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ABSTRACT 
 

 

AN XML BASED CONTENT-BASED IMAGE RETRIEVAL SYSTEM 

WITH MPEG-7 DESCRIPTORS 

 

 

 

Recently, very large collections of images and videos have grown rapidly. In 

parallel with this growth, content-based retrieval and querying the indexed collections 

are required to access visual information. Three main components of the visual 

information are color, texture and shape. In this thesis, an XML based content-based 

image retrieval system is presented that combines three visual descriptors of MPEG-7 

and measures similarity of images by applying a distance function. An XML database 

is used for storing these three descriptors. The system is also extended to support high 

dimensional indexing for efficient search and retrieval from its XML database. To do 

this, an index structure, called M-Tree, is implemented which uses weighted 

Euclidean distance function for similarity measure. Ordered Weighted Aggregation 

(OWA) operators are used to define the weights of the distance function and to 

combine three features’ distance functions into one. The system supports nearest 

neighbor queries and three types of fuzzy queries; feature-based, image-based and 

color-based queries. Also it is shown through experimental results and analysis of 

retrieval effectiveness of querying that the content-based retrieval system is effective 

in terms of retrieval and scalability. 

 

 

Keywords: Content-Based Image Retrieval, MPEG-7 Descriptors, Color Layout, 

Dominant Color, Edge Histogram, M-Tree, Ordered Weighted Aggregation, XML 

Database 
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ÖZ 
 

 

MPEG-7 TANIMLAYICILARI �LE XML TABANLI �ÇER�K-TABANLI 

GÖRÜNTÜ ER���M S�STEM� 

 

Son zamanlarda, çok büyük görüntü ve video veritabanları ortaya çıkmı�tır. 

Bu büyümeye paralel olarak, görsel bilgiye eri�ebilmek için içerik-tabanlı eri�im ve 

indekslenmi� veritabanları üzerinde arama yapabilme ihtiyaçları do�maktadır. Görsel 

bilginin üç ana bile�eni  renk, doku ve biçimdir. Bu tezde, MPEG-7 ‘nin üç görsel 

tanımlayıcısını birle�tiren ve görüntülere uzaklık fonksiyonunu uygulayarak 

aralarındaki benzerli�i ölçen XML tabanlı bir içerik-tabanlı görüntü eri�im sistemi 

sunulmaktadır. Bu üç görsel tanımlayıcıyı tutmak için bir XML veritabanı 

kullanılmaktadır. Sistem aynı zamanda XML veritabanı üzerinde etkin arama ve 

eri�im için cok-boyutlu indekslemeyi desteklemektedir. Bu indeksleme, M-Tree adı 

verilen indeks yapısı ile geli�tirilmi�tir ve M-Tree benzerlik ölçümü için a�ırlıklı 

Euclidean uzaklık fonksiyonunu kullanmaktadır. Uzaklık fonksiyonunun a�ırlıklarını 

hesaplamak ve üç görsel özelli�in uzaklık fonksiyonlarını bir uzaklık fonksiyonuna 

birle�tirmek için Sıralı A�ırlıklı Toplam operatörleri kullanılmı�tır. Sistem en yakın 

kom�uluk sorgularını ve 3 tip bulanık sorguları sa�lamaktadır: özellik tabanlı, 

görüntü tabanlı ve renk tabanlı sorgular. Ayrıca deney sonuçları ve sorguların sonuç 

etkinlikleri bu içerik-tabanlı eri�im sisteminin eri�im ve ölçeklenebilirlik bakımından 

etkin oldu�unu göstermektedir.  

 

Anahtar Sözcükler: �çerik-Tabanlı Görüntü Eri�imi, MPEG-7 Tanımlayıcıları, Renk 

Planı, Baskın Renk, Kenar Da�ılımı, M-Tree, Sıralı A�ırlıklı Toplam, XML 

Veritabanı 
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CHAPTER 1 

 

INTRODUCTION 
 

“A picture is worth ten thousand words.” 

—A Chinese proverb 

 

1.1 Motivation 
 

The tremendous growth in the amount of multimedia is driving the need for 

more effective methods for storing, searching and retrieving digital images, video and 

audio data. The visual content of images can be categorized as follows: spatial, 

semantic, and low-level [1]. The spatial content of an image is the relative positioning 

of the objects in the image. The actual meaning of the image that a user captures 

when he/she looks at the image forms the semantic content of the image. The low-

level content is formed by the low-level features such as color, shape, and texture. For 

indexing the images based on these low-level features, various methods exist in the 

literature. 

 

Research in Content-Based Image Retrieval (CBIR) today is now 

concentrating on deeper problems, and can be seen as a lively discipline of computer 

vision, databases, and information retrieval [2]. 

 

In general, most CBIR systems suffer from several drawbacks [3]: First, 

feature extraction is very expensive process. Since low-level features such as color, 

shape, and texture are very complicated for extraction, CBIR systems should improve 

efficiency of this process. Second, the quality of results tends to be low. Third, 
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querying performance with often long reply times is unsatisfactory. Finally, user 

interfaces are much too complicated for average users. 

 

The content-based image retrieval system proposed in this thesis includes the 

following features: 

 

� Efficient extraction of low-level features: Low-level features (color, texture 

and shape features) need very complex extraction process, so a qualified CBIR 

system should improve the performance of feature extraction. Many researchers 

have used several methods to extract audio-visual features up to now, and these 

features were formed in various formats. However, the necessity arises for a 

common format, which is able to represent the audio-visual content.  As a 

consequence, MPEG-7, formally known as Multimedia Content Description 

Interface is introduced as an ISO/IEC standard by MPEG (Moving Pictures 

Experts Group) [10] and MPEG-7 focuses on description of multimedia 

content. The key issue here is that MPEG-7 does not standardize the way to 

obtain these descriptions or how to use them, but only standardizes the 

descriptions and the way of structuring them. The emerging MPEG-7 

multimedia content description standard promises to further improve content-

based searching by providing a rich set of standardized tools for describing 

multimedia content in XML. The MPEG-7 standard enables fast and effective 

content-based searching by defining descriptors for color, texture, shape and 

other features.  

 

� Satisfactory querying performance—CBIR systems use distance functions to 

calculate the dissimilarity between a search image and database images. This 

process is often very slow and reply times in the range of minutes may occur 

for large databases. Since multimedia data usually have high-dimensional 

properties, for example, an image might have multi-dimensional features, such 

as texture, color, and shape, it is very important for an indexing technique that 

can support execution of high-dimensional similarity queries to be invented for 
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multimedia databases. M-tree [15] is such a high-dimensional and distance-

based index structure based on Metric Space. 

 

� Satisfactory result quality—By using only general features for all types of 

images and asking the user to choose features leads to low quality retrieval 

results. Multi-features should be combined to improve the query performance. 

 

1.2 Contributions 
 

In this work, we propose an XML-based CBIR system with MPEG-7 Content 

Descriptors. This CBIR system consists of three modules: 

 

1.2.1 Feature Extraction Module 

 

 In the multimedia processing, only the description of content is in the scope 

of MPEG-7 [10], not how a description is produced or consumed. Further, the 

descriptions are not required to allow interoperability. This leaves space for industrial 

and academic competition in developing new, more powerful methods for multimedia 

content analysis, better search engines and user applications. 

 

For extracting low-level features from images, we use MPEG-7 reference 

software (XM) [11]. MPEG-7 aims at setting up a framework for describing all 

aspects of multimedia contents. It focuses mainly on setting up the standard low-level 

descriptors set and high-level abstract descriptions set. MPEG-7 XM includes low-

level feature extraction methods and stores them in XML format. In these feature 

extraction methods, Dominant Color (DC), Color Layout (CL) and Edge Histogram 

(EH) features are used in this study to describe image contents. 
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1.2.2 Image Database and Indexing  

 

Since MPEG-7 XM extracts low-level features and stores these features in 

XML format, we use Berkeley XML DB [14] as our image database management 

system. Normally, image descriptors are represented by multi-dimensional vectors, 

which are often used to calculate the descriptor distance in the feature space for 

measuring the similarity of two images. When the number of images in the database 

is small, a sequential linear search can provide a reasonable performance. However, 

with large-scale image databases, indexing support for similarity-based queries 

becomes necessary.  

 

Because of using multi-dimensional features, we need an efficient access 

method over image database and we use M-Tree [15] [42] for this purpose. Since M-

Tree is a distance-based tree structure, we need an efficient distance function to make 

the evaluation of similarity of images and query results better. So Euclidean Distance 

function [4] is used as similarity measure. In general, the CBIR systems support the 

combinations of features for efficient indexing and querying.  

 

But most of these systems combine these features by associating weights to 

individual features. Main problem here is that the same weights are associated with 

the same features for all images in database and sum of these weighted features are 

used to build an index structure. However, when comparing two specific images, one 

feature can be more distinctive than the others; so that feature must be associated with 

higher weights. When comparing other two images, that feature may be less 

distinctive than the other features and for this case that feature must be associated 

with a lower weight. For this purpose, in this system we use Ordered Weighted 

Aggregation (OWA) [20] operators to associate variable weights with three low-level 

features (DC, CL, EH) and calculate a combined distance for constructing M-Tree 

structure. 
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1.2.3 Query Module 

 

Image objects may have a complex inherent structure. Content-based retrieval 

of images is on a number of content descriptors, including color, texture, shape, 

relative location of image objects and regions, spatial layout, etc. To query image 

contents, unlike traditional SQL queries, users are usually not able to precisely 

characterize the objects in queries. More importantly, images with slight differences 

look the same from the viewpoint of users. That’s why image query system should 

support approximate similarity search. 

In traditional image retrieval systems, the query languages only deal with 

exact-match queries. This might be sufficient to deal with queries for metadata and 

annotations of multimedia data. These queries are definitely important. However, 

content-based information retrieval requires non-exact match (fuzzy) queries. A 

query is fuzzy if the properties of objects being queried cannot be certain (like red 

ball) or the comparison operators in the query cannot provide exact matches. Systems 

allow queries to be more or less satisfied by using fuzzy query paradigms. Then, the 

results of a query are ranked according to their degree of satisfaction [9]. 

There could be many ways for users to query images: 

 

� Query by example (QBE): Users choose an image already displayed and ask 

for images similar to the selected one. 

 

� Direct query: Users specified their desired image features directly. 

 

� Query by sketch: Users roughly sketch the shapes they wish to retrieve. 

 

� Query by painting (or query by color): Users paint a simple color image as the 

query specification, and those images with similar colors in the same spatial 

arrangement are retrieved. 
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Query by example (QBE) is a common retrieval paradigm in content-based 

image retrieval applications [8]. In a query-by-example CBIR system, the query 

image is usually used as a seed to retrieve similar images from the database, which 

can be either an existing image or a hand-drawn sketch.  

In our approach, both QBE and direct query are supported. In QBE, users give 

an example image to the system and describe their expectation as an image-based 

fuzzy query like “very similar to this image” or as a feature-based query like “very 

similar in Color Layout and similar in Dominant Color or not similar in Edge 

Histogram”. So the query model of our CBIR system includes fuzzy querying. In this 

paradigm, nearest neighbor queries are also supported like ‘retrieve top 10 nearest 

images to the query image’. 

With direct query, user must supply amount of main colors (Red, Green and 

Blue) on image as a similarity degree like ‘retrieve images which have mainly Red 

color and very few Green or mostly Blue’. This is another type of fuzzy query in our 

system. 

 

1.3 Organization of the Thesis 
 

The chapters of the thesis have been organized as follows: In Chapter 2, 

several main components of a CBIR system are briefly discussed and previous works 

on CBIR systems are listed. Chapter 3 introduces MPEG-7 briefly. In Chapter 4, the 

content-based retrieval system that is developed in the scope of the thesis is 

presented. The performance experiments of the content-based retrieval system are 

given in Chapter 5. Finally, Chapter 6 concludes the thesis.  
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CHAPTER 2 

 

CONTENT-BASED IMAGE RETRIEVAL 
 

In this chapter, first main components of a CBIR system are discussed and the 

techniques that are used for similarity measurement are given. A survey on some of 

the existing multi-dimensional index structures and content-based retrieval systems is 

provided. 

 

2.1 Overview 
 

Content-based retrieval from image databases is a wide field of research 

interests. In CBIR systems, images are indexed on the basis of low-level features, 

such as color, texture, and shape. An ideal CBIR system should extract the semantic 

content of images automatically. Automatic object recognition and classification are 

difficult problems in image understanding and computer vision. This is the main 

reason why low-level features such as colors, textures, and shapes of objects are 

widely used for content-based image retrieval [7]. Mapping the high-level semantic 

concepts used by humans to understand image content to the low-level visual features 

extracted from images is the basic problem in CBIR. Thus two important research 

topics in CBIR are [5]; 

 

� Selection of the used features and the measure of similarity between them. 

 

� Techniques for indexing the images.  

 

A typical content-based image retrieval system is depicted in Figure 2.1 [6]. 
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Figure 2.1: A typical content-based image retrieval system 

 

2.1.1 Image Database  

 

The image database contains images for the purpose of visual display. Unlike 

traditional database, image database faces many problems. Image data is often large 

in size and the content-based analysis is an expensive process. Thus, preprocessing is 

required for querying the database. Moreover image data is subjective, for a given 

image, it may have different interpretation for different users. 
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The visual feature database stores visual features extracted from images 

needed to support content-based image retrieval. The text annotation repository 

contains keywords and free-text descriptions of images [7]. 

