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ABSTRACT 
 
 

NEW MONTGOMERY MODULAR MULTIPLIER ARCHITECTURE 
 
 

Çiftçibaşı, Mehmet Emre 

M.Sc., Department of Electrical and Electronics Engineering 

    Supervisor  : Assoc. Prof. Dr. Melek D. Yücel 

Co–Supervisor    : Prof. Dr. Hasan Güran 

 
January 2006,  77 pages 

 

This thesis is the real time implementation of the new, unified field, dual–

radix Montgomery modular multiplier architecture presented by Savaş et al, 

for performance comparison with standard Montgomery multiplication 

algorithms. The unified field architecture operates in both GF(p) and 

GF(2n).  The dual radix capability enables processing of two bits of the 

multiplier in every clock cycle in GF(2n) mode, while one bit of the multiplier 

is processed in GF(p) mode.  

 

The new architecture is implemented in a Xilinx FPGA on the custom 

printed circuit board. The windows user interface is developed in Borland 

Builder environment and the ethernet interface is implemented by Ubicom 

IP2022 controller. The algorithms are compared from operating clock 

frequency, silicon area cost and multiplication time perspectives. The new 

architecture multiplies two times faster in GF(p) and four times faster in 

GF(2n), compared to the previous architectures as expected. The operand 

length is increased from 8 bits to 1024 bits, with the compromise of 

decreasing the operating clock frequency from 150 Mhz down to 15 Mhz.  

 

Keywords: Montgomery Multiplier, Modular Multiplier, FPGA 
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ÖZ 
 

YENİ MONTGOMERY MODÜLER ÇARPMA YAPISI 
 
 
 

Çiftçibaşı, Mehmet Emre 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

    Tez Yöneticisi   : Doç. Dr. Melek D. Yücel 

Ortak Tez Yöneticisi : Prof. Dr. Hasan Güran 

 
Ocak 2006,   77 sayfa 

 
 

Bu tezde Savaş ve diğer yazarlar tarafından sunulan birleşik cisimler 

üzerinde, çoklu seçmeli ikil işleyen yeni bir Montgomery modüler çarpma 

mimarisi, standart Montgomery çarpma algoritmaları ile karşılaştırılmak 

üzere gerçeklenmiştir. Birleşik cisimli çarpma yapısı GF(p) ve GF(2n) sonlu 

cisimlerinde çalışabilmektedir. Çoklu seçmeli ikil işleme özelliği her saat 

aralığında GF(2n) modunda çarpanın iki ikilinin işlenebilmesine olanak 

tanırken, GF(p) modunda bir ikil işlenmektedir.  

 

Yeni algoritma yapısı, özel üretilen baskı devre kartındaki Xilinx FPGA 

üzerine uygulanmıştır. Windows kullanıcı arayüzü Borland Builder 

ortamında geliştirilmiş, yerel ağ arayüzü ise Ubicom IP2022 işlemcisi ile 

gerçeklenmiştir. Algoritmalar, çalışma saat frekansı, harcanan silikon alanı 

ve çarpma süresi açılarından karşılaştırılmıştır. Yeni yapı beklendiği gibi 

önceki yapılarla karşılaştırıldığında GF(p) modunda iki kat, GF(2n) 

modunda ise dört kat daha hızlı çarpmaktadır. Kelime boyu 8 ikilden 1024 

ikile kadar yükseltilmiş, buna karşın çalışma saat frekansı 150 Mhz’den   

15 Mhz’e düşmüştür. 

 

Anahtar Kelimeler: Montgomery Çarpma, Modüler Çarpma, FPGA 
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CHAPTER 1 
 
 

INTRODUCTION 
 

1.1 Aim of the Thesis 

 

This thesis is the implementation, verification and testing of a Montgomery 

modular multiplication algorithm [1] for the new architecture presented in 

[2]. This architecture proposes two improvements on the well–known 

Montgomery multiplication algorithm and its previous implementations. 

 

First improvement proposed in [2] is a theoretical modification to the 

Montgomery multiplication algorithm [1], which decreases the multiplication 

period dramatically. A more detailed proof of the algorithm given in [2], 

which will be referred as the “new algorithm” throughout this thesis, is given 

in section 3.5.1. Second improvement is a new design perspective applied 

to the hardware dataflow of the algorithm, describing the computational 

advantage of new cryptosystems such as elliptic curve cryptosystems. This 

new design also decreases the time spent during the multiplication for 

standard cryptosystems like RSA. 

 

In the framework of this thesis, new unified dual–radix Montgomery 

multiplication algorithm is implemented for operand sizes from 8 bits to 

1024 bits. The aim here is to compare the new algorithm from clock 

frequency, silicon area and clock cycle count points of view. As the FPGA 

(field programmable gate array) in the custom printed circuit board has 

limited resources, the modular multiplier on the circuit board has maximum 

operand width of 48 bits. For better understanding of the cost of operand 
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length in terms of clock frequency and silicon area, the multiplier design 

has been verified and compared for up to 1024 bits for larger FPGAs. 

 

The FPGA code is written in very high speed hardware description 

language (VHDL) and then synthesized and implemented using Xilinx 

tools. The ethernet interface code is written in C language using Ubicom 

tools. The user interface is written in C++ language using Borland tools. 

 

Preliminaries of this thesis are introduced in chapter 1. General 

introduction to modular multiplication algorithms is given in chapter 2. The 

mathematical theory underlying the new Montgomery multiplication 

algorithm and the details of the new Montgomery multiplier core are 

explained in chapter 3. The hardware design details of the new 

Montgomery multiplier, with the ethernet interface application and the user 

interface are briefly described in chapter 4. The obtained results are given 

in chapter 5 and conclusions are discussed in chapter 6. 

 

1.2 Cryptography Applications 

 

Cryptography is the art of designing and breaking ciphers. Traditionally, 

secret–key cryptography was used by the military and diplomatic services 

for providing secure communication, in which two communicating parties 

share a secret key that should be distributed in some secure way. 

 

Development of mobile internet devices increased the need for 

cryptographic techniques for privacy and authentication of digital data. The 

invention of public–key cryptography, which assigns two keys (one public 

and one private) to each user, provided techniques for key distribution as 

well as signing and authenticating digital data.  
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Because of its complexity, public–key cryptography is mainly used for 

digital signatures and the management of secret keys between two points. 

The encryption of bulk data is mainly established with secret–key 

cryptosystems, whereas the secret keys to be shared for a pair of users, 

are distributed by public–key cryptosystems. For a standard public–key 

cryptosystem to be considered as “secure”, the key length should be about 

thousand bits or more.  

 

In public–key cryptography, input and output numbers are selected from 

finite element fields. All cryptographic operations are made in these finite 

fields, which map to modular multiplication and modular exponentiations in 

the digital world. Increasing demand for modular multiplication requires fast 

modular multiplication algorithms such as Montgomery multiplication, which 

will be described thoroughly in this thesis. 

 

1.3 Definition of Montgomery Multiplication 

 

In [1], Montgomery proposed an algorithm for modular multiplication. This 

new algorithm, called Montgomery Multiplication Algorithm, has the 

advantage of replacing division operations by bit shift operations. If the 

least significant bits to be shifted out are not zero,  Montgomery’s algorithm 

adds multiples of modulus to clear these bits before shifting them out.   

 

In regular modular multiplication, after all bits of the multiplicand are 

processed, modulus is repeatedly subtracted from the result unless the 

result is less than the modulus. In Montgomery multiplication, bits are 

shifted out as each bit of the multiplicand is processed, leaving no need for 

the subtractions. 
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In this thesis Montgomery multiplication is implemented in a unified and 

dual–radix architecture. The definitions of the terms unified and dual–radix 

are as follows. 

 

Unified Architecture: An architecture is said to be unified when it is able 

to work with operands in both prime and binary extension fields using the 

same hardware. In [3], it has been shown that a unified multiplier is feasible 

with only minor modifications to the multiplier for GF(p) in [4]. 

 

Dual–Radix Architecture: A unified multiplier is said to be dual–radix if it 

operates with a larger radix value for GF(2n) than the radix used for GF(p). 

The term, architecture, is used to represent the hardware of the 

Montgomery multiplier. 

 

A radix–2n multiplier processes n bits of the multiplicand in every clock 

cycle. A radix (2,4) multiplier stands for a multiplier working in radix–2 for 

GF(p)  and working in radix–4 for GF(2n). The new architecture in this 

thesis is a radix (2,4) multiplier architecture. 

 

Dual radix multiplier design has critical time–area considerations, as the 

cost of extra radix should not effect the signal propagation time much while 

keeping the silicon area as low as possible.  

1.4 History of Montgomery Multiplication 

 

There exist many implementations of high–radix conventional multipliers 

[5]; however, there are few implementations of high–radix modular 

multipliers in the literature. An example for the high–radix Montgomery 

multiplication algorithm is given in [6]. 
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A radix–4 implementation of modular multiplication using Brickel's 

algorithm [7] has been proposed in [8]. The multiplication is performed 

without carry propagation.  

