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ABSTRACT 

PERFORMANCE IMPROVEMENT OF A 3D RECONSTRUCTION 

ALGORTIHM USING SINGLE CAMERA IMAGES 

 

 

Kılıç, Varlık 

M.Sc., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Bülent E. Platin 

 

July 2005, 146 pages 

 

 

In this study, it is aimed to improve a set of image processing techniques used in a 

previously developed method for reconstructing 3D parameters of a secondary 

passive target using single camera images. This 3D reconstruction method was 

developed and implemented on a setup consisting of a digital camera, a computer, 

and a positioning unit. Some automatic target recognition techniques were also 

included in the method. The passive secondary target used is a circle with two 

internal spots.  

 

In order to achieve a real time target detection, the existing binarization, edge 

detection, and ellipse detection algorithms are debugged, modified, or replaced to 

increase the speed, to eliminate the run time errors, and to become compatible for 

target tracking. The overall speed of 20 Hz is achieved for 640x480 pixel resolution 

8 bit grayscale images on a 2.8 GHz computer 

 

A novel target tracking method with various tracking strategies is introduced to 

reduce the search area for target detection and to achieve a detection and 

reconstruction speed at the maximum frame rate of the hardware. 
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Based on the previously suggested lens distortion model, distortion measurement, 

distortion parameters determination, and distortion correction methods for both 

radial and tangential distortions are developed. By the implementation of this 

distortion correction method, the accuracy of the 3D reconstruction method is 

enhanced. 

 

The overall 3D reconstruction method is implemented in an integrated software and 

hardware environment as a combination of the methods with the best performance 

among their alternatives. This autonomous and real time system is able to detect the 

secondary passive target and reconstruct its 3D configuration parameters at a rate of 

25 Hz. Even for extreme conditions, in which it is difficult or impossible to detect 

the target, no runtime failures are observed. 

 

Keywords: automatic thresholding, ellipse detection, target tracking, lens distortion, 

3D reconstruction. 
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ÖZ 

ÜÇ BOYUTLU UZAYDA CİSİMLERİN KONUMLARININ TEK 

KAMERA GÖRÜNTÜSÜ KULLANILARAK BELİRLENMESİ İÇİN 

GELİŞTİRİLMİŞ YÖNTEMİN PERFORMANS İYİLEŞTİRİLMESİ 
 

 

 

Kılıç, Varlık 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. Bülent E. Platin 

 

Temmuz 2005, 146 sayfa 

 

 

 

Bu çalışmada, pasif ikincil bir hedefin tek bir sayısal görüntüsünü kullanarak 

cisimlerin 3 boyutlu uzaydaki konumlarını belirleyen bir yöntemde kullanılan 

görüntü işleme tekniklerinin iyileştirilmesi hedeflenmiştir. Daha önceki 

çalışmalarda, 3 boyutlu uzayda cisimlerin konumlarını belirleyen kuram 

geliştirilmiş, sayısal kamera, bilgisayar ve hassas konumlandırma cihazından oluşan 

deney düzeneği üzerinde uygulanmıştır. Sayısal görüntü içindeki ikincil hedefi 

otomatik olarak saptayan yöntemler uygulamaya dahil edilmiştir. Kullanılan pasif 

ikincil hedef, üzerinde iki benek olan bir dairedir.  

 

Yöntemin gerçek zamanlı çalışabilmesi için, mevcut siyah-beyazlaştırma, kenar 

belirleme ve elips tanıma algoritmaları hatalardan arındırılmış, hızlandırılmış veya 

tamamen değiştirilmiş, hedef izlenmesi için uygun hale getirilmiştir. 640x480 piksel 

boyutunda 8 bitlik sayısal görüntü için hedef saptama yönteminin 2.8 GHz işlemcili 

bir bilgisayarda çalışma hızı ortalama 20 Hz olarak ölçülmüştür.  
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Farklı takip yaklaşımları içeren yeni bir hedef izleme yöntemi kullanılarak, hedef 

saptama yönteminin tarama alanı küçültülmüş ve çalışma hızı donanımın 

desteklediği en yüksek görüntü yakalama hızına eriştirilmiştir. 

 

Daha önceki çalışmada önerilen mercek bozukluğu modeli kullanılarak, hem radyal 

hem de açısal bozuklukları ölçme, bozukluk modelinin parametrelerini belirleme ve 

bozukluk düzeltme için bir yöntem geliştirilmiştir. Bu yöntemin uygulanmasıyla 3 

boyutlu konum belirleme yönteminin hassasiyeti iyileştirilmiştir. 

 

Çeşitli seçenekler arasından en iyi performansa sahip yöntemler birleştirilerek 

oluşturulan 3 boyutlu konum belirleme yöntemi bütünleşik bir yazılım-donanım 

ortamında uygulanmıştır. Tümüyle otonom ve gerçek zamanlı çalışan bu sistem 

ikincil bir hedefi algılayabilmekte ve üç boyutlu konum bilgilerini 25 Hz’lik bir 

hızda hesaplayabilmektedir. Hedefin zor fark edildiği ya da fark edilemez olduğu en 

uç durumlarda bile çalışma zamanı hatası gözlenmemiştir.  

 

Anahtar Kelimeler: otonom siyah-beyazlaştırma, elips tanıma, hedef izleme, 

mercek bozuklukları, 3 boyutlu konum belirleme.  
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CHAPTER 1 

 
INTRODUCTION 

 

 

 

1.1 Machine Vision 

Vision is obviously the most complex and most powerful sense of human and its 

importance for the development and operation of human mind is indisputable. Any 

intelligent machine unaware of this powerful sense can not even be imagined. The 

problem of developing a machine system that gathers information about the 3D 

scenes from 2D images is called as the machine vision.  

 

Unfortunately, almost all machine vision systems developed up to now are 

application dependent and can not be used for any other application except the one 

it is designed for and this fact seems to preserve its validation for some years.   

 

The problem of machine vision can be classified into two main parts: pattern 

recognition and scene reconstruction. Pattern recognition deals with identifying and 

classifying objects in an image, while the reconstruction aims to obtain 3D 

configuration of these objects. Whatever the application or problem is, the solution 

relies very much on the fundamentals of the image formation and obviously to the 

human vision sense.  

 

The process of image formation is well known especially in the human vision 

system, where the photons or electromagnetic waves reflected from the objects are 

bended by the eye lens and focused on the retina tissue, and finally produce some 

electric signals which carry the color or intensity information. This process is 

exactly the same for the cameras and called as the perspective projection.    
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The main problem under perspective projection from 3D world to 2D image plane 

is that the depth information is lost and the images of the foreground and 

background objects appear in the same plane.  

 

Binocular or so-called stereo vision is the solution of the evolution to this problem. 

Using disparity of the images of the same scene taken by two cameras (Figure 1.1), 

the depth information is generated. 

 

 
 

Figure 1.1. Stereo Imaging (http://www.elec.qmul.ac.uk/mmv/rendering.html) 

 

On the other hand, it is well known that humans can also generate the depth 

information and even more from a single image (Figure 1.2) using their life time 

gathered experience. It is not expected from machines to use human feelings in 

processing an image, but it is possible to teach or implement some basic rules to 

reconstruct 3D information such as: 

 

• Closer objects partially or fully occludes farther ones.  

• Images of the closer objects are larger than images of farther objects of 

similar size.  

• The image of a closer object on the ground plane occurs in a lower position 

on the image plane.  

• Color and intensity values and changes in these values within an image 

plane give information about the shape, count, and orientation of objects. 
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Naturally, all rules listed above depend on the basics of perspective projection and 

some preliminary knowledge or experience about the scene as most studies on 

machine vision systems do.  

 

 
 

Figure 1.2. Porters, Ara Güler, 1959. 

 

1.2 Previous Studies 

Although the history of image formation fundamentals goes beyond centuries, the 

intensive studies on machine vision systems have started few decades ago when the 

dedicated hardware become available. With developments in the technology, the 

use of vision systems spreads in many application areas such as production lines, 

autonomous vehicles, medicine, weapon systems, criminology and security. 

 

In Mechanical Engineering Department of Middle East Technical University, the 

research on machine vision systems has started in early 90’s in the four different 

laboratories, namely Control Systems, Mechatronics Design, Biomechanics, and 

BİLTİR (CAD/CAM and Robotics Center). 
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Control Systems Laboratory: Kılınç [1] proposed a 3D reconstruction method which 

utilizes a single image of a secondary passive target to determine the 3D 

configuration parameters. Acar [2] constructed a physical experimental setup and 

tested the accuracy of the 3D reconstruction method developed by Kılınç [1]. 

Özkılıç [3, 4] proposed some image processing and target detection methods to 

avoid operator guidance in the implementation of the 3D reconstruction method 

developed by Kılınç [1].  

 

Mechatronics Design Laboratory: Arslan [5] developed a method utilizing low and 

intermediate level image processing techniques to convert images of machine 

elements to engineering drawings.  Çokel [6] and Özdemir [7] proposed a method to 

estimate the position of an indoor robot using a single image of a door with known 

dimensions. Çetin [8] modified this method to improve the accuracy of position 

estimation.  

 

Biomechanics Laboratory: Shafiq [9] proposed and developed a stereo vision 

system for gait analysis. Güler [10] extended this method to use 6 cameras and 

conducted experiments for lower extremity modeling. Karpat [11] introduced some 

techniques on the internal camera calibration and linearization, and measured the 

accuracy of the setup developed by Shafiq [9] and Güler [10]. This setup has been 

successfully used and is still being used by researchers to investigate lower 

extremity disorders and to crosscheck mathematical joint and tissue models.    

 

BİLTİR: Konukseven [12] proposed a vision based method for recognizing and 

tracking an object on a moving conveyor belt. Şeran [13] developed a stereo vision 

system to assemble basic geometric primitives into their respective templates. 

Bayraktar [14] proposed a stereo vision system which locates and classifies 

industrial parts according to their geometric properties. Fidan [15] proposed a 

method to construct 3D image map of an indoor environment utilizing a laser range 

finder. 
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1.3 Objective of the Study 

This study is the latest part of the project conducted in the Control Systems 

Laboratory of Mechanical Engineering Department at METU. The aim of the 

project was to develop a vision based non-iterative, accurate and robust sensing 

system.   

 

In the previous studies of the project, a reconstruction algorithm was developed and 

its theoretical limits were tested [1]. This reconstruction algorithm was 

implemented by using a digital imaging system and the validity of the theoretical 

limits of the algorithm was examined through a set of experiments [2]. Digital 

image processing techniques such as automatic thresholding and ellipse detection 

were implemented in the studies to avoid the human guidance [3, 4].  

 

This study aims to investigate the reconstruction algorithm developed in the 

previous study [1], the digital imaging system constructed in the previous study [2], 

and the automatic target detection method implemented in the previous studies [3, 

4], in terms of their accuracy, reliability, and speed; and in addition to search for 

further improvements.   

 

The main goal of this thesis is to build a robust vision based sensing system that 

works in real time1, by using the results of the previous studies [1-4]. In order to 

achieve robustness and real time working speed, all methods and algorithms 

discussed and implemented in the previous studies [1-4] are re-examined.       

 
1.4 Methodology 

It is necessary to identify the design limitations and characteristics of the methods 

developed in previous studies [1-4] to clarify the aim, constraints and scope of this 

study.     

 

                                                 
1 working at a speed more than or equal to the maximum frame rate of the imaging hardware 
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The idea of using a secondary circular passive target and projection based 

reconstruction goes beyond the previously cited studies [1-4] and first posed by 

Olgaç et al. [16]. That study [16] used a circular secondary target and orthographic 

projection model to reconstruct a reduced set of 3D configuration parameters. The 

method used by Platin [17] and Olgaç [18] is similar except that the orthographic 

projection model is replaced by perspective projection model. However these 

studies made the assumption that the target center lies on the optical axis of the 

camera. Besides this constraint, the use of a circular target makes the determination 

of the in-plane rotation, impossible. 

 

The 3D reconstruction method proposed by Kılınç [1] utilizes a single image of a 

secondary passive planar target (Figure 1.3) to reconstruct the complete set of 3D 

configuration parameters of the target. The target is a circle with two internal spots, 

one is located at the center of circle and all target dimensions are known. The 

proposed method reconstructs the three rotations and three translations of the target 

analytically by the inverse perspective projection, using the equation of the ellipse 

and 2D coordinates of the spots on the image plane.  

 

 

 

Figure 1.3. Secondary Passive Target as Utilized by Kılınç [1]. 

 

The image processing sequence followed in the previous study [2] (Figure 1.4), was 

designed considering required inputs of 3D reconstruction method. The steps except 

3D reconstruction require operator guidance. In the image grabbing step, the 

operator adjusts the lighting conditions and captures a single grayscale image using 

the utility tools of the frame grabber device. Then a global threshold value is to be 

selected by the operator in the segmentation step, and the binary image is formed 
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containing foreground objects only. Finally, the smallest rectangular region in the 

binary image is marked by the operator in the target detection part, and the pixels 

corresponding to the contour and the spots of target are detected automatically and 

send to the 3D reconstruction method.    

 

 
 

Figure 1.4. Image Processing Sequence Formed by Acar [2]. 

 

In the pervious studies [3, 4], autonomous thresholding, ellipse detection and some 

complementary methods were added into segmentation and target detection steps to 

avoid the operator guidance. The image processing sequence was kept unchanged 

(Figure 1.5).  An internal camera calibration method was also proposed to increase 

the reconstruction accuracy. However, due to the high computational load and 

implementation bugs of the proposed ellipse detection method, direct frame 

grabbing could not be implemented in the study [4].      

 

Since this study aims to improve the performances of the methods proposed in the 

previous studies [1-4] as briefed above, the design objectives of the previous studies 

are also valid for this study. 

Image Grabbing 
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Figure 1.5. Image Processing Sequence Followed by Özkılıç [4]. 

   

The 3D reconstruction method used in previous studies [1-4] was monocular. In this 

study, the sequential images obtained from a single camera are utilized to 

reconstruct 3D configuration of a moving target. However, no complementary 

method or modification should be proposed in this study to use disparity of these 

sequential images. Therefore, the monocular feature of the project is to be 

maintained.   
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Low computational load and memory usage are the main advantages of the 

monocular vision to stereo vision. Thus, any method proposed in this study must 

prefer analytical solutions to iterative ones to keep this advantage. High memory 

and CPU usage should be avoided to ease the implementation of the method on 

digital image processing integrated circuits.  

 

The method is aimed to be fully autonomous, so there should be no operator 

guidance during the operation of the methods or in their possible modifications in 

this study. However, to increase the reconstruction performance and to adapt 

different application environments, all parameters of the hardware and the software 

are aimed to be adjustable. 

  

 Robustness is another important goal of this study, so the singularities or 

ambiguities of the methods proposed in this study should be clarified and all 

methods should check its inputs and outputs for possible singularities and 

ambiguities and return a success or error code. 

 

1.5 Outline of the Study 

In this study, the developed vision based sensing system is divided into 

implementation modules and sub-modules and the following chapters are organized 

to investigate each module separately.   

 

In Chapter 2, the target detection is discussed as the first module. Its sub-modules 

imaging, autonomous segmentation, edge detection, connectivity analysis, and 

finally ellipse detection methods are presented. This sequence is also identical to the 

image processing sequence of this study. 

 

In Chapter 3, the target tracking method proposed to estimate the target position in 

the following frames is presented. Although the 3D reconstruction method comes 

before the target tracking method in the processing sequence, it is not included in 
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this study since it contains no remarkable modifications compared to the version in 

previous studies [1-4].  

 

Chapter 4 identifies the internal camera parameters and lens distortion model. 

Determination of distortion parameters and distortion correction methods are also 

presented. 

 

In Chapter 5, the overall structure of the 3D reconstruction method and the used 

hardware are explained. Two test procedures designed to measure the onsite 

performance of the method are discussed and the results of these test are presented. 

 

Chapter 6 reviews and concludes the results of the chapters and presents 

recommendations for future work.   

 

Appendix A explains the general features of the ImagePro 2.0 software, which is 

developed to test the performances of the methods proposed in this study and in 

previous studies [1-4]. A user manual for reconstruction and internal camera 

calibration is also presented. 

 

In Appendix B, the characteristics of the elliptical and rectangular images in the 

generated synthetic image library are given. This synthetic image library is used to 

measure and tune the performance of the ellipse detection methods. 
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CHAPTER 2 

 
TARGET DETECTION 

 

 

 

2.1. Overview 

The 3D reconstruction algorithm developed in [1] utilized a secondary passive 

target as shown in Figure 2.1. This target is a white perfect circular disk on a black 

background, with two black internal spots; one is located at the center of the circle. 

This algorithm can reconstruct the 3D parameters, namely three rotations, Rx, Ry, 

and Rz, and three translations, Tx, Ty, and Tz, of the target with respect to the 

camera coordinate system by using the contour of the elliptical image of this target, 

and image locations of two internal spots. This chapter covers the methods used 

starting from obtaining the image of a scene that includes the passive secondary 

target to determining the target’s position in the image. 

 

 

 
 

Figure 2.1. Secondary Passive Target 
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2.2. Image Formation and Grabbing 

An optical image formation can be described as a perspective projection of the 3D 

world onto a 2D image plane by an optical system. The ideal case for a perspective 

projection occurs in a pin-hole camera as seen in Figure 2.2. The photons reflected 

by the objects pass through an infinitesimally small hole, fall onto the image plane, 

and form a very sharp image of the 3D scene. The problem of the pin-hole camera 

is that the illuminance at the image plane is also infinitesimally small due the 

infinitesimally small pin-hole, hence it necessitates very sensitive light sensors or 

very low shutter speeds to detect the incoming light.  

 

   
 

Figure 2.2. Pin-Hole Camera 

 

All vision systems such as human eye, cameras, and VCRs utilize a single lens or a 

compound lens system to overcome this problem. A lens is an approximation to a 

pin-hole camera system with a finite amount of light. It collects finite amount of 

light rays, proportional with its diameter, reflected from a 3D point in a 3D scene 

into another point in the 3D world which is the image of the point as depicted in 

Figure 2.3. By relative positioning the image plane and lens such that the image 
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point falls onto the image plane, called focusing, the image of a 3D scene with a 

finite amount of illuminance is obtained on the image plane. 

