
  

 
MODELING OF ACTIVATED SLUDGE PROCESS BY USING 

ARTIFICIAL NEURAL NETWORKS 
 
 
 
 
 
 
 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES  

OF 
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 
 
 
 
 

BY  
 
 
 

HAKAN MORAL 
 
 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 
FOR 

THE DEGREE OF MASTER OF SCIENCE  
IN  

ENVIRONMENTAL ENGINEERING 
 
 
 
 
 
 
 
 
 
 

OCTOBER 2004  



  

Approval of the Graduate School of Natural and Applied Sciences 

 
 

      ___________________ 
 

      Prof. Dr. Canan Özgen 
 Director 

 
 
 

I certify that this thesis satisfies all the requirements as a thesis for the degree of 
Master of Science. 

 
 

      ___________________ 
 

        Prof. Dr. Filiz B. Dilek 

         Head of Department 
 
 
 

This is to certify that we have read this thesis and that in our opinion it is fully 
adequate, in scope and quality, as a thesis for the degree of Master of Science. 
 
 

 

 
Assist. Prof. Dr. Ay�egül Aksoy 

Co-Supervisor 

  

 
Prof. Dr. Celal F. Gökçay 

Supervisor 
 
 
 

Examining Committee Members 

 
Prof Dr. Kahraman Ünlü (METU, ENVE)  ___________________ 

Prof Dr. Celal F. Gökçay (METU, ENVE)  ___________________ 

Assist. Prof Dr. Ay�egül Aksoy (METU, ENVE)  ___________________ 

Prof Dr. Filiz B. Dilek      (METU, ENVE)  ___________________ 

Assoc. Prof Dr. Gülen Güllü (HACETTEPE, ENVE)  ___________________ 



 

 iii 

 

PLAGIARISM 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also declare that, 

as required by these rules and conduct, I have fully cited and referenced all material 

and results that are not original to this work. 

 

 

    Name, Last name: Hakan Moral 

  

Signature 

 



 

 iv 

 

ABSTRACT 

MODELING OF ACTIVATED SLUDGE PROCESS BY USING ARTIFICIAL 

NEURAL NETWORKS 

 

 

Moral, Hakan 

 M.Sc., Department of Environmental Engineering 

 Supervisor: Prof. Dr. Celal F. Gökçay 

 Co-Supervior: Assist. Prof. Dr. Ay�egül Aksoy 

 

October 2004, 110 pages 

 

Current activated sludge models are deterministic in character and are constructed 

by basing on the fundamental biokinetics. However, calibrating these models are 

extremely time consuming and laborious. An easy-to-calibrate and user friendly 

computer model, one of the artificial intelligence techniques, Artificial Neural 

Networks (ANNs) were used in this study. These models can be used not only 

directly as a substitute for deterministic models but also can be plugged into the 

system as error predictors.  

 

Three systems were modeled by using ANN models. Initially, a hypothetical 

wastewater treatment plant constructed in Simulation of Single-Sludge Processes for 

Carbon Oxidation, Nitrification & Denitrification (SSSP) program, which is an 

implementation of Activated Sludge Model No 1 (ASM1), was used as the source of 

input and output data. The other systems were actual treatment plants, Ankara 

Central Wastewater Treatment Plant, ACWTP and �skenderun Wastewater 

Treatment Plant (IskWTP).  
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A sensitivity analysis was applied for the hypothetical plant for both of the model 

simulation results obtained by the SSSP program and the developed ANN model. 

Sensitivity tests carried out by comparing the responses of the two models indicated 

parallel sensitivities. In hypothetical WWTP modeling, the highest correlation 

coefficient obtained with ANN model versus SSSP was about 0.980. 

 

By using actual data from IskWTP the best fit obtained by the ANN model yielded 

R value of 0.795 can be considered very high with such a noisy data. Similarly, 

ACWTP the R value obtained was 0.688, where accuracy of fit is debatable.  

 

Keywords: activated sludge process, artificial intelligence, artificial neural network, 

modeling. 
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ÖZ 

AKT�F ÇAMUR PROSES�N�N YAPAY S�N�R A�LARI KULLANILARAK 

MODELLENMES� 

 

Moral, Hakan 

 Y.Lisans, Çevre Mühendisli�i Bölümü 

 Tez Yöneticisi: Prof. Dr. Celal F. Gökçay 

 Ortak Tez Yöneticisi: Y. Doç. Dr. Ay�egül Aksoy 

 
Ekim 2004, 110 sayfa 

 

Günümüz aktif çamur modelleri belirleyici karakterlidir ve temel biyokinetiklere 

dayanarak kurulmu�lardır. Fakat bu modellerin kalibrasyonu fazlasıyla zaman alıcı 

ve zahmetlidir. Bu çalı�mada, aktif çamur i�letmelerinin kontrolü için yapay zeka 

tekniklerinden birisi olan Yapay Sinir A�ları’na (YSA) dayanan kolay kalibre 

edilebilir ve kullanıcı dostu bir bilgisayar modeli geli�tirilmesi denenmi�tir. Bu 

modeler hem direk olarak belirleyici modellerin yerini alabilir hem de hata avcısı 

olarak belirleyici sistemlere eklenebilirler. 

 

YSA modelleri kullanılarak üç sistemin modellenmesi denenmi�tir. Ba�langıç 

olarak, Aktif Çamur Model No 1 (AÇM1) in bir uygulaması olan Tekil Çamur 

Prosesi Simulasyon (TÇPS) programında kurulmu� hipotetik bir atıksu arıtma tesisi, 

giri� ve çıkı� verilerine kaynak olarak kullanılmı�tır. Di�er sistemler, Ankara 

Merkezi Atıksu Arıtma Tesisi AAT (AMAAT) ve �skenderun AAT (�skAAT), 

gerçek arıtma i�letmeleridir. 

 

TÇPS programındaki hipotetik i�letme ve aynı i�letmeyi simule eden geli�tirilmi� 

YSA modeline bir sensitivite analizi uygulanmı�tır. Sensitivite analizleri parallel 
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sensitivitiler gösteren iki modelin cevaplarının kar�ıla�tırılmasıyla yapılmı�tır. 

Hipotetik AAT modellenmesinde, YSA modeline kar�ı TÇPS’den elde edilen en 

yüksek ba�lantı katsayısı  yakla�ık 0.980’ dir.  

 

�skAAT den gerçek datalar kullanılarak YSA modelinden elde edilen en uygun R 

de�eri 0.795’ in böyle hatalı verilerle çok yüksek oldu�u dü�ünülebilir. Benzer 

olarak, AMAAT’ de elde edilen R de�eri 0.688 dir ki uyumlulu�un do�rulu�u 

tartı�ılabilir.  

 

Anahtar Kelimeler: Aktif çamur prosesi, yapay zeka, yapay sinir a�ları, modelleme. 
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CHAPTER I 

1. INTRODUCTION 

1.1. General 

 

Environmental preservation efforts and developments in the technology have 

resulted in stringent discharge standards. For this reason, significant amount of 

investment has gone continuously to wastewater treatment over the years. 

Consequently the water infrastructures have now been equipped with substantial 

hardware and software for optimal control and management to compensate for the 

lack of expertise and staff in the field. Biological treatment systems are usually 

located away from settlements and the personnel are under constant health threat. 

Therefore, automation to minimize personnel contact with these systems using 

expert systems, such as artificial intelligence techniques using neural networks, has 

become a popular and a very attractive issue.  

 

The new concept about the treatment systems involves efficient operation as well as 

good design to reach the goals. It should be understood that only efficiently operated 

plants can make a maximum out of a good design. Consequently, process control 

has become an important issue as well as the quality of the design. For the control of 

the system, some deterministic models, which can also be called as white-box 

models, have been developed. Although these models give a good insight into the 

mechanism, they require a lot of hard work before applying to a specific wastewater 

treatment plant. 

  

The most important of the deterministic models are ASM1, ASM2, ASM3, and 

ASM2d for activated sludge process (ASP). Determination of the model parameters 

normally need extensive laboratory and computer work which is often confined to 



 

 2 

academic environment. For this reason, particularly for the control of the ASP, a 

different modeling technique has been attempted in this thesis work.  

 

The new approach involves modeling of ASP using Artificial Neural Networks 

(ANNs). These kinds of models are inspired from the neurological system of 

humans and try to mimic the human neurological system. Although these models 

are very far away from the power of its origin, i.e. the brain, they showed 

remarkably good success in the modeling of highly nonlinear systems into which we 

can also include the ASP.  

 

High quality expertise needed in the process control of wastewater treatment 

systems made especially automated control, a very attractive subject in the field. But 

the need for continuous measurement of system variables, which require expert 

staff, again reduces the efficiency. The ANN models can be a solution to this 

problem in many aspects. The ANNs need intensive measurement of system 

variables only for the model development phase. This measurement period is needed 

for introducing the system to the ANN model being developed. After development 

of an ANN model of the system is complete, measurements will be done less 

frequently than before, mainly for cross checking the response of the ANN model 

with the actual system response. Calibration of ANN models is easier than the 

white-box models as there are fewer parameters used in the model development 

process. When the measured variables start showing difference with the response of 

ANN, the model can be re-trained using the newer data used for cross checking. 

This process can be automated by embedding the ANN model in an expert system 

that controls the complete system.  

 

The ANN models are also good error predictors. These models can be used not only 

on behalf of a deterministic model but also can be plugged into the system as an 

error predictor.  The error prediction can be used for sensor failure detection etc.   
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In this study, firstly a hypothetical wastewater treatment plant was constructed with 

the help of an ASM1 model simulator, SSSP program. The SSSP Program was used 

as a hypothetical treatment plant, and then this hypothetical plant was modeled 

using ANNs. After development of an ANN model using the SSSP default dynamic 

input-output pattern, sensitivity analyses were carried out on both models using the 

same data. Then two actual wastewater treatment plants were modeled. These 

treatment plants were �skenderun Wastewater Treatment Plant (IskWTP) and 

Ankara Central Wastewater Treatment Plant (ACWTP). Approximately five months 

of daily data for IskWTP and one year of daily data for ACWTP was used in the 

modeling processes.  

 

The ultimate aim of this thesis is therefore to develop an ANN model that is capable 

of predicting outputs from ASP with high fidelity to the actual system; hence 

somehow model the plant under consideration. To achieve this, various operational 

parameters will be used as input to predict some of the selected output parameters 

(influent/effluent chemical oxygen demand etc). In choosing the input parameters, 

their demonstrated relationships to the output parameters and the biological 

mechanism were taken into consideration. In addition to that, some combinations of 

parameters that can be measured on-line continuously will be used to develop the 

ANN model for precise operation of the system. 
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CHAPTER II 

2. THEORETICAL BACKGROUND 

2.1. Activated Sludge Process 

 

The major biological processes used for wastewater treatment are aerobic, anoxic, 

anaerobic processes, combined aerobic, anoxic and anaerobic processes and pond 

processes. The individual processes are further subdivided, depending on whether 

treatment is accomplished in suspended-growth systems or attached-growth systems 

or combinations thereof (Tchobanoglous and Burton, 1991). 

 

The activated sludge process, which is an aerobic suspended-growth treatment 

system, was developed in England by Ardern and Lockett (1914) and was so named 

because it involved the production of an activated mass of microorganisms capable 

of stabilizing a waste aerobically. Many versions of the original process are in use 

today, but fundamentally they are all similar (Tchobanoglous and Burton, 1991).  

 

2.1.1. Process Description 

 

Biological wastewater treatment with the ASP is typically accomplished using a 

flow diagram as shown in Figure 2.1. Organic waste is introduced into a reactor 

where an aerobic bacterial culture is maintained in suspension. The reactor contents 

are referred to as the “mixed liquor”. In the reactor, the bacterial culture carries out 

the conversion of organic pollutants in accordance with the stoichiometry shown in 

Equations 2.1 and 2.2 (Tchobanoglous and Burton, 1991). 
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Figure 2.1 Schematic presentation of completely-mixed reactor with biomass 

recycle and wasting: (a) from the reactor and (b) from the recycle line (Q: flow rate, 

S: substrate concentration, X: biomass concentration; subscripts r: return, w: waste, 

0: influent, e: effluent e.g. Qr: return flow rate) (Tchobanoglous and Burton, 1991). 

 

 

Oxidation and synthesis:  

)1.2(.275322 prodendotherNOHCNHCOnutrientsOCOHNS bacteria +++ →++      

Endogenous respiration: 

energyNHOHCOONOHC bacteria +++ →+ 3222275 255     (2.2) 

 

COHNS is waste to be treated, 
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C5H7NO2 is the produced new bacterial cells.   

 

The aerobic environment in the reactor is achieved by the use of diffused or 

mechanical aeration, which also serves to maintain the mixed liquor in a completely 

mixed regime.  After a specified period of time, the mixture of old and new cells are 

passed into a settling tank, where these cells are separated from the treated 

wastewater. A portion of the settled cells is recycled to the aeration basin to 

maintain the desired concentration of organisms in the reactor, and a portion is 

wasted (Figure 2.1). The portion wasted corresponds to the newly grown cells. The 

level at which the biological mass in the reactor should be kept depends on the 

desired treatment efficiency and the efficacy of the aeration system (Tchobanoglous 

and Burton, 1991).  

 

2.1.2. Process analysis 

 

In the system, reactor is mixed completely via diffused or mechanical aeration used 

for both mixing and air supply. It is assumed that the concentration of the 

microorganism in the effluent is negligible. As shown in Figure 2.1 (b), the settling 

tank serves as an integral part of the activated sludge process. Therefore, for further 

introduction of the mass balance and also for the development of the kinetic model 

for the activated sludge process the following assumptions are accepted 

(Tchobanoglous and Burton, 1991): 

 

• waste stabilization is carried out by the microorganisms occurs in the aerator 

unit, 

• the volume used in the calculation of the mean cell residence time for the 

system includes only the volume of the aerator unit. 

 

The mean hydraulic retention time, HRT, for the reactor is defined as:  

Q
V

HRT r=  (2.3) 
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where;  Vr = volume of the reactor, (L3) 

Q = influent flow rate, (L3/T) 

 

For the system shown in Figure 2.1(b), the mean cell residence time �c is defined as 

the mass of microorganisms in the reactor over the mass of microorganisms 

removed plus microorganisms wasted from the system per day, and it is given by:  

eerw

r
c XQXQ

XV
+

=θ  (2.4) 

where;  

Qw = flow rate of liquid containing the biological solids to be wasted from 

the system, (L3/T), 

 Qe = flow rate of the effluent, (L3/T), 

 Xe = effluent microorganism concentration, (M/L3). 

 Xr = microorganism concentration in return line, (M/L3). 

 

The mass balance for the biomass in the entire system represented in Figure 2.1(b) 

can be written as follows (Tchobanoglous and Burton, 1991):  

)()( '
0 greewr rVXQXQQXV

dt
dX ++−=    (2.5) 

where rg
’ is the net growth rate of microorganisms within the system.  

 

Assuming that cell concentration in the effluent is zero and steady state condition 

prevails i.e. dX/dt=0 and rearranging Eq. 2.5 gives:  

d
c

kYq −=
θ
1

  (2.6) 

where; Y = yield coefficient, (M/M),  

 q = specific substrate utilization rate, (1/T), 

 kd = decay coefficient, (1/T). 
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The mass balance around activated sludge process configuration shown in Figure 

2.1(b) regarding substrate can be written as follows (Tchobanoglous and Burton, 

1991):  

)( '
0 srr rVQSQSV

dt
dS +−=  (2.7) 

 

2.2. Deterministic Models (ASM1, ASM2, ASM2d, ASM3) 
 

The Activated Sludge Model No. 1 (ASM1; Henze et al., 1987) can be considered 

as the reference model, since it initiated the general acceptance of WWTP models in 

research and industry. This evolution was undoubtedly supported by the availability 

of more powerful computers. Even today, the ASM1 model is in many cases still the 

state of the art for modeling activated sludge systems (Gernaey et al., 2004).  

 

ASM1 was primarily developed for municipal activated sludge WWTPs to describe 

the removal of organic carbon compounds and N, with simultaneous consumption of 

oxygen and nitrate as electron acceptors. The model furthermore aims at yielding a 

good description of the sludge production. Chemical oxygen demand (COD) was 

selected as the measure of the concentration of organic matter present. In the model, 

the wide variety of organic carbon compounds and nitrogenous compounds are 

subdivided into a limited number of fractions based on biodegradability and 

solubility considerations (Gernaey et al., 2004). 

 

The ASM3 model was also developed for biological N removal in WWTPs, with 

basically the same goals as ASM1. The ASM3 model is intended to become the new 

standard model, correcting for a number of defects that have appeared during the 

usage of the ASM1 model (Gujer et al., 1999). 

