

AN XML BASED CONTENT-BASED IMAGE RETRIEVAL SYSTEM

WITH MPEG-7 DESCRIPTORS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SERDAR ARSLAN

IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

DECEMBER 2004

 ii

Approval of the Graduate School of Natural and Applied Sciences.

Prof. Dr. Canan Özgen
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Prof. Dr. Ay�e Kiper
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Adnan Yazıcı
Supervisor

Examining Committee Members

Assoc. Prof. Dr Gözde Bozda�ı Akar (METU, EEE)

Prof. Dr. Adnan Yazıcı (METU, CENG)

Asst. Prof. Dr. Halit O�uztüzün (METU, CENG)

Assoc. Prof. Dr. Nihan Kesim Çiçekli (METU, CENG)

Yakup Yıldırım (HAVELSAN)

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare that,
as required by these rules and conduct, I have fully cited and referenced all material
and results that are not original to this work.

 Name, Last name: Serdar Arslan

Signature :

 iv

ABSTRACT

AN XML BASED CONTENT-BASED IMAGE RETRIEVAL SYSTEM

WITH MPEG-7 DESCRIPTORS

Recently, very large collections of images and videos have grown rapidly. In

parallel with this growth, content-based retrieval and querying the indexed collections

are required to access visual information. Three main components of the visual

information are color, texture and shape. In this thesis, an XML based content-based

image retrieval system is presented that combines three visual descriptors of MPEG-7

and measures similarity of images by applying a distance function. An XML database

is used for storing these three descriptors. The system is also extended to support high

dimensional indexing for efficient search and retrieval from its XML database. To do

this, an index structure, called M-Tree, is implemented which uses weighted

Euclidean distance function for similarity measure. Ordered Weighted Aggregation

(OWA) operators are used to define the weights of the distance function and to

combine three features’ distance functions into one. The system supports nearest

neighbor queries and three types of fuzzy queries; feature-based, image-based and

color-based queries. Also it is shown through experimental results and analysis of

retrieval effectiveness of querying that the content-based retrieval system is effective

in terms of retrieval and scalability.

Keywords: Content-Based Image Retrieval, MPEG-7 Descriptors, Color Layout,

Dominant Color, Edge Histogram, M-Tree, Ordered Weighted Aggregation, XML

Database

 v

ÖZ

MPEG-7 TANIMLAYICILARI �LE XML TABANLI �ÇER�K-TABANLI

GÖRÜNTÜ ER���M S�STEM�

Son zamanlarda, çok büyük görüntü ve video veritabanları ortaya çıkmı�tır.

Bu büyümeye paralel olarak, görsel bilgiye eri�ebilmek için içerik-tabanlı eri�im ve

indekslenmi� veritabanları üzerinde arama yapabilme ihtiyaçları do�maktadır. Görsel

bilginin üç ana bile�eni renk, doku ve biçimdir. Bu tezde, MPEG-7 ‘nin üç görsel

tanımlayıcısını birle�tiren ve görüntülere uzaklık fonksiyonunu uygulayarak

aralarındaki benzerli�i ölçen XML tabanlı bir içerik-tabanlı görüntü eri�im sistemi

sunulmaktadır. Bu üç görsel tanımlayıcıyı tutmak için bir XML veritabanı

kullanılmaktadır. Sistem aynı zamanda XML veritabanı üzerinde etkin arama ve

eri�im için cok-boyutlu indekslemeyi desteklemektedir. Bu indeksleme, M-Tree adı

verilen indeks yapısı ile geli�tirilmi�tir ve M-Tree benzerlik ölçümü için a�ırlıklı

Euclidean uzaklık fonksiyonunu kullanmaktadır. Uzaklık fonksiyonunun a�ırlıklarını

hesaplamak ve üç görsel özelli�in uzaklık fonksiyonlarını bir uzaklık fonksiyonuna

birle�tirmek için Sıralı A�ırlıklı Toplam operatörleri kullanılmı�tır. Sistem en yakın

kom�uluk sorgularını ve 3 tip bulanık sorguları sa�lamaktadır: özellik tabanlı,

görüntü tabanlı ve renk tabanlı sorgular. Ayrıca deney sonuçları ve sorguların sonuç

etkinlikleri bu içerik-tabanlı eri�im sisteminin eri�im ve ölçeklenebilirlik bakımından

etkin oldu�unu göstermektedir.

Anahtar Sözcükler: �çerik-Tabanlı Görüntü Eri�imi, MPEG-7 Tanımlayıcıları, Renk

Planı, Baskın Renk, Kenar Da�ılımı, M-Tree, Sıralı A�ırlıklı Toplam, XML

Veritabanı

 vi

ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisor, Prof. Dr. Adnan Yazıcı

for his instructive comments in the supervision of the thesis. And I also thank my

family for endless love and support, METU Computer Center staff for the technical

infrastructure they supply, and all other friends who helped in producing this thesis.

 vii

TABLE OF CONTENTS

ABSTRACT... iv

ÖZ ... v

ACKNOWLEDGMENTS ... vi

TABLE OF CONTENTS.. vii

LIST OF TABLES .. x

LIST OF FIGURES ... xi

LIST OF ABBREVATIONS ... xiv

INTRODUCTION .. 1

1.1 Motivation... 1

1.2 Contributions... 3

1.2.1 Feature Extraction Module.. 3

1.2.2 Image Database and Indexing ... 4

1.2.3 Query Module ... 5

1.3 Organization of the Thesis .. 6

CONTENT-BASED IMAGE RETRIEVAL .. 7

2.1 Overview... 7

2.1.1 Image Database ... 8

2.1.2 Feature Extraction ... 9

2.1.2.1 Color.. 9

2.1.2.2 Texture .. 9

2.1.2.3 Shape... 10

2.1.3 Similarity Measures .. 10

2.1.4 Multi-dimensional Indexing.. 13

2.1.4.1 Vector-Space Methods .. 14

2.1.4.2 Metric-Space Methods .. 14

2.1.4.3 Overview of Some Popular Multidimensional Index Structures 15

2.1.5 Retrieval Engine.. 18

2.2 Related Works... 19

 viii

2.2.1 IBM’s QBIC.. 19

2.2.2 Netra.. 20

2.2.3 Photobook ... 20

2.2.4 RetrievalWare ... 21

2.2.5 Virage.. 21

2.2.6 VisualSeek and WebSeek ... 21

MPEG-7 .. 23

3.1 Introduction ... 23

3.2 Scope of the MPEG-7 ... 24

3.3 MPEG-7 Visual Descriptors ... 25

3.3.1 Color Descriptors .. 25

3.3.2 Texture Descriptors... 26

3.3.3 Shape Descriptors.. 27

3.3.4 Motion Descriptors ... 28

3.3.5 Face Descriptor ... 29

3.3.6 Combination of Visual Descriptors... 29

CBIR SYSTEM... 30

4.1 Overview... 30

4.2 Feature Extraction ... 33

4.2.1 Color Layout (CL)... 34

4.2.2 Dominant Color (DC) ... 37

4.2.3 Edge Histogram (EH).. 40

4.2.4 Feature Extraction Process.. 41

4.3 Image Database ... 42

4.4 Similarity Measurement .. 44

4.4.1 Ordered Weighted Averaging (OWA) Operator................................. 44

4.4.2 Distance Function.. 45

4.4.2.1 M-Tree with Non-Fuzzy Dominant Color Distance 46

4.4.2.2 M-Tree with Fuzzy Dominant Color Distance 48

4.4.2.3 Using OWA... 49

4.5 Indexing and Querying.. 51

 ix

4.5.1 M-Tree... 52

4.5.1.1 Querying the M-Tree... 56

4.5.2 Fuzzy Query.. 64

4.6 User Interface .. 69

PERFORMANCE EXPERIMENTS... 71

5.1 Building the M-Tree.. 71

5.1.1 Split Policies ... 72

5.1.1.1 Choosing Routing Objects .. 72

5.1.1.2 Distribution of Entries... 73

5.1.2 Evaluating Effectiveness of Building the M-Tree 73

5.1.2.1 Confirmed Promotion ... 76

5.1.2.2 Random Promotion ... 83

5.2 Querying the M-Tree... 87

5.2.1 Retrieval Effectiveness.. 87

5.2.1.1 Results ... 89

5.2.2 K-NN Query.. 90

5.2.2.1 Distance Computations ... 90

5.2.2.2 Query Cost Time... 91

5.3 Discussion ... 91

CONCLUSION AND FUTURE WORK ... 94

REFERENCES.. 96

QUERYING THE SYSTEM .. 102

A.1 Fuzzy Query.. 102

A.1.1 Image-Based Query... 102

A.1.2 Feature-Based Query... 105

A.1.3 Color-Based Query.. 107

A.2 K-Nearest Neighbor Query ... 108

 x

LIST OF TABLES
Table 5.1: Possible strategies for selecting routing objects .. 72

Table 5.2: Possible strategies of distribution of entries. ... 73

Table 5.3: ANMRR results of Our CBIR System and XM Software for 335 queries.

... 89

Table 5.4: Minimum and Maximum Query Cost Time and Computed Distances for

400 Queries in 10-NN Query. ... 91

 xi

LIST OF FIGURES
Figure 2.1: A typical content-based image retrieval system 8

Figure 3.1: Scope of the MPEG-7 24

Figure 4.1: CBIR System Architecture 31

Figure 4.2: Examples of low (a) and high (b) spatial coherency of color. 39

Figure 4.3: Five Categories of Edges 40

Figure 4.4: Berkeley XML DB system architecture 43

Figure 4.5: Example distribution of data and covering regions. 53

Figure 4.6: M-Tree overview 54

Figure 4.7: Routing and Database objects of M-Tree. 55

Figure 4.8: A Sample data for querying 57

Figure 4.9: Query Image 60

Figure 4.10: Example M-Tree for 11 images 63

Figure 5.1: Computed Distances for 100 images as a function of minimum utilization

with page size = 8K 77

Figure 5.2: Construction Time for 100 images as a function of minimum utilization

with page size = 8K 77

Figure 5.3: Computed Distances for 200 images as a function of minimum utilization

with page size = 16K 78

Figure 5.4: Construction Time for 200 images as a function of minimum utilization

with page size = 16K 78

Figure 5.5: Computed Distances for 300 images as a function of minimum utilization

with page size = 16K 79

Figure 5.6: Construction Time for 300 images as a function of minimum utilization

with page size = 16K 79

Figure 5.7: Computed Distances for 300 images as a function of minimum utilization

with page size = 32K 80

Figure 5.8: Construction Time for 300 images as a function of minimum utilization

with page size = 32K 80

 xii

Figure 5.9: Computed Distances for 400 images as a function of minimum utilization

with page size = 16K 81

Figure 5.10: Construction Time for 300 images as a function of minimum utilization

with page size = 16K 81

Figure 5.11: Computed Distances for 400 images as a function of minimum

utilization with page size = 32K 82

Figure 5.12: Construction Time for 400 images as a function of minimum utilization

with page size = 32K 82

Figure 5.13: Computed Distances for 100 images as a function of minimum

utilization with page size = 8K 83

Figure 5.14: Construction Time for 100 images as a function of minimum utilization

with page size = 8K 84

Figure 5.15: Computed Distances for 200 images as a function of minimum

utilization with page size = 16K 84

Figure 5.16: Construction Time for 200 images as a function of minimum utilization

with page size = 16K 85

Figure 5.17: Computed Distances for 300 images as a function of minimum

utilization with page size = 16K 85

Figure 5.18: Construction Time for 300 images as a function of minimum utilization

with page size = 16K 86

Figure 5.19: Computed Distances for 400 images as a function of minimum

utilization with page size = 16K 86

Figure 5.20: Construction Time for 400 images as a function of minimum utilization

with page size = 16K 87

Figure A.1- Results for Query with Fuzzy DC Distance 103

Figure A.2- Results for Query with Non-Fuzzy DC Distance 104

Figure A.3- Results for Feature-Based Fuzzy Query with Fuzzy DC Distance 105

Figure A.4- Results for Feature-Based Fuzzy Query with Non-Fuzzy DC Distance 106

Figure A.5- Results for Color-Based Fuzzy Query with Fuzzy DC Distance 107

Figure A.6- Results for Color-Based Fuzzy Query with Non-Fuzzy DC Distance 108

Figure A.7- Results for k-NN Query with Fuzzy DC Distance 109

 xiii

Figure A.8- Results for k-NN Query with Fuzzy DC Distance 110

 xiv

LIST OF ABBREVATIONS

ADL Alexandria Digital Library

ANMRR Average Normalized Modified Retrieval Rank.

AV Audio-Visual.

AVR Average Rank.

BR Bounding Rectangle

CBIR Content-Based Image Retrieval

CL Color Layout

CSs Coding Schemes

DC Dominant Color

Ds Descriptors

DSs Description Schemes

DDL Description Definition Language

EH Edge Histogram

GiST The Generalized Search Tree

GUI Graphical User Interface

JSP Java Server Page

k-NN k Nearest Neighbor

MRR Modified Retrieval Rank

MPEG Moving Pictures Experts Group

NMRR Normalized Modified Retrieval Rank

OWA Ordered Weighted Aggregation

QBE Query By Example

QBF Query By Feature

QBIC Query By Image Content

SP Spatial Point

SQL Structural Query Language

XML Extensible Markup Language

XM Experimentation Model

 1

CHAPTER 1

INTRODUCTION

“A picture is worth ten thousand words.”

—A Chinese proverb

1.1 Motivation

The tremendous growth in the amount of multimedia is driving the need for

more effective methods for storing, searching and retrieving digital images, video and

audio data. The visual content of images can be categorized as follows: spatial,

semantic, and low-level [1]. The spatial content of an image is the relative positioning

of the objects in the image. The actual meaning of the image that a user captures

when he/she looks at the image forms the semantic content of the image. The low-

level content is formed by the low-level features such as color, shape, and texture. For

indexing the images based on these low-level features, various methods exist in the

literature.

Research in Content-Based Image Retrieval (CBIR) today is now

concentrating on deeper problems, and can be seen as a lively discipline of computer

vision, databases, and information retrieval [2].

In general, most CBIR systems suffer from several drawbacks [3]: First,

feature extraction is very expensive process. Since low-level features such as color,

shape, and texture are very complicated for extraction, CBIR systems should improve

efficiency of this process. Second, the quality of results tends to be low. Third,

 2

querying performance with often long reply times is unsatisfactory. Finally, user

interfaces are much too complicated for average users.

The content-based image retrieval system proposed in this thesis includes the

following features:

� Efficient extraction of low-level features: Low-level features (color, texture

and shape features) need very complex extraction process, so a qualified CBIR

system should improve the performance of feature extraction. Many researchers

have used several methods to extract audio-visual features up to now, and these

features were formed in various formats. However, the necessity arises for a

common format, which is able to represent the audio-visual content. As a

consequence, MPEG-7, formally known as Multimedia Content Description

Interface is introduced as an ISO/IEC standard by MPEG (Moving Pictures

Experts Group) [10] and MPEG-7 focuses on description of multimedia

content. The key issue here is that MPEG-7 does not standardize the way to

obtain these descriptions or how to use them, but only standardizes the

descriptions and the way of structuring them. The emerging MPEG-7

multimedia content description standard promises to further improve content-

based searching by providing a rich set of standardized tools for describing

multimedia content in XML. The MPEG-7 standard enables fast and effective

content-based searching by defining descriptors for color, texture, shape and

other features.

� Satisfactory querying performance—CBIR systems use distance functions to

calculate the dissimilarity between a search image and database images. This

process is often very slow and reply times in the range of minutes may occur

for large databases. Since multimedia data usually have high-dimensional

properties, for example, an image might have multi-dimensional features, such

as texture, color, and shape, it is very important for an indexing technique that

can support execution of high-dimensional similarity queries to be invented for

 3

multimedia databases. M-tree [15] is such a high-dimensional and distance-

based index structure based on Metric Space.

