
REINFORCEMENT LEARNING USING POTENTIAL FIELD FOR              
ROLE ASSIGNMENT  IN A MULTI-ROBOT TWO-TEAM GAME 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
 MIDDLE EAST TECHNICAL UNIVERSITY 

 

 

BY 

 

 

                                                      ÖZGÜL FİDAN 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR 

THE DEGREE OF MASTER OF SCIENCE 

IN 

THE DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING 

DECEMBER 2004



Approval of the Graduate School of Natural and Applied Sciences 

                                                         

 

                                                                                           ____________________ 

                                                                                            Prof . Dr. Canan Özgen 

                                                                                                        Director 

 

I certify that this thesis satisfies all the requirements as a thesis for the degree of 
Master of Science. 

 

                                                           

                                                                                           ____________________ 

                                                                                            Prof . Dr. İsmet Erkmen    

                                                                                               Head of Department 

 

 This is to certify that we have read this thesis and that in our opinion it is fully 
adequate, in scope and quality, as a thesis for the degree of Master of Science. 

 

 

                                                           

______________________                                            _____________________ 

  Prof . Dr. Aydan Erkmen                                                Prof. Dr. İsmet Erkmen 

         Co-Supervisor                                                                    Supervisor 

 

 

Examining Committee Members 

Prof. Dr. Kemal Leblebicioğlu     ( METU, EE)               ____________________  

Prof. Dr. İsmet Erkmen                ( METU, EE)               ____________________      

Prof. Dr. Aydan Erkmen               ( METU, EE)               ____________________     

Assoc. Prof. Dr. Aydın Alatan      ( METU, EE)               ____________________       

Ass. Prof. Dr. İlhan Konukseven  ( METU, ME)              ____________________          

ii 



 

  

 

 

 

 

 

 

 

 

 

 

PLAGIARISM 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also 

declare that, as required by these rules and conduct, I have fully cited and 

referenced all material and results that are not original to this work. 

 

                                                                                

                                                                                  Name, Last name: Özgül Fidan 

                                                                                  Signature:  

iii 



 

ABSTRACT 

REINFORCEMENT LEARNING USING POTENTIAL FIELD 
FOR ROLE ASSIGNMENT IN A MULTI-ROBOT TWO-TEAM 

GAME 

 

FİDAN, Özgül 

MSc., Department of Electrical and Electronic Engineering 

Supervisor: Prof. Dr. İsmet ERKMEN 

Co-Supervisor: Prof. Dr. Aydan ERKMEN 

 

December 2004, 75 pages 

 

In this work, reinforcement learning algorithms are studied with the help of 

potential field methods, using robosoccer simulators as test beds. 

Reinforcement Learning (RL) is a framework for general problem solving where an 

agent can learn through experience. The soccer game is selected as the problem 

domain a way of experimenting multi-agent team behaviors because of its 

popularity and complexity.  

Keywords : multi agent systems, reinforcement learning, robosoccer, potential field 
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ÖZ 

ÇOKLU-ROBOTLU, İKİ-TAKIMLI BİR OYUNDA ROL 

BELİRLEMEYİ POTANSİYEL ALANLAR KULLANARAK 

YAPAN  PEKİŞTİRMELİ ÖĞRENME 

 

FİDAN, Özgül 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. İsmet ERKMEN 

Ortak Tez Yöneticisi : Prof.Dr. Aydan ERKMEN 

 

ARALIK 2004, 75 SAYFA 

 

Bu çalışmada, robot futbolu simulatörleri test yatakları olarak kullanarak, 

potansiyel alan metodunun yardımıyla pekiştirmeli öğrenme algoritmaları 

araştırılmıştır. 

