling the sequential interactions among
components is made possible. Consequently, a suitable environment is provided for

automated testing and application generation from the model.

Keywords: Component Oriented Software Engineering, COSEML, Component

Oriented Software Modeling Language, Collaboration Diagrams

v

Oz

[SBIRLIGI DIYAGRAMLARININ BiLESEN YONELIMLI MODELLEMEDE
KULLANIMI

Tuncel, Mehmet Burhan
Yiiksek Lisans, Bilgisayar Mithendisligi Boliimii
Danigsman: Assoc. Prof. Dr. Ali Hikmet Dogru

Ocak 2006, 80 sayfa

Bilesen Yonelimli Yazilim Miihendisligi (BYYM), yazilimin gelecegi olarak
goriilmektedir. Su an BYYM yaklasimini destekleyen tek modelleme dili
COSEML dir. Sistemin soyut ayrisimi ve bunu temsil eden bilesenler, BYYM siire¢
modelini desteklemek amaciyla bir hiyerarsi diyagrami iizerinde gdsterilmektedir.
COSEML’de modelleme, bu statik diyagram iizerine dayanmaktadir. Ancak, yazilim
davranisla ilgilidir ve statik modelleme sistemi anlatmak i¢in yeterli degildir. Bu tezin
amaci, isbirligi diyagramlarmi kullanarak dinamik modellemenin faydalarini
COSEML'e saglamaktir. Bu amagla, once isbirligi diyagramlarinin COSEML igin
belirtimi yapilmistir. Ardindan bu diyagramlarin COSECASE’de kullanimim
destekleyen yazilim gelistirilmesi yapilmistir. Bunu takiben, bir sanal magaza
uygulamasi, isbirligi diyagramlart kullanilarak COSEML ile modellenmistir. Bu
caligmayla birlikte, sistemin dinamik davraniginin hem soyut seviyede, hem de bilesen
seviyesinde modellenmesi miimkiin kilmmistir. Ayrica BYYM modellemesinde
kullanict senaryolarinin gergeklestirimine olanak saglanmistir. Daha 6nemlisi,
bilesenler arasindaki sirasal etkilesimin modellenebilmesine imkan verilmistir. Bunun
bir sonucu olarak, model {izerinden otomatik yazilim testi yapilmasina ve uygulama

iiretilmesine uygun bir ortam saglanmaistir.

Anahtar Kelimeler: Bilesen Yonelimli Yazilim Miihendisligi, COSEML, Bilesen

Yénelimli Yazilim Modelleme Dili, Isbirligi Diyagramlar

To My Parents

vi

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Assoc. Prof. Dr. Ali Hikmet Dogru, for his
guidance and encouragement throughout the research. To my family, I offer sincere

thanks for their emotional support.

vii

TABLE OF CONTENTS

ABSTRACT ettt ettt sttt e et et et e eseense e st enbesseeneensenes iv

OZ ottt %

ACKNOWLEDGEMENTSottt s vii

TABLE OF CONTENTS......eeoioeeee ettt s viii

LIST OF TABLES ..ottt ettt sttt s se e sseenaenseeeas xi

LIST OF FIGURES ...ttt sttt et xii
CHAPTER

1. INTRODUCTION......cooiiiieiiiieteieettete ettt sttt sae e sesteensesseessenseeneensas 1

1.1. Motivation for Using Collaboration Diagrams in COSEML....................... 2

1.2. Organization of the ThesiS........ccceriiieiiieiierieriereee et 3

2. BACKGROUND ..ottt ettt 4

2.1, SOftWAre REUSEoeiieiieiieiieie ettt 4

2.2. Components and Current Component Technologies..........ccccvevverveaveenen. 5

2.2.1. Common Object Request Broker Architecture (CORBA) 6

2.2.2. Component Object Model and Distributed COM (DCOM)............. 6

2.2.3. JavaBeans and Enterprise JavaBeansc.cccocvvevveciincinciienieennen. 7

2.2.4. Comparison among Current Component Technologies 8

2.3. Component Based Software Engineering (CBSE)ccccoovvevvvvivncivnieennen. 9

2.4. Component Oriented Software Engineering (COSE)......cccccoovvevcvieennenne. 10

2.5. Software Modelingcceecvierierierieniieieeeeee e sre e es 11

2.6. Unified Modeling Language (UML)c..ccccoviiviininiinininienenceicneene 12

2.7. COSE Modeling Language (COSEML).......ccccoceviirienieeriereereeiieeeenens 16

3. COLLABORATION DIAGRAMS IN COSEMLcccoocveviiiieieieeieieeieenn, 19

viii

3.1, SPECITICALIONeeevieiiieiieiee ettt et et e seaesebeesbeesseenseennns 19

3.1.1. Abstract Collaboration Diagrams...........c.ccceeveervvreniieecieeenreeennnnn 19

3.1.2. Run Time Collaboration Diagrams............ccccccerevrrvrrerreereervernennns 20

3.1.3. Sequence NUMDEIING........ccceereuiieriieiiieeiie e eiee e e ereeeveeeseree s 21

3.1.4. Conditions and LOOPS.......cceeeuervererieriieniienienie e eie e eieesee e e 22

3.1.5. MESSAZE TYPES ceouviiieeiiiieeeeiiieeeeitee e et eeeeteeeeeeteeeseeteeeseeaeeesnes 25

3.2. Benefits of Collaboration Diagrams to COSE Modelingcceu...... 29
3.2.1. Use Case Realization..........ccceereerieeiieeniieniieniie e 30

3.2.2. Improved Hierarchy Diagram............cccocvvreiieviieniieneeneenne e 33

3.2.3. Automated Software Test........cccevvierierirrireieeieeeee e 37

3.2.4. Automated Application Generation...........c.ceceevveerreereereesvesenennns 38

4. IMPLEMENTING COLLABORATION DIAGRAMS IN COSECASE........ 40
4.1. Code Review and Improvements on COSECASEc.cccceevevievvennnnne. 41
4.1.1. Code Improvements with EClipse........cccccoeevriiriiiniiniiniiiiieens 41

O N OV TSR 43

4.2. Implementation of Collaboration Diagramscccceeeveeveerencieneneenene 43
N B 5 111 < TR SR 46

4.2.2. Dialog WINAOWS.....coocveririieiieeieesieesiteseesee e eseesieeseeesseesenessneens 48

5. CASE STUDY: E-STORE APPLICATION........cccteiiiieieeeeeee e 50
5.1. Logical DeCOmMPOSItION......cccuercvrecrieriieiieneiesteeieereeieesreseresreeseeseesseenens 50
5.2. Use Cases Realizations with Abstract Collaboration Diagrams................ 57
5.3. Physical COMPOSILIONc.eccveerierieiieiiesirenereereereesseesereseneereeseesseesssesens 68
5.4. Runtime Collaboration Diagrams..........cccceeveeeiierieeneenienie e 76

6. CONCLUSIONS AND FUTURE WORK........cccooiiiiiiieeeeee e 79
6.1, CONCIUSIONSeeeiieiiieieeite ettt ettt ettt seae e ebe e b e seeenes 79
6.2. FUtUre WOTK......oouiiieieeee e 80
REFERENCES ..ottt ettt sttt ettt sttt sasensesseesaenseennensas 81

X

APPENDICES

A. A BRIEF USER MANUAL FOR USING COLLABORATION DIAGRAMS IN

COSECASE ...ttt ettt ettt s et e e see et esesreennens 84
AL L. DiIagram TTEC.....ccvviviieiieiieiee e eteete et eteeste e seaeseseesseeseesseessaesssesnseans 84
A.2. Modeling Tool Barcccuiiviiiiiiiiiiieciie et e 88
A.3. Inserting Elements to Collaboration Diagrams...........cccceeveeveenensienencenne. 89
A4, SEqUENCE IMESSAZESveeevrieeerieeiieesiieeireeetreesreeereeesereesbeeessseessseeesseessnes 90
A.S. Editing Sequence MeESSagEes........cccvervirrieiieriieriierieeseesresreeseesseesseesssenens 92
A.6. Properties of Sequence MeSSages........cecverueereerierienieeieenieenieesieeseeseeens 94

A.6.1. Segmented SIrUCTUIC........ccvevveeriereeieereesteere et ereesreesreeseneaeneens 94
A.6.2. Custom Message Text POSItiONINgGccccevuerieeiienienienieeieeiens 94
A.7. Modeling the Collaboration............ccceeevieeiieriieriienienie e e esreesreesieeseneens 95

LIST OF TABLES

TABLES

Table 1. Comparison of current component technologiesccceeevveerieencreeenveennnennn 8
Table 2. Lifetime of the messages in automatic door applicationccceeveeveennans 25
Table 3. Description of buttons of the modeling tool bar.............ccecceeveeviiriiriiinennne 89
Table 4. Managing sequence messages with the tool bar buttons.ccceeeeeveennnns 92

X1

LIST OF FIGURES

FIGURES

Figure 1. UML 2 di@gramsccccuieiiieeiiieeeiieeiieesreeeteeesveesreeeeveessveeesaeessseeessneennns 14
Figure 2. COSEML SYMDBOISccveeviiiriieiiieiiecieere et eieeseesresreesreesseesseesseessnesenessneens 17
Figure 3. Decomposition checking using abstract collaboration diagrams.................. 20
Figure 4. Use of flat numbering on message SCQUENCESeeveereerreerreereesivesrveasseens 21
Figure 5. Use of nested decimal numbering on message SEqUENCeEs.............cecververneene 22
Figure 6. A conditional MESSAZE........ccvvevieriiiiieiieieeieseeeresre b eereesreesraeseneesreens 23
Figure 7. Conditional branchingccccceeoieiiiieiiiiiieiiesieee et 23
Figure 8. A message with a 100p CONAItION..........ceeviieriierieiiiiieeieeeeiee e 24
Figure 9. Run time collaboration for automatic door application..............ccceeverveennnn. 24
Figure 10. MESSAZE tYPES....eecuiieriiieriieeiiieeteeesieeesreeeteeeseseessseeesseessseeensseessseesssseessses 25
Figure 11. Concurrent MeSSAZE tYPES ...vevveerrrerreerreesreesseerseesressreaseeseesseesseessaessaesssenns 26
Figure 12. Car rental SCENATIO.......uieivieeriieeiieeiieecteeeieeeeiteeereeeireeebeeesaeesebeeeeseesnnes 27
Figure 13. Car rental scenario with asynchronous messages..........c.ccceeverververcvennens 28
Figure 14. Seismic activity monitoring SCENATIOccueereveerveeerreeeireeerereesreeesereenenes 29
Figure 15. Abstract collaboration diagram of the mobile translation service.............. 32
Figure 16. Runtime collaboration diagram of the mobile translation service.............. 33
Figure 17. Decomposition model of Telephone System...........cccccvevrierieneenieaieennens 34
Figure 18. Collaboration diagram of “Call a Person” use case...........cccceeveereereeennnne 36
Figure 19. Improved decomposition model of Telephone Systemcceceuenneee. 37
Figure 20. Eclipse development environmentcceeceeeverieeieenieeneeseeseesneeneens 41
Figure 21. Re-factoring functionalities in EClipSecccceeoeririeneiineeceeeeee 42
Figure 22. New diagram structure in COSEMLcccoiiiiiiiiiiiiiieiceeeeeee e 44

Xii

Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.

Figure 50.

Diagram model contained in DiagramTree..........cccoceveveneneneieieceennne 45
DIAGIAMTIEE ..ottt ettt ettt ete e et e veeaaeanas 45
Old structure of link classes in COSEMLccccoooiiiiiiiniininieieee 46
Segmented 1INKSceeeiiiiiiiicieeceeee e 47
A SEQUENCE MESSAZE ..uvveeeurreerurieeireenireearteesteessseeessseessseeesseessseessseessseennes 47
New structure of link classes in COSEML.........ccccoiiiiniiiiiiiiinieiee 48
New dialog classes in COSEMLccccovviiiinciieiieneecie e 49
First level decomposition of the e-store application...........cceceeveeeeeeeeennen. 51
Decomposition of the ACCOUNE Packagecceeveerierieenierierreereereennnn 52
Decomposition of the Product Catalog package........c.cccoecvevverveienierenennnns 53
Decomposition of the Shopping Cart package..........cccoeveeveveeiieeenieeeennens 53
Decomposition of the Order package...........cceeveeveriieienienieieneeieie e 54
Decomposition of the Payment packageccccceevvievrvervenvenreereereenn, 55
Decomposition of the Shipping packagecceceeieieviiniecienieiee e 55
First level decomposition of the e-store application...........c.cccccvveeveeeennnns 56
Abstract collaboration diagram of “Create Account”..........ccccceeeevereennens 58
Abstract collaboration diagram of “Login™...........ccccceevvieririeenieeciieeieens 59
Abstract collaboration diagram of “Browse Products”c.ccccevvreennee 60
Abstract collaboration diagram of “Search by Product Property™.............. 61
Abstract collaboration diagram of “Edit Shopping Cart”..........c.c.cceeveeneen. 64
Abstract collaboration diagram of “Proceed to Checkout™...........c..cc.u.... 66
Abstract collaboration diagram of “Update Shipping Preferences”........... 67
Abstract collaboration diagram of “Update Payment Preferences” 68
Account component and its INErface........ccecvverveecieerrierierierre e 69
Product component and its interface..........ccooveeeeieriecienieeieieeeeeeeennen 70
Shopping component and its iNterface.........coovvevverrieeerenrieciese e 71
Payment, Order, Shipping components and their interfaces 72

xiii

Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.

Figure 71.

