
REINFORCEMENT LEARNING USING POTENTIAL FIELD FOR
ROLE ASSIGNMENT IN A MULTI-ROBOT TWO-TEAM GAME

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
 MIDDLE EAST TECHNICAL UNIVERSITY

BY

 ÖZGÜL FİDAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

THE DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

DECEMBER 2004

Approval of the Graduate School of Natural and Applied Sciences

 Prof . Dr. Canan Özgen

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

 Prof . Dr. İsmet Erkmen

 Head of Department

 This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

______________________ _____________________

 Prof . Dr. Aydan Erkmen Prof. Dr. İsmet Erkmen

 Co-Supervisor Supervisor

Examining Committee Members

Prof. Dr. Kemal Leblebicioğlu (METU, EE) ____________________

Prof. Dr. İsmet Erkmen (METU, EE) ____________________

Prof. Dr. Aydan Erkmen (METU, EE) ____________________

Assoc. Prof. Dr. Aydın Alatan (METU, EE) ____________________

Ass. Prof. Dr. İlhan Konukseven (METU, ME) ____________________

ii

PLAGIARISM

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

 Name, Last name: Özgül Fidan

 Signature:

iii

ABSTRACT

REINFORCEMENT LEARNING USING POTENTIAL FIELD
FOR ROLE ASSIGNMENT IN A MULTI-ROBOT TWO-TEAM

GAME

FİDAN, Özgül

MSc., Department of Electrical and Electronic Engineering

Supervisor: Prof. Dr. İsmet ERKMEN

Co-Supervisor: Prof. Dr. Aydan ERKMEN

December 2004, 75 pages

In this work, reinforcement learning algorithms are studied with the help of

potential field methods, using robosoccer simulators as test beds.

Reinforcement Learning (RL) is a framework for general problem solving where an

agent can learn through experience. The soccer game is selected as the problem

domain a way of experimenting multi-agent team behaviors because of its

popularity and complexity.

Keywords : multi agent systems, reinforcement learning, robosoccer, potential field

iv

ÖZ

ÇOKLU-ROBOTLU, İKİ-TAKIMLI BİR OYUNDA ROL

BELİRLEMEYİ POTANSİYEL ALANLAR KULLANARAK

YAPAN PEKİŞTİRMELİ ÖĞRENME

FİDAN, Özgül

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. İsmet ERKMEN

Ortak Tez Yöneticisi : Prof.Dr. Aydan ERKMEN

ARALIK 2004, 75 SAYFA

Bu çalışmada, robot futbolu simulatörleri test yatakları olarak kullanarak,

potansiyel alan metodunun yardımıyla pekiştirmeli öğrenme algoritmaları

araştırılmıştır.

Pekiştirmeli öğrenme (RL), elemanları tecrübe ile öğrendikleri genel problem

çözümü için bir çerçevedir. Çoklu eleman davranışlarını incelemek için popülerliği

ve karmaşıklığı sebebiyle robot futbolu seçildi

Anahtar Kelimeler : çoklu elemanlı sistemler, pekiştirmeli öğrenme, robot futbolu,

potansiyel alanlar

v

To My Parents

vi

ACKNOWLEDGEMENTS

I would like to express my gratitude to Prof. Dr. İsmet Erkmen and Prof. Dr. Aydan

Erkmen for their valuable supervision, understanding.

Words are inadequate to express my thanks to Kemal Kaplan for his wisdom,

patience, concern and technical supports in this study.

I am grateful to my family, especially to my sister, for their endless trust.

My special thanks go to Ali Osman Boyacı and to all other friends who gave me

love and hope throughout this study.

I would like to thank to Tansel Alpsel for his support and limitless understanding.

vii

TABLE OF CONTENTS

PLAGIARISM.. iii

ABSTRACT .. iv

ÖZ .. v

 To My Parents………………………………………………………………...vi

ACKNOWLEDGMENTS.. vii

TABLE OF CONTENTS……………………………………………………viii

CHAPTER

 1. INTRODUCTION………………………………………………………...1

1.1 PROBLEM STATEMENT... 1

1.2 MOTIVATION... 1

1.3 STATE OF THE ART.. 5

2. LITERATURE SURVEY………………………………………………..7

2.1 ROBOT SOCCER SYSTEMS ... 7

2.1.1 INTRODUCTION.. 7

2.1.2 TEAMBOTS .. 8

2.2 MULTI-AGENT SYSTEMS... 9

2.2.1 AGENT AND AUTONOMOUS AGENTS 9

2.2.2 LEARNING IN MULTI-AGENT SYSTEMS.................... 10

viii

2.2.3 MULTI-AGENT SYSTEM STRUCTURES...................... 11

2.2.4 MULTI-AGENT COOPERATION 12

2.3 POTENTIAL FIELDS.. 12

2.3.1 VECTOR FIELDS ... 13

2.4 REINFORCEMENT LEARNING ... 15

2.4.1 REINFORCEMENT LEARNING...................................... 15

2.4.2 REINFORCEMENT-LEARNING MODEL 18

2.4.3 EXPLORATION POLICIES .. 19

2.4.4 MARKOV DECISION PROCESSES 20

2.4.4.1 Value Iteration.. 21

2.4.4.2 Q-Learning ... 22

2.5 CEREBELLAR MODEL ARTICULATION CONTROLLER 23

2.6 FEEDBACK FROM THE OTHER STUDIES 24

3. PROPOSED METHOD... 29

3.1 SYSTEM REPRESENTATION... 29

3.2 ACTION REPRESENTATION ... 33

3.3 STATES REPRESENTATION.. 34

3.3.1 OUR POTENTIAL FIELD STUDIES............................... 35

3.3.2 MEMBER’S ZONE ... 39

3.3.3 BALL DIRECTION... 39

3.4 REWARD REPRESENTATION ... 39

4. EXPERIMENTS AND RESULTS……………………………………….41

4.1 STATE ASSIGNMENT... 44

4.1.1 POTENTIAL AND VECTOR FIELD FUNCTIONS 45

ix

4.1.2 POTENTIAL FIELD MAGNITUDE AND

QUANTIZATION .. 47

4.1.3 VECTOR FIELD ANGLE AND QUANTIZATION 49

4.1.4 MEMBER ZONE... 50

4.1.5 BALL DIRECTION... 51

4.2 ACTIONS... 51

4.3 TRAINING EXPERIMENTS and PERFORMANCE ANALYSIS 56

4.3.1 Training Experiments with Team GoToBall 57

4.3.1.1 Performance Analysis... 58

4.3.2 Training Experiments with Team BrianTeam.................... 60

4.3.2.1 Performance Analysis... 61

4.3.3 Training Experiments with AIKOHomo............................ 62

4.3.3.1 Performance Analysis...63

4.3.4 Training Experiments with New Team.............................. 64

4.3.4.1 Performance Analysis.. 65

5. CONCLUSIONS………………………………………………………….68

5.1 CONCLUSIVE REMARKS…………………………………………...68

5.2 FUTURE WORK………………………………………………………69

REFERENCES ... 70

 APPENDIX…………………………………………………………………….74

x

LIST OF FIGURES

Figure 2-1 Teambots Simulator ... 9

Figure 2-2 An Agent Interacting With Its Environment .. 10

Figure 2-3 An Attractive Potential Field, SeekGoal Behavior 14

Figure 2-4 A Reject Potential Field, AvoidObstacle Behavior.................................. 14

Figure 2-5 Potential Field Generated by An Attractor and An Obstacle 14

Figure 2-6 (a)Uniform, (b) Perpendicular Potential Field .. 15

Figure 2-7 (a)Tangential, (b) Random Potential Field.. 15

Figure 2-8 Reinforcement Learning Schema ... 16

Figure 2-9 A two input CMAC (table form).. 24

Figure 2-10 Contour plot example showing the kicking coordinate potential field .. 25

Figure 2-11 Potential field for determining the strategic position............................. 25

Figure 2-12 Bidding function for the primary attacker.. 26

Figure 2-13 Adaptive Q-Learning algorithm[22] ... 28

Figure 3-1 The agent-environment interaction .. 30

xi

Figure 3-2 Pmax Algorithm.. 31

Figure 3-3 Tabular Sarsa(λ) ... 33

Figure 3-4 Attractive and Impulsive Forces .. 35

Figure 3-5 Figure of Equation 3-2 where α =1, a = 1, b = 1, x0 = 0, y0 = 0.............. 36

Figure 3-6 Figure of Equation 3-2 where α =1, a = 0.8, b = 0.2, x0 = 0.8, y0 = -0.5 36

Figure 3-7 Figure of Potential Field and Vector Field of Ball Field 37

Figure 3-8 Figure of Potential Field and Vector Field of Teammate Field 37

Figure 3-9 Figure of Potential Field and Vector Field of Opponent Field . 38

Figure 4-1 Cooperative Sytem Architecture .. 43

Figure 4-2 Role Assignment and Learning Level Block Diagram 43

Figure 4-3 State Assignment Block Diagram .. 44

Figure 4-4TeamBots Simulation Program andPotential Field Shown Simultaneously

.. 45

Figure 4-5 GUI Representing Objects In Figure 4-5 .. 46

Figure 4-6Potential Fields SoccerField.. 47

Figure 4-7Vector Fields of Objects In Figure 3-5.. 47

Figure 4-8 Vector Field Calculation………………………………………………...47

Figure 4-9 Figure of Potentail Field of Soccer Field .. 50

xii

Figure 4-10 Ball direction .. 51

Figure 4-11 Algorithm of Actions ... 52

Figure 4-12 Potential Field and Vector Field of Wall ... 53

Figure 4-13 The resultant vector of Ball Field Vector 1 and Ball Field Vector 2 54

Figure 4-14 Goalie Field Vector .. 54

Figure 4-15 Defence Field Vector ... 55

Figure 4-16 Supporter Field Vector ... 56

Figure 4-17 Role Assignment of the new Team .. 57

Figure 4-18 Goals Scored by GotoBall and Our team before learning...................... 57

Figure 4-19 Goals Scored by GotoBall and Our team after learning......................... 58

Figure 4-20 a snapshot of the match against GoToball Team(the yellow ones)........ 59

Figure 4-21 Goals Scored by BrianTeam and Our team before learning 60

Figure 4-22 Goals Scored by BrianTeam and Our team after learning 61

Figure 4-23 Goals Scored by BrianTeam and Our team after training with GoToBall

.. 62

Figure 4-24 Goals Scored by AIKHomoG and Our team before learning 63

Figure 4-25 Goals Scored by AIKHomoG and Our team after learning 63

Figure 4-26 Goals Scored by NewTeam and Our team before learning.................... 64

xiii

Figure 4-27 Goals Scored by AIKHomoG and Our team after learning 65

Figure 4-28 A snapsnot from the match between New Team and our Team 66

Figure 4-29A snapsnot from the match between New Team and our Team 66

xiv

LIST OF ABBREVIATIONS

AI Artificial Intelligence

MAS Multi-Agent Systems

RL Reinforcement Learning

DAI Distributed Artificial Intelligence

ASM Action Selection Mechanism

MLP Multilayer Perception

VRML Virtual Reality Modelling Language

MDP Markov Decision Process

SAP State Action Pair

TD Temporal Difference Learning

TD(λ) Temporal Difference with Eligibility Traces

QL Q Learning

CMAC Cerebellar Model Articulation Controller

 xv

CHAPTER 1

INTRODUCTION

1.1 PROBLEM STATEMENT

We are interested in games played by two teams, consisted of agents, in dynamic

environments. Games have their own rules but mostly each has an aim to defeat the

other team, by gaining more scores. The environment consists of opponents,

teammates, a ball, the team goals, and physical or rule-based limitations. Opponents,

teammates and ball are dynamic components and cause the environment to change

continuously. So in a such competitive world the cooperation and coordination of

teams are of great importantce. To achieve accurate coordination the teams should

gather adequate information from the environment. The agent capabilities will effect

the team’s performance, but also building strategies and planning are important

issues for the success of the team. We aim at constructing a system that adapts its

strategy according to the changing game conditions. Our system should learn how to

play against different teams based on its experience, and its strategy should improve

according to the team he played against.