 

A similar algorithm is presented in [9]. The paper presents two possible 

architectures, further explained in [6].  

 

The Brickel's algorithm shifts out the most significant bits of the partial 

product, after they have been cleared. It has been noted in [9], as shifting 

out the least significant bits of the partial product, as it is done in the 

Montgomery's algorithm, has advantages (simplifying the longest path) 

over the former  approach and thus Montgomery’s method is the more 

attractive one. Both approaches are compared in [6] with considerations for 

high–radix implementations. 

 

The implementation of Montgomery multiplication involves making the 

tradeoff between chip area and computational speed [10]. Two main points 

to be considered are that with the increasing radix, the multiplier operand is 

processed in less clock cycles, however the longest path increases. Thus, 

the overall effect on the computational time is a decision to be made for 

multiplier core design. 

 

Simplifying the longest path is discussed in [11]. However, with the new 

architecture described in this thesis, the longest path has been simplified 

and clock cycle count is halved, with the re–design of the processing unit. 

 

A single chip, 1024–bit RSA implementation is given in [8]. The 

multiplication part is implemented as an array multiplier. It is noted that this 

approach for multiplication requires multiple clock cycles to complete. 

Limiting the size of the computing unit has certain advantages as shown in 

[5]. Also a cryptographic processor design is demonstrated in [12]. 
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Using reconfigurable hardware provides the means of solving problems for 

both high– precision and variable–precision computation, as [13, 14, 15] . 

 

A unified multiplier architecture for finite fields GF(p) and GF(2n) is 

presented in [16]. It is shown that a Montgomery multiplier can operate in 

both fields without significant increase in the silicon area.  

 

1.5 Field Programmable Gate Arrays 

 

Field programmable gate arrays (FPGAs) have a regular, flexible, 

programmable architecture of configurable logic blocks, surrounded by a 

perimeter of programmable input/output blocks. There may be other 

configurable blocks such as delay–locked loops and synchronous block 

RAMs. These functional elements are interconnected by a powerful 

hierarchy of versatile routing channels.  

 

The FPGA resources are slices, that contain programmable look up tables  

and flip flops. tables are used for combinational logic and flip flops are used 

for sequential logic.  

 

The power of FPGAs come from the fact that they are in system 

programmable, meaning that they can be reconfigured within a few 

seconds while they are operational. 

 

Most FPGAs are customized by loading configuration data into internal 

static memory cells. Unlimited reprogramming cycles are possible with this 

approach. Stored values in these cells determine the logic functions and 

interconnections implemented in the FPGAs. Configuration data can be 

read from an external serial programmable read only memory (PROM). 
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Cryptographic applications require high throughput, requiring powerful 

processors. Even though application specific standard products (ASSPs) 

such as the security processors from integrated circuit (IC) vendors offer 

high performance for standard security applications, the requirements 

might be different. The data rate might be insufficient or the IC might not be 

suitable for the specific packaging. 

 

Under these circumstances programmable logic becomes an alternative. A 

new modular multiplier core enables the required high–speed design to be 

accomplished in a very short time frame at a very low cost. 

 

In this thesis, the new Montgomery multiplier core is implemented in a 

Xilinx Spartan 2 series FPGA. The dataflow of FPGA is supported by a 

Ubicom IP2022 ethernet controller. Even though the newer FPGAs have 

built in ethernet interfaces, this design has turned out to be very effective. 

The ethernet controller is not mentioned much in this thesis, as it is only 

used to supply ethernet connectivity to the FPGA.  



 8

 

 
CHAPTER 2 

 
 

MODULAR MULTIPLICATION 
 

 

In this chapter the mathematical background of modular multiplication is 

given, applications using modular multiplication are described and 

Montgomery multiplication algorithm is described. 

 

2.1 Application of Field Theory to Modular Multiplication 

 

An algebraic field is, by definition, a set of elements that is closed under 

the ordinary arithmetical operations of addition, subtraction, multiplication, 

and division. The set of rational numbers is a field, whereas the integers 

are not a field, because the integers are not closed under the operation of 

division as the result of dividing one integer by another is not necessarily 

an integer. It is also possible to construct other fields by means of 

extending smaller fields [16], [17], [18]. 

  

In cryptographic applications, finite fields, especially prime number fields 

GF(p) and binary extension fields GF(2n), have common use as they are 

easily applicable to digital systems. Some elliptic curves on these fields 

have been strongly suggested by researchers in cryptography institutes. 

 

A finite prime number field is constructed from the integers {0, 1, 2, ..., p–1}  

up to an n–bit prime number p. In GF(p), addition and multiplication 

operations are defined as modulo p additions and modulo p multiplications.  
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A binary extension field GF(2n) is constructed from binary polynomials of 

degree less than n. In this thesis, polynomial basis representation is used 

to represent elements of GF(2n), as it is very suitable for the new multiplier 

architecture. Similar to the prime modulus p in prime number fields, a 

binary prime polynomial of degree n is used to construct GF(2n). 

 

Given the prime binary polynomial  

 

p(x) = xn+ pn–1xn–1+ . . . + p1x + p0  

 

of degree n. Given p(x), all the binary polynomials a(x) of degree less than 

n are elements of GF(2n).  

 

GF(2n) = {0, 1, x, x+1, x2, x2+x, x2+1, x2+x+1, … , xn–1, … } 

 

In GF(2n), addition is polynomial addition modulo the prime polynomial p(x), 

meaning a bitwise xor’ing of the corresponding coefficients of the input 

polynomials. As it is a simple polynomial addition in modulo 2, there is no 

carry propagation and the resultant polynomial is at most of degree (n–1). 

 

Multiplication in GF(2n) is also polynomial multiplication modulo p(x). 

Similar to that in GF(p), multiplication is performed in two steps, polynomial 

multiplication followed by a polynomial division of the intermediate result by 

the prime polynomial p(x). Generally these two steps are interleaved.  

2.2 Types of Cryptographic Algorithms Using Modular 

Multipliers 

 

Cryptographic algorithms use modular multiplication intensively. Most 

common algorithms are the RSA Algorithm, named after its inventors 

Rivest, Shamir and Adleman, and the newly emerging elliptic curve 

cryptosystems (ECC) described in [16]. 
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RSA Algorithm 
 

As all public–key algorithms, the RSA algorithm is utilized in applications 

where the data to be encrypted is short, such as the private keys of a bulk 

data transfer or digital signatures [13]. The key size to be used, as it is 

generally about thousand bits or more. The throughput of RSA is much 

slower than secret–key algorithms such as DES (Data Encryption 

Standard) or AES (Advanced Encryption Standard). In hybrid applications 

RSA is usually paired with a secret key algorithm for bulk data transfer, as 

the other public key methods. 

 

The RSA algorithm uses modular exponentiation for obtaining and verifying 

digital signatures. The computations are performed using exponentiation 

algorithms. Modular exponentiation requires implementation of the basic 

modular arithmetic operations: addition, subtraction, and multiplication. 

 

As mentioned here, modulus must be preferably 1024 bits or more, which 

requires fast modular multiplications, and very fast multiplications per bit, if 

made in a bit serial form. There are many methods of calculating the 

modular exponent, including Montgomery’s method which is very efficient 

for modular exponentiations. 

 
Elliptic Curve Cryptosystems 
 

The use of elliptic curve cryptosystems is an increasing trend in application 

development. There are many issues to consider for making a choice 

between an application based on an elliptic curve cryptosystem and one 

based on RSA. The important point here is that an elliptic curve 

cryptosystem over 160 bits offers the same security as 1024 bit RSA. 

 

Elliptic curves over GF(2n) are more popular due to the efficient algorithms 

for doing arithmetic in GF(2n). Elliptic curve cryptosystems based on 
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discrete logarithms seem to provide similar amount of security to that of 

RSA, but with relatively shorter key sizes. 

 

The problem of discrete logarithms over a prime field in ECC and the 

problem of integer factorization in RSA appear to be of roughly the same 

difficulty. Techniques used to solve one problem can be adapted to tackle 

the other. There are elliptic curve analogs to RSA but it turns out that these 

are chiefly of academic interest since they offer essentially no practical 

advantages over RSA. This is primarily the case because elliptic curve 

variants of RSA actually rely for their security on the same underlying 

problem as RSA, namely the problem of integer factorization [16].  

 

An elliptic curve addition is performed by using a few finite field operations. 

Implementation of elliptic curve addition operation requires implementation 

of four basic finite field operations: addition, subtraction, multiplication and 

inversion. In elliptic curve arithmetic, computations are performed using 

exponentiation algorithms.  

 

2.3 Montgomery Multiplication Algorithm 

 

Modular multiplication (Xm) of two integers a and b, simply performs  

 

Xm (a, b) = a · b (mod p) 

 

Instead of computing a · b, Montgomery multiplication (MM) computes  

 

MM (a, b) = a · b · r –1 (mod p) 

 

where r is a special constant. As mentioned in [17] and [18], this is similar 

to Montgomery’s method in [1]. If p is an n–bit number, the selection of 

constant r = 2n mod p for GF(p) and r(x) = xn mod p(x) for GF(2n) mode of 



operation, turns out to be very useful in obtaining fast implementations. 