 

2.1.2 Feature Extraction 

 

Feature extraction is the basis of content-based image retrieval. Feature 

extraction is concerned with the detection and localization of particular feature in a 

multimedia object in images. The features, within the visual feature scope, can be 

classified as low-level features and high-level features. Low-level features include 

color, texture, and shape features while high-level features are application-dependent 

and may include, for example, human faces and fingerprints.  

 

2.1.2.1 Color 

 

Color is one of the most recognizable elements of image content and is the 

most commonly used feature image retrieval because of its invariance with respect to 

image scaling, translation and rotation [7]. Color features are independent of image 

size and orientation and can be used for describing content in still images and video. 

 

2.1.2.2 Texture 

 

Texture is widely used and refers to the visual patterns that have properties of 

homogeneity or not, that result from the presence of multiple colors or intensities in 

the image [12]. Texture features of the images can be seen as the structural 

information of surfaces and their relationship to the surrounding environment. There 

are many ways to describe texture: Statistical methods often use spatial frequency, 

co-occurrence matrices, edge frequency, primitive length etc. [4]. Using texture 

descriptors in a CBIR system provides powerful means for similarity matching and 

retrieval. 
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2.1.2.3 Shape 

 
The shape of image objects provides a powerful visual clue for similarity 

matching and defining the shape of an object is often very difficult. In image 

retrieval, it is usually required that the shape descriptor is invariant to scaling, 

rotation, and translation. In general, shape description can be divided into two 

categories [45], boundary-based and region-based. In the boundary-based shape 

description, only boundary information of objects is used and the boundary 

information is suitable to describe objects that have similar contour characteristics. In 

the region-based shape description, the entire shape region is used to extract a 

meaningful description, which is most useful when objects have similar spatial 

distributions of pixels in objects. Dependent on the application or objects 

characteristics, it is useful to employ either region- or contour-based descriptors. 

 

2.1.3 Similarity Measures 

 

Instead of exact matching, content-based image retrieval calculates visual 

similarities between a query image and images in a database. After extracting features 

of images in the database, the search results are obtained by measuring the similarity 

between the pre-extracted features of the image database and the query. Distances or 

similarities are mathematical representations of what is meant by close or similar. 

Accordingly, the retrieval result is not a single image but a list of images ranked by 

their similarities with the query image. Many similarity measures have been 

developed for image retrieval based on empirical estimates of the distribution of 

features in recent years. Different similarity/distance measures will affect retrieval 

performances of an image retrieval system significantly. The choice of distance is 

extremely important. In some cases, a Euclidean metric will be sensible while in 

others a Manhattan metric will be a better choice. Generally, some experience or 

subject matter knowledge is very helpful in selecting an appropriate distance for a 

given project. 
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The problem of whether the similarity distance should be a metric or not is not 

decided yet since human vision is very complex and the mechanisms of the human 

visual system are not fully understood. We prefer the similarity distance to be a 

metric and must satisfy the following properties [4]: 

 

� Similarity: The distances between an image to itself should be equal to zero: 

 

d(A,A) = 0;         (2.1) 

 

� Minimality: An image should be more similar to itself than to other images: 

 

d(A,A) < d(A,B);        (2.2) 

 

� Symmetry: It is unreasonable if we say image A is similar to image B but 

image B is not similar to image A: 

 

d(A,B) = d(B,A);        (2.3) 

 

� Transitivity: It is also unreasonable if image A is very similar to image B, and 

B in turn very similar to C, but C is very dissimilar to A. 

 

Many (dis) similarity measures have been proposed and we list here some of 

the most commonly used [4]. 

 

� Minkowski-form distance: If each dimension of image feature vector is 

independent of each other and is of equal importance, the Minkowski-form 

distance Lp is appropriate for calculating the distance between two images. 

This distance is defined as: 
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where x and y feature vectors and d is feature dimension. 

 

� Weighted Minkowsky-form distance: In this form of Minkowsky distances, the 

individual dimensions can be weighted differently using non-negative weights 

and it is defined as: 
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� Euclidean distance: The Euclidean distance is defined as: 
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� Weighted Euclidean distance: The weighted Euclidean distance is defined as: 
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� Mahalanobis distance: The Mahalanobis distance metric is appropriate when 

each dimension of image feature vector is dependent of each other and is of 

different importance. It is defined as: 
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where C is the covariance matrix of the feature vectors. 
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� Generalized Euclidean distance: This distance is a generalization of the 

Mahalanobis distance where the matrix K is positive definite but not 

necessarily a covariance matrix, and the multiplicative factor is omitted: 

 

( ) ( )yxKyxyxD T −−=),(     (2.9) 

 

� Manhattan distance: Manhattan distance or city block defined as: 
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� Chebychev distance: it is defined as 
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2.1.4 Multi-dimensional Indexing 

 

An ideal CBIR system should be scalable to large image collections and 

should support fast retrieval. For this purpose multi-dimensional indexing is used. For 

an efficient similarity search in a typical CBIR system it is necessary to store the 

feature vectors in a multi-dimensional index structure and use the index structure to 

efficiently evaluate the distance metric. The multi-dimensional index structure is used 

must efficiently support both range and nearest neighbor queries. 

 

There are two main classes of multi-dimensional indexes [16], vector-space 

methods and metric-space methods. 
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2.1.4.1 Vector-Space Methods 
 

Since vector spaces contain more information these methods allow a better 

structuring of data than general metric spaces. A lot of work has been done on vector 

spaces by exploiting their geometric properties, but normally these cannot be 

extended to general metric spaces where the only available information is the distance 

among objects. In contrast to metric spaces, the operations in vector spaces tend to be 

simple and hence the goal is mainly to reduce I/O. 

 

2.1.4.2 Metric-Space Methods 
 

Instead of using a feature transformation into a vector space, data can also be 

directly processed using a metric space index structure. In this case, the user has to 

provide a metric distance, which corresponds to the properties of the similarity 

measure.  

 

A metric space is a pair, M = (D, d) where D is a domain of feature values and 

d is a distance function with the following properties [15]: 

 

� Symmetry: d(A, B) = d(B, A)      (2.12)  

� Positivity:  d(A, B) > 0 (A ≠ Β) and d(A, B) = 0    (2.13) 

� Triangle inequality: d(A, B) ≤  d(A, C) + d(C, B)    (2.14)  

  

where A, B and C are objects in a metric space U, the universe. 

 

In these methods, the distance is normally quite expensive to compute, so the 

general goal is to reduce the number of distance evaluations. To reduce the number of 

distance evaluations at query time, an index structure is built which is used to prune 

branches in processing the queries. 
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2.1.4.3 Overview of Some Popular Multidimensional Index Structures  

 

Recently, many new Bounding Rectangle (BR)-based data structures have 

been proposed. All of them are derived from the R-tree [17]. The R-tree suffers from 

a high degree of overlap among indexed subspaces and low fan-out at high 

dimensionalities that leads to poor query performance. The proposed data structures 

extend the R-tree to scale to higher dimensionality and/or support arbitrary distance 

metric.  

 

The TV-tree [18] is an R-tree like data structure that exploits the fact that not 

all dimensions of the feature vector are necessary to discriminate among the objects. 

It uses a transform to achieve an ordering of the dimensions based on their 

discriminating power. Only the first few dimensions in that ordering, called the 

`̀active'' dimensions, are used to define the BRs. Each BR is specified by a center, 

which is an n-dimensional vector where n is the number of active dimensions, and a 

scalar radius. The non-discriminatory dimensions are ignored. At the data node level, 

since it is possible for a leaf to consist of points that all agree on some of the inactive 

dimensions, these common dimensions are introduced into the center representation. 

The scalability of the TV-tree to high dimensionality relies upon the fact that there 

exists an ordering among the dimensions based on their discriminating power and this 

order is known in advance and does not change. This may not be possible in dynamic 

database environments.  

 

The X-tree [19] is another R-tree like data structure with a modification of the 

R-tree node splitting algorithm to reduce overlap among the index nodes. If splitting a 

node causes a large amount of overlap, the node is not split at all, thus creating a 

supernode i.e., a node that spans over multiple pages on disk. The intuition is that 

since there is large overlap between the nodes after the split, the probability that both 

nodes will be accessed by a search operation is high, and hence a sequential scan over 

the nodes is better than random accesses to each of the nodes. As the dimensionality 

increases, the X-tree degenerates to a few random I/O at the higher levels and a linear 
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scan over the entire database at the lower levels. But, contrary to linear scan, X-tree 

has the overhead of performing disk management operations to create and maintain 

variable sized nodes on disk.  

 

Distance based variants of the R-tree include the SS-tree [21] and M-tree [15]. 

The SS-tree uses k-dimensional spheres as BRs instead of k-dimensional rectangles. 

There are two advantages of the SS-tree over the R-tree. First, on average, the 

minimum distance of a query point from a BR is lower when the BRs are bounding 

spheres rather than bounding rectangles. Since the processing of nearest neighbor 

queries depends on the minimum distance, SS-tree provides better performance for 

nearest neighbor queries compared to R-tree. Second, since the SS-tree stores only 

the centroid and a scalar radius for each entry in the index node instead of the 

bounding rectangle, it requires only half the space compared to an R-tree entry and 

hence has almost twice the fan-out. But since the volume of bounding spheres is 

much higher compared to the volume of bounding rectangles especially at high 

dimensionality, the overlap between the spheres is much higher compared to the 

R-tree leading to poor range search performance as the dimensionality increases. To 

avoid the overlap problem, the SR-tree [22] maintains both the bounding rectangle 

like R-trees as well as the bounding sphere like the SS-tree. Therefore, it has small 

minimum distances like the SS-tree as well as lower overlap of the R-tree.  

 

In M-tree [15], instead of fixing the BRs to be boxes or spheres, the data 

structure is parametric on the distance function. The user can provide the distance 

function which the M-tree will invoke as a black box to construct the BRs. In 

addition, M-tree exploits the triangle inequality to save several distance computations 

during tree traversal.  

 

Several Spatial Point (SP)-based data structures have been proposed in the 

literature as well. While all BR-based data structures are paginated that is each node 

of the index structure implicitly corresponds to a disk page and balanced, that is not 

the case with SP data structures. Paginated SP-based data structures are derived from 
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the KDB-tree [24]. The partitioning of the indexed space is usually represented by a 

kd-tree [23].  

 

Each internal node of the kd-tree represents a partition of the space. A kd-tree 

partition, unlike BRs, represents a clean split that the two subspaces after the split are 

mutually disjoint. Several SP-based data structures are described below.  

 

The KDB-tree [24] works analogously to the B-tree but instead of nodes 

containing search values in disjoint intervals of a one dimensional space, each node 

`̀covers'' a brick-like region of k-dimensional space. The space partitioning within a 

KDB-tree node is represented using a kd-tree. Whenever a data or index node 

becomes full, KDB-tree chooses a single (k-1)-dimensional hyperplane to split the 

node into two non-overlapping subspaces. In case of data nodes, this can violate 

storage utilization guarantees. In case of index nodes, in addition to adversely 

affecting storage utilization, it also makes the splitting process itself very costly due 

to the cascading splits.  

 

The hB-tree [25] is a variant to the KDB-tree. To circumvent the problems of 

storage utilization and cascading splits when split is performed using just one single 

dimension, hB-tree may use multiple dimensions to split a node. The space 

partitioning within a node is represented using a kd-tree. hB-tree provides guaranteed 

storage utilization and also avoids cascading splits. However, if a node is split using 

multiple dimensions, portions of kd-tree (called the `̀full path'') needs to be replicated 

at the parent and child nodes. The utilization guarantee of hB-tree does not factor in 

the information that is replicated at various nodes. The performance evaluation of the 

hB-tree shows that it performs well at medium dimensional features spaces. 

 

There are also nonpaginated SP-based data structures. They can be either 

feature based which the splits are based on a feature value (VAMSplit tree, 

LSDh-tree) or distance based which the splits are based on distances from one or 

more suitably chosen pivot points (vp-tree, mvp-tree). However, their utility is 
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limited in the context of large dynamic databases when the entire data structure 

cannot reside in main memory. To circumvent the problem, some memory based data 

structures like the LSD-tree provide an explicit paging algorithm when the size of the 

directory exceeds the size of main memory. Still, these trees are not balanced and 

their performance is usually sensitive to presorted data.  

 

2.1.5 Retrieval Engine 

 

The search methods used for image databases differ from those of traditional 

databases, since query method for multimedia databases is usually retrieval-by-

similarity [16]. A good query method is natural to the user as well as capturing 

enough information from the user to extract meaningful results. The following query 

methods are commonly used in content-based image retrieval research [4]: 

 

� Query by Example (QBE): QBE [8] is a common retrieval paradigm in 

content-based image retrieval applications. With QBE, the image queries are 

based on example images shown either from the database itself or some 

external location. And the image database is to be searched and compared with 

this example image. The target query image can be a normal image or a user 

drawn sketch using graphical interface paint tools.  

 

� Query by Feature (QBF): In the QBF type system, users specify queries by 

explicitly specifying the features they are interested in searching for. For 

example, a user may query an image database like ”retrieve all images, which 

contains 20% red pixels”. Specialized users of an image retrieval system may 

find this query type natural, but general users may not. 

