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ABSTRACT 

DYNAMIC STABILITY ANALYSIS OF MODULAR, SELF-RECONFIGURABLE 

ROBOTIC SYSTEMS 

 

 

 

Böke, Tevfik Ali 

M.S., Department of Mechanical Engineering 

Supervisor: Prof.Dr. Reşit SOYLU 

April 2005, 117 pages. 

 

 

 In this study, an efficient algorithm has been developed for the dynamic 

stability analysis of self-reconfigurable, modular robots. Such an algorithm is 

essential for the motion planning of self-reconfigurable robotic systems. The building 

block of the algorithm is the determination of the stability of a rigid body in contact 

with the ground when there exists Coulomb friction between the two bodies. This 

problem is linearized by approximating the friction cone with a pyramid and then 

solved, efficiently, using linear programming. The effects of changing the number of 

faces of the pyramid and the number of contact points are investigated. A novel 

definition of stability, called percentage stability, is introduced to counteract the 

adverse effects of the static indeterminacy problem between two contacting bodies. 

 

 The algorithm developed for the dynamic stability analysis, is illustrated via 

various case studies using the recently introduced self-reconfigurable robotic 

system, called I-Cubes. 

 

 

 

Keywords: Modular Robots, Self-reconfigurable Robots, I-Cubes, Stability Analysis, 

Static Indeterminacy, Coulomb Friction. 

.
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ÖZ 

MODÜLER, KENDİLİĞİNDEN ŞEKİL DEĞİŞTİREBİLEN ROBOTİK SİSTEMLERİN 

DİNAMİK DENGE ANALİZİ 

 

 

 

Böke, Tevfik Ali 

Yüksek Lisans, Makine Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Reşit SOYLU 

Nisan 2005, 117 sayfa. 

 

 

 Bu çalışmada, kendiliğinden şekil değiştirebilen, modüler robotların dinamik 

denge analizi için kullanılan bir algoritma geliştirilmiştir. Bu tür bir algoritma, 

kendiliğinden şekil değiştirebilen robotik sistemlerin hareket planlaması için 

gereklidir. Algoritmanın temel taşı, aralarında Coulomb sürtünmesi bulunan rijit bir 

cisim ile zemin den oluşan sistemde, rijit cismin dengede olup olmadığının 

saptanmasıdır. Bu problem, sürtünme konisinin bir piramit olarak varsayılması 

yöntemiyle doğrusallaştırılmış ve doğrusal programlama kullanılarak çözülmüştür. 

Piramidin yüz sayısı ve zeminle temas ettiği nokta sayıları değiştirilmek suretiyle 

oluşabilecek etkiler incelenmiştir. Temas halindeki iki cisim arasındaki statik 

belirsizliğin yarattığı problemleri kısmen azaltabilmek amacıyla “yüzdelik denge” 

isimli yeni bir denge tanımı sunulmuştur. 

 

 Dinamik denge analizi için geliştirilen bu algoritma, I-Küpler adındaki, 

kendiliğinden şekil değiştirebilen bir robot sistemi üzerinde çeşitli örneklerle 

irdelenmiştir. 

 

 

Anahtar Kelimeler: Modüler Robotlar, Kendiliğinden şekil değiştirebilen Robotlar, I-

Küpler, Denge Analizi, Statik Belirsizlik, Coulomb Sürtünmesi. 
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CHAPTER 1 

INTRODUCTION 

 Robots with a fixed architecture constitute an overwhelming majority of robot 

designs. These robots are usually intended to perform a single task and the 

architecture is designed accordingly. Although the single task may be extremely 

complicated, such as space exploring, a robot designed for that task will have 

difficulty performing a different task. This is true for all single-purpose robots. They 

perform very well in the structured environment for which they were designed. 

However, they usually perform poorly in non-structured environments and in 

environments for which they were not designed. To be successful in unknown or 

unstructured environments, robots need to be able to change their architecture to 

suit the environment and the task. In this thesis, modular, self-reconfigurable robots, 

which are a class of robots that can change shape and functionality, and their 

stability problem have been studied. 

 

 Modular robots are in general the robots, which consist of a set of 

independent robotic modules that can be composed in different geometric 

configurations to create the optimal geometric shape for a given task. These 

modules cooperate to perform the tasks of the robot. The modules may be complete 

robots in themselves capable of performing some tasks without cooperation, or they 

may be units which are functional only when some minimum number of modules is 

present. Modular robots are versatile and extensible robots and have several 

advantages over the more traditional, fixed architecture robots. Some of these 

advantages are stated below. 

 

• The module can be simple in design. Because it is only one part of a 

greater whole, each module needs only a small part of the overall capability of the 

entire system. This makes each module easier to design and build. 

• Modular robots support multiple modalities of locomotion and 

manipulation. This can be achieved by requiring the robot to metamorphose from 
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one shape to another to best match the shape of the terrain, such as stair climbing, 

gap crossing, tower creating, etc. 

• Modular robots are fault tolerant, i.e., if a module fails, some 

additional modules will replace it with the spare units. 

• Modular robots are used in tasks that require self-assembly. Such as 

assembling a structure in space. 

 

1.1 TYPES OF MODULAR ROBOTS 

 

 There are three types of reconfigurable robots, namely, chain, lattice and 

mobile kind. 

 

 The chain kind modular robots make themselves over by attaching and 

detaching chains of modules to and from themselves, with each chain always 

attached to the rest of the modules at one or more points. Nothing ever moves off on 

its own. The chains may be used as arms for manipulating objects, legs for 

locomotion, or short tentacles for both manipulation and locomotion. 

 

 The lattice kind modular robots change shape by moving into positions on a 

virtual grid, or lattice. They are like pawns moving on a chessboard, except this 

board has three dimensions. 

 

 The mobile kind reconfigurable robots change shape by having modules 

detach themselves from the main body and move independently. They then link up 

at new locations to form new configurations. 

 

 Modular robots may also be classified according to configuration 

competence, structure, working environment and control. 

 

• According to Configuration Competence: 

 

o Self-reconfigurable modular robots, which can autonomously change their 

configurations, with no help from outside (mostly used in unknown or 

complex environments). 
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o Manually-reconfigurable modular robots, which can only change their shape 

by outside help. 

 

• According to Structure: 

 

o Homogenous, modular robots which have identical parts (modules), each of 

which contains all of the actuation, sensing, CPU and battery requirements. 

Indeed, such robots will be physically too large. 

 

o Heterogeneous, modular robots which have different types of modules have 

different types of aims. One module may be responsible for actuating, while 

another may be power supply. 

 

• According to Working Environment: 

 

o Planar (2-D), modular robots which work in 2-D space. 

o 3-D, modular robots which work in 3-D space. 

 

• According to Control: 

 

o Distributed, modular robots where each module thinks for itself within the 

group context. 

o Centralized, modular robots where the whole system is considered. 

 

1.2 APPLICATIONS 

 

 Self-reconfigurable robots have many applications in both the macro-robotics 

and the micro-robotics fields.  

 

 On the macro-robotics side, applications include designing versatile robots 

that can self-reconfigure in the best shape to fit the terrain, environment, and task. 

When a task or terrain varies, modular reconfigurable robots can change their 

shapes to get the job done. A modular, self-reconfigurable robot is most useful in an 

unknown, complex environment. For example, a damaged building by an 
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earthquake contains a variety of obstructions and may not be suitable for any 

standard robot. A reconfigurable robot, with the ability to locomate over a variety of 

terrains, through gaps and over obstacles can perform well in this situation. Another 

application is space/planetary exploration where unpredictable terrains on a planet 

have to be explored. 

 

 The self-reconfiguration algorithms for enabling several locomotion gates 

and manipulation modes have applications at the micro scale, in non-invasive 

medicine and in complex part assembly with MEMS devices. The geometric 

algorithms resulting from self-organizing robots could be mapped at the micro scale 

to create new gates for MEMS devices that can result in the self-propelling of parts 

(“walking chips”) and the self-assembly of complex parts. Microscopic self-

reconfigurable robots could be used in numerous applications. One application is a 

NASA space probe that dumps nano-scale robots on an asteroid. These robots then 

mine materials to reproduce billions of identical robots which are used to transform 

the asteroid into a space station. Another application is minimally-invasive surgery. 

Future operations may take place by inserting a small tube into the patient through 

which many micro-scale self-reconfigurable robots could be inserted into the 

patient's body as a linear chain structure. This structure would then reconfigure into 

a manipulator, allowing the surgeon to perform procedures that would require a 

large incision using today's techniques. The benefit would be less tissue damage 

and therefore faster healing. 

 

1.3 STABILITY 

 

 While planning the motion of a self-reconfigurable robotic system, one has to 

consider the dynamic stability of the system. To be more explicit, the bodies which 

are in contact with the ground should remain motionless during the motion from an 

initial configuration to a final configuration. The main problem here is static 

indeterminacy; that is, situations in which the stability of an assembly is 

indeterminate, because the distribution of normal forces is indeterminate. In 

discussing stability, one can either consider potential stability or guaranteed stability 

[1]. An assembly is potentially stable if contact forces (i.e., normal and friction 

forces) could arise that cause the assembly to remain motionless. On the other 
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hand, an assembly has guaranteed stability if all normal and friction forces that can 

arise cause the assembly to remain motionless. Determining the stability of 

contacting frictionless assemblies is relatively straightforward. Although the actual 

contact forces that arise at any given instant may be indeterminate, the overall 

acceleration of all the bodies is unique [2], [3]. Thus, there is no difference between 

potential and guaranteed stability, for frictionless systems; if there is any 

combination of legal contact forces which yields zero acceleration for each body, 

then all legal contact forces will yield zero acceleration for each body. The addition 

of friction, greatly complicate matters. Consider Figure 1.1, which shows an object in 

contact with an inclined plane at a number of points. If the object was frictionless, 

the distribution of weight among the contact points would be undetermined, but the 

acceleration would be unique. The object would slide down the plane. Suppose, 

however, that contact points 1 and 4 have friction, but there is no friction at contacts 

2 and 3. Now the behavior is truly indeterminate. If all the weight rests on the interior 

two contacts, the object will slide down the plane. But if all the weight rests on the 

external two contact points, the object will remain motionless (assuming a large 

enough coefficient of friction). In fact, there are infinitely many behaviors. If the 

object’s weight is distributed over both the exterior and interior contacts, the 

acceleration of the object down the plane will be inversely proportional to the weight 

resting on the exterior contacts. [4] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 A block on an incline [4]. 
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 Consider, now, the problem, where a block is resting on a table with the 

gravity vector and an external torque (τ ) acting on the block as shown in Figure 1.2. 

The contact surface between the block and the table is shown alongside. Let us 

consider unknown contact forces as occurring at the five points shown in Figure 1.2 

(b). Normal forces arise at the contact points so as to balance the gravitational force. 

If these forces are distributed over the five contact points, then a nonzero torque can 

be generated over the surface. However, if the normal forces act at the center point, 

as shown in Figure 1.2 (c), then no torque can be generated. This is another 

example for the problem of static indeterminacy [4]. 

 

 

 

 

Figure 1.2 A block resting on a grounded table with an external load [4]. 
 

 

 Figure 1.2 only gives two possible contact force distributions. Note that one 

of these distributions gives an unstable solution (Figure 1.2 (c)). The distribution in 

Figure 1.2 (b), however, may give a stable solution with a large enough coefficient of 

friction. 

 

 When the rigid-body assumption is relaxed to allow deformations, the 

indeterminacy in the force distribution is resolved. If actual deformations are 

allowed, indeterminacy can be either partly or completely eliminated [5]. 
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 Pang and Trinkle [6] are other researchers who have extensively dealt with 

the problem of static stability in detail. Actually, they have classified external loads 

into 3 categories, namely, weak stable, strongly stable and frictionless stable loads. 

 

 Stability of rigid bodies is a problem that is also studied regarding assemblies 

to be handled by robots [4] as well as part of fixture design [6] and computer 

simulations [5]. 

 

 In this study, an algorithm has been developed for the dynamic stability 

analysis of self-reconfigurable, modular robots. This kind of an algorithm is 

necessary in order to realize motion planning for reconfigurable robots. To the 

author’s knowledge, this is the first algorithm of its kind in the literature. 

 

 Throughout the thesis the algorithm is illustrated via I-Cubes which is a 

recently introduced self-reconfigurable, modular robot. The developed algorithm, 

however, is applicable to any reconfigurable robot with slight modifications. 

 

 The outline of the thesis is given next. 

 

 In Chapter 2, most popular modular and/or self-reconfigurable robots are 

discussed. Chapter 3 is specifically devoted to I-Cubes. Static stability analysis is 

detailed in Chapter 4. Dynamic stability analysis of I-Cubes is presented in Chapter 

5. Chapter 6 is devoted to case studies and, finally, the conclusions are given in 

Chapter 7. 
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CHAPTER 2 

 RELATED WORK 

 In this chapter, the earlier research efforts on modular robots are 

investigated and compared. The stability problem is an important challenge for all 

kind of modular robots and the work on this thesis could be adapted to any kind of 

modular robots. 

 

2.1 ACM  

 

 The active cord mechanism (ACM), a snake-like robotic mechanism, was an 

early development by Hirose [7]. The ACM is a homogeneous modular robot and it 

was used to mimic the snake movement. Both manipulation and locomotion have 

been implemented in the ACM. ACM-R1 is shown in Figure 2.1 (a). ACM may 

operate in 3D, but it does not have the ability to self-reconfigure. 