Thus the coınstant value r is represented by the integer r mod p, or the 

polynomial r(x) mod p(x). For GF(p) mode of operation, r2 mod p value is an 

input from the user interface, while for GF(2n) mode of operation, the 

coefficients of r2(x) mod p(x) are input from the user interface. 

 

The Montgomery multiplication method requires r and p to be relatively 

prime. This can be achieved by taking odd numbers for p, while r is chosen 

as a power of 2. Either in GF(p) and GF(2n), the least significant bit (LSB) 

of the modulus is always 1. So GCD (p,r) = 1, since the modulus p is a 

prime number, or a prime polynomial. 

 

As can be seen, the Montgomery multiplication algorithm brings an r –1 to 

the result. Because of this, the algorithm is not directly applicable to input 

operands. From the definition of Montgomery multiplication in [1], all 

elements need to be transformed to Montgomery residue field. 

Montgomery residue field is used to represent the r–multiplied values of the 

operands, as a·r and b·r. In computations of this thesis, the operands a and 

b are prime number field elements or binary extension field elements. 

Therefore certain transformation operations must be applied to both of the 

operands a and b before the multiplication and to the intermediate result c  

in order to obtain the final result c. 

 

To transform an input operand to Montgomery residue field, a multiplication 

by a constant value is required. This constant value is r2 mod p, where r is 

selected as 2n or xn as stated previously. The numbers in the Montgomery 

residue field are represented as a ,b  and c .  

 

To multiply two numbers from the integer field, four Montgomery 

multiplications are needed. First a and b are transformed to their images in 

the Montgomery residue field. Then multiplication is performed in the 
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Montgomery residue field, before multiplying the final result by 1, to 

transform the result c  back to the initial field. 

 

The four step Montgomery multiplication operation is defined as: 

 

a = MM (a, r2) = a · r2 · r –1 (mod p) = a · r (mod p) 

b = MM (b, r2) = b · r2 · r –1 (mod p) = b · r (mod p) 

c = MM ( a ,b ) = a · r · b · r · r –1 (mod p)= a · b · r (mod p)  

c = MM ( c , 1) = a · b · r · r –1 (mod p) = a · b (mod p) 

 

After both numbers are transformed to Montgomery residue field, the 

multiplications are performed as many as needed, enabling the MM 

operation to be very efficient for performing modular exponentiations. But 

the final result has to be transformed back to the input field. To transform 

the final result from Montgomery residue field to input operand field, the 

result must be Montgomery multiplied by 1. In figure 2.1, Montgomery 

multiplication of two integers is illustrated. 

 

 

       

Figure 2.1 Montgomery Modular Multiplication 
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Montgomery multiplication is not to be performed for a single modular 

multiplication, but it is very efficient for modular exponentiations, where 

numbers are multiplied many times. The advantage of Montgomery 

multiplication is clearly visible, as in conventional modular multiplication 

integer division is required.  

 

Montgomery multiplication algorithm differs slightly in mathematical 

representation for prime number fields and binary extension fields, so the 

two algorithms are given seperately. The following notation will be used for 

the description of the Montgomery multiplication. 

 

ai  : a single bit of a at position i 

ci  : a single bit of c at position i  

n  : number of bits in the operands and modulus 

 

Radix–2 Montgomery multiplication algorithm for GF(p) is given below. 

 

Step 1: c = 0 

Step 2: FOR i = 0 TO n – 1 

Step 3:  c = c + ai · b 

Step 4:  c = c + c0 · p 

Step 5:  c = c / 2 

  END FOR 

Step 6: IF c ≥  p THEN  c = c – p 

 
In every cycle of the for loop, the multiplicand b is added to the partial 

product c depending on the LSB of the multiplier a. The LSB of partial 

result must be zeroed before the shift in step 5. If the LSB of c is '1' then 

the modulus p, as it is an odd number, is added to c in step 4, before the 

right shift. After the last iteration of the loop, the variable c holds the 

multiplication result.  
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It can be verified easily that 

 

c = a · b – t · p 

 

where t is composed during the loop iterations depending on the least 

significant bits of the partial product. The variable t is simply the number of 

times that the modulus is subtracted from the result c, to guarantee that the 

result c is bounded with the modulus p. It is shown in [4] that the result c is 

bounded between 2p–1 and 0 if p is chosen so that 

 

2N–1 < p < 2N 

 

This is the second requirement for the modulus p, other than the GCD 

requirement. 

 

The final result must be a number less than the modulus. Therefore, step 6 

is called the final reduction step of the Montgomery multiplication algorithm. 

In the final reduction step, c is compared to p and is adjusted if needed. 

Because of the boundaries for c, a single subtraction of p is enough to 

assure c < p. 
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Bit Level Algorithm for Montgomery Multiplication in GF(2n) 
 

In GF(2n) polynomial representation is used for binary numbers. The 

algorithm is the same algorithm in GF(p), with a slight difference that the 

additions are binary polynomial additions modulo p(x). Also the final 

reduction step is not needed when multiplication is performed in GF(2n). 

 

Input: a(x), b(x), p(x), n 

Output: c(x) = a(x) · b(x) · x−n mod p(x) 

 

Step 1: c(x) = 0 

Step 2: FOR i = 0 to n – 1 do 

Step 3:  c(x) = c(x) + ai · b(x) 

Step 4:  c(x) = c(x) + c0 · p(x) 

Step 5:  c(x) = c(x) / x 

END FOR 



 

CHAPTER 3 
 

NEW MULTIPLICATION ALGORITHM 
 

 

In this chapter, the new Montgomery multiplication algorithm is introduced, 

the new  architecture is given and the mathematical proof of the new 

algorithm is reviewed by considering some details skipped in [2]. 

3.1 Theory of New Montgomery Multiplication Algorithm 

 

The theory of new Montgomery multiplication algorithm differs slightly for 

prime fields and binary extension fields; hence they are described 

separately as Algorithm I for GF(p) and Algorithm II for GF(2n) in the 

following subsections. 

 

3.1.1 New Algorithm for Prime Fields 

 

Given two integers a, b, and prime modulus p, the Montgomery 

multiplication algorithm computes   

 

c = MM (a, b) = a · b · r−1 (mod p)  

 

where  

 

r = 2n

 

a, b < p < r, where p is an n–bit prime number.  
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If  r2 (mod p) is precomputed and saved in a register, a single Montgomery 

multiplication operation is enough to carry out each of the transformations 

from the input operand field to Montgomery residue field. In the 

implementation, r2 value is an input from the user interface, as stated 

previously.   

 

As previously stated in chapter 2, because of these transformation 

operations, performing a single modular multiplication using Montgomery 

multiplication algorithm is not practical. On the other hand, the advantage 

of MM algorithm becomes obvious in applications requiring multiplication 

intensive calculations such as modular exponentiation and elliptic curve 

operations. 

 

The new radix–2n Montgomery multiplication algorithm for GF(p) is given 

below. One of the advantages of the new algorithm is that, step 3 and step 

4 of the new algorithm can be processed in a single clock cycle, regardless 

of the k value. The k value is the number of multiplier bits processed in 

each cycle of the loop. The 2k value is called the radix of the architecture. 

Simply stating, a radix–2 multiplier architecture processes one bit of the 

multiplier in a single clock cycle, while a radix–4 multiplier architecture 

processes two bits. The new algorithm for GF(p) is named as Algorithm I. 

 

Algorithm I, for GF(p) 

Input: a, b ε [1, p–1], p, n, k 

Output: c ε [1, p–1] 

Step 1  c = 0 

Step 2   for i = 0 to n–1, i = i+k 

Step 3   q = (c0 + ai · b0) · (p0) (mod 2k)  ( 3.1 ) 

Step 4   c = (c + ai · b + q · p) / 2k    ( 3.2 ) 

end for 

Step 5  if c ≥ p, c = c – p 



 

where p’
0 = 2n – p0

–1 (mod 2n).  

 

In Algorithm I, the multiplier a is written with base 2 (radix–2k) and digits ai 

so that  

 

∑ −

=
=

1

0
i ·k ·2n

i iaa  

 

where n is the number of digits in operands. In the implementation of this 

thesis, the number of digits n is automatically calculated by the modulus 

calculator block in the multiplier control main unit. 

 

In step 4, the multiplicand b, the modulus p, and the partial result c are 

calculated as full n–bit precision integers. Also q, c0, b0, and p’
0 are all n–bit 

integers. 

