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ABSTRACT 

 

 

NON-LINEAR MATHEMATICAL MODELING 

OF GEAR-ROTOR-BEARING SYSTEMS 

INCLUDING BEARING CLEARANCE 

 

GÜRKAN, Niyazi Ersan 

M.S. Department of Mechanical Engineering 

Supervisor: Prof. Dr. H. Nevzat ÖZGÜVEN 

November 2005, 130 pages 

 

 

In this study, a non-linear mathematical model of gear-rotor systems which 

consists of elastic shafts on elastic bearings with clearance and coupled by a non-

linear gear mesh interface is developed. The mathematical model and the software 

(NLGRD 2.0) developed in a previous study is extended to include the non-linear 

effects due to bearing clearances by using non-linear bearing models. The model 

developed combines the versatility of using finite element method and the rigorous 

treatment of non-linear effect of backlash and bearing clearances on the dynamics 

of the system. 

 

The software uses the output of Load Distribution Program (LDP), which 

computes loaded static transmission error and mesh compliance for the contact 

points of a typical mesh cycle, as input. Although non-varying mesh compliance is 

assumed in the model, the excitation effect of time varying mesh stiffness is 

indirectly included through the loaded static transmission error, which is taken as a 

displacement input into the system. 

 

Previous computer program which was written in Fortran 77 is rewritten by 

using MatLAB 7.0 and named as NLGRD (Non-Linear Geared Rotor Dynamics) 

Version 3.0. The program is highly flexible and open to further developments. The 
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program calculates dynamic to static load ratio, dynamic transmission error, forces 

and displacements at bearings. 

 

The mathematical model suggested and the code (NLGRD version 3.0) are 

validated by comparing the numerical results obtained from the model suggested 

with experimental data available in literature. The results are also compared with 

those of previously developed non-linear models. The effects of different system 

parameters such as bearing stiffness, bearing clearance and backlash on the gears 

are investigated. The emphasis is placed on the interaction of clearances in bearings 

with other system parameters. 

 

Key words: Gear dynamics, Gear mesh modeling, Non-linear gear dynamics, Non-

linear bearings, Dynamic to static load ratio  
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ÖZ 

 

 

YATAK BOŞLUKLARI İÇEREN 

DİŞLİ-ŞAFT-YATAK SİSTEMLERİNİN 

DOĞRUSAL OLMAYAN ELEMANLARLA 

MATEMATİK MODELLENMESİ 

 

GÜRKAN, Niyazi Ersan 

Yüksek Lisans, Makine Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. H. Nevzat ÖZGÜVEN 

Kasım 2005, 130 Sayfa 

 

Bu çalışmada, dişlilerle birleştirilmiş ve boşluk içeren elastik yataklar 

üzerindeki millerden oluşmuş dişli-rotor sistemlerinin dişli boşluğunu da dikkate 

alan, doğrusal olmayan matematik modeli geliştirilmiştir. Bir önceki çalışmada 

geliştirilmiş olan matematiksel model ve yazılım (NLGRD V2.0), doğrusal 

olmayan yatak modelleri kullanılarak, yatak boşluklarından kaynaklanan doğrusal 

olmayan etkileri içerecek şekilde genişletilmiştir. Geliştirilen model, sonlu 

elemanlar yönteminin esnekliğiyle, doğrusal olmayan sistemlerin analiz imkanını 

birleştirerek yatak boşluklarının sistemin dinamiğine etkisinin ayrıntılı bir 

inceleyebilmektedir. 

 

Yazılım,  statik iletim hatasını ve dişliler arasındaki direngenliği tipik bir 

dişli döngüsündeki temas noktaları için hesaplayan Yük Dağılım Programı’nın 

(LDP) çıktısını girdi olarak kullanır. Modelde sabit bir kavrama direngenliği 

olduğu varsayılmasına rağmen, zamanın fonksiyonu olan kavrama direngenliğinin 

tahrik etkisi, sisteme yerdeğiştirme girdisi olarak alnan bu statik iletim hatası 

aracılığıyla dolaylı yoldan dikkate alınmıştır. 

 

Önceki çalışmada Fortran 77 kullanılarak yazılmış olan program, MatLAB 

7.0 kullanılarak yeniden yazılmış ve NLGRD (Doğrusal Olmayan Dişli Rotor 
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Dinamiği) Versiyon 3.0 olarak adlandırılmıştır. Program oldukça esnek ve 

gelişmelere açıktır. Yazılım; dinamik faktörü, dinamik iletim hatasını, yataklardaki 

tepki kuvvetleri ve yataklardaki deplasmanı hesaplamaktadır. 

 

Önerilen matematik model ve geliştirilen yazılım (NLGRD versiyon 3.0), 

elde edilen sayısal sonuçların literatürde bulunan deneysel sonuçlarla 

karşılaştırılmasıyla doğrulanmıştır. Sonuçlar, aynı zamanda önceki doğrusal 

olmayan modellerle bulunan sonuçlarla da karşılaştırılmıştır. Yatak direngenliği, 

yataklardaki boşluklar ve dişlilerdeki boşluklar gibi çeşitli sistem parametrelerinin 

etkileri incelenmiştir. Yataklardaki boşlukların doğrusal olmayan özelliklerinin 

diğer sistem özellikleriyle etkileşimleri üzerinde özellikle durulmuştur. 

 

Anahtar Kelimeler: Dişli dinamiği, Dişli kavrama modeli, Doğrusal olmayan dişli 

dinamiği, Doğrusal olmayan yataklar, Dinamik faktör. 
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CHAPTER I 

 

1 INTRODUCTION 

 

 

1.1 General 

 

With the increased demand for high speed machinery, the mathematical 

modeling of dynamic analysis of gears has gained importance. Numerous 

mathematical models have been developed for different purposes in the past three 

decades. 

  

Moreover, in order to minimize noise and failures by dynamic loads, it is 

now essential to accurately predict the dynamic behavior of geared systems. As the 

transmitted power and rotational speed increases, dynamic loads become more 

significant for the design of gears. Especially when the wear behavior and noise 

radiation are considered, dynamic loads are much more effective compared with 

static loads. 

 

Reducing the effective transmission error by stringent quality control 

measures in gear manufacture and profile modifications are the convenient 

approaches followed in reducing the gear noise. While these steps are beneficial, 

they seldom provide dramatic reductions in gear noise and they fail to recognize 

the contribution of the system dynamics. 

 

Therefore consideration of the effects of gear train dynamics should be 

included to have a more through design study. In many cases, the system dynamics 

cause the design to be enormously sensitive to manufacturing induced transmission 

error. Thus, it is advantageous to minimize the design sensitivity through the use of 

dynamic analysis for the applications that are sensitive to gear noise. 
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However, the problem of geared rotor dynamics is difficult to handle due to 

the change of the number of meshing gear teeth pair in one tooth contact cycle, 

which leads to variable mesh stiffness. Presence of backlash and other type of 

nonlinearities will complicate the problem further. Therefore several assumptions 

must be made before modeling the system. It is obvious that the type of the model, 

which should be used for a reliable dynamic analysis, depends upon the object of 

the study as well as the relative dynamic properties of different elements in the 

system and its configuration. (Özgüven and Houser, 1988b): 

 

Some of the important parameters in gear dynamics are: 

• Backlash 

• System elements: 

o Gear-mesh interface 

o Prime mover and load inertia 

o Shaft inertia and stiffness 

o Bearing stiffness and clearance 

• Gyroscopic effects 

• Friction at gear mesh 

• Excitations: 

o External excitations 

o Internal excitations 

 

1.2 Literature Survey 

 
1.2.1 Dynamic Factor 

 

The actual tooth load of gears in mesh consists of two main components: a 

static component corresponding to the transmitted power (which is almost equal to 

the total load at low speeds of rotation) and a dynamic component which provides a 

fluctuating increment due to dynamic action. Therefore the history of the dynamic 

modeling of gears starts with the studies determining dynamic factors. 
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The dynamic factor (which was then called as speed factor) is first 

introduced by Walter in 1868 (Fisher, 1968) as the ratio of the static load to the 

dynamic load. 

Dynamic Factor=SL/DL (1.1) 

where SL is the static load and DL is the dynamic load. 

This factor is then estimated by Barth (1968) as: 

600
Dynamic factor=

600+V
 (1.2) 

where V is the pitch line velocity in feet per minute. 

 

When it is found that this formula was too conservative at high speeds, Ross 

(1927) recommended the modified form as: 

78
Dynamic factor=

78+ V
 (1.3) 

which received acceptance as one of the standard factors used by the American 

Gear Manufacturing Association (AGMA). This formula and several modified 

forms of it are still being used in some fields. 

 

Seireg and Houser (1970) used the experimental tests results and developed 

a new semi-empirical formula for dynamic tooth load that takes into account gear 

geometries, manufacturing error and operating loads and speeds. It is given as: 

78
Dynamic factor=

78+ V
 (1.4) 

Buckingham (1963) attempted to include the effect of flywheels, pulleys, 

etc. mounted on the gear shaft on the dynamic factor by using empirical equations. 

He came up with two equations for calculating the dynamic load. It can be regarded 

that the second equation is just an approximation to the first one. The fundamental 

Buckingham equation is (Shigley, 1963): 
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t
d a 2 aW =W + W (2W -W )  (1.5) 

where Wd is dynamic load, Wt is transmitted load, Wa is acceleration load and W2 

is the force required to deform the teeth.  

The approximate Buckingham equation is given as (Faires, 1965) 

t
t

d t

0.05V(FC+W )
W =W +

0.05V+ FC+W
 (1.6) 

where F is face width, C is deformation factor and V is pitch line velocity. 

 

Tucker (1971) modified Tuplin equation (Tuplin, 1958) to combine the 

different dynamic factors being used at that time by AGMA. This research 

continued in the 1970 and 1980’s to find a simple dynamic factor formula. The 

dynamic factor equations in current AGMA standards (AGMA 218.01) are 

functions of gear pitch line velocity and the quality of the gears. 

 

In a recently proposed ISO method (ISO TC/60), however, three different 

approaches are suggested for the calculation of the dynamic factor. While the most 

complex of them requires a comprehensive dynamic analysis to consider the 

resonance effects, simplified method predicts the dynamic factor in the sub-critical 

zone. 

 

1.2.2 Mathematical Models 

 

There are many models for gear dynamics in literature. The objects of these 

models vary from noise control to stability analysis. Mathematical models 

developed for the dynamic analysis of gears range from simple single degree-of-

freedom (SDOF) models to non-linear rotor dynamic models. An extensive review 

of the literature on dynamic modeling of gears has been given by Özgüven and 

Houser (1988a). 

 

In 1931, several works carried by the ASME Researches Committee were 

published. After the development of the dynamic load equation in this report, little 
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was done until 1950’s. A detailed discussion of these pre-1950 studies was given 

by Fisher (1961) and Buckingham (1949). 

 

In 1950 a new period in gear dynamics was initiated which incorporated the 

use of vibratory models in the dynamic analysis of gears. Such mathematical 

models made it possible to study other dynamic properties of geared system in 

addition to the dynamic loads. 

 

The first vibratory model of a geared system was introduced by Tuplin 

(1950). The system is represented by an equivalent constant mesh stiffness and an 

equivalent mass. By the addition and subtraction of wedges with different shapes at 

the base of the spring, which represent the mesh stiffness, the gear errors were 

modeled. 

 

It was the Strauch (1953) who seemed to have the first study considering a 

periodic excitation. He considered the step changes in mesh stiffness due to 

changing from single pair to double pair tooth contact. 

 

The effect of various forms of assumed tooth error was discussed by 

Reswick (1955). He used a simple dynamic model consisting of two masses 

constrained to move in a horizontal direction and excited by a parabolic or constant 

acceleration cam which was suddenly moved downward at the pitch line velocity. 

 

Harris (1958) seems to have been the first to emphasize the importance of 

transmission error by showing that the behavior of spur gears at low speeds can be 

summarized in a set of static transmission error curves. In his SDOF model, the 

variation of tooth stiffness, non-linearity in tooth stiffness due to contact loss and 

manufacturing errors were taken into account. The computational results in general 

confirmed Harris’s contention that non-linear effects are insignificant when 

damping is more than about 0.07 times of critical. 

 

Utagawa and Harada (1960) suggested an undamped SDOF model which 

consists of an effective mass and a time varying mesh stiffness. Indeed, the 
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dynamic loads predicted by the model illustrated good correspondence with 

experimental work. 

 

Gregory, et al. (1963) extended the theoretical analysis of Harris and made 

comparisons with experimental observations. The torsional vibratory model of 

Gregory et al. included sinusoidal-type stiffness variation as an approximation. 

 

Retting, Bosch and Aida et al. (1965-1970) presented the examples of other 

studies in this area. Each author modeled the vibration characteristics of gears by 

considering the excitation terms due to tooth profile errors and pitch errors, and by 

including the variation of teeth mesh stiffness. 

 

Nakamura (1967) investigated the separation of tooth meshing with a SDOF 

model. He accounted for single and double tooth pair contact with a square wave 

tooth mesh stiffness variation and used a sinusoidal representation of tooth errors.  

He adopted a numerical piece-wise solution and concluded that the largest dynamic 

load occurs immediately after the separation at a specific speed. 

 

Kohler, Pratt and Thomson (1970) developed a six DOF dynamic model 

with four torsional DOF in the direction of the tooth force on each shaft. They 

concluded that dynamic loads and noise result primarily from the steady state 

vibration of a gear system when forced by static transmission error. 

 

Wang and Morse (1972) used the transfer matrix method to obtain the 

torsional response of a general gear train system excited by external torque. Their 

model includes shaft and gear web stiffness as well as constant mesh stiffness. 

Later, Wang extended the model to include gear tooth backlash, linear and 

nonlinear damping elements. 

 

Wallace and Seireg (1973) used a finite element model to study the stress, 

deformation and fracture in gear teeth when subjected to dynamic loading. In their 

model, the gear is treated as a continuum and the mass of the investigated tooth is 

included.  
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Rettig (1975) modeled a single stage gear system with six DOF (four lateral 

and two translation) with all lateral freedoms being in the same direction. The 

model includes variable tooth mesh stiffness and a simplified formula for the 

dynamic factor calculations. 

 

Salzer et al. (1977) proposed a six DOF model for a car gearbox which 

includes time dependent gear tooth stiffness, non-linear bearing stiffness, loss of 

contact and spacing errors. A real time modeling of the gearbox and analogue 

computer solutions are used. 

 

Zorzi and Nelson (1977) developed a finite element model for determining 

the dynamic behavior of a rotor. He used a Rayleigh beam finite element including 

the effects of the translational and rotary inertia, gyroscopic moments, internal 

damping and the axial load. 

 

Remmers (1978) expressed the static transmission error of a spur gear as 

Fourier series in his damped vibratory model. The coupling of the gear pair is 

represented by a viscous damping and a constant mesh stiffness. The effect of 

spacing errors, load, design contact ratio and profile modifications are included in 

the model. 

 

Kubo (1978) used a torsional vibratory model to predict tooth fillet stress 

and to study the vibration of helical gears with manufacturing and alignment errors. 

Periodic change of total tooth stiffness was included in the model. 

 

Nelson (1979) utilized Timeshenko beam theory for establishing the shape 

functions. He derived the system matrices including the effects of rotary inertia, 

gyroscopic moments, axial load, and shear deformations. 

 

The non-linear vibrations due to gear errors were studied by Kishor (1979) 

with a constant tooth mesh stiffness model. The model consisted of two gears, two 
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disks and two shafts. An approximate solution method was employed to solve the 

system equations. 

 

Kubo and Kiyono (1980) constructed a model for a helical gear pair. The 

model included torsional and translational degrees of freedom, shaft stiffness, as 

well as variable mesh stiffness. The model was used to estimate the dynamic 

exciting force due to both profile and lead errors and due to periodic change of 

tooth stiffness. Several tooth error forms were investigated and it was concluded 

that the convex tooth form error is the most harmless among the different kinds 

studied. 

 

Lees and Pandey (1980) used a finite element model of a gear box to 

establish a direct link between vibration and gear forces. Additional components 

were used in this finite element model to represent a gear mesh. The bearing 

vibration measured at the bearing was used to estimate the gear errors and resulting 

tooth forces. 

 

In the work published by Iida et al. (1980), the coupled torsional-transverse 

vibration of geared system is considered. In their work a two shaft-two gear system 

was analyzed by assuming that one of the shafts was rigid, and the response to gear 

eccentricity and mass unbalance was determined. They showed that transverse 

vibrations couples with torsional vibrations even though gyroscopic effects are 

neglected. 

