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ABSTRACT 
 

 

 

IMPLEMENTATION OF ROTATION INTO A 2-D EULER SOLVER 

 

 

 

ÖZDEMIR, Enver Doruk 

M.Sc., Department of Mechanical Engineering 

Supervisor      : Prof. Dr. M. Haluk AKSEL 

 

 

September 2005, 91 pages 

 

 

 

The aim of this study is to simulate the unsteady flow around rotating or oscillating 

airfoils. This will help to understand the rotor aerodynamics, which is essential in 

turbines and propellers.  

 

In this study, a pre-existing Euler solver with finite volume method that is developed in 

the Mechanical Engineering Department of Middle East Technical University (METU) 

is improved. This structured pre-existing code was developed for 2-D internal flows with 

Lax-Wendroff scheme.  
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The improvement consist of firstly, the generalization of the code to external flow; 

secondly, implementation of first order Roe’s flux splitting scheme and lastly, the 

implementation of rotation with the help of Arbitrary Lagrangian Eulerian (ALE) 

method.  

 

For the verification of steady and unsteady results of the code, the experimental and 

computational results from literature are utilized. For steady conditions, subsonic and 

transonic cases are investigated with different angle of attacks. For the verification of 

unsteady results of the code, oscillating airfoil case is used.   

 

The flow is assumed as inviscid, unsteady, adiabatic and two dimensional. The gravity is 

neglected and the air is taken as ideal gas.   

 

The developed code is run on computers housed in METU Mechanical Engineering 

Department Computational Fluid Dynamics High Performance Computing (CFD-HPC) 

Laboratory. 
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ÖZ 
 

 

 

2 BOYUTLU BİR EULER ÇÖZÜCÜSÜNE DÖNÜŞ EKLENMESİ 

 

 

 

ÖZDEMİR, Enver Doruk 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. M. Haluk AKSEL 

 

 

Eylül 2005, 91 sayfa 

 

 

 

Bu çalışmanın amacı dönen ve salınım yapan kanatçıklar üzerindeki zamana bağımlı 

aerodinamik akışı çözmektir. Bu sayede, türbinlerin ve pervanelerin aerodinamiğini 

anlamak kolaylaşacaktır. 

 

Bu çalışmada, daha önceden Orta Doğu Teknik Üniversitesi (ODTÜ) Makina 

Mühendisliği Bölümü’nde iç akışlar için yazılmış olan düzenli çözüm ağlı, 2 boyutlu ve 

sonlu hacim metodu kullanılmış Euler çözücüsü geliştirilmiştir.    
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Bahsedilen geliştirme bu çözücüyü dış akışları çözer hale getirmeyi; bu çözücüye 

Roe’nun uzayda birinci derece akı ayrım yöntemini uygulamayı, son olarak da dönüş 

etkisini keyfi Lagrangian Eulerian yöntemiyle eklemeyi içerir.    

 

Ortaya çıkarılan kodun zamana bağımlı ve zamana bağımlı olmayan aerodinamik 

koşullarda doğrulanması için daha önceki yapıtlardaki deneysel ve hesaplamalı sonuçlar 

kullanılmıştır. Zamana bağımlı olmayan aerodinamik koşullardaki doğrulama için, 

sınama örnekleri ses-altı ve ses seviyesi hızlarında ve değişik hücum açılarında 

incelenmiştir. Kodun zaman bağımlı aerodinamik kısmının doğrulanması için salınım 

yapan kanatçık örneği kullanılmıştır.  

 

Akış, ağdasız, zaman bağımlı, ısı aktarımsız ve 2 boyutlu kabul edilmiştir. Yer çekimi 

yok sayılmış ve hava mükemmel gaz kabul edilmiştir.  

 

Geliştirilen kod, ODTÜ Makina Mühendisliği Bölümündeki Hesaplamalı Akışkanlar 

Dinamiği – Yüksek Başarımlı Hesaplama (HAD-YBH) Laboratuvarında koşturulmuştur.   

 

 

 

Anahtar Kelimeler: HAD, Sonlu Hacim Metodu, keyfi Lagrangian Eulerian, zaman 

bağımlı aerodinamik, dönüş, salınım yapan kanatçık 
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“To know the road ahead, ask those coming back.”  
-Chinese Proverb 
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CHAPTER 1 
 

 

INTRODUCTION 
 
 
 

“There is no such thing as a long piece of work,  
except one that you dare not start.” 

Charles Baudelaire 
 

“‘We must do something’ is the unanimous refrain. 
 ‘You begin’ is the deadening refrain.” 

 Walter Dwight 
 

 

 

 

1.1 General 
 

There are three different sources of information for making predictions about fluid 

flows. Analytic methods give the exact solution, however one can deal with difficult 

partial differential equations, most of which are even impossible to solve. Experimental 

studies give the real solution, nonetheless they are very costly. Furthermore, 

experimentation can be practically impossible for large scale applications like aircrafts 

and wind turbines. One of the solutions to this problem may be performing experiments 

with scaled down model of the prototype. But this will bring additional difficulty in 

similarity studies. The last method is the computational method. By this method, basic 

laws of the nature are solved numerically. Computational Fluid Dynamics (CFD) is the 

simulation of physical properties involving fluid flow, heat and mass transfer, and 
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chemical reactions through computer modeling. If there are no chemical reactions in the 

physical flow, then only mass conservation, momentum conservation and energy 

conservation laws are used. The drawback of computational methods is that they need 

verification with either experimental data or analytical solutions. [1] 

 

CFD is used in this study. To validate the results, experimental results or computational 

results of previous researches are utilized.  

 

1.2. Review of Literature 
 
Any CFD code needs three main structural elements; namely pre-processor, solver and 

post-processor.  

 

1.2.1. Pre-processor 
 
First of all, the geometry of interest should be defined and this domain should be divided 

into smaller sub-domains, which could be thought as control volumes where the basic 

laws of nature will be applied separately on each of them. The grid, or mesh, is 

composed of these small control volumes (or cells). [2] 

  

Generally speaking, the computation time and accuracy increase as the grid becomes 

finer. But after a limit, the enhancements in the accuracy will not compensate the 

increase in the computation time. The aim in CFD codes is to reach that limit where the 

accuracy and the time are optimized. 

     

There are two major types of grids: Structured and unstructured grids. Hybrid grids are 

(as the name implies) the co-existence of both. Structured-body fitted grids are used in 

this study. In this type, each node has four neighbors in 2-D and six neighbors in 3-D. 

[3]. General known advantage of structured grid other than its simplicity is that neighbor 
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cell indices are inherently known for every cell. This feature reduces the memory 

requirement.  

 

The major drawback of the structured grids is that the grid generation process is difficult 

for complex geometries. Another disadvantage is that, increasing the intensity of the 

mesh in a particular part of the domain, also increases the intensity in other places which 

are not that critical, in order to maintain the structure. As a result, the number of cells 

and thus, computation time is increased inefficiently [4].  

 

Pre-processing also includes the definition of fluid properties, specification of 

appropriate boundary conditions and selection of the physical and chemical phenomena 

[2]. 

 

1.2.2. Solver 
 
After the pre-processing part, the solver should be analyzed. There are four different 

approaches to solvers. These are Finite Difference Method (FDM), Finite Element 

Method (FEM), Spectral Method (SM), and lastly Finite Volume Method (FVM).  

 

1.2.2.1 Solver Approaches 
 
Finite difference methods use truncated Taylor series expansions and the simple 

definition of the derivative. For any property φ , the derivative is defined as below: 

 

0

( ) ( )( ) limx x

x x x
x x
φ φ φφ

∆ →

∂ + ∆ −
= =

∂ ∆
      (1.1) 

 

For finite but small φ∆ , the above equation turns to an approximation. Actually the error 

is the truncation error of the Taylor series expansion. [5] All the derivatives in the 
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governing equations are expressed in terms of finite differences. [2] The application of 

this method is easy, but it needs highly regular mesh. [4]  

 

Finite element method is originally developed for structural stress analysis, but it can 

also be used for fluid mechanics. This method is more mathematically based and uses 

the principle that the field variables can be approximated by linear combinations of 

simple piecewise functions locally [2, 5].  

 

In 1-D domain with N nodes, φ , which is the approximation of any property φ , is 

shown below: 

 

1

N
i ii
fφ φ φ

=
≈ = ∑       (1.2) 

 

Standard FEM uses locally defined polynomials for the interpolation functions if . Each 

interpolation function has a zero value outside its element. The aim is to find the local 

coefficients iφ  so that the physical property φ  can be approximated. [5]   

 

The difference of SM and FEM is that the approximation functions are truncated Fourier 

series or series of Chebyshev polynomials, and defined over the whole domain in SM. 

However, the use of SM is limited in aerodynamics. [2, 5]  

 

FVM is developed as a special case of FDM. However, it gained much popularity due to 

the fact that FVM is more physically based. That is to say, each term in the calculation 

represent a physical phenomenon. Most of the commercial CFD package programs use 

FVM.  
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In any FVM code, first, the governing equations are integrated over the control volumes 

(cells). Secondly, the discretisation is applied by representing all the physical terms of 

the flow (like convection, diffusion and sources) as finite difference approximations. 

Lastly, the unknown properties in each cell are solved simultaneously and iteratively.[2]         

 

The basic idea behind the FVM is that all the governing equations represent the 

conservation of some property, which can be stated as below.  

