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ABSTRACT

COLLIDING GRAVITATIONAL PLANE WAVES:
BELL-SZEKERES SOLUTION

Cambaz, Efsun
M.Sc., Department of Physics

Supervisor: Prof. Dr. Atalay Karasu

August 2005, 41 pages

The collision of pure electromagnetic plane waves with collinear polarization in
Einstein-Maxwell theory and the collision of gravitational plane waves in vacuum
Einstein theory are studied. The singularity structure of the Bell-Szekeres and the
Szekeres solutions is examined by using curvature invariants. As a final work, the
collision of the plane waves in dilaton gravity theory is studied and also the

singularity structure of the corresponding space-time is examined.

Keywords: Gravitation, Colliding Plane Waves, Bell-Szekeres metric
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CARPISAN GRAVITASYONEL DUZLEM DALGALAR:
BELL-SZEKERES COZUMU

Cambaz, Efsun
Yiiksek Lisans, Fizik Bolimi

Tez Yoneticisi: Prof. Dr. Atalay Karasu

Agustos 2005, 41 sayfa

Einstein-Maxwell teorisinde es-¢izgisel kutuplanima sahip elektromagnetik diizlem
dalgalarin ¢arpigmasi ve bosluk Einstein teorisinde gravitasyonel diizlem dalgalarin
carpismasi ele alindi. Bell-Szekeres ve Szekeres coziimleri i¢in tanimlanan uzay-
zamanin tekillik yapis1 egrilik degismezleri kullanilarak incelendi. Son olarak,
dilaton gravitasyon teorisinde diizlem dalgalarin ¢arpigmasi ele alindi ve bu metrigin

tanimladig1 uzay-zamanin tekillik yapisi incelendi.

Anahtar Kelimeler: Gravitasyon, Carpisan Diizlem Dalgalar, Bell-Szekeres Metrigi
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CHAPTER 1

INTRODUCTION

The colliding plane wave solutions have been an important topic in classical
general relativity. They are the exact solutions describing the collision of plane wave
in a flat background. The work on this subject was proposed by Penrose [1] in 1965.
Since then, many exact colliding plane wave solutions have been constructed [2].
The first results on exact solutions of the vacuum Einstein equations representing
colliding plane gravitational waves with collinear polarizations were obtained by
Szekeres [3], and by Khan and Penrose [4]. Later, Nutku and Halil [5] generalized
this solution to the case of noncollinear polarizations. The first exact solution of the
Einstein-Maxwell equations representing colliding plane shock electromagnetic
waves with collinear polarizations was obtained by Bell and Szekeres [6]. Later,
Halil [7], Giirses and Halilsoy [8], Griffiths [9] and Chandrasekhar and
Xanthopoulos [10] studied exact solutions of the Einstein-Maxwell equations
describing the collision of gravitational and electromagnetic waves. The main result
of these exact solutions is that the future of the collision surface is bounded by a
curvature singularity in future directions. This fact could be considered as an
inevitable effect of the nonlinear gravitational focusing. It has been expected that the
study of the colliding plane wave solutions may tell us about the nature of the space-
time singularity. The singularity structure of the colliding plane wave geometries has
been investigated by Sbytov [11], Tipler [12] and Bonnor and Vickers [13]. The
structure of the governing field equations for colliding plane waves, their physical
and geometrical interpretations, and various particular solutions and techniques have
been described in [2].

Colliding plane wave solutions are not only important in classical general
relativity but also in the higher dimensional gravity. Plane wave metrics in various

dimensions provide exact solutions in the string theory [14]. It is well-known that in



the low energy effective action of string theory, there are dilaton fields and various
kinds of multi-form fields, coupled with each other in the supergravity action. The
first exact solutions of the colliding plane waves in Einstein-Maxwell-Dilaton gravity
theories were obtained by Giirses and Sermutlu [15]. This problem is formulated for
the collinear polarization case and it was shown that when the dilaton coupling
constant vanishes one of the solutions reduces to the well-known Bell-Szekeres
solution in the Einstein-Maxwell theory and more recently Halilsoy and Sakalli [16]
have obtained the extension of Bell-Szekeres solution in Einstein-Maxwell-Axion
theory.

In [17-24], the colliding plane wave solutions in the dilatonic gravity, in the
higher dimensional gravity, and in the higher dimensional Einstein-Maxwell theory
were discussed.

In this thesis, we study the Bell-Szekeres solution, the Szekeres solution and
the colliding gravitational plane waves in dilaton gravity.

In Chapter 2, we briefly review the known properties of the colliding plane
waves in general relativity.

In Chapter 3, we discuss the solution of Bell-Szekeres and the solution of
Szekeres.

In Chapter 4, we study the exact solutions of two colliding gravitational plane

waves in dilaton field.



CHAPTER 2

COLLIDING PLANE WAVES IN GENERAL RELATIVITY

In this chapter we will discuss the collision of gravitational and electromagnetic

plane waves in general relativity.

2.1 Plane Gravitational Waves

In the electromagnetic theory, Maxwell’s equations are linear, so,
electromagnetic waves pass through each other without any interaction. However, in
general relativity Einstein’s field equations are non-linear, so, interactions occur
between gravitational waves while they pass through each other. This property
attracted many authors to find a solution to the problem of head-on collisions of
gravitational waves.