 

The digits of b, p and c are referred to as words when implementing step 4, 

and the term digit is used for b0, p’
0, and c0 in step 3, when they are in the 

same equation with the digits of a. Digits can be easily distinguished from 

full n–bit integers by the subscript notation (ai or b0). In addition, the base of 

the radix of the multiplier architecture is determined by the base used to 

represent the multiplier a. 
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3.1.2 New Algorithm for Binary Extension Fields 

 

The radix–2k Montgomery multiplication algorithm for GF(2n) can be 

defined as the following: 

 

Algorithm II, for GF(2n)  

Input: a(x), b(x), p(x), n, k 

Output: c(x) 

Step 1  c(x) = 0 

Step 2   for i = 0 to n–1, i = i+k 

Step 3   q(x) = (c0(x) ⊕ ai(x) · b0(x)) · p’
0(x) (mod xk) 

Step 4   c(x) = (c(x) ⊕ ai (x) · c(x) ⊕ q(x) · p(x)) / xk 

  end for 

 

where p’
0(x) = p0

–1(x) (mod xk).  

 

It can easily be seen that the two algorithms are almost identical except 

that the addition operation in GF(p) becomes a bitwise modulo–2 addition 

(simple xor’ing) in GF(2n). Also final reduction step is not needed in GF(2n). 

 

Although the operands are integers in the former algorithm and binary 

polynomials in the latter, the representations of both are identical in digital 

systems. In Algorithm I, there is also a reduction step at the end to reduce 

the result into the desired range, if it is greater than the modulus.  

 

It can be observed that the computations performed in step 3 are of 

different nature in two algorithms. Depending on the magnitude of the radix 

used, the part of the circuit in charge of implementing step 3 might become 

very complicated. However, these computations can be performed in a 

unified circuitry for small radices. The circuit, called local control logic, is 

described in full detail in section 3.5. 
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In this thesis, the notation introduced in Algorithm I will be used for both 

GF(p) and GF(2n) after this section, and the polynomial notation will be left 

completely from the representation of field elements in GF(2n). So the 

elements of both fields are represented identically in digital systems. 

 

3.2 Precomputation in New Multiplication Algorithm 

 

In this thesis, as previously stated, a new unified dual–radix multiplier 

architecture is described. This new architecture has a precomputation 

block in order to decrease the longest path delay of the multiplier in [3]. 

This precomputation block is called Local Control Logic (LCL) block, and 

this block is part of the processing unit of the multiplier core. 

 

From Eq. (3.2), step 4 of the Algorithm I computes 

 

c = (c0 + ai · b + q · p) / 2k

 

where division by 2k is a right shift by k bits, and from Eq. (3.1), q is 

previously calculated in step 3. The k–bit operand q can be determined by 

the least significant bits of b, p and c, and the k least significant bits of a. 

The derivation for q is also given in section 3.5.1. 

 

The multiple of b that is to be added to partial result c is determined solely 

by ai. For radix–2 architectures, the operands ai , b0 , c0 and p0 will 

determine which one of the values in {0, b, p, b+p } is added to the partial 

result c. As the value of b+p is precomputed and saved in a register, the 

calculation in step 4 from Eq. (3.2) is significantly simplified. 

 

The precomputation technique simplifies the multiplier design since step 4 

can be performed with only one addition. The local control logic block in the 



multiplier selects which multiples of b and p participate, and the adder adds 

all required multiples at one single step, in the same clock cycle. 

 

This block is naturally on the longest path and this is the most important 

part of the multiplier design. Details of LCL are given in section 3.5. 

3.3 New Processing Unit 

 

The processing unit (PU) is basically responsible for performing Eq. (3.1) 

and Eq. (3.2) from steps 3 and 4 of algorithm I, and is shown in figure 3.1. 

The ccnext and csnext are the terms used to represent the partial carries and 

partial sums for the next stage of multiplication, where the term next stage 

represents the next multiplier bits. 

 

Step 3: q = (c0 + ai · b0) · ( p’
0

 ) (mod 2n)     ( 3.1 ) 

Step 4: c = (c + ai · b + q · p) / 2n       ( 3.2 )

 

  

 

Figure 3.1 Processing Unit 
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As stated in the previous chapter, the new architecture uses radix–2 for 

GF(p) so the LSB of the operands ai, b0, c0 and p0 determine which one of 

the values in {0, b, p, b + p} is added to the partial result c.  

 

Multiplication is performed in radix–4 for GF(2n). Therefore, least significant 

two bits of a, b, c, and p are needed in order to determine q. The LSB of p is 

always 1, causing only p1, the second least significant bit of the modulus, to 

be included in the computations. Consequently a0, a1, b0, b1, c0, c1 and p1 

determine which one of the values { 0, b, p, b+p, x·b, x·p, x·(b+p) } is added 

to the partial result. Recall that ai is the i’ th least significant bit of a.  

 

Multiplication by x results in one bit shifting to the left, so it is identical to 

the simple multiplication by 2 in a digital system, as polynomial notation is 

used to represent the elements of GF(2n). In this thesis division by xn and 2n 

are identical operations and the latter is used to denote the right shift 

operation by n bits. 

 

The local control logic block in figure 3.2 contains the selection logic which 

generates the signals, m00, m01, m10, and m11. These signals determine 

which multiples of b and p will be used in the addition in step 4.  

 

m00 m10 m01 m11 = ( 0  1  1  1 )  

           2b + 3p   

 

indicates that Eq. (3.2) in step 4 will be  

 

c = (c + 2b + 3p) / 2n .  

 

The implementation details of the selection logic are detailed in the 

following sections. cc0 and cs0 in figure 3.2 are the least significant digits of 

carry part and sum part of the partial result c.  
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A redundant carry–save representation is used for the partial result in the 

processing unit. Partial result equals c = cc + cs, where cc and cs stand for 

the carry part and sum part of the partial result. The partial result c is kept 

in redundant form during the computations and it must be converted back 

to non–redundant form when the multiplication is completed. Because of 

this, the register for partial result has twice the width of the other registers. 

 

While the redundant form enables to employ carry–save adders, which are 

typically less costly in terms of area and much faster than standard carry 

propagate adders, carry–save form brings an extra addition operation, 

which is to transform the final result into non–redundant format at the end 

of the calculations.  

 

The transformation is a simple addition of the two registers cs and cc. This 

adder does not cost any area to the multiplier architecture, as the same 

adder will be used for the final reduction operation in GF(p) mode. This 

adder is also needed for performing the precomputation of b+p, which is 

stated in the previous sections. The only extra silicon area cost for the 

precomputation comes from the extra register to store b+p. However, since 

the precomputation block eliminates the need for the second layer of 

carry–save adders in [3], this extra area cost is compensated. 

 

The longest path of a PU is determined by the addition of LCL delay, MUX 

delay and carry–save adder delay. 

 

3.4 Dual Field Adder 

 

Dual Field Adder (DFA) is basically a full–adder capable of doing addition 

with or without carry. The DFA input field select (FSEL) enables carry 

output. Figure 3.2 shows the implementation of the DFA. 

 



          

Figure 3.2 Dual Field Adder 

 

 
If FSEL = 1, DFA performs bitwise addition with carry which enables the 

multiplier to do arithmetic in GF(p). If FSEL = 0, the carry output is forced to 

0 regardless of the input values.  

 

The local control logic, multiplexers and the DFA are the combinational 

logic in the longest path of the multiplier core. This longest path is very 

short and allows all computations to be performed in a single clock cycle. 

The multiplier core calculates the partial n–radix result in carry–save 

redundant form in every clock cycle, c = c + ai · b + q · p. 

 

An important aspect of designing a DFA is to avoid increasing the longest 

path of the circuit with respect to a standard full–adder, which would have 

an adverse effect on the clock frequency. The area and signal propagation 

aspects of a DFA are almost identical to those of a standard full–adder 

which would be used in a GF(p) only multiplier. Therefore, this additional 

functionality is obtained almost without any cost in area or clock frequency.  

3.5 Local Control Logic of New Processing Unit 

 

The LCL of the processing unit determines which of the inputs of MUX–0 

and MUX–1 are to be added in the dual field adder in the processing unit. 

The LCL for the new dual–radix multiplier, is shown in figure 3.3. 
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Figure 3.3 Local Control Logic 

 

 
 
In GF(p) mode, the multiplier uses radix–2, so only mux inputs m00 and m01 

need to be calculated. MUX inputs m10 and m11 are forced to be zero, as 

input zero of MUX–1 is always selected in this mode, enabling the partial 

carries to be added to the partial sum. The following list shows the control 

inputs of MUX–0. 

 

m00 = ai          ( 3.3 ) 

m01 = q0 = csi ⊕ cci ⊕ ai · b0       ( 3.4 ) 

 

where ⊕ stands for modulo–2 addition in GF(p) mode. In GF(2n) mode the 

select inputs of MUX–1 also need to be calculated. The following list shows 

the control inputs of MUX–1. 
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m10 = ai+1 · FSEL        ( 3.5 ) 

m11 = q1 = [ (csi+1 ⊕ ai · b1 ⊕ ai+1 · b0) ⊕ (csi ⊕ ai · b0) · p1] · FSEL ( 3.6 ) 

 

The first input of MUX–1, the partial carries cc, is always zero in GF(2n) 

mode, as the carry part of partial sum is always zero in the redundant form, 

refer to DFA definition in the previous section. 

 

As can be seen from figure 3.3, there are 3 XOR and 2 AND gates in the 

longest path of the LCL. More information on the derivation of the LCL 

equations is given in the following section. 
 

