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ABSTRACT 
 
 
 

SIMULATION OF SURFACE WAVES GENERATED BY A 
RAPID RISE OF A BLOCK AT THE SEA BOTTOM 

 
 

ŞENOL, Nalan 
M.Sc., Department of Civil Engineering, 

Supervisor: Assoc. Prof. Dr. İsmail AYDIN 
 

July 2005, 74 Pages 
 
 
 
 
 

A mathematical model is developed for investigating time dependent surface 

deformations of a hydrostatic water volume, when it is subjected to a sudden partial 

rise of the sea bottom. 

 

In the model, 2-dimensional, compressible, and viscous Navier-Stokes equations 

are solved by Marker and Cell (MAC) method. Variable mesh size in both 

horizontal and vertical directions with a staggered grid arrangement is used. 

Limited compressibility model is utilized for pressure. Various computational tests 

are done for the selection of computational parameters of the model. It is found that 

the amplitude of surface waves generated by vertical displacements of the sea 

bottom depends on size and speed of bottom displacements. 

 

Keywords: Tsunami generation, moving solid boundary, earthquake, Navier-

Stokes Equations, limited compressibility. 
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ÖZ 
 
 
 
 

DENİZ TABANINDAN BİR BLOĞUN ANİ YÜKSELMESİ 
SONUCU OLUŞAN YÜZEY DALGALARININ SİMÜLASYONU  

 
 

ŞENOL, Nalan 
Yüksek Lisans, İnşaat Mühendisliği Bölümü, 

Danışman: Doç. Dr. İsmail AYDIN 
 

Temmuz 2005, 74 Sayfa 
 
 
 
 

Deniz tabanında gerçekleşen ani kısmi yükselmeye maruz kalan hidrostatik su 

hacminin zamana bağlı serbest yüzey deformasyonlarını incelemek amacıyla bir 

matematiksel model oluşturulmuştur. 

 

Modelde viskoz ve sıkıştırılabilir sıvı için Marker and Cell (MAC) Metodu 

kullanılarak iki-boyutlu Navier-Stokes Denklemlerinin çözümü yapılmıştır. Yatay 

ve düşey eksende değişken bir ızgara sistemi düzenlenmiştir. Basınç denklemi için 

sınırlı sıkışabilirlik modelinden yararlanılmıştır. Model parametrelerinin seçimi için 

çeşitli testler uygulanmıştır. Deniz tabanındaki düşey yönde yer değişimlerin 

oluşturduğu yüzey dalgalarının genliğinin, yer değiştiren tabanın büyüklüğüne ve 

hızına bağlı olduğu bulunmuştur. 

 

Anahtar kelimeler: Tsunami oluşumu, hareketli katı sınır, deprem, Navier-Stokes 

denklemleri, sınırlı sıkışabilirlik. 
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CHAPTER I 
 
 

INTRODUCTION 
 
 
 

1.1 Earthquakes and Tsunamis in the World 

 

1.1.1 Tsunami: Generation and Propagation 

 

Tsunami is a natural phenomenon, which ranks high on the scale of natural 

disasters, consisting of a series of waves generated when water in a lake or the sea 

is rapidly displaced on a massive scale.  

 

Earthquakes, landslides, volcanic eruptions and large meteorite impacts all have the 

potential to generate a tsunami. The effects of a tsunami can range from 

unnoticeable to devastating [1]. 

 

A tsunami is not a sub-surface event in the deep ocean; it simply has much smaller 

amplitude offshore, and often hundreds of kilometers long wavelength, which is 

why they generally pass unnoticed at sea, forming only a passing "hump" in the 

ocean [1]. 

 

1.1.1.1 Generation 

 

Tsunami can be generated by any disturbance that rapidly displaces a large mass of 

water, such as an earthquake, volcanic eruption, landslide or meteorite impact. 

However, the most common cause is an undersea earthquake. An earthquake which 
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is too small to create a tsunami by itself may trigger an undersea landslide quite 

capable of generating a tsunami. 

Tsunamis can be generated when the sea floor abruptly deforms and vertically 

displaces the overlying water. Such large vertical movements of the earth's crust can 

occur at plate boundaries [2].  

 

Submarine landslides; which are sometimes triggered by large earthquakes; as well 

as collapses of volcanic edifices, may also disturb the overlying water column as 

sediment and rocks slide downslope and are redistributed across the sea floor. 

Similarly, a violent submarine volcanic eruption can uplift the water column and 

generate a tsunami [1]. 

 

Tsunami is a set of ocean waves caused by any large, abrupt disturbance of the sea-

surface. If the disturbance is close to the coastline, local tsunamis can demolish 

coastal communities within minutes. A very large disturbance can cause local 

devastation and export tsunami destruction thousands of kilometers away. 

 

They frequently occur in the Pacific, where dense oceanic plates slide under the 

lighter continental plates. When these plates fracture they provide a vertical 

movement of the seafloor that allows a quick and efficient transfer of energy from 

the solid earth to the ocean [1].  

 

Other large-scale disturbances of the sea -surface that can generate tsunamis are 

explosive volcanoes and asteroid impacts.  

 

“Tsunamis occur most frequently in the Pacific Ocean, but are a global 

phenomenon; they are possible wherever large bodies of water are found - including 

inland lakes” [1]. 
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1.1.1.2 Propagation 

 

“Predicting when and where the next tsunami will strike is currently impossible, but 

once generated, forecasting tsunami arrival and impact is possible through existing 

wave theory and new measurement technology”[2]. 

 

Most of the damage is caused by the huge mass of water behind the initial wave 

front, as the height of the sea keeps rising fast and floods powerfully into the coastal 

area. 

 

Tsunamis act very differently from typical surf swells. They move the entire depth 

of the ocean (often several kilometers deep) rather than just the surface, so they 

contain immense energy, propagate at high speeds and can travel great transoceanic 

distances with little overall energy loss. A tsunami can cause damage at places 

thousands of kilometers from its origin, so there may be several hours between its 

creation and its impact on a coast, arriving long after the seismic wave generated by 

the originating event arrives [2].  

 

In open water, tsunamis have extremely long periods, from minutes to hours, and 

long wavelengths of up to several hundred kilometers. The actual height of a 

tsunami wave in open water is often less than one meter. This is often practically 

unnoticeable to people on ships [2]. 

 

The wave travels across the ocean at speeds from 500 to 1,000 km/h. As the wave 

approaches land, the sea shallows and the wave no longer travel as quickly, so it 

begins to 'pile-up'; the wave-front becomes steeper and taller, and there is less 

distance between crests [2]. 
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A wave becomes a 'shallow-water wave' when the ratio between the water depth 

and its wavelength gets very small, and since a tsunami has an extremely large 

wavelength (hundreds of kilometers), tsunamis act as a shallow-water wave even in 

deep oceanic water [2].  

 

Earth movements associated with large earthquakes are thousand of square 

kilometers in area. Therefore, any vertical movement of the seafloor, immediately 

changes the sea-surface. 

 

1.1.2 2004-Indian Ocean Tsunami 

 

When a powerful earthquake struck the coastal region of Indonesia in 2004, the 

movement of the seafloor produced a tsunami in excess of 30 meters along the 

adjacent coastline [3]. 

 

2004 Indian Ocean Earthquake triggered a series of lethal tsunamis on December 

26, 2004 that killed over 310,000 people, making it the deadliest tsunami in 

recorded history. The tsunami killed people over an area ranging from the 

immediate vicinity of the quake in Indonesia, Thailand and the north-western coast 

of Malaysia to thousands of kilometers away in Bangladesh, India, Sri Lanka, the 

Maldives, and even as far as Somalia, Kenya and Tanzania in eastern Africa [3].  