When searching for exact solutions it is appropriate that the approaching
waves have plane symmetry, because for plane waves it is possible to formulate the
problem in such a way that exact solutions can be found before and after the
interactions.

Our consideration of gravitational waves starts from the pioneering work of
Einstein and is based on the linearized form of field equations. In this approximation,
we shall see that plane wave solutions lead to the result that gravitational waves are
transverse and possess two polarization states. Also, in Einstein’s theory,
gravitational waves are considered as perturbations of space-time that propagate with

the speed of light.



2.1.1 The Linearized Field Equations

We assume that the metric describing the space-time is slightly different from

the Minkowski metric 775 which describes the flat space-time [25]:

Jab = 7ab +Nab 2.1)
where a,b = 0,1,2,3 and ¢ is a dimensionless parameter and, throughout, we will

neglect terms of second order or higher in &. We also impose that the space-time is

asymptotically flat, that is, if r denotes a radial parameter, then

lim hy, =0. 2.2)

r—o
Since gp0 be _ 55 , than the inverse of the metric is given by

gab _ nab _ghab. 2.3)

The Christoffel symbols are defined by

1
~g?d (9dc.b + Idb,c — Ine.d )- (2.4)

rd =
bc 2

Since 774y, is constant then by using (2.1) and (2.4), we can write the Christoffel

symbols as
1
T2 = Eg(hac’b +h%.c —hp ?). (2.5)

The Riemann tensor (or curvature tensor) is defined by



R%cd = rl;jld,c _Fk?d,c +rgCr§d _réid Fgc ’ (2.6)
and with the equation (2.5) this becomes
Rapcd = JaeR bed = %E(had,bc +Noc.ad —Nac.od —Nbdac) - 2.7)
Then the Ricci tensor is
Rab = 9 Reagh = %E(hca,bc +h®b,ac =Ohgy —h ap), (2.8)

where h = nab hap =h?a and O is the D’Alembertian operator defined as

b
O=1n%0,0y
=0%0,
2
_a_z_vz
ot
0?2 (o> o &2
= - + + .
o> ox? oy? oz

Contracting Ry with ggp, the Ricci Scalar is obtained as
R=g%Ry, = &(h® g —Oh), (2.9)

and finally the Einstein field tensor, G, , in the weak gravitational field is



1 1
Gab =Rap _EgabR :Eg(hca,bc +h%,ac — O gy = 7250 cd +755 Oh)

(2.10)
The linearized Einstein field equations are then

Gop = KTap . (2.11)

where Ty is the energy-momentum tensor and « is the gravitational constant.

2.1.2 Gauge Transformations

Let us consider what happens to linearized equations under a coordinate

transformation of the form
x& > x'® =x% + 858, (2.12)
Applying this to the transformation formula for g, given by

aX!C axrd ’ ’
e &(—chd (X)),

Jap (X) =

we find the transformation of hab , namely,

hab = hap = hap —2&(a b)> (2.13)

where the bracket denotes symmetrization. This is called a gauge transformation. We

can see that both the linearized curvature tensor (2.7) and its contractions are gauge



invariant quantities, that are unchanged to first order in & by transformations of the

form (2.13). To fix the gauge, we go back to field equations and define new variables

¥ap by

1

Wab = Nap _Eﬁabha (2.14)
then (2.8), (2.9) and (2.10) become
1
Rap = Es(w"a,bc +b.ac —Ohgp), (2.15)
1 cd
R:55(2y/ ,cd —Dhab), (2.16)
1
Gap =—&(w abe +¥ b.ac — OWap —7apy *.ab). (2.17)

"2

This suggest that our field equations will reduce to wave equations if we impose the

condition
1
W%ﬁ:h%ﬁ—anbza (2.18)

which is called the Einstein, de Donder, Hilbert, or Fock gauge. Then by (2.17),

Einstein’s full field equations reduce to

%g Owap =—KTgp. (2.19)

Then, the vacuum field equations in the Einstein’s gauge reduce to



O,y =0. (2.20)

Combining (2.20) and (2.14), we find that h,, must satisfy the classical wave

equation

Ohy, =0. (2.21)

Thus, we conclude that, in linearized theory, gravitational effects propagate as waves

with the speed of light.

2.1.3 Linearized Plane Gravitational Waves

We look for a simple solution of the linearized vacuum field equations which
represents an infinite plane wave propagating in the x-direction. We start by

introducing the coordinates
x%xx2 xH =(t,x, y,2)
and adopt the ansatz
hap = hap (t, %) (2.22)
which requires
hab,z = hab,3 =0. (2.23)

Then by using (2.7), we find 20 independent components of Riemann tensor [25].

From the linearized vacuum field equations in the formR,, =0, some of the



components of Riemann tensor will vanish. We can see that, the non-zero

components of Riemann tensor only involve the components hy,, hy3 and h33. Then

hap can be written in this form

00 O 0
h 000 0 (2.24)
B0 0 hy  hy '
0 0 hyz hss
We sharpen our ansatz (2.22) by requiring
hap =Nap (t—X), (2.25)

so that it clearly represents a solution propagating in the x direction with the speed of
light. If we use the Einstein gauge condition (2.18) and the gauge freedom (2.13),

where &, also satisfies the wave equation, there might exist a coordinate system in
which h33 =—h,, and hyy has only hy, (t —X) and hy3(t —X) components. Hence,

hab will be in this canonical form

(2.26)

S O O O
=
)
)
oy
)
W

hys  —hyy

Now, we consider the physical significance of these two independent functions in the

next section.