 

Models including biological phosphorus removal (bio-P) were first introduced by 

the ASM2 model (Henze et al., 1995), which extends the capabilities of ASM1 to 

describe bio-P removal. Chemical P removal via precipitation was also included in 
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the ASM2. Yet the model does not completely describe the bio-P processes 

(Gernaey et al., 2004). 

 

All these models are common in that they need expertise to be calibrated for specific 

treatment systems that they are tried to be applied. Parameter estimation of the 

models is very hard in all the deterministic models. In contrast to this, data driven 

models such as ANN does not need that much expertise. As a result, latter models 

received attention from the academia as well as the industry.  

 

2.3. Artificial Neural Networks  

 

Hecht-Nielsen defined a neural network as: “… a computing system made up of a 

number of simple highly interconnected processing elements, which processes 

information by its dynamic state response to external inputs” (Chitra, 1993). 

 

Neural network technology came from current studies of mammalian brains, 

particularly the cerebral cortex. Neural networks mimic the way that a human brain 

copes with incomplete and confusing information set (Chitra, 1993). In general, the 

human nervous system is a very complex neural network. The brain is the central 

element of the human nervous system, consisting of nearly 1010 biological neurons 

that are connected to each other through sub-networks.  

 

Each neuron in the brain is composed of a body, one axon and multitude of 

dendrites. The biological neuron model shown in Figure 2.2 serves as the basis for 

the artificial neuron. The dendrites receive signals from other neurons. The axon can 

be considered as a long tube, which divides into branches terminating in little end 

bulbs. The small gap between an endbulb and a dendrite is called a synapse. The 

axon of a single neuron forms synaptic connections with many other neurons. 

Depending upon the type of neuron, the number of synapse connections from other 

neurons may range from a few hundreds to 104 (Zilouchian and Jamshidi, 2001). 
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The ability to learn is a fundamental trait of intelligence. Although a precise 

definition of learning process is difficult to formulate, a learning process in ANN 

context can be viewed as the problem of updating network architecture and 

connection weights so that a network can efficiently perform a task. The network 

usually must learn the connection weights from available training patterns and these 

patterns should be representative of the system to be modeled (Jane et al, 1996).  

 

 
Figure 2.2 A Biological Neuron. 

 

Instead of executing a series of instructions, like an ordinary computer, a neural 

network responds – in parallel – to the inputs given to it. The final result consists of 

an overall state of the network after it has reached a steady-state condition, which 

correlates patterns between the sets of input data and corresponding output or target 

values. The final network can be used to predict outcomes from new input data 

(Chitra, 1993).  

 

Neural networks can learn complex nonlinear relationships even when the input 

information is noisy and imprecise. Neural networks have made strong advances in 

the areas of continuous speech recognition, pattern recognition, and classification of 

noisy data, nonlinear feature detection, market forecasting, and process control and 

modeling. 
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For example, consider how a child learns to identify shapes and colors using a toy 

consisting of different solid shapes (triangles, squares, circles, and so on) and colors 

that can be inserted into a box only through correspondingly shaped holes and 

colors. The child learns about shapes and colors by repeatedly trying to fit the solid 

objects through these holes by trial-and-error attempts. Eventually, the shapes and 

colors are recognized, and the child is able to match the objects with the holes by 

visual inspection. Similarly, neural networks learn by repeatedly trying to match the 

sets of input data to the corresponding output target values. After a sufficient 

number of learning iterations, the network creates an internal model that can be used 

to predict for new input conditions (Chitra, 1993).  

 

An artificial neural network is an information-processing system that has certain 

performance characteristics in common with biological neural networks. ANNs 

have been developed as generalizations of mathematical models of human cognition 

or neural biology, based on the assumptions that:  

 

1. Information processing occurs at many simple elements called neurons. 

2. Signals are passed between neurons over connection links. 

3. Each connection link has an associated weight, which, in a typical neural 

net, multiplies the signal transmitted.  

4. Each neuron applies an activation function (usually nonlinear) to its net 

input (sum of weighted input signals) to determine its output signal.  

 

A neural network is characterized by (1) its pattern of connections between the 

neurons (called its architecture), (2) its method of determining the weights on the 

connections (called its training or learning algorithm), and (3) its activation 

function. 

 

A neural network consists of a large number of simple processing elements called 

neurons (units, cells, or nodes). Each neuron is connected to other neurons by means 
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of directed communication links, each with an associated weight. The weights 

represent information being used by the network to solve a problem.  

 

Each neuron has an internal state, called its activation or activity level, which is a 

function of the inputs it has received. Typically, a neuron sends its activation as a 

signal to several other neurons. It is important to note that a neuron can send only 

one signal at a time, although that signal is broadcast to several other neurons 

(Fausett, 1994). 

  

2.3.1. Application Areas of ANNs 

 

The study of neural networks is an extremely interdisciplinary field, both in its 

development and in its application. The examples of applications of ANNs range 

from commercial successes to areas of active research that show promise for the 

future (Jain and Mao, 1996). 

 

In signal processing, ANNs were used commercially in suppressing the noise on a 

telephone line. In pattern classification, ANNs are used in character recognition, 

speech recognition, EEG waveform classification, blood cell classification, and 

printed circuit board inspection. In optimization, ANNs are used in a wide variety of 

fields such as mathematics, statistics, engineering, science, and medicine. In control, 

ANNs are used in control of dynamic systems (Jain and Mao, 1996). 

 

2.3.2. Types of ANNs 

 

ANNs are commonly classified by their network topology, node characteristics, 

learning, or training algorithms (Fausett, 1994). Based on the connection pattern 

(architecture), ANNs can be grouped into two categories (Figure 2.3- taxonomy of 

neural network architectures) (Jane et al, 1996): 

 

• Feed-forward networks, in which network have no looped connections and 
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• Feedback (recurrent) networks, in which loops occur because of feedback 

connections.  

 

In the most common family of feed-forward networks, called multilayer perceptron, 

neurons are organized into layers that have unidirectional connections between 

them. Different connection patterns yield different network behaviors. Generally 

speaking, feed-forward networks are static, that is, they produce only one set of 

output values rather than a sequence of values from a given input. Different network 

architectures require appropriate learning algorithms (Jane et al, 1996). A feed-

forward network with one hidden layer of neurons is given in Figure 2.3.  

 

 
Figure 2.3 Taxonomy of feed-forward and recurrent/feedback neural network 

architectures. 

 

In a feed-forward neural network structure, the only appropriate connections are 

between the outputs of each layer and the inputs of the next layer. In this topology, 

the inputs of each neuron are the weighted sum of the outputs from the previous 

layer. If the weight of a branch is assigned a zero, it is equivalent to no connection 

between corresponding nodes (Konar, 1999).  
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For recurrent/feedback networks, the inputs of each layer can be affected by the 

outputs from previous layers (Figure 2.4). In addition, self feedback is allowed. The 

inputs of the network consist of both external inputs and the network outputs with 

some delays. Another way of classifying ANNs is mode of training applied. Two 

modes of training are present in neural net training, supervised and unsupervised 

learning networks (Konar, 1999). 

 

 
 

 
Figure 2.4 An example of a recurrent network with self loops.  

 

 

Supervised learning requires an external teacher to control the learning and 

incorporates global information. The teacher may be a training set of data or an 

observer who grades the performance. Examples of supervised learning algorithms 

are the least mean square (LMS) algorithm and its generalization, known as the back 

propagation algorithm, and radial basis function network. In supervised learning, the 

purpose of a neural network is to change its weights according to the input/output 

samples (Fausett, 1994). 

 

When there is no external teacher, the system must organize itself by internal 

criteria and local information designed into the network. Unsupervised learning is 

sometimes referred to as self-organizing learning, i.e. learning to classify without 

being taught. In this category, only the input samples are available and the network 
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classifies the input patterns into different groups. Kohonen network is an example of 

unsupervised learning (Konar, 1999).  

 

2.3.3. Typical Feed-forward Backpropagation ANN working 

 

ANN in Figure 2.5 consists of two weight layers corresponding to two neuron layers 

and connecting three nodal layers; the input layer processes no signal, and this layer 

is not considered to be a neuron layer. Each node is connected to all the nodes in the 

adjacent layer, and the signal that is fed at the input layer flows forward layer-by-

layer to the output layer. The input layer receives the input vector (data), and one 

neuron is assigned to each input component (field or variable) (Morshed and 

Kaluarachchi, 1998). 

 

 

 

Figure 2.5 Typical backpropagation feed-forward neural network. 

 

The output layer generates the output vector, and one neuron is assigned to each 

output component. Between these two layers, the hidden layer exists and it has 

arbitrary number of neurons. Notationally, it shows an I-J-K ANN, and the notations 

used are:  
T

Ixxxx ],...,,[ 21=    (2.8) 
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T
J ],...,,[ 21 ΩΩΩ=Ω    (2.9) 

T
Kyyyy ],...,,[ 21=  (2.10) 

T
KJjk wwwww ],...,,...,,[ 21 +=  (2.11) 

T
KJjk wwwww ],...,,...,,[ 21 +=  (2.12) 

where x = input vector of I components; Ω = hidden vector of J components; y = 

ANN output vector of K components; w  = threshold weight vector of (J + K) 

components where JKw  = threshold of jth neuron in (k+1)th neuron layer; and w = 

weight vector of J(I + K) components where wijk is the weight connecting ith neuron 

in kth neuron layer to jth neuron in (k+1)th layer. ANN may be noted to have 

)()( KIJKJM +++= M weights where M is the total number of weights. Hecht-

Nielsen’s suggestion (1987) is used to define an upper limit of J = (2I + 1) neurons 

in the hidden layer. Finally, each hidden or output neuron is associated with a 

transfer function, f(·) (Morshed and Kaluarachchi, 1998). 

 

In simulating the x–y response for a given x, ANN follows two steps. First, x is fed 

at the input layer, and ANN generates Ω as  

1
1

=�
�

�
�
�

�
+=Ω �

=
kxwwf

I

i
iijkjkj  (2.13)  

Second, ANN presents Ω to the output layer to generate y as  

2
1

=�
�

�
�
�

� Ω+= �
=

kwwfy
J

i
iijkjkj  (2.14) 

Equation 2.15 is the ANN response y to x, and y may be expressed as  

( )xwwy jj ,,Γ=  (2.15) 

[ ]T
K )(),...,(),()( 21 ⋅Γ⋅Γ⋅Γ=⋅Γ  (2.16) 

where;  )(⋅Γ = underlying x-y response vector approximated by ANN;  

)(⋅Γ j =jth component of )(⋅Γ .  

Thus, ANN may be viewed to follow the belief that intelligence manifest itself from 

the communication of a large number of simple processing elements. The transfer 
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function, f(⋅), is usually selected to be a nonlinear, smooth, and monotonically 

increasing function, and two common forms and another common form, the linear 

transfer functions (purelin() in MATLAB)are :  

)exp(1
1

)()(
x

xsgmxf
+

==   (2.17) 

)exp()exp(
)exp()exp(

)tanh()(
xx
xx

xxf
−+
−−==  (2.18) 

xxpurelinxf == )()(  (2.19) 

where; sgm(⋅) is sigmoid function,  

tanh(⋅) is hyperbolic tangent function (Morshed and Kaluarachchi, 1998) 

purelin(⋅) is linear function (Matlab Help, 2002). 

 

 

 
( a ) 

 
( b ) 

 
(c) 

Figure 2.6 Graphs of the typical transfer functions used in ANN models, (a) 

logarithmic sigmoid function, (b) hyperbolic tangent function,.(c) linear function 

(Matlab Help, 2002). 
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2.3.4. Determination of Network Structure 

 

Network structure is defined by the number of hidden layers and number of neurons. 

These numbers determine the number parameters that must be estimated. This is a 

very important issue since when the number of parameters to be estimated is 

insufficient then the model developed may not be able to fit the training data. On the 

other hand if the number of parameters is too much, this time in relation to available 

number of training samples, network may loose its ability to generalize (Maier and 

Dandy, 2001).  

 

Determination of the number of hidden neurons in a hidden layer is generally 

determined by trial and error. However there exists some upper and lower general 

bounds to these numbers. Hecht and Nielsen (1987) have suggested the following 

upper limit for the number of hidden layer neurons in order to ensure that ANNs are 

able to approximate any continuous function,  

 

12 +≤ IH NN  (2.20) 

where  

NH : number of neurons in hidden layer,  

NI : number of inputs (number neurons in input layer). 

 

In addition to this formula Roger and Dowla (1994) in order for the network not to 

over fit the training data,  suggested the relationship between the number of training 

samples (number of input data) and network neuron numbers, 

 

)1( +
≤

I

TR
H

N
N

N  (2.21)  

where   

NTR : number of training samples (number of training set data).  
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2.4. Literature Survey 

 

2.4.1. Uses of Artificial Neural Networks in Ecological Sciences  

 

Most applications of ANNs in biology have been in medicine and molecular biology 

(Lerner et al., 1994; Albiol et al., 1995; Faraggi and Simon, 1995; Lo et al., 1995). 

At the beginning of the 90’s a few applications of this method were reported in 

ecological and environmental sciences. For instance, Colasanti (1991) found 

similarities between ANNs and ecosystems and recommended the utilization of this 

tool in ecological modeling. In a review by Edwards and Morse (1995) on 

computer-aided research in biodiversity, important potential of ANNs have been 

underlined.  

 

Relevant examples are found in very different fields in applied ecology, such as 

modeling the greenhouse effect (Seginer et al., 1994), predicting various parameters 

in brown trout management (Baran et al., 1996; Lek et al., 1996a,b), modeling 

spatial dynamics of fish (Giske et al., 1998), predicting phytoplankton production 

(Scardi, 1996; Recknagel et al., 1997), predicting fish diversity (Guégan et al., 

1998), predicting production: biomass (P:B) ratio of animal populations (Brey et al., 

1996), predicting farmer risk preferences (Kastens and Featherstone, 1996), etc. 

Most of these works showed that ANNs performed better than the more classical 

modeling methods (Lek and Guégan, 1999). 

 

In a study by Lek et al. the predictive capacity of multiple regression (MR) versus 

artificial neural network (ANN) for the estimation of brown trout redds from 

physical habitat variables in six mountain streams in SW France are compared. 

Model-predicted and observed values are compared by different statistical 

parameters, normality and correlation of the residuals. To compare the models (MR 

and ANN), authors worked with transformed (requirement of MR) and non-

transformed (raw data) variables. Three indicators to judge the quality of the results 

obtained in the MR and ANN are used.  
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The correlation coefficient R between observed and estimated values, or the 

determination coefficient R2; the slope of the regression between values estimated 

by models and observed values; and the study of residuals iii YYE ˆ−= , their 

statistical parameters, graphs of normality. The MR model is shown to have 

difficulty in predicting the low and high values in the data set. Also a negative value 

prediction is shown by MR model, especially for the low values. For ANN, this 

problem remains with the transformed values, however with non-transformed 

variables; an excellent model was obtained capable of restoring values observed 

over the whole range of the dependent variable. Also ANN model unlike MR model 

never predicted negative values. 

 

This study showed that MR or ANN can be used to predict the density of brown 

trout redds from the sampled physical habitat variables, R2 reached 0.65 in MR and 

R2 reached 0.96 in ANN; which gave the better result with the non-transformed 

variables. 

 

The ANNs constitute a new and alternative approach in ecology. They are able to 

work with nonlinearly related variables. As a matter of fact they do not set 

constraints on the variables (e.g. normality and/or nonlinear relationships), better 

still, they can be more efficient working with raw than with transformed data. 

Unlike MR, ANN provides simple equations for users but it is possible to easily 

quantify the contribution of each variable over its range from the weight distribution 

in the model ANN. It can be concluded that the ANN models can successfully be 

used in ecological modeling, especially for predictive modeling and ANNs showed 

better results than the traditionally used models in ecological modeling (Lek et al., 

1996). 
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2.4.2. Uses of ANNs in Environmental Sciences 

 

The ability of two empirical modeling approaches to forecast residual chlorine 

evolution in two drinking water systems were evaluated (Rodriguez and Sérodes, 

1999). The purpose was to compare the forecasting capabilities of a linear model, 

known as linear autoregressive model, with external inputs (ARX) and a non-linear 

model (ANNs). The assessment of the benefits in using non-linear models when 

simulating the decay of residual chlorine in water systems is discussed.  

 

Two case studies were used to compare accuracy of the two kinds of models (ARX 

vs. ANN). Data from two Quebec (Canada) drinking water systems were used in the 

study. The first system (denoted as case 1) was a storage tank located within the 

distribution system of the city of Sainte-Foy. The second system (denoted as case 2) 

was the main water pipeline of the city of Quebec’s distribution system. For both 

cases, the linear (ARX) and non-linear (ANN) modeling approaches were used to 

forecast concentrations of residual chlorine at monitored points located downstream 

from the dose application point (Rodriguez and Sérodes, 1999). Modeling process 

started from a less complicated structure towards more complicated resulting 

progressively in higher accuracy.  