 

� Query by painting (or query by color): Users paint a simple color image as the 

query specification, and those images with similar colors in the same spatial 

arrangement are retrieved. 
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� Direct query: Users specified their desired image features directly. 

 

Most research and commercial efforts are focused on building systems that 

perform well with QBE method. With QBE method, depending on application, 

different types of similarity queries are required. The most frequently used types of 

similarity queries are [7][16]:  

 

Range query: find all objects that are within a specific distance from a query 

object;  

k-nearest neighbors query: find the first k closest objects to a given query 

object. 

  

2.2 Related Works 
 

In the literature, a wide variety of content-based retrieval methods and 

systems may be found [44]. In this section, we discuss some of them. 

 

2.2.1 IBM’s QBIC 
 

QBIC [26], standing for Query By Image Content, is the first commercial 

content-based image retrieval system. Its system framework and techniques had 

profound effects on later image retrieval systems. QBIC supports mainly queries 

based on example images, user-constructed sketches and drawings, and selected color 

and texture patterns. The color feature used in QBIC are the average (R, G, B), (Y, I, 

Q), (L, a, b), and MTM (Mathematical Transform to Munsell) coordinates, and a k-

element color histogram [27]. QBIC’s texture feature is an improved version of the 

Tamura texture representation [28]; combinations of coarseness, contrast, and 

directionality [29]  
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Shape features in QBIC consist of area, circularity, eccentricity, and major 

axis orientation, plus a set of algebraic moment invariants [27] [30]. QBIC is one of 

the few systems, which takes into account the high dimensional feature indexing. In 

its indexing subsystem, KLT is the first used to perform dimension reduction and 

then R*-tree is used as the multidimensional indexing structure [27][31]. In its new 

system, text-based keyword search can be combined with content-based similarity 

search.  

 

2.2.2 Netra 
 

Netra is a prototype image retrieval system developed in the UCSB 

Alexandria Digital Library (ADL) project [32]. Netra uses color, texture, shape, and 

spatial location information in the segmented image regions to search and retrieve 

similar regions from the database. Main research features of the Netra system are its 

Gabor filter-based texture analysis, neural net-based image thesaurus construction 

and edge flow-based region segmentation. 

 

2.2.3 Photobook 
 

Photobook [33] is a set of interactive tools for browsing and searching images 

developed at the MIT Media Lab. Photobook consists of three sub-books from which 

shape, texture, and face features are extracted, respectively. Users can then query on 

the basic of the corresponding features in each of the three sub-books. More recent 

version of Photobook includes the human users in the image annotation and retrieval 

loop. The motivation for this was based on the observation that there was no single 

feature, which can best model images from each and every domain. Furthermore, 

human perception is subjective. They proposed a”society of models” approach to 

incorporate the human factor. Experimental results show that this approach is 

effective in interactive image annotation. 
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2.2.4 RetrievalWare 
 

RetrievalWare is a content-based image retrieval engine developed by 

Excalibur Technologies Corp. Its recent search engine uses color, shape, texture, 

brightness, color layout, and aspect ratio of the image, as query features. It also 

supports the combinations of these features and allows the users to adjust the weights 

associated with each feature. 

 

2.2.5 Virage 
 

Virage is a content-based image search engine developed at Virage Inc. 

Similar to QBIC, Virage [34] supports visual queries based on color, composition 

(color layout), texture, and structure (object boundary information).But Virage goes 

one step further than QBIC. It also supports arbitrary combinations of the above four 

atomic queries. The system is available as an add-on to existing database 

management systems such as Oracle or Informix. 

 

2.2.6 VisualSeek and WebSeek 
 

VisualSEEk [35] is a visual feature search engine and WebSEEk [36] is a 

World Wide Web oriented text/image search engine, both of which have been 

developed at Columbia University. Main research features are spatial relationship 

query of image regions and visual feature extraction from compressed domain. The 

visual features used in their systems are color sets and wavelet transform-based 

texture features. To speed up the retrieval process, they also developed binary tree-

based indexing algorithms. VisualSEEk supports queries based on both visual 

features and their spatial relationships. This enables a user to submit a sunset query as 

red-orange color region on top and blue or green region at the bottom as its ”sketch”.  
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WebSEEk is a web-oriented search engine. It consists of three main modules, 

i.e., image/video collecting module, subject classification and indexing module, and 

search, browse, and retrieval module. It supports queries based on both keywords and 

visual content.  
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CHAPTER 3 

 

MPEG-7 
 

 In this chapter, a brief discussion on MPEG-7 is given and Descriptors in 

MPEG- are described. 

 

3.1 Introduction 
  

MPEG-7, formally known as Multimedia Content Description Interface, is 

introduced as an ISO/IEC standard by MPEG (Moving Pictures Experts Group) to 

represent the audio-visual content [10].  While the prior standards (MPEG-1, MPEG-

2, and MPEG-4) focus on coding and representation of audio-visual content, MPEG-

7 focuses on description of multimedia content. The key issue here is that MPEG-7 

does not standardize the way to obtain these descriptions or how to use them, but only 

standardizes the descriptions and the way of structuring them.  

 

The content-based indexing and retrieval of audio-visual information is the 

main application for MPEG-7. MPEG-7 achieves these goals by defining a set of 

methods and tools for different aspects of multimedia description. 

 

The MPEG-7 Visual Descriptors (Ds) describe basic audiovisual content of 

media based on visual information. These MPEG-7 visual descriptors can be used to 

search, filter, or browse visual material based on suitable similarity measures. 

Weighted combination of visual descriptors can be used in implementation of CBIR 

system, to make the system more effective and for this purpose, MPEG-7 also defines 

Description Schemes (DSs). These schemes specify the types of the descriptors that 
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can be used in a given description, and the relationships between these descriptors or 

between other DSs.  

 

The Description Definition Language (DDL) forms a core part of the MPEG-

7 standard. With DDL, users can create their own Description Schemes and 

Descriptors. The DDL defines the syntactic rules to express and combine Description 

Schemes and Descriptors. The DDL must satisfy the MPEG-7 DDL requirements 

[13]. It has to be able to express spatial, temporal, structural, and conceptual 

relationships between the elements of a DS, and between DSs. 

 

3.2 Scope of the MPEG-7 
 
 

Searching, indexing, filtering, and access of audio-visual (AV) content are 

goals of the MPEG-7 standard. So MPEG-7 standard is used in devices and 

applications that deal with AV content description. MPEG-7 specifies the description 

of features related to the AV content. As illustrated in Figure 3.1, the scope of the 

standard is to define the representation of the description. Feature extraction is 

outside the scope of the MPEG-7. Search and query also are outside the scope of the 

MPEG-7 since they could be application dependent. However, in order to guarantee 

interoperability for some low-level features, MPEG-7 also specifies part of the 

extraction process. Future improvements can be included in MPEG-7 compliant 

applications. 

 
Figure 3.1: Scope of the MPEG-7 
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3.3 MPEG-7 Visual Descriptors 
 

The main objective of MPEG-7 visual descriptors is to provide a standardized 

description of image or video to use in applications to identify, categorize or filter 

images or videos. The MPEG-7 visual descriptors are classified into general visual 

descriptors and domain-specific descriptors. The former include color, texture, shape 

and motion features, while the latter are application dependent and include a face-

recognition descriptors. A brief description of each descriptor is given below. 

 

3.3.1 Color Descriptors 

 

Color is one of the most widely used and extensively studied features in 

content-based image retrieval. MPEG-7 provides 7 color descriptors [37]: 

 

� Color Space: This descriptor allows a selection of a color space to be used in 

the description. In the current description, the following color spaces are 

supported: 

o R, G, B  

o Y, Cr, Cb  

o H, S, V  

o HMMD  

o Linear transformation matrix with reference to R, G, B  

o Monochrome  

� Color Quantization: This descriptor specifies the partitioning of the given 

color space into discrete bins. Color Space Descriptor and Color Quantization 

Descriptor are used in conjunction with other color descriptors. 
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� Dominant Color: This descriptor allows specification of a small number of 

dominant color values that is the percentage of each quantized color and a 

spatial coherency. Its purpose is to provide an effective, compact and intuitive 

representation of colors present in a region or whole image. 

 

� Scalable Color: The Scalable Color Descriptor is a Color Histogram in HSV 

Color Space with fixed color space quantization. It uses a Haar transform 

coefficient encoding. This descriptor is useful for image-to-image matching and 

retrieval based on color feature. 

 

� Color Layout: This descriptor captures the spatial layout of the representative 

colors on a region or image. Representation is based on coefficients of the 

Discrete Cosine Transform. This is a very compact descriptor being highly 

efficient in fast browsing and search applications. It provides image-to-image 

matching as well as ultra high-speed sequence-to-sequence matching.  

 

� Color Structure: Color Structure Descriptor captures both color content and 

information about the structure of this content.  Its main functionality is image-

to-image matching and aims at identifying localizing color distributions using a 

small structure window. 

 

� Group of Frames or Group of Pictures: This descriptor is an extension of the 

scalable color descriptor to a group of frames in a video or a collection of 

pictures. This descriptor is based on aggregating the color properties of the 

individual images or video frames. 

 

3.3.2 Texture Descriptors 

 

There is three texture Descriptors [37]: Homogeneous Texture, Edge 

Histogram, and Texture Browsing. 
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� Homogenous Texture: The Homogeneous Texture descriptor provides a 

precise quantitative description of a texture that can be used for accurate search 

and retrieval. This descriptor is useful for similarity retrieval and it is quite 

effective in characterizing homogeneous texture regions. 

 

� Texture Browsing: Texture Browsing is defined for coarse level texture 

browsing. It provides a perceptual characterization of texture, similar to a 

human characterization, in terms of regularity, coarseness and directionality of 

the texture pattern. Since the browsing descriptor relates closely to human 

characterization, it can also be manually instantiated. This representation is 

useful for browsing applications and coarse classification of textures. 

 

� Edge Histogram: This descriptor captures spatial distribution of edges in an 

image. The edge histogram descriptor represents the spatial distribution of five 

types of edges, namely four directional edges and one non-directional edge. 

Since edges play an important role for image perception, it can retrieve images 

with similar semantic meaning. Thus, it primarily targets image-to-image 

matching. Its effectiveness is demonstrated on image data that are not 

necessarily homogeneously textured, for example, nature images, sketch 

images and clip art images. 

 

3.3.3 Shape Descriptors 

  

There are three shape Descriptors [37]: Region Shape, Contour Shape, and 

Shape 3D. 

 
� Region Shape:  This descriptor takes into account all pixels constituting the 

shape, which are both the boundary and interior pixels. It is applicable to 

objects consisting of a single connected region or multiple regions, possibly 



 28 

with holes. This descriptor performs well where region-based similarity is 

important. 

 

� Contour Shape: Contour Shape Descriptor captures characteristic shape 

features of an object or region based on its contour.  
 

� Shape 3D: It is targeted to search and retrieve and browse 3D models. It aims 

at providing and intrinsic shape description of 3D models. 

 

3.3.4 Motion Descriptors 

 

The main aim of motion-based indexing and of MPEG-7 in particular is to 

capture essential motion characteristics into effective descriptors. There are four 

motion Descriptors [37]: Camera Motion, Motion Trajectory, Parametric Motion, and 

Motion Activity.  

 

� Camera Motion: This descriptor characterizes 3-D camera motion parameters. 

It is based on 3-D camera motion parameter information, which can be 

automatically extracted or generated by capture devices. 

 

� Motion Trajectory: This descriptor is an object-oriented descriptor. It describes 

the displacement of objects in time. It records the path of the moving object. 

 

� Parametric Motion: This descriptor addresses the motion of objects in video 

sequences, as well as global motion. It represents the motion and/or 

deformation of a region or image by classic parametric model.  

 

� Motion Activity: The activity descriptor captures intuitive notion of “intensity 

of action” or “pace of action” in a video segment and used to describe the level 

or intensity of activity, motion, or action in that video segment. 
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3.3.5 Face Descriptor 

 

Face recognition can be used in image and video retrieval. The MPEG-7 Face 

Descriptor can be used to retrieve face images which match a query face image. The 

descriptor represents the projection of a face vector onto a set of basis vectors, which 

span the space of possible face vectors. These basis vectors are derived from 

eigenvector of a set of training faces and are reasonably robust to view-angle and 

illumination changes. 

 

3.3.6 Combination of Visual Descriptors 
 
 

In [48], visual content descriptors, which are extracted with MPEG-7-

descriptors, are analyzed from the statistical point of view. For the analysis, three 

media collections were used and eight basic visual descriptors were applied on them. 

These media collections contain monochrome textures, color images, which form our 

test set (Corel dataset) and artificial color images with few color gradations. The main 

results show that the best descriptors for combination are Color Layout, Dominant 

Color, Edge Histogram and Texture Browsing. The others are highly dependent on 

these. In this thesis, combination of Color Layout, Dominant Color and Edge 

Histogram is used to describe visual content of the images. The detailed description 

of these descriptors is given in Chapter 4. 
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CHAPTER 4 
 
 
 
 

CBIR SYSTEM 
 

In this chapter, proposed XML-based CBIR system with MPEG-7 Content 

Descriptors is explained. And also this CBIR system’s three modules are presented. 

4.1 Overview 
 

In this work, we developed a content-based image retrieval (CBIR) system by 

using MPEG-7 software and overall structure of the system is shown in Figure 4.1. 