  

  
 

Figure 2.3. Simple Lens System 

 

Lenses are characterized by their focal lengths, f-numbers and depth of fields. 

 

The focal length of a lens is the distance of the focal point, at which the rays parallel 

to optical axis converge, to the lens. The focal length determines the image plane 

distance and magnification factor. 

 

The f-number of a lens is the focal length divided by the diameter of the aperture of 

the lens. The illuminance is inversely proportional with the squared f-number. 

 

The depth of field is the depth range behind and in front of a focused object, in 

which the other objects are still imaged properly focused. The depth of focus is the 

depth range around the image plane distance in which the object is still imaged 

properly focused. The depth of field is inversely proportional with the aperture size. 

 

The image of a 3D scene formed on the image plane can be transformed into 

electrical information by light sensors for storing or transferring to another device. 
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There are various types of image sensors; but the most common ones are CMOS 

(complimentary metal oxide semiconductor), CCD (charge coupled device), and 

CID (charge induced device). Although all these sensors convert the intensity of 

light to an electric potential, the read-out technique of this potential differs. The 

CID sensors provide a non-destructive read-out, high quality and low noise images, 

anti-blooming, and contiguous pixel structure. On the other hand, CID cameras are 

rarely used and expensive. CMOS sensors are known with their low cost, very low 

power consumption. But their image quality is low and noise susceptibility is high. 

CCD type image sensors are the most commonly produced and used sensors. CCD 

type image sensors provide high quality and low noise images and their costs are 

reduced as a result of intensive research in recent years. The image data transformed 

into electric signals by these image sensors are then transferred to the digital 

environment by frame grabber devices.  

 

This study implements three different image grabbing techniques as a combination 

of previous studies [1–4]: virtual perspective projection, digital image file, and 

frame grabbing. 

 
Since the perspective projection is a well known process, the image of a scene can 

be formed virtually, without using a camera, if the geometry and color of the objects 

in the scene are known and if 3D configurations of the objects with respect to the 

camera coordinate system and internal camera parameters are fully identified. In 

this study, this process is named as “Virtual Perspective Projection”. 

 

A binary image (Figure 2.4) is generated by virtual perspective projection using the 

internal camera parameters and the geometry of secondary passive target for a set of 

3D configuration parameters.   

 
This virtual perspective projection was used in [1] to generate stand still images of 

the secondary target to test the accuracy of the developed 3D reconstruction 

algorithm. The accuracy levels so obtained give a theoretical lower bound to the 

expected accuracy levels in actual applications. Because, in the virtual perspective 

projection, the following effects are not considered: 
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Figure 2.4. Binary Image Generated by Virtual Perspective Projection 

 

• Effects of errors associated with target positioning. 

• Effect of the environment illuminance on the image. 

• Effect of lens distortion. 

• Effects of uncertainties in the lens’s focal length and image plane distance. 

• Effects of sensor and data acquisition noise. 

• Effects of image processing algorithms on the locations of pixels 

corresponding to the image of target. 

 

In this study, the virtual perspective projection is used to generate multiple frames 

of a moving secondary passive target to test the 3D reconstruction and target 

tracking algorithm. These tests, too, give a theoretical lower bound to the expected 

accuracy levels in actual applications. Because, in addition to the effects listed 

above, the followings are not considered, either: 

 

• Change in illuminance of the target due to its position change. 

• Motion blurring for fast motions of the target. 
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The output of the implemented virtual perspective projection method is a binary (1-

bit) image as given in Figure 2.4, in which the target pixels are white (1) and the 

background pixels are black (0). The pixels in this image corresponding to the 

elliptical contour and the spots of the secondary passive target are detected by an 

edge detection method. 

 

In the previous study [2], a frame grabber device and a digital camera were utilized 

in the experimental setup. However, the developed software was not designed to 

access the frame buffer of the grabber device directly. Instead, the image of the 

scene containing the secondary passive target was captured using the utility 

software of the frame grabber device and saved as digital image files (Figure 2.5). 

These digital image files were utilized to measure the accuracy of the 3D 

reconstruction method in the previous study [2]. The previous studies [3, 4] also 

used some digital images of scenes containing the secondary passive target, to test 

the binarization, edge detection and ellipse (image of the circular secondary passive 

target) detection methods developed.  The same digital image files are also utilized 

to compare and measure the performance of the enhanced or developed methods in 

this study and the methods developed in [2–4]. 

     

 
 

Figure 2.5. A Sample Digital Image File 
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As stated in Chapter 1, one of the objectives of this study is to end up with a real 

time working 3D reconstruction method such that the method should reconstruct 3D 

parameters of a moving secondary passive target at maximum sampling rate of the 

imaging device. Thus, this study also utilizes direct access to the frame grabber to 

get and to process grayscale (8-bit) frames corresponding to the 3D scene 

containing the moving secondary target (Figure 2.6). The proposed methods in this 

study are designed and forced to finish the 3D reconstruction process for one frame 

at a time before the following frame is formed by the grabber device.  

 

 
 

Figure 2.6. A Frame Grabber Image. 
 

2.3. Segmentation 

Segmentation is the task of dividing an image into regions so that all the points of a 

planar homogenous surface of an object appear in the same region in the segmented 

image [19]. Segmentation methods can be divided into two groups: (i) histogram 

based segmentation and (ii) spatial coherence based segmentation. However, there 

is an agreement in the literature [19-23] that a totally correct segmentation is 

impossible without an intelligence or a priori information about the scene.  
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In this study, the segmentation is applied twice for a single image; first one is to the 

whole image (Figure 2.7) and second to the cropped image (Figure 2.8). The 

cropped image is the output of the target detection part, a small rectangular sub-

region of the whole image containing the target only.  
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Figure 2.7. A frame and Its Histogram. 

  

Histogram of the Cropped Target Region
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Figure 2.8. The Cropped Target Region and Histogram. 

 

In the cropped image, the a priori information used is that the secondary passive 

target is a matte surface containing a white circle with a sufficiently large black 

background. This guarantees a high contrast edge for the circular boundary. 

Therefore, there exists a threshold value that can be used to segment the target from 

its background successfully and a histogram based threshold determination method 

solves the problem. 
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For the whole image (Figure 2.7), a grayscale (8-bit) image matrix obtained from a 

digital image file or from buffer of the frame grabber that is assumed to consist of a 

dark (low intensity) background and some bright (high intensity) foreground 

objects. This assumption implies that there exists a best threshold value between the 

minimum possible intensity value (0) and the maximum possible intensity value 

(255) for each image that correctly segments the background pixel and foreground 

pixels by the following binarization rule: 

 

 
*

*

1,  ( , )
( , )

0,  ( , )
I i j t

B i j
I i j t

⎧ ≥
= ⎨

<⎩
 (2.1) 

 

where B  is the binary (black or white) value of a pixel in the image located at ith 

row and jth column, I  is the grayscale value of this point, t* is the threshold value.  

 

Although this histogram-based segmentation of background and foreground objects 

seems to be a very simple problem to handle, it does not have a unique solution 

because of the choice of the threshold value t*. The solution depends on the 

illumination conditions of the environment as well as the complexity of the scene. 

 

The uncontrolled illumination conditions make it impossible to segment all the 

grayscale images into their foreground objects and background using a fixed 

threshold value. The problem here is to determine an optimum threshold value for 

each grayscale image that minimizes the segmentation error. In the earlier studies 

[3, 4], this problem was solved by the implementation of Kittler and Illingworth’s 

minimum error thresholding method [21]. This method utilizes the histogram given 

in Figure 2.7 of the image to determine the gray value distributions of pixels of the 

object and the background, and an optimal, minimum error threshold value is 

determined using the statistical decision theory. 
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2.3.1. Kittler and Illingworth’s Minimum Error Thresholding Method 

The minimum error thresholding method proposed by Kittler and Illingworth [21] is 

a clustering-based thresholding technique. In this method, the histogram ( )h g of an 

image is assumed to be a compound of two Gaussian distributions, 2
1 1( , )µ σ  

and 2
2 2( , )µ σ , with respective proportions 1P  and 2P . This histogram can be 

expressed as 
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The optimum, minimum error threshold value *t  is selected to minimize the 

following criterion function ( )J t . 
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In the previous studies [3, 4], one of the segmentation approaches was the 

binarization of the entire grayscale image using the threshold value determined by 

the minimum error thresholding method and utilizing Equation (2.1). This 

implementation was named as GT (global thresholding), because a single threshold 

value determined from the histogram of the whole image is used to binarize the 

whole image. The GT method was successful in segmenting the secondary passive 

target form its background in grayscale images with almost uniform illumination.     

 

If the illumination of the environment is uneven, a successful segmentation of the 

image into its background and foreground objects may not be possible by GT using 

a single threshold value. For instance, the background pixels in the upper left corner 

in the image may have greater intensity values than the foreground objects in the 

lower right corner. Therefore, a single fixed threshold value used in all over the 

image plane cannot segment the image successfully. This problem was solved in [3, 

4] by applying the minimum error thresholding method locally. Two distinct local 

thresholding (LT) methods were developed: LT1 and LT2. In LT1, the image was 

partitioned into a set of non–overlapping, equally sized, square sub–images. For 

each quarter of the each sub-image, an optimum, minimum error threshold value 

was determined using the histogram of this quarter. Then, each sub–image was 

segmented using the average value of the four threshold values determined for its 

quarters. In LT2, a set of partially overlapping sub–images were used to enhance 

the smoothness of the binary global image at the sub-image borders.  
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The results of the GT, LT1, and LT2 were presented and discussed in [3, 4], and 

although all three implementations successfully separated the target pixels from the 

background, GT was selected as the most successful one. To evaluate the 

performances of these three approaches, means and variances of the two clusters 

(black pixels and white pixels) are calculated using grayscale values of each pixel 

inside a fixed region containing the target. The method that minimizes the sum of 

the variances of two clusters was selected as the most successful one.    

 

2.3.2. Implementation Considerations 

In this study, Kittler and Illingworth’s [21] minimum error thresholding method is 

implemented as suggested in [3, 4] and tested. The segmentation performance of the 

method is found to be sufficient to separate the target from its background even in 

very poor lighting conditions. On the other hand, the implementation of the 

minimum error thresholding method described by Equations (2.4-2.10) reduces the 

processing speed. In the studies [3, 4], the means and variances, 2
1 1( , )µ σ  

and 2
2 2( , )µ σ  of two clusters were calculated for each and every threshold value 

candidate, t , then the value of ( )J t  for each t  was evaluated. Repetitive 

summations in Equations (2.5-2.7) while calculating the means and variances, 
2

1 1( , )µ σ  and 2
2 2( , )µ σ , for all possible t increase the process time.  

 

If Equations (2.5-2.7) are rearranged as follows 
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to calculate the means and variances of two clusters for 1t +  using the means 

and variances of the two clusters calculated for t , a good number of repetitive 

summations are avoided.  

    

For a further speed enhancement, it is decided to construct the histogram matrix 

during image grabbing. 

 

Moreover, the first and second moment vectors, ( )F t  are ( )S t are evaluated before 

the threshold determination to avoid repetition of the multiplications. 

 

 ( ) ( )F t t h t= ⋅  (2.16) 

 
 ( ) ( )S t t F t= ⋅  (2.17) 

 

In this study, two different sets of expressions for minimum error thresholding 

method are implemented and tested: the first implementation utilizes the original 

expressions as used in the previous studies [3, 4] and the second one uses the 

modified expressions. 
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2.3.3. Comparison of Thresholding Algorithms 

The original and modified versions of minimum error thresholding method give 

exactly the same threshold values for the same test images as listed in Table 2.1. On 

the other hand, the modified expressions are processed approximately 45 times 

faster than original expressions as seen in the same Table. The resulting segmented 

images for a sample digital image and a frame are presented in Figure 2.9.   

 

Table 2.1. Results of Minimum Error Thresholding Method 

Processing Time [ms] Image File Threshold Value  
Original Method Modified Method 

sample01 61 1.375 0.030 

sample02 57 1.375 0.028 

sample03 121 1.407 0.038 

sample04 93 1.375 0.028 

sample05 73 1.375 0.031 

sample06 55 1.391 0.034 

sample07 23 1.344 0.020 

sample08 69 1.375 0.030 

sample09 57 1.375 0.025 

sample10 57 1.531 0.036 

Average 1.392 0.030 
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Original Grayscale Image Resulting Binary Image 

sample01 sample01_bin 

frame01 frame01_bin 

 

Figure 2.9. Examples of Segmentation 

    

2.4. Edge Detection 

Edge detection is a complementary operation to the segmentation, in which 

boundary contours of segmented regions are determined [22]. Large intensity 

changes are expected in regions corresponding to boundary crossings due the fact 

that the pixels of objects separated by these boundaries appear to have distinctly 

different intensity values. Most edge detectors utilize finite difference directional 

derivatives to detect these intensity changes in an image. Those locations in an 

image, where the magnitude of 2D first derivative vector (gradient) is larger than a 

preset value, are marked as edge pixels. The direction of this 2D first derivative 

vector becomes normal to its associated edge.  
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It is possible to apply edge detectors to grayscale or binary images. As in previous 

studies [3, 4], the edge detection method used in this study marks the contours of 

the regions in the binary image.   

  

2.4.1. Sobel Filter 

Sobel filter is one of the most commonly used 2D finite difference gradient operator 

[23]. By convolving the image data B(i, j) with horizontal and vertical Sobel filters 
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components of the gradient vectors are obtained. 

 

In the previous studies [3, 4], the binary image was convolved with Sobel filters, 

horizontal and vertical gradient component matrices, Gx and Gy, were constructed, 

and the pixels with magnitude of the gradient 
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greater than zero were marked as edge pixels. Also the horizontal and vertical 

component of gradient vectors were constructed and stored to be used in the ellipse 

detection method. The resulting edge detected image for a sample binary image is 

presented in Figure 2.10. 

 

Equation (2.21) yields edges thicker than one pixel, since the magnitude of the 

gradient vector is non-zero for all of the pixels having an inverted neighbor within 

its 8-neigborhood.  Obviously, thicker contours so obtained from this edge detection 

method affect the outcomes of the ellipse detection method adversely, consequently 

yielding some false detections. Therefore, an edge thinning operation is required to 

avoid this problem. Moreover, if a binary image has already some one pixel thick 

objects, the Sobel edge detector gives edges on both sides of such objects as clearly 

seen in zoomed picture in Figure 2.10.  

 
Binary Image Edge Detected Image 

 
sample03_bin 

 
sample03_edge_Sobel 

 
sample03_bin(zoomed) 

 
sample03_edge_Sobel (zoomed) 

 

 Figure 2.10. Sobel Edge Detector Results 
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2.4.2. Edge Thinning 

In the previous studies [3, 4], a simple edge thinning operation, proposed in study 

[24], was implemented to thin the edges obtained by the Sobel edge detector. The 

method is based on the idea that on one pixel thick edges, there should not exist any 

three edge pixels combination that they are all in 8-pixels neighborhood of each 

other; and in order to obtain one pixel thick edges these three pixel combinations 

should be detected and one of the three pixels should be deleted. Although the 

process was simple, detecting all neighboring three pixels combinations for each 

edge pixel in the edge detected image was an exhaustive search. However, this 

method is also included into the current study to compare its performance with 

alternative solutions of the problem. Figure 2.11 shows the resulting edge thinned 

image. Although the thick edge problem is resolved, some deformations in the 

contours of internal spots of the target are noticeable. Therefore, this study utilizes 

the Laplacian kernel, as an alternative approach, to resolve this problem.   

 
Edge Detected Image Edge Thinned Image 

sample03_edge_Sobel sample03_thin 

 
sample03_edge_Sobel (zoomed) 

 
sample03_thin (zoomed) 

 
Figure 2.11. Edge Thinning Results 
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2.4.3. Laplacian Kernel 

Laplacian kernel is actually a 2D second order finite difference operator. Edge 

pixels in an image are the points where the first derivative reaches a maximum or a 

minimum, in other words, the edge locations are zero crossings of the second 

derivative.  

 
The convolution of a binary image data B(i, j) with the Laplacian kernel 
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can be expressed as 
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where ( , )x yDS  is identical to sum of second derivatives in horizontal and vertical 

directions at the pixel in the binary image located at xth row and yth column. The 

values of ( , )x yDS  are zero at constant or linearly changing regions and gives non-

zero values at edge pixels as 
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where ( , )E x y  is the edge pixel data. 

 

In the implementation of this Laplacian kernel, it is modified as 
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to completely remove the thick edge problem when detecting edge pixels in a 

binary image. 

 
Equations (2.23) and (2.25) imply that only white pixels may be the edge pixels if 

they have at least one black neighbor within their four pixel neighborhood. To 

reduce the process time for this edge detection method, only white pixels in the 

binary image are convolved with Laplace kernel. Actually, this convolution is 

identical to summation of the four neighboring pixels. 

 
By using this modified Laplace kernel, the edges obtained do not require any 

additional edge thinning operation and the thick edge problem is resolved. 

However, Laplace kernel does not compute gradient vectors at the edge pixels 

required by the ellipse detection method proposed in the previous studies [3, 4]. So 

the gradient vectors are calculated using the Equations (2.19) and (2.20) at the edge 

pixels detected by the Laplace kernel. The results given in Figure 2.12 show that the 

Laplace edge detector does not cause any edge contour deformation in internal 

spots.  

 
Binary Image Edge Detected Image 

 
sample03_bin 

 
sample03_edge_Laplace 

 
sample03_bin(zoomed) 

 
sample03_edge_Laplace (zoomed) 

 

Figure 2.12. Laplace Edge Detector Results 
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2.4.4. Comparison of Edge Detection Algorithms  

The processing times for two approaches implemented for edge detection are 

presented in Table 2.2. It is obvious that the implementation that utilizes Laplace 

operator to detect edges and Sobel operator to determine edge orientations at 

detected edge locations is approximately 13 times faster than the Sobel filter 

followed by an edge thinning operation. Although the resulting edge profiles seem 

similar, the resulting edge detected images for Sobel filter followed by an edge 

thinning operation the contours are deformed and some extra edge points are 

created as seen in Figure 2.13. When the speed of processing and the resulting 

contours are compared, it is obvious that the Laplace operator approach has a better 

performance. 

