

NEW MONTGOMERY MODULAR MULTIPLIER ARCHITECTURE

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MEHMET EMRE ÇİFTÇİBAŞI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

JANUARY 2006

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan Özgen

 Director

I certify that this thesis satisfies all the requirements as a thesis for the

degree of Master of Science.

 Prof. Dr. İsmet Erkmen

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is

fully adequate, in scope and quality, as a thesis for the degree of Master of

Science.

___________________________ __________________________

 Prof. Dr. Hasan Güran Assoc. Prof. Dr. Melek. D. Yücel

 Co – Supervisor Supervisor

Examining Committee Members

Prof. Dr. Mete Severcan (METU, EE) _________________

Assoc. Prof. Dr. Melek D. Yücel (METU, EE) _________________

Prof. Dr. Hasan Güran (METU, EE) _________________

Assist. Prof. Dr. Özgür B. Akan (METU, EE) _________________

M.Sc. Hamdi Erkan (ASELSAN) _________________

 iii

I hereby declare that all information in this document has been
obtained and presented in accordance with academic rules and
ethical conduct. I also declare that, as required by these rules and
conduct, I have fully cited and referenced all material and results that
are not original to this work.

 Mehmet Emre ÇİFTÇİBAŞI

 iv

ABSTRACT

NEW MONTGOMERY MODULAR MULTIPLIER ARCHITECTURE

Çiftçibaşı, Mehmet Emre

M.Sc., Department of Electrical and Electronics Engineering

 Supervisor : Assoc. Prof. Dr. Melek D. Yücel

Co–Supervisor : Prof. Dr. Hasan Güran

January 2006, 77 pages

This thesis is the real time implementation of the new, unified field, dual–

radix Montgomery modular multiplier architecture presented by Savaş et al,

for performance comparison with standard Montgomery multiplication

algorithms. The unified field architecture operates in both GF(p) and

GF(2n). The dual radix capability enables processing of two bits of the

multiplier in every clock cycle in GF(2n) mode, while one bit of the multiplier

is processed in GF(p) mode.

The new architecture is implemented in a Xilinx FPGA on the custom

printed circuit board. The windows user interface is developed in Borland

Builder environment and the ethernet interface is implemented by Ubicom

IP2022 controller. The algorithms are compared from operating clock

frequency, silicon area cost and multiplication time perspectives. The new

architecture multiplies two times faster in GF(p) and four times faster in

GF(2n), compared to the previous architectures as expected. The operand

length is increased from 8 bits to 1024 bits, with the compromise of

decreasing the operating clock frequency from 150 Mhz down to 15 Mhz.

Keywords: Montgomery Multiplier, Modular Multiplier, FPGA

 v

ÖZ

YENİ MONTGOMERY MODÜLER ÇARPMA YAPISI

Çiftçibaşı, Mehmet Emre

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü

 Tez Yöneticisi : Doç. Dr. Melek D. Yücel

Ortak Tez Yöneticisi : Prof. Dr. Hasan Güran

Ocak 2006, 77 sayfa

Bu tezde Savaş ve diğer yazarlar tarafından sunulan birleşik cisimler

üzerinde, çoklu seçmeli ikil işleyen yeni bir Montgomery modüler çarpma

mimarisi, standart Montgomery çarpma algoritmaları ile karşılaştırılmak

üzere gerçeklenmiştir. Birleşik cisimli çarpma yapısı GF(p) ve GF(2n) sonlu

cisimlerinde çalışabilmektedir. Çoklu seçmeli ikil işleme özelliği her saat

aralığında GF(2n) modunda çarpanın iki ikilinin işlenebilmesine olanak

tanırken, GF(p) modunda bir ikil işlenmektedir.

Yeni algoritma yapısı, özel üretilen baskı devre kartındaki Xilinx FPGA

üzerine uygulanmıştır. Windows kullanıcı arayüzü Borland Builder

ortamında geliştirilmiş, yerel ağ arayüzü ise Ubicom IP2022 işlemcisi ile

gerçeklenmiştir. Algoritmalar, çalışma saat frekansı, harcanan silikon alanı

ve çarpma süresi açılarından karşılaştırılmıştır. Yeni yapı beklendiği gibi

önceki yapılarla karşılaştırıldığında GF(p) modunda iki kat, GF(2n)

modunda ise dört kat daha hızlı çarpmaktadır. Kelime boyu 8 ikilden 1024

ikile kadar yükseltilmiş, buna karşın çalışma saat frekansı 150 Mhz’den

15 Mhz’e düşmüştür.

Anahtar Kelimeler: Montgomery Çarpma, Modüler Çarpma, FPGA

 vi

ACKNOWLEDGEMENTS

For their love, my mother Reyhan Çiftçibaşı, my father Turhan Çiftçibaşı

and my grandmother Cavide Tanaltay are to be remembered. Without their

love, I would be unable to finish this work.

My thesis supervisors Melek D. Yücel and Hasan Güran are to be

mentioned for the patience and support through my work.

I would also like to thank Aselsan A.Ş for supporting me with proper

working conditions during my thesis work.

 vii

TABLE OF CONTENTS

PLAGIARISM ... iii

ABSTRACT .. iv

ÖZ ... v

ACKNOWLEDGEMENTS .. vi

TABLE OF CONTENTS .. vii

LIST OF FIGURES... ix

LIST OF TABLES.. x

LIST OF ABBREVIATIONS.. xi

CHAPTERS

1 - INTRODUCTION..1

1.1 Aim of the Thesis ..1

1.2 Cryptography Applications ..2

1.3 Definition of Montgomery Multiplication ..3

1.4 History of Montgomery Multiplication ..4

1.5 Field Programmable Gate Arrays..6

2 - MODULAR MULTIPLICATION...8

2.1 Application of Field Theory to Modular Multiplication8

2.2 Types of Cryptographic Algorithms Using Modular Multipliers9

2.3 Montgomery Multiplication Algorithm ..11

3 - NEW MULTIPLICATION ALGORITHM..17

3.1 Theory of New Montgomery Multiplication Algorithm17

3.1.1 New Algorithm for Prime Fields ...17

3.1.2 New Algorithm for Binary Extension Fields..............................20

3.2 Precomputation in New Multiplication Algorithm21

3.3 New Processing Unit...22

3.4 Dual Field Adder ...24

3.5 Local Control Logic of New Processing Unit25

3.5.1 Derivation of Local Control Logic...27

 viii

4 - HARDWARE AND SOFTWARE OF THE MULTIPLIER30

4.1 Montgomery Multiplier Blocks in FPGA.......................................31

4.1.1 Main Unit ...31

4.1.2 Multiplier Core ...36

4.1.3 Processing Unit ...38

4.2 Ethernet Controller Software...38

4.2.1 Initialization of the IP2022 ...39

4.2.2 Program Flow of the Ethernet Interface...................................39

4.2.3 Data Processing in the Ethernet Controller40

4.3 Multiplier User Interface ..42

4.3.1 Preparation of the Packet ..43

4.3.2 Receiving Packets...43

5 - RESULTS ..44

5.1 Comparisons of Multiplier Architectures......................................45

5.1.1 Area Comparison ..46

5.1.2 Clock Frequency Comparison..47

5.1.3 Multiplication Period Comparison ..49

5.2 Analysis of the New Architecture ..50

6 - CONCLUSIONS...54

REFERENCES..56

APPENDICES

A –CIRCUIT BOARD DIAGRAMS...59

B – MULTIPLIER BOARD...65

C – USER INTERFACE FORMS ..66

 ix

LIST OF FIGURES

Figure 2.1 Montgomery Modular Multiplication....................................... 13

Figure 3.1 Processing Unit ... 22

Figure 3.2 Dual Field Adder ... 25

Figure 3.3 Local Control Logic ... 26

Figure 4.1 Hardware Block Diagram .. 30

Figure 4.2 Hardware File Tree of the Multiplier 31

Figure 4.3 Multiplier I/O State Machine .. 32

Figure 4.4 Multiplier Stage State Machine.. 35

Figure 4.5 Multiplier Core State Machine ... 37

Figure 4.6 Program Flow of the Ethernet Controller 41

Figure 4.7 Program Flow of the Windows User Interface 42

Figure 5.1 Area versus Word Length in Spartan FPGAs........................ 51

Figure 5.2 Clock Frequency versus Word Length in Spartan FPGAs 52

Figure 5.3 Area versus Word Length in Virtex FPGAs 53

Figure 5.4 Clock Frequency versus Word Length in Virtex FPGAs........ 53

Figure A.1 Supply Circuitry... 59

Figure A.2 XC2S200 FPGA.. 60

Figure A.3 IP2022 Ethernet Processor... 61

Figure A.4 Uart Buffer .. 61

Figure A.5 Clock & Reset Circuitry ... 62

Figure A.6 IP2022 Programming Circuitry.. 62

Figure A.7 FPGA Programming Circuitry ... 63

Figure A.8 Capacitors... 64

Figure B.1 Printed Circuit Board... 65

Figure C.1 Multiplication User Interface ... 66

Figure C.2 Configuration User Interface... 66

 x

LIST OF TABLES

Table 5.1 Multiplier Core Synthesis Results…………………………….... 46

Table 5.2 Multiplier Core Implementation Results……………………….. 46

Table 5.3 Multiplier Core Clock Frequency Results……………………… 48

Table 5.4 Multiplier Core Clock Period Results………………………...... 48

Table 5.5 The Periods of a Single MM Operation in Nanoseconds........ 50

Table 5.6 Effect of Word Length in Spartan FPGAs……………………... 51

Table 5.7 Effect of Word Length in Virtex FPGAs………………….......... 52

 xi

LIST OF ABBREVIATIONS

ASSP : Application Specific Standard Product

AES : Advanced Encryption Standard

DES : Data Encryption Standard

DFA : Dual Field Adder

ECC : Elliptic Curve Cryptosystem

FSEL : Field Select

FPGA : Field Programmable Gate Array

GCD : Greatest Common Divisor

GF(p) : Galois Field with p Elements

IC : Integrated Circuit

IP : Internet Protocol

LSB : Least Significant Bit

LCL : Local Control Logic

MUX : Multiplexer

PCB : Printed Circuit Board

PROM : Programmable Read Only Memory

PU : Processing Unit

RSA : Public key algorithm proposed by Rivest, Shamir, Adleman

VHDL : Very High Speed Hardware Description Language

 1

CHAPTER 1

INTRODUCTION

1.1 Aim of the Thesis

This thesis is the implementation, verification and testing of a Montgomery

modular multiplication algorithm [1] for the new architecture presented in

[2]. This architecture proposes two improvements on the well–known

Montgomery multiplication algorithm and its previous implementations.