2.1.4 Polarization States

Let us first define the line element in general form as

ds? = g, dx?dx?, (2.27)

where a,b =0,1,2,3. In the case hy3 =0, this line element becomes

ds? =dt? —dx? —[1 - hyy (t — ) Jdy? =1 + ey, (t — x)]dz2, (2.28)

which is called an ‘h,, —wave’. Let us suppose that h,, is some oscillatory
function of u(= t — x) so that there are values when h,, >0 and values when
h,, <0. As seen from the metric (2.28), this wave causes oscillations only in the
yz — plane. This implies that an h,, —wavehas a transverse character and we refer

to this state as a wave with + polarization.

On the other hand, in the case h,,=0, the line element (2.28) takes the form
ds? = dt? —dx? —[1 - shys (t — x)[dy? = [1+ sy, (t — x)|dz?, (2.29)

by performing a rotation through 45%in the yz — plane given by

y—>7=%(y+z), 247:%(—y+z). (2.30)

This is called ‘h,3 —wave’. This wave is also transverse and produces the same

effect as an h,, —wavebut with the axes rotated45°. We refer to this state as a

wave with X polarization.

10



Clearly, a general wave is a superposition of these two polarization states.
The fact that the two polarization states are at 45° to each other contrasts with the

two polarization states of an electromagnetic wave, which are 90° to each other.

2.2 Exact Plane Gravitational Waves

If we introduce double null coordinates defined by
u=t-—x, V=t+X (2.32)
in (2.28), then an hy, —wave has a line element of the form
ds? = dudv — f 2(u)dy2 - gz(u)dzz, (2.33)
where
PP =1-ehp(u),  g>(U)=1+epy (). (2.34)
From the line element (2.33), only one vacuum field equation can be found
f"/f+9"/g=0, (2.35)

where prime denotes derivative with respect to U. Let us denote the first term by the

functionh(u) ,i.e.

f"/f=-g"/g=h . (2.36)

11



Hence, any choice of arbitrary function h(u) gives rise to a vacuum solution. Such

exact solutions are called linearly polarized plane gravitational waves. They
represent plane-fronted waves, abstracted from any sources, propagating in the x-
direction.

If we carry out the coordinate transformation,

U=u, V=v+y*ff'+z%g9, Y=1y, Z=gz,

then the line element is transformed into Brinkmann form

ds? =hU)Z?-Y?)dU? +dudV —dY * —dz? (2.37)

which shows the explicit dependence on function h(u). This function represents the

amplitude of the polarized wave.

Such solutions allow us to investigate the question of the scattering of
gravitational waves. Unlike electromagnetic theory, where the linearity of the theory
means that electromagnetic waves pass through each other unaltered and so one can
superpose 2 solutions; there is, in general, no superposition principle in general
relativity. Indeed we may expect the non-linearity of the theory to reveal itself in the
interaction of two gravitational waves. However, (2.37) does reveal a limited
superposition principle in that two plane waves moving in the same direction can be

superposed simply by adding their corresponding h(u) functions. Thus when moving

in the same direction, two such gravitational waves do not scatter one another. To
exhibit scattering, we need two waves moving in different directions. If we consider
two linearly polarized waves colliding at an angle, we can always find a class of
observers who consider the collision to be head on. Hence, it is sufficient to work in

a coordinate system in which the waves appear to collide head on.

12



2.2.1 Collision of Plane Waves

In this section we consider the head on collision between plane gravitational
and electromagnetic waves.

In collision problems, we may choose two null coordinates U and V such that
the wave fronts of the waves are represented by U=0 and V=0 (see figure 2.1). The

metric describing the plane-fronted gravitational waves is given by
ds? =2dudr + H(u,Y,Z)du? —dYy?2 —dz 2, (2.38)

where H(U,Y,Z) characterizes the nature of the wave.

For an impulsive plane gravitational wave function H can be taken as
H =asu)z?-Y?) (2.39)

where a is the amplitude of the wave and o(u) is the Dirac-delta function, which is

defined by the requirements

0 ifu=0

suy=1 , (2.40)
o 1fu=0

[ fWs)du = £(0). (2.41)

Alternatively, for a plane gravitational shock wave

H =a’0u)z?-Y?), (2.42)

where @(U) is the Heaviside step function defined by

13



0 ifu<o
o) = , (2.43)
1 ifu>0

and for an electromagnetic plane wave
H =a?o@u)z?+Y?). (2.44)
The form of metric (2.38), however, is unsuitable for a discussion of colliding plane

waves since it contains only one null coordinate. It is therefore convenient to

transform this metric to the Szekeres line element [25], which is

ds? =e Mdudv+eV (eV costhy2 — 2sinhWdydz + eV costhZz) (2.45)

where M, U, V and W are functions of UandV in general. In the study of collision
problems, it is convenient to divide the space-time into four regions labeled
I(u <0, v<0), II (u >0, v<0), IIT (U <0, v>0) and IV (U >0, Vv>0), as shown in
figure 2.1. These regions are bounded by the two null hypersurfaces U =0 and Vv =0.
The metric functions U, V, M and W must take different forms in different

regions. That is

Regionl : U=V=W=M=0,

RegionIl : U =U(Qu),V =V(Uu),W =W(@u),M =M(u),

Region Il : U =U(),V =V (V),W =W (V),M =M(v),

Region IV : U =U(u,v),V =V (u,v),W =W (u,v),M =M(u,v).