    

Table 2.2. Processing Times of Edge Detectors 

Processing Time [ms] Binary Image 
Sobel +Thinning Laplace 

sample01_bin 3.43 0.28 

sample02_bin 3.43 0.30 

sample03_bin 3.28 0.22 

sample04_bin 3.28 0.16 

sample05_bin 3.28 0.27 

sample06_bin 3.43 0.31 

sample07_bin 3.28 0.20 

sample08_bin 3.28 0.25 

sample09_bin 3.28 0.17 

sample10_bin 3.28 0.24 

Average 3.33 0.24 
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Binary 

Image 

 
sample03_bin(zoomed) 

Sobel Edge 

Detected 

and thinned 

Image 

 
sample03_thin (zoomed) 

Laplace 

Edge 

Detected 

Image 

 
sample03_edge_Laplace (zoomed) 

 

Figure 2.13. Comparison of Edge Detection Results 
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2.5. Connectivity 

Once the edge pixels are detected as borders of the segmented regions, the ellipse 

detection method developed in this study decides on the specific group of edge 

pixels that correspond to an ellipse, which will ultimately be identified as the image 

of the circular target. Thus, the edge pixels which are the borders of the same region 

or object should be classified into the same group to simplify and speed up the 

ellipse detection process. 

  

In the previous studies [3, 4], a connectivity analysis was used to cluster pixels 

belonging to the border of the same object into one group. But, this connectivity 

analysis was not well-implemented. The results showed that the connectivity 

analysis did not satisfy some design requirements. For example, the number of 

pixels in a connected path was limited by a fixed maximum number, sometimes 

causing boundaries for disconnected regions. Also the algorithm did have some 

bugs such that the same pixel may appear in more than one connected pixel groups 

and some pixels did not appear in any of the connected groups at all.  

 

In this study, the connectivity algorithm designed in the previous studies [3, 4] is re-

arranged, its bugs and limitations of are removed, and it is named as CN0 to 

compare its results with the newly designed one.  

      

2.5.1. 8-Neighbors Approach 

The modified Laplace kernel classifies all white pixels having an at least one black 

pixel within its 4-neighborhood as edge pixels seen in Figure 2.14. Since the 

connectivity method is desired to result a single connected path for the edge profile 

of the binary region shown in Figure 2.14, an 8-neighborhood connectivity 

approach should be used. 
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Figure 2.14. A Binary Region and its Edge Pixels Detected by Laplace Kernel 

 

The connectivity analysis method, named as CN1, developed and implemented in 

this study, utilizes conductivity like logic to identify the path number of each pixel. 

First of all, the output structure of the edge detection method is organized as a pixel 

array to speed up the connectivity analysis. The first pixel in the list is assigned to 

the first group. Then the neighbors of this pixel are transferred to a position just 

after the first pixel in the list and assigned to the first group. This process is 

repeated for each pixel in the list until an unassigned pixel is reached. This pixel is 

assigned to the second group and steps applied for the first group is repeated. The 

overall process is continued until the end of edge pixel list. 

 

The main advantage of this type of connectivity is its reduced computation time due 

to fact that it is completed in only one pass. Also, the list obtained just after the 

connectivity does not require any preprocessing for the ellipse detection algorithm 

to be used as the next step.   

 

2.5.3. Results of the Connectivity Analysis  

The process times of two connectivity algorithms, improved version of the 

algorithm developed in previous studies [3, 4] (CN0) and the algorithm developed 

in this study (CN1) are presented in Table 2.3. Some resulting connected images 

can be seen in Figure 2.15, in which each connected path is plotted by a different 

color. The resulting paths for CN0 and CN1 are the same and both algorithms 

correctly identify the connected paths.  
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Figure 2.15. Connectivity Analysis Results 

 

But, due to the fact that the computational order of the algorithm used in the 

previous study is n2, the process time is highly affected by the number of edge 

pixels in the edge detected image. As seen in Table 2.3, the process time of CN0 

varies from 2.34 ms to 189 ms, whereas for CN1 as an order n algorithm the process 

time varies between 2.18 ms and 3.9 ms for the sample images. The CN1 algorithm 

is approximately 20 times faster than CN0.    
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Table 2.3. Processing Times of Connectivity Analysis Methods 

Processing Time [ms] Edge Detected Image 
CN0 CN1 

sample01_edge_Laplace 139.53 3.44 

sample02_edge_Laplace 141.09 3.59 

sample03_edge_Laplace 21.56 2.50 

sample04_edg_Laplace 2.34 2.18 

sample05_edge_Laplace 19.85 2.65 

sample06_edge_Laplace 189.06 3.90 

sample07_edge_Laplace 14.69 2.50 

sample08_edge_Laplace 15.00 2.50 

sample09_edge_Laplace 5.15 2.35 

sample10_edge_Laplace 33.75 2.66 

Average 58.20 2.83 

 

2.6. Ellipse Detection 

In image processing studies, ellipse detection is one of the most commonly 

encountered problems. In this study, the image of a circular target positioned in 3D 

space is an ellipse, if it is not partially occluded. Therefore, those pixels 

corresponding to the border of the image of the circular target should be detected 

and used by the 3D reconstruction method. 

 

Various methods were developed to recognize ellipses in an image. There are 

mainly two approaches: (i) clustering and (ii) ellipse fitting. Clustering approaches 

utilize the mapping of pixel data to a parameter space according to a predetermined 

relationship. On the other hand, ellipse fitting approaches utilize some direct ellipse 

fitting methods to the data. In the previous studies [3, 4], Bennett’s algorithm [25], 

which is a clustering approach and Hough transform based method, was 

implemented because it does not require any object based pre-segmentation, it has a 

2D accumulation space, and it has a lower complexity.   
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2.6.1. Bennett’s Approach 

Bennett’s approach [25] parameterizes a family of ellipses, which are tangent to two 

lines at two points as shown in Figure 2.16. Using the equations of these tangent 

lines and the equation of the line connecting these two points, the quadratic 

equation for a family conics can be written as 

 

 2
1 2( , ) ( , ) ( , ) ( , ) 0C x y L x y I x y I x yλ= − =  (2.26) 

 

where, λ  is a positive real coefficient, ( , ) 0L x y =  is the line connecting 1P  and 2P , 

and 1( , ) 0I x y =  & 2 ( , ) 0I x y =  are the tangent lines at points 1P  and 2P , 

respectively. 

 

 
 

Figure 2.16. Ellipses Parameterized by Bennett’s Approach 

 

On the other hand, the equation of a conic can also be written in the form 

 

 0c⋅ ⋅ + ⋅ ⋅ + =T Tx A x 2 k x  (2.27) 
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where 
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where a , b , c , f , g , and h  are linear functions of λ  and depend on the 

coordinates of points 1P  and 2P , and slopes of the tangent lines to edge at these 

points. The matrix A  should be positive definite if the conic equation represents an 

ellipse. A λ  range, in which matrix A  is positive definite, is calculated for each 

pair of edge points 1P  and 2P . Then, centers of the ellipse corresponding to each λ  

in the calculated range are accumulated in a matrix.  The point which has the 

maximum score in the accumulation matrix is declared as the ellipse center. The 

order of the algorithm is 2n  since the process is repeated for each pair of points. 

 

In the previous studies [3, 4], Bennett’s algorithm [25] was implemented with some 

modification for an increased speed and robustness. First problem encountered in 

those studies was the huge computation time due to the fact that the order of the 

algorithm is 2n . By the implementation of connectivity analysis, edge pixels were 

segmented to connected groups. Although the total number of points remained 

unchanged, the number of all possible point pairs was reduced, thus the 

computation time was decreased. The other problem encountered was deciding on 

the location of the ellipse center thus the ellipse itself by inspecting the 

accumulation space, as pictured in Figure 2.17. Even for the synthetically generated 

elliptical images, there exists a possibility to have some local maximum points 

around the exact ellipse center some of these false peaks may have greater scores 

than the exact ellipse center due to the discrete pixel locations and edge 

orientations. Moreover, there is a great possibility of having much higher peaks for 

long but non-elliptical connected paths. Quality factor and symmetry criteria were 

added to decision making process in the ellipse detection method to detect the 

correct peak that represents the real ellipse center. The quality factor of a peak in 

accumulation space was determined as the score of the peak divided by the square 
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of the distance of the closest point to the peak whose score was half of the peak. 

The symmetry was measured as the distance at which the symmetry of the peak was 

vanished. The peaks sharper than an experimentally determined value and peaks 

having symmetry values less than a fixed value were evaluated as noise and 

eliminated. Peaks smoother than a constant value, corresponding some low quality 

factors, were also eliminated because of the fact that they could not represent ellipse 

centers. 

  

 
 

Figure 2.17. Accumulation Space for Sample03 

 

In the previous studies [3, 4], even with some subjective modifications discussed 

above, the results of Bennett’s algorithm were unsatisfactory and it could detect 

ellipses in only 30 % of test images and the computation time did not fall below 15 

seconds. The main reason for the failure of the implemented Bennett’s approach is 

found to be the faulty results of the improperly implemented connectivity analysis. 

Also the edge thinning operations deflected the ellipse contour unexpectedly. The 

use of a single accumulation space for all connected paths was another problem, 
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since the accumulation results of the paths deteriorates the quality factor and 

symmetry measurement of the peak corresponding to other paths. Moreover, 

determining the local maximum points in the accumulation space consumed an 

extra processing time.   

 

In this study, Bennett’s algorithm [25] is re-implemented without the modifications 

proposed in previous studies and a synthetic image library, composed of images 

containing a single ellipse or a rectangle of different size, orientation and aspect 

ratio, is formed to test and determine the limitations of this method. The 

characteristics of the images in the synthetic image library are presented in 

Appendix B. Experiments are conducted to determine characteristics of the 

accumulation space for synthetic elliptical and rectangular images to design a better 

decision method. The number of edge pixels in synthetic images can be seen in 

Figure 2.18. 
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Figure 2.18. Number of Edge Pixels in Synthetic Image Library 
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The absolute maximum of the accumulation space for synthetic elliptical images 

appears at the exact ellipse centers. On the other hand, the absolute peak of 

accumulation space for rectangular images can either be at the centers of the 

rectangles or one of the edge centers. In Figure 2.19, accumulation spaces for an 

elliptical and a rectangular image in the synthetic image library are presented. 

  

 
 

Figure 2.19. Accumulation Space for an Elliptical and a Rectangular Image in the 

Synthetic Image Library 

 

The symmetry measurement of the absolute peak of the accumulation space is not 

affected by the shape, size, orientation and aspect ratio of the ellipses or rectangles 

as shown in Figure 2.20. The symmetry of the absolute peak in the accumulation 

space for ellipses is vanished at the closest image border, except two images. In 

these two images the location of absolute maximum in the accumulation space is 

deviated from the exact ellipse center due to numerical errors. For rectangles, the 

symmetry does not vanish till to the closest edge, only if the absolute maximum is 

at rectangle center. The only decision rule can be stated with these facts is that if the 

symmetry of the absolute peak in an accumulation space for a connected path 

vanishes at a point closer than the closest image border, then the connected path can 

not be an ellipse or a rectangle. 
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Figure 2.20. Symmetry Measure in Synthetic Images 

 

The score of the absolute maximum of the accumulation space (Figure 2.21) is not 

proportional with the number of points in the connected path and is not related with 

the shape of the connected path. The score of the peak in the accumulation space for 

a smaller rectangle can be higher than that of a larger ellipse. However, if those 

eight elliptical images with the highest accumulation scores are neglected, the 

maximum accumulation scores for elliptical images are observed between 550 and 

840. The connected paths with accumulation scores out of this range can be 

classified as non-ellipses. With this decision rule, 54 rectangles out of 66 are 

eliminated while only the neglected elliptical images are misclassified. 
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Figure 2.21. Maximum Accumulation Scores in Synthetic Images 

 

In the elliptical images, the relation between the maximum scores of the 

accumulation space and the radius of the circle on which the average accumulation 

score is half of the peak’s score is extracted and a new quality factor is designed to 

give almost constant values for the peaks of the accumulation scores for elliptical 

images 

 

Considering the above facts, the new quality factor is defined as the accumulation 

score of the peak divided by square root of the radius of the circle on which the 

average score is half of the peak’s value. In Figure 2.22, the accumulation space of 

a synthetic elliptical image is presented. In this figure, the average of the 

accumulation scores of the points on the blue circle is half of the score of absolute 

peak, which is the center of this circle. The new quality factor is calculated as 

peak’s score divided by square root of the radius of this blue circle.      
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Figure 2.22. Quality Factor Visualization 

 

 

In Figure 2.23, the quality factors of the absolute peaks of the accumulation spaces 

for the synthetic elliptical and rectangular images calculated with this definition are 

presented. Figure 2.23 implies that the quality factor of an ellipse within the size 

range shown in Figure 2.18 is almost constant, except for eight highest quality 

elliptical images; note that these images are also the outliers for accumulation score.  

 

The distributions of the quality factors for synthetic elliptical and rectangular 

images (Figure 2.23) show that the elliptical and rectangular images can not be 

classified using a single fixed quality factor threshold. But if the eight elliptical 

images with highest quality factors are neglected, then one can state that the peaks 

of the accumulation space for elliptical images have quality factors within the range 

255 to 375, and there are only eight rectangular images which have the quality 

factor within this range. 
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Figure 2.23. Quality Factor in Synthetic Images 

 

The very first inference of the results of the experiments is that by using distinct 

accumulation spaces for each connected path the inspection of accumulation space 

is simplified and the accumulation results of connected paths will not affect each 

other.  

The maximum accumulation scores, symmetry measurement and quality factor 

results obtained for the elliptical and rectangular images in synthetic image library 

imply the following ellipse detection algorithm: 

 

1. Eliminate the connected paths for which the symmetry of the absolute peak 

of the accumulation space for the connected path vanishes at a closer point 

than the closest image border. 

2. Eliminate the connected paths whose quality factor is not between 255 and 

375. 
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3. Eliminate the connected paths whose accumulation score is not between 

550-and 840. 

4. Mark the connected path with the maximum accumulation score from 

remaining paths as proposed by Bennett [22].   

 

The decision rules stated above result in 7 misclassifications for 66 rectangular 

images and 9 misclassifications for 72 elliptical images. The detection performance 

of this ellipse detection method is questionable, since rectangle is one of the most 

commonly encountered shapes in almost every environment. Also, this method and 

the decision rule will automatically eliminate all partial elliptical images, because of 

the fact that the resulting accumulation space would not be symmetric. However the 

method succeeded to detect the full ellipses in the all eight sample real images. One 

of the ellipse detected images is presented in Figure 2.24. In the figure, the numbers 

at the center of the ellipse are the accumulation score, quality factor and symmetry 

measurement, from top to bottom.  

 

 
 

Figure 2.24. Detected Ellipse in Image Sample03. 
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The processing times for the ellipse detection method by Bennett’s algorithm for 

sample real images are presented in Table 2.4. The results show that the speed of 

the method is highly dependent to the number of edge pixels and number of paths in 

an image.  

 

Re-implementation of the method and the modifications discussed above increased 

the average processing time for this method approximately 10-15 times if compared 

with the speed of the implementation in previous studies [3, 4]. However the 

reached average processing time, 1473 ms or even the minimum processing time, 

243 ms achieved for sample images is not an acceptable value for real time 

working. 

  

 

Table 2.4. Processing Times for Ellipse Detection Method by Bennett’s Algorithm 

Image Processing Time [ms] 

sample01 1406 

sample02 3156 

sample03 1672 

sample04 250 

sample05 266 

sample06 1375 

sample07 907 

sample08 2906 

sample09 214 

sample10 2578 

Average 1473 
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2.6.2. Direct Ellipse Fitting 

Direct ellipse fitting techniques concentrate on finding a set of parameters that 

minimize the distance between data points and the ellipse. Most studies conducted 

on ellipse fitting uses the following conic equation: 

 

 2 2( , ) 0F ax bxy cy dx ey f= ⋅ = + + + + + =a x a x  (2.29) 

 

where [ ]a b c d e f=a  and 2 2 1
T

x xy y x y⎡ ⎤= ⎣ ⎦x . 

 

( , )F ia x  is the algebraic distance of a point ( , )i ix y  to the conic ( , ) 0F =a x . If the 

discriminant 2 4b ac−  is negative, then the conic Equation (2.29) represents an 

ellipse. The parameter vector a  that minimizes the sum of square of algebraic 

distances 

 

 2

1
( ) ( , )

N

A
i

D F
=

=∑ ia a x  (2.30) 

 

for N  data points ix , is selected as the parameter vector for such a conic. In order 

to avoid the trivial solution =a 0  and to avoid the solutions which are the multiples 

of another solution, the parameter vector a  is constrained. 

  

In this study, the ellipse fitting method developed in [26] is implemented. In the 

study [26], the ellipse fitting problem is reduced to minimizing the equation, 

 

 2E = ⋅D a  (2.31) 

 

subjected to the constraint 24 1ac b− = , 

 

 1⋅ ⋅ =Ta C a  (2.32) 
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where  

 

 [ ]= T
1 2 ND x x x…  (2.33) 

 
and  

 

 

0 0 2 0 0 0
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⎡ ⎤
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⎢ ⎥
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⎢ ⎥⎣ ⎦

C  (2.34) 

 

Introducing the Lagrange multiplier λ  and differentiating, following system of 

simultaneous equations are obtained. 

 

 2 2 0
1

λ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ =

⋅ ⋅ =

T

T

D D a C a
a C a

 (2.35) 

 
This system of equations can be rewritten in the following form. 
 

