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ABSTRACT 
 

 

 

IMPLEMENTATION OF THE SPALART-ALLMARAS  

TURBULENCE MODEL TO A TWO-DIMENSIONAL UNSTRUCTURED  

NAVIER-STOKES SOLVER 

 

 

 

AYBAY, Orhan 

M.Sc., Department of Mechanical Engineering 

Supervisor: Prof. Dr. M. Haluk Aksel 

 

 

December 2004, 84 pages 

 

 

An unstructured explicit, Reynolds averaged Navier-Stokes solver is 

developed to operate on inviscid flows, laminar flows and turbulent flows and 

one equation Spalart-Allmaras turbulence modeling is implemented to the 

solver. A finite volume formulation, which is cell-center based, is used for 

numerical discretization of Navier-Stokes equations in conservative form. This 

formulation is combined with one-step, explicit time marching upwind 

numerical scheme that is the first order accurate in space. Turbulent viscosity is 

calculated by using one equation Spalart-Allmaras turbulence transport 

equation. In order to increase the convergence of the solver local time stepping 

technique is applied. 

 

 iv



Eight test cases are used to validate the developed solver, for inviscid 

flows, laminar flows and turbulent flows. All flow regimes are tested on NACA-

0012 airfoil. The results of NACA-0012 are compared with the numerical and 

experimental data. 

 

Keywords: Unstructured grid, Navier-Stokes equations, finite volume 

method, upwind method, Spalart-Allmaras turbulence model. 
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ÖZ 
 

 

 

SPALART-ALLMARAS TÜRBÜLANS MODELİNİN  

YAPISIZ AĞLI NAVIER-STOKES ÇÖZÜCÜSÜNE UYGULANMASI 
 

 

 

AYBAY, Orhan 
Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. M. Haluk Aksel 

 

 

Aralık 2004, 84 sayfa 

 

 

 Viskoz olmayan akışları, laminar akışları ve türbülanslı akışları hesaplamak için, yapısız ağlı, 

Reynolds ortalamalı, belirli zaman ilerlemeli  Navier-Stokes çözücüsü geliştirilmiş ve bu çözücüye tek 

denklemli Spalart-Allmaras türbülans modeli eklenmiştir. Korunum biçimindeki Navier-Stokes 

denklemlerinin sayısal olarak ayrıştırılması için, hücre merkezli sonlu hacim yöntemi kullanılmıştır. 

Bu formülasyon, uzayda birinci dereceden hassas, tek adımlı ve zaman ilerlemeli ‘Upwind’ sayısal 

şeması ile birleştirilmiştir. Türbülans viskozitelerinin hesaplanması için tek denklemli Spalart-

Allmaras denklemi kullanılmıştır. Çözücünün yakınsama hızını artırmak için yerel zaman 

adımlama tekniği uygulanmıştır. 
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Sekiz adet test durumu ile viskoz olmayan akışlar, laminar akışlar ve  türbülanslı akışlarda  

geliştirilen çözücüsünün doğruluğu test edilmiştir. Bütün testler NACA-0012 uçak kanat kesidi 

üzerinde yapılmıştır. NACA-0012 çözümleri nümerik ve deneysel sonuçlarla karşılaştırılmıştır. 

 

Anahtar Kelimeler: Yapısız ağ, Navier-Stokes denklemleri, sonlu hacim yöntemi, upwind 

yöntemi, Spalart-Allmaras türbülans modeli     
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CHAPTER 1 

 

INTRODUCTION 
 

 

1.1 BACKGROUND 

 

In the last few decades, the world has seen a revolution in 

technological achievement brought about by computers. Furthermore, the 

role of computational fluid dynamics (CFD) in engineering applications has 

become more essential. CFD can be viewed as a new ‘third dimension’ in 

fluid dynamics today, where the other dimensions are the classical cases of 

experiment and theory. This relation can be shown in the Figure 1.1 [1]: 

 

 
Figure 1.1 Interaction between CFD, experiment and theory 

 

Aerodynamic analysis of aircraft design can be performed using both 

experimental and theoretical methods. The experimental approach can 

produce accurate data over a particular range of flow conditions. Scaled 

models of aircraft or wing sections are constructed and placed in wind 
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EXPERIMENT
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tunnels. Results of experimental origin have been heavily relied on critical 

aerodynamic designs. Although experimental approach is very accurate, the 

limitation on the hardware, such as the tunnel size and the difficulty in 

simulating the prototype flow field, makes it impractical to obtain flow 

fields for many problems [2]. 

 

The theoretical approach approximates realistic non-linear flow field 

phenomena with simplified mathematical relations. Unlike theoretical 

methods, numerical methods attempt to resolve all aspects of the flow field 

including non-linear effects. The task of obtaining solutions to the 

governing equations of fluid dynamics represents one of the most 

challenging problems in science and engineering. Generally, the governing 

equations of fluid dynamics form a set of coupled, nonlinear partial 

differential equations that must be solved in an irregular domain subject to 

various initial and boundary conditions. 

 

Since there are very few restrictive assumptions, the CFD approach is 

superior to the experimental and theoretical approaches in treating 

complicated configurations. In addition, there are several advantages of 

CFD over experimental approach such as [3];  

 

i. Essential reduction of lead times and costs of new designs 

ii. Ability to study very large systems 

iii. Ability to study systems under hazardous conditions 

iv. Ability to obtain detailed results 

 

On the other hand, there are limitations and restrictions for CFD. 

Flow predictions are as superior as the level of physics that goes into the 

formulations. That is to say, the quality of the computational results will 

always depend on the ability to model the physics appropriately and 

numerical results are always approximate. Furthermore, the cost 
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effectiveness of a numerical model for aerodynamic analysis is dependent 

not only on the power of the computer hardware but also on the accuracy 

and efficiency of the various discretization methods. Several of these 

methods can offer distinct advantages in cost and flexibility of applications. 

 

Generation of the appropriate grid to support numerical calculations 

is a challenging, multi-disciplinary problem; it is currently often more time 

and labor consuming to create the supporting grid than to define and 

perform the desired simulation. Grid generation makes the problem 

manageable for computer simulations. There are various ways to define a 

grid around an object, which are related to the following facts: 

 

i. Geometric complexity of the object around or inside which the fluid 

flows 

ii. Mathematical model chosen to solve the problem (i.e. Euler or 

Navier-Stokes equations) 

iii. Qualitative shape of the flow field (i.e. where large gradients occur, 

location of shock waves, boundary layers, etc… )  

 

Depending on the above stated considerations, different kinds of 

algorithms can be employed to produce grids. Grids can be generated in 

either structured or unstructured form. Structured grids have been used to 

successfully solve problems in fluid dynamics. In two dimensions, 

structured grid solvers are extremely useful especially for single element 

airfoil cases. The majority of the physical domains of interest are 

nonrectangular and computational domain will require some sort of 

interpolation for the implementation of the boundary conditions, which 

causes inaccuracies at the place of the greatest sensitivity [3].    
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The difficulty of using structured grids while dealing with complex 

flow problems makes unstructured grids very attractive. The main advantage 

of the unstructured grid is that it can be used easily to fit irregular, singly-

connected domains, as well as multiply-connected domains. Although the 

third dimension creates a complicated situation, it is still possible to 

generate single block, unstructured grids around complex three dimensional 

objects. However, the major drawback of unstructured grid solvers is that 

they are typically slower than their structured counterparts and require more 

memory. To address these problems, techniques like residual smoothing and 

local time stepping are usually added to speed up unstructured solvers.   

 

Unstructured solvers have historically used triangular elements in 

two dimensions since triangle is the simplest shape that can be used to fill a 

space. Triangles however, can lead to inaccurate solutions in the boundary 

layers of viscous flows meaning that quadrilateral cells are desirable in 

some grid regions. 

 

1.2 LITERATURE REVIEW 

 

The inviscid Navier-Stokes equations, commonly referred as the 

Euler equations are solved on structured grids in 1981 by Jameson, Schimdt, 

and Turkel [4]. Their algorithm solved the Euler equations on a structured 

grid using a central differencing finite volume solver that achieved second 

order spatial accuracy in space. After discretization, the Euler equations 

were reduced to a system of ordinary differential equations which were 

explicitly marched in time to a steady state solution using a four step 

Runge-Kutta time marching routine. The artificial dissipation scheme used 

was a version of scalar dissipation, sometimes referred to as the Jameson 

Schimdt and Turkel scheme, that is still used today in many solvers. In the 

mid-eighties, Jameson and Mavriplis [5] introduced a finite-volume solver 

for the Euler equations on regular triangular meshes. This solver was later 
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expanded to include fully unstructured meshes, local time stepping and 

residual smoothing [6]. Local time stepping allowed each control volume to 

be marched explicitly through time at its largest permissible time step. 

Residual smoothing allowed the algorithm to be marched in time at more 

than twice the original rate. 

 

Several authors improved the solver presented by Jameson and 

Mavriplis. Much of the work done in resolving viscous flows on 

unstructured grids. In competition with the finite-volume/artificial 

dissipation solvers, upwinded solvers have been developed by several 

authors. Desideri and Dervieux [7] developed one of the earliest upwinding 

schemes on unstructured grids in 1988.  

 

Laminar and turbulent flows are the major flow regimes for any fluid 

flow. Most flows in nature and in engineering applications are turbulent. 

Exact numerical simulation at relatively low Reynolds numbers is possible 

[8]. On the other hand, this is not the case for turbulent flows, in which 

velocity and other flow properties exhibit random fluctuations. Thus, 

contrary to laminar flow, which is regular and deterministic, turbulent flow 

is irregular and chaotic [9]. Properties of turbulence can be stated briefly as 

below: 

 

i. Turbulence is irregular or random 

ii. Turbulence arises at large Reynolds numbers 

iii. Turbulence is intrinsically three dimensional 

iv. Turbulence dissipates energy and diffusive 

v. Turbulence is flow dependent 
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The viscous regions which arise during realistic flight conditions are 

characterized by turbulence. Instabilities in the shear layers create turbulent 

fluctuations of the flow field properties. If accurate models of the fluid 

dynamics about aerodynamic bodies in realistic conditions are to be 

achieved, the effects of turbulence must be included. A common approach in 

turbulence modeling is to include an additional eddy viscosity in the 

conservation equations. The eddy viscosity can be modeled by one of the 

available methods. In the present study, the eddy viscosity is modeled by 

Spalart-Allmaras turbulence modeling. 