E-store Web component and its three interfacesc.ccceveverveireecnenne. 73
Components of the e-store applicationcccveeeeveeeriieeiiieesieeeree e 75
First phase of the run time collaboration..........c...ccveevveevereerierieeieeieeneenn 76
Second phase of the run time collaborationcccceceveeeviienieeecieeeneen, 77
Third phase of the run time collaborationccccoeeevereeienencenineeeene 78
Main window in COSEMLccooiiiiiiiiiieeeeee e 85
Add new diagram pop-up in DiagramTreeccoceeiveveneneieeieeeeene 86
Add new diagram dialogc.cocveiiieiierienieeie e 86
Pop-up menu for managing diagram in DiagramTreeccccceevevvennee. 87
Rename diagram dialog.........ccceviieiieiiieiiieiieiece e 87
Save diagram to disk dialogcccceevveeviiiiiiieiieiciece e 88
Collaboration diagram to0Ol Dar...........ccceceerierieriinieeeeeereeree e 88
Add elements to diagram dialog.........ccceeveerierieeiieeiieieeesre e 90
Different message types on Collaboration Diagram...........ccccceeeuveeveeennen. 91
Pop-up menu for sequence managing...........cccccveeeeveeerveenirieesveenreeenveenenes 92
Self calling SEqUENCE MESSAZEScvverveerereereeieeriierrerreaseesseesseesseesnesssenns 93
Edit message dialoZ.......cccvieriiiiiieeiiieciie e 93
Segment drag points on a sequence message link...........cccoevevienieerciennnnns 94
Pop-up menu to align text with segment drag pointsccceeevveenveennne. 94
Connections in abstract collaboration diagrams............c.cccevveereeercvercirenenns 95
Connections in run time collaboration diagrams............c.ccceevveeecveeennveennne. 96

Xiv

CHAPTER 1

INTRODUCTION

Today, in the information age, there is an exponential increase on the demand
for software. Scope and complexity of the software have dramatically increased.
Current software industry mostly deals with huge government and military
applications. Because of the high competition in the industry, such software systems

should be built in less time with less cost.

Moreover, technological and business requirements change frequently in these
systems. For these reasons, today's software systems are more likely to face the
software crisis. Obviously, traditional software approaches that are built on code

development are becoming less efficient.

To respond to the demand and overcome the software crisis, new approaches
have been developed that benefit from component technologies. Among these
approaches, Component Oriented Software Engineering (COSE) [1] proposes building

software by integrating existing components.

A modeling language, COSEML [2], and a graphical modeling editor
COSECASE [3] were developed for COSE approach. This modeling language is
based on a single hierarchy diagram. This static diagram offers "divide and conquer"
capabilities to system design on modeling environment. In this static diagram,
modeling starts by decomposing the system structure hierarchically. This activity
continues until the decomposition model arrives at existing components. Relations
among these components are also shown on the model. Then in the integration phase

of COSE, these components are integrated to build the desired system.

1.1. Motivation for Using Collaboration Diagrams in COSEML

In the hierarchy diagram of COSEML, messages are not allowed among
abstract elements. Only connectors are used to show the relations [2]. It is not possible
to show the dynamic behavior. However, software is mostly about dynamic behavior

and emphasizes only on static modeling is not appropriate.

In fact, static and dynamic models support each other. Without dynamic
models, validity of the static model is left to the intuition of the model designer and its
accuracy cannot be proven true. Apparently, a new diagram for modeling dynamic
behavior is needed in the component oriented modeling language. Two candidates for
this diagram are collaboration and sequence diagrams, which are used to model
dynamic interactions in Unified Modeling Language (UML) [4]. Both diagrams are
equal concerning their semantic expressiveness but they stress two different views.
The sequence diagram emphasizes the temporal perspective of interaction. On the
other hand, the collaboration diagram emphasizes the various kinds of relationships

among the interacting objects [5].

The collaboration diagrams emphasize on the structural organization of the
elements. Since COSE is a structure-oriented approach, using collaboration diagrams

in COSEML is more appropriate.

Collaboration diagrams provide a clear picture of collaborating elements and
their roles in the model. They are useful to visualize the collaborating parties
executing a scenario in terms of a sequence of messages [6]. Therefore, using
collaboration diagrams improve the expressiveness of the model. Besides, they allow
use case realization, which is important both in analysis and implementation phase of
any software engineering process. Allowing use case realization is important for
validating and improving the static hierarchy diagram of the COSEML. More
importantly, collaboration diagrams contain the information about the sequence of
message calls among the components, which creates a potential for automated testing

and application generation from COSEML models.

1.2. Organization of the Thesis

In this thesis, first, background information is given in Chapter 2. Then in
Chapter 3, specification of collaboration diagrams is defined and their possible
benefits to COSE modeling are explained. In Chapter 4, their implementation to
COSECASE is described. After that, a case study: E-store Application is modeled
using collaboration diagrams, to show the improved COSE modeling activity. Finally,

conclusions of the work are expressed.

CHAPTER 2

BACKGROUND

2.1. Software Reuse

Software reuse is the only solution to the software crisis problem. The main
idea is to build systems using already developed software pieces. This idea was
pointed out by Mcllroy in the early ages of software engineering. “Develop systems of
components of reasonable size and reuse them. Then extend the idea of component
systems beyond code alone to requirements, analysis models, design and test. All the
stages of the software development process are subject to reuse” [7]. Reuse is still in
the center of attention in software engineering. Although the principle is simple, it has

been shown that the process is hard and tedious.

There have been different levels of software reuse. Lowest level of them is the
source code copy. In this usage, copied parts are spread like a virus in the software. If
a requirement changes or a bug is found in the copied code, all clients are required to

update the changes.

Next level is the function-libraries, which provides a better form of reuse. Code
is central and any internal change does not affect the clients. However, function-
libraries are not extensible. Clients are effected with any change made to the input or

output parameters.

Class-libraries offer a higher level of reuse. It has the benefits of OO approach
and they are extensible. However, it requires a lot of understanding before classes can
be reused. Moreover, it supports only white-box reuse, which means some
modifications are required on the software unit to adapt it to the other software. In an
OO language, derived classes are coupled to the base class implementation. Any

change made to the base classes directly affects derived classes.

To this point, all the mentioned types of reuse are language specific. Reuse is
not supported across code in other languages Components are the solution to this
problem and they offer the highest level of software reuse. Components provide
services to the clients through their interfaces and support black-box reuse. Inner
implementation of the components is hidden to the outer world. It is the highest level
of information hiding. Clients only rely on interfaces. As long as the interfaces remain
unchanged, components can be changed internally without affecting clients. For this
reason, using components for system development is the most promising approach for

utilizing the full power of reuse in software systems.

2.2. Components and Current Component Technologies

A software component is an independent, encapsulated software piece with a
well-defined functionality. Internal implementation of a component is hidden from the
user. They provide their functionality through their interfaces. The goal of component
approach is to standardize the interfaces among software components so that they can

work together efficiently.

Advances in component technologies in the last decade bring the components in
to the real life. Although there is not a unique, comprehensive standard for
components, they are made available to usage with the name commercial off-the-shelf
(COTS) components. These COTS components can be developed by different

developers using different languages and different platforms.

There have been some approaches to share and distribute application pieces, but
most of these approaches rely on certain underlying services to provide the
communication and coordination necessary for the application. Three of the
component infrastructure technologies have become rather standardized: OMG’s
CORBA, Microsoft’s Component Object Model (COM) and Distributed COM
(DCOM), and Sun's JavaBeans and Enterprise JavaBeans. Brief information about
these component technologies, which is provided in [11], is given in the following

sub-sections.

2.2.1. Common Object Request Broker Architecture
(CORBA)

CORBA [8] is an open standard for application interoperability that is defined
and supported by the Object Management Group (OMG), an organization of over 400
software vendor and object technology user companies. CORBA manages details of
component interoperability, and allows applications to communicate with one another
despite of different locations and designers. The interface is the only way that
applications or components communicate with each other. The most important part of
a CORBA system is the Object Request Broker (ORB). The ORB is the middleware
that establishes the client-server relationships among components. Using an ORB, a
client can invoke a method on a server object, whose location is completely
transparent. The ORB is responsible for intercepting a call and finding an object that
can implement the request, pass its parameters, invoke its method, and return the
results. The client does not need to know where the object is located, its programming
language, its operating system, or any other system aspects that are not related to the
interface. In this way, the ORB provides interoperability among applications on
different machines in heterogeneous distributed environments and seamlessly

interconnects multiple object systems.

CORBA is widely used in Object-Oriented distributed systems including
component-based software systems because it offers a consistent distributed
programming and run-time environment over common programming languages,

operating systems, and distributed networks

2.2.2. Component Object Model (COM) and Distributed COM
(DCOM)

Introduced in 1993, Component Object Model (COM) is a general architecture
for component software [9]. It provides a component-based software architecture that
is language-independent and platform-dependent (Windows systems). COM defines
how components and their clients interact. This interaction is defined such that the
client and the component can connect without the need of any intermediate system

component. Specially, COM provides a binary standard that components and their

clients must follow to ensure dynamic interoperability. This enables on-line software

update and cross-language software reuse.

As an extension of the Component Object Model (COM), Distributed COM
(DCOM) [9] is a protocol that enables software components to communicate directly
over a network in a reliable, secure, and efficient manner. DCOM is designed for use
across multiple network transports, including Internet protocols such as HTTP. When
a client and its component reside on different machines, DCOM simply replaces the
local inter-process communication with a network protocol. Neither the client nor the

component is aware the changes of the physical connections.

2.2.3. JavaBeans and Enterprise JavaBeans

Sun’s Java-based component model consists of two parts: the JavaBeans for
client-side component development and the Enterprise JavaBeans (EJB) for the server-
side component development [10]. The JavaBeans component architecture supports
applications of multiple platforms, as well as reusable, client-side and server-side

components.

Java platform offers an efficient solution to the portability and security
problems using portable Java byte codes and the concept of trusted and untrusted Java
applets. Java provides a universal integration and enabling technology for enterprise
application development. Following list contains most important benefits of Java

platform.
1. Interoperability across multi-vendor servers
2. Propagating transaction and security contexts
3. Servicing multilingual clients
4. Supporting ActiveX via DCOM/CORBA bridges

JavaBeans and EJB extend all native strengths of Java including portability and
security into the area of component-based development. The portability, security, and
reliability of Java are well suited for developing robust server objects independent of

operating systems, Web servers and database management servers.

2.2.4. Comparison among Current Component Technologies

None of the current component technologies is superior to others. All have their

strong sides on different aspects. Table 1 presents a brief comparison of these

component technologies [11].

Table 1. Comparison of current component technologies

CORBA EJB COM/DCOM
Development Underdeveloped Emerging Supported by a
Environment wide range of
strong
development
environments
Binary Not binary Based on COM; A binary standard
Interfacing standards Java specific for component
Standard interaction is the

heart of COM

Compatibility and
Portability

Particularly strong
in standardizing

language bindings;

Portable by Java
language

specification; but

Not having any
concept of source-

level standard of

but not so portable | not very standard language
compatible. binding.
Modification and | CORBA IDL for Not involving IDL | Microsoft IDL for
Maintenance defining files, defining defining
component interfaces between | component

interfaces, need
extra modification

& maintenance

component and
container. Easier
modification &

maintenance.

interfaces, need
extra modification

& maintenance

Table 1 (Continued)

CORBA EJB COM/DCOM
Services Provided | A full set of Neither Recently
standardized standardized nor supplemented by a

services; lack of implemented number of key

implementations services
Platform Platform Platform Platform
dependency independent independent dependent
Language Language Language Language
dependency independent dependent independent

Implementation

Strongest for

Strongest on

Strongest on the

traditional general Web traditional desktop
enterprise clients. applications
computing

2.3. Component Based Software Engineering (CBSE)

Modern software systems are large-scale and very complex. Controlling such
systems is not easy in an environment where technologies and requirements change
frequently. Results are high development cost, low productivity and unmanageable
software quality. Moreover, complexities of the systems are increasing exponential.
On the other hand, development time should be shortened because of the high
competition in the software sector. It is obvious that, traditional approaches do not

have a chance in the future of software industry.

One of the most promising solutions today is the component-based software

development approach. This approach intends to accelerate software development and

to reduce costs by using prefabricated software components. CBSE practices

increases as the COTS components are becoming more available.

This approach can significantly reduce development cost and time-to- market,
and improve maintainability, reliability and overall quality of software systems. It has
raised a tremendous amount of interests both in the research community and in the

software industry.

Component-based software systems are developed by selecting various
components and assembling them together rather than programming an overall system
from scratch, thus the life cycle of component-based software systems is different

from that of the traditional software systems.

The focus is on composing and assembling components that are likely to have
been developed separately, and even independently. Component identification,
customization and integration are a fundamental activity in the life cycle of
component-based systems. It includes two main parts. First, evaluation of each
candidate component based on the functional and quality requirements and second,
customization of those candidate components that should be modified before being
integrated into new component-based software systems. Integration is to make key
decisions on how to provide communication and coordination among various

components of a target software system.

2.4. Component Oriented Software Engineering (COSE)

Component oriented software engineering (COSE) is a new approach. Although

CBSE and COSE seem similar, these approaches have some major differences.

CBSE process is built over the OO approach. This is very reasonable because
when the components were arrived the software world; everything was OO, from
analysis to testing in the software process. Currently, there is not much change in the
situation. Standard modeling language of software UML is built on an OO backbone

and current programming languages that are widely used, are all object oriented.

It is obvious that in order to elevate from first floor to the third floor, elevator

must pass through the second floor. CBSE is the second floor built at the top of OO

10

approach. When the software industry and research community realize the reuse
power of components, all of the OO tools, technologies, languages and processes are
adapted to support this magic boxes. Today, OO approaches that support components
are defined as CBSE.

The third floor, COSE, on the other hand is not related to OO approach.
Building by integration of components without writing code is the paradigm that
defines the COSE [1]. Utilization of components is the central concern in the whole
software development process. Idea of building systems completely with components

makes it easy to solve most of the software engineering problems.

COSE approach is based on structural decomposition of the system. It enables
the analysis and design phases of the system to be processed in a higher level of
abstraction. Decomposition of the system is very straight, compared to data oriented
decomposition of OO approaches. Data has a sensitive and dynamic nature. Changes
in the requirements, in the business flow can totally change the way the system
handles data. This is why data oriented models are difficult to maintain in the software
process. On the other hand, structure oriented approach is not affected much from the

changes.

Software process in COSE starts with structural decomposition in a top-down
manner. Decomposition divides the system into logical modules. This process
continues until reaching the existing components. These components then integrated

in a bottom-up fashion in order to build the system.

2.5. Software Modeling

Implementation technologies are not at an enough level of abstraction to
facilitate discussions about design, which creates a need for software models. Models
describe the desired structure and behavior of a system. They are important for
visualizing and controlling the system's architecture. A model is a simplification of
reality [12]. It provides a better understanding of the system, which expose

opportunities for simplification and reuse.