 λ⋅ = ⋅ ⋅S a C a  (2.36) 

 

 1⋅ ⋅ =Ta C a  (2.37) 

 

where 

 

 = ⋅TS D D  (2.38) 

 

is referred to as the scatter matrix. The system is solved by considering the 

generalized eigenvectors of Equation (2.36). If a generalized eigenvalue and 

eigenvector couple ( , )iλ iu  solves Equation (2.36) then parameter vector iµ= ⋅ ia u  

solves Equation (2.37) as 
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 iλ⋅ = ⋅ ⋅i iS u C u  (2.39) 

 

 2 1iµ ⋅ ⋅ ⋅ =T
i iu C u  (2.40) 

 
and if Equation (2.39) is pre-multiplied by T

iu  
 
 
 iλ⋅ ⋅ = ⋅ ⋅ ⋅T T

i i i iu S u u C u  (2.41) 

 
Since the scatter matrix S is positive definite, then the left hand side of Equation 

(2.41), ⋅ ⋅T
i iu S u  is positive. Furthermore, ⋅ ⋅T

i iu C u  should be positive to satisfy 

Equation (2.40). Hence, in order to satisfy Equation (2.41),  iλ  should be positive. 

All parameter vectors mµ= ⋅ ma u  minimize Equation (2.31), if the pair ( , )m m mλ µ ⋅u  

satisfies the Equations (2.36) and (2.37), and 0mλ >  . 

 

In study [26], it is proven that for a real and positive definite matrix S , the 

generalized eigenvalues of the equation λ⋅ = ⋅ ⋅S u C u  has the same sign with the 

eigenvalues of matrix C . 

 

Since the eigenvalues of C  are { }2 1 2 0 0 0− −  and scatter matrix S  is 

positive definite, only one of the six generalized eigenvalues of Equation (2.36) is 

positive. Therefore, the solution of the minimization problem is mµ= ⋅ ma u  and it is 

unique. The pair ( , )m m mλ µ ⋅u  satisfies Equations (2.36) and (2.37), where mλ  is the 

only positive generalized eigenvalue. 

 

In this study, direct ellipse fitting method [26] is implemented to achieve real time 

processing speeds, since its computational load is much less than Bennett’s 

approach. The experiments with synthetic images containing a single ellipse show 

that the ellipse fitting error defined as the sum of algebraic distances given by 

Equation (2.31) is proportional with number of data points N  on a connected path, 
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which is equivalent to the number of edge pixel for these images. Thus the relative 

error criterion is defined as 

 

 
2

relE
N
⋅

=
D a

 (2.42) 

  

and it is used to compare various fitting alternatives and to choose the best ellipse 

fit among all connected paths in an image. 

 

For the direct ellipse fitting method [26], resulting relative errors for elliptical and 

rectangular images in the synthetic image library are presented in Figure 2.25. As 

seen in the figure, the maximum relative error value for the synthetic elliptical 

images is smaller than the minimum relative error value of rectangular images. This 

implies that the threshold value 0.02 for relative error criterion should classify all 

ellipses and rectangles in the synthetic image library. Indeed, in the tests conducted 

with this threshold value, all ellipses and rectangles are classified correctly. 
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Figure 2.25. Relative Ellipse Fitting Errors for Synthetic Images. 
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The direct ellipse fitting method is able to detect the full ellipses (targets) in all 

eight sample digital images. One of the ellipse detect sample image is presented in 

Figure 2.26. The number at the ellipse center in the figure is the relative error 

multiplied by 1000. As opposed to Bennett’s algorithm, it can also detect partial 

ellipses at the image boundaries, Figure 2.27, since the image boundaries are not 

evaluated as edges, so the connected path for the ellipse does not include a linear 

part as in case of occlusion by another object. However, in Figure 2.28, the 

connected path corresponding to target includes some linear parts causing huge 

relative fitting errors. The direct ellipse fitting method cannot detect the target in 

this image.   

 

 
 

Figure 2.26. Detected Ellipse in image sample03. 

 

 



 53

 
 

Figure 2.27. Detected Ellipse in Image sample10. 

 

 
 

Figure 2.28. Edge Detection Results in Image sample08. 
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In Table 2.4, the processing times of direct ellipse fitting method is presented. As 

seen in the table, the maximum processing time is 47 ms and the average processing 

time is 25 ms. The speed of this method is 60 times faster than the Bennett’s 

algorithm and suitable for real time target detection.  

  
Table 2.5. Processing Times for Direct Ellipse Fitting Method 

Image Processing Time [ms] 

sample01 47 

sample02 46 

sample03 31 

sample04 8 

sample05 16 

sample06 31 

sample07 31 

sample08 15 

sample09 15 

sample10 16 

Average 25.6 

 

2.6.3. Comparison of Ellipse Detection Methods 

The Bennett’s algorithm [25] and its decision rule implemented in this study and the 

direct ellipse fitting method [26] are tested with synthetic images and real time 

frames to compare the detection performances of the methods for extreme cases. In 

Figure 2.29, the results of the Bennett’s approach are presented. The numbers 

presented in the figure are accumulation score, quality factor and symmetry 

measure of the absolute peak of accumulation space, from top to bottom. The 

results show that Bennett’s algorithm can not distinguish the ellipse if the shapes in 

Figure 2.29 appear in the same image. On the other hand, the resulting relative 

ellipse fitting errors, given in Figure 2.30 show that the direct ellipse fitting method 

is successful to detect the ellipse even in a worse case.  
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Figure 2.29. The Resulting Accumulation Scores, Quality factors and Symmetry 

Measurements for a Synthetic Ellipse and Rectangle. 

 

  
 

Figure 2.30. The Resulting Relative Ellipse Fitting Errors (multiplied by 1000) for 

a Synthetic Ellipse and Rectangle. 

 

The detection results of the Bennett’s algorithm given in Figure 2.31 and the direct 

ellipse fitting method given in Figure 2.32, for the same synthetic image containing 

an ellipse and a rectangle imply that Bennett’s approach may fail to detect ellipses, 

if a high aspect ratio rectangular connected path appears in an image. On the other 

hand, this extreme case did not appear in experiments with real frames and both 

Bennett’s algorithm and direct ellipse fitting method are successful to detect the 

target. Two sample ellipse detected frames are presented in Figure 2.33 and Figure 

2.34. 
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Figure 2.31. Ellipse Detected by Bennett’s Approach. 

 

 
 

Figure 2.32. Ellipse Detected by Direct Ellipse Fitting Method. 

 

 
 

Figure 2.33. Ellipse Detected by Bennett’s Approach. 
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Figure 2.34. Ellipse Detected by Direct Ellipse Fitting Method. 

 

The processing times of Bennett’s algorithm and direct ellipse fitting method for 

sample real images are presented in Table 2.6. As seen from the table, the direct 

ellipse fitting method is approximately 60 times faster than the Bennett’s algorithm. 

Since the computational order of Bennett’s algorithm is n2, its processing time is 

highly affected by number of pixels in a connected path. The processing times for 

Bennett’s algorithm are proper for real time 3D reconstruction. Moreover, the 

results, presented in Table 2.6, show that the speed of direct ellipse fitting method is 

almost above the limit of 25 Hz, which is maximum frame rate of the grabber.  
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Table 2.6. Processing Times for Ellipse Detection Methods 

Processing Time [ms] Image 
Bennett Ellipse Fitting 

sample01 1406 47 

sample02 3156 46 

sample03 1672 31 

sample04 250 8 

sample05 266 16 

sample06 1375 31 

sample07 907 31 

sample08 2906 15 

sample09 214 15 

sample10 2578 16 

Average 1473 25.6 

 

2.7. Summary 

In this Chapter, the processes starting from the image formation to the ellipse 

detection are presented, discussed, and the results of the developed and 

implemented methods in this study are compared with the results of the previous 

studies [1-4]. Although the overall process sequence is kept unchanged, all methods 

used in previous studies are investigated and optimized in terms of robustness and 

speed, and some new methods are added. 

 

The virtual positioning and perspective projection, and digital image files are used 

to test the developed methods in previous studies [1-4]. But this study also enables a 

direct access to the frame buffer of the grabber and use real time frames to test the 

overall reconstruction method. 

  

The previous studies [3, 4] used a minimum error thresholding method to determine 

the threshold value, which was then used to binarize the grayscale images. In this 

study, the experiments with digital image files and real time grayscale frames show 

that the threshold value determined with this method is robust to segment the 
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foreground objects from the background. However the previous implementation of 

the method contained some repetitive calculations and therefore was not optimum 

when its processing speed is considered. The equations and the algorithm are 

rearranged to avoid these repetitions and the speed of the method is enhanced by a 

factor of 45. 

 

In previous studies [3-4], edge gradient vectors in a binary image were determined 

by convolving the image with horizontal and vertical Sobel filters. The pixels with 

non-zero gradient magnitude were marked as edge pixels. The problem was that the 

resulting edge contours were thicker than one pixel, and an additional edge thinning 

operation was needed to solve this problem. As a result of this edge thinning 

operation, the edge contours were deformed, so the ellipse detection process was 

affected adversely. In this study, a modified version of Laplacian kernel is 

implemented as an edge detector and Sobel filters are kept for gradient vector 

calculation for only edge pixels detected by the Laplacian edge detector. The edge 

thinning operation is avoided since the resulting edge contours have only one pixel 

thickness. The results of the experiments conducted with this new algorithm show 

that the obtained edge contours are not deformed, no extra edges are created, and 

the new algorithm works 13 times faster than its predecessor.  

 

The connectivity algorithm designed in previous studies [3, 4] did not work 

properly because of the implementation errors. Some edge pixels were appearing in 

more than one connected path. In this study, the implementation errors of the 

previously designed method are corrected and the desired connectivity results are 

obtained. However the speed of the algorithm is above the limits of real time 

working and it can not be enhanced, since its computational order is n2. A new 

connectivity approach, inspired from the conductivity concept is developed. The 

new connectivity algorithm results in exactly the same connected paths but it is 20 

times faster. 

 

To detect ellipses, the Bennett’s approach [25] was implemented in previous 

studies. Quality factor and symmetry measurement were designed to evaluate the 
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resulting accumulation space and to decide on the ellipse center. The problem in the 

implementation was that although the edge pixels are grouped into connected paths, 

their accumulation scores were collected in a single accumulation space. The 

accumulation scores for a path adversely affected the quality factors and symmetry 

measurement of a peak corresponding to another path. In this study, the results of 

the experiments conducted with synthetic images containing a single ellipse show 

that, (i) the absolute maximum point of the accumulation space coincides with the 

exact ellipse center, (ii) previously designed quality factor, which is used to 

calculate the sharpness of the peak of accumulation space, is unexpectedly changing 

with ellipse size, and (iii) the symmetry of the peak does not vanish till to the 

closest image border. The Bennett’s algorithm is re-implemented to use distinct 

accumulation spaces for each connected path, and the quality factor is redesigned to 

give almost constant values for different sized ellipses. For each connected path, the 

accumulation score, the quality factor and symmetry measurement are calculated 

for the absolute maxima of accumulation space. The decision rule is redesigned to 

minimize the classification errors in the tests conducted with synthetic image library 

consist of elliptical and rectangular images. Although the detection rate is enhanced, 

a decision boundary that correctly identifies all the ellipses and rectangles does not 

exist. Some rectangles are falsely detected as ellipses and some ellipses are 

classified as non-ellipse. In addition to detection problem the speed of the algorithm 

does not allow real time working.  

 

The direct ellipse fitting method [26] is discussed and implemented as an alternative 

ellipse detection method to Bennett’s algorithm. The average sum of algebraic 

distance of the points to the ellipse equation determined by fitting is defined as the 

relative error criterion. The results of the experiments for elliptical and rectangular 

images in the synthetic image library show that the direct ellipse fitting method is 

capable of detecting all ellipses in the library while eliminating all rectangular 

images. Moreover, the direct ellipse fitting method is 60 times faster than the 

Bennett’s algorithm and the speed is just above the limit of 25 Hz, which is the 

maximum frame rate used by the frame grabber device. 
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The image processing algorithms discussed in this chapter are combined to form the 

overall target detection method and tested with 640x480 pixel real time frames. The 

target detection method, which uses the slowest combination of the methods, has a 

speed of 0.5 Hz to 5 Hz, changing with the complexity of the scene. On the other 

hand, the combination of fastest methods has as a detection speed between 10 Hz 

and 25 Hz, changing with complexity of the scene and limited by the frame 

grabber’s maximum sampling rate. 
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CHAPTER 3 

 
TARGET TRACKING 

 

3.1 Overview 

In this chapter, the aim of the target tracking method and the proposed method for 

target tracking will be explained. The limitations and experimental results for the 

target tracking method will be presented and discussed.  

 

Although the working speed of the target detection method proposed in Chapter 2 

reaches to 25 Hz for some of the 640x480 real time frames, it is not a fixed value. 

The complexity of the scene, in other words, the number of edge pixels and number 

of connected paths in the edge detected frame determines the target detection speed.  

 

One of the solutions to fix the target detection speed at the maximum frame 

grabbing speed, 25 Hz, can be upgrading the computer hardware. However, any 

upgrade that increases the resolution of the frames or frame grabbing speed may not 

permit the working at the frame grabbing speed.  

 

In this study, a target tracking method is designed and used to overcome this 

problem. The proposed target tracking method is based on estimating the target 

region for a frame using the data obtained from the past frames. Processing a 

smaller region in a frame that includes the target will reduce the complexity of the 

frame computations and will eventually increase the target detection speed. 

 

Kalman filtering is the most commonly used target tracking method. It is known 

with its high capability on noise rejection and ability to adapt itself according to 

estimation errors, but requires a good modeling of the dynamics of the observed 

system. Another method commonly used in target tracking studies is the polynomial 
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fit to the measured data and extrapolation. Generally, it is preferred because of its 

low computational load.         

 

3.2. Tracking Method 

The target tracking method used in this study first estimates the coordinates of the 

smallest rectangular region that includes the target in the frame using the position 

information of the target in previous frames. Only this portion of the frame will be 

searched for the target with the proposed target detection method. Thus, the 

estimation accuracy is not crucial as long as the target appears inside the estimated 

region. Considering these facts, a polynomial fitting method is preferred, because its 

computational load is low and it does not require any priori information about the 

target dynamics.  

 

The idea of using a secondary passive target to reconstruct the 3D parameters of the 

camera or the target implies a low possibility of having an agile target motion. 

However, in the real time frames, the target can start moving, change direction, or 

stop moving at any time, meaning that the characteristics of the motion may change. 

If the information on past data points are still kept and used to estimate the position 

of the target after a change in motion characteristics, the estimation errors will 

increase. Thus, the tracking method should track estimation and polynomial fitting 

errors and change the number of data points used and polynomial degree when 

necessary.     

 

The proposed target tracking method in this study is an extrapolation by polynomial 

fitting, with changing polynomial degree and number of data points.    

 

3.2.1. Least Square Polynomial Fitting 

The least square polynomial fitting is well known problem and the polynomial of 

degree m can be represented as 

 

 2
0 1 2( ) m T

m mP t c c t c t c t= + + + + = ⋅c t…  (3.1) 
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where ( )mP t  is the mth degree polynomial of t , [ ]0 1

T
mc c c=c " , and 

21
Tmt t t⎡ ⎤⎣ ⎦t =  with t  being the time. 

 

If  (ti , xi ) are the ith data points among N measurements and if a polynomial of 

degree m is fitted to the last n data points, then the least square polynomial fitting 

can be reduced to the solution of the following system of equations 
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Then the coefficient vector c is obtained by pseudo-inversion. 

 

 ( )=
-1T Tc A A A x  (3.3) 

 

For the next time step 1Nt + , the estimated value of the data  � 1Nx + , can be evaluated 

as 

 

 � 2
1 1 0 1 1 2 1 1( ) m

N m N N N m Nx P t c c t c t c t+ + + + += = + + + +…  (3.4) 

 

The correlation coefficient of the fit, r can be expressed as 

 

 2r r=  (3.5) 
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where 2r  is called coefficient of determination and can be expressed as  
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and x is the mean of the last n  data [ ]1 2 1N n N n N Nx x x x− + − + −"  and it can be 

evaluated as 
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After the measurement, the estimation error, e  can be evaluated as. 

 

 � 11 NNe x x ++= −  (3.8) 

 

3.2.2 Tracked Points 

The aim of introducing the target tracking method to this study is reducing the 

target detection load by reducing the area in which the target searched. Therefore, 

target tracking method should estimate the target region for the subsequent frame to 

be processed by utilizing the data obtained for past frames. However, it is possible 

to track either 2D image coordinates of the target obtained from the target detection 

method or 3D parameters of the target obtained from 3D reconstruction method. 

Both of these approaches are implemented.    

      

3.2.2.1 Tracking 2D Corners 

In this approach, it is aimed to estimate the target region by tracking the 2D image 

coordinates of the elliptical target detected in the previous frames. However it is 
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practical to track image coordinates of the smallest rectangle that fully includes the 

elliptical image of the target, since the goal of the target tracking algorithm is to 

estimate the coordinates of this rectangle for the subsequent frames. The rectangle 

that fully includes the target as shown in Figure 3.1, can be represented with the 

horizontal and vertical image coordinates of upper left corner, A, and bottom right 

corner, B. The 2D image coordinates of these points are stored and four distinct 

polynomials of desired degree are fitted to the desired number of newest values of 

these image coordinates. Then image coordinates of these points are estimated for 

the time which the subsequent frame is grabbed.  

 

 
 

Figure 3.1. Tracking 2D Corners 

 

3.2.2.2 Tracking 3D Parameters 

An alternative approach for estimating the target region is using 3D configuration 

parameters of the target calculated by 3D reconstruction method for the previous 

frames. In this approach, the 3D parameters, as 3 rotations and 3 translations, of the 

target are stored and six distinct polynomials are fitted to estimate the values of 



 67

these parameters for the time at which the subsequent frame is grabbed. Once the 

estimated values of the 3 translations and 3 rotations of the target with respect to 

camera are obtained, the image coordinates of the corners (point A and B shown in 

Figure 3.1) of the enclosing rectangle are calculated with virtual positioning and 

perspective projection. 