 

Mark (1982) modeled a gear fatigue test apparatus by assuming rigid shafts, 

rigid gear bodies, and rigid bearing supports. However, the model included the 

inertia of the shafts and the damping between the slave gear and its shafting. He 

used a Fourier series representation of the excitation and the computations were 

carried out, for the most part, in the frequency domain by using the fast Fourier 

transform computational algorithm. 

 

Troeder et al. (1983) constructed a model which included torsional, lateral 

and axial vibration of a helical gear pair-shaft-bearing-system. Fourier expansion of 
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tooth mesh stiffness in the form of a square wave was used in the model. Tooth 

profile errors, as well as pitch errors were considered in the model developed for a 

parametric study. The effect of torque change was studied. 

 

An eight DOF model for single stage spur and helical gears is constructed 

by Küçükay (1984). The model includes the axial vibration of rigid disks which 

represent gear blanks, as well as torsional, transverse and tipping motions. Periodic 

tooth mesh stiffness, tooth errors and external torque were considered. The load 

dependent contact ratio and nonlinearities due to separation of teeth are also 

considered in the model. Steady state solution for the determination of dynamic 

tooth displacements and loads were found by using perturbation methods, by using 

a linearized model in the computation of the loads. 

 

Spots (1984) used the famous spring-wedge analogy of Tuplin to estimate 

simply the dynamic load to be used in gear design. A SDOF model is used with a 

constant stiffness. The dynamic load is expressed as the multiplication of the same 

powers of velocity, stiffness and mass. The equation for dynamic load was then 

obtained by using the condition that the expression was to be dimensionally 

homogeneous. 

 

Iwatsubo et al. (1984) studied the rotor dynamics problem of geared shafts 

by including a constant mesh stiffness and the forcing due to unbalanced mass. The 

effect of tooth profile error and backlash was neglected. The transfer matrix 

method was employed in the solution and free and forced vibration analyses were 

made and the natural frequencies of the resulting linear system were obtained. 

 

Neriya et al. (1985) used the finite element method for dynamic analysis of 

geared trained rotors. They modeled a single gear as a two mass-two spring-two 

damper system, one of the set representing a tooth and the other one representing 

the gear itself. The shafts were also included, and the coupling between torsional 

and flexural motion was considered in the model. A constant mesh stiffness was 

assumed. The response of the system to mass unbalance and geometric eccentricity 
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in the gear was calculated, and the resulting dynamic tooth load was determined by 

using undamped modes of the system and the equivalent modal damping values. 

 

Lin and Huston (1986) constructed a torsional model for the design of spur 

gear systems. A variable mesh stiffness was calculated by taking a tooth as a 

cantilever beam and by considering also the flexibility of the fillet and foundation 

and the local compliance due to contact forces. Constant damping coefficients are 

assumed and the friction between gear teeth was included in the model with a 

frictional torque. A linearized iterative procedure was used for the numerical 

solution and a computer program is developed. 

 

Özgüven and Houser (1988) developed a SDOF non-linear model for the 

dynamic analysis of a gear pair. The model includes the effects of variable mesh 

stiffness and mesh damping, gear errors, profile modifications, and backlash. Two 

methods are suggested and a computer program is developed for calculating the 

dynamics mesh and tooth force, dynamic factors and dynamic transmission error 

by using measured or calculated static transmission error data. They showed that 

using a constant mesh stiffness with a displacement excitation at the mesh point 

representing the loaded static transmission error is a very good approach for 

including the time variation effect of the mesh stiffness. 

 

Kahraman and Singh (1990) developed a SDOF non-linear model. The 

frequency response characteristics of a spur gear pair with backlash are studied for 

both external and internal excitations. The mesh stiffness is assumed to be constant. 

Two solution methods were used, namely the digital simulation technique and the 

method of harmonic balance. Later, Kahraman and Singh (1991a) extended the 

SDOF model to include the bearings dynamics. The three DOF model includes the 

nonlinearities associated with radial clearances in rolling bearings and gear 

backlash. The mesh stiffness is assumed to be constant. The interactions and 

differences between internal static transmission error excitation and external torque 

excitation are discussed. 
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Kahraman and Singh (1991b) extended further the single and three DOF 

models to include a sinusoidal or a periodic mesh stiffness. The interactions 

between the mesh stiffness variation, gear backlash, and bearing clearance were 

investigated. They found a strong interaction between time-varying mesh stiffness 

and gear backlash, whereas the coupling between the time varying mesh stiffness 

and bearing nonlinearities is observed to be weak. 

 

Özgüven (1991a) extended the model of the previous study (Özgüven and 

Houser, 1988b) to include the effects of shaft and bearings dynamics. The six DOF 

nonlinear model includes a spur gear pair, two shafts, two inertia representing the 

load and prime mover, and bearings. The effect of lateral-torsional vibration 

coupling on the dynamics of gears is studied. 

 

Özgüven and Özkan (1984) extended the rotor dynamics model of Zorzi 

and Nelson (1977) to include the combined effects of shear deformation and the 

internal damping. In their model, they considered the effects of rotary inertia, 

gyroscopic moments, axial load, internal viscous and hysteric damping and 

transverse shear deformations. 

 

Kahraman et. al. (1992) used the rotor dynamics model of Özgüven and 

Özkan (1984) and included a gear pair to the system. The model includes the rotary 

inertia of shaft elements, the axial load of shaft, flexibility and damping of 

bearings, material damping of shafts, and the stiffness and the damping of gear 

mesh. The mesh stiffness is assumed to be constant and the coupling between the 

torsional and the transverse vibration of gears were considered. The excitation 

effect of mesh stiffness variation is included in the analysis as a harmonic 

excitation. 

 

Kesan and Özgüven (1992) extended the model of Kahraman et al. for 

helical gears. The effect of the higher harmonic terms of the Fourier series 

representation of the periodic loaded static transmission error function is also 

included in the analysis. 
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Kahraman (1993) studied planetary gear trains that are also known as 

epicyclical gears. They have numerous advantages over simple counter-shaft gear 

drives, including higher torque-to-weight ratio, compactness, decreased radial 

bearing loads and reduced noise. In his study he proposed a simplified purely 

torsional model of a single stage planetary gear set. Closed form expressions for 

torsional natural frequencies are derived in terms of a limited number of system 

parameters. 

 

Rook and Singh (1993) studied reverse idler gear system to gain a better 

understanding of the non-linear behavior. Results of the Galerkin method (multi-

term harmonic balance) are compared with results of numerical integration 

techniques. 

 

Lin et al. (1994) conducted a computer simulation to investigate the effects 

of both linear and parabolic tooth profile modifications on the dynamic response of 

low contact ratio spur gears. The effects of the total amount of modification and 

length of the modification zone   were studied at various loads and speeds to find 

the optimal profile modification for minimal dynamic loading. 

 

Litvin et al. (1995) proposed an approach for the design and generation of 

low-noise helical gears with localized bearing contact. The approach is applied to 

double circular arc helical gears and modified involute gears. The reduction of 

noise and vibration is achieved by application of predesigned parabolic function of 

transmission errors. Computerized simulation of meshing and contact of designed 

gears demonstrated that the proposed approach will produce a pair of gears that has 

a parabolic transmission error function even when misalignment is present. 

 

Cai (1995) developed a vibration model for helical gears, assuming that 

there are no spacing error and no shaft run-out, in consideration of nonlinear tooth 

separation phenomenon. In the model, a simple modified stiffness function, 

including the effect of tooth numbers and addendum modification coefficients, is 

proposed for a helical involute tooth pair. 
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Blankenship and Singh (1995) developed a new model that describes mesh 

force transmissibility in a helical gear pair. New spectral stiffness and 

transmissibility matrices are developed based on linear theory, which completely 

characterize the steady state forced response of a helical gear pair. They concluded 

that additional degree of freedom must be included in the gear mesh interface 

model in those geared systems analyses which attempts to predict structure borne 

noise and casing vibration associated with power transmission systems. 

 

Vinayak et al. (1995) developed a model for multi-mesh transmissions with 

external, fixed center, helical or spur gears. Each gear is modeled as a rigid body 

with six degrees of freedom. Excitation to the system is considered in the form of 

either external torque pulsation or internal static transmission error. They compared 

the results with finite element model results. 

 

Yoon and Rao (1996) presented a method to minimize the STE using cubic 

splines for gear tooth profile. They conducted a parametric study to establish the 

superiority of cubic spline based gear profile over the involute profile as well as 

other profiles based on the use of linear and parabolic tip relieves. 

 

Arıkan (1996) carried out a study on the effect of tooth profile 

modifications on spur gear dynamic loads. In his work, emphasis is placed on the 

addendum modification, and the effect of it on the dynamic gear loads is 

investigated. 

 

Howard, Shengxiang and Wang (2001) developed a dynamic model that 

incorporates the effect of variations in gear tooth torsional mesh stiffness, using 

finite element analysis. 

 

Vaishya and Singh (2001) studied the sliding friction induced nonlinearity 

and parametric effects in gear dynamics. They stated that dynamic interactions 

result between friction and system parameters due to the sliding resistance and 

meshing properties. The harmonic balance formulation is developed to predict the 

dynamic behavior and sub-harmonic instabilities in the system. Finally, the 
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dynamic effects of friction-induced non-linearity are investigated and the critical 

parameters are identified. 

 

Velex and Sainsot (2002) presented an original analytical analysis of tooth 

friction excitations in errorless spur and helical gears based upon a Coulomb 

friction model. The potentially significant contribution of tooth friction to 

translational vibrations of pinions and gears is pointed out, particularly in the case 

of high contact ratio gears. 

 

Wojnarowski and Onishchenko (2003) carried out analytical and 

experimental investigations of the influence of the deformation and wear on spur 

gear dynamics. They developed an elastic, dynamic model with worn teeth having 

two degrees of freedom. Results of the experiments showed that the change of the 

out lines of the teeth due to wear must be taken into account when calculating the 

durability of the gear transmission. 

 

Yüksel and Kahraman (2004) employed a computational model of a 

planetary gear set to study the influence of surface wear on the dynamic behavior 

of a typical planetary gear set. The overall computational scheme combines a wear 

model that defines geometric description of contacting gear tooth surfaces having 

wear and a deformable-body dynamic model of a planetary gear set. 

 

Özgüven, Maliha and Doğruer (2004) presented a new nonlinear dynamic 

model for a gear-shaft-disk-bearing system. A nonlinear dynamic model of a spur 

gear pair is coupled with linear finite element models of shafts carrying them, and 

with discrete models of bearings and disks. The nonlinear elasticity term resulting 

from backlash is expressed by a describing function, and a method developed in 

previous studies to determine multi harmonic responses of nonlinear multi-degree-

of-freedom systems is employed for the solution. The computer code, Non-Linear 

Geared Rotor Dynamics (NLGRD) developed in this study is capable of calculating 

dynamic gear loads, dynamic bearing forces and bearing vibrations, as well as 

making the modal analysis of the corresponding linear system. 
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Velex and Ajmi (2005) introduced an original approach to the modeling of 

pinion–gear excitations by using a three-dimensional model of single-stage geared 

transmissions. In their model, shape deviations and errors on gears are considered, 

and the associated equations of motion account for time-varying mesh stiffness as 

well as torsional, flexural and axial couplings. Using an extended finite element 

model of a spur and helical gear test rig, the dynamic results from the formulations 

based on transmission errors are compared with the reference solutions. 

 

Even though there are several mathematical models developed for gear 

dynamics, there are only a few extensive experimental studies that can be used to 

verify these models. Attia (1959) presented a set of experimental results giving the 

dynamic loads in spur gears. Munro (1962) used a lightly damped test rig to 

measure the dynamic transmission error of a spur gear at different speeds. Kubo 

(1972) has measured the dynamic tooth stresses in spur gears at a wide range of 

speeds. Also Kahraman (2004) carried various experimental studies on dynamic 

analysis of a multi-shaft helical gear transmission systems and experimental 

investigations of the influence of the lubricant viscosity and additives on gear wear. 

 

1.3 Scope of the Thesis 

 

In this thesis, the advanced gear-shaft-bearing model and software 

“Nonlinear Geared Rotor Dynamics (NLGRD)” (Özgüven, Maliha and Doğruer, 

2004) are modified further to include the features summarized below. 

 

Firstly, the nonlinear effects of the bearing clearances are taken into 

consideration and the mathematical model is reconstructed accordingly. 

 

Secondly, the computer code developed is rewritten in MatLAB 7.0 to 

handle the change in the mathematical model and the emphasis is placed on the 

bearing clearances. By introducing the pre and post processors of the program, any 

user-error is tried to be minimized. Having completed the analyses, user can see the 

results graphically without terminating the interface. 
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Then the model is verified by carrying out some case studies and by 

comparing the results with available experiment results and the results of other 

theoretical models. 

 

The effects of several parameters on the dynamic to static load ratio are 

studied by using the configuration of experimental setup of Kubo as a case study. 

Effects of bearing stiffness, bearing clearance and gear backlash are studied in 

depth. Emphasis is placed on the interaction between bearing clearance 

nonlinearity with the other system parameters and especially the gear backlash. 
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CHAPTER II 

 

2 PROBLEM FORMULATION AND DYNAMIC MODELING OF 

SYSTEM ELEMENTS 

 

 

2.1 Introduction 

 

There are many mathematical models developed for the dynamic analysis of 

geared systems in literature. Using a single degree of freedom model considering 

the gear itself may be a fast and accurate approach when the effect of rotor and 

bearing dynamics can be ignored. Sometimes, it is unavoidable to use a 

complicated model to include the coupling between the mesh mode and the other 

modes. 

 

Although there are many multi degree of freedom models for the dynamic 

analysis of geared rotors, the Finite Element Method (FEM) seems a highly 

efficient, flexible and accurate approach. The configuration, location and number 

of elements need not to be fixed when the FEM is used. However, when 

nonlinearities are included into the model, FEM requires considerably high 

computational time, which makes lumped models favorable in such cases, since the 

solution is obtained by numerical integration in time domain and FEM has much 

larger degrees of freedom. In such cases, harmonic response analysis seems more 

suitable since the solution is obtained in frequency domain. However, a new 

lumped model must be constructed each time when the configuration, location 

and/or number of elements are changed. 

 

Therefore in this study, FEM is employed along with the harmonic response 

analysis method for nonlinear systems, which reduces the computational time 

drastically compared to classical FEM applied to nonlinear systems. Thus, the 

flexibility of FEM is retained without increasing the computational effort. 
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The model developed in this study is capable of handling stepped rotors, 

multi-disks and multi-bearings. It also includes the effects of gear-backlash, gear 

errors, profile modifications and clearances in bearings. While the mesh stiffness is 

assumed to be constant when the gear pair is in contact, the excitation effect of the 

mesh stiffness variation is included in the analysis through a displacement 

excitation at the mesh point. 

 

In this chapter the application of the finite element technique to a non-linear 

geared rotor system is presented. In this study, the formulation for a geared system 

composed of two gears with backlash nonlinearity, two rotors, bearings and disk 

elements, employed in a previous study (Maliha et. al, 2004) has been used and 

nonlinearity due to clearances in bearings is added to the formulation. 

 

2.2 Theory 

 

A typical generic geared rotor system, which consists of a spur gear pair 

mounted on flexible shafts, supported by bearings is shown in Figure 2.1. The basic 

elements of such a system can be listed as follows: 

 

• Flexible shafts 

• Rigid disks 

• Flexible bearings with clearance nonlinearity 

• Gears with flexible teeth and backlash nonlinearity 

 

Assuming that the axial motions of shafts are negligible, each node in the 

finite element model of a shaft will have five degrees of freedom. Then each finite 

shaft element has ten degrees of freedom. The rigid disks and gear blanks are 

modeled as five degrees of freedom rigid elements, whereas flexible bearings are 

modeled as two degrees of freedom elements having nonlinear stiffness values. 

Each of these elements will be discussed in detail in following sections. 
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Figure 2.1 A typical geared rotor system 

 

The individual element matrices (mass, damping and stiffness) are then 

assembled to form the overall system matrices. The two gears are coupled by a 

non-linear spring damper system. The coupling matrices are then added to the 

overall system matrices to give the equation of motion in the following form: 

[ ]{ } [ ]{ } [ ]{ } { } { }M q C q K q N f+ + + =�� �  (2.1) 

where [M], [C] and [K] represent the mass, viscous damping and linear stiffness 

matrices respectively, {q} is the vector of displacements and dot denotes 

differentiation with respect to time, {f} and {N} represent the external forcing and 

the internal non-linear forces, respectively. 

 

2.3 Formulation of System Elements 

 

2.3.1 Finite Element Modeling of Flexible Shafts 

 

The shaft elements (or also called rotor elements) considered in this study 

are uniform and circular. The length of rotor element is L and the mass per unit 

length is me. The ten degrees of freedom element has four translations and six 

rotations as shown in Figure 2.2. 