Defining a model makes it easier to break up a complex application or a huge

system into simple, discrete pieces that can be individually studied. It is easy to focus

11

on the smaller parts of a system and understand the "big picture". Hence, the reasons
behind modeling are readability and reusability. Readability makes it easy to
understand, and understanding a system is the first step in either building or improving
a system. This involves knowing what a system is made up of, how it behaves, and so
forth. Modeling a system ensures that it becomes readable and, most importantly, easy
to document. It involves capturing the structure of a system and the behavior of the
system. Reusability is the consequence of making a system readable. After a system
has been modeled, similarities in terms of functionality, features, or structure are

identified.

Modeling has been used in all the engineering disciplines for a long time. In
some disciplines, modeling is highly matured so that, in electrical engineering or civil

engineering, a model has a one to one correspondence to the final product.

Main goal of the software modeling should be reaching the level of CAD
modeling used in civil engineering, which permits one to one modeling of real systems
[13]. Currently there is an approach supported by Object Management Group (OMG),
called Model Driven Architecture (MDA) [14]. In this approach, main idea is building
systems from models, which is independent form implementation technology.
Although there have been considerable work on software modeling, there is still a long

way to go.

Graphical modeling languages have been around in the software industry for a
long time. In following sub-sections, first, standard modeling language, UML, is
briefly described. Then modeling language of the new COSE approach, COSEML and
its modeling tool, COSECASE are explained.

2.6. Unified Modeling Language (UML)

Unified Modeling Language (UML) is the official industry standard for object-
oriented modeling as defined by the Object Management Group (OMG) [4].

The UML is appropriate for modeling systems ranging from enterprise
information systems to distributed Web-based applications. It is a very expressive

language, addressing all the views needed to develop and then deploy such systems.

12

The UML is not limited to modeling software. In fact, it is expressive enough to

model non-software systems.

Multiple models are needed to understand different aspects of a system. UML
addresses the different views of a system's architecture with different diagrams as it
evolves throughout the software development life cycle. Figure 1 shows the formal
diagram hierarchy [4] in UML 2. There are two major kinds of diagram types:
structure diagrams and behavior diagrams in UML 2 specification as it is shown in

figure 1.
Brief description of these UML 2 diagrams can be summarized as follows.

e Structure Diagrams: Structure diagrams show the static structure of the
objects in a system. Elements are described regardless of time. The
elements in a structure diagram represent the meaningful concepts of an
application, and may include abstract, real-world and implementation
concepts. Structure diagrams do not show the details of dynamic behavior,

which are illustrated by behavioral diagrams.

0 Class Diagram: A class diagram shows the classes and their
relationships in a system. It is one of the most popular types of

diagram in OO modeling.

o0 Composite Structure Diagram: A composite structure diagram

shows how objects are composed at runtime

0 Component Diagram: A component diagram shows the structural

relationships among the components of a system.

0 Deployment Diagram: The deployment diagram depicts the
configuration of the runtime elements of the application. This

diagram is useful when a system is built and ready to be deployed.

13

SweIseIp ¢ TINN ‘T 84nbi4

weibeig
afieyoed

weifielg
wawkojdag

weifelg
ainanns
aysodwo)

weibeq weifeiq
Gunwn UONEIIUNWLWo D)
welbelq
M3IAIBAD =E5w5
uonarIA| asuanbag
_ |
weifierg
uaaesal]
weiBeiq weibeiq weibeiq
aulyIeN LIS asel asn fuanay
[_]
wesberg
loiaeyag

weibeig welibeiqg
1alqo juauodwor weibeig sse|d
weslerg

SIMaInils

v

weilierqg

14

0 Object Diagram: The object diagram shows the state of different
classes in the system. Their relationships or associations can be

captured at a given point of time.

o Package Diagram: A package diagram shows the organization of

packages and their elements. They show compile-time groupings.

Behavior Diagrams: Behavior diagrams show the dynamic behavior of the
objects in a system, including their methods, collaborations, activities, and
state histories. The dynamic behavior of a system can be described as a
series of changes to the system over time. Behavior diagrams are further

classified into several other kinds.

0 Use Case Diagram: The use case diagram is used to identify the
primary elements and behavior that form the system. It shows, what

the actors make, to fulfill a system behavior.

0 Activity Diagram: An activity diagram captures the process flows
in the system. It consists of activities, actions, transitions, initial and

final states, and guard conditions

0 State Machine Diagram: A state diagram represents the different

states of the objects during their life cycle.

0 Interaction Diagrams: Interaction diagrams are used to model the
dynamic aspect of collaborations and the roles of the elements in
the system. An interaction diagram shows an interaction, consisting

of a set of objects and messages between them.

= Sequence Diagram: A sequence diagram represents the
time-ordered interaction between different objects by

showing the messages between them.

= Communication (Collaboration) Diagram: A
communication diagrams is used to model the dynamic

behavior of the use case. Compared to sequence diagram,

15

the communication diagram is more focused on showing

the collaboration of objects rather than the time sequence.

= Interaction Overview Diagram: An interaction overview
diagram is a form of activity diagram in which the nodes

represent interaction diagrams.

= Timing Diagram: A timing diagram shows the behavior of
objects in a given period and it is useful for showing timing

constraints between state changes on different objects.

2.7. COSE Modeling Language (COSEML)

COSEML is a graphical modeling language and it was developed for use in the
COSE approach [2]. The goal of COSEML is to provide the human developer with the
natural “divide and conquer” discipline based on structure [6]. Modeling with
COSEML emphasizes structural decomposition. It is an adaptation of the earlier

structure-based and decomposition oriented specifications [15].

In COSEML, modeling starts with a top-down decomposition of the system. In
this phase, abstract building blocks of the system are found. This top-down activity
continues while searching the representing components. When they are found, a
bottom-up component composition is carried out to reach the desired capability of the

system.

The hierarchy that is a key concept in design cognition is not supported
effectively in UML and other languages [6]. To address this concept, COSEML
utilizes a single hierarchy diagram in which abstract decomposition and component
composition are shown together. COSEML addresses both abstract and physical
components. The higher-level elements represent the abstractions for package, data,
function, and control. Lower-level elements correspond to components and interfaces.

Figure 2 depicts the symbols used in COSEML.

16

L
Companent I:l Interface I-J

Fackage Data X
interface 1 propetties
interface 2 methods
interface 3 events-in
events-out
Abstract Elements Physical Elements

Figure 2. COSEML symbols

Physical component and interface symbols are created while the other

appropriate symbols are taken from UML.

These symbols are defined in [6] as follows. Package abstraction groups related
elements in an encapsulation. A package can contain further package, function, data,
and control abstractions. It is the fundamental structural element used in the definition
of part-whole relations. System decomposition is made using packages and
decomposition is detailed using the other abstractions. Data abstractions represent data
structures. In the requirements model they can model high-level entities. Function
abstractions represent high-level system functions. Control abstractions are state
machines, accepting messages that cause state changes and outgoing messages. State
changes can trigger the execution of function abstractions or of operations inside data

abstractions.

Components and their interfaces are represented with symbols as the lowest-
level elements. Figure 2 also shows the graphical representation of physical-level

elements of COSEML.

There are also connectors to represent communications among components,
both in abstract and physical levels. In abstraction, a connector represents many
message or event connections between two components. A connector between two
components is still an abstract element. It represents at least one, but possibly more

than one message (or event) link. A message link represents a function call (local or

17

remote) originating in one component and terminating at the interface of another.
Events are similar to messages but semantically they stand for calls initiated by
external causes in contrast to calls made under program control. Other than this

categorization, messages or events are similar in the way they are represented.

COSEML mainly focuses on the structural decomposition. Components, which
represent the decomposed modules, are also showed on the model. In this thesis work,
modeling with COSEML is extended to show the interactions among those

components

18

CHAPTER 3

COLLABORATION DIAGRAMS IN COSEML

In this work, two types of collaboration diagrams, abstract and run time
collaboration diagrams are proposed. COSEML shows abstract decomposition of the
system and corresponding real components together on the hierarchical diagram.
Emphasis on these two views is supported by defining these two collaboration

diagrams.

In this chapter, a specification is given for their use in COSEML. After that,

possible benefits of collaboration diagrams for COSE modeling are explained.

3.1. Specification

On the definition of collaboration diagram specification, applicable rules and
methods are adapted from UML. Other rules are defined by considering the COSE
approach and the current state of COSEML.

Specification for Abstract Collaboration Diagrams and Run Time Collaboration
Diagrams differs only on the element types that can be added to the diagram. Other
specifications such as sequence numbering, conditional messages, loop structure or
message types are all common for both of the diagram types. These are defined in the

following sub sections.

3.1.1. Abstract Collaboration Diagrams

In abstract levels, abstract collaboration diagrams are utilized for supporting the
decomposition model of the COSEML. High-level requirements and the behavior of
the system can be modeled using this type of collaboration diagram. Utilizing these
diagrams can help to find incompleteness and inconsistency in scenarios and

requirements in the analysis phase. Thus, they are useful for testing the correctness of

19

the structural decomposition. Adding that, they do not contain any technical or
implementation detail. Therefore, they can help to create a common understanding of

a system behavior between different users, ranging from domain experts to end-users.

In this diagram, only abstract elements of COSEML are allowed that exist in the
main hierarchy diagram. If there is a need to add a new element to the collaboration
diagram, then hierarchy diagram should be reconsidered and this new element should
be included. Only after that, it can be used in the collaboration diagram. This process,
which improves the decomposition model, is shown in figure 3. Any element that is

required in the dynamic behavior is forcefully added to the decomposition model.

Create collaboration
diagram for every new
behavior

Check
System decomposition

Abstract Collaboration Diagrams
Decomposition <:| g

=2

Update decomposition

Figure 3. Decomposition checking using abstract collaboration diagrams

3.1.2. Run Time Collaboration Diagrams

For the physical level, run-time collaboration diagrams are utilized. These
diagrams show behavioral aspects of the system on component level. Interactions
among interfaces are shown using sequence of method calls and event signals in the
diagram. Showing these interactions permit to model the implementation of complex
operations. Run time collaboration diagrams are intended for the implementation
phase and they mostly contain implementation details. These diagrams are suitable for

making wiring-level decisions on the model.

20

Modeling elements in this kind of collaboration diagrams are only the
component interfaces. An interface should exist in the hierarchy diagram in order to be
used in runtime collaboration diagram. If a behavior cannot be modeled using existing
interfaces, new components and interfaces should be found and added. This rule
improves the composition model of the hierarchy diagram by enforcing the addition of
new components to fulfill a required behavior. This diagram type permits modeling

complex implementation details on the model.

3.1.3. Sequence Numbering

Interactions in a collaboration diagram are shown using sequence of messages
among the elements. Order of the messages is indicated by the sequence numbers
defined with the messages. UML suggests nested decimal numbering for sequence
numbering [4]. However if there are two many nested calls, message numbers can
easily get complicated (ex: 1.2.1.1.3). Most of the model designers prefer flat
numbering on collaboration diagrams. This notion is straightforward and easy to
follow. Figure 4 shows this notion. On the other hand, flat numbering has problems on

some situations.

—.b" :
1 et price Order 5 - get discount W Customer

2 oetquantity 3 get prig]

Y

OrderLine Froduct

Figure 4. Use of flat numbering on message sequences

21

In figure 4, it is not clear whether get discount is called within calculate price or
within the overall get price method. It is not possible to know if a message is an inner
call or not. Nested calls cannot be tracked with flat numbering. Nested decimal
numbering scheme solves this problem. Figure 5 shows the same diagram with this

numbering scheme.

—.h'" :
1 get price Order 1.3.1 : get discount W Customer

1.1 getjguantity 1.2 : get

Y

Crderline Product

Figure 5. Use of nested decimal numbering on message sequences

In figure 5, it is clearly seen that, get price is the main method and others are
inner method calls. It is also apparent that get discount method does not belong to the
main get price method. Nested numbering resolves ambiguity and it also covers the
flat numbering notion. For these reasons, nested numbering notion is selected for

message sequencing in COSEML.

3.1.4. Conditions and Loops

Conditional flows are the essential part of dynamic modeling so they are
defined in the specification. A conditional message is denoted by putting the

conditional expression between square brackets as shown in figure 6.

22

.

4.1 : [condition] message

Figure 6. A conditional message

This visualization represents a conditional message, which is activated if and
only if the condition between the square brackets evaluates to “true”. Like UML 2
specification, no restriction is defined on the use of logical expressions between the

brackets.

Any conditional branching can be simulated using conditional messages and
concurrency together. Figure 7 shows if / else if / else branching on a collaboration

diagram.

A3 [a=0]messagel

ab:[a=0]message 2

Yvyy

A [a==0]message 3

Figure 7. Conditional branching

It is ensured that, only one of the messages in figure 7, which satisfies the
condition, is going to run at time tl. By designing proper message conditions, any

kind of complex branching is possible.

Another structure, which is also essential for modeling complex flows, is loop
structure. When one or more messages are called more than once, these structures are
needed. Notation is similar to that of a conditional message; difference is the asterisk

in front of the brackets as seen in figure 8.

23

4.2 *[loop condition Jmessage

Figure 8. A message with a loop condition

Condition between the square brackets is the loop condition and while it
evaluates to true, that message and sub messages are iterated. In order to iterate a

group of messages, setting a loop condition to the parent message is sufficient.

To show the usage of conditional and loop structures, an example run time

collaboration diagram of an automatic door application is shown in figure 9.

I:l DoorControl E

BPEREa; I 2.1 [movement detected] openDoor
211 wait1 D=ec waitl Dsec 212 [no moverment] closeDoor
closeDoor

[| monitorMavement L 5 -« 5etive JmonitorMoverment

I:l MovementSensor E

listenmMovement

1 listenhoverment

Figure 9. Run time collaboration for automatic door application

In step 1, the DoorControl receives movement event from the MovementSensor.
Step 2 is a message with a loop condition. While the system is active,
monitorMovement message is called continuously. In a continuous manner, if there is
a movement then controller opens the door (2.1). Following that, door keeps open for
10 seconds (2.1.1). Then, if there is no movement at that time, controller closes the

door (2.1.2). Until system became passive, step 2 and its sub steps called continuously.

24

When the MovementSensor senses a movement, it informs the listeners and

consequently door opens. Table 2 shows the lifetime of the messages.