 

Until recently, algebraic turbulence models were used for most cases 

and they perform very well for specific geometries. Because of rapid 

advances in computer speeds, improvements in flow solvers and grid 

generation algorithms, the aerodynamics community feels the need for a 

new generation of turbulence models. These models are more accurate, 

robust and efficient than the algebraic models. While CFD applications 

involved more complex flows and configurations, the algebraic models 

often produced awkward results [10]. For example, Baldwin-Lomax [11] 

model made Navier-Stokes calculations possible in situations that are 

awkward for the Cebeci-Smith [12] model, because the thickness of the 

boundary layer is not well defined. The Johnson-King [13] model has shown 

more accurate predictions of shock/boundary layer interactions, compared 

with the Baldwin-Lomax and Cebeci-Smith models. The algebraic models 

treat the whole boundary-layer as a single tightly-coupled module and they 

are boundary-layer models in spirit [14]. Furthermore, these models produce 

incorrect results for detached and multiple shear layers. At the 

implementation level, the difficulty occurs because of their non-local nature. 

Their success depends on surveying the velocity or vorticity profile on a 

smooth grid line roughly orthogonal to the surface. When unstructured grids 

are used, this becomes awkward [15]. 
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The problems with the algebraic models have led to the use of 

transport equations models such as k- ε turbulence model. Two-equation 

models are known to provide improved results over algebraic models in 

many cases. However, limited computer resources allowed their use only in 

two-dimensional cases or for a single-element three-dimensional geometry 

such as an inlet, nozzle or wing [10]. They are also far from having shown a 

decisive advantage on the prediction of shock/boundary layer interactions or 

separated flows. They require finer grids near a wall and they demand non-

trivial upstream and free-stream conditions for the turbulence variables. The 

near-wall problems often lead to the use of wall functions which loose their 

justification in the case of separation. 

 

The original idea of using a single transport or one equation model 

governing directly the development of the eddy viscosity field came from 

Nee and Kovasznay [16] in the late sixties. The Nee-Kovasznay [16] model 

is not a local model, since it uses a characteristic length which scales to 

boundary-layer thickness in the outer region. About twenty years later, 

Baldwin-Barth [17] rediscovered the idea and propose the Baldwin-Barth 

[17] model which is a combined form of the k- ε model, through some 

further assumptions. To that extent its growth may be restricted.  

 

Inspired by the work of Baldwin-Bart [17], Spalart-Allmaras [14] 

developed a new one-equation model which was derived through empirical 

arguments and has been shown to be effective in aerodynamic applications. 

The derivation employs certain empiricism and arguments of dimensional 

analysis, Galilean invariance and selective dependence on the molecular 

viscosity, more details can be found in literature [14]. The model yields 

fairly rapid convergence to steady state. The wall and free stream boundary 

conditions are trivial. Furthermore, the low cost and robustness of the eddy 

viscosity-transport formulations make this model very attractive with 

respect to algebraic models.  
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The methodology, implementation and validation of the Spalart-

Allmaras turbulence model are discussed in references [18-27]. 

 

A suitable grid must be generated throughout  the domain of solution, 

before implementation of any numerical model. The generation of 

unstructured grids has followed from a number of algorithms that permit a 

high degree of automation and the grid systems are usually generated 

directly within the physical space. The domain of solution is usually divided 

into triangles or quadrilaterals (or any kind of polygon) in two-dimensions, 

whereas pyramids or tetrahetrals are used in three-dimensional cases [2]. 

Mavriplis [28],  Barth [29], Hoffman [2] and Peraire [30] have all produced 

reports reviewing numerous unstructured grid generation methods.  The 

main advantage of the unstructured grid is that it can be used easily to fit 

irregular, singly-connected domains, as well as multiply-connected domains. 

Unstructured grid generation methods have usually followed two approaches, 

the ‘Advancing Front’ and ‘Delaunay’ methods. The advancing front 

method fills a domain by creating new triangles at the leading edge of a 

group of preexisting triangles. The front begins with the discretized airfoil 

body and outer boundary and proceeds into the computational domain. The 

advantages of the Advancing front scheme are that the scheme is simple and 

straightforward, it is relatively easy to implement for numerical applications 

and it can triangulate concave domains without any difficulty or additional 

effort. However, the major drawbacks of this scheme are that the scheme is 

not as efficient as some of the other triangulation schemes and control over 

grid quality is limited. The Delaunay point insertion method assumes that a 

valid grid exists and proceeds to insert new points according to the 

Delaunay criterion. If a circle is drawn through the three nodes at the 

vertices of a triangle, the Delaunay criterion is met if no other node in the 

grid is within the circle. The most important aspect of this scheme is its 
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efficiency, as well as the quality of the generated grid. The disadvantage of 

the scheme is associated with triangulations of concave domains. 

 

1.3 OBJECTIVES 

 

The objective of this work is to develop a two-dimensional 

unstructured grid solver that is capable of solving inviscid, viscous and 

turbulent flows over a wide range of Reynolds numbers and incident angles 

for single-element airfoils. The solver should be flexible enough in its 

operation to accommodate all such demands. The solver will operate on 

triangular grids and it will use a finite-volume type discretization, and an 

explicit time-marching scheme. To accelerate convergence, residual 

smoothing and local time stepping will be implemented. Such goals are 

included in the following list of objectives which are used to guide the 

development of this solver: 

 

i. The first objective of this work is to develop an unstructured finite 

volume solver that produces accurate solutions of inviscid flows over 

two-dimensional airfoil profiles. 

 

ii. The second objective of this thesis is to implement the viscous terms 

of Navier-Stokes equations. 

 

iii. The third objective of the present study is to implement the Spalart-

Allmaras turbulence model. 

 

iv. The final objective is to solve a wide range of test cases over laminar 

and turbulent cases on triangular element grids for inviscid, viscous 

and turbulent flows. 
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1.4 PRESENT STUDY 

 

The present study is divided into five chapters that cover both the 

details of the solver and a series of test cases used to evaluate its 

performance. The solution of the compressible two-dimensional Navier-

Stokes equations through the finite-volume methodology is given in Chapter 

2. Implementation of the turbulence model and boundary conditions are also 

reviewed in this chapter. The next chapter concentrates on the discretization 

of viscous fluxes, the time marching scheme and the solution procedures for 

the Spalart-Allmaras turbulence model. Solutions to a number of 

aerodynamic problems for inviscid, viscous and turbulent flows are 

presented in Chapter 4. The last chapter reviews the significant features and 

contributions of this research. The conclusions and future directions of 

research are also presented in Chapter 5. 



 

 

 

CHAPTER 2 

 

GOVERNING EQUATIONS 
 

 

2.1 NAVIER-STOKES EQUATIONS 

 

Navier-Stokes equations describe the conservation of mass and the 

conservation of momentum. The simultaneous solution of these equations 

provides the density, the components of the momentum flux in the x and y 

Cartesian coordinate directions and the total energy of the fluid. In this 

study, compressible Navier-Stokes equations are considered with respect to 

a stationary reference frame, with no external body force and heat 

generation. The governing equations written in two-dimensional 

conservative form are given by the following expression:  

 

F GU F G S
t x y x y

ν ν∂ ∂∂ ∂ ∂
+ + = + +

∂ ∂ ∂ ∂ ∂
    (2.1) 

 

where                  

                                                            

u
U

v
E

ρ
ρ
ρ

⎡ ⎤
⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎣ ⎦

       (2.2) 
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[ ]0 0 0 0 TS =       (2.7) 

 

where u and v are the two velocity components in the x and y directions, 

respectively, ρ  is the density, p  is the static pressure and E is the total 

energy per unit volume and is defined as      

 

  
2 2

1 2
p u vE ρ

γ
⎛ +

= + ⎜− ⎝ ⎠

⎞
⎟      (2.8)   

                                                                                                                   

      



The non-dimensionalization is based on free-stream values. The 

algorithm is intended for use over a range of initial conditions and airfoil 

geometries. The input parameters are the free-stream Mach number, incident 

angle and Reynolds number. To investigate each of these parameters 

independently, the governing equations are written in non-dimensional form. 

The chord length of the airfoil, denoted as c , and the free-stream values of 

density, ρ∞ , speed of sound, a∞ , dynamic viscosity, µ∞  and temperature, 

 are used to non-dimensionalize as follows and the details of the non-

dimensionalization can be found in literature [31]:  

T∞

 

c
xx =′   

c
yy =′       (2.9) 

 

∞

=′
a
uu  

∞

=′
a
vv      (2.10) 

 

∞

=′
µ
µµ  

∞

=′
ρ
ρρ      (2.11) 

 

∞

=′
T
TT  2

pp
aρ∞ ∞

′ =      (2.12) 

 

 The prime notation indicates the non-dimensional form of the 

variable and is omitted from all subsequent variable references. Note that 

the Reynolds number aRe  is based on the free-stream speed of sound, and 

differs from the traditional Reynolds number, Re. This relation is a 

Reynolds number based on the free-stream speed of sound and  chord length. 

It is related to the traditional form of the Reynolds number, Re through the 

free-stream Mach number, M∞ . 
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cuRe ρ
µ
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∞

= ,  
∞

∞
∞ =

a
u

M     (2.13) 

 

aRe M Re∞= ,  a
ca ReRe

M
ρ
µ
∞ ∞

∞ ∞

= =    (2.14) 

 

The shear stress components are expressed as; 

  

( ) 4 2( )
3 3xx t

M u v
Re x y

τ µ µ ∞ ∂ ∂
= + −

∂ ∂
    (2.15) 

 

( ) 4 2( )
3 3yy t

M v u
Re y x

τ µ µ ∞ ∂ ∂
= + −

∂ ∂
    (2.16) 

 

( ) ( )yx t
M u v
Re y x

τ µ µ ∞ ∂ ∂
= + +

∂ ∂
     (2.17) 

 

yxxy ττ =        (2.18) 

 

where  and  are the velocity components in the x and y directions, 

respectively, 

u v

ρ   is the density, p  is the static pressure, µ  is the laminar 

viscosity, tµ  is the turbulent viscosity, M∞  is the free-stream Mach number 

and Re is the Reynolds number. 