 

Another study on water systems was on the real time control of such systems by H. 

Lobbrecht and Solomatine (2002). Aim of the study was to real time control (RTC) 

the combined urban and rural water systems. The so-called centralized control 

requires information from different locations in the water system and hence is 

sensitive to the communication network breakdown during extreme storm runoff 

events. To overcome these problems, the application of machine learning methods 

was proposed, using artificial neural networks and fuzzy adaptive systems (FAS).   

 

The intelligent controllers developed are appeared to be robust and capable of 

solving RTC problems on the basis of information measured only locally. 

Computing times were reduced by two orders of magnitude by using local 
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intelligent controller replicates of central control behavior. This makes the machine-

learning techniques (ANN and FAS) useful for application in real-life situations of 

water management (Lobbrecht and Solomatine, 2002). 

 

A software sensor design based on empirical data obtained from a physical sensor 

which is responsible for the measurement of ammonia in rivers and wastewater 

treatment plants was developed by M. H. Masson (1999). The aim of the study was 

to have a software sensor that was capable of determining the ammonia levels in the 

field of interest quicker than the physical one that results the measurement in 20 – 

25 min. This would allow the control measures to be taken earlier.  

 

In the study of Murtagh et al. (2000), a neural network model in the environment 

and climate Neurosat (“Processing of Environmental Observing Satellite Data with 

Neural Networks”) project was tried for the prediction of oceanic upwelling of the 

Mauritanian coast, using sea surface temperature (SST) images, and real and model 

meteorological data for the year of 1982. The overall themes of the study were data 

and information fusion. The empirical and model-based handling of data was 

characterized by many uncertainties and numerous missing cases; and the 

development of data-driven pattern recognition and neural network methods. It was 

sought whether such methods are an alternative to, or are complementary to, large 

physical simulation and modeling systems.  

 

Studies on development of neural network based sensor systems for environmental 

monitoring is done by Keller et al (1994). The study is comprised of development of 

three prototype sensing systems that are composed of sensing elements, data 

acquisition system, computer, and neural network implemented in software. 

 

The first system employs an array of tin-oxide gas sensors and is used to identify the 

composition of chemical vapors. The second system employs an array of optical 

sensors and is used to identify the composition of chemical dyes in liquids. The 

third system contains a portable gamma-ray spectrometer and is used to identify 
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radioactive isotopes. The aim is to develop compact, portable systems capable of 

quickly identifying contaminants in the environment (Keller et al., 1994). 

 

 

2.4.3. Previous Studies on modeling of Activated Sludge Plant using 

Artificial Neural Networks 

 

The activated sludge process, comprising a biological reactor and a secondary 

settler, is widely used as secondary treatment for both municipal and industrial 

wastewaters. The effective control of such a process depends, in part, on the ability 

to simulate the dynamics of both the biological reactor and the secondary clarifier. 

Considerable effort has therefore been devoted to the modeling of the activated 

sludge process since the early 1970’s. 

 

The advent of neural networks opens another door in the field of modeling and 

control as they can be coupled with mechanistic models to increase the prediction 

capabilities without necessarily increasing the mathematical complexities in the 

mechanistic model. The objective of the authors is to report on the improvement of 

an existing mechanistic model of the activated sludge process using a black box 

model: ANNs (Côte et al., 1995). 

 

A set of 193 hourly samples were used for the modeling of the ANN. The first 140 

data were used for the training (learning) process (analogous to the parameter 

estimation in the mechanistic model), and the remaining data served as a validation 

file, on which generalizing capability of the network could then be judged. 

 

Coupling of the mechanistic model with the neural network error predictor yielded 

significant improvement in the simulation of all the variables. This is especially true 

for the cases where the mathematical expressions of the mechanistic model were 

insufficient in describing the complex phenomena occurring within the process, e.g. 

suspended solids in the effluent. 
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Coupling of neural network error predictor is shown to result in beneficial 

information about the mechanistic models. If outputs are predicted better by the use 

of ANNs, which are data driven models, compared to mechanistic models this 

implies that the mechanistic model can not capture everything underlying in the 

system. This is a clear indication that the experimental data contains dynamic 

behavior that has not been encapsulated in the mechanistic model and the ANN 

modeling effort would lead to a better model (Côte et al., 1995). 

 

A virtual software sensor for optimal control of a wastewater treatment process is 

tried to be developed (Choi and Park, 2001) using artificial neural networks as a 

modeling tool coupled with principle component analysis (PCA).   

 

The influent wastewater quality data that were measured daily for 113 days at an 

industrial wastewater treatment plant was used to derive the ANN model (software 

sensor). Evaluation of the applicability of a hybrid neural network (PCA + ANN), as 

a software sensor, was compared with four different methods including multivariate 

regression, principal component regression, neural networks, and hybrid neural 

networks. The Total Khjeldal Nitrogen (TKN) was selected as the object output 

parameter that has to be estimated and 11 parameters were used as input variables. 

In order to increase the sensitivity of the ANN model and enhance the prediction 

capability, 11 wastewater parameters were reduced to 5 principle components (PCs), 

which became the principle input parameters of the improved ANN model. 

 

The study confirmed that in modeling of correlated noisy data, the preprocessing 

using PCA to reduce the number of input variables was effective. Performance 

criteria used in the study was RMSE (root mean squared error); which is reduced 

from 66.50 in ANN to 13.82 in ANN + PCA for the test data (Choi and Park, 2001). 

 

It was shown that an industrial treatment plant can be modeled using ANNs. In this 

study seven neural networks are used to simulate the treatment plant, one network 
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for each reactor, and another for the prediction of effluent total organic carbon 

(TOC) based on the conditions for the last reactors. ASP is selected as removal 

process because of the purified terephtalic acid in the wastewater (Gontarski et al., 

2000).  

 

The following variables were used in the training of backpropagation neural 

networks in the wastewater treatment plant: (a) the inlet wastewater TOC in each 

reactor; (b) the ratio of influent to recycled sludge flow; (c) concentration of 

suspended solids (sludge) in the reactors; (d) concentration of dissolved oxygen in 

the reactors; (e) average sludge residence time; and (f) parameters related to reaction 

kinetics (Gontarski et al, 2000). 

 

In the study two reactor results were given. The sensitivity analysis based on the 

two reactors showed that the liquid flow rate and pH of the inlet stream were the 

most important parameters controlling the plant, where all other data were within 

the range of data supplied in the training process (Gontarski et al, 2000). It is 

concluded that the use of neural networks can establish a better operating condition, 

which has been defined by variables such as the splitting ratio of the inlet stream for 

each reactor. Neural networks are seen to represent a possible aid to operations in 

order to predict disturbances proactively and act to minimize output fluctuations by 

making the control of the treatment plant more effective (Gontarski et al, 2000). 

 

In a recent study for a major wastewater treatment plant with an average flow rate of 

1 million m3/day, past data of the plant were used in building a neural network 

model of the plant in the Greater Cairo district, Egypt. BOD (Biochemical Oxygen 

Demand) and SS (Suspended Solids) in the effluent stream were tried to be 

modeled. The observed values for 10 months were taken from the laboratory of the 

treatment plant. Two ANN models for each variable were built and these models 

have shown high efficiency. Although the efficiency was high enough the authors 

emphasized the importance of the amount and accuracy of the data as follows: if 

more data were collected, if the data were less noisy, and if additional parameters 
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were measured (e.g. pH, temperature, etc.), this would have resulted in an improved 

predictive capability of the network. Nevertheless, the ANN is a tool that is worth 

consideration in the prediction of WWTPs (Hamed et al, 2004). 

 

Zeng et al have made a study on modeling a paper mill wastewater treatment plant 

having coagulation as the main mechanism of removal. In the study the authors tried 

to model the nonlinear relationship between the pollutant removal rates with the 

chemicals used for the coagulation using a multi-layer back-propagationn neural 

network. Gradient descent method was used in model training (namely parameter 

estimation in the deterministic models) and the results obtained have shown an 

encouraging accuracy that the model could be used in control and reasonable 

forecasting was achieved (Zeng et al, 2004). 
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CHAPTER III 

3. MATERIALS AND METHODS 

3.1. Artificial Neural Networks  

 

3.1.1. Backpropagation Algorithm 

 

The demonstration of the limitations of the single-layer neural networks was a 

significant factor in the decline of interest in neural networks in the 1970s. The 

discovery by several researchers independently and widespread dissemination of an 

effective general method of training multilayer neural network played a major role 

in reemergence of neural networks as a tool for solving a wide variety of problems 

(Kionar, 1999). Standard backpropagation algorithm will be given in this section.  

 

During feed-forward, each input unit (Xi) receives an input signal and broadcasts 

this signal to the each of the hidden units Z1, Z2… Zp. Each hidden unit then 

computes its activation and sends its signal (zj) to each output unit. Each output unit 

(Yk) computes its activation (yk) to form the response of the net for the given input 

pattern.  

 

During training, each output unit, compares its computed activation yk with its target 

value tk to determine the associated error for that pattern with that unit. Based on 

this error, the factor δk (k= 1, 2… m) is computed. δk is used to distribute the error at 

output unit Yk back to all units in the previous layer. It is also used (later) to update 

the weights between the output and the hidden layer. In a similar manner, the factor 

δj, (j=1, 2… p) is computed for each hidden unit Zj.  
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After all the δ factors have been determined, the weights for all layers are adjusted 

simultaneously. The adjustment to the weight wjk (from hidden unit Zj to output unit 

Yk) is based on the factor δk and the activation zj, of the hidden unit Zj. The 

adjustment to the weight vij (from input unit to Xi to hidden unit Zj) is based on the 

factor  δj and the activation xi of the input unit.  

 

The algorithm can be written as follows:  

Step 0: Weight initialization. 

 (set to small random values) 

Step 1: While stopping criteria is false, do Steps 2-9. 

 Step 2: For each training pair, do Steps 3-8. 

  Feedforward: 

  Step 3: Each input unit (Xi, i =1, 2, …., n) receives input signal xi 

   and broadcasts this signal to all units in the layer above (the  

   hidden units).  

  Step 4. Each hidden unit (Zj, j =1, 2, …., p) sums its weighted input 

   signals, �
=

+=
n

i
ijijj vxinz

1
0 ,_ ν  applies its activation  

   function to compute its output signal, ),_( jj inzfz = and 

   sends this signal to all units in the layer above (output units).  

  Step 5. Each output unit (Yk, k =1, 2, …., m) sums its weighted input  

   signals, �
=

+=
p

j
jkjkk wzwiny

1
0 ,_  and applies its activation 

   function to compute its output signal, )_( kk inyfy = .  

  Backpropagation Error:  

  Step 6: Each output unit (Yk, k =1, 2, …., m) receives a target pattern 

   corresponding to the input training pattern, computes its error 

   information term, ),_()( kkkk inyfyt ′−=δ  calculates its  

   weight correction term (used to update wjk later), 
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   ,jkjk zw αδ=∆  calculates its bias correction term (used  

   to update w0k later), ,0 kkw αδ=∆  and sends δk to units in the  

   layer below. 

  Step 7: Each hidden unit (Zj, j =1, 2, …., p) sums its delta inputs  

   (from units in the layer above),  �
=

=
m

i
jkkj win

1

,_ δδ  

   multiplies by the derivative of its activation function to  

   calculate its error information term, ),_(_ jjj inzfin ′= δδ  

   calculates its weight correction term (used to update vij later), 

   ,ijij xv αδ=∆  and calculates its bias correction term (used to 

   update v0j later), jjv αδ=∆ 0 .  

  Update weights and biases:  

  Step 8: Each output unit (Yk, k =1, 2, …., m) updates its bias and  

   weights (j=0, …, 9): .)()( jkjkjk woldwneww ∆+=  

   Each hidden unit (Zj, j = 1,… , p) updates its bias and  

   weights ( i = 0, …, n): .)()( ijijij voldvnewv ∆+=  

Step 9: Test stopping condition.  

 

The mathematical basis of backpropagation algorithm is the optimization technique 

known as gradient descent. The gradient of a function (in this case, the function is 

the error and the variables are the weights of the net) gives the direction in which 

the function increases more rapidly; the negative of the gradient gives the direction 

in which the function decreases most rapidly (Fausett, 1994).  

 

3.1.2. ANN Definitions & Concepts  

 

Initialization is required for the weights of the neural network. Selection of initial 

weights influences whether the net reaches a global (or only a local) minimum of 

the error and how quickly it converges.  
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An epoch is one cycle through the entire set of training vectors or predefined 

number of points in the training vectors. Many epochs are required for training a 

backpropagation neural net. A common variation is batch updating, in which weight 

updates are accumulated over an entire epoch before being applied.   

 

A relationship among the number of training patterns available, P, the number of 

weights to be trained, W, and the accuracy of classification expected, e, is 

summarized as:  eP
W = . 

 

Data representation (normalization of data) in neural networks is also a very 

important issue. In many problems, input vectors and output vectors have 

components in the same range of values. In many neural network applications the 

data may be given by either a continuous-valued variable or a “set or range”.  

 

The aim of training a neural net is to have a balance between correct responses to 

the training patterns and accurate responses to new input patterns. It is equivalent to 

parameter estimation in traditional deterministic models. It is not always 

advantageous to continue training until the total squared error reaches a minimum. 

Hecht-Nielsen suggests using two distinct sets of data during training. One of these 

sets is used for the weight adjustments, and the other one is used at some interval for 

calculation of the error. If the error in the second test set continues to decrease, 

training is continued. When the error in the test set (called validation set in 

MATLAB NNTOOL Toolbox) starts increasing, the net starts memorizing the 

training patterns. So the training session was stopped (Konar, 1999).  

 

Stopping criteria can be defined as the criteria which result in stopping the training 

session. Early stopping is important for improving generalization. In this technique 

the available data is divided into three subsets. The first subset is the training set, 

which is used for computing the error gradient and updating the network weights 
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and biases. The second subset is the validation set. The error on the validation set is 

monitored during the training process. The validation error will normally decrease 

during the initial phase of training, as does the training set error. However, when the 

network begins to overfit the data, the error on the validation set will typically begin 

to rise. When the validation error increases for a specified number of iterations 

(called max fail in MATLAB Neural Network Toolbox), the training is stopped, and 

the weights and biases at the minimum of the validation error are returned (Matlab 

Help, 2002). 

 

Network structure was defined before as the number of hidden neurons and hidden 

layers. The limits on the number of hidden neurons and hidden layers defined by 

Hecht and Nielsen (1987) and Rogers and Dowla (1994) were taken into 

consideration in this study. Especially in ANN models with one hidden layer, the 

upper of these limits were taken and were tried in the script. There were some space 

and memory requirement problems in the ANN models with two hidden neurons 

when running the script.  

 

3.2. MATLAB Neural Network Toolbox (NNTOOL) & Scripting 

 

3.2.1. Introduction to NNTOOL and Graphical User Interface 

 

Model development was carried out by using MATLAB Package Program version 

6.5 of Mathworks Company. MATLAB is a package program that consists of 

toolboxes for various areas of engineering. NNTOOL – Neural Network Toolbox is 

one of the toolboxes in MATLAB that implements ANNs and is used for the 

modeling process. For an automated search in the solution space a script is written 

that creates ANNs for a given training function, in a predefined range of hidden 

layers, in a predefined range of number of neurons in the hidden layers, etc. The 

details of script are given in the materials and methods section of the thesis.  
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MATLAB NNTOOL Toolbox is composed of two graphical user interface (GUI). 

Network/Data Manager (Figure 3.2) deals with the communication between 

MATLAB console and the NNTOOL, and creation and manipulation and addition 

or subtraction of data or neural networks. Network (Figure 3.3) provides an 

interface for initialization, training, simulation etc. of ANNs in the Network/Data 

Manager.  

 

The NNTOOL main GUI is given in Figure 3.2. GUI can be divided into two parts, 

the data and network representations on top (Inputs, Outputs, Targets, Networks, 

Errors, Input Delay States, and Layer Delay States). The data to be used can either 

be exported from MATLAB console or from MATLAB data file (“.mat”).  

Importing, exporting, deleting new data or new network, and creating new network 

are done with corresponding buttons.  

 

The second part of the GUI deals with network training, initialization etc as 

mentioned before. This part implements the model building process. From the 

second part of the main GUI the second GUI (Figure 3.3) that does initialization, 

simulating, training, and adapting of neural networks that were either created or 

exported to the main GUI.  

 

The second GUI does everything on the neural network including showing the view 

of neural network under consideration, training, initialization, simulation, adaptation 

and showing the weights of the neural net.  

 

NNTOOL was mainly used in this study to derive more accurate results from a pre-

developed neural net using the script written for automatic generation of ANN 

models. NNTOOL is a very user friendly GUI that can be used in creation of small 

number of models in specific problem domains.  
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Figure 3.2 Main Graphical User Interface of NNTOOL Toolbox. 