� Satisfactory result quality—By using only general features for all types of

images and asking the user to choose features leads to low quality retrieval

results. Multi-features should be combined to improve the query performance.

1.2 Contributions

In this work, we propose an XML-based CBIR system with MPEG-7 Content

Descriptors. This CBIR system consists of three modules:

1.2.1 Feature Extraction Module

 In the multimedia processing, only the description of content is in the scope

of MPEG-7 [10], not how a description is produced or consumed. Further, the

descriptions are not required to allow interoperability. This leaves space for industrial

and academic competition in developing new, more powerful methods for multimedia

content analysis, better search engines and user applications.

For extracting low-level features from images, we use MPEG-7 reference

software (XM) [11]. MPEG-7 aims at setting up a framework for describing all

aspects of multimedia contents. It focuses mainly on setting up the standard low-level

descriptors set and high-level abstract descriptions set. MPEG-7 XM includes low-

level feature extraction methods and stores them in XML format. In these feature

extraction methods, Dominant Color (DC), Color Layout (CL) and Edge Histogram

(EH) features are used in this study to describe image contents.

 4

1.2.2 Image Database and Indexing

Since MPEG-7 XM extracts low-level features and stores these features in

XML format, we use Berkeley XML DB [14] as our image database management

system. Normally, image descriptors are represented by multi-dimensional vectors,

which are often used to calculate the descriptor distance in the feature space for

measuring the similarity of two images. When the number of images in the database

is small, a sequential linear search can provide a reasonable performance. However,

with large-scale image databases, indexing support for similarity-based queries

becomes necessary.

Because of using multi-dimensional features, we need an efficient access

method over image database and we use M-Tree [15] [42] for this purpose. Since M-

Tree is a distance-based tree structure, we need an efficient distance function to make

the evaluation of similarity of images and query results better. So Euclidean Distance

function [4] is used as similarity measure. In general, the CBIR systems support the

combinations of features for efficient indexing and querying.

But most of these systems combine these features by associating weights to

individual features. Main problem here is that the same weights are associated with

the same features for all images in database and sum of these weighted features are

used to build an index structure. However, when comparing two specific images, one

feature can be more distinctive than the others; so that feature must be associated with

higher weights. When comparing other two images, that feature may be less

distinctive than the other features and for this case that feature must be associated

with a lower weight. For this purpose, in this system we use Ordered Weighted

Aggregation (OWA) [20] operators to associate variable weights with three low-level

features (DC, CL, EH) and calculate a combined distance for constructing M-Tree

structure.

 5

1.2.3 Query Module

Image objects may have a complex inherent structure. Content-based retrieval

of images is on a number of content descriptors, including color, texture, shape,

relative location of image objects and regions, spatial layout, etc. To query image

contents, unlike traditional SQL queries, users are usually not able to precisely

characterize the objects in queries. More importantly, images with slight differences

look the same from the viewpoint of users. That’s why image query system should

support approximate similarity search.

In traditional image retrieval systems, the query languages only deal with

exact-match queries. This might be sufficient to deal with queries for metadata and

annotations of multimedia data. These queries are definitely important. However,

content-based information retrieval requires non-exact match (fuzzy) queries. A

query is fuzzy if the properties of objects being queried cannot be certain (like red

ball) or the comparison operators in the query cannot provide exact matches. Systems

allow queries to be more or less satisfied by using fuzzy query paradigms. Then, the

results of a query are ranked according to their degree of satisfaction [9].

There could be many ways for users to query images:

� Query by example (QBE): Users choose an image already displayed and ask

for images similar to the selected one.

� Direct query: Users specified their desired image features directly.

� Query by sketch: Users roughly sketch the shapes they wish to retrieve.

� Query by painting (or query by color): Users paint a simple color image as the

query specification, and those images with similar colors in the same spatial

arrangement are retrieved.

 6

Query by example (QBE) is a common retrieval paradigm in content-based

image retrieval applications [8]. In a query-by-example CBIR system, the query

image is usually used as a seed to retrieve similar images from the database, which

can be either an existing image or a hand-drawn sketch.

In our approach, both QBE and direct query are supported. In QBE, users give

an example image to the system and describe their expectation as an image-based

fuzzy query like “very similar to this image” or as a feature-based query like “very

similar in Color Layout and similar in Dominant Color or not similar in Edge

Histogram”. So the query model of our CBIR system includes fuzzy querying. In this

paradigm, nearest neighbor queries are also supported like ‘retrieve top 10 nearest

images to the query image’.

With direct query, user must supply amount of main colors (Red, Green and

Blue) on image as a similarity degree like ‘retrieve images which have mainly Red

color and very few Green or mostly Blue’. This is another type of fuzzy query in our

system.

1.3 Organization of the Thesis

The chapters of the thesis have been organized as follows: In Chapter 2,

several main components of a CBIR system are briefly discussed and previous works

on CBIR systems are listed. Chapter 3 introduces MPEG-7 briefly. In Chapter 4, the

content-based retrieval system that is developed in the scope of the thesis is

presented. The performance experiments of the content-based retrieval system are

given in Chapter 5. Finally, Chapter 6 concludes the thesis.

 7

CHAPTER 2

CONTENT-BASED IMAGE RETRIEVAL

In this chapter, first main components of a CBIR system are discussed and the

techniques that are used for similarity measurement are given. A survey on some of

the existing multi-dimensional index structures and content-based retrieval systems is

provided.

2.1 Overview

Content-based retrieval from image databases is a wide field of research

interests. In CBIR systems, images are indexed on the basis of low-level features,

such as color, texture, and shape. An ideal CBIR system should extract the semantic

content of images automatically. Automatic object recognition and classification are

difficult problems in image understanding and computer vision. This is the main

reason why low-level features such as colors, textures, and shapes of objects are

widely used for content-based image retrieval [7]. Mapping the high-level semantic

concepts used by humans to understand image content to the low-level visual features

extracted from images is the basic problem in CBIR. Thus two important research

topics in CBIR are [5];

� Selection of the used features and the measure of similarity between them.

� Techniques for indexing the images.

A typical content-based image retrieval system is depicted in Figure 2.1 [6].

 8

Figure 2.1: A typical content-based image retrieval system

2.1.1 Image Database

The image database contains images for the purpose of visual display. Unlike

traditional database, image database faces many problems. Image data is often large

in size and the content-based analysis is an expensive process. Thus, preprocessing is

required for querying the database. Moreover image data is subjective, for a given

image, it may have different interpretation for different users.

 9

The visual feature database stores visual features extracted from images

needed to support content-based image retrieval. The text annotation repository

contains keywords and free-text descriptions of images [7].

2.1.2 Feature Extraction

Feature extraction is the basis of content-based image retrieval. Feature

extraction is concerned with the detection and localization of particular feature in a

multimedia object in images. The features, within the visual feature scope, can be

classified as low-level features and high-level features. Low-level features include

color, texture, and shape features while high-level features are application-dependent

and may include, for example, human faces and fingerprints.

2.1.2.1 Color

Color is one of the most recognizable elements of image content and is the

most commonly used feature image retrieval because of its invariance with respect to

image scaling, translation and rotation [7]. Color features are independent of image

size and orientation and can be used for describing content in still images and video.

2.1.2.2 Texture

Texture is widely used and refers to the visual patterns that have properties of

homogeneity or not, that result from the presence of multiple colors or intensities in

the image [12]. Texture features of the images can be seen as the structural

information of surfaces and their relationship to the surrounding environment. There

are many ways to describe texture: Statistical methods often use spatial frequency,

co-occurrence matrices, edge frequency, primitive length etc. [4]. Using texture

descriptors in a CBIR system provides powerful means for similarity matching and

retrieval.

 10

2.1.2.3 Shape

The shape of image objects provides a powerful visual clue for similarity

matching and defining the shape of an object is often very difficult. In image

retrieval, it is usually required that the shape descriptor is invariant to scaling,

rotation, and translation. In general, shape description can be divided into two

categories [45], boundary-based and region-based. In the boundary-based shape

description, only boundary information of objects is used and the boundary

information is suitable to describe objects that have similar contour characteristics. In

the region-based shape description, the entire shape region is used to extract a

meaningful description, which is most useful when objects have similar spatial

distributions of pixels in objects. Dependent on the application or objects

characteristics, it is useful to employ either region- or contour-based descriptors.

2.1.3 Similarity Measures

Instead of exact matching, content-based image retrieval calculates visual

similarities between a query image and images in a database. After extracting features

of images in the database, the search results are obtained by measuring the similarity

between the pre-extracted features of the image database and the query. Distances or

similarities are mathematical representations of what is meant by close or similar.

Accordingly, the retrieval result is not a single image but a list of images ranked by

their similarities with the query image. Many similarity measures have been

developed for image retrieval based on empirical estimates of the distribution of

features in recent years. Different similarity/distance measures will affect retrieval

performances of an image retrieval system significantly. The choice of distance is

extremely important. In some cases, a Euclidean metric will be sensible while in

others a Manhattan metric will be a better choice. Generally, some experience or

subject matter knowledge is very helpful in selecting an appropriate distance for a

given project.

 11

The problem of whether the similarity distance should be a metric or not is not

decided yet since human vision is very complex and the mechanisms of the human

visual system are not fully understood. We prefer the similarity distance to be a

metric and must satisfy the following properties [4]:

� Similarity: The distances between an image to itself should be equal to zero:

d(A,A) = 0; (2.1)

� Minimality: An image should be more similar to itself than to other images:

d(A,A) < d(A,B); (2.2)

� Symmetry: It is unreasonable if we say image A is similar to image B but

image B is not similar to image A:

d(A,B) = d(B,A); (2.3)

� Transitivity: It is also unreasonable if image A is very similar to image B, and

B in turn very similar to C, but C is very dissimilar to A.

Many (dis) similarity measures have been proposed and we list here some of

the most commonly used [4].

� Minkowski-form distance: If each dimension of image feature vector is

independent of each other and is of equal importance, the Minkowski-form

distance Lp is appropriate for calculating the distance between two images.

This distance is defined as:

 12

)(() () ��

�
��

�
�
=

−==
d

i
iyix

p
Lyx,D

p

p

1

1

 (2.4)

where x and y feature vectors and d is feature dimension.

� Weighted Minkowsky-form distance: In this form of Minkowsky distances, the

individual dimensions can be weighted differently using non-negative weights

and it is defined as:

)(() () ��

�
��

�
�
=

−=
d

i
iyix

p
iwyx,D

p

1

1

 (2.5)

� Euclidean distance: The Euclidean distance is defined as:

()[]�
=

−=
d

i

iyixyxD
1

2)(),((2.6)

� Weighted Euclidean distance: The weighted Euclidean distance is defined as:

()[]�
=

−⋅=
d

i
i iyixwyxD

1

2)(),((2.7)

� Mahalanobis distance: The Mahalanobis distance metric is appropriate when

each dimension of image feature vector is dependent of each other and is of

different importance. It is defined as:

() ()yxCyxCyxD T
d −−= −1
1

det),((2.8)

where C is the covariance matrix of the feature vectors.

 13

� Generalized Euclidean distance: This distance is a generalization of the

Mahalanobis distance where the matrix K is positive definite but not

necessarily a covariance matrix, and the multiplicative factor is omitted:

() ()yxKyxyxD T −−=),((2.9)

� Manhattan distance: Manhattan distance or city block defined as:

�
=

−=
d

i

iyixyxD
1

)()(),((2.10)

� Chebychev distance: it is defined as

�
	

�
�

 −=
=

)()(max),(
1

iyixyxD
d

i
 (2.11)

2.1.4 Multi-dimensional Indexing

An ideal CBIR system should be scalable to large image collections and

should support fast retrieval. For this purpose multi-dimensional indexing is used. For

an efficient similarity search in a typical CBIR system it is necessary to store the

feature vectors in a multi-dimensional index structure and use the index structure to

efficiently evaluate the distance metric. The multi-dimensional index structure is used

must efficiently support both range and nearest neighbor queries.

There are two main classes of multi-dimensional indexes [16], vector-space

methods and metric-space methods.

 14

2.1.4.1 Vector-Space Methods

Since vector spaces contain more information these methods allow a better

structuring of data than general metric spaces. A lot of work has been done on vector

spaces by exploiting their geometric properties, but normally these cannot be

extended to general metric spaces where the only available information is the distance

among objects. In contrast to metric spaces, the operations in vector spaces tend to be

simple and hence the goal is mainly to reduce I/O.

2.1.4.2 Metric-Space Methods

Instead of using a feature transformation into a vector space, data can also be

directly processed using a metric space index structure. In this case, the user has to

provide a metric distance, which corresponds to the properties of the similarity

measure.

A metric space is a pair, M = (D, d) where D is a domain of feature values and

d is a distance function with the following properties [15]:

� Symmetry: d(A, B) = d(B, A) (2.12)

� Positivity: d(A, B) > 0 (A ≠ Β) and d(A, B) = 0 (2.13)

� Triangle inequality: d(A, B) ≤ d(A, C) + d(C, B) (2.14)

where A, B and C are objects in a metric space U, the universe.

In these methods, the distance is normally quite expensive to compute, so the

general goal is to reduce the number of distance evaluations. To reduce the number of

distance evaluations at query time, an index structure is built which is used to prune

branches in processing the queries.

 15

2.1.4.3 Overview of Some Popular Multidimensional Index Structures

Recently, many new Bounding Rectangle (BR)-based data structures have

been proposed. All of them are derived from the R-tree [17]. The R-tree suffers from

a high degree of overlap among indexed subspaces and low fan-out at high

dimensionalities that leads to poor query performance. The proposed data structures

extend the R-tree to scale to higher dimensionality and/or support arbitrary distance

metric.

The TV-tree [18] is an R-tree like data structure that exploits the fact that not

all dimensions of the feature vector are necessary to discriminate among the objects.

It uses a transform to achieve an ordering of the dimensions based on their

discriminating power. Only the first few dimensions in that ordering, called the

`̀active'' dimensions, are used to define the BRs. Each BR is specified by a center,

which is an n-dimensional vector where n is the number of active dimensions, and a

scalar radius. The non-discriminatory dimensions are ignored. At the data node level,

since it is possible for a leaf to consist of points that all agree on some of the inactive

dimensions, these common dimensions are introduced into the center representation.

The scalability of the TV-tree to high dimensionality relies upon the fact that there

exists an ordering among the dimensions based on their discriminating power and this

order is known in advance and does not change. This may not be possible in dynamic

database environments.

The X-tree [19] is another R-tree like data structure with a modification of the

R-tree node splitting algorithm to reduce overlap among the index nodes. If splitting a

node causes a large amount of overlap, the node is not split at all, thus creating a

supernode i.e., a node that spans over multiple pages on disk. The intuition is that

since there is large overlap between the nodes after the split, the probability that both

nodes will be accessed by a search operation is high, and hence a sequential scan over

the nodes is better than random accesses to each of the nodes. As the dimensionality

increases, the X-tree degenerates to a few random I/O at the higher levels and a linear

 16

scan over the entire database at the lower levels. But, contrary to linear scan, X-tree

has the overhead of performing disk management operations to create and maintain

variable sized nodes on disk.

Distance based variants of the R-tree include the SS-tree [21] and M-tree [15].

The SS-tree uses k-dimensional spheres as BRs instead of k-dimensional rectangles.

