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ABSTRACT

NON-LINEAR MATHEMATICAL MODELING
OF GEAR-ROTOR-BEARING SYSTEMS
INCLUDING BEARING CLEARANCE

GURKAN, Niyazi Ersan
M.S. Department of Mechanical Engineering
Supervisor: Prof. Dr. H. Nevzat OZGUVEN
November 2005, 130 pages

In this study, a non-linear mathematical model of gear-rotor systems which
consists of elastic shafts on elastic bearings with clearance and coupled by a non-
linear gear mesh interface is developed. The mathematical model and the software
(NLGRD 2.0) developed in a previous study is extended to include the non-linear
effects due to bearing clearances by using non-linear bearing models. The model
developed combines the versatility of using finite element method and the rigorous
treatment of non-linear effect of backlash and bearing clearances on the dynamics

of the system.

The software uses the output of Load Distribution Program (LDP), which
computes loaded static transmission error and mesh compliance for the contact
points of a typical mesh cycle, as input. Although non-varying mesh compliance is
assumed in the model, the excitation effect of time varying mesh stiffness is
indirectly included through the loaded static transmission error, which is taken as a

displacement input into the system.
Previous computer program which was written in Fortran 77 is rewritten by

using MatLAB 7.0 and named as NLGRD (Non-Linear Geared Rotor Dynamics)
Version 3.0. The program is highly flexible and open to further developments. The

v



program calculates dynamic to static load ratio, dynamic transmission error, forces

and displacements at bearings.

The mathematical model suggested and the code (NLGRD version 3.0) are
validated by comparing the numerical results obtained from the model suggested
with experimental data available in literature. The results are also compared with
those of previously developed non-linear models. The effects of different system
parameters such as bearing stiffness, bearing clearance and backlash on the gears
are investigated. The emphasis is placed on the interaction of clearances in bearings

with other system parameters.

Key words: Gear dynamics, Gear mesh modeling, Non-linear gear dynamics, Non-

linear bearings, Dynamic to static load ratio
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YATAK BOSLUKLARI ICEREN
DISLI-SAFT-YATAK SISTEMLERININ
DOGRUSAL OLMAYAN ELEMANLARLA
MATEMATIK MODELLENMESI

GURKAN, Niyazi Ersan
Yiiksek Lisans, Makine Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. H. Nevzat OZGUVEN
Kasim 2005, 130 Sayfa

Bu calismada, dislilerle birlestirilmis ve bosluk igeren elastik yataklar
tizerindeki millerden olusmus disli-rotor sistemlerinin disli boslugunu da dikkate
alan, dogrusal olmayan matematik modeli gelistirilmistir. Bir onceki ¢alismada
gelistirilmis olan matematiksel model ve yazilim (NLGRD V2.0), dogrusal
olmayan yatak modelleri kullanilarak, yatak bosluklarindan kaynaklanan dogrusal
olmayan etkileri igerecek sekilde genisletilmistir. Gelistirilen model, sonlu
elemanlar yonteminin esnekligiyle, dogrusal olmayan sistemlerin analiz imkanini
birlestirerek yatak bosluklarinin sistemin dinamigine etkisinin ayrintili  bir

inceleyebilmektedir.

Yazilim, statik iletim hatasim1 ve disliler arasindaki direngenligi tipik bir
disli dongiisiindeki temas noktalar1 i¢in hesaplayan Yiikk Dagilim Programi’nin
(LDP) c¢iktisin1 girdi olarak kullanir. Modelde sabit bir kavrama direngenligi
oldugu varsayilmasina ragmen, zamanin fonksiyonu olan kavrama direngenliginin
tahrik etkisi, sisteme yerdegistirme girdisi olarak alnan bu statik iletim hatasi

araciligiyla dolayli yoldan dikkate alinmustir.

Onceki calismada Fortran 77 kullanilarak yazilmis olan program, MatLAB
7.0 kullanilarak yeniden yazilmis ve NLGRD (Dogrusal Olmayan Disli Rotor
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Dinamigi) Versiyon 3.0 olarak adlandirilmistir. Program olduk¢a esnek ve
gelismelere agiktir. Yazilim; dinamik faktorii, dinamik iletim hatasini, yataklardaki

tepki kuvvetleri ve yataklardaki deplasmani hesaplamaktadir.

Onerilen matematik model ve gelistirilen yazilim (NLGRD versiyon 3.0),
elde edilen sayisal sonuglarin literatiirde bulunan deneysel sonuclarla
karsilastirilmasiyla dogrulanmistir. Sonuclar, ayni zamanda oOnceki dogrusal
olmayan modellerle bulunan sonuclarla da karsilastirilmistir. Yatak direngenligi,
yataklardaki bosluklar ve dislilerdeki bosluklar gibi ¢esitli sistem parametrelerinin
etkileri incelenmistir. Yataklardaki bosluklarin dogrusal olmayan ozelliklerinin

diger sistem Ozellikleriyle etkilesimleri {izerinde 6zellikle durulmustur.

Anahtar Kelimeler: Disli dinamigi, Disli kavrama modeli, Dogrusal olmayan disli

dinamigi, Dogrusal olmayan yataklar, Dinamik faktor.
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CHAPTER 1

1 INTRODUCTION

1.1 General

With the increased demand for high speed machinery, the mathematical
modeling of dynamic analysis of gears has gained importance. Numerous
mathematical models have been developed for different purposes in the past three

decades.

Moreover, in order to minimize noise and failures by dynamic loads, it is
now essential to accurately predict the dynamic behavior of geared systems. As the
transmitted power and rotational speed increases, dynamic loads become more
significant for the design of gears. Especially when the wear behavior and noise
radiation are considered, dynamic loads are much more effective compared with

static loads.

Reducing the effective transmission error by stringent quality control
measures in gear manufacture and profile modifications are the convenient
approaches followed in reducing the gear noise. While these steps are beneficial,
they seldom provide dramatic reductions in gear noise and they fail to recognize

the contribution of the system dynamics.

Therefore consideration of the effects of gear train dynamics should be
included to have a more through design study. In many cases, the system dynamics
cause the design to be enormously sensitive to manufacturing induced transmission
error. Thus, it is advantageous to minimize the design sensitivity through the use of

dynamic analysis for the applications that are sensitive to gear noise.



However, the problem of geared rotor dynamics is difficult to handle due to
the change of the number of meshing gear teeth pair in one tooth contact cycle,
which leads to variable mesh stiffness. Presence of backlash and other type of
nonlinearities will complicate the problem further. Therefore several assumptions
must be made before modeling the system. It is obvious that the type of the model,
which should be used for a reliable dynamic analysis, depends upon the object of
the study as well as the relative dynamic properties of different elements in the

system and its configuration. (Ozgiiven and Houser, 1988b):

Some of the important parameters in gear dynamics are:

e Backlash

System elements:
o Gear-mesh interface
o Prime mover and load inertia
o Shaft inertia and stiffness

o Bearing stiffness and clearance

Gyroscopic effects

Friction at gear mesh

Excitations:

o External excitations

o Internal excitations

1.2 Literature Survey

1.2.1 Dynamic Factor

The actual tooth load of gears in mesh consists of two main components: a
static component corresponding to the transmitted power (which is almost equal to
the total load at low speeds of rotation) and a dynamic component which provides a
fluctuating increment due to dynamic action. Therefore the history of the dynamic

modeling of gears starts with the studies determining dynamic factors.



The dynamic factor (which was then called as speed factor) is first
introduced by Walter in 1868 (Fisher, 1968) as the ratio of the static load to the

dynamic load.

Dynamic Factor=SL/DL (1.1)

where SL is the static load and DL is the dynamic load.
This factor is then estimated by Barth (1968) as:

600

Dynamic factor=
o 6001V

(1.2)

where V is the pitch line velocity in feet per minute.

When it is found that this formula was too conservative at high speeds, Ross

(1927) recommended the modified form as:

78 13
784V (1-3)

Dynamic factor=

which received acceptance as one of the standard factors used by the American
Gear Manufacturing Association (AGMA). This formula and several modified

forms of it are still being used in some fields.
Seireg and Houser (1970) used the experimental tests results and developed

a new semi-empirical formula for dynamic tooth load that takes into account gear

geometries, manufacturing error and operating loads and speeds. It is given as:

Dynamic factor=

78
1.4
78V (9
Buckingham (1963) attempted to include the effect of flywheels, pulleys,
etc. mounted on the gear shaft on the dynamic factor by using empirical equations.
He came up with two equations for calculating the dynamic load. It can be regarded
that the second equation is just an approximation to the first one. The fundamental

Buckingham equation is (Shigley, 1963):



W,=W'+ /W, 2W,-W,) (1.5)

where Wy is dynamic load, W' is transmitted load, W, is acceleration load and W,
is the force required to deform the teeth.

The approximate Buckingham equation is given as (Faires, 1965)

0.05V(FC+W")

W,=W'+
0.05V-+vJFC+W"

(1.6)

where F is face width, C is deformation factor and V is pitch line velocity.

Tucker (1971) modified Tuplin equation (Tuplin, 1958) to combine the
different dynamic factors being used at that time by AGMA. This research
continued in the 1970 and 1980’s to find a simple dynamic factor formula. The
dynamic factor equations in current AGMA standards (AGMA 218.01) are

functions of gear pitch line velocity and the quality of the gears.

In a recently proposed ISO method (ISO TC/60), however, three different
approaches are suggested for the calculation of the dynamic factor. While the most
complex of them requires a comprehensive dynamic analysis to consider the
resonance effects, simplified method predicts the dynamic factor in the sub-critical

zone.

1.2.2 Mathematical Models

There are many models for gear dynamics in literature. The objects of these
models vary from noise control to stability analysis. Mathematical models
developed for the dynamic analysis of gears range from simple single degree-of-
freedom (SDOF) models to non-linear rotor dynamic models. An extensive review
of the literature on dynamic modeling of gears has been given by Ozgiiven and

Houser (1988a).

In 1931, several works carried by the ASME Researches Committee were

published. After the development of the dynamic load equation in this report, little



was done until 1950°s. A detailed discussion of these pre-1950 studies was given

by Fisher (1961) and Buckingham (1949).

In 1950 a new period in gear dynamics was initiated which incorporated the
use of vibratory models in the dynamic analysis of gears. Such mathematical
models made it possible to study other dynamic properties of geared system in

addition to the dynamic loads.

The first vibratory model of a geared system was introduced by Tuplin
(1950). The system is represented by an equivalent constant mesh stiffness and an
equivalent mass. By the addition and subtraction of wedges with different shapes at
the base of the spring, which represent the mesh stiffness, the gear errors were

modeled.

It was the Strauch (1953) who seemed to have the first study considering a
periodic excitation. He considered the step changes in mesh stiffness due to

changing from single pair to double pair tooth contact.

The effect of various forms of assumed tooth error was discussed by
Reswick (1955). He used a simple dynamic model consisting of two masses
constrained to move in a horizontal direction and excited by a parabolic or constant

acceleration cam which was suddenly moved downward at the pitch line velocity.

Harris (1958) seems to have been the first to emphasize the importance of
transmission error by showing that the behavior of spur gears at low speeds can be
summarized in a set of static transmission error curves. In his SDOF model, the
variation of tooth stiffness, non-linearity in tooth stiffness due to contact loss and
manufacturing errors were taken into account. The computational results in general
confirmed Harris’s contention that non-linear effects are insignificant when

damping is more than about 0.07 times of critical.

Utagawa and Harada (1960) suggested an undamped SDOF model which

consists of an effective mass and a time varying mesh stiffness. Indeed, the



dynamic loads predicted by the model illustrated good correspondence with

experimental work.

Gregory, et al. (1963) extended the theoretical analysis of Harris and made
comparisons with experimental observations. The torsional vibratory model of

Gregory et al. included sinusoidal-type stiffness variation as an approximation.

Retting, Bosch and Aida et al. (1965-1970) presented the examples of other
studies in this area. Each author modeled the vibration characteristics of gears by
considering the excitation terms due to tooth profile errors and pitch errors, and by

including the variation of teeth mesh stiffness.

Nakamura (1967) investigated the separation of tooth meshing with a SDOF
model. He accounted for single and double tooth pair contact with a square wave
tooth mesh stiffness variation and used a sinusoidal representation of tooth errors.
He adopted a numerical piece-wise solution and concluded that the largest dynamic

load occurs immediately after the separation at a specific speed.

Kohler, Pratt and Thomson (1970) developed a six DOF dynamic model
with four torsional DOF in the direction of the tooth force on each shaft. They
concluded that dynamic loads and noise result primarily from the steady state

vibration of a gear system when forced by static transmission error.

Wang and Morse (1972) used the transfer matrix method to obtain the
torsional response of a general gear train system excited by external torque. Their
model includes shaft and gear web stiffness as well as constant mesh stiffness.
Later, Wang extended the model to include gear tooth backlash, linear and

nonlinear damping elements.

Wallace and Seireg (1973) used a finite element model to study the stress,
deformation and fracture in gear teeth when subjected to dynamic loading. In their
model, the gear is treated as a continuum and the mass of the investigated tooth is

included.



Rettig (1975) modeled a single stage gear system with six DOF (four lateral
and two translation) with all lateral freedoms being in the same direction. The
model includes variable tooth mesh stiffness and a simplified formula for the

dynamic factor calculations.

Salzer et al. (1977) proposed a six DOF model for a car gearbox which
includes time dependent gear tooth stiffness, non-linear bearing stiffness, loss of
contact and spacing errors. A real time modeling of the gearbox and analogue

computer solutions are used.

Zorzi and Nelson (1977) developed a finite element model for determining
the dynamic behavior of a rotor. He used a Rayleigh beam finite element including
the effects of the translational and rotary inertia, gyroscopic moments, internal

damping and the axial load.

Remmers (1978) expressed the static transmission error of a spur gear as
Fourier series in his damped vibratory model. The coupling of the gear pair is
represented by a viscous damping and a constant mesh stiffness. The effect of
spacing errors, load, design contact ratio and profile modifications are included in

the model.

Kubo (1978) used a torsional vibratory model to predict tooth fillet stress
and to study the vibration of helical gears with manufacturing and alignment errors.

Periodic change of total tooth stiffness was included in the model.

Nelson (1979) utilized Timeshenko beam theory for establishing the shape
functions. He derived the system matrices including the effects of rotary inertia,

gyroscopic moments, axial load, and shear deformations.

The non-linear vibrations due to gear errors were studied by Kishor (1979)

with a constant tooth mesh stiffness model. The model consisted of two gears, two



disks and two shafts. An approximate solution method was employed to solve the

system equations.

Kubo and Kiyono (1980) constructed a model for a helical gear pair. The
model included torsional and translational degrees of freedom, shaft stiffness, as
well as variable mesh stiffness. The model was used to estimate the dynamic
exciting force due to both profile and lead errors and due to periodic change of
tooth stiffness. Several tooth error forms were investigated and it was concluded
that the convex tooth form error is the most harmless among the different kinds

studied.

Lees and Pandey (1980) used a finite element model of a gear box to
establish a direct link between vibration and gear forces. Additional components
were used in this finite element model to represent a gear mesh. The bearing
vibration measured at the bearing was used to estimate the gear errors and resulting

tooth forces.

In the work published by Iida et al. (1980), the coupled torsional-transverse
vibration of geared system is considered. In their work a two shaft-two gear system
was analyzed by assuming that one of the shafts was rigid, and the response to gear
eccentricity and mass unbalance was determined. They showed that transverse
vibrations couples with torsional vibrations even though gyroscopic effects are

neglected.

Mark (1982) modeled a gear fatigue test apparatus by assuming rigid shafts,
rigid gear bodies, and rigid bearing supports. However, the model included the
inertia of the shafts and the damping between the slave gear and its shafting. He
used a Fourier series representation of the excitation and the computations were
carried out, for the most part, in the frequency domain by using the fast Fourier

transform computational algorithm.