 

The 2004 Indian Ocean earthquake was an undersea earthquake at the magnitude of 

9.0. It is a megathrust earthquake, which is an interplate earthquake where one 

tectonic plate slips beneath another. This kind of earthquake mostly occurs in the 

Pacific and Indian Oceans. Since these earthquakes deform the ocean floor, they 

almost always generate a significant tsunami [3]. 
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People still do not know which waves cause a tsunami. After the earthquake in 

Sumatra a great tsunami is seen but in three months time another earthquake 

happened, with approximately same in scale as the previous one, and did not form a 

tsunami, indeed most researchers were waiting for one.  

 

The earthquake on December 26, 2004 was unusually large in geographical extent. 

An estimated 1200 km of fault line slipped about 15 m along the subduction zone 

where the India Plate dives under the Burma Plate. The slip did not happen 

instantaneously but took place in two phases over a period of several minutes. 

Seismographic data indicate that the first phase involved the formation of a rupture 

about 400 km long and 100 km wide, located 30 km beneath the sea bed. The 

rupture proceeded at a speed of about 2 km/s or 7200 km/h, beginning off the coast 

of Aceh and proceeding north-westerly over a period of about 100 seconds. A pause 

of about another 100 seconds took place before the rupture continued northwards 

towards the Andaman and Nicobar Islands [3]. 

 

As well as the sideways movement between the plates, the sea bed is estimated to 

have risen by several meters, triggering devastating tsunami waves. 

 

“The sudden vertical rise of the seabed by several meters during the earthquake 

displaced massive volumes of water, resulting in a tsunami that struck the coasts of 

the Indian Ocean” [3]. 

 

1.2 Earthquakes and Tsunamis in Turkey 

 

Numerous large destructive earthquakes and tsunamis have occurred from antiquity 

to the present in the Ionian Sea, Greece, the Aegean Archipelago, Turkey and the 

Sea of Marmara - which separates Asia Minor from Europe. Most of the destructive 

tsunamis in the past originated from a region of the Hellenic arc where normal 
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faulting within the southern part of the Anatolian Tectonic Plate (the Aegean plate) 

is consistent with a NE-SW trending graben along which the Santorin volcanic field 

has also developed [4]. 

 

 
 
Figure 1.1 Historical tsunami events in the Mediterranean region [5] 
 
In Fig.1.1 the size of circle is proportional to the event magnitude. The preliminary 

version of the regional tsunami catalog [5] covers the period from 1500 to 1990 and 

contains 297 events. However, not all events are presented on this map, because 91 

events lack their source coordinates. 

 

Although most of the earthquakes along the great North Anatolian fault involve 

primarily horizontal ground displacements - and such tectonic movements do not 

ordinarily generate tsunamis - some of the earthquakes along the western segment 

of the fault have triggered major slumps that have generated tsunamis. At least 9 

major tsunamis have been reported to have occurred in the Marmara Sea in the past 

[6]. 
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1.2.1 August 17, 1999 Sea of Marmara Earthquake 

 

On August 17, 1999, a large destructive earthquake struck northwest Turkey and 

generated a local tsunami within the enclosed Sea of Marmara. This was the 

strongest earthquake to strike Northern Turkey since 1967. It occurred along the 

Northern Anatolian fault. Its epicenter was in the Gulf of Izmit [7]. 

 

The earthquake of August 17, 1999 occurred along the long, east-west trending, 

great North Anatolian Fault Zone (NAFZ) - known to be the most prominent active 

fault system in Northwestern Turkey. NAFZ passes through Izmit Bay, traverses 

Marmara Sea and reaches the Saros Gulf to the southeast. This great fault system 

has many similarities to the San Andreas Fault system in California. Earthquakes 

involve primarily horizontal ground motions (strike-slip type of faulting) [4]. 

 
Ground displacements between Lake Sapanca and the Gulf of Izmit were about 2.60 

m. Additionally, there was evidence of about 2 meters subsidence along the north 

side of the fault's block - which was particularly evident along the coastline at 

Golcuk, where tsunami waves and major flooding occurred. Such tectonic ground 

displacements are characteristic of major earthquakes along the North Anatolian 

Fault and, possibly, have been responsible for tsunami generation in the past [4]. 

 

It appears that most of the seismic strain along this section of the North Anatolian 

fault was released by the August 17, 1999 earthquake. However, given the 

measurements of 1.5 meter ground displacements in the Akyazi area, versus the 

larger displacements elsewhere, it is quite possible that not all of the seismic strain 

was released by this event and that some future seismic event will release the 

remaining strain [4]. 
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Although the earthquake involved primarily horizontal ground displacements, 

slumping and landslides triggered tsunami waves which were particularly damaging 

in the Gulf of Izmit, perhaps because of convergence and a funneling effect. The 

long duration of the earthquake's ground motions (45 seconds), the directivity of the 

surface seismic waves, the proximity of the epicenter to the Sea of Marmara and the 

Gulf of Izmit, and the overall orientation of the affected area, strongly support that 

the tsunami was generated in the Gulf of Izmit, in the eastern portion of the Sea of 

Marmara [4]. 

 

An initial recession of the water was observed at both sides of Izmit Bay 

immediately after the quake, followed by tsunami waves which had an average run-

up of 2.5 m. along the coast. Maximum run-up was 4 m in Golcuk where there was 

considerable damage to the naval base facilities. In fact, Golcuk and several coastal 

areas are then flooded permanently as a result of the tectonic subsidence and 

landslides [8]. 

 

After this devastating disaster, according to Barka et al. [8], it is obvious that the 

tsunami risk for the Sea of Marmara needs to be carefully evaluated. 

 

1.3 Problem Definition 

 

The aim of this study is to determine surface wave histories due to the bottom block 

movement. Starting from a steady fluid domain, a finite block at the bottom is 

assumed to move suddenly in vertical direction and consequences of sudden 

movement of the bottom on the pressure distribution and subsequent surface 

deformations are investigated. 
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Figure 1.2 Description of the problem 
 
 
The forcing mechanism can be in two directions, upward or downward movement 

of the bottom. Since the downward movement is just the analogous to the former 

one from computational point of view, in this study only upward excitation is 

solved.  

 

In nature, generally fault cracks are not as uniform as the one considered in this 

model, but the physical effect to the domain of the natural case and the one used 

here are similar. Therefore, for the sake of simplicity, a rectangular bottom portion 

movement in upward direction is used as the excitation. As can be seen from 

Fig.1.2, H is the initial water height, LR is the width of the domain affected from the 

movement, LS is the width of the moving portion, and HS is the height of the 

differential rise or drop. 

 

1.4 Literature Review 

 

Lynett and Liu [9], for instance, derived a mathematical model to describe the 

generation and propagation of water waves by a submarine landslide. The model 

consists of a depth-integrated continuity equation and a momentum equation, in 

H 

? ?

LS LS HS 

HS 

LR LR LR 
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which the ground movement is a forcing function. They also study on propagation 

from relatively deep water to shallow water for the sake of completeness. As a case 

study, tsunamis generated by a prehistoric massive submarine slump off the 

northern coast of Puerto Rico are modeled. 

 

Similar to the study of Lynett and Liu [9], Todorovska et al. [10] are also searching 

on the near-field amplitudes of Tsunami from submarine slumps and slides, which 

are the common causes of tsunami generations. According to them, the common 

mechanisms for triggering failure of submarine slopes are over-steepening due to 

rapid deposition of sediments, generation of gas created by decomposition of 

organic matter, storm waves, and earthquakes, which are the major cause of 

landslides on continental slopes. To reflect the real situation they have used five 2D, 

kinematic source models that consider the effects of source finiteness and 

directivity. 