The first process of the system is extracting visual features from images such as 

Dominant Color Descriptor, Color Layout Descriptor, and Edge Histogram 

Descriptor. MPEG-7 reference software (XM) [11] includes these low-level feature 

extraction methods and stores them in XML format. After extracting process, an 

XML database, Berkeley DB, is used to store these features. 

 

The second part of the system consists of indexing the XML database for 

efficient retrieval of the query results. For this purpose we use a metric indexing 

technique called M-Tree. M-tree project is implemented by using The Generalized 

Search Tree (GiST) [41]. GiST provides a nice framework for a fast and reliable 

implementation of search trees. An advantage of GiST is that the basic data structures 

and algorithms as well as main portions of the concurrency and recovery code can be 

reused. 
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Figure 4.1: CBIR System Architecture 

.  

 

The M-tree Project [42] provides M-tree implementation classes. Only objects 

are needed be defined in the tree. Since M-Tree is a distance-based tree structure, the 

CBIR system must provide a metric distance function to find a dissimilarity (or 

similarity) value between each image for comparing them. In our CBIR system, 

Euclidean Distance is used as distance function to create M-Tree. And for objects, we 

use the image name as object id. 

 

Since there are three low-level features that represent the image content, the 

system evaluates different distance value for each feature. But the system has to 
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compute an overall distances of these three distance values. For multi features, in 

general, weighted Euclidean Distance function is proposed to combine distances to 

one distance. For this purpose, we use OWA operator as mentioned in Section 4.4.  

 

To create the tree, following initial parameters must be supplied to the system: 

 

� DBSIZE: which holds image number in the database 

 

� MIN_UTIL: which is the minimum utilization [15] value of the M-tree node, 

and must be in [0, 1]. 

 

� TYPE of WEIGHT: This specifies the weights of distances, OWA or equal 

weights. 

 

The system creates the tree and is ready for online querying and retrieval. 

Query module is implemented by using both MPEG-7 and M-Tree software. Since 

content-based information retrieval requires non-exact match (fuzzy) queries, which 

go beyond the traditional approaches, we use fuzziness in query module. When user 

gives an example image to search the database with QBE paradigm, the system 

extracts the same three features from query image by using MPEG-7 XM Software 

again. The user also must supply the query type, which may be; 

 

� feature-based fuzzy query 

� image-based fuzzy query  

� color-based fuzzy query 

� k-nearest neighbor query.  

 

For querying the M-tree, following parameters must be given to the system: 

 

� IMAGE: query image (if color-based fuzzy query then this parameter is not 

important) 
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� QUERY_TYPE: type of the query 

 

� QUERY VALUE(s):  If the query is a nearest neighbor query, this value is k 

value (number of returned objects). If the query is a fuzzy query, then similarity 

value (for whole image or for each feature or for each main color) is supplied 

by this value. 

 

The system starts to search the database by using M-tree with extracted 

features of a query image to retrieve the images according to a query type. And 

finally the result objects are taken from XML DB and these objects are shown to the 

user as ranked by their degrees of satisfying the query object.  

 

4.2 Feature Extraction 
 

The MPEG-7 framework consists of Descriptors (Ds), Description Schemes 

(DSs), a Description Definition Language (DDL), and coding schemes. Descriptors 

are the features or attributes of multimedia data such as color, texture, textual 

annotations, and media format. Description schemes represent more complex 

structures and other description schemes. The description definition language allows 

defining and extending descriptors and description schemes. 

 

The eXperimentation Model (XM) software [11] is the simulation platform 

for the MPEG-7 Descriptors (Ds), Description Schemes (DSs), Coding Schemes 

(CSs), and Description Definition Language (DDL). The XM applications are formed 

by the data structures and the procedural code together and are divided in two types: 

the server (extraction) applications and the client (search, filtering and/or transcoding) 

applications.  
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The modules of the XM software are designed in a way that all modules are 

using specified interfaces [37] to reuse and to combine individual modules in bigger 

application. This also allows easy navigation through all the different modules for the 

various Ds and DSs. XM applications are related to one particular descriptor or 

description scheme. There are two type of applications; server applications and client 

applications. Server applications create the descriptor (D) or description scheme (DS) 

that they are testing. On the other hand, client applications use the D or DS under test. 

Server applications are needed if the D or DS is a low-level descriptor. Low-level 

descriptors can be extracted from the multimedia content applying an automatic 

process.  

 

From MPEG-7 Color Descriptors, Dominant Color Descriptor, and Color 

Layout Descriptor are chosen for our system. And also to increase the efficiency of 

the system, a texture descriptor, Edge Histogram Descriptor, is added to these color 

descriptors.  

 

4.2.1 Color Layout (CL) 

 

Color Layout [37] specifies a spatial distribution of colors for high-speed 

retrieval and browsing at very small computational costs. It provides image-to-image 

matching as well as sequence-to-sequence matching. This descriptor captures the 

layout information of color feature.  Descriptor is extracted from an 8x8 array of local 

dominant colors determined from the 64 (8x8) blocks the image is divided into [38]. 

Descriptors are matched with a tailored similarity metric. 

 

The advantages of this descriptor are [1] [37]: 

 

� That there are no dependency on image/video format, resolutions, and bit-

depths. The descriptor can be applied to any still pictures or video frames even 

though their resolutions are different. It can be also applied both to a whole 
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image and to any connected or unconnected parts of an image with arbitrary 

shapes. 

 

� That the required hardware/software resource for the descriptor is very small. 

It needs as law as 8 bytes per image in the default video frame search, and the 

calculation complexity of both extraction and matching is very low. It is 

feasible to apply this descriptor to mobile terminal applications where the 

available resources is strictly limited due to hardware constrain. 

 

� That the captured feature is represented in frequency domain, so that users can 

easily introduce perceptual sensitivity of human vision system for similarity 

calculation.  

 

� That it supports scalable representation of the feature by controlling the 

number of coefficients enclosed in the descriptor. The user can choose any 

representation granularity depending on their objectives without 

interoperability problems in measuring the similarity among the descriptors 

with different granularity. The default number of coefficients is 12 for video 

frames while 18 coefficients are also recommended for still pictures to achieve 

a higher accuracy 

 

Example XML Document for Color Layout looks like; 

 

<?xml version='1.0' encoding='ISO-8859-1' ?> 

<Mpeg7 xmlns = "http://www.mpeg7.org/2001/MPEG-7_Schema" xmlns:xsi = 

"http://www.w3.org/2000/10/XMLSchema-instance"> 

  <DescriptionUnit xsi:type = "DescriptorCollectionType"> 

   <Image name = "0.jpg"> 

    <Descriptor xsi:type = "ColorLayoutType"> 

     <YDCCoeff>15</YDCCoeff> 

     <CbDCCoeff>28</CbDCCoeff> 

     <CrDCCoeff>32</CrDCCoeff> 
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     <YACCoeff5>13  12  12  12  14 </YACCoeff5> 

     <CbACCoeff2>17  19 </CbACCoeff2> 

     <CrACCoeff2>15  18 </CrACCoeff2> 

    </Descriptor> 

   </Image> 

 </DescriptionUnit> 

</Mpeg7> 

 

The ColorLayout descriptor uses the YCbCr color space with quantization to 

8 bits performed in the following way [2]: 

 

Y = 219*Ynorm + 16 

Cb = 224*Cbnorm + 128   (4.1) 

Cr = 224*Crnorm + 128 

 

Here, the Ynorm, Cbnorm and Crnorm are the normalized YCbCr color values. 

The meanings of each tag are; 

Name is image name. To add this tag into descriptors, MPEG-7 XM extracting 

utilities had been modified. 

YDCCoeff, YACCoeff, CbDCCoeff, CbACCoeff, CrDCCoeff and CrACCoeff specify 

the integer arrays that hold a series of zigzag-scanned DCT coefficient values. 

 

YDCCoeff is the first quantized DCT coefficient of the Y component. 

 

CbDCCoeff is the first quantized DCT coefficient of the Cb component. 

 

CrDCCoeff is the first quantized DCT coefficient of the Cr component. 

 

YACCoeff is the second and the successive quantized DCT coefficients of the Y 

component. In the DDL representation, separate elements (YACCoeff2, YACCoeff5, 
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YACCoeff9, YACCoeff14, YACCoeff20, YACCoeff27 and YACCoeff63) are used 

to cover all valid array lengths. 

 

CbACCoeff is the second and the successive quantized DCT coefficients of the Cb 

component. In the DDL representation, separate elements (CbACCoeff2, 

CbACCoeff5, CbACCoeff9, CbACCoeff14, CbACCoeff20, CbACCoeff27 and 

CbACCoeff63) are used to cover all valid array lengths. 

 

CrACCoeff is the second and the successive quantized DCT coefficients of the Cr 

component. In the DDL representation, separate elements (CrACCoeff2, 

CrACCoeff5, CrACCoeff9, CrACCoeff14, CrACCoeff20, CrACCoeff27 

andCrACCoeff63) are used to cover all valid array lengths. 

 

4.2.2 Dominant Color (DC) 

 

Dominant Color [37] specifies a set of dominant colors in any arbitrary 

shaped region. Color quantization is used to extract a small number of representative 

colors in each region or image. Descriptors are matched with a spatial coherency 

measure. DC is suitable for representing local features (objects or image regions), 

where a small number of colors are sufficient to characterize color content. Whole 

images are also applicable [38]. 

 

Example XML Document for Dominant Color looks like; 

 

<?xml version='1.0' ?> 

<Mpeg7 xmlns = http://www.mpeg7.org/2001/MPEG-7_Schema xmlns:xsi = 

"http://www.w3.org/2000/10/XMLSchema-instance"> 

 <DescriptionUnit xsi:type = "DescriptorCollectionType"> 

  <Image name = "img0.jpg"> 

   <Descriptor size = "4" xsi:type = "DominantColorType"> 

    <SpatialCoherency>0</SpatialCoherency> 
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    <Values> 

     <Percentage>3</Percentage> 

     <ColorValueIndex>1  0  0 </ColorValueIndex> 

    </Values> 

    <Values> 

     <Percentage>3</Percentage> 

     <ColorValueIndex>15  16  15 </ColorValueIndex> 

    </Values> 

    <Values> 

     <Percentage>1</Percentage> 

     <ColorValueIndex>10  14  20 </ColorValueIndex> 

    </Values> 

    <Values> 

     <Percentage>11</Percentage> 

     <ColorValueIndex>21  21  20 </ColorValueIndex> 

    </Values> 

   </Descriptor> 

  </Image> 

 </DescriptionUnit> 

</Mpeg7> 

The meanings of each tag are; 

name is image name.  

Size is the number of dominant colors in the region. The maximum allowed number 

of dominant colors is 8, the minimum number of dominant colors is 1.  

SpatialCoherency [37] specifies the spatial coherency of the dominant colors 

described by the descriptor. It is computed as a single value by the weighted sum of 

per-dominant-color spatial coherencies. The weight is proportional to the number of 

pixels corresponding to each dominant color. Spatial coherency per dominant color 

captures how coherent the pixels corresponding to the dominant color are and 

whether they appear to be a solid color in the given image region. In Figure 4.2, red 
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pixels in the left image have low spatial coherency and in the right image high spatial 

coherency. 0 is used to signal that this element is not computed (note that if it is not 

computed it does not mean that the spatial coherency is low). 

 

 
Figure 4.2: Examples of low (a) and high (b) spatial coherency of color. 

 

 

Percentage specifies the percentage of pixels that have the associated color value. 

The percentage value is uniformly quantized to 5 bits with 0 corresponding to 0 

percentages and 31 corresponding to 100%. Note that the sum of the Percentage 

values for a given visual item does not have to be equal to 100%. 

 

Index is the index of the dominant color. In this thesis, index is represented by 5-bits. 

 

Since MPEG-7 XM software needs parameters for extracting DC Descriptor, 

we are expected to give some initial values for; 

 

� ColorSpacePresent:  This field indicates the presence of the ColorSpace 

element. The following color spaces are supported [37]: 

o RGB 

o YcbCr 

o HSV 

o HMMD 

o Linear transformation matrix with reference to RGB 

o Monochrome 
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we set this parameter to 0,so ColorSpace is not present and RGB color space 

is used. 

 

� ColorQuantizationPresent:  This element signals the presence of the 

ColorQuantization element. This element is only present in the binary 

representation,so we set this parameter to 0, ColorQuantization is not present. 

 

� VariancePresent:  This field indicates the presence of the color variances 

in the descriptor and is only present in the binary representation,so is set to 0. 

 

� SpatialCoherency: is set to 0, so this element is not computed. 

 

4.2.3 Edge Histogram (EH) 

 

Edge Histogram [37] captures the spatial distribution of edges, which are 

grouped into five categories: vertical, horizontal, 45o diagonal, 135o diagonal and 

isotropic, (four directional edges and one non-directional edge, Figure 4.3).  

 

 

 
Figure 4.3: Five Categories of Edges 

 

 

This descriptor primarily targets image-to-image matching (by example or by 

sketch), especially for natural images with non-uniform edge distribution, since it can 

retrieve images with similar semantic meaning. The input image is divided into 4x4 
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sub-images and the frequency of each type of edge is determined in each sub-image, 

resulting in 80 (16x5) bin local edge histogram. 

The image retrieval performance can be significantly improved if the edge 

histogram descriptor is combined with other Descriptors such as the color histogram 

descriptor [1].  