 

(1.3) 

 
 
1.2.2.2 Governing Equations 
 

Fluid motion is described by Navier-Stokes equations for those flows that satisfy 

continuum postulate. However, as the viscosity is neglected in this work, Navier-Stokes 

equations reduce to Euler equations. Euler equations describe an unsteady, inviscid and 

compressible flow. Mathematically speaking, these equations are hyperbolic equations. 

Here, the characteristics are real and distinct. However, if the Euler equations are 

simplified to steady and subsonic flow, then the nature turns to elliptic, where the 

characteristics are imaginary or complex. [3] 

 

Although there are steady flow cases in this study, the flow is considered unsteady and 

steadiness is considered to be achieved when the terms including time are getting 

Net rate of 
creation of 
φ inside the 
Control Volume 

Rate of change of φ 
 in the Control Volume 
with respect to time 

Net flux of φ due to 
convection into the 
Control Volume 

= + 
Net flux of φ due to 
diffusion into the 
Control Volume 

+ 
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sufficiently small. Thus, in this study the mathematical nature of governing equations 

are always hyperbolic. 

 
1.2.2.3 Boundary Conditions 
 
Thompson [6] states that “The purpose of boundary conditions is to supply whatever 

information is needed at the boundaries of the computational volume in order to 

complete the definition of the behavior of the system.” 

 

The needed information could be a physical or a numerical boundary condition. A 

physical boundary condition (BC) specifies a previously known physical variable at the 

boundary. If these physical variables are not enough to define the behavior of the system 

then some numerical BC’s should be used. The simplest way to handle numerical BC’s 

is to extrapolate the needed physical variables. However, one can also use the 

conservation equations on the boundaries to obtain the unknown quantities. [7] 

 

The boundary conditions can be calculated or taken from the physics of the problem, as 

stated above, at the boundary. However, another method is to define “ghost” cells at the 

boundaries. Dadone et al. [8] call this method as symmetry technique. The advantage of 

this method is that one should only define the values of the conserved variables (or 

primitive variables) at the “ghost” cells, and the flux calculation is the same as an 

interior cell.  

 

To define the conservative variables at the “ghost” cells, one could implement 

characteristic Riemann invariants as in the references [4, 7, 6 and 9]. However, this 

superior method is not used in this study. Instead, a much easier method is utilized. The 

detailed explanation of all BC’s for steady and unsteady solvers are present in Chapter 3.  
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1.2.2.4 Implementation of Rotation in Solver 
 
There are two methods to implement rotation. Either rotational frame of reference 

should be used or the mesh should be rotated.  

 

The method of “rotating frame of reference” is used for a steadily rotating system with 

angular velocity of ω
JG

, relV
JG

 is the velocity relative to the rotating coordinate and V
JG

is 

the absolute velocity of fluid. [5, 10] 

 

( )= + ×relV V ω r
JG JG JG G

      (1.4) 

 

It is obvious that r
G

 is the position vector relative to the rotating frame of reference. The 

Figure 1.1 should make the concept much clearer.  

 

 
 

Figure 1.1  The method of “rotating frame of reference” 
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The mass conservation equation does not change since the entrainment velocity does not 

contribute to the mass balance. However, the Coriolis and centrifugal forces should be 

included into the momentum equation. For the energy equation, only modification 

comes from work done by centrifugal forces, since Coriolis forces do not contribute to 

energy equation. [5] 

 

The second approach is to rotate the mesh, rather than having a non-inertial rotating 

reference frame. This goal could be achieved by utilizing “Arbitrary Lagrangian 

Eulerian” (ALE) method. This method is first developed by Hirt et al. [11] for a FDM 

solver. Many codes with ALE followed this publication, due to its simplicity.  

 

It is well known from fluid mechanics text books that there are two classical description 

of fluid flow: Eulerian and Lagrangian. [12, 13] 

 

In Lagrangian approach, the attention is on the fluid particle. So identified fluid particles 

are traced. The difficulty here is that every fluid particle should be traced in order to 

have a full understanding of the flow field. Therefore, this method is much more suitable 

to solid mechanics, rather than fluid mechanics. Following fluid particles would mean 

that the control volume is moving at the fluid particle velocity. [12, 13] 

   

On the other hand, Eulerian approach focuses on a fixed point in the space. The changes 

of the flow variables are investigated on that particular point. This would mean having a 

stationary control volume. [12, 13] 

 

Eulerian approach is frequently used in fluid mechanics. If an engineer is going to 

investigate, for example, the flow around an aircraft, the method is to “stop” the aircraft, 

and let the air “blow” onto it. This approach can be used for analytical, experimental and 

also for computational studies. This is due to relative simplicity of this approach.  
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In ALE, the focus is neither a fixed point in space, nor a fluid particle. The “attention” 

or the control volume is moving arbitrarily; not stationary (Eulerian) or not at the 

particle velocity (Lagrangian). The governing equations are presented in Chapter 2. [11, 

14] 

 

The advantage of ALE method is that, with ALE, it is convenient to simulate moving 

boundary problems or deforming structure problems. [4, 15] 

 

Although the history of ALE is dating back to 1960’s and it is presented in [16], some 

examples from literature will be mentioned in this review. Batina [17] uses this method 

to solve the flow around deforming aircraft. Michler et al. [18] utilizes ALE to simulate 

flows with rotating (non-deforming) meshes and also deforming meshes. Uzun et al. [15, 

19] concentrate on 3-D oscillating aircraft wings. Darlington [16] uses Large Eddy 

Simulation together with ALE. Finally, Gönç [4] presented a compressible 3-D flow 

around rotating missile.  

 

Most of the above researchers [18, 20 and 14] are concerned about the Geometric 

Conservation Law (GCL) which is explained in Chapter 3 when implementing ALE.  

The general consensus among the researchers is that GCL should be satisfied. 

 
1.2.2.5 Spatial Discretization Methods for Solvers 
 
There are many spatial discretisation methods. In this study, Flux Difference Splitting 

(Godunov) type discretisation is used. This type is also referred to as Riemann approach, 

since the Riemann problem (or the shock tube problem) is solved on each cell face. 

However, as the exact solution of the Riemann problem is computationally expensive, 

some approximate Riemann solvers are developed. [21]  
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In this study, Roe’s upwind flux differencing scheme is used. [22] In this approximate 

Riemann solver scheme, a piecewise constant distribution of the data is assumed. Figure 

1.2 presents the situation for a 1-D problem. The Qk values represent any conserved 

property. The main task in this scheme is to find the values of the conserved variables at 

the cell faces, since the face fluxes should be calculated according to those values. [21]  

 

 
 

Figure 1.2  1-D representation of Riemann approach 
 
 
This scheme has gained popularity due to its accuracy and cheapness in computation. 

The definitions for any conserved variable at the cell faces are given in references [4, 22 

and 23] and will be presented in Chapter 3.    

 

In this study, first order schemes are used. These are the simplest type of schemes. 

Hosseini et al. [24] summarizes the high order schemes briefly. Implementing a higher 

order scheme into a solver, results generally with a better shock capturing.   

 
1.2.2.6 Temporal Discretization Methods for Solvers 
 
Temporal discretisation can be done by two methods; namely implicit and explicit. Both 

methods have a wide range of usage. [4] 

Qk 

x 
1 i-1 i i+1 Nx 
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In explicit methods, all fluxes and sources of the instant tn+1 are calculated at the known 

instant of tn [3]. The explicit solving technique requires considerably less computer 

memory. However, the drawback of this method is that the time step t∆  is limited with 

the stability. That means large time steps could yield unstable solutions. CFL (Courant-

Friedrichs-Lewy) condition helps to overcome this instability problem.  

 

Implicit methods should be used for the prime concern of stability [3]. In implicit 

approach, the residual term is evaluated at the time step tn+1. This method will bring 

unfortunately a complicated algorithm and excessive memory requirement.    

 
1.2.3. Postprocessor 
 
Finally, postprocessors are needed to complete any CFD analysis. It is used for data 

visualization. The outcomes of the CFD code will be sent to the postprocessor and the 

domain, the grid, any computed vectors or scalars can be displayed. [2] 

 
1.3. Present Study 
 
The aim of this study is to simulate the unsteady flow around rotating or oscillating 

airfoils. This will help to understand the rotor aerodynamics, which is essential in 

turbines and propellers.  

 

In this study, a pre-existing Euler solver “Euler2d” with finite volume method that is 

developed by Prof. Dr. M. Haluk Aksel is improved. This structured pre-existing code 

was developed for 2-D internal flows with Lax-Wendroff scheme. First of all, first order 

Roe’s flux splitting scheme is implemented, which requires cell centered approach, 

rather than vertex centered one of Lax-Wendroff’s. This implementation is done by a 

joint study with Tahsin Çağrı Şişman. During the development of this code, “Set2D” 

code developed by Dr. Mehmet Ali Ak [25] is taken as basis.  
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Then the code is modified to handle external flows. The external Euler code is capable 

of handling C-type and O-type meshes. The third modification is the implementation of 

rotation with the help of Arbitrary Lagrangian Eulerian (ALE) method.  

 

All of the grids used in this study are prepared with the GENGRID code version 1.1, 

[26] which is a 2D structured grid generation program with algebraic and elliptic 

features. For digitizing the data from different sources, WinDIG Version 2.0 [27] is 

used. By this way, the experimental or numerical data from papers and technical reports 

are digitized.  

 

The developed code is run on computers housed in METU Mechanical Engineering 

Department CFD-HPC Laboratory.  