1.2 MOTIVATION

Many AI researchers are today striving to build agents for complex, dynamic multi-

agent domains. Such domains include virtual theatre (Hayes-Roth, Brownston, &

Gen 1995),realistic virtual training environments (e.g., for emergency drill(Pimental

 1

& Teixeira 1994) or combat (Tambe et al. 1995)), virtual interactive fiction(Bates,

Loyall, & Reilly 1992) and RoboCup robotic and virtual soccer(Kitano et al. 1995).

There is no generally accepted definition of agents in Artificial Intelligence (AI)

[Stone,2000], an agent as a robot which has goals, actions and domain knowledge,

situated in a environment. The ways it acts are called its behaviors.

An agent can be defined in the field of computer science, as a program, or piece of

program, that functions as an active entity in a computerized environment together

with other processes or programs.

Due to the distribution of control and reasoning,the multiagent systems (MAS)

approach in Artificial Intelligence (AI) is well-suited for solving problems in

complex domains, and this distribution enables agents to react to dynamic external

events as they collaborate to attain their long-term team goals.

 When a group of agents in a MAS share a common long-term goal, they can be said

to form a team [Stone, 2000]. Other agents in the environment that have goals

opposed to the team’s long-term goal are called the team’s adversaries.

Therefore in a research on collaborative team behavior of autonomous robots, the

following subtopics are involved:

1. Multiagent Machine Learning (ML) – the processes and approaches of the team to

learn their behaviors. In other words, to train the team to use the team strategies and

also develop new team strategies.

2. World Model (WM) Construction – Generation of the World Model which

contains the ball location, teammate location and orientation, opponent location and

the goal location on the soccer field. This information is shared among the team.

This is not an easy task as the game is real-time and all objects except the goal are

changing very fast.

3. Cooperation – Share information, role assignment and coordination of the team.

The team makes group decisions on team strategy and team members positions

 2

themselves on suitable location to perform the task based-on the team strategy. The

team’s strategy needs to be adaptive to the behavior of the opponent and to follow

plans made on or before the game.[8]

Cooperation involves multiple robots working towards a common goal. It is difficult

to implement meaningful robot operations in these environments due to the

constantly changing environment features making action-selection and action-

location highly transient.

[Vail & Veloso, 2003] used the shared potential fields to solve the role assignment

and coordination problem. The potential fields were based on the positions of the

other robots on the team and the ball. The robots positioned themselves on the field

by following the gradient to a minimum of the potential field. In principle, potential

functions can be applied to any multi-robot domain. Robots perform distributed task

allocation by calculating their suitability for a task and broadcast this suitability as a

bid to their teammates. The robot with the highest bid wins the task. If the winning

robot becomes unavailable some reasons, the robot with second highest bid wins the

task. They test the approach on non-adversarial games by taking away the opponents

and compare the average scoring time of a single robot, three robots with no

coordination and three robots with coordination. Three robots with coordination

scores most quickly and three robots without coordination perform the worst. They

also applied this approach in winning championship in RoboCup 2002, Sony Legged

League.

First, since complex environments with continuous states and actions have very large

search spaces, at the single agent level, the solution methodology must address the

problem of how to reduce these large search spaces. At the team level, it must

address the problem of how to enable autonomous agents to collaborate efficiently

and coherently.

The question then becomes: How can we build a multiagent system that can execute

high-level strategies in complex, dynamic, and uncertain domains? We may consider

three possible answers to this question. First, we can build a system that successively

 3

executes plans chosen from a static library. Second, we can build a system that can

learn its strategies from scratch. Third, we can describe the strategies symbolically at

an implementation-independent level and have the system learn how to implement

the necessary implementation-level details under varying conditions to be effective

in situated scenarios.

Implementation of a team of agents is a very complex task because the design

includes not only the actions of agents, but also the coordination of agents.

Reinforcement learning (RL) is a framework for general problem solving where an

agent can learn through experience.

Most work in the multiagent learning literature has treated the challenge of building

team-level strategies as a Reinforcement Learning (RL) problem. RL generates a

strategy that emerges from an incrementally modified sequential decision memory

over many training iterations. In complex domains, bottom-up learning techniques

require practical convergence to provide stable policies, and, by their nature, they do

not bound the search problem beyond rewarding every decision according to its

perceived value since they intend to discover policies. Moreover, they suffer from

the exponential growth of the search space as a factor of the size of the input vector.

Therefore, scaling bottom-up learning approaches to large search spaces is a very

difficult problem. On the other hand, we hypothesize that top-down approaches can

constrain the search space, resulting in a more effective method for learning in

multiagent systems.

A plan is initially a high-level specification for the implementation of a strategy, and

it is decomposed into an ordered list of steps each of which may require the

collaboration of multiple agents to implement its goal. A plan step, in turn, defines a

specific role for each collaborating agent. A role describes the necessary conditions

for executing and terminating the responsibilities of each given agent from that

agent’s local perspective of the world. Since the sequence of actions required for

each situation can vary, before any learning takes place, a plan step does not contain

any implementation-specific details about what actions each collaborating agent

 4

needs to take to perform its own task in that plan step. Therefore, at the outset, a plan

is only a high-level specification of a strategy whose implementation-level details

need to be acquired from experience in a situated environment. To acquire these

details, our approach uses learning.

Unlike systems that learn policies directly from experience in a bottom-up fashion,

our system does not learn plans or policies. By training with different teams , the

system acquires action knowledge that enables it to adapt its aim to specific

situations.

1.3 STATE OF THE ART

We describe a framework for controlling and coordinating a group of robots for

cooperative manipulation tasks. The framework enables a centralized approach to

planning and control. We construct a system which adapts its coordination system

according to the changing environment. We based our learning approach on the

idea of learning by that is, learning from practice, and we established the benefits of

our solution experimentally.

Our aim is to explore the possibility of learning multi-agent team coordination

through reinforcement learning using potential fields as the state variables taken

from the environment. Our system learns to assign correct roles to the appropriate

agents according to the information taken from environment.

As a testbed to demonstrate our methodology, we used the Teambots simulated

robotic soccer environment. The soccer game provides a very rich multi-agent

environment that is both dynamic, complex, and uncertain.

Agents in the Teambots simulated soccer environment are capable of only basic

actions which need to be sequenced in order to provide meaningful behavior.

Teambots is an open source simulator, written in Java. It provides an environment in

which we can test our team with opponents which have different capabilities.

 5

To implement our system and to demonstrate the learning capability of our

methodology, we manually implemented high-level individual skills based on the

basic behaviors

provided by the simulator. This hierarchical approach is akin to the layered learning

in [Stone and Veloso, 1999; Stone, 1998], which used machine learning techniques.

While constructing the state vector, potential field information are used as magnitude

and direction of vectors for each agent, and they are parametrically quantized.

Different from other studies,[20] we take the resultant potential vector that affects

on each agent to decrease the state vector dimension. To achieve this, we create our

potential field equations for each object in the environment, that give enough

information for our sytem coordination. In addition to the perceptual state variables,

the zones that our agents occupy and the direction of the ball in that time interval are

used as state variables.

Our thesis proposes a methodology for constructing a learning by doing solution to

complex multiagent problems in dynamic and unpredictable physical environments.

We used Sarsa(λ) as the learning algorithm, and tile coding property of CMAC as

function approximator.

With three opponent teams which have different capabilities, we train our team by

making 1000 matches. The first team is GoToBall Team which has the only ability to

follow the ball.The second team is BrianTeam which is stronger than GoToBall

Team and provides the basic soccer team capabilities. The third team is

AIKOHomoG which is the strongest of three, which has an high level coordination

system and whose agents are capable of abilities for good playing soccer.

 6

CHAPTER 2

LITERATURE SURVEY

The subjects, reinforcement learning, potential fields and multi agent systems, are

very popular in computer science. The robocup organizations provides us to find

many articles written about this subjects.

2.1 ROBOT SOCCER SYSTEMS

2.1.1 INTRODUCTION

The development of a multi-agent system amounts to searching for a method that

will implement an intelligent system composed of multiple agents, cooperating with

each other, with independent motion control. Multi-agent robotic systems are more

flexible and fault tolerant as several simple robot agents are easier to handle and

cheaper to build compared to a single powerful robot for different tasks.

The soccer game is different from other multi-agent systems, in that the robots of one

team have to cooperate, while facing competition from the opponent team. The

multi-agent control algorithm, in such an active environment, must comprise of low

level kinematics and dynamics, and high level strategies to avoid obstacles and to

compete with opponent robots. Such an environment needs fast processing

algorithms and suitable robot structure.

 7

From the standpoint of multi-agent systems, the soccer game is a good example of

the problems in real world, which can be moderately abstracted.

Multiple robot systems show better fault tolerance and are easier, cheaper and

flexible. The collective behavior of different agents deals with cooperative and/or

competitive behaviors. The robots have to cooperate with others to achieve specific

objectives. task allocation and decomposition are associated with collective

behavior. It also requires a form of communication for cooperation among different

robots. Learning can comprise of knowledge and skill acquisitions. Improving the

realtionship with environment through interaction, helps agents to adapt.

The real-time decision making problem and action selection mechanism (ASM) for

each agent given its role such as striker and goal-keeper in a robot soccer game can

be achieved using a multilayer perception (MLP) to learn human judgment for the

action selection.

In order for a robot team to actually perform a soccer game, various technologies

must be incorporated including: design principles of autonomous agents, multi-agent

collaboration, strategy acquisition, real-time reasoning, robotics, and sensor-fusion.

2.1.2 TEAMBOTS

Teambots is a JAVA based simulator for multi-robot teams developed by Tucker

Balch. It has different applications as well as robot-soccer simulator. The control

applications of agents are also implemented in JAVA, however the simulator uses a

description file for modelling the world. The simulator calls two functions from the

strategy class, which extends abstractrobot.ControlSystemSS class. The first function

Configure is called at the beginning of simulation. The other function, TakeStep, is

called repeatedly by the simulation kernel to allow the programmer to read sensors

and select actions. Unlike the previous simulators, there is no central controller. The

environment is completely distributed.

 8

Figure 2-1 Teambots Simulator

2.2 MULTI-AGENT SYSTEMS

One of the most challenging goals in artificial intelligence (AI) is the development of

artificial intelligent autonomous agents with human-level performance. The past few

years has witnessed a tremendous interest in research and discussions on intelligent

agents. With the ever increasing number of robots in an industrial environment,

scientists and technologies are often faced with issues on cooperation and

coordination among different robots and their self governance in a common work-

space. This has led to developments in multi-robot cooperative autonomous systems.

With an aim to study issues such as group architecture, resource conflict, origin of

cooperation, learning and geometric problems, groups of robots are constructed. [1]

2.2.1 AGENT AND AUTONOMOUS AGENTS

We define the term agent as just about anything that can perceive its environment

through sensors and can act through actuators. Humans, animals are good examples

for agents and also robots and certain communicating software programs (“softbots”)

are accepted as agents. In the field of computer science the term agent refers to a

program, or piece of program, that functions as an active entity in a computerized

environment together with other processes or programs. [2]

 9

An agent is called autonomous if it operates completely autonomously, that is, if it

decides itself how to relate its sensory data to motor commands in such a way that its

goals are attended to successfully.