Region I is the flat Minkowski space-time, it is assumed that the collision is

taking place in the absence of any background field, and regions II and III contain

14



the approaching waves from opposite directions. Region IV is the interaction region
in which the metric is in the form (2.45) (see figure 2.1). The metric coefficients in
region IV are uniquely determined by a characteristic initial value problem with data
determined on the null hypersurfaces u=0 and v=0.

The function W determines the rotation of the wave polarization vectors. If
we have constant and parallel polarization then one can put W=0.

The general recipe to construct the colliding plane wave solutions is to solve
the field equations in region IV and then reduce the solutions to other regions,
requiring the metric to be continuous and invertible in order to paste the solutions in
different regions.

More importantly, as a physical solution one has to impose some kind of
junctions on the metric to get an acceptable physical solution. The physical
conditions can be translated into conditions on the metric are called the junction
conditions.

In the collision problem, we generally use the Lichnerowicz or the O’Brien
and Synge (OS) boundary conditions. The Lichnerowicz conditions require that there

should exist a coordinate system in which the components of the metric and

electromagnetic potential are at least of class C! on the null surfaces. However, OS

require that

ab a0
Gabs 9 "Jab,0- 9 Jabo

be continuous across the null surface (note that 0 in the above formulae for u =0 or
v =0). Moreover, OS condition means that the metric functions U, V, M and W need

to be continuous and U =0 across the junction at U= 0. The same happens at the

junction at v =0. However, the above Lichnerowicz or OS junction condition on the

metric is not enough. To be physically sensible, the curvature invariants R and

Ry, =RgppR 3 should not blow up at the null boundaries.

15



Usually, when discussing the colliding plane wave solutions, one does not put

R abcd

on any constraints on the Riemann tensor Rgpeq, R4 = Rapeq or other higher

curvature invariants.

Time IV

|
u=0 FLAT b=

Figure 2.1: Space-time is divided into four regions. Two space-like coordinates have been suppressed.
Region I is the flat background, regions II and III contain the approaching waves, and region IV is the

interaction region following the collision at the point u = 0,v = 0.

16



CHAPTER 3

THE BELL-SZEKERES AND THE SZEKERES SOLUTIONS

In this chapter, we discuss the Bell-Szekeres solution, which describes colliding
electromagnetic waves in Einstein-Maxwell gravity and the Szekeres solution which

describes the collision of two step gravitational plane waves.

3.1 The Bell-Szekeres Solution

Here, we discuss the Bell-Szekeres solution, which is the first solution of the
Einstein-Maxwell field equations and describes the collision of two step
electromagnetic plane waves with collinear polarization. The line element for the

Szekeres solution is given by

ds? =2 " Mdudv +e™V (eV dx? +e dy2) : (3.2)

The metric functions U, V and M depend on the null coordinates uandv. The non-

zero Christoffel symbols of the metric (3.1) can be calculated to be

17



3.2)

Here we have abbreviated the derivatives by a subscript, e.g. M, = aaﬂ . Using
u

(2.6), the components of the Riemann tensor are calculated as

Ruxux =[%uuu +%|\/|u(uu —vu)—%(uu)2 —%(\/u)z}e—u g

Ruyay z(%uuu +o MUy V)~ Uy —%(vuﬂje—U—V,

Ruxux = (%Uw +%Mv(uv —Vv)—%(Uv)z —%(VV)Zje‘U v,

Ry = %UW *%Mv(uv +VV)_%(Uv)2 —%(vv)zje-u v,

Ruxwx = —%VUV +%Uqu +%UVVU je—u v

Ruyvy = %Vuv —%U uVv —%UVVU je"u -V

Ry =—€ My, (33)

Using (2.8), the components of Ricci tensors are then given by

18



1
Ryy =Uyy + MUy _E(US +Vuz)v
1
Ry =Uw + MUy _E(U\? "‘sz)a
1
Ruv =qu+Muv_E(Uqu +VuWy),

_U~— 1
Ryy = MUY (Vuv _E(vau +Uqu)j'
(3.4)
_ 1
Ryx = MUV (Vuv _E(vau + Uqu)}

The electromagnetic vector potential has a single non-zero component

A=(0,0,A,0), where A is a function of both u and v. The components of the

electromagnetic field strength
F =1 Fapdx®Adx® = da, (3.5)
where A= Abdxb, are
Foy =A Foy = A - (3.6)
The energy-momentum tensor defined by
Tab =$(9COI Fad Foc _%gab Fea F), 3.7)
has the following non-vanishing components

1
Tuu = —eUtV (Au)zv
A7

19



dr

1 u+v
Tuv—_4 e” TV ALA

T
Ty =To = —eMAA,
WX 4

Using the Einstein field equation

Rap = x(Tap _%gabT)v

(3.8)

(3.9)

where the trace of the energy momentum tensor T =0 for the Bell-Szekeres metric,

the Einstein-Maxwell field equations in region IV can be written as

U, -UU, =0,

K U+V
—quv—uvvu+2vuv=ge VAA,

_VuAv _VvAu = 2Auv’

K
—(Uu)z —(Vu)z +2U, +2M Uy :ZeUJrV

K
_(Uv)2 _(VV)Z +2Uy +2M U, :geu v

2M, +U U, —V,V, =0.