Pekiştirmeli öğrenme (RL), elemanları tecrübe ile öğrendikleri genel problem 

çözümü için bir çerçevedir. Çoklu eleman davranışlarını incelemek için popülerliği 

ve  karmaşıklığı sebebiyle robot futbolu seçildi  

Anahtar Kelimeler : çoklu elemanlı sistemler, pekiştirmeli öğrenme, robot futbolu, 

potansiyel alanlar 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 PROBLEM STATEMENT 

We are interested in games played by two teams, consisted of agents, in dynamic 

environments. Games have their own rules but mostly each has an aim to defeat the 

other team, by gaining more scores. The environment consists of opponents, 

teammates, a ball, the team goals,  and physical or rule-based limitations. Opponents, 

teammates and ball are dynamic components and cause the environment to change 

continuously. So in a such competitive world the cooperation and coordination of 

teams are of great importantce. To achieve accurate coordination the teams should 

gather adequate information from the environment. The agent capabilities will effect 

the team’s performance, but also building strategies and planning are  important 

issues for  the success of the team. We aim at constructing a system that adapts its 

strategy according to the changing game conditions. Our system should learn  how to 

play against different teams based on its experience, and its strategy should improve 

according to the team he played against.  

1.2      MOTIVATION 

Many AI researchers are today striving to build agents for complex, dynamic multi-

agent domains. Such domains include virtual theatre ( Hayes-Roth, Brownston, & 

Gen 1995),realistic virtual training environments ( e.g., for emergency drill(Pimental  

 1 

 



& Teixeira 1994) or combat ( Tambe et al. 1995)), virtual interactive fiction(Bates, 

Loyall, & Reilly 1992) and RoboCup robotic and virtual soccer( Kitano et al. 1995). 

There is no generally accepted definition of agents in Artificial Intelligence (AI) 

[Stone,2000],  an agent as a robot which has goals, actions and domain knowledge, 

situated in a environment. The ways it acts are called its behaviors. 

An agent can be defined in the field of computer science, as a program, or piece of 

program, that functions as an active entity in a computerized environment together 

with other processes or programs. 

Due to the distribution of control and reasoning,the multiagent systems (MAS) 

approach in Artificial Intelligence (AI) is well-suited for solving problems in  

complex domains, and this distribution enables agents to react to dynamic external 

events as they collaborate to attain their long-term team goals. 

 When a group of agents in a MAS share a common long-term goal, they can be said 

to form a team [Stone, 2000]. Other agents in the environment that have goals 

opposed to the team’s long-term goal are called the team’s adversaries.  

Therefore in a research on collaborative team behavior of autonomous robots, the 

following subtopics are involved: 

1. Multiagent Machine Learning (ML) – the processes and approaches of the team to 

learn their behaviors. In other words, to train the team to use the team strategies and 

also develop new team strategies. 

2. World Model (WM) Construction – Generation of the World Model which 

contains the ball location, teammate location and orientation, opponent location and 

the goal location on the soccer field. This information is shared among the team. 

This is not an easy task as the game is real-time and all objects except the goal are 

changing very fast. 

3. Cooperation – Share information, role assignment and coordination of the team. 

The team makes group decisions on team strategy and team members positions 
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themselves on suitable location to perform the task based-on the team strategy. The 

team’s strategy needs to be adaptive to the behavior of the opponent and to follow 

plans made on or before the game.[8] 

Cooperation involves multiple robots working towards a common goal. It is difficult 

to implement meaningful robot operations in these environments due to the 

constantly changing environment features making action-selection and action-

location highly transient. 

[Vail & Veloso, 2003] used the shared potential fields to solve the role assignment 

and coordination problem. The potential fields were based on the positions of the 

other robots on the team and the ball. The robots positioned themselves on the field 

by following the gradient to a minimum of the potential field. In principle, potential 

functions can be applied to any multi-robot domain. Robots perform distributed task 

allocation by calculating their suitability for a task and broadcast this suitability as a 

bid to their teammates. The robot with the highest bid wins the task. If the winning 

robot becomes unavailable some reasons, the robot with second highest bid wins the 

task. They test the approach on non-adversarial games by taking away the opponents 

and compare the average scoring time of a single robot, three robots with no 

coordination and three robots with coordination. Three robots with coordination 

scores most quickly and three robots without coordination perform the worst. They 

also applied this approach in winning championship in RoboCup 2002, Sony Legged 

League. 