 

3.3 Tracking Strategy and Parameter Space.  

The proposed target tracking method in this study is an extrapolation by polynomial 

fitting, with changing polynomial degree and number of data points. The positions 

of the corners of the smallest rectangular region includes the full target (Figure 3.1) 

in the subsequent frame are estimated by polynomial fitting to either 2D image 

coordinates of the target or to 3D target parameters obtained for previous frames. 

Change in motion characteristics is checked by evaluating the correlation 

coefficient of the fit and the degree of the polynomial and used number newest data 

points are reduced accordingly. Since the estimation accuracy is not crucial, as long 

as the target appears inside the estimated region, it is possible to enlarge the 

estimated region to guarantee the target is inside the region. Also fast shrinkage of 

the estimated region should be damped to avoid partially outside target situations 

which may appear due to estimation errors caused by measurement noise.    

 

As stated before the polynomial fitting method is a low computational load and easy 

to implement method. However, the above discussed steps of the method offers a 

multi dimensional parameter space, during adaptation of the method to a case as in 

this study and reveals the following questions about selection of strategy and 

parameters: 

• Which is the best tracking approach? 2D image coordinates or 3D target 

parameters? 

• What is the best degree of the polynomial? 

• What is the best number of newest data points used for polynomial fitting? 

• What is the best the critical correlation coefficient limit below which the fit 

is accepted as unsatisfactory? 
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• What is the best amount of estimated region enlargement to guarantee the 

target is inside? 

 

The answers of those questions are not independent of each other, and the “best” 

concept is subjective. But it is possible to define an objective function that measures 

the performance of a target tracking strategy and the set of parameters that gives the 

maximum performance may be searched. However defining an objective function 

for evaluating the performance of a tracking strategy is also subjective. Moreover, it 

is obvious that conducting experiments to obtain best set of parameters is an 

exhaustive search, if the dimension of the parameter space is taken into account. 

  

This study does not aim to obtain and use the set of parameters that reveals the best 

tracking strategy; it only aims to find a set of parameters that satisfies the goal of 

the target tracking method, which is reduction of the search area of target detection 

method. Thus a stepwise parameter determination approach is followed to avoid an 

exhaustive search. 

 

3.3.1 Critical Correlation Coefficient  

The target tracking algorithm is designed to distinguish the changes in the motion 

characteristics. The correlation coefficient of the fit is calculated and checked for 

each time step, just after the estimation but before the measurement. If the 

correlation coefficient is below a critical limit, the number of last data points used 

for fitting is reduced to two, and then the position is re-estimated with the first 

degree polynomial fitted to the last two data points. After this action, the number of 

data points used and degree of polynomial is increased to the desired values one by 

one as the new data is obtained.  

 

Two experiments are conducted to determine the critical correlation coefficient 

value below which the characteristic of the motion is accepted as changed. In the 

first experiment, the camera is rotated about y-axis with a constant rotational speed 

and the target is stationary. The motion of the target is estimated by fitting a third 
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degree polynomial to the newest 10 data obtained for previous frames. The 

correlation coefficients calculated for this experiment are presented Figure 3.2. In 

the second experiment, a small amplitude swinging motion of the target is tracked. 

Third degree of polynomial is fitted to the latest 10 data obtained for the previous 

frames. The resulting correlation coefficients are presented in Figure 3.3. The 

minimum correlation coefficient value occurred in these two experiments is selected 

as the critical value, since the characteristics of the motion of the target for both 

cases are assumed to be constant during the experiments.  
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Figure 3.2. Correlation Coefficient Values for Fixed Target, Camera Rotation Case 
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Figure 3.3. Correlation Coefficient Values for Swinging Motion of the Target  
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3.3.2. Number of Data Points and Degree of Polynomial 

In the least square polynomial fitting, increasing the number of data points used 

reduces the effects of noise, as long as the characteristic of the motion of the target 

is not changed.  However, if this characteristic changes drastically, using the data 

obtained from the previous frames of the motion obviously increases the estimation 

error and consequently the target may appear outside the estimated region.   

 

Theoretically, it is possible to use a fixed higher degree polynomial even for a data 

that can be represented by a lower degree polynomial. But, the fitting a higher 

degree of polynomial to a noisy data may exaggerate estimation errors.   

 

In order to test the target tracking algorithm and to determine the best choice for the 

degree of polynomial and number of last data points to be used for fitting, three test 

case scenarios are crated, two in virtual environment and a third one in real world. 

The first one is a sinusoidal motion of the target in x-direction crated by virtual 

positioning and perspective projection (Figure 3.4). The second one is a saw-tooth 

motion of the target in x-direction, also in virtual environment. The third case is the 

motion of a secondary target attached pendulum in real world, Figure 3.5.  

 

 
 

Figure 3.4. Direction of Motion of the Target Created by Virtual Perspective 

Projection  
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Figure 3.5. Secondary Target Attached Pendulum.  

 

Several experiments are conducted to determine the best choice for the degree of 

polynomial and number of last data points to be used for fitting. The target tracking 

method is tested for third degree polynomials, the highest, and last 10 and last 5 

data points, to track a moving target in synthetically generated frames and in real 

frames, as well. The critical correlation coefficient discussed and determined in the 

previous section is not altered in the experiments.    

 

The results of the 2D and 3D target tracking approaches for three cases, sinusoidal 

and saw-tooth motion in virtual environment and swing motion of pendulum in real 

world, using last 5 and last 10 data points and zero, first, second and third degree 

polynomial fitting are presented in Table 3.1, 3.2 and 3.3. Investigation of 

maximum estimation errors, average absolute estimation errors and standard 

deviations of the absolute errors of tracking preferences presented in these tables 

reveals that the 2D tracking method with second degree polynomial fitted to the last 

5 data gives the best average performance for three cases. On the other hand, 2D 

tracking with third degree polynomial fitted to the last 5 data exhibits the best 

performance for real data, pendulum case. 



 72

Table 3.1. Maximum Estimation Errors of Target Tracking Strategies 

Tracking 2D 3D 
# of points 5 10 5 10 
Pol. Degree 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

Sinusoidal 31 3 1 11 54 11 2 11 35 2 5 3 55 9 3 5 

Saw Tooth 20 14 8 39 37 23 12 14 22 12 10 17 38 21 12 20 

Pendulum 23 11 11 8 31 22 11 20 26 11 10 9 33 18 11 40 

Average 24.7 9.3 6.7 19.3 40.7 18.7 8.3 15.0 27.7 8.3 8.3 9.7 42.0 16.0 8.7 21.7

 

Table 3.2. Average Absolute Estimation Errors of Target Tracking Strategies 

Tracking 2D 3D 

# of points 5 10 5 10 
Pol. Degree 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

Sinusoidal 15.8 1.6 0.4 2.4 34.6 4.6 0.8 0.8 21.8 0.9 1.5 1.4 30.1 4.2 1.3 1.6 

Saw Tooth 15.8 0.8 1.1 4.4 30.0 1.8 1.6 2.9 18.3 1.7 2.2 2.0 30.7 1.7 3.7 3.0 

Pendulum 12.3 4.8 2.6 1.9 18.0 7.4 5.3 5.3 11.5 4.3 3.2 3.5 18.2 5.5 5.1 4.8 

Average 14.6 2.4 1.4 2.9 27.5 4.6 2.6 3.0 17.2 2.3 2.3 2.3 26.3 3.8 3.4 3.1 
 

Table 3.3. Standard Deviation of Absolute Estimation Errors of Target Tracking 

Strategies 

Tracking 2D 3D 
# of points 5 10 5 10 
Pol. Degree 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

Sinusoidal 9.3 1.0 0.5 2.3 16.0 2.9 0.6 1.7 8.5 0.6 1.0 0.9 16.4 2.7 0.9 1.0 

Saw Tooth 4.0 2.7 1.8 7.8 7.5 5.2 3.0 4.3 3.4 2.3 2.4 2.9 8.3 3.5 3.7 3.8 

Pendulum 6.8 3.0 2.3 1.8 8.6 6.7 2.9 4.5 7.7 2.8 2.3 2.3 9.2 4.7 3.0 5.6 

Average 6.7 2.2 1.5 4.0 10.7 4.9 2.2 3.5 6.5 1.9 1.9 2.0 11.3 3.6 2.5 3.5 
 

   

3.3.3 Enlargement of Estimated Region  

As stated before the accuracy of the estimation process is not so critical as long as 

the target is inside the estimated rectangle. Besides, the speed of the target detection 

method is almost equal to the maximum frame rate of the frame grabber even 

without the target tracking method. Thus, enlarging the estimated region determined 

by the target tracking method will increase the possibility of having the target fully 
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inside the estimated region in case of estimation errors. Moreover, the processing 

speed will not be affected as long as the size of the estimated region does not 

approach to the size of a full frame. 

  

Three estimation region enlargement (Figure 3.6) approaches are utilized in this 

study: 

1. The width and height of the estimated rectangular region are increased by 

a fixed amount of pixels. 

2. The estimated rectangular region is enlarged by a fixed scale factor. 

3. The estimated rectangular region is enlarged by a scale factor proportional 

with the magnitude of the 2D velocity of the target center.  

 

 
 

Figure 3.6. Estimated Region Enlargement.  

 

These enlargements aim to reduce the possibility of having the target located 

partially or fully outside of the estimated rectangle for the subsequent frame in the 

sequence. The amount of enlargement factors are determined by investigating the 

maximum absolute estimation error presented in Table 3.1. If the estimated target 

region is totally enlarged, as summation of three approaches, more than twice of the 

maximum absolute estimation error, it is guaranteed to have the target inside the 

estimated region.  
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3.4. Results of Target Tracking 

The performance of the target tracking method is simulated for the three cases, 

sinusoidal and saw-tooth motion of the target in x-direction created by virtual 

perspective projection, and swinging motion of the secondary passive target 

attached pendulum, using the best tracking parameters discussed in previous 

sections. Note that it is not claimed that the selected set of parameters are optimum 

by means of estimation error or any other criteria, however the parameters, critical 

correlation coefficient, degree of polynomial, the number newest data points used, 

and the enlargement factors are selected to meet the goals of the target tracking 

method.   

 
For sinusoidal motion of the secondary passive target in x-direction in virtual 

environment case, tracking 2D corners approach using a second degree polynomial 

and last 5 data points exhibits the best performance if the maximum absolute error, 

mean absolute error and standard deviation of absolute error presented in Tables 

3.1, 3.2, and 3.3 are considered. However, tracking 3D parameters approach with 

first degree polynomial fitted to the last 5 data shows a similar performance. In 

Figures 3.7 and 3.8, the results of the target tracking method for these strategies are 

presented.  
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Figure 3.7. Sinusoidal Motion, Tracking 2D Corners.  
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Figure 3.8. Sinusoidal Motion, Tracking 3D Parameters.  

 

 

For saw-tooth motion of the secondary passive target in x-direction in virtual 

environment case, tracking 2D corners approach using a second degree polynomial 

and last 5 data points exhibits the best performance if the maximum absolute error, 

mean absolute error, and standard deviation of absolute error are considered (Figure 

3.9). However tracking 3D parameters approach with second degree polynomial 

fitted to the last 5 data shows a similar performance (Figure 3.10) if the maximum 

absolute estimation errors are compared. 
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Figure 3.9. Saw-tooth Motion, Tracking 2D Corners. 
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Figure 3.10. Saw-tooth Motion, Tracking 3D Parameters. 
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For swinging motion of the secondary passive target attached pendulum in real 

world case, tracking 2D corners approach using a third degree polynomial and last 5 

data points exhibits the best performance if the maximum absolute error, mean 

absolute error, and standard deviation of absolute error are considered. However, 

tracking 3D parameters approach with third degree polynomial fitted to the last 5 

data shows a similar performance.  
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Figure 3.11. Swinging Pendulum, Tracking 2D Corners. 
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Figure 3.12. Swinging Pendulum, Tracking 3D Parameters. 

 

The results of the experiments presented in Figures 3.7, 3.8, 3.9, 3.10, 3.11, and 

3.12 show that the maximum estimation error of the tracking method does not 

exceed 10 pixels. This error value provides using small amount of enlargement 

factors, compared to size of the full image. Thus the search area of the target 

detection method is reduced drastically.  One of the sample frames captured while 

tracking the swinging pendulum with 2D corners approach using 3rd degree 

polynomial fitted to the last 5 data is shown in Figure 3.13. The green rectangle in 

this figure is the enlarged estimated target region in which the target is searched. 

And the blue box shows the smallest rectangular region including the detected 

target.         
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Figure 3.13. A Sample Frame Captured During Target Tracking.  

 

The major aim of introducing the target detection to this study is increasing the 

overall process speed to maximum sampling rate of the frame grabber, 25 Hz and 

fix there.  In the experiments, it is observed that the CPU utilization reduces down 

to 50 %, while processing speed is constant at 25 Hz. This fact and the processing 

speed, 50 Hz, achieved for synthetic frames imply that the overall method, 

composed of target detection, 3D reconstruction and target tracking methods is 

capable of working at higher speeds. 
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CHAPTER 4 

 
 

INTERNAL CAMERA CALIBRATION 
 

 

 

4.1 Overview 

This Chapter investigates those internal camera parameters that determine the image 

formation. Internal camera parameters are defined, distortion types and their causes 

are described, and distortion model and the proposed calibration procedures are 

explained in this Chapter.  

 

Internal camera parameters, also called as “intrinsic parameters” of a camera, can be 

defined as the internal geometry of the camera that determines the image formation 

rules. These parameters are determined by the material properties, dimensions and 

orientations of the lens and image sensor with respect to camera casing.  

 

The internal geometry of a camera is assumed to be unknown because of the 

uncertainties due to manufacturing and assembly errors and material imperfections, 

although its manufacturer declares these parameters. Improvements in 

manufacturing technologies and material science reduced these uncertainties. 

However, the topic of determination of internal camera calibration is still popular 

because of the fact that the image sensor dimensions are in micro scale and is still 

decreasing as result of developing technology. 

     

As a result of assumptions and ignoring some uncertainties, the problem of 

determining internal camera geometry can be reduced to determination of the 

following camera parameters: image plane distance, principal point, lens distortion 

parameters and pixel dimensions. 
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Image plane distance is the distance of the image plane to the center of the 

projection or the principal point, which is taken as is the origin of the image plane 

coordinate system. Orientation uncertainties in the lens and image plane with 

respect to the camera are assumed to be negligible. Therefore, the problem of 

determination of positions and orientations of the lens and image plane with respect 

to camera casing is reduced to the determination of two parameters: image plane 

distance and the location of principal point.  

 

Pixel dimensions can be defined as the width and height of the one pixel on the 

image sensor. On the other hand, the pixels structure is not contiguous in most types 

of image sensors, so the definition should be modified as horizontal and vertical 

distances between pixel centers. The determination of pixel dimensions 

experimentally is not possible since effects the uncertainty of the image plane 

distance on image formation is in the same order with those of pixel dimensions. 

But neglecting the uncertainties in pixels dimensions does not create problems, 

since these uncertainties are handled during determination of image plane distance. 

 

Still the most commonly encountered problem in image processing and computer 

vision projects is the distortions in the image due the material and manufacturing 

imperfections of lenses. As stated in Chapter 2, lenses are approximations to the 

perspective projection with a pin-hole camera and due to the geometric aberrations 

and material defects of the lens the image formation rules deviates from the ideal 

perspective projection. The problem of retrieving the image formation to 

perspective projection is reduced to construction of the distortion model, measuring 

distortions, determination of the distortion parameters, and reversing the distortions 

in the image to obtain the ideal image.  

 

The problem of determination of image plane distance was solved in previous study 

[1] by introducing an iterative procedure to the 3D reconstruction method. The 

depth of the secondary target, d, is a function of image plane distance, d0, while 

reconstruction of other two translations is dependent on depth. In the proposed 

method, the image plane distance is obtained by iterating the following equation,  
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 (4.1)  

 

until the relative error,  

            

 1
0 0
i id d ε+ − <  (4.2) 

 

decreases below a constant threshold, ε . 

 

In the previous study [2], a method was proposed to determine the position of the 

principal point (center of perspective projection) with respect to camera casing, thus 

with respect to the world coordinate system. The proposed method utilizes the 

relative motion of the objects at different depths when the camera is moving. In the 

calibration procedure, the camera is mounted on an X-Z table which also mounted 

on a Y-rotary table. If the rotation axis does not coincide with the principal point, 

the location of the principal point with respect to world coordinate system and also 

with respect to the objects in the scene alternates (Figure 4.1). Thus, when the 

camera is rotated about the axis, a relative motion between the images of the objects 

at different depths occurs. The axis of rotation and the principal point are coincided 

by adjusting the position of the camera on the X-Z table to have no relative motion 

between the images of objects at different depths (Figure 4.1), the x and z position 

of the perspective projection center with respect to camera casing is obtained. 

 

 
 

Figure 4.1. Determination of Principal Point of the Camera. 
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Although the experimental setup does not permit, it is theoretically possible to 

determine the y position of the perspective projection center with respect to the 

camera casing by applying the same procedure on Y-Z table and X-rotary tables. 

Moreover, it is possible to determine the optical axis and principal point by rotating 

the camera about an axis parallel to the z-axis and passing through the perspective 

projection center. The single non-rotating point on the image will be the principal 

point. 

 

In previous study [4], a lens distortion model and a calibration procedure was 

proposed. On the other hand, the method was not implemented and the distortion 

correction was not considered in that study. In this study, a complete solution to the 

distortion model suggested in study [4] is proposed and implemented. 

                

4.2 Distortion Model  

In most computer vision research studies, only a radial distortion model is used, 

because of its dominancy to other types of distortions. In this type of distortion 

model, pixels appear closer or farther to the origin as a function of even powers of 

their undistorted distance to the origin. Hence, the horizontal and vertical 

components of radial distortion, ( )r
iuδ  and ( )r

ivδ , can be expressed as 

  

 
( ) ( ) 2 4

1 2
( ) ( ) 2 4

1 2

( )
( )

r ud
i i i i
r ud

i i i i

u u k r k r
v v k r k r

δ
δ
⎡ ⎤ ⎡ ⎤+ +

=⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

…
…

 (4.3) 

 
where ( )ud

iu  and ( )ud
iv  are the undistorted horizontal and vertical image coordinates, 

{ }1 2, ,k k …  are the distortion coefficients. In most studies [27 -31], only 1k  and 2k  

are considered and the other coefficients are assumed to be negligible. ir  is the 

radial distance of the undistorted image coordinates to the origin of the image plane 

and it can be expressed as 

 

 2 2 2( ) ( )ud ud
i i ir u v= +  (4.4) 
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The cause of radial distortion is bending of light rays more or less than the correct 

amount due to surface aberrations of the lens [30]. An image containing high 

amount of radial distortion is seen in Figure 4.2. 