3.5.1 Derivation of Local Control Logic 

 

This is the derivation is for m00, m01, m10 and m11 ,equations given in the 

previous section. The equations (3.3), (3.4), (3.5) and (3.6) are used in the 

local control logic block as multiplexer select signals. The term radix–2k 

digit means a k bit binary number, and therefore a radix–4 digit is used for 

representation of two binary digits. 

 

Local control logic calculates the b and p addition coefficients in Eq. (3.2) : 
 

c = (c + ai · b + q · p) , from Eq. (3.1) where  

 

q = (c0 + ai · b0) · p’
0, and q, ai, b0, c0 and p’

0 are radix–4 digits.  

 

In GF(p) mode only m00 and m01 are needed, from Eq. (3.3) and Eq. (3.4), 

 

m00 = ai         ( 3.3 ) 

m01 = q0 = (cs0 ⊕ cc0 ⊕ ai · b0) · p’0
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where p’0 = p0 = 1, as p is an odd number, the number to be added to p to 

make the least significant bit of the result to be zero, is itself. 
 

m10 and m11 must be forced to 0 in GF(p) mode, as the partial carries are 

used in the addition process. In GF(2n) mode, m00, m01, m10, and m11 are 

needed. m00 is the same as in the GF(p) mode. m10 = ai+1 · FSEL , as i+1’th 

bit is needed for GF(2n) operation in Eq. (3.5). 

 

m01 and m11 are determined by q. To compute q value, p’
0 is needed.  

 

p0 · p’0 ≡ 1 (mod x2)        ( 3.7 ) 

 

This is a critical step in the derivation of local control logic. The k–bit 

number p’0 is explained as, the number of times that the two least 

significant bits of the modulus is added to the partial sum, in order to clear 

the two least significant bits of the partial sum. The Eq. (3.8) is re–written 

from [2] for rigorous description. 

 

(p’1 · x + p’0) · (p1 · x + p0) ≡       ( 3.8 ) 

(p’1 · p1 x2) + (p’1 · p0 + p’0 · p1) x + (p’0 · p0)   ≡ 1 (mod x2) 

 

The x2 term is cleared as the equation is in mod x2. Therefore  
 

p’1 · p0 + p’0 · p1 = 0  and p’0 · p0 = 1 
 

As the modulus p is a prime number, p0 = 1. This implies p’0 = 1. Therefore  

 

p’1 + p1 = 0. 

 

As this derivation is for GF(2n) mode, addition is a simple binary xor 

operation which implies p’1 ⊕ p1 = 0 , meaning  

 

p’1 = p1.         ( 3.9 ) 
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So the second least significant bit of the p’ is equal to the second least 

significant bit of the modulus p, which turns out to be  

 

p’ (mod x2) = (p1 · x + 1)  

 

In every step the i’th and i+1’th bits of a is multiplied with b. 

 

(ai+1 ai) · b (mod x2) ≡ (ai+1 · x + ai) · (b1 · x + b0) (mod x2)  

 

≡ (ai+1 · b0 + ai · b1) · x + ai · b0 (mod x2) 

 

Therefore from eq (3.1), (c0 + ai · b0) · p’0 (mod x2) 

 

≡ [(cs1 + ai+1 · b0 + ai · b1) · x + (cs0 + ai · b0)] · (p1 · x + 1) (mod x2) 

 

≡ [cs1 + ai+1 · b0 + ai · b1 + (cs0 + ai · b0) · p1] · x + cs0 + ai · b0 (mod x2) 

 

This is the final equation describing the addition in the processing unit. 

 

m01 = cs0 ⊕ ai · b0          

m11 = cs1 ⊕ ai+1 · b0 ⊕ ai · b1 + (cs0 ⊕ ai · b0) · p1

 

Since cc0 is always 0 in GF(2n) mode, m01 = q0 = cs0 ⊕ cc0 ⊕ ai · b0

for both GF(p) mode and GF(2n) mode operations.  

 

m11 is forced to 0 in GF(p) mode, bringing FSEL into m11 eq (3.6). 

 

m11 = q1 = [(cs1 ⊕ ai+1 · b0 ⊕ ai · b1) · FSEL] ⊕ [(cs0 ⊕ ai · b0) · p1 · FSEL] 



 

 
CHAPTER 4 

 

HARDWARE AND SOFTWARE OF THE MULTIPLIER 
 

 

This chapter is dedicated to the hardware and software description of the 

new Montgomery multiplier architecture. Also the ethernet interface 

software and the user interface software are described briefly. Figure 4.1 

shows the multiplier hardware in the FPGA.  
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Figure 4.1 Hardware Block Diagram 



 

4.1 Montgomery Multiplier Blocks in FPGA 

 

The Montgomery multiplier hardware in FPGA is organized as configurable 

blocks. These blocks are designed as variable bit length blocks and the 

maximum operand width N is configured at design time. The organization 

tree of the hardware multiplier is shown in figure 4.2. 

 

 

Figure 4.2 Hardware File Tree of the Multiplier 

 

4.1.1 Main Unit 

 

This unit in main.vhd enables the data input and output of the multiplier. 

This unit also includes the modulus calculator block, stage control state 

machine, i/o shift registers, led drivers and the clock delay locked loop. 

 

I/O Controller: The FPGA is slave in this operation, as i/o control signals 

are driven by the ethernet controller. Input output controller is composed of 

seven processes. Shift registers are required for the i/o interface as the 

data bus is only eight bits wide while N bit wide numbers are used in the 

multiplication process. 
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Input data is continuously sampled in a process, enabling the 

synchronization of input signals with the FPGA internal clock. A similar 

process is used to sample i/o control signals: address strobe input (AS), 

read/write input (R/W) , address bus input and the bi–directional data bus. 

 

The i/o state machine has four states. First state is the wait state, where 

the sampled data is discarded until the address strobe input is logic 1. If 

address strobe is logic 1, address bus is sampled and the state is changed. 

Second state is the state where the decision is to be made, if the operation 

is a read or a write operation. Third state sets data strobe output data 

strobe to logic 1, and fourth state waits until address strobe input goes to 

logic 0. When address strobe is logic 0, the data transfer is complete and 

state machine returns to the initial wait state. Figure 4.2 shows the 

operation of the i/o state machine. 
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Figure 4.3 Multiplier I/O State Machine 

 

stu0 stu1 

Sample r_w = 1 
 
if r_w = ‘1’ then  

read_data_ubi <= ‘1’; 
else  

write_data_ubi = ‘1’;

stu2 

as = 0 
 
read_data_ubi <= ‘0’; 
ds <= ‘0’; 

  as = 1 

 

stu3 

    as = 1 

sample r_w <= ‘1’;     as = 0 

 
ds <= ‘1’; 
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A read operation means that the ethernet controller reads the value of a 

register from FPGA. Consequently a write operation is performed when the 

ethernet controller writes a value to a register in the FPGA. 

 

In write operations, a separate process writes the value into the shift 

register addressed by the address bus. The accessed register is shifted by 

eight bits, every time it is accessed for a write operation. 

 

In read operations, the value of the most significant eight bits of the 

addressed register in the FPGA is written to the data bus out register. All 

read registers in the FPGA are shifted by eight bits, in every read access to 

the FPGA. 

 

A separate process drives the three state buffers in the input output blocks 

of the FPGA. This process enables the data bus to be used for both read 

and write operations. 

 
Modulus Calculator Unit: This unit processes the modulus, and 

calculates the bit length of the modulus. The process is implemented for 

variable length operands and supports both GF(p) and GF(2n) modes of 

operation. 

 

Multiplier Stage State Machine: A single modular multiplication requires 

four Montgomery multiplications, as previously described in chapter 2. This 

state machine supplies the input operands to the MM kernel. 

 

The state machine waits in state 0, unless the stage multiply bit is set by 

the i/o state machine. Then prepares the inputs for the first MM operation, 

a multiplied by r2, and waits in state 1 until the modulus count block is done 

processing. Then begins first Montgomery multiplication in state 2. 
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The first result is awaited in state 3. After the first result, a·r value, is 

registered, second MM operation b multiplied by r2 begins in state 4. State 

5 waits unit the result is ready, and registers the b·r value. State 6 is a 

dummy state, needed for timing compensation between processes. 

 

Third multiplication, multiplication of a·r with b·r begins in state 7. The result 

c·r is awaited in state 8. State 9 is another dummy state for timing 

compensation.  

 

Final multiplication, c·r value multiplied with 1, begins in state 10. The state 

machine waits for the final result c in state 11 and toggles the led after the 

multiplication result is ready. Then the state machine returns to initial state, 

state 0, ready for a new MM operation. Figure 4.3 shows the operation of 

the multiplier stage state machine. 

 
Debug Interface: Debug interface in debug.vhd is the block that supplies 

the intermediate values to the user interface, for the visual display of MM 

operations. This interface is not included in the results part in chapter 6, as 

this block is not an essential part of the multiplier. 

 

Clock Delay Locked Loop: This unit is a standard block on the FPGA. 