 

 Pressure is related to the conservative flow variables U  by the 

equation of state for a perfect gas: 

 

( ) ( ) RTvuep ρργ =⎟
⎠
⎞

⎜
⎝
⎛ +−−= 22

2
11     (2.19) 
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 Sutherland’s law is used to relate the kinematic viscosity µ  to the 

temperature 
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110
110
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⎛
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⎤
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⎡

+
+

=
∞

∞

∞ T
T

T
T

µ
µ      (2.20)                             

 

where T  stands for the temperature and  is the free-stream temperature. ∞T

T  and  are expressed in Kelvin. ∞T

 

2.2 TURBULENCE MODELING 

 

In reality, aircraft wing sections are used exclusively in flow regimes 

that are characterized by Reynolds numbers well above the critical value for 

turbulence. Simulation of many complex features of the flows of practical 

importance needs the capture of its turbulent behavior. Viscosity plays a 

major role in those cases and the randomness of the flow can be modeled 

using turbulence modeling. Viscosity can be viewed as consisting of two 

contributions: laminar and turbulent. The laminar viscosity is usually a 

function of temperature and can be estimated using Sutherland’s formula 

[31]. On the other hand, the turbulent viscosity is a function of the flow and 

needs to be evaluated by using one of the turbulence models. In this thesis, 

the turbulent viscosity is estimated by using the Spalart-Allmaras [14] one 

equation model in high Reynolds number flows. The Spalart-Allmaras 

turbulence model used in this algorithm solves a differential expression for 

turbulence parameters v~ . The model in conservative non-dimensional form 

is  
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The dynamic eddy viscosity  is obtained from tv

 

1
~

vt fvv =        (2.22) 

 

where the viscous damping function  is given by 1vf

 

3
1

3

3

1
v

v CX
Xf
+

=       (2.23) 

 

with 

 

v
vX
~

=        (2.24) 

 

The turbulent viscosity, tµ  is computed from 

 

1
~

vt fvρµ =        (2.25) 
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The production term [ ] vSfC
t

a

b ~~1
Re 2

1 −  is modeled with 

 

2223

~~
vf

d
SfS

κ
ν

ν +=       (2.26) 

 

3

2
2 )1( −+=

νC
Xfv       (2.27) 

 

)001.0,max(
)1)(1( 21

3 X
fXf

f vv
v

−+
=      (2.28) 

                      

)exp( 2
432 Xccf ttt −=      (2.29) 

              

1bC  , ,  and 4tC 3tC κ  are constants, d is the distance from the wall, κ  is the 

von Karman constant. The turbulence production variable S   is defined as 

the magnitude of the vorticity in the flow field 

 

ijijS ΩΩ= 2        (2.30) 

 

where  is the mean rate of rotation tensor and is defined by  ijΩ

 

ijΩ = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
−

∂
∂

i

j

j

i

x
u

x
u

2
1       (2.31) 

                             

 The justification for the default expression for S  is that when the 

model was formulated, turbulence is found only near walls where vorticity 

is generated. On the other hand, it has been acknowledged that one should 

also take into consideration the effects of the mean strain on the turbulence 

production. 
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( )ijijprodij SCS Ω−+Ω= ,0min     (2.32)  

           

where 0.2=prodC , ijijij ΩΩ=Ω 2 , ijijij SSS 2=  

 

with the main strain rate , is defined as ijS
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 In the original version of Spalart-Allmaras turbulence modeling, S  

was defined in such a way that it could become negative. This case could 

disturb the closure coefficient value of r and stall the convergence. 

Therefore, the function  is introduced and the definition of the function 

 has been changed. This modification was suggested by Spalart to 

prevent 

~

3νf

2vf

S~  from being negative.  
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22~
~

dS
r

κ
ν

=        (2.36)  

    



where ,  and  are constants. For large r, the function 1wC 2wC 3wC wf  reaches a 

constant, so large values of r can be truncated to 10, the details can be found 

in literature [14].  
 

The trip term  that allows one to specify the boundary 

layer transition location explicitly can be expressed with  

2
1Re Ufta ∆

 

))(exp( 222
2

2

211 tt
t

tttt dgd
U

w
cgcf +

∆
−=    (2.37) 

     

where  is the distance to the nearest trip point,  is the vorticity at the 

wall at the trip point,  is the norm of the difference between the velocity 

at the trip (zero if the wall stationary) and 

tD tw

U∆

)/,1.0min( xUg tt ∆∆= ω  with x∆  

being the spacing along the wall at the trip point.   

 

 Although the model allows the transition point localization, 

computations in the present study are assumed to be fully turbulent, so this 

term is not used. Therefore, the values of 1tf  and 2tf , which are associated 

with these terms, will be taken as zero. The various constants used in this 

model have the following values:  

 

1355.01 =bC , 622.02 =bC , 
3
2

=νσ , 1.71 =vC , , 3.02 =wC

                                                                                                              

41.0=κ , 24 =tC , 1.13 =tC , 22 =tC , 11 =tC , 

 

( 22
1

1 11
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v

b
w C

C
C ++=

σκ
)     (2.38)                               
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2.3 BOUNDARY CONDITIONS 

 

Proper boundary conditions must be specified to obtain a unique and 

accurate solution. The provided information about the boundary conditions 

will determine the problem to be solved. The Navier-Stokes equations 

contain second-order viscous stress terms and gradients of flow variables. 

The presence of these terms allow the specification of not only Dirichlet 

boundary conditions but also Neumann boundary conditions. The boundary 

conditions for different flow situations are discussed below. 

 

2.3.1. Free-Stream Boundary Conditions 

 

 Free-stream boundary conditions specify the flow-field conditions 

that would exist in the absence of an airfoil or other body. Several 

conditions are specified by the user and several others can be calculated 

from the user supplied parameters. The free-stream conditions are used to 

initialize the entire flow field before the solution starts and used to calculate 

the farfield boundary conditions throughout the solution process. The free- 

stream boundary conditions provided in non-dimensional form. The free 

stream velocity components are determined from the angle of attack α  and 

the free-stream Mach number  which are both supplied to the code by 

the user as:  

∞M

 

u M cosα∞ ∞= ,      (2.39) 

 

v M sinα∞ ∞=        (2.40) 
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 The free-stream pressure, density and speed of sound can be derived 

from the non-dimensionalization being used. 

 

1=∞ρ , 
γ
1

=∞p , 1=∞a     (2.41) 

 

 

The free-stream total energy can then be calculated from equation (2.18) as: 

 

( 2 21
1 2

p )E u vρ
γ

∞
∞ ∞ ∞= + +

− ∞
     (2.42) 

 

2.3.2 Far Field Boundary Conditions 

 

 The selection of computational domain for external flows will 

include artificial boundaries set at the far field which could be either inflow 

or outflow. The airflow over the airfoil generates disturbances in the free-

stream conditions and these disturbances are convected and diffused 

throughout the domain eventually reaching the outer boundaries. The 

location of far field boundary should be set as far away as possible. 

However, placing the far field boundary more than 100 chords from the 

airfoil surface is not an applicable option. Since, it requires either a large 

number of nodes in the outer regions near the boundary or much stretched 

cells, both of which may reduce the performance of the code. Therefore, 

from efficiency and accuracy points of view, the far field boundary must be 

set reasonably to reduce the size of the computational domain. Furthermore, 

non-reflecting boundary conditions must be used to allow the disturbances 

to leave the computational domain otherwise they could reflect leading to 

large oscillations and preventing the convergence of the solver. Riemann 

invariants are the well-known non-reflecting boundary conditions. Riemann 

invariants are given as: 
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1
2

1 −
−=
γ

aUR n       (2.43) 

 

1
2

2 −
+=
γ

aUR n       (2.44) 

 

γρ
pR =3        (2.45) 

 

tUR =4        (2.46) 

 

where  is the flow velocity normal to the boundary and  is the flow 

velocity tangential to the boundary. For the flow leaving the solution 

domain  is positive and for the flow entering the solution domain  is 

negative. 

nU tU

nU nU

 

 The four Riemann invariants are either calculated from free-stream 

values or extrapolated from interior values by simple zeroth order 

extrapolation. Boundary conditions are usually implemented by ghost cells. 

The process is summarized in Table 2.1.  

 

Table 2.1 Riemann invariants calculation and extrapolation 

 

Boundary type Normal Velocity
Free-stream 
conditions 

Extrapolated 
conditions 

Subsonic Inflow -a <  < 0 nU 1R , ,  3R 4R 2R  

Subsonic Outflow 0 <  < a nU 1R  2R , ,  3R 4R

Supersonic Inflow nU  < -a 1R , , , 2R 3R 4R  
Supersonic Outflow a <  nU  1R , , , 2R 3R 4R
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Since the far field boundary is at a limited distance from the airfoil 

the flow-field at the boundary will not exactly match with the free-stream 

values. Simply imposing the free-stream Riemann invariant values can 

cause an inaccurate solution leading to inaccurate lift and drag values. On 

the other hand, a correction can be imposed on the far field boundary 

conditions to simulate a larger computational domain. The correction 

approximates the effects of the airfoil as a point vortex located at the 

quarter-chord point. This technique is called a circulation correction. The 

circulation is used to calculate corrected free-stream velocities and speed of 

sound for point at the far field boundary. The new velocities and speed of 

sound should be replaced with the free-stream values in the calculation of 

the Riemann invariants. However, the circulation correction topic is beyond 

the scope of this study so it can be implemented in future to develop the 

present solver and to work on a larger computational domain. The detailed 

discussion of the circulation correction can be found in Thomas et al. [32].  

 

2.3.3 Solid Wall Boundary Conditions 

 

 In viscous flow problems, such as air moving over an airfoil surface, 

the region adjacent to the airfoil inside the boundary layer will be 

dominated by the effects of viscosity. The boundary conditions on the airfoil 

surface are chosen to accurately reflect such phenomena. In real flows, the 

intermolecular forces between the fluid and airfoil surface will give rise to 

the ‘no-slip’ condition, where the velocity of the fluid drops to a negligible 

value [35]. In the numerical code this allows the velocity components on the 

surface of the airfoil to be set to zero. By defining the velocities on the 

airfoil surface to rigid values, the momentum equations are not required to 

be solved over control volumes centered about surface nodes, saving 

computational resources. The turbulent eddy viscosity v~  is also constrained 

by the effects of the wall. On the airfoil surface due to turbulence effects are 

reduced, the eddy viscosity can be set to 0~ =v  [14]. 