 

 
 

Figure 4.2. A Distorted Image 

 

Tangential distortion is another type of distortion which is commonly encountered 

in computer vision problems. The main cause of a tangential distortion is the 

existence of an angle between the optical axis of the lens and image plane normal. 

The horizontal and vertical components of tangential distortion, ( )t
iuδ  and ( )t

ivδ ,  

can be expressed as: 
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1 2
( ) 2 ( ) 2 ( ) ( )
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where 1p  and 2p  are the tangential distortion coefficients. 

 

The proposed distortion model in study [4] is sum of radial and tangential distortion 

models. Than the cumulative horizontal and vertical components of the distortion, 

iuδ  and ivδ  can be expressed as: 
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where iu  and iv  are the distorted image coordinates. By combining Equations (4.3), 

(4.5), and (4.6), the cumulative horizontal and vertical components of the distortion, 

iuδ  and ivδ  can be expressed as: 
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1 2 1 2
( ) 2 4 2 ( ) 2 ( ) ( )

1 2 1 2

( ) 2 [ 2( ) ]
( ) [ 2( ) ] 2

ud ud ud ud
i i i i i i i i

ud ud ud ud
i i i i i i i i

u u k r k r p u v p r u
v v k r k r p r v p u v

δ
δ

⎡ ⎤+ + + +⎡ ⎤
= ⎢ ⎥⎢ ⎥ + + + +⎣ ⎦ ⎣ ⎦

 (4.7) 

 

In Figures 4.3, 4.4, and 4.5, pure radial, pure tangential, and composite distortions 

are visualized, respectively. In these figures, the blue lines represent an original and 

undistorted image grid, while the green curves are obtained by the distorting the 

original lines by respective distortions. As seen in the figures, both distortion 

models do not affect the image center, although the distortion parameters used are 

extremely exaggerated. On the other hand, the affect of both distortion increases 

dramatically as the distance to origin increases.   

      

k1=-8e-006  k2=-1e-011  p1=0  p2=0

 
  

Figure 4.3. Pure Radial Distortion  
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k1=0  k2=0  p1=0.0002  p2=0.0002

 
 

Figure 4.4. Pure Tangential Distortion  

 

k1=-2e-006  k2=-1e-011  p1=0.0002  p2=0.0002

 
 

Figure 4.5. Radial and Tangential Distortion  
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The proposed calibration procedure in the study [4] utilizes the fact that the 

distortion at the pixels closer to the origin of the image plane is negligible even for 

the highly exaggerated distortion parameters. It is suggested to attach the secondary 

passive target on the calibration pattern and determine the calibration plane position 

by using the target and 3D reconstruction algorithm when the target is close to 

origin in the image. 

 

4.3 Calibration Pattern and Distortion Measurement 

It is possible to determine the distortion coefficients only if both the distorted and 

undistorted coordinates of a number of points on the image are known. Image plane 

coordinates already give the distorted coordinates of all points. However, in order to 

obtain the undistorted image coordinates, the geometry of the imaged scene and the 

position and orientation of the scene with respect to camera coordinate system 

should be known or calculated together with the distortion parameters. Then the 

exact locations of the features, e.g. lines and points, on the image plane are 

calculated by using ideal perspective projection and compared with their 

coordinates in the distorted image to obtain distortion parameters.  

 

A straightforward solution of the problem would be using a planar calibration 

pattern accurately positioned in front of the camera with a known 3D configuration. 

The next step is the construction of an ideal image using the geometry and 3D 

configuration of the calibration pattern and internal camera parameters other than 

lens distortion parameters. Finally, it is possible to measure the distortion field on 

the distorted image by comparing it with the ideal image. Unfortunately, the 

positioning the calibration pattern in front of the camera accurately is not an easy 

job and generally impossible in on-site processes. 

 

In the previous study [4], the use of a calibration pattern composed of equally 

spaced spots and containing the secondary passive target at its center is suggested. 

In this study, it is shown in Figures 4.3, 4.4, and 4.5 that the center of the image is 
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not affected remarkably even for very high values of distortion parameters and the 

suggested calibration procedure is implemented. 

 

On the other hand, the calibration pattern is redesigned (Figure 4.5) to increase the 

reconstruction accuracy. The suggested calibration pattern in the study [4] 

contained a modified and a smaller secondary passive target.  In this study, the 

secondary target is used as it is, but the size of calibration pattern is enlarged to 

cover the whole image when the secondary target is inside the distortion free region 

as shown in Figures 4.3, 4.4 and 4.5. The selection of spacing between the spots is 

another problem. Decreasing the spacing between the spots therefore using a denser 

spot pattern would increase the number of data points, thus the accuracy of 

distortion parameter determination process. However, matching the ideal positions 

of the spots and distorted spots becomes impossible, since ideal position of an outer 

spot may appear between the ideal position and distorted position of an inner spot 

depending on the amount of distortion and spacing between the spots. The spacing 

between the spots is selected as the minimum possible value which does not create 

matching problems.          

    

 
 

Figure 4.6. Calibration Pattern  
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The calibration pattern is positioned in front of the camera arbitrarily, but roughly 

45 degree rotated positions are preferred due to fact that the accuracy of the 3D 

reconstruction method is higher for this rotation amount [1, 2]. Then, the 3D 

configuration of the secondary passive target is reconstructed using the image of the 

calibration pattern without distortion correction. Next, the ideal positions of the 

equally spaced black spots are determined using ideal perspective projection and the 

centers of the black spots in the distorted image are determined. The ideal positions 

and distorted positions are matched, starting from the closest point to origin.  

 

Figure 4.6 shows the matching between distorted and ideal positions of the 

calibration spots.  In this figure, the ideal positions of the spots are marked as red 

points and yellow lines shows the matching.  

 

 
 

Figure 4.6. Feature Matching.  
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The undistorted image coordinates, ( )ud
iu  and ( )ud

iv , and corresponding horizontal 

and vertical distortions, iuδ  and ivδ , are calculated using the matches in Figure 4.6.  

To increase the number of data points and homogeneity of distribution of data 

points over the entire image plane, the feature matching method is implemented to 

permit the use of maximum four calibration images. It is preferred to use the four 

images of calibration pattern rotated approximately ±45° about x and y axes, due to 

the fact that the accuracy of the reconstruction method is high for these orientations. 

Also the secondary passive target on the calibration pattern should be centered at 

the calibration images.   

   

4.4 Determination of Calibration Parameters 

The determination of the distortion parameters is a well defined problem, once the 

distortion model is selected and the horizontal and vertical distortions, iuδ  and ivδ , 

and the corresponding undistorted image coordinates, ( )ud
iu  and ( )ud

iv  are extracted. 

The distortion Equations (4.7) for each data obtained by feature matching with the 

unknown distortion parameters can be expressed as the following system of linear 

equations.  
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The unknown distortion parameter vector, [ ]1 2 1 2k k p p=x  is solved by 

pseudo inversion technique as follows  

 

 1( )−= T Tx A A A b  (4.9) 
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where  
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and  

 

 [ ]1 1 2 2
T

N Nu v u v u vδ δ δ δ δ δ=b " "  (4.11) 

 

4.5. Distortion Correction 

The 3D reconstruction method determines the 3D configuration parameters of the 

secondary passive target by inverse perspective projection using the image 

coordinates of the contour and spots of the secondary passive target in the image. 

Since the image formation deviates from the ideal perspective projection because of 

the lens distortion, the image coordinates of the pixels corresponding to target 

contour and spots should be corrected using the distortion parameters before the 

reconstruction process.  

 

If the distortion Equation (4.7) composed of radial and tangential distortion is 

rearranged as 
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it is seen that the distorted horizontal and vertical image coordinates, iu  and iv , are 

non-linear functions 

 ( ) ( ) ( )( , )ud ud ud
i i u i iu u f u v= +  (4.13) 

 
 ( ) ( ) ( )( , )ud ud ud

i i v i iv v f u v= +  (4.14) 

 

of undistorted horizontal and vertical image coordinates, ( )ud
iu  and ( )ud

iv , where 

 
 ( ) ( ) ( ) 2 4 ( ) ( ) 2 ( ) 2

1 2 1 2( , ) ( ) 2 [ 2( ) ]ud ud ud ud ud ud
u i i i i i i i i if u v u k r k r p u v p r u= + + + +  (4.15) 

 
 ( ) ( ) ( ) 2 4 2 ( ) 2 ( ) ( )

1 2 1 2( , ) ( ) [ 2( ) ] 2ud ud ud ud ud ud
v i i i i i i i i if u v v k r k r p r v p u v= + + + +  (4.16) 

 
and 

 

  2 2 2( ) ( )ud ud
i i ir u v= + . (4.17) 

 

The problem of distortion correction can be defined as inversing the distortion using 

the distorted image coordinates and distortion parameters. As seen in Equations 

(4.13), (4.14), (4.15), (4.16) and (4.17) the distortions functions are coupled and 

include terms up to ninth order, and there is no explicit inverse function of these 

distortion equations.  

 

One of the most common techniques in inverse distortion models is forming a 

lookup table using the distortion model parameters and undistorted image 

coordinates, and then calculating the undistorted image coordinates by 2D 

polynomial interpolation using the lookup table. As an alternative to this approach, 

in the recent study [31], the radial distortion model is inverted by Taylor series 

expansion. 

 

This study also utilizes the Taylor series approximation to obtain the inverse 

functions of the distortion equations, Equations (4.13) and (4.14), corresponding to 
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compound radial and tangential distortion. The inverse equation can be written as 

follows if the higher order terms are omitted: 
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where ( )udu  and ( )udv  are undistorted image coordinates corresponding to distorted 

image coordinates u  and v .  The partial derivatives of Equations (4.15) and (4.16) 

are derived analytically and substituted into inverse distortion Equations (4.18) and 

(4.19) during implementation. 

 

The performance of the inverse distortion formulas is evaluated with synthetically 

distorted images and the results are presented in Figures 4.7, 4.8, 4.9, and 4.10. In 

these figures, undistorted pixels are plotted with blue color, green colored pixels are 

the distorted ones and finally the red colored pixels indicate the corrected 

coordinates by the proposed inverse distortion formulas. 
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k1=-4e-006  k2=-1e-011  p1=0  p2=0

 
 

Figure 4.7. Distortion Correction (Pure Radial Distortion). 
  

k1=0  k2=0  p1=0.0002  p2=0.0002

 
 

Figure 4.8. Distortion Correction (Pure Tangential Distortion).  
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k1=-4e-006  k2=-1e-011  p1=0.0002  p2=0.0002

 
 

Figure 4.9. Distortion Correction (Composite Distortion).  

   

k1=-2.0576e-007  k2=-1.2091e-013  p1=3.3869e-006  p2=2.5558e-006
 

 

Figure 4.10. Distortion Correction (Determined Camera Distortion).  
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 As seen in Figures 4.7 and 4.8, the inverse distortion method obtained by Taylor 

series expansion can correct the pure radial distortions with a maximum one pixel 

error. Also, Figure 4.9 shows that the inverse distortion method can correct the high 

amount of composite distortion with a maximum 6 pixels error.  Finally, in Figure 

4.10, distortion parameters determined for the camera is used to simulate the 

performance of the inverse distortion method. The maximum correction error for 

camera distortion parameters does not exceed one pixel. 

 

The results of the simulations presented in Figures 4.7, 4.8, 4.9, and 4.10 show that 

the proposed and implemented inverse correction method is accurate enough to 

correct the radial and tangential distortions of the camera system used in this study. 

The inverse distortion formulas are combined with the 3D reconstruction method, 

the image coordinates of the target contour and spot centers are corrected before the 

inverse perspective projection.    

 

4.6 Calibration Procedure and Results 

In this Chapter, a calibration pattern and the distortion measurement method are 

presented. A method is proposed to determine the distortion parameters of a 

composite radial and tangential distortion model using the measured distortions. 

Finally, distortion correction method for the distortion model is presented. 

 

The proposed lens distortion model, distortion measurement, distortion parameters 

determination and distortion correction methods implies the following calibration 

procedure. 

 

1. Position the calibration pattern in front of the camera, capture the four 

images of the pattern rotated ±45° about x and y axes with respect to 

camera and centering the secondary passive target on the calibration 

pattern. 

2. Set the distortion parameters to zero, initially. 
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3. Reconstruct the calibration pattern plane configuration parameters using the 

image of the secondary passive target by distortion correction embedded 3D 

reconstruction method. 

4. Calculate the ideal positions of the spots of the calibration pattern on the 

image plane using the reconstructed 3D configuration of the calibration 

pattern plane. 

5. Determine the centers of the spots of the calibration pattern viewed in the 

distorted images. 

6. Match the ideal and actual positions of the calibration spots and calculate 

the horizontal and vertical distortions and the corresponding undistorted 

coordinates. 

7. Determine the distortion parameters. 

8. Iterate the steps 3 to 7, until the relative absolute distortion parameter errors 

become smaller than a required threshold value. 

 

The proposed calibration procedure is implemented such that it is fully autonomous 

and does not require assistance except roughly positioning the calibration pattern in 

front of the camera. The distortion parameters obtained as result of the proposed 

calibration procedure are as follows. 
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The absolute relative error limit for distortion parameters are taken as 0.01 in the 

calibration procedure, and it converges in the third iteration.  

 

The determination of image plane distance, principal point and center of perspective 

projection was solved in previous studies [1, 2]. In this study, the remaining part of 

internal camera calibration, the lens distortion, is solved using a composite 

distortion model composed of radial and tangential distortions as suggested in the 

previous study [4].      
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 CHAPTER 5 

 
IMPLEMENTATION AND CASE STUDIES 

 

 

5.1 Overview 

In this Chapter, the implementation of the proposed methods in Chapters 2, 3, and 4 

is discussed. The hardware used and overall algorithm of the software developed 

are presented. The results of a set of case studies which are designed to test the 

software are discussed. 

  

5.2. Implementation 

The software developed includes the all proposed methods in this study and almost 

all methods developed in previous studies [1-4]. A manual for the software is 

presented in Appendix A. The hardware, camera, frame grabber, and computer used 

in this study are different than the ones used in previous studies. 

  

5.2.1. Hardware 

In the previous studies [1-4], a CID camera, CIDTEC 2250D was preferred to test 

the developed methods because of its contiguous pixel structure, non-destructive 

read-out property, and very low noise signal ratio. Unfortunately, this camera broke 

down during the last phase of the earlier study hence currently is not available. 

Therefore, and it has to be replaced by a CCD camera, SONY EVI D-31, which is 

borrowed from the Mechatronic Design Laboratory of the Mechanical Engineering 

Department of METU. The specifications of the camera are presented in Table 5.1, 

[32].  
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Table 5.1. Camera Specifications 

 
 SONY EVI D-31 

Video Signal NTSC 

Image Sensor 1/3"Hyper HAD Color CCD 
Effective Pixels 768(H)X492(V) 
H. Resolution 460TV lines 
V. Resolution 350TV lines 

Lens X12 Power Zoom, to f=5.4 to 64.8mm, F1.8 to F2.7 
S/N Ratio more than 48dB 

Frame Rate 25 FPS 

Video Out Composite, S-Video 

 

An Imagenation PXC200A frame grabber is used digitize the video signal of the 

camera. Table 5.2 shows the specifications of the frame grabber [33]. 

  

Table 5.2. Frame Grabber Specifications 
 Imagenation PXC200A 

Input Video Formats NTSC, PAL, SECAM, S-Video 

Input Video Signal 1 V peak-to-peak, 75 Ω 

Resolution NTSC: 640x480 PAL/SECAM 768x576 

Frame Rate 25 FPS 

Output Formats Color: YCrCb 4:2:2; RGB 32 24 16 15 Monochrome: Y8 

Video Noise ≤1 LSB RMS 
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A Pentium IV 2.8 GHz 512 MB DDR Ram personal computer is used to mount the 

frame grabber and test the developed and implemented methods in this study. All 

processing speeds or times presented in this manuscript are measured for this setup. 

S-Video inputs and outputs of the frame grabber and the camera are utilized.      

    

5.2.2 Overall Algorithm 

All methods discussed in this study, including the methods developed in the 

previous studies [1-4] are combined in the software developed using C++. In order 

to provide compatibility between the processes, all of the alternative methods of the 

same process are designed to have same input and output structure. 

      

The software developed is composed of mainly two parts: the interface and the 

background service. The interface provides selection options for the method and 

parameters for all processes. On the other hand, the background service of the 

program processes the selected input with selected methods and parameters. This 

type of structure makes it possible to switch methods or parameters without 

stopping the process. 

 

The flow diagram of the overall algorithm is presented in Figure 5.1. The process of 

3D reconstruction starts with the selection of input source. It is possible to select a 

digital image file, camera or virtual perspective projection as the input source. 

Except the digital image file input case, all processes are repeated continuously. A 

640x480 8-bit grayscale image is obtained if the digital image file or camera is 

selected as the input source. On the other hand, a 640x480 1-bit binary image is 

obtained if the virtual perspective projection is selected as the input source.  In the 

image cropping process, the sub-region of the image estimated by target tracking 

method is cropped. The histogram of the estimated target region is also formed 

during image cropping. The remaining processes can be grouped into three main 

parts: target detection, reconstruction, and target tracking. 
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Figure 5.1. Flowchart of the Overall Algorithm.  
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The target detection part is composed of segmentation, edge detection, connectivity 

analysis, and ellipse detection steps. If the ellipse corresponding to the target’s 

contour in the image is detected in the target detection part, the coordinates of the 

target region are fed to 2D corners data block of the target tracking part. The 

reconstruction part follows the target detection part. If no ellipse is detected, then 

the process returns to input block.  