First improvement proposed in [2] is a theoretical modification to the

Montgomery multiplication algorithm [1], which decreases the multiplication

period dramatically. A more detailed proof of the algorithm given in [2],

which will be referred as the “new algorithm” throughout this thesis, is given

in section 3.5.1. Second improvement is a new design perspective applied

to the hardware dataflow of the algorithm, describing the computational

advantage of new cryptosystems such as elliptic curve cryptosystems. This

new design also decreases the time spent during the multiplication for

standard cryptosystems like RSA.

In the framework of this thesis, new unified dual–radix Montgomery

multiplication algorithm is implemented for operand sizes from 8 bits to

1024 bits. The aim here is to compare the new algorithm from clock

frequency, silicon area and clock cycle count points of view. As the FPGA

(field programmable gate array) in the custom printed circuit board has

limited resources, the modular multiplier on the circuit board has maximum

operand width of 48 bits. For better understanding of the cost of operand

 2

length in terms of clock frequency and silicon area, the multiplier design

has been verified and compared for up to 1024 bits for larger FPGAs.

The FPGA code is written in very high speed hardware description

language (VHDL) and then synthesized and implemented using Xilinx

tools. The ethernet interface code is written in C language using Ubicom

tools. The user interface is written in C++ language using Borland tools.

Preliminaries of this thesis are introduced in chapter 1. General

introduction to modular multiplication algorithms is given in chapter 2. The

mathematical theory underlying the new Montgomery multiplication

algorithm and the details of the new Montgomery multiplier core are

explained in chapter 3. The hardware design details of the new

Montgomery multiplier, with the ethernet interface application and the user

interface are briefly described in chapter 4. The obtained results are given

in chapter 5 and conclusions are discussed in chapter 6.

1.2 Cryptography Applications

Cryptography is the art of designing and breaking ciphers. Traditionally,

secret–key cryptography was used by the military and diplomatic services

for providing secure communication, in which two communicating parties

share a secret key that should be distributed in some secure way.

Development of mobile internet devices increased the need for

cryptographic techniques for privacy and authentication of digital data. The

invention of public–key cryptography, which assigns two keys (one public

and one private) to each user, provided techniques for key distribution as

well as signing and authenticating digital data.

 3

Because of its complexity, public–key cryptography is mainly used for

digital signatures and the management of secret keys between two points.

The encryption of bulk data is mainly established with secret–key

cryptosystems, whereas the secret keys to be shared for a pair of users,

are distributed by public–key cryptosystems. For a standard public–key

cryptosystem to be considered as “secure”, the key length should be about

thousand bits or more.

In public–key cryptography, input and output numbers are selected from

finite element fields. All cryptographic operations are made in these finite

fields, which map to modular multiplication and modular exponentiations in

the digital world. Increasing demand for modular multiplication requires fast

modular multiplication algorithms such as Montgomery multiplication, which

will be described thoroughly in this thesis.

1.3 Definition of Montgomery Multiplication

In [1], Montgomery proposed an algorithm for modular multiplication. This

new algorithm, called Montgomery Multiplication Algorithm, has the

advantage of replacing division operations by bit shift operations. If the

least significant bits to be shifted out are not zero, Montgomery’s algorithm

adds multiples of modulus to clear these bits before shifting them out.

In regular modular multiplication, after all bits of the multiplicand are

processed, modulus is repeatedly subtracted from the result unless the

result is less than the modulus. In Montgomery multiplication, bits are

shifted out as each bit of the multiplicand is processed, leaving no need for

the subtractions.

 4

In this thesis Montgomery multiplication is implemented in a unified and

dual–radix architecture. The definitions of the terms unified and dual–radix

are as follows.

Unified Architecture: An architecture is said to be unified when it is able

to work with operands in both prime and binary extension fields using the

same hardware. In [3], it has been shown that a unified multiplier is feasible

with only minor modifications to the multiplier for GF(p) in [4].

Dual–Radix Architecture: A unified multiplier is said to be dual–radix if it

operates with a larger radix value for GF(2n) than the radix used for GF(p).

The term, architecture, is used to represent the hardware of the

Montgomery multiplier.

A radix–2n multiplier processes n bits of the multiplicand in every clock

cycle. A radix (2,4) multiplier stands for a multiplier working in radix–2 for

GF(p) and working in radix–4 for GF(2n). The new architecture in this

thesis is a radix (2,4) multiplier architecture.

Dual radix multiplier design has critical time–area considerations, as the

cost of extra radix should not effect the signal propagation time much while

keeping the silicon area as low as possible.

1.4 History of Montgomery Multiplication

There exist many implementations of high–radix conventional multipliers

[5]; however, there are few implementations of high–radix modular

multipliers in the literature. An example for the high–radix Montgomery

multiplication algorithm is given in [6].

 5

A radix–4 implementation of modular multiplication using Brickel's

algorithm [7] has been proposed in [8]. The multiplication is performed

without carry propagation.

A similar algorithm is presented in [9]. The paper presents two possible

architectures, further explained in [6].

The Brickel's algorithm shifts out the most significant bits of the partial

product, after they have been cleared. It has been noted in [9], as shifting

out the least significant bits of the partial product, as it is done in the

Montgomery's algorithm, has advantages (simplifying the longest path)

over the former approach and thus Montgomery’s method is the more

attractive one. Both approaches are compared in [6] with considerations for

high–radix implementations.

The implementation of Montgomery multiplication involves making the

tradeoff between chip area and computational speed [10]. Two main points

to be considered are that with the increasing radix, the multiplier operand is

processed in less clock cycles, however the longest path increases. Thus,

the overall effect on the computational time is a decision to be made for

multiplier core design.

Simplifying the longest path is discussed in [11]. However, with the new

architecture described in this thesis, the longest path has been simplified

and clock cycle count is halved, with the re–design of the processing unit.

A single chip, 1024–bit RSA implementation is given in [8]. The

multiplication part is implemented as an array multiplier. It is noted that this

approach for multiplication requires multiple clock cycles to complete.

Limiting the size of the computing unit has certain advantages as shown in

[5]. Also a cryptographic processor design is demonstrated in [12].

 6

Using reconfigurable hardware provides the means of solving problems for

both high– precision and variable–precision computation, as [13, 14, 15] .

A unified multiplier architecture for finite fields GF(p) and GF(2n) is

presented in [16]. It is shown that a Montgomery multiplier can operate in

both fields without significant increase in the silicon area.

1.5 Field Programmable Gate Arrays

Field programmable gate arrays (FPGAs) have a regular, flexible,

programmable architecture of configurable logic blocks, surrounded by a

perimeter of programmable input/output blocks. There may be other

configurable blocks such as delay–locked loops and synchronous block

RAMs. These functional elements are interconnected by a powerful

hierarchy of versatile routing channels.

The FPGA resources are slices, that contain programmable look up tables

and flip flops. tables are used for combinational logic and flip flops are used

for sequential logic.

The power of FPGAs come from the fact that they are in system

programmable, meaning that they can be reconfigured within a few

seconds while they are operational.

Most FPGAs are customized by loading configuration data into internal

static memory cells. Unlimited reprogramming cycles are possible with this

approach. Stored values in these cells determine the logic functions and

interconnections implemented in the FPGAs. Configuration data can be

read from an external serial programmable read only memory (PROM).

 7

Cryptographic applications require high throughput, requiring powerful

processors. Even though application specific standard products (ASSPs)

such as the security processors from integrated circuit (IC) vendors offer

high performance for standard security applications, the requirements

might be different. The data rate might be insufficient or the IC might not be

suitable for the specific packaging.

Under these circumstances programmable logic becomes an alternative. A

new modular multiplier core enables the required high–speed design to be

accomplished in a very short time frame at a very low cost.

In this thesis, the new Montgomery multiplier core is implemented in a

Xilinx Spartan 2 series FPGA. The dataflow of FPGA is supported by a

Ubicom IP2022 ethernet controller. Even though the newer FPGAs have

built in ethernet interfaces, this design has turned out to be very effective.

The ethernet controller is not mentioned much in this thesis, as it is only

used to supply ethernet connectivity to the FPGA.

 8

CHAPTER 2

MODULAR MULTIPLICATION

In this chapter the mathematical background of modular multiplication is

given, applications using modular multiplication are described and

Montgomery multiplication algorithm is described.

2.1 Application of Field Theory to Modular Multiplication

An algebraic field is, by definition, a set of elements that is closed under

the ordinary arithmetical operations of addition, subtraction, multiplication,

and division. The set of rational numbers is a field, whereas the integers

are not a field, because the integers are not closed under the operation of

division as the result of dividing one integer by another is not necessarily

an integer. It is also possible to construct other fields by means of

extending smaller fields [16], [17], [18].

In cryptographic applications, finite fields, especially prime number fields

GF(p) and binary extension fields GF(2n), have common use as they are

easily applicable to digital systems. Some elliptic curves on these fields

have been strongly suggested by researchers in cryptography institutes.

A finite prime number field is constructed from the integers {0, 1, 2, ..., p–1}

up to an n–bit prime number p. In GF(p), addition and multiplication

operations are defined as modulo p additions and modulo p multiplications.

 9

A binary extension field GF(2n) is constructed from binary polynomials of

degree less than n. In this thesis, polynomial basis representation is used

to represent elements of GF(2n), as it is very suitable for the new multiplier

architecture. Similar to the prime modulus p in prime number fields, a

binary prime polynomial of degree n is used to construct GF(2n).