 

Figure 3.3 Second GUI of NNTOOL Toolbox. 
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3.2.2. MATLAB Scripting 

 

For the model development, a MATLAB script was written to automatically create 

ANN models for IskWTP and ACWTP. The Script does the same thing that 

NNTOOL GUI does. A graphical user interface (GUI) is shown in Figure 3.3. Script 

was used to see the change in accuracy when various parameters of created neural 

nets are changed. 

 

The script has some different versions in which some main structures of the neural 

nets were changed. For example one version of the script creates only neural nets 

with only one hidden layer, and this script has three different versions in which 

transfer functions were changed. The same thing has been applied to the one with 

two hidden layers. The first version of the script is given in Appendix C.  

 

The script mainly takes a data set from MATLAB workspace and then data is 

normalized into either [0 1] or [-1 +1] range using “norm01.m” script written before 

for [0 1], built-in premnmx function for [-1 +1] range. Then the script divides the 

data into three subsets that will be used as training, validation and test set. The script 

enters into a loop that creates neural nets for 13 of the MATLAB’s training 

functions. These training functions are listed in Table 3.3.  

 

For each of these training functions, the script enters into a second loop that changes 

the number of hidden neurons in a predefined range. Before creating the next 

network, the script trains the network and simulates the network with the given data 

and makes a regression analysis of the results obtained at the beginning. After that 

the next network is created and the same procedure above is applied. Also the script 

saves the figures of the regression analysis of R (correlation coefficient) values 

greater than some predefined threshold value, figure of observed versus predicted 

COD, and figure of time series graph for observed versus predicted values of COD.  

 



 

 35 

Table 3.3* training functions used to create ANN models using the script. 

training 
function Brief Explanation 

trainb Batch training with weight and bias learning rules. 
trainbfg BFGS quasi-Newton backpropagation. 
trainbr Bayesian regularization backpropagation 

traincgb Conjugate gradient backpropagation with Powell-Beale restarts 
traincgf Conjugate gradient backpropagation with Fletcher-Reeves updates 
traincgp Conjugate gradient backpropagation with Polak-Ribiere updates 
traingd Gradient descent backpropagation 
traingda Gradient descent with adaptive learning rate backpropagation 
traingdm Gradient descent with momentum backpropagation 

traingdx Gradient descent with momentum and adaptive learning rate 
backpropagation 

trainlm Levenberg-Marquardt backpropagation 
trainoss One step secant backpropagation 
trainscg Scaled conjugate gradient backpropagation 

 

 

3.3. SSSP - Simulation of Single-Sludge Processes for Carbon 

Oxidation, Nitrification & Denitrification  
 

SSSP is selected because it is a very powerful simulator for the activated sludge 

process including the nitrification and denitrification. In addition, another reason for 

the selection of the simulator is that it was used in many successful modeling studies 

in the literature (Sin, 2000).  

 

The SSSP system is an interactive, user-friendly program for simulating the 

biological transformations occurring in the activated sludge of a wastewater 

treatment plant performing simultaneous carbon oxidation, nitrification and 

denitrification. Process rate expressions that model the biological transformations 

were developed by a task group formed by IAWPRC. These rate expressions have 

been incorporated into 12 material balances for the heterotrophic and autotrophic 
                                                
* Interested readers can refer to MATLAB Full Product Family Help R13 for more detailed 

descriptions of these training algorithms.  
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biomass, soluble substrate, nitrate nitrogen, and other constituents that the task 

considered significant in the process analysis of single-sludge wastewater treatment 

plants. Utilizing numerical techniques, this program determines the solution to these 

material balances for both constant and time dependent inputs. 

 

The treatment plant is modeled as a chain of up to nine completely mixed reactors. 

The user specifies the process flow scheme, basin volumes, the flow rate to each 

reactor, the solids retention time (SRT), the kinetic parameters, the concentrations of 

all components in the feed streams, and the time dependent pattern of all flow rates 

and concentrations in those streams. Typical values of the kinetic parameters are 

provided for simulation when complete kinetic data is unavailable. Interested 

readers can refer to SSSP User’s Manual for the model assumptions, parameters, 

and equations used. In this study the default dynamic example dataset is modeled. 

Sensitivity analysis is applied on this dataset and the results obtained are given in 

section results and discussion.  

 

Dynamic solution menu in SSSP program is used to compute the solution to the 

mass balance equations for input concentrations and flow rates that vary in 

magnitude over a 24-hour cycle. To use the routine, variations in input (flow 

pattern) must be supplied over a 24-hour cycle. SSSP program automatically 

calculates the average flow rate and flow-weighted average concentrations and uses 

them to compute the starting point for the numerical integration routine. Then the 

computer repeats the integration over the 24-hour cycle until the variation in the 

concentrations of the components is the same from one cycle to the next. In other 

words, the computer determines the response of a system receiving the same 24-

hour input cycle day after day. Therefore, the system’s response depends only on 

the daily variation in loading (Bidstrup and Grady, 1987). 

 

The default dynamic example data set was supplied as input files, and they are 

generated from typical settled American domestic wastewater constituent. This data 

set is provided on the installation package for exploratory simulations into the 
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behavior of a system to “typical” input variations. The average flow rate on the 

dynamic flow file is 1000 m3/d (Bidstrup and Grady, 1987). It was mentioned in the 

SSSP manual that the set of dynamic data supplied was only for exploratory use. In 

this study, the data was used only for that purpose. Although this data was not as 

complex as the real world phenomena, this process was used as a practice in 

understanding the ANN structure and concepts. 

 

3.3.1. ANN Model development from SSSP Simulator Default Dataset 

 

The default dynamic data set of SSSP was used in the modeling process. In this data 

set, every parameter is given in a separate file. The input files have two columns, the 

first column is the time and the second column is the corresponding value of the 

parameter at that time. The extension of the input files is “.fed” and output file 

extension for the dynamic output is “.dyn”. The default input files of the SSSP 

program consists of 24 hour hourly data of the system variables used in the 

calculations.  

 

The SSSP Program has two types of data processing, e.i : “steady state solution” and 

the “dynamic solution”, namely. The dynamic solution in SSSP is supplying 24 hour 

input data using text file(s) therefore dynamic comes from this supplement. 

Dynamic solution was used in this study. Three system variables were taken into 

consideration in the model development process for the ANN model. The three 

variables used are given in the Appendix A. These system variables are flow rate 

(Q, m3/d), particulate products (Xi), autotrophic biomass (Xs, mg/l). The output 

variables that were predicted by the model were mixed liquor volatile suspended 

solids (MLVSS), heterotrophic biomass (Xhet, mg/l), and soluble organics (Ss).  

 

Brief descriptions of the variables used in the modeling process are as follows:  

 

Xhet: Heterotrophic biomass- Represents the biomass which uses readily 

biodegradable substrate as both source of carbon for synthesis and source of energy 
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for maintaining life functions. It grows under aerobic and anoxic conditions, but not 

under anaerobic conditions. Decay results in the conversion of biomass into slowly 

biodegradable substrate and into particulate products which are not biodegradable. 

Heterotrophs take up ammonia for cell synthesis under aerobic and anoxic 

conditions, and convert nitrate nitrogen to gaseous N2 under anoxic conditions. 

 

Xs: Autotrophic biomass – Represents the biomass which uses carbon dioxide as its 

carbon source for synthesis, and converts ammonia into nitrate for energy. It grows 

only under aerobic conditions. Decay results in the conversion of biomass into 

slowly biodegradable substrate and particulate products which are not 

biodegradable. Autotrophs also take up ammonia nitrogen for cell synthesis during 

aerobic growth. This biomass includes both Nitrobacteria and Nitrosomonas 

bacteria which are grouped together for the purposes of simulation.  

 

Ss: Slowly biodegradable COD – Represents particulate and high molecular weight 

organic material which is hydrolyzed extracellularly into readily biodegradable 

COD. The rate of hydrolysis is lower than the rate of uptake of readily 

biodegradable substrate.  

 

3.4. Ankara Central Wastewater Treatment Plant  
 

Ankara Central Wastewater Treatment Plant (ACWTP) has been constructed for a 

capacity of 765000 m3/d wastewater to be treated by using activated sludge process. 

The treatment plant was scheduled to serve for a population equivalent of six 

million by year 2025. It has also been designed to include nitrogen and phosphorus 

removal units in the future. 

 

The plant employs activated sludge process with anaerobic sludge stabilization. 

Sewerage system of the city was constructed in phase with the construction of the 

wastewater treatment plant. When the sewerage system is completed, the 98% of the 

city wastewater will have been collected to be treated by the plant.  
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3.4.1. Treatment Plant Layout & Dimensions 

 

At the first stage of ACWTP, there are grid chambers, coarse and fine screens, as 

the standard preliminary treatment units. These are followed by 10 primary 

sedimentation tanks each with a diameter of 50 m. Primary sedimentation is 

followed by 5 rectangular aeration tanks of 35m by 153 m. For the final 

clarification, 20 secondary sedimentation tanks exist each having a 55 m diameter. 

A battery of 90 surface aerators supplies air to biological reactions.  Effluent COD 

achieved is less than 30 mg/l for most of the time which is below the discharge 

standards. General layout of the treatment plant is given in Figure 3.1.  

 

 

Figure 3.1 General Layout of Ankara Central Wastewater Treatment Plant. 
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3.4.2. Description of the Data Set  

 

The ACWTP was monitored for five months for the removal of COD. The 

monitored system variables were ambient air and wastewater temperatures, flow 

rate, pH, turbidity, alkalinity, suspended solids, COD, and BOD5 in the influent and 

effluent wastewater, as well as in different units within the treatment train. Influent 

wastewater characteristics are given in Table 3.1. The data was obtained from the 

control engineer of ACWTP. The data obtained included values of variables 

between  May 2002 and February 2003.  

 

 

Table 3.1 Daily influent wastewater characteristics of ACWTP. 

Parameter Units Minimum Maximum Average Standard 
Deviation 

Organic Load % 30 85 66 11 
SRT d 1.46 14.85 3.50 1.51 

MLSS mg/l     
Tair  ºC  -14.0 34.0 12.2 9.4 

Twater  ºC  10.1 21.1 16.0 3.3 
Weather State  -  1.0 5.0 1.5 0.8 

QTotal  m3/d  336232 894884 588372 144850 
Q1stline  m3/d  164523 377044 269832 45901 

pH  -  7.2 7.98 7.52 0.14 
Turbidity NTU 50 225 92 25 
Alkalinity  mg/l  250 390 324 23 

TSS  mg/l  33 725 189 98 
COD  mg/l  136 730 342 90 
BOD5  mg/l  70 380 176 45 

 

 

Effluent variable to be predicted was CODeff. Effluent COD concentration had a 

minimum value of 12 mg/l, a maximum value of 80 mg/l, an average value of 43 

mg/l, and a standard deviation of 18 mg/l.  

 



 

 41 

3.5. �skenderun Wastewater Treatment Plant  

 

�skenderun Wastewater Treatment Plant is a high technology plant. The plant is a 

fully automated where process control is administered via SCADA control.  

 

3.5.1. Treatment Plant Layout & Dimensions 

 

�skenderun Wastewater Treatment Plant (IskWTP) process train is composed of 

coarse and fine screens, grid removal, primary sedimentation tanks, activated sludge 

aeration tanks, and secondary sedimentation tanks. The excess sludge produced in 

the treatment plant is aerobically digested and dewatered. The design capacity of the 

treatment plant is 57000 m3/d, however a capacity of 30000 m3/d had been used by 

the end of 2003. The receiving body of the treated water is the Mediterranean Sea.  

 

3.5.2. Description of the Data Set  

 

Two different sets of data belonging to two different time periods were used in this 

study. The first data set was for March 2002 to December 2002. The second data set 

was for January 2003 to May 2003. The second data set was used for the model 

development in this study.  

 

Raw wastewater characteristics of the second data set are given in Table 3.2. There 

were 33 parameters in the data obtained for the wastewater treatment plant but only 

11 were used in model building. This low usage was because either the data were 

blank or the data was unrelated with the process. The data used for the IskWTP was 

obtained from the control engineer of the plant.  
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Table 3.2 Daily influent wastewater characteristics of IskWTP. 

Parameter Unit Minimum Maximum Average Standard Deviation 
Q m3/d 18,000 42,000 29,85 3,642 
pH - 6.7 8.44 7.82 0.305 

Temperature °C 10.87 27 17.71 3.658 
COD mg/L mg/l 125 330 202 37 
TSS mg/L mg/l 90 208 122 20 

BOD  mg/l 71 191 118 33 
Sludge Prod.  kg/d 1671 6317 4186 878 

SVI ml/l 69 130 99 12 
MLSS  mg/l 2250 2850 2493 118 

MLVSS mg/l 3500 3800 3650 212 
θc   d 9 - 29 22 

CODeff mg/l 20 67 42 9 
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CHAPTER IV 

4. RESULTS AND DISCUSSION  

In this study, three activated sludge-type treatment plants were modeled by using 

ANN technique. One of the plants was a hypothetical wastewater treatment plant 

developed by using SSSP v1.0 simulator (Simulation of Single-Sludge Processes for 

Carbon Oxidation, Nitrification and Denitrification © 1984 Clemson University). 

The other two were actual plants operating in Ankara and �skenderun cities in 

Turkey.    

 

The hypothetical wastewater treatment plant was constructed by using SSSP’s 

default parameters and default dynamic influent wastewater data representing a very 

simple wastewater treatment plant. The default data was run in SSSP and dependent 

variable values were obtained for the effluent. The default influent data was based 

on average wastewater hourly characteristics observed in United States of America. 

The hourly flow variation in the input file was also based on average USA 

wastewater with 1000 m3/d flow rate.  Then, a sensitivity analysis was carried out 

on both SSSP and the constructed ANN model. Both outcomes were then compared 

to determine the generalization ability of the ANN model.  

 

In the second part of the study, ANN Models for two actual wastewater treatment 

plants were developed with the data obtained from these plants. A MATLAB Script 

was written to have an automated search process in the error surface aiming to 

determine the minimum error on the predictions of the trained model.  
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4.1. SSSP Model Studies 

 

4.1.1.  The SSSP Simulation Program as a Hypothetical Wastewater 

Treatment Plant 

 

The hypothetical wastewater treatment plant present as default in the SSSP 

simulation program was used as the first step for the development of an ANN model 

for the sake of simplicity of data generation, applicability to the model, and for 

quick output generation.  

 

Another reason for the selection of SSSP simulation program is that, the program 

uses the acclaimed ASM1 (Activated Sludge Model No 1) model which is currently 

believed that it accurately describes some of the basic biological mechanisms 

underlying in the activated sludge process. In addition, using a mechanistic model 

simulator generates as much data needed for the training of an ANN model. The 

SSSP model has already been used with success for the modeling of ACWTP 

Ankara Central Wastewater Treatment Plant) and results have been published in the 

literature by Sin (Sin, 2000).   

 

The data used in the model development process is given in Table A.1. The output 

of the SSSP program corresponding to the data set is given in Table A.2. These 

influent-effluent data pairs were used in the ANN model development for the 

hypothetical wastewater treatment plant. The input data set used in ANN model 

building was consisted of variables of Q, Xs, Xi. In response, the ANN model 

returned effluent variables of MLVSS, Ss, Xhet.  

 

Input and output variable definitions of the SSSP program were given in Section 

3.5.1. The effluent variable data computed by the SSSP program was produced a 

data set with 30 min intervals, starting at 00:00 hour and ending at 24:00 hours. 

Thus, the resulting daily data set consisted of 50 data points. However, the number 

of data was reduced to 24 for use in the ANN modeling by linear interpolation. This 



 

 45 

was done by taking average of each two consecutive values. The reason for this was 

the need to supply the corresponding pairs of inputs and outputs for the ANN model 

development.  

 

The SSSP Hypothetical Wastewater Treatment Plant was established using the 

default parameters in the SSSP Program. There are three aeration tanks, each of 

which has a volume of 200 m3 and an average daily wastewater flow of 1000 

m3/day fed to the system. The solids retention time (θc) is accepted as 10 days. 

Dissolved oxygen concentration in each tank is assumed to be 4 mg/l. A recycle 

input of 500 m3/d is given to the first aeration tank to which all the influent flow is 

directed.  

 

The graphical output of SSSP using the test input data for the selected variables are 

given in Figures 4.1, 4.2, and 4.3.  

 

 

Figure 4.1 MLVSS output of the SSSP simulation. 
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Figure 4.2 Xhet output of the SSSP simulation. 