Table 2. Lifetime of the messages in automatic door application

Sequence When called

1 One time at the start

2 While the door is active

2.1 While the door is active and there is movement
2.1.1 When 2.1 called

2.1.2 When 2.1.1 called and there is no movement

3.1.5. Message Types

The links between the participants in the diagram are annotated with the

messages. Messages can be synchronous, asynchronous or flat. Figure 10 shows the

message symbols used in COSEML collaboration diagrams.

1 8imple Message

2 8ynchronous Message
[

3 Asynchronous Message

Figure 10. Message types

25

Different kinds of arrows allow distinguishing between message types. The
normal arrowhead stands for simple message, filled arrowhead for synchronous and

the half filled arrowhead for asynchronous one.

Concurrent messages between the interfaces are also supported. All message
types can also be concurrent. Modeling concurrency is needed especially in
distributed, multithreaded and reactive systems. Concurrency is shown by using
alphabetic characters next to the sequence numbers. Figure 11 shows two concurrent

messages on the first sequence level.

1a concurrentt

b concurrentl

Figure 11. Concurrent message types

In a synchronous message, caller who sends it must wait until the message is
done, such as invoking a subroutine. If a caller sends an asynchronous message, it can
continue processing and does not have to wait for a response. Concurrent messages are
used when a caller needs to send more than one message at the same time. Supporting
synchronous, asynchronous and concurrent type of messages is important for
modeling complex operations. Asynchronous and concurrent messages are used
especially in multithreaded and message oriented applications. It is not possible to

model real applications without having such message types on the diagram.

An example model can clarify the necessity of asynchronous messages. Figure
12 shows a collaboration diagram of a car rental scenario [5]. Here all messages are
modeled as synchronous which means a message call waits until previous message
completes. In the scenario, a customer comes to car rental office and requests a car
(1:walkinRequest). After that, the desk first, checks the credibility of the customer
(1.1:checkCredibility), second, it checks the garage for the availability of the
requesting car (1.2:checkAnswer) and then keeps the availability info for making

decision (1.3:keepAvailAnswer). If nothing is wrong after those processes, customer

26

gets information about insurance (2:getInsurancelnfo). If she finds the insurance plan
suitable, then she asks for picking up the car she selected (3:pickUpCar). Following
that, desk selects the car (3.1:selectCar) and takes it from the garage (3.2:carTaken).

;CustnmerE
rentACar rentaCar T
; Desk E ; Garage E
3 pickUnCar | pickUpCar 31 selectCar 37 carTaken ™ sarTaken
selectCar T2 chackavalabily Wl checkavailability
BE
1: walkinReguest : walkinRequest 73 carmetmen T carRetumed
2 getingurancelnfo QEtlnsur?”°E|”f°
BT ATSRE *1 3 keepfwailAnswer
4 returnCar W retunCar
Custarmelfo
1 chackCradibiiy ™| SheckCredibility
12 add |20
; Car E

L P
41 statusCheck statusCheck

Figure 12. Car rental scenario

At the end of the rental period, customer returns the car to the office
(4:returnCar). Then desk checks the car (4.1:statusCheck), adds information about the

rental to customer’s file (4.2:add) and returns the car to the garage (4.3:carReturned).

In the model, it seems that, getinsurancelnfo cannot be called until
walklnRequest operation is completed. However, these are independent operations.
Operation pickUpCar is dependent only on the answer of the walkInRequest operation.
This model can be fixed using asynchronous messages. Figure 13 shows the revised

diagram.

27

; CustomerE
——————W fentacar T

1.2 checkivailahility
4.3 carReturned

rentACar
0 ook O 0 caese O
3. [avail] pickUpcar [™| PickURCar <J 31 seleciCar 32 carTakan ™ CarTaken
selectCar | checkAvailahility

- walkinReguest carReturned
M= getinsurancelnfo
keepAvailAnswer [

] retumcar

1 walkinReguest
2 getinsurancelnfo

1.3 keepAvailAnswer

4 returnicar

; Customerinfo E
T checkCradiniy ™| theckCredibility
42 ada] add
; Car E

L
4.1 :statusCheck SESCEEN

Figure 13. Car rental scenario with asynchronous messages

In figure 13, walkinRequest and getinsurencelnfo messages are made
asynchronous. This means, customer can get information about insurance while desk
processes the rental request. In addition, customer can pick up the car as soon as
request operations returns positive answer (1.3:keepAvailAnswer). Asynchronous
method calls improves the performance. Modeling a behavior with a collaboration
diagram and examining the interactions make it easy to figure out the possible

asynchronous method calls.

Following example scenario is given to show the concurrency modeling. Figure

14 depicts the abstract collaboration diagram of this scenario.

28

I Computer T Get Selsmic Actvily scismicSensa

1 :* IMonitar Seismic Activity

1.23 : deiplay W Monitor
1.2b : [valug=threshald] add W Database
1.2¢ [value=threshald] print W Printer

120 [vale-Threshaldupdatz | eb

Figure 14. Seismic activity monitoring scenario

This scenario describes the steps of monitoring seismic activity. A seismic
sensor continuously sends seismic activities to the central computer (1.1 at time tl).
Computer shows it on the monitor (1.2a at time t2) and if it is larger than a threshold
value, this data is added to database (1.2b at time t2), printed (1.2¢ at time t2) and
updated on the web page (1.2d at time t2) concurrently.

Concurrency is important in multi threaded and reactive applications. However,
concurrency is error prone especially on shared resources. For this reason it is useful

to model such behavior and study all possibilities on the model.

3.2. Benefits of Collaboration Diagrams to COSE Modeling

In this section, possible benefits of collaboration diagrams to COSE modeling

are explained.

29

3.2.1. Use Case Realization

Use cases are a technique for capturing the functional requirements of a system.
They describe the typical interactions between the users of a system and the system

itself, and provide a description of how a system is used [16].

A use case captures the intended behavior of the system. It specifies this
behavior using sequences of actions. They can be considered as the foundation for the
rest of development process. As the system evolves, they help to validate the
development. They also provide a common understanding of the system to developers,
end users and domain experts. For these reasons, use case approach plays a key role in

a software development process.

Use cases do not specify implementation details. However, they have to be
implemented and in COSE, implementation is the connection of the components
through interfaces. For this purpose, collaboration diagrams, which show the sequence
of connections, are very suitable for use case realization. They provide a complete

path for the realization of use cases [17].

Two collaboration diagram types, introduced in this thesis can be used for use

case realizations in different levels.

Abstract collaboration diagrams are closer to the analysis phase of the
development. This diagram type describes the externally visible actions and their
sequences and it does not get into the implementation details. For this reason, use case
realizations with abstract collaboration diagrams are useful for validating and
improving abstract decomposition of the system and requirement refinement. In

addition, they are useful for showing the behaviors of the system.

On the other hand, run time collaboration diagrams are closer to the integration
phase of the COSE. When they are used to describe the realization of a run time level
use case, they provide information that is more specific and detailed. Sequence of
method calls, event subscriptions and data flow between the interfaces of components,

can be modeled using run time collaboration diagrams.

30

Following section is a textual description of the use case of a mobile translation
service example [13]. In this use case scenario, a picture message, containing an

English text, is translated to Turkish and sent to the customer.
Translate Picture Message
Main Path:
1. Customer takes a picture of an English text with mobile phone.
2. Customer sends the picture to the translation service.
3. Service processes the image and converts it into text.
4. Service translates the text to Turkish language.
5. Service sends this translated text to the customer as an SMS.
6. Service bills the customer for 10 SMS.
Extensions:
3a. Service could not recognize image
3a.1. Service bills the customer for 1 SMS.
3a.2. Service sends error message to the customer as an SMS
4a. Service could not translate text.
4a.1. Service bills the customer for 1 SMS

4a.2. Service sends error message to the customer as an SMS

31

ks 1 convert text from image - B

Translate Picture Messsag?

c[fail] kill 1 sms

T Bl T0oma| Account

C[fail] bill 1 sms

£l S I CHCT MR Za:[success] trpnslate to turkish

3b.1: send erraor message

¥

Translatar

Ja:[success] send text message

Figure 15. Abstract collaboration diagram of the mobile translation service

Abstract elements in this scenario are MMS, OCR, Translator and Account
components [13] as show in the collaboration diagram in figure 15. This diagram
presents a graphical description of the use case. It shows the high-level system
functionality and hides the implementation details. This abstract picture of the use
case helps the system designer to review and validate the scenario. End users, domain

experts and developers can efficiently negotiate system requirements on this diagram.

To build the system, behaviors should be implemented. Implementation phase
in COSE is indeed the integration of the components. Run time collaboration diagrams
are very suitable environment for integrating the components through their interfaces.
Figure 16 shows the run time collaboration diagram of the “Translate Picture

Message” use case.

32

; MMS E

create E OCR El
gethumhber -
getimage 2 zetlmage setimage
= cend ITXRTI processimage :I 3! processimage
sethumhber 5 2 cond X RCTIIE getProcessedText
™ setlassageText : =Bl
messageReceivad ;! 1:messageReceived
; Account E
hill ot
; TurkishTranslator E
sefTexToTranslate i 4a: [success | sefTexdToTranslate
translate - translate
Ga:[success] setessageText gefTranslatedText
Bh ;[fail] send{error)

4h :[fail] send(error

Figure 16. Runtime collaboration diagram of the mobile translation service

As it is clearly seen from the figure, implementation level details can be
modeled using run time collaboration diagrams. Method calls, event subscriptions and
data flows can be modeled. In addition, implementation level issues such as
concurrency, asynchronous calls, conditional calls, looping are supported. Such
supports enable the construction of wiring-level decisions. Furthermore, these
diagrams can be extended so that they can be used for application generation from the

model.

3.2.2. Improved Hierarchy Diagram

COSEML emphasizes modeling the structural view of the system. The
hierarchy diagram, which was the only diagram in COSEML, has been used for
abstract decomposition of the system. This diagram also shows the components and
component compositions that represent the decomposition elements. It shows a static

model of the system. However, accuracy and efficiency of the static models cannot be

33

proven true without the help of dynamic models [18]. To prove this claim, a telephone

system given in [18] is modeled with COSEML.

A telephone system consists of elements like speaker, microphone, buttons,
dialer, display and a network. Therefore, the first decomposition model that comes to
mind is, creating a telephone entity and connecting mentioned elements using

composition links as shown in figure 17.

Telephone

Bulton Network

Display

Dialer

Speaker Microphone

Figure 17. Decomposition model of Telephone System

This model shows the components in a telephone system and it seems a valid
static model. However, as explained above, without examining a dynamic model of
the system, one cannot ensure that this model is valid. A system is not only a static
structure; its functioning is determined by the dynamic aspects. For this reason

dynamic behavior should be investigated.

34

Dynamic behavior is explored by use case analysis. Most obvious function of a
telephone system is calling a person. Therefore, studying the “Call a Person” use case

is appropriate. Steps of this use case are as follows.
e (Caller presses the buttons on the telephone to call the desired number
e (Caller presses dial button.
e Dialer dials the number.
e While dialing, dialer creates a tone on the speaker.
e While dialing, dialer display digits on the display.
e Dialer sends the number to the network.
e Network sends ringing status tone to speaker.
e When called person responds, network sends the voice to the speaker.
e Caller speaks to the microphone
e Microphone sends the voice to the network.
e (Caller presses the close button
e Dialer sends close message to network and call ends.

Figure 18 shows the representing collaboration diagram. This diagram clearly
shows the sequence of actions and communication among components. For example,
it is obvious that Button only interacts with Dialer and isolated from the rest of the
system. Similarly, Microphone component interacts only with Network. The previous
static model in figure 17 was not containing such information. For this reason,

previous decomposition model was not complete.

35

Speaker T da [called one speaks] play voice

3 create calling statu tone

23 cregte tone

—,h’ N
Buttaon 1:send signal Dialer 2c [dial pressed] call numbgr‘ Metwark

A close hutton B:close

2 display digit 4b [caller speaks | send voice

4

Display Microphone

Figure 18. Collaboration diagram of “Call a Person” use case

After observing the dynamic behavior using the collaboration diagram,
changing the previous decomposition model is straightforward. Figure 19 shows the
improved decomposition model of the telephone system. This decomposition model
now contains more information about the system. It is clear that, modeling the
dynamic behavior of a system with logic level collaboration diagrams helps to validate
and improve the abstract decomposition part of the hierarchy diagram. As the number
of abstract collaboration diagrams increase in the model, decomposition part becomes
more complete. What this means is improving the static model by exploring behaviors

of the system.

36

I —

Telephone

Bution ialer Nethwork Microphone

Displaw

Speaker

Figure 19. Improved decomposition model of Telephone System

This is also true for the component composition part of the hierarchy diagram of
COSEML. In that part, links are used to show the relations among interfaces. These
links can be improved by exploring the dynamic behavior at the run time level. Run
time collaboration diagrams, which show the sequence of messages among the

component interfaces, can be utilized for this purpose.

A static model that is produced without the benefit of dynamic analysis is bound
to be incomplete. The appropriate static relationships are a result of the dynamic needs
of the application. Collaboration diagrams are a good way to depict dynamic models

and compare them to the supporting static models [18].

3.2.3. Automated Software Test

There is an increasing need for effective testing of software. In the domain of
military and e-government applications, reliability and robustness of the software is
very important. Some software testing approaches focus on test generation from
source code. However in the component oriented approaches, source code is hidden in

a black box, which is not accessible for testing purposes.

37

In [17], advantages of generating test data from high-level design notations over
code-based generation were proposed. It is claimed that, one of the major costs of
testing can be significantly reduced by using design notations as a basis for output
checking. Design problems can also be discovered within such a testing process. This
eliminates the problems in the early stages, which means saving time and resources. In
addition, early testing allows more effective planning and utilization of resources. It is
also underlined that testing from design makes the testing process independent from

any particular implementation of the design.

Such design oriented testing approach is adaptable to the work cited in this
thesis. Collaboration diagrams represent a significant opportunity for testing because
they precisely describe how the provided software functions are connected in a form
that can be easily manipulated by automated means [17]. Static and dynamic testing of
the system can be handled using abstract and run time collaboration diagrams that are
provided with this work. Tests can be generated automatically from these diagrams.
Such an approach, the utilization of COSEML collaboration diagrams for software

testing, creates an open research area in COSE.