 23



The temperature on the wall can be specified as: 

 

wallT T=        (2.47) 

 

or 

 

wall
Tk q
n

∂
− =

∂
       (2.48) 

  

where  is the wall heat flux. wallq

 

 In this study walls are modeled as adiabatic,   and equation 

(2.48) simplifies to  

0wallq =

 

0T
n

∂
=

∂
       (2.49) 

 

At the solid boundary with no slip boundary condition, the pressure at the 

wall is obtained by solving the momentum equation in the normal direction, 

which reduces to the following form 

 

  0p
n
∂

=
∂

        (2.50) 
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CHAPTER 3 

 

NUMERICAL METHOD 
 

 The solution procedures of the governing equations that are presented 

in the previous chapter are described in the following sections. The data 

structure used to store the grid information is discussed in Section 3.1. The 

numerical discretization of the convective terms and viscous flux 

calculations are addressed in Section 3.2. Turbulence model discretization is 

discussed in Section 3.3. Lastly, Section 3.4 deals with the temporal 

discretization including Runge-Kutta explicit scheme, local time stepping 

and residual smoothing. 

 

3.1 CELL BASED DATA STRUCTURE 

 

The grid information can be stored in two different ways (i) Cell 

based data structure (ii) Cell face based data structure. In two-dimensional 

cases the cell face based data structure, which is used in three-dimensional 

cases, will change to an edge based one. Cell based data structure lists the 

connectivity of each cell to the vertices and the neighbouring cells. On the 

other hand, the edge based data structure lists the connectivity of each edge 

to its vertices and neighbours. In the present work, cell based data structure 

will be used to store the grid information. Consider a two dimensional grid 

that consists of four cells, as shown in Figure 3.1. 

 

 

 

                      



                 N5                              N3                                 N4  

                              C4                              C3

                                          C1

                           

                           N1                              N2

                                            C2

 

                                             N6

Figure 3.1 Example of unstructured triangular grids 

 

The nodes are denoted by N1, N2, N3, N4, N5, N6 and the cells by C1, 

C2, C3, C4. In the cell based data structure the grid is represented as shown 

in Table 3.1. The nodes that form a cell are usually ordered in either a 

clockwise or a counter-clockwise direction. In this study, the counter- 

clockwise ordering of nodes was chosen. 

 

Table 3.1 Cell based data structure 

 

Cell Number Vertex 1 Vertex 2 Vertex 3 
C1 N1 N2 N3

C2 N1 N6 N2

C3 N2 N4 N3

C4 N3 N5 N1
 

In the present thesis, to store grid information one should also supply 

the connectivity of each cell to the vertices and neighbour cells. This 

approach is best explained by an example. 

 

Consider the two dimensional grid which consist of ten cells as 

shown in Figure 3.2. 
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                                                           N9 

                                      C4      C3                   

                 N4                       N3                      N8

                                               C5                              C2

                     C6                  C1                             C10

                         N1                          N2                                  N7                                         

                     N5                             C8               C9

                            C7

                               

                                                        N6

Figure 3.2 Example of connectivity of the neighbouring cells 

 

The nodes are denoted by N1, N2,. …, N9 and the cells by C1, C2,….,  

C10. In the cell based data structure the connectivity of each cell to the 

vertices and neighbouring cells is represented as shown in Table 3.2. 

 

Table 3.2 Connectivity of cells to the vertices and neighbouring cells 

 

Cell 
Number Vertex 1 Vertex 2 Vertex 3 Neigh. 1 Neigh. 2 Neigh. 3

C1 N1 N2 N3 C2 C5 C8

C2 N2 N8 N3 C3 C1 C10

C5 N3 N4 N1 C6 C1 C4

C8 N2 N1 N6 C7 C9 C1
 

Note that in the present solver, for the far field (outer) boundary 

condition value of -1 is used instead of any cell number and for the inner 

boundary condition, i.e. on the airfoil surface, value of -2 is used. 

 

 

 

 

 

 27



3.2 SPATIAL DISCRETIZATION 

 

The governing Navier-Stokes equations presented in the previous 

chapter are written in a differential form describing a continuum flow field.  

To extend the conservation of the dependent variables to arbitrary regions of 

the real space domain, it is necessary to write these relations in integral 

form. Considering an arbitrary control volume Ω , integration of a 

generalized conservation equation yields the following expression; 

 

d d d d dx y H s S x
t

yρφ

Ω Ω Ω

∂
+ ∇ =

∂∫ ∫ ∫�     (3.1)    

 

where 

 

( )v vH F G F G= + − +      (3.2)                              

 

 In this relation, φ  represents any conservative variable on a per unit 

mass basis, such as the x  velocity component , the  velocity component 

, the total energy 

u y

v E
ρ

 or the turbulence variable ν%  and in the mass 

conservation equation the value φ  will be 1. In equation (3.1) H  term 

stands for both convective and diffusive fluxes for each dependent variable. 

The  term in equation (3.1) represents the source terms for each 

conservation equations. For laminar or turbulent flows, the mass, 

momentum and energy equations will not contain source terms. On the other 

hand, for turbulent flows that solve the turbulence variable, source terms 

will be presented. 

S

 

 The integral equation (3.1) can be further simplified so that it is more 

reasonable to discretization methods. The control volumes over which the 

integral equation is solved are fixed in space with no movement of nodes or 
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edges during solution. The Leibnitz theorem then allows the term 

d dx y
t
ρφ

Ω

∂
∂∫  to be written as a function of time. The divergence term can also 

be expressed in a simplified format. Gauss’ theorem in the plane allows the 

integral of the flux divergence to be expressed as a line integral of the flux 

through the control volume boundaries [33]. This allows a simplified 

evaluation of the convective and diffusive fluxes through the reduction of 

the order of differentiation. Instead of calculating the spatial derivatives of 

the convective fluxes, the simplified form only requires the calculation of 

the flux components along the outer boundaries of the control volume. 

Representing the outer boundary of the arbitrary control volume as δΩ  the 

integral equation (3.1) can be written as follows; 

 

d d d Hd d d
d

x y s S x
t δ

ρφ
Ω Ω Ω

+ =∫ ∫ ∫� y    (3.3)                                         

 

 Equation (3.3) is the starting point for the transformation from a 

completely analytical problem to a discrete one. The integrals of the 

equation are approximated as sum and products of the flux terms using a 

process commonly referred to as discretization, thus making them suitable 

for solution through numerical means. The temporal and spatial terms can 

be addressed separately, allowing a solution process to use various 

combinations of methods. 

 

 The finite volume method begins with the discretization of equation 

(3.3). The dependent variables ρφ  in the first term of the equation are 

continuous over each control volume. The discretization commences with 

the replacement of this continuous variable with one that represents the 

average value over the control volume. The first term can then be 

approximated by 
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( )d
d

A
t
ρφ        (3.4)                              

 

where ρφ  is the average value over the control volume. The term A  is the 

area of the control volume, which is constant and can be removed from the 

temporal differentiation. The source term of equation (3.3) has an identical 

formulation to the temporal term and can be treated in the same manner. 

 The term  in equation (3.3) represents the net flux through the 

closed boundary of the control volume. In its present form, this term 

requires that exact expressions for the boundary fluxes be provided to 

complete its evaluation. Therefore, it must also be approximated to allow a 

numerical formulation. This implies that some assumption must be made 

about the representation of the flux across the control volume boundaries. 

One of the most common methods is to use a trapezoidal formulation to 

approximate the integral. A linear interpolation of the flux along an edge is 

made based on values obtained at either end of the edge. As an example, if 

the flux at the midpoint of an edge 

.H ds
δΩ
∫�

j  is denoted as jf , and the flux values 

at either end of the edge if , 1if +  are evaluated using both convective and 

diffusive fluxes, then 

 

( )1
1
2j i if f f += +       (3.5)                              

 

This method of flux evaluation can be performed very quickly using 

only the information at the ends of each edge. This allows a numerical 

algorithm based on this formulation to be computationally efficient in terms 

of computer effort and memory. 
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A finite volume based scheme by Barth [34] and Whitaker [35] is one 

of the common approaches used for solving the governing equations on 

unstructured grids. There are basically two different approaches for storing 

the conserved variables; one is a node based approach while the other one is 

a cell based approach. The shaded regions in Figure 3.3 and 3.4 show the 

areas that are used for estimating the averaged values of the conserved 

variables for the two different approaches. In the node based method the 

area considered for this averaging is the area around the nodes. For two 

dimensional cases this area is taken as the area enclosed by the polygon 

formed by connecting the cell centers of the neighbouring cells to the 

midpoint of the corresponding edges. In the second approach, the values 

stored at the cell center are taken as the cell averaged values. The area for 

the averaging is taken as that of the cell itself. 
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Figure 3.3 Areas considered for averaging the conserved variable in 

node based scheme 
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Figure 3.4 Areas considered for averaging the conserved variable in 

cell based scheme 

 

In the present study, the cell centered approach is used for storing the 

conserved variables and for the subsequent solution procedure.  

 

3.2.1 Discretization of Convective Terms 

 

 The governing equations in differential form without the viscous and 

source terms are as follow  

 

0U F G
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
      (3.6)                              

 

Integrated equation (3.6) over an triangular mesh. Thus, one has 

 

d d d d 0U F Gx y x y
t x yΩ Ω

⎛ ⎞∂ ∂ ∂⎛ ⎞ + +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∫ ∫ =    (3.7)  

 

Using Green’s Theorem which converts area integrals to the line integral. 

Equation (3.7) can be written as 



(d d d d 0U x y F y G x
tΩ Ω

∂⎛ ⎞ )+ − =⎜ ⎟∂⎝ ⎠∫ ∫�     (3.8) 

 

Using the cell centered finite volume approach, a discretized form of 

equation (3.8) is  

 

( ) ( )1n n
center center ij ijU U F y G+ − = − ∆ − x∆    (3.9) 

                                                                      

 The indices i  and j  denote the cell and face numbers respectively, 

n stands for the time level, y∆  and x∆  represent the increment. The right-

hand-side of equation (3.9) represents the flux balance for the  cell.  thi

 

 The differential form of the equation (3.6) is hyperbolic in time; so 

that the flux evaluation is based on the direction of propagation of the 

information. This is done using unwinding based on the eigenvector of the 

governing equations. 