(3.10)
(3.11)
(3.12)

(3.13)

(3.14)

(3.15)

Here, the last equation can be derived from the other equations so it is not

independent. The problem is to find the solution of the above equations. It is easy to

see that the integration of the first equation gives

e =f(u)+g(v),

20

(3.16)



where f and g are arbitrary decreasing functions in the interaction region. Here, we

can find the initial data for the functions U,V ,and M. In region Il, (3.16) becomes

eV = f(u)+g(0), (3.17)
while in region 11
eV =f(0)+g(v), (3.18)

where f(0)+ g(0) =1. We set without loss of generality f(0)=g(0)=1/2. Hence,

the initial data of e~V determines the functions f and g . It can be shown that (3.11)
and (3.12) are the integrability conditions for the other equations (3.13), (3.14) and
(3.15). First we find the functions U,V and A from (3.10), (3.11) and (3.12), then the

function M can be obtained by integrating (3.13) and (3.14). Therefore, we should
solve the equations (3.11) and (3.12) first.

It is useful to change the variables (u,v)to (f,g), so that the field equations

become

K U+V
—U Vg —UgVs + 2V =5 ¢ AL A, (3.19)
~ViAg -VgA =2Ag (3.20)
f 1 f f+g 2 K U4V 2
M, =4, = u +—e°* , 3.21
u i, (2f+g 2f, {(Vu) > (Ay) (3.21)

gw , 1 9y f+g 2, K _U+V 2
My =- +—= - +—8 : 3.22
TR i e (DA OO L S

by changing variables

Ay =Asfy, A=Ag0y, Uy=Usf,, U,=Uq0y, Vy=Vsfy, V,=Vg40,.

21



Here, it is suitable to put the equations (3.21) and (3.22) in the form

-M 1:u Ov _-sS

e :JT?EG , (3.23)

where S satisfies

St == S Wt e (A | 3.24
Sy = {(vg) +— U+V(Ag) . (3.25)
An exact solution to the equation (3.19) and (3.20) is
= log(rw - pq) —log(rw + pq),
A=y(pw-rq), (3.26)

where ;/2 8 and
K

2 p=C- 12 w=C+o)?, a=C-9)¥?. @27)

r:(£+f , ,
2 2 2 2

Since, we determine the functions U,V,and A, now we can integrate the equations

(3.24) and (3.25) to find the function M . The integration gives for S

S :——Iog(f +g)+—|og(—— fj+|og[ + fj

+Iog(%—gj Iog[ gj logc,

22

(3.28)



where c is the integration constant. Then the equation (3.26) becomes

-M _ cfy 9y

Frfofies

e

(3.29)

M 1

Here, e is not continuous across the boundaries because of the terms E_f

and %— g . Bell-Szekeres have given definitions for f and g to be

f:%—(sin P, g :%—(SinQ)”Z, (3.30)

where P =auf(u) and Q =bvéO(v) with the arbitrary constants a and b . The
parameters n; and n, are determined by the initial data. Physically, these parameters
determine the character of the wavefront; mathematically, they determine the

continuity of the metric functions on the wavefronts u=0,v=0. The terms /% — f

2

1

and 50 exactly cancel the effect of the term cf,g, when ny =n, =2. Then,

e becomes continuous across the boundaries. Here, it is appropriate to choose

c :rib in order to put M zero in region I. Then,

M =0 (3.31)

in all regions for the Bell-Szekeres metric. Therefore, the metric is piecewise ct and
metric functions satisfy the required O’Brien-Synge junction conditions. In terms of
P and Q the solution of the complete set of equations (3.10)-(3.15) is
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U =—logcos(P — Q) —logcos(P + Q),
V =logcos(P - Q) —logcos(P + Q),
W =0,

M =0.

The solution in the interaction region takes the very simple form given by
ds? = 2dudv + cos? (P — Q)dx? +cos? (P + Q)dy?.

To interpret this solution as a plane wave we have to transform the metric to

Brinkmann form (2.38) by doing transformations:

X = cos(P —Q)x,
y =cos(P+Q)y,
r :v+%tan(P—Q)Pu22 +%tan(P+Q)Pu)72,

u=u,

(3.32)

(3.33)

(3.34)

where the profile function is found to be (2.44), which means that the approaching

waves are electromagnetic plane waves.

Now, we will look for the singularities in region 1V for the Bell-Szekeres

metric. The metric coefficient e ™V according to (3.16), is given by f(u)+g(v)

where f and g are decreasing functions from the value 1/2. It is therefore inevitable

that a singularity will developas f +g — 0.