First, since complex environments with continuous states and actions have very large 

search spaces, at the single agent level, the solution methodology must address the 

problem of how to reduce these large search spaces. At the team level, it must 

address the problem of how to enable autonomous agents to collaborate efficiently 

and coherently.  

The question then becomes: How can we build a multiagent system that can execute 

high-level strategies in complex, dynamic, and uncertain domains? We may consider 

three possible answers to this question. First, we can build a system that successively 
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executes plans chosen from a static library. Second, we can build a system that can 

learn its strategies from scratch. Third, we can describe the strategies symbolically at 

an implementation-independent level and have the system learn how to implement 

the necessary implementation-level details under varying conditions to be effective 

in situated scenarios.  

Implementation of a team of agents is a very complex task because the design 

includes not only the actions of agents, but also the coordination of agents. 

Reinforcement learning (RL) is a framework for general problem solving where an 

agent can learn through experience. 

Most work in the multiagent learning literature has treated the challenge of building 

team-level strategies as a Reinforcement Learning (RL) problem. RL generates a 

strategy that emerges from an incrementally modified sequential decision memory 

over many training iterations. In complex domains, bottom-up learning techniques 

require practical convergence to provide stable policies, and, by their nature, they do 

not bound the search problem beyond rewarding every decision according to its 

perceived value since they intend to discover policies. Moreover, they suffer from 

the exponential growth of the search space as a factor of the size of the input vector. 

Therefore, scaling bottom-up learning approaches to large search spaces is a very 

difficult problem. On the other hand, we hypothesize that top-down approaches can 

constrain the search space, resulting in a more effective method for learning in 

multiagent systems. 

A plan is initially a high-level specification for the implementation of a strategy, and 

it is decomposed into an ordered list of steps each of which may require the 

collaboration of multiple agents to implement its goal. A plan step, in turn, defines a 

specific role for each collaborating agent. A role describes the necessary conditions 

for executing and terminating the responsibilities of each given agent from that 

agent’s local perspective of the world. Since the sequence of actions required for 

each situation can vary, before any learning takes place, a plan step does not contain 

any implementation-specific details about what actions each collaborating agent  
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needs to take to perform its own task in that plan step. Therefore, at the outset, a plan 

is only a high-level specification of a strategy whose implementation-level details 

need to be acquired from experience in a situated environment. To acquire these 

details, our approach uses learning. 

Unlike systems that learn policies directly from experience in a bottom-up fashion, 

our system does not learn plans or policies. By training with different teams , the 

system acquires action knowledge that enables it to adapt its aim to specific 

situations. 

1.3      STATE OF THE ART 

We describe a framework for controlling and coordinating a group of robots for 

cooperative manipulation tasks. The framework enables a centralized approach to 

planning and control. We construct a system which adapts its coordination system 

according to the changing environment.   We based our learning approach on the 

idea of learning by that is, learning from practice, and we established the benefits of 

our solution experimentally. 

Our aim is to explore the possibility of learning multi-agent team coordination 

through reinforcement learning using potential fields as the state variables taken 

from the environment. Our system learns to assign correct roles to the appropriate 

agents according to the information taken from environment.   

As a testbed to demonstrate our methodology, we used the Teambots simulated 

robotic soccer environment. The soccer game provides a very rich multi-agent 

environment that is both dynamic, complex, and uncertain.  

Agents in the Teambots simulated soccer environment are capable of only basic 

actions which need to be sequenced in order to provide meaningful behavior.  

Teambots is an open source simulator, written in Java. It provides an environment in 

which we can test our team with opponents which have different capabilities. 
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To implement our system and to demonstrate the learning capability of our 

methodology, we manually implemented high-level individual skills based on the 

basic behaviors 

provided by the simulator. This hierarchical approach is akin to the layered learning 

in [Stone and Veloso, 1999; Stone, 1998], which used machine learning techniques. 

While constructing the state vector, potential field information are used as magnitude 

and direction of vectors for each agent, and they are parametrically quantized. 