Troeder et al. (1983) constructed a model which included torsional, lateral

and axial vibration of a helical gear pair-shaft-bearing-system. Fourier expansion of



tooth mesh stiffness in the form of a square wave was used in the model. Tooth
profile errors, as well as pitch errors were considered in the model developed for a

parametric study. The effect of torque change was studied.

An eight DOF model for single stage spur and helical gears is constructed
by Kiigiikay (1984). The model includes the axial vibration of rigid disks which
represent gear blanks, as well as torsional, transverse and tipping motions. Periodic
tooth mesh stiffness, tooth errors and external torque were considered. The load
dependent contact ratio and nonlinearities due to separation of teeth are also
considered in the model. Steady state solution for the determination of dynamic
tooth displacements and loads were found by using perturbation methods, by using

a linearized model in the computation of the loads.

Spots (1984) used the famous spring-wedge analogy of Tuplin to estimate
simply the dynamic load to be used in gear design. A SDOF model is used with a
constant stiffness. The dynamic load is expressed as the multiplication of the same
powers of velocity, stiffness and mass. The equation for dynamic load was then
obtained by using the condition that the expression was to be dimensionally

homogeneous.

Iwatsubo et al. (1984) studied the rotor dynamics problem of geared shafts
by including a constant mesh stiffness and the forcing due to unbalanced mass. The
effect of tooth profile error and backlash was neglected. The transfer matrix
method was employed in the solution and free and forced vibration analyses were

made and the natural frequencies of the resulting linear system were obtained.

Neriya et al. (1985) used the finite element method for dynamic analysis of
geared trained rotors. They modeled a single gear as a two mass-two spring-two
damper system, one of the set representing a tooth and the other one representing
the gear itself. The shafts were also included, and the coupling between torsional
and flexural motion was considered in the model. A constant mesh stiffness was

assumed. The response of the system to mass unbalance and geometric eccentricity



in the gear was calculated, and the resulting dynamic tooth load was determined by

using undamped modes of the system and the equivalent modal damping values.

Lin and Huston (1986) constructed a torsional model for the design of spur
gear systems. A variable mesh stiffness was calculated by taking a tooth as a
cantilever beam and by considering also the flexibility of the fillet and foundation
and the local compliance due to contact forces. Constant damping coefficients are
assumed and the friction between gear teeth was included in the model with a
frictional torque. A linearized iterative procedure was used for the numerical

solution and a computer program is developed.

Ozgiiven and Houser (1988) developed a SDOF non-linear model for the
dynamic analysis of a gear pair. The model includes the effects of variable mesh
stiffness and mesh damping, gear errors, profile modifications, and backlash. Two
methods are suggested and a computer program is developed for calculating the
dynamics mesh and tooth force, dynamic factors and dynamic transmission error
by using measured or calculated static transmission error data. They showed that
using a constant mesh stiffness with a displacement excitation at the mesh point
representing the loaded static transmission error is a very good approach for

including the time variation effect of the mesh stiffness.

Kahraman and Singh (1990) developed a SDOF non-linear model. The
frequency response characteristics of a spur gear pair with backlash are studied for
both external and internal excitations. The mesh stiffness is assumed to be constant.
Two solution methods were used, namely the digital simulation technique and the
method of harmonic balance. Later, Kahraman and Singh (1991a) extended the
SDOF model to include the bearings dynamics. The three DOF model includes the
nonlinearities associated with radial clearances in rolling bearings and gear
backlash. The mesh stiffness is assumed to be constant. The interactions and
differences between internal static transmission error excitation and external torque

excitation are discussed.
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Kahraman and Singh (1991b) extended further the single and three DOF
models to include a sinusoidal or a periodic mesh stiffness. The interactions
between the mesh stiffness variation, gear backlash, and bearing clearance were
investigated. They found a strong interaction between time-varying mesh stiffness
and gear backlash, whereas the coupling between the time varying mesh stiffness

and bearing nonlinearities is observed to be weak.

Ozgiiven (1991a) extended the model of the previous study (Ozgiiven and
Houser, 1988b) to include the effects of shaft and bearings dynamics. The six DOF
nonlinear model includes a spur gear pair, two shafts, two inertia representing the
load and prime mover, and bearings. The effect of lateral-torsional vibration

coupling on the dynamics of gears is studied.

Ozgiiven and Ozkan (1984) extended the rotor dynamics model of Zorzi
and Nelson (1977) to include the combined effects of shear deformation and the
internal damping. In their model, they considered the effects of rotary inertia,
gyroscopic moments, axial load, internal viscous and hysteric damping and

transverse shear deformations.

Kahraman et. al. (1992) used the rotor dynamics model of Ozgiiven and
Ozkan (1984) and included a gear pair to the system. The model includes the rotary
inertia of shaft elements, the axial load of shaft, flexibility and damping of
bearings, material damping of shafts, and the stiffness and the damping of gear
mesh. The mesh stiffness is assumed to be constant and the coupling between the
torsional and the transverse vibration of gears were considered. The excitation
effect of mesh stiffness variation is included in the analysis as a harmonic

excitation.

Kesan and Ozgiiven (1992) extended the model of Kahraman et al. for
helical gears. The effect of the higher harmonic terms of the Fourier series
representation of the periodic loaded static transmission error function is also

included in the analysis.
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Kahraman (1993) studied planetary gear trains that are also known as
epicyclical gears. They have numerous advantages over simple counter-shaft gear
drives, including higher torque-to-weight ratio, compactness, decreased radial
bearing loads and reduced noise. In his study he proposed a simplified purely
torsional model of a single stage planetary gear set. Closed form expressions for
torsional natural frequencies are derived in terms of a limited number of system

parameters.

Rook and Singh (1993) studied reverse idler gear system to gain a better
understanding of the non-linear behavior. Results of the Galerkin method (multi-
term harmonic balance) are compared with results of numerical integration

techniques.

Lin et al. (1994) conducted a computer simulation to investigate the effects
of both linear and parabolic tooth profile modifications on the dynamic response of
low contact ratio spur gears. The effects of the total amount of modification and
length of the modification zone were studied at various loads and speeds to find

the optimal profile modification for minimal dynamic loading.

Litvin et al. (1995) proposed an approach for the design and generation of
low-noise helical gears with localized bearing contact. The approach is applied to
double circular arc helical gears and modified involute gears. The reduction of
noise and vibration is achieved by application of predesigned parabolic function of
transmission errors. Computerized simulation of meshing and contact of designed
gears demonstrated that the proposed approach will produce a pair of gears that has

a parabolic transmission error function even when misalignment is present.

Cai (1995) developed a vibration model for helical gears, assuming that
there are no spacing error and no shaft run-out, in consideration of nonlinear tooth
separation phenomenon. In the model, a simple modified stiffness function,
including the effect of tooth numbers and addendum modification coefficients, is

proposed for a helical involute tooth pair.
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Blankenship and Singh (1995) developed a new model that describes mesh
force transmissibility in a helical gear pair. New spectral stiffness and
transmissibility matrices are developed based on linear theory, which completely
characterize the steady state forced response of a helical gear pair. They concluded
that additional degree of freedom must be included in the gear mesh interface
model in those geared systems analyses which attempts to predict structure borne

noise and casing vibration associated with power transmission systems.

Vinayak et al. (1995) developed a model for multi-mesh transmissions with
external, fixed center, helical or spur gears. Each gear is modeled as a rigid body
with six degrees of freedom. Excitation to the system is considered in the form of
either external torque pulsation or internal static transmission error. They compared

the results with finite element model results.

Yoon and Rao (1996) presented a method to minimize the STE using cubic
splines for gear tooth profile. They conducted a parametric study to establish the
superiority of cubic spline based gear profile over the involute profile as well as

other profiles based on the use of linear and parabolic tip relieves.

Arikan (1996) carried out a study on the effect of tooth profile
modifications on spur gear dynamic loads. In his work, emphasis is placed on the
addendum modification, and the effect of it on the dynamic gear loads is

investigated.

Howard, Shengxiang and Wang (2001) developed a dynamic model that
incorporates the effect of variations in gear tooth torsional mesh stiffness, using

finite element analysis.

Vaishya and Singh (2001) studied the sliding friction induced nonlinearity
and parametric effects in gear dynamics. They stated that dynamic interactions
result between friction and system parameters due to the sliding resistance and
meshing properties. The harmonic balance formulation is developed to predict the

dynamic behavior and sub-harmonic instabilities in the system. Finally, the
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dynamic effects of friction-induced non-linearity are investigated and the critical

parameters are identified.

Velex and Sainsot (2002) presented an original analytical analysis of tooth
friction excitations in errorless spur and helical gears based upon a Coulomb
friction model. The potentially significant contribution of tooth friction to
translational vibrations of pinions and gears is pointed out, particularly in the case

of high contact ratio gears.

Wojnarowski and Onishchenko (2003) carried out analytical and
experimental investigations of the influence of the deformation and wear on spur
gear dynamics. They developed an elastic, dynamic model with worn teeth having
two degrees of freedom. Results of the experiments showed that the change of the
out lines of the teeth due to wear must be taken into account when calculating the

durability of the gear transmission.

Yiiksel and Kahraman (2004) employed a computational model of a
planetary gear set to study the influence of surface wear on the dynamic behavior
of a typical planetary gear set. The overall computational scheme combines a wear
model that defines geometric description of contacting gear tooth surfaces having

wear and a deformable-body dynamic model of a planetary gear set.

Ozgiiven, Maliha and Dogruer (2004) presented a new nonlinear dynamic
model for a gear-shaft-disk-bearing system. A nonlinear dynamic model of a spur
gear pair is coupled with linear finite element models of shafts carrying them, and
with discrete models of bearings and disks. The nonlinear elasticity term resulting
from backlash is expressed by a describing function, and a method developed in
previous studies to determine multi harmonic responses of nonlinear multi-degree-
of-freedom systems is employed for the solution. The computer code, Non-Linear
Geared Rotor Dynamics (NLGRD) developed in this study is capable of calculating
dynamic gear loads, dynamic bearing forces and bearing vibrations, as well as

making the modal analysis of the corresponding linear system.
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Velex and Ajmi (2005) introduced an original approach to the modeling of
pinion—gear excitations by using a three-dimensional model of single-stage geared
transmissions. In their model, shape deviations and errors on gears are considered,
and the associated equations of motion account for time-varying mesh stiffness as
well as torsional, flexural and axial couplings. Using an extended finite element
model of a spur and helical gear test rig, the dynamic results from the formulations

based on transmission errors are compared with the reference solutions.

Even though there are several mathematical models developed for gear
dynamics, there are only a few extensive experimental studies that can be used to
verify these models. Attia (1959) presented a set of experimental results giving the
dynamic loads in spur gears. Munro (1962) used a lightly damped test rig to
measure the dynamic transmission error of a spur gear at different speeds. Kubo
(1972) has measured the dynamic tooth stresses in spur gears at a wide range of
speeds. Also Kahraman (2004) carried various experimental studies on dynamic
analysis of a multi-shaft helical gear transmission systems and experimental

investigations of the influence of the lubricant viscosity and additives on gear wear.

1.3  Scope of the Thesis

In this thesis, the advanced gear-shaft-bearing model and software
“Nonlinear Geared Rotor Dynamics (NLGRD)” (Ozgiiven, Maliha and Dogruer,

2004) are modified further to include the features summarized below.

Firstly, the nonlinear effects of the bearing clearances are taken into

consideration and the mathematical model is reconstructed accordingly.

Secondly, the computer code developed is rewritten in MatLAB 7.0 to
handle the change in the mathematical model and the emphasis is placed on the
bearing clearances. By introducing the pre and post processors of the program, any
user-error is tried to be minimized. Having completed the analyses, user can see the

results graphically without terminating the interface.
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Then the model is verified by carrying out some case studies and by
comparing the results with available experiment results and the results of other

theoretical models.

The effects of several parameters on the dynamic to static load ratio are
studied by using the configuration of experimental setup of Kubo as a case study.
Effects of bearing stiffness, bearing clearance and gear backlash are studied in
depth. Emphasis is placed on the interaction between bearing clearance

nonlinearity with the other system parameters and especially the gear backlash.
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CHAPTER 11

2 PROBLEM FORMULATION AND DYNAMIC MODELING OF
SYSTEM ELEMENTS

2.1 Introduction

There are many mathematical models developed for the dynamic analysis of
geared systems in literature. Using a single degree of freedom model considering
the gear itself may be a fast and accurate approach when the effect of rotor and
bearing dynamics can be ignored. Sometimes, it is unavoidable to use a
complicated model to include the coupling between the mesh mode and the other

modes.

Although there are many multi degree of freedom models for the dynamic
analysis of geared rotors, the Finite Element Method (FEM) seems a highly
efficient, flexible and accurate approach. The configuration, location and number
of elements need not to be fixed when the FEM is used. However, when
nonlinearities are included into the model, FEM requires considerably high
computational time, which makes lumped models favorable in such cases, since the
solution is obtained by numerical integration in time domain and FEM has much
larger degrees of freedom. In such cases, harmonic response analysis seems more
suitable since the solution is obtained in frequency domain. However, a new
lumped model must be constructed each time when the configuration, location

and/or number of elements are changed.

Therefore in this study, FEM is employed along with the harmonic response
analysis method for nonlinear systems, which reduces the computational time
drastically compared to classical FEM applied to nonlinear systems. Thus, the

flexibility of FEM is retained without increasing the computational effort.
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The model developed in this study is capable of handling stepped rotors,
multi-disks and multi-bearings. It also includes the effects of gear-backlash, gear
errors, profile modifications and clearances in bearings. While the mesh stiffness is
assumed to be constant when the gear pair is in contact, the excitation effect of the
mesh stiffness variation is included in the analysis through a displacement

excitation at the mesh point.

In this chapter the application of the finite element technique to a non-linear
geared rotor system is presented. In this study, the formulation for a geared system
composed of two gears with backlash nonlinearity, two rotors, bearings and disk
elements, employed in a previous study (Maliha et. al, 2004) has been used and

nonlinearity due to clearances in bearings is added to the formulation.

2.2 Theory

A typical generic geared rotor system, which consists of a spur gear pair
mounted on flexible shafts, supported by bearings is shown in Figure 2.1. The basic

elements of such a system can be listed as follows:

e Flexible shafts
e Rigid disks
e Flexible bearings with clearance nonlinearity

e Gears with flexible teeth and backlash nonlinearity

Assuming that the axial motions of shafts are negligible, each node in the
finite element model of a shaft will have five degrees of freedom. Then each finite
shaft element has ten degrees of freedom. The rigid disks and gear blanks are
modeled as five degrees of freedom rigid elements, whereas flexible bearings are
modeled as two degrees of freedom elements having nonlinear stiffness values.

Each of these elements will be discussed in detail in following sections.
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Figure 2.1 A typical geared rotor system

The individual element matrices (mass, damping and stiffness) are then
assembled to form the overall system matrices. The two gears are coupled by a
non-linear spring damper system. The coupling matrices are then added to the

overall system matrices to give the equation of motion in the following form:

[M{d}+[Claj+[KHa} +{N} ={f} 2.1)

where [M], [C] and [K] represent the mass, viscous damping and linear stiffness
matrices respectively, {q} is the vector of displacements and dot denotes
differentiation with respect to time, {f} and {N} represent the external forcing and

the internal non-linear forces, respectively.
2.3 Formulation of System Elements
2.3.1 Finite Element Modeling of Flexible Shafts

The shaft elements (or also called rotor elements) considered in this study
are uniform and circular. The length of rotor element is L and the mass per unit
length is m®. The ten degrees of freedom element has four translations and six

rotations as shown in Figure 2.2.