 

Figure 4.3 Ss output of the SSSP simulation program. 
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4.1.2. ANN Model Development by SSSP Simulation Program Data 

 

The ANN Model development was tried firstly with one hidden layer manually. The 

script developed for automatic model generation was used at later stages upon 

getting familiar with the NNTOOL toolbox GUI. In manual modeling studies, two 

training functions were tried (trainb and trainbr). The trainb trains the ANN model 

in batch mode which is one of the two modes of weight updating. In this mode of 

updating, no update occurs until one epoch is completed. That is the ANN model 

learns slower than the other mode in which updates take effect without waiting for 

epoch completion. The second training function used was the trainbr which updates 

the assigned weight and bias values according to Levenberg-Marquardt optimization 

routine. The name of the training function is Bayesian regularization (MATLAB 

Ref. Manual). 

  

After the script was developed for automatic ANN model generation, this script was 

used for training. The script was simple and worked as follows: The number of 

hidden neurons was changed from 2 to 10 for each training function (algorithm). 

There are 13 training functions supplied by the MATLAB NNTOOL Toolbox for 

implementing back-propagation algorithm. For every training function, 9 ANN 

models were developed, having a different number of hidden neurons ranging from 

2 to 10, resulting in totally 117 models for each complete run of the script. The 

ANN models created manually using the NNTOOL GUI were much fewer in 

number than the models created by using the script. A generic script written is given 

in Appendix D.  

 

4.1.3. Manual ANN Model Development using NNTOOL GUI 

 

Manual runs showed that the models created with 3 hidden neurons in the hidden 

layer gave the lowest error and the best fit to the original data. During the manual 

runs, all the other properties of the ANN model were kept constant. Then, the model 

with one hidden layer and with 3 hidden neurons was taken as the optimum and 
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learning rate of the training session was changed. Later, the epoch size was lowered 

to 6000 as no significant decrease in the mean squared error (MSE) could be 

observed after this point. Therefore, runs were stopped at 6000 epochs. 

  

The properties of the neural networks used in manual runs are given in Table 4.1. 

The input layer has three neurons each representing one parameter (Q, Xi, Xs) of the 

model. The output layer has three neurons each representing a variable to be 

predicted (MLVSS, Xhet, Ss).  

 

 

Table 4.1 Properties of ANN model trials for SSSP runs. 

Trial training 
Function Epochs Goal Learning 

Rate max_fail Learning 
Function 

Trial1 traingd 6000 0.05 0.070 5 learngd 
Trial2 traingd 6000 0.05 0.080 5 learngd 
Trial3 traingd 6000 0.05 0.085 5 learngd 
Trial4 traingd 6000 0.05 0.090 5 learngd 
Trial5 trainbr 6000 0.05 0.090 5 learngd 

 

 

The schematic view of the ANN model is given in Figure 4.4. The first layer in the 

figure is the input layer denoted with the thick black line at the left hand side of the 

figure. The number “3” below the input layer shows the number of input variables. 

Then the weight matrix that sends input signals (IW{1, 1}) to the next layer comes. 

The bias input (b{1}) to the hidden layer is shown with another box below the input 

weight matrix. The plus sign is an aggregator meaning that incoming signals are 

added and passed to the next layer. After that, signals are passed to the hidden layer. 

In the hidden layer box, the type of the transfer function used is given (tansig 

function here). Then again the weight matrix and bias comes, and from these 

matrices, signals are passed to the next aggregator from where the signals are passed 

to the output layer having logsig as the transfer function. 
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Figure 4.4 Schematic view of ANN Model developed for SSSP. 

 

The differences between the hypothetical WWTP model and actual treatment plant 

ANN models were: i) In the hypothetical model the model predicts 3 variables 

whereas in actual wastewater treatment plants only one system variable (effluent 

COD) was tried to be predicted by the ANN model. ii) In the hypothetical model 

one hidden layer was used whereas in the real WWTP models there were two 

hidden layers iii) The training session was increased up to 20000 epochs in the real 

WWTP models whereas in the hypothetical WWTP model training was stopped at 

6000 epochs. These differences evidently resulted from the more complex nature of 

the biological processes taking effect and the error in the data of the real WWTPs. 

The choice and implementation of the analysis techniques, quality of technicians, 

quality of the analytical equipment etc. might have caused the errors in the real 

WWTPs. 

 

The predictions of the ANN model of MLVSS in the aeration tank for Trial1 to 

Trial5 models are given in Figures 4.5 and 4.6. The best results were obtained with 

the ANN Model at Trial5.   The comparison of the SSSP and ANN model outputs 

for these models is shown in Figure 4.6.  Predictions of the last two models, Trial4 

and Trial5, had very high correlation with the SSSP data. The R values for these 

runs were both 0.994, respectively. The improvement obtained towards 4th and 5th 

trials came from the improving network structure and increase in the learning rate 

during the training session.  Regression plot for Trial5 is depicted in Figure 4.7. 

Trial4 and Trial5 have given approximately the same result. Therefore 

distinguishing the response of two trials was very difficult in Figure 4.6 
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Figure 4.5 The ANN Model run results for MLVSS predictions Trials 1 to 3.  

 

Figure 4.6 ANN Model run results for MLVSS predictions Trials 4 and 5. 
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Figure 4.7 Regression analysis result of MLVSS variable for Trial5 ANN model.  

 

 

The other variables predicted with the same ANN models were the heterotrophic 

biomass and slowly biodegradable COD in the effluent. The ANN Model Trial5 

gave good fit to the data set generated by SSSP. The second variable, heterotrophic 

biomass had a very similar pattern with the MLVSS. The prediction capability of 

the ANN models for the three model variables were very high, implicating 

extremely good prediction accuracy. The prediction and regression analysis graphs 

of the other two variables can be found in Appendix B, Figure B.1, B.2, and B.3.  

 

The correlation coefficient between the predicted and real data was 0.994 for 

MLVSS, which was very high. Evidently such high correlations were due to the 

synthetic nature of the data, which did not contain the highly complex 

characteristics of a real plant. The prediction capability of the ANNs was shown 

with the runs using the SSSP data.  
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4.1.4. Automated ANN Model Development using a Special  Script  

 

The script developed for ANN modeling, which created 117 different models for 

each run, was used for the data set. Two runs were made using this script. In the first 

run, data set was divided into 3 subsets. 50% (first 12 hours), 25% (following 6 

hours), and 25% (last 6 hours) of the data were allocated for training, 25% 

validation, and test, respectively. The second run was made with 2 subsets of which 

75% (first 18 hours) and 25% (last 6 hours) were utilized for the training and test, 

respectively.  Division into subsets was based on the chronological order of the data. 

Therefore, the first 12 data points were related with training in both of the runs. The 

second run was different from the first, such that no validation set was used.  

 

The results obtained from the first run are given in Tables B.1 and B.2. In these 

tables the results of the models having an R value greater than 0.8 are presented.  

Therefore, not all of the 117 models are listed.  Some of the best fitting models were 

also selected for sensitivity analyses. The selected models for the first and second 

runs are given in Table 4.2.  

 

Table 4.2 Selected best ANN models that can be used for sensitivity analyses. 

training func. # of 
HNs RMLVSS RSs  RXhet  

trainbr (Figure4.8) 3 0.971 0.942 0.938 
trainbr 9 0.955 0.969 0.948 

traingda 8 0.946 0.992 0.864 
trainlm(Figure4.9) 9 0.908 0.989 0.988 

trainrp 10 0.920 0.947 0.870 
 

The number of hidden neurons was changed from 2 to 10 for all of the 13 training 

functions (algorithms) that MATLAB NNTOOL Toolbox provided for both runs. 

As it can be seen from Table 4.2, Figures 4.8 and 4.9, no further improvement was 

necessary on the models as high correlation, such as 0.989, indicated perfect match 
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between the predicted and the observed data.  The model developed by using trainbr 

training function (Figure 4.8) consists of 3 HNs in one hidden layer.  

 

 

Figure 4.8 Results obtained in the 1st run with the script: trainbr with number of 

HNs: 3.  

 

The second successful result was obtained from the trainlm (Levenberg-Marquadt 

backpropagation) algorithm with 9 HNs in one hidden layer (Figure 4.9) and the 

MSE was 0.0188 while the goal was nil. Again, the results implied no further 

improvement necessary on the model obtained. Although at this stage of the study 

further improvements on the models were not necessary, in the actual wastewater 

treatment plant modeling studies a need for further improving the models became 

evident.  
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Figure 4.9 Results of the 1st run with the script: trainlm with number of HN: 9. 

 

In the second run of the script for the SSSP data set, validation set was excluded and 

the data set was divided into two, i.e. 75% of the data (first 18 hours) for training 

and 25% of which (last 6 hours) for test. The accuracy of the resultant model was 

higher than the first run which might have been due to the increased amount of data 

used in this training set.  

 

If the training set includes repeated identical data points then this might result in a 

poor prediction. Small amount of data which is not able to represent the system may 

also result in poor model prediction. For these reasons, training sessions might need 

to be repeated with different training sets constructed from different divisions of the 

original data set. In the second run the number of training sets was increased from 



 

 55 

50% to 75% of the data and the remaining data was used for testing the goodness of 

fit. 

 

Four of the best models selected are given in Table 4.3. The second model (traingda 

with 10 hidden neurons) was later used in sensitivity analysis. Figures 4.10 and 4.11 

show the responses of the ANN models developed using the traincgp with 4 HNs, 

and traingda with 10 HNs, respectively. 

 

 

 

Figure 4.10 The results of the 2nd run with the script; using traincgp with four 

number of HN  
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Table 4.3 Results of the second run using the script developed.  

training func. # of HNs RMLVSS RSs  RXhet  
traincgp 4 0.990 0.998 0.981 
traingda 10 0.998 0.993 0.992 
traincgp 10 0.997 0.984 0.999 
traingdx 6 0.993 0.984 0.999 

 

 

Although the data was not as complex as the real treatment plant data, the outcome 

was encouraging as very high correlation results were obtained. This implies that 

ANNs are able to model the activated sludge process so long as the data supplied 

adequately represents the particular system.  

 

As described earlier, the validation set was used in the validation of the model and 

also to check the error incurred during the training session. The validation set is 

normally different from the training and test sets. Although no validation set was 

present in the second run, prediction accuracy was higher in this run as compared to 

the first one with the validation data. This was possibly due to the higher number of 

training data used in this run. 

 

4.2. Sensitivity Analysis using SSSP Simulation Program 
 

The sensitivity analyses were carried out for all of the three variable inputs, namely 

Qinf, Xi Xs, used in ANN modeling to see whether the ANN model developed is as 

sensitive to the system variables as the SSSP model is. The analyses were carried 

out by changing the values of the original data set by one variable at a time. For 

example, one of the variables in the data set was decreased by 5%, 10%, and 15%. 

The sensitivity was tested by comparing the results obtained from SSSP and ANN 

models with each other. Other variables were kept constant.   
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Figure 4.11 The results of the 2nd run with the script; using traingda with ten 

number of HN 

 

After comprising a data set for a given variable, the best ANN model that was built 

in the development process (trainlm, 10 HNs) was used for prediction. Then the 

same data set (e.g. 5-15 % decrement in Qınf) was applied to the SSSP Program 

(representing the hypothetical wastewater treatment plant) to measure the sensitivity 

of the model to the input variable. After the responses from both of the models were 

obtained, these were evaluated with reference to the original state. For example, 5% 

increase in Qinf data produced a set of Xhet output values, which were then compared 

with Xhet output data obtained from the original Qinf values. The output by a (ANN 

or SSSP) model was compared to the base output.  The base output being the output 

data obtained from the unchanged data. 



 

 58 

 

The changed data was directly applied to the SSSP and after preprocessing 

(normalization to [0 1] for ANN) for the ANN. However, the ANN model 

developed was unable to respond to the output values beyond the range of the 

original data set, as upper and lower boundaries defining the normalization were 

exceeded. Therefore, to have meaningful analyses, the original data set was 

normalized with respect to upper and lower limits in the observed data set. This 

procedure was applied also to the outputs of the system, as ANN model outputs 

returned a value in the range [0 1] as well. As a result, SSSP response to the original 

input also set the upper and lower limits for the output normalization. Then, the 

ANN model was re-trained using this normalized data. The base and preprocessed 

(new) limits of the data set are given in Table 4.4.  

 

Table 4.4 New minimum and maximum values used in the sensitivity tests. 

 Base Minima New minima Base Maxima New Maxima 
Qinf (m3/d) 423 340 1530 1780 
Xi (mg/l) 12 9 52 65 
Ss (mg/l) 40 30 170 200 

MLVSS (mg/l) 1953 1650 2052 2380 
Xhet (mg/l) 826 710 888 1030 
Xs (mg/l) 1.21 1.10 1.67 1.80 

 

 

As given in Table 4.4, MLVSS values in the original SSSP output was varying 

between 1953 and 2052 and when 5% decrease was applied to Qinf value, SSSP 

outputs returned 1935 mg/l at the 3rd hour, and this value was outside the range of 

ANN model ((1935-1953)/(2052-1953), which consequently produced an output 

less than zero, which was meaningless. To circumvent this problem, the upper and 

lower limits for both input and output were set beyond the maxima and minima 

values. However by doing so the ANN models became less sensitive. The maxima 

and minima values used for normalization are given in Table 4.4. 
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4.2.1. Sensitivity Tests Based on Flow Rate 

 

The results of all the variables tested with altered Qinf values are given in Figures 

4.14 (for Xhet), 4.16 (for Ss) for the SSSP model; and in Figures 4.13 (for MLVSS), 

4.15 (for Xhet), and 4.17 (for Ss) for the ANN model.  

 

As can be seen from Fig 4.12 and 4.14, sensitivity of the MLVSS and Xhet variables 

to Qinf, respectively, is very high in the SSSP model; almost 1:1. In other words, 

when Qinf was decreased by 15%, MLVSS value also decreased by 15%. 

 

When the ANN model outputs with the varying Qinf were considered, the MLVSS 

and Xhet both responded poorly and somewhat in the reverse direction as shown in 

Figures 4.13 and 4.15, i.e. when Qinf was decreased by 15 % both data were nearly 

converged. This kind of response is contrary to the current understanding of the 

ASP kinetics. That is, when organic load is reduced, the amount of biomass should 

also be reduced, as indicated by the SSSP response in Figure 4.12. 

 

As can be seen in Figure 4.16, in the case of SS, change in Qinf did not affect this 

parameter at all, within the limits tested. This was not unexpected according to ASP 

kinetics. Also, in the case of ANN response, as shown in Figure 4.17, change in Qinf 

had almost no effect on the SS values. It can be concluded that SS is not a sensitive 

parameter after all and ANN results are in accord with this. 

 

4.2.2. Sensitivity Tests Based on Particulate Inert Organic Matter (Xi) 

 

Sensitivity test results indicated that the SSSP model is also very sensitive to X� 

with respect to input MLVSS, as indicated in Figure 4.18. The results of these 

studies are given in Figures 4.18 (for MLVSS), 4.20 (for Xhet), 4.22 (for Ss) for 

SSSP model and in Figures 4.19 (for MLVSS), 4.21 (for Xhet), and 4.23 (for Ss) for 

ANN model.  
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It can be concluded that response of ANN to Xi input with respect to MLVSS was 

somewhat close to that obtained in SSSP, as indicated in Figure 4.18. It can be 

concluded that the results might improve using dedicated ANN models for each 

output variables i.e. MLVSS, Xhet, and Ss.  Here, three input variables are entered 

into the model and three variable outputs are received. In a dedicated model three 

variables may be entered but one variable output may be obtained.  

Another reason for the poor prediction of the ANN model could be due to the 

altered model limits which were changed in the sensitivity data set to avoid minus 

normalization. This has resulted in the accumulation of the original data set between 

[0.38 - 0.55] range, which might have resulted in poor training.  

 

 

Figure 4.12 Sensitivity test results of MLVSS for SSSP Hypothetical WWTP for 

changed Qinf. 
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Figure 4.13 Sensitivity results of MLVSS for changed Qinf in ANN Model (trainlm, 

10 HNs). 

 

Figure 4.14 Sensitivity results of Xhet for SSSP Hypothetical WWTP for changed 

Qinf. 
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Figure 4.15 Sensitivity results of Xhet for changed Qinf in ANN Model (trainlm, 10 

HNs). 

 

Figure 4.16 Sensitivity results of Ss for SSSP Hypothetical WWTP for changed Qinf. 
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Figure 4.17 Sensitivity results of Ss for changed Qinf in ANN Model (trainlm, 10 

HNs). 

 

Figure 4.18 Sensitivity test results of MLVSS for SSSP Hypothetical WWTP for 

changing Qinf. 
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Figure 4.19 Sensitivity results of MLVSS for changed Qinf in ANN Model (trainlm, 

10 HNs). 

 

Figure 4.20 Sensitivity results of Xhet for SSSP Hypothetical WWTP for changed Xi. 
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Figure 4.21 Sensitivity results of Xhet for changed Xi in ANN Model (trainlm, 10 

HNs). 

 

Figure 4.22 Sensitivity results of Ss for SSSP Hypothetical WWTP for changed Xi. 
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Figure 4.23 Sensitivity results of Ss for changed Xi in ANN Model (trainlm, 10 

HNs). 