 

As can be seen from Fig. 1.3, Model 1A represents sliding down hill, while Model 

1B represents spreading of the source area up hill and down hill, at different rates. 

Model 2 is a schematic representation of a rotational slide and Model 3 represents 

the landslide [10]. 

 

Fine et al. [11] are dealing with the recent catastrophic tsunamis at Flores Island, 

Indonesia (1992), Skagway, Alaska (1994), Papua New Guinea (1998), and İzmit, 

Turkey (1999). They have noticed that purely submarine slides are ineffective at 

tsunami generation compared with subaerial slides. In addition, they have found 

that a rigid-body slide produces much higher tsunami waves than a viscous slide. 
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gure 1.3 Tsunami generation mechanisms [10] 

 parallel with this thesis, Ohmachi [12] uses velocity associated with the seabed 

splacement as the input accordingly at the bottom of the seawater. Then the 

sulting seawater disturbance is simulated by solving the Navier-Stokes equations 
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without using the long wave approximation, and introducing a height function. The 

CFL condition is utilized for stability purposes. The 2D tsunami simulation model 

of Ohmachi [12] is seen in Fig.1.4; 

 

 
Figure 1.4 2D-Tsunami simulation model [12] 

 

Tyvand et al. [13] are considering the effect of a rising block by integrating the 

Fourier and Green functions numerically. In their paper tsunami generation due to 

impulsive bottom deflections which are reported as “rapid”.  

 

According to Tyvand, Miloh and Haugen [13], bottom movement that endures 

shorter than the gravitational time, i.e (h/g)1/2 , where h is the initial ocean depth and 

g is the gravitational acceleration, is named as sudden. They propose that this 

constraint may apply to tsunamis generated by earthquakes, but not to tsunamis due 

to landslides or volcanic eruptions. They claim that the traditional tsunami 

generation models due to rapid bottom motion often take the surface deflection to 

be the same as that of the bottom.  

 

In their study on the effects of tsunami at Sissano Lagoons, Papua New Guinea, 

Matsuyama and Yeh [14] stated that the primary cause of the discrepancy in 
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tsunami run-up height and pattern between the observation and the initial numerical 

prediction is the use of faulty bathymetry data. 

 
In his study Kırlangıç [15], solves two-dimensional Navier-Stokes Equations on a 

vertical plane numerically by using Marker and Cell Method for viscous and 

compressible fluid including all the nonlinear effects in the solution. Grid clustering 

in vertical direction is utilized. The excitation of the system, sudden block 

movement, is modeled as zigzag motion. Limited compressibility method is used 

for pressure equation. The program NaSt2D, constructed by Griebel et al. [16] is 

used with modifications according to the problem of the study. 

 

1.4.1 Density Variation with respect to Depth 

 

The role of water compressibility in the tsunami problem has been discussed many 

times. It is well known that submarine earthquakes can radiate not only 

gravitational but also hydroacoustic waves. However, in most cases, tsunami is 

considered as a process in incompressible fluid [17]. 

 

Two Russian researchers Nosov and Kolesov [17] present their studies on tsunami 

wave generation by small bottom displacements in compressible ocean of variable 

depth. Linear potential theory is considered. According to them, if the 

computational domain is large and the bottom displacement takes place in a short 

duration, fluid should be considered as compressible. 

 

In order to verify the analytical method, the change in the density of the sea water 

[18] is calculated according to the UNESCO International Equation of State (IES 

80) standards [19]. Water density depends mainly on pressure, temperature and 
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salinity. Here temperature is taken to be 10°C and salinity to be 201. These values 

are comparable to real values of the seas around Turkey [20]. Hydrostatic 

calculations show that the variation in the density is no more than 3 parts in 1000. 

Hence it is viable to assume that the density is constant in the analytical derivation 

wherever necessary. Though, the corrected densities are calculated for the initial 

case and every time step for each cell. 

 

1.5 Scope of the Study 

 

Up to recent studies, researchers mostly studied on simulations of tsunami 

propagation. Because of the uncertainty where and when a crack will happen on the 

bottom of an ocean for instance, there is not any field data available. Therefore, the 

physical behavior of those disasters is usually predicted by numerical solutions. 

Different mathematical models are used. In those models Navier-Stokes equations 

are preferred by considering finite volume, finite difference, finite element, and 

volume of fluid methods. 

 

The aim of this thesis is to develop a computer program that solves 2D, 

compressible Navier-Stokes equations in a vertical plane for a viscous fluid, to 

investigate the effect of sudden partial bottom movement to the pressure field and 

the resulting free surface waves in the computational domain. 

 

FORTRAN is preferred as the programming language. Variable mesh is used in 

both vertical and horizontal directions to increase the resolution in the critical 

                                                 
1 Practical salinity of a sample of seawater, is defined in terms of the ratio K15 of the electrical 
conductivity of the seawater sample at the temperature of 15°C and the pressure of one standard 
atmosphere, to that of a potassium chloride (KCl) solution, in which the mass fraction of KCl is 
32.4356E-3, at the same temperature and pressure. 
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sections. Limited compressibility formulation [21] is used in pressure solution. 

Surface Height Method [22] is utilized for the free surface treatment.  
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CHAPTER II 
 
 

MATHEMATICAL MODEL 
 
 
 
 
2.1 Governing Equations 

The differential equations that form the mathematical model of this study are the 

continuity equation (2.1), the momentum equations (2.2, 2.3) and the free surface 

equation that describes the change in water depth (2.4). 
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∂h
∂t

= wsurface − usurface
∂h
∂x

               (2.4) 

 
In the above equations x and z are spatial variables in horizontal and vertical 

directions, respectively, t is time, ρ is the density of the fluid, u and w are the 

velocity components in horizontal and vertical directions respectively, P is the 

pressure, µ is the dynamic viscosity, and gx and gz are the body accelerations in 

horizontal and vertical directions, respectively. 
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2.2 Generation of the Model 

 

The mathematical model of this study is generated from the program NaSt2D, 

constructed by Griebel et al. [16] by using FORTRAN. NaSt2D is a general code 

that solves two-dimensional Navier-Stokes Equations for incompressible viscous 

fluids by using constant mesh.  

 

The model of Griebel et al. [16] is modified to reflect the problem of this study by 

incorporating computational mesh variation in both horizontal and vertical 

directions, clustering in grid generation, partial sudden bottom movement and 

Limited Compressibility Method for pressure solution. 

 

2.3 Limited Compressibility Method 

 

According to the study of Hirt and Nichols [21], pressure is assumed to be only a 

function of fluid density.  

The following equation shows the relation between the fluid pressure and density in 

terms of adiabatic speed of sound, c.  

 
2c

d
dP

=
ρ

                 (2.5) 

 
c may be time- or space- or temperature-dependent parameter, for the sake of 

simplicity it is assumed to be constant as 1482 m/s. 