 

This thesis is divided into five chapters. Chapter 2 defines the assumptions of the flow 

and gives the governing equations for stationary and moving grid. Chapter 3 deals with 

numerical methods, which are used in this research. Furthermore, description of the 

physical and the computational domain and the boundary conditions are also described 

in this chapter. Chapter 4 aims to verify the present steady and unsteady solver by 

comparing the results with the literature, either with experimental or computational data. 

Finally, Chapter 5 presents the conclusion and suggests some future work that could 

improve this study.    
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CHAPTER 2 
 

 

GOVERNING EQUATIONS 
 

 

"The pure and simple truth is rarely pure and never simple” 
Oscar Wilde 

 
"Natural Science does not simply describe and explain nature; 

 it is part of the interplay between nature and ourselves; 
 it describes nature as exposed to our method of questioning."  

Werner Heisenberg  
 

 

 

 

2.1 Euler Equations 
 
Euler equations are a collection of mass, momentum and energy conservation laws. The 

system of equations below is valid for inviscid, unsteady, adiabatic and two dimensional 

flows, neglecting gravity. Additionally air is taken as an ideal gas. 

 

Conservation of mass, momentum and energy equations are given in Equations (2.1), 

(2.2), and (2.3), respectively.  

 

( ) 0
t
ρ ρ∂

+ ∇ =
∂

V
G G
i        (2.1) 
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( ) ( ) 0p
t

ρ ρ∂
+ ∇ + =

∂
V VV
G G G G

i       (2.2) 

( ) (( ) ) 0e e p
t

ρ ρ∂
+ ∇ + =

∂
V

G G
i       (2.3) 

 

where ρ is density, V
G

is the velocity vector, p is the static pressure, and e is the total 

energy per unit mass and defined as  
2

( )
( 1) 2

peρ ρ
γ

= +
−

V
G

      (2.4) 

 

where γ  is the specific heat ratio and defined as the ratio of the specific heat at constant 

pressure, pc  to the specific heat at constant volume, vc . 

 

For practical purposes, all of the above equations can be combined in a single set of 

equations as below: 

 

0
S

d d
t ∀

∂
∀ + =

∂ ∫ ∫Q F S
G GG

iv       (2.5) 

 

where Q
G

 is the vector of conservative variables and can be given as 

 

u
v
e

ρ
ρ
ρ
ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Q
G

        (2.6) 

 

and 1 2F F= +F i j
G GG

 is consisting of flux terms  
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2

1

( )

u
u p

F
uv

e p u

ρ

ρ
ρ

ρ

⎡ ⎤
⎢ ⎥+⎢ ⎥=
⎢ ⎥
⎢ ⎥

+⎢ ⎥⎣ ⎦

       and           2 2

( )

v
uv

F
v p
e p v

ρ
ρ

ρ
ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥+
⎢ ⎥

+⎢ ⎥⎣ ⎦

   (2.7) 

 

where u v= +V i j
G GG

 

 

The presented Euler equations contain four equations but five unknowns ρ ,u , v , p , e .  

Therefore, Equation (2.4) is used to close this system of equations. Temperature can be 

found from ideal gas equation: 

 

p RTρ=         (2.8) 

 

2.2 Euler Equations for Moving Mesh 
 
Euler equations presented above are using the Eulerian approach, which focuses on a 

fixed point in the space and traces the changes in the flow variables at that particular 

point which implies a stationary control volume. On the other hand, for an arbitrary 

moving control volume, the governing equations will change to include the effect of the 

grid motion as indicated below.  

 

0ALE
S

d d
t ∀

∂
∀ + =

∂ ∫ ∫Q F S
G GG

iv       (2.9) 

 

where Q
G

 is the vector of conservative variables and remains the same as in equation 

(2.6). Furthermore 
1 2ALE ALE ALEF F= +F i j
G GG

 is consisting of flux terms as below 
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1

( )
( )
( )

( )

CV

CV
ALE

CV

CV

u u
u u u p

F
u u v

e u u pu

ρ
ρ

ρ
ρ

−⎡ ⎤
⎢ ⎥− +⎢ ⎥=
⎢ ⎥−
⎢ ⎥

− +⎢ ⎥⎣ ⎦

            and      
2

( )
( )

( )
( )

CV

CV
ALE

CV

CV

v v
u v v

F
v v v p
e v v pv

ρ
ρ

ρ
ρ

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− +
⎢ ⎥

− +⎢ ⎥⎣ ⎦

 (2.10) 

 

where n t
n tu v u u= + = +V i j i i

G G G GG
 is the fluid velocity, and 

n t
CV CV CV n CV tu v u u= + = +W i j i i
G G G GG

 is the grid velocity. 

 

Equations (2.4) and (2.8) are still valid and are required to close the system of equations 

as in the previous case. 
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CHAPTER 3 
 

NUMERICAL METHODS  
 
 

 
“The formulation of a problem is often more essential than its solution,  
which may be merely a matter of mathematical or experimental skill.” 

 
 Albert Einstein  

 

 

 

 

3.1 Physical and Computational Domain 
 
3.1.1 O-grid solver 
 
The physical domain is selected as a circle with a radius of 15 chord lengths of the 

airfoil for O-grid solver. Figure 3.1 presents the physical domain and indicates the 

boundaries. The airfoil is shown as a circle for simplicity.    

 

The physical domain above should be converted to a computational domain, as shown in 

Figure 3.2. The bottom edge of the rectangle represents the solid boundary and it 

includes the nodes from (1,1) to (NX,1). The far field boundary is the top edge of the 

rectangle and the nodes vary from (1,NY) to (NX,NY). The left and right edges vary 

from nodes (1,1) to (1,NY) and (NX,1) to (NX,NY), respectively and they represent the 

same line. In other words, nodes (a,1) and (NX+1-a,1) are the same node assuming that 

a is an integer between 1 and NX.     
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Figure 3.1  Physical domain for O-grid solver 

 

 

 
Figure 3.2  Computational domain for O-grid solver 
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3.1.2 C-grid Solver 
 
The physical domain for a C-grid solver is presented in Figure 3.3. The domain is 

selected such that it is the combination of a half circle with a radius of 15 chord lengths 

and a rectangle having a width and height being equal to the diameter of the circle.  

 

Figure 3.4 shows the computational domain for a C-grid solver. The top, left and right 

edges of the rectangle represent the far field boundary, while both sides of bottom edge 

represent the interior boundary. The node (SS,1) is the node at the trailing edge of the 

airfoil. Again, for both interior boundaries the nodes (a,1) and (NX-a+1,1) are the same 

nodes, providing that a is an integer between 1 and SS. The nodes between (SS,1) and 

(NX-SS+1,1) are on solid boundary. The node (SP,1) represents the leading edge of the 

airfoil. The input file for C-grid solver also needs the values of SS and SP, in order to 

find the location of solid boundary at the bottom edge.    

 

 
 

Figure 3.3  Physical domain for C-grid solver 
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Figure 3.4  Computational domain for C-grid solver 

 
 

3.2 Data Structure 
 
Structured-boundary fitted grid is used in this study. The flow variables are located and 

calculated at the geometric centers of the cell. Figure 3.5 shows the structured mesh with 

cell centered scheme in computational domain. 

 

The cell center location of each cell are found as below:  

 

( , ) ( , 1) ( 1, ) ( 1, 1)
( , ) 4

i j i j i j i j
cellcenter I J

x x x x
x + + + ++ + +

=    (3.1) 

( , ) ( , 1) ( 1, ) ( 1, 1)
( , ) 4

i j i j i j i j
cellcenter I J

y y y y
y + + + ++ + +

=    (3.2) 

x

y 

Solid Boundary 
Node(SS,1) to Node (SP,1) 

and 
Node (SP,1) to Node (NX+1-SS,1) 

Farfield Boundary 
from Node(1,NY) to Node (NX,NY) 

Interior Boundary 
from Node (1,1) 
to Node (SS,1)

Interior Boundary 
from Node (NX+1-SS,1) 

to Node (NX,1)

Farfield Boundary 
from Node(1,1)  
to Node (1,NY) 

Farfield Boundary 
from Node(NX,1)  
to Node (NX,NY) 
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Then, the flow variables are stored at the center of the cells and the changes in the cell 

directly affect the flow variables in the cell. 

  
1

( , ) ( , ) ( , )
n n n

Cell I J Cell I J Cell I Jφ φ δφ+ = +     (3.3) 

 
After the convergence, the values at the vertices are found by arithmetic mean.  

 
( , ) ( 1, ) ( , 1) ( 1, 1)

( , ) 4

n n n n
Cell I J Cell I J Cell I J Cell I Jn

i j

φ φ φ φ
φ − − − −+ + +

=  (3.4) 

 

 
 

Figure 3.5  The structured mesh with cell centered scheme 
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The major reason for using a cell centered scheme is that these schemes are more 

convenient when flux vector splitting is employed.     

 

Mesh input of the code includes the number of nodes for each direction and the 

position of each node. Sample input files are presented in Appendix A. 

 
3.3 Cell Geometry  
 
Figure 3.6 presents the geometry of an arbitrary cell. The normal vectors for every face 

of each cell and the area of each cell should be calculated.  

 

 
 

Figure 3.6  The geometry of cell (I,J) 
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( , ) ( , ) ( , )

1, 2,3, 4

k kx ky
I J I J I JS S

k

= +

=

S i j
G G G

      (3.5) 

 

The following equations give the ( , )
kx
I JS  and ( , )

ky
I JS  values for the ( , )I J th cell. 