 

The time dependent end point displacements of the finite rotor element are 

indicated by {qe}, where 10-DOFs are: 
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• 4 translations (2 at each side): q1,q2 and q6 q7 

• 6 rotations (3 at each side): q3,q4,q5 and q8,q9,q10 

 

 

Figure 2.2 Finite Element Rotor 

 

Using the FEM model, first the kinetic and the potential energies of the 

rotor element are obtained. Then applying the Lagrange equation, the equation of 

motion for the finite rotor element is obtained as (Özgüven and Özkan, 1984): 

( ){ } ( ){ }
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 (2.2) 

in this equation: 

• [Ke
B], [K

e
T] and [K

e
A] are transverse, torsional and axial incremental stiffness 

matrices respectively 

• [Me
t], [M

e
r] and [M

e
T] are translational, rotational and torsional mass matrices 

respectively 

• [Ke
C] is the damping incremental stiffness matrix 

• ηH and ηv are hysterical loss and viscous damping factors respectively 
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• {fe} is the external forcing vector 

The elements of these matrices are given in detail in Appendix A. 

 

2.3.2 Formulation of Rigid Disks 

 

Disk elements are assumed to be rigid and planar. Each disk has; 

• mass of md and diametral mass moment of inertia Id
D 

• polar mass moment of inertia Id
P 

• 5-dof associated such that 2 of them are translations in y and z directions 

and 3 of them are rotations about the y,z and x directions.(q1, q2 and q3, q4, 

q5).
 

Then the equation of motion for a disk element can be obtained as: 

( ){ } { }d d d d
T RM M q f   + =    ��  (2.3) 

in this equation: 

• [Md
T] and [M

d
R] are translational and rotational mass matrices respectively 

(elements of these matrices are given in in detail in Appendix A) 

• displacements {qd}T={q1, q2, q3, q4, q5} 

 

2.3.3 Formulation of Nonlinear Bearings 

 

In this study, the flexible bearings are modeled as 2-DOF elements. The 

schematic representation of a nonlinear bearing is shown in Figure 2.3. 

 

As shown in the figure, bearings 

• are discrete elements 

• are modeled as 2-DOF elements, the DOFs being two translations: q1, q2 

• have radial clearances 

• have linear viscous damping coefficient:  CYY, CYZ, CZY, CZZ 

• have time invariant stiffness coefficient:  KYY, KYZ, KZY, KZZ 

where Kij and Cij are coefficients that represent the forces in i
th direction due to a 

motion in jth direction. 
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Figure 2.3 Schematic Representation of Nonlinear Bearings 

 

As a result force displacement relation for a bearing can be written as: 

( )
( ) { }1YY YZ 1 YY YZ b

2ZY ZZ 2 ZY ZZ
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f
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�
 (2.4) 

2.3.3.1 Clearance Nonlinearity in Bearings 

 

In the force displacement relation, fb(qi) is the displacement function which 

represent the nonlinearity in bearing and it is defined as clearance-type dead space 

function with backlash around the origin. 

 

fb(qi) can be defined as (T.A. Harris, 1966; M. F. White, 1979; T. C. Lim 

and R. Singh, 1990): 
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 (2.5) 

where αr is the angular position of the r
th rolling element in contact, 2bb is the radial 

clearance of the bearing, n is the power of the nonlinear force displacement 
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relationship (n=1.5 for ball bearings and n=10/9 for roller bearings) and H is the 

total number of rolling elements in contact under loaded conditions. 

 

Figure 2.4 shows exact and approximate bearing deflection functions fb for 

a pre-defined roller bearing. Note that both approximations differ in clearances bbA 

and bbB, but have the same slope as the exact bearing stiffness curve for qi>3bb. To 

simplify the analysis considerably, linear approximations A and/or B can be 

accepted. 

 

As a result, nonlinear bearing deflection function fb(qi) can be approximated 

in the piecewise linear form as: 

( )
i b i b

i b i b

i b i b

q -b , q b

q 0,         b q b

q b , q b
bf

> 
 

= − < < 
 + < − 

 (2.6) 

Note that fb(qi)= qi when the clearance (bb)  is equal to zero (i.e linear case). 

Describing function method is used to represent this nonlinearity, which 

will be discussed in detail in the following chapter. 

 

 

Figure 2.4 Exact and approximate bearing deflection functions 
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2.3.4 Formulation of Gear Mesh 

 

The gear pair is modeled by two disks which represent the inertia of gears 

and by a non-linear spring damper system representing the gear mesh. The model 

includes the following important features: 

 

• the excitation effect of time varying mesh stiffness 

• backlash 

• separation of teeth in mesh 

• gear errors 

• profile modifications 

 

Figure 2.5 shows schematical representation of a non-linear gear mesh model. 
 

 

Figure 2.5 Dynamic model of a spur gear mesh interface 
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As it can be seen from the Figure 2.5, two gears are coupled by a nonlinear 

displacement function of fh(p) and viscous damping coefficient of Cm both acting 

along the pressure line. 

 

Friction forces at the mesh point can be assumed to be negligible (Houser, 

1988). Also the damping coefficient can be assumed to be time-invariant 

(Kahraman, 1999). In the gear mesh model used, the effect of tooth separation is 

taken into consideration but tooth impact is ignored (Kahraman et al. 1991, Maliha, 

1994; Maliha et al. 2004). 

 

Considering the mesh model shown in Figure 2.5, the relative displacement 

between two gears along the pressure line can be written as: 

p g p p g g tp=y y r θ r θ e (t)− + − −  (2.7) 

and its time derivative is: 

p g p p g g tp=y y r θ r θ e (t)− + − −� �� �� �  (2.8) 

where θp and θg are total angular rotations, rp and rg are base circle radii of pinion 

and gear, respectively and et(t) is the loaded static transmission error which will be 

discussed in detail in the following section. 

 

Then, the differential equations for translational and torsional vibrations of 

the gear pair can be written as: 

p p 1m y +W =0��  (2.9) 

g g 1m y -W =0��  (2.10) 

p p 1 p pI θ +W r =T��  (2.11) 

g g 1 g gI θ -W r = -T��  (2.12) 

The mesh force W1 in the Y-direction (along the pressure line) can be 

written as:  

1 m hW =C p+k (p)hf�  (2.13) 
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where fh(p) is the nonlinear displacement function representing backlash (details of 

which will be discussed in Section 2.3.4.2), kh is the mesh stiffness and Cm is the 

viscous mesh damping coefficient. 

 

Substituting W1 and p� expression into the equations of motion yields: 

p p m p m g m p p m g g m t hm y +C y -C y +C r θ -C r θ -C e (t)+k (p)=0hf
� � ��� � �  (2.14) 

p p m p m g m p p m g g m t hm y -C y +C y -C r θ +C r θ +C e (t)-k (p)=0hf
� � ��� � �  (2.15) 

2
p p p m p p m g p m p p g m g p m t p h pI θ +r C y -r C y +r C θ -r r C θ -r C e (t)+r k (p)=Thf
�� � � �� �  (2.16) 

2
g g g m p g m g p g m p g m g g m t g h gI θ -r C y +r C y -r r C θ +r C θ +r C e (t)-r k (p)=-Thf
�� � � �� �  (2.17) 

Re-arranging in matrix form: 

p p m m p m g m p

g p m m p m g m p

2
p p m p m p m g p m p

2
g g m g m p g m g m g

h

h

p h

m 0 0 0 y C -C r C -r C y

0 m 0 0 y -C C -r C r C y

0 0 I 0 θ C -r C r C -r r C θ

0 0 0 I θ -C r C -r r C r C θ

k (p)

-k (p)

r k (p)

-r

h

h

h

f

f

f

       
       

      ⋅ + ⋅                         

+

�� �

�� �

�� �

�� �

m t

m t

p p m t

g h g g m t

C e (t)

-C e (t)

T +r C e (t)

k (p) -T -r C e (t)hf

   
   
   

=   
   
      

�

�

�

�

 (2.18) 

As a result, the equation of motion for the gear pair is reduced to the 

following form: 

[ ]{ } [ ]{ } { } { }h h h h h hM q + C q + N = f�� �  (2.19) 

[ ] [ ]

p m m p m g m

g m m p m g m

2h h
p m p m p m g p m

2
g m g m p g m g m

where

m 0 0 0 C -C r C -r C

0 m 0 0 -C C -r C r C
M = ,       C =

0 0 I 0 C -r C r C -r r C

0 0 0 I -C r C -r r C r C

   
   
   
   
   
      

 
(2.20) 

(2.21) 

{ } { } { }

h m t p

h m t p

h h h
p h p p m t p

g h g g m t g

and

k (p) C e (t) y

-k (p) -C e (t) y
N = ,   f = ,  q

r k (p) T +r C e (t) θ

-r k (p) -T -r C e (t) θ

h

h

h

h

f

f

f

f

     
     
     =     
     
          

�

�

�

�

 

(2.22) 

(2.23) 

(2.24) 
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Describing function method will be used to represent the nonlinear forces 

vector {Nh}, the details of which will be discussed in the following chapter.  

 

2.3.4.1 Static Transmission Error Excitation 

 

Excitation mechanism can be divided into two main groups: 

• External excitation: Low frequency excitation due to rotating unbalance, 

geometric eccentricities and prime mover and load torque fluctuations (Houser, 

1988) are external excitations and they are typically at low frequencies (the very 

first multiples of the input shaft speed Ωp). 

• Internal excitation: High frequency excitations caused by manufacturing 

related profile and spacing errors and the elastic deformation of teeth shaft can be 

considered as internal excitation. 

 

All of the internal excitations stated above can be combined in an overall 

error function, known as Static Transmission Error (STE). Static Transmission 

Error can be defined as the difference between the actual angular position of the 

driven gears and the position where it would be if the gears were perfect (Houser 

1988). 

 

Therefore in gear models, the variable mesh stiffness can be modeled as an 

average constant mesh stiffness and a periodic displacement excitation (STE) at the 

mesh point when the system is loaded (Özgüven and Houser 1988b). 

 

There are several studies in the literature for the computation of mesh 

stiffness and STE. In this study Load Distribution Program (LDP), which was 

developed at the Ohio State University and has been updated several times since its 

first development, is used to find mesh stiffness and STE. 

 

A typical static transmission error function for the spur gears with no teeth 

errors is shown in Figure 2.6. It acts along the line of action and the period is given 

by Ωh= NpΩp where Np is the number of teeth on pinion and Ωp is the rotational 

speed of pinion. 
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Figure 2.6 A typical static transmission error function 

 

Although the transmission error is periodic, it is not harmonic. Therefore, 

direct use of it is not suitable for modal analysis. However, a periodic STE function 

can be defined in terms of harmonic components using Fourier Series. 

 

Now consider a periodic function f(t) with period T. Such a function can be 

represented by Fourier series of the form: 

( )m m
m=1

f(t)= a cos(mωt)+b sin(mω)
∞

∑  (2.25) 

where ω=2π/T is the fundamental frequency. 

 

In this study, STE is approximated by the highest n harmonics and the 

harmonic components (am and bm) are determined by using either Rectangular 

Wave Approximation or applying Discrete Fourier Transform (DFT) Method to the 

LDP output. 
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2.3.4.1.1 Load Distribution Program (LDP) 

 

The Load Distribution Program is a computer program for predicting the 

load distribution across the zone of contact for a single pair of spur or helical gears. 

The gears may have an internal or an external mesh and may be mounted on shafts 

between centers or overhung. 

 

The model assumes the load distribution to be a function of the elasticity of 

gear system and a function of errors or modifications on the gear teeth. Program 

considers the following effects in calculations: 

 

• Bending deflection of gear bodies and supporting shafts 

• Flexibility of bearings and housings 

• Torsional deflection of gear bodies 

• Bending of teeth in contact 

• Local contact deflections 

• Shaft misalignment 

• Involute profile errors 

• Lead errors 

• Tooth spacing errors 

 

In this study, LDP output is used for calculating STE, and DFT method is 

applied to find the harmonic components. Figure 2.7 and Figure 2.8 shows a typical 

input and output screens of LDP program respectively. 

 

2.3.4.1.2 Rectangular Wave Approximation for STE Calculation 

 

In this approach, the periodic STE is taken as a rectangular wave with the 

amplitude of the periodic transmission error. The coefficients am and bm can be 

calculated analytically as: 

( )( ) ( )t
m

-e x x
a = 3-cos mωy sin mω -sin mωy cos mω

mπ 2 2

    ⋅ ⋅    
    

 (2.26) 



 30 

 

( )( ) ( )t
m

-e x x
b = cos mωy 1 cos mω -sin mωy sin mω

mπ 2 2

    − ⋅ ⋅    
    

 (2.27) 

where (x+y)/y is the gear contact ratio and et is the amplitude of the STE function. 

 

 

Figure 2.7 Typical input screen of LDP 

 

 

Figure 2.8 Typical output screen of LDP 
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This approximation for STE calculation is illustrated in Figure 2.9 with the 

highest 5 harmonics. 

 

 

Figure 2.9 STE Approximations 

 

2.3.4.1.3 Discrete Fourier Transform (DFT) Method for STE Calculation 

 

The expression for Fourier coefficients in DFT is given as: 

i(2πmr)N-1
N

m m r
r=0

1
a +ib = x e

N
∑  (2.28) 

where N and xr are the number and the amplitude of discrete data points obtained 

from LDP program respectively. It should be noted that the maximum calculated 

harmonics (m) should be less than N/2 to prevent aliasing (Newland, 1987). 

 

This method for STE calculation is illustrated in Figure 2.9 with the highest 

5 harmonics. As shown in the figure, the DFT approximation is closer to the real 

STE function. Nevertheless, rectangular approximation gives a satisfactory 
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approximation in case of no tooth profile modifications and errors. Therefore, the 

rectangular wave approximation can be useful if the STE data is not available. Also 

the rectangular approximation can be taken as the reference to see the effect of 

tooth profile modifications. 

 

However, when there are profile modifications or errors on gear tooth, STE 

will not be in the form of rectangular wave. Consequently, LDP should be used to 

calculate STE function and DFT should be applied to find the Fourier components. 

 

2.3.4.2 Backlash Nonlinearity in Gear Pairs 

 

Backlash can be defined as the amount by which a tooth space exceeds the 

thickness of the mating tooth. There is always some amount of backlash in a gear 

pair either to provide better lubrication and to eliminate interference, or due to 

manufacturing errors and wear. The backlash nonlinearity may cause tooth 

separation and impact in geared rotor systems. Such impacts may result in 

extensive vibration and noise problems and large dynamic loads which may affect 

reliability and life of geared rotor systems (Dudley, 1984). 

 

Previous studies have shown that the dynamic behavior of a system with 

discontinuous nonlinearities is quite different from the behavior of the same system 

with continuous nonlinearities. The gear backlash non-linearity is actually a 

discontinuous and non-differentiable function and it represents a strong nonlinear 

interaction in the governing differential equations. 

 

In this study, the gear mesh of a spur gear pair is represented by a nonlinear 

spring and a linear damper. The nonlinear spring can be modeled by a dead space 

function with backlash of 2b and a time invariant mesh stiffness kh when two gears 

are in contact, which is actually a similar approach explained in section 2.3.3.1. 

 

For a relative displacement p, the nonlinear displacement function fh(p) is 

defined as: 
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( )h

0                      if  p
(p)=

sign(p) p - b if  p

b
f

b

 ≤
 ⋅ >

 (2.29) 

Figure 2.10 shows the displacement (fh(p)) function versus relative 

displacement (p) for a gear pair. 

 

 

Figure 2.10 Backlash Nonlinearity in Gear Pairs 

 

Then the nonlinear force (Fh(p)) on the gear mesh spring can be defined in 

terms of fh(p) function as: 

h h h(p)=k (p)F f⋅  (2.30) 

where kh is the invariant gear mesh stiffness. 

 

Note that when there is no backlash in the gear mesh (i.e b=0), then 

nonlinear displacement function reduces to fh(p)=p and the force on the mesh 

reduces to Fh(p)=kh.p (i.e the linear case). 

 

In this study describing function method is used to represent the nonlinear 

fh(p) function, details of which will be discussed in the following chapter. 
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CHAPTER III 

 

3 MODELING OF NONLINEARITIES BY DESCRIBING FUNCTIONS 

 

 

3.1 Introduction 

 

In this chapter, the method suggested for the forced response analysis of 

geared rotor systems with backlash and clearance type nonlinearity is presented. 

The internal forcing that represents the static transmission error is approximated by 

n harmonics which have the highest amplitudes, and the response to this internal 

forcing is determined by applying the describing function theory. 

 

First the describing function theory is introduced briefly and then it is used 

to derive the describing function for a general memory-less static nonlinear 

periodic force. Finally, the quasi-linear receptance matrix for geared rotor system is 

formed. 