 

The mass conservation equation (2.1) can be rewritten by using equation (2.5); 

011
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Since the values of u/c2 and w/c2 will be very small, the above equation can be 

further simplified by neglecting spatial variations of density, 
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Before discretization, the governing equations are divided by fluid density and 

rewritten, 
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where p is the pressure normalized by density, that is: 

ρ
Pp =              (2.11) 

 
2.4 Discretization 
 
 
The computational mesh is variable in both x- and z-directions. Staggered grid 

system is used in which the velocity components are defined at the cell faces while 

the pressure is defined at the cell center. Notation used is given in Fig 2.1. For the 

celli,j, δxi is the horizontal distance, δxwi is the horizontal distance between the west 

neighbor cell center and the center of the celli,j. Similarly, δxei is the horizontal 

distance between the east neighbor cell center and the center of the celli,j. Vertical 

distance of the corresponding cell is named as δzj. δznj and δzsj are the distances 

between the neighboring cell centers. 
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j+1 

wi,j δznj 

pi,j

 

 

 

 

Figure 2.1 Staggered grid system 

 

The convective terms in the momentum equations are discretized by considering a 

combination of central differences and donor cell discretizations;  

 

Convective Terms = (1-γ)[Central Differences]+ γ[Donor Cell Differencing]   (2.12) 

 

The reason is the dominancy of the convective terms of the momentum equations at 

high velocities. If only the convective terms are dominant, diffusive terms are 

recessive so stability problems may occur. To avoid those problems, γ, a parameter 

that gives control to the discretization method, is utilized. As can be seen from the 

above combination of central difference and donor cell discretization methods, γ 

should take a value between 0 and 1. For γ = 1 central difference terms are omitted 

so the whole system discretized by donor cell scheme [16]. 
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Horizontal and vertical distances from the neighboring cell centers to the center of 

the cell(i,j) can be defined as;  

 

δxwi =
δxi + δxi−1

2
              (2.13) 

 

δxei =
δxi + δxi+1

2
              (2.14) 

 

δzs j =
δz j + δz j−1

2
              (2.15) 

 

δzn j =
δz j + δz j +1

2
              (2.16) 

 
2.4.1 X-Momentum 

 

The momentum equations are discretized as described by Griebel et al. [16]: 
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wL =
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             (2.22) 
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2.4.2 Z-Momentum 

 

For the terms of z-momentum equation, similar formulation is utilized as the one 

used for the x-momentum discretization. 
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2.5 Forward Time Discretization of Momentum Equations 

 

Momentum equations that are expressed in equations (2.9) and (2.10) are discretized 

in time by using forward full time steps in velocity components. Only the next time 

level, i.e. (n+1)th level is marked, current time levels, i.e (n)th level are not shown 

with an index. 

Pressure terms are at (n+1/2)th time level relative to the velocity components. 

Instead of considering those indexes for pressure in the formulation, it is preferred to 

use no index for (n+1/2)th time level and to write “old” for (n-1/2)th time level. 

So, with the following equations (2.45) and (2.46), horizontal and vertical velocity 

components are updated.  
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For the sake of simplicity in coding and for defining the same time level expressions 

in one term, (n)th levels of both x-and z-momentum equations are collected in Fi,j 

and Gi,j terms. 
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Then the next time expressions of horizontal and vertical velocity components 

become; 

ui, j
n +1 = Fi, j −δt

pi+1, j − pi, j

δxei

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟              (2.49) 

 

wi, j
n +1 = Gi, j −δt

pi, j +1 − pi, j

δzn j

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟              (2.50) 

 
 
2.6 Forward Time Discretization of Pressure Equation 

 

Up to now velocity components are discretized by using forward time discretization 

scheme. For the calculation of velocity components’ update expressions, i.e. 

equations (2.49) and (2.50), pressure terms of the next half time step are necessary. 

This level of pressure can be calculated by using the condition of mass conservation 

(Eq. 2.8):  

 
The discretization of right hand side of equation (2.8) is: 
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and the left hand side is; 
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Then, the continuity becomes;  
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Equation (2.53) is rearranged to leave the terms at (n+1/2)th time level at the left 

side; 
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where, 
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Equation (2.55) is rearranged to obtain the expression for pi,j ; 
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For the iterative solution of pi,j with Successive Over Relaxation (SOR) method, an 

expression by using the relaxation parameter ω and the coefficients of pi,j is written; 
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The next iteration level of pi,j will be then; 
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Convergence of the PSOR is controlled by using ratio of root mean squares of 

differences in pressure for each cell between iterations and pressure values. If this 

ratio gets smaller than 10-5, iteration halts. 
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2.7 Surface Height Method 

 

Variations in the water surface elevation as a result of the bottom movement are to 

be computed. To do this, “height of fluid” concept is used. Location of the fluid 

surface information is computed as a function of time. By doing so, one can observe 

the changes in the height of the fluid in each column of the computational domain. 

For appropriate treatment, the cell that has the fluid surface is named as the surface 

cell, below cells are flagged as full cells. 

 

x
huw
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h

surfacesurface ∂
∂

∂
∂

−=              (2.61) 

 
According to the study of Nichols and Hirt [22], the local velocity, that is the 

vertical component of the fluid motion plus the horizontal convection of the surface 
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elevation from the adjacent cell columns, is used in the determination of the surface 

profile change. 

 
Equation (2.61) is written in finite difference form for variable grid in both x- and z- 

directions, using a space centered and forward in time method by adding a positive 

diffusion term in order to compensate the negative diffusion truncation error as 

suggested by Nichols and Hirt [22]. 
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θ is the parameter used for smoothing the numerical solution.  
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According to Hirt and Nichols [23], the relation that is given in equation (2.63) 

should be used by multiplying the right hand side by 1.2 to 1.5.  

 

The vertical velocity component at the free surface is obtained by linear 

interpolation within the cell, 
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2.7.1 Surface Model 
 
 
Nichols and Hirt [24] improved free surface boundary conditions. In their study, 

they suggest a scheme based on a new surface pressure interpolation, which permits 

the normal stress to be applied at the correct free surface location. Tangential 

stresses are applied through the assignment of appropriate velocities near the 

surface. 

 

It is necessary to set boundary conditions by considering mass conservation, normal 

and tangential stress conditions. With those conditions actual pressure on the surface 

is treated then the pressure at the center of the surface cell is specified as a linear 

interpolation (or extrapolation) between the adjacent full cell pressure and the 

pressure at the fluid surface. A proper cell center pressure is calculated in terms of 

an interpolation factor, η =
δzs j

d
. As can be seen from Fig.2.2, d is the distance from 

the actual surface to the center of the neighboring full cell. 

 

Then in pressure iterations these quantities are utilized to obtain the next iterated 

value of the surface cell pressure. Since the distances are calculated according to the 

actual free surface location, the necessary pressure derivatives are calculated 
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correctly. So, with the surface height formula time wise variation of free surface is 

calculated.  

wi-1 j+1 wi j+1 wi+1 j+1

pi j+1 pi+1 j+1

 
Figure 2.2 Grid and the notation at the free surface 
 
 
2.8 Bottom Model 

 

The excitation of the system in this study is the rapid movement of the bottom block. 

To reproduce the correct excitation, it is necessary to provide a continuous motion 

for the block. For that reason the real location of the moving block is to be followed. 

The schematic view of the bottom model is seen in Fig 2.3. 

 

The expressions of the model for horizontal and vertical velocities are written by 

interpolation (or extrapolation) between the known block values and the neighboring 

full cell values. The vertical velocity component on the block is set as Wblock, and the 

horizontal velocity component on the step is zero. Pressure condition is set by 

writing the normal pressure derivative on the moving block. 
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The moving block location can be in any place within the grid. Fig 2.4 shows 

various locations of the block. A constraint must be applied on the bottom model; 

the block should not move more than one cell in one time step. Initial position 

coincides with the grid borders. 