 

2.2 TETROBOT 

 

 Hamlin and Sanderson [8] implemented a modular system, TETROBOT 

(Figure 2.1 (b)). Novel spherical joints were used to design a homogeneous truss 

structured robot. The joint design allows the structure to spherically move around a 

center of rotation. However, connecting parts are manually assembled. The authors 

presented possible configurations of the system such as Double Octahedral, 

Tetrahedral Manipulator and Six Legged Walker TETROBOT. Suggested 

applications were space/sea exploration and construction sites. 
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Figure 2.1 (a) Active Cord Mechanism [7], (b) Tetrobot [8]. 

 

2.3 CEBOT 

 

 A cellular robotic system (CEBOT) was developed by Fukuda and Kawauchi 

[9]. This is a homogeneous modular robot where each cell has limited sensing and 

computation. The problem of determining an optimal arrangement of cells for a 

particular task was studied. Experiments in automated reconfiguration were carried 

out but the robot did not self-reconfigure. A manipulator arm was required for self-

reconfiguration. 

 

2.4 FRACTA 

 

 Murata et al considered 3D [10] and 2D [11] categories of homogeneous 

distributed systems. In the 3D design, Fracta (as shown in Figure 2.2) has three 

symmetric axes with twelve degrees of freedom. A unit is composed of a 265 mm 

cube weighing 7 kg with connecting arms attached to each face. Self-reconfiguration 

is performed by means of rotating the arms and an automatic connection 

mechanism. Each unit has an on-board microprocessor and communication system. 

The drawback of this approach is that each module is quite big and heavy. The 

connection mechanism uses six sensors and encoders, further increasing system 

complexity. However, this is one of the few systems that can achieve 3D self-

( )a ( )b



  

 10 

reconfiguration. This system perfectly illustrates the fact that in a homogeneous 

design, the modules become big and cumbersome. 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Fracta [10]. 

 

2.5 MOLECULE 

 

 A similar type of 3D homogeneous self-reconfigurable system is the 

Molecule [12] (See Figure 2.3 (a)). Each molecule consists of a pair of two-DOF 

atoms, connected by a link (called a bond). By suitably connecting a number of 

modules, one can form 3D shapes. Twelve movements of each atom can perform 

self-reconfiguration. Independent movement on a substrate of molecules including 

straight-line traversal and 90 degrees convex and concave transitions to adjacent 

surface can be performed. 

 

2.6 METAMORPHIC ROBOTIC SYSTEM 

 

 The Metamorphic robotic system (Figure 2.3 (b)) was demonstrated by 

Chirikjian [13], [14]. Each module is a planar hexagonal shape with three DOFs that 

can combine with others with varying geometry. Each module has abilities to 

connect, disconnect and rotate around its neighbors. However, it is a limited, planar 

mechanism. 
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Figure 2.3 (a) Molecule [12], (b) Metamorphic Robotic System [13]. 

 

2.7 PROTEO 

 

 A metamorphic robot, Proteo, which is shown in Figure 2.4 (a), was 

proposed by Bojinov et al [15]. Each module is a rhombic dodecahedron with twelve 

identical connection faces which allow other modules to attach. Electromagnets are 

used for module connection. According to the simulations, the motion is simply 

composed of a number of rotations about the edges of the faces. This robot consists 

of compact homogeneous rhombus units. This is an interesting concept. However, 

the use of twelve connecting faces leads to high complexity and high cost. 

 

2.8 CRYSTALLINE 

 

 The concept of a Crystalline module (see Figure 2.4 (b)) was described by 

Rus and Vona [16]. Each module has a square cross-section with a connection 

mechanism using channels and rotating keys to lock modules together. A distributed 

robotic system is actuated by expanding and contracting each module. Each module 

can expand its size by a factor of two from its original size. The module has an 

onboard CPU, IR communication and power supply. Note that although the 

Crystalline robot is planar, it could be extended to 3D. The connection mechanism 

has male and female parts which limits possible mating configurations. 

 

( )a ( )b
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Figure 2.4 (a) Proteo [15], (b) Crystalline [16]. 

 

2.9 FRACTAL ROBOT 

 

 Figure 2.5 (a) shows a novel polymorphic robot called “Fractal robot” which 

was proposed by Michael [17]. The Fractal robot is composed of homogeneous 

cubes with screw and groove mechanisms at each cubic face to allow the robot to 

perform geometry changes and tasks. The structure formation is performed by 

sliding one or a group of cubes to another location along attached face(s). This 

mechanism seems difficult to implement and the results appear to be mainly in 

simulation. It is suggested that each module can attach special devices such as 

camera, gripper, etc. 

 

2.10 FRACTUM 

 

 Fractum (see Figure 2.5 (b)) is a 2D homogeneous system developed by 

Tomita et al [11]. Each unit has six arms, three electromagnet male arms and three 

permanent magnet female arms. Based on simple magnetics, connection occurs 

when a neighbor (male) has the same polarity of a permanent magnet (female). On 

the other hand, reversing the polarity of the electromagnets causes disconnection. A 

unit has three ball wheels under a body, a processor and an optical communication. 

The Fractum robot has a simple mechanism. Therefore, it can only achieve planar 

motion. 

( )a ( )b
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Figure 2.5 (a) Fractal Robot [17], (b) Fractum [11]. 

 

2.11 MINIATURIZED SELF-RECONFIGURABLE SYSTEM 

 

 Figure 2.6 (a) shows the miniaturized self-reconfigurable robot which was 

presented by Yoshida et al [18]. A male and female connection mechanism is used, 

with locking pins holding the modules together. A shape memory alloy (SMA) spring 

is used to release the lock. The miniaturized robot is approximately 40 mm high, 50 

mm long and it weighs 80 g. This is a planar design, but the researchers are 

considering a 3D mechanism. This system has been designed using novel SMA 

actuators which reduces the size of the system. However, limited torque and a short 

range of movement are the main disadvantages. 

 

2.12 CONRO 

 

 CONRO [19] is a self-reconfigurable robot composed of two-DOF 

homogeneous modules (Figure 2.6 (b) shows a single module). Each module is 108 

mm long and weighs 115 g. Docking connectors (active and passive) using a SMA 

locking mechanism allows modules to connect with pins and holes for alignment. 

Each module has two motors, two batteries, a micro-controller and an IR 

communication system. The design of homogeneous CONRO robot allows for self-

reconfiguration. Its size is compact to reconfigure. However, the use of a bipartite 

active/passive connection mechanism limits reconfiguration. 

 

( )a ( )b
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Figure 2.6 (a) Miniaturized Self-reconfigurable system [18], (b) CONRO [19]. 

 

2.13 I-CUBES 

 

 Ünsal and Khosla [20] have designed a modular self-reconfigurable robotic 

system called I-Cubes (or ICES-Cubes). I-Cube is a bipartite system composed of a 

three-DOF link and a passive element as connector (see Figure 2.7). The link is 170 

mm long and weighs 205 g. The passive element is a cube which has six faces for 

connecting. A novel mechanism provides inter-module attachment and detachment 

to perform various tasks such as moving over obstacles. 

 

 

 

 

 

 

 

 

Figure 2.7 I–Cubes [21]. 

 

2.14 POLYPOD AND POLYBOT 

 

 Yim [22] proposed Polypod, a modular reconfigurable robot, with two types of 

modules: A two-DOF segment with two connection ports and a passive cubic node 

( )a ( )b
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with six connection ports. The modules are manually bolted in different ways in 

order to achieve versatility to many modes of locomotion gaits (Figure 2.8 (a)). Each 

module is approximately a 60 mm cube. PolyBot [23] (Figure 2.8 (b) shows PolyBot 

(G2)) is comprised of homogeneous one-DOF modules with hermaphroditic 

(genderless) connection plates. Each PolyBot module has a quite powerful on-board 

computer, but limited sensing. It is about 50 mm each side (with the motor 

protruding by about 50 mm) and weighs 416 g. Infrared is used to communicate 

between the modules. Polypod and PolyBot are homogeneous systems. They are 

simple and versatile. On the other hand, Polypod has to be manually reconfigured to 

form different structures. 

 

 

 

Figure 2.8 (a) Polypod [22], (b) PolyBot [23]. 

 

2.15 SEMI-CYLINDRICAL RECONFIGURABLE ROBOT 

 

 Another 3D homogeneous self-reconfigurable structure was designed by 

Kurokawa [24] which is composed of two semi-cylindrical boxes (with a servo each) 

connected by a link mechanism (Figure 2.9). The semi-cylinders are 66 mm in size 

and they weigh 350 g. The connecting mechanism utilizes rare-earth magnets for 

attaching and SMA coil springs for detaching (on one side of the connection). A 

processor and a communication system are embedded in each module. The 

proposed mechanism allows the robot to globally move in 3D by moving each local 

module. The attachments and detachments are limited by the force of the magnets; 

therefore, a problem might occur if a module has to lift several other modules. The 

( )a ( )b
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use of magnets for connections severely limits the available connections 

(connection faces are either active or passive). 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 Semi-Cylindrical Reconfigurable Robot [24]. 

 

 

2.16 SELF-REPAIRING AND FAULT TOLERANT SYSTEMS 

 

 Murata proposed self-repairing systems [25] and Paredis and Khosla [26] 

proposed fault tolerant systems. A Modular system capable of “self-assembly” and 

“self-repair” is called as self-repairing system. Self-assembly means that a set of 

units can form a given shape of the system without outside help. Self-repair means 

that the system restores its original shape if an arbitrary part of the system is cut off. 

Fracta and Fractum are the examples of 3D and 2D self-repairing systems. 

 

2.17 PARALLEL ROBOTS 

 

 Yang and Chen [27] and Zhiming [28] introduced parallel modular robots 

(see Figure 2.10), which consist of a set of standardized modules (such as 

actuators, passive joints, rigid links, mobile platforms, and end-effectors) that can be 

rapidly assembled into a complete robot with various configurations to overcome the 

complex kinematics of the closed-loop form. 
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Figure 2.10 Modular Parallel Robot [27]. 
 

2.18 INCHWORM  

 

 Inchworms [29] (also called loopers) move with a looping movement in which 

the anterior legs and posterior legs are alternately made fast and released. The 

Inchworm is a biologically-inspired robot, designed to imitate the movements of the 

inchworm caterpillar (see Figure 2.11 (a)). 

 

2.19 MILLIBOTS 

 

 Figure 2.11 (b) shows Millibots, which was designed by Grabowsky [30]. 

Millibots are teams of heterogeneous robots that collaborate to map and explore 

unknown environments. 

 

 

 

Figure 2.11 (a) Inchworm [29], (b) Millibots [30]. 

( )a ( )b
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2.20 FIELD ROBOTS  

 

 A modular approach to field robots [31], which gives an inventory of 

prefabricated modules, is used to rapidly and cost-effectively produce a robotic 

system for a specific task. The inventory includes actuated joints, links, end-

effectors, and power units. The same inventory can be assembled in different 

configurations to perform different tasks (see Figure 2.12). 

 

 

 

 

 

 

 

 

 

Figure 2.12 Field Robots [31]. 

 

2.21 INDUSTRIAL TYPE MODULAR MANIPULATORS 

 

 Reconfigurable Modular Manipulator System (RMMS) [32] at Carnegie 

Mellon University (see Figure 2.13 (a)) utilizes a stock of interchangeable joint 

(actuator) and link modules of different sizes and performance specifications. The 

modularity in mechanical, electrical and electronic design allows the user to design 

the optimal manipulator for the task at hand. The RMMS extends the concept of 

modularity to also include the control algorithms and task planning software. With 

this combination of capabilities, the RMMS can be configured to meet the task 

requirements as they arise at the application site. Some potential application areas 

of the RMMS are in construction, space, nuclear and manufacturing environments. 

Other such modular robotic systems include TOMMS at Toshiba Corp. [33], DRRS 

at the Science University of Tokyo [34] and others (MRS) [35].  

 

 Basically, these systems have serial-type geometries with large working 

envelopes. Using fixed and variable dimension modules, the modular robotic groups 
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at the Nanyang Technological University and GINTIC Institute of Manufacturing 

Technology have developed serial, parallel and hybrid type modular robotic 

workcells [36] (see Figure 2.13 (b)). In addition to the research type modular robotic 

systems, there are a few commercial modular systems such as RMD-1 by 

Engineering Services Inc. of Canada and MoRSE (see Figure 2.13 (c)) by AMTEC 

GmbH of Germany. 

 

 

 

 

Figure 2.13 (a) RMMS [32], (b) Modular Robotic Workcell [36], and (c) A PUMA 

type robot configuration constructed by MoRSE modules. 
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2.22 VARIOUS TYPES OF RECONFIGURABLE ROBOTS 

 

 Table 2.1 shows a comparison of existing modular reconfigurable robots. 

Clearly, there is a wide range of possibilities. However, some general characteristics 

can be observed. Most reconfigurable robot research is based on a homogeneous 

design and aims to operate in 3D. Mostly, each proposed module can move over 

neighbors and reconfigure themselves over by attaching and detaching. Genderless 

connecting mechanisms are not very common. Generally, they are separated into 

male and female types. The number of internal degrees of freedom per module 

varies from zero to twelve depending on the desired mobility of each module. Two-

DOF module is the most common design. Finally, according to configuration 

competence, self-reconfiguring robots are quite popular. 

 

 

Table 2.1 Various Types of Reconfigurable Robots. 