3.2.4. Automated Application Generation

There is an increasing interest on the idea of creating applications from the
software models both in the research community and in the software industry. Model
Driven Architecture (MDA) is currently the most popular approach on this subject.
The aim in MDA is to build systems from models, which is independent from
implementation technology [14]. From a given model, code is generated by MDA-
CASE tools. However, there is a problem in this approach. Quality, robustness and
reliability of the generated software are left to the tool, which cannot guarantee the

standards required by the current software systems.

In the next generation of software engineering, existing components should be
used and there should be no coding. Components have proven quality, robustness and
reliability. Therefore, application generation approach could utilize -existing
components as an alternative to the model transformation. Collaboration diagrams
proposed in this thesis provide a good opportunity for application generation from a

model using components.

38

In [19], collaboration diagrams were proposed for java code generation from the
model. Their appropriateness for code generation is also explained in that work.
COSEML collaboration diagrams are built on the component approach and the
problems cited in [19] are not valid for these diagrams. There are no low-level coding
issues in a component-oriented approach. This makes use of COSEML collaboration

diagrams very feasible for application generation.

Run time collaboration diagrams enable inputting all the necessary information
such as event transactions, sequence of method calls, control and loop structures. With
this information, a run time collaboration diagram can generate a specific functionality
of the system. Later these generated application parts can be combined to generate the

final application.

39

CHAPTER 4

IMPLEMENTING COLLABORATION DIAGRAMS
IN COSECASE

Before this work, COSECASE was based on a single diagram concept. For this
reason, implementation was not generic enough to extend the editor and to support
multiple diagrams. Another problem was, high coupling among the irrelevant types of
classes. Any code change made on a single object was affecting the many others.
Furthermore, readability of the source codes was poor. Since more than one developer
had worked on the development on different times, there was no consistent code style.
Variable naming was improper; there were unused variables and methods. In addition,
objects in the code were taking irrelevant responsibilities. Such factors were
complicating the development efforts. These problems are investigated with the help

of Eclipse, which is a highly functional development environment.

After solving these problems, some sorts of precautions are taken for preventing
similar problems in future. One of the most important problems is the versioning.
COSECASE is a research project and there is an ongoing development on it. Multiple
developers are working on this project at different times and a versioning system is
mandatory. To solve this problem, source codes of COSECASE are put into an online
repository, which supports version controlling. In addition, requirement and feature

tracking is made possible on this online repository.

After creating a robust foundation for development, new features that are
required by collaboration diagrams are added to the modeling tool. These are

explained in this chapter.

40

4.1. Code Review and Improvements on COSECASE

In the previous version, development was made on the single hierarchy diagram
idea. For this reason, most of the objects were designed around this single diagram
concept. Even the simplest objects, symbol and link objects were keeping the
reference to the hierarchy diagram. These objects were accessing the global resources
provided by this diagram. To support new diagram types, these objects should be
made independent. An object should not keep the reference of an unrelated object. For
these reasons, all the unrelated references are removed. While doing that, some

business functionality were also moved to more responsible objects.

4.1.1. Code Improvements with Eclipse

Eclipse is an open source software development project, which provides a high
quality, full-featured Integrated Development Environment (IDE) [20]. This IDE has a
high level of code re-factoring support.

private wvoid initNNodePointsi()
i

int ﬁ = getPointSizge)/ Get connection points sSize
int 1
int 1
int 1
int I b
FrACre ©Open Declaration F3
getCk Open Type Hierarchy F4 Dint (mew Point {ulx + width / 2, ul
et Ok Open Call Hierarchy Ckrl+alk+H oint (new Point(ulx + width, uly +
et ok Open Super Implementation Sint (new Point(ulx + width S 2, ul
get Ol Showe in Package Explorer oint (new Point{ulx, uly + height /
/4 Mo 1ist
heigl Cuk Chrl+i jects() .elementdt (1))) .getPoint () .
=et He Copy Ckrl4+C
/7 Sed Paste Chrl+Y
=etBd Source Alb4Shiftes » [gecdbhiject=(] . lascElement (1]] .get
Refactor Alt+Shife+T Rename. .. Alt+-Shift+R. 1
¥ Local History 3 Move... Alt+Shift+
iZ_hange Method Signature. .. Alt+shift+4C
References 14 I~
Declarations 4 Pull Up....
Occurrences in File Chrl+5Shift+0 # Push Down...
Extract Interface. .. e
Run As 4 zeneralize Tvpe. ..
Debug As L4 Use Supertype Where Possible. ..
z:;are with : Inline. .. AlE+Shift+T
¥ Extract Method. . Alt+Shift 41
R " Extract Local variable... Al +ShifE-+L |
Preferences. .. Extrack Constant...
Introduce Parameter. ..
Conwvert Local Variable ko Field... alk+Shift+F

Figure 20. Eclipse development environment

41

Figure 20 shows a snapshot of the development environment. Source codes of
COSECASE are reviewed using rich set of code improvement functionalities provided
by this environment. There were unused variables and methods in the code. They were
making the code unreadable and difficult to understand. Using eclipse, they are
detected and totally removed from the source code. Another readability problem was
the format of the codes. Different parts of the software were having different code
style. With this tool, all of the source codes are reformatted using the conventional

code styles.

High number of source files was another problem. It was difficult to distinguish
which classes were related. This problem also is solved by creating logical groups of
packages and putting the related classes to the same packages. Figure 21 shows the

use of packages.

coseml
coseml.ak,
coseml. ak. link,
coseml.ak.node
coseml.gui
coseml.gui.collaboration

|_J_'I AbstrackCollaborationDiagram.java 1.2 (ASCIT -kl
|_J_'I CollabarationDiagram. java 1.5 (ASCIT -kk)

|_J_'I InterfaceMethod.java 1.1 (ASCIT -kk)

|_J_'I PhrysicalCollabor ationDiagram. java 1.2 (ASCII -kk)
[}} Sequence.java 1.2 {(ASCII -kky)

!;_', SequenceEditor.java 1.2 (ASCIT -kkw)

[J} Sequencelink.java 1.3 {ASCIT -kky)

o Symboladder.java 1.1 (ASCII -kkv)

+- i coseml.best
+- i coserml,util

i

+++++‘£E_
L
=
[ml

- [- - - SR 2R ER ER 2R SR

Figure 21. Re-factoring functionalities in Eclipse

With this package use, classes, which are related to a specific functionality are

grouped so that a novice COSECASE developer can easily locate them.

42

To sum up, readability and understandability of the COSECASE codes are
highly improved using the functionalities provided by the Eclipse development

environment.

4.1.2. CVS

Concurrent Versions System (CVS) is an open source version control system

[21]. It is widely used by software development teams.

Version controlling is an important component of source code management and
is necessary even for a single developer. Changes made on source codes may need to
be rolled back. In addition, before a risky code review, a tag may be given to a group
of source files. This is similar to creating a backup disk and putting it in a safe place.
When there are multiple developers, situation is more critical as in the case of
COSECASE. Changes made by a developer should be synchronized by others in order
to keep the integrity of the software. When multiple developers work on a single
source, conflicts can be solved and changes can be merged by using the facilities

provided by CVS.

There has been no version controlling on the development of COSECASE. As a
result, there have been different versions of COSECASE that have different
functionalities, different bugs and different solutions. This was slowing the
development of COSECASE project. For these reasons, source files of COSECASE
were put on an online CVS server for the sake of current and future development of

the modeling editor.

4.2. Implementation of Collaboration Diagrams

Previous version of the COSECASE was built on the single hierarchy diagram
concept. There was a single diagram class, CosemIDrawPanel, which was handling all
of the modeling work. This class is replaced by a hierarchy of classes. New structure
supports collaboration diagrams and other types of diagrams to be used in
COSECASE. Figure 22 shows the new implementation of the diagrams in
COSECASE. DrawPanel is the base class and it contains the common properties of

diagrams that can be used in the tool. It supports use of any modeling symbols without

43

any constraints. Also all common drawings, mouse and keyboard events are handled

in this class.

DrawPanel
MainHierarchyDiagram CollaborationDiagram
RuntimeCollaboration AbstractCollaboration
Diagram Diagram

Figure 22. New diagram structure in COSEML

As its name implies, MainHierarchyDiagram is the new implementation of the
previous CosemlDrawPanel class. Its functionality and the user interface remained
same. In addition, two new diagram types, RuntimeCollaborationDiagram and

AbstractCollaborationDiagram are added to the diagram structure.

To enable browsing the diagrams in the model, a component, which is a floating
window, is designed. This component, DiagramTree, is a JTree structure that
contains a main hierarchy diagram and zero or more collaboration diagrams. Other
than browsing, DiagramTree also responsible for adding and managing diagrams.
New collaboration diagrams can be added; existing ones can be renamed or removed.
On the other hand, main hierarchy diagram can only be renamed. It cannot be removed
from the diagram. Functionalities such as duplicating a collaboration diagram or

saving it to disk are also supported in the DiagramTree.

44

ModelTres

Aw
el 1
MainHierarchy Collaboration
Diagramiode DhiagramMNode
= T
D,,rjz’} =
RuntimeCollaboration AbstractCollaboration
DiagramtNode CliagramMNode

Figure 23. Diagram model contained in DiagramTree

Tree model of the DiagramTree is shown in figure 23. All these functionalities
are accessed via pop-up menus to save space. In addition, DiagramTree can be made

invisible with a menu item defined in View Menu.

Each model in COSECASE has a default hierarchy diagram. Collaboration
diagrams are added by the model designer and they are optional. Model can have as
many collaboration diagrams as needed. Figure 24 shows a snapshot of the
DiagramTree on the COSECASE. In figure 24, diagram with the name “Online

Banking” is the main hierarchy diagram and it is always shown at the top of the

diagram tree.

Diagram Tree

Diagrams
Online Banking
= [] Collaboration Diagrams
=] Abstract
honey Transtfer
= I Rurtite
Create Account

Figure 24. DiagramTree

45

While implementing collaboration diagrams, some infrastructural changes are
made to COSECASE. For those changes, general diagramming guidelines [22] and

UML collaboration diagrams are observed.

4.2.1. Links

Links are used to connect elements for showing relations between them. A class

diagram for the old link classes of the previous COSECASE is shown in figure 25.

In this work, two major additions are made to the link structure. First is the
support for segmented-lines. One of the diagramming principles suggests avoiding
diagonal and curved lines for connecting elements. They are difficult to follow on a
diagram and model can easily become complicated. For this reason segmented-lines

are implemented.

AKLink

AKComposition

AkRepresents

AKConnector

Ak Ewentlink

AkMethodLink

AKlInheritance

Figure 25. Old structure of link classes in COSEML

Figure 26 shows a segmented link. Segmented-lines allow creating a line with
multiple joint points. They allow creating flexible paths on the model. In addition,
auto straightening functionally is added to the segmented-lines. This also improved the
ease of connecting elements on the diagram. Joint points are implemented by segment
drag points. A segment drag point can be added or removed by double-clicking a point
on the segmented-line. Then the line can be shaped by dragging these points using

mousec.

46

Methad Link -

Figure 26. Segmented links

Second addition is the support for sequencing messages. They are required for
showing the sequence of messages in a collaboration diagram. Figure 27 shows a

sequence message.

2.1 :child synch message

Figure 27. A sequence message

New classes are created for supporting sequence messages and segmented links.
Figure 28 shows the updated state of link classes. As seen in the figure, all previous
link classes are made segmented by extending from the SegmentedLink class. In the
implementation of the SegmentedLink, a new class that handles the drawing is used.
This class, SegmentedArrow, contains two SegmentDragPoints, on it, one at the tail
and the other at the head. Later, any number of SeqgmentDragPoints can be added by
double clicking on the SegmentedLink.

47

AKCompaosition

AllLink

i

\D

Segmented

Link

A Connector

/_,_/—’D‘

AkMethodLink

Aklnheritance

/

SegmentDrag
Faint

2..n€\

1
Segmented
Arro

Sequencelink

.
W

Sequence

Ak EventLin

AKReprasents

Hil
W

In the new structure, a new link type, SequenceLink is introduced. This link
contains a Sequence class, which handles the decimal number sequencing.
SequencePart class in this class is simply the number parts defined in a sequence. As

an example, “Sequence 2.1.3” contains three SequenceParts.

Figure 28. New structure of link classes in COSEML

4.2.2. Dialog Windows

New dialog windows are added to support functionalities of collaboration

diagrams. Figure 29 shows the new dialogs added to COSECASE.

AddDiagramDialog and RenameDiagramDialog are used for adding new
collaboration diagrams and renaming diagrams in the model. SymbolAdder is used to
add symbols from main hierarchy diagram to a collaboration diagram. SequenceEditor

manages the sequence messages in the collaboration diagrams. Defining message

SequencePart

name, message type, condition and loop structures are all handled in this dialog.

48

FuntimeCollaboration
Diagram

e NE=Y=T=e e
CrawPanel

S, SEUSEERF
CollaborationDiagram

____ﬂE{USESZ’}

T gzuzesss
0.n' B
. 0.

AbstractCollaboration
Diagram

B

-

AddDiagram
Dialog

RenameDiagram
Dialog

;

JDialog

SymbolAdder

SequenceEditar

Figure 29. New dialog classes in COSEML

49

CHAPTER 5

CASE STUDY: E-STORE APPLICATION

In this case study, an e-store application is modeled with COSECASE.
Modeling power of collaboration diagrams in the Component Oriented Software

Modeling approach is clearly illustrated in this work.

An e-store application provides a virtual store for online shopping. A customer
visits the e-store and creates an account in order to benefit from shopping. At this
stage, personal information, contact information (e-mail, phone number) and address
of the customer are saved. After that, customer can browse the product catalog and
examine the features of the products. While browsing, customer makes a selection and
adds them to a virtual shopping cart provided by the e-shop application. During this
process, customer may edit the contents of this shopping cart. Then customer clicks to
“proceed to checkout” button to buy the items in the shopping cart. In the checkout
process, customer selects the shipping and payment options and then approves the
order. Following that, system charges the customer and sends the products to the
shipping address. Meanwhile, customer can track the order status using the system.
When the products arrive, order status is changed as completed and details of this

order are saved in the “order history” of the customer.

5.1. Logical Decomposition

COSE modeling approach starts with system decomposition. Possible packages

at the first level of the decomposition are listed below.
e Account
e Product Catalog

e Shopping Cart

50

e Order
e Customer
e Web

Figure 30 shows the first level decomposition of the e-store application on

COSECASE.