 

3.2 Theory 

 

The main motivation for describing function (DF) techniques is the need to 

understand the behavior of nonlinear systems, which in turn is based on the simple 

fact that every system is nonlinear except in very limited operating regimes. 

Nonlinear effects exist in most of the systems either by design or due to 

manufacturing errors and/or wear. Unfortunately, the mathematics required to 

understand nonlinear behavior is considerably more advanced than that needed for 

the linear case. 

 

The basic idea of the DF approach for modeling and studying nonlinear 

system behavior is to replace each nonlinear element with a quasi-linear descriptor 

or describing function whose gain is a function of input amplitude (Gelb and 

Vander Velde, 1968; Atherton, 1982). The functional form of such a descriptor is 
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governed by several factors: the type of input signal, which is assumed in advance, 

and the approximation criterion, e.g., minimization of mean squared error. 

 

Unlike linear models, quasi-linear models put no restriction on the response 

amplitude. A nonlinear system has a different quasi-linear equivalent for different 

types of inputs. This means that a quasi-linearized model exhibits the basic 

characteristics of nonlinear behavior which is “dependence of response 

characteristics on input”. 

 

The criterion used for approximation is to minimize the mean-squared 

difference between the output of that approximation and the output of the 

nonlinearity. Therefore, the fundamental limitation on the usage of describing 

functions is that the form of the signal at the input of the nonlinearity must be 

guessed in advance. 

 

3.3 Sinusoidal Input Describing Functions 

 

The sinusoidal input describing function is a quasi-linear representation for 

a nonlinear element subjected to a sinusoidal input. It is the most widely known 

and used describing function. 

 

In this view, if a dynamic nonlinearity y(x,x)� is excited by a sinusoidal 

input of 

x=A sinψ⋅  (3.1) 

where ψ=ω t⋅ , then the output is expressible by the Fourier series expansion as: 

( )m m
m=1

y(A sinψ, Aω cosψ)= A (A,ω) sin mωt+ (A,ω)ϕ
∞

⋅ ⋅ ⋅∑  (3.2) 

In the DF analysis, usually the fundamental harmonic component of the 

output is considered, since the higher harmonics have often smaller amplitudes 

than the fundamental component (Ogata, 1990). 
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Then the sinusoidal input describing function, denoted by ν(A,ω) is defined 

as: 

1j (A,ω)1

phasor representation of output component at freq. ω
ν(A,ω)=

phasor representation of input component at freq. ω

A (A,ω)
e

A
ϕ=

 (3.3) 

In other words, the describing function is the complex fundamental 

harmonic gain of a nonlinearity in the presence of a driving sinusoid. 

 

Manipulating equation (3.2), the general form for the sinusoidal input 

describing function (SIDF) can be obtained as (Gelb and Vander Velde, 1968; 

Atherton, 1982): 

1

2π
j -jψ1

0

A j
ν(A,ω)= e = y(A sinψ, Aω cosψ) e dψ

A πA
ϕ ⋅ ⋅ ⋅ ⋅∫  (3.4) 

3.4 Describing Function of Dead-Zone Element 

 

The symmetrical dead-zone nonlinear element is shown in Figure 3.1 

 

 

Figure 3.1 Symmetrical Dead-Zone Nonlinearity 

 

The two regions of interest can be defined in terms of b as follows: 
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( )
0                      if  x

y(x)=
sign(x) x - b if  x

b

b

 ≤
 ⋅ >

 (3.5) 

The nonlinearity whose input-output characteristics have no dependence on 

the input derivatives (y=y(x) only) is denoted as static nonlinearity. The dead-zone 

nonlinearity shown in the above equation is therefore a static one. 

 

Moreover, for an odd nonlinearity (y(x)= -y(-x)), the imaginary part of the 

describing function vanishes. As a result, the describing function for an odd static 

nonlinearity can be defined as (Gelb and Vander Velde, 1968; Atherton, 1982): 

π

0

2
ν(A)= y(A sinψ) sinψ dψ

πA
⋅ ⋅ ⋅∫  (3.6) 

Note that the type of gear backlash and the bearing clearance nonlinearity 

presented in chapter 2 is also odd-static. 

 

3.5 Periodic Input Describing Functions 

 

A periodic input that consists of a bias term and a sum of infinite number of 

harmonics can be defined as: 

jmψ jmψ
m 0 m

m=0 m=1

x= X e X X e
∞ ∞

= +∑ ∑  (3.7) 

The describing function for such an input depends on the bias level (Xo), the 

amplitudes of the sinusoids (Xm) and the frequencies (mω). The approximating 

gain to the bias input component for a dead-zone nonlinearity element is: 

o

π

X

o 0

1
ν = y(x)dψ

πX ∫  (3.8) 

and the gain to the sinusoidal input component is: 
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m

π

X

m 0

2
ν = y(x) sin(mψ) dψ

πX
⋅ ⋅∫  (3.9) 

3.6 Forced Periodic Response 

 

The equation of motion of an axisymmetric nonlinear geared rotor in which 

the damping is constant and the nonlinearities are involved only in the elastic part 

of the system can be written as (Genta and Bona, 1990): 

[ ]{ } [ ]{ } [ ]{ } { } { }M x C x K x N f+ + + =�� �  (3.10) 

where {N} shows the nonlinear internal forces in the system. 

 

If the external forcing is periodic, then it can be represented as a sum of 

infinite number of harmonics as: 

{ } { } { } jmψ

m m
m=0 m=0

f = f Im F e
∞ ∞ 

=  
 

∑ ∑  (3.11) 

It can be assumed that in a geared rotor system, the system response is 

periodic when the forcing is periodic (Tanrıkulu et al. 1992), then the relative 

displacement p and the general displacement vector {x} can be expressed as: 

jmψ
m m

m=0 m=0

p= p Im P e
∞ ∞ 

=  
 

∑ ∑  (3.12) 

{ } { } { } jmψ

m m
m=0 m=0

x = x Im X e
∞ ∞ 

=  
 

∑ ∑  (3.13) 

where Pm and {X}m are the complex amplitudes of relative displacement p and 

general displacement vector {x} at mω, respectively. 

 

Equation (3.13) allows one to transform the nonlinear differential equation 

(3.10) into the nonlinear algebraic equation: 

[ ] [ ] [ ]( ){ } { } { }2
m m m

-(mω) M +j(mω) C + K X + N = F  (3.14) 
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This equation can be solved directly by using an iterative technique, which 

is generally very difficult.  

 

In this study, nonlinearity is associated only with the four degrees of 

freedom of the dynamic gear mesh interface and the two degrees of freedom of 

each bearing. Therefore, if there are k number of bearings in the system, then the 

total number of coordinates connected to a nonlinear element will be 2*k+4. 

 

3.6.1 Modeling Gear Mesh Interface using Describing Functions 

 

For the gear mesh interface, the nonlinear matrix given by equation (2.22) 

is: 

{ }

h

h

h
p h

g h

k (p)

-k (p)
N =

r k (p)

-r k (p)

h

h

h

h

f

f

f

f

 
 
 
 
 
  

 (3.15) 

Re-representing the nonlinear function fh(p) in terms of the describing 

functions (equations (3.8) and (3.9)) yields: 

jmψ
h m m

m=0

π π
jmψ

h o h m
m=0o m0 0

(p)= ν (A) P e

1 2
(p) dψ P (p) sin(mψ) dψ P e

πP πP

f

f f

∞

∞

⋅ ⋅

   
= ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅   
   

∑

∑∫ ∫
 (3.16) 

and by writing {Nh}m in terms of describing functions, one obtains 

{ } { } jmψ
h hm m

N = G e  (3.17) 

where 

{ }

m h

m h

h mm
p m h

g m h

ν k

-ν k
G = P

r ν k

-r ν k

⋅ 
 ⋅ 

⋅ ⋅ 
 ⋅ 

 (3.18) 
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and from equation (2.7), the complex amplitude Pm is: 

m m m m mm p g p p g g tP =Y -Y +r θ -r θ E−  (3.19) 

where Etm is the complex amplitude of the STE at frequency mω. 

 

Substituting equation (3.19) into (3.18) gives 

{ }

( )
( )
( )
( )

m m m m m

m m m m m

m m m m m

m m m m m

m h p g p p g g t

m h p g p p g g t

h m

p m h p g p p g g t

g m h p g p p g g t

ν k Y -Y +r θ -r θ E

-ν k Y -Y +r θ -r θ E
G =

r ν k Y -Y +r θ -r θ E

-r ν k Y -Y +r θ -r θ E

 ⋅ ⋅ −
 
 ⋅ ⋅ − 
 

⋅ ⋅ − 
 

⋅ ⋅ −  

 (3.20) 

which can be re-arranged in matrix form as: 

{ }

m

m

m

m

pm h m h p m h g m h

gm h m h p m h g m h

2h m
p m h p m h p m h p g m h p

2
g m h g m h p g m h g m h g

m h

m h

p m h

g m h

Yν k ν k r ν k r ν k

Yν k ν k r ν k r ν k
G =

r ν k r ν k r ν k r r ν k θ

r ν k r ν k r r ν k r ν k θ

ν k

ν k

r ν k

r ν k

 ⋅ − ⋅ ⋅ − ⋅ 
  − ⋅ ⋅ − ⋅ ⋅    ⋅   ⋅ − ⋅ ⋅ − ⋅     − ⋅ ⋅ − ⋅ ⋅    

− ⋅ 
 ⋅

+  − ⋅
 ⋅

mt
E


⋅




 (3.21) 

or 

{ } [ ] { } [ ]
mh h tm mm m

G = X R E∆ ⋅ + ⋅  (3.22) 

[ ] { }

m

m

m

m

pm h m h p m h g m h

gm h m h p m h g m h

2 h mm
p m h p m h p m h p g m h p

2
g m h g m h p g m h g m h g

Yν k ν k r ν k r ν k

Yν k ν k r ν k r ν k
= ,   X

r ν k r ν k r ν k r r ν k θ

r ν k r ν k r r ν k r ν k θ

 ⋅ − ⋅ ⋅ − ⋅ 
  − ⋅ ⋅ − ⋅ ⋅   ∆ =   ⋅ − ⋅ ⋅ − ⋅     − ⋅ ⋅ − ⋅ ⋅    

 

(3.23) 
 (3.24) 
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and 

[ ]

m h

m h

m
p m h

g m h

ν k

ν k
R

r ν k

r ν k

− ⋅ 
 ⋅ 

=  − ⋅ 
 ⋅ 

 (3.25) 

Inserting equations (3.11), (3.12) and (3.17) into (2.19), the gear mesh 

interface differential equations can be obtained as: 

[ ] [ ] [ ]( ){ } [ ] { }
m

2
h h h h t hm mm m

-(mω) M +j(mω) C X + R E = F+ ∆ ⋅  (3.26) 

[ ] [ ] [ ]( ){ } { } [ ]
m

2
h h h h h tm mm m

or

-(mω) M +j(mω) C X F R E+ ∆ = − ⋅
 (3.27) 

Inserting the forcing vector {Fh}m (manipulating equation (2.18)) into the above 

equation yields: 

[ ] [ ] [ ]( ){ }

m m

m m

m

m

m t m h t

m t m h t2
h h h h mm

p p m h t

g g m h t

C E +ν k E

C E ν k E
-(mω) M +j(mω) C X

T +r ν k E

T r ν k E

 ⋅ ⋅
 
− − ⋅ ⋅ 

+ ∆ =  
⋅ ⋅ 

 − − ⋅ ⋅ 

�

�

 (3.28) 

where 
mt

E� is the complex amplitude of first time derivative of STE at frequency 

mω. 

 

Then {Xh}m can be written as:  

{ } [ ] { }h h qm m m
X = Fα ⋅  (3.29) 

where 

[ ] [ ] [ ] [ ]
12

h h h hm m
-(mω) M +j(mω) Cα

−
 = + ∆   (3.30) 
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and 

{ }
m m

m m

m

m

m t m h t

m t m h t

q m
p p m h t

g g m h t

C E +ν k E

C E ν k E
F

T +r ν k E

T r ν k E

 ⋅ ⋅
 
− − ⋅ ⋅ 

=  
⋅ ⋅ 

 − − ⋅ ⋅ 

�

�

 (3.31) 

Therefore, for the gear mesh, [ ]h m
α is the response level dependent quasi-

linear receptance matrix at frequency mω. Also note that the forcing vector 

{ }q m
F includes describing function terms ( mν ) which are actually functions of 

response as well. Therefore, the forcing itself is also response level dependent. 

Solution of this equation is presented in the following chapter. 

 

Note that when backlash in gear mesh is zero (i.e when the system is 

linear), the integral terms in equation (3.16) reduce to 1 since fh(p)=p for that case. 

Therefore one can find the solution for the linear case by taking mν 1=  in above 

equations. 

 

3.6.2 Modeling Bearing Clearances using Describing Functions 

 

Force displacement relationship for a bearing was given as 

( )
( ) { }1YY YZ 1 YY YZ

2ZY ZZ 2 ZY ZZ

qC C q K K
0

qC C q K K
b

b

f

f

        
+ =      

        

�

�
 (2.4) 

Let us define the nonlinear bearing forcing vector {Nb} as: 

{ } ( )
( )

1YY YZ
b

2ZY ZZ

qK K
N

qK K
b

b

f

f

    
=   

    
 (3.32) 

Then equation (2.4) becomes: 

{ } { }YY YZ 1
b

ZY ZZ 2

C C q
N 0

C C q

   
+ =  

   

�

�
 (3.33) 
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{ } ( )
( )

( ) ( )
( ) ( )

1 YY 1 YZ 2YY YZ
b

2 ZY 1 ZZ 2ZY ZZ

where

q K q K qK K
N

q K q K qK K
b b b

b b b

f f f

f f f

+        
= =     +        

 (3.34) 

Since the nonlinearity type for the bearings is the same that of as gear mesh 

(dead-zone), the approach explained in section 3.6.1 can be used for quasi-

linearization. 

 

Similar to the equations (3.8) and (3.9), DF terms for the bearing 

displacements can be written as: 

o

π

Q

o 0

1
ν = y(q) dψ

πQ
⋅∫  (3.35) 

m

π

Q

m 0

2
ν = y(q) sin(mψ) dψ

πQ
⋅ ⋅∫  (3.36) 

Since the response is periodic, displacement of a bearing (q) can be 

expressed as: 

jmψ
m m

m=0 m=0

q= q Im Q e
∞ ∞ 

=  
 

∑ ∑  (3.37) 

where Qm is the complex amplitude of the bearing displacement at frequency mω. 

 

Re-representing the nonlinear function fb(q) in terms of the above 

describing functions, one can obtain: 

jmψ
b m m

m=0

π π
jmψ

b o b m
m=0o m0 0

(q)= ν Q e

1 2
(q) dψ Q (q) sin(mψ) dψ Q e

πQ πQ

f

f f

∞

∞

⋅ ⋅

   
= ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅   
   

∑

∑∫ ∫
 (3.38) 

By writing {Nb}m in terms of describing functions, one obtains 

{ } { } jmψ
b bm m

N = G e  (3.39) 

where 
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{ }
( ) ( )
( ) ( )

YY m 1 YZ m 2 1m
b m

ZY m 1 ZZ m 2 2m

K ν q K ν q Q
G

K ν q K ν q Q

   
= ⋅  

  
 (3.40) 

or 

{ } [ ] 1m
b bm m

2m

Q
G

Q

 
= ∆ ⋅ 

 
 (3.41) 

[ ] ( ) ( )
( ) ( )

YY m 1 YZ m 2
b m

ZY m 1 ZZ m 2

K ν q K ν q
where 

K ν q K ν q

 
∆ =  

 
 (3.42) 

Inserting equations (3.39), (3.41) and (3.44) into (2.4) yields 

[ ] [ ] { } { }b b b mm
j(mω) C X 0 + ∆ =   (3.43) 

where 

[ ] ( ) ( )
( ) ( )

YY m 1 YZ m 2
b m

ZY m 1 ZZ m 2

K ν q K ν q

K ν q K ν q

 
∆ =  

 
 (3.44)  

{ } 1m
b m

2m

Q
and   X

Q

 
=  
 

 (3.45) 

define the quasi-linear receptance matrix such that 

[ ] [ ] [ ]
1

b b bm m
j(mω) Cα

−
 = + ∆   (3.46) 

which represents the response level dependent quasi-linear receptance matrix at 

frequency mω for the bearings. 

 

Note that when clearance in a bearing is zero (i.e when the system is linear), 

the integral terms in equation (3.38) reduce to 1 since fh(p)=p for that case. 

Therefore one can find the solution for the linear case by taking mν 1=  in above 

equations. 