 
1
( , ) ( , ) ( , 1)

1
( , ) ( , ) ( , 1)

2
( , ) ( 1, 1) ( 1, )

2
( , ) ( 1, 1) ( 1, )

3
( , ) ( 1, ) ( , )

3
( , ) ( 1, ) ( , )

4
( , ) ( , 1) ( 1, 1)

4
( , ) ( , 1

x
I J I J I j

y
I J I J I J

x
I J I J I J

y
I J I J I J

x
I J I J I J

y
I J I J I J

x
I J I J I J

y
I J I J

S Y Y

S X X

S Y Y

S X X

S Y Y

S X X

S Y Y

S X

+

+

+ + +

+ + +

+

+

+ + +

+

= −

= − +

= −

= − +

= −

= − +

= −

= − ) ( 1, 1)I JX + ++

     (3.6) 

 

where ( , )I JX  and ( , )I JY  represent the X and Y values of the node ( , )I J  respectively. 

 

The volume of the cell is computed by taking the cross-product of the diagonal vectors:  

 

( 1, 1) ( , ) ( 1, ) ( , 1)

( 1, ) ( , 1) ( 1, 1) ( , )

1 [( )( )]
2

1 [( )( )]
2

I J I J I J I J

I J I J I J I J

X X Y Y

X X Y Y

+ + + +

+ + + +

∀ = − − − +

+ − −
  (3.7) 

 
3.4 Spatial Discretization   

 
For a structured cell-centered FVM, Equations (2.5) or (2.9) can be spatially discretized 

as follows: [28] 
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4

( , )
( , ) ( , ) ( , )

1
0I J k k

I J I J I J
kt =

∂
∀ + =

∂ ∑
Q

F S
GG
i     (3.8) 

 

Here, k represents the four faces of the relevant cell.  

 

All the variables in Equation (3.8) are explained before, except the face flux term ( , )
k
I JF
G

. 

Since all the variables are defined at the cell center, the method to calculate the flux 

terms on faces should be formulated. In the present work, Roe’s [4, 22, 23] flux-

difference splitting scheme is used.      

 
3.4.1 Inviscid (Convective) Fluxes for Euler Equations 
 
The flux at the face faceF  is found as follows: 

 
4

1

1 1 ˆˆ[ ( ) ( )] ( *)
2 2face L R k k

k
F Q Q

=

= + − ∆∑ kF F a V R   (3.9) 

 

where LQ  and RQ  represent the left and right cells of the interested face and they are 

defined as: 

 

L

L L
L

L L

L L

u
v
e

ρ
ρ
ρ
ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Q
G

     and 

R

R R
R

R R

R R

u
v
e

ρ
ρ
ρ
ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Q
G

    (3.10) 

 

The subscripts L or R mean that the indicated variables are defined at the cell centers of 

left and right cells, respectively. Thus, the values ( )LQF and ( )RQF could be calculated 

as 
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( )

n
L L

n
L L L L

L
n

L L L L

n
L L L

u
yu u p
sQ
xu v p
s

u H

ρ

ρ

ρ

ρ

⎡ ⎤
⎢ ⎥

∆⎢ ⎥+
⎢ ⎥∆= ⎢ ⎥∆⎢ ⎥−

∆⎢ ⎥
⎢ ⎥
⎣ ⎦

F       and  ( )

n
R R

n
R R R R

R
n

R R R R

n
R R R

u
yu u p
sQ
xu v p
s

u H

ρ

ρ

ρ

ρ

⎡ ⎤
⎢ ⎥

∆⎢ ⎥+
⎢ ⎥∆= ⎢ ⎥∆⎢ ⎥−

∆⎢ ⎥
⎢ ⎥
⎣ ⎦

F   (3.11) 

       

where 

 

2 2( ) ( )
( )

( )

( ) /

n

t

s x y
u y v xu

s
u y v xu

s
H e pρ ρ

∆ = ∆ + ∆

∆ − ∆
=

∆
∆ − ∆

=
∆

= +

      (3.12) 

 
nu and tu represent the velocities normal and tangent to the face and H  is the total 

enthalpy per unit mass. 

 

To calculate the terms within the summation sign in Equation (3.9), first the weighted 

average values for some variables at the face should be found as follows: 

 

ˆ

ˆ ˆ                

ˆ ˆ              

ˆ ˆ            

L R

L L R R L L R R

L R L R

n n t t
L L R R L L R R

n t
L R L R

L L R R L L R R

L R L R

u u v v
u v

u u u u
u u

H H c c
H c

ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

=

+ +
= =

+ +

+ +
= =

+ +

+ +
= =

+ +

  (3.13) 

      



 
 

26

where Lc and Rc  are speeds of sound for left and right cells, respectively.  
 

For any variable φ , the φ∆  is defined as R Lφ φ φ∆ = − .  

 

Finally, the terms in the summation sign are given as follows: 

 

2

2

2

ˆ ˆ
ˆ2

ˆ
ˆ

ˆ
ˆ ˆ
ˆ2

n

t

n

p c u
c
u

c
p

c
p c u

c

ρ

ρ

ρ

ρ

⎡ ⎤∆ − ∆
⎢ ⎥
⎢ ⎥
⎢ ⎥∆
⎢ ⎥

∆ = ⎢ ⎥
∆⎢ ⎥∆ −⎢ ⎥

⎢ ⎥
∆ + ∆⎢ ⎥

⎢ ⎥⎣ ⎦

V        (3.14) 
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1

ˆ ˆ
ˆ

ˆ ˆ

ˆ ˆ ˆn

yu c
s
xv c
s

H u c

⎡ ⎤
⎢ ⎥∆⎢ ⎥−

∆⎢ ⎥= ⎢ ⎥∆
+⎢ ⎥

∆⎢ ⎥
⎢ ⎥−⎣ ⎦

R  2

0

ˆ
ˆ

ˆ

ˆ ˆt

xc
s
yc
s

u c

⎡ ⎤
⎢ ⎥∆⎢ ⎥

∆⎢ ⎥= ⎢ ⎥∆
⎢ ⎥

∆⎢ ⎥
⎢ ⎥⎣ ⎦

R  3

2 2

1
ˆ

ˆ ˆ
ˆ ˆ

2

u
v

u v

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥

+⎢ ⎥
⎢ ⎥⎣ ⎦

R 4

1

ˆ ˆ
ˆ

ˆ ˆ

ˆ ˆ ˆn

yu c
s
xv c
s

H u c

⎡ ⎤
⎢ ⎥∆⎢ ⎥+

∆⎢ ⎥= ⎢ ⎥∆
−⎢ ⎥

∆⎢ ⎥
⎢ ⎥+⎣ ⎦

R    (3.15) 

 

 

2

1ˆ ˆ,
2ˆ *                  1, 4ˆ( ) 1 1ˆ,

4 2

k k k

k
k k k

k
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where 
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Zeeuw and Powell in [23] state that Equation (3.16) is necessary to prevent unphysical 

expansion shocks. However, it is only applied for the two acoustic waves (k=1 and k=4).  

 

The four face fluxes are summed up for each cell to obtain the second term in Equation 

(2.9). 

 
3.4.2 Inviscid (Convective) Fluxes for Euler Equations for Moving Mesh 
 
If Equation (2.11) is implemented for convective fluxes, the nu , tu , ˆnu  and ˆtu  values in 

Equations from (3.9) to (3.17) should be replaced with the n
ALEu , t

ALEu , ˆn
ALEu  and ˆn

ALEu  

values, respectively, which are defined as follows:  
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u u
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=

+

      (3.18) 

 

This would change all the velocity terms that are multiplied by the normal of the face. 

Furthermore, the eigenvalues vector â  would also change.   
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3.5 Temporal Discretization 
 
Explicit time marching technique is used with third order Runge-Kutta (RK) time 

integration method. Equations (2.5) or (2.9) could be rewritten as follows for 

convenience  [4]: 

 

( , ) ( , ) ( , ) 0I J I J I Jt
∂

∀ + =
∂

Q R       (3.19) 

 

where ( , )I JR is the residual term for the cell (I,J), which is the sum of all convective face 

fluxes for each cell.  

 

For the temporal discretization, the third order RK method is used as done by Gönç [4]. 
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  (3.20) 

 

At this point, the choice of t∆  is critical. If it is too small, the convergence time 

increases. On the other hand, too large t∆  generally results in divergence. This risk of 

divergence brings a restriction to the selection of t∆ . Courant Friedrichs Lewy (CFL) 

criteria is presented below as [29] 
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   (3.22) 

 

The coefficient CFL  is between zero and one. As it gets closer to one, the convergence 

speeds up, but on the other hand, the risk of divergence increases. As CFL  goes to zero 

the code is more stable but the convergence time increases.  

 

As Equation (3.21) implies, all the cells have their own ( , )I Jt∆ . This would mean that 

every cell is at a different time level computationally. This feature is commonly used 

when the desired output is a steady flow; due to the fact that it would accelerate the 

convergence and the intermediate solutions do not have any physical meaning. However, 

for an unsteady problem, the intermediate results should have physical meaning so that 
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all the cells should be at the same time level. This could be achieved with the following 

formula: 

  
( , )MIN( )Global
I Jt t∆ = ∆       (3.23) 

 
With Equation (3.23), the stability is ensured because all the cells have the safest 

(smallest) ( , )I Jt∆  value.  