Given the prime binary polynomial

p(x) = xn+ pn–1xn–1+ . . . + p1x + p0

of degree n. Given p(x), all the binary polynomials a(x) of degree less than

n are elements of GF(2n).

GF(2n) = {0, 1, x, x+1, x2, x2+x, x2+1, x2+x+1, … , xn–1, … }

In GF(2n), addition is polynomial addition modulo the prime polynomial p(x),

meaning a bitwise xor’ing of the corresponding coefficients of the input

polynomials. As it is a simple polynomial addition in modulo 2, there is no

carry propagation and the resultant polynomial is at most of degree (n–1).

Multiplication in GF(2n) is also polynomial multiplication modulo p(x).

Similar to that in GF(p), multiplication is performed in two steps, polynomial

multiplication followed by a polynomial division of the intermediate result by

the prime polynomial p(x). Generally these two steps are interleaved.

2.2 Types of Cryptographic Algorithms Using Modular

Multipliers

Cryptographic algorithms use modular multiplication intensively. Most

common algorithms are the RSA Algorithm, named after its inventors

Rivest, Shamir and Adleman, and the newly emerging elliptic curve

cryptosystems (ECC) described in [16].

 10

RSA Algorithm

As all public–key algorithms, the RSA algorithm is utilized in applications

where the data to be encrypted is short, such as the private keys of a bulk

data transfer or digital signatures [13]. The key size to be used, as it is

generally about thousand bits or more. The throughput of RSA is much

slower than secret–key algorithms such as DES (Data Encryption

Standard) or AES (Advanced Encryption Standard). In hybrid applications

RSA is usually paired with a secret key algorithm for bulk data transfer, as

the other public key methods.

The RSA algorithm uses modular exponentiation for obtaining and verifying

digital signatures. The computations are performed using exponentiation

algorithms. Modular exponentiation requires implementation of the basic

modular arithmetic operations: addition, subtraction, and multiplication.

As mentioned here, modulus must be preferably 1024 bits or more, which

requires fast modular multiplications, and very fast multiplications per bit, if

made in a bit serial form. There are many methods of calculating the

modular exponent, including Montgomery’s method which is very efficient

for modular exponentiations.

Elliptic Curve Cryptosystems

The use of elliptic curve cryptosystems is an increasing trend in application

development. There are many issues to consider for making a choice

between an application based on an elliptic curve cryptosystem and one

based on RSA. The important point here is that an elliptic curve

cryptosystem over 160 bits offers the same security as 1024 bit RSA.

Elliptic curves over GF(2n) are more popular due to the efficient algorithms

for doing arithmetic in GF(2n). Elliptic curve cryptosystems based on

 11

discrete logarithms seem to provide similar amount of security to that of

RSA, but with relatively shorter key sizes.

The problem of discrete logarithms over a prime field in ECC and the

problem of integer factorization in RSA appear to be of roughly the same

difficulty. Techniques used to solve one problem can be adapted to tackle

the other. There are elliptic curve analogs to RSA but it turns out that these

are chiefly of academic interest since they offer essentially no practical

advantages over RSA. This is primarily the case because elliptic curve

variants of RSA actually rely for their security on the same underlying

problem as RSA, namely the problem of integer factorization [16].

An elliptic curve addition is performed by using a few finite field operations.

Implementation of elliptic curve addition operation requires implementation

of four basic finite field operations: addition, subtraction, multiplication and

inversion. In elliptic curve arithmetic, computations are performed using

exponentiation algorithms.

2.3 Montgomery Multiplication Algorithm

Modular multiplication (Xm) of two integers a and b, simply performs

Xm (a, b) = a · b (mod p)

Instead of computing a · b, Montgomery multiplication (MM) computes

MM (a, b) = a · b · r –1 (mod p)

where r is a special constant. As mentioned in [17] and [18], this is similar

to Montgomery’s method in [1]. If p is an n–bit number, the selection of

constant r = 2n mod p for GF(p) and r(x) = xn mod p(x) for GF(2n) mode of

operation, turns out to be very useful in obtaining fast implementations.

Thus the coınstant value r is represented by the integer r mod p, or the

polynomial r(x) mod p(x). For GF(p) mode of operation, r2 mod p value is an

input from the user interface, while for GF(2n) mode of operation, the

coefficients of r2(x) mod p(x) are input from the user interface.

The Montgomery multiplication method requires r and p to be relatively

prime. This can be achieved by taking odd numbers for p, while r is chosen

as a power of 2. Either in GF(p) and GF(2n), the least significant bit (LSB)

of the modulus is always 1. So GCD (p,r) = 1, since the modulus p is a

prime number, or a prime polynomial.

As can be seen, the Montgomery multiplication algorithm brings an r –1 to

the result. Because of this, the algorithm is not directly applicable to input

operands. From the definition of Montgomery multiplication in [1], all

elements need to be transformed to Montgomery residue field.

Montgomery residue field is used to represent the r–multiplied values of the

operands, as a·r and b·r. In computations of this thesis, the operands a and

b are prime number field elements or binary extension field elements.

Therefore certain transformation operations must be applied to both of the

operands a and b before the multiplication and to the intermediate result c

in order to obtain the final result c.

To transform an input operand to Montgomery residue field, a multiplication

by a constant value is required. This constant value is r2 mod p, where r is

selected as 2n or xn as stated previously. The numbers in the Montgomery

residue field are represented as a ,b and c .

To multiply two numbers from the integer field, four Montgomery

multiplications are needed. First a and b are transformed to their images in

the Montgomery residue field. Then multiplication is performed in the

 12

Montgomery residue field, before multiplying the final result by 1, to

transform the result c back to the initial field.

The four step Montgomery multiplication operation is defined as:

a = MM (a, r2) = a · r2 · r –1 (mod p) = a · r (mod p)

b = MM (b, r2) = b · r2 · r –1 (mod p) = b · r (mod p)

c = MM (a ,b) = a · r · b · r · r –1 (mod p)= a · b · r (mod p)

c = MM (c , 1) = a · b · r · r –1 (mod p) = a · b (mod p)

After both numbers are transformed to Montgomery residue field, the

multiplications are performed as many as needed, enabling the MM

operation to be very efficient for performing modular exponentiations. But

the final result has to be transformed back to the input field. To transform

the final result from Montgomery residue field to input operand field, the

result must be Montgomery multiplied by 1. In figure 2.1, Montgomery

multiplication of two integers is illustrated.

Figure 2.1 Montgomery Modular Multiplication

 13

 14

Montgomery multiplication is not to be performed for a single modular

multiplication, but it is very efficient for modular exponentiations, where

numbers are multiplied many times. The advantage of Montgomery

multiplication is clearly visible, as in conventional modular multiplication

integer division is required.

Montgomery multiplication algorithm differs slightly in mathematical

representation for prime number fields and binary extension fields, so the

two algorithms are given seperately. The following notation will be used for

the description of the Montgomery multiplication.

ai : a single bit of a at position i

ci : a single bit of c at position i

n : number of bits in the operands and modulus

Radix–2 Montgomery multiplication algorithm for GF(p) is given below.

Step 1: c = 0

Step 2: FOR i = 0 TO n – 1

Step 3: c = c + ai · b

Step 4: c = c + c0 · p

Step 5: c = c / 2

 END FOR

Step 6: IF c ≥ p THEN c = c – p

In every cycle of the for loop, the multiplicand b is added to the partial

product c depending on the LSB of the multiplier a. The LSB of partial

result must be zeroed before the shift in step 5. If the LSB of c is '1' then

the modulus p, as it is an odd number, is added to c in step 4, before the

right shift. After the last iteration of the loop, the variable c holds the

multiplication result.

 15

It can be verified easily that

c = a · b – t · p

where t is composed during the loop iterations depending on the least

significant bits of the partial product. The variable t is simply the number of

times that the modulus is subtracted from the result c, to guarantee that the

result c is bounded with the modulus p. It is shown in [4] that the result c is

bounded between 2p–1 and 0 if p is chosen so that

2N–1 < p < 2N

This is the second requirement for the modulus p, other than the GCD

requirement.

The final result must be a number less than the modulus. Therefore, step 6

is called the final reduction step of the Montgomery multiplication algorithm.

In the final reduction step, c is compared to p and is adjusted if needed.

Because of the boundaries for c, a single subtraction of p is enough to

assure c < p.

 16

Bit Level Algorithm for Montgomery Multiplication in GF(2n)

In GF(2n) polynomial representation is used for binary numbers. The

algorithm is the same algorithm in GF(p), with a slight difference that the

additions are binary polynomial additions modulo p(x). Also the final

reduction step is not needed when multiplication is performed in GF(2n).

Input: a(x), b(x), p(x), n

Output: c(x) = a(x) · b(x) · x−n mod p(x)

Step 1: c(x) = 0

Step 2: FOR i = 0 to n – 1 do

Step 3: c(x) = c(x) + ai · b(x)

Step 4: c(x) = c(x) + c0 · p(x)

Step 5: c(x) = c(x) / x

END FOR

CHAPTER 3

NEW MULTIPLICATION ALGORITHM

In this chapter, the new Montgomery multiplication algorithm is introduced,

the new architecture is given and the mathematical proof of the new

algorithm is reviewed by considering some details skipped in [2].

3.1 Theory of New Montgomery Multiplication Algorithm

The theory of new Montgomery multiplication algorithm differs slightly for

prime fields and binary extension fields; hence they are described

separately as Algorithm I for GF(p) and Algorithm II for GF(2n) in the

following subsections.

3.1.1 New Algorithm for Prime Fields

Given two integers a, b, and prime modulus p, the Montgomery

multiplication algorithm computes

c = MM (a, b) = a · b · r−1 (mod p)

where

r = 2n

a, b < p < r, where p is an n–bit prime number.

 17

 18

If r2 (mod p) is precomputed and saved in a register, a single Montgomery

multiplication operation is enough to carry out each of the transformations

from the input operand field to Montgomery residue field. In the

implementation, r2 value is an input from the user interface, as stated

previously.