 

The distance between the moving bottom and the mesh border is; 

ij basezd −= δ               (2.69) 

where basei is the location of the moving bottom in meters. 

wi,j+1

               
Figure 2.3 Bottom model 

Figure 2.4 Various locations of the block 
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2.9 Boundary Conditions 

 

Boundary conditions are the statements that are used to describe the real system to 

the mathematical model. In this study, the computational domain has various 

boundaries, such as fixed wall, moving wall, no-reflection, free surface and 

symmetry (Fig.2.5). To reduce computational costs, by using the symmetry property 

half of the domain is solved.  

 

 

 

 

 
 

Figure 2.5 Boundary conditions 

Free Surface Boundary 
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Symmetry Line

Fixed Wall 
Boundary 

No-Reflection 
Boundary 

No-Reflection 
Boundary Symmetry 

Boundary 

Fixed Wall 
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2.9.1 Fixed Wall Boundary 

 

No-slip condition is utilized for the fixed wall sections of the computational domain. 

Since in staggered grid system vertical velocity components are defined on the 

boundary, they are set to zero for fixed wall sections. For pressure boundary 

condition simply hydrostatic case is considered. 

2,1, ii uu −=                (2.70) 
 

01, =iw                (2.71) 
 

22,1, zgpp zii δ−=               (2.72) 
 

2.9.2 Moving Wall Boundary 

 

In this study the mid portion of the bottom side is moving for a few seconds. 

Horizontal velocity components are suitable for no-slip condition since there is not a 

horizontal bottom motion. Besides the vertical velocity component is calculated by 

considering the block velocity to reflect the block motion to the numerical solution. 

Since the pressure change will be significant for this portion of the bottom side, it is 

preferred to write a more precise boundary condition by considering the normal 

derivative of the pressure. To write the normal pressure derivative, fictitious vertical 

velocity, w0, is necessary.        
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2.9.3 Fixed Side Wall Boundary 

 

Side walls of the moving bottom portion should be considered separately. For that 

section horizontal velocities coincide with the boundary, so, because of the fact that 

there is no motion in horizontal direction they are set to zero. For the vertical 

velocity components no-slip condition is valid. Here the pressure boundary 

conditions are written by equating the horizontal gradients of pressure terms to zero. 

 

0,1 =− jNSu                (2.77) 
 

jNSjNS ww ,1, −−=               (2.78) 
 

jNSjNS pp ,1, −=                (2.79) 
 

2.9.4 No-Reflection Boundary 

 

Right and left sides of the computational domain are considered as no-reflection 

boundaries. Only the left half of the domain is solved, right is computed by 

symmetry. The conditions for the left side are given below. For this boundary, 

horizontal gradients of the dependent variables are set to zero. 

jj uu ,2,1 =                (2.80) 
 

jj ww ,2,1 =                (2.81) 
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jj pp ,2,1 =                (2.82) 
 

2.9.5 Symmetry Boundary 

 

To reduce computational costs and memory allocation, half of the domain is solved. 

In every iteration, values calculated for the left half domain is copied to the right. 

Effectively on the boundary following equations are satisfied. 
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2.9.6 Free Surface Boundary 

 

Since wave height is relatively small compared to the length of the wave, nearly 

horizontal surface can be assumed while deriving the free surface boundary 

conditions [24]. 
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Then, normal stress condition is: 

p = 2 µ
ρ
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and tangential stress condition is: 

 ∂u
∂z

+
∂w
∂x

= 0                    (2.89) 
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From the continuity and the tangential stress condition, the normal and tangential 

velocity components are computed as: 
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Pressure on the free surface is computed from the normal stress condition: 
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The interpolation factor η is defined as: 
 

η =
δzs j

d
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Then the pressure at the cell center is calculated  from: 
 

( ) 1,, 1 −−+= jisurfaceji ppp ηη              (2.94) 
 
 

2.10 Stability Conditions 

 

Since numerical solutions are not as exact as the analytical solutions, the former 

always have instability problem. In order to ensure stability of the numerical 

computations and avoid generating oscillations, stability conditions must be imposed 

on the mesh sizes δx and δz, and time step size δt [16]. 
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Equation (2.95) gives the Courant-Friedrichs-Lewy (CFL) condition. According to 

this statement, after selecting sufficiently small mesh dimensions and assuming there 

exists fluxes only between adjacent cells, no fluid particle may travel a distance 

greater than the mesh spacing δx or δz in time δt. In their study, Hirt and Nichols 

[23] suggest that using one fourth to one third of the minimum time increment 

makes the solution more stable. 

 

For viscous flows, momentum must not diffuse more than approximately one cell in 

time δt [23]. This statement can be expressed as; 
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           (2.96) 
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CHAPTER III 
 
 

COMPUTATIONAL TESTS 
 
 
 
3.1 Computational Domain 

 

To apply the mathematical model that is described in the second chapter, a 

hypothetical domain (Fig.1.2) is considered. Various values of LR, H, HS and LS are 

used.  

 

It is necessary to model the motion as a rapid one. According to the study of 

Tyvand, et al. [13], the impulsive bottom deflection should have a duration shorter 

than the gravitational time, (h/g)1/2 . Here h is the ocean depth which is assumed to 

be constant initially, and g is the gravitational acceleration. Therefore, with the 

above parameters selected in this study, completion of the block motion in 

approximately several seconds can be considered as rapid.  

 

3.2 Grid Resolution Check 

 

In numerical solutions, resolution of the computational domain should be fine 

enough to model the physical system accurately. Therefore, decision of the grid 

ratios is important. Since by doing so, one can control the grid distribution better, 

such that, the regions where physical quantities change rapidly, can be expressed 

with finer mesh. 

 

For this numerical solution, it is decided to use a computational domain that has the 

maximum mesh size in x-direction in right and left far fields, minimum mesh size of 
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that direction in the mid part, which covers the moving block. In z-direction, the 

minimum mesh size is utilized in both upper and lower parts of the domain, which 

covers both moving block and the surface waves, and the maximum mesh size is 

used in the mid part. (Fig. 3.1)  

 
Figure 3.1 Computational mesh 

 

Apart from the variable grid distribution, the number of computational nodes has 

direct effect on the grid resolution. With a less number of nodes, one may get wrong 

results. However, using more than the sufficient number of nodes, increases the 

computational time and makes the numerical solution inefficient. To decide on the 

sufficient number of nodes, different NxM values are studied, and the results are 

checked with the most important parameter of this study, the maximum water 

height, hmax. During this check a constant ratio between N and M values, that is 2:1, 

is used according to the results of Kırlangıç [15]. 

 

Variables that are used to construct the computational mesh can be seen in Fig 3.2. 

The clustering relations are selected under the light of the study of Kırlangıç [15]. 
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Symmetry Line 

 
Figure 3.2 Mesh variables 

Nxmin shows number of the cell from which the constant minimum mesh size in x-

direction starts. Ns represents the node where the moving block starts. L values 

show the length of the corresponding nodes from the initial point. β values show the 

clustering ratio in the corresponding direction. Mzmin shows the end of the constant 

minimum mesh size in z-direction level in terms of nodal point. In addition, Mzmax 

represents number of the cell from which the constant maximum mesh size in z-

direction starts. The computational mesh is symmetric with respect to the mid lines 

of x and z directions. For all grid cases, the height of point Mzmin is taken to be 

2.5xHS and the distance between point Nxmin and vertical symmetry line is taken to 

be LS. The details of grid data for different NxM selections are shown in Table 3.1; 
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The relation between the number of nodes and the maximum water height is shown 

in Fig. 3.3; 
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Figure 3.3 hmax versus NxM for grid resolution check  

 
As can be seen from Fig. 3.3, as the number of nodes increases, hmax increases. 