There are two advantages of the SS-tree over the R-tree. First, on average, the

minimum distance of a query point from a BR is lower when the BRs are bounding

spheres rather than bounding rectangles. Since the processing of nearest neighbor

queries depends on the minimum distance, SS-tree provides better performance for

nearest neighbor queries compared to R-tree. Second, since the SS-tree stores only

the centroid and a scalar radius for each entry in the index node instead of the

bounding rectangle, it requires only half the space compared to an R-tree entry and

hence has almost twice the fan-out. But since the volume of bounding spheres is

much higher compared to the volume of bounding rectangles especially at high

dimensionality, the overlap between the spheres is much higher compared to the

R-tree leading to poor range search performance as the dimensionality increases. To

avoid the overlap problem, the SR-tree [22] maintains both the bounding rectangle

like R-trees as well as the bounding sphere like the SS-tree. Therefore, it has small

minimum distances like the SS-tree as well as lower overlap of the R-tree.

In M-tree [15], instead of fixing the BRs to be boxes or spheres, the data

structure is parametric on the distance function. The user can provide the distance

function which the M-tree will invoke as a black box to construct the BRs. In

addition, M-tree exploits the triangle inequality to save several distance computations

during tree traversal.

Several Spatial Point (SP)-based data structures have been proposed in the

literature as well. While all BR-based data structures are paginated that is each node

of the index structure implicitly corresponds to a disk page and balanced, that is not

the case with SP data structures. Paginated SP-based data structures are derived from

 17

the KDB-tree [24]. The partitioning of the indexed space is usually represented by a

kd-tree [23].

Each internal node of the kd-tree represents a partition of the space. A kd-tree

partition, unlike BRs, represents a clean split that the two subspaces after the split are

mutually disjoint. Several SP-based data structures are described below.

The KDB-tree [24] works analogously to the B-tree but instead of nodes

containing search values in disjoint intervals of a one dimensional space, each node

`̀covers'' a brick-like region of k-dimensional space. The space partitioning within a

KDB-tree node is represented using a kd-tree. Whenever a data or index node

becomes full, KDB-tree chooses a single (k-1)-dimensional hyperplane to split the

node into two non-overlapping subspaces. In case of data nodes, this can violate

storage utilization guarantees. In case of index nodes, in addition to adversely

affecting storage utilization, it also makes the splitting process itself very costly due

to the cascading splits.

The hB-tree [25] is a variant to the KDB-tree. To circumvent the problems of

storage utilization and cascading splits when split is performed using just one single

dimension, hB-tree may use multiple dimensions to split a node. The space

partitioning within a node is represented using a kd-tree. hB-tree provides guaranteed

storage utilization and also avoids cascading splits. However, if a node is split using

multiple dimensions, portions of kd-tree (called the `̀full path'') needs to be replicated

at the parent and child nodes. The utilization guarantee of hB-tree does not factor in

the information that is replicated at various nodes. The performance evaluation of the

hB-tree shows that it performs well at medium dimensional features spaces.

There are also nonpaginated SP-based data structures. They can be either

feature based which the splits are based on a feature value (VAMSplit tree,

LSDh-tree) or distance based which the splits are based on distances from one or

more suitably chosen pivot points (vp-tree, mvp-tree). However, their utility is

 18

limited in the context of large dynamic databases when the entire data structure

cannot reside in main memory. To circumvent the problem, some memory based data

structures like the LSD-tree provide an explicit paging algorithm when the size of the

directory exceeds the size of main memory. Still, these trees are not balanced and

their performance is usually sensitive to presorted data.

2.1.5 Retrieval Engine

The search methods used for image databases differ from those of traditional

databases, since query method for multimedia databases is usually retrieval-by-

similarity [16]. A good query method is natural to the user as well as capturing

enough information from the user to extract meaningful results. The following query

methods are commonly used in content-based image retrieval research [4]:

� Query by Example (QBE): QBE [8] is a common retrieval paradigm in

content-based image retrieval applications. With QBE, the image queries are

based on example images shown either from the database itself or some

external location. And the image database is to be searched and compared with

this example image. The target query image can be a normal image or a user

drawn sketch using graphical interface paint tools.

� Query by Feature (QBF): In the QBF type system, users specify queries by

explicitly specifying the features they are interested in searching for. For

example, a user may query an image database like ”retrieve all images, which

contains 20% red pixels”. Specialized users of an image retrieval system may

find this query type natural, but general users may not.

� Query by painting (or query by color): Users paint a simple color image as the

query specification, and those images with similar colors in the same spatial

arrangement are retrieved.

 19

� Direct query: Users specified their desired image features directly.

Most research and commercial efforts are focused on building systems that

perform well with QBE method. With QBE method, depending on application,

different types of similarity queries are required. The most frequently used types of

similarity queries are [7][16]:

Range query: find all objects that are within a specific distance from a query

object;

k-nearest neighbors query: find the first k closest objects to a given query

object.

2.2 Related Works

In the literature, a wide variety of content-based retrieval methods and

systems may be found [44]. In this section, we discuss some of them.

2.2.1 IBM’s QBIC

QBIC [26], standing for Query By Image Content, is the first commercial

content-based image retrieval system. Its system framework and techniques had

profound effects on later image retrieval systems. QBIC supports mainly queries

based on example images, user-constructed sketches and drawings, and selected color

and texture patterns. The color feature used in QBIC are the average (R, G, B), (Y, I,

Q), (L, a, b), and MTM (Mathematical Transform to Munsell) coordinates, and a k-

element color histogram [27]. QBIC’s texture feature is an improved version of the

Tamura texture representation [28]; combinations of coarseness, contrast, and

directionality [29]

 20

Shape features in QBIC consist of area, circularity, eccentricity, and major

axis orientation, plus a set of algebraic moment invariants [27] [30]. QBIC is one of

the few systems, which takes into account the high dimensional feature indexing. In

its indexing subsystem, KLT is the first used to perform dimension reduction and

then R*-tree is used as the multidimensional indexing structure [27][31]. In its new

system, text-based keyword search can be combined with content-based similarity

search.

2.2.2 Netra

Netra is a prototype image retrieval system developed in the UCSB

Alexandria Digital Library (ADL) project [32]. Netra uses color, texture, shape, and

spatial location information in the segmented image regions to search and retrieve

similar regions from the database. Main research features of the Netra system are its

Gabor filter-based texture analysis, neural net-based image thesaurus construction

and edge flow-based region segmentation.

2.2.3 Photobook

Photobook [33] is a set of interactive tools for browsing and searching images

developed at the MIT Media Lab. Photobook consists of three sub-books from which

shape, texture, and face features are extracted, respectively. Users can then query on

the basic of the corresponding features in each of the three sub-books. More recent

version of Photobook includes the human users in the image annotation and retrieval

loop. The motivation for this was based on the observation that there was no single

feature, which can best model images from each and every domain. Furthermore,

human perception is subjective. They proposed a”society of models” approach to

incorporate the human factor. Experimental results show that this approach is

effective in interactive image annotation.

 21

2.2.4 RetrievalWare

RetrievalWare is a content-based image retrieval engine developed by

Excalibur Technologies Corp. Its recent search engine uses color, shape, texture,

brightness, color layout, and aspect ratio of the image, as query features. It also

supports the combinations of these features and allows the users to adjust the weights

associated with each feature.

2.2.5 Virage

Virage is a content-based image search engine developed at Virage Inc.

Similar to QBIC, Virage [34] supports visual queries based on color, composition

(color layout), texture, and structure (object boundary information).But Virage goes

one step further than QBIC. It also supports arbitrary combinations of the above four

atomic queries. The system is available as an add-on to existing database

management systems such as Oracle or Informix.

2.2.6 VisualSeek and WebSeek

VisualSEEk [35] is a visual feature search engine and WebSEEk [36] is a

World Wide Web oriented text/image search engine, both of which have been

developed at Columbia University. Main research features are spatial relationship

query of image regions and visual feature extraction from compressed domain. The

visual features used in their systems are color sets and wavelet transform-based

texture features. To speed up the retrieval process, they also developed binary tree-

based indexing algorithms. VisualSEEk supports queries based on both visual

features and their spatial relationships. This enables a user to submit a sunset query as

red-orange color region on top and blue or green region at the bottom as its ”sketch”.

 22

WebSEEk is a web-oriented search engine. It consists of three main modules,

i.e., image/video collecting module, subject classification and indexing module, and

search, browse, and retrieval module. It supports queries based on both keywords and

visual content.

 23

CHAPTER 3

MPEG-7

 In this chapter, a brief discussion on MPEG-7 is given and Descriptors in

MPEG- are described.

3.1 Introduction

MPEG-7, formally known as Multimedia Content Description Interface, is

introduced as an ISO/IEC standard by MPEG (Moving Pictures Experts Group) to

represent the audio-visual content [10]. While the prior standards (MPEG-1, MPEG-

2, and MPEG-4) focus on coding and representation of audio-visual content, MPEG-

7 focuses on description of multimedia content. The key issue here is that MPEG-7

does not standardize the way to obtain these descriptions or how to use them, but only

standardizes the descriptions and the way of structuring them.

The content-based indexing and retrieval of audio-visual information is the

main application for MPEG-7. MPEG-7 achieves these goals by defining a set of

methods and tools for different aspects of multimedia description.

The MPEG-7 Visual Descriptors (Ds) describe basic audiovisual content of

media based on visual information. These MPEG-7 visual descriptors can be used to

search, filter, or browse visual material based on suitable similarity measures.

Weighted combination of visual descriptors can be used in implementation of CBIR

system, to make the system more effective and for this purpose, MPEG-7 also defines

Description Schemes (DSs). These schemes specify the types of the descriptors that

 24

can be used in a given description, and the relationships between these descriptors or

between other DSs.

The Description Definition Language (DDL) forms a core part of the MPEG-

7 standard. With DDL, users can create their own Description Schemes and

Descriptors. The DDL defines the syntactic rules to express and combine Description

Schemes and Descriptors. The DDL must satisfy the MPEG-7 DDL requirements

[13]. It has to be able to express spatial, temporal, structural, and conceptual

relationships between the elements of a DS, and between DSs.

3.2 Scope of the MPEG-7

Searching, indexing, filtering, and access of audio-visual (AV) content are

goals of the MPEG-7 standard. So MPEG-7 standard is used in devices and

applications that deal with AV content description. MPEG-7 specifies the description

of features related to the AV content. As illustrated in Figure 3.1, the scope of the

standard is to define the representation of the description. Feature extraction is

outside the scope of the MPEG-7. Search and query also are outside the scope of the

MPEG-7 since they could be application dependent. However, in order to guarantee

interoperability for some low-level features, MPEG-7 also specifies part of the

extraction process. Future improvements can be included in MPEG-7 compliant

applications.

Figure 3.1: Scope of the MPEG-7

 25

3.3 MPEG-7 Visual Descriptors

The main objective of MPEG-7 visual descriptors is to provide a standardized

description of image or video to use in applications to identify, categorize or filter

images or videos. The MPEG-7 visual descriptors are classified into general visual

descriptors and domain-specific descriptors. The former include color, texture, shape

and motion features, while the latter are application dependent and include a face-

recognition descriptors. A brief description of each descriptor is given below.

3.3.1 Color Descriptors

Color is one of the most widely used and extensively studied features in

content-based image retrieval. MPEG-7 provides 7 color descriptors [37]:

� Color Space: This descriptor allows a selection of a color space to be used in

the description. In the current description, the following color spaces are

supported:

o R, G, B

o Y, Cr, Cb

o H, S, V

o HMMD

o Linear transformation matrix with reference to R, G, B

o Monochrome

� Color Quantization: This descriptor specifies the partitioning of the given

color space into discrete bins. Color Space Descriptor and Color Quantization

Descriptor are used in conjunction with other color descriptors.

 26

� Dominant Color: This descriptor allows specification of a small number of

dominant color values that is the percentage of each quantized color and a

spatial coherency. Its purpose is to provide an effective, compact and intuitive

representation of colors present in a region or whole image.

� Scalable Color: The Scalable Color Descriptor is a Color Histogram in HSV

Color Space with fixed color space quantization. It uses a Haar transform

coefficient encoding. This descriptor is useful for image-to-image matching and

retrieval based on color feature.

� Color Layout: This descriptor captures the spatial layout of the representative

colors on a region or image. Representation is based on coefficients of the

Discrete Cosine Transform. This is a very compact descriptor being highly

efficient in fast browsing and search applications. It provides image-to-image

matching as well as ultra high-speed sequence-to-sequence matching.

� Color Structure: Color Structure Descriptor captures both color content and

information about the structure of this content. Its main functionality is image-

to-image matching and aims at identifying localizing color distributions using a

small structure window.

� Group of Frames or Group of Pictures: This descriptor is an extension of the

scalable color descriptor to a group of frames in a video or a collection of

pictures. This descriptor is based on aggregating the color properties of the

individual images or video frames.

3.3.2 Texture Descriptors

There is three texture Descriptors [37]: Homogeneous Texture, Edge

Histogram, and Texture Browsing.

 27

� Homogenous Texture: The Homogeneous Texture descriptor provides a

precise quantitative description of a texture that can be used for accurate search

and retrieval. This descriptor is useful for similarity retrieval and it is quite

effective in characterizing homogeneous texture regions.

� Texture Browsing: Texture Browsing is defined for coarse level texture

browsing. It provides a perceptual characterization of texture, similar to a

human characterization, in terms of regularity, coarseness and directionality of

the texture pattern. Since the browsing descriptor relates closely to human

characterization, it can also be manually instantiated. This representation is

useful for browsing applications and coarse classification of textures.

� Edge Histogram: This descriptor captures spatial distribution of edges in an

image. The edge histogram descriptor represents the spatial distribution of five

types of edges, namely four directional edges and one non-directional edge.

Since edges play an important role for image perception, it can retrieve images

with similar semantic meaning. Thus, it primarily targets image-to-image

matching. Its effectiveness is demonstrated on image data that are not

necessarily homogeneously textured, for example, nature images, sketch

images and clip art images.

3.3.3 Shape Descriptors

There are three shape Descriptors [37]: Region Shape, Contour Shape, and

Shape 3D.

� Region Shape: This descriptor takes into account all pixels constituting the

shape, which are both the boundary and interior pixels. It is applicable to

objects consisting of a single connected region or multiple regions, possibly

 28

with holes. This descriptor performs well where region-based similarity is

important.

� Contour Shape: Contour Shape Descriptor captures characteristic shape

features of an object or region based on its contour.

� Shape 3D: It is targeted to search and retrieve and browse 3D models. It aims

at providing and intrinsic shape description of 3D models.

3.3.4 Motion Descriptors

The main aim of motion-based indexing and of MPEG-7 in particular is to

capture essential motion characteristics into effective descriptors. There are four

motion Descriptors [37]: Camera Motion, Motion Trajectory, Parametric Motion, and

Motion Activity.

� Camera Motion: This descriptor characterizes 3-D camera motion parameters.

It is based on 3-D camera motion parameter information, which can be

automatically extracted or generated by capture devices.

� Motion Trajectory: This descriptor is an object-oriented descriptor. It describes

the displacement of objects in time. It records the path of the moving object.

� Parametric Motion: This descriptor addresses the motion of objects in video

sequences, as well as global motion. It represents the motion and/or

deformation of a region or image by classic parametric model.

� Motion Activity: The activity descriptor captures intuitive notion of “intensity

of action” or “pace of action” in a video segment and used to describe the level

or intensity of activity, motion, or action in that video segment.

 29

3.3.5 Face Descriptor

Face recognition can be used in image and video retrieval. The MPEG-7 Face

Descriptor can be used to retrieve face images which match a query face image. The

descriptor represents the projection of a face vector onto a set of basis vectors, which

span the space of possible face vectors. These basis vectors are derived from

eigenvector of a set of training faces and are reasonably robust to view-angle and

illumination changes.

3.3.6 Combination of Visual Descriptors

In [48], visual content descriptors, which are extracted with MPEG-7-

descriptors, are analyzed from the statistical point of view. For the analysis, three

media collections were used and eight basic visual descriptors were applied on them.