The time dependent end point displacements of the finite rotor element are

indicated by {q°}, where 10-DOFs are:
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e 4 translations (2 at each side): q;,q2 and q¢ q7

e 6 rotations (3 at each side): q3,q4,95 and qs,q9,q10

Figure 2.2 Finite Element Rotor

Using the FEM model, first the kinetic and the potential energies of the
rotor element are obtained. Then applying the Lagrange equation, the equation of

motion for the finite rotor element is obtained as (Ozgiiven and Ozkan, 1984):

([Mf]Jr[Mf]Jr[M%]){qe} +(nv [K;]){qe}Jr
e SRR EN b e A1 CYR S

I+ng

(2.2)

in this equation:

e [K%], [K°r] and [K°A] are transverse, torsional and axial incremental stiffness
matrices respectively

e [M%], [M%] and [M%] are translational, rotational and torsional mass matrices
respectively

e [K°] is the damping incremental stiffness matrix

e 1y and n, are hysterical loss and viscous damping factors respectively

20



e {f} is the external forcing vector

The elements of these matrices are given in detail in Appendix A.
2.3.2 Formulation of Rigid Disks

Disk elements are assumed to be rigid and planar. Each disk has;
e mass of m® and diametral mass moment of inertia I.°
e polar mass moment of inertia Ig"
e 5-dof associated such that 2 of them are translations in y and z directions
and 3 of them are rotations about the y,z and x directions.(q;, > and qs, qa,

qs)-

Then the equation of motion for a disk element can be obtained as:

([ J+ [ e} = ) 23)
in this equation:
e [M‘%] and [M%] are translational and rotational mass matrices respectively
(elements of these matrices are given in in detail in Appendix A)

e displacements {q*} "={q1, 92, 93, G4, qs}
2.3.3 Formulation of Nonlinear Bearings

In this study, the flexible bearings are modeled as 2-DOF elements. The

schematic representation of a nonlinear bearing is shown in Figure 2.3.

As shown in the figure, bearings
e are discrete elements
e are modeled as 2-DOF elements, the DOFs being two translations: qi, q2
e have radial clearances
e have linear viscous damping coefficient: Cyy, Cyz, Czy, Czz
e have time invariant stiffness coefficient: Kyv, Kyz, Kzy, Kzz
where Kj; and Cj are coefficients that represent the forces in i direction due to a

. . .th q- .
motion in j = direction.
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Figure 2.3 Schematic Representation of Nonlinear Bearings

As a result force displacement relation for a bearing can be written as:

o bl frat-tey

2.3.3.1 Clearance Nonlinearity in Bearings

2.4)

In the force displacement relation, f(q;) is the displacement function which

represent the nonlinearity in bearing and it is defined as clearance-type dead space

Sfunction with backlash around the origin.

/»(qi) can be defined as (T.A. Harris, 1966; M. F. White, 1979; T. C. Lim

and R. Singh, 1990):

H

Z:[qicos(ocr)—bb]n cos(a,), q;>b,

r=1

fr(q)=1 0 -b, < q,<b,

H
—Z[|qi|cos(ar)—bb] cos(ar), q; <-b,
r=1

2.5)

where o, is the angular position of the - rolling element in contact, 2by, is the radial

clearance of the bearing, n is the power of the nonlinear force displacement
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relationship (n=1.5 for ball bearings and n=10/9 for roller bearings) and H is the

total number of rolling elements in contact under loaded conditions.

Figure 2.4 shows exact and approximate bearing deflection functions f; for
a pre-defined roller bearing. Note that both approximations differ in clearances by
and byp, but have the same slope as the exact bearing stiffness curve for q;>3by,. To
simplify the analysis considerably, linear approximations A and/or B can be

accepted.

As a result, nonlinear bearing deflection function f,(q;) can be approximated

in the piecewise linear form as:

q;-by, q; >b,
£ () =10, -b, < q,<b, (2.6)
q;,+b,, q,<-b,

Note that f5(qi)= qi when the clearance (by) is equal to zero (i.e linear case).
Describing function method is used to represent this nonlinearity, which

will be discussed in detail in the following chapter.

Approximation &

Exact b

Displacement function

Approximation 4
]

i
|
0

Displocement

Figure 2.4 Exact and approximate bearing deflection functions
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2.3.4 Formulation of Gear Mesh

The gear pair is modeled by two disks which represent the inertia of gears
and by a non-linear spring damper system representing the gear mesh. The model

includes the following important features:

e the excitation effect of time varying mesh stiffness
e backlash

e separation of teeth in mesh

e gear errors

¢ profile modifications

Figure 2.5 shows schematical representation of a non-linear gear mesh model.

Figure 2.5 Dynamic model of a spur gear mesh interface
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As it can be seen from the Figure 2.5, two gears are coupled by a nonlinear
displacement function of f;(p) and viscous damping coefficient of Cy, both acting

along the pressure line.

Friction forces at the mesh point can be assumed to be negligible (Houser,
1988). Also the damping coefficient can be assumed to be time-invariant
(Kahraman, 1999). In the gear mesh model used, the effect of tooth separation is
taken into consideration but tooth impact is ignored (Kahraman et al. 1991, Maliha,

1994; Maliha et al. 2004).

Considering the mesh model shown in Figure 2.5, the relative displacement

between two gears along the pressure line can be written as:

P=Y, =Y, t rpep - rgeg —e, (1) (2.7)

and its time derivative is:

p=y, — ¥, +1.0, - 1.0, —¢&,(1) (2.8)

where 0, and 0, are total angular rotations, r, and r, are base circle radii of pinion
and gear, respectively and e(t) is the loaded static transmission error which will be

discussed in detail in the following section.

Then, the differential equations for translational and torsional vibrations of

the gear pair can be written as:

mpyp +W1 =0 (2-9)
m,y,-W,=0 (2.10)
10, +Wr =T, (2.11)
1,6,-Wr,=-T, (2.12)

The mesh force W, in the Y-direction (along the pressure line) can be

written as:

W,=C,.ptk, /,(p) (2.13)
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where fu(p) is the nonlinear displacement function representing backlash (details of

which will be discussed in Section 2.3.4.2), ky, is the mesh stiffness and C,, is the

viscous mesh damping coefficient.

Substituting W, and p expression into the equations of motion yields:

m, yp +Cmyp 'Cmyg +C, rpép -Cmrgég -Cmét (t)+kh fh (p)=0
mpyp 'Cmyp +Cmyg -Gt 9 +C,r, 9 +Cmét (t)'khfh (p)=0

mp-p m-g-g

Ipep +rpCm}'1p -I‘pcm}'/g +rp2Cm9p -1.1.C eg -I‘pCmét (t)+rpkhfh (p)sz

pg m

Igég -rgcmyp +rngYg -I,L, C e +rg2Cmég+r C ét(t)_rgkhfh (p):-Tg

pg m-p g m

Re-arranging in matrix form:

m 0 0 0]y, ¢, €, C, 1C,
0 m, 0 O]y, N €, ¢, xC, 1C,
0 0 I, 016, C, =C, r’C, -=1rC,
0o 0 o0 IL||b,] |C, rC, =rC, 1°C,

k., (p) Cpe ()

K, | | Coé®

r.k, f,(p) T,+r.Ce (D)

1k 0] TGt 0

(2.14)
(2.15)
(2.16)
2.17)

(2.18)

As a result, the equation of motion for the gear pair is reduced to the

following form:

[M, [{d, } +[Cy ]{du} +iNL = {F,}

where
m, 0O 0 O c, -C, rpCm
0 m O O -C, C,. 1-C,,
M, ]= : . [C]= 2
0 0 Ip 0 C, -rpCm I C,
0 0 0 I €, 1C, —1rC,
and
K, /,(p) C,0é,(1) Y,
{N } _ -khj;l (p) { } _ -Cmét (t) {q } _ yP
h rk, 0 [0 U T e U ,
-rgkhﬁl (p) -Tg _rgcmét (t) eg
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Describing function method will be used to represent the nonlinear forces

vector {Nyp}, the details of which will be discussed in the following chapter.

2.3.4.1 Static Transmission Error Excitation

Excitation mechanism can be divided into two main groups:

e External excitation: Low frequency excitation due to rotating unbalance,
geometric eccentricities and prime mover and load torque fluctuations (Houser,
1988) are external excitations and they are typically at low frequencies (the very
first multiples of the input shaft speed ).

e Internal excitation: High frequency excitations caused by manufacturing
related profile and spacing errors and the elastic deformation of teeth shaft can be

considered as internal excitation.

All of the internal excitations stated above can be combined in an overall
error function, known as Static Transmission Error (STE). Static Transmission
Error can be defined as the difference between the actual angular position of the
driven gears and the position where it would be if the gears were perfect (Houser

1988).

Therefore in gear models, the variable mesh stiffness can be modeled as an

average constant mesh stiffness and a periodic displacement excitation (STE) at the

mesh point when the system is loaded (Ozgiiven and Houser 1988b).

There are several studies in the literature for the computation of mesh
stiffness and STE. In this study Load Distribution Program (LDP), which was
developed at the Ohio State University and has been updated several times since its

first development, is used to find mesh stiffness and STE.

A typical static transmission error function for the spur gears with no teeth
errors is shown in Figure 2.6. It acts along the line of action and the period is given
by Q= NpQ, where Np is the number of teeth on pinion and €, is the rotational

speed of pinion.
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Figure 2.6 A typical static transmission error function

Although the transmission error is periodic, it is not harmonic. Therefore,
direct use of it is not suitable for modal analysis. However, a periodic STE function

can be defined in terms of harmonic components using Fourier Series.

Now consider a periodic function f(t) with period T. Such a function can be

represented by Fourier series of the form:
f(t)=) (a,cos(mot)+b,sin(mw)) (2.25)
m=1

where 0=2n/T is the fundamental frequency.

In this study, STE is approximated by the highest n harmonics and the
harmonic components (a,, and by,) are determined by using either Rectangular
Wave Approximation or applying Discrete Fourier Transform (DFT) Method to the
LDP output.
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2.3.4.1.1 Load Distribution Program (LDP)

The Load Distribution Program is a computer program for predicting the
load distribution across the zone of contact for a single pair of spur or helical gears.
The gears may have an internal or an external mesh and may be mounted on shafts

between centers or overhung.

The model assumes the load distribution to be a function of the elasticity of
gear system and a function of errors or modifications on the gear teeth. Program

considers the following effects in calculations:

e Bending deflection of gear bodies and supporting shafts
e Flexibility of bearings and housings

e Torsional deflection of gear bodies

¢ Bending of teeth in contact

¢ Local contact deflections

e Shaft misalignment

¢ Involute profile errors

e Lead errors

e Tooth spacing errors

In this study, LDP output is used for calculating STE, and DFT method is
applied to find the harmonic components. Figure 2.7 and Figure 2.8 shows a typical

input and output screens of LDP program respectively.
2.3.4.1.2 Rectangular Wave Approximation for STE Calculation

In this approach, the periodic STE is taken as a rectangular wave with the
amplitude of the periodic transmission error. The coefficients a, and by, can be

calculated analytically as:

a, = © {(3—005 (mmy)) -sin [mm%j -sin (mwy)- cos (mm%ﬂ (2.26)

mm
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_% ~1). X\ si X
b - (cos(mwy)—1)-cos mo > sin (may ) - sin me> (2.27)

where (x+y)/y is the gear contact ratio and e; is the amplitude of the STE function.
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Figure 2.7 Typical input screen of LDP
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Figure 2.8 Typical output screen of LDP
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This approximation for STE calculation is illustrated in Figure 2.9 with the

highest 5 harmonics.
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Figure 2.9 STE Approximations
2.3.4.1.3 Discrete Fourier Transform (DFT) Method for STE Calculation

The expression for Fourier coefficients in DFT is given as:

N-1 i(27umr)

a,tib,=—> xe N (2.28)
N =0

where N and x, are the number and the amplitude of discrete data points obtained
from LDP program respectively. It should be noted that the maximum calculated

harmonics (m) should be less than N/2 to prevent aliasing (Newland, 1987).

This method for STE calculation is illustrated in Figure 2.9 with the highest
5 harmonics. As shown in the figure, the DFT approximation is closer to the real

STE function. Nevertheless, rectangular approximation gives a satisfactory
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approximation in case of no tooth profile modifications and errors. Therefore, the
rectangular wave approximation can be useful if the STE data is not available. Also
the rectangular approximation can be taken as the reference to see the effect of

tooth profile modifications.

However, when there are profile modifications or errors on gear tooth, STE
will not be in the form of rectangular wave. Consequently, LDP should be used to

calculate STE function and DFT should be applied to find the Fourier components.

2.3.4.2 Backlash Nonlinearity in Gear Pairs

Backlash can be defined as the amount by which a tooth space exceeds the
thickness of the mating tooth. There is always some amount of backlash in a gear
pair either to provide better lubrication and to eliminate interference, or due to
manufacturing errors and wear. The backlash nonlinearity may cause tooth
separation and impact in geared rotor systems. Such impacts may result in
extensive vibration and noise problems and large dynamic loads which may affect

reliability and life of geared rotor systems (Dudley, 1984).

Previous studies have shown that the dynamic behavior of a system with
discontinuous nonlinearities is quite different from the behavior of the same system
with continuous nonlinearities. The gear backlash non-linearity is actually a
discontinuous and non-differentiable function and it represents a strong nonlinear

interaction in the governing differential equations.

In this study, the gear mesh of a spur gear pair is represented by a nonlinear
spring and a linear damper. The nonlinear spring can be modeled by a dead space
function with backlash of 2b and a time invariant mesh stiffness k, when two gears

are in contact, which is actually a similar approach explained in section 2.3.3.1.

For a relative displacement p, the nonlinear displacement function f,(p) is

defined as:
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0 if [p|<b

sign(p)-([p|-b) if |p|>5 2.29)

S (p)= {

Figure 2.10 shows the displacement (fiy(p)) function versus relative

displacement (p) for a gear pair.

Afh(p)

J slope=1
1

> p

2b

Figure 2.10 Backlash Nonlinearity in Gear Pairs

Then the nonlinear force (Fy(p)) on the gear mesh spring can be defined in

terms of fi(p) function as:

£, (p)=k, - £, (p) (2.30)

where kj, 1s the invariant gear mesh stiffness.
Note that when there is no backlash in the gear mesh (i.e b=0), then
nonlinear displacement function reduces to fi(p)=p and the force on the mesh

reduces to Fin(p)=kn.p (i.e the linear case).

In this study describing function method is used to represent the nonlinear

n(p) function, details of which will be discussed in the following chapter.
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CHAPTER IIT

3 MODELING OF NONLINEARITIES BY DESCRIBING FUNCTIONS

3.1 Introduction

In this chapter, the method suggested for the forced response analysis of
geared rotor systems with backlash and clearance type nonlinearity is presented.
The internal forcing that represents the static transmission error is approximated by
n harmonics which have the highest amplitudes, and the response to this internal

forcing is determined by applying the describing function theory.

First the describing function theory is introduced briefly and then it is used
to derive the describing function for a general memory-less static nonlinear
periodic force. Finally, the quasi-linear receptance matrix for geared rotor system is

formed.

3.2 Theory

The main motivation for describing function (DF) techniques is the need to
understand the behavior of nonlinear systems, which in turn is based on the simple
fact that every system is nonlinear except in very limited operating regimes.
Nonlinear effects exist in most of the systems either by design or due to
manufacturing errors and/or wear. Unfortunately, the mathematics required to
understand nonlinear behavior is considerably more advanced than that needed for

the linear case.

The basic idea of the DF approach for modeling and studying nonlinear
system behavior is to replace each nonlinear element with a quasi-linear descriptor
or describing function whose gain is a function of input amplitude (Gelb and

Vander Velde, 1968; Atherton, 1982). The functional form of such a descriptor is
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governed by several factors: the type of input signal, which is assumed in advance,

and the approximation criterion, e.g., minimization of mean squared error.

Unlike linear models, quasi-linear models put no restriction on the response
amplitude. A nonlinear system has a different quasi-linear equivalent for different
types of inputs. This means that a quasi-linearized model exhibits the basic
characteristics of nonlinear behavior which is “dependence of response

characteristics on input”.