 

 

 Number 

of 

DOF’ s 

per unit 

Module 

Composition 

(Homogeneous 

or 

Heterogeneous) 

Dimension Self – 

reconfig

uring 

Genderless 

connecting 

mechanism 

ACM 1-3 Homo 3D No No 

Tetrobot 3-5 Homo 3D No No 

CEBOT 1-3 Homo 2D No No 

Fracta 12 Homo 3D Yes Yes 

Molecule 4 Homo 3D Yes No 

Metamorphic 3 Homo 2D Yes Yes 

Proteo 0 Homo 3D Yes Yes 

Crystalline 2 Homo 3D Yes No 

Fractal 6 Homo 3D Yes Yes 

Fractum 0 Homo 2D Yes No 

Miniaturized 2 Homo 2D Yes No 

CONRO 2 Homo 3D Yes No 

I-Cubes 3 Hetero 3D Yes No 

Polypod 2 Hetero 3D No No 

PolyBot 1 Homo 3D No No 

SemiClindrical 2 Homo 3D Yes No 
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CHAPTER 3 

I-CUBES  

The material covered in this Chapter has been taken and inspired from ([20], [21], 

[37], [38], [39], [40], [41] and [42]). 

 

 In this chapter the modular self-reconfigurable bipartite robotic system, which 

is called as I-Cubes, is introduced. I-Cubes have all the properties that a modular, 

reconfigurable 3-D robot has. They have the properties of the chain, lattice and 

mobile kind reconfigurable robots. Therefore, I-Cubes have been chosen for the 

case studies with the assumption that they represent all of the modular robots. 

Another reason to select I-Cubes for constituting the stability analysis is the sliding 

problem of I-Cubes. Ünsal and Khosla [37] made stability analysis which is a part of 

the decision-making algorithm for the link motions. However their current [37] 

analysis is limited to overturning, and does not consider sliding stability. In this 

chapter, the properties of I-Cubes are described to illustrate the stability problem by 

I-Cubes. 

 

 Drawing from the recent research on modular robots and self-reconfigurable 

structures as well as possible applications of small mobile robots with limited 

capabilities, Ünsal and Khosla [38] have suggested a modular self-reconfigurable 

group of robots that consists of two modules with different characteristics. A 

sufficient number of modules combined as a single entity is capable of self-

reconfiguring themselves into defined shapes. 

 

 Unsal and Khosla’s design, called, I-Cubes (or ICES-Cubes), is a bipartite 

system composed of active elements, called links, (used for actuation) and passive 

elements, called cubes, (used as connectors). The active elements are 3-DOF 

manipulators that are capable of attaching or detaching to the passive elements 

which can be positioned and oriented using links. The self-reconfiguration capability 

enables the system to perform locomotion tasks over difficult terrains since the 

shape and size of the modular robot can be changed according to the task. A link 
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can move from one cube face to another, from one cube to another neighboring 

cube, or move a cube while attached to another (see Figures 3.1 and 3.2). All active 

and passive modules are capable of permitting power and information flow to the 

attached modules. When the links move, the structure and the shape of the 3-D 

system change. I-Cubes are actually both chain kind and lattice kind robots which 

possess the properties given below. 

 

• Links can be independently controlled; only cubes attached to the moving 

end of a link are affected by the link motions. All elements are physically, 

mechanically, and computationally compatible (i.e., any link can connect to 

any cube, and the cubes have attachment points to receive the link 

connectors). 

• Cube positions fit a cubic lattice to guarantee interlocking of neighboring 

elements (i.e., the distance from one cube to another is constant while in 

position to accept the link). 

• All elements form a single connected (pseudo-) graph where all links are 

connected to at least one cube, and all cubes are connected to at least one 

link. Active elements have sufficient degrees of freedom to complete motions 

in three-dimensional space. 

 

 Since all of the actuation for self-reconfiguration, with the exception of the 

attachment mechanism is provided by the links, the cubes are reserved for 

computation, sensing and power resources. If the modules are designed to 

exchange power and information, the cubes can be equipped with batteries, 

microprocessors, and sensing modules to create a collective intelligence while the 

links becomes the muscles of the system. Furthermore, it is possible to remove 

some of the attachment points on the cubes to provide these modules with different 

and faster gaits, such as wheeled or treaded locomotion. Specifically, Ünsal and 

Khosla [38] envision small mobile robots that can reposition themselves to form a 

group that is capable of changing its gait in order to move over obstacles that a 

single element cannot overtake. Similar scenarios that require reconfiguration 

include climbing stairs and traversing pipes. 
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3.1. GEOMETRIC DESIGN AND LINK ACTUATION 

 

 Figure 3.1 and Figure 3.3 shows two links connecting three cubes. If the 

length of a cube edge is taken as d , the links should have four essential sections of 

length, / 2d , d , d  and / 2d . The three rotational degrees of freedom for the links 

are provided by the joint ( 2J ) at the middle, and the joints located at the ends 

( 1, 3J J ). Joints 1J  and 3J  are both assumed to be capable of providing continuous 

360-degree rotations, while 2J  can only rotate 270 degrees. In order to keep the 

cubic lattice formed by the cubes intact, the distance between the cubes must be 

exactly d , while in position to accept the links. Therefore, the links have been 

designed [38] to provide this exact distance when the two middle sections are 

closed to touch (See the link on the right in Figure 3.1). 

 

 

 

 

 

 

 

 

 

Figure 3.1 Geometric requirements for the system.[37] 

 

 

Due to the design properties and the attachment capabilities of the I-Cubes, the 

links can 

 

• Move from one face to another face of a cube. (See Figure 3.2.a) 

• Move one cube while attached to another cube. (See Figure 3.2.b) 

• Move from one cube to another. (See Figure 3.2.c) 
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Figure 3.2.a Link moving from one cube face to another. [37] 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.b Link lifting a cube while attached to another. [37] 

 

 

 

 

Figure 3.2.c Link moving from one cube to another. [37] 

 

 

 All of the aforementioned motions require the links to be capable of attaching 

to the cube faces, and performing middle and end joint rotations. Note that it is also 

possible for a link to move a cube by rotating its middle joint, although not shown 

here. 
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3.2. DESIGN OF THE LINKS AND THE CUBES 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Physical view of a 3C2L I-Cube system.[41] 

 

 

 The links have three worm-wheel gear mechanisms driven by small servos to 

provide continuous rotation at the end joints, and 270-degree rotation at the middle 

joint. All servos are coupled to worm gears driving the wheels. At the end joints, the 

wheels are placed on a shaft that the connection pieces are attached. At the middle 

joint, rotating the servos will rotate one side of the link with respect to the other. 

Figures (3.4 (b), 3.5 (a) and 3.6) show the design of the link equipped with the 

servos, and gear structures. The distance between the joint shafts is again equal to 

d . Unsal and Khosla [38] state that there are two main advantages of using worm-

wheel structures coupled with servos. Firstly, the rotational speed of the servo is 

reduced by the ratio of the gear mechanism. Similarly, the torque provided by the 

servo is increased by the same ratio. Secondly, the worm-wheel system is an 

energy efficient solution for actuation. Since the wheel cannot drive the worm, the 

servos do not have to be powered continuously to hold the links in a specific 

position. 
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Figure 3.4 (a) The cube and (b) the link.[37] 

 

 

 The cubes are passive elements that consist of at most six attachment points 

for the link connectors. They are not capable of moving by themselves. A cube 

attached to a link can either be rotated, translated in a plane, or act as a pivot point 

for a moving link. The role of the cube depends on the position and motion of the 

link as well as the connections of the modules. Cubes do not contribute to the self-

reconfiguring motions with the exception of the motion to lock the link connector in 

place. However, available space inside cubes (see Figure 3.4 (a)) can be used for 

batteries to power all actuators, sensing and control modules. Figure 3.5 (b) shows 

CAD image of a cube retrofitted with five attachment points for cross-shaped link 

connectors. The system is based on twist and-lock mechanical behavior, and the 

details are given in the next section.  

 

 

 

Figure 3.5 CAD images: (a) The link is shown with two different connectors (servo 

holders expanded); (b) the cube is shown with five faceplates.[38] 

( )a ( )b
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Figure 3.6 ProE drawings of the link: (a) idle joint fully open and (b) at zero 

degrees.[37] 
 

 

3.3. TWIST-AND-LOCK ATTACHMENT MECHANISM 

 

 A self-reconfiguring modular robotic system must consist of elements that 

are capable of attaching/detaching themselves to/from neighboring elements. For 

that purpose, Ünsal and Khosla [38], [37] have designed a cross-shaped link 

connector for the links that enters and twists inside an opening on the cube face 

(see Figure 3.7 and Figure 3.8). After entering the similarly shaped opening, the link 

connector twists to lock in place. The twist-and-lock connection mechanism is 

designed [38], [37] for the connector to enter (see 1 in Figure 3.7) and rotate (see 2 

in Figure 3.7) to its locked position inside an opening on the cube face plate. Once 

the connector is in locked position, a sliding latch rotates into a position to stop the 

connector from turning (see Figure 3.8). This limits the motion of the link away from 

the cube surface, while the sliding latch stops the free rotation of the link end with 

respect to the cube. The surface of the cross-shaped attachment piece is the 

connection point for power and communication lines. 
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Figure 3.7 Cross-shaped connector with twist-and-lock mechanism [38]. 

 

 

 

Figure 3.8 Attachment mechanisms: (a) 4-pegs with latch at the center of the 

faceplate, (b) twist-and-lock mechanism with sliding latch.[37] 

 

 

3.4. 3-D RECONFIGURATION 

 

 Self-reconfiguring robots with lattice kind reconfiguration usually require a 

large number of modules to create stable gaits. A group of four links and four cubes 

is capable of moving in three dimensions for most situations (e.g., moving over 

obstacles, translating without tipping over) [38]. In situations that a statically stable 

configuration cannot be found, it may be possible to use a free link (with only one 

end attached) to support the structure.  
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 If one link is capable of moving itself and an attached cube, simultaneous 

motions in 3-D are possible for the cubes. Combining several of these motions in 

sequence, it is possible for a group of links and cubes to change shape and / or 

move in certain direction. 

 

 In order for a group of cubes and links to move and self-reconfigure from one 

position / shape to another; suitable link actions such as detaching from and 

attaching to cubes (see Figure 3.9), and joint rotations should be combined into a 

sequence. Figure 3.10 shows a group of three links and three cubes (called as 

3L3C) on the ground traveling from left to right. The sequence of states (i.e., 

configurations) from left to right show the changes in the cube and link positions. 

Gray color indicates active elements that are moved to reach the next state. 

Numbers between states give the total number of 90-degree rotations to be 

completed by the active link. Ünsal and Khosla state that the given sequence of 

actions may not be feasible for an actual implementation due to static and dynamic 

equilibrium constraints [38]. Indeed there are many alternative solutions such as 

combining individual link rotations in a different sequence, combining simultaneous 

link motions (which probably result in faster group movement) and solutions with link 

rotations other than 90-degree increments. The simulation program that is 

developed by Ünsal and Khosla, however, considers only 90-degree motions [38]. 

 

 

 

 

Figure 3.9 Link approaching the faceplate.[37] 

 

 As seen in Figure 3.10, the group returns to its initial configuration after thirty 

90-degree rotations of links. This sequence is in fact a solution when the final 
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conditions of the cubes are defined as 4d  units to the right of the initial 

configuration.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 A group of three links and three cubes in linear motion (image sequence 

left-to-right).[38] 

 

 

 To illustrate more complex motion sequences, the snapshots of a possible 

scenario for a group of four links and four cubes (4L4C) are presented in Figure 

3.11. The 4L4C group is capable of moving to a higher surface (e.g., stair climbing) 

by reconfiguring itself. Connections between the elements are kept such that the 

system forms a single connected graph at any time. This enables modules to 

exchange information and power during rearrangement. There are several time 

intervals, where multiple links move simultaneously. Furthermore, the links do not 

have to complete 90-degree motions to, for example, detach from a cube or move 

from one cube face to another. There are few positions where a link moves on a 

pivot cube held in the air by another cube. 

 

 Ünsal and Khosla speculate that, the middle joint of a link is strong enough to 

hold a cube and a nonmoving link. Also, note that the cube faces initially on the 

ground and several other faces (i.e. attachment points) are not used during the 

reconfiguration sequence. 

 

 As seen in the final image (Figure 3.11 (f)), the cubes are still oriented with 

the same faces looking up at the end of the action sequence. To guarantee this 

result, some of the cubes need to be re-oriented in the earlier phases of the solution 
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sequence, as seen in third and fifth images. This sequence for the problem has 

been generated manually by Ünsal and Khosla who believe that the combination of 

four cubes and four links is the minimal group that is feasible for 3-D motion and 

self-reconfiguration. Increasing the number of modules in the group will lead to more 

stable and capable system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 A 4L4C group reconfiguring to move over an obstacle.[38] 

 

 

 Another example that combines self-reconfiguration with faster locomotion 

capability is given in Figure 3.12. Since the cubes are passive elements that do not 

contribute to the reconfiguration motions with the exception of the locking 

mechanism, they can be equipped with capabilities that provide different gaits (such 

as wheel or treads) and task-oriented modules such as sensors. In Figure 3.12, the 

leftmost robot in the first image carries a camera directed at the wall. This robot is 

obviously not capable of seeing what is behind this obstacle. Assuming these 

wheeled robots are capable of carrying one or more links, they can move into a 

position to form a single entity. If initial actions forming the group are possible, then 

the newly formed group can self-reconfigure into a tower. For an initial configuration 

and a dependent sequence of actions, it is possible to move the robot with the 

camera on top of others. The required number of faces with attachment points for 

each robot is three or four for this specific scenario. These must include the face 

initially on top.  
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Figure 3.12 A group of four links and four cubes capable of locomotion forming a 

tower.[38] 

 

 

 This scenario illustrates an important characteristic of this robotic system. A 

heterogeneous group of small robots combines individual robot capabilities with self 

reconfiguration to complete a task that would not be possible with individual robots 

of relatively small size. 
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CHAPTER 4 

STATIC STABILITY ANALYSIS 

 In this chapter, the necessary and sufficient conditions for a rigid body to be 

in static equilibrium are determined. Furthermore, a novel definition of stability, 

called percentage stability, is introduced. In order to define percentage stability, the 

friction cone is approximated by a pyramid and then linear programming is used. 