 

 The numerical flux crossing a cell face is calculated as the exact 

solution of the approximate Riemann problem by Roe [36]. The basic 

principle behind the Roe’s approximate Riemann solver is explained below 

using the one dimensional hyperbolic system of conservation laws, 

 

0q f
t x

∂ ∂
+ =

∂ ∂
       (3.10)                            

 

with the initial conditions given in Figure 3.5 
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Figure 3.5 Initial conditions for the conservation laws 

  

The above conservation laws can be written as 

 

0q qa
t x

∂ ∂
+ =

∂ ∂
       (3.11)                            

 

where fa
q
∂

=
∂

 

 

 Roe’s approximate Riemann solver finds the exact solution of the 

following linear hyperbolic system. 

 

0q qa
t x

∂ ∂
+ =

∂ ∂
       (3.12)                            

 

where a  is a locally constant matrix and has to satisfy the following 

properties [39]. 

 

v. In order to satisfy the hyperbolicity of the system, a  should have 

real eigenvalues. 

vi. In order to be consistent with the original Jacobian matrix, , ( )a Q a  

should exhibit the behaviour a = . ( )a Q



vii. In order to satisfy the conservation property, a  should be chosen to 

be ( ) ( ) (R L RF Q F Q a Q Q− = − )L . 

     

The jump in the values of the flow variables across the face and is defined as 

.  ( ) ( ) ( )R L
∆ = −

 

3.2.2 Viscous Flux Calculations 

 

In the present work, the solver uses a finite volume discretization. 

The Navier-Stokes equations (2.1) can be discretized by integrating around 

the boundary of each control volume. Gauss’s divergence theorem in two 

dimensions allows us to transform the area integrals in equation (3.13) into 

surface integrals around the boundary of the control volume: 

 

d 1d ( )d ( )d d
d  v v

a

U A F G s F G s S A
t ReΩ ∂Ω ∂Ω Ω

+ + = + +∫ ∫ ∫ ∫� �  (3.13) 

                                               

where U  represents the vector of conserved variables, F  and  are the 

inviscid flux,  and   are the viscous flux and the turbulence model 

source terms are represented in S : 

G

vF vG

0
0
0
0

t

S

S

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

       (3.14) 

                                                                 

The solver uses several approximations, using these approximations 

the Navier-Stokes equation (3.13) can be simplified as follow; 
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d 1( )d ( )
d  v v

a

U F G s F G ds A
t ReΩ Ω

Ω + + = + +∫ ∫� � S   (3.16) 

                                                     

with the fact that the grid does not change in time. The line integrals in 

equation (3.16) may now be discretized as the sum of line integrals over 

each edge in the control volume. 

 

 The flux is assumed to be constant along each control volume edge 

and the value used is the average from the two primary grid nodes on either 

side of the edge. The averaging is a good approximation for the viscous 

stresses, since they are diffusive in nature. The equations are written in 

spatially discrete form as: 

 

( )
1

d
d

n

xj yj
j

U F y F x
t

δ δ
=

Ω + −∑ +  

( )
1

n

xj yj
j

G y G xδ δ
=

− =∑  

( )
1

1 ( ) ( )
Re  

n

v xj v yj
ja

F y F xδ δ
=

⎡ ⎤
−⎢ ⎥

⎣ ⎦
∑  

( )
1

1 ( ) ( )
Re  

n

v xj v yj
ja

G y G x Aδ δ
=

⎡ ⎤
+ −⎢ ⎥

⎣ ⎦
∑ S+  

AS+      (3.17) 

      

   

where the sums are over the edges in the control volume and the fluxes at 

each edge are calculated from 

 

( )
2

xi xk
xj

F FF +
= , (( ) ( ) )( )

2
v xi v xk

v xj
F FF +

=    (3.18) 
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( )
2

yi yk
yj

F F
F

+
= , 

(( ) ( ) )
( )

2
v yi v yk

v yj

F F
F

+
=    (3.19) 

( )
2

xi xk
xj

G GG +
= , (( ) ( ) )( )

2
v xi v xk

v xj
G GG +

=    (3.20) 

 

( )
2

yi yk
yj

G G
G

+
= , 

(( ) ( ) )
( )

2
v yi v yk

v yj

G G
G

+
=   (3.21) 

                                                                 

where j  stands for the current edge, i  is the central node and k  is the 

neighbour associated with the edge j . The edge components xδ  and yδ  

are precomputed for each edge and the control volume boundary is traversed 

in the counter clock wise direction, as shown in Figure 3.6. 

 
 

                                           neighbouring node k 
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                                                       xδ  
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Figure 3.6 One edge of a control volume 
 
 

 In order to compute the viscous fluxes  and  flow variable 

derivatives i.e. velocity gradients must be calculated. Velocity gradients are 

calculated using Green’s Gradient Theorem which is given as follows; 

vF vG

 

  1 dsφ φ
∂Ω

∇ =
Ω ∫       (3.22) 

 

and after discretization of equation (3.22) following form is obtained; 



  (
3

, ,
1

1
j i j i jy i x jφ φ∇ = ∆ −∆

Ω∑ )r r
    (3.23) 

 

where φ  represents the velocity variable. 

 

3.3 TURBULENCE MODEL DISCRETIZATION 

 

 The turbulence model is discretized in the same way as the Navier-

Stokes flux terms. The turbulence model contains mostly first derivatives of 

flow variables which can easily be computed as in equation (3.23). However, 

the diffusion term contains second derivative terms; 

 

  ( )( )1 1 .
aRe

ν ν ν
σ
⎡ ⎤∇ + ∇⎣ ⎦% %      (3.24)                            

 

 In the present study these derivatives are calculated in the same way 

as the Navier-Stokes viscous fluxes. The Spalart-Allmaras model solves a 

second order partial differential equation for the variable ν̂%  and the 

turbulent kinematic viscosity tν%  is estimated from ν̂%  by multiplying a 

damping function 1vf . The ^ represents dimensional quantities. The Spalart-

Allmaras one equation turbulence model in dimensional form is given in 

equation (3.25) [14], 

 

  ( ) ( )( ) ( )2

1 2 2

ˆ 1ˆ ˆ ˆ ˆˆ1 .ˆ b t b
D C f S C
Dt
ν ν ν ν ν

σ
⎛ ⎞= − + ∇ + ∇ + ∇⎜ ⎟
⎝ ⎠

%
% % % ν̂%  

             ( )
2

2
1

1 2 12

ˆˆ ˆ
ˆ

b
w w t t

CC f f f U
x d

ν⎛ ⎞⎛ ⎞− − + ∆⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

%
  (3.25)                            

 

where ν̂  is the laminar kinematic viscosity and  is the distance to the 

nearest wall. For simplicity, the tripping terms are neglected and the 

d̂
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equation is solved in the fully turbulent mode. This is done by setting 1tf  

and 2tf  to zero. Equation (3.25) then becomes 

 

  ( )( ) ( )2

1 2

ˆ 1ˆ ˆ ˆ ˆˆ.ˆ b b
D C S C
Dt
ν ν ν ν ν

σ
⎛ ⎞= + ∇ + ∇ + ∇⎜ ⎟
⎝ ⎠

%
% % % ν̂%  

   
2

1

ˆˆ
ˆw wC f
d
ν⎛ ⎞

− ⎜ ⎟⎜ ⎟
⎝ ⎠

%
      (3.26) 

 

Having expanded the total derivative, equation (3.36) is rewritten as; 

 

  ( )( ) ( )2

1 2

ˆ 1ˆˆ ˆ ˆ ˆ ˆˆ ˆ. .ˆ b bV C S C
t
ν ν ν ν ν ν ν

σ
∂ ⎛ ⎞= − ∇ + + ∇ + ∇ + ∇⎜ ⎟
∂ ⎝
%

% % % % %
⎠

        

   
2

1

ˆˆ
ˆw wC f
d
ν⎛ ⎞

− ⎜ ⎟⎜ ⎟
⎝ ⎠

%
      (3.27) 

 

where V̂  is the velocity variable. 

 

 The above equation has to be non-dimensionalized before it can be 

solved numerically, since the governing equations are in non-dimensional 

form. The non-dimensional parameters are the same as those used for non-

dimensionalization of the Navier-Stokes equations. After non-

dimensionalization, equation (3.25) becomes 

 

  ( )( )( )1
1. .ˆ b

a

V C S
t Re
ν ν ν ν ν

σ
∂

= − ∇ + + ∇ + ∇
∂
%

% % % ν%  

           ( )
2

22 1b w w

a a

C C f
Re Re d

νν
σ

⎛ ⎞+ ∇ − ⎜ ⎟
⎝ ⎠

%
%      (3.28)        
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Correspondingly the variables appearing in the above equations will be 

modified as 

 

  X ν
ν

=
%

,                                      1t vfν ν= % , 

 

  
3

1 3
1

v
v

Xf 3X C
=

+
,                          2

1

1
1v

v

Xf
Xf

= −
+

, 

 

  22 2

1
v

a

S S f
Re x d

ν⎛ ⎞= + ⎜ ⎟
⎝ ⎠

%
,              

1
6 6

3
6

3

1 w
w

w

Cf g
C

⎡ ⎤+
= ⎢ ⎥

⎣ ⎦
, 

 

  ( )6
2wg r C r r= + − ,                     2 2

1

a

r
Re Sx d

ν⎛ ⎞= ⎜ ⎟
⎝ ⎠

%
, 

 

  ,        1 0.1355bC =
2.0
3.0

σ = ,        2 0.622bC = ,        , 0.41x =

 

  1 2
1 2

1b b
w

C CC
x σ

+
= + ,     2 0.3wC = ,       

 

   and 3 2.0wC = 1 7.1vC =      (3.29)                   

 

 The different terms appearing in equation (3.28) can be divided into 

convective, production, diffusion and destruction terms. So the transport 

equation for the turbulent viscosity parameter can be given as 

Time rate of change of viscosity (ν% ) = - Convection of ν% + Production of ν%       

                                                             + Diffusion of ν%  – Destruction of ν%  
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where the convection is given by .V ν∇ % . Production of the turbulent 

viscosity is due to vorticity and is given by 1bC Sν% . The diffusion term is a 

function of the gradient of the viscosity parameter and is defined as 

 