The criterion used for approximation is to minimize the mean-squared
difference between the output of that approximation and the output of the
nonlinearity. Therefore, the fundamental limitation on the usage of describing
functions is that the form of the signal at the input of the nonlinearity must be

guessed in advance.
3.3 Sinusoidal Input Describing Functions

The sinusoidal input describing function is a quasi-linear representation for
a nonlinear element subjected to a sinusoidal input. It is the most widely known

and used describing function.

In this view, if a dynamic nonlinearity y(x,X)is excited by a sinusoidal
input of
x=A-siny (3.1)
where y=o-t, then the output is expressible by the Fourier series expansion as:
y(A siny, Ao-cosy)=) A (A,0) sin(motte, (A,0)) (3.2)
m=1

In the DF analysis, usually the fundamental harmonic component of the
output is considered, since the higher harmonics have often smaller amplitudes

than the fundamental component (Ogata, 1990).
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Then the sinusoidal input describing function, denoted by v(A,®) is defined

as:

phasor representation of output component at freq. ®

V(A,0)= ; ;
phasor representation of input component at freq. ®

— Al (A’(D) ejwl(A,w)
A

(3.3)

In other words, the describing function is the complex fundamental

harmonic gain of a nonlinearity in the presence of a driving sinusoid.

Manipulating equation (3.2), the general form for the sinusoidal input
describing function (SIDF) can be obtained as (Gelb and Vander Velde, 1968;
Atherton, 1982):

2n

A, ] . J
VA, 0)=—L¢e'"=——| y(A-siny, Ao-cosy)-e’ -d 4
(A w)=—te=—1 j y(A -siny v)-e™ - dy (3:4)
3.4 Describing Function of Dead-Zone Element

The symmetrical dead-zone nonlinear element is shown in Figure 3.1

7_‘ slope=1

]

Figure 3.1 Symmetrical Dead-Zone Nonlinearity

The two regions of interest can be defined in terms of b as follows:
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o if [x|<b
YOO sign()-(jx|-b) if x| > (3:5)

The nonlinearity whose input-output characteristics have no dependence on
the input derivatives (y=y(x) only) is denoted as static nonlinearity. The dead-zone

nonlinearity shown in the above equation is therefore a static one.
Moreover, for an odd nonlinearity (y(x)= -y(-x)), the imaginary part of the

describing function vanishes. As a result, the describing function for an odd static

nonlinearity can be defined as (Gelb and Vander Velde, 1968; Atherton, 1982):

2 T
V(A)=—| y(A -siny)-siny - d
(A) nAgy( y)-siny - dy (3.6)

Note that the type of gear backlash and the bearing clearance nonlinearity

presented in chapter 2 is also odd-static.
3.5 Periodic Input Describing Functions

A periodic input that consists of a bias term and a sum of infinite number of

harmonics can be defined as:

=Y X, e™ =X, + 3 X, e™ (3.7)

m=0 m=1

The describing function for such an input depends on the bias level (X,), the
amplitudes of the sinusoids (Xm) and the frequencies (mw). The approximating

gain to the bias input component for a dead-zone nonlinearity element is:

1 T[
i ! y(x)dy (3.8)

and the gain to the sinusoidal input component is:
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n

2
v, =— | y(x)-sin(my) d
X, nXmly() (my) dy (3.9)
3.6 Forced Periodic Response

The equation of motion of an axisymmetric nonlinear geared rotor in which
the damping is constant and the nonlinearities are involved only in the elastic part

of the system can be written as (Genta and Bona, 1990):

[M]ig}+[Clix) +[K]{x) +{Nj = {f} (3.10)

where {N} shows the nonlinear internal forces in the system.

If the external forcing is periodic, then it can be represented as a sum of

infinite number of harmonics as:

(1= 6) =m[ 33{7), e G

m=0

It can be assumed that in a geared rotor system, the system response is
periodic when the forcing is periodic (Tanrikulu et al. 1992), then the relative

displacement p and the general displacement vector {x} can be expressed as:

p=ipm :Im( 3 Pmejm“’j (3.12)
{x}:z:‘a{x}m =1m(zo{x}m eim\"j (3.13)

where P, and {X}, are the complex amplitudes of relative displacement p and

general displacement vector {x} at mo, respectively.

Equation (3.13) allows one to transform the nonlinear differential equation

(3.10) into the nonlinear algebraic equation:

(-mo)* [M]+jmo)[C]+[K]){X,, } +{N} ={F} (3.14)
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This equation can be solved directly by using an iterative technique, which

is generally very difficult.

In this study, nonlinearity is associated only with the four degrees of
freedom of the dynamic gear mesh interface and the two degrees of freedom of
each bearing. Therefore, if there are k number of bearings in the system, then the

total number of coordinates connected to a nonlinear element will be 2*k+4.
3.6.1 Modeling Gear Mesh Interface using Describing Functions

For the gear mesh interface, the nonlinear matrix given by equation (2.22)

1S:

ky /,(P)

| /i)

{Nh } B .k, f,(P)
-1k, /, (D)

(3.15)

Re-representing the nonlinear function fi(p) in terms of the describing

functions (equations (3.8) and (3.9)) yields:

LY v (AP, ™

‘“_01 . il g (3.16)
=| = [ /i®)-dy |-P,+ 3| =]/, (p)-sin(my)-dy |-P,-™
P+ o\ TP ¢
and by writing {Nj}, in terms of describing functions, one obtains
{Nu}, ={Guf, e™ (3.17)
where
Vm ) kh
{Gu}n = Vel g (3.18)
b m rpvm-kh m ’
T,V K,
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and from equation (2.7), the complex amplitude Py, is:
P.=Y, -Y, +16 -0, —E

m P Pm & &m tn

where Eyy, is the complex amplitude of the STE at frequency mo.

Substituting equation (3.19) into (3.18) gives

vk, (Y, Y, 10, 16, ~E, )

v, -k, (Y, -Y, +1,0, 10, —E, )

(Gt = tv, -k, (Y, Y, 16, 1.0, ~E, )
v, -k, (Y, Y, 410, 10, —E, )

which can be re-arranged in matrix form as:

v, -k, -v_ -k, rv, -k, -V, K, Yo,
(G, - -v -k, v, -k, —rzpvm kv cky | Y,
L O L0 SH A A e R AU A
-V, 'k, v,k o -rrv -k rgzvm -k, 0,
—v_ -k,
v, -k,
—tv, -k, £,
v, -k,
or
G, (4], X0, +[R], B,
v, -k, -v_ -k, LV, -k, LV, -k,
| Va k, v, -k, —rpvm-kh rgvm-kh < _
[A], rv, -k, -rvockootvocky —nrv kg Xl
I,V 'k, Lv,k, -rrvookg rgzvm -k,
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and

[R.]=1 (3.25)

Inserting equations (3.11), (3.12) and (3.17) into (2.19), the gear mesh

interface differential equations can be obtained as:

(-mo)* [M, J+imo)[C, ]+[A,],){X,}, +[R], -E, ={E]}, (3.26)

or

('(mco)2 [M, ]+i(mo)[C, ]+[A, ]m){Xh}m -{F} -[R].-E. (3.27)

Inserting the forcing vector {Fp}m (manipulating equation (2.18)) into the above

equation yields:

C:mEtm +Vm .kh ’ Etm
. _CmEtm _Vm .kh .Etm
(-(mo)* [M, ]+imo)[C,]+[A,], ){X.}, = A——y (3.28)

-T,-rv, k,-E_

where Etm is the complex amplitude of first time derivative of STE at frequency

mo.
Then {Xp}m can be written as:
Xu}, =la], {E}, (3.29)
where
[@,], =[-mo)* [M, [+jmw)[c,]+[a,], ] (3.30)
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and

CmEtm +Vm ’ kh ’ Etm
-C.E,_-v_-k, -E
{F} = (3.31)

T +rv, -k, -E_

—Tg —I,V, -k, -Etm

Therefore, for the gear mesh, [ah ]m is the response level dependent quasi-
linear receptance matrix at frequency mw. Also note that the forcing vector

{Fq} includes describing function terms (v,_) which are actually functions of

response as well. Therefore, the forcing itself is also response level dependent.

Solution of this equation is presented in the following chapter.
Note that when backlash in gear mesh is zero (i.e when the system is
linear), the integral terms in equation (3.16) reduce to 1 since fu(p)=p for that case.

Therefore one can find the solution for the linear case by taking v_ =1 in above

equations.

3.6.2 Modeling Bearing Clearances using Describing Functions

Force displacement relationship for a bearing was given as

Crw Gz )4 Kyv Ky [ fo(a) _
|:CZY CZZ}{qZ}_F[KZY Kzz:Hfb(qz)}_{O} (2.4)

Let us define the nonlinear bearing forcing vector {Ny} as:

SRR aid VO

Then equation (2.4) becomes:

Cyv Gyl _
asd HESEE e
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where

S P N e

Since the nonlinearity type for the bearings is the same that of as gear mesh

zY

(dead-zone), the approach explained in section 3.6.1 can be used for quasi-

linearization.

Similar to the equations (3.8) and (3.9), DF terms for the bearing

displacements can be written as:

1 T
VoS oo j y(@) dy (335)

2 -sin(my) dy (3.36)

AY

Qu

Since the response is periodic, displacement of a bearing (q) can be

expressed as:

qu q, :Im(i Qmejm“’j (3.37)

where Qy, is the complex amplitude of the bearing displacement at frequency mo.

Re-representing the nonlinear function f,(q) in terms of the above

describing functions, one can obtain:

fo(@)= Zv e
m_ol ] il (3.38)
Z[R—Q)!;ﬁ)(CI)'d\V}'QO+;}[ﬁ£ﬁ,(qysm(mw'dw}()m-ej"“”

By writing {Ny}m in terms of describing functions, one obtains

N}, =1G,},. ™ (3.39)

where
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{Gu}, = {KYY:‘“ (@) Kves (qZ)HQ“"} (3.40)

or

{Go}, =[4], {g:} (3.41)

K K
Where [Ab ]m — |: YYVm (ql) YZVm (qZ ):| (342)
KZva (ql ) I<ZZVm (q2 )
Inserting equations (3.39), (3.41) and (3.44) into (2.4) yields
Limo)[c,]+[4,], ]{X,}, ={0} (3.43)
where
KoV (a) Ky,v (qz)}
A — YY "m 1 YZ " m 344
[0l {szvmml) K, () G4n
and {X,} = {Q‘m} (3.45)
Q2m
define the quasi-linear receptance matrix such that
(o], =[im)[C,]+[a,], ] (3.46)

which represents the response level dependent quasi-linear receptance matrix at

frequency mo for the bearings.

Note that when clearance in a bearing is zero (i.e when the system is linear),
the integral terms in equation (3.38) reduce to 1 since fy(p)=p for that case.

Therefore one can find the solution for the linear case by taking v, =1 in above

equations.

After calculating [A,] and [A,] matrices, [A] matrix is created for the

entire system and the overall equation for harmonic response is formed as:
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(-me)* [M]+j(me)[C]+[K]+[A] ){X}, ={F}, (3.47)

Let us define the linear dynamic stiffness matrix [B]n and rearrange

equation (3.47) as:
(8], -{X},, +{G},, ={F}, (3.48)

[8],, = | -(mo)’ [M]+j(mw)[C]+[K]] (3.49)

which represent the linear dynamic stiffness matrix at frequency mo for the linear

part of the system.

The solution of equation (3.47) will be discussed in the following chapter.
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CHAPTER 1V
4 SOLUTION TECHNIQUE AND COMPUTER PROGRAM NLGRD V3.0
4.1 Solution Technique

The quasi-linear theory presented in previous chapter converts a set of
differential equations into a set of nonlinear complex algebraic equations.
However, since the DF terms are functions of the response, an iterative process is
required. To reduce the computational effort, one can separate the nonlinear
equations from the linear ones as suggested in previous studies (Tanrikulu et al.
1992, Maliha et al. 2004). Then the iteration process is applied only for the

nonlinear set of equations rather than the whole system.

In this study, the nonlinearity is associated only with the gear mesh and the
bearings. If the number of bearings in the system is k, then the total number of
nonlinear equations associated with the bearings are 2*k since the bearings are

modeled as 2 DOF elements.

From the previous section we know that, the nonlinear equations associated
with the gear mesh are 4. As a result, total number of nonlinear equations are
2*k+4. Therefore, one should separate 2*k+4 nonlinear equations from the linear

ones first. Then the iteration process can be applied as follows:

From the previous chapter, equation (3.48) was:

B, -{X},, +{G},, ={F},, (4.1)

Then this equation can be written as:
o )
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such that {X;} is the displacement vector for the coordinates with nonlinear
elements and {X,} is the displacement vector for the remaining ones. Note that

subscript m is dropped for simplicity.

Equation (4.2) can be expanded as

[B.,]-{Xi} +[B]-{X,}+{G\} ={F} (4.3)
[Bor ] 41X} +[Br |- {X, } = {E,} (4.4)

Solving equation (4.4) for {X,} gives

X, =B ]_1 [{Fz} ~[B., ]{Xl}] 4.5)

Substituting  equation  (4.5) into (4.3) and noting that

{G,} =[A,]{X,} gives:

{XI} = [[Bll]""[All]_[Blz]'[Bzz ]_I '[le ]}_I '{{Fl}_[Blz]'[Bzz ]_1 {Fz}} (4-6)

As shown in equation (4.6), the right hand side contains the nonlinearity
matrix [A,,] and nonlinear forcing vector {Fi} whose elements are written by
using DFs and therefore they are the functions of the response vector {X;}. Then

an iterative solution is required. {X;} should be recalculated in each iteration step

in the solution process until convergence.

By using this technique, only the nonlinear coordinates are updated in the
iteration procedure rather than all coordinates and this reduces the computational

time considerably.

In this study, no external force is taken on the system, and therefore the
only excitation is due to the internal mesh force. Therefore {F,}=0. Moreover, if
the periodic forcing is approximated by the first n harmonics equation (4.6) further

simplifies to:
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{E}m m=0,1,2...n 4.7)

where

[Y]m = [[Bn]m - [BIZ ]m '[Bzz ]mil '[le]m] (4.8)

Note that equation (4.7) represents (2*k+4)*(n+1) set of nonlinear
equations which are coupled by describing functions and have to be solved
simultaneously. The coupling terms are functions of vectors {Xi}o, {Xi}1, {Xi}2,
... {Xi}n. The nonlinear set of equations are solved by finding these vectors

iteratively and substituting them in the nonlinear DF terms to form the nonlinearity

matrix [A”]. In order to form the nonlinearity matrix in the first iteration, linear

response is used.

The procedure used for solution is summarized below:
e The (2*k+4)*(nt+1) set of equations (4.7) are decomposed into n+1 set of

equations having 2*k+4 unknowns in 2*k+4 equations (i.e the vector

Xi}m)

e Initially, each vector {X;}, is calculated by inverting the matrix
[[y]m +[A11]m} where the nonlinear terms in [A, ] matrix are neglected
(i.e. linear response is found).

e After solving for the whole set of vectors {X;}, the nonlinear terms in

matrix [A”] and {F,} are evaluated using the computed vector {X;}.

e The previous steps are repeated using the new nonlinearity matrix in each

step until obtaining an acceptable convergence for the vector {X;}.
Thus matrices of order 2*k+4 are inverted n+1 times instead of inverting a
matrix of order N (N is the order of the entire system). Therefore, this reduces the

computational time and improves the accuracy and convergence.

The detailed iteration scheme used for calculating the harmonic response

amplitudes at a given frequency o is given below:
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10.

11

12.

13.

The system matrices are assembled and mass, damping and stiffness matrices
(each of order N) are formed.

System coordinates are renumbered such that first 4 coordinates are gear mesh
coordinates (equation (2.24)) and following 2*k coordinates are bearing

coordinates (where k is the total number of bearings in the system).

The quasi linear dynamic stiffness matrix [B]m is formed for the m-th harmonic
for the linear part of the system by using equation (3.49)

[B]m matrix is separated into [Bi], [Bi2], [B21] and[B22] matrices by using the
method explained above (equations (4.3) and (4.4)).