These media collections contain monochrome textures, color images, which form our

test set (Corel dataset) and artificial color images with few color gradations. The main

results show that the best descriptors for combination are Color Layout, Dominant

Color, Edge Histogram and Texture Browsing. The others are highly dependent on

these. In this thesis, combination of Color Layout, Dominant Color and Edge

Histogram is used to describe visual content of the images. The detailed description

of these descriptors is given in Chapter 4.

 30

CHAPTER 4

CBIR SYSTEM

In this chapter, proposed XML-based CBIR system with MPEG-7 Content

Descriptors is explained. And also this CBIR system’s three modules are presented.

4.1 Overview

In this work, we developed a content-based image retrieval (CBIR) system by

using MPEG-7 software and overall structure of the system is shown in Figure 4.1.

The first process of the system is extracting visual features from images such as

Dominant Color Descriptor, Color Layout Descriptor, and Edge Histogram

Descriptor. MPEG-7 reference software (XM) [11] includes these low-level feature

extraction methods and stores them in XML format. After extracting process, an

XML database, Berkeley DB, is used to store these features.

The second part of the system consists of indexing the XML database for

efficient retrieval of the query results. For this purpose we use a metric indexing

technique called M-Tree. M-tree project is implemented by using The Generalized

Search Tree (GiST) [41]. GiST provides a nice framework for a fast and reliable

implementation of search trees. An advantage of GiST is that the basic data structures

and algorithms as well as main portions of the concurrency and recovery code can be

reused.

 31

Figure 4.1: CBIR System Architecture

.

The M-tree Project [42] provides M-tree implementation classes. Only objects

are needed be defined in the tree. Since M-Tree is a distance-based tree structure, the

CBIR system must provide a metric distance function to find a dissimilarity (or

similarity) value between each image for comparing them. In our CBIR system,

Euclidean Distance is used as distance function to create M-Tree. And for objects, we

use the image name as object id.

Since there are three low-level features that represent the image content, the

system evaluates different distance value for each feature. But the system has to

 32

compute an overall distances of these three distance values. For multi features, in

general, weighted Euclidean Distance function is proposed to combine distances to

one distance. For this purpose, we use OWA operator as mentioned in Section 4.4.

To create the tree, following initial parameters must be supplied to the system:

� DBSIZE: which holds image number in the database

� MIN_UTIL: which is the minimum utilization [15] value of the M-tree node,

and must be in [0, 1].

� TYPE of WEIGHT: This specifies the weights of distances, OWA or equal

weights.

The system creates the tree and is ready for online querying and retrieval.

Query module is implemented by using both MPEG-7 and M-Tree software. Since

content-based information retrieval requires non-exact match (fuzzy) queries, which

go beyond the traditional approaches, we use fuzziness in query module. When user

gives an example image to search the database with QBE paradigm, the system

extracts the same three features from query image by using MPEG-7 XM Software

again. The user also must supply the query type, which may be;

� feature-based fuzzy query

� image-based fuzzy query

� color-based fuzzy query

� k-nearest neighbor query.

For querying the M-tree, following parameters must be given to the system:

� IMAGE: query image (if color-based fuzzy query then this parameter is not

important)

 33

� QUERY_TYPE: type of the query

� QUERY VALUE(s): If the query is a nearest neighbor query, this value is k

value (number of returned objects). If the query is a fuzzy query, then similarity

value (for whole image or for each feature or for each main color) is supplied

by this value.

The system starts to search the database by using M-tree with extracted

features of a query image to retrieve the images according to a query type. And

finally the result objects are taken from XML DB and these objects are shown to the

user as ranked by their degrees of satisfying the query object.

4.2 Feature Extraction

The MPEG-7 framework consists of Descriptors (Ds), Description Schemes

(DSs), a Description Definition Language (DDL), and coding schemes. Descriptors

are the features or attributes of multimedia data such as color, texture, textual

annotations, and media format. Description schemes represent more complex

structures and other description schemes. The description definition language allows

defining and extending descriptors and description schemes.

The eXperimentation Model (XM) software [11] is the simulation platform

for the MPEG-7 Descriptors (Ds), Description Schemes (DSs), Coding Schemes

(CSs), and Description Definition Language (DDL). The XM applications are formed

by the data structures and the procedural code together and are divided in two types:

the server (extraction) applications and the client (search, filtering and/or transcoding)

applications.

 34

The modules of the XM software are designed in a way that all modules are

using specified interfaces [37] to reuse and to combine individual modules in bigger

application. This also allows easy navigation through all the different modules for the

various Ds and DSs. XM applications are related to one particular descriptor or

description scheme. There are two type of applications; server applications and client

applications. Server applications create the descriptor (D) or description scheme (DS)

that they are testing. On the other hand, client applications use the D or DS under test.

Server applications are needed if the D or DS is a low-level descriptor. Low-level

descriptors can be extracted from the multimedia content applying an automatic

process.

From MPEG-7 Color Descriptors, Dominant Color Descriptor, and Color

Layout Descriptor are chosen for our system. And also to increase the efficiency of

the system, a texture descriptor, Edge Histogram Descriptor, is added to these color

descriptors.

4.2.1 Color Layout (CL)

Color Layout [37] specifies a spatial distribution of colors for high-speed

retrieval and browsing at very small computational costs. It provides image-to-image

matching as well as sequence-to-sequence matching. This descriptor captures the

layout information of color feature. Descriptor is extracted from an 8x8 array of local

dominant colors determined from the 64 (8x8) blocks the image is divided into [38].

Descriptors are matched with a tailored similarity metric.

The advantages of this descriptor are [1] [37]:

� That there are no dependency on image/video format, resolutions, and bit-

depths. The descriptor can be applied to any still pictures or video frames even

though their resolutions are different. It can be also applied both to a whole

 35

image and to any connected or unconnected parts of an image with arbitrary

shapes.

� That the required hardware/software resource for the descriptor is very small.

It needs as law as 8 bytes per image in the default video frame search, and the

calculation complexity of both extraction and matching is very low. It is

feasible to apply this descriptor to mobile terminal applications where the

available resources is strictly limited due to hardware constrain.

� That the captured feature is represented in frequency domain, so that users can

easily introduce perceptual sensitivity of human vision system for similarity

calculation.

� That it supports scalable representation of the feature by controlling the

number of coefficients enclosed in the descriptor. The user can choose any

representation granularity depending on their objectives without

interoperability problems in measuring the similarity among the descriptors

with different granularity. The default number of coefficients is 12 for video

frames while 18 coefficients are also recommended for still pictures to achieve

a higher accuracy

Example XML Document for Color Layout looks like;

<?xml version='1.0' encoding='ISO-8859-1' ?>

<Mpeg7 xmlns = "http://www.mpeg7.org/2001/MPEG-7_Schema" xmlns:xsi =

"http://www.w3.org/2000/10/XMLSchema-instance">

 <DescriptionUnit xsi:type = "DescriptorCollectionType">

 <Image name = "0.jpg">

 <Descriptor xsi:type = "ColorLayoutType">

 <YDCCoeff>15</YDCCoeff>

 <CbDCCoeff>28</CbDCCoeff>

 <CrDCCoeff>32</CrDCCoeff>

 36

 <YACCoeff5>13 12 12 12 14 </YACCoeff5>

 <CbACCoeff2>17 19 </CbACCoeff2>

 <CrACCoeff2>15 18 </CrACCoeff2>

 </Descriptor>

 </Image>

 </DescriptionUnit>

</Mpeg7>

The ColorLayout descriptor uses the YCbCr color space with quantization to

8 bits performed in the following way [2]:

Y = 219*Ynorm + 16

Cb = 224*Cbnorm + 128 (4.1)

Cr = 224*Crnorm + 128

Here, the Ynorm, Cbnorm and Crnorm are the normalized YCbCr color values.

The meanings of each tag are;

Name is image name. To add this tag into descriptors, MPEG-7 XM extracting

utilities had been modified.

YDCCoeff, YACCoeff, CbDCCoeff, CbACCoeff, CrDCCoeff and CrACCoeff specify

the integer arrays that hold a series of zigzag-scanned DCT coefficient values.

YDCCoeff is the first quantized DCT coefficient of the Y component.

CbDCCoeff is the first quantized DCT coefficient of the Cb component.

CrDCCoeff is the first quantized DCT coefficient of the Cr component.

YACCoeff is the second and the successive quantized DCT coefficients of the Y

component. In the DDL representation, separate elements (YACCoeff2, YACCoeff5,

 37

YACCoeff9, YACCoeff14, YACCoeff20, YACCoeff27 and YACCoeff63) are used

to cover all valid array lengths.

CbACCoeff is the second and the successive quantized DCT coefficients of the Cb

component. In the DDL representation, separate elements (CbACCoeff2,

CbACCoeff5, CbACCoeff9, CbACCoeff14, CbACCoeff20, CbACCoeff27 and

CbACCoeff63) are used to cover all valid array lengths.

CrACCoeff is the second and the successive quantized DCT coefficients of the Cr

component. In the DDL representation, separate elements (CrACCoeff2,

CrACCoeff5, CrACCoeff9, CrACCoeff14, CrACCoeff20, CrACCoeff27

andCrACCoeff63) are used to cover all valid array lengths.

4.2.2 Dominant Color (DC)

Dominant Color [37] specifies a set of dominant colors in any arbitrary

shaped region. Color quantization is used to extract a small number of representative

colors in each region or image. Descriptors are matched with a spatial coherency

measure. DC is suitable for representing local features (objects or image regions),

where a small number of colors are sufficient to characterize color content. Whole

images are also applicable [38].

Example XML Document for Dominant Color looks like;

<?xml version='1.0' ?>

<Mpeg7 xmlns = http://www.mpeg7.org/2001/MPEG-7_Schema xmlns:xsi =

"http://www.w3.org/2000/10/XMLSchema-instance">

 <DescriptionUnit xsi:type = "DescriptorCollectionType">

 <Image name = "img0.jpg">

 <Descriptor size = "4" xsi:type = "DominantColorType">

 <SpatialCoherency>0</SpatialCoherency>

 38

 <Values>

 <Percentage>3</Percentage>

 <ColorValueIndex>1 0 0 </ColorValueIndex>

 </Values>

 <Values>

 <Percentage>3</Percentage>

 <ColorValueIndex>15 16 15 </ColorValueIndex>

 </Values>

 <Values>

 <Percentage>1</Percentage>

 <ColorValueIndex>10 14 20 </ColorValueIndex>

 </Values>

 <Values>

 <Percentage>11</Percentage>

 <ColorValueIndex>21 21 20 </ColorValueIndex>

 </Values>

 </Descriptor>

 </Image>

 </DescriptionUnit>

</Mpeg7>

The meanings of each tag are;

name is image name.

Size is the number of dominant colors in the region. The maximum allowed number

of dominant colors is 8, the minimum number of dominant colors is 1.

SpatialCoherency [37] specifies the spatial coherency of the dominant colors

described by the descriptor. It is computed as a single value by the weighted sum of

per-dominant-color spatial coherencies. The weight is proportional to the number of

pixels corresponding to each dominant color. Spatial coherency per dominant color

captures how coherent the pixels corresponding to the dominant color are and

whether they appear to be a solid color in the given image region. In Figure 4.2, red

 39

pixels in the left image have low spatial coherency and in the right image high spatial

coherency. 0 is used to signal that this element is not computed (note that if it is not

computed it does not mean that the spatial coherency is low).

Figure 4.2: Examples of low (a) and high (b) spatial coherency of color.

Percentage specifies the percentage of pixels that have the associated color value.

The percentage value is uniformly quantized to 5 bits with 0 corresponding to 0

percentages and 31 corresponding to 100%. Note that the sum of the Percentage

values for a given visual item does not have to be equal to 100%.

Index is the index of the dominant color. In this thesis, index is represented by 5-bits.

Since MPEG-7 XM software needs parameters for extracting DC Descriptor,

we are expected to give some initial values for;

� ColorSpacePresent: This field indicates the presence of the ColorSpace

element. The following color spaces are supported [37]:

o RGB

o YcbCr

o HSV

o HMMD

o Linear transformation matrix with reference to RGB

o Monochrome

 40

we set this parameter to 0,so ColorSpace is not present and RGB color space

is used.

� ColorQuantizationPresent: This element signals the presence of the

ColorQuantization element. This element is only present in the binary

representation,so we set this parameter to 0, ColorQuantization is not present.

� VariancePresent: This field indicates the presence of the color variances

in the descriptor and is only present in the binary representation,so is set to 0.

� SpatialCoherency: is set to 0, so this element is not computed.

4.2.3 Edge Histogram (EH)

Edge Histogram [37] captures the spatial distribution of edges, which are

grouped into five categories: vertical, horizontal, 45o diagonal, 135o diagonal and

isotropic, (four directional edges and one non-directional edge, Figure 4.3).

Figure 4.3: Five Categories of Edges

This descriptor primarily targets image-to-image matching (by example or by

sketch), especially for natural images with non-uniform edge distribution, since it can

retrieve images with similar semantic meaning. The input image is divided into 4x4

 41

sub-images and the frequency of each type of edge is determined in each sub-image,

resulting in 80 (16x5) bin local edge histogram.

The image retrieval performance can be significantly improved if the edge

histogram descriptor is combined with other Descriptors such as the color histogram

descriptor [1].

Example XML Document for Edge Histogram looks like;

<?xml version='1.0' encoding='ISO-8859-1' ?>

<Mpeg7 xmlns = http://www.mpeg7.org/2001/MPEG-7_Schema xmlns:xsi =

"http://www.w3.org/2000/10/XMLSchema-instance">

<DescriptionUnit xsi:type = "DescriptorCollectionType">

<Image name = "img0.jpg">

<Descriptor xsi:type = "EdgeHistogramType">

<BinCounts>

0 2 5 2 4 4 0 7 2 3 6 0 4 3 6 6 0 3 7 5 1 1 5 2 6 4 2 5

5 6 5 1 4 5 6 5 1 4 7 5 3 2 5 4 5 4 2 5 2 5 6 2 5 3 6 3

1 7 5 4 6 0 2 5 3 4 1 2 3 6 4 0 7 0 6 5 2 6 3 3

</BinCounts>

</Descriptor>

</Image>

 </DescriptionUnit>

</Mpeg7>

Here BinCounts is 3-bit representation of 80 edge histogram values.

4.2.4 Feature Extraction Process

 In this CBIR system, extracting these three low-level features, CL, DC and

EH, is done offline. Firstly the image collection is supplied from Corel Database [39].

There are ten categories in image collection, Architecture, Beach, Bus, Elephant,

 42

Flower, Food, Dinosaur, Horse, Human and Mountain and each one has 100 images.

For each category, CL, DC and EH Descriptors are extracted by using MPEG-7 XM

Software. After creating each feature XML documents separately, we insert them in

our XML database manually.

 MPEG-7 XM Software is also used in the process of querying the database.

Since this CBIR system uses Query By Example paradigm, the same steps in creating

XML documents of each feature for an image collection are applied to the query

image. The query image is given to client application of MPEG-7 XM Software as a

parameter and three features are extracted from that image and stored in a text

document for further processing. In standard client application of MPEG-7 XM

Software has a searching module for querying but we excluded this module from

client application.

4.3 Image Database

We use Berkeley DB XML for storing XML Documents. Berkeley DB XML

is an open source native XML DB [14] and we can make XPath queries over it.

Berkeley DB XML is specifically designed to store and manage XML data in

its native format. Berkeley DB XML is implemented as C++ library on top of

Berkeley DB, which provides fast, reliable, scalable, and mission-critical database

support. In Figure 4.4, Berkeley DB XML system architecture is shown. Berkeley DB

XML provides the following functionality [14]:

� “Embedded: Berkeley DB XML is a library and this library can be linked into

the client application to increase performance by eliminating communication

among processes or systems. The Berkeley DB XML library exposes API's that

enable C++ and Java applications to interact with the XML data containers.”