Example XML Document for Edge Histogram looks like; 

 

<?xml version='1.0' encoding='ISO-8859-1' ?> 

<Mpeg7 xmlns = http://www.mpeg7.org/2001/MPEG-7_Schema xmlns:xsi = 

"http://www.w3.org/2000/10/XMLSchema-instance"> 

<DescriptionUnit xsi:type = "DescriptorCollectionType"> 

<Image name = "img0.jpg"> 

<Descriptor xsi:type = "EdgeHistogramType"> 

<BinCounts> 

0  2  5  2  4  4  0  7  2  3  6  0  4  3  6  6  0  3  7  5  1  1  5  2  6  4  2  5  

5  6  5  1  4  5  6  5  1  4  7  5  3  2  5  4  5  4  2  5  2  5  6  2  5  3  6  3  

1  7  5  4  6  0  2  5  3  4  1  2  3  6  4  0  7  0  6  5  2  6  3  3  

</BinCounts> 

</Descriptor> 

</Image> 

 </DescriptionUnit> 

</Mpeg7> 

 

Here BinCounts is 3-bit representation of 80 edge histogram values. 

 

4.2.4 Feature Extraction Process 

 

 In this CBIR system, extracting these three low-level features, CL, DC and 

EH, is done offline. Firstly the image collection is supplied from Corel Database [39]. 

There are ten categories in image collection, Architecture, Beach, Bus, Elephant, 
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Flower, Food, Dinosaur, Horse, Human and Mountain and each one has 100 images. 

For each category, CL, DC and EH Descriptors are extracted by using MPEG-7 XM 

Software. After creating each feature XML documents separately, we insert them in 

our XML database manually. 

 

 MPEG-7 XM Software is also used in the process of querying the database. 

Since this CBIR system uses Query By Example paradigm, the same steps in creating 

XML documents of each feature for an image collection are applied to the query 

image. The query image is given to client application of MPEG-7 XM Software as a 

parameter and three features are extracted from that image and stored in a text 

document for further processing. In standard client application of MPEG-7 XM 

Software has a searching module for querying but we excluded this module from 

client application. 

 

4.3 Image Database 
 

We use Berkeley DB XML for storing XML Documents. Berkeley DB XML 

is an open source native XML DB [14] and we can make XPath queries over it.  

Berkeley DB XML is specifically designed to store and manage XML data in 

its native format. Berkeley DB XML is implemented as C++ library on top of 

Berkeley DB, which provides fast, reliable, scalable, and mission-critical database 

support. In Figure 4.4, Berkeley DB XML system architecture is shown. Berkeley DB 

XML provides the following functionality [14]: 

� “Embedded: Berkeley DB XML is a library and this library can be linked into 

the client application to increase performance by eliminating communication 

among processes or systems. The Berkeley DB XML library exposes API's that 

enable C++ and Java applications to interact with the XML data containers.” 

Figure 4.4 shows the Berkeley DB XML system architecture 
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� “Document Storage: Within Berkeley DB XML, documents are stored in 

containers.” 

 

� “Native Storage: client application retrieves the documents exactly as they 

were stored. “ 

 

� “Indexing: Index is defined at the container level and a container may have 

multiple indices. Berkeley DB XML offers effective and flexible indexing 

functionality that gives application developers powerful control over query 

performance. “ 

 

� “Query Processing: Berkeley DB XML queries are expressed as XPath 

expressions.” 

 

 
 

Figure 4.4: Berkeley XML DB system architecture 

 



 44 

� “Threading: Berkeley DB XML is thread-safe, and supports multithreaded and 

multiprocess applications. “ 

 

� “Standards: Berkeley DB XML is implemented to conform to the W3C 

standards for XML, XML Namespaces, and XPath 1.0. “ 

 

In Berkeley DB XML, we store XML documents of DC, CL and EH features of 

an image collection, separately. Extracting these features from image collection and 

creating the image database is done offline. For each collection, there are 100 images’ 

features in one XML document. Because this CBIR system includes three features, 

three XML documents are created and stored in Berkeley DB XML. So to query an 

image over this image database, system firstly queries relevant XML Document then 

continues to query process over that document.  

 

Berkeley XML DB supports insertion/deletion of XML documents but our 

system does not include these functionalities yet. 

 

 

4.4 Similarity Measurement 

4.4.1 Ordered Weighted Averaging (OWA) Operator 
 

An OWA operator [20] of dimension n is a mapping: 

 

F : R� � R,     (4.2) 

 

that has an associated weighting vector W 

 

[ ]T
21 ... W nwww=     (4.3) 

such that 
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where bi is the i th largest element of the collection of the aggregated objects a1,…,an. 

The function value F(a1,…,an) determines the aggregated value of arguments, 

a1,…,an. For example, assume  

 

W = [0.4 0.3 0.2 0.1] 

Then, 

F(0.7, 1, 0.3, 0.6) = (0.4)(1) + (0.3)(0.7) + (0.2)(0.6) + (0.1)(0.3) = 0.76 . 

 

A fundamental aspect of the OWA operator is the re-ordering step, in 

particular an argument ai is not associated with a particular weight wi but rather a 

weight wi is associated with a particular ordered position i of the arguments. A known 

property of the OWA operators is that they include the Max, Min and arithmetic 

mean operators. 

 

 

4.4.2 Distance Function 

 

In general, similarity evaluation of query object with respect to the object in 

database is done by applying some distance function to these two objects. In this case, 

what is actually measured is the distance between feature values, so distance function 

returns a dissimilarity value between two objects. It means that high distances 

correspond to low scores and low distances correspond to high scores. 

 

Commonly used distance function is Minkowski-form distance (Lp): 
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where x and y feature vectors and d is feature dimension. If  

 

� p = 1, L1 is Manhattan or city-block distance 

� p = 2, L2 is Euclidean distance 

� p = ∞, L∞ is maximum distance 

 

 

In this study, we have implemented two versions of M-Tree. In both versions 

distance evaluation is carried out by Euclidean distance function. Euclidean distance 

is a metric distance, which is needed for M-Tree.  

 

Since there are three low-level features that represent the image content, the 

system evaluates different distance value for each feature. But the system has to 

compute an overall distances of these three distance values. For this purpose we use 

OWA operator. 

 

To compute an overall distances of three distance values, first system 

computes distances of each feature and then finds the maximum and minimum 

distances. Finally, the system applies OWA operation to these distances. 

 

4.4.2.1 M-Tree with Non-Fuzzy Dominant Color Distance 
 

 

In this version of M-Tree, CL, DC and EH distances are computed by 

applying Euclidean distance function. For CL feature, the distance function is as 

follows: 
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And for DC feature, distance function is: 

 

���
= = =

−=
n

i

n

j

n

k
DC kjiPercentagekjiPercentageD

0 0 0

2])][][[']][][[( (4.8) 

 

 

where n = 31 and for EH feature, distance function is: 
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where n = 80. 

 

After computing distance values, each distance value is normalized to make 

the distance more straightforward, after that the range should be from 0(similar) to 

1(dissimilar). To apply normalization, the system needs maximum and minimum 

values of the distances, after that maximum distance is set as upper bound, which is 1, 

and minimum distance as lower bound, which is 0. So for each feature there are two 

special distance values evaluated; maximum distance value and minimum distance 

value. 

 

Normalization the distances really cause some trouble. Because normally we 

can calculate the distance of two images just from their only features, but in order to 

do normalization, we need to calculate all the distances in the whole database to find 



 48 

maximum and minimum values, which surely reduce the performance heavily. To 

avoid computing all the distances in the whole database, system finds maximum and 

minimum distance values while creating M-Tree, because there is a lot of distance 

calculation in construction of the tree.  If, in query phase, a distance exceeds 

maximum or minimum, then this distance value is set to 1 or 0. 

 

To compute an overall distance between two images, the system firstly 

computes CL, DC and EH distances and applies normalization each of them 

separately. After normalization of each feature’s distances, the system computes 

overall distance value from these three distances by using OWA operator.  

 

4.4.2.2 M-Tree with Fuzzy Dominant Color Distance 
 
 

This version differs from previous one in computing DC distance and also 

normalization process of CL, DC, EH distances. For evaluating DC distance of two 

images, we took color similarity into account by applying Single Mode DC Search in 

[50]. In this search, system firstly evaluates color similarity by calculating Euclidean 

Distance between two color indexes of first image and second image. If color 

distance is less than a threshold value, which is ‘5’ in this work, then color similarity 

is calculated by extracting color distance from 1.  After calculating color similarity, 

the system evaluates DC similarity by selecting minimum dominant color’s 

percentage of two dominant colors’ percentages and normalizes this minimum value. 

Then color similarity is multiplied with this DC similarity to find final DC similarity 

of two images. And finally DC distance of two images is calculated by extracting 

final DC similarity from 1. 

 

For all colors of first and second images, this process is applied and minimum 

DC distance is selected as overall DC distance of two images. 

 

For CL and EH, distance calculation is similar to other version of M-Tree. 

Only difference comes from normalization of these distances. For normalization, the 
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system calculates possible maximum CL and EH distances and set these values to 1. 

Then CL and EH distances of two images are divided into these maximum CL and 

EH distances to get normalized values. 

 

4.4.2.3 Using OWA 
 

 

To use OWA operator, the system finds a maximum value and a minimum 

value of CL, DC and EH distances. These distances are normalized to be in [0,1]. 

From the definition of OWA aggregation method [20], overall distance is in [0,1], 

too.  

 

Suppose that (d1,d2, ..,dn) are n distance values and order these numbers 

increasingly: d1 ≤ d2 ≤…≤ dn . The OWA operator associated to the n nonnegative 

weights (w1,…,wn) with  
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 where wi � [0,1] and wn ≤  … ≤ w2 ≤ w1  (4.10) 

 

corresponds to 
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It should be noted that the weight wn is linked to the greatest value, dn and w1 

is linked to the lowest value d1 to emphasize similarity between two objects. 

 

 If  (d1,d2, ..,dn) are metric distances, then  

  

D1 = (d1 + d2 + ..+ dn)    (4.12) 

D2 = max(d1, d2, ..,dn)                (4.13) 

D3 = min(d1, d2, ..,dn)              (4.14) 
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are also metrics [40].  So F(d1, d2, ..,dn) is also metric if (d1, d2, ..,dn) are metrics. From 

the definition of OWA aggregation method [20], since  

 

Fmax(d1, d2, ..,dn) = max(d1, d2, ..,dn), where  wn = 1 and wi = 0 for i < n 

Fmin(d1, d2, ..,dn) = min(d1, d2, ..,dn), where  w1 = 1 and wi = 0 for i > 1 

 

and 

 Fmin(d1, d2, ..,dn) ≤ F(d1, d2, ..,dn) ≤ Fmax(d1, d2, ..,dn) , 

 

then F(d1, d2, ..,dn) is also metric.  

  

For example, for to objects O1 and O2, we want to calculate distance between 

these objects, let’s say d(O1, O2), and assume that, for each feature, CL, DC and EH, 

normalized Euclidean distance values are; 

 

dCL(O1, O2) = 0.325 

 

dDC(O1, O2) = 0.570 

 

dEH(O1, O2) = 0.450 

 

 

and OWA weights are; 

w1 = 0.7 

w2 = 0.2 

w3 = 0.1 

 

that is   

w1 + w2 + w3 = 0.7 + 0.2 + 0.1 = 1 , 

 

then overall distance is: 
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d(O1, O2) = F(dCL(O1, O2), dDC(O1, O2), dEH(O1, O2) ) 

 

    = w1 *  dDC(O1, O2) + w2 * dEH(O1, O2) + w3 * dCL(O1, O2) 

 

      = 0.7 * 0.570 + 0.2 * 0.450 + 0.1 * 0.325 

 

  = 0.522 

    

4.5 Indexing and Querying  
 

In tradition database, indices are based on text, character string or number. 

Indices in multimedia database, however, are not restricted in text based, but also 

possible be icon records. So an ideal CBIR system should be scalable to large image 

collections and should support fast retrieval. For this purpose multi-dimensional 

indexing is used. For an efficient similarity search in a typical CBIR system it is 

necessary to store the feature vectors in a multi-dimensional index structure and use 

the index structure to efficiently evaluate the distance metric. Moreover multi-

dimensional index structure must efficiently support both range and nearest neighbor 

queries. 

 

For indexing multimedia data we have used M-Tree known as a dynamic and 

balanced access structure suitable to index generic metric spaces. With this structure, 

indexed objects must belong to a metric space.  

 

The similarity between the objects in M-Tree index structure is calculated by 

a distance function satisfying the properties of symmetry, positivity and triangle 

inequality for any triple of objects. 
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4.5.1 M-Tree 

 

The M-tree is a dynamic paged structure that can be efficiently used to index 

multimedia databases, where the object is represented by means of complex features 

and the object proximity is defined by a distance function satisfying the positivity, 

symmetry, and triangle inequality postulates. Similarity queries of the objects require 

the computation of time-consuming distance functions. Previously, the M-tree 

indexing structure and the algorithms of inserting, querying and bulk loading have 

been reported [15] [43]. And it turns out that M-tree is an excellent indexing 

technique for the query of multimedia database. 