For an agent to be autonomous it has to reason about its environment before acting

upon it. Figure 2-1 shows a diagram of an autonomous robot and its environment.

SENSOR

 AGENT ENVIRONMENT

ACTUATOR

Figure 2-2 An Agent Interacting With Its Environment

2.2.2 LEARNING IN MULTI-AGENT SYSTEMS

A system can learn problem decomposition by acquiring instances from a human

operator and by generalizing on them. Learning from experience can help an agent to

reduce the need for negotiations or make it more directed, avoiding harmful

interactions. An agent can learn other agents’ intentions and beliefs as well as the

characterization of the task environment. The modelling of another agent’s goals and

beliefs will enhance its ability to reason about other agents and improve its ability to

coordinate its own activities. It helps to reconsile the conflicting intentions within

and/or between agents. Adaptive agents are those which change their behaviors in

uncertain and dynamical environments. To cope with such situations, an agent must

be self-adaptive, self learning, and should have the capabilities to face real situations

through cooperative behaviors with other agents, as well as, be capable of perceiving

environmental changes. The knowledge and intelligence can not be programmed as

such in the beginning, however it can be acquired from real environments and

 10

through reactive behaviors with other agents [1]. Reinforcement learning [3, 4] and

classifier systems [5] have laid the basis for learning in multi-agent systems.

2.2.3 MULTI-AGENT SYSTEM STRUCTURES

The agents in a multi-agent scenario, may have homogeneous or heterogeneous

structures. In a homogeneous MAS, all of the agents have identical structure (goals,

domain knowledge, and set of actions). They may differ by way of their sensor input

and effector output. In a heterogeneous situation, agents can have different

goals,domain knowledge and actions. The agents in such a system may be friendly (

benevolent) or may be inhibiting each other (competitive).

The two general types of designs seen among the multi-agent system structures are

the hierarchical and behavior structures. They differ on the type of information they

process and in their interconnections [6]. In a hierarchical structure, the control issue

is divided along functional lines into progressive levels of abstraction of data. It uses

computational functions for system decomposition. Processes handling data deal

with different information content and hence such a system sequences data from a

perception process, to a decision-making process, through a series of action

processes to the actuators. In the case of the behavior structure, the control problem

is broken into behaviors without any central intelligent agent present. Through

interaction between the competing constituents, emergent behaviors result. Each

behavior is nothing but a compound module carrying out the main control

computatinal function. These systems require action arbitration mechanisms, as

differeent actions arise from different behaviors.

Compared with the previous research focus on the management of information

among agents, the recent developments centers around the behavior management in

an intelligent system. Hybrid control structures [7], a combination of hierarchical and

behavior structures, can take the strengths from either of the structures and can get

away with the drawbacks associated with both.

 11

2.2.4 MULTI-AGENT COOPERATION

Cooperation among agents can be explicit or implicit. In case of the explicit

information exchange, the agents perform actions to benefit other agents. However,

in the implicit case, agents carry on with their own goal-seeking process and these

actions will be beneficial to others. Information exchange through communication is

an effective way for interaction among the agents. Through communication an agent

can get a global view of the problem at hand, helping to take appropriate local

decisions with a global view point.

Communication among agents opens a multitude of issues in the MAS scenario.

Pasing wrong information to misguide another agent, decision to stop

communication by a single or a group of agents, the degree of sharing information,

etc., are issues to be examined in greater detail.

2.3 POTENTIAL FIELDS

When you think of potential fields, picture in your mind either a charged particle

navigating through a magnetic field or a marble rolling down the hill. The basic idea

is that behavior exhibited by the particle/marble will depend on the combination of

the shape of the field/hill. Unlike fields/hills where the topology is externally

specified by environmental conditions, the topology of the potential fields that a

robot experiences are determinded by the designer. More specifically, the designer

(a) creates multiple behaviors, each assigned a particular task or function, (b)

represents each of these behaviors as a potential field, and (c) combines all of the

behaviors to produce the robot’s motion by combining the potential fields.

[Appendix]

The potential field approach has been first proposed by Khatib[9] as an on-line

collision avoidance approach. According to this, the robot moves in a field of forces,

it senses its environment during motion execution and should be attracted toward its

goal (attractive potential field) while being repulsed by obstacles (repulsive potential

fields).[10]

 12

They have a low computational overhead in comparison to higher level approaches

such as path planning, they require simple, local knowledge about the environment;

and because they do not require simple, local knowledge about the environment; and,

because they do not require simple, local knowledge about the environment; and,

because they do not require computationally expensive repair, such as replanning,

when the environment changes, they are robust in dynamic situations. On the other

hand, potential fields have a tendency to guide robots to local rather than global

minima. However, in highly dynamic environments such as soccer, this is not a

major problem as the world quickly changes and jogs the robot from the local

minimum. [11]

In addition to static obstacle avoidance, potential fields may also be used for multi-

agent formations and coordination. In [12],[13], Balch et al describe how robots can

form and maintain formations using only local information to calculate potential

fields. They name their approach “social potentials” because the potential functions

are calculated using the distances between teammates. In [14][15], potential fields

are used to position robots for particular roles.The potentials encode heuristic

information about the environment. This information takes the form of attractive

potentials that guide robots to desirable areas of the field. [11]

2.3.1 VECTOR FIELDS

The vector field model aims to associate with each point a vector indicating which

direction the robot should head while it passes through that point. The collection of

vectors at each point in a two dimensional field is called a potential field because it

represents the syntetic energy potentials that the robot will follow.

A goal seeking schema (Figure 2) sets up an attractive field of vectors oriented

towards the goal. On the other hand an obstacle-avoidance schema (Figure 3)

associates with each obstacle a repulsive field. A row of obstacles, such as a wall, are

combined to create a vector field, which would tend to move an object towards either

end of the wall. For each of these types of fields,the strength of the vectors decreased

 13

with the distance from the object creating the field. The schemas are then combined

by summing their associated vector fields. [16]

Some types of potential fields are shown below:

Figure 2-3 An Attractive Potential Field, SeekGoal Behavior

Figure 2-4 A Reject Potential Field, AvoidObstacle Behavior

Figure 2-5 Potential Field Generated by An Attractor and An Obstacle

 14

Figure 2-6 (a)Uniform, (b) Perpendicular Potential Field

Figure 2-7 (a)Tangential, (b) Random Potential Field

Two types of methods for generation of potential fields are shown in Appendix1.

2.4 REINFORCEMENT LEARNING

2.4.1 REINFORCEMENT LEARNING

Reinforcement learning (RL) is a generic name given to a family of techniques in

which an agent tries to learn a task by directly interacting with the environment. The

method has its roots in the study of animal behavior under the influence of external

stimuli. The agent’s duty is to find a way, mapping states to actions. Figure 2-3

shows the agent’s learning cycle during the interaction with the environment.

Reinforcement learning is the problem faced by an agent that learns behavior

through trial-and-error interactions with a dynamic environment.

 15

Figure 2-8 Reinforcement Learning Schema

There are two main strategies for solving reinforcement-learning problemS. The first

is to search in the space of behaviors in order to find one that performs well in the

environment. This approach has been taken by work in genetic algorithms and

genetic programming, as well as some more novel search techniques (Schmidhuber,

1996). The second is to use statistical techniques and dynamic programming

methods to estimate the utility of taking actions in states of the world.

Reinforcement learning differs from the more widely studied problem of supervised

learning in several ways. The most important difference is that there is no

presentation of input/output pairs. Instead, after choosing an action the agent is told

the immediate reward and the subsequent state, but is not told which action would

have been in its best long-term interests. It is necessary for the agent to gather useful

experience about the possible system states, actions, transitions and rewards actively

to act optimally. Supervised learning can be achieved by numeric methods such as

NN or by deliberate planning where the supervisor supplies relevant information

about the environment to the agent. Most of these algorithms need representation or

model of the world namely the predefined knowledge of the world. Modeling of the

world is not possible or feasible for most of the complex real world probleme. RL

methods are generally independent of the environment that the agent experiences.

RL methodology is based on agent’s interactions with the environment. Another

difference from supervised learning is that on-line performance is important: the

evaluation of the system is often concurrent with learning. Online performance of a

RL algorithm is very important with respect to other supervised learning techniques.

Generally for real world and simulated environments the agent should perform its

actions in limited amount of time.

 16

For real world tasks, world models are not available a priori, they have to be

developed first. For most complex problems a complete model is not even needed,

since it is unlikely that the agent (policy) will traverse all states – the agent’s

subjective world is only an approximation of the objective world. RL provides us a

framework for training an agent by exploring an environment and learning from the

outcomes of such trials [17]. In RL problems, an agent receives input from the

environment, selects and executes an action, and receives reward which tells how

good its last action was. The goal of the agent for each state is to select the action

which leads to the largest future discounted cumulative rewards which is the

definition of the learning task itself [18]. To solve this problem RL defines two

parameters as state value and Q-value. Q-value is the average estimated gain by

taking a specific action in a specific state. The state value is the best action’s Q-

value. This recursive definition is the underlying idea behind the RL methods.

Calculation of these values may vary among definitions and implementations of

algorithms but the fundamental idea is the same.

 In the last two decades, RL has been extensively studied in artificial intelligence.

The field of single-agent RL is nowadays mature, with well-understood theoretical

results and many practical techniques (Suttonand Barto, 1998).

On the contrary, the field of multiagent reinforcement learning in which many agents

are simultaneously learning by interacting with the environment and with each other,

is less mature. The main reason is that many theoretical results for single-agent RL

do not directly apply in the case of multiple agents. There are also computational

issues like the difficulty of dealing with exponentially large state/action spaces, and

the intractability of several distributed decision making algorithms (Bernstein et al.,

2000).

Recent efforts involve linking multiagent RL with game-theoretic models of

learning, with promising results (Claus and Boutilier, 1998; Wang and Sandholm,

2003).

 17

2.4.2 REINFORCEMENT-LEARNING MODEL

In the standard reinforcement-learning model, an agent is connected to its

environment via perception and action. On each step of interaction the agent receives

as input, i, some indication of the current state, s, of the environment; the agent

chooses an action, a, to generate as output. The action changes the state of the

environment, and the value of this state transition is communicated to the agent

through a scalar reinforcement signal, r. The agent’s behavior, B, should choose

actions that thend to increase the long-run sum of values of the reinforcement signal.

Formally, the model consists of

• a discrete set of environment states, S;

• a discrete set of agent actions, A; and

• a set of scalar reinforcement signals; typically {0,1}, or the real numbers.

The figure also includes an input function I, which determines how the agent views

the environment state.

An intuitive way to understand the relation between the agent and its environment is

with the following example dialogue.

 Environment: You are in state 65. You have 4 possible actions.
Agent: I’ll take action 2.

 Environment: You received a reinforcement of 7 units. You are now in
state 15.

 Agent: I’ll take action 1.

 Environment: You received a reinforcement of -4 units. You are now in
state 65. You have 4 possible actions.

 Agent: I’ll take action 2.

 Environment: You received a reinforcement of 5 units. You are now in
state 44. You have 5 possible actions.

 . .

 . .

 . .

 18

The agent’s job is to find a policy π, mapping states to actions, that maximizes some

long-run measure of reinforcement. In general, we expect that the environment will

be non-deterministic; that is, that taking the same action in the same state on two

different occasions may result in different next states and/or different values.