 

After calculating [ ]h m
∆ and [ ]b m

∆ matrices, [ ]
m

∆ matrix is created for the 

entire system and the overall equation for harmonic response is formed as: 
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[ ] [ ] [ ] [ ]( ){ } { }2

m mm
-(mω) M +j(mω) C K X F+ + ∆ =  (3.47) 

Let us define the linear dynamic stiffness matrix [β]m and rearrange 

equation (3.47) as: 

[ ] { } { } { }
m m mm

β X G F⋅ + =  (3.48) 

where 

[ ] [ ] [ ] [ ]2

m
β -(mω) M +j(mω) C K = +   (3.49) 

which represent the linear dynamic stiffness matrix at frequency mω for the linear 

part of the system. 

 

The solution of equation (3.47) will be discussed in the following chapter. 
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CHAPTER IV 

 

4 SOLUTION TECHNIQUE AND COMPUTER PROGRAM NLGRD V3.0 

 

4.1 Solution Technique 

 

The quasi-linear theory presented in previous chapter converts a set of 

differential equations into a set of nonlinear complex algebraic equations. 

However, since the DF terms are functions of the response, an iterative process is 

required. To reduce the computational effort, one can separate the nonlinear 

equations from the linear ones as suggested in previous studies (Tanrıkulu et al. 

1992, Maliha et al. 2004). Then the iteration process is applied only for the 

nonlinear set of equations rather than the whole system. 

 

In this study, the nonlinearity is associated only with the gear mesh and the 

bearings. If the number of bearings in the system is k, then the total number of 

nonlinear equations associated with the bearings are 2*k since the bearings are 

modeled as 2 DOF elements. 

 

From the previous section we know that, the nonlinear equations associated 

with the gear mesh are 4. As a result, total number of nonlinear equations are 

2*k+4.  Therefore, one should separate 2*k+4 nonlinear equations from the linear 

ones first. Then the iteration process can be applied as follows: 

 

From the previous chapter, equation (3.48) was: 

[ ] { } { } { }
m m mm

β X G F⋅ + =  (4.1) 

Then this equation can be written as: 

[ ] [ ]
[ ] [ ]

{ }
{ }

{ } { }
{ }

1 111 12 1

2 221 22

X Fβ β G

X Fβ β 0

         
⋅ + =      
        

 (4.2) 
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such that {X1} is the displacement vector for the coordinates with nonlinear 

elements and {X2} is the displacement vector for the remaining ones. Note that 

subscript m is dropped for simplicity. 

 

Equation (4.2) can be expanded as 

[ ] { } [ ] { } { } { }11 1 12 2 1 1β X β X G F⋅ + ⋅ + =  (4.3) 

[ ] { } [ ] { } { }21 1 22 2 2β X β X F⋅ + ⋅ =  (4.4) 

Solving equation (4.4)  for {X2} gives 

{ } [ ] { } [ ] { }1

2 22 2 21 1X β F β X
−

 = ⋅ − ⋅   (4.5) 

Substituting equation (4.5) into (4.3) and noting that 

{ } [ ] { }1 11 1G X= ∆ ⋅ gives: 

{ } [ ] [ ] [ ] [ ] [ ] { } [ ] [ ] { }{ }
11 1

1 11 11 12 22 21 1 12 22 2X β β β β F β β F
−− − = + ∆ − ⋅ ⋅ ⋅ − ⋅ ⋅   (4.6) 

As shown in equation (4.6), the right hand side contains the nonlinearity 

matrix [ ]11∆  and nonlinear forcing vector {F1} whose elements are written by 

using DFs and therefore they are the functions of the response vector {X1}. Then 

an iterative solution is required. {X1} should be recalculated in each iteration step 

in the solution process until convergence. 

 

By using this technique, only the nonlinear coordinates are updated in the 

iteration procedure rather than all coordinates and this reduces the computational 

time considerably. 

 

In this study, no external force is taken on the system, and therefore the 

only excitation is due to the internal mesh force. Therefore {F2}=0. Moreover, if 

the periodic forcing is approximated by the first n harmonics equation (4.6) further 

simplifies to: 
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{ } [ ] [ ] { }
1

1 11 1m mm m
X γ F       m=0,1,2...n

−
 = + ∆ ⋅   (4.7) 

where 

[ ] [ ] [ ] [ ] [ ]1

11 12 22 21m m m m m
γ β β β β

− = − ⋅ ⋅   (4.8) 

Note that equation (4.7) represents (2*k+4)*(n+1) set of nonlinear 

equations which are coupled by describing functions and have to be solved 

simultaneously. The coupling terms are functions of vectors {X1}0, {X1}1, {X1}2, 

… {X1}n. The nonlinear set of equations are solved by finding these vectors 

iteratively and substituting them in the nonlinear DF terms to form the nonlinearity 

matrix [ ]11∆ . In order to form the nonlinearity matrix in the first iteration, linear 

response is used. 

 

The procedure used for solution is summarized below: 

• The (2*k+4)*(n+1) set of equations (4.7) are decomposed into n+1 set of 

equations having 2*k+4 unknowns in 2*k+4 equations (i.e the vector 

{X1}m) 

• Initially, each vector {X1}m is calculated by inverting the matrix 

[ ] [ ]11m m
γ + ∆   where the nonlinear terms in [ ]11∆  matrix are neglected 

(i.e. linear response is found). 

• After solving for the whole set of vectors {X1}m, the nonlinear terms in 

matrix [ ]11∆  and {F1} are evaluated using the computed vector {X1}. 

• The previous steps are repeated using the new nonlinearity matrix in each 

step until obtaining an acceptable convergence for the vector {X1}. 

 

Thus matrices of order 2*k+4 are inverted n+1 times instead of inverting a 

matrix of order N (N is the order of the entire system). Therefore, this reduces the 

computational time and improves the accuracy and convergence. 

 

The detailed iteration scheme used for calculating the harmonic response 

amplitudes at a given frequency ω is given below: 
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1. The system matrices are assembled and mass, damping and stiffness matrices 

(each of order N) are formed. 

2. System coordinates are renumbered such that first 4 coordinates are gear mesh 

coordinates (equation (2.24)) and following 2*k coordinates are bearing 

coordinates (where k is the total number of bearings in the system). 

3. The quasi linear dynamic stiffness matrix [ ]
m

β  is formed for the m-th harmonic 

for the linear part of the system by using equation (3.49)  

4. [ ]
m

β  matrix is separated into [β11], [β12], [β21] and[β22]  matrices by using the 

method explained above (equations (4.3) and (4.4)). 

5. [ ] [ ]11m m
γ + ∆   matrix is calculated by using equation (4.8) and by neglecting 

the nonlinear describing function terms in [ ]11 m
∆  (i.e letting mν 1= ). 

6. Excitation vector {F1}m is calculated using equation (3.31) by neglecting the 

nonlinear describing function terms (i.e letting mν 1= ). 

7. Steps 3 to 6 are repeated for m=0,1,2,…,n to form [ ]
0

γ , [ ]
1

γ , …, [ ]
n

γ  and 

{ }1 0
F , { }1 1

F , …, { }1 n
F  

8. The complex displacement amplitude vectors {X1}
i
m are calculated by using 

equation (4.7). 

9. The describing function terms ( mν ) are calculated by using {X1}
i
m,  and [ ]11 0

∆ , 

[ ]11 1
∆ , …, [ ]11 n

∆  matrices are formed by using the method explained in 

Chapter 3. 

10. Steps 5 to 7 are repeated, but this time, describing function terms ( mν ) and 

[ ]11 m
∆ matrices found in step 9 are used. 

11. The complex displacement amplitude vectors at the (i+1)th iteration (i.e. 

{X1}
i+1

m) are determined by using equation (4.7). 

12. Since the system is highly nonlinear, the new (i+1)th displacement amplitude 

vectors are updated by applying a relaxation factor (R) as follows: 

{ } { } { } { }( )i+1 i+1 i+1 i

1 1 1 1m m m m
X X R X X= + ⋅ −  (4.9) 

13. The iteration is carried until the root mean square error of displacement 
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{ } { }
{ }

2i+1 i
n

1 1m m
rms i

m 0 1 m

X X
E

X=

−
= ∑  (4.10) 

drops below a certain selected value. 

 

Figure 4.1 shows the iteration scheme at a particular frequency. 

 

4.2 Computer Program 

 

NLGRD V3.0 is a computer program prepared for analyzing the dynamic 

response of a geared rotor system. NLGRD is a general purpose program which is 

used to calculate the dynamic to static load ratio (DSLR), the dynamic transmission 

error (DTE), bearing forces and the modal properties (natural frequencies and mode 

shapes) for the linear part of the system, for any two shafts coupled by a spur gear 

pair and mounted on flexible bearings with clearance. 

 

The program is capable of handling stepped shafts, multi-bearings and 

multi-disks. It also takes into account the excitation effect of variable mesh 

stiffness, gear errors and profile modifications, backlash and bearing clearance. The 

main computer program is composed of two main parts. 

 

The graphical user interface, which is written in Visual Basic 6.0, is named 

as VGR 3.0 (Visual Geared Rotors) and it is used to form the system from the 

chosen components, and prepare input files for the second part of the program. In 

this respect, the emphasis is places on user friendliness in VGR 3.0. The graphical 

drawing of the geared rotor system is formed while the user adds new items to the 

system. Therefore, any user dependent error is minimized. VGR 3.0 is capable of 

preparing input files for both NLGRD 3.0 and LDP. 

 

The second part of the program, which is written in MatLAB 7.0, is called 

NLGRD 3.0 and it contains the main solution procedure. The code approximates 

the STE by the highest n Fourier coefficients. 
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Figure 4.1 Iteration scheme used for calculating {X} at a particular frequency 

System matrices are assembled; 
renumbered and linear dynamic stiffness 
matrix is formed for the mth harmonic 

[ ] [ ]11γ + ∆   matrix is calculated from [β] 

treating the system as linear (i.e all mν  tems 

are equal to 1 in [ ]∆  matrix) 

Internal excitation vector {F1}m 
is calculated for the m-th 

harmonic treating the system as 
linear 

Are all harmonics 
considered? 

NO 

Is it the first 
run? 

YES 

YES 

Complex displacement vectors 
{X}1 are calculated by using 

[ ] [ ]11γ + ∆   matrix 

Nonlinear forcing vector {F1} and 

coupling matrices [ ]∆  are 

determined by using {X}i vectors 

NO 

A relaxation factor R is applied 

Convergence 
obtained? 

NO 

Terminate YES 

Complex displacement vectors 
{X}i+1 are calculated by using 

[ ] [ ]11γ + ∆   
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The Fourier series expansion of internal periodic forcing can be obtained 

analytically if a rectangular wave is assumed or by the Discrete Fourier Transform 

(DFT) method if the static transmission error data is obtained by using Load 

Distribution Program (LDP). 

 

In this study, the graphical user interface (VGR) is modified slightly to 

enable the user to enter the radial clearance values of the bearings. Besides this 

change, no modification is made to VGR and the same code is used with the 

previous study (Doğruer, 1999). However, the solution code NGRD V3.0 is a 

completely new computer code which is written in MatLAB 7.0, and using a new 

mathematical formulation. In this aspect, the previous solution code (NGRD V2.0), 

which was written in Fortran 77, is used only as guidance. 

 

4.2.1 Pre-Processor VGR 3.0 

 

Connectivity of the system is formed while the user clicks the basic item 

buttons. Positions of the items are irrelevant to connectivity. Figure 4.3 shows the 

main window of user interface VGR 3.0. 

 

However, items must be loaded from left to right and top to bottom. 

Therefore user must first construct the first shaft from left to right then click stop 

button. Then start constructing the second shaft and click stop button when 

finished. The construction of a typical geared rotor system is shown in Figure 4.4. 

 

Loaded items can be dragged anywhere on the screen after clicking the 

move button. 

 

Geometric properties of the items can be defined by double clicking the 

item then entering the geometric properties through data windows. 

 

Detailed information about entering the system elements and using VGR 

3.0 can be found in Appendix B and in the study carried by Doğruer (Doğruer, 

1999). 
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4.2.2 Processor NLGRD V3.0 

 

After the system is formed through VGR 3.0, solver button is clicked to 

create the necessary files for the solution code NLGRD 3.0.  

 

By clicking the solver button, MatLAB 7.0 opens automatically and 

analyzes the system. Therefore, MatLAB 7.0 must be installed to use NLGRD 3.0. 

After solving the system equations, NLGRD 3.0 creates the output files for the post 

processor. 

 

NLGRD 3.0 consists of a set of subroutines linked together and uses the 

dynamic arrays for efficient utilization of memory. The main routine of NLGRD 

3.0 is named as solve.m and it is the driver of the solution subroutines which solve 

the system equations by utilizing the algorithm explained in the previous section. 

solve.m also forms the complex receptance matrix and then computes the 

displacement vectors by iteration. 

 

The important subroutines driven by solve.m can be explained in brief as 

follows: 

• force.m subroutine calculates the highest n harmonics of a rectangular wave 

for a given STE amplitude and a gear contact ratio. 

• inforc.m subroutine reads the STE output file produced by the program 

LDP and calculates the highest n harmonics by using DFT subroutine. 

• grmesh.m subroutine forms the mesh stiffness and damping matrices of the 

gear pair. 

• deltas.m subroutine forms the [∆] matrices after calling descf.m subroutine 

which calculates the describing functions. The number and amplitudes of 

harmonics and the harmonic order for the describing functions are specified 

in solution.m subroutine. 

• dynf.m subroutine is used to calculate the maximum dynamic force for a 

given frequency. Then the dynamic to static load ratio (DSLR) and the 

dynamic transmission error (DTE) are calculated. 
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• dynf.m subroutine is used to calculate the maximum dynamic force for a 

given frequency. Then the dynamic to static load ratio (DSLR) and the 

dynamic transmission error (DTE) are calculated. 

• bearing.m subroutine is used to calculate the bearing forces using the 

bearing displacements found by the subroutine solve.m. 

 

4.2.3 Post Processor VGR 3.0 

 

After NLGRD version 3.0 solves the system equations, results can be seen 

through user interface graphically. The post processor window is shown in Figure 

4.4. User can control the graph window by changing the parameters of control 

window. For example X and Y axis scale can be changed through the graph 

properties window. The user can take the advantage of seeing both the results and 

the model itself at the same time. 
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CHAPTER V 

 

5 VERIFICATION AND COMPARISON 

 

 

5.1 Introduction 

 

In this chapter, the nonlinear model developed in this study is verified by 

comparing the theoretical results obtained by using NGRD V3.0 with the 

experimental results available, and also with those of the previously tested 

nonlinear mathematical models. 

 

Firstly, the results of the model are validated by comparing them with the 

experimental results of Kubo (1972) and Munro (1962). 

 

Then the results of the model suggested is compared with the linear model 

GRD (Kahraman et al., 1992) and the nonlinear models DYTE (Özgüven and 

Houser, 1988b), DYTEM (Özgüven, 1991a), Kahraman 1-D model (Kahraman and 

Singh, 1990) and Kahraman 3-D model (Kahraman and Singh, 1991). 

 

5.2 Experimental Validation 

 

5.2.1 Verification by Kubo’s Experimental Setup 

 

Kubo has presented results of extensive experimental studies on the 

dynamic stresses in spur gears. He used a heavily damped four-square test rig for 

which the configuration and parameters are shown in Figure 5.1 and Table 5.1, 

respectively. 

 

Kubo measured the dynamic factor as the ratio of the dynamic to static 

tooth stress. However in this study, the dynamic factor is defined as the dynamic to 

static force (or load) ratio (DSLR). This ratio is equivalent to the dynamic factor 
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calculation based on the stress analysis under the assumption that the change in the 

moment arm due to changes in contact point is negligible. Since this assumption 

cannot be justified, the comparison should be made carefully. Therefore, dynamic 

factors calculated by NLGRD V3.0 are not expected to exactly match with the 

experimental values. 
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Table 5.1 Parameters of Kubo’s Setup 

 
Module (mm) 4 

Number of teeth 25/25 

Base diameter (mm) 94 

Outside diameter (mm) 108 

Rotor diameter (mm) 90 

Pitch diameter (mm) 100 

Face width (mm) 15 

Backlash (mm) 0.1 

Pressure angle (deg) 20 

Contact ratio 1.56 

Mesh stiffness (N/m) 2.587.108 

Mesh damping ratio* 0.1 

Amplitude of STE (m) 2.479.10-6 

Drive and load torque (N.m) 107.9 

Static Load (N) 2295 

Ip (kg.m
2) 1.152.10-3 

Ig (kg.m
2) 1.152.10-3 

IL (kg.m
2) 1.152.10-3 

IM (kg.m
2) 5.762.10-3 

Bearing stiffness (N/m) 3.503.1012 

Bearing Damping (Ns/m) 3.503.105 

Shaft damping ratio 0.005 

Length of shaft-1* (mm) 210 

Length of shaft-2* (mm) 140 

 * estimated data 
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Moreover, Kubo’s experimental setup was designed to investigate the 

standalone effects of gear pair. To achieve this, Kubo used very stiff shafts and 

bearings to support the gear pair to simulate rigid supports and to decouple mesh 

mode from the other modes. However, NLGRD V3.0 is developed for analyzing 

more flexible systems in order to see the coupling effect of mesh mode with other 

modes by changing system properties such as bearing compliances or rotor 

properties. In this respect, the simpler models may be sufficient to give accurate 

results for Kubo’s system. However, when the bearings and rotors are more 

flexible, then NGRD V3.0 is still capable of analyzing the system whereas simpler 

models cannot take these effects into account. 