A general analysis of space-time singularity requires all invariants. In 4-

dimensinonal case there are fourteen curvature invariants [26]. Here, we give three of

them which are R, R, (=R®R,p) and R, (= R R 4). For the Bell-Szekeres

metric the quadratic Riemann invariant R, is calculated as
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Rg = 4R R ux +4RVYRuy + 4RV Ry

uyuy

+4RYYRy + 8RR iy + 8RR

vyvy uyvy

=4Uy)2(U)2 + 40, Uy +4(Vy)? (3.35)
+2((Uy) % —U g )V) 2 +2(Uy)? —Uy ) (Vy)?

~6(Uy)2Uy, —6(Uy)%Uy,

R, =32a°b? (3.36)

which is finite. The nature of the space-time singularity for the Bell-Szekeres metric
has been considered by Matzner and Tipler [27], Clarke and Hayward [28] and more
recently by Helliwell and Konkowski [29]. They have shown that the Bell-Szekeres
solution is free of curvature singularities. It has been also shown that the
hypersurface f + g =0 on which the opposing waves focus each other is a Cauchy
horizon rather than a curvature singularity.

For the solutions to be physical, the curvature invariants Rand R, need to

not blow up in the region IV. If we calculate them for Bell-Szekeres we see that
R =0 and

Ry =2R™R,, +R™R,, +RVR,y +R¥Ry +RVR,,

=2UUw Uy (U\? "‘sz)_qu(US JrVuz)JFZUL%V
(3.37)
+ V2 +UVZ +UVZ — 2V, (U, +U V)

R, =16a°b? (3.38)

which is also finite. Thus we can conclude that, the Bell-Szekeres metric has no
singularity [2].
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We also examine whether the Bell-Szekeres metric is conformally flat or not.
In general relativity, this is determined by the Weyl tensor which is the trace free part

of the Riemann tensor and given by

1
Cabcd = Rabed _E(Rbcgad —Rpd 9ac ~Rac9bd + Rad Ibe)
(3.39)

1
+ER(9bcgad ~9pd Yac):

A metric is said to be conformally flat if its Wey! tensor vanishes everywhere. Using
(3.3) and (3.4), the non-zero components of the Weyl tensor can be calculated as

1 U4V

Cuxux :_E(Vuu -UyVy)e ",
Covny = = (Vo —U VYo U~
uyuy =5 Vuu uVu ,
1 —U+V

Cuxvx :_E(Vvv_UvVv)e I

1 _U-
Coypvy = E(Vvv —U\Vy)e vy (3.40)

Here, there are two linearly independent components. We can choose them to be

Cuyuy and Cyyyy . If we substitute the solution (3.26) into these tensors, we see that

all components (3.40) are zero in all four regions. So, we can say that the interior of
each region is conformally flat. However, if we calculate the Weyl tensor on the
boundaries of the interaction region, on u=0 and v=0, it is found to be
proportional to Dirac- delta function (2.43). That is,

Cuyuy = —asinbvcosbvs(u)a(v), Cyyvy =-bsinaucosaus(v)d(u). (3.41)
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Thus we can conclude that, in the Bell-Szekeres solution, the collision of two
step electromagnetic plane waves always generates impulsive gravitational waves

along the null boundaries. This is an interesting feature of the Bell-Szekeres solution.

3.2 The Szekeres Solution

The first exact solution (that was published) which describes a collision
between plane waves was in fact that of Szekeres (1970) [3]. It describes the
collision of two gravitational plane waves. In the Szekeres solution, the approaching
waves have constant and parallel polarizations. Since, the approaching waves are
gravitational waves, the electromagnetic vector potential becomes zero, and then we

can rewrite the field equations (3.10)-(3.15) as

U, —-U,U, =0, (3.42)
ZVU\, =U, Vv, +U,V,, (3.43)
2M U, :(Uu)2+(\/u)2_2UUUv (3.44)
2M Uy = (Uy)2 + (V)2 =20, (3.45)
2M = -U, Uy +V,V, . (3.46)

From (3.42), we have the same solutions (3.16), (3.17) and (3.18). The equation

(3.43), interms of f and g coordinates, becomes

2(f +9)Vig +V¢ +Vg =0 (3.47)

which is the well known Euler-Poisson-Darboux equation. There exists a large class

of solutions of this equation [2]. Szekeres has obtained the solution
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1, 1/2 1 1/2
V =-2kq tanh i —2ko tanh L f (3.48)
2+ ot

which contains two arbitrary constants k; and ko. With this expression for V

, the
remaining equations (3.44)-(3.46) may be integrated to give
2 2 2
(k1< + ko< + 2kqky —1) k 1
= —log(cf gy) ~———4— L2 log(f + g) + =L -log(> — f)
ky? k12 ky?
+—Iog( +f)+— Iog( +0)+—=— Iog(—— 9) (3.49)

1 ¢/1 4 /1 1
+2klkzlog(\/2 f\/2 g\/2+f\/2+g)

where c is constant. This expression contains the necessary multiples of Iog(%— f)

and Iog(%—g) that are required to cancel the effects of the unbounded term

log f,, g, on the boundary. Szekeres has given definitions for f and g as

f=3-w™, g=5-(c20". (3.50)

k 2 2
Then the terms 1 Iog(—— f) and Iog(—— g) in (3.48) exactly cancel the term

log(cf,g,) when c=(c1n102n2)‘1. In this case, M becomes continuous and is

given by

2 2 B
M = Ki” ko ;2k1k2 Y og(f +g)+X2- Iog(—+f)

(3.51)

ky* 1 1 1 1 1
+<L-log(C+ 9) + 2Kk, Iog(\/E— f \/5- gJT f JE* 9)
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where k2 =2(1-1/n) , k2 =2(1-1/ny) , nj 22 (i =1,2). Therefore, the

metric is at least piecewise C 2 and the metric functions satisfy the required
Lichnerowicz junction conditions. The above solution includes the Khan and Penrose
solution for colliding impulsive waves when ny =ny =2, k; =ky =1.