As previously stated in chapter 2, because of these transformation

operations, performing a single modular multiplication using Montgomery

multiplication algorithm is not practical. On the other hand, the advantage

of MM algorithm becomes obvious in applications requiring multiplication

intensive calculations such as modular exponentiation and elliptic curve

operations.

The new radix–2n Montgomery multiplication algorithm for GF(p) is given

below. One of the advantages of the new algorithm is that, step 3 and step

4 of the new algorithm can be processed in a single clock cycle, regardless

of the k value. The k value is the number of multiplier bits processed in

each cycle of the loop. The 2k value is called the radix of the architecture.

Simply stating, a radix–2 multiplier architecture processes one bit of the

multiplier in a single clock cycle, while a radix–4 multiplier architecture

processes two bits. The new algorithm for GF(p) is named as Algorithm I.

Algorithm I, for GF(p)

Input: a, b ε [1, p–1], p, n, k

Output: c ε [1, p–1]

Step 1 c = 0

Step 2 for i = 0 to n–1, i = i+k

Step 3 q = (c0 + ai · b0) · (p0) (mod 2k) (3.1)

Step 4 c = (c + ai · b + q · p) / 2k (3.2)

end for

Step 5 if c ≥ p, c = c – p

where p’
0 = 2n – p0

–1 (mod 2n).

In Algorithm I, the multiplier a is written with base 2 (radix–2k) and digits ai

so that

∑ −

=
=

1

0
i ·k ·2n

i iaa

where n is the number of digits in operands. In the implementation of this

thesis, the number of digits n is automatically calculated by the modulus

calculator block in the multiplier control main unit.

In step 4, the multiplicand b, the modulus p, and the partial result c are

calculated as full n–bit precision integers. Also q, c0, b0, and p’
0 are all n–bit

integers.

The digits of b, p and c are referred to as words when implementing step 4,

and the term digit is used for b0, p’
0, and c0 in step 3, when they are in the

same equation with the digits of a. Digits can be easily distinguished from

full n–bit integers by the subscript notation (ai or b0). In addition, the base of

the radix of the multiplier architecture is determined by the base used to

represent the multiplier a.

 19

 20

3.1.2 New Algorithm for Binary Extension Fields

The radix–2k Montgomery multiplication algorithm for GF(2n) can be

defined as the following:

Algorithm II, for GF(2n)

Input: a(x), b(x), p(x), n, k

Output: c(x)

Step 1 c(x) = 0

Step 2 for i = 0 to n–1, i = i+k

Step 3 q(x) = (c0(x) ⊕ ai(x) · b0(x)) · p’
0(x) (mod xk)

Step 4 c(x) = (c(x) ⊕ ai (x) · c(x) ⊕ q(x) · p(x)) / xk

 end for

where p’
0(x) = p0

–1(x) (mod xk).

It can easily be seen that the two algorithms are almost identical except

that the addition operation in GF(p) becomes a bitwise modulo–2 addition

(simple xor’ing) in GF(2n). Also final reduction step is not needed in GF(2n).

Although the operands are integers in the former algorithm and binary

polynomials in the latter, the representations of both are identical in digital

systems. In Algorithm I, there is also a reduction step at the end to reduce

the result into the desired range, if it is greater than the modulus.

It can be observed that the computations performed in step 3 are of

different nature in two algorithms. Depending on the magnitude of the radix

used, the part of the circuit in charge of implementing step 3 might become

very complicated. However, these computations can be performed in a

unified circuitry for small radices. The circuit, called local control logic, is

described in full detail in section 3.5.

 21

In this thesis, the notation introduced in Algorithm I will be used for both

GF(p) and GF(2n) after this section, and the polynomial notation will be left

completely from the representation of field elements in GF(2n). So the

elements of both fields are represented identically in digital systems.

3.2 Precomputation in New Multiplication Algorithm

In this thesis, as previously stated, a new unified dual–radix multiplier

architecture is described. This new architecture has a precomputation

block in order to decrease the longest path delay of the multiplier in [3].

This precomputation block is called Local Control Logic (LCL) block, and

this block is part of the processing unit of the multiplier core.

From Eq. (3.2), step 4 of the Algorithm I computes

c = (c0 + ai · b + q · p) / 2k

where division by 2k is a right shift by k bits, and from Eq. (3.1), q is

previously calculated in step 3. The k–bit operand q can be determined by

the least significant bits of b, p and c, and the k least significant bits of a.

The derivation for q is also given in section 3.5.1.

The multiple of b that is to be added to partial result c is determined solely

by ai. For radix–2 architectures, the operands ai , b0 , c0 and p0 will

determine which one of the values in {0, b, p, b+p } is added to the partial

result c. As the value of b+p is precomputed and saved in a register, the

calculation in step 4 from Eq. (3.2) is significantly simplified.

The precomputation technique simplifies the multiplier design since step 4

can be performed with only one addition. The local control logic block in the

multiplier selects which multiples of b and p participate, and the adder adds

all required multiples at one single step, in the same clock cycle.

This block is naturally on the longest path and this is the most important

part of the multiplier design. Details of LCL are given in section 3.5.

3.3 New Processing Unit

The processing unit (PU) is basically responsible for performing Eq. (3.1)

and Eq. (3.2) from steps 3 and 4 of algorithm I, and is shown in figure 3.1.

The ccnext and csnext are the terms used to represent the partial carries and

partial sums for the next stage of multiplication, where the term next stage

represents the next multiplier bits.

Step 3: q = (c0 + ai · b0) · (p’
0

) (mod 2n) (3.1)

Step 4: c = (c + ai · b + q · p) / 2n (3.2)

Figure 3.1 Processing Unit

 22

 23

As stated in the previous chapter, the new architecture uses radix–2 for

GF(p) so the LSB of the operands ai, b0, c0 and p0 determine which one of

the values in {0, b, p, b + p} is added to the partial result c.

Multiplication is performed in radix–4 for GF(2n). Therefore, least significant

two bits of a, b, c, and p are needed in order to determine q. The LSB of p is

always 1, causing only p1, the second least significant bit of the modulus, to

be included in the computations. Consequently a0, a1, b0, b1, c0, c1 and p1

determine which one of the values { 0, b, p, b+p, x·b, x·p, x·(b+p) } is added

to the partial result. Recall that ai is the i’ th least significant bit of a.

Multiplication by x results in one bit shifting to the left, so it is identical to

the simple multiplication by 2 in a digital system, as polynomial notation is

used to represent the elements of GF(2n). In this thesis division by xn and 2n

are identical operations and the latter is used to denote the right shift

operation by n bits.

The local control logic block in figure 3.2 contains the selection logic which

generates the signals, m00, m01, m10, and m11. These signals determine

which multiples of b and p will be used in the addition in step 4.

m00 m10 m01 m11 = (0 1 1 1)

 2b + 3p

indicates that Eq. (3.2) in step 4 will be

c = (c + 2b + 3p) / 2n .

The implementation details of the selection logic are detailed in the

following sections. cc0 and cs0 in figure 3.2 are the least significant digits of

carry part and sum part of the partial result c.

 24

A redundant carry–save representation is used for the partial result in the

processing unit. Partial result equals c = cc + cs, where cc and cs stand for

the carry part and sum part of the partial result. The partial result c is kept

in redundant form during the computations and it must be converted back

to non–redundant form when the multiplication is completed. Because of

this, the register for partial result has twice the width of the other registers.

While the redundant form enables to employ carry–save adders, which are

typically less costly in terms of area and much faster than standard carry

propagate adders, carry–save form brings an extra addition operation,

which is to transform the final result into non–redundant format at the end

of the calculations.

The transformation is a simple addition of the two registers cs and cc. This

adder does not cost any area to the multiplier architecture, as the same

adder will be used for the final reduction operation in GF(p) mode. This

adder is also needed for performing the precomputation of b+p, which is

stated in the previous sections. The only extra silicon area cost for the

precomputation comes from the extra register to store b+p. However, since

the precomputation block eliminates the need for the second layer of

carry–save adders in [3], this extra area cost is compensated.

The longest path of a PU is determined by the addition of LCL delay, MUX

delay and carry–save adder delay.

3.4 Dual Field Adder

Dual Field Adder (DFA) is basically a full–adder capable of doing addition

with or without carry. The DFA input field select (FSEL) enables carry

output. Figure 3.2 shows the implementation of the DFA.

Figure 3.2 Dual Field Adder

If FSEL = 1, DFA performs bitwise addition with carry which enables the

multiplier to do arithmetic in GF(p). If FSEL = 0, the carry output is forced to

0 regardless of the input values.

The local control logic, multiplexers and the DFA are the combinational

logic in the longest path of the multiplier core. This longest path is very

short and allows all computations to be performed in a single clock cycle.

The multiplier core calculates the partial n–radix result in carry–save

redundant form in every clock cycle, c = c + ai · b + q · p.

An important aspect of designing a DFA is to avoid increasing the longest

path of the circuit with respect to a standard full–adder, which would have

an adverse effect on the clock frequency. The area and signal propagation

aspects of a DFA are almost identical to those of a standard full–adder

which would be used in a GF(p) only multiplier. Therefore, this additional

functionality is obtained almost without any cost in area or clock frequency.

3.5 Local Control Logic of New Processing Unit

The LCL of the processing unit determines which of the inputs of MUX–0

and MUX–1 are to be added in the dual field adder in the processing unit.

The LCL for the new dual–radix multiplier, is shown in figure 3.3.
 25

Figure 3.3 Local Control Logic

In GF(p) mode, the multiplier uses radix–2, so only mux inputs m00 and m01

need to be calculated. MUX inputs m10 and m11 are forced to be zero, as

input zero of MUX–1 is always selected in this mode, enabling the partial

carries to be added to the partial sum. The following list shows the control

inputs of MUX–0.

m00 = ai (3.3)

m01 = q0 = csi ⊕ cci ⊕ ai · b0 (3.4)

where ⊕ stands for modulo–2 addition in GF(p) mode. In GF(2n) mode the

select inputs of MUX–1 also need to be calculated. The following list shows

the control inputs of MUX–1.