The effects of the number of faces of the pyramid and the number of contact points 

are also investigated. 

 

 Consider a rigid body resting on the ground and assume that there is 

Coulomb friction between the body and the ground (see Figure 4.1). Suppose that 

the resultant of all external forces and moments acting on the rigid body is reduced 

to a resultant force, exF
→

 (acting at 1O ), and an accompanying resultant moment, 

exM
→

. Let RF
→

 and OM
→

 be the resultant force (acting at O ) and the accompanying 

resultant moment to be applied by the ground on the rigid body such that the body is 

in static equilibrium under the action of its weight, 
exF

→

, 
exM

→

 and 
RF

→

, 
OM

→

.  
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Figure 4.1 A block resting on a ground with friction 

 

 

 Clearly, RF
→

 and OM
→

 may be solved by using the static equilibrium equations 

 

0F
→ →

=∑  

 

and 

 

0
mC

M
→ →

=∑  

 

yielding 

 

0 1

( )

( ( ( )) )

R ex b

m ex b m ex ex

F F m g

M C O F m g C O F M

→ → →

→ → → → → → →

= − +

= − × − + + × +

    (4.1) 

1O

exM
→

exF
→

(1)

(0)  Base

Cm

g
→

O
0M

→

RF
→

bm g
→
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where 

 

mC  : The center of mass of the rigid body. 

O  : Point of application of RF
→

. 

1O  : Point of application of 
exF

→

. 

bm  : Mass of the rigid body. 

g
→

 : Gravitational acceleration. 

 

 Consider, now, the contact region between the rigid body and the ground 

(see Figure 4.2) and the following notation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Top view of the contact region between the cube and the ground. 

 

 

Oxyz  : Body fixed coordinate system such that the z axis is directed 

from the ground towards the body. 

, ,Rx Ry RzF F F   : x , y  and z  components of RF
→

 in the Oxyz  system. 

, ,Ox Oy OzM M M  : x , y  and z  components of 0M
→

 in the Oxyz  system. 

O

y
→

x
→

z
→

RxF

RyF

RzF

OxM

OyM

OzM

ir
→

xiF

yiF

ziF

iP
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iP    : i ’th contact point. ( 1,2,..., ci n= ) 

cn    : Number of contact points. 

iF
→

 : Contact force (applied by the ground on the body) at the i ’th 

contact point. 

, ,xi yi ziF F F   : x , y  and z  components of iF
→

 in the Oxyz  system. 

( , ,0)i xi yir r r
→

=   : Position vector of iP  with respect to the Oxyz  system. 

 

 A necessary, but not sufficient, condition for the body shown in Figure 4.1 to 

be in static equilibrium is that the cn  contact forces, iF
→

’s, are statically equivalent to 

the force system consisting of RF
→

 and 0M
→

, where 

 

i xi yi ziF F x F y F z
→ → → →

= + +        (4.2) 

 

and the moment of the contact force iF
→

 about the origin ( )O  is 

 

Oi i iM r F
→ → →

= ×          (4.3) 

 

 Therefore from equations (4.2) and (4.3), it follows that 

 

1

1

1

1

1

1

( )

c

c

c

c

c

c

n

Rx xi

i

n

Ry yi

i

n

Rz zi

i

n

Ox yi zi

i

n

Oy xi zi

i

n

Oz yi xi xi yi

i

F F

F F

F F

M r F

M r F

M r F r F

=

=

=

=

=

=

=

=

=

=

= −

= − +

∑

∑

∑

∑

∑

∑

       (4.4) 
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 xiF  and yiF  are the components of the friction force generated between the 

body and the ground. Hence, they should satisfy Coulomb’s law of friction, i.e. 

 

2 2 2( ) 0xi yi ziF F Fµ+ − ≤ , for 1,2,..., ci n=   (4.5) 

 

where µ  is the coefficient of static friction which is assumed to be the same for all 

contact points. 

 

 ziF , on the other hand, is the normal force applied by the ground on the 

body. Therefore, one must have 

 

0ziF ≥ , for 1,2,..., ci n=   (4.6) 

 

 Therefore, the necessary and sufficient conditions, for the body in Figure 4.1 

to be in static equilibrium are given by equations (4.4), (4.5) and (4.6) where RF
→

 and 

0M
→

 are obtained via equation (4.1). 

 

 Assuming that RF
→

 and 0M
→

 are obtained via equation (4.1), equation (4.4) 

constitutes a set of 6 linear equations in the (3 cn ) unknowns namely, 

1 2 1 2 1 2, ,..., ; , ,..., ; , ,...,
c c cx x xn y y yn z z znF F F F F F F F F . These equations can be decoupled 

into 3 equations involving cn  unknowns and another 3 equations involving another 

2 cn  unknowns as shown in the next section. 
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4.1. STATICAL EQUIVALENCE EQUATIONS 

 

 Equation (4.4) can be conveniently rearranged in the form 

 

c cn nA x b
→ →

  =           (4.7) 

 

cn
A    is the ( 6 3 cn× ) coefficient matrix given by 

 

1 2

1 2

1 2 1 2

1 1 1 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

0 0 0

c

c

c

c c

y y yn

x x xn

n

y y yn x x xn

r r r

r r r
A

r r r r r r

 
 
 
 − − −
   =   
 
 
 − − − 

� � �

� � �

� � �

� � �

� � �

� � �

 

 

where, 

 

cnx
→

 is the (3 1cn × ) vector of unknowns given by 

 

1

2

1

2
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2
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and b
→

 is the known ( 6 1× ) right hand side vector given by 

 

0

0

0

 

Rz

x

y

Rx

Ry

z

F

M

M
b

F

F

M

→

 
 
 
 

=  
 
 
 
  

 

 

 Although equation (4.7) seems to be a linear equation system involving 3 cn  

unknowns and 6 equations, actually the equations are fully decoupled into two sets 

of 3 linear equations involving the ( )cn  unknowns 1 2, ,
cz z znF F F�  and the (2 )cn  

unknowns 1 2 1 2, , ; , ,
c cx x xn y y ynF F F F F F� �  which may be represented as  

 

,11 ,1 1c cn n
A x b

→ →

  =          (4.8) 

 

,22 ,2 2c cn nA x b
→ →

  =          (4.9) 

 

where, 

,11 1 2[ ]
c cn z z znA a a a

→ → → 
=   

�  

1

zi yi

xi

a r

r

→
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 − 
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2

,1   
c
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z

z

n
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F

F
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 
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1 0
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 
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,22 1 2 1 2[ ]
c c cn x x xn y y ynA a a a a a a

→ → → → → → 
=   

� �  
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 Now, let’s have a look at the solutions of equations (4.8) and (4.9) for various 

values of 
cn . Here, it is convenient to take the first contact point, 

1P , to be coincident 

with O  as shown in Figure 4.3. 
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Figure 4.3 Contact region between the cube and the ground with the first contact 

point be at the origin (O ). 

 

1) 2cn = : 

 

 Equation (4.8) leads to 3 equations in 2 unknowns
1 2( , )z zF F . Therefore 

solution is not possible for a given general loading 0 0( , , )Rz x yF M M . 

 

2) 3cn = : 

 

 Equation (4.8) can be written as 

 

1, 2, 3 1, 2, 3 1[ ]z z z z z zA x b
→ →

=         (4.10) 

 

where, 
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1, 2, 3 3,11 1 2 3 2 3

2 3

1
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 Equation (4.10) has a unique solution given by 
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provided that 

 

 
1, 2, 3 2 3 2 3

det 0
z z z x y y x

A r r r r  = − ≠   

 

 It should be noted that 
1, 2, 3

det 0
z z z

A  ≠   implies that the 3 contact points are 

not on the same straight line. 

 

 Equation (4.9), on the other hand, can be written as 
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which represents 3 linear equations in 6 unknowns. Using equation (4.11) any 

appropriate 3 unknowns can be solved in terms of the remaining 3. The unknown 

forces 1 2 3, ,x x xF F F , for instance cannot be solved since the determinant of the 

coefficient matrix would be zero. Similarly, it is not possible to solve for 
1yF , 

2yF  and 

3yF  from equation (4.11). 

 

 Firstly, assume that one would like to solve the unknown forces 1 2 1, ,x x yF F F . 

Equation (4.11) can then be arranged as 

 

1, 2, 1 1, 2, 1 2 3, 2, 3 3, 2, 3x x y x x y x y y x y y
A x b A f

→ → →

   = −         (4.12) 

 

where, 

 

1, 2, 1 1 2 1

3, 2, 3 3 2 3

1

1, 2, 1 2

1

3

3, 2, 3 2

3

x x y x x y

x y y x y y

x

x x y x

y

x

x y y y

y

A a a a

A a a a

F

x F

F

F

f F

F

→ → →

→ → →

→

→

   =    

   =    

 
 

= = 
 
 

 
 

= = 
 
 

Vector of unknown forces.

Vector of free forces.

 

 

 Equation (4.12) has the unique solution given by 

 

1 1

1, 2, 1 1, 2, 1 2 1, 2, 1 3, 2, 3 3, 2, 3x x y x x y x x y x y y x y yx A b A A f
→ → →− −

     = −         (4.13) 

 

provided that 

 

x1,x2,y1 2
det 0

y
A r  = ≠   
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 Using a similar notation, equation (4.9) can be arranged as 

 

1, 1, 2 1, 1, 2 2 2, 3, 3 2, 3, 3x y y x y y x x y x x y
A x b A f

→ → →

   = −     

 

yielding the unique solution given by 

 

1 1

1, 1, 2 1, 1, 2 2 1, 1, 2 2, 3, 3 2, 3, 3x y y x y y x y y x x y x x yx A b A A f
→ → →− −

     = −         (4.14) 

 

provided that  

 

x1,y1,y2 2
det 0

x
A r  = ≠  . 

 

 Note that one cannot have 2 2 0x yr r= =  since this would imply that 2P  is 

coincident with 1P . Therefore, either one of the solutions given by (4.13) or (4.14) 

will always be valid. 

 

3) 4cn ≥ : 

 

 In the case of 4 or more contact points, it is clear that one can always solve 6 

appropriate unknown force components from the set 

(
1 2 1 2 1 2, , ; , , ; , ,

c c cx x xn y y yn z z znF F F F F F F F F� � � ) in terms of the remaining ( 3 6cn − ) 

force components provided that there exists 3 contact points which do not lie on the 

same straight line. Therefore, the necessary and sufficient conditions for the body in 

Figure 4.1 to be in static equilibrium (namely, equations (4.4), (4.5) and (4.6)) 

reduce to 2 cn  inequalities (given by (4.5) and (4.6)) involving ( 3 6cn − ) independent 

force components designated by 

 

1 2 3 6[ , ,..., ]
c

T

nf f f f
→

−=         (4.15) 

 

 Therefore, the body in Figure 4.1 will be potentially stable (for the given 

loading) if there exists a set of force components 1 2 3 6, ,...,
cnf f f −  (all of which are 



  

 45 

real) which satisfy the 2 cn  inequalities given by equations (4.5) and (4.6). This 

problem can be solved by using the FindInstance command of MATHEMATICA. 

Indeed, the execution time increases, nonlinearly, with increasing cn . Actually, the 

execution time becomes infinite with a Centrino 1.6 MHz computer with 512 MB 

Ram (i.e., no solution can be obtained at all if 
cn  exceeds 13). 

 

 It should be noted that the problem (of determining potential stability) is 

nonlinear because of the Coulomb’s law of friction given by the inequalities (4.5). 

Therefore, if these nonlinear inequalities are approximated by linear ones, the 

problem becomes linear and one can efficiently apply Linear Programming to 

determine the potential stability of a rigid body. Therefore, linearization of Coulomb’s 

law will be discussed in the next section. 

 

4.2. LINEARIZATION OF COULOMB’S LAW OF FRICTION 

 

 Coulomb’s law of friction (i.e. inequality (4.5)) and inequality (4.6) written for 

the i ’th contact point imply that the feasible points (in the xi yi ziF F F -space) must lie 

inside the right circular friction cone shown in Figure 4.4. A conservative 

approximation to this cone would be the rectangular pyramid inside the interior of 

the cone shown in Figure 4.4. 

 

 In this case the ( cn ) non-linear constraints given by inequality (4.5) are to be 

replaced by the ( 4 cn ) linear inequalities given by 

 

0

0 1

0

0

m zi xi

m zi xi c

m zi yi

m zi yi

c F F

c F F i n

c F F

c F F

+ ≥

− ≥ ≤ ≤

+ ≥

− ≥

for                              
  (4.16) 

 

where, 

 

2
mc

µ
=  



  

 46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Nonlinear friction cone and the approximating rectangular pyramid.[4] 
 

 

 If one requires more accurate approximations to the friction cone, the 

hexagonal, octagonal, decagonal or dodecagonal pyramids (Figure 4.5 (b), (c), (d) 

and (e), respectively) could be used.  

 

 

 

 

 

 

 

 

yiF

xiF

ziF

non-linear

friction cone

linearized

constraint

(rectangular

pyramid)



  

 47 

 

 

Figure 4.5 Linear rectangular (a), hexagonal (b), octagonal (c), decagonal (d) and 

dodecagonal (e) pyramid approximations for nonlinear Coulomb friction. 