Some aspects of reinforcement learning are closely related to search and planning

issues in artificial intelligence. AI search algorithms generate a satisfactory trajectory

through a graph of states. Planning operates in similar manner, but typically within a

construct with more complexity than agraph, in which satates are represented by

compositions of logical expressions instead of atomic symbols. These AI algorithms

are less general than the reinforcement-learning methods, in that they require a

predefined model of state transitions, and with a few exceptions assume

determinism. On the other hand, reinforcement learning, at least in the kind of

discrete cases for which theory has been developed, assumes that the entire state

space can be enumerated and stored in memory – an assumption to which

conventional search algorithms are not tied. [19]

2.4.3 EXPLORATION POLICIES

An important issue in multiagent RL is how an agent chooses his exploration policy.

One major difference between reinforcement learning and supervised learning is that

a reinforcement-learner must explicitly explore its environment. If all observed

rewards are exactly equal, a simple method is to select a joint action in state s

according to a Boltzmann distribution over joint actions using the current Q(i)(s, a)

(which will be the same for all agents). Each agent can sample a joint action from

this distribution by using the same random number generator (and same seed). This

ensures that all agents will sample the same exploration action a. Then each agent

can select his action ai as the component i of the selected a.

Q-learning with an exploration policy like the above and common knowledge

assumptions about parameters like the random number generator and seed, implies in

effect that each agent runs Q-learning over joint actions identically and in parallel.

 19

This guarantees the convergence of the algorithm, under conditions similar to those

in single-agent Q-learning. Equivalently, if a transition model is available, value

iteration can also be performed by each agent identically. In this way, the whole

multiagent system is effectively treated as a `big' single agent, and the learning

algorithm is simply reproduced by each agent.

2.4.4 MARKOV DECISION PROCESSES

Problems with delayed reinforcement are well modeled as Markov decision

processes MDPs). An MDP consists of

• a set of states S,

• a set of actions A,

• a reward function R : S × A → R, and

• a state transition function T : S × A → Π(S), where a member of Π (S) is a

probability distribution over the set S (i.e. it maps states to probabilities). We

write T(s, a, s') for the probability of making a transition from state s to state

s' using action a.

The state transition function probabilistically specifies the next state of the

environment as a function of its current state and the agent's action. The reward

function specifies expected instantaneous reward as a function of the current state

and action. The model is Markov if the state transitions are independent of any

previous environment states or agent actions.[19]

In this section we address the single-agent case. In an MDP we assume that in each

state st at time t the agent receives from the environment an immediate reward or

reinforcement R(st) Є IR. The task of the agent is to maximize its total discounted

future reward R(st) + γR(st+1) + γ2R(st+2) + _ _ _ , where γ Є [0, 1] is a discount rate

that ensures that even with infinite sequences the sum is finite. Clearly, the

discounted future reward will depend on the particular policy of the agent, because

different policies result in different paths in the state space.

 20

Given the above, the optimal utility of a state s for a particular agent can be defined

as the maximum discounted future reward this agent can receive in state s by

following some policy:



















=
∞

=
= ss

t
tsRtE(s)U 0,)|∑

0
(max* πγ

π
(Eqn 2-1)

where the expectation operator E[.] averages over rewards and stochastic transitions.

Similarly, we can define an optimal action value Q*(s, a) as the maximum

discounted future reward the agent can receive after taking action a in state s. A

policy π*(s) that maximizes the above expression is optimal policy. We should note

that there can be many optimal policies in a given task, but they all share a unique

U*(s) and Q*(s, a).

 ∑+=
'

)'(*),|'(max)(*
s

sUassP
a

sR(s)U γ
(Eqn. 2-2)

This is called the Bellman equation, and the solutions of this set of equations (one

for each state) define the optimal utility of each state. A similar recursive definition

holds for action values:

 ∑+=
'

)','(*max
'

),|'()(,*
s

asU
a

assPsRa)(sQ γ
(Eqn. 2-3)

2.4.4.1 Value Iteration

A simple and effcient method for computing optimal utilities in an MDP when the

transition model is available is value iteration. We start with random utility values

 21

U(s) for each state and then iteratively apply (Eqn 2.2) turned into an assignment

operation:

 ∑+=
'

)'(),|'(max)(:
s

sUassP
a

sRU(s) γ
(Eqn. 2-4)

It is repeated until convergence which is measured in relative increase in U(s)

between two successive update steps. Value iteration converges to the optimal U*(s)

for each state.

2.4.4.2 Q-Learning

One of the disadvantages of value iteration is that it assumes knowledge of the

transition model P(s´|s, a). However, in many applications the transition model is

unavailable, and we would like to have a learning method that does not require a

model. Q-learning is such a model-free method in which an agent repeatedly

interacts with the environment and tries to estimate the optimal Q*(s, a) by trial-and-

error. In particular, the agent starts with random estimates Q(s, a) for each state-

action pair, and then begins exploring the environment. During exploration it

receives tuples in the form (s, R, a, s´) where s is the current state, R is the current

reward,a is an action taken in state s, and s´ is the resulting state after executing a.

From each tuple, the agent updates its action value estimates as :

 



 ++−=)','(max),()1(:,

'
asQRasQa)Q(s

a
γλλ (Eqn. 2-5)

where λ Є (0, 1) is a learning rate that controls convergence. Note that the

maximization in (Eqn 2.5) is over all actions a´ from the resulting state s´.

If all state-action pairs are visited infinitely often and λ decreases slowly with time,

Q-learning can been shown to converge to the optimal Q*(s, a). Moreover, this holds

irrespective of the particular exploration policy by which the agent selects its actions

 22

 above. A common choice is the so-called є-greedy policy by which in state s the

agent selects a random action with probability є, and action a = arg maxa´Q(s; a´)

with probability 1- є, where є < 1 is a small number. Alternatively, the agent can

choose exploration action a in state s according to a Boltzmann distribution

 ∑
=

)/)',(exp(
)/),(exp()|(

' τ
τ

asQ
asQsap

a
 (Eqn. 2-6)

where τ controls the smoothness of the distribution (and thus the randomness of the

choice), and is decreasing with time.

2.5 CEREBELLAR MODEL ARTICULATION CONTROLLER

Cereballar Model Articulation Controller (CMAC) was first described by Albus in

1975 as a simple model of the cortex of the cerebellum. [2] It is a biologically

insprired learning method like neural networks and is generally used as a function

approximator and state generalizer in RL problems.

[3] present a novel combination of CMACs and world models. CMACs use filters

mapping sensor based inputs to a set of activated cells. Each filter partitions the input

space into sub-sections in a prewired way such that each (possibly multi-

dimensional) subsection is represented by exactly one discrete cell of the filter. For

game playing, a filter may represent different but similar positions and the activated

cell may represent the presence of a particular position. In a RL context each cell has

a Q-value for each action. The Q-values of currently active cells are averaged to

compute the overall Q-values required for action selection.

In principle filters may yield arbitrary divisions of the input space, such as

hypercubes. To avoid the curse of dimensionality one may use hashing to group a

random set of inputs into a equilanve class.

 23

Figure 2-9 A two input CMAC (table form)

In Figure 2-9, there are 15 input quantization steps between [0, 1]. Any value

between [0, 1] is mapped to an integer value between [0, 15]. The indexes (q1, q2)

are used to look up weights in na two-dimensional lookup tables (na = 5 is the

number of association neurons activated for any input). The number of AUs

(association units shown in Figure 2-9) determines the generalization of a CMAC.

The AU tables store one weight value in each cell, and cells are displaced along each

axis by some constant. With this displacement every AU table in association layer

gains ability to activate different neurons with respect each other. [20]

2.6 FEEDBACK FROM THE OTHER STUDIES

Ashley Tews and his team RoboRoos is a good example for potential field planner.

Their system is based on the superposition of potential fields. In the paper [26], they

are concentrated on multi-robot cooperation with potential fields. The planner which

is centralised controller, examines the state of the game from the robot’s perspective

 24

and makes decisions as to that robot’s next action and uses the potential fields to

determine locations for the robots to carry out those actions.

Figure 2-10 Contour plot example showing the kicking coordinate potential field

CS Freiburg [15] also used potential fields for the evaluation of the roles.

Distinguishing between different areas of responsibility, 4 roles are created:

• Active: which is in charge of dealing with the ball

• Strategic: which is in charge of securin the defense

• Support: which is in charge of supporting the team members in different

areas considering the team situation, offense or defence.

• Goalkeeper: which is in charge of securing its goal.

Figure 2-11 Potential field for determining the strategic position

Role distribution is similar to our study but we are not interested in which situation

the tam is in.

 25

The team members finds the most appropriate positions for each 3 role, active,

strategic, support by using potential fields. After a field player has determined the

best active, strategic, and support poses from its perspective, it estimates utilities for

each role, which are based on the role itself and on an approximation of the time it

would take the player to reach the corresponding preferred pose. The utility for a

preferred pose p is calculated from the following constituents.

• Distance to the target position

• Angle necessary for the robot to turn toward the preferred position

• Objects between the player and the target position

• Angle necessary to turn the robot at the preferred position into the orientation

of the preferred pose.

The total utility for the preferred pose p is computed as the the weighted sum of all

criteria.

In order to decide which role to take, a player sends the utilities estimated for each

role to its teammates and compares them with the received ones. Each player

objective is to tale a role so that the sum of the utilities of all players is maximized.

RoboRoos and CS Freiburg find the best location to shoot, to defense and to

suppport in the field using potential fields. They calculate every effecting potential

field for every point in the field.

A similar study with CS Freiburg can be seen in [11]. It shows how heuristic bidding

functions that use globally shared information may be used to determine which robot

is the most suitable role for each task and it also describes how obstacle avoidance

may be combined with coordination through the use of artificial potential fields.

Figure 2-12 Bidding function for the primary attacker

 26

The ClockWorkOrange[21] also uses utility functions for selecting the most

appropriate role. Besides coordinating the team as a whole the Team skills module

has a secomd task: selecting the next action for a robot which will benefit the team as

a whole the most. In the paper, action selection can be defined as the problem of

finding an optimal policy for mapping an agent’s internal state to an action. Optimal

is defined as maximizing a certain optimality criterion. Markov Decision Process is

used in action selection algorithm.

In multi-agent Markov Decision Process, there are S states, N agent and A actions.

The reward function R(s) determines receiving rewards of team of agents in state S.

Each agent should choose its action to maximize the expected reward.

The policy is summarized in the paper as following:

Simulate each of the actions in set A on the current world state, evaluate the reward

of the resulting world state, estimate the probability each action will succeed and

calculate the utility of each action. The utility is the product of the reward and the

probability of success. For each resulting world state we can repeat this process,

updating the utility of the end state by multiplying the probabilities of success of the

actions in the sequence leading to this end state with the reward of the end state. [4]

Hwang [22] uses Q-Learning for its cooperative strategy architecture. Temporal-

difference has some advantages for solving reinforcement learning problems. TD

does not require a model of the environment, of its reward and of next-state

probability distributions and TD updates the estimate value just only waiting one

time step, that is, it can learn without final outcome. Since accelerating the

convergence rate and avoiding to a local optimum problems occured he develos its

Adaptive Q-Learning algorithm The algorithm regulates the three parameters:

• learning rate

• discount rate

• temperature T in Boltzmann distribution

dynamically.

 27

Figure 2-13 Adaptive Q-Learning algorithm[22]

Q-Learning causes a lot of researchers to study on that subject because of its

approprateness to dynamic, complex and model free systems.