 

M-tree organizes objects in an arbitrary metric space, which is defined in 

Section 2.1.4. Examples of distance functions that can be used in M-tree are 

Minkowski-form distances (Euclidean distance, Manhattan distance etc). Since metric 

spaces strictly include vector spaces, M-tree has a far more general applicability than 

spatial access methods, such as the R-tree [17]. An example view of the tree structure 

is shown in Figure 4.5 and Figure 4.6.  

 

The concept of M-tree relies on metric tree that partitions a given search space 

by considering relative distances between objects, and such partitioning algorithm is 

critical to the effectiveness of the tree. A major differentiation of M-tree from other 

metric trees is that the design has to give efficient secondary storage organization 

[15]: 

 

� Paged: tree is paged (consisting of fixed-size or variable-size nodes) 

 

� Balanced: paths from the root to leaves all have the same length 

 

� Dynamic: able to deal with insertions and/or deletions without degrading 

search performance and storage utilization, and avoiding global tree 

reorganization, like Spatial Access Methods. 



 53 

 

 
Figure 4.5: Example distribution of data and covering regions.  

 
 

 

M-tree has two types of node structures: leaf node and internal node. Leaf 

node stores a ground object and an internal node that stores a routing object. 

Database objects are recursively organized by considering their distances from 

reference or routing objects. And these routing objects are also database objects, 

which acquire their routing roles according a specific promotion algorithm. 

 

The general information for a routing object entry is shown in Figure 4.7 and 

includes [15]: 
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 Figure 4.6: M-Tree overview  

 

 

 

� Or: (feature value of the) routing object 

� ptr(T(Or)): pointer to the root of T(Or), where T(Or) is a sub-tree 

�  r(Or): covering radius of Or 

�  d(Or, P(Or)): distance of Or from its parent, where P(Or) is parent of routing 

object 
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Figure 4.7: Routing and Database objects of M-Tree. 
 

 

 

And the leaf nodes (database object entry) are shown in Figure 4.7 and 

contain: 

 

� Oj: (feature value of the) database object 

� oid(Oj): object identifier 

� d(Oj, P(Oj)): distance of Oj from its parent 
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Routing object Oj is used to access to a sub-tree, T(Oj), through a root pointer, 

ptr(T(Oj)),where T(Oj) is  the covering tree of Oj. T(Oj) consists of the union of {Oj} 

and the set of objects in T(Oj). A covering tree has the property that all objects in the 

covering tree of Oj are within the distance r(Oj) from Oj, r(Oj) > 0, which is called the 

covering radius of Oj. Hence the covering radius of Oj, r(Oj) is defined as: 

 

r(Oj) ≥ max{d(Oj, Oi) | Oi ∈ T(Oj)}   (4.15) 

 

And the covering region R(Oj): 

 

R(Oj) = { Oi ∈ T(Oj) | d(Oj, Oi) ≤ r(Oj)}  (4.16) 

 

 

The basic M-tree operations include querying, insertion, deletion and tree 

construction (bulk loading), and details can be found in M-tree specifications 

[15][43]. In next section, querying the M-Tree is briefly explained. 

 

 

4.5.1.1 Querying the M-Tree 

 

For a given specific metric defined by its distance, M-tree is able to support 

processing of two main types of queries: range queries; finding all objects that are 

within a specific distance from a given object and nearest Neighbor Query (k-NN); 

finding a specific number, k, of closest objects to a given query object. These queries 

are defined as follows: 

 

Range Query: Given a query object DQ ∈ , where D is domain of feature 

values, and for a distance (range) r(Q), the range query range(Q, r(Q)) selects all 

indexed objects jO  such that 

)(),( QrQOd j ≤     (4.17) 
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For example, a range query becomes: 

 

 “Find all images which have a distance value less than 0.2 from query 

image” 

 

k-nearest Neighbors Query (k-NN):  Given a query object DQ ∈  and an 

integer 1≥k , the k-NN query NN(Q, k) selects the k indexed objects which have the 

shortest distance from Q. For example, a k-NN query becomes: 

 

 “Find 10 nearest images to query image” 

 

For querying the tree, triangle inequality is used to prune some nodes (i.e., 

sub-tree) from the search, thus reduce the distance computations. Triangle inequality 

is used as follows: 

 
Suppose that we are looking for the closest point to Q, as in Figure 4.8 in a 

database of 3 objects. Further suppose that the triangular inequality holds, and that we 

have pre-compiled distances between all the items in the database. Such that  

 

d(a, b) = 6.70 

d(a, c) = 7.07 

d(b, c) = 2.30 

 

 
 

Figure 4.8: A Sample data for querying 
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And, we find a and calculate that it is 2 units from Q, it becomes our best-so-far. we 

find b and calculate that it is 7.81 units away from Q. Now we don’t have to calculate 

the distance from Q to c, because of triangle inequality, so that: 

 

),(),(),( cbdcQdbQd +≤  

),(),(),( cQdcbdbQd ≤−=  

= 7.81 – 2.30 � d(Q, c) 

= 5.51 � d(Q, c) 

 

The distance between Q and c is at least 5.51 units, but our best-so-far is only 2 units 

away. 

 

An example range query is explained below. For this example, an M-Tree is 

shown in Figure 4.10.  

 

Suppose that an image is given to the system for selecting the images which 

have a distance from query image less or equal than 0.2 (r = 0.2). Query image’s CL, 

DC and EH feature values are shown below; 

 

CL Descriptor: 

 

<Image name = "97.jpg"> 

<Descriptor xsi:type = "ColorLayoutType"> 

<YDCCoeff>10</YDCCoeff> 

<CbDCCoeff>19</CbDCCoeff> 

<CrDCCoeff>30</CrDCCoeff> 

<YACCoeff5>14  10  16  16  10 </YACCoeff5> 

<CbACCoeff2>15  21 </CbACCoeff2> 

<CrACCoeff2>14  17 </CrACCoeff2> 

</Descriptor> 
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</Image> 

 

DC Descriptor: 

 

<Image name = "97.jpg"> 

<Descriptor size = "7" xsi:type = "DominantColorType"> 

<SpatialCoherency>0</SpatialCoherency> 

<Values> 

<Percentage>9</Percentage> 

<ColorValueIndex>2  2  1 </ColorValueIndex> 

</Values> 

<Values> 

<Percentage>5</Percentage> 

<ColorValueIndex>8  11  5 </ColorValueIndex> 

</Values> 

<Values> 

<Percentage>2</Percentage> 

<ColorValueIndex>12  9  8 </ColorValueIndex> 

</Values> 

<Values> 

<Percentage>1</Percentage> 

<ColorValueIndex>27  25  24 </ColorValueIndex> 

</Values> 

<Values> 

<Percentage>5</Percentage> 

<ColorValueIndex>5  6  3 </ColorValueIndex> 

</Values> 

<Values> 

<Percentage>5</Percentage> 

<ColorValueIndex>11  15  6 </ColorValueIndex> 

</Values> 
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<Values> 

<Percentage>1</Percentage> 

<ColorValueIndex>20  12  10 </ColorValueIndex> 

</Values> 

</Descriptor> 

</Image> 

 

EH Descriptor: 

 

<Image name = "97.jpg"> 

<Descriptor xsi:type = "EdgeHistogramType"> 

<BinCounts> 

2  4  5  4  6  1  3  5  3  7  3  2  5  4  7  3  2  5  3  7  1  5  5  

5  3  2  4  4  6  5  3  4  4  5  4  2  3  6  5  5  2  6  5  3  4  2  

3  4  7  6  2  3  4  5  7  2  2  5  3  4  1  4  6  5  6  2  3  5  5  

7  1  2  5  4  7  2  4  4  6  6  

</BinCounts> 

</Descriptor> 

</Image> 

 

And query image is shown in Figure 4.9. 

 

 
 

Figure 4.9: Query Image 
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So the system firstly calculates the distance between query image, Q, and root 

node entries of the M-Tree. Suppose that the distances are: 

 

d(Q, A) = 0.360 

d(Q, B) = 0.455 

d(Q, C) = 0.045 

 
For the sub-tree of A, the system decides whether this sub-tree will be pruned 

or not. This is done as: 

 

For first child of A, which is A1 and equal to the A (A1 and A are the same 

objects), triangle inequality is used to prune (or not to prune) the sub-tree of A1.  

 

If   

)()(),(),( 11 ArQrAAdAQd +>− |   (4.18) 

 

then we can prune the sub-tree of A1 (from M-Tree paper). From the M-Tree, we 

know the distance between an entry and its child entry,  

 

d(A, A1) = 0  (Since A and A1 are the same objects) 

 
Then 

)()(),(),( 11 ArQrAAdAQd +>−    

|0.360- 0| > 0.2 + 0.152 

0.360 > 0.352 

 

so we can prune the sub-tree A1. 

 
For second entry of sub-tree of A, that is A2, the system prunes or doesn’t 

prune the sub-tree by using triangle inequality. But this time r(A2) is equal to zero 

since A2 is also leaf node (a3 and A2 are the same objects). So, if   
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)(),(),( 2 QrAAdAQd >−    (4.19) 

 

then we can prune the sub-tree of A2 (we don’t need to calculate the distance between 

Q and A2, d(Q, A2)). 

 

Then 

)(),(),( 2 QrAAdAQd >−  

|0.360 – 0.229| > 0.2 

0.131 < 0.2 

 

so we have to calculate the value of d(Q,A2), which is equal to 0.333. But, since  

 

d(Q,A2) > r(Q) 

0.333 > 0.2 

 

A2 is not included in query results. 

 

For the root entry B and its child entries B1, B2 and B3, the same steps are 

applied and the sub-tree B1 and B2 is pruned while the leaf nodes (b4 and b5) of the 

sub-tree B3 should be evaluated. So d(Q,b4) and d(Q,b5) are calculated. 

 

d(Q,b4) = 0.231 

d(Q,b5) = 0.312 

 

Since these values are greater than desired range (r(Q)), b4 and b5 (image 7 and 

image 8 respectively) is ignored. 

 

For the C entry of root node, the same steps are applied. And the distances of 

all leaf nodes in the sub-tree of C are calculated. These leaf nodes are also in the 

expected results of the query Q. The distance values are; 
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Figure 4.10: Example M-Tree for 11 images 
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     d(Q,c1) = 0.045 

d(Q,c2) = 0.072 

d(Q,c3) = 0.110 

 

and c1, c2 and c3 are added to the query result set.  

 

4.5.2 Fuzzy Query 

 

To support fuzzy queries, we developed Web-based user interface with 

JSP/Servlet technologies. There are three types of fuzzy queries;  

 

� Image-based  

� Feature-based.  

� Color-based 

 

Image–Based Fuzzy Query: If whole image query is selected, the user has to 

select similarity degree for query image which is consists of ‘Almost Same’, ‘Very 

Similar’, ‘Similar’ and ‘Not Similar’. Then the system maps this similarity degree 

into a distance range and searches the tree to retrieve result images, which have a 

distance to query image in that range. And finally results are shown to the user with 

their distance value to the query image. The general syntax of this type of query is as 

follows: 

 

QUERY={{<Similarity>} } 

where 

Similarity = {<Almost Same>|<Very Similar>|<Similar >|<Not Similar >|} 

 

For an example, suppose that user gives the following similarity values for the 

features; ‘Very Similar to Query Image’. Then our query is defined as: 
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QUERY= {Very Similar to Query Image} 

 

And suppose that these similarity values are mapped into distance ranges as 

follows: 

 

‘Almost Same’: [1, 0.95) 

‘Very Similar’: [0.95, 0.85) 

‘Similar’: [0.85, 0.5) 

‘Not Similar’: [0.5, 0.0]. 

 

So final distance range is negotiation of this similarity range, which is  

 

=(0.05, 0.15] 

 

Finally the system retrieves the images, which have a distance value from query 

image in that range.  

 

Feature–Based Fuzzy Query: Another type of query is feature-based fuzzy 

query. In this type, the user must supply similarity values for all three features DC, 

CL and EH. These similarity values are the same of the ones in image-based fuzzy 

query. For combining these similarities AND/OR operators must be given. Then the 

system applies some conjunction/ disjunction procedures to get final similarity values 

and maps these values into distance range. These conjunction/disjunction procedures 

are explained in [49]. 

 

Conjunction rule: )}(),(min{ xx BABA µµµ =∧     (4.20) 

 

Disjunction rule: )}(),(max{ xx BABA µµµ =∨     (4.21) 
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If AND operator is supplied to combine feature similarities, the system uses 

disjunction rule, and if OR operator is supplied to combine feature similarities, the 

system uses conjunction rule. The general syntax of this type of query is as follows: 

 

QUERY={{<Similarity><Feature >}<&>{<QUERY>}} 

where 

Similarity = {<Almost Same>|<Very Similar>|<Similar >|<Not Similar >|} 

Feature = {<CL>|<DC >|<EH >} 

 

For an example, suppose that user gives the following similarity values for the 

features; 

 

‘Very Similar’ for CL feature, ‘Similar’ for DC feature, ‘Almost Same’ for EH 

feature. Then our query is defined as: 

 

QUERY= {Very Similar in CL OR Similar in DC AND Almost Same as EH} 

 

And suppose that these similarity values are mapped into distance ranges as 

follows: 

 

‘Almost Same’: [1, 0.95) 

‘Very Similar’: [0.95, 0.85) 

‘Similar’: [0.85, 0.5) 

‘Not Similar’: [0.5, 0.0]. 