[[y]m + [An]m} matrix is calculated by using equation (4.8) and by neglecting

the nonlinear describing function terms in [A” ]m (i.e letting v_=1).

Excitation vector {F;}, is calculated using equation (3.31) by neglecting the

nonlinear describing function terms (i.e letting v_ =1).

Steps 3 to 6 are repeated for m=0,1,2,...,n to form [y]o, [y]l, ey [y]n and

{RJos {B)s o R,

The complex displacement amplitude vectors {X;}', are calculated by using
equation (4.7).

The describing function terms (v_ ) are calculated by using {X1}'m, and [AH] o
[A,] - [A),] matrices are formed by using the method explained in

Chapter 3.

Steps 5 to 7 are repeated, but this time, describing function terms (v _) and

[A,,], matrices found in step 9 are used.

. The complex displacement amplitude vectors at the (i+1)th iteration (i.e.

(X1} are determined by using equation (4.7).
Since the system is highly nonlinear, the new (i+1)™ displacement amplitude

vectors are updated by applying a relaxation factor (R) as follows:

X =X R =) 49)

The iteration is carried until the root mean square error of displacement

49



N {Xl}m _{Xl}i |2
E .= - (4.10)
T

drops below a certain selected value.

Figure 4.1 shows the iteration scheme at a particular frequency.

4.2 Computer Program

NLGRD V3.0 is a computer program prepared for analyzing the dynamic
response of a geared rotor system. NLGRD is a general purpose program which is
used to calculate the dynamic to static load ratio (DSLR), the dynamic transmission
error (DTE), bearing forces and the modal properties (natural frequencies and mode
shapes) for the linear part of the system, for any two shafts coupled by a spur gear

pair and mounted on flexible bearings with clearance.

The program is capable of handling stepped shafts, multi-bearings and
multi-disks. It also takes into account the excitation effect of variable mesh
stiffness, gear errors and profile modifications, backlash and bearing clearance. The

main computer program is composed of two main parts.

The graphical user interface, which is written in Visual Basic 6.0, is named
as VGR 3.0 (Visual Geared Rotors) and it is used to form the system from the
chosen components, and prepare input files for the second part of the program. In
this respect, the emphasis is places on user friendliness in VGR 3.0. The graphical
drawing of the geared rotor system is formed while the user adds new items to the
system. Therefore, any user dependent error is minimized. VGR 3.0 is capable of

preparing input files for both NLGRD 3.0 and LDP.
The second part of the program, which is written in MatLAB 7.0, is called

NLGRD 3.0 and it contains the main solution procedure. The code approximates

the STE by the highest n Fourier coefficients.
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System matrices are assembled;
renumbered and linear dynamic stiffness
matrix is formed for the m™ harmonic

v

[[Y] + [A“ ]] matrix is calculated from [f3]

A 4

treating the system as linear (i.e all v tems

are equal to 1 in [A] matrix)

v

NO Internal excitation vector {F;},
is calculated for the m-th
harmonic treating the system as

Are all harmonics
considered?

YES

Is it the first
run?

YES

v
Complex displacement vectors
{X}' are calculated by using

NO

I_¢ [[Y] + [A”]] matrix

Nonlinear forcing vector {F,} and

coupling matrices [A] are

determined by using {X}' vectors

y
Complex displacement vectors
NO {X}"! are calculated by using

[[Y] +[A,, ]]

\ 4

A relaxation factor R is applied

Convergence
obtained?

Figure 4.1 Iteration scheme used for calculating {X} at a particular frequency
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The Fourier series expansion of internal periodic forcing can be obtained
analytically if a rectangular wave is assumed or by the Discrete Fourier Transform
(DFT) method if the static transmission error data is obtained by using Load

Distribution Program (LDP).

In this study, the graphical user interface (VGR) is modified slightly to
enable the user to enter the radial clearance values of the bearings. Besides this
change, no modification is made to VGR and the same code is used with the
previous study (Dogruer, 1999). However, the solution code NGRD V3.0 is a
completely new computer code which is written in MatLAB 7.0, and using a new
mathematical formulation. In this aspect, the previous solution code (NGRD V2.0),

which was written in Fortran 77, is used only as guidance.

4.2.1 Pre-Processor VGR 3.0

Connectivity of the system is formed while the user clicks the basic item
buttons. Positions of the items are irrelevant to connectivity. Figure 4.3 shows the

main window of user interface VGR 3.0.

However, items must be loaded from left to right and top to bottom.
Therefore user must first construct the first shaft from left to right then click stop
button. Then start constructing the second shaft and click stop button when

finished. The construction of a typical geared rotor system is shown in Figure 4.4.

Loaded items can be dragged anywhere on the screen after clicking the

move button.

Geometric properties of the items can be defined by double clicking the

item then entering the geometric properties through data windows.
Detailed information about entering the system elements and using VGR

3.0 can be found in Appendix B and in the study carried by Dogruer (Dogruer,
1999).
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4.2.2 Processor NLGRD V3.0

After the system is formed through VGR 3.0, solver button is clicked to
create the necessary files for the solution code NLGRD 3.0.

By clicking the solver button, MatLAB 7.0 opens automatically and
analyzes the system. Therefore, MatLAB 7.0 must be installed to use NLGRD 3.0.
After solving the system equations, NLGRD 3.0 creates the output files for the post

processor.

NLGRD 3.0 consists of a set of subroutines linked together and uses the
dynamic arrays for efficient utilization of memory. The main routine of NLGRD
3.0 1s named as solve.m and it is the driver of the solution subroutines which solve
the system equations by utilizing the algorithm explained in the previous section.
solve.m also forms the complex receptance matrix and then computes the

displacement vectors by iteration.

The important subroutines driven by solve.m can be explained in brief as
follows:

e force.m subroutine calculates the highest n harmonics of a rectangular wave
for a given STE amplitude and a gear contact ratio.

e inforc.m subroutine reads the STE output file produced by the program
LDP and calculates the highest n harmonics by using DFT subroutine.

e grmesh.m subroutine forms the mesh stiffness and damping matrices of the
gear pair.

e deltas.m subroutine forms the [A] matrices after calling descf.m subroutine
which calculates the describing functions. The number and amplitudes of
harmonics and the harmonic order for the describing functions are specified
in solution.m subroutine.

e dynf.m subroutine is used to calculate the maximum dynamic force for a
given frequency. Then the dynamic to static load ratio (DSLR) and the

dynamic transmission error (DTE) are calculated.
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e dynf.m subroutine is used to calculate the maximum dynamic force for a
given frequency. Then the dynamic to static load ratio (DSLR) and the
dynamic transmission error (DTE) are calculated.

e bearing.m subroutine is used to calculate the bearing forces using the

bearing displacements found by the subroutine solve.m.

4.2.3 Post Processor VGR 3.0

After NLGRD version 3.0 solves the system equations, results can be seen
through user interface graphically. The post processor window is shown in Figure
4.4. User can control the graph window by changing the parameters of control
window. For example X and Y axis scale can be changed through the graph
properties window. The user can take the advantage of seeing both the results and

the model itself at the same time.
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CHAPTER V

5 VERIFICATION AND COMPARISON

5.1 Introduction

In this chapter, the nonlinear model developed in this study is verified by
comparing the theoretical results obtained by using NGRD V3.0 with the
experimental results available, and also with those of the previously tested

nonlinear mathematical models.

Firstly, the results of the model are validated by comparing them with the
experimental results of Kubo (1972) and Munro (1962).

Then the results of the model suggested is compared with the linear model
GRD (Kahraman et al., 1992) and the nonlinear models DYTE (Ozgiiven and
Houser, 1988b), DYTEM (Ozgiiven, 1991a), Kahraman 1-D model (Kahraman and
Singh, 1990) and Kahraman 3-D model (Kahraman and Singh, 1991).

5.2 Experimental Validation
5.2.1 Verification by Kubo’s Experimental Setup

Kubo has presented results of extensive experimental studies on the
dynamic stresses in spur gears. He used a heavily damped four-square test rig for
which the configuration and parameters are shown in Figure 5.1 and Table 5.1,
respectively.

Kubo measured the dynamic factor as the ratio of the dynamic to static

tooth stress. However in this study, the dynamic factor is defined as the dynamic to

static force (or load) ratio (DSLR). This ratio is equivalent to the dynamic factor
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calculation based on the stress analysis under the assumption that the change in the
moment arm due to changes in contact point is negligible. Since this assumption
cannot be justified, the comparison should be made carefully. Therefore, dynamic
factors calculated by NLGRD V3.0 are not expected to exactly match with the

experimental values.
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Figure 5.1 Configuration of Kubo’s Setup
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Table 5.1 Parameters of Kubo’s Setup

Module (mm) 4
Number of teeth 25/25
Base diameter (mm) 94
Outside diameter (mm) 108
Rotor diameter (mm) 90
Pitch diameter (mm) 100
Face width (mm) 15
Backlash (mm) 0.1
Pressure angle (deg) 20
Contact ratio 1.56
Mesh stiffness (N/m) 2.587.10°
Mesh damping ratio* 0.1
Amplitude of STE (m) 2.479.10°
Drive and load torque (N.m) 107.9
Static Load (N) 2295

I, (kg.m”) 1.152.10°
I, (kg.m’) 1.152.107
I (kg.m®) 1.152.10°
Iy (kg.m) 5.762.10”
Bearing stiffness (N/m) 3.503.10"
Bearing Damping (Ns/m) 3.503.10°
Shaft damping ratio 0.005
Length of shaft-1* (mm) 210
Length of shaft-2* (mm) 140

* estimated data
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Moreover, Kubo’s experimental setup was designed to investigate the
standalone effects of gear pair. To achieve this, Kubo used very stiff shafts and
bearings to support the gear pair to simulate rigid supports and to decouple mesh
mode from the other modes. However, NLGRD V3.0 is developed for analyzing
more flexible systems in order to see the coupling effect of mesh mode with other
modes by changing system properties such as bearing compliances or rotor
properties. In this respect, the simpler models may be sufficient to give accurate
results for Kubo’s system. However, when the bearings and rotors are more
flexible, then NGRD V3.0 is still capable of analyzing the system whereas simpler

models cannot take these effects into account.

Nevertheless, the change of dynamic forces with rotating speed can be
compared in a qualitative manner rather than a quantitative manner. Comparison of

the results of NLGRD V3.0 and Kubo’s experiment are shown in Figure 5.2.

——NLGRD V3.0
—e— Kubo Upper Limit
2.5 +——=—Kubo Lower Limit

| o
15 //f/f*x\ j\?‘"\“‘“

el N
g Y

DSLR

0.5

0.3 05 0.7 0.9 1.1 1.3

Frequency Ratio

Figure 5.2 Comparison of NLGRD results with Kubo’s Experiment
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As shown in the figure, the DSLR values calculated by NLGRD V3.0
predict the important features of the experimental results. The jump at the resonant
frequency is clearly distinguished whereas the location of the jump is slightly
shifted compared to the experimental results. Note that the frequency ratio on the x-
axis is defined as the ratio of rotational speed to torsional natural frequency at the

mesh mode.

The trend of the dynamic factor is in general in good agreement with
Kubo’s results. The difference between the experimental results and the calculated
ones is mainly due to comparing dynamic factors based on stresses with those

based on forces.

5.2.2 Verification by Munro’s Experimental Setup

As a second example case, experimental results of Munro (1962) are
compared with those of the model developed. Munro used a four-square test rig to
measure dynamic transmission error of a spur gear pair for which the configuration

and parameters are shown in Figure 5.3 and Table 5.2, respectively.
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Figure 5.3 Configuration of Munro’s System
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Table 5.2 Parameters of Munro’s Setup

Diametral pitch 4
Number of teeth 32/32
Pitch diameter (mm) 204.8
Face width (mm) 12.7
Backlash (mm) 0.12
Contact ratio* 1.60
Mesh stiffness (N/m) 3.44.10°
Mesh damping ratio 0.0175
Amplitude of STE (m) 1.143.10°
Static Load (N) 3782
I,= 15 (kg.m®) 0.02563
L= 14 (kg.m”) 0.03426
I.* (kg.m”) 0.67
In* (kg.m”) 0.60
Bearing stiffness (N/m) 5.8.10°
Bearing Damping (Ns/m) 5.8.10"
Shaft damping ratio 0.005
Length of shafts* (mm) 204.8

* Estimated data
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Munro selected high precision spur gear with manufacturing errors much
smaller than tooth deflections were selected. Tooth profile modifications were
applied to obtain a minimum (but not zero) STE at design load (DL) of 3780 N.

Other components of the setup (shafts, bearings and casing) were made as rigid as

However, some of the key parameters were not specified by Munro in his
publication. For example, it was stated that some additional inertias were added to
gears to shift the primary resonant frequency within the operational speed range,

but the specific values of such inertias were not given. Moreover, backlash was not




measured or reported explicitly. Therefore, some of the system parameters are

estimated from the schematic figures in Munro’s publications (Munro, 1962).

The measured and predicted maximum dynamic transmission error (DTE)
at the design load and % design load are compared in Figure 5.4 and Figure 5.5,

respectively.

As it can be seen in Figure 5.4, the subharmonic and resonance frequencies
are predicted correctly. However, NGRD V3.0 predicts lower amplitude for the
main resonance. This may mainly because of the estimated system parameters.
Even though the changes in these parameters seem to be slight, the effects may be

more.

As shown in Figure 5.5, NGRD V3.0 predicts the first and the second
resonant peak amplitudes very close to the experimental values with a slight shift in

the frequency values.

As a result, the whole trend of the results obtained by NGRD V3.0 follow
the trend of Munro’s experimental results. The jump at the main resonance and the
subresonance whose frequency is half of the main resonance are predicted

successfully.
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5.3 Comparison with Other Mathematical Models

5.3.1 Comparison with DYTE and DYTEM

Ozgiiven and Houser (1988b) proposed a single degree of freedom
nonlinear model which consists of two disks representing the inertia of gears and a
spring-damper system representing the gear mesh. The computer program DYTE
(Dynamic Transmission Error Program) and the solution were based on the basic
assumption that the torsional vibrations of a gear pair can be decoupled from other
vibration modes. This assumption is valid when the gear pair is mounted on stiff
bearings and the gear shafts have much higher torsional stiffness values compared

to mesh stiffness.

The effects of variable mesh stiffness and nonlinearities due to backlash and

tooth impact are included in the model.

Later, Ozgiiven (1991a) improved the model by including the shaft and
bearing dynamics. The six degree of freedom model includes a spur gear pair, two
shafts, inertias of the prime mover and load, and bearings. The computer program

developed is DYTEM (Dynamic Transmission Error Program Multi-DOF).

Both DYTE and DYTEM use two different methods to find the dynamic
factors. In the first method, the effect of variable mesh stiffness is included without
any approximation, whereas in the second method, variable mesh stiffness is
modeled with a constant mesh stiffness value and an internal excitation function
(STE), which is actually the same approximation used in NGRD V3.0. Therefore,
the second method is used to compare the results obtained from DYTE and

DYTEM with NGRD V3.0.
Figure 5.6 shows the dynamic factors obtained by NGRD V3.0 and DYTE

for Kubo’s gear system given in Table 5.1. As shown in the figure, the results have

generally the same shape and trend.
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Figure 5.6 Comparison between NLGRD V3.0 and DYTE

The comparison of the dynamic factors calculated by NGRD V3.0 and
DYTE shows that they are very close to each other and the frequencies where the
jump occurs are almost matching. The slight shift in resonance for NGRD V3.0 is

due to the coupling between the vibration modes of gear mesh and shafts.

The results of both NGRD V3.0 and DYTEM are shown in Figure 5.7. As it
is seen from the figure, both programs predict the subharmonic resonance at the
same frequency value, whereas DSLR value obtained by NGRD V3.0 is higher

than the value obtained by DYTEM at the subharmonic resonance.