( )d

( )a
( )b

( )c

( )e
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 If a hexagonal pyramid is used to approximate the friction cone, the ( cn ) 

non-linear constraints given by inequality (4.5) are to be replaced by the ( 6 cn ) linear 

constraints given by 

 

1

1

2 3

2 3

2 3

2 3

0

0

0

0 1

0

0

yi zi

yi zi

xi yi zi

xi yi zi c

xi yi zi

xi yi zi

F c F

F c F

c F F c F

c F F c F i n

c F F c F

c F F c F

− + ≥

+ ≥

− + ≥

+ + ≥ ≤ ≤

− + + ≥

− − + ≥

for                    
    (4.17) 

 

where, 

 

1

2

3

0.866025

1.73205

1.73205

c

c

c

µ

µ

=

=

=

 

 

 If a octagonal pyramid is used to approximate the friction cone, the ( cn ) non-

linear constraints given by inequality (4.5) are to be replaced by the (8 cn ) linear 

constraints given by 

 

4

4

5

5

6

6

6

6

0

0

0

0 1

0

0

0

0

yi zi

yi zi

xi zi

xi zi c

xi yi zi

xi yi zi

xi yi zi

xi yi zi

F c F

F c F

F c F

F c F i n

F F c F

F F c F

F F c F

F F c F

− + ≥

+ ≥

+ ≥

− + ≥ ≤ ≤

− + ≥

+ + ≥

− + + ≥

− − + ≥

for                            
     (4.18) 

 

where, 
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4

5

6

0.92388

cos( )
8

1.30656

c

c

c

µ

π
µ

µ

=

=

=

 

 

 If a decagonal pyramid is used to approximate the friction cone, the ( cn ) 

non-linear constraints given by inequality (4.5) are to be replaced by the (10 cn ) 

linear constraints given by 

 

7

7

8 9

8 9

8 9

8 9

10 11

10 11

10 11

10 11

0

0

0

0

0

0 1

0

0

0

0

for ,             

yi zi

yi zi

xi yi zi

xi yi zi

xi yi zi

xi yi zi c

xi yi zi

xi yi zi

xi yi zi

xi yi zi

F c F

F c F

c F F c F

c F F c F

c F F c F

c F F c F i n

c F F c F

c F F c F

c F F c F

c F F c F

+ ≥

− + ≥

+ + ≥

− + ≥

− + + ≥

− − + ≥ ≤ ≤

+ + ≥

− + ≥

− + + ≥

− − + ≥

    (4.19) 

 

where, 

 

7

8

9

10

11

0.951057

3.07768

3.07768

0.726543

1.17557

c

c

c

c

c

µ

µ

µ

=

=

=

=

=

 

 

 If a dodecagonal pyramid is used to approximate the friction cone, the (
cn ) 

non-linear constraints given by inequality (4.5) are to be replaced by the (12 cn ) 

linear constraints given by 
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12

12

12

12

13 14

13 14

13 14

13 14

15 16

15 16

15

0

0

0

0

0

0

0 1

0

0

0

yi zi

yi zi

xi zi

xi zi

xi yi zi

xi yi zi

xi yi zi c

xi yi zi

xi yi zi

xi yi zi

xi y

F c F

F c F

F c F

F c F

c F F c F

c F F c F

c F F c F i n

c F F c F

c F F c F

c F F c F

c F F

+ ≥

− + ≥

+ ≥

− + ≥

+ + ≥

− + ≥

− + + ≥ ≤ ≤

− − + ≥

+ + ≥

− + ≥

− +

for               

16

15 16

0

0

i zi

xi yi zi

c F

c F F c F

+ ≥

− − + ≥

    (4.20) 

 

where, 

 

12

13

14

15

16

0.965926

0.57735

1.11536

1.73205

1.93185

c

c

c

c

c

µ

µ

µ

=

=

=

=

=

 

 

 Note that the constants (
1c ) to (

16c ) in inequalities (4.17) to (4.20) are not 

exact values but approximated (rounded) values. However, in the algorithm the 

exact values are computed and used. 

 

 The efficiency of the approximation of the nonlinear friction law may be 

quantified via the linearization efficiency, η�  defined by 

 

Volume of the approximating pyramid

Volume of the actual friction cone
η =�  

 

 Figure 4.6 shows the linearization efficiency for various linearizations where 

fn  is the number of faces of the approximating pyramid. 
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Figure 4.6 Efficiencies of various linearizations of the friction law. 
 

 

4.3. LINEAR PROGRAMMING 

 

 In Section 4.1, it has been shown that the necessary and sufficient conditions 

for the body in Figure 4.1 to be in static equilibrium reduce to 2 cn  inequalities (given 

by (4.5) and (4.6)) involving the (3 6cn − ) independent force components obtained 

from the set ( 1 2 1 2 1 2, , ; , , ; , ,
c c cx x xn y y yn z z znF F F F F F F F F� � � ) and designated by the 

vector 1 2 3 6[ , ,..., ]
c

T

nf f f f
→

−= . The cn  nonlinear equalities given by (4.5) may be 

replaced by in  linear inequalities (see equations (4.16) to (4.20)). Here, in  is given 

by 4 ,6 ,8 ,10c c c cn n n n  and 12 cn  respectively if the friction cone is approximated by a 

pyramid with 4, 6, 8, 10 and 12 faces (see previous section). Therefore, one obtains 

( i cn n+ ) linear inequalities to be satisfied by the (3 6cn − ) components of f
→

. The 

solution of this problem may be conveniently formulated as a linear programming 

problem where a dummy linear objective function is to be minimized, with respect to 

f
→

, subject to the ( i cn n+ ) linear inequalities involving the components of f
→

. The 

body shown in Figure 4.1 will be potentially stable if and only if there exists a 

6 8 10 12

0.2

0.4

0.6

0.8

1

4

η�

f
n

0.63662 

0.95493 
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solution to the aforementioned linear programming problem. In this study, the 

LinearProgramming command of MATHEMATICA has been used to solve such 

linear programming problems. 

 

 The execution time associated with the solution of the linear programming 

problem will indeed increase as the number of nodes (
cn ) is increased. The number 

of faces of the approximating pyramid used to approximate the friction cone, fn , is 

another factor that affects the aforementioned execution time. To illustrate the 

affects of these factors, consider the rigid body shown in Figure 4.1 and assume that 

there exists external loads exF
→

, exM
→

 which lead to the ground reactions given by  

 

0.2 N

0.1 N

5 N

0.01 N.m

0.01 N.m

0.05 N.m

Rx

Ry

Rz

Ox

Oy

Oz

F

F

F

M

M

M

=

=

=

=

=

=

        (4.21) 

 

 Let the coefficient of friction and the dimensions of the cube be  

 

0.3

0,06 md

µ =

=
 

 

 Furthermore, let the distribution of the contact points be as shown in Figure 

4.7. In this figure, it should be noted that the nodes other than the first four given by 

1 2 3 4, , ,P P P P  are at the middle of the squares formed by the equally spaced grid lines. 
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Figure 4.7 Distribution of contact points. 

 

 

 Given the number of nodes and the number of faces of the approximating 

pyramid, one can use the LinearProgramming command of MATHEMATICA to 

determine the potential stability of the body and also record the execution time. 

Execution times for various combinations of number of nodes and method of 

linearizations have been determined via the code developed in MATHEMATICA. 

The results are shown in Figures (4.8), (4.9) and (4.10) where the definitions of CPU 

time for LP, Total CPU time and Session time are given below. 

 

 

 

Figure 4.8 Comparison of the linearization methods in terms of CPU time for linear 

programming. 
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Figure 4.9 Comparison of the linearization methods in terms of Total CPU time. 
 

 

 

Figure 4.10 Comparison of the linearization methods in terms of Session time. 
 

 

CPU Time for LP : The CPU time spent in Mathematica kernel in evaluation of 

the linear programming part (command) only.  

Total CPU Time  : The CPU time spent in Mathematica kernel in evaluation of 

the whole process. 

Session Time  : The total number of seconds of real time that have elapsed 

since the beginning of the Mathematica session. 
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 As expected, the execution times increase as cn  and/or fn  is increased. A 

series of runs have also been performed to determine the “gains” associated with 

approximating pyramids with a large number of faces. To that purpose, the same 

cube (subject to the same loading leading to the ground reactions given by equation 

(4.21)) has been considered. The number of nodes has been fixed at 4, the nodes 

being given by 1 2 3 4, , ,P P P P  as shown in Figure 4.7. Firstly, fn  is fixed at 4. Then, 

the value of µ , which is initially set to zero, is increased gradually until the body 

becomes potentially stable. That value of µ  is denoted by minµ . Figure 4.11 shows 

the values of 
minµ  for various linearization methods. As expected, 

minµ  decreases 

as the fn  increases.  

 

 

 

Figure 4.11 Comparison of the linearization methods in terms of minµ . 
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4.3. PERCENTAGE STABILITY 

 

 Consider the rigid body in Figure 4.1 and assume that 4cn ≥ . The set of 
ziF  

forces which satisfy equations (4.8) and (4.6) is here defined to be the set of valid 

normal forces. To be more explicit, the set of valid normal forces satisfy the 3 

equations given by 

 

1

cn

zi Rz

i

F F
=

=∑  

1

cn

yi zi Ox

i

r F M
=

=∑         (4.22) 

1

cn

xi zi Oy

i

r F M
=

− =∑  

 

and the cn  inequalities given by 

 

0ziF ≥     for 1,2,..., ci n=  

 

 Clearly, 3 of the 
ziF ’s can be eliminated using equation (4.22). Therefore, the 

number of independent ziF ’s will be given by 

 

3z cn n −	  

 

 Let, now, the vector of independent 
ziF ’s be designated by 

 

1 2[ , ,..., ]z z

T
nf f f f

→

=  

 

 Therefore, the set of valid normal forces will be a “polygonal” region, VN , in 

the 
zn  dimensional 

zf
→

-space (see Figure 4.12 where 
zn  is taken to be 2 for the 

ease of visualization). 
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Figure 4.12 Potentially stable and unstable portions of the set of valid normal forces. 

 

 

 VN  may be found by using the InequalitySolve command of 

MATHEMATICA. A point in the region VN  will correspond to a potentially stable 

point if there exists a real ,2cn
x

→

 vector which satisfies equation (4.9) and the 

linearized friction inequalities corresponding to the selected point in VN . One may 

conveniently use Linear Programming to perform such a stability check for each 

point in VN  leading to potentially stable and unstable regions in VN  designated by 

S  and U  respectively such that 

 

VN S U= ∪  

 

 Clearly, it is not possible to check every point in VN  in practice. Therefore, 

gridlines, separated from each other by a distance of sh , are used for each 

dimension of VN  to generate a set of points to be tested for stability. 

(set of valid

normal forces)

     VN

2f

1f

S

U
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 Now, percentage stability, PS , is defined as 

 

100xS

VN

A
PS

A
	         (4.23) 

 

where,, 

 

SA  : “Area” of region S . 

VNA  : “Area” of region VN . 

 

 Clearly, 100 percent stability corresponds to guaranteed stability since the 

rigid body will be stable for all possible normal force distributions. As PS  decreases, 

the “chances” of having a stable body decreases since some possible normal force 

distributions lead to unstability of the body. 

 

 Percentage stability is not dependent upon the choice of the independent 

ziF ’s. This may be shown as follows. Let zf
→ ′

 be a different set of independent ziF ’s 

related to 
zf

→

 via the equation 

 

[ ]z z
f B f k
→ →′

= +         (4.24) 

 

where 

 

[ ]B  : xz zn n  non singular coefficient matrix. 

k  : 1xzn  vector of constants. 

 

 Equation (4.24) is a linear equation since it is obtained based upon the linear 

equations given by equation (4.22). Under the linear transformation given by 

equation (4.24), the regions VN  and S  in the zf
→

 space will be mapped in a one-to-
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one manner onto the regions VN ′  and S′  in the zf
→ ′

 space respectively. Hence, PS  

will be defined, in the 
zf

→ ′
 space, to be 

 

100xS

VN

A
PS

A

′
′

′
	  

 

 Due to equation (4.24), one has 

 

[ ]

[ ]

det

det

S S

VN VN

A B A

A B A

′ =

′ =
 

 

 Hence, PS PS ′=  indicating that percentage stability is not dependent upon 

the choice of independent 
ziF ’s. 
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CHAPTER 5 

DYNAMIC STABILITY ANALYSIS OF I-CUBES 

 In this chapter, the motion of the I-Cubes is modeled by the fixed axis 

rotation of one body system (called the Active Body System) with respect to another 

body system which is considered to be fixed relative to the ground (called the 

Passive Body System). A probable motion to reach the final configuration, from the 

initial configuration, is assumed. By recursive kinematic relations and the Newton-

Euler formulation, the resultant force and the accompanying resultant moment (to be 

applied by the ground on the I-Cubes so that the system is dynamically stable) is 

calculated. 

 

5.1. ACTIVE AND PASSIVE BODY SYSTEMS 

 

 If it is assumed that one joint is activated at a time, any motion of the I-Cubes 

can be modeled by the fixed axis rotation of one body system (called the Active 

Body System) with respect to another body system which is considered to be fixed 

relative to the ground (called the Passive Body System). The definitions of the active 

and passive body systems (see Figure 5.1) are given next. 
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Figure 5.1 Active and passive body systems. 
 

 

Sub-links 1 and 2 : The two symmetrical parts of a link (see 

Figure 5.2) 

 

Body     : Either a cube or a sub-link of the I-Cubes. 

 

Active Body System (ABS)  : Rigid body system consisting of the moving 

bodies (which are considered to be rigidly 

attached to each other so that they form a 

single rigid body.) 