 
3.6 Initial Conditions 
 
Foe initial conditions, first the freestream values should be specified. These include the 

inlet Mach number ( M∞ ), angle of attack (α ), stagnation pressure ( OP
∞

), and stagnation 

temperature ( OT
∞

). 
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For steady problems, all the variables within the cells are assigned to their corresponding 

freestream values as initial condition. However, for the unsteady solver, the input is the 

converged steady solution. That is to say, the unsteadiness start after the flow reaches 

the steady state.  

 
3.7 Boundary Conditions 
 
Boundary conditions, in any physical problem, are as important as the governing 

equations. Since the governing equations do not change for a specific problem, the 

translation of the physical domain to mathematics is with the help of boundary 

conditions (BC).  

 

The general idea in this work is to use “ghost” cells for boundary conditions. “Ghost” 

cells are imaginary cells outside of the boundary with some given cell values. This 

method is very convenient, since the code also calculates the fluxes at these boundaries 

like any regular interior cell. Only the appropriate ghost cell values should be defined 

beforehand.  

 

There are some differences between moving grid BC and stationary BC for the ghost 

cell values. Thus, it is suitable first to start with the stationary grid BC’s. 

  
3.7.1 Boundary Conditions for a Stationary Grid 
 
3.7.1.1 Far Field Boundary Condition for a Stationary Grid 
 
All variablesφ  are assigned to their corresponding free stream values at all “ghost” cells 

at the far field so that 

  
farfield

ghostφ φ∞=         (3.25) 
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A better approach could be to implement characteristic boundary conditions. [4, 7, 6 and 

9]. However, as this simple method gives successful results, this improvement is left for 

future studies. 

 
3.7.1.2 Solid Wall Boundary Condition for a Stationary Grid 
 
For an O-grid solver, the Ith ghost cell at the solid boundary has the neighbor cell of 

(I,1), as shown in Figure 3.7. Equation 3.26 presents the values for the ghost cell. 

 

( ) ( ,1)

( ) ( ,1)

( ) ( ,1)

( ) ( ,1)

solid
ghost I I

nsolid n
ghost I I

t solid t
ghost I I

solid
ghost I I

u u

u u

e e

ρ ρ=

= −

=

=

       (3.26) 

 

 
 

Figure 3.7  Solid wall boundary for a stationary grid (O-grid solver) 

 
 

The energy and density are taken as equal to their corresponding values at the 

neighboring cell. The most important requirement on a solid boundary is that the flux 
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should not cross it. So the nu  values should have opposite sign but the same magnitude, 

in order to achieve 0n
faceu = . This will automatically ensure that the flux through the 

wall is zero. Finally, the tangential velocity is selected equal to its value in the 

neighboring cell, since Euler equations do not include the frictional effects and there 

should be a tangential velocity at the solid boundary.    

 

For the C-grid solver, as the solid boundary is only between (SS,1) and (NX-SS+1,1), 

these conditions could only be applied for this range. 

 
3.7.1.3 Interior Boundary Condition for a Stationary Grid 
 
For interior boundaries, there is no need for a “ghost” cell. However, the neighborhood 

information is important.  

 

For an O-grid solver, the cell (1, J), which is at the left boundary on computational 

domain, is neighbor to the cell (NX-1, J), which is at the right boundary of the 

computational domain, as shown in Figure 3.3.   

 

For a C-grid solver, the neighborhood relationship is between cell (NX-I, 1) and cell 

(I,1), providing that I is between (1) and (SS-1), as seen in Figure 3.5. 

 
3.7.2 Boundary Conditions for a Moving Grid 
 
3.7.2.1 Far Field Boundary Condition for a Moving Grid 
 
As the characteristic Riemann invariants are not implied to the code, the effect of 

rotation should be included in the “ghost” cell fluxes. However, except the grid velocity, 

again, all the variables at the cell center are taken equal to their corresponding 

freestream values. 
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farfield
ghostφ φ∞=  (for all variables except grid velocities)  (3.27) 

 

The grid velocity of the “ghost” cell is calculated with linear extrapolation from its 

neighboring cell and the cell adjacent to it  as follows: 

 

( , 1) ( , 2)

( , 1) ( , 2 )

2( )

2( )
I I NY I NY

I I NY I NY

farfield
CV ghost CV CV

farfield
CV ghost CV CV

u u u

v v v
− −

− −

= −

= −
     (3.28) 

 

3.7.2.2 Solid Wall Boundary for a Moving Grid 
 
For an O-grid solver, the Ith ghost cell at the solid boundary has the neighbor cell (I,1). 

The “ghost” cell values are presented below [4, 21]: 
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      (3.29) 

 

where  

 
( ,1) ( 1,1)

( ,1) 2
NODE NODE

n n
CV I CV In

CV I face

u u
u ++

=      (3.30) 

 

The energy and density are taken equal to their corresponding values at the neighboring 

cell. When the boundary is moving arbitrarily, there is also tangential velocity on the 

solid boundary, which is equal to the normal velocity of the solid body ( n
CV faceu ). Its 
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value is found by the arithmetic mean of two closest nodes as explained by Equation 

(3.30).  

 

The second equation in (3.29) is actually a version of Equation (3.31). It is logical that 
n
CV faceu  is the arithmetic mean of the normal velocity of (I,1) th cell center ( ( ,1)

n
Iu ) and  

the normal velocity of (I) th ghost cell center ( ( )
nsolid

ghost Iu ). [4, 21] 

 
( ) ( ,1)

2

nsolid n
ghost I I n

CV face

u u
u

+
=       (3.31) 

 
Finally, the tangential velocity is selected equal to its corresponding value at the 

neighboring cell even for the moving grid case, so that they are both equal to the 

tangential velocity of the solid body ( t
CV faceu ).  

 
The ALE method is not implemented to the C-grid solver. 

    
3.7.2.3 Interior Boundary Condition for a Moving Grid 
 
As for stationary grid, there is also no need for a “ghost” cell at the interior boundary for 

a moving grid. The neighborhood relationship is the same for O and C solvers as the 

stationary grid.   

 
3.8 The Grid Movement 
 

The grid is rotated around the origin with a predefined arbitrary angular velocity. The 

method for calculating the grid velocities are presented here. The grid velocity definition 

can be rewritten as follows: 

 

CV CVu v= +W i j
G GG

       (3.32) 
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First the magnitude of the velocity can be evaluated as follows: 
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�

G
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    (3.33) 

 

Here, α�  is the predefined arbitrary angular velocity, which is specific to a problem. The 

detailed description of the geometry is presented in Figure 3.8.  

 

 
 

Figure 3.8  Geometry for grid velocities 

 

 

The next step is to find the base-angle ( , )I Jβ  to compute the components of this grid 

velocity. 
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ATAN2 function gives values in the interval of[ , ]π π− . Thus, it also finds the quadrant 

where the cell center is.   

 

Finally, the components of the grid velocity are found as follows: 
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     (3.35) 

 

Trepanier et al. [14] argue that, geometric conservation laws (GCL) should be applied 

for moving grids. The first geometric law, named as Volume Conservation Law (VCL), 

states that the increase of volume in a cell is equal to total volumetric increases along its 

faces. The second law is called Surface Conservation Law (SCL) and it makes sure that 

each cell is closed.  

 

Although the GCL is important to satisfy, it could be argued that if the grid is only 

moved and not deformed, then this law is satisfied automatically. [4] Because the grid 

volumes do not alter and all the cells remain as closed.        
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3.9 Convergence Criteria for Steady Flows 
 

All the variables that contain time are considered as residual terms as in Equation (3.19). 

If this term is sufficiently small, then it can be assumed that, the solution is converged. 

The definition of sufficient can be given as follows: 
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      (3.36) 

 

1R , 2R , 3R , and 4R are calculated as shown in Equation (3.36). Here, the first residual 

corresponds to mass conservation, second and third to momentum conservation for x and 

y directions respectively, and the last residual corresponds to energy conservation. The 

superscript n denotes the iteration number.   

 



 
 

39

1

1

1

1

11 log( )
1
22 log( )
2
33 log( )
3
44 log( )
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n
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R
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R
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=
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=

       (3.37) 

 

For the convergence the 1RS , 2RS , 3RS  and 4RS  values should be less than 6.0E = − . 

That is, the error in the converged solution should be less than 610−  times the error in the 

first iteration for all the conserved variables. Decreasing the variable E  will result in 

increased accuracy, but also in increased run time.  
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CHAPTER 4 
 
 

VERIFICATION OF THE CODE, RESULTS AND 
DISCUSSION 

 
"When I'm working on a problem,  

I never think about beauty.  
I think only how to solve the problem.  

But when I have finished,  
if the solution is not beautiful,  

I know it is wrong." 
Richard Buckminster Fuller 

 

 

 
At this section, the developed code is tested under various conditions. This chapter is 

divided into two parts as the discussion of steady and unsteady problems.  

 

NACA 0012 and RAE 2822 airfoil profiles are used to test the code. The coordinates of 

these profiles can be found in Appendix B. For all problems, the radius of the 

computation domain is selected as 15 times the chord length, so that the disturbances 

due to the airfoil do not reach the boundary.  

 
4.1. Steady Solutions 
 
The code is tested under subsonic and transonic conditions. Table 4.1 summarizes the 

test cases for steady problems. For all cases, the stagnation pressure and temperature are 

taken as 150 kPa and 350 K, respectively.  
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Table 4.1 Summary of Steady Test Cases 
 

Test Case Airfoil Profile M∞  α  Reference(s) 

4.1.1 NACA 0012 0.600 0.0 [30] 

4.1.2 NACA 0012 0.800 0.0 [31] 

4.1.3 RAE 2822 0.7290 2.31 [32, 33, 34] 

 
 

4.1.1. Subsonic Flow over Symmetric Airfoil 
 

The NACA 0012 profile is widely used for 2-D code validation and experimental data 

for many different cases could easily be found in literature.  