 

 

4.3. ANN Modeling Studies with �skenderun Wastewater Treatment 

Plant (IskWTP) Data 

 

4.3.1. IskWTP Data Preparation 

 

Two different data sets were used for ANN modeling of IskWTP. These were 

belonging to the period from March 2002 to December 2002, and from January 

2003 to May 2003. The first runs were made using the first set.  However, the ANN 

models developed using this data set gave poor predictions. The highest correlation 

obtained was about 0.35. Then, the second set of data was used for model 

development.  
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In the modeling process, 9 of the system variables were used to build an ANN 

model. Also various combinations of the data were used in the model development 

process. System variables that were used in the modeling process were solids 

retention time (θc), influent flow rate (Qinf), influent pH, influent water temperature 

(Tinf), influent COD concentration; MLSS, effluent COD, effluent TSS and sludge 

production rate from the primary sedimentation tank. These variables, singly or in 

combinations, were used to predict effluent COD concentration of the treated water 

from the treatment plant. Numerous combinations of variables were used and 

hundreds of models were developed and trained to see the efficacy of the prediction. 

Only those models resulting in high efficacy will be presented here.  

  

Preparation of data was executed by excluding blank values from the original data 

set. Initially the raw data was composed of approximately 5 months of daily 

measurements, excluding Sundays, and summing up to 108 days. There were blanks 

in the data.  Rows of data having blanks were removed completely from the set. For 

example, number of points used in ANN model for the three variable combinations, 

namely, effluent total suspended solids, MLSS of primary sedimentation tank and 

influent flow rate, was 99; where 9 rows of data containing blanks in any of the 

three variables were discarded. 

 

4.3.2. IskWTP Data Preprocessing 

 

After preparation of the data for the model development, preprocessing was carried 

out to assign all the variables equal weights in the weight update process, 

particularly when using a non-linear transfer function. The preprocessing was 

established by conversion of the input and output data into the range [0 1] or [-1 

+1].  

 

This conversion was done for all the points in the data as follows:  
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For [0 1] range; 

 

minmax

min

xx
xx

X i
i −

−
=  (4.1) 

and for [-1 +1] range, 

12
minmax

min −
−

−
×=

xx
xx

X i
i   (4.2) 

 

Each variable in the data have to be supplied in equal weights to the ANN model by 

normalizing the input data when nonlinear transfer functions like logsig, tansig were 

being used. Therefore, the data have to be scaled into [0 1] or [-1 +1] range using 

Equations 4.1 and 4.2, respectively.  

 

In runs with [-1 +1] range, no good results were obtained. In these runs, firstly the 

script with one hidden layer was tried. Then, the hidden neuron number was 

changed using the criterion defined by Hecht and Nielsen (1987). The highest 

correlation coefficients obtained in these runs were around 0.4.  

 

Later, number of hidden layers was increased to 2. Using the same data and in the [0 

1] range, the transfer function logsig and in the [-1 +1] range, the transfer function 

tansig were used. It is possible to use transfer function combinations in multilayer 

models by using a particular transfer function at one layer and another at different 

layer(s). Some of the possible combinations of these functions when using two 

hidden layers (tansig-tansig, logsig-logsig, tansig-purelin,  … etc.).  

 

4.3.3. IskWTP ANN Model Development 

 

The MATLAB Script was used to construct ANN models automatically by using the 

data for IskWTP. The implementation of the script started with the determination of 

the combinations of the variables to be used together. Variable combinations used in 

model development process are given in Table 4.6. These combinations were tried 
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in the given order until a good fits to the actual data were obtained by visual 

judgment and by considering the correlation coefficient, R. When an acceptable fit 

was reached, this was further improved by grouping the variables giving the best 

results.  

 

As can be seen in Table 4.6, the best fit to the effluent COD data was obtained with 

the combination number 25, yielding R=0.795. Basing on this observation, the 

variables identified in combination 25 were tested further singly or in pairs to create 

new subsets to be used in the script, in search for improved results. The variable 

combinations tested are presented in Table 4.5. 

 

Table 4.5 Set descriptions for Combinations 25 and 26. 

Set No Variable(s) used 
1 MLSS only, 
2 TSSeff only, 
3 MLSS and Qinf, 
4 Qinf and TSSeff, 
5 Qinf, TSSeff and MLSS, 
6 MLSS and TSSeff. 

 

Table 4.6 Combinations of variables used in individual runs of the script.    

No Qinf pHinf Tinf CODinf MLSS TSSeff ∆∆∆∆X θθθθc Best R 
1 �� �� �� ��     0.411 
2 �� �� ��      0.360 
3 �� �� ��  ��    0.310 
4 �� �� ��   ��   0.462 
5  �� �� ��    �� 0.257 
6  �� ��     �� 0.223 
7  �� ��  ��   �� 0.207 
8  �� ��   ��  �� 0.211 
9 �� �� �� ��   ��  0.291 

10 �� �� ��    ��  0.256 
11 �� �� ��  ��  ��  0.302 
12 �� �� ��   �� ��  0.321 
13 �� � �� ��     0.451 
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Table 4.6. (continued). 

14 �� � ��      0.421 
15 �� � ��  ��    0.397 
16 �� � ��   ��   0.459 
17  � �� ��    �� 0.243 
18  � ��     �� 0.268 
19  � ��  ��   �� 0.267 
20  � ��   ��  �� 0.289 
21 �� � �� ��   ��  0.269 
22 �� � ��    ��  0.244 
23 �� � ��  ��  ��  0.201 
24 �� � ��   �� ��  0.231 
25 ��������    �������� ��������   0.795 
26 ��������    �������� ��������   0.729 

 

 

In addition to the manual altering of the variable combinations, the script 

automatically alters the number of hidden neurons for improved outputs. The 

outputs here were the effluent COD predictions. All these runs were made for 

different hidden layers. In the first run, there was 1 hidden layer and the hidden 

neuron number was changed from 1 to 9. As described earlier in the Methods 

section, there are 13 training functions available in the MATLAB ANN Toolbox 

basing on backpropagation algorithm. The script uses these functions sequentially to 

build the ANN models (Table 3.3). The transfer functions of tansig, and logsig were 

tried in different script runs. The script did not generate regression graphs as none of 

the tested models could yield a correlation coefficient greater than 0.6. 

Subsequently, the same procedure was applied using the script for ANNs with two 

hidden layers. In the latter runs using the script with two hidden layers; again the 

number of hidden neurons was changed from 1 to 9 for both hidden layers.   

 

The best fitting ANN model was determined according to the highest correlation 

coefficient. The ANN model response, regression analysis, and training session 

graphics are given in Figures 4.24, 4.25, 4.26, respectively. In Figure 4.24, the first 

half of the graph includes the training data. The second half (after x = 37700) 

contains the validation and training data. The results of regression analysis are given 
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in Figure 4.25. The blue line on the graph gives A=T, representing the theoretically 

best possible fit and the red line represents the best fit.   

 

The MSE (mean square error) for the best run in the training session is given in 

Figure 4.26. The training session was stopped at epoch 48, upon completion of the 

validation process. There were three rules to stop the training session, (1) reaching 

the goal, which was to bring the Mean Squared Error (MSE) to zero, (2) exceeding 

the maximum fail number, which is already discussed in Section 3.3.2, and (3) 

reaching the maximum number of epoch given (here it was 20,000). In the best run, 

the 2nd stopping criterion was utilized to stop the training session. 

 

The ANN model was taken from the 25th script run for IskWTP (Table 4.6). The 

system variables used in this script run were, namely, influent flow rate, effluent 

TSS, and MLSS. A 99 daily data were used in the model development. The data was 

divided into three parts as training, validation and test sets. The first 50% (1-49th  

days) of the data was taken as the training data, 25% (50-74th  days) was taken as the 

validation set that was used for validation of the direction of the error decrease 

during the training (parameter estimation) and the remaining (75-99th days) was 

taken as the test data. The 26th combination was the same as 25th; the difference 

being in that the data was not fed in chronological order.  
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Figure 4.24 Prediction of COD in the best ANN model with R=0.795. 

 

 

Figure 4.25 Regression analysis of the best ANN model.  
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Figure 4.26 Prediction of COD in the best ANN model with R=0.795 

 

It can be seen in Figures 24, 25, and 26 that the results obtained were fairly good. 

The best correlation coefficient obtained was 0.795. Results could have been even 

better if the data used were more numerous and accurate. The data set used in this 

study included too many blanks which interrupted a continuous data input to the 

ANN model. The quality of daily data was unsure which increased uncertainty. 

Although it is known that ANN can cope with noisy and erroneous data well, the 

process parameters in biological wastewater treatment used in ANN modeling are 

numerous and relative error is often high in these. Therefore the combination of 

errors propagates during ANN modeling. Therefore, ideally the main purpose in 

ANN modeling would be to predict objective variables using the data from 

automatic sensors controlling the treatment plant. Random human error would be 

minimized by this.  

 

The best results obtained using the MATLAB Script, are given in Tables 4.7 and 

4.8. In these tables, name of the backpropagation algorithm, variable set 
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combination number (i.e. 1-26) from Table 4.6, the number of hidden neurons 

employed, and the correlation coefficient obtained are given collectively. 

 

 

Table 4.7 The best results of 25th run of the script. 

Training function Set HNs R 
trainbfg 6 4 0.673 
traincgb 5 6 0.795 
traincgb 6 6 0.694 
trainlm 6 1 0.670 
trainscg 6 6 0.668 

 

 

Table 4.8 The best results of 26th run of the script. 

Training function Set HNs R 
trainb 4 2 0.696 

trainbfg 5 3 0.673 
trainbfg 5 6 0.673 
trainbr 5 3 0.691 

traincgp 5 2 0.693 
trainlm 4 4 0.729 
trainlm 4 6 0.709 
trainlm 4 7 0.684 
trainrp 5 4 0.703 

trainscg 4 4 0.669 
 

 

The ANN modeling can be thought as a two step process. Firstly, the combination 

of variables giving the best result was taken for creating the new variable sets. In 

this case variables identified in the 25th set in Table 4.7 were used and new 

combinations were tried using these identified variables. The 26th set (Table 4.8) 

was identical to the 25th with the difference in the order of data fed to the ANN 

model. In the 26th set, data was fed randomly whereas in 25th a chronological order 

was followed.  
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4.4. ANN Modeling Studies with Ankara Central Wastewater 

Treatment Plant (ACWTP) Data 

 

4.4.1. ACWTP Data Preparation 

 

The ACWTP data was prepared firstly by determining the variables to be used in the 

ANN model development. The blanks in the data set were excluded as before. When 

choosing the parameters that will be used for ANN modeling, variables such as  

organic loading, solids retention time, MLSS, water and air temperatures, alkalinity 

and pH, were selected by considering the ASP kinetic.  Then in a second attempt, 

the solids retention time and organic loading in the first set at above were replaced 

by the influent flow rate, influent COD concentration and return activated sludge 

flow rates.  

 

Other trials have also been made by smoothing out the data by using higher order 

polynomial equations (up to 6th degree) for every variable to obtain an optimal ANN 

model that can predict effluent COD concentrations reasonably accurate. The 

polynomials were fitted to the data set for each variable. Moreover, in a later 

attempt, data were divided into subsets considering the seasons of the year and each 

subset was trained, verified, and tested with the parsed data. However, no significant 

fit could be obtained in these trials.  

 

Monthly data were parsed by using Genetic Algorithm program, PGAPack, into 

three to form the components for training, validation and test sets for the ANN 

models. The code that divides the data set into three equally averaged sets is given 

in Appendix D and the formula used in minimization in Equation 4.2. 
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4.4.2. ACWTP Data Preprocessing 

 

The data to be used in ANN modeling was initially normalized in the [0 1] or [-1 

+1] form by using each variable’s minimum and maximum values and by using the 

given formula (Equation 4.2). Moreover data was normalized around its mean value 

with reference to the standard deviation of the set, as follows:  

σ
µ−

= i
i

x
X   (4.3) 

where  

µ = mean value of the variable to be normalized,  

σ = standard deviation of the variable to be normalized.  

 

The three forms of normalized data were run separately in order to obtain a higher 

match to the observed data. These trials were unfruitful, therefore will not be 

discussed here extensively.  

 

4.4.3. ACWTP ANN Model Development 

 

After preprocessing the data for model development, effective variables on the 

system performance were selected (25th combination in Table 4.6). As discussed 

earlier in Section 4.4.1, ANN modeling using the selected cardinal variables of ASP 

kinetics, such as SRT, organic loading; yielded very poor fits with R around 0.4. 

These variable sets were therefore abandoned and replaced by those identified in 

25th combination in Table 4.6 in search for better fits. 

 

The newly selected variables were used in the script to build the ANN models for 

the system.  At first, one hidden layer was used with logsig transfer function, and by 

changing the number of hidden neurons from 1 to 12. Data were parsed in two 

different percentages for ACWTP modeling. Namely, 50% of data were used for 

training, 25% for validation and 25% for the test set and in the second group 34% 

for training, 33% for validation, and 33% for test. The data which were normalized 
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in three different forms were subsequently used for ANN modeling.  Any changes 

made on the model format were implemented to the three forms of normalized data 

runs. For example, changing the transfer function on one set of normalized data lead 

to applying this to the other two normalized data sets 

 
 

Table 4.9 Combinations of variables selected for ANN model building using the 
script. 

 

Combo. Organic 
Load θc Turbidity TSS Twater Tair Alk. pH R  

1  �       0.136 
2  � �      0.191 
3  �  �     0.211 
4  �   �    0.179 
5  �    �   0.165 
6  �     �  0.176 
7  �      � 0.187 
8 �        0.120 
9 � �       0.143 

10 � � �      0.155 
11 � �  �     0.324 
12 � �   �    0.201 
13 � �    �   0.186 
14 � �     �  0.165 
15 � �      � 0.197 
16 �  �      0.187 
17 �   �     0.200 
18 �    �    0.169 
19 �     �   0.145 
20 �      �  0.134 
21 �       � 0.121 

 

 

Initially the best result obtained was (with Organic Load, θc, and Turbidity variable 

combination) in run with two hidden layers which produced a correlation coefficient 

of 0.32 using logsig transfer function, normalized into [0 1] range (Table 4.9). Thus, 

a total of twelve runs were made to improve the fit. All four types of data 
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normalizations ([+1 -1], etc.) in two data parse groups, and in two training functions 

(logsi, tansig) were tested.  The R value reduced to 0.30 when tansig was used.  

 

The script was slightly modified to build ANN models of two hidden layers with 

this data. All other criteria in the script were kept identical to that with one hidden 

layer but an additional transfer function for the second layer was added. In the runs 

with two layers only up to 9 hidden neurons could be used as computer memory 

capacity was exceeded beyond this point and further runs could not be implemented. 

The total transfer function combinations tested for the two hidden layers were four 

in number; namely, tansig-tansig and logsig-logsig. However, no appreciable 

correlation could be obtained in these trials and this approach was therefore aborted. 

  

Following the failure in trials with two hidden layers and the choice of parameters 

on basic ASP kinetics, it was decided to select available operational parameters such 

as “influent flow rate, return activated sludge flow rate and influent COD 

concentration” instead of organic loading and solids retention time. The new 

variable set used in the model development process is given in Table 4.10. The 

parameter combinations shown in Table 4.10 were tested by using the script. The 

best correlation coefficient obtained was 0.56.  

 

Table 4.10 Combinations of variables used with selected operational variables. 

Combo. Q1inf CODinf pH Alk. Qret Turbidity TSS Twater Tair R 

1  �� �      � 0.465 
2  ��  � �    � 0.470 
3  ��   � �   � 0.407 
4  ��    ��   � 0.556 
5  ��     ��  � 0.511 
6 �� �� �      � 0.504 
7 �� ��  � �    � 0.470 
8 �� ��   � �   � 0.380 
9 �� ��    ��   � 0.457 

10 �� ��     ��  � 0.504 
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The poor fit with R=0.56 suggested that other remaining variable combinations also 

be tested. In order to implicate the correct variables for ANN combinations a 

regression analyses between the possible input variables and the outputs (COD) was 

carried out. The resultant correlation matrix is given in Table 4.12 and combinations 

of selected variables after regression analysis are given in Table 4.11.  

 

Table 4.11 Combinations of variables determined with the regression analysis used 

in the individual runs of the script. 

Combo. CODeffprimarysed TSSeff Tair Twater 
1 �������� �������� �������� ����

2 �� ��  ��

3 �� �� �� ��

4 �� ��   
 

 

The best correlation coefficient obtained with these variable combinations in Table 

4.11 was 0.688 (from Combo. 1) which corresponded to the best result obtained for 

ACWTP in all the models developed. Graphical outputs for model predictions, 

regression analysis, and training session are given in Figures 4.27, 4.28, 4.29.   
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Figures 4.27 Best model developed (traincgb, 4 HNs) for ACWTP. 