 

Passive Body System (PBS)  : Rigid body system consisting of the non-

moving bodies (which are considered to be 

rigidly attached to each other so that they form 

a single rigid body.) 
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Figure 5.2 Sub-links of a link. 
 

 

 Nextly, the notation used in Figure 5.1 will be described. 

 

1G  or pG   : Combined center of mass of the Passive Body System. 

2G  or aG   : Combined center of mass of the Active Body System. 

,a pn n    : Number of active and passive bodies, respectively. 

piG    : Center of mass of the i’th passive body where 1, 2, , pi n= � . 

aiG    : Center of mass of the i’th active body where 1, 2, , ai n= � . 

( ( (

1 2 3

0) 0) 0)

0{ , , , }F O u u u
→ → →

 or 00 ( )0F  : Inertial frame fixed to the ground with origin 

0O  and with unit vectors 
( ( (

1 2 3

0) 0) 0)

, ,u u u
→ → →

. 0O  is 

coincident with O  in Chapter 4. 

(1 (1 (1

1 2 3

) ) )

1{ , , , }F O u u u
→ → →

 or 11( )0F  : Body fixed reference frame (fixed to PBS) with 

origin 1O  and with unit vectors 
(1 (1 (1

1 2 3

) ) )

, ,u u u
→ → →

. 

2  d

1ld
1ld

3ld2ld

2Sub link−1Sub link−

Link
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(1)

3u
→

 : Unit vector coincident with the axes of rotation of the active 

body system. 

(1)

1u
→

 : Unit vector perpendicular to 
(1)

3u
→

 which may be conveniently 

selected to be parallel to 
(0)

1u
→

. 

 

(1) (1) (1)

2 3 1xu u u
→ → →

=  

 

(2 (2 (2

1 2 3

) ) )

2{ , , , }F O u u u
→ → →

 or 22 ( )0F  : Body fixed reference frame (fixed to ABS) with 

origin 2O  (coincident with 1O ) and with unit 

vectors 
(2 (2 (2

1 2 3

) ) )

, ,u u u
→ → →

. 

where, 

 

(2)

3u
→

 : Unit vector coincident with the axes of rotation of the active 

body system (coincident with 
(1)

3u
→

). 

2 ( )tθ  : Angular parameter which indicates the relative rotation of the 

ABS with respect to the PBS.  2 ( )tθ  is measured from 
(1)

1u
→

 to 

(2)

1u
→

 in a right hand sense around 
(1)

3u
→

. 
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5.1.0. The Notation 

 

 This section is prepared to give information about the notation used 

(regarding vectors and matrices) in this Chapter (see [43], [44] for details of the 

notation). 

 

r
→

   : A vector. 

r    : A (3x1) column matrix. 

�R    : A matrix. 

r    : A scalar. 

AKr
→

    : Position vector of point A with respect to point K. 

( )aF A  : Reference frame with unit vectors 
( )

1

a

u
→

,
( )

2

a

u
→

, 
( )

3

a

u
→

 and 

origin A .  

{ }
( )

( )
a

a

r r
→

=   : Column matrix representation of r
→

 in ( )aF A . 

 

where, 

 

( )3
( )

1

( )

1
( )

( )

2

( )

3

a

a

i i

i

a

a
a

a

r r u

r

r r

r

→ →

=

=

 
 

=  
 
 

∑

 

 

( )a

ir    : i’th component of r
→

 in ( )aF A . 

� ( , )a b

C    : The (3x3) transformation matrix relating ( )bF B  and ( )aF A   

 

so that 

 

� ( , )( ) ( )a ba b

r C r=  
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where, 

 

� ( , ) ( / ) ( / ) ( / )

1 2 3

a b b a b a b a

C u u u =   
 

 

( )
( )

( / )

a
b

b a

k ku u
→ 

= 
 

 : Column matrix representation of 
( )b

ku
→

 in ( )aF A . 

1 2 3,  ,  u u u   : The elementary or basic columns given by 

 

1 2 3

1 0 0

0 ,    1 ,    0

0 0 1

u u u

     
     = = =     
          

 

 

as if  is fixed.

[ ]
a

aF

d r
D r

dt

→
→  

 =
 
 

 

 

r
∼

   : The cross product matrix of r  given by 

 

3 2

3 1

2 1

0

0

0

r r

r r r

r r

− 
 = − 
 − 

∼
 

 

where 

 

1

2

3

r

r r

r

−
 
 =  
  
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5.1.1. D-H Convention 

 

 

 

 

Figure 5.3 The Denavit – Hartenberg Representation [43]. 

 

 

 To describe the translational and rotational relationships between adjacent 

links, Denavit and Hartenberg [45] proposed a method of systematically establishing 

a coordinate system (body-attached frame) to each link of an articulated chain (see 

Figure 5.3). 

 

 An orthonormal cartesian coordinate system 
( ) ( ) ( )

1 2 3( , , )
k k k

u u u
→ → →

 can be 

established for each link at its joint axis, where 0,1, 2k n= …  and n  is the number 

of links. Every coordinate frame is determined and established on the basis of the 

following rules [44] where larger index implies more distal link. 

 

kθ

1k
θ +

1k
θ −

kα

( 1)

1

k

u
−→

1kO −

 ks
kA

 ka

( )

1

k

u
→

( )

3

k

u
→

( 1)

3

k

u
−→

kO

( 2)

3

k

u
−→

1kA −

1kLink −

kLink

( 1)

3//
k

u
−→

kα

1kJ −

 kJ

1  kJ +

1ka −
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• 
( 1)

3

k

u

−→

 is a unit vector along the axes of rotation of the joint kJ  between 

1kLink −  and kLink , its sense being arbitrary. 

 

• 
( )

1

k

u
→

is a unit vector along the common normal between the axes of the joints 

kJ  and 1kJ + . If axes of kJ  and 1kJ +  are not intersecting, then 
( )

1

k

u
→

is 

oriented from kJ  to 1kJ + . If axes of kJ  and 1kJ +  are intersecting, then the 

orientation of 
( )

1

k

u
→

is arbitrary. However 
( )

1

k

u
→

must pass through link ( 1)k + . 

 

• 
( ) ( ) ( )

2 3 1x

k k k

u u u
→ → →

=  

 

• ( )k kF O  is fixed to kLink  and its origin kO  is at the intersection of the axes 

( )

1

k

u
→

and 
( )

3

k

u
→

. 

 

• 

( )

1

k

 along 

     = Effective length of link

k

k k ka A O u
→

=  

 

• 

( 1)

31  

k k-1

along

     = Translational distance of link  wrt link

k

k k ks O A u

−→

−=  

 

• θk  is the joint angle measured from the 
( 1)

1

−→ k

u  axis to the 
( )

1

→ k

u  axis about 

the 
( 1)

3

−→ k

u  axis (using the right hand rule). 

( 1) ( ) ( 1)

1 1 3k [ @ ]θ
− −→ → →

= →�
k k k

u u u  
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• α
k
 is the offset angle measured from the 

( 1)

3

−→ k

u  axis to the 
( )

3

→ k

u  axis about 

the 
( )

1

→ k

u  axis (using the right hand rule). 

( 1) ( ) ( )

3 3 1k [ @ ]α
−→ → →

= →�
k k k

u u u  

 

• One of the parameters ks  or kθ  is constant and the other is the joint variable 

of kJ .  

 

5.1.2. Inertial Parameters of the Active and Passive Body Systems 

 

 

 

 

Figure 5.4 Inertial parameters of Active and Passive Body Systems. 

 

 

 

 

 

 

 

1 2
O O=

2
( )tθ

0O
(0)

1u
→

(0)

3u
→

(0)

2u
→

Body System (1) Active Body System (ABS)

Passive Body System (PBS)

(0)

1G

2G(1)

1u
→

( 2 )

1u
→

(1)

2u
→

( 2)

2u
→

(1) ( 2 )

3 3u u
→ →

=

piG ai
G

1
G
→

01
P
→

2
G

→

1 01
G P

→ →

−

aiG
→

Body System (2)

piG
→
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 Referring to Figure 5.4, consider the following notation. 

 

1 0 1G O G
→ →

=  : Position vector of the center of mass of the passive body system. 

2 2 2G O G
→ →

=  : Position vector of the center of mass of the active body system. 

0pi piG O G
→ →

=  : Position vector of the center of mass of the i’th passive body. 

( 1,2,..., pi n= ) 

2ai aiG O G
→ →

=  : Position vector of the center of mass of the i’th active body. 

( 1,2,..., ai n= ) 

01 0 1P O O
→ →

=  : Location of the origin of the passive body system. 

(0)

01P   : Coordinates of the origin of the passive body system in 0 ( )0F . 

 

( 1) ( ) ( 1)

1 1 3k [ @ ]

k k k

u u uθ
− −→ → →

= →�  

( 1) ( ) ( )

3 3 1k [ @ ]

k k k

u u uα
−→ → →

= →�  

 

1,2k =  

 

 Note that 
2θ  is the joint variable and 

2α  is zero. 

 

 The center of mass of the passive body system in 00 ( )0F  may be found 

from: 

 

(0) (0) (0)

(0) 1 2 3
1 1 2 3

1

( . ) ( . ) ( . )
[ ]

p
T T T

n
pi pi pipi pi pi

i p p p

G u m G u m G u m
G u u u

m m m=

= + +∑   (5.1) 

 

where, 
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(0)

1G  : Coordinates of the center of mass of the passive body system in 00 ( )0F . 

(0)

piG  : Coordinates of the center of mass of the i’th passive body in 
00 ( )0F . 

(0)

1.
T

piG u , 
(0)

2.
T

piG u , 
(0)

3.
T

piG u  : 

(0)

1u
→

, 
(0)

2u
→

, 
(0)

3u
→

 components of the center of mass of 

the i’th passive body, respectively.( 1,2,..., pi n= ) 

pim   : Mass of the i’th passive body. 

1

pn

p pi

i

m m
=

=∑  : Total mass of the passive body system.  

 

 The center of mass of the active body system in 22 ( )0F  may be found from: 

 

(2) (2) (2)
(2)

1 2 3
2 1 2 3

1

( . ) ( . ) ( . )
[ ]

a
T T T

n
ai ai aiai ai ai

i a a a

G u m G u m G u m
G u u u

m m m=

= + +∑   (5.2) 

 

where, 

 

(2)

2G  : Coordinates of the center of mass of the active body system in 22 ( )0F . 

(2)

aiG  : Coordinates of the center of mass of the i’th active body in 22 ( )0F . 

(2)

1.
T

aiG u , 
(2)

2.
T

aiG u , 
(2)

3.
T

aiG u  : 

(2)

1u
→

, 
(2)

2u
→

, 
(2)

3u
→

 components of the center of mass of 

the i’th active body, respectively.( 1,2,..., ai n= ) 

aim   : Mass of the i’th active body. 

1

an

a ai

i

m m
=

=∑  : Total mass of the active body system.  
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Figure 5.5 Active cubes and sub-links. 

 

 

 Cubes and sub-links are assumed to be homogeneous and their centers of 

masses are at their geometric centers (see Figure 5.5). The body fixed frames 

associated with the cubes and sub-links i.e., ( )aiaiF G  are also shown in Figure 5.5. 

 

 The dimensions of the cubes and the dimensions of the sub-links are [37] 

 

6 d cm=  

 

and 

 

1

2

3

8,5 

3,7 

1,8 

l

l

l

d cm

d cm

d cm

=

=

=

 

( )

3

ai

u
→

( )i

( )

2

ai

u
→

( )

1

ai

u
→

aiG

1ld

2l
d

3ld

'   1i th Active Sub link−

( )

3

ai

u
→

( )i

( )

2

ai

u
→

( )

1

ai

u
→

aiG

1ld

2ld
3l

d

'   2i th Active Sub link−

( )i

aiG
d

'i th Active Cube  

( )

1

ai

u
→

( )

2

ai

u
→

( )

3

ai

u
→

( )aiaiF G ( )aiaiF G

( )aiaiF G
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 The masses of the cubes and sub-links, on the other hand, are [37] 

 

1 2

205 

97,5 

c

l l l

m gr

m m m gr

=

= = =
 

 

where cm  and lm  designate the mass of a cube and a sub-link respectively. 

 

 The Centroidal Inertia Dyadic of the i ’th active cube expressed in the body 

fixed frame ( )aiaiF G  is given by 

 

( ) 0 0

0 0

0 0

cai

ci c

c

J

J J

J

∧
 
 =  
  

       (5.3) 

 

where 

 

21 (2 )
2c cJ m d=  

 

 The Centroidal Inertia Dyadic of the i ’th active sub-link expressed in the 

body fixed frame ( )aiaiF G , on the other hand, is given by 

 

1( )

2

3

0 0

0 0

0 0

lai

li l

l

J

J J

J

∧
 
 =  
  

       (5.4) 

 

where 

 

2 2
1 2 3

2 2
2 1 3

2 2
3 1 2

1 ( )
2

1 ( )
2

1 ( )
2

l l l l

l l l l

l l l l

J m d d

J m d d

J m d d

= +

= +

= +
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 Using the parallel axis theorem, one can determine the centroidal inertia 

dyadic of the ABS expressed in 
22 ( )F G  to get 

 

(2)

2

xx xy zx

xy yy yz

zx yz zz

I I I

I I I I

I I I

∧
 − −
 

= − − 
 − − 

       (5.5) 

 

where, 

 

(2) (2)
2 2

2 3

1

(2) (2)
2 2

1 3

1

(2) (2)
2 2

1 2

1

[( ) (( . ) ( . ) )]

[( ) (( . ) ( . ) )]

[( ) (( . ) ( . ) )]

a

a

a

n

aai aaixx xxi ai

i

n

aai aaiyy yyi ai

i

n

aai aaizz zzi ai

i

T T

T T

T T

I J m G u G u

I J m G u G u

I J m G u G u

=

=

=

= + +

= + +

= + +

∑

∑

∑

    (5.6) 

 

(2) (2)
2 2

1 2

1

(2) (2)2 2
2 3

1

(2) (2)
2 2

3 1

1

[ (( . ) ( . ) )]

[ (( . ) ( . ) )]

[ (( . ) ( . ) )]

a

a

a

n

aai aaixy ai

i

n

aai aaiyz ai

i

n

aai aaizx ai

i

T T

T T

T T

I m G u G u

I m G u G u

I m G u G u

=

=

=

= +

= +

= +

∑

∑

∑

     (5.7) 

 

with 

 

� � � �(2) ( )( ) ( )

0 0

. . 0 0

0 0

xxi
aiai ai T

i i yyi

zzi

J

J J J

J

 
 = Γ Γ =  
  

     (5.8) 

 

where 
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(2)

iJ
∧

 : Centroidal Inertia Dyadic of the i’th active body with respect to the 

active body system’s body fixed frame 
22 ( )F G , ( 1,2,..., ai n= ). Note 

that 
(2)

iJ
∧

 is always diagonal because of the assumption that I-Cubes 

can only make 90�motions. 