 

The inviscid, steady, subsonic flow solutions around the NACA 0012 airfoil are 

obtained for an inlet Mach number ( M∞ ) of 0.60, and for an angle of attack (α ) of 0.0° 

and compared with [30]. As the profile is symmetric, the airfoil does not have any lifting 

effect for zero angle of attack. Therefore, the expectation is that the pressure coefficient 

for lower and upper halves of the airfoil should have the same magnitude.   

 

There are different types of grids with different resolution. Table 4.2 summarizes the 

features of the used grids.  

 

Table 4.2 Grid types for subsonic flow over symmetric airfoil (case 4.1.1.) 

 

Case Number Grid Type Node Number 

4.1.1.a O-Grid 121 x 121 

4.1.1.b O-Grid 243 x 257 

4.1.1.c C-Grid 211 x 121 
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Figures 4.1 and 4.2 give a brief idea of the computational domain for O and C grid 

solvers, respectively. Figures 4.3-4.5 show close-up views for different mesh 

resolutions.  

 

 
 

Figure 4.1  Overall view for NACA 0012 profile O-grid with (121x121) nodes 

 
 

 
 

Figure 4.2  Overall view for NACA 0012 profile C-grid with (211x121) nodes  
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Figure 4.3  Close-up view of NACA 0012 profile O-grid with (121x121) nodes 
 
 

 
 

Figure 4.4  Close-up view of NACA 0012 profile O-grid with (243x257) nodes 
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Figure 4.5 Close-up view of NACA 0012 profile C-grid with (211x121) nodes 

 
 
 

Figures 4.6 - 4.8 present residual histories for different meshes. As expected, the 

convergence in coarser O-grid of Figure 4.6 is much faster than the one in fine O-grid of 

Figure 4.7. The convergence rate in C-grid, which is shown in Figure 4.8, is not as good 

as the O-grids. This is because of the unnecessary more cells far away from the airfoil. 

These cells are needed in order to maintain the structure; however they will slow down 

the convergence.  
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Figure 4.6 Residual history for NACA 0012 (121 x 121) nodes, M∞ =0.60 α =0.0 

 
 

 
 

Figure 4.7 Residual history for NACA 0012 (243 x 257) nodes, M∞ =0.60 α =0.0 
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Figure 4.8 Residual history for NACA 0012 C-grid (211 x 121) nodes, 
 M∞ =0.60 α =0.0 

 

 

The variation of pressure coefficient along the chord length is shown in Figure 4.9. It 

can be said that, the computed results of all grids are well fitted to the available 

experimental data. The coarse O-grid has 14641 nodes and the fine O-grid has 62451 

nodes. On the other hand, the C-grid has about 25531 nodes. Although the grid 

resolution differs so much, the pressure coefficients are in agreement. Thus, it can be 

said that, this test case also shows the domain independency of the solver. Different grid 

types and different grid resolutions are resulted in similar solutions, which is a desired 

feature for solvers.   

 

Here, only the pressure coefficient contours Figure 4.11, and Mach number contours, 

Figure 4.10, of fine O-grid are presented. However, as stated before, the results of all 

grids are very similar to each other in Figure 4.9.  
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Figure 4.9 Figure 4.0.9 pc distribution over the NACA 0012 airfoil,  
 M∞ =0.60 α =0.0 

 
 
 

Figure 4.12 enables to see the details of leading edge. Stagnation point is seen clearly at 

the tip of the airfoil (at point x = 0.0 and y = 0.0). The velocity vector distribution 

appears to be correct. Since Euler equations are used in this study, there is velocity on 

the boundary as seen.     
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Figure 4.10 Mach Contour, NACA0012 airfoil (243x257) nodes,  
 M∞ =0.60 α =0.0 

 
 

 
 

Figure 4.11 pc contour, NACA0012 airfoil (243x257) nodes, M∞ =0.60  α =0.0 
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Figure 4.12 Mach Contour and Velocity vectors, NACA0012 airfoil   
 Leading edge close-up view (243x257) nodes, M∞ =0.60 α =0.0 

 
 

It can be said that, the results of this test case are acceptable. The grid independency is 

achieved in this case. Furthermore, all the solutions give symmetric results, as expected 

from this profile.  

  
4.1.2. Transonic Flow over a Symmetric Airfoil 
 
The inviscid, steady, transonic flow solutions around the NACA 0012 airfoil are 

obtained for an inlet Mach number ( M ∞ ) of 0.80, and for an angle of attack (α ) of 0.0° 
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and will be compared with [31]. Table 4.3 summarizes the features of the used grids. 

The close-up view of the mesh for case 4.1.2.a is given previously in Figure 4.3 and the 

mesh for case 4.1.2.b is given in Figure 4.13. The idea here is that, if one knows 

approximately the location of the shock and prepares the numerical grid accordingly; the 

convergence rate and/or the accuracy can be improved. As seen from Figures 4.14 and 

4.15, which presents the residual histories for the two grids, the shock adapted mesh 

needs approximately 3000 less iterations for the same accuracy, even if it has 38% more 

nodes. Furthermore, it can also be argued that the shock adapted mesh captured shock 

slightly better as seen in Figure 4.16, which displays the pressure coefficient variation 

along the airfoil, as expected.   

 
 

 
 

Figure 4.13 Close-up view of NACA0012 profile O-grid with (101x201) nodes 
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Table 4.3 Grid types for transonic flow over symmetric airfoil (case 4.1.2) 
 
 

Case Number Grid Type Node Number 

4.1.2.a O-Grid 121 x 121 

4.1.2.b O-Grid (shock adapted) 101 x 201 
 

 

 

 

 
 

Figure 4.14 Residual history for NACA 0012 (121 x 121) nodes, M∞ =0.80 α =0.0 
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. 

 
Figure 4.15 Residual history for NACA 0012 (101 x 201) nodes, M∞ =0.80 α =0.0 

 
 

 

It can be said that, the results of the present computation agree well with the inviscid 

computation result of Wu and Li [31]. Furthermore, after the comparison of Figures 4.17 

and 4.18, it can be also argued that the Mach contours of [31] and present study are in 

agreement.  

 

As a result, it could be concluded that the present code is also verified for transonic 

flows over a symmetric airfoil.  
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Figure 4.16 pc distribution over the NACA 0012 airfoil, M∞ =0.80 α =0.0 
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Figure 4.17   Mach Contour, NACA0012 airfoil, M∞ =0.80 α =0.0, Solution of Wu et al. 
 
 

 
 

Figure 4.18 Mach Contour, NACA0012 airfoil (101x212) nodes, M∞ =0.80 α =0.0 
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4.1.3. Transonic Flow over an Unsymmetrical Airfoil with a Non-zero Angle of 

Attack 

 

The inviscid, steady, transonic flow solutions around the RAE 2822 airfoil are obtained 

for an inlet Mach number ( M∞ ) of 0.7290, and for an angle of attack (α ) of 2.310° and 

will be compared with [32, 33 and 34]. The computational results of Kudinov [32, 33] 

are viscous solutions with 6.5 million Reynolds number. The experimental results of 

Cook et al. [34] are obtained from [32].  

 

The summary of used grids can be found in Table 4.4. These numerical grids are 

presented in Figures 4.19 and 4.20.  

 
Table 4.4 Grid types for test case 4.1.3 

 
Case Number Grid Type Node Number 

4.1.3.a O-Grid 801 x 301 

4.1.3.b C-Grid 601 x 121 
 

 

The residual histories for different mesh types are seen in Figures 4.21 and 4.22. 

Furthermore, pressure coefficient variation over the airfoil is shown in Figure 4.23. The 

results of present solver are quite successful at the lower surface. However, at the upper 

surface there are problems at the locations of shock and the pressure maximum at the 

leading edge. The prediction of the shock location could be enhanced by using fine mesh 

or (if the location is approximately known) a shock adapted mesh could be used. In this 

part, a very fine mesh is used in order to catch the shock location. On the other hand, the 

pressure maximum at the leading edge could not be predicted. The main reason may be 

the omission of viscous effects in the present solver. The maximum error in computation 

is less than 20%.   
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Figure 4.19 Close-up view of RAE 2822 profile O-grid with (801x301)  nodes 
 
 

 
 

Figure 4.20 Close-up view of RAE 2822 profile C-grid with (601x121)  nodes 



 
 

57

 
 

Figure 4.21 Residual history for RAE 2822 profile O-grid with (801x301),  
 M∞ =0.7290 α =2.310 

 
 

 
 

Figure 4.22 Residual history for RAE 2822 profile C-grid with (601x121),  
 M∞ =0.7290 α =2.310 
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Figure 4.23 pc distribution over RAE 2822 profile, M∞ =0.7290 α =2.310 

 

 

Figures 4.24 and 4.25 compare the Mach contours of Kudinov [32] and present study. 