After 401x201, hmax value does not change much. Indeed, after 601x301, hmax value 

has tendency to decrease. This is because of the round-off errors. When the mesh 

becomes finer, there is the danger of error accumulation. Therefore, to obtain a 

solution with minimum round-off error and to save the computational time it is 

preferred to use 501x251 nodes. 

 

3.3 Far Field Boundary Condition Check 

 

In all numerical studies, boundary conditions are the constraints of the system and 

they help the convergence of the solution to the real situation. In this study, it is 
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important to impose a correct boundary condition at the far field side. Since a large 

domain is solved numerically, one does not want to get any reflections from the far 

field boundary. For that purpose the system is solved with two different boundary 

conditions to observe their effect to the time history of water height of the column 

on the symmetry line, h0(t). In the first case, far field boundary conditions of 

velocities, pressure and free surface are set as the ones that make the first 

derivatives of the corresponding one to zero. In the second run, the second 

derivatives are set to zero. 
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Figure 3.4 h0 versus t to check the effects of far field boundary conditions

 

As can be seen from Fig. 3.4, there is not any difference between the first and 

second cases, both graphs coincide on each other. It is preferred to set boundary 

conditions by considering the degree of the governing equation, which is by taking 

one degree less for boundary conditions. Since the equation that is utilized to form 
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the mathematical model is a second order differential equation, it is decided to set 

the first derivatives of velocities, pressure and free surface to zero in the far field. 

 

3.4 How Far Should be the Far Field Boundary? 

 

Computational domain should be large enough to supply no-reflection boundary to 

the system. To check whether the domain length is large enough or not, different LR 

values are tested and the results of each run are presented. Again the controlling 

criterion is the time history of water height of the column on the symmetry line, 

h0(t). Water depth, H;  step height, HS; step length, LS; and number of nodes, NxM 

values in each run are set to be constant, i.e. 100m, 2 m, 100 m and 501x251 

respectively. 

 

The resulting plot which gives the relation between LR and h0 is shown in Fig.3.5; 
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Figure 3.5 h0 versus t for different LR values 
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As can be seen from Fig. 3.5 computational domains with LR values that are less 

than 10xH, are affected from the boundaries since they are not large enough. The 

maximum h0 is less than the one obtained for LR=10xH=1000 m. On the other hand, 

in computational domains with LR values greater than 1000 m, grid resolution 

problem is seen. Since for large domains, with the same number of nodes, grid 

resolution reduces; (h0)max is again less than the one obtained for 1000m.  

 

Domain length is a function of water depth and block length. Therefore, relations of 

LR with both LS and H should be checked separately. Then the maximum LR value 

should be utilized. According to the results obtained by this computational test, 

LR=10xH relation is selected for the model.  

 

3.5 Dissipation Check 

 

For determination of free surface profiles, time dependent variation of water height 

is computed. According to the study of Nichols and Hirt [22], it is necessary to use 

a positive diffusion term to compensate the negative diffusion due to truncation 

error. In their research they solved a water tank which is small in size compared to 

the computational domain in this study. In the present problem the computational 

domain is so big and the surface deformations are relatively small. Therefore, it is 

necessary to try different dissipation coefficients to see the requirement of that 

additional dissipation term of Nichols and Hirt [22] in the free surface equation. 

 

As can be seen from Fig. 3.6 both full dissipation and no dissipation graphs 

coincide. Therefore, it is decided that, for this study additional dissipation term is 

not necessary. 
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Figure 3.6 h versus x graph to check the dissipation term effect 

 

3.6 Block Velocity 

 

The excitation of the hydrostatic fluid is given by the sudden block movement on 

the sea bed. Moving the block at a constant velocity causes very large accelerations 

at the start of the motion and very large decelerations at the end of the motion. 

Large decelerations at the end of the motion of the block produces very sharp 

pressure fluctuations on the surface of the moving block which may not be the case 

in a natural crack formation at the sea bed.  

 

In nature, it may take some time to reach the maximum velocity from stationary 

position and some time to reduce velocity from maximum value to zero, such that 

the accelerations and decelerations are finite. Therefore, variable velocity for the 

block motion is considered to eliminate any unrealistic start and stop disturbances 
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on the flow field. To investigate the effect of block velocity variations on the 

surface waves, velocity and pressure fields, three points A, B and C on the 

symmetry line are selected (Fig. 3.7). Point A is at the midway between the initial 

and final configurations of the moving block. Point B is just at the final position of 

the block and point C is always above the moving block. The distance between B 

and C is only a vertical mesh size. 

Moving 
Block 

C
B// 
A// 

Symmetry 
Line 

 
Figure 3.7 Observation points on the symmetry axis 

 

With maximum block velocity of 1 m/s, block height of 2 m and no smoothing in 

accelerating and decelerating stages, the plots of vertical velocity and pressure at 

points A, B and C are shown in Figs. 3.8 and 3.9. When the block stops at t = 2 

seconds, a large pressure wave is created at point C (Fig. 3.9). It is also noticed that 

this pressure wave due to sudden deceleration influences the surface deformations.  
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Figure 3.8 w versus t for points A, B and C (No smoothing)  
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Figure 3.9 p versus t for points A, B and C (No smoothing) 
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Since point A is at the midway between the initial and final configurations of the 

moving block, after the block passes it, it will be out of the computational domain. 

Therefore, vertical velocity and pressure values of that point do not change. Due to 

the fact that point B and C are so close to each other their graphs coincide. 

 

To see the effect of block velocity variations, time dependent variations of vertical 

velocity and pressure at points A, B and C are examined. To do this, velocity of the 

moving block is assumed to have three stages; acceleration stage, constant 

maximum velocity and deceleration stage (Fig. 3.10).  

Wmax

Wblock (m/s)

t (sec)
T1 T2 T3 

T

 
Figure 3.10 Velocity histogram for the moving block 

 

For accelerating stage, (0 < t ≤ T1): 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

21
max

π
T
tSinWWblock               (3.1) 

 
For constant maximum velocity stage, (T1 < t ≤ T1 + T2): 
 

maxWWblock =                 (3.2) 
For deceleration stage, (T1 + T2 < t ≤ T): 
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where  t : time (sec) 

cceleration (sec) 

ec) 

e written with respect to the total motion 

11 =                 (3.4) 

TT −=

 

y using the equations (3.4) and (3.5) the expression for T2 becomes; 

−−=

 T1 : period of a

 T2 : period of constant velocity (s

 T3 : period of deceleration (sec) 

The relation between T1, T2 and T3 ar

duration T as; 
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hen total duration of motion and the expressions for the durations of velocity T

increasing and decreasing sections becomes; 
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The expression for T2 is derived by considering the criteria that the area under the 

velocity histogram is equal to the step height, Hs; 
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In order to examine the effects of accelerating and decelerating stages separately on 

the time history of water height of the column on the symmetry line, h0, various 

accelerating and decelerating stage coefficients are tested. 

  

Table 3.2 Various accelerating stages 

k1 0 0.05 0.1 0.2 

k3 0 0 0 0 

 

At first, various acceleration periods are considered (Table 3.2) with a sudden 

deceleration. Velocity of the moving block with these configurations and the 

corresponding time histories of water height of the column on the symmetry line are 

shown in Fig. 3.11 and Fig. 3.12; 
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Figure 3.11 Wblock versus t for different          Figure 3.12 h0 versus t for different k1 

k1 values                                                           values 
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It is seen that different k1 values only cause time lag of the h0 values. Therefore, it is 

preferred to use k1 = 0, since smoothing of the accelerating stage does not affect the 

form and amplitude of the surface waves. 