Q(λ) Learning is selected because of the eligibility traces utility. Tatlıdede [20] used

Q(λ) Learning in his research. The state includes the relative distances between each

player and the distances between each player and ball. So it has a big state space. Its

system is a distributed sytem and each player decides its own action according to the

state it senses. Different from him we used the oppurtunity of potential fileds and

decrease the dimensionality of positional state variables, and can add more

distinguishing variables like ball direction. Tatlıdede selects the basic actions like

shoot, move, dribble as its action set, but we prefer to use roles like attack, defense

and support.

Wiering,[3] Stone[4][23] are the ones which used CMAC as function approximater

in their Reinforcement Learning Level.

 28

CHAPTER 3

PROPOSED METHOD

3.1 SYSTEM REPRESENTATION

Soccer is a complex game where a team has to meet several requirements at the same

time.The ball control is a hard and complex task, therefore it requires real talent and

that is why the social community rewards soccer players. A good cooperative system

includes dynamic role switching, good robot behaviors and formations.

Our system is acentralized system that learns to assign appropriate roles to the

teammates according to the dynamically changing conditions. The environment is

not under the control of any team, since you can not control your opponents. In most

of the soccer matches the teams are aware of their opponent’s strategies. So the

experiences learnt while playing are extremely important.

We proposed a self-learning cooperative strategy for a robot soccer game. We select

reinforcement learning because it suggests an unsupervised learning through trial and

error. The sytem is free to try actions in its action set in real or simulated

environment and receives rewards for all of its actions. The system’s goal is to

choose actions so as to maximize the expected sum of rewards over some time

horizon.

 29

 r t+1

 s t+1

 SYSTEM

 ENVIRONMENT

t
 t

 Figure 3-1 The agent-environment interaction

The soccer game environment is so dynamic that it is hard to track the fas

environment. The sensing system should be powerful, the decision system

fast and adaptive. To model the environment is hard, the system should lea

do with the rewards and punishments it takes. Since the goal of the teams

the matches by scoring more goals to the opponent goal, the rewards are th

the opponent’s goal and the punishments are the scores at the home goal.

Since TD methods can learn directly from raw experience without a mo

environment’s dynamics and update estimates based in part on oth

estimates, without waiting for a final outcome[24] we decide to use th

learning level.

Learning an action-value function rather than a state-value function is mor

in our role assignment system. The aim is to select the most valuable act

condition the system senses, so Q(s, a) values are used.

 Q [),(),(),(),(111 ttttttttt asQasQrasQas]−++= +++ γα (Eq

where α is the learning rate and γ is the discount rate.

This update is done after every transition from a nonterminal state st.

It is straightforward to design an on-policy control algorithm based on

prediction method. As in all on-policy methods, we continually estimate

 30

action a

reward r
state st
t changing

 should be

rn what to

 is to gain

e scores at

del of the

er learned

em in our

e effective

ion for the

n 3-1)

 the Sarsa

Qπ for the

behavior policy π, and at the same time change π toward greediness with respect to

Qπ . [24]

We select Max-random exploration rule which selects the greedy action with

probability Pmax and selects a random action.

1. Generate a number ran from the uniform distribution [0, 1]

2. if ran ≤ Pmax

2.1 select action with highest Q-value

 2.2 Else select random action a { }nAAA ,........, 21∈

Figure 3-2 Pmax Algorithm

The important issues in Q-learning is the problem of how to accelerate the

convergence rate and how to avoid converging to a local optimum. In order to solve

these issues, three parameters that can affect the performance of Sarsa-learning,

which are learning rate, discount rate and exploration rate, are left variable since

fixing the three parameters is not suitable for learning systems because systems will

easily converge to a local optimum.

Regulating the three parameters dynamically is thus important.

For exploration purposes, it is efficient if the learning rate is taken a large value and

the discount rate small in the initial stage of learning in order to ensure that systems

can have more opportunities to search unknown knowledge.

During the learning phase Pmax is increased steadily to decrease exploration rate. At

the very beginning , the agent explores many actions in a given state.

We train our team during matches, each match is a trial or an episode as defined in

Figure 3-3. Not only the action and state pair before the scoring of a goal is

important, but we need to consider also the previous pairs that bring us reward.

 Since Sarsa-learning algorithm only use one-step data, to take the effect of the

previous pairs by using eligibility traces which are used to keep track of all the

actions taken by the agent to reach a terminal state. The trace marks the memory

 31

parameters associated with the event as eligible for undergoing learning changes.

When a TD error occurs, only the eligible states or actions are assigned credit or

blame for the error.

The idea in Sarsa(λ) is to apply the TD(λ) prediction method to state-action pairs

rather than to states.

 ()aseasQasQ ttttttt ,),(),(1 αδ+=+ (Eqn 3-2)

where

 () ()tttttt asQasQr ,, 111 −+= +++ γδ , (Eqn 3-3)

For all s, a

() () 1,, 1 += − asease tt γλ if tss = and taa = ; (Eqn 3-4)

 () ()asease tt ,, 1−= γλ otherwise. (Eqn 3-5)

 32

Initialize Q(s, a) arbitrarily and e(s, a) = 0, for all s,a

Repeat (for each episode):

 Initialize s, a

 Repeat (for each step of episode):

 Take action a, observe r, s'

 Choose a' from s' using policy derived from Q

 δ ← r + γ Q(s' ,a') – Q(s, a)

 e(s, a) ← e(s, a) + 1

 For all s, a:

 Q(s, a) ← Q(s, a) + α δ e(s, a)

 e(s, a) ← γ λ e(s, a)

 s ← s’ ; a ← a’

 until s is terminal

Figure 3-3 Tabular Sarsa(λ)

3.2 ACTION REPRESENTATION

Soccer is a complex game where a team usually has to meet several requirements at

the same time. To ensure that in any game situation a team is prepared to defend its

own goal, but also ready to attack the opponent goal, the various team players have

to carry out different tasks, and need to position themselves at appropriate strategic

positions on the field. [15]

A team strategy is the distribution of certain roles over the available field players.

We define the roles as our actions of learning system. A role consists of a

specification of an agent’s internal and external behaviors.[25]

 33

• Attacker: is in charge of dealing with the ball. Its aim is approaching the ball

and bringing the ball forward to the opponent goal. Its role is important

because it provides to take rewards. It should position the ball between the

opponent goal and itself.

• Defencer: is in charge of securing the defense. Its aim is preventing the ball

entering its own goal. It finds the most suitable position between the ball and

its goal without interrupting the goalkeeper. Its role is important because it

avoids to take punishments.

• Supporter: is in charge of supporting the other two players. Its aim is to stay

ready to be assigned the appropriate role, attacker or defencer. It also helps

the other teammates by preventing the opponent players actions.

• Goalkeeper: is in charge of securing its own goal. It stays in its goal area and

moves depending on the ball’s position and direction.

3.3 STATES REPRESENTATION

Since RL maps states to actions, one of the main issues of an RL application is

modeling the state space. In soccer game state variables are numerous and the

positional states are also continuous. The continuity in state variables is handled by

quantization. Combining similar varibles decreases the number of state variables.

Thus we are able to eliminate some of the state variables. CMACs method are used

for primarily function approximation but also by quantization capability CMACs

makes RL possible to applicable for large tasks such as soccer game. [23]

Soccer game has a dynamic environment containing a ball, two goals and players.

The coordinates of these objects in the environment are important informations for

the system to coordinate its team members. Some researchers [25] use these items’

relative distances to agent, composed of distance r and angle θ between the normal

line and the agent as state variables. With increasing number of agents, state space

gets bigger and bigger and makes computation harder. So we select to use the

opportunity of potential field methods.

 34

Although we try to decrease the dimension of state vector with using resultant

potential field, we can not say that we reach an reasonable dimension. Since we can

not meet most of the states, CMAC value approximation method is used.

3.3.1 OUR POTENTIAL FIELD STUDIES

In our studies we used potential fields both as state variables of our reinforcement

learning system and for the computation of our actions.

This allows us to benefit from the speed and flexibility of potential fields. The

possible impulsive and attractive potential forces on a soccer field may be similar to

the fields in Figure 3-4. [16]

Figure 3-4 Attractive and Impulsive Forces

We select the equation below for the computation of our potential fields.

() ()









 −
+

−
−

= b
yy

a
xx

U

2
0

2
0

exp*α (Eqn. 3.2)

The benefit of using exponential equation is the easy implementation of variance, or

the sharpness the potential field.

 35

Figure 3-5 Figure of Equation 3-2 where α =1, a = 1, b = 1, x0 = 0, y0 = 0

Figure 3-6 Figure of Equation 3-2 where α =1, a = 0.8, b = 0.2, x0 = 0.8, y0 = -0.5

As state variables, for each three team member we take the magnitudes of resultant

potential field exerted on each member, and the angle of the vector which directs

each member in the potential environment. For the coordination of team behaviors in

the learning level , the vectors of the ball, opponents and teammates take care. Ball

has the most influencing field, and it is attractive effect on the member so it takes a

negative value. The opponent has an repulsive effect to prevent collisions and to find

clear path to the goal. But it has the least influencing field, because the members

should also block the opponents, should go near to the opponents to take ball in case.

The teammate has also an impulsive effect to prevent collisions and it has an bigger

 36

influence than opponent field because team members should not block their team

members and should help them to have a clear path.

• BALL FIELD:

() ()









 −
+

−
−

−= ball

ball

ball

ball

b
yy

a
xx

ballU

22

exp*α (Eqn. 3-3)

Figure 3-7 Figure of Potential Field and Vector Field of Ball Field

• TEAMMATE FIELD:

() ()









 −
+

−
−

= teammate

teammate

teammate

teammate

b
yy

a
xx

teammateU

22

exp*α (Eqn. 3-4)

Figure 3-8 Figure of Potential Field and Vector Field of Teammate Field

 37

• OPPONENT FIELD:

() ()












 −
+

−
−

= opponent

opponent

opponent

opponent

b
yy

a
xx

opponentU

22

exp*α (Eqn. 3-5)

Figure 3-9 Figure of Potential Field and Vector Field of Opponent Field

In Figure 3-10, graphical illustration of the one ball positioned at (0,0) point, one

opponent positioned at (1,1) point, one teammate positioned at (1,-1) point is shown.

Figure 3-10 Figure of Potential Field and Vector Field of Opponent Field

of one ball, one teammate and opponent in the area

Since these state values are continuos, we should quantize them to make differences

between states.

 38

3.3.2 MEMBER’S ZONE

The other state variable is the zones the team member is occupied in in that time

interval.

Figure 3-11 Environment Divided Into 3 Zone s

3.3.3 BALL DIRECTION

The last state variable is the ball direction. It gives knowledge about in which region

the ball moves. The ball driection state is important for our sytem and it is one of the

difference from the other systems. The detailed computation method is explained in

4.3.3. The state is quantized as quadrants. The region which the ball enters gives the

information if the ball is approaching our goal or the opponent’s goal.

3.4 REWARD REPRESENTATION

The use of a reward signal to formalize the idea of a goal is one of the most

distinctive features of reinforcement learning. The agents always learns to maximize

its reward, so that it becomes a crucial input for a system. A reward signal is a prior

knowledge to an agent about how to achieve what we want it to do. The reward

signal is our way of communicating to the system what we want it to achieve, not

how we want it achieved. [24]

 39

Since many reward finding have been already defined, its formalization remains a

crucial issue. For example, if we define the zone which the ball occupies as the

reward signal and take as a positive reward the zone which it occupies near to the

opponent’s goal, our system could make the mistake of dribbling the ball to the

defined zone but forgetting to score by shooting the opponent’s goal or forgetting to

defence its own goal. Because in reinforcement learning, the only aim of the system

is to maximize its reward value. So dribbling the ball in that defined zone would be

this maximization.