The contours of both solutions are very much alike. 
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Figure 4.24 Mach Contour, RAE 2822 profile, M∞ =0.7290 α =2.310,  
 Solution of Kudinov [32] 

 

 
 
 

Figure 4.25 Mach Contour, RAE 2822 profile, O-grid 
801x301 nodes, M∞ =0.7290 α =2.310, present computation 
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4.2 Unsteady Solution - Oscillating Airfoil 

 

This problem is widely used to validate unsteady CFD codes. The experiment is done by 

AGARD [36]. The results will also be compared with inviscid computational results of 

[18, 35]. Table 4.5 gives brief information about the test case. 

 

The code is tested for oscillating airfoil problem at 8 different test cases. For this 

problem as the steady problems, the stagnation pressure and temperature are taken as 

150 kPa and 350 K, respectively.  

 

For unsteady problems, the grid movement start after the steady part of the problem 

converges. For the steady part, CFL is selected as 0.5 in order to prevent divergence 

whereas it could be as high as 1.0 for the unsteady part. Furthermore, M∞  remain the 

same for steady and unsteady solvers.  

 

Table 4.5 Properties of Unsteady Test Case 
 

Case Airfoil Profile M∞  α  References 

4.2 NACA 0012 0.7550 0.016 2.51 sin( )tω° + ° [18, 35 and 36] 

 

 

In this problem, the NACA 0012 profile airfoil is first brought to steady state with a 

Mach number ( M∞ ) of 0.7550 and angle of attack (α ) of 0.016° . After steady state is 

reached, the airfoil starts to oscillate about a hinge located at 0.25L  (quarter chord 

length). The oscillation amplitude is 2.51° . In other words, the oscillation is between 

( 2.526+ ° ) and ( 2.494− ° ). The relationship of the angle of attack and the time is given 

below: 
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0.016 2.51 sin( )tα ω= ° + °       (4.1)

 0.0814
2

Lk
M c
ω

∞ ∞

= =        (4.2) 

 
where ω [rad/s] is the circular pitch frequency, L  [m] is the chord length, k [rad] is the 

reduced frequency based on chord length. The angular velocity (α� ) is the time 

derivative of angular position function and is presented below: 

 

   2.51 cos( )
180

tπα ω ω= °
°

�       (4.3) 

 
There are eight test cases. They are summarized in Table 4.6. In these test cases 

instantaneous values are taken and compared to the experimental and computational 

data. The reference [35] has the data on all the 8 test cases and reference [18] has only 

on 2 of them (case 4.2.c and case 4.2.e).  

 
Michler et al. [18] states that the periodicity is achieved at the third cycle of oscillation. 

Therefore, the data is taken after the airfoil has undergone two complete cycles. Figure 

4.26 presents the test cases (as dots) in the sinusoidal oscillation cycle. 

 
Table 4.6 Summary of oscillating airfoil test cases 

 
Test Case No Angle of Attack [deg] Direction of Movement 

4.2.a 1.090 UP 

4.2.b 2.340 DOWN 

4.2.c 2.010 DOWN 

4.2.d 0.520 DOWN 

4.2.e -1.250 DOWN 

4.2.f -2.410 DOWN 

4.2.g -2.000 UP 

4.2.h -0.540 UP 
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Figure 4.26 Oscillating Airfoil Test cases in the sinusoidal oscillation cycle 
 
 
This problem is solved with two different grids. Table 4.7 shows the features of these 

grids. The close-up views of these grids are given in Figures 4.27.a and 4.27.b. 

 

Table 4.7 Grid types for the oscillating airfoil 

Grid type Node Number 

O-grid / Fine 451x201 

O-grid / Coarse 301x151 

 

In Figures 4.28 - 4.35, the pressure coefficient distributions along the airfoil for different 

test cases are plotted. For all test cases except 4.2.c and 4.2.e, the present solver results 

are compared with available experimental data from AGARD [36] and the inviscid 

a 

b 

c 

d 

e 

f 
g 

h 
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computational results of Ramesh et al. [35]. For cases 4.2.c and 4.2.e, in addition to 

those results, inviscid computational results from Michler et al. [18] are also available. 

 

 
 

Figure 4.27.a Numerical mesh of NACA0012 for oscillating airfoil problem  
301x151 nodes 

 

 

 
Figure 4.27.b Numerical mesh of NACA0012 for oscillating airfoil problem 

451x201 nodes 
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Figure 4.28 Instantaneous pc  distribution, 1.090α = ° , case 4.2.a 
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Figure 4.29 Instantaneous pc  distribution, 2.340α = ° , case 4.2.b 
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Figure 4.30 Instantaneous pc  distribution, 2.010α = ° , case 4.2.c 
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Figure 4.31 Instantaneous pc  distribution, 0.520α = ° , case 4.2.d 
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Figure 4.32 Instantaneous pc  distribution, 1.250α = − ° , case 4.2.e 
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Figure 4.33 Instantaneous pc  distribution, 2.410α = − ° , case 4.2.f 
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Figure 4.34 Instantaneous pc  distribution, 2.000α = − ° , case 4.2.g 
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Figure 4.35 Instantaneous pc  distribution, 0.540α = − ° , case 4.2.h 

 

 

Figures 4.36 – 4.43 presents the Mach contours of Ramesh et al. [35] and the present 

solver.  
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                           (a) Ramesh et al.              (b) Current computation (451x201) 
Figure 4.36 Instantaneous Mach contours, 1.090α = ° , case 4.2.a 

 

 

 

 
 

                  (a) Ramesh et al.                      (b) Current computation (451x201) 
Figure 4.37 Instantaneous Mach contours, 2.340α = ° , case 4.2.b 
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                  (a) Ramesh et al.                      (b) Current computation (451x201) 
Figure 4.38 Instantaneous Mach contours, 2.010α = ° , case 4.2.c 

 

 

 

 
 

                  (a) Ramesh et al.                      (b) Current computation (451x201) 
Figure 4.39 Instantaneous Mach contours, 0.520α = ° , case 4.2.d 
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                  (a) Ramesh et al.                      (b) Current computation (451x201) 
Figure 4.40 Instantaneous Mach contours, 1.250α = − ° , case 4.2.e 

 

 

 

 
 

                  (a) Ramesh et al.                      (b) Current computation (451x201) 
Figure 4.41 Instantaneous Mach contours, 2.410α = − ° , case 4.2.f 
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                  (a) Ramesh et al.                      (b) Current computation (451x201) 
Figure 4.42 Instantaneous Mach contours, 2.000α = − ° , case 4.2.g 

 

 

 

 
 

                  (a) Ramesh et al.                      (b) Current computation (451x201) 
Figure 4.43 Instantaneous Mach contours, 0.540α = − ° , case 4.2.h 
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In Figure 4.44, the unsteady lift coefficient versus angle of attack is plotted. The 

experimental results, which are again from Landon [36], are taken after two complete 

cycles. Thus, the experimental results are only a function of angle of attack.  

 
It could be said that, the general trend matches with the inviscid computational results of 

Michler et al.; that is to say, the periodicity is reached after two cycles and the general 

characteristics of the curves are the same. Furthermore, the trend matches also with the 

experimental data.  

 

 

 
 

Figure 4.44 Comparison of CL versus Angle of Attack values 
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To conclude this problem, Figures from 4.28 to 4.44 present the results of present 

computation and compare it with experimental data and/or with computational work in 

the literature. After investigating these test cases, it can be concluded that, the present 

computations have acceptable results. Some shock locations does not exactly match, 

which is the direct result of insufficient grid resolution. To capture the shock locations 

better, shock adaptive solution strategy can be used, so that the intensity of the grids will 

be increased at the locations where the probability of shock increases. However, this is 

beyond the scope of this thesis, and will be listed for future improvements.  
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CHAPTER 5 
 
 

CONCLUSION 
 
 
 

“It is good to have an end to journey toward,  
but it is the journey that matters in the end.”  

Ursula K. LeGuin 
 

“I may not have gone where I intended to go,  
but I think I have ended up where I intended to be.” 

Douglas Adams 
 
 
 
 

This thesis contains numerical simulations of steady and unsteady flows around 2-D 

airfoils. The unsteady flows consist of flows around oscillating airfoils. The solutions 

have been acquired using a FORTRAN code, which solves Euler equations. The solver 

uses the cell centered finite volume method with first order Roe’s flux splitting scheme 

for spatial discretisation, and a third order Runge-Kutta explicit time stepping scheme 

for temporal discretisation. The unsteady behavior is simulated with the help of 

Arbitrary Lagrangian Eulerian method, where the computational grid could be moved 

but could not be deformed.       

  

The assumptions of the flow are listed previously as inviscid, unsteady, adiabatic, and 

two dimensional. The gravity is neglected and the air is taken as ideal gas.   
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The obtained results throughout the study are in well agreement with the literature. It can 

be argued that mismatches with the results of literature in steady problems could be 

eliminated by using better computational grids. However, even very fine meshes could 

not predict the pressure maximum for RAE 2822 airfoil, which may be due to neglection 

of viscous effects in the solver. On the other hand, to obtain better results for the 

unsteady solver future improvements, which are listed below, should be done.   

 

First improvement for the unsteady solver as for the steady one should be the 

replacement of Euler equations by Navier-Stokes (NS) equations. This will include the 

effect of viscosity. A further improvement could be to use one of the turbulence models 

to include the effect of turbulence, which could be useful at high angle of attacks, where 

the viscous effects dominate the flow.  

 

Second modification should be the generalization of the code to 3-D. This will enable to 

simulate the flow more realistically and the flow around propellers or turbines could be 

solved.  

 

Third enhancement of the code could be the implementation of shock adaptive solution 

strategy into the solver. This enhancement directly requires the satisfaction of Geometric 

Conservation Law, since the computational grid will not be rotated only but also be 

deformed. 