 

To examine the effects of decelerating stage to the time history of h0, various 

deceleration configurations are tested (Table 3.3). 

 

Table 3.3 Various decelerating stages 

k1 0 0 0 0 0 

k3 0 0.1 0.25 0.3 0.5 
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Figure 3.13 Wblock versus t for different   Figure 3.14 h0 versus t for different k3       

k3 values                values                                                            

 

As can be seen from Figs. 3.13 and 3.14, as the duration of the decelerating stage 

increases, resulting h0 graph becomes smoother with a reduced (h0)max. When 25% 

of the total motion duration is utilized for the decelerating stage, it is sufficient for 

secondary damp effect smoothing. Therefore, it is decided to use k3 = 0.25.  
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With maximum block velocity of 1 m/s, block height of 2 m and the decided 

decelerating stage, the plots of vertical velocity and pressure for points A, B and C 

are shown in Figs. 3.15 and 3.16; 
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Figure 3.15 w versus t for points A, B and C (Deceleration stage smoothing)  
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Figure 3.16 p versus t for points A, B and C (Deceleration stage smoothing) 
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From Fig. 3.16 it is seen that, as the duration of the decelerating stage increases, the 

secondary pressure wave is reduced.  

 

It is also necessary to check for the maximum block velocity sufficient to obtain a 

rapid motion. For that purpose various maximum velocities are tested and their 

effects on the time histories of h0 are discussed. 
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Figure 3.17 h0 versus t for different maximum block velocities 

 

From Fig. 3.17 it is seen that maximum block velocity values of 4, 8 and 16 m/s are 

close to each other. The differences on their values cause time lag and small 

variations in the maximum values of h0. Since the difference is small, it is decided 

to use Wmax =4 m/s as the maximum block velocity. 
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CHAPTER IV 
 
 

EXAMPLE SOLUTIONS 
 
 
 

4.1 General 

 
In the previous chapters, mathematical model was constructed and computational 

parameters were tested. In the tests, the hypothetical domain parameters were also 

kept constant. In nature, ocean depth is varying in the region. Therefore it is not 

appropriate to fix a certain value for water depth, H. Besides, it is difficult to 

determine a fault crack dimensions.  

 

For the system of this study, step length LS, its height HS, water depth of the 

domain, H and its length, LR are the input parameters. So, to examine their effects 

on the maximum water height, various cases can be studied.  

 

4.2 Relation between hmax, H and HS

 
With the previous computational tests a relation is determined to express domain 

length LR in terms of water height, H and step length, LS. According to that relation 

it is necessary to use the maximum LR value that is obtained from the relations 

LR=10xH and LR=10xLS. In addition, from the tests on the block velocity, it is 

decided to use smoothing in decelerating stage to reduce the secondary damp effect, 

which is not so natural. According to those tests, to obtain the maximum water 

height and to give the block a rapid rise, it is necessary to use maximum block 

velocity of, Wmax=4 m/s.  

Since hmax =f (H, HS), by using those results, the effects of various H and HS 

combinations on the maximum water height is examined (Table 4.1).  
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Table 4.1 Maximum water height for various H and HS combinations 

HS (m)\ H (m) 100 1000 

1 100.526 1001.13 

2 100.994 1001.96 

4 101.888 1003.31 

6 102.781 1004.19 
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Figure 4.1 Free surface profiles for H = 100 m and HS = 2 m 
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Figure 4.1 (continued) 
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Figure 4.2 Pressure fields for H = 100 m and HS = 2 m 
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Figure 4.2 (continued) 
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Figure 4.2 (continued) 
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Figure 4.3 Free surface profiles for H = 1000 m and HS = 2 m 
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Figure 4.3 (continued) 
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Figure 4.4 Pressure fields for H = 1000 m and HS = 2 m 
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Figure 4.4 (continued) 
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Figure 4.4 (continued) 
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Figure 4.4 (continued) 
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4.3 Discussions on the Results 

 

Resulting graphs immediately divulge that the effect of the partial sea bottom 

motion reveals itself as a bump in the pressure contours (Figs.4.2 and 4.4) and 

travel to the surface. It is also observed that the velocities are distributed 

accordingly. As the time passes the disturbance in the pressure field dilutes away 

and the bump gets shorter and wider. These variations in the water bulk manifest 

themselves as a traveling wave on the surface. Surface waves (Figs.4.1 and 4.3) 

appear in the middle of the domain and travel to the sides. Since pressure 

distribution and the surface waves obey different equations, their time development 

will be different and it is readily seen in the graphs.  

 

Similar behavior was reported previously by Kırlangıç [15]. For making a more 

reliable comparison, in this study, almost identical cases with H = 100 m and H = 

1000 m. are tested. Pressure distributions and surface profiles as well as the 

maximum wave amplitudes agree quantitatively.  

 

Besides these qualitative features, many other correlations can be investigated. The 

effect of compressibility can be observed more as the water gets deeper. It can be 

seen clearly when the pressure field plots of the case where H = 1000 m. is 

examined. Curvature is sharper with respect to shallower one. In addition, it takes 

longer time for the effect to spread out to the whole domain and dilute. 

 

Another notable physical property is the response time of the surface to the bottom 

movement. For example in the case of H = 1000 m the delay is just over 3 seconds. 

Physical interpretation is that the pressure waves travel at the speed of sound which 

is about 1482 m/s in the water. 
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All these above results make perfect sense for the physical intuition and raise the 

confidence in the solution method which will be discussed in the next section. 

 

4.4 Discussion on the Solution Method 
 
Solution method is selected with the guidance of Kırlangıç [15] and Griebel, et. al 

[16].  Surface treatment completely coincides with these two works. Surface height 

method takes into account the fact that the real free surface can be inside the cells, 

so the surface cells are not totally full. All the derivatives in the calculations and 

boundary values are calculated accordingly as the details given in the text. Setting 

up a variable mesh comes in handy in this case. The minimum sizes are tried to be 

chosen as small as possible without making the maximum size unreasonably large.  

 

Differences from the earlier studies should be stated here. First of all, a variable 

mesh in both horizontal and vertical directions is used. This enables to have greater 

precision in the regions where the values of computational parameters may change 

significantly in time such as, moving block at the bottom, the free surface and 

particularly in the middle areas of the domain. This goal has been reached with the 

same amount of computational power and memory as the study of Kırlangıç [15].  

 

The left-right symmetry of the system is emphasized. It is enough to solve the half-

domain and copy to the other side. This saves extra time and makes the algorithm 

much more computationally effective. With the use of symmetry property, the CPU 

time for a computer with 1.39 GHz, 480 MB of RAM lasts approximately 3 hours. 
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CHAPTER V 
 
 

CONCLUSIONS 
 
 
 

In this study, surface waves generated by sudden movements of the sea bottom are 

investigated in order to shed light on possible tsunami formations. 

 

The computational domain is a two dimensional water volume on a vertical plane, 

where the viscosity and compressibility effects are taken into account. Marker and 

Cell Algorithm is used on a variable mesh in both horizontal and vertical directions. 

 

Major conclusions of the study can be summarized as follows: 

 

1) A rectangular grid system formed by 501x251 number of grid nodes (with 

appropriate clustering) is enough to obtain sufficient grid resolution. 

 

2) Location of the far field boundary is determined from, 

  LR = max (10xLS , 10xH) 

 

3) Surface waves are very sensitive to the velocity and accelerations of the moving 

block. 