Different from other studies,[20]  we take the resultant potential vector that affects 

on each agent  to decrease the state vector dimension. To achieve this, we create our 

potential field equations for each object in the environment, that give enough 

information for our sytem coordination. In addition to the perceptual state variables, 

the zones that  our agents occupy and the direction of the ball in that time interval are 

used as state variables.  

Our thesis proposes a methodology for constructing a learning by doing solution to 

complex multiagent problems in dynamic and unpredictable physical environments.  

We used Sarsa(λ) as the learning algorithm, and tile coding property of CMAC as 

function approximator.  

With three opponent teams which have different capabilities, we train our team by 

making 1000 matches. The first team is GoToBall Team which has the only ability to 

follow the ball.The second team is BrianTeam which is stronger than GoToBall 

Team and provides the basic soccer team capabilities. The third team is 

AIKOHomoG which is the strongest of three, which has an high level coordination 

system and whose agents are capable of abilities for good playing soccer.  
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CHAPTER 2 

 

LITERATURE SURVEY 

 

 

The subjects, reinforcement learning, potential fields and multi agent systems, are 

very popular in computer science. The robocup organizations provides us to find 

many articles written about this subjects. 

2.1       ROBOT SOCCER SYSTEMS 

2.1.1 INTRODUCTION 

The development of a multi-agent system amounts to searching for a method that 

will implement an intelligent system composed of multiple agents, cooperating with 

each other, with independent motion control. Multi-agent robotic systems are more 

flexible and fault tolerant as several simple robot agents are easier to handle and 

cheaper to build compared to a single powerful robot for different tasks. 

The soccer game is different from other multi-agent systems, in that the robots of one 

team have to cooperate, while facing competition from the opponent team.  The 

multi-agent control algorithm, in such an active environment, must comprise of low 

level kinematics and dynamics, and high level strategies to avoid obstacles and to 

compete with opponent robots. Such an environment needs fast processing 

algorithms and suitable robot structure. 
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From the standpoint of multi-agent systems, the soccer game is a good example of 

the problems in real world, which can be moderately abstracted.  

Multiple robot systems show better fault tolerance and are easier, cheaper and 

flexible. The collective behavior of different agents deals with cooperative and/or 

competitive behaviors. The robots have to cooperate with others to achieve specific 

objectives. task allocation and decomposition are associated with collective 

behavior. It also requires a form of communication for cooperation among different 

robots. Learning can comprise of knowledge and skill acquisitions. Improving the 

realtionship with environment through interaction, helps agents to adapt. 

The real-time decision making problem and action selection mechanism ( ASM) for 

each agent given its role such as striker and goal-keeper in a robot soccer game can 

be achieved using a multilayer perception ( MLP) to learn human judgment for the 

action selection.  

In order for a robot team to actually perform a soccer game, various technologies 

must be incorporated including: design principles of autonomous agents, multi-agent 

collaboration, strategy acquisition, real-time reasoning, robotics, and sensor-fusion. 

2.1.2 TEAMBOTS 

Teambots is a JAVA based simulator for multi-robot teams developed by Tucker 

Balch. It has different applications as well as robot-soccer simulator. The control 

applications of agents are also implemented in JAVA, however the simulator uses a 

description file for modelling the world. The simulator calls two functions from the 

strategy class, which extends abstractrobot.ControlSystemSS class. The first function 

Configure is called at the beginning of simulation. The other function, TakeStep, is 

called repeatedly by the simulation kernel to allow the programmer to read sensors 

and select actions. Unlike the previous simulators, there is no central controller. The 

environment is completely distributed. 

 8 

 



 

Figure 2-1 Teambots Simulator 

2.2      MULTI-AGENT SYSTEMS 

One of the most challenging goals in artificial intelligence (AI) is the development of 

artificial intelligent autonomous agents with human-level performance. The past few 

years has witnessed a tremendous interest in research and discussions on intelligent 

agents. With the ever increasing number of robots in an industrial environment, 

scientists and technologies are often faced with issues on cooperation and 

coordination among different robots and their self governance in a common work-

space. This has led to developments in multi-robot cooperative autonomous systems. 