Figure 4.4 shows the Berkeley DB XML system architecture

 43

� “Document Storage: Within Berkeley DB XML, documents are stored in

containers.”

� “Native Storage: client application retrieves the documents exactly as they

were stored. “

� “Indexing: Index is defined at the container level and a container may have

multiple indices. Berkeley DB XML offers effective and flexible indexing

functionality that gives application developers powerful control over query

performance. “

� “Query Processing: Berkeley DB XML queries are expressed as XPath

expressions.”

Figure 4.4: Berkeley XML DB system architecture

 44

� “Threading: Berkeley DB XML is thread-safe, and supports multithreaded and

multiprocess applications. “

� “Standards: Berkeley DB XML is implemented to conform to the W3C

standards for XML, XML Namespaces, and XPath 1.0. “

In Berkeley DB XML, we store XML documents of DC, CL and EH features of

an image collection, separately. Extracting these features from image collection and

creating the image database is done offline. For each collection, there are 100 images’

features in one XML document. Because this CBIR system includes three features,

three XML documents are created and stored in Berkeley DB XML. So to query an

image over this image database, system firstly queries relevant XML Document then

continues to query process over that document.

Berkeley XML DB supports insertion/deletion of XML documents but our

system does not include these functionalities yet.

4.4 Similarity Measurement

4.4.1 Ordered Weighted Averaging (OWA) Operator

An OWA operator [20] of dimension n is a mapping:

F : R� � R, (4.2)

that has an associated weighting vector W

[]T
21 ... W nwww= (4.3)

such that

 45

 �
=

n

i
iw

1

 where wi � [0,1] (4.4)

and where

() �
=

⋅=
n

i
iin bwaaF

1
1 ,..., (4.5)

where bi is the i th largest element of the collection of the aggregated objects a1,…,an.

The function value F(a1,…,an) determines the aggregated value of arguments,

a1,…,an. For example, assume

W = [0.4 0.3 0.2 0.1]

Then,

F(0.7, 1, 0.3, 0.6) = (0.4)(1) + (0.3)(0.7) + (0.2)(0.6) + (0.1)(0.3) = 0.76 .

A fundamental aspect of the OWA operator is the re-ordering step, in

particular an argument ai is not associated with a particular weight wi but rather a

weight wi is associated with a particular ordered position i of the arguments. A known

property of the OWA operators is that they include the Max, Min and arithmetic

mean operators.

4.4.2 Distance Function

In general, similarity evaluation of query object with respect to the object in

database is done by applying some distance function to these two objects. In this case,

what is actually measured is the distance between feature values, so distance function

returns a dissimilarity value between two objects. It means that high distances

correspond to low scores and low distances correspond to high scores.

Commonly used distance function is Minkowski-form distance (Lp):

 46

)(() () ��

�
��

�
�
=

−=
d

i
iyix

p
iwyx,D

p

1

1

 (4.6)

where x and y feature vectors and d is feature dimension. If

� p = 1, L1 is Manhattan or city-block distance

� p = 2, L2 is Euclidean distance

� p = ∞, L∞ is maximum distance

In this study, we have implemented two versions of M-Tree. In both versions

distance evaluation is carried out by Euclidean distance function. Euclidean distance

is a metric distance, which is needed for M-Tree.

Since there are three low-level features that represent the image content, the

system evaluates different distance value for each feature. But the system has to

compute an overall distances of these three distance values. For this purpose we use

OWA operator.

To compute an overall distances of three distance values, first system

computes distances of each feature and then finds the maximum and minimum

distances. Finally, the system applies OWA operation to these distances.

4.4.2.1 M-Tree with Non-Fuzzy Dominant Color Distance

In this version of M-Tree, CL, DC and EH distances are computed by

applying Euclidean distance function. For CL feature, the distance function is as

follows:

 47

()

()

()�

�

�

=

=

=

−+

−+

−=

2

0

2

2

0

2

5

0

2

]['][

]['][

]['][

i

i

i
CL

iCrCoeffiCrCoeff

iCbCoeffiCbCoeff

iYCoeffiYCoeffD

 (4.7)

And for DC feature, distance function is:

���
= = =

−=
n

i

n

j

n

k
DC kjiPercentagekjiPercentageD

0 0 0

2])][][[']][][[((4.8)

where n = 31 and for EH feature, distance function is:

�
=

−=
n

i
EH iBincountsiBincountsD

1

2])['][((4.9)

where n = 80.

After computing distance values, each distance value is normalized to make

the distance more straightforward, after that the range should be from 0(similar) to

1(dissimilar). To apply normalization, the system needs maximum and minimum

values of the distances, after that maximum distance is set as upper bound, which is 1,

and minimum distance as lower bound, which is 0. So for each feature there are two

special distance values evaluated; maximum distance value and minimum distance

value.

Normalization the distances really cause some trouble. Because normally we

can calculate the distance of two images just from their only features, but in order to

do normalization, we need to calculate all the distances in the whole database to find

 48

maximum and minimum values, which surely reduce the performance heavily. To

avoid computing all the distances in the whole database, system finds maximum and

minimum distance values while creating M-Tree, because there is a lot of distance

calculation in construction of the tree. If, in query phase, a distance exceeds

maximum or minimum, then this distance value is set to 1 or 0.

To compute an overall distance between two images, the system firstly

computes CL, DC and EH distances and applies normalization each of them

separately. After normalization of each feature’s distances, the system computes

overall distance value from these three distances by using OWA operator.

4.4.2.2 M-Tree with Fuzzy Dominant Color Distance

This version differs from previous one in computing DC distance and also

normalization process of CL, DC, EH distances. For evaluating DC distance of two

images, we took color similarity into account by applying Single Mode DC Search in

[50]. In this search, system firstly evaluates color similarity by calculating Euclidean

Distance between two color indexes of first image and second image. If color

distance is less than a threshold value, which is ‘5’ in this work, then color similarity

is calculated by extracting color distance from 1. After calculating color similarity,

the system evaluates DC similarity by selecting minimum dominant color’s

percentage of two dominant colors’ percentages and normalizes this minimum value.

Then color similarity is multiplied with this DC similarity to find final DC similarity

of two images. And finally DC distance of two images is calculated by extracting

final DC similarity from 1.

For all colors of first and second images, this process is applied and minimum

DC distance is selected as overall DC distance of two images.

For CL and EH, distance calculation is similar to other version of M-Tree.

Only difference comes from normalization of these distances. For normalization, the

 49

system calculates possible maximum CL and EH distances and set these values to 1.

Then CL and EH distances of two images are divided into these maximum CL and

EH distances to get normalized values.

4.4.2.3 Using OWA

To use OWA operator, the system finds a maximum value and a minimum

value of CL, DC and EH distances. These distances are normalized to be in [0,1].

From the definition of OWA aggregation method [20], overall distance is in [0,1],

too.

Suppose that (d1,d2, ..,dn) are n distance values and order these numbers

increasingly: d1 ≤ d2 ≤…≤ dn . The OWA operator associated to the n nonnegative

weights (w1,…,wn) with

 �
=

n

i
iw

1

 where wi � [0,1] and wn ≤ … ≤ w2 ≤ w1 (4.10)

corresponds to

() �
=

⋅=
n

i
iin dwddF

1
1 ,..., (4.11)

It should be noted that the weight wn is linked to the greatest value, dn and w1

is linked to the lowest value d1 to emphasize similarity between two objects.

 If (d1,d2, ..,dn) are metric distances, then

D1 = (d1 + d2 + ..+ dn) (4.12)

D2 = max(d1, d2, ..,dn) (4.13)

D3 = min(d1, d2, ..,dn) (4.14)

 50

are also metrics [40]. So F(d1, d2, ..,dn) is also metric if (d1, d2, ..,dn) are metrics. From

the definition of OWA aggregation method [20], since

Fmax(d1, d2, ..,dn) = max(d1, d2, ..,dn), where wn = 1 and wi = 0 for i < n

Fmin(d1, d2, ..,dn) = min(d1, d2, ..,dn), where w1 = 1 and wi = 0 for i > 1

and

 Fmin(d1, d2, ..,dn) ≤ F(d1, d2, ..,dn) ≤ Fmax(d1, d2, ..,dn) ,

then F(d1, d2, ..,dn) is also metric.

For example, for to objects O1 and O2, we want to calculate distance between

these objects, let’s say d(O1, O2), and assume that, for each feature, CL, DC and EH,

normalized Euclidean distance values are;

dCL(O1, O2) = 0.325

dDC(O1, O2) = 0.570

dEH(O1, O2) = 0.450

and OWA weights are;

w1 = 0.7

w2 = 0.2

w3 = 0.1

that is

w1 + w2 + w3 = 0.7 + 0.2 + 0.1 = 1 ,

then overall distance is:

 51

d(O1, O2) = F(dCL(O1, O2), dDC(O1, O2), dEH(O1, O2))

 = w1 * dDC(O1, O2) + w2 * dEH(O1, O2) + w3 * dCL(O1, O2)

 = 0.7 * 0.570 + 0.2 * 0.450 + 0.1 * 0.325

 = 0.522

4.5 Indexing and Querying

In tradition database, indices are based on text, character string or number.

Indices in multimedia database, however, are not restricted in text based, but also

possible be icon records. So an ideal CBIR system should be scalable to large image

collections and should support fast retrieval. For this purpose multi-dimensional

indexing is used. For an efficient similarity search in a typical CBIR system it is

necessary to store the feature vectors in a multi-dimensional index structure and use

the index structure to efficiently evaluate the distance metric. Moreover multi-

dimensional index structure must efficiently support both range and nearest neighbor

queries.

For indexing multimedia data we have used M-Tree known as a dynamic and

balanced access structure suitable to index generic metric spaces. With this structure,

indexed objects must belong to a metric space.

The similarity between the objects in M-Tree index structure is calculated by

a distance function satisfying the properties of symmetry, positivity and triangle

inequality for any triple of objects.

 52

4.5.1 M-Tree

The M-tree is a dynamic paged structure that can be efficiently used to index

multimedia databases, where the object is represented by means of complex features

and the object proximity is defined by a distance function satisfying the positivity,

symmetry, and triangle inequality postulates. Similarity queries of the objects require

the computation of time-consuming distance functions. Previously, the M-tree

indexing structure and the algorithms of inserting, querying and bulk loading have

been reported [15] [43]. And it turns out that M-tree is an excellent indexing

technique for the query of multimedia database.

M-tree organizes objects in an arbitrary metric space, which is defined in

Section 2.1.4. Examples of distance functions that can be used in M-tree are

Minkowski-form distances (Euclidean distance, Manhattan distance etc). Since metric

spaces strictly include vector spaces, M-tree has a far more general applicability than

spatial access methods, such as the R-tree [17]. An example view of the tree structure

is shown in Figure 4.5 and Figure 4.6.

The concept of M-tree relies on metric tree that partitions a given search space

by considering relative distances between objects, and such partitioning algorithm is

critical to the effectiveness of the tree. A major differentiation of M-tree from other

metric trees is that the design has to give efficient secondary storage organization

[15]:

� Paged: tree is paged (consisting of fixed-size or variable-size nodes)

� Balanced: paths from the root to leaves all have the same length

� Dynamic: able to deal with insertions and/or deletions without degrading

search performance and storage utilization, and avoiding global tree

reorganization, like Spatial Access Methods.

 53

Figure 4.5: Example distribution of data and covering regions.

M-tree has two types of node structures: leaf node and internal node. Leaf

node stores a ground object and an internal node that stores a routing object.

Database objects are recursively organized by considering their distances from

reference or routing objects. And these routing objects are also database objects,

which acquire their routing roles according a specific promotion algorithm.

The general information for a routing object entry is shown in Figure 4.7 and

includes [15]:

 54

 Figure 4.6: M-Tree overview

� Or: (feature value of the) routing object

� ptr(T(Or)): pointer to the root of T(Or), where T(Or) is a sub-tree

� r(Or): covering radius of Or

� d(Or, P(Or)): distance of Or from its parent, where P(Or) is parent of routing

object

 55

Figure 4.7: Routing and Database objects of M-Tree.

And the leaf nodes (database object entry) are shown in Figure 4.7 and

contain:

� Oj: (feature value of the) database object

� oid(Oj): object identifier

� d(Oj, P(Oj)): distance of Oj from its parent

 56

Routing object Oj is used to access to a sub-tree, T(Oj), through a root pointer,

ptr(T(Oj)),where T(Oj) is the covering tree of Oj. T(Oj) consists of the union of {Oj}

and the set of objects in T(Oj). A covering tree has the property that all objects in the

covering tree of Oj are within the distance r(Oj) from Oj, r(Oj) > 0, which is called the

covering radius of Oj. Hence the covering radius of Oj, r(Oj) is defined as:

r(Oj) ≥ max{d(Oj, Oi) | Oi ∈ T(Oj)} (4.15)

And the covering region R(Oj):

R(Oj) = { Oi ∈ T(Oj) | d(Oj, Oi) ≤ r(Oj)} (4.16)

The basic M-tree operations include querying, insertion, deletion and tree

construction (bulk loading), and details can be found in M-tree specifications

[15][43]. In next section, querying the M-Tree is briefly explained.

4.5.1.1 Querying the M-Tree

For a given specific metric defined by its distance, M-tree is able to support

processing of two main types of queries: range queries; finding all objects that are

within a specific distance from a given object and nearest Neighbor Query (k-NN);

finding a specific number, k, of closest objects to a given query object. These queries

are defined as follows:

Range Query: Given a query object DQ ∈ , where D is domain of feature

values, and for a distance (range) r(Q), the range query range(Q, r(Q)) selects all

indexed objects jO such that

)(),(QrQOd j ≤ (4.17)

 57

For example, a range query becomes:

 “Find all images which have a distance value less than 0.2 from query

image”

k-nearest Neighbors Query (k-NN): Given a query object DQ ∈ and an

integer 1≥k , the k-NN query NN(Q, k) selects the k indexed objects which have the

shortest distance from Q. For example, a k-NN query becomes:

 “Find 10 nearest images to query image”

For querying the tree, triangle inequality is used to prune some nodes (i.e.,

sub-tree) from the search, thus reduce the distance computations. Triangle inequality

is used as follows:

Suppose that we are looking for the closest point to Q, as in Figure 4.8 in a

database of 3 objects. Further suppose that the triangular inequality holds, and that we

have pre-compiled distances between all the items in the database. Such that

d(a, b) = 6.70

d(a, c) = 7.07

d(b, c) = 2.30

Figure 4.8: A Sample data for querying

 58

And, we find a and calculate that it is 2 units from Q, it becomes our best-so-far. we

find b and calculate that it is 7.81 units away from Q. Now we don’t have to calculate

the distance from Q to c, because of triangle inequality, so that:

),(),(),(cbdcQdbQd +≤

),(),(),(cQdcbdbQd ≤−=

= 7.81 – 2.30 � d(Q, c)

= 5.51 � d(Q, c)

The distance between Q and c is at least 5.51 units, but our best-so-far is only 2 units

away.

An example range query is explained below. For this example, an M-Tree is

shown in Figure 4.10.