  ( )( )( ) ( )221 . b

a a

C
Re Re

ν ν ν ν
σ σ

∇ + ∇ + ∇% % %    (3.30) 

 

Neglecting the gradient of laminar viscosity, the diffusion terms can be 

written as, 

 

  ( )( )( ) ( ) 22 21 .b b

a a

C C
Re Re

ν ν ν ν ν ν
σ σ
+

∇ + ∇ − + ∇% % % %    (3.31) 

 

The destruction term for the turbulent viscosity parameter is taken as 

inversely proportional to the square of the distance to the solid wall and is 

given by, 

 

  
2

1w w

a

C f
Re d

ν⎛ ⎞
⎜ ⎟
⎝ ⎠

%
       (3.32) 

 

Equation (3.28) with the simplified diffusion terms can be written as, 

 

  ( ) ( )( )( )2
1

1
. .ˆ

b
b

a

C
V C S

t Re
ν ν ν ν ν

σ
+∂

= − ∇ + + ∇ + ∇
∂
%

% % % ν%  

            ( )
2

2 22 1b w

a a

C C wf
Re Re d

νν ν ν
σ

⎛ ⎞+ + ∇ − ⎜ ⎟
⎝ ⎠

%
% %    (3.33)     
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Integrating equation (3.33) over a control volume yields; 

 

  1d . d bV C S
t

dν ν ν
Ω Ω Ω

∂
Ω = − ∇ Ω+ Ω

∂∫ ∫ ∫
%

% %  

   ( ) ( )( )21
. db

a

C
Re

ν ν ν
σ Ω

+
+ ∇ + ∇∫ % % Ω  

                   ( )
2

22 1db w
w

a a

C C f
Re Re d

νν ν ν
σ Ω Ω

⎛ ⎞− + ∇ Ω− ⎜ ⎟
⎝ ⎠∫ ∫
%

% % dΩ   (3.34)                          

 

 

Using the divergence theorem for the surface integral, equation (3.34) can 

be transformed to, 

 

  1. bd V d C S d
t
ν ν ν

Ω Ω Ω

∂
Ω = − ∇ Ω+ Ω

∂∫ ∫ ∫
%

% %  

   ( ) ( )21
.

Re
b

a

C
ndsν ν ν

σ ∂Ω

+
+ + ∇∫ % %�  

   ( )
2

22 1

Re Re
b w

w
a a

C Cd f
d
νν ν ν

σ Ω Ω

⎛ ⎞− + ∇ Ω− ⎜ ⎟
⎝ ⎠∫ ∫
%

% % dΩ  (3.35)  

                                          
 As in the case of Navier-Stokes equations, equation (3.35) is also 

solved using a cell centered scheme. The values of ν% , stored at the cell 

centers, are assumed to be cell averaged values. The discretized form of 

equation (3.35) is 
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  ( ) ( )
1

1
1

n n k

i i j j b i
ji

V U U ds C S
t

ν ν ν ν ν
+

+ −

=

−
= − + +

∆ ∑
% %

% % % iV  

                      ( ) ( ) ( )2

1

1
.

Re

k
b

jij ij
ja

C
n dsν ν ν

σ =

+
+ + ∇∑ r

% %  

                       ( ) 22

Re
b

i ii
a

C Vν ν ν
σ

− + ∇% %  

    
2

1w
w

a i

C f
Re d

ν⎛ ⎞⎛ ⎞
i− ∀⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

%
    (3.36)                          

  

where k  is the number of edges of cell i , nr  is the unit normal to the face, 

 is the length of the edge jds j ,  is the cell that shares the ( )jn thj  edge of the 

cell  and  is the cell volume. The variables Ui i∀
+  and U −  are defined as 

 

  (1
2

U U U+ = + )       (3.37) 

 

  (1
2

U U U− = − )       (3.38) 

 

where U  is the contravariant velocity. The laminar and turbulent viscosities 

at the cell faces are taken as the average values of those on either side of the 

cell face. 

 

 In equation (3.39) the gradient of the turbulent viscosity parameter ν%  

is calculated by Green’s Gradient Theorem. The same calculation type is 

performed in equation (3.22). 

 

  1 dsν ν
∂Ω

∇ =
Ω ∫% � %       (3.39)   
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3.4 TEMPORAL DISCRETIZATION 

 

This section will address the treatment of the time dependent terms in 

a manner that permits a solution of the coupled set of governing equations. 

Explicit time march methods, such as the Runge-Kutta routines rely on the 

transient nature of the equations to integrate the system from one point in 

time to the next. The simplicity and low computer memory requirements are 

the main advantageous of such methods for large problems. 

 

3.4.1 Runge-Kutta Method 

 

For explicit time integration, a four stage Runge-Kutta method is 

employed as discussed in Jameson et. al [4]. The flow variables at  ( )  

time step are obtained from the variables at the ( )  time step in four stages. 

The Runge-Kutta explicit time marching method can be classified as ‘one-

step’ methods since they advance the system in time using only the 

information provided in the previously computed time step. The start up 

procedure is also very simple since one-step methods need only an initial 

solution at . The scheme begins with the calculation of the fluxes and 

source terms using the dependent variables U  determined at an initial point 

at time . Thus, the dependent variables denoted as  and for example at 

the second stage in Runge-Kutta scheme by 

1 thn +

thn

0t =

0t 0tU

( )2U . The residual R  over a 

control volume  at time step  is defined as; k 0t

 

( ) ( )0

1
j j j j

m
t

k t y t x
j

kR U F G
=

= ∆ − ∆ +∑ A S    (3.40)                            

 

where the terms jx∆  and jy∆  are the length components of the edge j  in 

the x  and  directions, respectively. This flux term is summed over all m  y
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edges that form the outer boundary of control volume k and  is the 

control volume area. 

kA

 

 The four stage Runge-Kutta routines computes the dependent 

variables at the new time level 0t tU +∆  using the following sequence of 

relaxation steps, 

 
( ) 00 tU U=  

 

( ) ( ) ( )( )1 0 0
1 k

k

tU U R U
A

α ∆ ⎡ ⎤= − ⎣ ⎦  

 

( ) ( ) ( )( )2 0 1
2 k

k

tU U R U
A

α ∆ ⎡ ⎤= − ⎣ ⎦  

 

( ) ( ) ( )( )3 0 2
3 k

k

tU U R U
A

α ∆ ⎡ ⎤= − ⎣ ⎦  

 

( ) ( ) ( )( )4 0 3
4 k

k

tU U R U
A

α ∆ ⎡ ⎤= − ⎣ ⎦  

 
( ) ( )0 4t tU U+∆ =        (3.41) 

                                                                                          

where  is the time step and the coefficients used are t∆ 1 0.15α = , 

2 0.3275α = , 3 0.57α =  and 4 1.0α = . These weighting coefficients are 

available in literature and have been determined for structured upwind codes 

in Turkel et al. [37]. 
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3.4.2 Local Time Stepping 

 

Explicit time marching schemes such as the four-stage Runge-Kutta 

have an inherent limit on the rate at which they can advance in time. This is 

a direct result of the limited domain of influence prescribed by such 

schemes. The residuals that determine the flow characteristics at a point are 

functions of the local conditions at the previously determined time level . 

Disturbances can not therefore travel faster than one local node spacing 

between the two successive time steps. This limitation is known as the 

Courant-Friedrichs-Lewy (CFL) condition. For stability of the present 

scheme, CFL number must stay below 1.0 for every cell in the 

computational domain. 

0tU

  

3.4.3 Residual Smoothing 

 

The CFL number for the solver is limited by the Runge-Kutta time 

step method that is used. Residual smoothing can be used to increase the 

stability region for the method, allowing a higher CFL and faster 

convergence. The residual smoothing method enhances the support of the 

algorithm by providing each node with a residual correction based on an 

averaging procedure of the surrounding residuals [5]. The residual used in 

the convergence enhancement method is defined as; 

 

( ) ( ) ( ) ( )( )
1

n
new old new new

i i k i
k

R R R Rε
=

= + −∑     (3.42)                            

 

The above equation can be written in a more useful form as 
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1

1
n

new new old
i k

k

n R R Rε ε
=

+ − =∑     (3.43)                           

 



( )

( ) ( )

( )
1

1

n
old new

i k
new k

i

R R
R

n

ε

ε
=

+
=

+

∑
     (3.44)  

 

where ε  is suggested a value of 0.5 in Mavriplis and Jameson [6]. In the 

present study residual smoothing technique is applied for all the cells in the 

domain of the problem at every stage of the Runge-Kutta time cycle. A 

reduction of three orders of the magnitude of the density residuals is the 

convergence criteria for the present solver. 
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CHAPTER 4 

 

RESULTS 
 

 

The present code is tested for inviscid, viscous and turbulent flows 

over a wide range of Reynolds numbers and incident angles for single 

element airfoils. This chapter presents the results of eight test cases based 

on aerodynamic problems. Three test cases will be used to validate the 

developed two-dimensional Euler code. These test cases are subsonic lifting 

flow, transonic nonlifting flow and transonic lifting flow. Two laminar test 

cases are included that contain both separated and attached boundary layers. 

Three turbulent test cases are presented which provide a range of physically 

realistic conditions. The present solver will be tested for subsonic and 

transonic turbulent flows. The following table summarizes the details of 

each test cases.  

 

Table 4.1 Test case summary 

 

Test Cases Airfoil 
Free Stream 

Mach Number
Angle of 
Attack 

Reynolds 
Number Reference 

Case 1 NACA 0012 0.5 3.0º  [5] 
Case 2 NACA 0012 0.8 0.0º  [5], [38] 
Case 3 NACA 0012 0.8 1.25º  [5], [38], [42]
Case 4 NACA 0012 0.8 10.0º 500 [39] 
Case 5 NACA 0012 0.5 0.0º 5000 [39], [40] 
Case 6 NACA 0012 0.3 4.04º 61.86 10×  [41] 
Case 7 NACA 0012 0.753 1.95º 63.88 10×  [41] 
Case 8 NACA 0012 0.799 2.26º 69.00 10×  [43] 
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The present code is written by using Fortran programming language. 

Two dimensional unstructured grids are obtained by using Fastran software 

and data digitizer is used to get points from scanned images. The test cases 

are discussed in the following order. Two-dimensional Euler solutions are 

presented in Section 4.1 and two-dimensional Navier-Stokes solutions for 

laminar and turbulent flows are presented in Sections 4.2 and 4.3 

respectively.    