Clock delay locked loop improves the timing synchronization of the clock 

signal on the circuit board with the FPGA internal clock. This unit also 

improves FPGA internal clock distribution, and is not an essential part of 

the multiplier. 

 

Led Drivers: There are four leds on the circuit board. Three leds are used 

for ethernet and the fourth led is toggled every time a new MM operation is 

performed. 

 
Buffers: The clock buffers are used for clock distribution inside the FPGA 

and are standard components of every FPGA design. 



stage_multiply = 0 
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Figure 4.4 Multiplier Stage State Machine 

stage_multiply = 1 
 
sample_inputs <= ‘1’; 

p_ready = 0 

sts0 sts1 

p_ready = 1 

sts2 

sts3 result_ready = 0 

Sample inputs = 1 
 
a_mult <= a_data; 
b_mult <= r2_data; 
p_mult <= p_data; 

sts4 

Load inputs two = 1 
 
a_mult <= b_data; 
b_mult <= r2_data; 

 
Load_inputs_two <= ‘1’; 
multiply <= 1; 

sts5 result_ready = 0 

result_ready = 1 
 
load_b_n <= ‘1’; 

sts6 sts7 

 
Load_inputs_three <= ‘1’; 
multiply <= 1; 

sts8 

result_ready = 0 

sts9 

sts10

Load inputs three = 1 
 
a_mult <= a_n; 
b_mult <= b_n; 

Load inputs four = 1 
 
a_mult <= c_n; 
b_mult <= 1; 

sts11

 
Load_inputs_four <= ‘1’; 
multiply <= 1; 

result_ready = 0 

result_ready = 1 
 
toggle_led <= ‘1’; 

 
multiply <= 1;

result_ready = 1 
 
load_a_n <= ‘1’; 

result_ready = 1 
 
load_c_n <= ‘1’; 
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4.1.2 Multiplier Core 

 

The multiplier core in papermult.vhd, performs the internal operations of 

the MM operation. The multiplier core consists of a state machine, an 

adder, a comparator and the new processing unit described in chapter 3. 

 

Multiplier Core State Machine 
 
This state machine controls the new processing unit, described previously 

in chapter 3. Initially this state machine waits in state 0 unless the multiply 

signal becomes logic 1. When the multiply signal becomes logic 1, p+b 

register is prepared using the adder, depending on the field. If the field is 

GF(2n), the p+b register contains the bitwise xor of the modulus p and the 

multiplicand b. If the field is GF(p), the p+b register contains the result of 

addition of p and b. 

 

When the p+b register is loaded with the appropriate value, MM operation 

begins. The new processing unit processes 2 bits of the multiplier in each 

clock cycle in GF(2n) mode and 1 bit of the multiplier in GF(p) mode. 

 

After all the bits of the multiplier are processed, the result ready signal 

becomes logic 1 and the MM operation is finished. Figure 4.4 shows the 

operation of multiplier core state machine. 
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Figure 4.5 Multiplier Core State Machine 

 
 
Adder: The adder is a synchronous carry propagate adder. This adder is 

not a dual field adder, due to area constraints, so it is controlled by the core 

state machine and used only in GF(p) mode of operation. 

 
Comparator: The comparator is a standard comparator needed for the 

final reduction operation in GF(p). 

 

start ready st0 

st1 

prepare_pb = 1 
 
if field = ‘1’ then 
     adder_a_in <= b; 
     adder_b_in <= p; 
else 
     pb <= b XOR p;

st2 st3 

 
ready <= ‘1’; 
result <= adder_q; 

multiply = 0 
 
result_ready <= ‘0’; 
mult_busy <= ‘0’; 
sum <= others => ‘0’; 
pb <= others => ‘0’; 

result_pb = 1 
 
if field = ‘1’ then 
     pb <= adder_q_out; 

 
int_multiply <= 1; 
result_pb <= ‘1’; 

multiply = 1 
 
result_ready <= ‘0’; 
mult_busy <= ‘1’; 
sum <= (others => ‘0’); 
pb <= (others => ‘0’); 
prepare_pb <= ‘1’;

check_finish = 1 
 
if field = ‘1’ then 
     adder_a_in <= cc_ns; 
     adder_b_in <= cs_ns; 
else 
     result <= cs_ns; 
 

result_ready_int = 1 
field = ‘1’ 
 

result_ready_int = 1 
field = ‘0’ 
 
int_multiply <= ‘0’; 
check_finish <= ‘1’; 

int_multiply <= ‘0’; 
check_finish <= ‘1’; 

result_ready_int = 0 
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4.1.3 Processing Unit 

 

This is the Intmult.vhd, previously mentioned as the processing unit in 

chapter 3, refer to figure 3.1. The processing unit includes a dual field 

adder, two 4 to 1 multiplexers, local control logic, a counter, and a 

comparator. The bit shifts of p, b and p+b registers are done by simple 

signal naming, so the 2p, 2b and 2(p+b) values do not consume any 

registers. The term N is used to represent the word length of operands. 

The summary of the terms described in the previous chapters are shortly 

mentioned below for easy reference.  

 

Dual field adder: This adder in Fadualn.vhd is a standard N bit adder.  

Multiplexers: These are standard 4 to 1, N bit multiplexers in muxn.vhd. 

Local Control Logic: This is the LCL block in Selection.vhd. 
Counter: The counter is a simple counter that counts the processed bits of 

the multiplier. The counter can increment by 1 or 2 depending on the field. 

In GF(2n) mode, the counter increments by 2, while in GF(p) mode the 

counter increments by 1. 

Comparator: The comparator used in the processing unit is a simple 

comparator for the bit count operation. It compares the number of 

processed multiplier bits with the result of the modulus calculator block, 

stating the processing unit to end operation when the result is ready. 

 

4.2 Ethernet Controller Software 

 

The ethernet controller software is written in Ubicom Unity environment 

and compiled using Gnu tools. The software supports both dynamic host 

configuration protocol (DHCP) and static internet protocol (IP) address 

modes for configuration. 

 

The software is composed of 3 files.  
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 main.c , contains the initialization functions of the ethernet controller, 

 interface.h , contains the FPGA i/o functions, 

 interface.c , contains the ethernet interface code. The interface 

functions are listed in this file. 

 

4.2.1 Initialization of the IP2022 

 

Upon boot of the ethernet controller, the initialization function is called. This 

function configures the memory heap, initializes the timers, configures the 

ethernet memory pages and initializes the protocols. User datagram 

protocol (UDP) is used in this thesis for communication between the host 

computer and the circuit board. 

 

After the protocol initialization, the configuration is necessary. The internet 

protocol address, subnet mask and default gateway address can be 

changed remotely as well as a static ip address can be defined. 

 

Following the IP address configuration, the ethernet interface is initialized. 

When the ethernet is ready, the ethernet leds start blinking and the 

application initializes. The application initialization is finished by the 

configuration of the serial communication interface. 

4.2.2 Program Flow of the Ethernet Interface 

 

The program flow is event based. The two main events used are the 

ethernet receive event and the serial port receive event.  

 

Ethernet Receive Event: The ethernet receive event stores the received 

data packet to a temporary buffer and sends the buffer to the process data 

function. 
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Serial Port Receive Event: The serial port receive event stores the 

received values to a temporary buffer until the data count is the predefined 

value for a specific command. This enables the uart to pass the received 

buffer to the process data function as the ethernet receive event. 

 

4.2.3 Data Processing in the Ethernet Controller 

 
The process data function acts as an interface between the FPGA and the 

user interface application. The runtime configuration of the ethernet 

controller is also managed by this function.  All these operations are 

performed from either the uart or the ethernet. 

 

Multiply Operation: If the received packet begins with multiply command, 

the second byte contains the number of bytes per operand and the third 

byte contains the field of operation, 0 for GF(2n) and 1 for GF(p). 

 

Beginning from the fourth byte, the operands a, b, p and r2 follow. As the 

operand length is variable, the packet size is also variable. This is 

especially important in the serial mode of operation, using the uart receive 

event, as the word length can be of any size up to 1024 bits. The word 

length is stored in the memory of the ethernet controller for future use. 

 
The write FPGA function in interface.h enables the data to be written to 

FPGA registers. As the FPGA registers are shift registers, the operands 

are written in loops, thus clearing the address limitations. 

 

Following the load of FPGA registers with operand values, a write to the 

FPGA address 5 starts multiplication. 

 



Read Result Operation: After the multiplications are performed, the result 

is read from the FPGA. This is done by the user interface by sending a 

packet beginning with a read result command. 

 

Upon receive of a read result command, the ethernet controller reads 

FPGA registers for the final result and the immediate values. The term 

immediate values is used for a·r, b·r, c·r values and if the debug interface is 

enabled the internal multiplication values. These internal values are used 

for the visual display in the user interface application. These values are 

stored in a temporary buffer and finally transferred to the user interface.  

 

Configuration: The controller’s IP address, subnet mask and default 

gateway address can be changed in runtime. After the new values are set, 

a reboot is needed.  