 

� �( ) (2, )ai ai

CΓ =  : Transformation matrix of the i’th active body with respect to the 

active body system’s body fixed frame (
22 ( )F G ). 

( )ai

iJ
∧

 : Centroidal Inertia Dyadic of the i’th active body (cube or sub-link) 

with respect to the active body’s body fixed frame ( )aiaiF G . 

 

and 

 

(2) (2) (2)

2aai aiG G G= −         (5.9) 

 

where 

 

(2)

aaiG   : The position vector of 
a aiG G
→

 in 
22 ( )F G . 
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5.2. RECURSIVE KINEMATIC RELATIONS FOR THE ACTIVE AND 
PASSIVE BODY SYSTEMS 

 

 Note that this section is inspired from [43]. 

 

5.2.1. Transformation Matrices 

 

( , 1)

1 . 0,1.for                 
k k

k k C k
+∧ ∧ ∧

+Φ = Φ =      (5.10) 

 

where, 

 

k

∧

Φ  =
(0, )k

C
∧

: Transformation matrix of the k’ th body with respect to the base frame 

00 ( )0F . 

1 1( , 1)

1 1 1 1

1 1

0

( ) ( ) 0 1 0 0

( ) ( ) 0 . 0 ( ) ( )

0 0 1 0 ( ) ( )

and

Identity Matrix.

 

(3 3) 

k kk k

k k k k

k k

Cos Sin

C Sin Cos Cos Sin

Sin Cos

I

θ θ

θ θ α α

α α

+ ++∧

+ + + +

+ +

∧ ∧

−   
   = −   
      

Φ = = ×

 

 

5.2.2. Angular Velocities 

 

/ 0k kω ω
→ →

=  : Angular velocity of the k’th body with respect to the base frame 00 ( )0F . 

 

5.2.2.1. Vector Expression 

 

( 1)

1 3 1,2.for               
k

k k k u kω ω θ
−→ → • →

−= + =      (5.11) 
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0 0

where

ω
→ →

=
 

 

5.2.2.2. Matrix Expression in 
00 ( )0F  

 

(0) (0)_ _ _

11 3. 1, 2.for          kk k k u kω ω θ
• ∧

−−= + Φ =      (5.12) 

 

5.2.2.3. Matrix Expression in the k’ th Body System Frame 

 

( ) (0)_ _

. 1, 2.for                      
k T

kk k kω ω
∧

= Φ =      (5.13) 

 

(0)_ _

0

0

0 0

0

where

ω

 
 = =  
  

 

 

5.2.3. Angular Accelerations 

 

/ 0 0k k kDα α ω
→ → →

= =  : Angular acceleration of the k’th body system with respect to the 

base frame 00 ( )0F . 

 

5.2.3.1. Matrix Expression in 00 ( )0F  

 

(0)_ (0)

0[ ] 1,2.for                       k kD kα ω= =      (5.14) 

 

(0)_ _

0 0

where

α =

 

 

 



  

 77 

5.2.3.2. Matrix Expression in the k’ th Body System Frame 

 

( ) (0)_ _

. 1, 2.for                      
k T

kk k kα α
∧

= Φ =      (5.15) 

 

5.2.4. Location of the Body System Origins 

 

0
 

Ok kP O O

→→

= . 

 
5.2.4.1. Vector Expression 

 

01 1,2.for                              OkP P k
→ →

= =      (5.16) 

 

5.2.4.2. Matrix Expression in 00 ( )0F  

 

(0) (0)_ _

1 1,2.for                           Ok OP P k= =      (5.17) 

 

5.2.5. Locations of the Mass Centers 

 

Referring to Figure 5.6, define 

 

0k kP O G
→ →

=  

 

5.2.5.1. Vector Expression 

 

( 1) 1, 2.for                   k O k kP P G k
→ → →

−= + =      (5.18) 

 

00 0

where

P
→ →

=
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5.2.5.2. Matrix Expression in 00 ( )0F  

 

(0) (0)
1 1

(0) (0) (2)
2 1 2 2.O

P G

P P G
∧

=

= + Φ

        (5.19) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Locations of the mass centers. 

 

 

5.2.6.1. Body System Origin Velocities in 00 ( )0F  

 

0

0 0

Velocity vector of the origin of the k'th body system 

with respect to the inertial frame  F ( ).

:  

0

→ →

=OK OKV D P  

 

(0)

[ 1,2.
(0)

for]                        OkOkV D P k= =      (5.20) 

 

 

 

 

 

 

0O 1 2O O=

2G

2G
��

2P
��

01P
��

1G

1 1P G=
�� ��
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5.2.6.2. Mass Center Velocities in 00 ( )0F  

 

0

0 0

Velocity vector of the mass center of the k'th body system 

with respect to the inertial frame  ( ).

  :  

0

→ →

=K K

F

V D P  

 

(0)

[ 1, 2.
(0)

for]                        kkV D P k= =      (5.21) 

 

5.2.7.1. Body System Origin Accelerations in 00 ( )0F  

 

2
0

0 0

 Acceleration vector of the origin of the k'th body system 

with respect to the inertial frame  ( ).

:

0

→ →

= OKOK

F

a D P  

 

(0) (0)

[ 1,2.for ]                        Ok Oka D V k= =      (5.22) 

 

5.2.7.2. Mass Center Accelerations in 
00 ( )0F  

 

2
0

0 0

Acceleration vector of the mass center of the k'th body system 

with respect to the inertial frame  ( ).

  :  

0

→ →

= KK

F

a D P  

 

(0) (0)

[ 1, 2.for]                        k ka D V k= =      (5.23) 
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5.3. RECURSIVE NEWTON-EULER FORMULATION FOR THE INVERSE 
DYNAMIC ANALYSIS OF THE ACTIVE AND PASSIVE BODY SYSTEMS 

 

 Suppose that the motion of the active body system is specified as 
2 ( )tθ  and 

it is desired to determine the forces, and moments, applied by the ground (body ( 0 )) 

on the passive body system (body (1)). Consider the free body diagram of the k’th 

body system shown in Figure 5.7 and the following notation [43]. 

 

 

 

Figure 5.7 FBD of the k’th body system [43]. 

 

 

k

ij

ij

k G

F

M

a a

→

→

→ →

=

i j

i j

Force applied by Body System  on Body System .

Moment applied by Body System  on Body System .

Acceleration of the mass center.

                : 

               : 

        : 

 

k kk G Oρ
→ →

=  : Moment arm of ( 1)k kF
→

+ . 

 

1

*

k kk G Oρ
→ →

−=  : Moment arm of ( 1)k kF
→

− . 

 

 
k

G

( 1)

3

k

u
→ − ( )

3

k

u
→

( 1)

1  
k

u
→ −

kBody System ( 1)k kM
→

+

( 1)k kM
→

−

( 1)k kF
→

−
( 1)k kF

→

+

k
ρ
→

*

k
ρ
→

1k
O −

g  km
→

kO

( )

1  
k

u
→
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5.3.1. Force Equations (Newton’s Equations) 

 

k k
F m a
→ →

=∑          (5.24) 

 

5.3.1.1. Vector Expression 

 

( 1) ( 1) ( )k k k k kkF F m a g
→ → → →

− += + −        (5.25) 

 

5.3.1.2. Matrix Expression in k’ th Body System Frame 

 

( ) ( , 1) ( 1) ( ) ( )

( 1) ( 1) ( ) 1,2for             
k k k k k k

k k k k kkF C F m a g k
+ +− ∧ − − −

− += + − =   (5.26) 

 

( )_

3.

where

Being the magnitute of the gravitational acceleration.

k T

kg gu

g

∧

= −Φ

=

   (5.27) 

 

5.3.2. Moment Equations (Euler’s Equations) 

 

( ) . .
kG k k k k k

M I Iα ω ω
→ ∨ → → ∨ →

+=∑  x       (5.28) 

 

where 

 

:Centroidal Inertia Dyadic.

Angular acceleration.

Angular velocity.

  

  :

  :
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5.3.2.1. Vector Expression 

 

( 1) ( 1) ( 1) ( 1)

*

 x   x  

.  x .

k k k k k k k kk k

k k k k k

M M F F

I I

ρ ρ

α ω ω

→ → → → → →

− + − +

∨ → → ∨ →

= − +

+ +

    (5.29) 

 

5.3.2.2. Matrix Expression in k’ th Body System Frame 

 

( ) ( , 1) ( 1) ( )

( 1) ( 1) ( 1)
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k k k k k kk

k k k k k k k

k kk k k k k k

M C M F k

C F I I

ρ
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= − =
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∼
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  (5.30) 

 

where, 
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ρ

ρ

ρ
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= −Φ −

=

= −Φ
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       (5.31) 

 

 Note that 
(1)

1I
∧

 is a dummy inertia tensor and its components could be 

anything, because 1Body System  is a non-moving body system.  
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5.4. PROBABLE MOTION OF THE ACTIVE BODY SYSTEM 

 

 The motion of the active body system is specified via 
2 ( )tθ . A probable 

candidate for 2 ( )tθ  is given by the fifth order polynomial 

 

2 3 4 5

2 0 1 2 3 4 5( )      t a a t a t a t a t a tθ = + + + + +     (5.32) 

 

subjected to the boundary conditions 
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which is shown in Figure 5.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 Fifth order time - motion polynomial. 
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 Clearly, the 6 coefficients 0a  to 5a  may be determined using the 6 boundary 

conditions provided that the final time, 
ft , and the initial and final positions, 

0q  and 

fq , are given. 

 

5.5. DISCRETIZATION OF THE MOTION 

 

 In order to check the stability of the system throughout the motion given by 

2 ( )tθ , the elapsed time may be divided into dN  intervals (see Figure 5.9) given by 

 

f

d

t
N

h
=          (5.33) 

 

where  h  is the step size. Thus the stability of the system may be checked at the 

discrete times 0, ,2 ,..., ft h h t= . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 Discretization of the time - motion polynomial. 
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5.6. CONTACT POINT SELECTION 

 

 To investigate the stability of an assembly, one should decide upon the 

locations of the contact points. It appears that a good choice is the vertices of the 

convex hull. The convex hull of a set of points S  is the smallest convex polygon that 

contains every point in S , where a simple polygon P  is a convex polygon if, for any 

points p  and q  inside P , the line segment pq  lies entirely inside P . One can 

roughly state that, the convex hull is defined to be the boundary formed by the 

outermost points. Those points are simply the corners of the cubes of the passive 

body system that lie on the ground. However, one may select any point on the 

contact region as a contact point rather than the vertices of the convex hull. 

 

 Figure 5.10 (b) shows the “convex hull” of the base points that form the outer 

boundary of the cubes that do not move, the assumed contact points ( 1P  to 5P ) and 

0O  (which is arbitrarily selected on one of the edges of the convex hull) where, 

Figure 5.10 (a) shows the initial and final configurations of the system. 

 

 

 

 

Figure 5.10 Given a 90�  link motion with initial and final configurations (a), 

convex hull and the contact points (b) [37]. 
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CHAPTER 6 

CASE STUDIES 

 In this chapter, the developed algorithm is illustrated using the modular 

robotic system, I-Cubes, via various case studies. Some of the cases are also 

solved by the simulation program, ADAMS. The solutions obtained via ADAMS and 

the developed stability algorithm are consistent. 

 

 The algorithm used for the stability analysis of a given motion of the I-Cubes 

is shown via the flowchart in Figure 6.1. The inputs of the flowchart are designated 

by 1I −  through 5I −  which are described below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Flow chart of the stability analysis. 
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1
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6.3. CASE 1 

 

 Consider the single cube shown in Figure 6.2 where the external load is 

given by 
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Figure 6.2 Case 1: Static Indeterminacy with Search Method. 