 

Another modification could be implementation of characteristic boundary conditions. It 

is known that this method is superior to the method used in this study. However, the 

method used in this study gives satisfactory results. 

 

The last improvement would be implementing higher order spatial discretisation, which 

generally helps for a better prediction of shock waves.          
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The outcome of this thesis could be useful in understanding the behavior of rotor 

aerodynamics. Furthermore, if the previously mentioned improvements are done, the 

obtained solver could be used for analysis of turbines or propellers.  
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APPENDIX A 
 

SAMPLE INPUT FILES 

 

Sample input file for O-grid solver 
 
301 151 
             0.750000000000000                0.000000000000000 
             0.752879590139900                0.000000000000000 
             0.755859965934698                0.000000000000000 
           ………    …………. 

………    …………. 
            14.047057139317422                0.000000000000000 
            14.515333729333431                0.000000000000000 
            15.000000000000000                0.000000000000000 
 
 
 

Key for sample input file for O-grid solver 
 
NX NY 

  X(1,1)      Y(1,1) 

  X(1,2)      Y(1,2) 

  X(1,3)      Y(1,3) 

  ………      …………. 
  ………      …………. 
  X(NX,NY-2)     Y(NX,NY-2) 

  X(NX,NY-1)     Y(NX,NY-1) 

  X(NX,NY)     Y(NX,NY) 
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Sample input file for C-grid solver 
 
601 121 151 301  
            15.000000000000000                0.000000000000000 
            14.999999999999998               -0.000117050412220 
            15.000000000000000               -0.000243464857418 

………    …………. 
 ………    …………. 
            15.000000000000000               12.859873572653100 
            15.000000000000000               13.888780508877574 
            15.000000000000000               15.000000000000000 

 

Key for sample input file for C-grid solver 
 
NX NY NSS NSP 

  X(1,1)      Y(1,1) 

  X(1,2)      Y(1,2) 

  X(1,3)      Y(1,3) 

………      …………. 

  ………      …………. 
  X(NX,NY-2)     Y(NX,NY-2) 

  X(NX,NY-1)     Y(NX,NY-1) 

  X(NX,NY)     Y(NX,NY) 

 
 
 

Sample input file for O-grid solver (moving mesh) 
 
301  151 
0.7500000 0.0000000 1.1177106 157.7848782  0.0365164 295416.7704199 
0.7432783  -0.0010051  1.1241846  175.9842514  24.8984617  297154.1586574 
0.7365415  -0.0019041  1.1294371  200.4848514  26.8676770  298941.2852078 
  ………     …………. 
  ………     …………. 
  ………     …………. 
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Key for sample input file for O-grid solver (moving mesh) 
 
NX NY 

X(1,1) Y(1,1) (1,1)ρ  (1,1) (1,1)uρ  (1,1) (1,1)vρ  (1,1) (1,1)eρ   

X(1,2) Y(1,2) (1, 2)ρ  (1, 2) (1,2)uρ  (1, 2) (1,2)vρ  (1, 2) (1,2)eρ   

X(1,3) Y(1,3) (1,3)ρ  (1,3) (1,3)uρ  (1,3) (1,3)vρ  (1,3) (1,3)eρ   

………   …………. 

………   …………. 

………   …………. 
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APPENDIX B 
 

AIRFOIL PROFILES 
 
 
As the NACA 0012 geometry is symmetric, the lower and upper surface values have the 

same magnitude but the inverse sign. The second column in Table B.1 indicates the 

upper halve, and the third indicates the lower halve of the NACA 0012 profile. 

 
Table B.1 The Geometry of NACA 0012 profile 

 
x/L y/L y/L 

0.00000 0.00000 0.00000 
0.00390 0.01090 -0.01090 
0.01570 0.02110 -0.02110 
0.03510 0.03040 -0.03040 
0.06180 0.03880 -0.03880 
0.09550 0.04590 -0.04590 
0.13550 0.05170 -0.05170 
0.18130 0.05590 -0.05590 
0.23210 0.05860 -0.05860 
0.28710 0.05960 -0.05960 
0.34550 0.05910 -0.05910 
0.40630 0.05730 -0.05730 
0.46860 0.05420 -0.05420 
0.53140 0.05020 -0.05020 
0.59370 0.04540 -0.04540 
0.65450 0.04010 -0.04010 
0.71290 0.03450 -0.03450 
0.76790 0.02870 -0.02870 
0.81870 0.02310 -0.02310 
0.86450 0.01770 -0.01770 
0.90450 0.01280 -0.01280 
0.93820 0.00840 -0.00840 
0.96490 0.00490 -0.00490 
0.98430 0.00220 -0.00220 
0.99610 0.00060 -0.00060 
1.00000 0.00000 0.00000 
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The second column in Table B.2 indicates the lower halve and the fourth column 

indicates the upper halve of the RAE 2822 profile.  

 

Table B.2 The Geometry of RAE 2822 profile 
 

x/L y/L  x/L y/L 
1.00000 0.00000  0.00000 0.00000 

0.99940 0.00004  0.00060 0.00316 

0.99759 0.00014  0.00241 0.00631 

0.99459 0.00030  0.00541 0.00942 

0.99039 0.00050  0.00961 0.01248 

0.98502 0.00072  0.01498 0.01549 

0.97847 0.00093  0.02153 0.01844 

0.97077 0.00111  0.02923 0.02135 

0.96194 0.00121  0.03806 0.02422 

0.95200 0.00120  0.04801 0.02706 

0.94096 0.00103  0.05904 0.02987 

0.92886 0.00069  0.07114 0.03264 

0.91574 0.00016  0.08427 0.03536 

0.90160 -0.00060  0.09840 0.03801 

0.88651 -0.00159  0.11349 0.04059 

0.87048 -0.00283  0.12952 0.04307 

0.85355 -0.00431  0.14645 0.04546 

0.83578 -0.00605  0.16422 0.04773 

0.81720 -0.00803  0.18280 0.04987 

0.79785 -0.01024  0.20215 0.05188 

0.77778 -0.01269  0.22221 0.05375 

0.75705 -0.01536  0.24295 0.05547 

0.73570 -0.01823  0.26430 0.05703 

0.71378 -0.02129  0.28622 0.05841 

0.69134 -0.02449  0.30866 0.05963 

0.66845 -0.02781  0.33156 0.06066 

0.64514 -0.03121  0.35486 0.06150 

0.62149 -0.03463  0.37851 0.06213 

0.59754 -0.03804  0.40245 0.06256 

0.57336 -0.04140  0.42663 0.06278 

0.54901 -0.04464  0.45099 0.06277 

0.52453 -0.04772  0.47547 0.06253 

0.50000 -0.05056  0.50000 0.06203 

0.47547 -0.05310  0.52453 0.06125 

0.45099 -0.05526  0.54901 0.06019 

    
Continues at the 

next page 
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x/L y/L  x/L y/L 

0.42663 -0.05698  0.57336 0.05885 

 0.40245 -0.05822  0.59754 0.05722 

0.37851 -0.05897  0.62149 0.05534 

0.35486 -0.05924  0.64514 0.05326 

0.33156 -0.05905  0.66845 0.05099 

0.30866 -0.05846  0.69134 0.04857 

0.28622 -0.05755  0.71378 0.04603 

0.26430 -0.05638  0.73570 0.04338 

0.24295 -0.05499  0.75705 0.04064 

0.22221 -0.05343  0.77778 0.03785 

0.20215 -0.05169  0.79785 0.03502 

0.18280 -0.04981  0.81720 0.03218 

0.16422 -0.04777  0.83578 0.02935 

0.14645 -0.04561  0.85355 0.02655 

0.12952 -0.04333  0.87048 0.02382 

0.11349 -0.04093  0.88651 0.02115 

0.09840 -0.03843  0.90160 0.01858 

0.08427 -0.03584  0.91574 0.01611 

0.07114 -0.03317  0.92886 0.01377 

0.05904 -0.03042  0.94096 0.01156 

0.04801 -0.02759  0.95200 0.00951 

0.03806 -0.02469  0.96194 0.00762 

0.02923 -0.02172  0.97077 0.00592 

0.02153 -0.01871  0.97847 0.00440 

0.01498 -0.01565  0.98502 0.00309 

0.00961 -0.01256  0.99039 0.00200 

0.00541 -0.00944  0.99459 0.00114 

0.00241 -0.00631  0.99759 0.00051 

0.00060 -0.00316  0.99940 0.00013 
0.00000 0.00000  1.00000 0.00000 
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APPENDIX C 
 

CALCULATION OF PRESSURE, LIFT AND DRAG 
COEFFICIENT  

 
The pressure coefficient will be calculated in each node and cell center as below: 
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For numerical integration of drag and lift coefficients the simple trapezoidal rule is used. 

The pressure coefficient average of successive nodes are taken and assumed that that 

value is valid for the whole interval. The drag and lift coefficients on the solid body are 

calculated as below [37]: 

 
( ,1) ( 1,1)1

1

( )( ( 1,1) ( ,1))
( 2)

i iNX
p p

L
i

C C X i X i
C

+−

=

+ + −
=

−∑    (C.2) 

( ,1) ( 1,1)1

1

( )( ( 1,1) ( ,1))
(2)

i iNX
p p

D
i

C C Y i Y i
C

+−

=

+ + −
= ∑     (C.3) 

 

 
 
 
 
 

 

 