 

Then our query is like:  

 

‘Very Similar in CL OR Similar in DC AND Almost Same as EH’ 

 
To get final similarity, the system combines these feature similarities as follows: 
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Firstly AND operator between DC and EH feature is taken into account, so 

query becomes:  

 
‘Very Similar in CL OR (Similar in DC AND Almost Same as EH)’. 

 

(Similar DC AND Almost Same as EH) part of the query is mapped into similarity 

ranges and conjunction rule is applied to this part. So range value is equal to; 

 

min([0.85, 0.5) , [1, 0.95)) 

= [0.85, 0.5) 

 

Then system comes to combine CL feature similarity with this value by applying 

disjunction rule that is; 

 

max ([0.95, 0.85) , [0.85, 0.5)) 

=[0.95, 0.85). 

 

And final distance range is negotiation of this similarity range, which is  

 

 =(0.05, 0.15] 

 

Finally the system retrieves the images, which have a distance value from query 

image in that range.  

 

Color–Based Fuzzy Query: Color-Based Fuzzy Query differs from other 

fuzzy queries in query paradigm. This type of query is not an example image based 

query so user has to supply degree of three colors’ percentages in expected images. 

By this type of query, the system has the facility of asking for a query in terms of the 

color content of the image [51]. To support this query type, system gives opportunity 

of defining amount of main colors in the image. To do this, the user must supply each 

color’s percentage in terms of natural language like ‘mostly’, ‘many’, ‘normally’, 
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‘few’, ‘very few’  so the user can able to pose a composite query in terms of colors. 

The general syntax of this type of query is as follows: 

 

QUERY={{<Content><Color>}<&>{<QUERY>|<>}} 

where 

Content = {<mostly>|<many>|<normally>|<few>|<very few>} 

Color = {<Red>|<Green>|<Blue>} 

 

An example query becomes as follows: 

 

QUERY={many red AND mostly green OR very few blue}. 

 

Mapping function of these linguistic terms into similarity values is defined 

according to data set. For example, for testing Corel Dataset, we have used the 

following values: 

 

‘Mostly: [1, 0.88) 

‘Many’: [0.88, 0.85) 

‘Normally’: [0.85, 0.82) 

‘Few’: [0.82, 0.80). 

‘Very Few’: [0.80, 0.0]. 

 
After defining the query, system searches the tree for each color seperately by 

using predefined query features in DC and CL for pure red,green and blue colors. EH 

feature is not important since query is a color query, so the distance value for EH 

feature is set to zero. Then result sets of each color’s query are combined into final 

result set. If AND operator is used in composite query then all objects which are in 

both result sets are shown to the user with similarity degree. If OR operator is used 

then all objects of both result sets are shown to the user with similarity degree. 
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4.6 User Interface 
 

Graphical User Interface (GUI) is developed with JSP/Servlet. To run the 

system, user has to define some parameters. First one of them is dataset that will be 

used by the system. After selecting the dataset, database is loaded by pressing ‘Load 

DB’ button. Then version of the index structure must be selected. Query image is 

dependent to query type and also dependent to the selected dataset that is user can 

select query image only from selected dataset.  

 

There are four types of queries, which are mentioned before; k-NN query, 

image-based fuzzy query, feature-based fuzzy query and color-based fuzzy query. 

And only one of them at a time can be selected.  

 

If k-NN query is selected then the user has to supply a ‘k’ value to see k 

nearest images to the query image. If image-based fuzzy query is selected then image 

similarity must be given to the system, which can be ‘Almost Same’, ‘Very Similar’, 

‘Similar’ and ‘Not Similar’. Then the system maps this similarity degree into a 

distance range and searches the tree to retrieve result images, which have a distance 

to query image in that range. And finally results are shown to the user with their 

distance value to the query image. 

If the user selects feature-based fuzzy query, then each feature similarity must 

be supplied, which is the same of image-based fuzzy query. For combining feature 

similarities, user can select AND or OR operators. Then the system applies some 

conjunction/disjunction procedures to get final similarity values and maps these 

values into distance range.  

 

If color-based fuzzy query is selected, then each color’s percentage must be 

supplied in linguistic terms like ‘mostly’, ‘many’, ‘normally’, ‘few’ and ‘very few’. 

Then system searches the tree for each color to retrieve results by applying some 

conjunction/ disjunction rules.  
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After defining system parameters, system runs by pressing ‘Run’ button. And 

results are shown to the user with rank and distance value from query image.  The 

user can search the system by returning to the index page of the GUI. 

 

Running examples of the system are shown in Appendix-A. 
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CHAPTER 5 

 

PERFORMANCE EXPERIMENTS 
 

To test the performance of our content-based image retrieval system, we have 

used images from Corel Database [39] and random images from web. For creating the 

index structure, we have made tests over image database that contains 100, 200, 300 

and 400 Corel images to evaluate number of distance computation and construction 

time of the index structure. Our system also had been tested by k-NN query 

paradigm. With these tests, number of distance computation and query cost time had 

been examined. Also retrieval efficiency of the system had been evaluated by using 

Average Normalized Modified Retrieval Rank (ANMRR) metric [47]. 

 

5.1 Building the M-Tree 
 

As any other dynamic balanced tree, M-tree grows in a bottom-up fashion 

[15]. Building a M-tree can repeatedly insert objects into null tree using insertion 

method or for better performance, bulk-loading techniques are also proposed [43]. 

The algorithm involves partitioning the set of objects by sampling and repeats the 

same partitioning from the leaf level up, which will eventually gives a non-balanced 

tree. Then refinement steps are invoked which reassigns objects in under-filled sets to 

other sets, and split “taller” (in terms of path length from root) sub-trees to obtain a 

number of “shorter” sub-trees.  
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5.1.1 Split Policies 

 

5.1.1.1 Choosing Routing Objects 

 

The partition strategy is crucial to the tree performance. The “ideal” split 

policy should find the “most suitable” routing object, Op1 and Op2, and partition the 

objects such that the “volume” and “overlap” are minimized [15]. The possible 

strategies of selecting routing object are shown in Table 5.1. 

  

Table 5.1: Possible strategies for selecting routing objects 
 

 

 

m_RAD 

 

 

“minimum” (sum of) RADii: consider all 

possible pairs of objects and promote the 

pair of objects which minimize the sum of 

covering radii 

 

 

most complex (distance 

computation), but gives 

good tree structure 

 

 

mM_RAD 

 

similar to m_RAD but the maximum of the 

two radii is minimized 

 

 

 

 

M_LB_DIST 

 

“Maximum Lower Bound on DISTance”: 

uses pre-computed stored distance; fix Op1 

= Op and determines Op2 as the farthest 

object from Op 

 

a relatively “cheap” 

policy (in terms of 

distance computation) 

 

RANDOM 

 

 

randomly pick the reference object 

 

not a “smart” strategy, 

but fast tree construction 

 

 

 

SAMPLING 

 

variant of RANDOM but iterated over a 

sample of objects for which the resulting 

maximum of the two covering radii is 

minimum 
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5.1.1.2 Distribution of Entries 

 

When the promoting objects are found, the entries are distributed into two 

sets, N1 and N2. Two suggested strategies are shown in Table 5.2. 

 

Table 5.2: Possible strategies of distribution of entries. 
 

 

Generalized Hyperplane 

 

 

assign each object to the nearest routing object 

 

 

 

 

Balanced 

 

compute d(Oj, Op1) and d(Oj, Op2) for all Oj and repeat 

until N is empty: 

� assign to N1 the nearest neighbor of Op1 and remove 

from N; 

� assign to N2 the nearest neighbor of Op2and remove 

from N; 

 

 

 

5.1.2 Evaluating Effectiveness of Building the M-Tree 

 

We have used two different approaches for evaluating similarity between 

images to build the M-Tree. For the first approach, we have used weighted Euclidean 

distance function with equal weights which sum is equal to one. For the second 

approach, we have used OWA operators to define the weights in Euclidean distance 

function. 
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 To evaluate the performance of building the tree two tests with different 

parameter sets, which are defined in M-Tree Project [42] [46], performed. These 

parameters are; 

 

� MIN UTIL Minimum node utilization. It is used to guarantee a minimum fill 

factor for tree nodes during the split. It can assume values in the range [0 , 0.5] 

 

� PROMOTE_PART_FUNCTION: This parameter is used for defining split 

policy. Specifies the algorithm used to promote objects in the parent role. 

Assuming the set of following values:  

 

o RANDOM: Random promotion.  

 

o CONFIRMED: Confirmed promotion, variable PROMOTE VOTE 

FUNCTION is then used to choose between confirmed policies. 

 

o MAX_UB_DIST: Maximum upper bound on distances policy; the two 

objects having the maximum distance from parent object are chosen. 

 

o MIN_RAD: Minimum maximum radius policy. 

 

o MIN_OVERLAPS: Minimum overlap policy 

 

o SAMPLING: Sampling promotion; variable NUM_CANDIDATES 

specifies the number of samples. 

 

� PROMOTE_VOTE_FUNCTION: This parameter is meaningful when 

confirmed PROMOTE_PART_FUNCTION is used for defining split policy 

and specifies the algorithm used to promote one object as one of the two 

parents, the other being the parent object of the split node. Assuming the set of 

following values: 
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o RANDOMV:  Random confirmed promotion. 

 

o SAMPLINGV: Sampling confirmed promotion; 

NUM_CANDIDATES specifies the number of samples. 

 

o MAX_LB_DIST: Maximum lower bound on distances promotion (i.e., 

the object farthest from the parent object is chosen). 

 

o mM_RAD: minimum radius confirmed policy, variable RADIUS 

FUNCTION is then used to choose between available policies. 

 

� RADIUS_FUNCTION: Minimum radius method. Assuming the set of 

following values: 

 

o LB: Minimum maximum lower bound on radius policy;  

 

o AVG: Minimum maximum average bound on radius policy;  

 

o UB: Minimum maximum upper bound on radius policy.  

 

� SECONDARY PART FUNCTION: Root promotion method. It is only used 

when splitting the root node and can assume the same values of the PROMOTE 

PART FUNCTION variable. However, since the root node does not have a 

parent object, this cannot be a confirmed policy. 

 

� NUM_CANDIDATES: Number of candidate objects for sampling methods. 

 

� SPLIT_FUNCTION: This specifies the way objects in the overfull node are to 

be divided between the two new nodes. Assuming the set of following values:  
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o G_HYPERPL the generalized hyperplane partition strategy;  

 

o BAL_G_HYPERPL the balanced hyperplane partition strategy;  

 

o BALANCED the balanced strategy. 

 

� PAGE_SIZE:  The size of disk pages. 

 

 

5.1.2.1 Confirmed Promotion 

 

For the first test, we used following values for these parameters: 

 

� PROMOTE_PART_FUNCTION: CONFIRMED  

 

� SECONDARY PART FUNCTION: mM_RAD  

 

� RADIUS_FUNCTION: LB 

 

� SPLIT_FUNCTION: G_HYPERPL 

 

We have performed this test for five different minimum utilization values and 

for five different page sizes. Also four different databases are used in tests and results 

are shown in figures below. (EWS: Equal Weighted Sum, OWA: Ordered Weighted 

Aggregation) 
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computed distances for 100 images (PAGESIZE=8K)
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Figure 5.1: Computed Distances for 100 images as a function of minimum utilization 

with page size = 8K 
 
 
 

 
 

Figure 5.2: Construction Time for 100 images as a function of minimum utilization 
with page size = 8K 
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computed distances for 200 images (PAGESIZE=16K)
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Figure 5.3: Computed Distances for 200 images as a function of minimum utilization 

with page size = 16K 
 

Construction Time of M-Tree for 200 images (PAGESIZE=16K)
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Figure 5.4: Construction Time for 200 images as a function of minimum utilization 

with page size = 16K 
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computed distances for 300 images (PAGESIZE=16K)
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Figure 5.5: Computed Distances for 300 images as a function of minimum utilization 

with page size = 16K 
 

Construction Time of M-Tree for 300 images (PAGESIZE=16K)

2270,91

4263,41

6078,88

8019,61

9787,22

2294,34

4450,22

6450,27

0

2000

4000

6000

8000

10000

12000

minimum utilization

tim
e 

(s
)

OWA 2270,91 4263,41 6078,88 8019,61 9787,22

EWS 2294,34 4450,22 6450,27

0,1 0,2 0,3 0,4 0,5

 
Figure 5.6: Construction Time for 300 images as a function of minimum utilization 

with page size = 16K 
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computed distances for 300 images (PAGESIZE=32K)
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Figure 5.7: Computed Distances for 300 images as a function of minimum utilization 

with page size = 32K 
 
 

Construction Time of M-Tree for 300 images (PAGESIZE=32K)
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Figure 5.8: Construction Time for 300 images as a function of minimum utilization 

with page size = 32K 
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computed distances for 400 images (PAGESIZE=16K)
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Figure 5.9: Computed Distances for 400 images as a function of minimum utilization 

with page size = 16K 
 
 

Construction Time of M-Tree for 400 images (PAGESIZE=16K)
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Figure 5.10: Construction Time for 300 images as a function of minimum utilization 

with page size = 16K 
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computed distances for 400 images (PAGESIZE=32K)
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Figure 5.11: Computed Distances for 400 images as a function of minimum 
utilization with page size = 32K 

 
 