 

The reconstruction part is composed of image cropping, re-segmentation, feature 

extraction, distortion correction, and finally 3D reconstruction methods. The 

smallest rectangular image area containing the target is cropped and re-segmented 

first. The pixels corresponding to contour and the spots of the target are detected by 

feature extraction method. The distortion correction method, calculates the 

undistorted image coordinates of these feature pixels. Finally the 3D parameters are 

calculated by 3D reconstruction method. The 3D configuration parameters are fed 

to the 3D parameters data block of the target tracking part.  

 

The target tracking part of the algorithm is composed of 2D corners and 3D 

parameters data block and target region estimation method. According to the 

selected target tracking strategy, the image coordinates of the target are estimated 

using either 2D corners or 3D parameters obtained from previous images.   

 

5.3. Case Studies 

The 3D reconstruction method was tested using a positioning unit and associated 

absolute reconstruction errors were presented in the previous study [2]. However, 

the current study integrates the autonomous thresholding and distortion correction 

methods to the 3D reconstruction and both of these methods may affect the 

resulting ellipse contour in the image; thus, the 3D configuration parameters may 

differ. However, during on-site applications, generally an alternative and more 

accurate measurement technique does not exist, and it is not possible to measure the 

errors of the 3D reconstruction method absolutely.  
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In order to test the performance of the overall 3D reconstruction method with the 

integrated autonomous thresholding and distortion correction methods, two test 

procedures are designed and used. These tests can also be used to measure the 

accuracy of the 3D reconstruction method during onsite applications, since these 

tests do not utilize an alternative measurement technique.  In the following 

subsections these two test procedures are explained and the results of the 

experiments are presented.    

   

5.3.1. Distance and Angle Measurement 

This case is designed to measure the translational and rotational reconstruction 

accuracy of the overall 3D reconstruction method with changing illumination 

conditions. A calibration object composed of two secondary passive targets (Figure 

5.2) is utilized. The angle between the faces of the object and spacing between the 

secondary targets are known.  

  

 
 

Figure 5.2. Distance Measurement Pattern.  
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In this test, the object is positioned in front of the camera arbitrarily as shown in 

Figure 5.2. 3D configurations of each secondary passive target with respect to 

camera are reconstructed separately. Using the reconstructed 3D configurations, the 

distance and angle between the secondary passive targets are calculated and 

compared with actual distance and angle. 

 

In this study, this test is repeated for two different illumination conditions, three 

different camera locations and with and without distortion correction. The results of 

the experiments are presented in Figures 5.3, 5.4, 5.5, 5.6, 5.7, and 5.8. In these 

figures, approximately first half of the measured data is obtained at natural 

illumination conditions (no direct sun light into the room, curtains closed) while the 

second half is obtained with some extra lighting (four ceiling florescent lambs are 

switched on).   

  

 
 

Figure 5.3. Distance and Angle Measurement, Position 1. 
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Figure 5.4. Distance and Angle Measurement, Position 1, Distortion Corrected. 

 

 
 

Figure 5.5. Distance and Angle Measurement, Position 2.  
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Figure 5.6. Distance and Angle Measurement, Position 2, Distortion Corrected 

 

 
 

Figure 5.7. Distance and Angle Measurement, Position 3. 
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Figure 5.8. Distance and Angle Measurement, Position 3, Distortion Corrected 

 

As seen in these figures, the reconstructed distance and angle between the 

secondary passive targets are found to be smaller for the natural illumination 

condition case. If a constant threshold is used, it is expected to have a smaller target 

in the binary image, which will result in overestimated distances for natural 

illumination conditions. However the minimum error thresholding method reverses 

the situation by returning a smaller threshold value for the natural illumination case. 

The amount of deviations in ellipse center and center spot are also affected by the 

illumination conditions and threshold value. Since this deviation is also employed in 

3D reconstruction method to compute the rotational 3D parameters, the measured 

angles are also affected by the illumination conditions.     

   

The effects of distortion correction are remarkable in all figures presented above. 

The distortion correction method reduces the reconstruction errors for extra lighting 

condition since the distortion parameters are also calculated using extra lighting.     
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5.3.2. g Calculation. 

This test is designed to measure the angular and translational reconstruction 

performance of the 3D reconstruction method and also target tracking performance 

of the proposed method. In this test, it is aimed to calculate the gravitational 

acceleration using a secondary passive target attached pendulum. The swinging 

motion of the secondary passive target on the pendulum is tracked; the 

reconstructed rotational and translational parameters of the pendulum and the time 

vector are exported. The exported data is processed to calculate the period and 

length of the pendulum. The gravitational acceleration is estimated using the 

following equation. 

 

 2 lT
g

π=  (5.1) 

 

where, T  is the period, l  is the length of the pendulum and g is the gravitational 

acceleration. Note that in Equation (5.1), air resistance is neglected and the 

swinging object is assumed to be a point mass with zero mass moment of inertia. 

The air resistance and non-zero mass moment of inertia will decrease the frequency 

of oscillations, increases the period of the pendulum, thus gravitational acceleration 

g is underestimated. 

 

The pendulum used in this study is composed of a planar mass and two thin ropes as 

depicted in Figure 5.9. The mass of the ropes and moment of inertia of the mass are 

neglected and the secondary passive target is attached at the center of gravity of the 

planar mass.  
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Figure 5.9. Pendulum 

 

The swinging motion of the pendulum is tracked and the 3D configuration 

parameters and the time vector are extracted. In Figure 5.10, the reconstructed 

translational parameters are presented. The period of the motion of the pendulum is 

calculated as the average period of the three translational parameters. The period of 

a translational parameter is approximated by dividing the duration between the first 

and last local maximum points by number of cycles. For the data shown in Figure 

5.10, the period of the pendulum is measured as 1.338 s. 
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Figure 5.10. Reconstructed Translational Parameters, Swing Motion of Pendulum  

 

The center of rotation and length of the pendulum are calculated using the three 

translational parameters and surface normal vector of the secondary target. A sphere 

which can be characterized as 

 

 2 2 2 2( ) ( ) ( ) 0r x a y b z c− − − − − − =  (5.2) 

 

is fitted to the translational parameters with the constraint that the radius vector 

must be perpendicular to the surface normal vector of the pendulum (target) and can 

be expressed as,  

 

 [ ] 3 0a x b y c z u− − − ⋅ =  (5.3) 
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where r  is the radius and ( , , )a b c  is the center of the sphere, 3u  is the surface 

normal vector, x , y  and z  is the translations of the secondary passive target with 

respect to camera coordinate system.  

 Arranging the Equations (5.2) and (5.3) yields the following equations, 

 

 [ ] 2 2 2

2 2 2 2

2 2 2 1

a
b

x y z x y z
c

r a b c
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where, 3xu , 3 yu  and 3zu   are the components of the surface normal vector, 3u , in x , 

y , and z  directions with respect to the camera coordinate system. The following 

system of equations is obtained for N data points. 
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 (5.6) 

 

where ix , iy  and iz  are the translations and 3 ,x iu , 3 ,y iu , and 3 ,z iu  are the surface 

normal vector components of the ith data set. Equation (5.6) is solved by pseudo-

inversion and the unknowns, a , b , c  and r  are obtained. 
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Unfortunately, the sphere fitting method discussed above is not able to estimate the 

length of the pendulum for the data presented in Figure 5.10, since the amplitude of 

the motion is not large enough to get a good spherical fit. On the other hand, 

increasing the amplitude of the pendulum motion results in frames with interlacing 

and motion blur effect (Figure 5.11) because the scanning speed of the camera is 8.5 

Hz and it is interlaced, although the camera can send 25 frames to the frame grabber 

per second. 

 

 
    

Figure 5.11. Interlacing and Motion Blur.  

 

Although the solution of the interlacing and motion blur effect problem is using a 

high speed scanning camera, in order the complete the analysis in this study, the 

problem is solved by using frames in which the pendulum is stopped at five 

different positions. The reconstructed translational parameters of the target for these 

frames are presented in Figure 5.12. The sphere fitting method estimated the radius, 

the length of the pendulum, as 443.71 mm for the data presented in Figure 5.12, 

where the actual length is 444±0.5 mm. 
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Figure 5.12. Reconstructed Translational Parameters, Positioned Pendulum  

 

The gravitational acceleration is estimated as 9.785m/s2 using the calculated period 

and length of the pendulum and Equation (5.1). The experiment is repeated for 

another four set of camera positions and the results are presented in Table 5.1. The 

gravitational acceleration is estimated as 9.761 m/s2 on the average. 

 

Table 5.3. Results of Gravity Calculation. 

Data Set Length [mm] Period [s] g [m/s2] 

1 443.71 1.338 9.785 

2 443.07 1.339 9.757 

3 444.53 1.339 9.788 

4 441.52 1.338 9.736 

5 443.30 1.340 9.741 

Average 443.23 1.338 9.761 
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The fact that gravitational acceleration calculation results presented in Table 5.1, 

are slightly smaller than the actual value 9.806 m/s2 in Ankara [9], mean that the 3D 

reconstruction method is accurate, since it is expected to obtain underestimated 

gravitational acceleration values due to assumptions in the period Equation (5.1). 

Also obtaining similar results for the different camera positions validates the 

precision of the 3D reconstruction method.  

 

Also this test can be simplified and the precision of the 3D reconstruction algorithm 

for moving targets can be estimated by investigating the reconstructed rotational 

parameters xR  and yR . Note that these parameters determine the orientation of the 

target plane with respect to camera coordinate system. Since the target plane and the 

plane of swinging motion coincide for this case, the reconstructed rotational 

parameters xR  and yR  of the swinging target should be constant over the time. 

Figure 5.13 represents the reconstructed rotational parameters that determine the 

target plane orientation with respect to camera coordinate system. As seen in the 

figure, the orientation of target plane is almost constant for the secondary passive 

target attached on the swinging pendulum.   
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Figure 5.13. Reconstructed Rotational Parameters, Swinging Pendulum  
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5.4. Results 

In this chapter, the structure of the overall 3D reconstruction algorithm and the 

hardware used are presented. Two tests designed to measure the on-site application 

performance of the setup are explained and the results of these tests are presented 

and discussed. 

 

The overall 3D reconstruction method is succeeded to detect the target and 

reconstruct the 3D configuration parameters in all of the tests. However the low 

scanning speed of the camera results in interlacing and motion blur effects in the 

frames corresponding to scenes in which the target moves rapidly. For these frames 

the target can not be detected since the interlacing effect deforms the contour of the 

target. 

 

The first test designed and applied to measure the accuracy of the 3D reconstruction 

method is utilized an object with two secondary passive targets attached on its two 

perpendicular surfaces. In this test, the distance between the centers and angle 

between the surface normal vectors of the secondary passive targets are calculated 

using the reconstructed 3D configurations. Experiments are conducted for different 

camera positions and orientations and the effects of lighting conditions and the 

distortion correction on the reconstructed parameters are presented and discussed.  

 

The second test utilizes the swinging motion of a pendulum with a secondary 

passive target attached on its mass center to measure the reconstruction accuracy of 

the 3D reconstruction method and target tracking performance of the proposed 

method for moving targets. Unfortunately, the interlacing effect due to scanning 

process of the camera do not permit tracking and reconstructing the 3D 

configuration of the swinging pendulum with large amplitudes which is necessary 

to calculate the length of the pendulum. On the other hand, for small amplitude 

swinging motions, the target detection and tracking methods are succeeded and the 

period of the pendulum is calculated using the reconstructed translational 

parameters over the time. To complete the test, the length of the pendulum is 
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calculated using the reconstructed 3D configurations corresponding frames in which 

the pendulum is stopped at larger angular displacements with respect to equilibrium 

position. The gravitational acceleration is calculated using the length and period of 

the pendulum. The resulting gravitational acceleration calculated for five different 

camera positions are slightly smaller than the actual value. Considering the fact that 

air resistance and moment of inertia are neglected, the reconstructed gravitational 

acceleration values show that the method is accurate. Also obtaining similar results 

for different camera positions shows the precision of the overall 3D reconstruction 

method. The reconstructed rotational parameters that define the orientation of the 

target plane with respect to camera coordinate system are almost constant as they 

are expected for a planar motion; this result also validates the precision of the 

overall method. 
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CHAPTER 6 

 
SUMMARY AND CONCLUSION 

 

 

In this chapter, the work done in this study is summarized focusing on the methods 

proposed, developed, and implemented. Contributions of these methods to the 

performance of the 3D reconstruction system are evaluated. The major findings of 

the study are concluded and some recommendations for future work are given. 

 

6.1. Summary 

The aim of this study is to develop a robust, fast, autonomous and accurate, 3D 

reconstruction method utilizing the achievements of the previous studies [1-4]. 

Naturally, the design objectives of the previous studies, advantages and 

disadvantages of proposed methods determine this study’s approach to the problem. 

Although the sum of the methods proposed by the previous studies constitutes a 

fully autonomous 3D reconstruction method, there occurred compatibility, 

reliability and speed problems when they are combined. The goal of this study is to 

investigate the previously proposed methods in terms of robustness, speed and 

accuracy and modify or replace these methods to achieve a 3D reconstruction 

method satisfying the design requirements.  

 

The processing sequence formed in the previous studies is retained and a step-wise 

approach is preferred for the evaluation of the previously developed methods. 

Starting from the image formation and grabbing, all methods proposed are checked, 

improved, and combined sequentially to avoid compatibility problems. The 

improved versions of these methods through modification or replacement are used 

as the primary set while their original versions are kept as alternatives for 

comparison purposes. 
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The existing hardware is updated first. A Sony EVI-D31 color CCD camera, 

Imagenation PXC200A color frame grabber, and a Pentium IV 2.8GHz 512MB 

DDR ram PC are used because of their availability. Although this hardware 

supports using color images, grayscale images are grabbed and used considering 

possible future applications. 

 

Although readily available software platforms like Matlab 6.5® provide some user 

friendly image acquisition and image processing toolboxes, and therefore are 

commonly used in machine vision studies, Borland® C++ 6.0 compiler is used for 

implementation because of speed considerations. A modular approach is utilized in 

the implementation of methods to provide the necessary flexibility and reliability. 

All modules and sub-modules are designed to return a success or error code. The 

same input and output structures are utilized by the alternative methods.  

 

The image capturing techniques implemented in the previous studies [1-4] are 

updated and utilized. A virtual positioning and perspective projection model is 

developed for simulation purposes. This model is capable of creating 100 ideal 

frames of the moving secondary passive target in virtual 3D environment per 

second. A direct access to the frame grabber’s buffer is provided in order to get and 

process the images of the scene containing the moving secondary target. For 

comparison of final states of the methods developed with their older versions, a set 

of digital image file routines are also included. 

 

The segmentation performance of a global threshold method employing the 

minimum error thresholding technique [21] was experimented and approved in the 

previous studies [3, 4]. This method is discussed, implemented, and tested 

considering the objectives of this study. The speed of the method is enhanced 45 

times by avoiding the repetitive calculations in the corresponding equations.  

 

The use of a Sobel filter and an edge thinning operation to follow are replaced by a 

Laplace operator in the edge detection process. So, only one pixel thick edges are 
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obtained without any deformation caused by the edge thinning operation. 

Furthermore, the speed of the edge detection process is enhanced 13 times.  

 

The problems in the connectivity analysis proposed by the previous study [4] are 

solved by removing some faulty implementations. However, this version of the 

algorithm does not provide any noticeable speed enhancement. Therefore, a new 

one pass connectivity analysis algorithm is designed and implemented, which is 

compatible with edge detection method. The speed of the new algorithm is 20 times 

faster than the original one. 

 

The governing process of the previous study [4] was the ellipse detection. In the 

previous study [4], the Bennett’s algorithm [25] was modified to enhance the 

detection performance and speed. However the results of the experiments conducted 

in this study show that this implementation was not optimum in terms of detection 

success and speed. The use of distinct accumulation spaces is introduced to evaluate 

each connected path separately. The quality factor and symmetry measure 

definitions are updated. Decision rules are re-defined using the results of 

experiments conducted with synthetic images. Although the correct detection rate is 

increased to 90% and false detection rate is reduced to 10% approximately, the 

order of the algorithm does not permit any appreciable speed enhancement. 

 

The direct ellipse fitting method proposed in a previous study [26] is discussed and 

implemented. A relative error criterion is defined and a decision rule is determined 

utilizing the experiments with synthetic images. Absolutely 100% correct detection 

and 0% false detection rates are achieved. The results of experiments with virtual 

frames, real frames and real images show that ellipse detection with the direct 

ellipse fitting method [26] is approximately 60 times faster than the Bennett’s 

algorithm [25]. 

 

The implementation of the 3D reconstruction algorithm is reviewed considering the 

robustness requirement of this study. The preliminary operations, contour 

following, and spot detection methods are replaced with newly designed ones. The 
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3D reconstruction algorithm is rearranged to match the reliability standards applied 

to the other implemented methods.   

 

The speed of the target detection method composed of segmentation, edge 

detection, connectivity analysis, and ellipse detection methods is reached up to the 

frame grabbing speed of 25 Hz, but still highly depends on the complexity of the 

scene, number of edge pixels, and connected paths. A target tracking method is 

introduced in order to reduce the size of processed region and thus the processing 

load, to fix the ellipse detection speed at 25 Hz, and finally to reduce the CPU 

utilization. Target’s position in the processing frame is estimated using either 2D 

image plane coordinates or 3D configuration parameters of the target extracted for 

the previous frames. Since the accuracy of the target tracking is not so critical as 

long as the target remains inside the estimated region, a polynomial fitting 

technique is preferred because of its low complexity and computational load. Some 

experiments are conducted for both synthetic frames and real frames including a 

moving target, with various numbers of last data points and various polynomial 

orders. The results show that tracking the target using a second degree polynomial 

fitted to 2D image coordinates of the smallest rectangular region in the last five 

frames exhibits the best performance if the maximum and average estimation errors 

are compared. However, the other tracking strategies may also be used to track the 

target, as long as the estimated region is enlarged enough to handle estimation 

errors. In the experiments, it is observed that the processing speed is increased to 

the frame grabbing speed of 25 Hz and the CPU utilization is reduced down to 50-

60 % range with the addition of target tracking, independent of complexity of the 

scene. 