As mentioned before , in soccer game our aim is to beat the opponent team by

scoring more goals to their goal. So any score in the opponent’s goal provides us

reward , r = 1, where r is the reward signal. And any score in our goal gives us

punishment, r = -1. In any other case the system takes r signal as r = 0.

 40

CHAPTER 4

EXPERIMENTS AND RESULTS

Teambots simulation program is selected as the testbed for our experiments. It

provides a a distributed controlled system. Teambots agents has the basic abilities

such as

• Move(x,y,v): Move to the point(x,y) with velocity v,

• Turn(θ): Turn its heading as defined angle θ;

• Kick: Kick the ball if canKick situation is available,

• Sense: Senses ball, opponents and teammates,

They also have communication property, they can take the directives sent and also

informs the teammates about the objects he senses.

Our team has 4 members. Each member is in charge of learning except one which is

assigned as goalkeeper. Its role is not only to protect his goal but also to inform the

roles assigned in the role assignment level to its teammates by communicating with

them.

Teambots provide distributed system based teams, but in our method we construct a

centralised control system and manage this by giving the role assignment task to the

goal-keeper. After constructing a communication system, we can get the information

about the coordinates of the robots and the ball in the environment for using in our

system. The collection of informatin, learning and role-assignment level is worked at

 41

the interval which is seperated for the member which we assigned as goal-keeper. So

we can define it as role assigner.

The Q values are stored in files which are defined as CMAC files, which are saved as

dat file.[38] At the very beginning of the program it is controlled that if these are

created before or not. If they are not created, it means that it is the beginning of the

learning and the sytem knows nothing. If they are created, it means that learning is

done before and the system knows as much as the storage of files.

The number of CMAC files is the number of our actions. Their aim is the storage of

Q(s, a) values. Since our state space is so big we use the coarse coding algorithm for

the generalization between them, hashing function to store the Q(s, a) values in a

smaller space.

We use 4 tiles, and our storage matrices’ dimension is 5000. At the beginning of the

learning the matrices which contain the Q(s, a) and e(s,a) values are zero. For each

state 4 indexes are created by the function StateToActiveIndexes , for the selected

action a the CMAC(a) file is opened and the changing values are stored in the 4

indexes of the matrices of the CMAC (a) fie.

Each match is defined as one episode or trial as defined in Sarsa (λ). In Figure 4-1

the total algorithm for each step is shown. In Figure 4-2 the Role Assignment and

Learning Level is shown in detail and in Figure 4-3 State Assignment is shown in

detail.

 42

Figure 4-1 Cooperative Sytem Architecture

Action
StateTo

ActiveTiles
Choose ActionState

CMAC(a) file

is opened

Update Q(s,a) and e(s,a) values Reward

Figure 4-2 Role Assignment and Learning Level Block Diagram

• StateToActiveTiles: 2 dimensional hashing and tile coding diagram is shown

in Figure 2.9. Our state space is 10 dimensional. After state assignment, a 10

dimensional matrix is entered to StateToActiveTiles program. 4 tiles are used

in our sytem. 4 indexes between 0-4999 are created for the entering state

matrix. After this step these 4 indexes are used during the learning level

representing the state matrix.

 43

• Choose Action: Max-random exploration rule is used as shown in

Figure 3-2.

• CMAC(a) file is opened: For 6 actions 6 CMAC file is available. For the

selected action a, CMAC(a) is opened and the storage values are presented to

be worked on.

• Update Q(s,a) and e(s,a) values: Sarsa(λ) algorithms are used as shown in

Figure 3-3. λ is selected as 0.9. Learning rate is 1 at the beginning and at each

trial the learning rate is multiplied with decaylearning rate which is 0.98.

4.1 STATE ASSIGNMENT

Member

0001
ENV.INF ENV. INF Potential Field Func.

Vector Field Func.

Member Zone Func.Member 4
Member

0002
ENV. INF

(Goalkeeper) Ball Direction Func.

Member

0003
ENV. INF

State (has 10 element)

Figure 4-3 State Assignment Block Diagram

ENV. INF represents the environmental information which includes ball position,

teammembers’ positions, opponents’ positions sensed by the teammembers. The total

information is collected by goalkeeper and is used in the state equations. State space

has 10 elements as shown in Table 4-1.

 44

Table 4-1 State Elements

States Definitions # of Variables

S[1] The resultant potential field magnitude effected on player with ID=1 3

S[2] The resultant vector field angle effected on player with ID=1 4

S[3] The resultant potential field magnitude effected on player with ID=2 3

S[4] The resultant vector field angle effected on player with ID=2 4

S[5] The resultant potential field magnitude effected on player with ID=3 3

S[6] The resultant vector field angle effected on player with ID=3 4

S[7] The zone which player with ID=1 occupied. 3

S[8] The zone which player with ID=2 occupied. 3

S[9] The zone which player with ID=3 occupied. 3

S[10] The ball direction 4

4.1.1 POTENTIAL AND VECTOR FIELD FUNCTIONS

Figure 4-4TeamBots Simulation Program andPotential Field Shown Simultaneously

 45

Since Teambots is an open source program, it lets the users change everything. For

the visual following of potential fields, and the dynamically changing environment

we add the potential field window by changing java file named SimulationCanvas,

as shown in Figure 4-4. This potential field simulation provides us a simultaneous

vision inspection of our system. Green areas represent the least values of potential

fields which are the attractive fields such as ball field, opponent goal field. Red areas

represent the most values of potential fields which are the impulsive fiels such as

wall field, opponent field, teammate field.

The potential fields in our state determination include the ball field as attractive, and

teammates and opponents fields as repulsive. The ball has the most effective field

because it is important to know which member is in the ball field valley. Ball field

has bigger area effect than the teammate and opponent field.

In Matlab, a GUI program is written to show the potentials fields and vector fields

graphically as shown in Figure 4-5, 4-6 and 4-7. This supplies us to examine our

potential fields in different occupations of the objects, find the most appropriate

values of variables..

Figure 4-5 GUI Representing Objects In Figure 4-5

 Yellow ones are opponents, of blue ones are teammates and the red one is the ball.

 46

Figure 4-6Potential Fields SoccerField.

 Figure 4-7Vector Fields of Objects In Figure 3-5.

4.1.2 POTENTIAL FIELD MAGNITUDE AND QUANTIZATION

• BALL FIELD: Ball field is the most effecting attractive field. It should get

the biggest amplitude value. Besides amplitude, in large areas its influence should be

noticed, so it should get also higher variance values than the other two repulsive field

which are used in our states. By using our GUI program we find the most appropriate

values for αball as 0.8, aball as 0.5 and bball as 0.5.

 47

() ()









 −
+

−
−

−= 5.05.0

22

exp*8.0
ballball yyxx

U (Eqn. 4-1)

• TEAMMATE FIELD: Teammate field is one of the repulsive field of our

state representation sytem. It has a smaller absolute amplitude value than the ball

field has but a higher absolute amplitude value than the opponent field has. The

players should take care of colliding with their teammates. By using our GUI

program we find the most appropriate values for αteammate as 0.4, ateammate as 0.1 and

bteammate as 0.1.

() ()









 −
+

−
−

= 1.01.0

22

exp*4.0
teammateteammate yyxx

U (Eqn. 4-2)

• OPPONENT FIELD: Opponent field is one of the repulsive field of our

state representation system. The players should take care of colliding with the

opponents. But opponent field has the smallest absolute amplitude value and the

smallest variance value since if the opponents have the ball, our players should not

go away and moreover should block the opponents. By using our GUI program we

find the most appropriate values for αteammate as 0.2, ateammate as 0.05 and bteammate as

0.05.

() ()












 −
+

−
−

=
05.005.0

22

exp*2.0
opponentopponent yyxx

U (Eqn. 4-3)

The resultant potential field is quantized to make a more discrete meaning to the

learning level. The potential field is quantized as:

• Valley: If the value is smaller than -0.2 and quantization value is 1,

• Smooth: If the value is between -0.2 and 0.2 and quantization value is 1,

 48

• Hill: If the value is bigger than 0.2 and and quantization value is 1.

4.1.3 VECTOR FIELD ANGLE AND QUANTIZATION

Vector Field is normally the minus gradient of the potentail field.

()
() ()

)(*exp*)*2(*
)(
)(

22

xd
a

xx
xd
Ud ball

ball

ball

ball

b
yy

a
xx

ball

ball
ball










 −
+

−
−−

−−=− α (Eqn 4-4)

()
() ()

)(*exp*)*2(*
)(
)(

22

yd
b

yy
yd
Ud ball

ball

ball

ball

b
yy

a
xx

ball

ball
ball










 −
+

−
−−

−−=− α (Eqn 4-5)

In our calculations, when the components are so near to the member which the

potentail field is calculated for since (x - xball) goes to zero, it prevents us to

calculate the exact values.

So we first find the vectors between components and members under calculation, and

do vectoral addition. The angle of the vectors is the angle between component and

member, and the magnitude is the potential field magnitude.

ball opponent1

Resultant vector

teammate
opponent2

Figure 4-8 Vector Field Calculation

The resultant angle is quantized as quadrants.

 49

4.1.4 MEMBER ZONE

We calculate the zone the member is in with our potential field equation. For the left

of the area, Eqn 4-6 is used, if the member is in this area the value of U1 will be

greater than 0.3 and the state value for the member will be 1. If the member is in

right of the ares, the value of the U2 will be greater than 0.3 and the state value for

the member will be 3. Otherwise the state value will be 3, which means the member

is occupied in the middle area.

Figure 4-9 Figure of Potentail Field of Soccer Field

() ()












 −
+

−
−

=
7.05.1

1

22

exp*1
centerleft yyxx

U (Eqn 4-6)

() ()












 −
+

−
−

=
7.05.1

2

22

exp*1
centerright yyxx

U (Eqn 4–7)

 50

4.1.5 BALL DIRECTION

Figure 4-10 Ball direction

Computation of ball direction: At time t, a vector between ball and the center of

the goal is created. A vector which is intersecting this vector with 90o is drawn. The

regions in which the ball is entering is computed by drawing two orthogonal vectors

intersecting previous ones with 45o as shown in Figure 4-10. And a vector between

the coordinates of the ball at time and at time (t-1) is drawn. The state value is the

region the ball direction enters.

4.2 ACTIONS

Action vector has 3 variables, which are the roles of our teammates. Our system

assigns different roles to each 3 members:

• Attacker

• Defencer

• Supporter

Goalkeeper is fixed. It is no use in the learning but its duty is to communicate with

the teammates to inform their roles.

 51

Table 4-2 Actions

Actions Role for Teammate 1 Role for Teammate 2 Role for Teammate 3

1 Attacker Defencer Supporter

2 Attacker Supporter Defencer

3 Defencer Attacker Supporter

4 Defencer Supporter Attacker

5 Supporter Attacker Defencer

6 Supporter Defencer Attacker

After role assignment, the algorithm shown below is run in the program.

if (robot=GOALIE) then

 apply Goalie Vector

else

 apply Wall Vector, Opponent Vector, Team Vector

 if (robot = Attacker)

 apply Ball Vector1, Ball Vector2

 else if (robot = Defencer)

 apply Defense Vector

 else if (robot = Supporter)

 apply Supporter Vector

Figure 4-11 Algorithm of Actions

 52

After assigning roles to each member, they should know what to do according to

their role. Each spesific role is in influence of specific vectors bring them to the

appropriate positions.