 

 

Start 

Initialize Write to FPGA 

Begin multiplication 

Data 
Received Wait until 

muliplication is 
finished 

Read from FPGA 

Valid 
Data? 

Send result to  
user interface 

 

Figure 4.6 Program Flow of the Ethernet Controller 
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4.3 Multiplier User Interface 

 

The multiplier user interface is event based and developed in the Borland 

Builder environment. The user interface consists of two forms for visual 

display, a thread for uart receive functions, and serial port communication 

units. Figure 4.7 shows the program flow of the windows user interface. 

 

 

Start 
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Figure 4.7 Program Flow of the Windows User Interface 
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4.3.1 Preparation of the Packet 

 

When the multiply button is clicked, the button 1 click function is called. 

This function prepares and sends the packet to the ethernet controller. 

Serial port can be used in this process as well as the ethernet. This 

function converts the operands to 64 bit unsigned integers and prepares 

the ethernet packet according to the word length. Rest of the packet is 

described in the previous sections but a brief definition follows. 

 

The first byte of the packet contains the multiply command, followed by the 

word length and the field value. The field value is 0 for GF(2n) and 1 for 

GF(p). The operands a, b, p and r2 follow, beginning with the fourth byte. If 

there are no errors in the conversion process, such as operand overflow, 

the packet is transferred. 

 

4.3.2 Receiving Packets 

 

The serial port or the ethernet interface can be used for receiving packets. 

The received packets are processed according to their first byte. The first 

byte informs that the packet contains the result of a multiplication, or the 

packet is a configuration response packet. The configuration responses are 

displayed in the log as they are received. 

 

The multiplication result packet begins with a read result command. The 

initial operands are included in the packet as well as the immediate values 

and the final multiplication result. These values are then combined into 64 

bit unsigned integers for GF(p) mode of operation. If the multiplication field 

is GF(2n), these values are converted to polynomial notation as strings. 

Finally these values are displayed. 
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CHAPTER 5 
 

RESULTS 
 

 

In this chapter, the new Montgomery multiplier architecture is compared 

with the previous architectures. The comparisons are made in terms of 

silicon area, clock frequency and time required for a single MM operation. 

Also the analysis results of the new architecture for different word length 

implementations is shown in this chapter. 

 

The silicon area measurements are performed in terms of FPGA slices. 

Combinational circuits are represented by look up tables, while 

synchronous circuits are represented by flip flops. 

 

Clock frequency is an important aspect of comparisons. The longest path 

should be as short as possible for a high clock frequency of operation. 

Clock cycle count is the other important comparison perspective in this 

thesis. As proven in chapter 3, the clock cycle count of the new algorithm is 

half of the standard algorithms for GF(p) and quarter of the standard 

algorithms for GF(2n). This improvement makes the new algorithm the 

fastest Montgomery multiplication algorithm encountered in the literature by 

January 2006. 

 

The compared results are obtained after the synthesis stage and the 

implementation stage. The term synthesis result stands for the theoretical 

measurements of the tools, while the term implementation result means the 

real time operation performance.  
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5.1 Comparisons of Multiplier Architectures 

 

For a realistic comparison perspective, the standard Montgomery multiplier 

algorithms are also implemented for the same FPGAs. These are all 5 bit 

architectures, and they are compared to the 5 bit implementation of the 

new architecture. The 5 bit multiplier architectures are: 

 

A) Standard Montgomery multiplier for GF(p) (single bit per clock cycle) 

B) Standard Montgomery multiplier for GF(2n) (single bit per clock cycle) 

C) Standard unified field Montgomery multiplier (single bit per clock cycle) 

D) New Montgomery multiplier (single bit for GF(p), double bit for GF(2n)) 

 

Architecture D is the implementation of the new Montgomery multiplication 

algorithm described in chapter 3. 

 

The new algorithm also employs the precomputation block, thus halving 

the steps of the for loop in the standard MM algorithm.  

 

These comparisons are made for the multiplier cores with controllers only, 

as the i/o blocks add the same amount of area and delay for all 

architectures. For simplicity, the multiplier cores with controller blocks are 

called as multiplier cores. 

 

These standard Montgomery multipliers represented as architectures A,B 

and C perform the MM operation according to the standard MM algorithm 

in page 14. The new Montgomery multiplier represented as architecture D 

performs the MM algorithm in page 18. 

 

The multiplier cores are compared from silicon area, clock frequency and 

time required for a single MM operation perspectives. 
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5.1.1 Area Comparison 

 

The synthesis and implementation results of the four architectures are 

listed in table 5.1 and table 5.2. 

 

First difference between synthesis results and implementation results of 

the architectures A,B and C is the number of flip flops. The number of flip 

flops consumed is halved after implementation, because of the usage of 

input output buffer flip flops. This is normal as the implementation tools 

don’t take buffer flip flops into account, when calculating the area cost. 

 

Table 5.1 Multiplier Core Synthesis Results 

FPGA Type Spartan 2 Series Virtex 2 Series 

Architecture A B C D A B C D 

Slices 35 37 41 65 36 34 38 64 

Flip flops 46 46 46 58 46 45 46 58 

Tables 53 43 63 124 42 45 58 123 

 

 

Table 5.2 Multiplier Core Implementation Results 

FPGA Type Spartan 2 Series Virtex 2 Series 

Architecture A B C D A B C D 

Slices 32 25 35 69 25 26 32 67 

Flip flops 23 23 23 56 23 22 23 56 

Tables 53 42 62 129 41 45 57 129 

 

 

The number of flip flops stays constant throughout the first three designs, 

as the maximum operand width is five bits. However the number of flip 

flops is doubled in the new architecture. The increase in the number of flip 

flops is caused by the new registers needed to store p+b, the redundant 

partial carries cc and the redundant partial sums cs. 
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The number of look up tables, shows the amount of combinational logic 

used in the multiplier. Architecture B used least amount of combinational 

logic as it only xors the operands. A follows with the additional carry 

propagation logic. C uses more tables, as it contains not only the full adder, 

but also the multiplexing logic for both the xor gates and the adder. D 

consumes double the combinational logic in C, as it has the local control 

logic, the dual field adder and two new multiplexers. 

 

As a reminder, the term S2 FPGA represents Spartan 2 series FPGAs 

while the term V2 FPGA represents Virtex 2 series FPGAs. The slice count 

is roughly the same in the first three architectures, as each slice has two 

tables in a S2 FPGA. Even though C consumes more tables than A and B, 

total slice count increases only about 10 percent. D doubles the slice count 

because of the new logic for precomputation. 

 

The slice count differs about 20 percent between S2 series and V2 series 

implementations, although it remains constant in synthesis results. This is 

caused by the difference between S2 and V2 slice designs. The V2 slices 

employ 5 input tables and better routing, enabling the design to be 

implemented more efficiently. For the 5 bit wide adder, a S2 needs 2 tables 

for each table in a V2. The number of tables is 10 percent lower in the V2  

implementation of A when compared to B. 

 

5.1.2 Clock Frequency Comparison  

 

Performance comparison of multiplier cores is the most important aspect of 

this thesis, as in all cryptographic applications. Clock frequency is the first 

method of comparing the multiplier performance. The longest path 

determines the maximum clock frequency. The results are measured in 

megahertz (mhz) for frequency and nanosecond (ns) for period. 
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The longest path consists of two combinational parts. First part is the path 

where the decision is made if the add/xor operation is to be performed on 

the partial sum. Second part is the path where addition or xor’ing is 

performed. These two parts add up to generate the longest path of the 

architectures A,B and C. The longest path of the new architecture D is the 

longest path of the processing unit described in chapter 3. The maximum 

clock frequency results are listed in table 5.3. 

 

 

Table 5.3 Multiplier Core Clock Frequency Results 

FPGA Type Spartan 2 Series Virtex 2 Series 

Architecture A B C D A B C D 

Synthesis 119 116 96 79 206 256 207 171 

Implementation 132 129 102 105 175 251 173 193 

 

 

 

The clock frequency increase from C to D in the implementation results 

shows that the new architecture runs at faster clock frequencies when 

compared to previous architectures. This increase in clock frequency 

shows the suitability of the new architecture for FPGA designs. The clock 

periods for the multiplier architectures follow. 

 

 

Table 5.4 Multiplier Core Clock Period Results 

FPGA Type Spartan 2 Series Virtex 2 Series 

Architecture A B C D A B C D 

Synthesis 8.3 8.6 10.4 12.5 4.8 3.8 4.8 5.8 

Implementation 7.5 7.7 9.7 9.5 5.7 3.9 5.7 5.1 
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Table 5.4 shows that, for spartan series FPGAs, clock period decreases 

after implementation when compared to synthesis stage, while for virtex 

series FPGAs clock period increases. This change reflects the additional 

effects of routing delays inside the FPGAs, and implementation results 

should be treated as real values for comparison. As Virtex series FPGAs 

are faster, the routing delays become significant on signal timing after 

implementation. 

5.1.3 Multiplication Period Comparison 

 

The best method for comparing different multiplier architectures is the time 

needed to perform a single multiplication, as different organizations of 

multipliers can be made for continuous multiplications. In this thesis the 

four architectures are compared from the period each architecture requires 

for a single MM operation.  