 

Nevertheless, the change of dynamic forces with rotating speed can be 

compared in a qualitative manner rather than a quantitative manner. Comparison of 

the results of NLGRD V3.0 and Kubo’s experiment are shown in Figure 5.2. 
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Figure 5.2 Comparison of NLGRD results with Kubo’s Experiment 
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As shown in the figure, the DSLR values calculated by NLGRD V3.0 

predict the important features of the experimental results. The jump at the resonant 

frequency is clearly distinguished whereas the location of the jump is slightly 

shifted compared to the experimental results. Note that the frequency ratio on the x-

axis is defined as the ratio of rotational speed to torsional natural frequency at the 

mesh mode. 

 

The trend of the dynamic factor is in general in good agreement with 

Kubo’s results. The difference between the experimental results and the calculated 

ones is mainly due to comparing dynamic factors based on stresses with those 

based on forces. 

 

5.2.2 Verification by Munro’s Experimental Setup 

 

As a second example case, experimental results of Munro (1962) are 

compared with those of the model developed. Munro used a four-square test rig to 

measure dynamic transmission error of a spur gear pair for which the configuration 

and parameters are shown in Figure 5.3 and Table 5.2, respectively. 

 

 

Figure 5.3 Configuration of Munro’s System 
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Table 5.2 Parameters of Munro’s Setup 

 
Diametral pitch 4 

Number of teeth 32/32 

Pitch diameter (mm) 204.8 

Face width (mm) 12.7 

Backlash (mm) 0.12 

Contact ratio* 1.60 

Mesh stiffness (N/m) 3.44.109 

Mesh damping ratio 0.0175 

Amplitude of STE (m) 1.143.10-6 

Static Load (N) 3782 

I1= I3 (kg.m
2) 0.02563 

I2= I4 (kg.m
2) 0.03426 

IL* (kg.m
2) 0.67 

IM* (kg.m
2) 0.60 

Bearing stiffness (N/m) 5.8.108 

Bearing Damping (Ns/m) 5.8.104 

Shaft damping ratio 0.005 

Length of shafts* (mm) 204.8 

 * Estimated data 

 

Munro selected high precision spur gear with manufacturing errors much 

smaller than tooth deflections were selected. Tooth profile modifications were 

applied to obtain a minimum (but not zero) STE at design load (DL) of 3780 N. 

Other components of the setup (shafts, bearings and casing) were made as rigid as 

possible. 

 

However, some of the key parameters were not specified by Munro in his 

publication. For example, it was stated that some additional inertias were added to 

gears to shift the primary resonant frequency within the operational speed range, 

but the specific values of such inertias were not given. Moreover, backlash was not 



 64 

measured or reported explicitly. Therefore, some of the system parameters are 

estimated from the schematic figures in Munro’s publications (Munro, 1962). 

 

The measured and predicted maximum dynamic transmission error (DTE) 

at the design load and ¾ design load are compared in Figure 5.4 and Figure 5.5, 

respectively. 

 

As it can be seen in Figure 5.4, the subharmonic and resonance frequencies 

are predicted correctly. However, NGRD V3.0 predicts lower amplitude for the 

main resonance. This may mainly because of the estimated system parameters. 

Even though the changes in these parameters seem to be slight, the effects may be 

more. 

 

As shown in Figure 5.5, NGRD V3.0 predicts the first and the second 

resonant peak amplitudes very close to the experimental values with a slight shift in 

the frequency values. 

 

As a result, the whole trend of the results obtained by NGRD V3.0 follow 

the trend of Munro’s experimental results. The jump at the main resonance and the 

subresonance whose frequency is half of the main resonance are predicted 

successfully. 
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Figure 5.4 Comparison with Munro’s experiment at design load (DL) 
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Figure 5.5 Comparison with Munro’s experiment at ¾ DL 
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5.3 Comparison with Other Mathematical Models 

 

5.3.1 Comparison with DYTE and DYTEM 

 

Özgüven and Houser (1988b) proposed a single degree of freedom 

nonlinear model which consists of two disks representing the inertia of gears and a 

spring-damper system representing the gear mesh. The computer program DYTE 

(Dynamic Transmission Error Program) and the solution were based on the basic 

assumption that the torsional vibrations of a gear pair can be decoupled from other 

vibration modes. This assumption is valid when the gear pair is mounted on stiff 

bearings and the gear shafts have much higher torsional stiffness values compared 

to mesh stiffness. 

 

The effects of variable mesh stiffness and nonlinearities due to backlash and 

tooth impact are included in the model. 

 

Later, Özgüven (1991a) improved the model by including the shaft and 

bearing dynamics. The six degree of freedom model includes a spur gear pair, two 

shafts, inertias of the prime mover and load, and bearings. The computer program 

developed is DYTEM (Dynamic Transmission Error Program Multi-DOF). 

 

Both DYTE and DYTEM use two different methods to find the dynamic 

factors. In the first method, the effect of variable mesh stiffness is included without 

any approximation, whereas in the second method, variable mesh stiffness is 

modeled with a constant mesh stiffness value and an internal excitation function 

(STE), which is actually the same approximation used in NGRD V3.0. Therefore, 

the second method is used to compare the results obtained from DYTE and 

DYTEM with NGRD V3.0. 

 

Figure 5.6 shows the dynamic factors obtained by NGRD V3.0 and DYTE 

for Kubo’s gear system given in Table 5.1. As shown in the figure, the results have 

generally the same shape and trend. 
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Figure 5.6 Comparison between NLGRD V3.0 and DYTE 

 

The comparison of the dynamic factors calculated by NGRD V3.0 and 

DYTE shows that they are very close to each other and the frequencies where the 

jump occurs are almost matching. The slight shift in resonance for NGRD V3.0 is 

due to the coupling between the vibration modes of gear mesh and shafts. 

 

The results of both NGRD V3.0 and DYTEM are shown in Figure 5.7. As it 

is seen from the figure, both programs predict the subharmonic resonance at the 

same frequency value, whereas DSLR value obtained by NGRD V3.0 is higher 

than the value obtained by DYTEM at the subharmonic resonance. 

 

Figure 5.7 also shows that dynamic factors calculated by NGRD V3.0 and 

DYTEM at the mesh resonance are close to each other. However, there is a shift in 

the resonance frequency for the NGRD V3.0 results. Nevertheless, the results of 

NGRD V3.0 are in good agreement with the results of DYTEM. 
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Figure 5.7 Comparison between NGRD V3.0 and DYTEM 

 

5.3.2 Comparison with Kahraman’s Models 

 

Kahraman and Singh (1990) developed a single degree of freedom semi 

definite model of spur gear pair with rotary inertia. The shafts and the bearings are 

assumed to be rigid and the degree of freedom is associated with the relative 

displacement along the pressure line (same as equation (2.7)). In their model, the 

gear mesh is modeled by a constant stiffness with a backlash and a time invariant 

viscous damping. However, the excitation effect of varying stiffness is considered 

through a periodic internal excitation (STE) function. Digital simulation technique 

(5th-6th order Runge-Kutta numerical integration) is used to solve the problem. In 

the solution procedure, they first considered only the fundamental harmonic 

component of STE. Then higher harmonics were included in the solution. 

 

Figure 5.8 shows the DSLR values calculated by NGRD V3.0 and 

Kahraman’s 1-DOF model (in which only the fundamental component of STE is 

considered) for the system described in their publication (Kahraman and Singh, 

1990). 
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Figure 5.8 Comparison between NGRD V3.0 and Kahraman’s 1-DOF model 

 

As shown in the figure, results of Kahraman’s model and NGRD V3.0 with 

single harmonic have exactly the same shape except a slight difference around the 

resonance region. With NGRD V3.0, resonance frequency is estimated slightly 

higher when compared with Kahraman’s 1-DOF model. This is mainly due to the 

coupling effect of vibration modes of mesh and rotors. 

 

However, since Kahraman’s 1-DOF model considers only the fundamental 

harmonic component of STE, it cannot predict the subharmonic resonances. In this 

case NGRD V3.0 gave better results when compared with Kahraman’s 1-DOF 

model. 

 

Figure 5.8 also shows that DSLR value calculated with NGRD V3.0 with 

single harmonic at mesh resonance is higher than that calculated by 1-DOF model. 

Nevertheless, the results of NGRD V3.0 are in good agreement with the results of 

Kahraman’s 1-DOF model. 
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Later, Kahraman and Singh (1991) extended the 1-DOF model to include 

the bearing dynamics and came up with a 3-DOF model in which the gear mesh is 

modeled with a time variable mesh stiffness with backlash and bearings is modeled 

with clearance type nonlinearities. The model is excited by the STE and the 

governing equations are solved using digital simulation technique. 

 

The comparison of the dynamic factors calculated by Kahraman’s 3-DOF 

model and NGRD V3.0 for the gear system in the publication of Kahraman and 

Singh (1991) is shown in Figure 5.9. 
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Figure 5.9 Comparison between NGRD V3.0 and Kahraman’s 3-DOF model 

 

As shown in the figure, the dynamic factor curves have the same trend and 

the same order of magnitude around the resonance peak with a shift of the 

frequency where the jump occurs. The deviation of this frequency is again mainly 

because of coupling between the vibration modes. 

 

However, the main difference between 3-DOF model and NGRD V3.0 is 

that 3-DOF model represents the gear mesh with a time varying stiffness (kh(t)) in 
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addition to the STE function; whereas in NGRD V3.0, mesh stiffness is taken to be 

constant (kh) and its excitation effect is considered through loaded STE. This may 

be one of the reasons for the slight difference in the amplitudes of the dynamic 

factors at main resonance. 

 

The amplitudes of the subharmonics of STE used by Kahraman are not 

given; hence the dynamic factors at the subharmonic region cannot be compared. 

 

As it can be seen from the comparisons, NGRD V3.0 gives successful 

results. Note that the solution techniques used in the previous mathematical models 

employed in this chapter for comparison are completely different from the solution 

technique used in the present study. Most of them use digital simulation technique 

and obtain the solution in time domain. However, in the model presented here, 

describing function approach is used and the solution is obtained in frequency 

domain. 

 

Therefore, close match of the results obtained by NGRD V3.0 with those 

obtained by other models validates the describing function approach and the 

solution technique used in this study. 
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CHAPTER VI 

 

6 PARAMETRIC STUDY AND DISCUSSION 

 

 

6.1 Introduction 

 

In this chapter, the mesh and bearing forces in a geared rotor system with 

backlash and clearance type nonlinearity are studied for a range of rotor speed. The 

effects of gear and bearing properties on the dynamic behavior of spur gears on 

flexible rotors and nonlinear bearings are investigated. Several key issues such as 

the interaction of gear backlash or bearing clearance nonlinearity with system 

parameters are studied and the effects of these changes on the dynamic factor and 

bearing forces are examined. 

 

In the case studies, the configuration of experimental spur gear system of 

Kubo (1972) is used. Furthermore, a wide range of values is used for some 

parameters so that coupling between modes can be studied. The system 

configuration and the parameters used in 4 different systems are given in Figure 5.1 

and Table 5.1, respectively. 

 

At the end of each parametric study, a detailed discussion about the results 

is given. 

 

6.2 Effect of Bearing Properties 

 

6.2.1 Effect of Bearing Stiffness 

 

To study the effect of bearing stiffness on the dynamics of a spur gear pair, 

the stiffness values of the bearings for the experimental set of Kubo are varied 

while keeping all other parameters fixed. These system parameters are given in 
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Table 6.1. Here, kh is mesh stiffness, kb is bearing stiffness and Cb is bearing 

damping. 

 

Note that system I has the original system parameters of the experimental 

setup of Kubo where the mesh mode is uncoupled from the other vibration modes 

(Özgüven, 1991a). 

 

Table 6.1 Bearing Properties of Systems I, II, III, IV and V. 

System kh (N/m) kb (N/m) Cb (N.s/m) 
Bearing 

clearance (mm) 
kb/kh 

I 2.587.108 3.503.1012 3.503.1012 0 >1000 

II 2.587.108 2.587.1010 8.758.103 0 100 

III 2.587.108 2.587.109 8.758.103 0 10 

IV 2.587.108 2.587.108 8.758.103 0 1 

 

 

The effect of bearing stiffness on the dynamic factor can be seen in Figure 

6.1. It is observed that lowering the bearing stiffness causes a decrease in the 

DSLR values for kb/kh≥10 (system I and III). However, when kb is much higher 

than kh, changing the bearing stiffness does not affect the dynamic factors 

considerably (system I and II). Another important observation is that as the bearing 

stiffness decreases, the speed where the sudden jump occur decreases. 

 

When kb/kh is decreased further to 1 (system IV), the dynamic factor 

decreases further. Figure 6.2 shows the comparison between system I and IV. It is 

also observed that there is no jump at the mesh resonance frequency in system IV 

as can be seen in the figure. Moreover, while the mesh resonance frequency is 

expected to decrease, it is increased. If Figure 6.3 is analyzed, then it can be seen 

that coupling occurs for 1< kb/kh<10 and a second peak is observed when kb/kh 

approaches to 1. 
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Figure 6.1 Effect of Bearing Stiffness on DSLR (System I, II and III) 
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Figure 6.2 Effect of Bearing Stiffness on DSLR (System I and IV) 
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In order to see the detailed effect of bearing stiffness on the resonance 

frequencies of the system, DSLR values are calculated for different kb/kh values 

and the results are given in Figure 6.3. 
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Figure 6.3 Effect of Bearing Stiffness on DSLR for Different kb/kh Ratios. 

 

Analyzing Figure 6.1, Figure 6.2 and Figure 6.3, the following conclusions 

can be obtained: 

• Decreasing the bearing stiffness decreases the dynamic factor. 

• For a very high kb/kh ratio (in this case, it is 100), the bearing stiffness does 

not affect the gear dynamics significantly. 

• Decreasing the bearing stiffness decreases all resonance frequencies. For 

high kb/kh ratios (>10) the resonance is mainly governed by gear mesh 

stiffness while for low kb/kh ratios (<1), the resonance is mainly governed 

by bearing stiffness. 

• For 1< kb/kh<10, the transverse and torsional vibrations are completely 

coupled. Two separate resonance peaks can be observed around the mesh 

resonance frequency. The lower one is governed by gear mesh stiffness and 

it is dominant when kb/kh increases whereas the second peak is governed by 



 76 

the bearing stiffness and it is dominant when kb/kh decreases. Therefore, 

slight changes in bearing stiffness affect dynamic factors considerably. 

• As the bearing stiffness decreases, sudden jump in DSLR values, which is 

due to the existence of backlash, diminishes. The complete effect of 

backlash will be discussed in detail in the following sections. 

 

6.2.2 Effect of Bearing Clearance 

 

To study the effect of bearing clearance on dynamic factor, backlash value 

is taken as zero and clearance value is increased gradually and DSLR values are 

calculated for different kb/kh ratios starting from 0.01 to 1000. It was observed that 

the clearance does not affect the dynamic factor except for a specific range of kb/kh 

ratios. Figure 6.4 shows dynamic factors calculated for Kubo’s setup in which kb/kh 

ratio is grater than 1000. 

 

Figure 6.4 shows an example case in which clearance value does not affect 

the dynamic factor in frequency range of interest at all. 

 

However, when kb/kh ratio is selected so that the vibration modes of the 

mesh and bearings are coupled, then a considerable change in DSLR values are 

observed. 

 

For Kubo’s system, coupling effect of mesh and bearings are best observed 

for kb/kh=13 and the effect of clearance is studied for that value. Figure 6.5 shows 

DSLR plots for different clearance values when kb/kh=13. 