The vector calculations are same as we explained in part 4.1.3. The vector angle is

the angle between the component and member and the magnitude is the potential

field magnitude.

1. WALL FIELD Vector: It is a repulsive vector, cause the players stay a

little bit far from themselves.

()












 −
−

=
02.0

1

2

exp*1.0
upyy

U (Eqn 4-6)

()









 −
−

= 02.0
2

2

exp*1.0
bottomyy

U (Eqn 4-7)

 U (Eqn 4-8) 21 UUwall +=

Figure 4-12 Potential Field and Vector Field of Wall

2. OPPONENT FIELD Vector: : It is a repulsive vector, causing the players

stay far from opponents to prevent collisions. It is explained in part 4.1.3

3. TEAM FIELD Vector: : It is a repulsive vector, causing the players stay

far from teammates to prevent collisions. It is explained in part 4.1.3

 53

4. BALL FIELD Vector 1 : : It is a attractive vector, directing the players to

the ball. It is explained in part 4.1.3

5. BALL FIELD Vector 2: We need this vector because the attacker should

place between the ball and his own goal. Otherwise scoring to his own goal

can happen. The member should be affected by a vector which takes him

behind the ball around a circle as shown in Figure 3-13. The method and

details is taken from reference[16].

 Figure 4-13 The resultant vector of Ball Field Vector 1 and Ball Field Vector 2

6. GOALIE FIELD Vector: The goalie should stand between the goal and the

ball. We generate a potential attractive field for goalie at a point according to

Equation 4.9. The direction of an attractive force is towards the source of the

field.

X
X’

Y Y’

Figure 4-14 Goalie Field Vector

 54

 '

'

Y
X

Y
X

=

 (Eqn. 4-9)

7. DEFENSE FIELD Vector: The defense players try to stand in the middle

of the ball and a point assigned on the goal line.

Y

X

Figure 4-15 Defence Field Vector

 2
XXdefencer= (Eqn 4-10)

2
Y

defencer=Y (Eqn 4-11)

8. SUPPORTER FIELD Vector: The last attractive field is supporter field,

which creates fields behind the ball according to Equation 4-12 and 4-13. The

parameter m indicates points on a circle with radius k and the ball at its

center.

 55

Supporter

Figure 4-16 Supporter Field Vector

)cos(mkxx ball ×−= (Eqn 4-12)

)sin(mkyy ball ×±= (Eqn 4-13)

The parameter m indicates two points on a circele with radius k and ball at its

center.

4.3 TRAINING EXPERIMENTS and PERFORMANCE ANALYSIS

We select 3 teams which are wriiten in Teambots simulaton program. They have

different capabilities and different coopreataion systems.

We trained our team with making 600 trials for each team. The properties of the

teams and the match results and performance analysis is shown in the sub-chapters.

After the performance analysis of 3 demo teams, we need a team which is as strong

as us, or as weak as us. We create a new team which has members with the same

abilities with our members, they can take the same roles and also are affected by the

potential fields. The game strategy of the new team is the same strategy written in

Figure 4-11. However, since this team has not the learning part , the role assignment

is as follows:

 56

If I am closest to ball

 I am attacker

Else If I I am closest to home

 I am defender

Else I am closest to position1

 I am supporter

Figure 4-17 Role Assignment of the new Team

4.3.1 Training Experiments with Team GoToBall

Gotoball is a team with team members only going after the ball. The first one

reaching the ball kicks the ball and then the other 3 one follows him in a line.

The results of 50 matches against GoToBall before learning and after learning are

shown in Figure 4-18 and Figure 4-19.

Goals Scored

0
2
4
6
8

10
12

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Trials

G
ol

as Our

Oppo

Figure 4-18 Goals Scored by GoToBall and Our team before learning

 57

Goals Scored

0

2

4

6

8

10

1 5 9 13 17 21 25 29 33 37 41

Trials

G
oa

ls Our
Oppo

Figure 4-19 Goals Scored by GoToBall and Our team after learning

4.3.1.1 Performance Analysis

Training with them make the attacker gain abilities but this team has the

disadvantage of shooting to his own goal. Not all the goals shown in Figure 4-14 and

Figure 4-15 are scored by our team. Besides gaining attacker abilities, it has

disadvantages that the real values can not be given to the state action pairs. In a non-

appropriate state that they shoot to their own goal, we rewarded our team wrongly.

But this is not the fault of the system. Since reinforcement learning is the learning by

trial-error and the team learns doing what gives it the the most reward and learns to

follow the traces which brings it to the reward. In Figure 4-20, a snapshot of the

match against is shown. The yellow ones are GoToBall team, and the left side is their

own goal. They are going to score their own goal. Although our members are staying

in the middle of the field, they will get reward. The lines behind the players show the

path they are following in 2-3 seconds. This is also one of the utilities of Teambots.

 58

Figure 4-20 A snapshot of the match against GoToBall Team(the yellow ones)

With all experiments we notice that we have a strong defensive system, because our

all players no matter attacker, defencer or supporter is affected by the ball field

mostly. So even if the ball is in our zone all our players can protect our goal and kick

it towards the other goal. And also our goalkeeper is not included in the role

assignment learning part, he always knows his role.

We choose GoToBall team as an easy team, but since all his members going after the

ball, sometimes it seems very hard to reach the ball for our team members. We

confirm our statement that opponent impulsive field’s strength should be small

although obstacle avoidance is possible.

After GoToBall team we tried some teams like BasicTeam which has more

complicated strategy than GoToBall, and see that they do not confuse our team as

much as GoToBall Team. Like GoToBall team, some teams have one special aim,

like only protecting own goal. They do not score a goal but do not let the opponent

team score, training with such teams can make our learning strategy develop

wrongly.

 59

4.3.2 Training Experiments with Team BrianTeam

BrianTeam is a stronger team which do not score their own goal like GoToBall. But

their one disadvantage is their lack of goalkeeper. The team does not have an

assigned goalkeeper, the players at the back behave like defencer and protect their

goal.

The results of 50 matches against BrianTeam before learning and after learning are

shown in Figure 4-21 and Figure 4-22.

Number of Goals

-1
0
1
2
3
4
5
6

0 20 40 60
Trials

N
um

be
r o

f G
oa

ls

Our

Oppo

Figure 4-21 Goals Scored by BrianTeam and Our team before learning

 60

Number of Goals

-2
0
2
4
6
8

10
12

0 10 20 30 40 50 60

Trials

N
um

be
r o

f G
oa

ls

Our
Opp

Figure 4-22 Goals Scored by BrianTeam and Our team after learning

4.3.2.1 Performance Analysis

Their disadvantage of not having goalkeeper provides us advantage, our members

find the chance to score and gain reward. If they have very strong defensive

capability it will become harder for our team to find the opportunity to gain reward

as experienced with AIKOHomoG team.

We do 35 matches against BrianTeam with our Q-values gained while training with

GoToBall Team to show that it is important how you train your team is important.

Although we know that we can beat the BrianTeam after training with BrianTeam

we can not get the same success after training our team with GoToBall Team.

 61

Goals Scored

0
1
2

3
4
5

1 5 9 13 17 21 25 29 33

Trials

G
oa

ls Our
Oppo

Figure 4-23 Goals Scored by BrianTeam and Our team after training with GoToBall

4.3.3 Training Experiments with Team AIKOHomo

Although we say that we have good skills, our team has not properties of passing the

ball to team members, or using the wall pass. With a team that has more complex

abilities we should trian our team to develop our defensive abilities.

AIKOHomo is the strongest team in our team set of consisting 25 teams, it has rarely

lets our members go to their goal, tracks the ball and moves fastly and blocks the our

member that has the ball. Its members pass the ball to the most appropriate member

in the team strategy.

 62

Goals scored

0
2
4

6
8

10

1 5 9 13 17 21 25 29 33 37

Trials

G
oa

ls Our
Oppo

Figure 4-24 Goals Scored by AIKOHomoG and Our team before learning

Goals Scored

0
1
2
3
4
5
6

1 5 9 13 17 21 25 29 33 37 41

Trials

G
oa

ls Our
Oppo

Figure 4-25 Goals Scored by AIKOHomoG and Our team after learning

4.3.3.1 Performance Analysis

After training we manage to score opponents goal, the numbers of the opponents

goals decrease also which shows that we learn to assign appropriate role assignment

while ball is near our goal. Before learning, since it randomly selects the roles, it

could make the mistake of changing its role while securing its goal as a defence

player to support and place itself at a position around ball but not kick and secure the

 63

goal. During training the team learns not to do these mistakes, because if it makes it

get punishment.

4.3.4 Training Experiments with New Team

As explained before, after training several teams we decided to train our team with a

team equal to ur team. But since its role assignment algorithm is rule based as shown

in Figure 4-17, it gives simple but effective decisions.

The results of the matches against New Team before learning and after learning are

shown in Figure 4-26 and Figure 4-27.

Goals Scored

0

2

4

6

8

1 6 11 16 21 26 31 36 41 46

Trials

G
oa

ls Series1
Series2

Figure 4-26 Goals Scored by NewTeam and Our team before learning

 64

Goals Scored

0
1
2
3
4
5
6

1 6 11 16 21 26 31 36 41

Trials

G
oa

ls Our
Oppo

Figure 4-27 Goals Scored by NewTeam and Our team after learning

4.3.4.1 Performance Analysis

At first we could not get efficient result, since it has the same abilities with us, it

does not shoot his own goal, fast and is mostly affected by ball. The same things can

be written as in part 4.3.31. But the main difference from the other set trainings is the

free ball persistence.

 The free ball problem occurred at most among these two teams. Free ball decision is

given when the ball could not move. In some situations, especially when the ball is

between 2 opposite team members and wall, and oscillating continuosly, the system

can not give the free ball decision because the ball is moving and then two team

should wait the new cycle to begin at the middle of the field. Our team learn to

persist and not to change its role during this interval. Because it leaves , it gives an

oppurtunity to the New Team to score and our team takes punishment.

Another experiment we did with New Team. We trained our team against New Team

with exploration rate equal to 0. But we notice that it has the problem of local

optimum and gives usually the same action since it does not explore while training.

 65

Figure 4-28 A snapsnot from the match between New Team and our Team

Figure 4-29A snapsnot from the match between New Team and our Team

Figure 4-28 and 4-29 shows the faults of the system, the members which is the most

available for attack role is not assigned and the same action persists a while.

 66

So many training experiments could be done, first training with a basic team to

improve the attacking behaviors, then with values in the system with a more

complicated team to improve offensive behaviors. But it is a reality the system

develops itself with the rewards it takes, if at the same situations it could get negative

rewards because of the opponent team complexity, the system will decrease the value

of that state action pair.

With whom you train your system is important. New and specific exercises to your

system should be developed and the team should train with them, in a control of a

trainer.

 67

CHAPTER 5

CONCLUSIONS

5.1 CONCLUSIVE REMARKS

In this research, we designed and tested a reinforcement learning system which takes

its input from a competitive, dynamic world like roboccer and gives its output as the

coordination of some agents like the team members. For the simulation of our team

we used Teambots program, besides some difficulties like freeball decision problem,

or its distributed controlled system it has many advantages since it is fully open

source and provides various team programs. In our experiments we used these teams

as opponents.

In reinforcement learning , learning is achieved through trial and error interactions

with the dynamic environment. The main factors affected the learned policy are

generalization of state space, value functions and opponent team. In our system

potential field method is used to reduce state space dimension and to take the agents

to the most attracting positions in the field. According to our results, we can say that

potential field method is very effective in such dynamic environments. Sarsa(λ)-

Learning shows good performance results in terms of speed of execution and

convergence rate.