 26

 27

m10 = ai+1 · FSEL (3.5)

m11 = q1 = [(csi+1 ⊕ ai · b1 ⊕ ai+1 · b0) ⊕ (csi ⊕ ai · b0) · p1] · FSEL (3.6)

The first input of MUX–1, the partial carries cc, is always zero in GF(2n)

mode, as the carry part of partial sum is always zero in the redundant form,

refer to DFA definition in the previous section.

As can be seen from figure 3.3, there are 3 XOR and 2 AND gates in the

longest path of the LCL. More information on the derivation of the LCL

equations is given in the following section.

3.5.1 Derivation of Local Control Logic

This is the derivation is for m00, m01, m10 and m11 ,equations given in the

previous section. The equations (3.3), (3.4), (3.5) and (3.6) are used in the

local control logic block as multiplexer select signals. The term radix–2k

digit means a k bit binary number, and therefore a radix–4 digit is used for

representation of two binary digits.

Local control logic calculates the b and p addition coefficients in Eq. (3.2) :

c = (c + ai · b + q · p) , from Eq. (3.1) where

q = (c0 + ai · b0) · p’
0, and q, ai, b0, c0 and p’

0 are radix–4 digits.

In GF(p) mode only m00 and m01 are needed, from Eq. (3.3) and Eq. (3.4),

m00 = ai (3.3)

m01 = q0 = (cs0 ⊕ cc0 ⊕ ai · b0) · p’0

 28

where p’0 = p0 = 1, as p is an odd number, the number to be added to p to

make the least significant bit of the result to be zero, is itself.

m10 and m11 must be forced to 0 in GF(p) mode, as the partial carries are

used in the addition process. In GF(2n) mode, m00, m01, m10, and m11 are

needed. m00 is the same as in the GF(p) mode. m10 = ai+1 · FSEL , as i+1’th

bit is needed for GF(2n) operation in Eq. (3.5).

m01 and m11 are determined by q. To compute q value, p’
0 is needed.

p0 · p’0 ≡ 1 (mod x2) (3.7)

This is a critical step in the derivation of local control logic. The k–bit

number p’0 is explained as, the number of times that the two least

significant bits of the modulus is added to the partial sum, in order to clear

the two least significant bits of the partial sum. The Eq. (3.8) is re–written

from [2] for rigorous description.

(p’1 · x + p’0) · (p1 · x + p0) ≡ (3.8)

(p’1 · p1 x2) + (p’1 · p0 + p’0 · p1) x + (p’0 · p0) ≡ 1 (mod x2)

The x2 term is cleared as the equation is in mod x2. Therefore

p’1 · p0 + p’0 · p1 = 0 and p’0 · p0 = 1

As the modulus p is a prime number, p0 = 1. This implies p’0 = 1. Therefore

p’1 + p1 = 0.

As this derivation is for GF(2n) mode, addition is a simple binary xor

operation which implies p’1 ⊕ p1 = 0 , meaning

p’1 = p1. (3.9)

 29

So the second least significant bit of the p’ is equal to the second least

significant bit of the modulus p, which turns out to be

p’ (mod x2) = (p1 · x + 1)

In every step the i’th and i+1’th bits of a is multiplied with b.

(ai+1 ai) · b (mod x2) ≡ (ai+1 · x + ai) · (b1 · x + b0) (mod x2)

≡ (ai+1 · b0 + ai · b1) · x + ai · b0 (mod x2)

Therefore from eq (3.1), (c0 + ai · b0) · p’0 (mod x2)

≡ [(cs1 + ai+1 · b0 + ai · b1) · x + (cs0 + ai · b0)] · (p1 · x + 1) (mod x2)

≡ [cs1 + ai+1 · b0 + ai · b1 + (cs0 + ai · b0) · p1] · x + cs0 + ai · b0 (mod x2)

This is the final equation describing the addition in the processing unit.

m01 = cs0 ⊕ ai · b0

m11 = cs1 ⊕ ai+1 · b0 ⊕ ai · b1 + (cs0 ⊕ ai · b0) · p1

Since cc0 is always 0 in GF(2n) mode, m01 = q0 = cs0 ⊕ cc0 ⊕ ai · b0

for both GF(p) mode and GF(2n) mode operations.

m11 is forced to 0 in GF(p) mode, bringing FSEL into m11 eq (3.6).

m11 = q1 = [(cs1 ⊕ ai+1 · b0 ⊕ ai · b1) · FSEL] ⊕ [(cs0 ⊕ ai · b0) · p1 · FSEL]

CHAPTER 4

HARDWARE AND SOFTWARE OF THE MULTIPLIER

This chapter is dedicated to the hardware and software description of the

new Montgomery multiplier architecture. Also the ethernet interface

software and the user interface software are described briefly. Figure 4.1

shows the multiplier hardware in the FPGA.

 30

Main Unit

Led drivers I/O
State Machine

Clock DLL
Multiplier

I/O Shift
Registers

Stage
State Machine Buffers

Modulus
CalculatorDebug

Interface

Multiplier
Core State
Machine

Synchronous Core
Adder

Processing Unit

Figure 4.1 Hardware Block Diagram

4.1 Montgomery Multiplier Blocks in FPGA

The Montgomery multiplier hardware in FPGA is organized as configurable

blocks. These blocks are designed as variable bit length blocks and the

maximum operand width N is configured at design time. The organization

tree of the hardware multiplier is shown in figure 4.2.

Figure 4.2 Hardware File Tree of the Multiplier

4.1.1 Main Unit

This unit in main.vhd enables the data input and output of the multiplier.

This unit also includes the modulus calculator block, stage control state

machine, i/o shift registers, led drivers and the clock delay locked loop.

I/O Controller: The FPGA is slave in this operation, as i/o control signals

are driven by the ethernet controller. Input output controller is composed of

seven processes. Shift registers are required for the i/o interface as the

data bus is only eight bits wide while N bit wide numbers are used in the

multiplication process.

 31

Input data is continuously sampled in a process, enabling the

synchronization of input signals with the FPGA internal clock. A similar

process is used to sample i/o control signals: address strobe input (AS),

read/write input (R/W) , address bus input and the bi–directional data bus.

The i/o state machine has four states. First state is the wait state, where

the sampled data is discarded until the address strobe input is logic 1. If

address strobe is logic 1, address bus is sampled and the state is changed.

Second state is the state where the decision is to be made, if the operation

is a read or a write operation. Third state sets data strobe output data

strobe to logic 1, and fourth state waits until address strobe input goes to

logic 0. When address strobe is logic 0, the data transfer is complete and

state machine returns to the initial wait state. Figure 4.2 shows the

operation of the i/o state machine.

 32

Figure 4.3 Multiplier I/O State Machine

stu0 stu1

Sample r_w = 1

if r_w = ‘1’ then

read_data_ubi <= ‘1’;
else

write_data_ubi = ‘1’;

stu2

as = 0

read_data_ubi <= ‘0’;
ds <= ‘0’;

 as = 1

stu3

 as = 1

sample r_w <= ‘1’; as = 0

ds <= ‘1’;

 33

A read operation means that the ethernet controller reads the value of a

register from FPGA. Consequently a write operation is performed when the

ethernet controller writes a value to a register in the FPGA.

In write operations, a separate process writes the value into the shift

register addressed by the address bus. The accessed register is shifted by

eight bits, every time it is accessed for a write operation.

In read operations, the value of the most significant eight bits of the

addressed register in the FPGA is written to the data bus out register. All

read registers in the FPGA are shifted by eight bits, in every read access to

the FPGA.

A separate process drives the three state buffers in the input output blocks

of the FPGA. This process enables the data bus to be used for both read

and write operations.

Modulus Calculator Unit: This unit processes the modulus, and

calculates the bit length of the modulus. The process is implemented for

variable length operands and supports both GF(p) and GF(2n) modes of

operation.

Multiplier Stage State Machine: A single modular multiplication requires

four Montgomery multiplications, as previously described in chapter 2. This

state machine supplies the input operands to the MM kernel.

The state machine waits in state 0, unless the stage multiply bit is set by

the i/o state machine. Then prepares the inputs for the first MM operation,

a multiplied by r2, and waits in state 1 until the modulus count block is done

processing. Then begins first Montgomery multiplication in state 2.

 34

The first result is awaited in state 3. After the first result, a·r value, is

registered, second MM operation b multiplied by r2 begins in state 4. State

5 waits unit the result is ready, and registers the b·r value. State 6 is a

dummy state, needed for timing compensation between processes.

Third multiplication, multiplication of a·r with b·r begins in state 7. The result

c·r is awaited in state 8. State 9 is another dummy state for timing

compensation.

Final multiplication, c·r value multiplied with 1, begins in state 10. The state

machine waits for the final result c in state 11 and toggles the led after the

multiplication result is ready. Then the state machine returns to initial state,

state 0, ready for a new MM operation. Figure 4.3 shows the operation of

the multiplier stage state machine.

Debug Interface: Debug interface in debug.vhd is the block that supplies

the intermediate values to the user interface, for the visual display of MM

operations. This interface is not included in the results part in chapter 6, as

this block is not an essential part of the multiplier.

Clock Delay Locked Loop: This unit is a standard block on the FPGA.

Clock delay locked loop improves the timing synchronization of the clock

signal on the circuit board with the FPGA internal clock. This unit also

improves FPGA internal clock distribution, and is not an essential part of

the multiplier.

Led Drivers: There are four leds on the circuit board. Three leds are used

for ethernet and the fourth led is toggled every time a new MM operation is

performed.