Having obtained an exact solution in region 1V, the question is to find the
initial conditions which give rise to it. We obtain the corresponding solutions in

region Il simply by replacing g by 1/2. Then the equation (3.42) gives
U =—log(f +%). (3.52)

Using this equality, it can be seen that the solution in region Il must have the line

element
ds? = 2e M dudv + (f +2)e dx? +eVdy?), (3.53)

where, retaining the coordinate freedom in u. Then we can rewrite the exact

solutions for region Il as

1 K
1- ¢
Vio| Y2 (3.54)

iy (k,*-1)/2

IV NCER Pl .

e =— I (3.55)
e (5 - )

In order to interpret this solution as a plane wave, we have to transform the metric
(3.53) to the Brinkmann form (2.38) by doing the transformations:

=G+ FYL2gV 12y _g-(U-V)I2y
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~

y = e—(U +V)/2

Y,
r=v+iUy-vp)eMxZ+ 21Uy +v,)eM

=v+iU, -vy)eM-UV)y2 WL%(Uu +V,)eM-U+V)y2

4
k,>-1)/2
Lept
—J' ﬂ u—J'e M du. (3.56)
1 272 du

C1iM (5 - £

where the profile function is found to be
H(u,Y,2) = 1M UV, -V —VyMy). (3.57)

We need to calculate the profile function for given values of n; andk; . Using (3.52),

(3.54) and (3.55), we can simply find that

forng=2 H () = ¢ 8(0),

1_ ¢\L/2-2/n
2|<1(1 2,G-0 1

form >2 H(@) =%y
m (1+f)3 2/n

o(d). (3.58)

Thus it can be clearly seen that approaching gravitational wave in region Il is an
impulsive plane wave if ny =2 and a step plane wave if n; > 2.

We need to consider the nature of the space-time singularity as in the Bell-
Szekeres solution. Using the non-zero components of the Riemann tensor (3.3) for

the Szekeres metric, we can calculate the quadratic Riemann invariant (R, ) as
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+ 4R Ry + 4RMYR iy + 8RRy + 8RR

vyvy uyvy

=e2M (4U)?(Uy)? +4U Uy, +4(Vy,)? (3.59)

+2(Uy)% ~Uy)Vy)? +2(Uy)* —U )Vy)® +(Myy)?
—6(Uv)2Uuu _G(UU)ZUW +4MU Uy +4M U U,

+8My M, U, U, -V Vy) -2M Uy (U\? +Vv2) -2M Uy (U\? +Vv2))
Here we consider the most singular term, then we find

Ry = fPge(f+g) ™, (3.60)

where o = (k12 + k22 +2kiko —1) . It can be said that there is a curvature singularity

in region IV on the surface on which f +g =0.
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CHAPTER 4

COLLIDING PLANE GRAVITATIONAL WAVES IN
DILATON GRAVITY

In this chapter, we discuss the collision of two plane gravitational waves in dilaton
gravity.
Einstein-Maxwell-dilaton gravity is derivable from a variational principle

with the action

S= jd xJ_(R (V) - a‘/’Fj 4.1)

where a is the dilaton coupling constant and w = y/(u,V) is the dilaton field. Dilaton

fields coupled to Einstein-Maxwell fields appear as a result of a dimensional

reduction of the Kaluza-Klein Lagrangian [30]. The field equations are

1 1
Rpe = OpyOcy +5ea‘/’{de Fed _ZFngC } (4.2)
V(- ge?V FP) =0, (4.3)

Ta o (- 9g% o) =2 ﬁ e®VF?. (4.4)

The metric for the action (4.1) is given by
ds? =2e Mdudv +e™V (eV dx? +eV dyz). (4.5)
The gauge potential has a single non-zero component Ay = (0,0, A,0) where A, isa
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function of U and v. Then the field equations turn out to be

—2MyUy —2Uy, +UZ +V 2 +2p 2 +eVVHava2 — o (4.6)
—2MU, —2U, +UZ +V 2 +2p2 +eV VAV a2 _ g, (4.7)
—2Myy, —2Uy, +U Uy +VVy + 204w, =0, (4.8)
U -UyUy =0, (4.9)

Wy —UgVy —UV, —e9 Vv A —o. (4.10)

The equations of motion for dilaton and 1-form potentials are

2Ap +(Vy +apy) A +(Vy +Fayy A =0, (4.11)

a
2y ~Uupy ~Uypy =7 T A A =0 (4.12)