However it is hard to build competition level team by using only standard modeling.

In our system the success of the team does not only belong to the reinforcement

learning system success. Because rewards effect our system state action selectivity,

if we have very basic roles, even if the system chooses the best action we can not get

reward to increase its selectivity

 68

5.2 FUTURE WORK

For future work reward shaping can be studied. In our system only negative and

positive goals are used as rewards, but changing of the ball direction could be added

to the system as feedback to show how their members are effective during game

except shooting goals. But in this study, the researcher should be careful because the

team could make the mistake of forgetting its main goal while maximizing its reward

in simpler methods. Reward formalization is a crucial issue and should be studied

and developed carefully.

As stated in the results chapter, a trainee system could be developed to train our

system under control like the human teams do. Instead of training the team with

arbitrary teams, a trainee system which make the team learn special traces will

improve the system’s performance. The team learns what to do against a team but its

training depends only to the performance of the opponent team. Special trainee

systems could be developed to learn different strategies.

 69

REFERENCES

[1] Jong-Hwan Kim and Prahlad Vadakkepat, “Multi-Agent Systems: A Survey

from the Robot-soccer Perspective”, Int. J. Intelligent Automation and Soft

Computing, 6: (1) 3-17, 2000.

[2] Albus, J. S., “ Data Storage in the Cerebellar Model Articulation Controller

(CMAC)” , Transactions of the ASME: Journal of Dynamic Systems, Measurement

and Control, pp. 228-233, September 1975.

[3] Barto, A., Sutton, R., and Watkins, C., “Learning and sequential decision

making”, Learning and Computational Neuroscience (ed), Cambridge, MA, MIT

Press, 1990.

[4] Stone, P., Kuhlmann, G., “ Guiding a Reinforcement Learner with Natural

Language Advice: Initial Results in Robocup Soccer “, Proceedings of the AAAI-

2004 Workshop on Supervisory Control of Learning and Adaptive Systems, pp. 30-

35, July 2004.

[5] Holland, J.H., “Properties of bucket brigade algorithm”, First Int. Conf. on

Genetic Algorithms and their Applications, Pittsburg, PA, (1985), pp 1-7.

[6] Fayek, R. E., et al. “A System Architecture for a Mobile Robot Based on

Activities and a Blackboard Control Unit”, IEEE Proc. Int. Conf. Robotics and

Auto., U.S.A, (1993), pp 267-274.

 70

[7] Shim, H.-S., Jung, M.-J., Kim, H.-S., Kim, J.-H., and Prahlad V. “A hybrid

control structure for vision based soccer robot system.”, Int. J. of Intelligent

Automamtion and Soft Computing.

[8] Lung Chi Kwong, “Research in Collaborative Team Behavior of

Autonomous Soccer Robots”, City University of Hong Kong Computer Science.

[9] Khatib,O., “Real-time Obstacle Avoidance for Manipulators and Mobile

Robots”, The International Journal Of Robotics Research 5(1986), pp 90-98.

[10] M. Hassoun, Y. Demazeau, C. Laugier., “ Motion control for a car-like robot:

potential field and multi-agent approaches” Proceedings of International Conference

on Intelligent Robots and Systems (IROS), Raleigh, USA, 1992.

[11] Douglas Vail, Manuela Veloso, ” Multi-Robot Dynamic Role Assignment

and Coordination Through Shared Potential Fields”, Kluwer Academic Publishers,

2003.

[12] T.Balch and R.Arkın, “Behavior-based formation control for multi-robot

teams”, IEEE Transactions on Robotics and Automation, Vol.12, No. 6, pp. 926-939,

December 1998.

[13] T.Balch and M.Hybinette, “Social potentials for scalable multirobot

formations”, In Proceedings of IEEE International Conference on Robotics and

Automation (ICRA-2000), 2000.

[14] Thilo Weigel, Willi Auerbach, Markus Dietl, Burkhard Dümler, Jens-Steffen

Gutmann, Kornel Marko, Klaus Müller, Bernhard Nebel, Boris Szerbakowski, and

Maximilian Thiel, “CS Freiburg: Doing the right thing in a group”, Lecture Notes İn

Computer Science, 2019:52-63,2001.

 71

[15] CS Freiburg: “Coordinating Robots for Successful Soccer Playing” , IEEE

Transactions on Robotics and automation, Vol.18, No.5, October 2002.

[16] Kaplan, K., “Design and Implementation of Fast Controllers for Mobile

Robots.”, Boğaziçi, M.S. Thesis, 2003.

[17] Samuel, A. L., “ Some Studies in Machine Learning Using the Game of

Checkers” IBM Journal on Research and Development, Vol. 3, pp. 210-229, 1959.

[18] Sutton, R. S., “Learning to Predict by the Methods of Temporal Differences”

Machine Learning, Vol. 3, No.1, pp.9-44, August 1988.

[19] Leslie Pack Kaelbling, Michael L.Littman, Andrew W.Moore,

“Reinforcement Learning: A Survey”, Journal of Artificial Intelligence Research

4(1996), pp 237-285.

[20] Tatlıdede, Utku, “Reinforcement Learning of Multi-Agent Team Behavior”,

Boğaziçi, M.S. Thesis, 2003.

[21] Spaan, M., “ Team play among soccer robots”, Master’s thesis Artificial

Intelligence University of Amsterdam.

[22] Kao-Shing Hwang, Shun-Wen Tan, Chien-Cheng Chen, “ Cooperative

Strategy Based on Adaptive Q-Learning for Robot Soccer Systems”

[23] Stone, P., R. S. Sutton and S. Signh, “ Reinforcement Learning for 3 vs. 2

Keepaway”, in A. Birk, S. Coradeschi and S. Tadokoro (eds.), RoboCup-2001:

Robot Soccer World Cup V, Springer Verlag, Berlin, 2002.

[24] R. S. Sutton, A. Barto, “Reinforcement Learning, An Introduction” , MIT

Press,1998.

[25] P. Stone and M. Veloso. “ Task decomposition, dynamic role assignment, and

low-bandwidth communication for real-time strategic teamwork’’ , Artificial

Intelligence, 1999.

 72

[26] Tews, A., Wyeth G. “Multi-Robot Coordination in the Robot Soccer”

Environment Proceedings of the Australian Conference on Robotics and

Automation (ACRA '99).

 73

 APPENDIX

GENERATION of POTENTIAL FIELD proposed by Michael A. Goodrich

 ATTRACTIVE FIELD

One way to think of a potential field is to think of it as a mapping from one vector

into another vector. For the 2-D navigation in the figure, it is the mapping from the

vector

v = [x, y]T into the gradient vector ∆= [∆x,∆y]T (the superscript T represents

"transpose" - I use it because I like column vectors better than row vectors). Now, we

could find ∆ by defining some vector function of v and then taking the gradient of

this function, but I prefer a more direct approach. To generate the above fields, I just

defined ∆x and ∆y in terms of v as follows:

• Let (xG,yG) denote the position of the goal. Let r denote the radius of the
goal.

Let v = [x,y]T denote the (x,y) position of the agent.

 74

• Find the distance between the goal and the agent
: 22)()(GG yyxxd −+−=

• Find the angle between the agent and the goal θ = tan-1 







−
−

xx
yy

G

G
(I use the

atan2 function because it gives you the angle in the correct quadrant.)

• Set ∆x and ∆y according to the following:

 if d < r ∆x = ∆y = 0

 if rsdr +≤≤ ∆x = α(d - r) cos(θ) and ∆y = α (d - r) sin(θ)

 if d > s + r ∆x = αscos(θ) and ∆y = αssin(θ)

This sets up a goal as a circle with radius r. When the agent reaches the goal no

forces from the goal act upon it, whence when d < r both ∆x and ∆y are set to zero.

The field has a spread of s and the agent reaches the extent of this field when d = s +

r. Outside of this circle of extent, the vector magnitude is set to the maximum

possible value. Within this circle of extent but outside of the goal's radius, the vector

magnitude is set proportional to the distance between the agent and the goal. I

include the constant 0>α so that the strength of the field can be easily scaled.

 REPULSIVE FIELD

 75

• Let (xG,yG) denote the position of the obstacle. Let r denote the radius of the
obstacle.

Let v = [x,y]T denote the (x,y) position of the agent.

• Find the distance between the goal and the agent
: 22)()(OO yyxxd −+−=

• Find the angle between the agent and the goal θ = tan-1 







−
−

xx
yy

O

O
(I use the

atan2 function because it gives you the angle in the correct quadrant.)

• Set ∆x and ∆y according to the following:

 if d < r ∆x = -sign(cos(θ))∞ ∆y = -sign(sin(θ))∞

 if ∆x = -β(s + r - d) cos(θ) and ∆y = -β (s + r -d) sin(θ) rsdr +≤≤

 if d > s + r ∆x = ∆y = 0

 76

	PLAGIARISM
	ABSTRACT
	ÖZ
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER 1
	MOTIVATION
	STATE OF THE ART

	CHAPTER 2
	LITERATURE SURVEY
	The subjects, reinforcement learning, potential fields and multi agent systems, are very popular in computer science. The robocup organizations provides us to find many articles written about this subjects.
	ROBOT SOCCER SYSTEMS
	INTRODUCTION
	TEAMBOTS

	2.2 MULTI-AGENT SYSTEMS
	AGENT AND AUTONOMOUS AGENTS
	2.2.2 LEARNING IN MULTI-AGENT SYSTEMS
	MULTI-AGENT SYSTEM STRUCTURES
	MULTI-AGENT COOPERATION

	POTENTIAL FIELDS
	VECTOR FIELDS

	2.4 REINFORCEMENT LEARNING
	2.4.1 REINFORCEMENT LEARNING
	REINFORCEMENT-LEARNING MODEL
	EXPLORATION POLICIES
	MARKOV DECISION PROCESSES
	2.4.4.1 Value Iteration
	Q-Learning

	CEREBELLAR MODEL ARTICULATION CONTROLLER
	FEEDBACK FROM THE OTHER STUDIES

	CHAPTER 3
	PROPOSED METHOD
	3.1 SYSTEM REPRESENTATION
	3.2 ACTION REPRESENTATION
	3.3 STATES REPRESENTATION
	OUR POTENTIAL FIELD STUDIES
	MEMBER’S ZONE
	BALL DIRECTION

	REWARD REPRESENTATION

	CHAPTER 4
	EXPERIMENTS AND RESULTS
	STATE ASSIGNMENT
	4.1.1 POTENTIAL AND VECTOR FIELD FUNCTIONS
	POTENTIAL FIELD MAGNITUDE AND QUANTIZATION
	VECTOR FIELD ANGLE AND QUANTIZATION
	MEMBER ZONE
	BALL DIRECTION

	ACTIONS
	TRAINING EXPERIMENTS and PERFORMANCE ANALYSIS
	4.3.1 Training Experiments with Team GoToBall
	4.3.1.1 Performance Analysis

	Training Experiments with Team BrianTeam
	Performance Analysis

	Training Experiments with Team AIKOHomo
	Performance Analysis

	Training Experiments with New Team
	Performance Analysis

	CHAPTER 5
	CONCLUSIONS
	CONCLUSIVE REMARKS
	FUTURE WORK

	REFERENCES
	[1]Jong-Hwan Kim and Prahlad Vadakkepat, “Multi-A
	APPENDIX
	GENERATION of POTENTIAL FIELD proposed by Michael A. Goodrich