 

4) Smoothing the decelerating stage of the block in the last 25% of the period of 

motion is enough to eliminate the unrealistic shocks at the end of motion. 

 

5) Block velocity must be above 4 m/s to be accounted as a rapid crack at the 

bottom. 
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6) No additional dissipation term is required in the free surface computations. 

7) On the far field boundary, the first derivatives of the variable can be set to zero 

for an acceptable solution. 

  

For further improvement of the model, as a recommendation, more realistic crack 

formations may be simulated. 

 70



REFERENCES 
 
 

 
[1] Wikipedia: The Free Encyclopedia. Retrieved July 4, 2005, from 

http://en.wikipedia.org/wiki/Tsunami

 

[2] National Oceanic and Atmospheric Administration-The Tsunami Story. 

Retrieved June 6, 2005, from http://www.tsunami.noaa.gov/tsunami_story.html

 

[3] Wikipedia: The Free Encyclopedia. Retrieved July 4, 2005, from 

http://en.wikipedia.org/wiki/Tsunami#2004_-_Indian_Ocean_tsunami

 

[4] The Earthquake and Tsunami of August 17, 1999 in the Sea of Marmara, 

Turkey-by Dr. George Pararas-Carayannis. Retrieved May 14, 2004, from 

http://www.drgeorgepc.com/Tsunami1999Turkey.html

 

[5] Tsunami Laboratory, Novosibirsk, Russia. Retrieved May 25, 2005, from 

http://tsun.sscc.ru/tsulab/Med_tsu.htm#

 

[6] Altinok, Y., Ersoy, S., Yalciner, A. C., Alpar, B. and Kuran, U., (2001). 

“Historical Tsunamis in the Sea of Marmara”, ITS 2001 Proceedings, Session 4, 

Number 4-2, 527-534.  

http://www.pmel.noaa.gov/its2001/Separate_Papers/4 02_Altinok.pdf

 

[7] Wikipedia: The Free Encyclopedia. Retrieved July 8, 2005, from 

http://en.wikipedia.org/wiki/Izmit_Earthquake

 

 

 71

http://en.wikipedia.org/wiki/Tsunami
http://www.tsunami.noaa.gov/tsunami_story.html
http://www.drgeorgepc.com/Tsunami1999Turkey.html
http://tsun.sscc.ru/tsulab/Med_tsu.htm
http://www.pmel.noaa.gov/its2001/Separate_Papers/4-02_Altinok.pdf
http://en.wikipedia.org/wiki/Izmit_Earthquake


[8] Barka, A., Lettis, W. and Altunel, E., “Coastal Deformation Occurred During 

the August 17, 1999 İzmit Earthquake”, Proceedings of the NATO Advanced 

Research Workshop on Underwater Ground Failures on Tsunami Generation, 

Modeling, Risk and Mitigation, Istanbul, Turkey, May 23–26, 2001. 

 

[9] Lynett, P. and Liu, P. L. F “Submarine Landslide Generated Waves Modeled 

Using Depth-Integrated Equations”, Proceedings of the NATO Advanced Research 

Workshop on Underwater Ground Failures on Tsunami Generation, Modeling, Risk 

and Mitigation, Istanbul, Turkey, May 23–26, 2001. 

 

[10] Todorovska, M. I., Hayir, A. and Trifunac, M. D., “Near Field Amplitudes of 

Tsunami from Submarine Slumps and Slides”, Proceedings of the NATO Advanced 

Research Workshop on Underwater Ground Failures on Tsunami Generation, 

Modeling, Risk and Mitigation, Istanbul, Turkey, May 23–26, 2001. 

 

[11] Fine, I. V., Rabinovich, A. B., Thomson, R. E. and Kulikov, E. A., “Numerical 

Modeling of Tsunami Generation by Submarine and Subaerial landslides”, 

Proceedings of the NATO Advanced Research Workshop on Underwater Ground 

Failures on Tsunami Generation, Modeling, Risk and Mitigation, Istanbul, Turkey, 

May 23–26, 2001. 

 

[12] Ohmachi, T., “Tsunami Simulation Taking Into Account Seismically Induced 

Dynamic Seabed Displacement and Acoustic Effects of Water”, Proceedings of the 

NATO Advanced Research Workshop on Underwater Ground Failures on Tsunami 

Generation, Modeling, Risk and Mitigation, Istanbul, Turkey, May 23–26, 2001. 

 

 

 72



[13] Tyvand, P. A., Miloh, T. and Haugen, K. B., “Impulsive Tsunami Generation 

by Rapid Bottom Deflections at Initially Uniform Depth”, Proceedings of the 

NATO Advanced Research Workshop on Underwater Ground Failures on Tsunami 

Generation, Modeling, Risk and Mitigation, Istanbul, Turkey, May 23–26, 2001. 

 

[14] Matsuyama, M. and Yeh, H., “Effects of Tsunami at Sissano Lagoon, Papua 

New Guinea: Submarine-Landslide and Tectonics Origins”, Proceedings of the 

NATO Advanced Research Workshop on Underwater Ground Failures on Tsunami 

Generation, Modeling, Risk and Mitigation, Istanbul, Turkey, May 23–26, 2001. 

 

[15] Kırlangıç, Ö., (2004).”Generation of Surface Waves due to Sudden 

Movements at the Sea Bottom”, M.Sc. Thesis, Metu. 

 

[16] Griebel, M., Dornseifer, T. and Neunhoeffer, T., (1998). “Numerical 

Simulation in Fluid Dynamics : A Practical Introduction”, Society for Industrial and 

Applied Mathematics, Philadelphia. 

 

[17] Nosov, M. A. and Kolesov, S. V., “Tsunami Generation in Compressible 

Ocean of Variable Depth”, Proceedings of the NATO Advanced Research 

Workshop on Underwater Ground Failures on Tsunami Generation, Modeling, Risk 

and Mitigation, Istanbul, Turkey, May 23–26, 2001. 

 

[18] Density of Ocean Water. Retrieved August 31, 2001, from 

 http://www.windows.ucar.edu/tour/link=/earth/Water/density.html&edu=high

 

[19] Physical Properties of Sea Water. Retrieved June 10, 2000, from  

http://sam.ucsd.edu/sio210/proseawater/ppsw_fortran/rho.f

 73

http://www.windows.ucar.edu/tour/link=/earth/Water/density.html&edu=high
http://sam.ucsd.edu/sio210/proseawater/ppsw_fortran/rho.f


[20] Arkhipkin, V. S. & S. A. Dobrolubov, 1999. Steric variation of the 

Mediterranean and Black Sea level. In E. Th. Balopoulos & A. Iona (eds), 

Oceanography of the Eastern Mediterranean and Black Sea, Sakellariou, Athens: 5 

6. 

[21] Hirt, C. W. and Nichols, B. D., (1980). “Adding Limited Compressibility to 

Incompressible Hydrocodes”, J. Comput. Phys., 34, 390-400. 

 

[22] Nichols, B. D. and Hirt C. W., (1973). “Calculating Three-Dimensional Free 

Surface Flows in the Vicinity of Submerged and Exposed Structures”, J. Comput. 

Phys., 12, 234-246. 

 

[23] Hirt, C. W. and Nichols, B. D., (1981). “Volume of Fluid (VOF) Method for 

the Dynamics of Free Boundaries”, J. Comput. Phys., 39, 201-225. 

 

[24] Nichols, B. D. and  Hirt C. W., (1971). “Improved Free Surface Boundary 

Conditions for Numerical Incompressible-Flow Calculations”, J. Comput. Phys., 8, 

434-448. 

 

 74