Suppose that an image is given to the system for selecting the images which

have a distance from query image less or equal than 0.2 (r = 0.2). Query image’s CL,

DC and EH feature values are shown below;

CL Descriptor:

<Image name = "97.jpg">

<Descriptor xsi:type = "ColorLayoutType">

<YDCCoeff>10</YDCCoeff>

<CbDCCoeff>19</CbDCCoeff>

<CrDCCoeff>30</CrDCCoeff>

<YACCoeff5>14 10 16 16 10 </YACCoeff5>

<CbACCoeff2>15 21 </CbACCoeff2>

<CrACCoeff2>14 17 </CrACCoeff2>

</Descriptor>

 59

</Image>

DC Descriptor:

<Image name = "97.jpg">

<Descriptor size = "7" xsi:type = "DominantColorType">

<SpatialCoherency>0</SpatialCoherency>

<Values>

<Percentage>9</Percentage>

<ColorValueIndex>2 2 1 </ColorValueIndex>

</Values>

<Values>

<Percentage>5</Percentage>

<ColorValueIndex>8 11 5 </ColorValueIndex>

</Values>

<Values>

<Percentage>2</Percentage>

<ColorValueIndex>12 9 8 </ColorValueIndex>

</Values>

<Values>

<Percentage>1</Percentage>

<ColorValueIndex>27 25 24 </ColorValueIndex>

</Values>

<Values>

<Percentage>5</Percentage>

<ColorValueIndex>5 6 3 </ColorValueIndex>

</Values>

<Values>

<Percentage>5</Percentage>

<ColorValueIndex>11 15 6 </ColorValueIndex>

</Values>

 60

<Values>

<Percentage>1</Percentage>

<ColorValueIndex>20 12 10 </ColorValueIndex>

</Values>

</Descriptor>

</Image>

EH Descriptor:

<Image name = "97.jpg">

<Descriptor xsi:type = "EdgeHistogramType">

<BinCounts>

2 4 5 4 6 1 3 5 3 7 3 2 5 4 7 3 2 5 3 7 1 5 5

5 3 2 4 4 6 5 3 4 4 5 4 2 3 6 5 5 2 6 5 3 4 2

3 4 7 6 2 3 4 5 7 2 2 5 3 4 1 4 6 5 6 2 3 5 5

7 1 2 5 4 7 2 4 4 6 6

</BinCounts>

</Descriptor>

</Image>

And query image is shown in Figure 4.9.

Figure 4.9: Query Image

 61

So the system firstly calculates the distance between query image, Q, and root

node entries of the M-Tree. Suppose that the distances are:

d(Q, A) = 0.360

d(Q, B) = 0.455

d(Q, C) = 0.045

For the sub-tree of A, the system decides whether this sub-tree will be pruned

or not. This is done as:

For first child of A, which is A1 and equal to the A (A1 and A are the same

objects), triangle inequality is used to prune (or not to prune) the sub-tree of A1.

If

)()(),(),(11 ArQrAAdAQd +>− | (4.18)

then we can prune the sub-tree of A1 (from M-Tree paper). From the M-Tree, we

know the distance between an entry and its child entry,

d(A, A1) = 0 (Since A and A1 are the same objects)

Then

)()(),(),(11 ArQrAAdAQd +>−

|0.360- 0| > 0.2 + 0.152

0.360 > 0.352

so we can prune the sub-tree A1.

For second entry of sub-tree of A, that is A2, the system prunes or doesn’t

prune the sub-tree by using triangle inequality. But this time r(A2) is equal to zero

since A2 is also leaf node (a3 and A2 are the same objects). So, if

 62

)(),(),(2 QrAAdAQd >− (4.19)

then we can prune the sub-tree of A2 (we don’t need to calculate the distance between

Q and A2, d(Q, A2)).

Then

)(),(),(2 QrAAdAQd >−

|0.360 – 0.229| > 0.2

0.131 < 0.2

so we have to calculate the value of d(Q,A2), which is equal to 0.333. But, since

d(Q,A2) > r(Q)

0.333 > 0.2

A2 is not included in query results.

For the root entry B and its child entries B1, B2 and B3, the same steps are

applied and the sub-tree B1 and B2 is pruned while the leaf nodes (b4 and b5) of the

sub-tree B3 should be evaluated. So d(Q,b4) and d(Q,b5) are calculated.

d(Q,b4) = 0.231

d(Q,b5) = 0.312

Since these values are greater than desired range (r(Q)), b4 and b5 (image 7 and

image 8 respectively) is ignored.

For the C entry of root node, the same steps are applied. And the distances of

all leaf nodes in the sub-tree of C are calculated. These leaf nodes are also in the

expected results of the query Q. The distance values are;

 63

Figure 4.10: Example M-Tree for 11 images

 64

 d(Q,c1) = 0.045

d(Q,c2) = 0.072

d(Q,c3) = 0.110

and c1, c2 and c3 are added to the query result set.

4.5.2 Fuzzy Query

To support fuzzy queries, we developed Web-based user interface with

JSP/Servlet technologies. There are three types of fuzzy queries;

� Image-based

� Feature-based.

� Color-based

Image–Based Fuzzy Query: If whole image query is selected, the user has to

select similarity degree for query image which is consists of ‘Almost Same’, ‘Very

Similar’, ‘Similar’ and ‘Not Similar’. Then the system maps this similarity degree

into a distance range and searches the tree to retrieve result images, which have a

distance to query image in that range. And finally results are shown to the user with

their distance value to the query image. The general syntax of this type of query is as

follows:

QUERY={{<Similarity>} }

where

Similarity = {<Almost Same>|<Very Similar>|<Similar >|<Not Similar >|}

For an example, suppose that user gives the following similarity values for the

features; ‘Very Similar to Query Image’. Then our query is defined as:

 65

QUERY= {Very Similar to Query Image}

And suppose that these similarity values are mapped into distance ranges as

follows:

‘Almost Same’: [1, 0.95)

‘Very Similar’: [0.95, 0.85)

‘Similar’: [0.85, 0.5)

‘Not Similar’: [0.5, 0.0].

So final distance range is negotiation of this similarity range, which is

=(0.05, 0.15]

Finally the system retrieves the images, which have a distance value from query

image in that range.

Feature–Based Fuzzy Query: Another type of query is feature-based fuzzy

query. In this type, the user must supply similarity values for all three features DC,

CL and EH. These similarity values are the same of the ones in image-based fuzzy

query. For combining these similarities AND/OR operators must be given. Then the

system applies some conjunction/ disjunction procedures to get final similarity values

and maps these values into distance range. These conjunction/disjunction procedures

are explained in [49].

Conjunction rule:)}(),(min{ xx BABA µµµ =∧ (4.20)

Disjunction rule:)}(),(max{ xx BABA µµµ =∨ (4.21)

 66

If AND operator is supplied to combine feature similarities, the system uses

disjunction rule, and if OR operator is supplied to combine feature similarities, the

system uses conjunction rule. The general syntax of this type of query is as follows:

QUERY={{<Similarity><Feature >}<&>{<QUERY>}}

where

Similarity = {<Almost Same>|<Very Similar>|<Similar >|<Not Similar >|}

Feature = {<CL>|<DC >|<EH >}

For an example, suppose that user gives the following similarity values for the

features;

‘Very Similar’ for CL feature, ‘Similar’ for DC feature, ‘Almost Same’ for EH

feature. Then our query is defined as:

QUERY= {Very Similar in CL OR Similar in DC AND Almost Same as EH}

And suppose that these similarity values are mapped into distance ranges as

follows:

‘Almost Same’: [1, 0.95)

‘Very Similar’: [0.95, 0.85)

‘Similar’: [0.85, 0.5)

‘Not Similar’: [0.5, 0.0].

Then our query is like:

‘Very Similar in CL OR Similar in DC AND Almost Same as EH’

To get final similarity, the system combines these feature similarities as follows:

 67

Firstly AND operator between DC and EH feature is taken into account, so

query becomes:

‘Very Similar in CL OR (Similar in DC AND Almost Same as EH)’.

(Similar DC AND Almost Same as EH) part of the query is mapped into similarity

ranges and conjunction rule is applied to this part. So range value is equal to;

min([0.85, 0.5) , [1, 0.95))

= [0.85, 0.5)

Then system comes to combine CL feature similarity with this value by applying

disjunction rule that is;

max ([0.95, 0.85) , [0.85, 0.5))

=[0.95, 0.85).

And final distance range is negotiation of this similarity range, which is

 =(0.05, 0.15]

Finally the system retrieves the images, which have a distance value from query

image in that range.

Color–Based Fuzzy Query: Color-Based Fuzzy Query differs from other

fuzzy queries in query paradigm. This type of query is not an example image based

query so user has to supply degree of three colors’ percentages in expected images.

By this type of query, the system has the facility of asking for a query in terms of the

color content of the image [51]. To support this query type, system gives opportunity

of defining amount of main colors in the image. To do this, the user must supply each

color’s percentage in terms of natural language like ‘mostly’, ‘many’, ‘normally’,

 68

‘few’, ‘very few’ so the user can able to pose a composite query in terms of colors.

The general syntax of this type of query is as follows:

QUERY={{<Content><Color>}<&>{<QUERY>|<>}}

where

Content = {<mostly>|<many>|<normally>|<few>|<very few>}

Color = {<Red>|<Green>|<Blue>}

An example query becomes as follows:

QUERY={many red AND mostly green OR very few blue}.

Mapping function of these linguistic terms into similarity values is defined

according to data set. For example, for testing Corel Dataset, we have used the

following values:

‘Mostly: [1, 0.88)

‘Many’: [0.88, 0.85)

‘Normally’: [0.85, 0.82)

‘Few’: [0.82, 0.80).

‘Very Few’: [0.80, 0.0].

After defining the query, system searches the tree for each color seperately by

using predefined query features in DC and CL for pure red,green and blue colors. EH

feature is not important since query is a color query, so the distance value for EH

feature is set to zero. Then result sets of each color’s query are combined into final

result set. If AND operator is used in composite query then all objects which are in

both result sets are shown to the user with similarity degree. If OR operator is used

then all objects of both result sets are shown to the user with similarity degree.

 69

4.6 User Interface

Graphical User Interface (GUI) is developed with JSP/Servlet. To run the

system, user has to define some parameters. First one of them is dataset that will be

used by the system. After selecting the dataset, database is loaded by pressing ‘Load

DB’ button. Then version of the index structure must be selected. Query image is

dependent to query type and also dependent to the selected dataset that is user can

select query image only from selected dataset.

There are four types of queries, which are mentioned before; k-NN query,

image-based fuzzy query, feature-based fuzzy query and color-based fuzzy query.

And only one of them at a time can be selected.

If k-NN query is selected then the user has to supply a ‘k’ value to see k

nearest images to the query image. If image-based fuzzy query is selected then image

similarity must be given to the system, which can be ‘Almost Same’, ‘Very Similar’,

‘Similar’ and ‘Not Similar’. Then the system maps this similarity degree into a

distance range and searches the tree to retrieve result images, which have a distance

to query image in that range. And finally results are shown to the user with their

distance value to the query image.

If the user selects feature-based fuzzy query, then each feature similarity must

be supplied, which is the same of image-based fuzzy query. For combining feature

similarities, user can select AND or OR operators. Then the system applies some

conjunction/disjunction procedures to get final similarity values and maps these

values into distance range.

If color-based fuzzy query is selected, then each color’s percentage must be

supplied in linguistic terms like ‘mostly’, ‘many’, ‘normally’, ‘few’ and ‘very few’.

Then system searches the tree for each color to retrieve results by applying some

conjunction/ disjunction rules.

 70

After defining system parameters, system runs by pressing ‘Run’ button. And

results are shown to the user with rank and distance value from query image. The

user can search the system by returning to the index page of the GUI.

Running examples of the system are shown in Appendix-A.

 71

CHAPTER 5

PERFORMANCE EXPERIMENTS

To test the performance of our content-based image retrieval system, we have

used images from Corel Database [39] and random images from web. For creating the

index structure, we have made tests over image database that contains 100, 200, 300

and 400 Corel images to evaluate number of distance computation and construction

time of the index structure. Our system also had been tested by k-NN query

paradigm. With these tests, number of distance computation and query cost time had

been examined. Also retrieval efficiency of the system had been evaluated by using

Average Normalized Modified Retrieval Rank (ANMRR) metric [47].

5.1 Building the M-Tree

As any other dynamic balanced tree, M-tree grows in a bottom-up fashion

[15]. Building a M-tree can repeatedly insert objects into null tree using insertion

method or for better performance, bulk-loading techniques are also proposed [43].

The algorithm involves partitioning the set of objects by sampling and repeats the

same partitioning from the leaf level up, which will eventually gives a non-balanced

tree. Then refinement steps are invoked which reassigns objects in under-filled sets to

other sets, and split “taller” (in terms of path length from root) sub-trees to obtain a

number of “shorter” sub-trees.

 72

5.1.1 Split Policies

5.1.1.1 Choosing Routing Objects

The partition strategy is crucial to the tree performance. The “ideal” split

policy should find the “most suitable” routing object, Op1 and Op2, and partition the

objects such that the “volume” and “overlap” are minimized [15]. The possible

strategies of selecting routing object are shown in Table 5.1.

Table 5.1: Possible strategies for selecting routing objects

m_RAD

“minimum” (sum of) RADii: consider all

possible pairs of objects and promote the

pair of objects which minimize the sum of

covering radii

most complex (distance

computation), but gives

good tree structure

mM_RAD

similar to m_RAD but the maximum of the

two radii is minimized

M_LB_DIST

“Maximum Lower Bound on DISTance”:

uses pre-computed stored distance; fix Op1

= Op and determines Op2 as the farthest

object from Op

a relatively “cheap”

policy (in terms of

distance computation)

RANDOM

randomly pick the reference object

not a “smart” strategy,

but fast tree construction

SAMPLING

variant of RANDOM but iterated over a

sample of objects for which the resulting

maximum of the two covering radii is

minimum

 73

5.1.1.2 Distribution of Entries

When the promoting objects are found, the entries are distributed into two

sets, N1 and N2. Two suggested strategies are shown in Table 5.2.

Table 5.2: Possible strategies of distribution of entries.

Generalized Hyperplane

assign each object to the nearest routing object

Balanced

compute d(Oj, Op1) and d(Oj, Op2) for all Oj and repeat

until N is empty:

� assign to N1 the nearest neighbor of Op1 and remove

from N;

� assign to N2 the nearest neighbor of Op2and remove

from N;

5.1.2 Evaluating Effectiveness of Building the M-Tree

We have used two different approaches for evaluating similarity between

images to build the M-Tree. For the first approach, we have used weighted Euclidean

distance function with equal weights which sum is equal to one. For the second

approach, we have used OWA operators to define the weights in Euclidean distance

function.

 74

 To evaluate the performance of building the tree two tests with different

parameter sets, which are defined in M-Tree Project [42] [46], performed. These

parameters are;

� MIN UTIL Minimum node utilization. It is used to guarantee a minimum fill

factor for tree nodes during the split. It can assume values in the range [0 , 0.5]

� PROMOTE_PART_FUNCTION: This parameter is used for defining split

policy. Specifies the algorithm used to promote objects in the parent role.

Assuming the set of following values:

o RANDOM: Random promotion.

o CONFIRMED: Confirmed promotion, variable PROMOTE VOTE

FUNCTION is then used to choose between confirmed policies.

o MAX_UB_DIST: Maximum upper bound on distances policy; the two

objects having the maximum distance from parent object are chosen.

o MIN_RAD: Minimum maximum radius policy.

o MIN_OVERLAPS: Minimum overlap policy

o SAMPLING: Sampling promotion; variable NUM_CANDIDATES

specifies the number of samples.

� PROMOTE_VOTE_FUNCTION: This parameter is meaningful when

confirmed PROMOTE_PART_FUNCTION is used for defining split policy

and specifies the algorithm used to promote one object as one of the two

parents, the other being the parent object of the split node. Assuming the set of

following values:

 75

o RANDOMV: Random confirmed promotion.

o SAMPLINGV: Sampling confirmed promotion;

NUM_CANDIDATES specifies the number of samples.

o MAX_LB_DIST: Maximum lower bound on distances promotion (i.e.,

the object farthest from the parent object is chosen).

o mM_RAD: minimum radius confirmed policy, variable RADIUS

FUNCTION is then used to choose between available policies.

� RADIUS_FUNCTION: Minimum radius method. Assuming the set of

following values:

o LB: Minimum maximum lower bound on radius policy;

o AVG: Minimum maximum average bound on radius policy;

o UB: Minimum maximum upper bound on radius policy.