Construction Time of M-Tree for 400 images (PAGESIZE=32K)
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Figure 5.12: Construction Time for 400 images as a function of minimum utilization 

with page size = 32K 
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5.1.2.2 Random Promotion 

 

For the first test, we used following values for these parameters: 

 

� PROMOTE_PART_FUNCTION:  RANDOM 

 

� SECONDARY PART FUNCTION: RANDOM 

 

� SPLIT_FUNCTION: G_HYPERPL 

 

We have performed this test for five different minimum utilization values and 

for five different page sizes. Also four different databases are used and results are 

shown in figures below. (EWS: Equal Weighted Sum, OWA: Ordered Weighted 

Aggregation) 
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Figure 5.13: Computed Distances for 100 images as a function of minimum 

utilization with page size = 8K 
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Construction Time for 100 images (PAGESIZE=8K)
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Figure 5.14: Construction Time for 100 images as a function of minimum utilization 

with page size = 8K 

Computed Distances for 200 images (PAGESIZE=16K)
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Figure 5.15: Computed Distances for 200 images as a function of minimum 

utilization with page size = 16K 
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Construction Time for 200 images (PAGESIZE=16K)

798,375

1454,44

2001,39

2486,98

3026,74

868,61

1658,84

2356,06

3028,53

3671,94

0

500

1000

1500

2000

2500

3000

3500

4000

minimum utilization

tim
e 

(s
)

OWA 798,375 1454,44 2001,39 2486,98 3026,74

EWS 868,61 1658,84 2356,06 3028,53 3671,94

0,1 0,2 0,3 0,4 0,5

 
Figure 5.16: Construction Time for 200 images as a function of minimum utilization 

with page size = 16K 

 

Computed Distances for 300 images (PAGESIZE=16K)
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Figure 5.17: Computed Distances for 300 images as a function of minimum 

utilization with page size = 16K 
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Construction Time for 300 images (PAGESIZE=16K)
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Figure 5.18: Construction Time for 300 images as a function of minimum utilization 

with page size = 16K 
 
 

Computed Distances for 400 images (PAGESIZE=16K)
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Figure 5.19: Computed Distances for 400 images as a function of minimum 

utilization with page size = 16K 
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Construction Time for 400 images (PAGESIZE=16K)
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 Figure 5.20: Construction Time for 400 images as a function of minimum utilization 

with page size = 16K 
 
 

5.2 Querying the M-Tree 
 

5.2.1 Retrieval Effectiveness 

 

To evaluate the retrieval effectiveness of querying the M-Tree, we have used 

ANMRR performance metric [47]. This value is defined as follows: 

 

 First, we denote NG(q),  K(q),  R(k) as follows, 

 

NG(q) : the number of the ground truth images (expected result images) for a query q. 

K(q) = min(4 *NG(q), 2 * GTM), Where GTM is max{NG(q)} for all q’s. 

R(k) = rank of an image k in retrieval results. 
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Rank(k) is defined as follows, 
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Using equation (5.1), AVR(Average Rank) for query q is defined as follows: 
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However, with ground truth sets of different size, the AVR value depends on 

NG(q). To minimize the influence of variations in NG(q), MRR (Modified Retrieval 

Rank) is defined as follows, 
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The upper bound of MRR depends on NG(q). To normalize this value, NMRR 

(Normalized Modified Retrieval Rank) is defined as follows, 
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NMRR(q) has values between 0(perfect retrieval) and 1(nothing found). And 

evaluation measure value for whole set over query sets, ANMRR (Average 

Normalized Modified Retrieval Rank) is defined as follows, 
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 where Q is the total number of the queries. 

 

5.2.1.1 Results 

 

 For two types of both M-Tree versions that are created with distance 

functions, weighted Euclidean with equal weights and weighted Euclidean using 

OWA, we have tested 335 queries. And also we compared the ANMRR results of our 

system with the ANMRR results of each three feature (CL, DC and EH) of MPEG-7 

XM Software. And results are shown in Table 5.3.  

 

 Table 5.3: ANMRR results of Our CBIR System and XM Software for 335 queries. 
 

  ANMRR value (335 

queries) 

M-Tree - Non-Fuzzy DC 

Distance 

Weighted Euclidean with 

OWA 

0. 342271 

M-Tree - Non-Fuzzy DC 

Distance 

Weighted Euclidean with 

equal weights 

0. 394931 

M-Tree - Fuzzy DC 

Distance 

Weighted Euclidean with 

OWA 

0.355033 

M-Tree - Fuzzy DC 

Distance 

Weighted Euclidean with 

equal weights 

0.398003 

MPEG-7 XM Software 

 

(Only CL Feature) 0. 338113 

MPEG-7 XM Software 

 

(Only DC Feature) 0. 407258 

MPEG-7 XM Software 

 

(Only EH Feature) 0. 423513 
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5.2.2 K-NN Query 

 

 To evaluate the effectiveness of k-NN query, we have tested 400 queries to 

retrieve top 10 images (k=10) from the XML database, which has 400 images. For 

two types of M-Tree that are created with distance functions we have tested the tree 

with following parameters: 

 

� PROMOTE_PART_FUNCTION:  RANDOM 

 

� SECONDARY PART FUNCTION: RANDOM 

 

� SPLIT_FUNCTION: G_HYPERPL 

 

� PAGE_SIZE: 16K 

 

� MIN_UTIL: 0.1 

 

 

5.2.2.1 Distance Computations 

 

 The number of the distance computations is important for evaluating query 

performance. Because the distance function in M-Tree is expected to be complex, this 

number is directly related to the performance of the CBIR system. 

 

 In Table 5.4, minimum and maximum number of distance computations is 

shown for 400 queries. 

  

 



 91 

5.2.2.2 Query Cost Time 

 

In Table 5.4, minimum and maximum number of query cost time is shown for 

400 queries. 

 

Table 5.4: Minimum and Maximum Query Cost Time and Computed Distances for 
400 Queries in 10-NN Query. 

 

 Query Cost Time 

(s) 

Computed 

Distances 

 Min Max Min Max 

Weighted Euclidean with OWA 

 

194.516 398.297 215 403 

Weighted Euclidean with Equal 

Weights 

342.516 400.859 383 406 

 

 

5.3 Discussion 
 

We have designed and implemented a content-based image retrieval system that 

evaluates the similarity of each image features in its database to a query. For efficient 

search and retrieve process, we have built M-Tree index structure. Our system has 

been tested for constructing and for querying this tree.  

 

While creating M-Tree, number of distance computations and cost time are 

the key values for evaluating efficiency of the system. For this purpose, tests for 

building the tree include the number of distance computations and construction time 

for M-Tree using weighted-Euclidean distance function with OWA and for M-Tree 

using weighted-Euclidean distance function with equal weights. Tests for building the 

tree has been made for two different promotions, Confirmed and Random. In both 

promotions, our database contains 100, 200, 300 and 400 images. Page size parameter 
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of the index structure varies from 8K to 32K and minimum utilization parameter is 

between 0.1 and 0.5. For construction time, it can be seen from the figures of Section 

5.1.2.1 and Section 5.2.1.2 that a significant improvement can be achieved by using 

OWA operators in distance function to calculate distance. For example, for confirmed 

promotion with 16K page size, 0.5 as minimum utilization value and 200 images’ 

features in database, M-Tree using weighted-Euclidean distance function with OWA 

has less construction time (3306.06 s) than M-Tree using weighted-Euclidean 

distance function with equal weights (3710.55 s). 

 

Number of computed distances is another important value for evaluating the 

efficiency of the system. Tests have been made for calculating the number of 

computed distances with same parameters and same databases. From the figures of 

Section 5.1.2.1 and Section 5.2.1.2 it can be seen that a significant improvement can 

be achieved by using OWA operators in distance function to calculate distance. For 

example, for confirmed promotion with 16K page size, 0.5 as minimum utilization 

value and with database of 200 images’ features, M-Tree using weighted-Euclidean 

distance function with OWA has less distance computation (8626 distance 

computations) than M-Tree using weighted-Euclidean distance function with equal 

weights (9551 distance computations). 

 

Tests for querying M-Tree contain same values, number of distance 

computations and cost time. For k-NN queries, number of distance computations is 

important for performance of the CBIR system. We have made 400 queries for testing 

the system that contains 400 images’ features. As can be seen from Table 5.4, our 

approach has less distance computations then equal weighted Euclidean distance 

function. And this improvement effects to the query cost time, directly. 

 

Also for evaluating retrieval efficiency, we have used ANMRR metric. As can 

be seen from Table 5.3, our approach has less ANMRR values than equal weighted 

Euclidean distance function. Also this system achieves a significant improvement 

according to MPEG-7 XM Software, except CL feature, which has nearly same 
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performance with M-Tree. MPEG-7 XM Software’s search engine with only CL 

feature has nearly same ANMRR values because of type of the images used in this 

work. Also it can be easily seen from Table 5.3 that for querying the system, both 

version of M-Tree have a good retrieval performance. Since we are using fuzzy DC 

distance in second version of M-Tree, retrieval results of this version has more 

objects than M-Tree with non-fuzzy DC distance. This is the effect of using color 

similarity to evaluate fuzzy DC distance. 

 

The results indicate performance improvement using OWA operators for 

evaluating the weights of weighted Euclidean distance function in CBIR systems. As 

analyzing experimental results, we show evidence validating our method is effective 

in CBIR systems. 
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CHAPTER 6 

 

CONCLUSION AND FUTURE WORK 
 

We have designed and implemented a content-based image retrieval system 

that evaluates the similarity of each image by using OWA operators in its distance 

function. Also this system is fully based on XML and MPEG-7 frameworks. 

 

For the distance evaluation between images, we use weighted Euclidean 

distance and each weight is evaluated by using OWA operators. In this system, we 

used three descriptors of MPEG-7, Color Layout, Dominant Color and Edge 

Histogram.  

 

Most of the CBIR systems combine these features by associating weights to 

individual features. Main problem with that is that same weights are associated with 

the same features for all images in database and sum of these weighted features are 

used to build an index structure. However, when comparing two specific images, one 

feature can be more distinctive than the others, as a result that feature must be 

associated with higher weight. When comparing other two images, tha feature may be 

less distinctive than the other features and for this reason that feature must be 

associated with a lower weight. To overcome this problem we used OWA operators 

to evaluate weights in distance function. 

 

These features are extracted by using MPEG-7 XM Software. Our system 

stores these features, not image itself, in a XML database, Berkeley DB XML. Our 

system has been tested on images of Corel database and shown to be an efficient for 

image retrieval. 
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This system supports fuzzy querying for whole image and for features of the 

images. It can be easily seen that both version of M-Tree have a good retrieval 

performance. Since we are using fuzzy DC distance in second version of M-Tree, 

retrieval results of this version has more objects than M-Tree with non-fuzzy DC 

distance. This is the effect of using color similarity to evaluate fuzzy DC distance. 

 

Another difference of both versions comes from normalization process. In the 

first version, the system normalizes the distance values practically (according to data 

set). But in second version, normalization process is done by evaluating maximum 

and minimum distance values in theory. 

 

 A crucial future work to be done on our system is to enhance the effectiveness 

of building the M-Tree. To do this, the distribution of the nodes of the tree may be 

organized properly by selecting an appropriate split policy and page size parameters 

to get higher tree level. Thus the pruning efficiency of the tree can increase, and the 

performance of building and querying the M-Tree may be improved. 

 

 In our system, only images are used for indexing and retrieval. So another 

task can be completed in the future may be using video/audio objects in such a 

retrieval system.  

 

Our system also does not include insertion/deletion methods for individual 

objects. Since XML database and M-Tree supports insertion/deletion mechanisms, 

these methods can be implemented easily.   
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APPENDIX A 

 

QUERYING THE SYSTEM 
 

In this chapter, running examples of query module of the system are shown. 

 

A.1 Fuzzy Query 
 

We divide fuzzy query into three parts; 

 

• Image-Based Query 

• Feature-Based Query 

• Color-Based Query 

 

Example queries and results are shown in figures for both version of M-Tree. 

All queries had been made over ‘Flower’ data set. 

 

A.1.1 Image-Based Query 

 

Query: ‘Very Similar Images to Example Query’. 
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Figure A.1- Results for Query with Fuzzy DC Distance
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Figure A.2- Results for Query with Non-Fuzzy DC Distance 
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A.1.2 Feature-Based Query 

 

Query: ‘Very Similar in CL AND Almost Same as DC OR Almost Same as EH 

features of Example Image’ 

 

 
 

Figure A.3- Results for Feature-Based Fuzzy Query with Fuzzy DC Distance 
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Figure A.4- Results for Feature-Based Fuzzy Query with Non-Fuzzy DC Distance 
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A.1.3 Color-Based Query 

 
Query: ‘Red Color: mostly AND Green Color: normal OR Blue Color: not important’ 
 
 

 
 

Figure A.5- Results for Color-Based Fuzzy Query with Fuzzy DC Distance 
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Figure A.6- Results for Color-Based Fuzzy Query with Non-Fuzzy DC Distance 

 

A.2 K-Nearest Neighbor Query 
 

Example queries and results are shown in figures for both version of M-Tree. 

All queries had been made over ‘Flower’ data set. 
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Query: ’Top 8 similar images to example image’. 

 

 
 

Figure A.7- Results for k-NN Query with Fuzzy DC Distance 
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Figure A.8- Results for k-NN Query with Fuzzy DC Distance 