Buffers: The clock buffers are used for clock distribution inside the FPGA

and are standard components of every FPGA design.

stage_multiply = 0

 35

Figure 4.4 Multiplier Stage State Machine

stage_multiply = 1

sample_inputs <= ‘1’;

p_ready = 0

sts0 sts1

p_ready = 1

sts2

sts3 result_ready = 0

Sample inputs = 1

a_mult <= a_data;
b_mult <= r2_data;
p_mult <= p_data;

sts4

Load inputs two = 1

a_mult <= b_data;
b_mult <= r2_data;

Load_inputs_two <= ‘1’;
multiply <= 1;

sts5 result_ready = 0

result_ready = 1

load_b_n <= ‘1’;

sts6 sts7

Load_inputs_three <= ‘1’;
multiply <= 1;

sts8

result_ready = 0

sts9

sts10

Load inputs three = 1

a_mult <= a_n;
b_mult <= b_n;

Load inputs four = 1

a_mult <= c_n;
b_mult <= 1;

sts11

Load_inputs_four <= ‘1’;
multiply <= 1;

result_ready = 0

result_ready = 1

toggle_led <= ‘1’;

multiply <= 1;

result_ready = 1

load_a_n <= ‘1’;

result_ready = 1

load_c_n <= ‘1’;

 36

4.1.2 Multiplier Core

The multiplier core in papermult.vhd, performs the internal operations of

the MM operation. The multiplier core consists of a state machine, an

adder, a comparator and the new processing unit described in chapter 3.

Multiplier Core State Machine

This state machine controls the new processing unit, described previously

in chapter 3. Initially this state machine waits in state 0 unless the multiply

signal becomes logic 1. When the multiply signal becomes logic 1, p+b

register is prepared using the adder, depending on the field. If the field is

GF(2n), the p+b register contains the bitwise xor of the modulus p and the

multiplicand b. If the field is GF(p), the p+b register contains the result of

addition of p and b.

When the p+b register is loaded with the appropriate value, MM operation

begins. The new processing unit processes 2 bits of the multiplier in each

clock cycle in GF(2n) mode and 1 bit of the multiplier in GF(p) mode.

After all the bits of the multiplier are processed, the result ready signal

becomes logic 1 and the MM operation is finished. Figure 4.4 shows the

operation of multiplier core state machine.

 37

Figure 4.5 Multiplier Core State Machine

Adder: The adder is a synchronous carry propagate adder. This adder is

not a dual field adder, due to area constraints, so it is controlled by the core

state machine and used only in GF(p) mode of operation.

Comparator: The comparator is a standard comparator needed for the

final reduction operation in GF(p).

start ready st0

st1

prepare_pb = 1

if field = ‘1’ then
 adder_a_in <= b;
 adder_b_in <= p;
else
 pb <= b XOR p;

st2 st3

ready <= ‘1’;
result <= adder_q;

multiply = 0

result_ready <= ‘0’;
mult_busy <= ‘0’;
sum <= others => ‘0’;
pb <= others => ‘0’;

result_pb = 1

if field = ‘1’ then
 pb <= adder_q_out;

int_multiply <= 1;
result_pb <= ‘1’;

multiply = 1

result_ready <= ‘0’;
mult_busy <= ‘1’;
sum <= (others => ‘0’);
pb <= (others => ‘0’);
prepare_pb <= ‘1’;

check_finish = 1

if field = ‘1’ then
 adder_a_in <= cc_ns;
 adder_b_in <= cs_ns;
else
 result <= cs_ns;

result_ready_int = 1
field = ‘1’

result_ready_int = 1
field = ‘0’

int_multiply <= ‘0’;
check_finish <= ‘1’;

int_multiply <= ‘0’;
check_finish <= ‘1’;

result_ready_int = 0

 38

4.1.3 Processing Unit

This is the Intmult.vhd, previously mentioned as the processing unit in

chapter 3, refer to figure 3.1. The processing unit includes a dual field

adder, two 4 to 1 multiplexers, local control logic, a counter, and a

comparator. The bit shifts of p, b and p+b registers are done by simple

signal naming, so the 2p, 2b and 2(p+b) values do not consume any

registers. The term N is used to represent the word length of operands.

The summary of the terms described in the previous chapters are shortly

mentioned below for easy reference.

Dual field adder: This adder in Fadualn.vhd is a standard N bit adder.

Multiplexers: These are standard 4 to 1, N bit multiplexers in muxn.vhd.

Local Control Logic: This is the LCL block in Selection.vhd.
Counter: The counter is a simple counter that counts the processed bits of

the multiplier. The counter can increment by 1 or 2 depending on the field.

In GF(2n) mode, the counter increments by 2, while in GF(p) mode the

counter increments by 1.

Comparator: The comparator used in the processing unit is a simple

comparator for the bit count operation. It compares the number of

processed multiplier bits with the result of the modulus calculator block,

stating the processing unit to end operation when the result is ready.

4.2 Ethernet Controller Software

The ethernet controller software is written in Ubicom Unity environment

and compiled using Gnu tools. The software supports both dynamic host

configuration protocol (DHCP) and static internet protocol (IP) address

modes for configuration.

The software is composed of 3 files.

 39

 main.c , contains the initialization functions of the ethernet controller,

 interface.h , contains the FPGA i/o functions,

 interface.c , contains the ethernet interface code. The interface

functions are listed in this file.

4.2.1 Initialization of the IP2022

Upon boot of the ethernet controller, the initialization function is called. This

function configures the memory heap, initializes the timers, configures the

ethernet memory pages and initializes the protocols. User datagram

protocol (UDP) is used in this thesis for communication between the host

computer and the circuit board.

After the protocol initialization, the configuration is necessary. The internet

protocol address, subnet mask and default gateway address can be

changed remotely as well as a static ip address can be defined.

Following the IP address configuration, the ethernet interface is initialized.

When the ethernet is ready, the ethernet leds start blinking and the

application initializes. The application initialization is finished by the

configuration of the serial communication interface.

4.2.2 Program Flow of the Ethernet Interface

The program flow is event based. The two main events used are the

ethernet receive event and the serial port receive event.

Ethernet Receive Event: The ethernet receive event stores the received

data packet to a temporary buffer and sends the buffer to the process data

function.

 40

Serial Port Receive Event: The serial port receive event stores the

received values to a temporary buffer until the data count is the predefined

value for a specific command. This enables the uart to pass the received

buffer to the process data function as the ethernet receive event.

4.2.3 Data Processing in the Ethernet Controller

The process data function acts as an interface between the FPGA and the

user interface application. The runtime configuration of the ethernet

controller is also managed by this function. All these operations are

performed from either the uart or the ethernet.

Multiply Operation: If the received packet begins with multiply command,

the second byte contains the number of bytes per operand and the third

byte contains the field of operation, 0 for GF(2n) and 1 for GF(p).

Beginning from the fourth byte, the operands a, b, p and r2 follow. As the

operand length is variable, the packet size is also variable. This is

especially important in the serial mode of operation, using the uart receive

event, as the word length can be of any size up to 1024 bits. The word

length is stored in the memory of the ethernet controller for future use.

The write FPGA function in interface.h enables the data to be written to

FPGA registers. As the FPGA registers are shift registers, the operands

are written in loops, thus clearing the address limitations.

Following the load of FPGA registers with operand values, a write to the

FPGA address 5 starts multiplication.

Read Result Operation: After the multiplications are performed, the result

is read from the FPGA. This is done by the user interface by sending a

packet beginning with a read result command.

Upon receive of a read result command, the ethernet controller reads

FPGA registers for the final result and the immediate values. The term

immediate values is used for a·r, b·r, c·r values and if the debug interface is

enabled the internal multiplication values. These internal values are used

for the visual display in the user interface application. These values are

stored in a temporary buffer and finally transferred to the user interface.

Configuration: The controller’s IP address, subnet mask and default

gateway address can be changed in runtime. After the new values are set,

a reboot is needed.

Start

Initialize Write to FPGA

Begin multiplication

Data
Received Wait until

muliplication is
finished

Read from FPGA

Valid
Data?

Send result to
user interface

Figure 4.6 Program Flow of the Ethernet Controller

 41

4.3 Multiplier User Interface

The multiplier user interface is event based and developed in the Borland

Builder environment. The user interface consists of two forms for visual

display, a thread for uart receive functions, and serial port communication

units. Figure 4.7 shows the program flow of the windows user interface.

Start

 42

Figure 4.7 Program Flow of the Windows User Interface

Initialize

Multiply
clicked?

Valid
Data?

Send data packet

Prepare data
packet

Start

Initialize

Packet
received?

Valid
Data?

Display result

Display intermediate
values

EndEnd

 43

4.3.1 Preparation of the Packet

When the multiply button is clicked, the button 1 click function is called.

This function prepares and sends the packet to the ethernet controller.

Serial port can be used in this process as well as the ethernet. This

function converts the operands to 64 bit unsigned integers and prepares

the ethernet packet according to the word length. Rest of the packet is

described in the previous sections but a brief definition follows.

The first byte of the packet contains the multiply command, followed by the

word length and the field value. The field value is 0 for GF(2n) and 1 for

GF(p). The operands a, b, p and r2 follow, beginning with the fourth byte. If

there are no errors in the conversion process, such as operand overflow,

the packet is transferred.

4.3.2 Receiving Packets

The serial port or the ethernet interface can be used for receiving packets.

The received packets are processed according to their first byte. The first

byte informs that the packet contains the result of a multiplication, or the

packet is a configuration response packet. The configuration responses are

displayed in the log as they are received.

The multiplication result packet begins with a read result command. The

initial operands are included in the packet as well as the immediate values

and the final multiplication result. These values are then combined into 64

bit unsigned integers for GF(p) mode of operation. If the multiplication field

is GF(2n), these values are converted to polynomial notation as strings.

Finally these values are displayed.

 44

CHAPTER 5

RESULTS

In this chapter, the new Montgomery multiplier architecture is compared

with the previous architectures. The comparisons are made in terms of

silicon area, clock frequency and time required for a single MM operation.

Also the analysis results of the new architecture for different word length

implementations is shown in this chapter.

The silicon area measurements are performed in terms of FPGA slices.

Combinational circuits are represented by look up tables, while

synchronous circuits are represented by flip flops.

Clock frequency is an important aspect of comparisons. The longest path

should be as short as possible for a high clock frequency of operation.

Clock cycle count is the other important comparison perspective in this

thesis. As proven in chapter 3, the clock cycle count of the new algorithm is

half of the standard algorithms for GF(p) and quarter of the standard

algorithms for GF(2n). This improvement makes the new algorithm the

fastest Montgomery multiplication algorithm encountered in the literature by

January 2006.