 

As shown in the figure, when the clearance is increased, dynamic factor 

decreases. Moreover, the mesh resonance frequency shifts to lower values. This 

may be explained as follows. When the bearings have some amount of clearance, a 

zero stiffness region occurs for the coordinates associated with bearings. Therefore 

the resistive effect of bearing decreases. When there is coupling, as a result of this 

softening effect, resonance frequency shifts to lower values. 
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Figure 6.4 Effect of Bearing Clearance on DSLR for Kubo’s Setup (backlash=0) 
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Figure 6.5 Effect of Bearing Clearance on DSLR for kb/kh=13 (backlash=0) 
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Another observation in Figure 6.5 is that when clearance is introduced for 

the bearings, a jump occurs around the frequency ratio of 1.2. In other words, 

introducing clearance for bearings creates a new peak at a frequency larger than 

mesh resonance frequency. This may be due to the insufficient clamping effect of 

bearings when there is clearance, which may cause tooth separation in gear mesh 

resulting in vibro-impacts. Due to these impacts, a jump in the mesh force is 

observed. The amount of jump depends on the clearance value but the location of 

the jump depends only on the system parameters. Figure 6.5 also shows that after a 

certain value, there is no change on the dynamic factor even though the clearance 

value is increased.  

 

In order to study the effect of bearing clearance on the bearing forces, 

clearance is gradually increased and maximum the bearing force at excitation 

frequency is plotted for kb/kh=13. Figure 6.6 shows the change in bearing force 

with increasing clearance value. 
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Figure 6.6 Effect of Bearing Clearance on Maximum Bearing Force (kb/kh=13, 

backlash=0) 
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As shown in the figure, there are three effects of bearing clearance on the 

bearing forces. First, increasing clearance value shifts the force plots upward. 

Second, introducing clearance for the bearings causes a sudden jump in bearing 

force at the mesh resonance frequency as well as at the resonance frequency of 

transverse vibration mode associated with the bearing. Third, the amount of jump 

depends only on the clearance value where the frequency of jump depends on the 

system properties. 

 

6.2.3 Interaction Between Bearing Stiffness and Clearance 

 

In this section, interaction between bearing stiffness and bearing clearance 

is investigated. For this purpose, the maximum bearing force for different kb/kh 

ratios are studied by first taking no clearance and then by taking a clearance of 

0.003 mm. Note that gear backlash is taken as zero in these cases. 

 

Figure 6.8 and Figure 6.7 show the effect of bearing stiffness on the 

maximum bearing force with and without the existence of bearing clearance, 

respectively. Figure 6.9 shows the effect of clearance on bearing force for a 

selected kb/kh ratio of 50. 

 

As shown in the first two figures, there are drastic changes in bearing forces 

when a bearing clearance is introduced. First of all, introducing clearance increases 

the maximum bearing force at any frequency as stated in section 6.2.2. Moreover, 

increasing kb/kh for both systems (with or without clearance) also increases the 

bearing forces. In addition, introducing clearance creates jumps at the resonance 

frequencies associated with the bearings, which is also the conclusion stated in 

section 6.2.2. 

 

However, as shown in Figure 6.7 and Figure 6.8, increasing kb/kh in the 

system with no clearance does not increase the maximum bearing force as it does 

for the system with clearance. This shows that there is a strong interaction between 

the bearing stiffness and clearance values. 
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Figure 6.7 Effect of kb/kh on Max. Bearing Force (with no bearing clearance) 
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Figure 6.8 Effect of kb/kh on Max. Bearing Force (with clearance of 0.003 mm) 
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Second effect of increasing bearing stiffness is an increase in the resonance 

frequency associated with the transverse vibration mode of bearings. This is quite 

an expected result since the resonance frequency associated with bearing 

displacements is directly affected by the bearing stiffness values. Indeed, when 

there is no coupling between the mesh mode, the change in resonance frequency of 

bearing is supposed to be proportional to the square root of bearing stiffness. 
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Figure 6.9 Effect of Bearing Clearance on Max. Bearing Force (for kb/kh=50) 

 

As shown in Figure 6.8, for kb/kh=50 the first resonance associated with 

transverse vibration of bearing displacement is around the frequency ratio of 1.4 

which corresponds to the frequency of 18000 rpm. In the same figure, when kb/kh is 

increased to 100, corresponding resonance shifts to the ratio about 2.0 which is the 

frequency ratio for 25800 rpm. It can be seen that the ratio of frequency increase is 

about 1.42 (=2/1.4) which is equal to the value of 2 . This shows that the 

frequency of bearing resonance is proportional to the square root of bearing 

stiffness. 

 



 82 

As stated in section 6.2.2, another effect of bearing clearance is that it 

creates sudden jumps in bearing forces around the bearing resonance regions as 

shown in Figure 6.8 and Figure 6.9. Moreover, when there is coupling between the 

vibration modes of the gear mesh and bearings (in this case, coupling occurs when 

kb/kh=13), a jump in the mesh resonance is also observed when there is bearing 

clearance as shown in Figure 6.8. It is also seen that as the bearing clearance 

increases for the same kb/kh ratio, the resonance frequency of bearings decrease as 

shown in Figure 6.9. 

 

However, Figure 6.8 shows that the jump in the maximum bearing force is 

also related to kb/kh ratio. Up to a certain kb/kh ratio (10 in this case) no jump is 

observed in the maximum bearing force even there is some amount of bearing 

clearance. When bearing stiffness is increased (when kb/kh=13), only one jump 

occurs at the first resonance frequency of transverse mode associated with bearing 

(which is at the frequency ratio of 1.3). When kb/kh is increased further (kb/kh=50 

for example), another jump occurs at the frequency ratio of 2.6. 

 

From the above observations the following conclusions can be obtained: 

• Increasing bearing clearance always increases the bearing forces regardless 

of kb/kh ratio. 

• Introducing bearing clearance for a fixed kb/kh ratio creates sudden jumps in 

the maximum bearing force at the resonance frequencies of transverse 

vibrations associated with bearings. However, existence of jumps depends 

on the kb/kh ratio. If kb/kh ratio is less than a certain value, or grater than a 

certain value, either no jump or two jumps occur at the resonance 

frequencies associated with bearing displacements. These upper and lower 

kb/kh values are determined by the bearing stiffness. 

• If kb/kh is selected such that there is coupling between gear mesh mode and 

bearing modes (e.g., kb/kh=13 in this case), then a sudden jump in the force 

is also observed at the gear mesh resonance frequency. The amount of jump 

depends only on the amount of clearance, and the jump frequency depends 

on the system properties (especially the bearing stiffness). 
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• When clearance in bearings is increased for a fixed kb/kh ratio, in addition to 

the increase in the maximum bearing force, resonance frequencies of 

bearing modes decrease (Figure 6.9). This means that for a fixed bearing 

stiffness value, clearance creates a softening-like effect, shifting the 

resonance frequency to lower values. Therefore, as the amount of clearance 

in bearings increases, due to wear for example, since the resonance 

frequencies shift to lower values (to the frequencies of interest), high 

vibration and noise levels may result. 

• Increasing bearing stiffness increases the maximum bearing force at any 

frequency. However, existence of clearance in bearings strongly affects the 

amount of increase in the force. Moreover, increasing bearing stiffness also 

increases the resonance frequencies of bearings regardless of existence of 

clearance. If there is no coupling between gear mesh mode and bearing 

modes, the shift in this frequency is proportional to the square root of 

increase in the bearing stiffness. 

• If there is no clearance in bearings, maximum bearing force around the gear 

mesh resonance frequency is mainly determined by gear mesh stiffness and 

it does not change considerably with increasing bearing stiffness (Figure 

6.7) if there is no coupling. However, when there is coupling between 

vibration modes of gear mesh and bearings (i.e. when kb/kh ratio is around 

10), then maximum bearing force at the gear mesh resonance frequency is 

slightly decreased (Figure 6.7). 

• If there is clearance in bearings, increasing bearing stiffness increases the 

maximum bearing force more, compared to the case with no clearance. 

 

6.3 Effect of Gear Backlash 

 

Gear backlash can be defined as the amount by which a tooth space exceeds 

the thickness of the mating tooth. A gear pair may have some amount of backlash 

either designed to provide better lubrication and eliminate interference or due to 

manufacturing errors and wear. The backlash may cause tooth separation and 

impacts in geared rotor systems which produces high stresses and noise radiation. 
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To study the effect of backlash, DSLR values at different backlash values 

are obtained for system I (see Table 6.1). Figure 6.10 shows the effect of gear 

backlash (in millimeters) on the dynamic factor at the gear mesh. The following 

important conclusions can be extracted from the study of the figure: 

 

• As the backlash increases, the amplitude of the dynamic factor decreases at 

the gear mesh frequency and at its subharmonic. The amount of decrease 

depends on the clearance value. 

• Introducing backlash causes a sudden jump at the mesh resonance 

frequency and its subharmonics. The amount of jump depends on the 

backlash value but the location of jump depends only on the system 

parameters. 

• Increasing backlash causes a left-shift on the mesh resonance frequency and 

its subharmonics. The shift depends on the backlash value. 

• After a certain backlash value, there is no change on the dynamic factor 

even though the backlash is increased further. 
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Figure 6.10 Effect of Gear Backlash on DSLR for kb/kh>1000 (b is in mm) 
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In order to study the effect of gear backlash on bearing forces, the change in 

the maximum bearing force with increasing backlash is studied in two cases. It is 

observed that changing backlash value does not affect the bearing forces at all 

except for a special kb/kh ratio (13 in this case). Note that a similar result was 

obtained in 6.2.2 for the effect of bearing clearance on dynamic factor. 

 

Figure 6.11 and Figure 6.12 show the effect of gear backlash on maximum 

bearing force for kb/kh>1000 and kb/kh=13, respectively. 
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Figure 6.11 Effect of Gear Backlash on Maximum Bearing Force (for kb/kh>1000) 

 

Figure 6.11 is an example case in which backlash value does not affect the 

maximum bearing force at all in the frequency range of interest. 

 

However, when kb/kh is so selected that there is coupling between the gear 

mesh mode and bearing mode, then a slight change in bearing force is observer as 

shown in Figure 6.12. As the backlash is increased for the coupled case, the 

dynamic factor decreases around the gear mesh resonance frequency. Moreover, 

introducing backlash for gear mesh creates a sudden jump in the maximum bearing 
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force at the mesh resonance frequency. Amount of jump is affected by the backlash 

value. Also after a certain backlash limit, there is no change in the maximum 

bearing force even though the backlash is increased further. 
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Figure 6.12 Effect of Gear Backlash on Maximum Bearing Force (for kb/kh=13) 

 

6.4 Interaction Between Gear Backlash and Bearing Clearance 

 

To see the interaction between gear backlash and bearing clearance, several 

plots were obtained for different kb/kh ratios by changing either backlash for a 

constant bearing clearance value or clearance for a constant gear backlash. It was 

observed that increasing bearing clearance value for a system with gear backlash 

and for a system without gear backlash makes the same difference in both dynamic 

factors and bearing forces. In other words, the same changes in section 6.2 were 

obtained when the gear backlash is introduced. 

 

Similarly, it was observed that increasing backlash value gives the same 

changes in results when there is clearance in bearings. In other words, it can be 

concluded that standalone effects of gear backlash and bearing clearance on the 
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dynamic factor and maximum bearing force are superposed on top of each other 

when there is both gear backlash and bearing clearance. This means that there is a 

weak interaction between gear backlash and bearing clearance. Figure 6.13 shows 

the effect of gear backlash for different bearing clearances on maximum bearing 

force for kb/kh=13. Note that kb/kh is deliberately selected as 13 in order to see the 

effect of gear backlash on bearing force. 
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Figure 6.13 Effect of Gear Backlash for Different Bearing Clearances on 

Maximum Bearing Force for kb/kh=13 

 

As can be seen in Figure 6.13, introducing gear backlash for a system with 

bearing clearances makes the same effect on the results as explained in section 6.3. 



 88 

CHAPTER VII 

 

7 CONCLUSIONS AND RECOMMENDATIONS 

 

 

7.1 Conclusions 

 

In this study, a nonlinear mathematical model is developed for nonlinear 

dynamic analysis of gear-shaft-bearing systems. The model combines the 

flexibility of the finite element method and the rigorous treatment of the nonlinear 

effect of gear backlash and bearing clearance on the dynamics of geared rotor 

systems. In other words, finite element modeling allows one to analyze any 

possible configuration for a single stage gear mesh such as a gear pair on simply 

supported shafts or overhung shafts. 

 

The model includes the transverse and rotary inertia of shaft elements, the 

axial loading on shafts, material damping of shafts, damping and stiffness of spur 

gear pair and nonlinear bearings which have radial clearances. The coupling 

between torsional and transverse vibrations is included into the model. The model 

also includes the effects of gear backlash, tooth separation and gear errors. 

Although a constant mesh stiffness is used in this model, the excitation effect of 

time varying mesh stiffness is indirectly included in the analysis through a periodic 

displacement representing loaded static transmission error (STE). STE input is 

represented by the highest n harmonic terms of the Fourier series representation of 

the measured or calculated data. 

 

Then a computer code for the solution of the system equations is developed 

using MatLAB 7.0. Therefore it is highly flexible and open to further 

developments. The program calculates dynamic to static load ratio, dynamic 

transmission error, reaction forces and displacements at bearings. 

 

Another important feature of the code is the solution technique. Backlash 

and clearance type nonlinearities associated with 2*k+4 degrees of freedom (k 
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being the total number of bearings) are modeled by describing functions which 

enable to express the dynamic equations of a nonlinear system in frequency 

domain. Since only a limited number of coordinates are affected from nonlinearity, 

system matrices are partitioned and a new method suggested in a previous study is 

used to reduce the size of the problem to the number of nonlinear coordinates and 

solve them with an iterative process. This method reduces the computational time 

considerably. 

 

The computer code developed (NGRD V3.0) is capable of calculating the 

dynamic factor (DSLR), dynamic transmission error (DTE) and bearing forces. 

Also the modal analysis of the linear part of the system can be made by using 

NGRD V3.0. 

 

The results obtained by NGRD V3.0 are validated by comparing them with 

experimental results of Kubo and Munro. The results are found to be in good 

agreement with the experimental results although some deviations are observed. 

Reasons for these deviations are explained in related sections. 

 

The results obtained by NGRD V3.0 are then compared with those of 

previously developed nonlinear models of Özgüven (1988b, 1991a) and Kahraman 

and Singh (1990, 1991). The change of dynamic to static load ratio with rotating 

speed is found to be similar. Even though completely different solution techniques 

are used for these models, close results are obtained which validate the use of 

describing function method and frequency domain solution technique. 

 

The model and the software developed in this study has the advantage of 

being very flexible, compared to previous models, so that a configuration for a 

single gear pair system on flexible shafts and bearings can be easily handled. 

 

In the last part of the thesis, several parametric studies are performed to 

understand the effects of several parameters on dynamic behavior of geared rotor 

systems, such as bearing stiffness, clearance in bearings and gear backlash. The 

interaction of bearing clearance with other system parameters is also investigated. 
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In this study, the following conclusions are drawn: 

 

• In the nonlinear dynamic analysis of geared rotor systems, time varying 

mesh stiffness can be satisfactorily approximated by an average mesh 

stiffness and a periodic displacement excitation representing loaded STE. 

• Bearing stiffness have the following effects on dynamic factor: 

o For a very high bearing stiffness compared to mesh stiffness, the bearing 

stiffness has no effect on the dynamic factor. 

o Decreasing the bearing stiffness decreases all resonance frequencies for 

dynamic factor. For high kb/kh ratios (>10) the resonances are mainly 

governed by gear mesh stiffness while for low kb/kh ratios (<1), the 

resonances are mainly governed by bearing stiffness. 

o For 1< kb/kh<10, the transverse and torsional vibrations are completely 

coupled. Therefore, slight changes in bearing stiffness affect dynamic 

factors considerably. 

• Interaction of bearing clearance with bearing stiffness and effects on the 

system dynamics are as follows: 

o Increasing clearance does not affect the dynamic factor unless there is 

coupling between mesh and bearing modes. When there is coupling, 

increasing clearance decreases the dynamic factor. However, the 

maximum decrease is about 7-8%. After a certain limit, increasing 

clearance further does not affect DSLR values. 

o Increasing clearance always increases the maximum bearing force at any 

frequency. To be more specific, maximum increase in bearing force in a 

frequency range is about 30% when the clearance is doubled. 

o Including the bearing clearance in analysis may cause sudden jumps in 

the bearing forces at the resonance frequencies of transverse vibration 

modes associated with bearings. Existence and the number of jumps 

within the frequency range of interest are determined by bearing stiffness 

(i.e. kb/kh ratio). 

o If there is coupling between gear mesh mode and the bearing modes, then 

an additional jump in the bearing force at the gear mesh resonance 
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frequency is also observed. Amount of jump is determined by the value of 

clearance. 

o Increasing clearance causes a decrease in the resonance frequencies of 

bearing modes. 

o Increasing bearing stiffness increases the maximum bearing force. When 

there is no clearance in bearings, doubling the bearing stiffness causes an 

increase of 5% in maximum bearing force in the frequency range of 

interest. However when there is clearance, this change may go up to 40% 

for the same change in bearing stiffness. 

o Increasing bearing stiffness increases the resonance frequencies of 

bearing modes. If there is no coupling between the mesh and bearing 

modes, the change in the bearing mode resonance frequencies is 

proportional to the square root of bearing stiffness, as expected. 