 

 

 The required inputs are given below 
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(0) (0) (0) (0) (0)

1 2 3 4 5

0 0 / 2

0 , , , 0 , / 2

0 0 0 0 0

            

d d d

r r d r d r r d

         
         = = = = =         
                  

 

 

 The resultant loads to be applied by the ground on the cube are found from 

equation (4.1) to be 
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 Equation (4.4) lead to the following equations 

 

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5
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= + +
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 Solving 1zF , 2zF  and 3zF  (in terms of 4zF , 5zF ) from equation (4.22), one 

obtains 
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 Therefore the inequalities given by (4.6) reduce to 
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which define the region VN  in the 4 5z zF F−  space. Solving 1xF , 1yF  and 2xF  from 

equation (4.13), on the other hand, one obtains 

 

1 4 5 3 4 5

1 2 3 4 5

2 3 5 3 4 5

0.166667 0.5 0.5

0.166667 0.5 0.5

x x x y y y

y y y y y

x x x y y y

F F F F F F

F F F F F

F F F F F F

= − − − − − −

= − − − −

= − − + + +

 

 

 The friction cone is approximated by a pyramid with 4 faces (see equation 

(4.16)). Furthermore, the region VN  is discretized using 0.1 m sh =  leading to 36 

points in VN . Using linear programming, the stability of each of the 36 points has 

been determined. The results given in Figure 6.3 and Table 6.1 indicate that 16 of 

the 36 points lead to stable configurations. Therefore the percentage stability may 

be approximated as 

 

100 44.4%
16

36
xPS =≅  

 

which implies that the given configuration is potentially stable. Recall that a nonzero 

PS  value implies a potentially stable configuration. 

 

 

 

 

Figure 6.3 Stable and unstable regions of VN . 
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Table 6.1 Stable and unstable points in VN . 

 

 

      SOLUTION with LP     
Fz4 Fz5 Fx3 Fx4 Fx5 Fy2 Fy3 Fy4 Fy5 
0 0 0,060601 0 0 0 -0,10607 0 0 
0 0,1 0,060601 0 0,212132 0 -0,09546 0 0 
0 0,2 0,078775 0 0,0060779 0 -0,08485 0 0 
0 0,3 − − − − − − − 
0 0,4 − − − − − − − 
0 0,5 − − − − − − − 
0 0,6 − − − − − − − 
0 0,7 − − − − − − − 
0 0,8 − − − − − − − 
0 0,9 − − − − − − − 
0 1 − − − − − − − 

0,1 0 0,039387 -0,02121 0 0,021213 -0,08485 -0,21213 0 
0,1 0,1 0,039387 -0,02121 0,0212132 0,021213 -0,07425 -0,21213 0 
0,1 0,2 0,057562 -0,02121 0,0060779 0,021213 -0,06364 -0,21213 0 
0,1 0,3 − − − − − − − 
0,1 0,4 − − − − − − − 
0,1 0,5 − − − − − − − 
0,1 0,6 − − − − − − − 
0,1 0,7 − − − − − − − 
0,1 0,8 − − − − − − − 
0,2 0 0,018174 -0,04243 0 0,042426 -0,06364 -0,04243 0 
0,2 0,1 0,018174 -0,04243 0,0212132 0,042426 -0,05303 -0,04243 0 
0,2 0,2 0,036349 -0,04243 0,0060779 0,042426 -0,04243 -0,04243 0 
0,2 0,3 − − − − − − − 
0,2 0,4 − − − − − − − 
0,2 0,5 − − − − − − − 
0,2 0,6 − − − − − − − 
0,3 0 -0,00304 -0,06364 0 0,06364 -0,04243 -0,06364 0 
0,3 0,1 -0,00304 -0,06364 0,0212132 0,06364 -0,03182 -0,06364 0 
0,3 0,2 0,015135 -0,06364 0,0060779 0,06364 -0,02121 -0,06364 0 
0,3 0,3 − − − − − − − 
0,3 0,4 − − − − − − − 
0,4 0 -0,02121 -0,08485 0 0,081818 -0,01817 -0,08485 0 
0,4 0,1 -0,01061 -0,08485 0,0151353 0,084853 0,010607 -0,08485 -0,02121 
0,4 0,2 0 -0,08485 0 0,084853 0 -0,07877 -0,00608 
0,5 0 0 -0,10607 0 0,060601 0 -0,0606 0 
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6.5. CASE 2: 1C1L 

 

 Consider the one cube one link configuration in Figure 6.4. The desired 

motion is shown in Figure 6.5 and the required inputs are given below. 

 

 

 

Figure 6.4 Case 3: 1C1L configuration with Search Method. 
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Figure 6.5 The initial (a) and final (b) configurations of 1C1L. 

 

 

 From equation (5.10), the orientation matrices are found as: 
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 From equations (5.12), (5.13), (5.14), and (5.15) the angular velocities and 

accelerations are found as: 
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 From equations (5.1) and (5.2) the center of masses of the active and 

passive bodies are found to be: 
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 Equation (5.19) yields the locations of the mass centers as: 
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 Equations (5.20) and (5.22) give the body system origin velocities and 

accelerations, respectively. However they are identically zero, because the body 

system frame origins are not moving. 

 

 The mass center velocities and accelerations, on the other hand, are found 

from equations (5.21) and (5.23), respectively as: 
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 The resultant resistive loads are obtained from equations (5.26) and (5.30) 

as 
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 Finally, the desired motion of the active body system is defined from 

equation (5.32) as 
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 After finding the resultant resistive loads in terms of t , they are discretized 

using a step size of 2 sec h = . The corresponding discretized resultant resistive 

loads are shown in Table 6.2. The percentage stability, corresponding to each 

resultant resistive load (i.e., 1,2,...,6k = ), is calculated as in Case 1 and determined 

to be 100%. This implies that the desired motion of the active body system is 

guaranteed to be stable. 

 

 

Table 6.2 Discretized resultant resistive loads. 

 

 

 

 

 Figure 6.6 shows the snapshots of the motion of the 1C1L configuration 

considered in this case study which are obtained by the simulation program, 

ADAMS. The solutions that are obtained via ADAMS indicate that the desired 

motion is stable. On the other hand, the experiments, which are made by Ünsal and 

Khosla, on this configuration, also reveal that the desired motion is stable [21]. 

Therefore, one may conclude that the developed algorithm yields reliable results. 

 

 

 

 

 

 

 

 

 

Figure 6.6 ADAMS solutions of the initial (a), intermediate (b) and final (c) 

configurations of 1C1L. 

 

 

k t FRxHkL FRyHkL FRzHkL MOxHkL MOyHkL MOzHkL

1 0 0 0 3.924 0.232497 −0.232497 0

2 2 −0.000265748 0 3.92504 0.23259 −0.232153 0.0000239173

3 4 −0.00101017 0 3.92405 0.232502 −0.218599 0.0000909156

4 6 0.0000526105 0 3.92299 0.232406 −0.172531 −4.73495×10−6

5 8 0.00103874 0 3.92373 0.232473 −0.128017 −0.0000934868

6 10 0 0 3.924 0.232497 −0.11772 0

( )b ( )c( )a
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6.5. CASE 3: 2C1L 

 

 Consider the two cube one link configuration in Figure 6.7. The desired 

motion is shown in Figure 6.8 and the required inputs are given below. 

 

 

 

 

Figure 6.7 Case 4: 2C1L configuration with Search Method. 
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Figure 6.8 The initial (a) and final (b) configurations of 2C1L. 
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 In this case, there is one more cube (as compared to Case 2) attached to the 

moving link. This extra cube effects the stability of the system adversely and the 

system becomes always unstable during the interval 0 6 sec t< < . Therefore, the 

active body system cannot execute the specified motion although the system is 

100%  stable during the rest of the motion. 

 

 Figure 6.9 shows the snapshots of the motion of the 2C1L configuration 

considered in this case study which are obtained by the simulation program, 

ADAMS. Figure 6.9 (b) shows one of the instant of the unstable configuration. The 

solutions that are obtained via ADAMS indicate that the desired motion is unstable. 

On the other hand, the experiments, which are made by Ünsal and Khosla, on this 

configuration, also reveal that the desired motion is unstable [21]. Therefore, one 

may conclude that the developed algorithm yields reliable results. 

 

 

 

 

 

 

 

 

 

 

Figure 6.9 ADAMS solutions of the initial (a) and unstable (b) configurations of 

2C1L. 
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6.5. CASE 4: 3C2L 

 

 Consider the three cube two link configuration in Figure 6.10. The desired 

motion is shown in Figure 6.11 and the required inputs are given below. 

 

 

 

 

Figure 6.10 Case 5: 3C2L configuration with Search Method. 
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Figure 6.11 The initial (a) and final (b) configurations of 3C2L. 

 

 

 In this case, there is one more link and one more cube added to the system 

shown in Figure 6.7. It is expected that, the additional cube and link will affect the 

stability of the system positively, if the desired motion is the same. 

 

 The percentage stability is determined to be 100%  throughout the motion. 

Therefore, the desired motion can be executed safely. 
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 Figure 6.12 shows the snapshots of the motion of the 3C2L configuration 

considered in this case study which are obtained by the simulation program, 

ADAMS. The solutions that are obtained via ADAMS indicate that the desired 

motion is stable. On the other hand, the experiments, which are made by Ünsal and 

Khosla, on this configuration, also reveal that the desired motion is stable [21]. 

Therefore, one may conclude that the developed algorithm yields reliable results. 

 

 

 

 

 

 

 

 

 

Figure 6.12 ADAMS solutions of the initial (a), intermediate (b) and final (c) 

configurations of 3C2L. 
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6.5. CASE 5: 4C4L 

 

 Consider the four cube four link configuration in Figure 6.13. The required 

inputs are given below. 

 

 

 

Figure 6.13 Given a 90�  link motion with initial and final configurations (a), 

convex hull and the contact points (b) [37]. 
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 The procedure is same as the aforementioned cases. The percentage 

stability is determined to be 100%  throughout the motion. Therefore, the desired 

motion can be executed safely. 
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6.6. CASE 6: TWO FACE CONTACT 

 

 Consider the single cube which has two contacting faces with the ground as 

shown in Figure 6.14 where the external load is given by 
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Figure 6.14 Case 7: Two Face Contact with Potential Stability Method. 
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 The required inputs are given below. 
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 The resultant loads to be applied by the ground on the cube are found from 

equation (4.1) to be 
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 Equations (4.2) and (4.3) lead to the following equations 
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 Solving 
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 For each face, the following normal and friction contact force inequalities 

must be satisfied. 
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 If we substitute equalities (6.2) into the inequalities (4.6), (6.3), (4.16), (6.4), 

with Linear Programming, the free variables could be found as 

 

4 5 6 7 8 3 4 5 6 7 8 2 3 4 5 6 7 8{ , , , , , , , , , , , , , , , , , }z z z z z x x x x x x y y y y y y yF F F F F F F F F F F F F F F F F F =  

81.10897×10
−15
, −0.768973, 0., −0.624388, 0., 0.638517, −1.20692 ×10

−17
, −0.553733,

0., −0.624388, 0., 0.729727, 0.638517, 0., −3.62498, −7.61448×10
−16

, −2.94339, 0.<  

 

which implies that the given configuration is potentially stable. 
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CHAPTER 7 

CONCLUSIONS 

 In this study, an efficient algorithm has been developed for the dynamic 

stability analysis of self-reconfigurable, modular robots. Although the algorithm is 

illustrated specifically using the modular robotic system, I-Cubes, it can be easily 

extended to other reconfigurable systems. To the author’s knowledge, this algorithm 

is first of its kind in the literature. 

 

 While planning the motion of a self-reconfigurable robotic system, one has to 

consider the dynamic stability of the system. In order to achieve this goal, the 

algorithm reduces the whole I-Cubes structure into a one-DOF system and models 

the motion by the fixed axis rotation of one body system (called the Active Body 

System) with respect to another body system which is considered to be fixed relative 

to the ground (called the Passive Body System). The algorithm also assumes a 

probable motion to reach the final configuration from the initial configuration. By 

recursive kinematic relations and the Newton-Euler formulation, the algorithm 

calculates the resultant force and the accompanying resultant moment to be applied 

by the ground on the system so that the system is dynamically stable. Finally, by a 

novel definition of stability, called percentage stability, the algorithm determines 

whether the assumed motion is allowable or not. In the algorithm, the friction cone is 

approximated by a pyramid and then linear programming is used to solve the 

resulting linearized friction inequalities. The effects of changing the number of faces 

of the pyramid and the number of contact points are also investigated. 

 

 Percentage stability is introduced to counteract the adverse effects of the 

static indeterminacy problem between two contacting bodies. In the literature, 

potential stability seems to be the only definition for the stability analysis. Potential 

stability investigates if there exists a valid set of contact forces that makes the 

system motionless. The system which is not potentially stable is definitely unstable; 

however, the opposite is not always true. A system which is potentially stable could 

be unstable because of the static indeterminacy. On the other hand, percentage 
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stability investigates all possible sets of contact forces that could arise to make the 

system motionless. This feature renders percentage stability to be more reliable 

than potential stability. A system which is zero percent stable is definitely unstable 

whereas hundred percent stability corresponds to guaranteed stability since the 

system will be stable for all possible normal force distributions. However, as 

percentage stability decreases, the “chances” of having a stable system decreases 

since some possible normal force distributions lead to unstability of the system. One 

can roughly state that, percentage stability is the possibility of the system to be 

motionless. However, in potential stability, there is a possibility that the system is 

motionless. 

 

 The computation costs associated with percentage stability may increase 

extensively as the number of nodes is increased. Furthermore, this novel concept is 

not applicable if the normal forces (between the ground and the PBS) are acting in 

two or more different directions. 

 

 The developed algorithm has been applied to different configurations of I-

Cubes to investigate the feasibility of various assumed motions. The results reveal 

that this kind of an algorithm is necessary in order to realize motion planning for 

reconfigurable robots. 

 

 The studies performed in this thesis are restricted to the stability analysis of 

I-Cubes. However, the algorithm could also be used for other types of modular 

robots by slight modifications. In the future, optimal motion planning of I-Cubes can 

be investigated. Also a graphical user interface could be designed to simulate the 

motion of I-Cubes. 
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