E-Store

L g

Account Web

I —

FAroduct Catalo Customer

[

Khopping Carl Order

Figure 30. First level decomposition of the e-store application

Creating accounts and login operations are handled in the Account package.
Information about products, prices and product stocks are managed in Product
Catalog package. This package also has search functionality for products, prices and
stocks in the e-shop. Shopping Cart package manages a virtual shopping cart. This
package handles buying decisions of the customers. Products can be added or removed
until payment approval. Another package in the e-store application is the Order
package. This package manages the checkout of the items in the shopping cart,

shipping of the items to the customers and payment process. Keeping the order status

51

is also handled in this package. Customer package represents the real customers and
keeps user preferences and other customer related information in the system. Finally,
Web package represents the web pages on the e-store application. Customers interact

with the system using the web pages provided by this package.

COSE development continues with further decomposition and reviewing of the
system specification. Decomposition of the packages that are shown in figure 30 is

conducted and modeled as follows.

Figure 31 shows the decomposition of the Account package, which is

responsible for the login and registration operations.

I —

Account

[reate Accoun Master Account Table

Figure 31. Decomposition of the Account package

Figure 31 shows two main functionalities of the Account package. A new
customer first creates an account using Create Account function. Username and
password of the customer are added to the Master Account Table. Then customers log

in the e-store using Log In functionality with their username and password.

52

I

Aroduct Cataloeyg

e Product Price Stochk

Figure 32. Decomposition of the Product Catalog package

In figure 32, decomposition of the Product Catalog package is shown. Products
and their properties are stored in the Product data abstraction. Up-to-date prices of the
products are kept in Price and current stock values are maintained in Stock data

abstractions.

[

Bhopping Carl

Item Add To Cart el Cart Details

Figure 33. Decomposition of the Shopping Cart package

Shopping Cart package contains three main functionalities. Products selected by
the user can be added to the shopping cart using Add to Cart functionality. Updating
or deleting an item is handled by the Edit Cart functional abstraction. Another
functionality of the package, View Cart Details, shows the price, quantity and product

information of the items in the shopping cart. Such information about the items in the

53

cart is stored in Item data abstraction in Shopping Cart package. This decomposition is

shown in figure 33.

Order package is more detailed than the other packages in the application.

Figure 34 shows the decomposition of this package.

Payment

I —

Shipping

Order

Order Table

Rewiew Order

Figure 34. Decomposition of the Order package

It encloses two sub packages, three function abstractions and a data abstraction.

Payment and Shipping are the packages defined under the Order package. Reviewing

of an order before payment, confirming the checkout and viewing the order status are

the main functionalities. They are represented by the function abstractions defined in

this package.

54

Payment

Credit Card PayPal P ayment Preferenjces

Figure 35. Decomposition of the Payment package

Figure 35 shows the decomposition of the Payment package. This package
manages the payment methods, and it keeps the customer’s payment preferences.
Security of the payment process, validation of customer’s credit card and

communication with the bank are handled in this package.

I —

Shipping

Shipping Preferences

Figure 36. Decomposition of the Shipping package

Figure 36 shows the Shipping package defined in the Order package. This
package manages the shipping of the products to customers. Shipping address, invoice
name, selection of shipping company, shipping time and other shipping related issues

are handled in this package. Figure 37 shows the whole decomposition model.

55

eg Burddoy

HED 01 PPY

a3

9101S-9 9} JO UONISOAUWOIIP [9AJ] IS * /€ 3l DG_H_

suonfip Bulddiys 3ejag

Burddiyg

wayy

219F 1L 12p10

18pID

12wosny

ors

s1035-3

w

2 Jualajaly Juswifie g

Juswieg

saug

janpoig

0|EED) JONpol

B N

H

1 JUNS3aYs 13,

sy

Juneaoy

unoaay ajearh

56

5.2. Use Cases Realizations with Abstract Collaboration
Diagrams.

Use case analysis helps to figure out the requirements and help to explore the
important behavior. In this section, some of the most important use cases of the system

are observed and their realization is modeled using abstract collaboration diagrams.

To model the realization of a use case using an abstract collaboration diagram,
possible collaborating elements should be identified. After that, their existence in the
main hierarchy diagram should be checked. If these elements do not exist, then they
should be added to the main hierarchy diagram before using in a collaboration

diagram.
Use Case - Create Account

To use the e-store application, customers first need to create an account. A use

case with the name “Create Account” is obvious.
Steps:
e Customer opens the registration page of the e-store.

e Customer enters registration data (username, password, e-mail) to the

registration page.
e Registration page checks the validity of the data.
e If check fails, an error message is displayed.
o If check succeeds, registration page creates the account.

e Account package inserts a new row to the Master Account Table with

given username and password.
e Registration page mails the account details to the customer.

Possible collaboration participants in this use case are Customer, Web, Account
and Master Account Table defined in the main hierarchy diagram. Figure 38 shows the

realization of “Create Account” use case with the abstract collaboration diagram.

57

I — R —

1 Open Register Page 3 Check Registrati_nn Data
Create Account Custamer - Wb 4a:] c.heckfalls] Display Errar
2 : Enter Registration Data L] G Mail the Account Info

4h [check succeefs] Create Account

—_

Magter Account T @ 5 Insert Usermame and Password Account

Figure 38. Abstract collaboration diagram of “Create Account”

Use Case - Login

Registered users should login to system for improved service and security. This

use case assumes that customer has registered to system.
Steps:
e Customer opens login page.
o Customer enters username and password to the login page.
e Login page verifies login data from Account.

e Account checks username and password using the Master Account
Table.

e Iflogin fails, login page displays error.

If login is successful, login page opens the home page.

Figure 39 shows the abstract collaboration diagram for this use case.

58

I —
g1 53 [login fails | Display Ermor

m Custamer 1: Open Login Page > WEE
g g1 b [loginverified] Open Home Page
7 : Enter Usetname & Passwaord

3 veriy Login

—

Master Accaunt T%NEH :Check Usemame and Password Account

Figure 39. Abstract collaboration diagram of “Login”

Use Case — Browse Products

Customers often visit an e-shop for browsing a product category (e.g. video
camera). In this use case scenario, a customer browses the product catalogs by

selecting a product category.
Steps:
e Customer selects a product category from the e-store home page.
e Page selects a category form the Product Catalog.
o Ifexists, Product Catalog selects subcategories
e Product Catalog searches products for selected categories.

e Search function finds products by the selected category from the
Product table.

e Page displays the product list from the selected category.

Figure 40 shows the representing collaboration diagram.

59

Browse Praducts

I —

Wk :I 5 Display Products

Customer

1:Select Product Categary

2.1 :[has subcategary] Open Subcategory I

2 Select|Category

.

Froduct Catala

3 Get List From $elected Category

Product e Search

4 Find by Category

Figure 40. Abstract collaboration diagram of “Browse Products”

Use Case — Search by Product Property

Customers should be able to make a search on a specific product property.

Steps:

Customer opens the search page of the e-store application.

Customer enters the product properties to the input fields provided by

the search pag

e and clicks the search button.

Search page checks the input values for validity.

Search page
Product Catal

asks for the products with given properties from the

0g.

Product Catalog uses the search functionality to get the products with

given properties.

60

e Search function makes a query for the given properties on Product

table.

e Search page displays the products with the given properties.

0 If products found, Search page activates “Add to Shopping

Cart” use case.

Collaboration diagram of this use case is shown in figure 41.

; 3:Validate Search

WEE :I T Display Results
; 7.1 [products found] Enable Shooping Cart

g —

Search by Product Propea Gy 1 Display Search Page

2 Enter Product Properies

Yy

4. Get Products With Given Properties

h J

Froduct Catalo

5 Search Proguct Propedies

Ll
FHEEILE |y 6 : FindByv:aPropery

Figure 41. Abstract collaboration diagram of “Search by Product Property”

Use Case — Add to Shopping Cart

When customers want to buy a product, they add it to the shopping cart
provided by the e-shop and continue shopping. Adding a product to the shopping cart

is given with the following use case steps.

Steps:

e Customer selects a product

61

e Customer inputs the product quantity and clicks the “add to shopping

cart” button.
e Page checks the stock from Product Catalog.
e Product Catalog gets the stock data of the product from Stock table.

e If stock is not available, page displays “Stock not available” error and

use case ends.

e If the requested quantity of the product is available in the stock, page
calls the Add to Cart function.

e Add to Cart function adds the product with given quantity to the Item
table

e Add to Cart function updates the data on the Shopping Cart.
e Page displays the contents of the Shopping Cart.

Figure 42 shows the collaboration diagram for this use case.

62

(I — (I —
i A3 [stock not available | Display Error
Add to Shopping Cart | CUStomer T+ SeleciProguct ™| 'VEB g & Display Shopping Cart
2 et Guantty 3 Check Stack

Ah ;[stock availahle | Bdd To Shopping Cart

Add To Cart

6 Add ltem with Given Quantity ¥ Update Data

Rroduct Catalo

4 Get Stocklby Productid

Stock

Iterm Fhopping Cart

Figure 42. Abstract collaboration diagram of “Add to Shopping Cart”

Use Case — Edit Shopping Cart

Customers may decide to edit the contents of the shopping cart. They may
cancel the shipping process. Alternatively, they may update the quantity of the
products in the shopping cart. This use case describes the steps of deleting or updating

the items in the shopping cart.
Steps:

e Customer updates the quantity of the selected products on the shopping
cart page.

e Customer deletes the selected products on the shopping cart page.

e If any product quantity increased, page checks the stock from Product
Catalog.

e If any product quantity increased, Product Catalog gets the stock data
from Stock table.

63

e If any product quantity increased and stock is not available, page

displays an error and use case ends.

o Else, page calls Edit Cart function for updating the shopping cart.

o If there is a quantity change, Edit Cart function updates the quantity on

Item table.

e If there is an item deletion, Edit Cart function deletes the item from

Item table.

o Edit Cart function updates the contents of the Shopping Cart.

e Page displays the updates.

This use case is realized with the collaboration diagram shown in figure 43.

g —

7. Display Updates

Edit Shopping Cart

|-
Customer 1a:*[need update |Update ltem Quantitr WEB

1h:*[need delete |Delete ltem

4h ;[stock availabl

Aa [guantity changpd] Update Quantity

Edit Cart

Ll
tEm e Tiem deleted | Delete

|-
|

; 4a [stock not available] Display Error

Ehopping Car]

2 [quantity increaged | Check Quantity
Update Shopping cart

h J

Froduct Catalo

3 Get Stock)by Productld

Figure 43. Abstract collaboration diagram of “Edit Shopping Cart”

64

Use Case — Proceed Checkout

Checkout is the most complicated use case of the e-shop application. It involves

shipping approval, payment method approval, and finally the checkout. Steps are

defined as follows.

Steps:

Customer clicks “Proceed to Checkout” button.
Page gets the saved shipping preferences from Shipping package.

Shipping package get the saved preferences from Shipping Preferences
table.

Page displays shipping details.

If customer wants to change the shipping preferences, page calls the

“Update Shipping Preferences” use case.

Customer approves the shipping preferences by clicking approve button

on the page.
Page gets payment preferences from Payment package.

Payment package retrieves the preferences from Payment Preferences

table.
Page displays the previously saved payment preferences.

If customer wants to change the payment preferences, page calls the

“Update Payment Preferences” use case.

Customer approves the payment preferences by clicking approve button

on the page.
Page gets review data from Review Order function.
Review Order function gets preferences from the Shipping Preferences

table.

65

e Review Order function gets preferences from the Payment Preferences

table.

o Review Order function gets shopping cart contents by calling View Cart

Details function.

e View Cart Details function gets the details from Shopping Cart

package.
e Page displays the review.

e Customer controls the review and clicks the “Checkout” button on the

page.

Updating the shipping and payment preferences process is not included in the
realization diagram. Otherwise, diagram can become complicated and difficult to
understand. For this reason they are modeled as separate collaboration diagrams and
referenced from this diagram as “Call Update xxx Details Collaboration Diagram”.

Collaboration diagram of this use case is shown in figure 44.

g —

|-
W Customer
Proceed fo Checkout - 9a:[notappropriate] Run "Change Payment Preferences” Use Case

[wg—] 5= :[not appropriate] Run "Update Shipping Details” Use Case

(Click "Prpceed Ta Checkout' Button
5h{[appropriate | Approve Shipping Preferences
9h|: [appropriate] Approve Payment Preferences

16 Check Out

— Yy
™ ¥y . o
-} - e i =~ Shipping
Payment 6 : Get Payment Details — 2: et Shipping Details
8: Display Payment Details [pg] [4: Display Shipping Details
H 15 Display Review
7 GetPreferences 3 Gel Shipping Preferences
10 Gef|Review
Y v

FPayment Preferentes

Shipping Prefarentes

Review Order

-t
N4 Get Payment Preferences 13 Get Shipping Preferences

11 : Get Cart Details

I —
B-chopping Ga]

ew Cart Detai 12 Get Details

Figure 44. Abstract collaboration diagram of “Proceed to Checkout”

66

Use Case — Update Shipping Preferences

A customer may be shopping from a different location. Consequently, she may
update the previously entered shipping preferences. This is a sub use case of the
checkout use case and referenced there. Steps of this operation are as follows. Figure

45 shows the collaboration diagram for this use case.
Steps:
e Customer enters new shipping options to the page.
o Page calls Select Shipping Options function to update the options.

e Select Shipping Options function sends the new options to Shipping
package.

e Shipping package updates the preferences on Shipping Preferences
table.

[— [—

Customer 1 : Select Shipping Options > wEB

pdate Shipping F'referenu:e::’r

2 Update Shipping Options

I

1. 157 Selelt Shipping Opfions
Shipping Preferentes 4 : Update Shipping

‘3 - Update Preferences

Figure 45. Abstract collaboration diagram of “Update Shipping Preferences”

67

Use Case — Update Payment Preferences

Customers can change the payment method on the e-shop. This is also

referenced from the checkout use case. Following steps describe the process.
Steps:
e Customers enter new payment preferences to the page.
e Page updates preferences on the Payment package.
o Payment package updates the Payment Preferences table.

Figure 46 shows the collaboration diagram.