The compared results are obtained after the synthesis stage and the

implementation stage. The term synthesis result stands for the theoretical

measurements of the tools, while the term implementation result means the

real time operation performance.

 45

5.1 Comparisons of Multiplier Architectures

For a realistic comparison perspective, the standard Montgomery multiplier

algorithms are also implemented for the same FPGAs. These are all 5 bit

architectures, and they are compared to the 5 bit implementation of the

new architecture. The 5 bit multiplier architectures are:

A) Standard Montgomery multiplier for GF(p) (single bit per clock cycle)

B) Standard Montgomery multiplier for GF(2n) (single bit per clock cycle)

C) Standard unified field Montgomery multiplier (single bit per clock cycle)

D) New Montgomery multiplier (single bit for GF(p), double bit for GF(2n))

Architecture D is the implementation of the new Montgomery multiplication

algorithm described in chapter 3.

The new algorithm also employs the precomputation block, thus halving

the steps of the for loop in the standard MM algorithm.

These comparisons are made for the multiplier cores with controllers only,

as the i/o blocks add the same amount of area and delay for all

architectures. For simplicity, the multiplier cores with controller blocks are

called as multiplier cores.

These standard Montgomery multipliers represented as architectures A,B

and C perform the MM operation according to the standard MM algorithm

in page 14. The new Montgomery multiplier represented as architecture D

performs the MM algorithm in page 18.

The multiplier cores are compared from silicon area, clock frequency and

time required for a single MM operation perspectives.

 46

5.1.1 Area Comparison

The synthesis and implementation results of the four architectures are

listed in table 5.1 and table 5.2.

First difference between synthesis results and implementation results of

the architectures A,B and C is the number of flip flops. The number of flip

flops consumed is halved after implementation, because of the usage of

input output buffer flip flops. This is normal as the implementation tools

don’t take buffer flip flops into account, when calculating the area cost.

Table 5.1 Multiplier Core Synthesis Results

FPGA Type Spartan 2 Series Virtex 2 Series

Architecture A B C D A B C D

Slices 35 37 41 65 36 34 38 64

Flip flops 46 46 46 58 46 45 46 58

Tables 53 43 63 124 42 45 58 123

Table 5.2 Multiplier Core Implementation Results

FPGA Type Spartan 2 Series Virtex 2 Series

Architecture A B C D A B C D

Slices 32 25 35 69 25 26 32 67

Flip flops 23 23 23 56 23 22 23 56

Tables 53 42 62 129 41 45 57 129

The number of flip flops stays constant throughout the first three designs,

as the maximum operand width is five bits. However the number of flip

flops is doubled in the new architecture. The increase in the number of flip

flops is caused by the new registers needed to store p+b, the redundant

partial carries cc and the redundant partial sums cs.

 47

The number of look up tables, shows the amount of combinational logic

used in the multiplier. Architecture B used least amount of combinational

logic as it only xors the operands. A follows with the additional carry

propagation logic. C uses more tables, as it contains not only the full adder,

but also the multiplexing logic for both the xor gates and the adder. D

consumes double the combinational logic in C, as it has the local control

logic, the dual field adder and two new multiplexers.

As a reminder, the term S2 FPGA represents Spartan 2 series FPGAs

while the term V2 FPGA represents Virtex 2 series FPGAs. The slice count

is roughly the same in the first three architectures, as each slice has two

tables in a S2 FPGA. Even though C consumes more tables than A and B,

total slice count increases only about 10 percent. D doubles the slice count

because of the new logic for precomputation.

The slice count differs about 20 percent between S2 series and V2 series

implementations, although it remains constant in synthesis results. This is

caused by the difference between S2 and V2 slice designs. The V2 slices

employ 5 input tables and better routing, enabling the design to be

implemented more efficiently. For the 5 bit wide adder, a S2 needs 2 tables

for each table in a V2. The number of tables is 10 percent lower in the V2

implementation of A when compared to B.

5.1.2 Clock Frequency Comparison

Performance comparison of multiplier cores is the most important aspect of

this thesis, as in all cryptographic applications. Clock frequency is the first

method of comparing the multiplier performance. The longest path

determines the maximum clock frequency. The results are measured in

megahertz (mhz) for frequency and nanosecond (ns) for period.

 48

The longest path consists of two combinational parts. First part is the path

where the decision is made if the add/xor operation is to be performed on

the partial sum. Second part is the path where addition or xor’ing is

performed. These two parts add up to generate the longest path of the

architectures A,B and C. The longest path of the new architecture D is the

longest path of the processing unit described in chapter 3. The maximum

clock frequency results are listed in table 5.3.

Table 5.3 Multiplier Core Clock Frequency Results

FPGA Type Spartan 2 Series Virtex 2 Series

Architecture A B C D A B C D

Synthesis 119 116 96 79 206 256 207 171

Implementation 132 129 102 105 175 251 173 193

The clock frequency increase from C to D in the implementation results

shows that the new architecture runs at faster clock frequencies when

compared to previous architectures. This increase in clock frequency

shows the suitability of the new architecture for FPGA designs. The clock

periods for the multiplier architectures follow.

Table 5.4 Multiplier Core Clock Period Results

FPGA Type Spartan 2 Series Virtex 2 Series

Architecture A B C D A B C D

Synthesis 8.3 8.6 10.4 12.5 4.8 3.8 4.8 5.8

Implementation 7.5 7.7 9.7 9.5 5.7 3.9 5.7 5.1

 49

Table 5.4 shows that, for spartan series FPGAs, clock period decreases

after implementation when compared to synthesis stage, while for virtex

series FPGAs clock period increases. This change reflects the additional

effects of routing delays inside the FPGAs, and implementation results

should be treated as real values for comparison. As Virtex series FPGAs

are faster, the routing delays become significant on signal timing after

implementation.

5.1.3 Multiplication Period Comparison

The best method for comparing different multiplier architectures is the time

needed to perform a single multiplication, as different organizations of

multipliers can be made for continuous multiplications. In this thesis the

four architectures are compared from the period each architecture requires

for a single MM operation.

The architectures A,B and C require 2 clock cycles for processing each bit

of the multiplier. The clock cycle count is the same for both fields in the first

three architectures.

The new architecture D, requires 1 clock cycle for processing every bit of

the multiplier in GF(p). When operating in GF(2n) mode, the new

architecture processes 2 bits of the multiplier in every clock cycle.

The list of the time required for the multiplication of 4 bit operands for all

architectures follow. The operand width is kept constant as 4 bits, to

maintain a better comparison perspective between GF(p) and GF(2n). The

operating clock frequencies in the comparison of table 5.5 are the

maximum operating frequencies of each architecture. The results in table

5.5 are simulation results, as real time testing of each multiplier on the

circuit board is performed at 50 Mhz.

 50

Table 5.5 The Periods of a Single MM Operation in Nanoseconds

GF(p) mode A B C D

Spartan 2 Series 60 62 78 38

Virtex 2 Series 46 32 46 21

GF(2n) mode

Spartan 2 Series 60 62 78 19

Virtex 2 Series 46 32 46 11

As shown in table 5.5, the new architecture is the most efficient

architecture. The time required for multiplication is the half for GF(p), and

the quarter for GF(2n), when compared to standard multiplier architectures.

The new MM algorithm and the implementation in this thesis perform

multiplication in both fields, and faster than the specific field

implementations of the standard MM algorithm.

5.2 Analysis of the New Architecture

In this section, the new architecture is implemented for different word

lengths. The analysis are done up to 48 bits for spartan series FPGAs, as

the capacity of spartan series are fully used for a word length of 48 bits.

For virtex series FPGAs, the multiplier is implemented for up to 1024 bits.

As previously stated an RSA implementation of 1024 bits is equal to an

elliptic curve cryptosystem of 160 bits. Table 5.6 shows the effect of word

length on multiplier clock frequency and silicon area for S2 FPGAs. The

similar table for V2 FPGAs is shown in table 5.7.

Figures 5.1 and 5.2 show that the silicon area is linearly proportional to the

word length of the multiplier, and clock frequency is not effected much for

spartan series FPGAs. Figures 5.3 and 5.4 show the same results for

virtex series FPGAs.

The results show that the new architecture is efficient up to 160 bits, which

means this implementation can be selected in elliptic curve cryptosystems.

Also figure 5.1 and figure 5.3 show that the area of the core becomes less

significant on the total multiplier area, as the operand width increases.

Table 5.6 Effect of Word Length in Spartan FPGAs

Word
Length

Clock
Freq

Slice
count

Flip flop
count

Table
count

8 78 245 229 361

16 78 387 404 629

24 75 601 623 939

32 68 784 807 1236

40 67 967 1009 1523

48 64 1177 1198 1826

Area versus Word Length in Spartan FPGAs

0

500

1000

1500

2000

8 16 24 32 40 48

Word length (bits)

Slice Count
Flip Flop Count
Table Count

Figure 5.1 Area versus Word Length in Spartan FPGAs

 51

Clock Frequency versus Word Length in Spartan
FPGAs

0

20

40

60

80

100

8 16 24 32 40 48

Word Length (bits)

M
hz

Clock Frequency

Figure 5.2 Clock Frequency versus Word Length in Spartan FPGAs

Table 5.7 Effect of Word Length in Virtex FPGAs

Word
Length

Clock
Freq

Slice
count

Flip flop
count

Table
count

8 163 256 222 386

16 158 391 400 643

32 153 771 771 1218

48 142 1055 1112 1757

64 122 1375 1465 2293

128 93 2833 2872 4440

256 52 5118 5694 8707

512 31 11227 11380 17312

1024 17 23112 22709 35084

 52

Area versus Word Length in Virtex FPGAs

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

8 16 32 48 64 128 256 512 1024

Word Length (bits)

Table Count
Flip Flop Count
Slice Count

Figure 5.3 Area versus Word Length in Virtex FPGAs

Clock Frequency versus Word Length in Virtex
FPGAs

0

50

100

150

200

8 16 32 48 64 12
8

25
6

51
2

10
24

Word Length (bits)

M
hz

Clock Frequency

Figure 5.4 Clock Frequency versus Word Length in Virtex FPGAs

 53

 54

CHAPTER 6

CONCLUSIONS

In this thesis, the Montgomery modular multiplication algorithm [1] is

studied and the new multiplication algorithm [2] is tested. The standard

Montgomery modular multiplication algorithms are also implemented in the

same FPGA for obtaining a realistic comparison perspective.