• Effect of gear backlash and interaction with bearing clearance are as 

follows: 

o Including the gear backlash nonlinearity in geared rotor systems causes a 

sudden jump at the mesh resonance frequency and its subharmonics in 

dynamic factor. Increasing backlash also decreases the mesh resonance 

frequency. 

o Including gear backlash does not affect the maximum bearing force unless 

there is coupling between the torsional and transverse modes of gear 

mesh and bearings. When there is coupling, increasing gear backlash 

decreases the maximum bearing force at mesh resonance frequency and 

causes a jump at the same frequency. 

o A strong interaction between bearing stiffness and clearance nonlinearity 

is observed. 

o A weak interaction between gear backlash and bearing clearance is 

observed. In other words, existence of bearing clearance in the systems 

with gear backlash makes the same effect as in the case when there is no 

gear backlash. 
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7.2 Recommendation for Future Work 

 

The main objective of this study was to improve a previous study by 

including clearance type of nonlinearities in bearing dynamics. In this study, the 

average mesh stiffness is used, but the excitation effect of time varying stiffness is 

included through a displacement excitation taken as loaded STE. Gear backlash is 

also considered. 

 

For future work, the model can be extended to include the time varying 

mesh stiffness directly, in order to study the effect of the approximation used in this 

study. Moreover, nonlinear damping between the spur gear pair can be considered. 

Furthermore, the mathematical model can be improved for transient response 

analysis. 

 

Recommendations for further study may be listed as: 

 

• Time varying mesh stiffness can be included directly into the analysis. 

• Solution can be solved by a digital simulation technique in time domain to 

obtain transient analysis. 

• Eccentricity and external forces can be included in the model. 

• Tooth collision can be included in the model. 

• Model may be extended to analyze helical gears. 

• The user interface (VGR 3.0) can be extended to show the mode shapes of 

geared rotor system graphically. 
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APPENDIX A 

 

A FINITE ELEMENT MATRICES FOR ROTORS AND RIGID DISKS 

 

A.1 Rotor Element Matrices 
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A.1.3 Torsional Mass Matrix: e
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A.1.4 Axial Incremental Stiffness Matrix: e
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A.1.5 Transverse Stiffness Matrix: e
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A.1.6 Damping Incremental Stiffness Matrix: e
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A.1.7 Torsional Stiffness Matrix: e

TK    

 

[ ]

[ ]

e

C 4

4

GJ
K = K

L

where

0

0 0

0 0 0

0 0 0 0

0 0 0 0 1
K =

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 -1 0 0 0 0 1

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 

 

A.2 Rigid Disk Matrices 

 

A.2.1 Translational Mass Matrix: d
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APPENDIX B 

 

B INSTALLATION 

 

 

B.1 Installation 

 

The VGR version 3.0 is a user friendly interface which controls several sub 

codes. These codes are: 

• NLGRD version 3.0 (Non-Linear Geared Rotor Dynamics) 

• LDP version 10.9G (Load Distribution Program) 

• Pine version 1.0 

  

NLGRD version 3.0 is written in MatLAB 7.0 and it is a finite element 

program which computes the dynamic to static load ratio, dynamic transmission 

error, bearing forces and natural frequencies of a geared rotor system. 

 

LDP version 10.9G computes the several key issues of gears by static 

analysis, of which the loaded static transmission error has the most significance for 

this study. 

 

Pine version 1.0 converts the output of VGR version 3.0 to the format of 

LDP version 10.9G. 

 

The four computer codes, VGR, NLGRD, LDP and Pine must be installed 

properly to run the VGR version 3.0. 

 

The VGR version 3.0 must be installed under the directory named: 

C:\VGR\Vgr30.exe 

 

The NLGRD version 3.0 files (i.e. MatLAB m-files) must be installed under 

the directory named: 

C:\VGR\NLGRD\MatLAB\ 
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The LDP version 10.9G must be installed under the directory named: 

C:\VGR\LDP\Ldp109G.exe 

 

The Pine version 10 must be installed under the directory named: 

C:\VGR\PINE\Pine10.exe 

 

B.2 Visual Geared Rotors 3.0 (VGR 3.0) 

 

The VGR 3.0 is able to prepare input data for both NGRD V3.0 and LDP 

10.9G. The LDP part of the program is placed in frames named LDP and the 

NLGRD part of the program is placed in frames named NLGRD. The parts which 

are common to LDP and NLGRD are placed in frames named NLGRD/LDP. All 

units are in SI standards. The units of the input data are indicated next to the input 

boxes. 

 

Before going further, firstly user must construct the system geometrically, 

because the computer code, VGR 3.0, could not automatically detect the order and 

type of the basic elements if the system is constructed in a wrong way. For instance 

if clicking the stop button is forgotten, shaft one and two cannot be differentiated or 

gear and pinion have the same code number which may result in wrong matching 

of the input data. 

 

When the user saves the program files, VGR automatically creates the 

following files: 

• *.vgr 

• *.ldp 

• *.shp 

 

*.vgr file holds the input data which is necessary for NLGRD version 3.0 to 

run, basically the material and geometric properties of the basic elements that are 

present is the system. 
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*.ldp file holds the input data which is necessary for Pine.exe to run. When 

Pine.exe is executed, *.inp file is created which is the standard input files for LDP 

version 10.9G 

 

*.shp file holds the dimensions and place of basic object pictures in it. Thus 

when an existent file is opened VGR is able to construct the system graphically. 

 

NLGRD version 3.0 creates the following files: 

• *.mod (holds the modal analysis output) 

• *.dsl (holds the dynamic to static load ratio data) 

• *.brf (holds the bearing forces) 

• *.brd (holds the bearing displacements) 

• *.msh (holds the dynamic transmission error data) 

 

When the user run the Pine version 1.0, File.pin is automatically created 

under the directory in which Pine version 1.0 is placed. It contains the source and 

the target file names. Pine version 1.0 automatically opens this file. 
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APPENDIX C 

 

C USER MANUAL 

 

C.1 Introduction 

 

NLGRD V3.0 user interface - pre-processor and post-processor - is written 

in VB 6.0. The emphasis is placed on user-friendliness. The graphical drawing of 

the geared rotor system is formed while the user adds new items to the system. 

Thus any user dependent error is minimized. The program is capable of making 

more than one analysis at the same time. 

 

The user interface, Visual Geared Rotors (VGR 3.0), could prepare input 

file for both NLGRD V3.0 and LDP version 10.9G. There are four basic items in 

the program: 

 

• Bearing elements 

• Weight elements 

• Rotor elements 

• Gear elements 

 

Every time user clicks one of these buttons, VGR 3.0 interface loads a new 

item on the CAD form. Material, geometric and other types of data can be entered 

by just double clicking the items. 

 

Beside these elements there are: 

• Stop button 

• Move button 

• Delete Button 

 

The main window of VGR 3.0 interface is shown in Figure C.1. Having 

formed the system, user can make analysis by clicking the Solver button. 
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Figure C.1 Main Window of VGR 3.0 

 

C.2 Pre-processor 

 

Connectivity of the system is formed while the user is clicking the basic 

item buttons. Positions of the items are irrelevant to connectivity. Therefore items 

must be loaded from left to right, top to bottom. So user must first construct the 

first shaft from left to right, then click stop button, then start constructing the 

second shaft and click stop button again when finished. The construction of typical 

geared rotor system is shown in Figure 4.3. 

 

Loaded items can be dragged anywhere on the screen after clicking the 

move button. Geometric properties of the items can be defined on screen after 

stretch button is clicked or first double clicking the item then entering the 

geometric properties through data windows. 
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C.2.1 Bearing Element 

 

When the bearing button shown in Figure C.1 is clicked, a new bearing 

element is loaded on the CAD window. In order to enter bearing stiffness, hysteric 

damping constants and the radial clearance in millimeters, the user must double 

click the bearing element. Figure C.2 is displayed immediately after double click. 

 

 

Figure C.2 Bearing Data Window 

 

C.2.2 Weight Element 

When the weight button shown in Figure C.1 is clicked, a new weight 

element (e.g. flywheel) is loaded on the CAD window. As soon as the user double 

clicks the weight element, Figure 4.4 is displayed on the screen. User can enter the 

diameter, width and density data through this window. 

 

 

Figure C.3 Weight Data Window 
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C.2.3 Rotor Element 

 

When the rotor element shown in Figure C.1 is clicked, a new rotor element 

is loaded on the CAD window. Figure C.4is displayed when the user double clicks 

the rotor elements. User can enter outer diameter, inner diameter, length and axial 

load data through this window. 

 

 

Figure C.4 Rotor Data Window 

 

In order to enter material properties of the rotor material button must be 

clicked. Figure C.5 is loaded when the Material Button is clicked. User can enter 

the following NLGRD data: 

• Density 

• Modulus of elasticity (for NLGRD and LDP) 

• Shear modulus of elasticity 

• Viscous damping coefficient 

• Hysteric damping coefficient 

through this window. 
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Figure C.5 Shaft Material Data Window 

 

User can reach misalignment and shaft dimensions window through rotor 

data window. When the user clicks the misalignment button Figure C.6 is 

displayed. 

 

 

Figure C.6 Shaft Misalignment Data Window 

 

User can enter the following LDP data through this window: 

• Misalignment at X=0 

• Misalignment slope 

 

When the user clicks the Shaft Dimensions button, Figure C.7 is displayed. 

User can enter the following LDP data through this window: 

• Outer, inner diameter and length of shaft 

o Before pinion 
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o After pinion 

o Before gear 

o After gear 

• Gear and pinion hub diameter 

through this window. 

 

 

Figure C.7 Shaft Dimensions Data Window 

 

LDP can only take single shaft before and after the gear pairs into account. 

Therefore equivalent shaft dimensions must be entered. 

 

C.2.4 Gear Element 

 

When the Gear Button shown in Figure C.1 clicked, a new gear element is 

loaded on the CAD window. Figure C.8 is displayed when the user double clicks 

the gear element. User can enter the following NLGRD data: 

• Pitch diameter 

• Face width 

• Density 

through this window. Three new windows can be reached through Figure C.8. 
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Figure C.8 Gear Data Window 

 

When the user clicks Mesh data button Figure C.9 is displayed. User can 

enter number of teeth, viscous damping coefficient, backlash, static load and 

eccentricity through this window. 

 

When the user clicks STE button, Figure C.10 is displayed. User can enter 

the following NLGRD data through this window: 

 

• Contact ratio 

• Amplitude of STE 

• Average mesh stiffness 

• Name of STE file 



 120 

 

Figure C.9 Gear Mesh Data Window 

 

 

 

Figure C.10 Static Transmission Error Data Window 

 

User can choose either LDP output file or rectangular wave approximation. 

User must enter contact ratio, amplitude of STE and average mesh stiffness unless 

he chooses the STE file option. 

 

By clicking Data button user can reach Figure C.11. 
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Figure C.11 Data Window 

 

This window controls the flow of the NLGRD V3.0 processor. User can 

enter the following parameters shown in Figure C.11: 

• Number of FFT Terms: The number of harmonics used in the 

approximation of STE. 

• Starting angular speed (rpm): The simulation starts at this rpm. 

• Upper Limit of angular speed (rpm): The simulation ends at this rpm. 

•  Increment: Speed increment between successive simulations. 

• Tolerance : It controls the error limit (Recommended : 0.01) 

• Relaxation Factor: The result of NLGRD is modified by a weighted average 

of the results of the previous and present iterations. (Recommended : 

Relaxation factor 1=0.001, Relaxation factor 2=0.13) 

 

When the user clicks Gear (or Pinion) Geometry button in Figure C.8, 

Figure C.12 is displayed. User can enter the following LDP data: 



 122 

• Number of teeth 

• Module 

• Generating pressure angle 

• Helix angle 

• Outer diameter 

• Root diameter 

• Center distance 

• Input torque 

• Location of the output torque relative to input torque 

• Type of gear mesh (External / Internal) 

 

 

Figure C.12 Gear Geometry Data Window 

 

When the user clicks the Tooth Data button, Figure C.13 is displayed. User 

can enter the following LDP data: 

• Starting tooth number 

• Face width 
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• If backlash is chosen 

 

• Amplitude of backlash 

• Percentage of backlash attributed to pinion 

• If tooth thickness is chosen 

• Tooth thickness 

• Diameter at which tooth thickness measured 

 

 

Figure C.13 Tooth Data Window 

 

When the user clicks the Tooth Model button, Figure C.14 is displayed. 

User must choose the model of the tooth (Flat/Tapered). If the tapered tooth model 

is chosen, the type of calculation method (manual/automatic) must be decided. If 

the manual method is chosen, following parameters must be entered: 

• Tooth thickness at tip 
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• Tooth thickness at root 

Beside these, user must enter the following constants: 

• Plate bending exaggeration factor 

• Tooth base rotation factor 

• Hertz exaggeration factor 

 

 

Figure C.14 Tooth Model Data Window 

 

When the user clicks gear material button, Figure C.15 is displayed. User 

can enter the following LDP data: 

• Young's modulus 

• Poisson's ratio 

 

When the "use the same material" check box is checked, both gear and 

pinion has the same material properties. 

 

When the user clicks the lead data button in Figure C.8, Figure C.16 is 

displayed. 



 125 

 

Figure C.15 Gear Material Data Window 

 

 

Figure C.16 Gear Lead Modification Window 

 

User can enter the following LDP profile modification data: 

• Straight modification on X=0 side 

• Parabolic modification on X=0 side 

• Beginning position on X=0 side 

• Straight modification on X=F side 

• Parabolic modification on X=F side 

• Beginning position on X=F side 
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• Circular modification on X=0,F side 

• Lead angle error 

 

When the user clicks Involute Data button, Figure C.17 is displayed. User 

can enter following LDP profile modification data: 

• Roll angle at start of tip modification 

• Parabolic tip modification magnitude 

• Straight tip modification magnitude 

• Roll angle at start of root modificati6n 

• Parabolic root modification magnitude 

• Straight root modification magnitude 

• Circular modification at tip and root 

• Pressure angle error 

 

 

Figure C.17 Gear Involute Modification Window 

 

When the user clicks the Program Control button, Figure C.18 is displayed. 

This window controls the flow of LDP. 
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Figure C.18 Program Control Window 

 

User can enter the following LDP data using this window: 

• Beginning position constant 

• Ending position constant 

• Number of positions to analyze 

• Multiplier for number of positions across face 

• Include shaft effects in transmission error calculation? (Yes/Not) 

• How profile modifications are entered? 

o Interactive 

o Files 

o Both 

o Not at all 

• Are there spacing errors? (Yes/No) 

• Create dynamic analysis file? (Yes/No) 
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• Use offline action of model? (Yes/No) 

• Perform varying torque analysis? (Yes/No) 

• Perform multi/single torque analysis? 

• Which shaft use gfiles? 

o Pinion shaft 

o Gear shaft 

o Both pinion and gear shaft 

o None of them 

 

When the user clicks title and filenames button, Figure C.19 is displayed. 

 

 

Figure C.19 Title and Filenames Window 

 

User can enter the filenames necessary for LDP. These are: 

 

• Program identity title 
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• Output file name 

• File name for detailed pinion data (when tooth spacing option is checked) 

• File name for detailed gear data (when tooth spacing option is checked) 

• File name  for  torque  values  (when  varying  torque  analysis  is checked) 

• File name for pinion shaft (when the pinion shaft use gfiles) 

• File name for gear shaft (when gear shaft use gfiles) 

• Position constants (number of positions to be printed) 

• Do you want detail in output file (Yes/No) 

 

When user finishes constructing the system, Save button is pressed in he file 

menu in Figure C.1. This creates the necessary input files for LDP and NGRD 

V3.0. 

 

Note that if LDP output is selected to calculate STE, then pine.exe should 

be run before clicking Solver button. 

 

When Solver button is clicked, MatLAB 7.0 opens automatically and solves 

the system equations. Moreover, necessary files are created for post processor. 

 

C.3 Post Processor 

 

After NLGRD version 3.0 solves the system equations, results can be seen 

through user interface graphically. The post processor window is shown in Figure 

C.20. User can control the graph window by changing the parameters of control 

window. X and Y axis variable, X and Y axis scale can be changed. The user can 

take the advantage of seeing both the results and the model itself at the same time. 
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