 

4.1 EULER SOLUTIONS 

 

4.1.1 Test Case 1 

 

The first test case for the two dimensional unstructured Euler solver 

is a subsonic lifting flow. The test case was performed by Jameson and 

Mavriplis [5]. Two dimensional Euler calculations are validated by 

computing the flow over the NACA 0012 airfoil. The free stream Mach 

number is 0.5 and the angle of attack is 3 degrees. The grid used for this 

simulation consists of 6990 nodes and 13678 cells as show in Figure 4.1. In 

order to validate the performance of the Euler solver the same grid will be 

used in test cases 2 and 3. The grid spacing at the leading edge is 0.0025 

and at the trailing edge is 0.003. The grids near the nose of the airfoil and 

the tail of the airfoil are shown in Figure 4.2 and Figure 4.3 respectively. 

There are 31 nodes on the far-field boundary and 271 nodes on the airfoil. 

The far-field boundary is located 10 chords out from the airfoil. For the 

present subcritical test case, plot of surface pressure distribution obtained by 

Jameson and Mavriplis [5] and calculated results of pressure coefficient  

are shown in Figure 4.4. Present results of  plot for upper and lower 

surfaces are the same as the ones obtained by Jameson and Mavriplis [5]. 

For the present test case a shock-free solution is obtained. There are no 

shock waves on the NACA 0012 airfoil.  

pC

pC

 49



Rapid convergence is achieved for the CFL value of 0.9 and a 

reduction of 3 orders of the magnitude of the density residuals is achieved in 

9690 time steps as shown in Figure 4.5. A reduction of the density residuals 

of 3.8 orders of magnitude is achieved for 16000 time steps and the present 

code is not converged anymore after 18000 time steps as shown in Figure 

4.5. Intel Pentium III 730 MHz computer with 128 MB RAM is used for the 

test case 1 and 10 iterations are achieved in 1 second.  
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Figure 4.1 Unstructured grid consists of 6990 nodes and 13678 cells 

 for the Euler solver  
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Figure 4.2 Close-up grid at the leading edge of the NACA 0012 
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Figure 4.3 Close-up grid at the trailing edge of the NACA 0012 
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Figure 4.4 Calculated surface pressure coefficients of subsonic lifting flow  
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Figure 4.5 Convergence history of subsonic lifting flow test case 
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4.1.2 Test Case 2 

 

The second test case is a transonic nonlifting flow. The present test 

case uses the same grid as in the previous one with a free stream Mach 

number of 0.8 at 0.0 degrees incidence. Plot of calculated surface pressure 

coefficient obtained by Jameson and Mavriplis [5] and the present solution 

of surface pressure coefficient  is given in Figure 4.6. The  plots are 

not the same as the ones obtained by Jameson and Mavriplis [5]. This is 

mainly because of the application of different numerical schemes. The 

shock location is approximately at 45% chord at the surface of the airfoil. 

The maximum pressure loss occurs at the down stream of the shock that can 

be seen in Figure 4.6. A reduction of the density residuals of 3 orders of 

magnitude is achieved for 4910 time steps as shown in Figure 4.7. For this 

case, the CFL value is equal to 0.9. A reduction of 3.3 orders of the 

magnitude of the density residuals is achieved for 6000 time steps and the 

convergence of present code is maintained constant after 6000 time steps as 

shown in Figure 4.7. Intel Pentium IV 2.4 GHz computer with 512 MB 

RAM is used for the test case 2 and 20 iterations are achieved in 1 second. 

Mach number contours obtained by Jameson and Yoon [38] are shown in 

Figure 4.8 for comparison. The calculated Mach number contours are shown 

in Figure 4.9. The shock location at the surface of the airfoil can be seen 

clearly in Figure 4.9. The contour levels are the same as the ones obtained 

by Jameson and Yoon [38]. 

pC pC

 53



/

C
p

0 0.25 0.5 0.75 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Present Computation Upper Surface
Present Computation Lower Surface
Jameson and Mavriplis

 
 

Figure 4.6 Calculated surface pressure coefficients of transonic 

nonlifting flow  
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Figure 4.7 Convergence history of transonic nonlifting flow test case 
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Figure 4.8 Calculated Mach number contours for transonic non lifting 

 test case (from [41]) 
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Figure 4.9 Calculated Mach number contours for transonic non lifting 

 test case (present solution) 

 

 55



 56

4.1.3 Test Case 3 

 

The last test case for the two dimensional unstructured Euler solver is 

a transonic lifting flow. The test case was found in references [5] and [38]. 

The free stream Mach number is 0.8 and the angle of attack is 1.25 degrees. 

The same grid is used as in the previous one for the present test case. Time 

stepping on all grids uses the same CFL number and identical residual 

averaging. The CFL number is set to 0.9. A reduction of 3 orders of the 

magnitude of the density residuals is achieved in 6180 time steps as shown 

in Figure 4.10 and the present code is not converged anymore after 9000 

time steps as shown in Figure 4.10. Intel Pentium IV 2.4 GHz computer 

with 512 MB RAM is used for the test case 3 and 20 iterations are achieved 

in 1 second. Plot of calculated surface pressure coefficient obtained by 

Jameson and Mavriplis [5] and the computed surface pressure coefficient 

plot is given in Figure 4.11. From the comparison of the surface pressure 

coefficient plots the strong upper surface shock is clearly visible and the 

small lower surface shock can be observed also. In addition, the pressure 

contour plot obtained by Pulliam [42] is presented in Figure 4.12. The 

present solution of pressure contours are given in Figure 4.13. The sharp 

upper surface shock is captured well and its location is approximately at 

60% chord at the upper surface of the airfoil.   
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Figure 4.10 Convergence history of transonic lifting flow test case 
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 Figure 4.11 Calculated surface pressure coefficients of transonic  

lifting flow 
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Figure 4.12 Calculated pressure contours for transonic lifting  

test case (from [42]) 

x

y

-0.5 0 0.5 1 1.5
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1
Press
1.04
1.00
0.96
0.91
0.87
0.83
0.79
0.74
0.70
0.66
0.61
0.57
0.53
0.49
0.44

 
Figure 4.13 Calculated pressure contours for transonic lifting  

test case (present solution) 
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4.2 LAMINAR NAVIER-STOKES SOLUTION 

 

4.2.1 Test Case 4 

 

In this test case, which is taken from Mavriplis and Jameson [39], the 

Mach number is 0.8, the angle of attack is 10 degrees and Reynolds number 

is 500 over a NACA 0012 airfoil. As the Reynolds number increases, the 

viscous regions generally become thinner over streamlined bodies and the 

gradients in the normal direction within these regions increase. Therefore, 

viscous effects can be observed in thin boundary layer and wake regions for 

high Reynolds number flows. This case was selected to observe the viscous 

effects clearly in thick boundary layers and well developed wake region. 

The grid employed for this test case is same as the previous one which is 

shown in Figure 4.1. It contains 6990 nodes and 13678 cells. There are 31 

nodes on the far-field boundary and 271 nodes on the airfoil. The far-field 

boundary is located 10 chords out from the airfoil. The grid spacing at the 

nose is 0.0025 and at the tail is 0.003. The grid near the airfoil surface is 

shown in Figure 4.14.  

 

The present laminar flow test case involves very low Reynolds 

number flows. For this case the flow is dominated by viscous effects. The 

calculated Mach number contours obtained by the Mavriplis and Jameson 

[42] are presented in Figure 4.15 and the Mach number contours of the 

present solver are given in Figure 4.16. The contour levels are the same as 

the ones obtained by Mavriplis and Jameson [39]. The separation of the 

boundary layer occurs on the top surface of the airfoil and the recirculation 

region after the separation of the boundary layer is also captured well at the 

downstream of the airfoil. In Figure 4.17, the trailing edge of the airfoil is 

zoomed in order to see the details of the recirculation region near the 

trailing edge of the airfoil.  



Rapid convergence is achieved for the CFL value of 0.9 and a 

reduction of 3 orders of the magnitude of the density residuals is achieved in 

5870 time steps as shown in Figure 4.18. A reduction of 3.3 orders of the 

magnitude of the density residuals is achieved for 10000 time steps and the 

convergence of present code is oscillated between 2.8 and 3.3 value of a 

reduction orders of the magnitude of the density residuals after 10000 time 

steps as shown in Figure 4.18. Intel Pentium IV 2.4 GHz computer with 512 

MB RAM is used for the test case 4 and 10 iterations are achieved in 2 

seconds. 
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Figure 4.14 Close-up grid around the NACA 0012 
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Figure 4.15 Calculated Mach number contours for laminar flow at  

Re = 500 (from [39]) 
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Figure 4.16 Calculated Mach number contours for laminar flow at  

Re = 500 (present solution) 
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Figure 4.17 Velocity vectors at the trailing edge for laminar flow at  

Re = 500  
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Figure 4.18 Convergence history of laminar flow at Re = 500  
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4.2.2  Test Case 5 

 

The next test case is again a laminar flow over NACA 0012 airfoil. 

The present test case uses the same grid as in the previous one with a free 

stream Mach number of 0.5 and Reynolds number of 5000 at 0.0 degrees 

incidence. For the present test case, viscous effects are not as strong as in 

the previous test case. The boundary layers are attached to the airfoil and 

they are fairly thin. Plot of calculated Mach number contours obtained by 

Crumpton et al. [40] is shown in Figure 4.19 and the present solution of 

Mach number contours is given in Figure 4.20. The contour levels are the 

same as the ones obtained by Crumpton et al. [40]. Thin boundary layer and 

wake regions can be seen clearly in Figure 4.20. Velocity vectors at the 

trailing edge obtained by Crumpton et al. [40] is presented in Figure 4.21 

and the velocity vectors of the present solver at the trailing edge is given in 

Figure 4.22. The velocity vectors at the trailing edge of the present solver 

and Crumpton et al. [40] are quite similar. The main feature of the solution 

is a recirculation region near the trailing edge. The recirculation region after 

the separation of the boundary layer is captured well and the back flow near 

the trailing edge can be seen clearly in Figure 4.22.  