 

 

Figures 4.28 Regression analysis for the best model developed for ACWTP.
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Figures 4.29 training session for the best model developed for ACWTP. 

 

 

After all these trials, it was seen that the highest correlation coefficient found (R= 

0.688) was not satisfactory in modeling the treatment plant under consideration and 

other methods of fit were tried. In these trials input data were smoothened by 

creating approximate polynomial equations for each variable that will be used for 

the prediction of effluent COD concentration. However, the ANN models developed 

after smoothening seemed to have captured the trend of the mean values but 

extremely volatile character of the COD output data prevented a close match as can 

be seen in Figure 4.30.  
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Figures 4.30 Prediction with polynomial data using two hidden layers for ACWTP. 
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CHAPTER V 

5. CONCLUSIONS 

The following conclusions can be drawn from this study: 

• Ideally ANN could accurately model activated sludge process, as indicated 

by simultaneous studies carried out using the SSSP program.  

• The sensitivity of the ANN model is also acceptable as compared with the 

SSSP program response. 

• Regarding the actual data, the accuracy of the ANN model deteriorates 

owing to the errors in data production.  

• In the case of actual data from IskWTP, the best fit obtained by the ANN 

model yielded a R value of 0.795, which can be considered very high with 

such a noisy data. 

• The variable input combination was Qinf, TSSeffl, MLVSS in the best run 

with R=0.795 for effluent COD prediction in IskWTP.  However, use of 

TSSeff  may not be meaningful if this model is to be used for the control of 

the WWTP.   In this run 2 hidden layers, 6 HN and logsig transfer function 

were used. 

• In the case of ACWTP, the R value obtained was 0.688, where accuracy of 

fit is debatable. The study of model building can be repeated using a new set 

of data that was measured for the specific purpose of ANN modeling.. 

• With noise-free data, such as those supplied by the SSSP program, even with 

one hidden layer and using three selected variables, highly accurate 

predictions in any of the three objective variables were obtained. The R 

values for MLVSS, XHET and SS were greater than 0.98.  

• It is seen that noise in the data caused miscalculation of the fundamental 

operational parameters of the activated sludge process and resulted in loss of 

both sensitivity and precision. Therefore ANN modeling should best be used 

in association with automated data logging equipment. In this case even 
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systematic bias that would be produced by the instrumentation would not 

appreciably impact the precision of the predictions. Whereas manual data 

produced may contain both random and systematic errors which result in 

great loss of precision.  
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APPENDICES 

APPENDIX A 

SSSP Simulation Program Default Dynamic Data Figures & Tables 

 

A.1. SSSP Simulation Program Default Influent Data 

 

Table A.1. Input Data given in the SSSP Program.  

Input Normalized Input Time Flow Xi Sol. Org. Flow Xi Sol. Org. 
0 725 30.1 98.9 0.27281 0.45477 0.45441 
1 594 27.7 91.0 0.15447 0.39447 0.39387 
2 524 21.7 71.2 0.09124 0.24372 0.24215 
3 453 19.2 63.2 0.02710 0.18090 0.18084 
4 423 16.9 55.4 0.00000 0.12312 0.12107 
5 423 15.6 51.4 0.00000 0.09045 0.09042 
6 503 13.2 43.5 0.07227 0.03015 0.02989 
7 725 12.0 39.6 0.27281 0.00000 0.00000 
8 1128 12.0 39.6 0.63686 0.00000 0.00000 
9 1409 15.6 51.4 0.89070 0.09045 0.09042 
10 1460 24.1 79.1 0.93677 0.30402 0.30268 
11 1440 36.7 120.6 0.91870 0.62060 0.62069 
12 1470 43.3 142.4 0.94580 0.78643 0.78774 
13 1530 48.2 158.2 1.00000 0.90955 0.90881 
14 1510 48.8 160.2 0.98193 0.92462 0.92414 
15 1420 48.2 158.2 0.90063 0.90955 0.90881 
16 1329 51.8 170.1 0.81843 1.00000 1.00000 
17 1208 51.2 168.1 0.70912 0.98492 0.98467 
18 1097 48.2 158.2 0.60885 0.90955 0.90881 
19 1027 41.5 136.4 0.54562 0.74121 0.74176 
20 1007 36.1 118.7 0.52755 0.60553 0.60613 
21 926 34.3 112.7 0.45438 0.56030 0.56015 
22 886 33.7 110.8 0.41825 0.54523 0.54559 
23 785 32.5 106.8 0.32701 0.51508 0.51494 
Min 423 12.0 39.6 0.00000  0.00000  0.00000  
Max 1530 51.8 170.1 1.00000  1.00000  1.00000  
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A.2. Effluent SSSP response to given influent data.  

 

Table A.2. Output obtained from the SSSP simulation program using the input data. 

Output Normalized Output Time 
MLVSS Xhet Ss MLVSS Xhet Ss 

0 2047.73 887.840 1.480 0.95340 0.99195 0.58696 
1 2044.00 886.990 1.435 0.91594 0.97826 0.48913 
2 2038.89 884.900 1.390 0.86457 0.94460 0.39130 
3 2032.58 881.665 1.340 0.80120 0.89250 0.28261 
4 2025.23 877.390 1.300 0.72738 0.82366 0.19565 
5 2016.96 872.185 1.270 0.64437 0.73983 0.13043 
6 2007.71 866.145 1.240 0.55142 0.64256 0.06522 
7 1997.09 859.235 1.215 0.44476 0.53128 0.01087 
8 1984.58 851.325 1.210 0.31912 0.40390 0.00000 
9 1971.27 842.800 1.210 0.18550 0.26661 0.00000 

10 1960.06 834.935 1.225 0.07291 0.13995 0.03261 
11 1953.40 829.060 1.260 0.00603 0.04533 0.10870 
12 1952.80 826.245 1.320 0.00000 0.00000 0.23913 
13 1958.92 827.195 1.400 0.06146 0.01530 0.41304 
14 1970.80 831.760 1.490 0.18073 0.08882 0.60870 
15 1985.57 838.765 1.565 0.32906 0.20163 0.77174 
16 2000.72 846.940 1.620 0.48127 0.33328 0.89130 
17 2014.92 855.415 1.655 0.62383 0.46976 0.96739 
18 2027.25 863.545 1.670 0.74766 0.60069 1.00000 
19 2037.34 870.990 1.665 0.84905 0.72059 0.98913 
20 2045.11 877.510 1.645 0.92709 0.82559 0.94565 
21 2050.07 882.660 1.610 0.97690 0.90853 0.86957 
22 2052.37 886.285 1.570 1.00000 0.96691 0.78261 

23 2052.32 888.340 1.530 0.99950 1.00000 0.69565 

Min: 1952.80 826.245 1.210 0.00000 0.00000 0.00000 
Max: 2052.37 888.340 1.670 1.00000 1.00000 1.00000 
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A.3. ANN Manual Model Run Results for SSSP Simulation Program 

 

Table A.3. MLVSS, ANN model prediction results. 

MLVSS Time 
Real Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

0 2047.730 2042.931 2049.005 2030.873 2044.992 2045.002 
1 2044.000 2048.736 2049.482 2035.762 2045.609 2045.639 
2 2038.885 2051.763 2049.463 2037.385 2037.225 2037.205 
3 2032.575 2052.091 2049.532 2039.406 2035.463 2035.433 
4 2025.225 2052.171 2049.502 2040.193 2029.160 2029.120 
5 2016.960 2052.191 2049.443 2039.874 2022.838 2022.818 
6 2007.705 2052.171 2048.935 2036.518 2000.962 2001.032 
8 1984.575 2028.374 1979.315 1986.196 1983.945 1983.955 
9 1971.270 1963.245 1961.214 1963.464 1970.962 1971.011 

10 1960.060 1964.659 1964.031 1965.286 1961.363 1961.363 
11 1953.400 1984.792 1966.790 1976.667 1958.466 1958.436 
12 1952.800 1977.683 1963.086 1979.724 1960.995 1960.975 
14 1970.795 1966.252 1967.337 1981.108 1971.330 1971.320 
15 1985.565 1973.929 1977.653 1990.218 1980.958 1980.899 
16 2000.720 1974.695 2002.884 2002.595 2001.868 2001.958 
17 2014.915 1981.635 2013.129 2012.114 2012.194 2012.263 
18 2027.245 1996.780 2018.128 2017.919 2029.887 2029.807 
20 2045.110 2030.046 2042.592 2017.730 2045.739 2045.749 
21 2050.070 2033.701 2046.217 2022.021 2046.724 2046.764 
22 2052.370 2035.264 2047.143 2024.003 2046.943 2046.973 

 

 

Table A.4. Heterotrophic Biomass, ANN model prediction results. 

Xhet Time 
Real Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

0 887.840 826.593 881.932 871.394 885.111 885.117 
1 886.990 826.531 882.677 871.463 885.831 885.844 
2 884.900 826.475 882.503 871.003 882.565 882.553 
3 881.665 826.450 882.584 870.649 881.826 881.808 
4 877.390 826.444 882.522 870.376 878.995 878.970 
5 872.185 826.444 882.429 870.376 875.946 875.927 
6 866.145 826.462 881.671 870.469 863.682 863.713 
8 851.325 828.841 838.807 847.022 852.319 852.312 
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Table A.4.(continued). 

9 842.800 836.186 831.057 831.728 843.420 843.439 
10 834.935 833.237 832.051 833.094 831.386 831.355 
11 829.060 829.362 830.995 841.899 827.903 827.884 
12 826.245 834.286 829.443 844.793 828.940 828.928 
14 831.760 852.039 832.007 846.575 833.212 833.181 
15 838.765 843.663 835.944 853.244 837.360 837.310 
16 846.940 848.655 853.877 862.043 848.487 848.506 
17 855.415 842.930 860.664 867.203 853.952 853.995 
18 863.545 833.243 860.782 869.469 863.986 863.986 
20 877.510 826.816 872.984 868.196 878.535 878.504 
21 882.660 826.717 877.790 869.656 882.435 882.435 
22 886.285 826.686 879.131 870.233 883.615 883.621 

 

Table A.5. Suspended Solids, ANN model prediction results. 

Ss Time 
Real Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

0 1.480 1.226 1.670 1.511 1.483 1.483 
1 1.435 1.221 1.670 1.519 1.481 1.481 
2 1.390 1.215 1.670 1.519 1.349 1.349 
3 1.340 1.214 1.670 1.521 1.332 1.332 
4 1.300 1.213 1.670 1.521 1.292 1.292 
5 1.270 1.213 1.670 1.520 1.268 1.268 
6 1.240 1.213 1.670 1.514 1.229 1.229 
8 1.210 1.216 1.670 1.334 1.218 1.218 
9 1.210 1.219 1.670 1.245 1.216 1.216 

10 1.225 1.222 1.670 1.252 1.224 1.224 
11 1.260 1.236 1.669 1.300 1.273 1.273 
12 1.320 1.348 1.666 1.314 1.342 1.342 
14 1.490 1.589 1.657 1.320 1.486 1.487 
15 1.565 1.567 1.661 1.362 1.550 1.550 
16 1.620 1.630 1.644 1.420 1.624 1.624 
17 1.655 1.619 1.645 1.461 1.637 1.637 
18 1.670 1.527 1.660 1.483 1.649 1.649 
20 1.645 1.235 1.670 1.476 1.627 1.626 
21 1.610 1.232 1.670 1.489 1.600 1.600 
22 1.570 1.231 1.670 1.495 1.586 1.587 
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APPENDIX B 

SSSP Simulation Results of Trial5: Prediction and Regression Graphs 

 

Figure B.1 ANN Model run results for Xhet predictions for Trial5.  

 

Figure B.2 Regression analysis result of Xhet variable for Trial5 ANN model.  
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Figure B.3 ANN Model run results for Ss predictions for Trial5. 

` 

Figure B.4 Regression analysis result of Ss variable for Trial5 ANN model.  
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Table B.1 Regression analyses results made with the results of script developed 
including validation data. 

 
training Function  Hidden Neuron # MLVSS Ss Xhet 

2 -0.005 0.853 0.756 
8 0.816 0.749 0.277 trainb 
9 0.386 0.942 0.752 
3 0.776 0.973 0.535 
9 0.752 0.792 0.868 trainbfg 
10 0.805 0.893 -0.596 
3 0.971 0.942 0.938 
4 0.886 0.908 0.932 
5 0.954 0.922 0.943 
7 0.838 0.882 0.940 
9 0.955 0.969 0.948 

trainbr 

10 0.928 0.920 0.940 
6 0.841 0.985 0.265 
7 0.874 0.983 0.942 traincgb 
9 0.943 0.863 0.970 

traıncgb 10 0.895 0.901 0.790 
4 0.936 0.949 0.650 traincgf 
9 0.905 0.945 0.490 
2 0.873 0.949 0.601 
6 0.951 0.926 0.681 
7 0.866 0.808 0.926 

traincgp 

10 0.890 0.894 0.960 
traingd - - - - 
traingda 8 0.946 0.992 0.864 
traingdm - - - - 
traingdx 6 0.679 0.930 0.960 

6 0.090 0.970 0.959 
9 0.908 0.989 0.988 trainlm 
10 0.645 0.914 0.981 

trainoss 10 0.977 0.956 0.154 
6 0.683 0.959 0.877 
7 0.588 0.821 -0.848 
8 0.476 0.968 0.937 

trainrp 

10 0.920 0.947 0.870 
2 -0.764 0.490 0.139 trainscg 
3 0.736 0.844 -0.412 
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Table B.1 (Continued). 

4 0.511 0.238 -0.470 trainscg 
5 0.925 0.697 -0.079 
7 0.753 0.959 0.553 
9 0.698 0.892 0.718 trainscg 
10 0.606 0.790 0.854 

 

Table B.2 Regression analyses results using the script developed discarding 
validation data. 

 
Training Function Hidden Neuron # MLVSS Ss Xhet 

5 0.932 0.910 0.911 
6 0.928 0.881 0.958 
9 0.860 0.971 0.964 

trainb 

10 0.987 0.928 0.950 
3 0.985 0.993 943.000 
4 0.985 0.964 0.977 
5 0.992 0.988 0.998 

trainbfg 

6 0.988 0.967 0.950 
8 0.990 0.988 0.928 

trainbfg 
10 0.986 0.965 0.978 
2 0.982 0.992 0.937 
3 0.988 0.992 0.946 
4 0.992 0.993 0.982 
5 0.992 0.994 0.980 
6 0.993 0.994 0.992 
7 0.991 0.994 0.991 
8 0.996 0.990 0.995 
9 0.996 0.991 0.994 

trainbr 

10 0.995 0.994 0.990 
4 0.973 0.954 0.947 
5 0.986 0.973 0.977 
7 0.992 0.991 0.963 
8 0.989 0.972 0.997 
9 0.980 0.966 0.994 

traincgb 

10 0.998 0.987 0.995 
3 0.985 0.993 0.943 
4 0.985 0.993 0.943 traincgf 
5 0.992 0.976 0.993 
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Table B.2 (Continued). 

6 0.996 0.988 0.994 
7 0.992 0.978 0.957 traincgf 
8 0.987 0.992 0.979 

traincgf 10 0.983 0.981 0.994 
3 0.985 0.993 0.943 
4 0.990 0.998 0.998 
5 0.993 0.986 0.900 
6 0.989 0.975 0.998 
7 0.996 0.979 0.994 
8 0.983 0.990 0.984 
9 0.988 0.967 0.990 

traincgp 

10 0.997 0.984 0.999 
traingd 1 0.984 0.751 0.966 

2 0.983 0.992 0.932 
3 0.985 0.993 0.942 
4 0.985 0.993 0.941 
5 0.993 0.991 0.964 
6 0.996 0.988 0.991 

traingda 

7 0.993 0.984 0.973 
8 0.994 0.986 0.985 
9 0.988 0.992 0.992 traingda 
10 0.998 0.993 0.992 

traingdm - - - - 
3 0.985 0.993 0.943 
4 0.989 0.992 0.948 
5 0.982 0.987 0.989 
6 0.993 0.984 0.999 
7 0.987 0.980 0.965 
8 0.995 0.982 0.995 
9 0.993 0.977 0.989 

traingdx 

10 0.994 0.982 0.987 
2 0.982 0.992 0.941 
3 0.991 0.989 0.921 
5 0.987 0.966 0.985 

trainlm 

6 0.994 0.979 0.985 
2 0.985 0.993 0.943 
3 0.995 0.995 0.961 trainoss 
4 0.993 0.989 0.910 
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Table B.2 (Continued). 