With an aim to study issues such as group architecture, resource conflict, origin of 

cooperation, learning and geometric problems, groups of robots are constructed. [1]  

2.2.1 AGENT AND AUTONOMOUS AGENTS 

We define the term agent as just about anything that can perceive its environment 

through sensors and can act through actuators. Humans, animals are good examples 

for agents and also robots and certain communicating software programs (“softbots”) 

are accepted as agents. In the field of computer science the term agent refers to a 

program, or piece of program, that functions as an active entity in a computerized 

environment together with other processes or programs.  [2] 
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An agent is called autonomous if it operates completely autonomously, that is, if it 

decides itself how to relate its sensory data to motor commands in such a way that its 

goals are attended to successfully.  

For an agent to be autonomous it  has to reason about its environment before acting 

upon it. Figure 2-1 shows a diagram of an autonomous robot and its environment. 

SENSOR

 AGENT ENVIRONMENT 

ACTUATOR

 

Figure 2-2 An Agent Interacting With Its Environment 

2.2.2   LEARNING IN MULTI-AGENT SYSTEMS 

A system can learn problem decomposition by acquiring instances from a human 

operator and by generalizing on them. Learning from experience can help an agent to 

reduce the need for negotiations or make it more directed, avoiding harmful 

interactions. An agent can learn other agents’ intentions and beliefs as well as the 

characterization of the task environment. The modelling of another agent’s goals and 

beliefs will enhance its ability to reason about other agents and improve its ability to 

coordinate its own activities. It helps to reconsile the conflicting intentions within 

and/or between agents. Adaptive agents are those which change their behaviors in 

uncertain and dynamical environments. To cope with such situations, an agent must 

be self-adaptive, self learning, and should have the capabilities to face real situations 

through cooperative behaviors with other agents, as well as, be capable of perceiving 

environmental changes. The knowledge and intelligence can not be programmed as 

such in the beginning, however it can be acquired from real environments and 
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through reactive behaviors with other agents [1]. Reinforcement learning [3, 4] and 

classifier systems [5] have laid the basis for learning in multi-agent systems. 

2.2.3 MULTI-AGENT  SYSTEM STRUCTURES  

The agents in a multi-agent scenario, may have homogeneous or heterogeneous 

structures. In a homogeneous MAS, all of the agents have identical structure (goals, 

domain knowledge, and set of actions). They may differ by way of their sensor input 

and effector output. In a heterogeneous situation, agents can have different 

goals,domain knowledge and actions. The agents in such a system may be friendly ( 

benevolent ) or may be inhibiting each other ( competitive ). 

The two general types of designs seen among the multi-agent system structures are 

the hierarchical and behavior structures. They differ on the type of information they 

process and in their interconnections [6]. In a hierarchical structure, the control issue 

is divided along functional lines into progressive levels of abstraction of data. It uses 

computational functions for system decomposition. Processes handling data deal 

with different information content and hence such a system sequences data from a 

perception process, to a decision-making process, through a series of action 

processes to the actuators. In the case of the behavior structure, the control problem 

is broken into behaviors without any central intelligent agent present. Through 

interaction between the competing constituents, emergent behaviors result. Each 

behavior is nothing but a compound module carrying out the main control 

computatinal function. These systems require action arbitration mechanisms, as 

differeent actions arise from different behaviors. 

Compared with the previous research focus on the management of information 

among agents, the recent developments centers around the behavior management in 

an intelligent system. Hybrid control structures [7], a combination of hierarchical and 

behavior structures, can take the strengths from either of  the structures and can get 

away with the drawbacks associated with both. 

 11 

 



2.2.4 MULTI-AGENT COOPERATION 

Cooperation among agents can be explicit or implicit. In case of the explicit 

information exchange, the agents perform actions to benefit other agents. However, 

in the implicit case, agents carry on with their own goal-seeking process and these 

actions will be beneficial to others. Information exchange through communication is 

an effective way for interaction among the agents. Through communication an agent 

can get a global view of the problem at hand, helping to take appropriate local 

decisions with a global view point.  

Communication among agents opens a multitude of issues in the MAS scenario. 