I — I —

Update Payment Preferences W Customer 1 : Enter Mew Preferencesh VHEE

2 Update |Preference

—1

Payment Preferenfe s 3 Update Payment

Figure 46. Abstract collaboration diagram of “Update Payment Preferences”

5.3. Physical Composition

After decomposition, matching components should be found to build the system
[6]. Then, these physical components should also be added to the hierarchy diagram.
By this way, abstractions and their representing components are shown on the same

model, which provides an overall system structure.

68

Up to this point, decomposition of the e-store application was modeled. In
addition, a use case analysis of the system is made and use cases that are found, are
modeled using abstract collaboration diagrams. Next task is to find the real
components that represent the abstractions defined in the decomposition model. While

selecting components, abstract collaboration diagrams should also be kept in mind.

First of the packages that is found in the decomposition model is Account
Package. This package is further decomposed into two function abstractions and a
data abstraction, which are Create Account, Log In and Master Account Table. This
package can be represented by a component. This component is assumed to have the

same name with the package. Figure 47 shows the representing component.

|

Account

Account

I:l Account I.J

setLoginData
setRegistrationD ata
login

register

Figure 47. Account component and its interface

This component has a single interface and satisfies the required functionality of
the Account Package. It has methods that provide login and register functionality.
There are two input functions. In order to execute login method, some other interface

in the system should provide LoginData to this interface by calling setLoginData.

69

Likewise, in order to invoke the register method, setRegistrationData should be called

first with RegistrationData.

Product Catalog Package can also be represented by a single component.

Figure 48 shows the representing component.

Aroduct Catalo

Product

I:I Product E

add

update

delete
setProductData
search
setCategons
getProductlist

Figure 48. Product component and its interface

This component also has a single interface. In this interface, setProductData
and setCategory are the input methods. All other methods require setProductData to
be invoked first. Exception is that, getProductList can be invoked, if the setCategory

method is called previously.

Another package abstraction is Shopping Cart Package. Figure 49 shows the

component that represents this package.

70

|

SEhopping Carl

ShoppingCart

I:I ShoppingCart I.J

setitem
add
update
delete

getShoppingData

proceedChechoutFired

Figure 49. Shopping component and its interface

This component also has a single interface. There is a single input method,
setltem that is required by the other methods, defined in the interface. There is also an
output event with the name proceedCheckoutFired. When the user decides to buy the
items in the shopping cart and clicks the “Proceed Checkout” button, this event is

activated.

Most detailed package in the decomposition model is the Order Package. It has
two sub packages and four other abstractions. Payment Package and Shipping
Package are represented by two components with the same name. A component with
the name Order is also added to the model. Figure 50 shows the components that

represent Order Package.

71

Order
L I
Payment Shipping
Payment Order Shipping

I:I Payment E I:I Order E I:l Shipping E

getPreferences processOrder getPrefrences
updatePreferences updatePrefrences
addPreferences addPrefrences
setPreferences setPrefrences
withdrawhion ey pay

Figure 50. Payment, Order, Shipping components and their interfaces

All components shown in the figure have single interface. Shipping Interface
and Payment Interface have similar methods for adding, deleting, and updating the
payment and shipping preferences. The withDrawMoney method in Payment Interface
draws money from customer and pay method in Shipping Interface send money to the
shipping company. The only method in Order Interface is the processOrder. This

method bills the customer, pays the shipping company and ends the shopping.

Interface between the customers and the e-store is the Web Package. The Web
component should have all the functionalities for creating interactions between the
customers and the e-store. Figure 51 shows the corresponding component, and its

three interfaces.

72

getShippingDataFromPage
displayShippingData

getP aymentD ataFromPagd
displayP aymentData

submitShippingPressed
deleteShippingPressed
updateShippingPressed

submitPaymentPressed
deletePaymentPressed

updatePaymentPressed

I
Weh
E-store Web
I:I ShippingPage E I:I PaymentPage e I:I ReviewPage |.J
setShippingDataToPage setP aymentDataToPage setShippingDataToPage

setPaymentDataToPage
setShoppinglataToPage
displayRewiew

getOrderDetails

submitOrderPressed

Figure 51. E-store Web component and its three interfaces

ShippingPage interface is responsible for displaying the shipping preferences.
Customers can update, delete, or approve the preferences using this interface. In this
interface, before calling displayShippingData, setShippingDataToPage method should
be called first. There are also three events defined in this interface. These events
inform the listeners about wuser actions the For

on example,

page.
submitShipingPressed event informs that customer has approved the shipping
preferences and getShippingDataFromPage method can be used to get the approved

preferences.

Similarly, PaymentPage interface is responsible for displaying and managing
the payment preferences. Methods and events defined in this interface are similar to

that of ShippingPage interface.

ReviewPage interface provides the review of shopping cart, shipping and
payment details. When a customer decides to buy and clicks the approve button on the

page, submitOrderPressed event is fired. This event informs the listeners that

73

customer selected the shipping and payment preferences and bought the items in the

shopping cart.

Although there are three interfaces in the figure, E-storeWeb component has
more interfaces like LoginPage or RegistrationPage. However, to keep the things
simple and clear they are omitted. In the following section, only these three interfaces

of the E-storeWeb component are used.

Figure 52 shows all the abstract packages and their representing components

that have been defined in this section.

74

uonedrjdde 210)S-9 3y} JO sjuduodwo)) ‘ZG a.anbiH

a1015-3

E1anpoidya b
passaldiapigHWqns passal Juawhie 4a1epdn passaigbuddiygajepdn paILNORD3Y)pasIeld fuobajeglas
ned Hfauo el pypn s|eyaguapinla b passal JuawiE Jaja|ap passaigbuiddiygajajap eegbuiddoygiab yaeas
ECETTEITETIG 2 533U J}A5 nanayhie|dsip passalJIuawhe Juuqns passaigBurddiygpwgns aja|ep E}E Q2NpoI}es 19351631
S33UBYBIJPPE S3aualajaidppe a6ego) epegbmddoyglas EIE qQuawhie Jfiedsip eje qBuiddiyghejdsip ajepdn ajajap wmbio]
sasualalgajepdn s30uageIdajepdn abe o) Fequuawie gies | bbequoljeie qluawsie 4336 | |a6e yuos jeye gbuiddiygyeb PRE ajepdn ElEquonensifiaylas
sasuanalgiah 1apipssaaord saaualajal)b abego) regBuiddiygyas abiego) rpeqiuawiie g1as abego) eegbumddiysias wajes pPpE epequibioqias
Buydd 132p uawie
T uiddiyg n_ (211 n_ m ¥ d n_ ﬂ._ abeguainay n_ m abe Juawsed n_m abegBuiddiyg n_ m pejbuiddoys n_ _u anpolg n_ T pULTEE LT n_
Buiddiys 12pI1Q JUBWAE 4 qaun s10ps3 pejbuiddoyg) janpoig Junoaay
Burdd
uiddiyg s whie g MEeD Buiddoyg P
s o|EIE] Janpoiy unsaay
R —
R —
R — L R —
1BpIn

75

5.4. Runtime Collaboration Diagrams

Runtime collaboration diagrams show implementation details of a system
behavior and they provide a very suitable medium for component wiring. In the
previous section, components of the e-store system are found and included into the
main hierarchy diagram. With run time collaboration diagrams, implementation of the
use cases can be modeled by showing the interactions among the real components. In
this section, the “Proceed to Checkout” use case, which is the most complex scenario

in the e-store application, is modeled using a run time collaboration diagram.

In the “Proceed to Checkout” use case scenario, customer first clicks to
“Proceed to Checkout” button. Then, shipping preferences are displayed on the web
page. Customer updates the preferences if she wants and approves the shipping
preferences. Next, the page displays the payment preferences. Again, customer may
change the preferences and she approves the payment preferences. After that, page
displays the review of items in the shopping cart, shipping and payment details. If

everything is suitable, customer clicks “Submit Order” button and process ends.

Component interfaces, which are required for this scenario, are ShoppingCart,
ShippingPage, Shipping, PaymentPage, Payment, ReviewPage and Order. Figure 53

shows the first phase of the run time collaboration.

; ShoppingCart E

setltermn

add

update

delete
getShoppingData

proceedcheckoutFired

I:l ShippingPage |-J ﬁ
Shipping
— -l

setShippingDataToPage ™ oichinpingDataToPage

getShippingDataFromPage

displayShippingData

submitShippingPressed 2.1 :getShippingDataFromPage
setPrefrences

deleteShippingPresszed —

updateShippingPressed

2 setPrefrence I

getPrefrences

updatePrefrences [,
1 displayShippingData 2.2 1updatePrefrences

addPrefrences

Figure 53. First phase of the run time collaboration

76

ShoppingCart component fires the proceedCheckoutFired event when the
customer clicks the “Proceed to Checkout” button. This event is listened by the
shipping page. When it is fired, use case starts and ShippingPage displays the
preferences by getting the data from Shipping component. If customer wants to update
the preferences, she clicks the update button. Then, the Shipping component fetches
the updated shipping preferences from the ShippingPage and updates it. Figure 54

shows the next phase.

|:| ShippingPage E

setShippingDataToPage
getShippingDataFromPage
dizplayShippingData

1 submitShippingPressed
deleteShippingPressed
updateShippingPressed

|:| PaymentPage E ; Fayment E
|-
setPaymentDataToPage 31 getPreferences ™| qetPreference
L, getPaymentDataFromPagg updatePreferences z?E:updatePreferences
3 displayPaymentData displayPaymentData addPreferences

submitPaymentPressed setPreferences

4.1 getPaymentDataFromPage
deletePaymentPressed withdrawhioney

updatePaymentPressed

4 setPreferences

Figure 54. Second phase of the run time collaboration

Customer approves the shipping preferences by clicking submit button on the
shipping page. At this point, ShippingPage fires the submitShippingPressed event.
PaymentPage listens to this and when it is fired, the Payment component fetches the

updated payment preferences from the PaymentPage and updates it.

Figure 55 shows the last phase. When the customer approves the payment
preferences by pressing the submit button, displayReview method in the ReviewPage
is invoked. To display the review, first, ReviewPage fetches the shipping preferences
from the Shipping component. Next, payment preferences are fetched from the
Payment component. Finally, shopping data is fetched from the shopping cart. After

these flows, ReviewPage displays the review. When the customer presses order button,

71

submitOrderPressed event is fired on the ReviewPage. Then, this event calls the

processOrder method in the Order component, which concludes the shopping.

; Shipping E

™ etPrefrences
updatePrefrences
addPrefrences

5.1 getPrefrences

setPrefrences
nay

I:l FPaymentPage E I:l ReviewPage I-J

; FPayment E
setPaymentDataToPage setShippingDataToPage [——

getPaymentDataFromPagd setPaymentDataToPage E2 getPreferences g getPreferences
displayPaymentData setShoppingDataToPage— updatePreferences
submitPaymentPressed 5 displayRevie displayReview addPreferences
deletePaymentPressed getOrderDetails setPreferences
updatePaymentPressed subrmitOrderPressed M withdrawh oney

; ShoppingCart E

setltern
add
update

I:| B E delete
5.3 getShoppingData getshoppingData

processOrder

- G processOrder proceedCheckoutFired

Figure 55. Third phase of the run time collaboration

78

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1. Conclusions

COSEML was proposed before as the primary modeling language for
Component Oriented Software Engineering approach [2]. Since then, some researches
have been continuing for improving this modeling language. However there are still
more areas for enhancement in COSEML. Having a single static hierarchy diagram in
the modeling language is not sufficient. It is not possible to extensively describe a
software system without modeling its dynamic behavior. Before this thesis, practiced

benefits of dynamic modeling in UML were not available to COSEML.

With this thesis, a collaboration modeling is added to the COSE approach.
Supported with the implementation of two levels of collaboration diagrams, the
previous COSECASE tool is now capable of representing dynamic models. The case
studies conducted through modeling example systems showed that it is beneficiary to
include collaboration modeling to a COSE approach. These diagrams give a better
view of system functionalities. They enable visualizing the expected system behavior
on the model. Use case realization, which is a very important requirement capturing
process, is also made possible. It is observed that the sequencing information provided
with the collaboration modeling is very helpful for the construction phase of COSE
based development. This sequencing information also creates a possibility for
generating applications and automated tests from COSEML models. A future
commercial version of this tool can be very instrumental for the industry to adopt

Component Oriented development methodologies.

79

6.2. Future Work

An important motivation for starting this research was the missing sequence
information for the messages, to be used during the composition phase. There have
been different applications of COSE based tools that offered framework kind of
environments where components can be composed to yield executable applications
[23][24]. Such composition, however could not be guided effectively, by the
COSEML model: the order of the messages to be fired were totally left to the
designer's intuition during the composition. Future frameworks can import the
presented collaboration modeling abilities for a further automated and guided
composition. Then, the order of message invocations can be retrieved from the

COSEML model.

Another future work is needed for providing some abstractions on collaboration
diagrams. In complex systems, modeling the dynamic behavior can produce too many
collaboration diagrams. This may create difficulties to see the overall dynamic
behavior of the system. A more abstract view is needed that shows the cooperation
among the collaboration diagrams. In UML 2, interaction overview diagrams [4] are
used for similar approach. Likewise, such a modeling view can be incorporated to
COSEML. Moreover, if executable application generation from collaboration
diagrams is made possible, then this view can also be used for composing those

application parts to build the final application.

80

(5]

(6]

(7]

(8]

(9]

[10]

REFERENCES

A.H. Dogru and M.M. Tanik, “A Process Model for Component Oriented
Software Engineering”, IEEE Software, vol. 20, no 2, pp. 34-41, January 2003.

A.H. Dogru, “Component Oriented Software Engineering Modeling Language:
COSEML”, TR-99-3, Computer Engineering Department, Middle East
Technical University, December 1999.

A. Kara, “A Graphical Editor for Component Oriented Modeling”, M.S. Thesis,
Middle East Technical University, December 2001.

OMG, “Unified Modeling Language: Superstructure”, Version 2.0, Formal/05-
07-04, http://www.omg.org/cgi-bin/doc?formal/05-07-04, August 2005.

G. Engels, L. Groenewegen and G. Kappel, “Coordinated Collaboration of
Objects”, Advances in Object-Oriented Data Modeling, pp. 307-331, The MIT
Press, 2000.

A.H. Dogru, “Component-Oriented Software Engineering”, The Academy of
Learning and Advanced Studies (The ATLAS), to be published in 2006.

M.D. Mcllroy, “Mass Produced Software Components”, NATO Conference on

Software Engineering, Garmisch, Germany, October 1968.