� SECONDARY PART FUNCTION: Root promotion method. It is only used

when splitting the root node and can assume the same values of the PROMOTE

PART FUNCTION variable. However, since the root node does not have a

parent object, this cannot be a confirmed policy.

� NUM_CANDIDATES: Number of candidate objects for sampling methods.

� SPLIT_FUNCTION: This specifies the way objects in the overfull node are to

be divided between the two new nodes. Assuming the set of following values:

 76

o G_HYPERPL the generalized hyperplane partition strategy;

o BAL_G_HYPERPL the balanced hyperplane partition strategy;

o BALANCED the balanced strategy.

� PAGE_SIZE: The size of disk pages.

5.1.2.1 Confirmed Promotion

For the first test, we used following values for these parameters:

� PROMOTE_PART_FUNCTION: CONFIRMED

� SECONDARY PART FUNCTION: mM_RAD

� RADIUS_FUNCTION: LB

� SPLIT_FUNCTION: G_HYPERPL

We have performed this test for five different minimum utilization values and

for five different page sizes. Also four different databases are used in tests and results

are shown in figures below. (EWS: Equal Weighted Sum, OWA: Ordered Weighted

Aggregation)

 77

computed distances for 100 images (PAGESIZE=8K)

579

1116

1620

2085

2474

579

1122

1626

2093

0

500

1000

1500

2000

2500

3000

minimum utilization

co
m

pu
te

d
di

st
an

ce
s

OWA 579 1116 1620 2085 2474

EWS 579 1122 1626 2093

0.1 0.2 0.3 0.4 0.5

Figure 5.1: Computed Distances for 100 images as a function of minimum utilization

with page size = 8K

Figure 5.2: Construction Time for 100 images as a function of minimum utilization
with page size = 8K

 78

computed distances for 200 images (PAGESIZE=16K)

2173

4045

5707

7187

8626

2277

4342

6178

7890

9551

0

2000

4000

6000

8000

10000

12000

minimum utilization

co
m

pu
te

d
di

st
an

ce
s

OWA 2173 4045 5707 7187 8626

EWS 2277 4342 6178 7890 9551

0.1 0.2 0.3 0.4 0.5

Figure 5.3: Computed Distances for 200 images as a function of minimum utilization

with page size = 16K

Construction Time of M-Tree for 200 images (PAGESIZE=16K)

852,969

1532,03

2172,22

2744,3

3306,06

874,297

1673,64

2343,48

3034,45

3710,55

0

500

1000

1500

2000

2500

3000

3500

4000

minimum utilization

tim
e

(s
)

OWA 852,969 1532,03 2172,22 2744,3 3306,06

EWS 874,297 1673,64 2343,48 3034,45 3710,55

0,1 0,2 0,3 0,4 0,5

Figure 5.4: Construction Time for 200 images as a function of minimum utilization

with page size = 16K

 79

computed distances for 300 images (PAGESIZE=16K)

3458

6413

9121

11836

14371

3509

6781

9719

0

2000

4000

6000

8000

10000

12000

14000

16000

minimum utilization

co
m

pu
te

d
di

st
an

ce
s

OWA 3458 6413 9121 11836 14371

EWS 3509 6781 9719

0.1 0.2 0.3 0.4 0.5

Figure 5.5: Computed Distances for 300 images as a function of minimum utilization

with page size = 16K

Construction Time of M-Tree for 300 images (PAGESIZE=16K)

2270,91

4263,41

6078,88

8019,61

9787,22

2294,34

4450,22

6450,27

0

2000

4000

6000

8000

10000

12000

minimum utilization

tim
e

(s
)

OWA 2270,91 4263,41 6078,88 8019,61 9787,22

EWS 2294,34 4450,22 6450,27

0,1 0,2 0,3 0,4 0,5

Figure 5.6: Construction Time for 300 images as a function of minimum utilization

with page size = 16K

 80

computed distances for 300 images (PAGESIZE=32K)

6413

11836

16780

20856

6781

12706

18323

23095

27438

0

5000

10000

15000

20000

25000

30000

minimum utilization

co
m

pu
te

d
di

st
an

ce
s

OWA 6413 11836 16780 20856

EWS 6781 12706 18323 23095 27438

0.1 0.2 0.3 0.4 0.5

Figure 5.7: Computed Distances for 300 images as a function of minimum utilization

with page size = 32K

Construction Time of M-Tree for 300 images (PAGESIZE=32K)

4149,78

7776,86

11090,5

14056

4460,3

8472,61

12355,8

15772,9

18746,4

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

minimum utilization

tim
e

(s
)

OWA 4149,78 7776,86 11090,5 14056

EWS 4460,3 8472,61 12355,8 15772,9 18746,4

0,1 0,2 0,3 0,4 0,5

Figure 5.8: Construction Time for 300 images as a function of minimum utilization

with page size = 32K

 81

computed distances for 400 images (PAGESIZE=16K)

4510

8737

12563

16103

19713

4667

9210

13414

17466

0

5000

10000

15000

20000

25000

minimum utilization

OWA 4510 8737 12563 16103 19713

EWS 4667 9210 13414 17466

0.1 0.2 0.3 0.4 0.5

Figure 5.9: Computed Distances for 400 images as a function of minimum utilization

with page size = 16K

Construction Time of M-Tree for 400 images (PAGESIZE=16K)

4107,39

8008,63

11433,8

14698,7

18314,5

4253,08

8672,31

12210,7

16002,2

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

minimum utilization

tim
e

(s
)

OWA 4107,39 8008,63 11433,8 14698,7 18314,5

EWS 4253,08 8672,31 12210,7 16002,2

0,1 0,2 0,3 0,4 0,5

Figure 5.10: Construction Time for 300 images as a function of minimum utilization

with page size = 16K

 82

computed distances for 400 images (PAGESIZE=32K)

8124

15039.7

21497.8

27276.8

33005.5

9212

17472

25251

32697

39518

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

minimum utilization

co
m

pu
te

d
di

st
an

ce
s

OWA 8124 15039.7 21497.8 27276.8 33005.5

EWS 9212 17472 25251 32697 39518

0.1 0.2 0.3 0.4 0.5

Figure 5.11: Computed Distances for 400 images as a function of minimum
utilization with page size = 32K

Construction Time of M-Tree for 400 images (PAGESIZE=32K)

8736

16103

22946

29462

35424

8640,2

16470,8

23809,8

30229,9

36387,1

0

5000

10000

15000

20000

25000

30000

35000

40000

minimum utilization

tim
e

(s
)

OWA 8736 16103 22946 29462 35424

EWS 8640,2 16470,8 23809,8 30229,9 36387,1

0,1 0,2 0,3 0,4 0,5

Figure 5.12: Construction Time for 400 images as a function of minimum utilization

with page size = 32K

 83

5.1.2.2 Random Promotion

For the first test, we used following values for these parameters:

� PROMOTE_PART_FUNCTION: RANDOM

� SECONDARY PART FUNCTION: RANDOM

� SPLIT_FUNCTION: G_HYPERPL

We have performed this test for five different minimum utilization values and

for five different page sizes. Also four different databases are used and results are

shown in figures below. (EWS: Equal Weighted Sum, OWA: Ordered Weighted

Aggregation)

Computed Distances for 100 images (PAGESIZE=8K)

569

1095

1574

2025

579

1122

1628

2094

0

500

1000

1500

2000

2500

minimum utilization

C
om

pu
te

d
D

is
ta

nc
es

OWA 569 1095 1574 2025

EWS 579 1122 1628 2094

0.1 0.2 0.3 0.4

Figure 5.13: Computed Distances for 100 images as a function of minimum

utilization with page size = 8K

 84

Construction Time for 100 images (PAGESIZE=8K)

121,125

253,406

336,813

443,562

122,937

261,844

370,562

492,703

0

100

200

300

400

500

600

minimum utilization

tim
e

(s
)

OWA 121,125 253,406 336,813 443,562

EWS 122,937 261,844 370,562 492,703

0,1 0,2 0,3 0,4

Figure 5.14: Construction Time for 100 images as a function of minimum utilization

with page size = 8K

Computed Distances for 200 images (PAGESIZE=16K)

2093

3847

5274

6500

7917

2271

4328

6179

7909

9562

0

2000

4000

6000

8000

10000

12000

minimum utilization

C
om

pu
te

d
D

is
ta

nc
es

OWA 2093 3847 5274 6500 7917

EWS 2271 4328 6179 7909 9562

0.1 0.2 0.3 0.4 0.5

Figure 5.15: Computed Distances for 200 images as a function of minimum

utilization with page size = 16K

 85

Construction Time for 200 images (PAGESIZE=16K)

798,375

1454,44

2001,39

2486,98

3026,74

868,61

1658,84

2356,06

3028,53

3671,94

0

500

1000

1500

2000

2500

3000

3500

4000

minimum utilization

tim
e

(s
)

OWA 798,375 1454,44 2001,39 2486,98 3026,74

EWS 868,61 1658,84 2356,06 3028,53 3671,94

0,1 0,2 0,3 0,4 0,5

Figure 5.16: Construction Time for 200 images as a function of minimum utilization

with page size = 16K

Computed Distances for 300 images (PAGESIZE=16K)

3394

6117

8394

10849

3508

6755

9761

12739

0

2000

4000

6000

8000

10000

12000

14000

minimum utilization

C
om

pu
te

d
D

is
ta

nc
es

OWA 3394 6117 8394 10849

EWS 3508 6755 9761 12739

0.1 0.2 0.3 0.4

Figure 5.17: Computed Distances for 300 images as a function of minimum

utilization with page size = 16K

 86

Construction Time for 300 images (PAGESIZE=16K)

2213,05

4003,33

5507

7245,34

2223,13

4318,28

6284,89

8282,36

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

minimum utilization

tim
e

(s
)

OWA 2213,05 4003,33 5507 7245,34

EWS 2223,13 4318,28 6284,89 8282,36

0,1 0,2 0,3 0,4

Figure 5.18: Construction Time for 300 images as a function of minimum utilization

with page size = 16K

Computed Distances for 400 images (PAGESIZE=16K)

4330

8270

11698

14794

18084

4653

9191

13407

17481

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

minimum utilization

C
om

pu
te

d
D

is
ta

nc
es

OWA 4330 8270 11698 14794 18084

EWS 4653 9191 13407 17481

0.1 0.2 0.3 0.4 0.5

Figure 5.19: Computed Distances for 400 images as a function of minimum

utilization with page size = 16K

 87

Construction Time for 400 images (PAGESIZE=16K)

4020,06

7656,78

10802,7

13731,8

17011,5

4319,48

8517,34

12358,6

16187

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

minimum utilization

tim
e

(s
)

OWA 4020,06 7656,78 10802,7 13731,8 17011,5

EWS 4319,48 8517,34 12358,6 16187

0,1 0,2 0,3 0,4 0,5

 Figure 5.20: Construction Time for 400 images as a function of minimum utilization

with page size = 16K

5.2 Querying the M-Tree

5.2.1 Retrieval Effectiveness

To evaluate the retrieval effectiveness of querying the M-Tree, we have used

ANMRR performance metric [47]. This value is defined as follows:

 First, we denote NG(q), K(q), R(k) as follows,

NG(q) : the number of the ground truth images (expected result images) for a query q.

K(q) = min(4 *NG(q), 2 * GTM), Where GTM is max{NG(q)} for all q’s.

R(k) = rank of an image k in retrieval results.

 88

Rank(k) is defined as follows,

()
()�
�
�

>+
≤

=
)()(,1
)()(,

)(
qKkRifK

qKkRifkR
kRank (5.1)

Using equation (5.1), AVR(Average Rank) for query q is defined as follows:

�
=

=
)(

1)(
)(

)(
qNG

k qNG
kRank

qAVR (5.2)

However, with ground truth sets of different size, the AVR value depends on

NG(q). To minimize the influence of variations in NG(q), MRR (Modified Retrieval

Rank) is defined as follows,

�
	

�
�

 +−=
2

)(1
)()(

qNG
qAVRqMRR (5.3)

The upper bound of MRR depends on NG(q). To normalize this value, NMRR

(Normalized Modified Retrieval Rank) is defined as follows,

() ())(15.01
)(

)(
qNGK

qMRR
qNMRR

+⋅−+
= (5.4)

NMRR(q) has values between 0(perfect retrieval) and 1(nothing found). And

evaluation measure value for whole set over query sets, ANMRR (Average

Normalized Modified Retrieval Rank) is defined as follows,

�
=

⋅=
Q

q

qNMRR
Q

qANMRR
1

)(
1

)((5.5)

 89

 where Q is the total number of the queries.

5.2.1.1 Results

 For two types of both M-Tree versions that are created with distance

functions, weighted Euclidean with equal weights and weighted Euclidean using

OWA, we have tested 335 queries. And also we compared the ANMRR results of our

system with the ANMRR results of each three feature (CL, DC and EH) of MPEG-7

XM Software. And results are shown in Table 5.3.

 Table 5.3: ANMRR results of Our CBIR System and XM Software for 335 queries.

 ANMRR value (335

queries)

M-Tree - Non-Fuzzy DC

Distance

Weighted Euclidean with

OWA

0. 342271

M-Tree - Non-Fuzzy DC

Distance

Weighted Euclidean with

equal weights

0. 394931

M-Tree - Fuzzy DC

Distance

Weighted Euclidean with

OWA

0.355033

M-Tree - Fuzzy DC

Distance

Weighted Euclidean with

equal weights

0.398003

MPEG-7 XM Software

(Only CL Feature) 0. 338113

MPEG-7 XM Software

(Only DC Feature) 0. 407258

MPEG-7 XM Software

(Only EH Feature) 0. 423513

 90

5.2.2 K-NN Query

 To evaluate the effectiveness of k-NN query, we have tested 400 queries to

retrieve top 10 images (k=10) from the XML database, which has 400 images. For

two types of M-Tree that are created with distance functions we have tested the tree

with following parameters:

� PROMOTE_PART_FUNCTION: RANDOM

� SECONDARY PART FUNCTION: RANDOM

� SPLIT_FUNCTION: G_HYPERPL

� PAGE_SIZE: 16K

� MIN_UTIL: 0.1

5.2.2.1 Distance Computations

 The number of the distance computations is important for evaluating query

performance. Because the distance function in M-Tree is expected to be complex, this

number is directly related to the performance of the CBIR system.

 In Table 5.4, minimum and maximum number of distance computations is

shown for 400 queries.

 91

5.2.2.2 Query Cost Time

In Table 5.4, minimum and maximum number of query cost time is shown for

400 queries.

Table 5.4: Minimum and Maximum Query Cost Time and Computed Distances for
400 Queries in 10-NN Query.

 Query Cost Time

(s)

Computed

Distances

 Min Max Min Max

Weighted Euclidean with OWA

194.516 398.297 215 403

Weighted Euclidean with Equal

Weights

342.516 400.859 383 406

5.3 Discussion

We have designed and implemented a content-based image retrieval system that

evaluates the similarity of each image features in its database to a query. For efficient

search and retrieve process, we have built M-Tree index structure. Our system has

been tested for constructing and for querying this tree.

While creating M-Tree, number of distance computations and cost time are

the key values for evaluating efficiency of the system. For this purpose, tests for

building the tree include the number of distance computations and construction time

for M-Tree using weighted-Euclidean distance function with OWA and for M-Tree

using weighted-Euclidean distance function with equal weights. Tests for building the

tree has been made for two different promotions, Confirmed and Random. In both

promotions, our database contains 100, 200, 300 and 400 images. Page size parameter

 92

of the index structure varies from 8K to 32K and minimum utilization parameter is

between 0.1 and 0.5. For construction time, it can be seen from the figures of Section

5.1.2.1 and Section 5.2.1.2 that a significant improvement can be achieved by using

OWA operators in distance function to calculate distance. For example, for confirmed

promotion with 16K page size, 0.5 as minimum utilization value and 200 images’

features in database, M-Tree using weighted-Euclidean distance function with OWA

has less construction time (3306.06 s) than M-Tree using weighted-Euclidean

distance function with equal weights (3710.55 s).