Figure 5.7 also shows that dynamic factors calculated by NGRD V3.0 and
DYTEM at the mesh resonance are close to each other. However, there is a shift in
the resonance frequency for the NGRD V3.0 results. Nevertheless, the results of
NGRD V3.0 are in good agreement with the results of DYTEM.
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Figure 5.7 Comparison between NGRD V3.0 and DYTEM
5.3.2 Comparison with Kahraman’s Models

Kahraman and Singh (1990) developed a single degree of freedom semi
definite model of spur gear pair with rotary inertia. The shafts and the bearings are
assumed to be rigid and the degree of freedom is associated with the relative
displacement along the pressure line (same as equation (2.7)). In their model, the
gear mesh is modeled by a constant stiffness with a backlash and a time invariant
viscous damping. However, the excitation effect of varying stiffness is considered
through a periodic internal excitation (STE) function. Digital simulation technique
(Sth-6th order Runge-Kutta numerical integration) is used to solve the problem. In
the solution procedure, they first considered only the fundamental harmonic

component of STE. Then higher harmonics were included in the solution.

Figure 5.8 shows the DSLR values calculated by NGRD V3.0 and
Kahraman’s 1-DOF model (in which only the fundamental component of STE is
considered) for the system described in their publication (Kahraman and Singh,

1990).
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Figure 5.8 Comparison between NGRD V3.0 and Kahraman’s 1-DOF model

As shown in the figure, results of Kahraman’s model and NGRD V3.0 with
single harmonic have exactly the same shape except a slight difference around the
resonance region. With NGRD V3.0, resonance frequency is estimated slightly
higher when compared with Kahraman’s 1-DOF model. This is mainly due to the

coupling effect of vibration modes of mesh and rotors.

However, since Kahraman’s 1-DOF model considers only the fundamental
harmonic component of STE, it cannot predict the subharmonic resonances. In this
case NGRD V3.0 gave better results when compared with Kahraman’s 1-DOF

model.

Figure 5.8 also shows that DSLR value calculated with NGRD V3.0 with
single harmonic at mesh resonance is higher than that calculated by 1-DOF model.
Nevertheless, the results of NGRD V3.0 are in good agreement with the results of
Kahraman’s 1-DOF model.
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Later, Kahraman and Singh (1991) extended the 1-DOF model to include
the bearing dynamics and came up with a 3-DOF model in which the gear mesh is
modeled with a time variable mesh stiffness with backlash and bearings is modeled
with clearance type nonlinearities. The model is excited by the STE and the

governing equations are solved using digital simulation technique.

The comparison of the dynamic factors calculated by Kahraman’s 3-DOF
model and NGRD V3.0 for the gear system in the publication of Kahraman and
Singh (1991) is shown in Figure 5.9.
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Figure 5.9 Comparison between NGRD V3.0 and Kahraman’s 3-DOF model

As shown in the figure, the dynamic factor curves have the same trend and
the same order of magnitude around the resonance peak with a shift of the
frequency where the jump occurs. The deviation of this frequency is again mainly

because of coupling between the vibration modes.

However, the main difference between 3-DOF model and NGRD V3.0 is
that 3-DOF model represents the gear mesh with a time varying stiffness (kp(t)) in
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addition to the STE function; whereas in NGRD V3.0, mesh stiffness is taken to be
constant (ky) and its excitation effect is considered through loaded STE. This may
be one of the reasons for the slight difference in the amplitudes of the dynamic

factors at main resonance.

The amplitudes of the subharmonics of STE used by Kahraman are not

given; hence the dynamic factors at the subharmonic region cannot be compared.

As it can be seen from the comparisons, NGRD V3.0 gives successful
results. Note that the solution techniques used in the previous mathematical models
employed in this chapter for comparison are completely different from the solution
technique used in the present study. Most of them use digital simulation technique
and obtain the solution in time domain. However, in the model presented here,
describing function approach is used and the solution is obtained in frequency

domain.
Therefore, close match of the results obtained by NGRD V3.0 with those

obtained by other models validates the describing function approach and the

solution technique used in this study.
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CHAPTER VI

6 PARAMETRIC STUDY AND DISCUSSION

6.1 Introduction

In this chapter, the mesh and bearing forces in a geared rotor system with
backlash and clearance type nonlinearity are studied for a range of rotor speed. The
effects of gear and bearing properties on the dynamic behavior of spur gears on
flexible rotors and nonlinear bearings are investigated. Several key issues such as
the interaction of gear backlash or bearing clearance nonlinearity with system
parameters are studied and the effects of these changes on the dynamic factor and

bearing forces are examined.

In the case studies, the configuration of experimental spur gear system of
Kubo (1972) is used. Furthermore, a wide range of values is used for some
parameters so that coupling between modes can be studied. The system
configuration and the parameters used in 4 different systems are given in Figure 5.1

and Table 5.1, respectively.

At the end of each parametric study, a detailed discussion about the results

is given.

6.2 Effect of Bearing Properties

6.2.1 Effect of Bearing Stiffness

To study the effect of bearing stiffness on the dynamics of a spur gear pair,

the stiffness values of the bearings for the experimental set of Kubo are varied

while keeping all other parameters fixed. These system parameters are given in
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Table 6.1. Here, ky is mesh stiffness, ky is bearing stiffness and Cy is bearing

damping.
Note that system I has the original system parameters of the experimental

setup of Kubo where the mesh mode is uncoupled from the other vibration modes

(Ozgiiven, 1991a).

Table 6.1 Bearing Properties of Systems I, II, III, IV and V.

Bearing
System | ky (N/m) | k, (N/m) | Cp (N.s/m) ky/kn
clearance (mm)
I 2.587.10% | 3.503.10'2 | 3.503.10' 0 >1000
11 2.587.10% | 2.587.10'° | 8.758.10° 0 100
111 2.587.10% | 2.587.10° | 8.758.10° 0 10
vV 2.587.10% | 2.587.10% | 8.758.10° 0 1

The effect of bearing stiffness on the dynamic factor can be seen in Figure
6.1. It is observed that lowering the bearing stiffness causes a decrease in the
DSLR values for ky/ky,>10 (system I and III). However, when ky, is much higher
than kj, changing the bearing stiffness does not affect the dynamic factors
considerably (system I and II). Another important observation is that as the bearing

stiffness decreases, the speed where the sudden jump occur decreases.

When ky/ky is decreased further to 1 (system IV), the dynamic factor
decreases further. Figure 6.2 shows the comparison between system I and IV. It is
also observed that there is no jump at the mesh resonance frequency in system IV
as can be seen in the figure. Moreover, while the mesh resonance frequency is
expected to decrease, it is increased. If Figure 6.3 is analyzed, then it can be seen
that coupling occurs for 1< ky/ky<10 and a second peak is observed when ky/ky

approaches to 1.
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Figure 6.2 Effect of Bearing Stiffness on DSLR (System I and IV)
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In order to see the detailed effect of bearing stiffness on the resonance

frequencies of the system, DSLR values are calculated for different ky/k;, values

and the results are given in Figure 6.3.
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Figure 6.3 Effect of Bearing Stiffness on DSLR for Different ky/ky, Ratios.

Analyzing Figure 6.1, Figure 6.2 and Figure 6.3, the following conclusions

can be obtained:

Decreasing the bearing stiffness decreases the dynamic factor.

For a very high ky/ky, ratio (in this case, it is 100), the bearing stiffness does
not affect the gear dynamics significantly.

Decreasing the bearing stiffness decreases all resonance frequencies. For
high ky/ky, ratios (>10) the resonance is mainly governed by gear mesh
stiffness while for low ky/ky ratios (<1), the resonance is mainly governed
by bearing stiffness.

For 1< ky/kp<10, the transverse and torsional vibrations are completely
coupled. Two separate resonance peaks can be observed around the mesh
resonance frequency. The lower one is governed by gear mesh stiffness and

it is dominant when ky/ky, increases whereas the second peak is governed by
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the bearing stiffness and it is dominant when ky/k;, decreases. Therefore,
slight changes in bearing stiffness affect dynamic factors considerably.

e As the bearing stiffness decreases, sudden jump in DSLR values, which is
due to the existence of backlash, diminishes. The complete effect of

backlash will be discussed in detail in the following sections.

6.2.2 Effect of Bearing Clearance

To study the effect of bearing clearance on dynamic factor, backlash value
is taken as zero and clearance value is increased gradually and DSLR values are
calculated for different ky/ky ratios starting from 0.01 to 1000. It was observed that
the clearance does not affect the dynamic factor except for a specific range of ky/kn
ratios. Figure 6.4 shows dynamic factors calculated for Kubo’s setup in which ky/ky

ratio is grater than 1000.

Figure 6.4 shows an example case in which clearance value does not affect

the dynamic factor in frequency range of interest at all.

However, when ky/k;, ratio is selected so that the vibration modes of the
mesh and bearings are coupled, then a considerable change in DSLR values are

observed.

For Kubo’s system, coupling effect of mesh and bearings are best observed
for ky/ky=13 and the effect of clearance is studied for that value. Figure 6.5 shows

DSLR plots for different clearance values when ky/k,=13.

As shown in the figure, when the clearance is increased, dynamic factor
decreases. Moreover, the mesh resonance frequency shifts to lower values. This
may be explained as follows. When the bearings have some amount of clearance, a
zero stiffness region occurs for the coordinates associated with bearings. Therefore
the resistive effect of bearing decreases. When there is coupling, as a result of this

softening effect, resonance frequency shifts to lower values.
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Figure 6.4 Effect of Bearing Clearance on DSLR for Kubo’s Setup (backlash=0)
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Figure 6.5 Effect of Bearing Clearance on DSLR for ky/ky=13 (backlash=0)
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Another observation in Figure 6.5 is that when clearance is introduced for
the bearings, a jump occurs around the frequency ratio of 1.2. In other words,
introducing clearance for bearings creates a new peak at a frequency larger than
mesh resonance frequency. This may be due to the insufficient clamping effect of
bearings when there is clearance, which may cause tooth separation in gear mesh
resulting in vibro-impacts. Due to these impacts, a jump in the mesh force is
observed. The amount of jump depends on the clearance value but the location of
the jump depends only on the system parameters. Figure 6.5 also shows that after a
certain value, there is no change on the dynamic factor even though the clearance

value is increased.

In order to study the effect of bearing clearance on the bearing forces,
clearance is gradually increased and maximum the bearing force at excitation
frequency is plotted for ky/k,=13. Figure 6.6 shows the change in bearing force

with increasing clearance value.
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Figure 6.6 Effect of Bearing Clearance on Maximum Bearing Force (ky/k,=13,

backlash=0)
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As shown in the figure, there are three effects of bearing clearance on the
bearing forces. First, increasing clearance value shifts the force plots upward.
Second, introducing clearance for the bearings causes a sudden jump in bearing
force at the mesh resonance frequency as well as at the resonance frequency of
transverse vibration mode associated with the bearing. Third, the amount of jump
depends only on the clearance value where the frequency of jump depends on the

system properties.

6.2.3 Interaction Between Bearing Stiffness and Clearance

In this section, interaction between bearing stiffness and bearing clearance
is investigated. For this purpose, the maximum bearing force for different ky/ky
ratios are studied by first taking no clearance and then by taking a clearance of

0.003 mm. Note that gear backlash is taken as zero in these cases.

Figure 6.8 and Figure 6.7 show the effect of bearing stiffness on the
maximum bearing force with and without the existence of bearing clearance,
respectively. Figure 6.9 shows the effect of clearance on bearing force for a

selected ky/ky, ratio of 50.

As shown in the first two figures, there are drastic changes in bearing forces
when a bearing clearance is introduced. First of all, introducing clearance increases
the maximum bearing force at any frequency as stated in section 6.2.2. Moreover,
increasing ky/kp for both systems (with or without clearance) also increases the
bearing forces. In addition, introducing clearance creates jumps at the resonance
frequencies associated with the bearings, which is also the conclusion stated in

section 6.2.2.

However, as shown in Figure 6.7 and Figure 6.8, increasing ky/ky in the
system with no clearance does not increase the maximum bearing force as it does
for the system with clearance. This shows that there is a strong interaction between

the bearing stiffness and clearance values.
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Figure 6.7 Effect of ky/k, on Max. Bearing Force (with no bearing clearance)
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Figure 6.8 Effect of ky/k, on Max. Bearing Force (with clearance of 0.003 mm)
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Second effect of increasing bearing stiffness is an increase in the resonance
frequency associated with the transverse vibration mode of bearings. This is quite
an expected result since the resonance frequency associated with bearing
displacements is directly affected by the bearing stiffness values. Indeed, when
there is no coupling between the mesh mode, the change in resonance frequency of

bearing is supposed to be proportional to the square root of bearing stiffness.
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Figure 6.9 Effect of Bearing Clearance on Max. Bearing Force (for ky/kp=50)

As shown in Figure 6.8, for ky/ky,=50 the first resonance associated with
transverse vibration of bearing displacement is around the frequency ratio of 1.4
which corresponds to the frequency of 18000 rpm. In the same figure, when ky/k;, is
increased to 100, corresponding resonance shifts to the ratio about 2.0 which is the

frequency ratio for 25800 rpm. It can be seen that the ratio of frequency increase is

about 1.42 (=2/1.4) which is equal to the value of V2. This shows that the
frequency of bearing resonance is proportional to the square root of bearing

stiffness.
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As stated in section 6.2.2, another effect of bearing clearance is that it
creates sudden jumps in bearing forces around the bearing resonance regions as
shown in Figure 6.8 and Figure 6.9. Moreover, when there is coupling between the
vibration modes of the gear mesh and bearings (in this case, coupling occurs when
ky/ky=13), a jump in the mesh resonance is also observed when there is bearing
clearance as shown in Figure 6.8. It is also seen that as the bearing clearance
increases for the same ky/k;, ratio, the resonance frequency of bearings decrease as

shown in Figure 6.9.

However, Figure 6.8 shows that the jump in the maximum bearing force is
also related to ky/ky, ratio. Up to a certain ky/ky ratio (10 in this case) no jump is
observed in the maximum bearing force even there is some amount of bearing
clearance. When bearing stiffness is increased (when ky/ky=13), only one jump
occurs at the first resonance frequency of transverse mode associated with bearing
(which is at the frequency ratio of 1.3). When ky/ky, is increased further (ky/ky=50

for example), another jump occurs at the frequency ratio of 2.6.

From the above observations the following conclusions can be obtained:

e Increasing bearing clearance always increases the bearing forces regardless
of ky/ky, ratio.

e Introducing bearing clearance for a fixed ky/ky, ratio creates sudden jumps in
the maximum bearing force at the resonance frequencies of transverse
vibrations associated with bearings. However, existence of jumps depends
on the ky/ky, ratio. If ky/ky, ratio is less than a certain value, or grater than a
certain value, either no jump or two jumps occur at the resonance
frequencies associated with bearing displacements. These upper and lower
ky/kn values are determined by the bearing stiffness.

o If ky/ky is selected such that there is coupling between gear mesh mode and
bearing modes (e.g., ky/kn=13 in this case), then a sudden jump in the force
is also observed at the gear mesh resonance frequency. The amount of jump
depends only on the amount of clearance, and the jump frequency depends

on the system properties (especially the bearing stiffness).
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e When clearance in bearings is increased for a fixed ky/ky, ratio, in addition to
the increase in the maximum bearing force, resonance frequencies of
bearing modes decrease (Figure 6.9). This means that for a fixed bearing
stiffness value, clearance creates a softening-like effect, shifting the
resonance frequency to lower values. Therefore, as the amount of clearance
in bearings increases, due to wear for example, since the resonance
frequencies shift to lower values (to the frequencies of interest), high
vibration and noise levels may result.

e Increasing bearing stiffness increases the maximum bearing force at any
frequency. However, existence of clearance in bearings strongly affects the
amount of increase in the force. Moreover, increasing bearing stiffness also
increases the resonance frequencies of bearings regardless of existence of
clearance. If there is no coupling between gear mesh mode and bearing
modes, the shift in this frequency is proportional to the square root of
increase in the bearing stiffness.

e [If there is no clearance in bearings, maximum bearing force around the gear
mesh resonance frequency is mainly determined by gear mesh stiffness and
it does not change considerably with increasing bearing stiffness (Figure
6.7) if there is no coupling. However, when there is coupling between
vibration modes of gear mesh and bearings (i.e. when ky/k;, ratio is around
10), then maximum bearing force at the gear mesh resonance frequency is
slightly decreased (Figure 6.7).

e If there is clearance in bearings, increasing bearing stiffness increases the

maximum bearing force more, compared to the case with no clearance.