 

The architectures A,B and C require 2 clock cycles for processing each bit 

of the multiplier. The clock cycle count is the same for both fields in the first 

three architectures. 

 

The new architecture D, requires 1 clock cycle for processing every bit of 

the multiplier in GF(p). When operating in GF(2n) mode, the new 

architecture processes 2 bits of the multiplier in every clock cycle. 

 

The list of the time required for the multiplication of 4 bit operands for all 

architectures follow. The operand width is kept constant as 4 bits, to 

maintain a better comparison perspective between GF(p) and GF(2n). The 

operating clock frequencies in the comparison of table 5.5 are the 

maximum operating frequencies of each architecture. The results in table 

5.5 are simulation results, as real time testing of each multiplier on the 

circuit board is performed at 50 Mhz.  
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Table 5.5 The Periods of a Single MM Operation in Nanoseconds 

GF(p)  mode A B C D 

Spartan 2 Series 60 62 78 38 

Virtex 2 Series 46 32 46 21 

GF(2n) mode     

Spartan 2 Series 60 62 78 19 

Virtex 2 Series 46 32 46 11 

 

 

As shown in table 5.5, the new architecture is the most efficient 

architecture. The time required for multiplication is the half for GF(p), and 

the quarter for GF(2n), when compared to standard multiplier architectures. 

 

The new MM algorithm and the implementation in this thesis perform 

multiplication in both fields, and faster than the specific field 

implementations of the standard MM algorithm. 

5.2 Analysis of the New Architecture 

 

In this section, the new architecture is implemented for different word 

lengths. The analysis are done up to 48 bits for spartan series FPGAs, as 

the capacity of spartan series are fully used for a word length of 48 bits. 

For virtex series FPGAs, the multiplier is implemented for up to 1024 bits. 

 

As previously stated an RSA implementation of 1024 bits is equal to an 

elliptic curve cryptosystem of 160 bits. Table 5.6 shows the effect of word 

length on multiplier clock frequency and silicon area for S2 FPGAs. The 

similar table for V2 FPGAs is shown in table 5.7. 

 

Figures 5.1 and 5.2 show that the silicon area is linearly proportional to the 

word length of the multiplier, and clock frequency is not effected much for 



spartan series FPGAs.  Figures 5.3 and 5.4 show the same results for 

virtex series FPGAs. 

 

The results show that the new architecture is efficient up to 160 bits, which 

means this implementation can be selected in elliptic curve cryptosystems. 

Also figure 5.1 and figure 5.3 show that the area of the core becomes less 

significant on the total multiplier area, as the operand width increases. 

 

 

Table 5.6 Effect of Word Length in Spartan FPGAs 

Word 
Length  

Clock 
Freq 

Slice 
count 

Flip flop 
count 

Table 
count 

8 78 245 229 361 

16 78 387 404 629 

24 75 601 623 939 

32 68 784 807 1236 

40 67 967 1009 1523 

48 64 1177 1198 1826 
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Figure 5.1 Area versus Word Length in Spartan FPGAs 
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Figure 5.2 Clock Frequency versus Word Length in Spartan FPGAs 

 

 

Table 5.7 Effect of Word Length in Virtex FPGAs 

Word 
Length  

Clock 
Freq 

Slice 
count 

Flip flop 
count 

Table 
count 

8 163 256 222 386 

16 158 391 400 643 

32 153 771 771 1218 

48 142 1055 1112 1757 

64 122 1375 1465 2293 

128 93 2833 2872 4440 

256 52 5118 5694 8707 

512 31 11227 11380 17312 

1024 17 23112 22709 35084 
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Figure 5.3 Area versus Word Length in Virtex FPGAs 
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Figure 5.4 Clock Frequency versus Word Length in Virtex FPGAs 
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CHAPTER 6 
 

CONCLUSIONS 
 

 

In this thesis, the Montgomery modular multiplication algorithm [1] is 

studied and the new multiplication algorithm [2] is tested. The standard 

Montgomery modular multiplication algorithms are also implemented in the 

same FPGA for obtaining a realistic comparison perspective.  

 

Montgomery multiplication algorithm is a very efficient way of modular 

multiplication. The new algorithm preserves the speedup of the standard 

Montgomery multiplication algorithm, while combining the two steps of the 

loop into a single step for doubling the multiplication speed. The algorithm 

is implemented in a unified and dual–radix architecture. The new unified 

dual–radix multiplier architecture operates in prime number fields and 

binary extension fields. The new architecture includes a precomputation 

block, thus decreasing the longest path delay significantly. The study of the 

precomputation block in terms of silicon area concludes that the overall 

impact is insignificant for cryptographic applications.  

 

The area and speed characteristics of the new architecture (D) is also 

investigated and its performance in terms of silicon area and multiplication 

time is compared against standard Montgomery multiplier architectures (A, 

B and C). The results show that the new architecture doubles the silicon 

area for small operands while enabling faster multiplication. For large 

operands in cryptographic applications, the increase in silicon area is 

insignificant. 
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The operand length is implemented from 8 bits to 1024 bits. It can be 

stated that the new architecture operates at about 60 Mhz for 48 bits word 

length for Spartan series FPGAs. For Virtex series FPGAs, the multiplier 

operates at about 100 Mhz for up to 128 bits word length. For a word 

length of 1024 bits, the clock frequency drops to 17 Mhz. 

 

Multiplication period changes in GF(2n) mode of operation when compared 

to GF(p) mode. The clock cycle count is halved in GF(2n) mode as two 

multiplier bits are processed in every clock cycle. As a conclusion, the new 

architecture is two times faster in GF(p) mode and four times faster in 

GF(2n) mode, when compared to standard Montgomery multiplication 

algorithms. 

 

Conclusions of this study show that the new algorithm can be extended to 

process more multiplier bits in each clock cycle. As the proposed unified 

dual–radix architecture is a radix(2,4) architecture, the precomputation 

block enables the design of increased radices such as radix(4,8) and 

radix(8,16). The mathematical proof of the control logic for these 

architectures can be an interesting area of study. 
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APPENDIX A  

 

CIRCUIT BOARD DIAGRAMS 
 

 

The term circuit element is used to represent the passive elements as 

resistors, capacitors…etc.  

 

 Mic29502 Voltage Regulators: These regulators are used to supply 

required voltages. They convert input voltage to 5v initially, and then 

convert 5v to 3.3v and 2.5v. These linear voltage regulators are 

adjustable and customized for the corresponding voltages, as 

shown in figure A.1. 

 

 

 

Figure A.1 Supply Circuitry 
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 Xc2s200 FPGA: This is the integrated circuit containing the 

multiplier core. This unit is re–programmed from the xc18v02 eprom 

on startup. The FPGA code is previously described in chapter 4. 

The FPGA is shown in figure A.2. This unit requires many circuit 

elements as can be seen in figure A.8 FPGA bypass and decoupling 

block. 

 

Figure A.2 XC2S200 FPGA 
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 Ip2022 Ethernet Controller: This unit supplies the ethernet interface 

to the multiplier core. The controller boots from internal memory on 

startup. The ethernet interface code is described in section 5.2. The 

controller also requires a few circuit elements as seen in figure A.3. 

 

 

Figure A.3 IP2022 Ethernet Processor 

 

 

 Max213 Uart Buffer: This buffer enables the communication of the 

ethernet controller and the standard pc serial port. The uart buffer 

requires a few circuit elements as can be seen in figure A.4. 

 

 

Figure A.4 Uart Buffer 
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 Max708 Supervisor, DS1075 Clock Generator: These units generate 

the necessary reset signal for the board and supply the clock signal 

to the FPGA correspondingly, as can be seen in figure A.5. 

 

 

 

Figure A.5 Clock & Reset Circuitry 

 

 Ip2022 Programming Interface: These circuit elements enable the 

programming of the ethernet controller, as shown in figure A.6. 

 

 

Figure A.6 IP2022 Programming Circuitry 
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 FPGA Programming Interface: These circuit elements enable the 

programming of the FPGA, as shown in figure A.7. 

 

 

Figure A.7 FPGA Programming Circuitry 
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 Capacitors: These circuit elements are the bypass capacitors, to 

enable the signal integrity through the board. The bypass and 

decoupling capacitors are shown in figure A.8. 

 

 

Figure A.8 Capacitors 
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APPENDIX B  

 

MULTIPLIER BOARD 
 
 
 
The printed circuit board used in the implementation of this thesis, is 

presented in figure B.1. 

 

 

 

     

Figure B.1 Printed Circuit Board 
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APPENDIX C  

 

USER INTERFACE FORMS 
 

 

Form 1 is the form, where the user enters the operand values in the user 

interface application. There is a multiplication log, in which the 

multiplications are displayed visually. Word length can be selected as well 

as the serial port baud rate and the remote IP address.  

 

 
Figure C.1 Multiplication User Interface 

 

The configuration window of the user interface is presented in figure C.2. 

 

 
Figure C.2 Configuration User Interface 
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