 

Plot of surface pressure coefficient obtained by Mavriplis and 

Jameson [39] and the present solution of surface pressure coefficient  is 

given in Figure 4.23. The  plot is not same as the one obtained by 

Mavriplis and Jameson [39]. In the present solution separation point is 

caught at 89% chord of the airfoil in Figure 4.24. However, in the validation 

cases separation point starts at 80% chord of the airfoil. Since the separation 

point is caught at downstream of the validation cases there is pressure 

change is observed in the present study. 
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Figure 4.19 Calculated Mach number contours for laminar flow at  

Re = 5000 (from [40]) 
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Figure 4.20 Calculated Mach number contours for laminar flow at  

Re = 5000 (present solution) 
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Figure 4.21 Close-up of velocity vectors at the trailing edge (from[40]) 
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Figure 4.22 Close-up of velocity vectors at the trailing edge  

(present solution) 
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Figure 4.23 Calculated surface pressure coefficients for laminar flow 

at Re = 5000  

 

A reduction of the density residuals of 3 orders of magnitude is 

achieved in 9120 time steps as shown in Figure 4.25. For this case, the CFL 

value is equal to 0.9. A reduction of the density residuals of 3.8 orders of 

magnitude is achieved for 16000 time steps and the present code is not 

converged anymore after 16000 time steps as shown in Figure 4.25. Intel 

Pentium IV 2.4 GHz computer with 512 MB RAM is used for the test case 5 

and 10 iterations are achieved in 2 seconds.  
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Figure 4.24 Close-up of velocity vectors for separation point  

(present solution) 
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Figure 4.25 Convergence history of laminar flow at Re = 5000 
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4.3 TURBULENT NAVIER-STOKES SOLUTION 

 

4.3.1 Test Case 6 

 

The sixth test case is a turbulent test case. The flow conditions were 

a free stream Mach number of 0.3 . In the present test case, the Reynolds 

number is set at a value of 1.86  and an angle of attack of 4.04  degrees. 

In such realistic flows, the boundary layer surrounding the airfoil is 

expected to very thin relative to the previous test cases. The initial node 

spacing near the airfoil must be small. The mesh used for this test case and 

for the following test cases is presented in Figure 4.26. It contains 19040 

nodes and 37798 cells. There are 88 nodes on the far-field boundary and 194 

nodes on the airfoil. The far-field boundary is located 15 chords out from 

the airfoil. The grid around the airfoil is shown in Figure 4.27 
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Figure 4.26 Unstructured grid consists of 19040 nodes and 37798 cells for 

the turbulent Navier-Stokes solver 
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Figure 4.27 Close-up grid around the NACA 0012 

 

The computed pressure coefficient is compared with the experimental 

data which is found in AGARD Advisory Report no. 138 [41] in Figure 4.28. 

The present solution and the experimental data are almost identical. For the 

subsonic turbulent flow test case, solution of the present solver  is 

reasonable. 
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Figure 4.28 Calculated pressure coefficient distribution on NACA 0012 

airfoil for the turbulent subsonic test case 6 

 

A reduction of 3 orders of the magnitude of the density residuals is 

achieved in 20130 time steps as shown in Figure 4.34. The CFL number is 

set to 0.9 for this test case. A reduction of 3.5 orders of the magnitude of the 

density residuals is achieved for 30000 time steps and the convergence of 

present code is maintained constant after 30000 time steps as shown in 

Figure 4.29. Intel Pentium IV 2.4 GHz computer with 512 MB RAM is used 

for the test case 6 and 10 iterations are achieved in 7 seconds. 
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Figure 4.29 Convergence history of turbulent flow for the subsonic  

test case 6 

 

4.3.2 Test Case 7 

 

The next test case is again taken from the AGARD Advisory Report 

no. 138 [41]. The Mach number is increased to 0.753 and the angle of attack 

is 1.95 degrees. The Reynolds number is . The same grid is also 

used for the present test case. The Reynolds number is a reasonable number 

for a real airfoil in flight and as with the previous turbulent case, the thin 

boundary layer requires a small grid spacing near the airfoil wall. Figure 

4.30 shows the comparison of pressure coefficient along the airfoil surface 

obtained from the present solver and from the experimental data. One 

essential feature of the solution is a shock  wave located near the midpoint 

of the upper surface of the airfoil. The maximum pressure loss occurs in the 

boundary layer at the downstream of the shock as shown in Figure 4.30. In 

63.88 10×
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addition, the location of the shock wave is clearly evident in the 

experimental results by the sudden jump in pressure along the upper surface 

of the airfoil.  
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Figure 4.30 Calculated pressure coefficient distribution on  

NACA 0012 airfoil for the turbulent transonic test case 7 

 

Local time stepping is used to accelerate convergence. CFL number 

is taken as 0.9 until 3 orders of residual decrease to convergence with 14540 

time steps as shown in Figure 4.31. A reduction of 3.4 orders of the 

magnitude of the density residuals is achieved for 28000 time steps and the 

convergence of present code is oscillated between 3.2 and 3.4 value of a 

reduction orders of the magnitude of the density residuals after 36000 time 

steps as shown in Figure 4.31. Intel Pentium IV 2.4 GHz computer with 512 

MB RAM is used for the test case 7 and 10 iterations are achieved in 6 

seconds. 
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Figure 4.31 Convergence history of turbulent flow for the transonic  

test case 7 

 

4.3.3 Test Case 8 

 

In the last test case, which is a transonic test of the Spalart-Allmaras 

turbulence model over NACA 0012, the flow conditions used were a free 

stream Mach number of 0.799, an angle of attack of 2.26 degrees and 

Reynolds number  which is a reasonable number for a real airfoil in 

flight. The grid used for this simulation is same as the previous grid. Strong 

shock waves may cause complete boundary layer separation. Present 

turbulent Navier-Stokes solver is tested in a shock-boundary layer 

interaction. The same test case was performed by Holst [43]. Plots of 

surface pressure distribution obtained by Holst [43] and the present result of 

69.0 10×
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surface pressure coefficient  are given in Figure 4.32. The computed 

surface pressure coefficient is compared with the  plots of Holst [43]. 

The shock location is captured with a slight deviation in the present solution. 

The maximum pressure loss occurs in the boundary layer at the downstream 

of the shock. Clustering grid around 55% chord airfoil may overcome the 

deviation.  
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Figure 4.32 Calculated surface pressure coefficients for turbulent flow 

transonic test case 8  
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Convergence is achieved for the CFL value of 0.9 and a reduction of 

3 orders of the magnitude of the density residuals is achieved in 15400 time 

steps as shown in Figure 4.33. A reduction of 3.3 orders of the magnitude of 

the density residuals is achieved for 30000 time steps and the convergence 

of present code is maintained constant after 30000 time steps as shown in 

Figure 4.33. Intel Pentium IV 2.4 GHz computer with 512 MB RAM is used 

for the test case 8 and 10 iterations are achieved in 6 seconds. 

 

Number of Time Steps

Lo
g

(R
es

id
ua

ls
)

0 10000 20000 30000 40000 50000

-3

-2.5

-2

-1.5

-1

-0.5

0

 
 

Figure 4.33 Convergence history of turbulent flow for the transonic  

test case 8 
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CHAPTER 5 

 

 

DISCUSSION AND CONCLUSION 

 
5.1 SUMMARY AND DISCUSSION 

 
In this study, a two-dimensional Euler solver is developed to operate on 

inviscid flows and a two-dimensional Navier-Stokes solver is developed to 

operate on laminar flows and turbulent flows. Unstructured grids with a 

triangular element are used to define the computational domain. Four-stage 

Runge-Kutta method is applied as an explicit-time marching scheme. The time-

marching solver is accelerated by applying local time stepping procedure. 

Moreover, residual smoothing technique is used to accelerate the solver further. 

The finite volume formulation is cell-centered. For the calculation of the eddy 

viscosity terms at cell centers Spalart-Allmaras turbulence model is implemented 

to the Navier-Stokes solver.  

 

The developed solver is tested with eight different cases. Three test cases 

are used to validate the developed two-dimensional Euler code. These test cases 

are subsonic lifting flow, transonic nonlifting flow and transonic lifting flow. 

Two laminar flow test cases are used to validate the Navier-Stokes code. 

Laminar flow test cases are chosen especially for separated and attached 

boundary layers. Lastly, three test cases are used to test the implemented Spalart-

Allmaras turbulence model from accuracy point of view.  The results of these 

test cases are compared with the experimental data and the solutions from 

literature. With the results obtained from the Euler solver test cases, it can be 
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concluded that the present solver gives better results for subsonic flows. In 

transonic test cases the present solutions are reasonable. There are small 

deviations in surface pressure coefficient plots, which is thought to be mainly 

resulting from grid clustering and location of the far-field boundary. The results 

for the laminar flow test cases are in good agreement with other results in the 

literature. Separated and attached boundary layers are observed clearly. For the 

attached boundary layer results, deviation at the location of separation point is 

observed. Grid clustering can yield a better solution for this test case. The last 

test cases are the turbulent flow test cases. The results of developed solver are 

compared with the experimental data and the solutions from literature. For the 

subsonic turbulent test case the results are reasonable and match with the 

experimental ones. For the transonic test case a small deviation is observed from 

surface pressure coefficient plot about the location of the strong shock wave at 

the upper surface of the airfoil. The first order spatial accuracy can be improved 

to achieve better results for the transonic cases.    

 
5.2 FUTURE RECOMMENDATIONS 

 
The cell base data structured is used to store grid information. For the cell 

base data structured, the run times are obtained quite long. Cell face based data 

structure can be used to achieve convergence in short time. Moreover, a parallel-

computing technique can be applied to the developed solver. Lastly, using 

multigrid algorithm will speed up the convergence. They can increase the speed 

of the code greatly so that geometrically more complex and three-dimensional 

cases can be investigated easily. 

 
If the numerical scheme is changed to an implicit one, there will not be 

any stability problem. Therefore, using implicit scheme will eliminate the 

limitation of the maximum allowable CFL number. This will definitely improve 

the convergence rate of the solver. 
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Accurate results can be obtained if more suitable boundary conditions are 

applied to the developed solver. Smaller computational domains can be studied 

when the circulation correction techniques are used in the developed solver. 

Mesh refinement techniques can be used to optimise the solution. 

 

Finally, a two-equation turbulence model can be implemented to the 

present code in order to investigate the turbulence phenomenon better. Heat 

transfer equations can be also implemented to the code. Therefore, the problems 

with heat transfer can be studied also. 
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