6.3 Effect of Gear Backlash

Gear backlash can be defined as the amount by which a tooth space exceeds
the thickness of the mating tooth. A gear pair may have some amount of backlash
either designed to provide better lubrication and eliminate interference or due to
manufacturing errors and wear. The backlash may cause tooth separation and

impacts in geared rotor systems which produces high stresses and noise radiation.
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To study the effect of backlash, DSLR values at different backlash values
are obtained for system I (see Table 6.1). Figure 6.10 shows the effect of gear
backlash (in millimeters) on the dynamic factor at the gear mesh. The following

important conclusions can be extracted from the study of the figure:

e As the backlash increases, the amplitude of the dynamic factor decreases at
the gear mesh frequency and at its subharmonic. The amount of decrease
depends on the clearance value.

e Introducing backlash causes a sudden jump at the mesh resonance
frequency and its subharmonics. The amount of jump depends on the
backlash value but the location of jump depends only on the system
parameters.

e Increasing backlash causes a left-shift on the mesh resonance frequency and
its subharmonics. The shift depends on the backlash value.

e After a certain backlash value, there is no change on the dynamic factor

even though the backlash is increased further.
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Figure 6.10 Effect of Gear Backlash on DSLR for k/ky,>1000 (b is in mm)

84



In order to study the effect of gear backlash on bearing forces, the change in
the maximum bearing force with increasing backlash is studied in two cases. It is
observed that changing backlash value does not affect the bearing forces at all
except for a special ky/ky ratio (13 in this case). Note that a similar result was

obtained in 6.2.2 for the effect of bearing clearance on dynamic factor.

Figure 6.11 and Figure 6.12 show the effect of gear backlash on maximum

bearing force for ky/ky,>1000 and ky/ky=13, respectively.
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Figure 6.11 Effect of Gear Backlash on Maximum Bearing Force (for ky/k,>1000)

Figure 6.11 is an example case in which backlash value does not affect the

maximum bearing force at all in the frequency range of interest.

However, when ky/ky, is so selected that there is coupling between the gear
mesh mode and bearing mode, then a slight change in bearing force is observer as
shown in Figure 6.12. As the backlash is increased for the coupled case, the
dynamic factor decreases around the gear mesh resonance frequency. Moreover,

introducing backlash for gear mesh creates a sudden jump in the maximum bearing
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force at the mesh resonance frequency. Amount of jump is affected by the backlash
value. Also after a certain backlash limit, there is no change in the maximum

bearing force even though the backlash is increased further.
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Figure 6.12 Effect of Gear Backlash on Maximum Bearing Force (for ky/k,=13)

6.4 Interaction Between Gear Backlash and Bearing Clearance

To see the interaction between gear backlash and bearing clearance, several
plots were obtained for different ky/ky ratios by changing either backlash for a
constant bearing clearance value or clearance for a constant gear backlash. It was
observed that increasing bearing clearance value for a system with gear backlash
and for a system without gear backlash makes the same difference in both dynamic
factors and bearing forces. In other words, the same changes in section 6.2 were

obtained when the gear backlash is introduced.
Similarly, it was observed that increasing backlash value gives the same

changes in results when there is clearance in bearings. In other words, it can be

concluded that standalone effects of gear backlash and bearing clearance on the
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dynamic factor and maximum bearing force are superposed on top of each other
when there is both gear backlash and bearing clearance. This means that there is a
weak interaction between gear backlash and bearing clearance. Figure 6.13 shows
the effect of gear backlash for different bearing clearances on maximum bearing
force for ky/ky=13. Note that ky/ky, is deliberately selected as 13 in order to see the

effect of gear backlash on bearing force.
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Figure 6.13 Effect of Gear Backlash for Different Bearing Clearances on

Maximum Bearing Force for ky/ky,=13

As can be seen in Figure 6.13, introducing gear backlash for a system with

bearing clearances makes the same effect on the results as explained in section 6.3.



CHAPTER VII

7 CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

In this study, a nonlinear mathematical model is developed for nonlinear
dynamic analysis of gear-shaft-bearing systems. The model combines the
flexibility of the finite element method and the rigorous treatment of the nonlinear
effect of gear backlash and bearing clearance on the dynamics of geared rotor
systems. In other words, finite element modeling allows one to analyze any
possible configuration for a single stage gear mesh such as a gear pair on simply

supported shafts or overhung shafts.

The model includes the transverse and rotary inertia of shaft elements, the
axial loading on shafts, material damping of shafts, damping and stiffness of spur
gear pair and nonlinear bearings which have radial clearances. The coupling
between torsional and transverse vibrations is included into the model. The model
also includes the effects of gear backlash, tooth separation and gear errors.
Although a constant mesh stiffness is used in this model, the excitation effect of
time varying mesh stiffness is indirectly included in the analysis through a periodic
displacement representing loaded static transmission error (STE). STE input is
represented by the highest n harmonic terms of the Fourier series representation of

the measured or calculated data.

Then a computer code for the solution of the system equations is developed
using MatLAB 7.0. Therefore it is highly flexible and open to further
developments. The program calculates dynamic to static load ratio, dynamic

transmission error, reaction forces and displacements at bearings.

Another important feature of the code is the solution technique. Backlash

and clearance type nonlinearities associated with 2*k+4 degrees of freedom (k
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being the total number of bearings) are modeled by describing functions which
enable to express the dynamic equations of a nonlinear system in frequency
domain. Since only a limited number of coordinates are affected from nonlinearity,
system matrices are partitioned and a new method suggested in a previous study is
used to reduce the size of the problem to the number of nonlinear coordinates and
solve them with an iterative process. This method reduces the computational time

considerably.

The computer code developed (NGRD V3.0) is capable of calculating the
dynamic factor (DSLR), dynamic transmission error (DTE) and bearing forces.
Also the modal analysis of the linear part of the system can be made by using

NGRD V3.0.

The results obtained by NGRD V3.0 are validated by comparing them with
experimental results of Kubo and Munro. The results are found to be in good
agreement with the experimental results although some deviations are observed.

Reasons for these deviations are explained in related sections.

The results obtained by NGRD V3.0 are then compared with those of
previously developed nonlinear models of Ozgiiven (1988b, 1991a) and Kahraman
and Singh (1990, 1991). The change of dynamic to static load ratio with rotating
speed is found to be similar. Even though completely different solution techniques
are used for these models, close results are obtained which validate the use of

describing function method and frequency domain solution technique.

The model and the software developed in this study has the advantage of
being very flexible, compared to previous models, so that a configuration for a

single gear pair system on flexible shafts and bearings can be easily handled.

In the last part of the thesis, several parametric studies are performed to
understand the effects of several parameters on dynamic behavior of geared rotor
systems, such as bearing stiffness, clearance in bearings and gear backlash. The

interaction of bearing clearance with other system parameters is also investigated.
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In this study, the following conclusions are drawn:

In the nonlinear dynamic analysis of geared rotor systems, time varying
mesh stiffness can be satisfactorily approximated by an average mesh
stiffness and a periodic displacement excitation representing loaded STE.
Bearing stiffness have the following effects on dynamic factor:

o For a very high bearing stiffness compared to mesh stiffness, the bearing

stiffness has no effect on the dynamic factor.

o Decreasing the bearing stiffness decreases all resonance frequencies for

dynamic factor. For high ky/k;, ratios (>10) the resonances are mainly
governed by gear mesh stiffness while for low ky/ky ratios (<1), the

resonances are mainly governed by bearing stiffness.

o For 1< ky/ky<10, the transverse and torsional vibrations are completely

coupled. Therefore, slight changes in bearing stiffness affect dynamic

factors considerably.

Interaction of bearing clearance with bearing stiffness and effects on the
system dynamics are as follows:

o Increasing clearance does not affect the dynamic factor unless there is

coupling between mesh and bearing modes. When there is coupling,
increasing clearance decreases the dynamic factor. However, the
maximum decrease is about 7-8%. After a certain limit, increasing

clearance further does not affect DSLR values.

o Increasing clearance always increases the maximum bearing force at any

frequency. To be more specific, maximum increase in bearing force in a

frequency range is about 30% when the clearance is doubled.

o Including the bearing clearance in analysis may cause sudden jumps in

the bearing forces at the resonance frequencies of transverse vibration
modes associated with bearings. Existence and the number of jumps
within the frequency range of interest are determined by bearing stiffness

(i.e. ky/ky, ratio).

o If there is coupling between gear mesh mode and the bearing modes, then

an additional jump in the bearing force at the gear mesh resonance
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frequency is also observed. Amount of jump is determined by the value of
clearance.

o Increasing clearance causes a decrease in the resonance frequencies of
bearing modes.

o Increasing bearing stiffness increases the maximum bearing force. When
there is no clearance in bearings, doubling the bearing stiffness causes an
increase of 5% in maximum bearing force in the frequency range of
interest. However when there is clearance, this change may go up to 40%
for the same change in bearing stiffness.

o Increasing bearing stiffness increases the resonance frequencies of
bearing modes. If there is no coupling between the mesh and bearing
modes, the change in the bearing mode resonance frequencies is
proportional to the square root of bearing stiffness, as expected.

e Effect of gear backlash and interaction with bearing clearance are as
follows:

o Including the gear backlash nonlinearity in geared rotor systems causes a
sudden jump at the mesh resonance frequency and its subharmonics in
dynamic factor. Increasing backlash also decreases the mesh resonance
frequency.

o Including gear backlash does not affect the maximum bearing force unless
there is coupling between the torsional and transverse modes of gear
mesh and bearings. When there is coupling, increasing gear backlash
decreases the maximum bearing force at mesh resonance frequency and
causes a jump at the same frequency.

o A strong interaction between bearing stiffness and clearance nonlinearity
is observed.

o A weak interaction between gear backlash and bearing clearance is
observed. In other words, existence of bearing clearance in the systems
with gear backlash makes the same effect as in the case when there is no

gear backlash.
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7.2 Recommendation for Future Work

The main objective of this study was to improve a previous study by
including clearance type of nonlinearities in bearing dynamics. In this study, the
average mesh stiffness is used, but the excitation effect of time varying stiffness is
included through a displacement excitation taken as loaded STE. Gear backlash is

also considered.

For future work, the model can be extended to include the time varying
mesh stiffness directly, in order to study the effect of the approximation used in this
study. Moreover, nonlinear damping between the spur gear pair can be considered.
Furthermore, the mathematical model can be improved for transient response

analysis.

Recommendations for further study may be listed as:

e Time varying mesh stiffness can be included directly into the analysis.

e Solution can be solved by a digital simulation technique in time domain to
obtain transient analysis.

e Eccentricity and external forces can be included in the model.

e Tooth collision can be included in the model.

e Model may be extended to analyze helical gears.

e The user interface (VGR 3.0) can be extended to show the mode shapes of

geared rotor system graphically.
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APPENDIX A
A FINITE ELEMENT MATRICES FOR ROTORS AND RIGID DISKS

A.1 Rotor Element Matrices

A.1.1 Translational Mass Matrix: [Mf]
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A.1.3 Torsional Mass Matrix: [Mﬂ
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A.1.4 Axial Incremental Stiffness Matrix: [Kﬂ
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A.1.5 Transverse Stiffness Matrix: [K;]

(K3 J=5 (K],
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A.1.6 Damping Incremental Stiffness Matrix: [Kec}
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A.1.7 Torsional Stiffness Matrix: [K?r]

[k ]=THK],
where
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A.2 Rigid Disk Matrices

A.2.1 Translational Mass Matrix: [MdT]

a.

i)

o o o o B
o o o B

A.2.2 Rotational Mass Matrix: [M%]
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0 0
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APPENDIX B

B INSTALLATION

B.1 Installation

The VGR version 3.0 is a user friendly interface which controls several sub

codes. These codes are:
e NLGRD version 3.0 (Non-Linear Geared Rotor Dynamics)
e LDP version 10.9G (Load Distribution Program)

e Pine version 1.0

NLGRD version 3.0 is written in MatLAB 7.0 and it is a finite element
program which computes the dynamic to static load ratio, dynamic transmission

error, bearing forces and natural frequencies of a geared rotor system.

LDP version 10.9G computes the several key issues of gears by static
analysis, of which the loaded static transmission error has the most significance for

this study.

Pine version 1.0 converts the output of VGR version 3.0 to the format of

LDP version 10.9G.

The four computer codes, VGR, NLGRD, LDP and Pine must be installed
properly to run the VGR version 3.0.

The VGR version 3.0 must be installed under the directory named:

C:\VGR\Vgr30.exe
The NLGRD version 3.0 files (i.e. MatLAB m-files) must be installed under

the directory named:

C:\VGR\NLGRD\MatLAB\
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The LDP version 10.9G must be installed under the directory named:
C:\VGR\LDP\Ldp109G.exe

The Pine version 10 must be installed under the directory named:

C:\VGR\PINE\Pinel0.exe

B.2 Visual Geared Rotors 3.0 (VGR 3.0)

The VGR 3.0 is able to prepare input data for both NGRD V3.0 and LDP
10.9G. The LDP part of the program is placed in frames named LDP and the
NLGRD part of the program is placed in frames named NLGRD. The parts which
are common to LDP and NLGRD are placed in frames named NLGRD/LDP. All
units are in SI standards. The units of the input data are indicated next to the input

boxes.

Before going further, firstly user must construct the system geometrically,
because the computer code, VGR 3.0, could not automatically detect the order and
type of the basic elements if the system is constructed in a wrong way. For instance
if clicking the stop button is forgotten, shaft one and two cannot be differentiated or
gear and pinion have the same code number which may result in wrong matching

of the input data.

When the user saves the program files, VGR automatically creates the

following files:

o ‘*vgr
e *ldp
e *shp

* vgr file holds the input data which is necessary for NLGRD version 3.0 to
run, basically the material and geometric properties of the basic elements that are

present is the system.

111



* 1dp file holds the input data which is necessary for Pine.exe to run. When

Pine.exe is executed, *.inp file is created which is the standard input files for LDP
version 10.9G

* shp file holds the dimensions and place of basic object pictures in it. Thus

when an existent file is opened VGR is able to construct the system graphically.

NLGRD version 3.0 creates the following files:
e *mod (holds the modal analysis output)
e *.dsl (holds the dynamic to static load ratio data)
o * brf (holds the bearing forces)
e *brd (holds the bearing displacements)

e * msh (holds the dynamic transmission error data)
When the user run the Pine version 1.0, File.pin is automatically created

under the directory in which Pine version 1.0 is placed. It contains the source and

the target file names. Pine version 1.0 automatically opens this file.
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APPENDIX C

C USER MANUAL

C.1 Introduction

NLGRD V3.0 user interface - pre-processor and post-processor - is written
in VB 6.0. The emphasis is placed on user-friendliness. The graphical drawing of
the geared rotor system is formed while the user adds new items to the system.
Thus any user dependent error is minimized. The program is capable of making

more than one analysis at the same time.

The user interface, Visual Geared Rotors (VGR 3.0), could prepare input
file for both NLGRD V3.0 and LDP version 10.9G. There are four basic items in

the program:

e Bearing elements
e Weight elements
e Rotor elements

e QGear elements

Every time user clicks one of these buttons, VGR 3.0 interface loads a new
item on the CAD form. Material, geometric and other types of data can be entered

by just double clicking the items.