From (4.9) we can be integrated to give
U =—log(f(u)+g(v), (4.13)
as in the previous chapters. Here f(u)and g(v) are arbitrary functions and

satisfy f (0)+ g(0) =1. We set, without loss of generality, f(0)=g(0)=1/2. It is

useful to change the variables(u,v)to (f,g) and V,y to E, X defined as follows:
E=-V-ay, sz—%av. (4.14)

With this choice in term of f and g, the equations (4.10), (4.11), and (4.12) take

the form

(f+g)xfg+%(xf+xg):0, (4.15)
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2Afy —Ef Ay —EgA¢ =0, (4.16)

(f +0)Egg +2(Eg +Eg):—%e_EAng, (4.17)
where
a:1+%a2. (4.18)

The equations (4.6) and (4.7) can be integrated to give M in terms of(f,g). They

can be written as

S +%e_EA% +5-(f+Q)E] +2(f +9)X{ =0, (4.19)
Sg+%e_EA§+i(f+g)E§+i(f+g)X§=0, (4.20)

where
S=M —%log(f +9)+log(f,0y). (4.21)

Now we consider the X -equation (4.15). It can be solved by the Khan-Penrose-

Szekeres method:

X =21og WP 8174 4.22)

where w, p, r and q are given in (3.27).

We make an ansatz for E and Ain this form [21]:

'w+ pg

E =log ,
'w— pg

A=y(pw-rq), (4.23)
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which solves (4.16) automatically and from (4.17) we find that
== (4.24)

After integrating (4.19) and (4.20) with X given by (4.22) to get

S =b; log(1—2f)1+2g)+b, log(l+2f)1-2g)+ (b3 —1/2)log(f +g)+
2

+a—log(l+2 fg +2pqrw], (4.25)
2 2

where

bl = b2 - > b3 - 4 > (426)

and using (4.21) we find that

e ™ = fygu -2 )1+ 20)] P [(1+ 26 )1 -29)] 2 (F +9) ™ x

2’

><B+2fg +2pqrw} da 4.27)

Here, e~ is not continuous across the boundaries because of the terms a-2f )_bl

and (1—2g)_b2 . To make it so we assume that the functions f and g take the

forms (3.48)

f:%—(clu)nl, g =%—(c2v)”2.
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Then the terms (1-2f )_bl and (1—2g)_b2 in (4.28) cancel the term f,g, when

Ny =n, =2. So, e™ becomes continuous across the boundaries and can be
written as

e =[(1+2g)1+2f) P (f+g)™ ><B+2fg +2pqrw} da

In this case, M is given by

2
M = —by Tog[(1 +2g X1+ 2 f )]-bs log(f + g)- 22— log
[04

B +2fg+2 pqrw} . (4.29)

Therefore, the metric is piecewise C! and metric functions satisfy the required
O’Brien-Synge junction conditions.

The other components of the metric are given by

a
1 a alg
e—<U+v>:(f+g)(rW+ pQ)a (w— plz(r—qu ’ 430)
rw— pq w+p) Lr+q
a
1

a
e UV =(f+g)(”"’+ qu * (W_ sz(r_qJ , 4.31)
'w— pg W+ p r+g

and the dilaton field is given by

| o

a a

1
a a alg
ov _[W+pq)2a|(w=-pl2(r-q)2 432)
rw— pq W+ p r+q ' '
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The above (4.22), (4.23)-(4.29) solve the equations of motion for the region I'V.
When a =0 goes to zero, the above solution reduces to the well-known Bell-
Szekeres solution.

We need to calculate the quadratic Riemann invariant R4 by using (4.13),
(4.14), (4.22), (4.23), (4.29), and the Riemann tensors (3.3) and the Ricci tensors
(3.4) as

+4RYYYR v + 4RMYR iy + SR Rk + 8RR

vyvy uyvy

=M (4(Uu)2(Uv)2 +4U Uy +4(\/uv)2

(4.33)
2 2 2 2 2
+2(Uy)" =Uy)Vy) ™ +2(Uy)" =Up)Vy)™ +(Myy)
—6(Uv)2Uuu _6(Uu)2va +4M Uy Uy +4M U\ Uy
+8My My (UUy ~VyVy) =2M Uy (U7 +Vi7) = 2M Uy U5 +Vy))
Here we consider the most singular term, then we find (4.33) as
Ry =b; f2g2(f +g)°% 4. (4.34)

It can be said that there is a curvature singularity in region IV on the surface on

which f +g=0.
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CHAPTER 5

CONCLUSION

In this thesis, we studied the collision of pure electromagnetic plane waves with
collinear polarization in Einstein-Maxwell theory which is known as the Bell-
Szekeres solution. It has been found that, in the Bell-Szekeres solution, the collision
of two step electromagnetic plane waves always generates impulsive gravitational
waves along the null boundaries. Then, the Szekeres solution has been studied which
describes the collision of two gravitational plane waves. We have found that there is
a curvature singularity in the interaction region on the surface on which f +g=0.
We have given a solution for the collision of two plane gravitational waves in dilaton
gravity. We have seen that the solution reduces to the well-known Bell-Szekeres
solution when dilaton coupling constant becomes zero and there is a curvature

singularity in the interaction region on the surface which f +g=0.
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