Montgomery multiplication algorithm is a very efficient way of modular

multiplication. The new algorithm preserves the speedup of the standard

Montgomery multiplication algorithm, while combining the two steps of the

loop into a single step for doubling the multiplication speed. The algorithm

is implemented in a unified and dual–radix architecture. The new unified

dual–radix multiplier architecture operates in prime number fields and

binary extension fields. The new architecture includes a precomputation

block, thus decreasing the longest path delay significantly. The study of the

precomputation block in terms of silicon area concludes that the overall

impact is insignificant for cryptographic applications.

The area and speed characteristics of the new architecture (D) is also

investigated and its performance in terms of silicon area and multiplication

time is compared against standard Montgomery multiplier architectures (A,

B and C). The results show that the new architecture doubles the silicon

area for small operands while enabling faster multiplication. For large

operands in cryptographic applications, the increase in silicon area is

insignificant.

 55

The operand length is implemented from 8 bits to 1024 bits. It can be

stated that the new architecture operates at about 60 Mhz for 48 bits word

length for Spartan series FPGAs. For Virtex series FPGAs, the multiplier

operates at about 100 Mhz for up to 128 bits word length. For a word

length of 1024 bits, the clock frequency drops to 17 Mhz.

Multiplication period changes in GF(2n) mode of operation when compared

to GF(p) mode. The clock cycle count is halved in GF(2n) mode as two

multiplier bits are processed in every clock cycle. As a conclusion, the new

architecture is two times faster in GF(p) mode and four times faster in

GF(2n) mode, when compared to standard Montgomery multiplication

algorithms.

Conclusions of this study show that the new algorithm can be extended to

process more multiplier bits in each clock cycle. As the proposed unified

dual–radix architecture is a radix(2,4) architecture, the precomputation

block enables the design of increased radices such as radix(4,8) and

radix(8,16). The mathematical proof of the control logic for these

architectures can be an interesting area of study.

 56

REFERENCES

1) P. L. Montgomery “Modular multiplication without trial division”,

Mathematics of Computation, vol. 44, no. 170, pages 519–521, April 1985.

2) E. Savaş, A. F. Tenca, M. E. Çiftçibaşı, Ç. K. Koç "Novel Multiplier

Architectures for GF(p) and GF(2n)", IEE Computers and Digital

Techniques Journal, April 2004.

3) E. Savaş, A. F. Tenca, Ç. K. Koç. “A scalable and unified multiplier

architecture for finite fields GF(p) and GF(2n). Cryptographic Hardware and

Embedded Systems – CHES 2000, LNCS 1965, pages 281–296. Springer,

Berlin, Germany, 2000.

4) Ç. K. Koç, A. F. Tenca, “A word–based algorithm and architecture for

Montgomery multiplication” in Cryptographic Hardware and Embedded

Systems, C. Paar, Ç. K. Koç ed., number LNCS 1717, pages 94–108,

Springer, Berlin, Germany, 1999.

5) L.J. Sigal, E.M. Schwarz, R.M. Averill III, “A radix–8 cmos s/390

multiplier” in IEEE 13th Symposium on Computer Arithmetic, pages 2–9,

IEEE Computer Society Press, Los Alamitos, CA, 1997.

6) P. Kornerup, “High–radix modular multiplication for cryptosystems” in

IEEE 11th Symposium on Computer Arithmetic, pages 277–283, IEEE

Computer Society Press, Los Alamitos, CA, 1993.

7) E. F. Brickel, “A fast modular multiplication algorithm with application to

two key cryptography” in Advances in Cryptography – CRYPTO '82, pages.

51–60, Plenum, New York, 1983.

 57

8) A. Vandemeulebroecke et al, “A new carry–free decision algorithm and

its application to a single–chip 1024–bit rsa processor” IEEE Journal of

Solid–state Circuits, vol. 25, no. 3, pages. 748–755, June 1990.

9) P. Kornerup, H. Orup, “A high–radix hardware algorithm for calculating

the exponential me modulo n” in IEEE 10th Symposium on Computer

Arithmetic, pages 51–56, IEEE Computer Society Press, CA, 1991.

10) C. D. Walter, “Space/time trade–offs for higher radix modular

multiplication using repeated addition” IEEE Transactions on Computers,

vol. 46, no. 2, pages. 139–141, February 1997.

11) H. Orup, “Simplifying quotient determination in high–radix modular

multiplication” in IEEE 12th Symposium on Computer Arithmetic, pages.

193–199, IEEE Computer Society Press, Los Alamitos, CA, 1995.

12) A. Royo, J. Moran, J. C. Lopez. Design and implementation of a

coprocessor for cryptography applications. In European Design and Test

Conference, pages 213–217, Paris, France, March 17–20 1997.

13) L. Adleman, R.L. Rivest, A. Shamir “A method for obtaining digital

signature and public–key cryptosystems," Comm. ACM, vol. 21, no. 2,

pages. 120–126, February 1978.

14) C. Paar, T. Blum, “Montgomery modular exponentiation on

reconfigurable hardware” in IEEE 14th Symposium on Computer

Arithmetic, pages. 70–77, IEEE Computer Society Press, Los Alamitos,

CA, 1999.

 58

15) S. C. Goldstein R. R. Taylor “A high–performance architecture for

cryptography” in Cryptographic Hardware and Embedded Systems, C.

Paar, Ç. K. Koç ed., LNCS 1717, pages. 231–245, Springer, Berlin,

Germany, 1999.

16) N. Koblitz, “Elliptic curve cryptosystems”, Mathematics of Computation,

48(177) pages 203–209, January 1987.

17) Ç. K. Koç, T. Acar, “Montgomery Multiplication in GF(2n)”, in Designs,

Codes and Cryptography, 14(1), pages 57–69, April 1998.

18) R. E. Blahut, Theory and Practice of Error Control Codes, Addison –

Wesley, 1983.

APPENDIX A

CIRCUIT BOARD DIAGRAMS

The term circuit element is used to represent the passive elements as

resistors, capacitors…etc.

 Mic29502 Voltage Regulators: These regulators are used to supply

required voltages. They convert input voltage to 5v initially, and then

convert 5v to 3.3v and 2.5v. These linear voltage regulators are

adjustable and customized for the corresponding voltages, as

shown in figure A.1.

Figure A.1 Supply Circuitry

 59

 Xc2s200 FPGA: This is the integrated circuit containing the

multiplier core. This unit is re–programmed from the xc18v02 eprom

on startup. The FPGA code is previously described in chapter 4.

The FPGA is shown in figure A.2. This unit requires many circuit

elements as can be seen in figure A.8 FPGA bypass and decoupling

block.

Figure A.2 XC2S200 FPGA

 60

 Ip2022 Ethernet Controller: This unit supplies the ethernet interface

to the multiplier core. The controller boots from internal memory on

startup. The ethernet interface code is described in section 5.2. The

controller also requires a few circuit elements as seen in figure A.3.

Figure A.3 IP2022 Ethernet Processor

 Max213 Uart Buffer: This buffer enables the communication of the

ethernet controller and the standard pc serial port. The uart buffer

requires a few circuit elements as can be seen in figure A.4.

Figure A.4 Uart Buffer

 61

 Max708 Supervisor, DS1075 Clock Generator: These units generate

the necessary reset signal for the board and supply the clock signal

to the FPGA correspondingly, as can be seen in figure A.5.

Figure A.5 Clock & Reset Circuitry

 Ip2022 Programming Interface: These circuit elements enable the

programming of the ethernet controller, as shown in figure A.6.

Figure A.6 IP2022 Programming Circuitry

 62

 FPGA Programming Interface: These circuit elements enable the

programming of the FPGA, as shown in figure A.7.

Figure A.7 FPGA Programming Circuitry

 63

 Capacitors: These circuit elements are the bypass capacitors, to

enable the signal integrity through the board. The bypass and

decoupling capacitors are shown in figure A.8.

Figure A.8 Capacitors

 64

APPENDIX B

MULTIPLIER BOARD

The printed circuit board used in the implementation of this thesis, is

presented in figure B.1.

Figure B.1 Printed Circuit Board

 65

APPENDIX C

USER INTERFACE FORMS

Form 1 is the form, where the user enters the operand values in the user

interface application. There is a multiplication log, in which the

multiplications are displayed visually. Word length can be selected as well

as the serial port baud rate and the remote IP address.

Figure C.1 Multiplication User Interface

The configuration window of the user interface is presented in figure C.2.

Figure C.2 Configuration User Interface

 66

	Aim of the Thesis
	Cryptography Applications
	Definition of Montgomery Multiplication
	History of Montgomery Multiplication
	Field Programmable Gate Arrays
	Application of Field Theory to Modular Multiplication
	Types of Cryptographic Algorithms Using Modular Multipliers
	Montgomery Multiplication Algorithm
	Theory of New Montgomery Multiplication Algorithm
	New Algorithm for Prime Fields
	3.1.2 New Algorithm for Binary Extension Fields
	Precomputation in New Multiplication Algorithm
	New Processing Unit
	Dual Field Adder
	Local Control Logic of New Processing Unit
	Derivation of Local Control Logic
	Montgomery Multiplier Blocks in FPGA
	Main Unit
	Multiplier Core
	Processing Unit
	Ethernet Controller Software
	Initialization of the IP2022
	Program Flow of the Ethernet Interface
	Data Processing in the Ethernet Controller
	Multiplier User Interface
	Preparation of the Packet
	Receiving Packets
	5.1 Comparisons of Multiplier Architectures
	5.1.1 Area Comparison
	5.1.2 Clock Frequency Comparison
	Multiplication Period Comparison

	5.2 Analysis of the New Architecture