Beside these elements there are:
e Stop button
e Move button

e Delete Button

The main window of VGR 3.0 interface is shown in Figure C.1. Having

formed the system, user can make analysis by clicking the Solver button.
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Figure C.1 Main Window of VGR 3.0

C.2 Pre-processor

Connectivity of the system is formed while the user is clicking the basic
item buttons. Positions of the items are irrelevant to connectivity. Therefore items
must be loaded from left to right, top to bottom. So user must first construct the
first shaft from left to right, then click stop button, then start constructing the
second shaft and click stop button again when finished. The construction of typical

geared rotor system is shown in Figure 4.3.

Loaded items can be dragged anywhere on the screen after clicking the
move button. Geometric properties of the items can be defined on screen after
stretch button is clicked or first double clicking the item then entering the

geometric properties through data windows.
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C.2.1 Bearing Element

When the bearing button shown in Figure C.1 is clicked, a new bearing

element is loaded on the CAD window. In order to enter bearing stiffness, hysteric

damping constants and the radial clearance in millimeters, the user must double

click the bearing element. Figure C.2 is displayed immediately after double click.

BEARING DATA

C.2.2

STIFFMESS HLGRD

Kiw Nemj= |1
Kty [(Nem= |EI
Kyx M/mj= |0
Koy (Nomi= |0

CLEARANCE MLGRD

Clearance [mm]= |

DAMPING HLGRD

G [Ns/m= |
Gy Ns/m= |
Cyn Ns/m= |
Cyy [Ns/ml= |D

Weight Element

Figure C.2 Bearing Data Window

When the weight button shown in Figure C.1 is clicked, a new weight

element (e.g. flywheel) is loaded on the CAD window. As soon as the user double

clicks the weight element, Figure 4.4 is displayed on the screen. User can enter the

diameter, width and density data through this window.

WEIGHT DATA

NLGRD

Criameter [mm]= ||-I 6

Thicknesz [mm]= &
Density (ka/m3)= |

ok

Figure C.3 Weight Data Window
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C.2.3 Rotor Element

When the rotor element shown in Figure C.1 is clicked, a new rotor element
is loaded on the CAD window. Figure C.4is displayed when the user double clicks
the rotor elements. User can enter outer diameter, inner diameter, length and axial

load data through this window.

ROTOR DATA
HLGRD

Length [mm]= |23

Cuter Diameter [mm)=

Inner Diameter [mm)=

fiial Load [N]= |'3

MATERIAL

LOP

Ok

Figure C.4 Rotor Data Window

In order to enter material properties of the rotor material button must be
clicked. Figure C.5 is loaded when the Material Button is clicked. User can enter
the following NLGRD data:

e Density

e Modulus of elasticity (for NLGRD and LDP)
e Shear modulus of elasticity

e Viscous damping coefficient

e Hysteric damping coefficient

through this window.
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SHAFT MATERIAL
MNLGRODALDP

Elastic Modus (N/m2)= |

NLGRD
Diansity [Kg/m3)= |'3

Shear Modulus (N/m2)= |

Wizcous Damping [s]= ||:I

Hyszteretic Lozs Factor= ||:I

ok

Figure C.5 Shaft Material Data Window

User can reach misalignment and shaft dimensions window through rotor
data window. When the user clicks the misalignment button Figure C.6 is

displayed.

MISALIGHNMENT
LDF

Mizalighment at ==0 [mm] = p
izalignment Slope [mmdmm] = u

0K |

Figure C.6 Shaft Misalignment Data Window

User can enter the following LDP data through this window:
e Misalignment at X=0

e Misalignment slope

When the user clicks the Shaft Dimensions button, Figure C.7 is displayed.
User can enter the following LDP data through this window:
e Outer, inner diameter and length of shaft

o Before pinion
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o After pinion
o Before gear
o After gear
e Gear and pinion hub diameter

through this window.

L o

&5+ SHAFT DIMENSIONS

LDP
Select Shaft

" Before Pinion (" Before Gear

= After Pinion o tfrer Geat

Equivalent Shaft Outer Diameter [mm]) = <6
Equivalent Shaft Inner Diameter [mm] = a

140

Shaft Lenght [rmm] =

aear Hub Diameter [mm] = a
Pinion Hub Diameter [mm] = a

0K |

Figure C.7 Shaft Dimensions Data Window

LDP can only take single shaft before and after the gear pairs into account.

Therefore equivalent shaft dimensions must be entered.

C.2.4 Gear Element

When the Gear Button shown in Figure C.1 clicked, a new gear element is
loaded on the CAD window. Figure C.8 is displayed when the user double clicks
the gear element. User can enter the following NLGRD data:

e Pitch diameter
e Face width
e Density

through this window. Three new windows can be reached through Figure C.8.
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GEAR. DATA
MLGRD
Fitch Diameter [mm)= |1 ua [ UseLDF Data STE
Face Wwidth [mm]= |1 £ [ Use LDF Data DATA
Denzity [ka/m3]= |?31|:| MESH DATA
LOP
Diata Type Gear Profile Modification Gear Data
~
Detailed GEAR GEOMETRY
')
Drata
TOOTH DATA
Gear Type =
o EE‘-‘EI[ F'I:ISItII:II"I TOOTH MODEL
£ Finion f+ Between Centers
(" Gear ™ Overhung GEAR MATERIAL
PROGRARM COMTROL TITLE AWND FILEMAMES
ok

Figure C.8 Gear Data Window

When the user clicks Mesh data button Figure C.9 is displayed. User can
enter number of teeth, viscous damping coefficient, backlash, static load and

eccentricity through this window.

When the user clicks STE button, Figure C.10 is displayed. User can enter
the following NLGRD data through this window:

e Contact ratio
e Amplitude of STE
e Average mesh stiffness

e Name of STE file
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GEAR MESH DATA
HLGRD

Teeth Mumber of Pinion= |25

Yizcous Damping Coefficient (3)= 0.1

||11

[ Uze LDF Data

Backlazh [mm]= [ Use LOP Data

StaticLoad [M)= |22?D

[ Eccentricty ||:I

Ok

Figure C.9 Gear Mesh Data Window

STATIC TRANMSMISSION ERROR DATA
MLGRD

Static transmizzion emor input method

" 5TE File

{+ Rectangular &pproximatior:

Cortact Ratic = |1 =

Amplitude of STE [mm)= |D,DDDDDE4?9

&verage Mesh Stiffness [M./m)= |253?|:||:||:||:||:|

STE File Mame |

[sosizi.

0K, |

Figure C.10 Static Transmission Error Data Window
User can choose either LDP output file or rectangular wave approximation.
User must enter contact ratio, amplitude of STE and average mesh stiffness unless

he chooses the STE file option.

By clicking Data button user can reach Figure C.11.
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DATA

HLGRD
Murnber of FFT Temsz = |5

Starting RPH af Shaft [rpm)= |2|:||:||:|

Upper Limit of RP [rpm]= |2|:||:||:||:|

Increment [rpml= |2|:||:|

b awirnum Murnber of Itkerations = |4|:||:|

Tolerance in BMS Emar = ||1|:||:|1

Fielaxation Factor 142 = |EI,EIE ||:|,1 3

Freguency sweep

{« Fomward

" Backward

ok

Figure C.11 Data Window

This window controls the flow of the NLGRD V3.0 processor. User can

enter the following parameters shown in Figure C.11:

Number of FFT Terms: The number of harmonics used in the
approximation of STE.

Starting angular speed (rpm): The simulation starts at this rpm.

Upper Limit of angular speed (rpm): The simulation ends at this rpm.
Increment: Speed increment between successive simulations.

Tolerance : It controls the error limit (Recommended : 0.01)

Relaxation Factor: The result of NLGRD is modified by a weighted average
of the results of the previous and present iterations. (Recommended :

Relaxation factor 1=0.001, Relaxation factor 2=0.13)

When the user clicks Gear (or Pinion) Geometry button in Figure C.8,

Figure C.12 is displayed. User can enter the following LDP data:
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e Number of teeth

e Module

e (Generating pressure angle

e Helix angle

e Outer diameter

e Root diameter

e Center distance

e Input torque

e Location of the output torque relative to input torque

e Type of gear mesh (External / Internal)

GEAR GEOMETRY
LCP
- o5 Usze the same teeth
Teeth Number | rumber in NLGRD
todule [mm] = | v Calculate module uzing the

pitch diameter in HLGRD

Generating Pressure Angle [deg) = |2|:|

Helix &ngle [deg) = o

Outzide Diameter [mm] = |1 03

Foot Diameter [mm] = |E”:I

Center Dizstance [mm] = ||:I

|nput Torque [Mm] = |1 iy
Locate the pozition of output tarque relative b input torque Esternal / Internal Gear
{¢ Same {* External Gear

i~ Oppozite
= (" Intemal Gear

Ok

Figure C.12 Gear Geometry Data Window

When the user clicks the Tooth Data button, Figure C.13 is displayed. User
can enter the following LDP data:
e Starting tooth number

e Face width
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e If backlash is chosen

e Amplitude of backlash

e Percentage of backlash attributed to pinion
e If'tooth thickness is chosen

e Tooth thickness

e Diameter at which tooth thickness measured

TOOTH DATA

LDF
Gear

Starting T ooth Mumber = ||-I

Face ‘width [rmm] = | [w Use MLGRD Data

Face Wwidth Offset mm) = |'3

Supply backlash or toath thickness
{+ Backlazh

(" Tooth Thickness

Backlash
Amount of Backlazh [mm] =

[w ze MLGRD Data

Fercentage B acklash B0
Atributed ta Pinion =

Tooth thickness

Tooth Thickness [mm] =

Diameter at which Toath Thickness iz meazured [mm] =

0K |

Figure C.13 Tooth Data Window

When the user clicks the Tooth Model button, Figure C.14 is displayed.
User must choose the model of the tooth (Flat/Tapered). If the tapered tooth model
is chosen, the type of calculation method (manual/automatic) must be decided. If
the manual method is chosen, following parameters must be entered:

e Tooth thickness at tip
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e Tooth thickness at root

Beside these, user must enter the following constants:
e Plate bending exaggeration factor
e Tooth base rotation factor

e Hertz exaggeration factor

TOOTH MODEL
LDP
Tooth model T apered tooth model
£ Flat Tooth Model " Manually
{* Tapered Tooth Modef (o Automatic
Tooth data

Tooth Thikness at Tip [mm] = |

Tooth Thickness at Roaot [mm] = |

Fachors
[Gear

Plate Bending Exaggeration Factor = 1

Tooth Baze Raotation Factar =

Hertz Exaggeration Factor =

ok,

Figure C.14 Tooth Model Data Window

When the user clicks gear material button, Figure C.15 is displayed. User
can enter the following LDP data:
e Young's modulus

e Poisson's ratio

When the "use the same material" check box is checked, both gear and

pinion has the same material properties.

When the user clicks the lead data button in Figure C.8, Figure C.16 is

displayed.
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GEAR MATERIAL

LOP

Young Modulus [MAm] = |2-I (0000000

Poizzon's Ratio = |'l3

[v Uze the zame material property far bath gears

Figure C.15 Gear Material Data Window

GEAR LEAD MODIFICATION

LOF
Gear Side ==0

Straight Modifization on #=0 Side [mm] =
Farabolic Modifization on #=0 Side [mm] =
Beqinning Pozition on #=0 Side [mm] =

Gear Side x=F
Straight Modifization on #=F Side [mm] =

FParabalic Modifization on #=F Side [mm] =

Beqinning Pozition on #=F Side [mm] =

Circular kodification on #=0F Side [mm] =

Lead Angle Error [mm] =

b

[}

|n

|n

|n

Ok

Figure C.16 Gear Lead Modification Window

User can enter the following LDP profile modification data:

Straight modification on X=0 side
Parabolic modification on X=0 side
Beginning position on X=0 side
Straight modification on X=F side
Parabolic modification on X=F side

Beginning position on X=F side

125




e Circular modification on X=0,F side

e Lead angle error

When the user clicks Involute Data button, Figure C.17 is displayed. User
can enter following LDP profile modification data:

e Roll angle at start of tip modification

e Parabolic tip modification magnitude

e Straight tip modification magnitude

e Roll angle at start of root modificati6n

e Parabolic root modification magnitude

e Straight root modification magnitude

e Circular modification at tip and root

e Pressure angle error

&5 GEAR INVOLUTE MODIFICATION
LDP

Gear

Foll &nagle at Start of Tip Modification [deg) = n
Farabalic Tip Modification bMagnitude [mm] = 0
Staright Tip kM odifization Magnitude [mm] = ||:I
Foll &nagle at Start of Roaot kodification [deq] ||:I
Farabalic R oot Modification tagnitude [mm] = ||:I
Straight Foot Modification bMagnitude [mm] = ||:I
Circular Modifization at Tip and Root [mm] = ||:I

Prezzure Angle Emor [deqg)] =

Ok

Figure C.17 Gear Involute Modification Window

When the user clicks the Program Control button, Figure C.18 is displayed.
This window controls the flow of LDP.
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PROGRAM COMTROL

LOP

Beqinning Pozition Conztant = I

Ending Posgition Congtant =

Murnber of Pozitions ko Analyze = 25
kultiplier for # of Points acrosz Face = 4

[v Include shaft effect in STE calculations

Haoww profile modifications are entered 7 Perfarm multi/zingle torque analysiz
{+ |nteractive i~ Buath i Single
i Files i Mot at all " Multi

[ Are there spacing emaors 7 Which shaft use gfiles 7

[v Create dynamic analyziz File [*.grd] 7 " Pinion Shaft

[ Usze off line action of action model # (" Gear Shaft
[ Perfarm waring torgue analyziz (" Both Pinion & Gear Shaft
REFEREMNCE RADIUS f* Mone of Them

Ok

Figure C.18 Program Control Window

User can enter the following LDP data using this window:
Beginning position constant

Ending position constant

Number of positions to analyze

Multiplier for number of positions across face

Include shaft effects in transmission error calculation? (Yes/Not)
How profile modifications are entered?

o Interactive

o Files
o Both
o Not atall

Are there spacing errors? (Yes/No)

Create dynamic analysis file? (Yes/No)
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e Use offline action of model? (Yes/No)
e Perform varying torque analysis? (Yes/No)
e Perform multi/single torque analysis?
e  Which shaft use gfiles?
o Pinion shaft
o Gear shaft
o Both pinion and gear shaft

o None of them

When the user clicks title and filenames button, Figure C.19 is displayed.

PROGRAM 1D
LDP

Program D Title = |KL|EI:I SHAFT BEARIMNG

OutputFile M arme = |KL|E|:|

File Mame for Detailed Pinion Data = |

File Mame for Detaled Gear Data = |

File Mame for Torque Walues = |

File Mame far Pinion Shaft = |

Fiel Mame for Gear Shaft = |

Inzlude Dutput anly for Poscon = |1 |1

Do yow want detail in output file ?
(* ‘f'es

" Mo

Ok

Figure C.19 Title and Filenames Window

User can enter the filenames necessary for LDP. These are:

e Program identity title
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e Output file name

¢ File name for detailed pinion data (when tooth spacing option is checked)
¢ File name for detailed gear data (when tooth spacing option is checked)

e File name for torque values (when varying torque analysis is checked)
¢ File name for pinion shaft (when the pinion shaft use gfiles)

e File name for gear shaft (when gear shaft use gfiles)

e Position constants (number of positions to be printed)

e Do you want detail in output file (Yes/No)

When user finishes constructing the system, Save button is pressed in he file
menu in Figure C.1. This creates the necessary input files for LDP and NGRD
V3.0.

Note that if LDP output is selected to calculate STE, then pine.exe should

be run before clicking Solver button.

When Solver button is clicked, MatLAB 7.0 opens automatically and solves

the system equations. Moreover, necessary files are created for post processor.

C.3 Post Processor

After NLGRD version 3.0 solves the system equations, results can be seen
through user interface graphically. The post processor window is shown in Figure
C.20. User can control the graph window by changing the parameters of control
window. X and Y axis variable, X and Y axis scale can be changed. The user can

take the advantage of seeing both the results and the model itself at the same time.
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