OMG, "CORBA Basics", http://www.omg.org/gettingstarted/corbafaq.htm,
2005.

Microsoft, "Component Development", http://msdn.microsoft.com/library/en-

us/dnanchor/html/componentdevelopmentank.asp, 2005.

Sun, "Reference Documentation", http://java.sun.com/products/ejb/index.jsp,

2005.

81

[11]

[12]

[13]

[14]

[15]

[22]

(23]

X. Cai, M.R. Lyu, K. Wong, R. Ko, "Component-Based Software Engineering:
Technologies, Development Frameworks, and Quality Assurance Schemes",
Proceedings of the Seventh Asia-Pacific Software Engineering Conference,

p372, 2000.

G. Booch, J. Rumbaugh, 1. Jacobson, "The Unified Modeling Language User
Guide", Addison Wesley, April 2000.

M.B. Tuncel, “COSEML’de Isbirligi Diyagramlarinin Kullanimi”, Ulusal
Yazilim Muhendisligi Sempozyumu, September 2005.

OMG, "OMG Model Driven Architecture", http://www.omg.org/mda, 2005.

M.M. Tanik and E.S. Chan, “Fundamentals of Computing for Software
Engineers”, Van Nostrand Reinhold, New York, 1991.

M. Fowler, “UML Distilled”, 3rd Edition, Addison Wesley, 2004.

A. Abdurazik and J. Offutt, “Using UML Collaboration Diagrams for Static
Checking and Test Generation”, Third International Conference on the Unified

Modeling Language, pp. 383-395, York, UK, October 2000.

R.C. Martin, "UML Tutorial: Collaboration Diagrams", Engineering Notebook
Column, November 1997.

G. Engels, R. Hucking, S. Sauer and A. Wagner, “UML Collaboration
Diagrams and Their Transformation to Java”, Proceedings of UML99, Lecture

Notes in Computer Science, vol.1723 pp. 473-488, 1999.
The Eclipse Foundation, "What is Eclipse", http://www.eclipse.org/org, 2005.

Free Software Foundation, "Concurrent Versions System - CVS",

http://www.nongnu.org/cvs, 2005.

S.W. Ambler, "The Elements of UML Style", Cambridge University Press,
2002

E. Ozdogru, "A GIS Domain Framework Utilizing Jar Libraries As
Components", M.S. Thesis, Middle East Technical University, May 2005.

82

[24] M. Ozturk, "Visual Composition in Component Oriented Development", M.S.
Thesis, Middle East Technical University, August 2005.

83

APPENDIX A

A BRIEF USER MANUAL FOR USING
COLLABORATION DIAGRAMS IN COSECASE

COSECASE was first introduced in thesis “A Graphical Editor for Component
Oriented Modeling” by Aydin Kara [6]. A manual for using COSECASE was also
given in that work. Modeling in the main hierarchy diagram was described there.

Here, new implementations are explained.

A.l. Diagram Tree

To support collaboration diagrams and any other diagrams that can be added in
the future, a floating window that contains a tree structure is created. This diagram tree
is responsible for managing the diagrams in the model. It can be visible or hidden by
selecting a menu item in the “view” menu of the main application. In figure 56,

diagram tree is shown at the left side of the main window.

Currently diagram three supports three types of diagram. The first one is the
main hierarchy diagram, located at the top of the tree. This is the default diagram in
the model and it always exists in the diagram tree. Other two types of diagrams are run
time collaboration diagram and abstract collaboration diagram. These diagrams are
located under the “Collaboration Diagrams” node in the diagram tree. Model does not

contain collaboration diagrams at the beginning; they are added, as they are needed.

84

2 D:ADocuments and SettingsimbtiDesktopimodel.eml [Modified) EE&E
File “iew Edit Help

OD=E&E W EE# % MainHerarchy Diagram . Main Hierarchy Diagram

| Diagrams
L _Bhiain Hierarchy Diagram
=] Collaborstion Diagrams
=] _| Abstract Collaboration Diagram
abstract 1
=] _| Rurtime Collaborstion Disgram
rurtime 1

B Y @ ER B g B e g B

Figure 56. Main window in COSEML

Basic function of the diagram tree is browsing the diagrams in the model.
Double clicking the diagram nodes on the diagram tree shows the selected diagram on
the main window. Other functionalities of the diagram tree are mostly available for
collaboration diagrams. Since the main hierarchy diagram is the default diagram and
there cannot be multiple hierarchy diagrams, only renaming is allowed for this
diagram. On the other hand, new collaboration diagrams can be added to the model.
Selecting the appropriate collaboration diagram type and right clicking on it, opens the

“Add New Diagram” pop-up menu as shown in figure 57.

85

% Diagram Tree

Disgrams
Nain Hierarchy Disoram

rurtime 1

Figure 57. Add new diagram pop-up in DiagramTree

Selecting this menu item opens the “Add New Diagram” dialog window as

shown in figure 58.

Add New Diagram]

Marne anather abstract

[oo |

Figure 58. Add new diagram dialog

Entering the name of the diagram adds the diagram under the selected
collaboration diagram type in the diagram tree. Right clicking on a collaboration
diagram reveals other functionalities with a pop-up menu. Figure 59 shows this pop-

up menu on the diagram tree.

86

i Diagram Tree

Diagrams
Main Hierarchy Diagram
=] Collaboration Disgrams
= _| Absztract Collabaration Diagrarm

#® abstract 1
-»

=] Runti Delete Diagram
L

Rename Diagram
Add a Copy of Diagram

Save Diagram to Disk

Figure 59. Pop-up menu for managing diagram in DiagramTree

First of these menu items is “Delete Diagram”. When selected, a confirmation
dialog opens and if user confirms the deletion, it deletes the selected diagram
collaboration diagram from the model. Second is the “Rename Diagram” menu item.
When selected, it opens the “Rename Diagram Dialog”. Figure 60 shows this dialog.
As it is obvious, this diagram renames the selected collaboration diagram in the

diagram tree.

Hename Diagram

renamed|
Ok

Figure 60. Rename diagram dialog

Third menu item is “Add a Copy of Diagram”. This menu item creates the
duplicate of the selected collaboration diagram in the model. This functionality is very
useful when modeling similar collaboration diagrams. With minor changes on the

copied diagram, similar use cases can be modeled efficiently.

The last one is the “Save Diagram to Disk” menu item. When this is selected, it

opens a save dialog as shown in the figure 61.

87

Save i |Ia case-study

L payment step.clh
ﬁ reviewn step.clh
En Son shipping step.clh

Hullandiklzrim =il clh

Badlantiarm | Files of type: |C|:ullah|:|raticun Dizgrarn (*.clik) i | Cancsl

Figure 61. Save diagram to disk dialog

This menu item allows saving a collaboration diagram independently from the
model. It allows saving different versions of a diagram on the disk. It is also useful for

sending a single collaboration diagram to other users/developers.

A.2. Modeling Tool Bar

Dynamic creation of the tool bar for selected symbols, are made possible in this
work. This will be also useful when new diagram types are needed in future. Figure 62

shows the tool bar for collaboration diagrams.

N2

Figure 62. Collaboration diagram tool bar

88

Buttons on the toolbar and their brief descriptions are given in the table 3.

Table 3. Description of buttons of the modeling tool bar

Button

Meaning

b

“Select Button” selects elements on the diagram.

Inzert

“Insert to Collaboration Diagram” button opens a list of elements that exist
in main hierarchy diagram. If the diagram is an abstract collaboration
diagram, list contains only abstract elements. If it is a run time collaboration

diagram, list contains only component interfaces.

= “Creates Next Sequence” button creates the next sequence message for the
selected message.

= “Creates Child Sequence” button creates child sequence message for the
selected message.

i “Insert Between Sequence” button creates the same sequence message for

Ji—=
the selected message and shifts the selected and the following sequences one
step up.

=0 “Insert Next Non Concurrent” button creates the next non concurrent

message for the selected message.

This tool bar is used by both abstract and run time collaboration diagrams. Only

the “Insert to Collaboration Diagram” button behaves differently on these diagrams.

A.3. Inserting Elements to Collaboration Diagrams

All elements should exist in the main hierarchy diagram before using them in

the collaboration diagrams. Then, clicking to “Insert to Collaboration Diagram” button

&9

on the tool bar brings a list of elements from the main hierarchy diagram. Figure 63

shows this process on the main window.

2 C:Ambticase-models\case-study\estore-08 components-deneme.cml [Modified) EE®E

File ‘“iew Edit Help
hEeEdE 0 A 7 Ahstract Collaboration © Login

I —

Customer

Creskout
Paymert Preferences
tem

Search L
PayPal WWEB
Credit Card
Reviewr Order
Crder Tahle
; —

Pams o

I —

Account

[addToDiagram | Ma terAccountT%ble
L - |

&
i
i
i
i

Figure 63. Add elements to diagram dialog.

If the active diagram is an abstract collaboration diagram, then the list contains
only abstract elements defined in the main hierarchy diagram, as it is the case in figure
63. If it is a run time collaboration diagram, then the list contains only component

interfaces defined in the main hierarchy diagram.
Selecting the elements on the list and clicking the “Add to Diagram” button,

adds the selected elements to the active collaboration diagram.

A.4. Sequence Messages

To show the interactions among the elements in a collaboration diagram,

sequence messages are used. Figure 64 shows all the possible message types and

90

sequencing in a collaboration diagram. First message is added to diagram by clicking
the “Creates Next Sequence” button on the tool bar and clicking on the diagram. To
add the next messages, an existing message should be selected and the appropriate

button on the tool bar should be clicked.

£ C:Ambticaze-modelsicase-studybestore-08 components-deneme.cml [Modified)

File “iew Edit Help
D@ 0 [dh 7 Ahbstract Collaboration : Login

-

initial message

1:simple message

2 synch message

2.1 :child synch message

-

3a: concurrent message

3honext concurrent message

3h.1: child synch message

[.
4 asynch message

@
i
i
i

b —
2 —

Figure 64. Different message types on Collaboration Diagram

91

Table 4. Managing sequence messages with the tool bar buttons.

Button | Selected Sequence Previous Set Next Set
[y 2 1,2 1,2,3
= 3 1,2,3 1,2,3,3.1
i 2 1,2,3,3.1 1,2,3,4,4.1
H—.

= 3aor3b 1,2,3a,3b 1,2,3a,3b,4

Table 4 explains how to create desired sequence messages by using the buttons

on the tool bar. By default, all newly added messages are synchronous. However, their

types can be changed by an editor dialog.

A.5. Editing Sequence Messages

Selecting a sequence message and right clicking it opens a pop-up menu. This

menu is showed in figure 65.

2 synch message Dislete

hake LoopLeft)
hake Loop(Right)
Eclit

Figure 65. Pop-up menu for sequence managing

Clicking the “Delete” menu item on the pop-up menu, deletes the selected

message from the diagram. This action shifts the messages that follow this message

one level up. If the sequence message set is “1, 2, 3, 3.1, 3.2, and 4”, then deleting 2

92

from the diagram makes the set as “1, 2, 2.1, 2.2, 3”. Deleting a message also deletes

its children. Again deleting 2 from “1, 2, 2.1, 2.2, 3”” makes the resulting set as “1, 2”.

Selecting “Make Loop (Left)” or “Make Loop (Right)” on the menu changes
the shape of the selected message as shown in figure 66. This option makes it easy to
create self-calling messages. Selecting the “Edit” menu item opens the “Edit Message”

dialog window. This dialog is shown in figure 67.

D

4 message A message

Figure 66. Self calling sequence messages

Edit Mezzage E|
Sequence : 2 Syhchronaus

Mezzage MeESaYe

[] condtion

|:| Caoncurrent

[pclate] ’ Cancel

Figure 67. Edit message dialog

Message name and type can be updated with this dialog. Possible message types
are “Simple, Synchronous, Asynchronous” that are shown in the combobox. Here, a
message can also be made concurrent by selecting the checkbox. In addition, a

message condition or a loop structure can be constructed with this dialog.

93

A.6. Properties of Sequence Messages

A.6.1. Segmented Structure

Sequence messages are made segmented so that any complex collaboration can
be showed without massing up the diagram. To make segmented messages, segment
drag points are implemented. A segment drag point allows stretching the message with
the mouse. An algorithm is implemented so that segment lines are automatically made
rectangular. Any number of segmented drag points can be added to a sequence

message. Figure 68 shows the drag points on a segmented sequence message link.

1 .

1 message ;

Figure 68. Segment drag points on a sequence message link

Drag points are shown as blue rectangles on the message link. Double clicking
on a message link creates a drag point on it. To remove a drag point, double clicking

on that point is sufficient.

A.6.2. Custom Message Text Positioning

Segment drag points are also used for managing the location of message text.

Right clicking on a segment drag point opens a pop-up as shown in figure 69.

I B

Align String to Poirt(Left)
Align String to Point(Right))
Align String to Cernter

Figure 69. Pop-up menu to align text with segment drag points

94

Selecting first two menu items align the message text to the left or right of the
selected drag point. Selecting “Align String to Center” menu item, places the text
between the selected and the next drag points. This creates many possibilities
((number of drag points —1) * 3) for placing text on the link. So, in complex models,

interference of text messages is minimized.

A.7. Modeling the Collaboration

How to add elements and how to insert sequence messages to a collaboration
diagram are explained in previous sections. However, to model the collaboration,
added elements should be connected using sequence messages. In abstract
collaboration diagrams, connection is made to the element itself. Figure 70 shows the

connection of abstract elements with sequence messages.

Custarner P~ WEE

1: Enter Lsername & Password

2 Merify Login

L

Account

Figure 70. Connections in abstract collaboration diagrams

In run time collaboration diagrams, connection is made between the methods
and events of the interfaces. Figure 71 shows the connection of interfaces through

their methods and events.

95

[Iﬁ'l ShippingPane % [? Shipping %

setShippingDataToPage getPrefrences
netShippingDataFromPage "11_1 TgetShippingDataFramPage % HupdatePrefrences
displayShippinaData 1!3 addPrefrences
submitshippinoPressed setPrefrences
deleteShippingPressed ﬁ‘pay
updateShippinoPressed

| i 1. setPrefrences

Figure 71. Connections in run time collaboration diagrams

For every method and event in a component interface, two connection points are
defined on the both side of the interface. Therefore, method level messages can be

shown by connecting over these connection points.

96