5 0.994 0.992 0.972 
6 0.996 0.987 0.995 
7 0.991 0.978 0.963 
8 0.980 0.968 0.994 

trainoss 

10 0.988 0.972 0.910 
3 0.993 0.989 0.910 
4 0.996 0.986 0.964 
5 0.998 0.995 0.960 
6 0.997 0.984 0.793 
7 0.993 0.972 0.965 
8 0.992 0.982 0.994 
9 0.994 0.985 0.992 

trainrp 

10 0.994 0.987 0.986 
3 0.984 0.993 0.942 
4 0.981 0.974 0.987 
5 0.993 0.981 0.996 
6 0.988 0.988 0.951 
7 0.987 0.966 0.998 

trainscg 

8 0.988 0.966 0.994 
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APPENDIX C 

Results of runs with IskWTP Data 

 

 

Table C.1. Complete results of IskWTP run NO:25.   

training function Set HNs R 
trainbfg 5 5 0.622 
trainbfg 6 3 0.620 
trainbfg 6 4 0.673 
trainbfg 6 6 0.640 
traincgb 5 3 0.603 
traincgb 5 6 0.795 
traincgb 6 4 0.616 
traincgb 6 6 0.694 
traincgf 5 4 0.648 
traincgf 6 6 0.649 
traincgp 5 5 0.664 
traincgp 6 2 0.653 
traingd 6 4 0.639 
trainlm 6 1 0.670 
trainoss 5 3 0.628 
trainscg 6 6 0.668 

 

 

Table C.2. Complete results of IskWTP run NO:26.   

training function Set HNs R 
trainb 4 2 0.696 
trainb 4 6 0.658 

trainbfg 4 3 0.650 
trainbfg 4 5 0.648 
trainbfg 5 3 0.673 
trainbfg 5 5 0.653 
trainbfg 5 6 0.673 
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Table C.2. (continued). 

trainbr 2 7 0.627 
trainbr 4 3 0.654 
trainbr 4 7 0.639 
trainbr 5 3 0.691 
trainbr 6 3 0.633 

traincgb 5 6 0.615 
traincgp 4 4 0.627 
traincgp 5 2 0.693 
traingd 4 7 0.628 
traingd 5 4 0.612 
trainga 6 7 0.615 

traingdm 4 2 0.627 
traingdm 4 3 0.656 
traingdm 4 5 0.661 
trainlm 4 4 0.729 
trainlm 4 6 0.709 
trainlm 4 7 0.684 
trainlm 6 5 0.646 
trainoss 4 2 0.650 
trainoss 4 5 0.646 
trainoss 4 6 0.638 
trainoss 5 1 0.652 
trainrp 4 1 0.650 
trainrp 5 4 0.703 

trainscg 4 2 0.634 
trainscg 4 4 0.669 
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APPENDIX D 

CODES & SCRIPTS WRITTEN 

 

D.1. MATLAB Script Written for Automated Generation ANN Models 

 

echo off 

fortr={'b'  ;'bfg';'br' ;'cgb';'cgf';'cgp';'gd' ;'gda';'gdm';'gdx';'lm' ;'oss';'rp’ ;'scg'}; 

trspaces={'  ' ;''   ;' '  ;''   ;''   ;''   ;' '  ;''   ;''   ;''   ;' '  ;''   ;' '  ;''   }; 

[numf1 numf2]=size(fortr); 

tn=(norm01(TarAll))'; 

r=0; 

for all=6:6 %input kombo sayisi 

    pn = eval(char(strcat(['(norm01(Orginp'],[num2str(all,'%02d')],['))'';']))); 

    [R,Q] = size(pn); 

    iitr = 1:floor(Q*0.50); 

    iival = ceil(Q*0.50):floor(0.75*Q); 

    iitst = ceil(0.75*Q):1:Q; 

    validation.P = pn(:,iival); 

    validation.T = tn(:,iival); 

    testing.P = pn(:,iitst); 

    testing.T = tn(:,iitst); 

    ptr = pn(:,iitr); 

    ttr = tn(:,iitr); 

    for y= 1:numf1                       

DizinYarat(y)=strcat(['mkdir(… 

.\nettrain'],[fortr(y)],['_'],strcat([num2str(all,'%02d')]),[trspaces(y)],[';']);  

         DizinYaratti(y,:)=char(DizinYarat(y)); 

         eval(DizinYaratti(y,:)); 

    end 
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    for j= 1:numf1 %changing the training function 

        for i=1:6 % changing number of hidden neurons in the net...  

                cd('E:\iskenderun0dan\ilkdeneme\memory'); % hafizayi toparliyor...  

                pack;  

                cd('E:\iskenderun0dan\ilkdeneme'); 

NetOlustur(i)=strcat(['nettrain'],[fortr(j)],[num2str(i,'%02d')],['_'],… 

strcat([num2str(all,'%02d')]),[ '=newff(minmax(ptr),['],num2str(i,'%02d'),['… 

'],num2str(i,'%02d'),[ ' 1],{''logsig'',''logsig'',''logsig''},''train'],[fortr(j)],[''');'],… 

[trspaces(j,:)],[trspaces(j,:)]); 

            NetOlusturdu(i,:)=char(NetOlustur(i)); 

            eval(NetOlusturdu(i,:)); 

NetAyarla1(i)=strcat(['nettrain'],[fortr(j)], num2str(i,'%02d')… 

,['_'],strcat([num2str(all,'%02d')]), ['.trainParam.epochs=20000;',... 

'nettrain'],[fortr(j)], num2str(i,'%02d'),['_'],strcat([num2str(all,… '%02d')]), 

['.trainParam.goal=0.000;'],[trspaces(j,:)],[trspaces(j,:)]); 

            NetAyarlandi1(i,:)=char(NetAyarla1(i)); 

             eval(NetAyarlandi1(i,:)); 

            if strcmp(fortr(j),'bfg') 

  NetAyarla1a(i)=strcat(['nettrain'],[fortr(j)],… 

  num2str(i,'%02d'),['_'],strcat([num2str(all,'%02d')]),... 

                        ['.trainParam.searchFcn=''srchcha'';'],[trspaces(j,:)]); 

                     NetAyarlandi1a(i,:)=char(NetAyarla1a(i)); 

                     eval(NetAyarlandi1a(i,:)); 

              end  

            Egit(i)=strcat( ['[nettrain'],[fortr(j)],[num2str(i,'%02d')],['_'],…  

 strcat([num2str(all,'%02d')]),[',trres'],[fortr(j)],... 

            [num2str(i,'%02d')],['_'],strcat([num2str(all,'%02d')]),[ …  

']=train(nettrain'],[fortr(j)], [num2str(i,'%02d')],['_'],... 

strcat([num2str(all,'%02d')]),[',ptr,ttr,[],[],validation,testing);… 

clf;close(gcf);'],[trspaces(j,:)],[trspaces(j,:)],[trspaces(j,:)]);     

            Egitti(i,:)=char(Egit(i)); 
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            eval(Egitti(i,:)); 

Dene(i)=strcat(['[restrain'],[fortr(j)], num2str(i,'%02d'),['_'], … 

strcat([num2str(all,'%02d')]), [']'],['=sim(nettrain' ],[fortr(j)], ... 

num2str(i,'%02d'),['_'],strcat([num2str(all,'%02d')]),…  

[',pn);'],['Prestrain'],[fortr(j)], num2str(i,'%02d'),['_'],... 

            strcat([num2str(all,'%02d')]),['= unnorm01(TarAll …  

'],[',restrain'],[fortr(j)],[num2str(i,'%02d')],['_'],... 

strcat([num2str(all,'%02d')]),[');'],[trspaces(j,:)],… 

[trspaces(j,:)],[trspaces(j,:)],[trspaces(j,:)]); 

            Denedi(i,:)=char(Dene(i)); 

            eval(Denedi(i,:)); 

            HesaplaCizdir3(i)=strcat(['fig'],[fortr(j)], [num2str(i,'%02d')],…  

['_'],strcat([num2str(all,'%02d')]),['Reg=figure;'],... 

            ['[m'],[fortr(j)],num2str(i,'%02d'), [',b'],[fortr(j)], …  

num2str(i,'%02d'),[',r'],[fortr(j)],num2str(i,'%02d'),... 

            [']=postreg(Prestrain'],[fortr(j)], num2str(i,'%02d'),['_'],…  

strcat([num2str(all,'%02d')]),[''',TarAll'],[');'],… 

['title(''Regression analysis for (train'],fortr(j),['_'],…  

strcat([num2str(all,'%02d')]),[')'],['(#of HNs:'],[num2str(i,'%02d')],…  

[') '');'],trspaces(j),trspaces(j),trspaces(j),trspaces(j),trspaces(j),trspaces(j)); 

Hesapladi3(i,:)=char(HesaplaCizdir3(i)); 

            eval(Hesapladi3(i,:)); 

            regresValue=eval(char(strcat(['r'],[fortr(j)],num2str(i,'%02d')))); 

            if regresValue>=0.40 

   Kaydet3(i)=strcat(['print(''-r300'',''-djpeg'',''.\nettrain'],  

 [fortr(j)],['_'],strcat([num2str(all,'%02d')]),... 

                     ['\fig'],[fortr(j)],num2str(i,'%02d'),['Reg''' '    

  );'],['close(gcf);'],trspaces(j),trspaces(j)); 

            Kaydetti3(i,:)=char(Kaydet3(i)); 

            eval(Kaydetti3(i,:)); 

            HesaplaCizdir1(i)=strcat(['fig'],[fortr(j)], num2str(i,'%02d'),…  
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  ['_'],strcat([num2str(all,'%02d')]),['=figure; plot(trres'],…  

[fortr(j)], num2str(i,'%02d'), ['_'],strcat([num2str(all,'%02d')]),... 

['.epoch,trres'], [fortr(j)], num2str(i,'%02d'), ['_'],… 

strcat([num2str(all,'%02d')]), ['.perf,''r'', trres'],[fortr(j)],… 

num2str(i,'%02d'),['_'],strcat([num2str(all,'%02d')]), ... 

['.epoch,trres'], [fortr(j)], num2str(i,'%02d'), ['_'],… 

strcat([num2str(all,'%02d')]),['.vperf,'':g'',trres'],[fortr(j)],… 

num2str(i,'%02d'),['_'],strcat([num2str(all,'%02d')]),... 

['.epoch,trres'], [fortr(j)], num2str(i,'%02d'),… 

['_'],strcat([num2str(all,'%02d')]),... 

                     ['.tperf,''-.b'');'],['xlabel(''# of epoch'');'],... 

             [trspaces(j,:)],[trspaces(j,:)],[trspaces(j,:)],[trspaces(j,:)],…  

[trspaces(j,:)],[trspaces(j,:)],[trspaces(j,:)]); 

                Hesapladi1(i,:)=char(HesaplaCizdir1(i)); 

                eval(Hesapladi1(i,:)); 

                HesaplaCizdir11(i)=strcat(['title(''MSE vs # of Epochs (train'] ,…  

  [fortr(j)],['_'],strcat([num2str(all,'%02d')]),... 

[')'],[' (# of HNs:'],num2str(i,'%02d'),[')'');'],[trspaces(j)],… 

['legend(''training'',''Validation'',''Test'',0);…  

ylabel(''Mean Squared Error'');']); 

                Hesapladi11(i,:)=char(HesaplaCizdir11(i)); 

                eval(Hesapladi11(i,:)); 

                Kaydet1(i)=strcat(['print(''-r300'',''-djpeg'',''.\nettrain'],…  

[fortr(j)],['_'],strcat([num2str(all,'%02d')]),['\fig'],[fortr(j)], ... 

         num2str(i,'%02d'),['_'],strcat([num2str(all,'%02d')]),[''');…  

close(gcf);'],[trspaces(j,:)],[trspaces(j,:)]); 

                Kaydetti1(i,:)=char(Kaydet1(i)); 

                eval(Kaydetti1(i,:)); 

                HesaplaCizdir2(i)=strcat(['fig'],[fortr(j)], num2str(i,'%02d'),…  

['OwP'], ['=figure; plot(DATE,Prestrain'],[fortr(j)],... 



 

 107 

num2str(i,'%02d'),['_'],strcat([num2str(all,'%02d')]),[',''.-r''… 

'],[',DATE,TarAll,''-b'');'],... 

['legend(''Predicted'',''Observed'',0); '],['ylabel(''COD_{eff}… 

(mg/l)'');'],['xlabel(''Date'');'],... 

['title(''Pred & Obs COD_{eff} (mg/l) vs Date w/ train '], …  

[fortr(j)],['_'],strcat([num2str(all,'%02d')]), ['(# of HNs:',… 

num2str(i,'%02d'),')'');'],[trspaces(j)],[trspaces(j)],[trspaces(j)]); 

                Hesapladi2(i,:)=char(HesaplaCizdir2(i)); 

                eval(Hesapladi2(i,:)); 

                Kaydet2(i)=strcat(['print(''-r300'',''-djpeg'',''.\nettrain'],…  

[fortr(j)],['_'],strcat([num2str(all,'%02d')]),['\fig'],… 

[fortr(j)], num2str(i,'%02d'),['OwP''' '); close(gcf);'],…  

[trspaces(j)],[trspaces(j)]); 

                Kaydetti2(i,:)=char(Kaydet2(i)); 

                eval(Kaydetti2(i,:)); 

              end 

            Kaydet4(i)=strcat([ 'save .\nettrain'],[fortr(j)] ,['_'],… 

strcat([num2str(all,'%02d')]), ['\nettrain'],[fortr(j)],… 

num2str(i,'%02d'),['_'],strcat([num2str(all,'%02d')]),… [' net* … 

Prestrain* restrain* trres*'],[' m'],fortr(j),['*'],[' b'],fortr(j),... 

                ['* r'],fortr(j),['*'],[';close(gcf);'],['clear net* Prestrain* restrain*…  

trres* fig* m'],fortr(j),['* b'],fortr(j), ['* r'],fortr(j),['*'],… 

trspaces(j),trspaces(j),trspaces(j),trspaces(j),… 

trspaces(j),trspaces(j),trspaces(j),trspaces(j)); 

            Kaydetti4(i,:)=char(Kaydet4(i)); 

            eval(Kaydetti4(i,:)); 

            cd('E:\iskenderun0dan\ilkdeneme\memory'); 

            pack; 

            cd('E:\iskenderun0dan\ilkdeneme'); 

        end 

    end    end 
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D.2. C Code that divides ACWTP data into three equal pieces using PGAPack 

Genetic Algorithm Library. 

 

#include <stdio.h> 

#include <stdlib.h> 

#include "/usr/local/pga/include/pgapack.h" 

#define DataLength 96 

 

double evaluate(PGAContext *,int  , int ); 

float realdata[DataLength]; 

float theone=0; 

float datasorted[DataLength]; 

FILE *dosya; 

 

int main(int argc, char **argv) 

{ 

  int u; 

  dosya=fopen("ank96sort.txt","r"); 

  for (u=0;u<DataLength;u++) 

  { 

    fscanf(dosya,"%f",&(realdata[u])); 

    //printf("deger %d : %f\n ",u,realdata[u]); 

    theone=theone+realdata[u]; 

  } 

  theone=(float) theone/DataLength; 

  PGAContext *ctx; 

  ctx=PGACreate(&argc,argv,PGA_DATATYPE_BINARY,  

 DataLength,PGA_MINIMIZE); 

  PGASetStoppingRuleType(ctx,PGA_STOP_NOCHANGE); 

  PGASetUp(ctx); 

  PGARun(ctx, evaluate); 
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  PGADestroy(ctx); 

  dosya=fopen("result.txt","w"); 

  for (u=0;u<DataLength;u++) 

 fprintf(dosya,"%f\n",datasorted[u]); 

  fclose(dosya); 

  return EXIT_SUCCESS; 

} 

double  evaluate(PGAContext *ctx,int p, int pop) 

{ 

  int i,j=0,k=0,t=0; 

  int stringlen; 

  float  data1=0.0f,data2=0.0f,data3=0.0f; 

  for(i=0;i<DataLength;i++)   //sort the array 

  { 

    if(PGAGetBinaryAllele(ctx,p,pop,i)) 

    {      datasorted[j]=realdata[i]; 

       j++;    } 

    else 

    {      datasorted[DataLength-k-1]=realdata[i]; 

       k++;    } 

  } 

    for (i=0;i<DataLength;i++) 

    { 

      if(i<(DataLength/3)) 

        data1=data1+datasorted[i]; 

      else if (i>=(DataLength/3) && (i<(2*DataLength/3))) 

        data2=data2+datasorted[i]; 

      else if (i>=(2*DataLength/3)) 

        data3=data3+datasorted[i]; 

    } 

      data1=(float) (data1/((float)(DataLength/3))); 
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    data2=(float) (data2/((float)(DataLength/3))); 

    data3=(float) (data3/((float)(DataLength/3))); 

     //printf("difference : %f \n",(double)(pow(theone-data1,2)+pow(theone-  

// data2,2)+pow(theone-data3,2))); 

return (double) (pow(theone-data1,2)+pow(theone-data2,2)+pow(theone-

data3,2)); 

} 

 