 

The use of a composite radial and tangential distortion model and a method for the 

determination of model parameters were proposed in the study [4]. However, no 

suggestions were given on the distortion measurement and distortion correction 

methods. A calibration pattern including the secondary passive target is redesigned. 

The image region unaffected or negligibly affected by the lens distortion is 

determined and used to reconstruct the 3D configuration of the calibration pattern 
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plane utilizing the secondary passive target on the calibration pattern. An 

autonomous method is proposed to measure the distortions on the entire image 

plane. In this method, ideal locations of the calibration spots are calculated and 

matched with the spots in the image in order to obtain the horizontal and vertical 

distortion components. Parameters of the distortion model are determined by fitting 

the model to the measured distortion components. The inverse distortion model is 

constructed by using Taylor series expansion. The accuracy level of the distortion 

inversion is obtained using synthetically distorted images. This distortion correction 

method is combined with the 3D reconstruction method to correct the image 

coordinates of the pixels corresponding to the target’s contour and spots. 

 

Two test procedures are designed to measure the on-site performance of the overall 

method composed of target detection, 3D reconstruction, and target tracking. In the 

first test, an object with two secondary passive targets mounted on its perpendicular 

faces is utilized. The accuracy level of the method is measured by comparing the 

reconstructed the angle between the faces and distance between the target centers 

with the actual values. In the second test, the gravitational acceleration is calculated 

using the motion of a secondary passive target mounted pendulum. The length and 

period of the pendulum is reconstructed in order to evaluate the gravitational 

acceleration approximately.  

 

Experiments are conducted with natural and extra lighting conditions, with and 

without distortion correction, and for different camera positions for the first test 

procedure. The results show that the accuracy of the overall reconstruction method 

is higher for extra lighting conditions and distortion corrected cases. However, the 

autonomous thresholding and distortion correction methods reduce the 

reconstruction errors below 0.5 mm for distances and 0.5° for angles even for the 

natural lighting conditions.  

 

In the experiments for second test procedure conducted for different camera 

positions, the gravitational acceleration is obtained as 9.761m/s2 on the average. 

This result is close to its actual value in Ankara and validates the accuracy of the 3D 
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reconstruction method, if the assumptions and simplifications in the pendulum 

based gravity analysis are considered (air resistance and moment of inertia are 

neglected). The results obtained between 9.736 m/s2 and 9.788 m/s2 for different 

camera positions validate of the precision of the 3D reconstruction method.    

 

6.2. Conclusions 

The method developed and implemented in this study is capable of detecting the 

secondary passive target and reconstructing its 3D configuration with a constant 

processing of 25 Hz. Since this speed is equal to frame grabbing speed, the system 

can be regarded as it is working in real time. Moreover, the CPU utilization does 

not exceed % 60, showing that the maximum solution speed of method is even 

higher.   

 

No runtime errors occurred in any of the experiments including the ones that tests 

the robustness of the method in extreme conditions such as no lighting, no or more 

than one secondary passive targets, target with no internal spots, and agile motions 

of the target or the camera.  In the experiments, the method continues to process the 

subsequent frames although the target is not detected or the method is unable to 

reconstruct the 3D configuration parameters in the previous frame.       

 

Results of the test cases show that the accuracy of the 3D reconstruction method is 

enhanced by introducing the distortion correction and autonomous thresholding 

methods. In the experiments conducted with various camera positions and lighting 

conditions, it is observed that the method is able to reconstruct the distances and 

angles with the errors less than 0.5 mm and 0.5° respectively.  

 

This study attains its objectives since the facts given above imply that the developed 

method in this study is able to reconstruct the 3D configuration parameters of the 

secondary passive target using single camera images autonomously, in real time 

with a desired accuracy and robustness.       
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6.3. Recommendations for Future Work  

Almost all machine vision systems developed up to now are application dependent, 

and this study does not claim the opposite. Thus the essential future improvements 

may emerge during the adaptation of the proposed method to real life applications. 

However it is possible to list some general recommendations to increase the 

performance of the method in terms of its accuracy and speed. 

 

• The accuracy of the 3D reconstruction method can be enhanced by 

increasing the resolution of the camera and/or employing sub-pixel 

measurement and/or computation techniques.  

  

• Temporal resolution of the reconstructed 3D configuration parameters can 

be increased by utilizing a high speed camera. 

 

• Color images and colored target may be used for further reduction of the 

computational load due to target detection. 

 

•  The overall 3D reconstruction method can be embedded into a digital 

image processing board. 

 

• Pan, tilt and zoom motions of the camera can be controlled by means of 

servomotors to increase the reconstruction accuracy especially when 

following moving targets. 
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APPENDIX A 

 
IMAGEPRO 2.0 

 

 
Methods proposed in this study and former methods proposed in previous studies 

are integrated into a software called ImagePro 2.0 to conduct experiments. In 

Appendix A, general features of the software are explained.  

 

The software composed of two main parts: the interface (Figure A.1) and the 

background service. The interface makes it possible to change the processing 

options and parameters as well as to display options without corrupting the 

operation. In the mean time, the background service part processes the selected 

input source according to the selected options. In the following sections, the 

functions of the interface and a user manual are presented.  

 

 
 

Figure A.1. ImagePro 2.0 Interface 
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A.1 Interface 

The interface of the software is composed of two main areas: the first area is the 

control panel and the second one is the results area as shown in Figure A.2. 

 

 
 

Figure A.2. Parts of the Interface  

 

 

A.1.1 Control Panel 

The control panel is composed of sub-panels (Figure A.3) that enable the user to 

switch between alternatives methods, to adjust the parameters, and to change 

display options during an operation.  

 

Control Panel Results Area
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Figure A.3. Control Panel  

 

Input Source Control Panel:   

 
This panel is composed of a pull down menu that enables switching between the 

input source options and a button that provides starting and stopping the processing 

for “Camera” and “Virtual” input case and selecting digital image file for the “File” 

input case. 
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Thresholding Control Panel: 

 
Thresholding control panel is composed of a list box and a text box. The threshold 

determination method is selected using the list box. “Manual” option enables using 

a constant user-defined threshold value entered to the text box “Val”. “AT-Org”, 

“AT-Mod” is the Kittler’s and Illingwort’s minimum error thresholding method 

with the original and modified equations, respectively, discussed in the 

segmentation section of Chapter 2. 

    

Edge Detection Control Panel: 

 
This panel enables switching between the edge detection methods discussed in 

Chapter 2.   

 

Connectivity Control Panel: 

 
This panel enables switching between the connectivity analysis methods discussed 

in Chapter 2. CN0 is the corrected version of the proposed method in the previous 

study [4], CN1 is the connectivity analysis method designed in this study as stated 

before. 

 

Ellipse Detection Control Panel: 

 
The single list box in this panel provides choosing the ellipse detection method. The 

first alternative is Bennett’s algorithm and second one is direct ellipse fitting.  
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Re-Thresholding Control Panel: 

 
This panel presents the same options with Thresholding Control Panel but the 

“None” option is added to by-pass the re-thresholding method. 

 

Reconstruction Control Panel: 

 
The panel is composed of a check box and a list box. The check box provides 

enabling or disabling the distortion correction method discussed in Chapter 4, for 

correcting the image coordinates the pixels corresponding to the target’s contour 

and spots. The list box offers four choices for the pixels used to determine the 

parameters of the ellipse corresponding to the target’s contour. “8 points ORG” and 

“full path ORG” are the original methods proposed in the previous study [2], while 

the “8 points MOD” and “full path MOD” are the improved versions respectively in 

terms of reliability.   

 

Target Tracking Control Panel: 

 
This panel enables the selecting the target tracking strategy and options discussed in 

Chapter 3. The check box “ON” enables the tracking while processing camera and 

virtual input source.  It is possible to select “3D Parameters” or “2D Corners” 
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tracking strategy, number data points and order of polynomial using the list boxes. 

The text box “min r” is used to set the minimum value of the correlation coefficient 

of the polynomial fit below which the degree of polynomial and number of data 

points are reduced during tracking. “red [%]” text box designed to set the reduction 

ratio. This number is used to slow down the shrinkage of the estimated target region 

and guarantee the target is fully inside the estimated region. The other text boxes 

are for setting the enlargement coefficients discussed in Chapter 3.       

 

Application Control Panel: 

 
This panel shows the processing sequence from up to bottom. The input source is 

processed up to the selected level.    

 

Background Display Control Panel 

 
This panel enables setting the image displayed on the background of the results 

area. If “Empty” option is selected then a black background is displayed. The input 

source is displayed if the “Source” is selected and the binarized image is displayed 

if the “Binary” option is selected. 

 

Edge Display Control Panel: 

 
The panel is designed for setting the edge display option. The selection “Edge 

Detection” will draw the edge pixels determined by the selected edge detection 
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method on the background image, while the “Connectivity” displays the different 

colored connected paths.  

  

Target Display Control Panel: 

 
This panel determines how the detected ellipse is displayed in the results area. The 

“path” option displays the detected ellipse. “Source” option shows grayscale image 

of the target and “Binary” option displays the binary image of the target region.   

 

Target Features Display Control Panel: 

 
The panel is designed for selecting display option for the extracted features of the 

target. Edge and Spots of the target is displayed according to selection. 

 

Calibration and Data-Out Controls: 

 
If “Data Out” box is checked “dataout.txt” data file is created and the reconstructed 

3D parameters are written into the file. “calibration” check box enables the 

“Internal Camera Calibration” panel and forces the background service to compute 

the ideal positions of the calibration spots discussed in Chapter 4.  

 

Internal Camera Calibration Control Panel: 

 
This panel is used to set up to four calibration images using the four buttons on the 

left part of the panel. The check boxes enable removing the previously set 
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calibration images. “calibrate” button calculates the distortion parameters and “Set 

and Use” button associate the distortion parameters to the input source in use.    

 

ScreenShot Button: 

 
This button freezes the process and saves the image of the result area to a file with 

the name entered in the appearing save dialog box. 

  

Settings Button: 

 
This button displays the “Setting” menu for changing parameters corresponding to 

the input sources.  

 

Settings Menu: 

This menu (figure A.3) is designed for setting the dimensions of the secondary 

passive target, image plane distance, and principal point of the image plane, pixel 

dimensions corresponding to the input sources. Also, distortion parameters for the 

file and camera inputs and translational and rotational velocities of the target for 

virtual input case are set using this menu. 
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Figure A.4. Settings Menu  

 

A.1.2 Results Area 

The results area (figure A.5) is composed two parts. In the first part the image of the 

scene is displayed according to the selected display options. The green rectangle is 

the estimated target region by target tracking method and the blue one is the region 

in which the target is detected. In the second part the results of the methods are 

presented.   
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Figure A.5. Results Area  

 

A.2. User Manual 

The ImagePro 2.0 software has two operating modes. The first one is 3D 

reconstruction and the second mode is internal camera calibration. In this section 

usage of these operating modes are explained. 

 

A.2.1. 3D Reconstruction 

It is possible to process the images or frames gathered from the available three input 

sources: File, Camera and Virtual Perspective Projection. 
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File Processing:  

• Select the “File” option from the “Input Source Control Panel”. 

• The button inside the “Input Source Control Panel” is automatically 

renamed as “Open File”. Press the button and select the digital image file to 

be processed. 

• Once the file is selected the ImagePro 2.0 software automatically processes 

the file according the method and display options set through the sub-panels 

of the “Control Panel” and the presents the results in the “Results Area”. 

• The process is repeated when a method option or the selected file is changed 

using the sub-panels of the “Control Panel” 

 

Camera Processing: 

• Turn on the camera 

• Select the “Camera” option from the “Input Source Control Panel”. 

• The button inside the “Input Source Control Panel” is automatically 

renamed as “Start”. Press the button to start processing. Once the process is 

started, the button is renamed as “Stop” and it is used to stop processing.  

• Once the process is initiated by pressing the “Start” button, the software 

processes the frames obtained through frame grabber continuously 

according to the selected options using the sub-panels of the “Control 

Panel”. 

• It is possible to change the processing or display options without stopping 

the operation.  

 

Virtual Processing: 

• Select the “Virtual” option from the “Input Source Control Panel”. 

• The button inside the “Input Source Control Panel” is automatically 

renamed as “Start”. Press the button to start processing. One the process is 

started, the button is renamed as “Stop”. To stop processing press the button.  

• Once the process is initiated by pressing the “Start” button the software 

processes the frames obtained by virtual perspective projection method 
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continuously according to the selected options using the sub-panels of the 

“Control Panel”. 

• To move the target use the following keys on the keyboard: 

 

4-6 Tx Translation 

2-8 Ty Translation 

Insert-Delete Tz Translation 

Up-Down Rx Rotation 

Left-Right Ry Rotation 

Home-End Rz Rotation 

 

• It is possible to change the processing options without stopping the 

operation.  

 

A.2.2. Internal Camera Calibration 

It is possible to determine internal camera parameters using “File” and “Camera” 

input sources. The process is identical for both cases. 

 

• Use “Start/Stop” button to obtain still images of the calibration pattern for 

“Camera” input source or “Open File” button for “File” input source. 

• Set “Reconstruction” option from the “Application Control Panel” and 

check calibration check box in the “Calibration and Data-Out Control 

Panel”. 

•  Press “Set as Calibration Image 1” button in the “Internal Camera 

Calibration Control Panel”. 

• Repeat the above steps for other three calibration images (optional). 

• Press the “calibrate” button in the “Internal Camera Calibration Control 

Panel”. 

• Press the “Set and Use” button in the “Internal Camera Calibration Control 

Panel” to associate the distortion parameters with the input source in use. 
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APPENDIX B 

 

SYNTHETIC IMAGE LIBRARY 
 

 

Appendix B is devoted to the characteristics of images in the synthetic image 

library.  The images in the library are binary and each contains a white elliptical 

region or a white rectangular region located at the image center. These images are 

used to measure the performances of the ellipse detection methods discussed in 

Chapter 2.  The width, rotation and aspect ratio of the rectangular images and major 

length, rotation and aspect ratio of the elliptical images are presented in the 

following figures and also in Table B.1 and B.2. 
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Figure B.1. Width of Synthetic Rectangular Images 
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Figure B.2. Major Length of Synthetic Elliptical Images 
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Figure B.3. Rotation of Synthetic Rectangular Images   
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Figure B.4. Rotation of Synthetic Elliptical Images   
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Figure B.5. Aspect Ratio of Synthetic Rectangular Images   
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Figure B.6. Aspect Ratio of Synthetic Elliptical Images   
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Table B.1. Characteristics of Synthetic Rectangular Images 

Image  Width Rotation  Width Image Width Rotation  Width  

No [pixel]  [degree] / Height No [pixel]  [degree] / Height 

1 30 0 1 35 70 50 4 

2 30 0 2 36 70 60 4 

3 30 45 2 37 70 70 4 

4 30 80 2 38 70 80 4 

5 50 0 1 39 70 90 4 

6 50 0 2 40 70 0 8 

7 50 45 2 41 70 10 8 

8 50 80 2 42 70 20 8 

9 70 0 1 43 70 30 8 

10 70 0 2 44 70 40 8 

11 70 10 2 45 70 50 8 

12 70 30 2 46 70 60 8 

13 70 40 2 47 70 70 8 

14 70 45 2 48 70 80 8 

15 70 50 2 49 70 90 8 

16 70 60 2 50 70 0 16 

17 70 70 2 51 70 10 16 

18 70 80 2 52 70 20 16 

19 70 90 2 53 70 30 16 

20 70 0 3 54 70 40 16 

21 70 10 3 55 70 50 16 

22 70 20 3 56 70 60 16 

23 70 30 3 57 70 70 16 

24 70 40 3 58 70 80 16 

25 70 50 3 59 70 90 16 

26 70 60 3 60 90 0 1 

27 70 70 3 61 90 0 2 

28 70 80 3 62 90 45 2 

29 70 90 3 63 90 80 2 

30 70 0 4 64 110 0 1 

31 70 10 4 65 110 0 2 

32 70 20 4 66 110 45 2 

33 70 30 4 67 110 80 2 

34 70 40 4         
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Table B.2. Characteristics of Synthetic Elliptical Images 

Image  Major Length Rotation  Major Length  Image Major Length Rotation  Major Length  

No [pixel]  [degree] / Minor Length No [pixel]  [degree] / Minor Length 

1 30 0 1 36 70 80 4 

2 30 0 2 37 70 90 4 

3 30 10 2 38 70 0 5 

4 30 10 2 39 70 0 8 

5 30 45 2 40 70 10 8 

6 30 80 2 41 70 20 8 

7 50 0 1 42 70 30 8 

8 50 0 2 43 70 40 8 

9 50 10 2 44 70 50 8 

10 50 10 2 45 70 60 8 

11 50 45 2 46 70 70 8 

12 50 80 2 47 70 80 8 

13 70 0 1 48 70 90 8 

14 70 0 2 49 70 0 16 

15 70 10 2 50 70 10 16 

16 70 45 2 51 70 20 16 

17 70 80 2 52 70 30 16 

18 70 0 3 53 70 40 16 

19 70 10 3 54 70 50 16 

20 70 20 3 55 70 60 16 

21 70 30 3 56 70 70 16 

22 70 40 3 57 70 80 16 

23 70 50 3 58 70 90 16 

24 70 60 3 59 89 0 2 

25 70 70 3 60 90 0 1 

26 70 80 3 61 90 10 2 

27 70 90 3 62 90 10 2 

28 70 0 4 63 90 45 2 

29 70 10 4 64 90 80 2 

30 70 20 4 65 110 0 1 

31 70 30 4 66 110 0 2 

32 70 40 4 67 110 10 2 

33 70 50 4 68 110 10 2 

34 70 60 4 69 110 45 2 

35 70 70 4 70 110 80 2 

 

 

 