Number of computed distances is another important value for evaluating the

efficiency of the system. Tests have been made for calculating the number of

computed distances with same parameters and same databases. From the figures of

Section 5.1.2.1 and Section 5.2.1.2 it can be seen that a significant improvement can

be achieved by using OWA operators in distance function to calculate distance. For

example, for confirmed promotion with 16K page size, 0.5 as minimum utilization

value and with database of 200 images’ features, M-Tree using weighted-Euclidean

distance function with OWA has less distance computation (8626 distance

computations) than M-Tree using weighted-Euclidean distance function with equal

weights (9551 distance computations).

Tests for querying M-Tree contain same values, number of distance

computations and cost time. For k-NN queries, number of distance computations is

important for performance of the CBIR system. We have made 400 queries for testing

the system that contains 400 images’ features. As can be seen from Table 5.4, our

approach has less distance computations then equal weighted Euclidean distance

function. And this improvement effects to the query cost time, directly.

Also for evaluating retrieval efficiency, we have used ANMRR metric. As can

be seen from Table 5.3, our approach has less ANMRR values than equal weighted

Euclidean distance function. Also this system achieves a significant improvement

according to MPEG-7 XM Software, except CL feature, which has nearly same

 93

performance with M-Tree. MPEG-7 XM Software’s search engine with only CL

feature has nearly same ANMRR values because of type of the images used in this

work. Also it can be easily seen from Table 5.3 that for querying the system, both

version of M-Tree have a good retrieval performance. Since we are using fuzzy DC

distance in second version of M-Tree, retrieval results of this version has more

objects than M-Tree with non-fuzzy DC distance. This is the effect of using color

similarity to evaluate fuzzy DC distance.

The results indicate performance improvement using OWA operators for

evaluating the weights of weighted Euclidean distance function in CBIR systems. As

analyzing experimental results, we show evidence validating our method is effective

in CBIR systems.

 94

CHAPTER 6

CONCLUSION AND FUTURE WORK

We have designed and implemented a content-based image retrieval system

that evaluates the similarity of each image by using OWA operators in its distance

function. Also this system is fully based on XML and MPEG-7 frameworks.

For the distance evaluation between images, we use weighted Euclidean

distance and each weight is evaluated by using OWA operators. In this system, we

used three descriptors of MPEG-7, Color Layout, Dominant Color and Edge

Histogram.

Most of the CBIR systems combine these features by associating weights to

individual features. Main problem with that is that same weights are associated with

the same features for all images in database and sum of these weighted features are

used to build an index structure. However, when comparing two specific images, one

feature can be more distinctive than the others, as a result that feature must be

associated with higher weight. When comparing other two images, tha feature may be

less distinctive than the other features and for this reason that feature must be

associated with a lower weight. To overcome this problem we used OWA operators

to evaluate weights in distance function.

These features are extracted by using MPEG-7 XM Software. Our system

stores these features, not image itself, in a XML database, Berkeley DB XML. Our

system has been tested on images of Corel database and shown to be an efficient for

image retrieval.

 95

This system supports fuzzy querying for whole image and for features of the

images. It can be easily seen that both version of M-Tree have a good retrieval

performance. Since we are using fuzzy DC distance in second version of M-Tree,

retrieval results of this version has more objects than M-Tree with non-fuzzy DC

distance. This is the effect of using color similarity to evaluate fuzzy DC distance.

Another difference of both versions comes from normalization process. In the

first version, the system normalizes the distance values practically (according to data

set). But in second version, normalization process is done by evaluating maximum

and minimum distance values in theory.

 A crucial future work to be done on our system is to enhance the effectiveness

of building the M-Tree. To do this, the distribution of the nodes of the tree may be

organized properly by selecting an appropriate split policy and page size parameters

to get higher tree level. Thus the pruning efficiency of the tree can increase, and the

performance of building and querying the M-Tree may be improved.

 In our system, only images are used for indexing and retrieval. So another

task can be completed in the future may be using video/audio objects in such a

retrieval system.

Our system also does not include insertion/deletion methods for individual

objects. Since XML database and M-Tree supports insertion/deletion mechanisms,

these methods can be implemented easily.

 96

REFERENCES

[1] E. S. Konak. “A Content-Based Image Retrieval System For Texture And Color

Queries”. ,MS Thesis, Bilkent University, August 2002.

[2] Arnold W.M. Smeulders, M. Worring, S. Santini, A. Gupta, R. Jain. “Content-

Based Image Retrieval at the End of the Early Years”. IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 22, No. 12, December 2000.

[3] C. Breiteneder, H. Eidenberger. “Content-Based Image Retrieval in Digital

Libraries”. Proceedings of Digital Libraries Conference, pp. 67-74, Tokyo, Japan,

2000.

[4] L. V. Tran. “Efficient Image Retrieval with Statistical Color Descriptors”.

Doctoral Thesis, Linkoping Studies in Science and Technology, Dissertation No. 810,

Linkoping University, Sweden, May 2003.

[5] M. Koskela, J. Laaksonen, E. Oja. “Comparison of Techniques for Content-Based

Image Retrieval”. Proceedings of the 12th Scandinavian Conference on Image

Analysis, pp. 579-586, Bergen, Norway, 2001.

[6] Y. Rui, T. S. Hang, S. Chang. “Image retrieval: Current technique, promising

directions, and open issues,” Journal of Visual Communication and Image

Representation, Vol. 10, pp.39-62, 1999.

[7] Ying Li, X. Wan, C.-C. Jay Kuo. “Introduction to Content-Based Image

Retrieval- Overview of Key Techniques”, In V. Castelli and L. D. Bergman, editors,

Image Databases, chapter 10, pp. 261-284. John Wiley & Sons, 2002.

 97

[8] N.-S. Chang, K.-S. Fu. “Query by pictorial example”. IEEE Transactions on

Software Engineering,6(6):519–524, November 1980.

[9] R. Fagin. “Fuzzy Queries in Multimedia Database Systems”. ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 1-10, IBM

Almaden Research Center,Proc. 1998.

[10] MPEG Home Page, http://www.cselt.it/mpeg/ . Last date accessed: April, 2004.

[11] MPEG-7 XM Homepage,http://www.lis.ei.tum.de/research/bv/topics/mmdb.html

Last date accessed: September, 2004.

[12] T. Sikora. “The MPEG-7 Visual Standard for Content Description—An

Overview”. IEEE Transactions on Circuits and Systems for Video Technology, Vol.

11, No. 6, June 2001.

 [13] MPEG-7 DDL Working Draft 4.0, Beijing, July 2000

[14] SleepyCat Software, www.sleepycat.com. Last date accessed: September, 2004.

[15] P. Ciaccia, M. Patella, and P. Zezula. “M-tree: An efficient access method for

similarity search in metric spaces”. In Proceedings of the 23rd VLDB International

Conference, pp. 426--435, Athens, Greece, August 1997.

[16] V. Castelli. “IBM Research Report Multidimensional Indexing Structures for

Content-based Retrieval”. IBM Research Division, RC 22208, February 2001.

[17] A Guttman. “R-trees a dynamic index structure for spatial searching”. Proc ACM

SIGMOD Int Conf on Management of Data, pp. 47-57, 1984.

 98

[18] K. Lin, H.V. Jagadish, C Faloutsos. “The W-Tree: An Index Structure for High-

Dimensional Data”, VLDB Journal,3, pp. 517-542, 1994.

[19] S. Berchtold, D.A. Keim., H. Kriegel. “The X-Tree: An Index Structure for

High-Dimensional Data”. Proc. VLDB '96, pp. 28-39, San Fransisco, U.S.A, 1996.

[20] R.R. Yager. “On ordered weighted averaging aggregation operators in multi-

criteria decision making”. IEEE Trans. Systems Man Cybernet. 18, pp. 183-190,

1988.

[21] D.A.White and R.Jain. “Similarity indexing with the SS-Tree”. In Proc. 12th Int.

Conf. on Data Engineering, pp. 516–523, New Orleans, USA, February 1996.

[22] N.Kata yama and S.Satoh. “The SR-tree: an index structure for high-dimensional

nearest neighbor query”. In Proc. 1997 ACM SIGMOD Int. Conf. on Management of

Data, pp. 369–380, Tucson, AZ, 12-15 May 1997.

[23] J.L. Bentley. “Multidimensional binary search trees used for associative

searching”. Communications of the ACM, 18(9):509–517, 1975.

[24] J.T. Robinson. “The k-d-b-tree: A search structure for large multidimensional

dynamic indexes”. In Proc. 1981 ACM SIGMOD Int. Conf. on Management of Data,

pp. 10–18, May 1981.

[25] D.Lome t and B.Salz berg. “The hB-tree: a multiattribute indexing method with

good guaranteed performance”. ACM Trans. Database Systems (TODS), vol. 15, No.

4, pp.625–658, December 1990.

[26] W.Niblack, R.Barber. “The QBIC Project”. In Proc. SPIE Storage and Retrieval

for Image and Video Databses, Vol. 1, pp. 173-187, Bellingham, Wash, Feb 1993.

 99

[27] C. Faloutsos, M. Flickner, W. Niblack, D. Petkovic, W. Equitz, and R.Barber.

“Efficient and effective querying by image content”. Technical report, IBM Research,

1993.

[28] H. Tamura, S. Mori, T. Yamawaki. “Texture features corresponding to visual

perception”. IEEE Trans. on Sys., Man. and Cyb., Vol. 6, No. 4, pp. 460--473, 1978.

[29] W. Equitz, W. Niblack. “Retrieving images from a database using texture

alogrithms from the QBIC system”. Technical Report RJ 9805, Computer Science,

IBM Research, 1994.

[30] B. Scassellati, S. Alexopoulos, M. Flickner. “Retrieving images by 2D shape:a

comparison of computation methods with human perceptual judgments”. In Proc. of

SPIE Storage and Retrieval for Image and Video Databases, pp. 2-14, San Jose,

California, 1994.

[31] D. Lee, R. Barber, W. Niblack, M. Flickner, J. Hafner, D. Petkovic. “Indexing

for complex queries on a query-by-content image database”. In Proc. of IEEE Int’l

Conf. on Image Processing, pp.142-146, 1994.

[32] W. Y. Ma, B. S. Manjunath. “Netra: A toolbox for navigating large image

databases”. In Proc. of IEEE Int. Conf. on Image Processing, vol. 1, pp. 568-571,

Santa Barbara, 1997.

[33] A. Pentland, R. W. Picard, S. Sclaro. “Photobook: Content-based manipulation

of image databases”. International Journal of Computer Vision, vol. 18, no. 3, pp.

233 - 254, 1996.

[34] J. R. Bach, C. Fuller, A. Gupta, A. Hampapur, B. Horowitz, R. Humphrey, R.

Jain, C. F. Shu. “The Virage image search engine: An open framework for image

 100

management”. In Proc. of SPIE Storage and Retrieval for Image and Video

Databases, vol. 2670, pp. 7687, 1996.

[35] J. R. Smith, S. F. Chang. “Intelligent Multimedia Information Retrieval”. Ed. M.

T. Maybury, chap. 2, pp.23-43, MIT Press,1996.

[36] J. R. Smith, S. F. Chang. “Visually searching the web for content”. IEEE

Multimedia Magazine, vol. 4, pp. 12-20, 1997.

[37] “MPEG-7 Overview (version 9)”. International Organisation for

Standartadisation, ISO/IEC JTC1/SC29/WG11, May 2003.

[38] T. Ojala, M. Aittola, E. Matinmikko. “Empirical Evaluation of MPEG-7 XM

Color Descriptors in Content-Based Retrieval of Semantic Image Categories”. Proc.

16th International Conference on Pattern Recognition, vol. 2, pp. 1021 – 1024,

Quebec, Canada, 2002.

[39] corel database, http://www.corel.com . Last date accessed: April, 2004.

[40] G. Beliakov. “Definition of general aggregation operators through similarity

relations”. Fuzzy Sets and Systems, vol. 114, no. 3, pp. 437-453, 2000.

[41] J. M. Hellerstein, J. F. Naughton and A. Pfeffer. “Generalized Search Trees for

Database Systems.” Proc. 21st Int'l Conf. on Very Large Data Bases, Zürich, pp. 562-

573, September 1995.

[42] The M Tree Project Homepage, http://www-db.deis.unibo.it/Mtree/index.html .

Last date accessed: July, 2004.

[43] P. Ciaccia, M. Patella. “Bulk Loading the M-tree”. ADC’98, pp. 15-26,

Australia, 1998.

 101

[44] R. C. Veltkamp, M. Tanase. “Content-Based Image Retrieval Systems: A

Survey”. Utrecht University, The Netherlands, October 2000.

[45] Y. Rui, A. C. She and T. S. Huang. “Modified Fourier descriptors for shape

representation - a practical approach.” Proc. of First International Workshop on

Image Databases and Multimedia Search, Amsterdam, The Netherlands,1996.

[46] M. Patella, “M-Tree User Guide Version 0.911”, December 19,2000.

[47] B.S. Manjunath, P. Salembier, T. Sikora. “Introduction to MPEG-7: Multimedia

Content Description Interface”, John Wiley & Sons, 2002.

[48] H. Eidenberger. “How good are the visual MPEG-7 features”, Proc. of the 5th

ACM SIGMM international workshop on Multimedia information retrieval, pp.130-

137, Berkeley, California, 2003.

[49] R. Fagin. “Combining Fuzzy Information from Multiple Systems”, Proc.

Fifteenth ACM Symp. On Principles of Database Systems, pp.216-226, Montreal,

1996.

[50] K. K. Guner, “MPEG-7 Compliant ORDBMS Based Image Storage and

Retrieval System”, ,MS Thesis,Middle East Technical University, January 2004.

[51] B. Verma, S. Kulkarni. “Fuzzy Logic Based Interpretation and Fusion of Color

Queries”, International Conference on Knowledge Based Computer Systems,

KBCS’02, pp. 107-116, India, 2002.

 102

APPENDIX A

QUERYING THE SYSTEM

In this chapter, running examples of query module of the system are shown.

A.1 Fuzzy Query

We divide fuzzy query into three parts;

• Image-Based Query

• Feature-Based Query

• Color-Based Query

Example queries and results are shown in figures for both version of M-Tree.

All queries had been made over ‘Flower’ data set.

A.1.1 Image-Based Query

Query: ‘Very Similar Images to Example Query’.

 103

Figure A.1- Results for Query with Fuzzy DC Distance

 104

Figure A.2- Results for Query with Non-Fuzzy DC Distance

 105

A.1.2 Feature-Based Query

Query: ‘Very Similar in CL AND Almost Same as DC OR Almost Same as EH

features of Example Image’

Figure A.3- Results for Feature-Based Fuzzy Query with Fuzzy DC Distance

 106

Figure A.4- Results for Feature-Based Fuzzy Query with Non-Fuzzy DC Distance

 107

A.1.3 Color-Based Query

Query: ‘Red Color: mostly AND Green Color: normal OR Blue Color: not important’

Figure A.5- Results for Color-Based Fuzzy Query with Fuzzy DC Distance

 108

Figure A.6- Results for Color-Based Fuzzy Query with Non-Fuzzy DC Distance

A.2 K-Nearest Neighbor Query

Example queries and results are shown in figures for both version of M-Tree.

All queries had been made over ‘Flower’ data set.

 109

Query: ’Top 8 similar images to example image’.

Figure A.7- Results for k-NN Query with Fuzzy DC Distance

 110

Figure A.8- Results for k-NN Query with Fuzzy DC Distance