Pasing wrong information to misguide another agent, decision to stop 

communication by a single or a group of agents, the degree of sharing information, 

etc., are issues to be examined in greater detail. 

2.3  POTENTIAL FIELDS 

When you think of potential fields, picture in your mind either a charged particle 

navigating through a magnetic field or a marble rolling down the hill. The basic idea 

is that behavior exhibited by the particle/marble will depend on the combination of 

the shape of the field/hill. Unlike fields/hills where the topology is externally 

specified by environmental conditions, the topology of the potential fields that a 

robot experiences are determinded by the designer. More specifically, the designer 

(a) creates multiple behaviors, each assigned a particular task or function, (b) 

represents each of these behaviors as a potential field, and (c) combines all of the 

behaviors to produce the robot’s motion by combining the potential fields. 

[Appendix]  

The potential field approach has been first proposed by Khatib[9] as an on-line 

collision avoidance approach. According to this, the robot moves in a field of forces, 

it senses its environment during motion execution and should be attracted toward its 

goal (attractive potential field) while being repulsed by obstacles (repulsive potential 

fields).[10] 
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They have a low computational overhead in comparison to higher level approaches 

such as path planning, they require simple, local knowledge about the environment; 

and because they do not require simple, local knowledge about the environment; and, 

because they do not require simple, local knowledge about the environment; and, 

because they do not require computationally expensive repair, such as replanning, 

when the environment changes, they are robust in dynamic situations. On the other 

hand, potential fields have a tendency  to guide robots to local rather than global 

minima. However, in highly dynamic environments such as soccer, this is not a 

major problem as the world quickly changes and jogs the robot from the local 

minimum. [11] 

In addition to static obstacle avoidance, potential fields may also be used for multi-

agent formations and coordination. In [12],[13], Balch et al describe how robots can 

form and maintain formations using only local information to calculate potential 

fields. They name their approach “social potentials” because the potential functions 

are calculated using the distances between teammates. In [14][15], potential fields 

are used to position robots for particular roles.The potentials encode heuristic 

information about the environment. This information takes the form of attractive 

potentials that guide robots to desirable areas of the field. [11] 

2.3.1 VECTOR FIELDS 

The vector field model aims to associate with each point a vector indicating which 

direction the robot should head while it passes through that point. The collection of 

vectors at each point in a two dimensional field is called a potential field because it 

represents the syntetic energy potentials that the robot will follow. 

A goal seeking schema (Figure 2) sets up an attractive field of vectors oriented 

towards the goal. On the other hand an obstacle-avoidance schema (Figure 3) 

associates with each obstacle a repulsive field. A row of obstacles, such as a wall, are 

combined to create a vector field, which would tend to move an object towards either 

end of the wall. For each of these types of fields,the strength of the vectors decreased 
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with the distance from the object creating the field. The schemas are then combined 

by summing their associated vector fields. [16] 

Some types of potential fields are shown below: 

 

Figure 2-3 An Attractive Potential Field, SeekGoal Behavior 

 

Figure 2-4 A Reject Potential Field, AvoidObstacle Behavior 

 

Figure 2-5 Potential Field Generated by An Attractor and An Obstacle 
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Figure 2-6 (a)Uniform, (b) Perpendicular  Potential Field 

                       

Figure 2-7 (a)Tangential, (b) Random  Potential Field 

Two types of methods for generation of potential fields are shown in Appendix1. 

2.4     REINFORCEMENT LEARNING 

2.4.1    REINFORCEMENT LEARNING 

Reinforcement learning (RL) is a generic name given to a family of techniques in 

which an agent tries to learn a task by directly interacting with the environment. The 

method has its roots in the study of animal behavior under the influence of external 

stimuli. The agent’s duty is to find a way, mapping states to actions. Figure 2-3 

shows the agent’s learning cycle during the interaction with the environment. 

Reinforcement learning is the problem faced by an agent that learns behavior 

through trial-and-error interactions with a dynamic environment. 
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Figure 2-8 Reinforcement Learning Schema 

There are two main strategies for solving reinforcement-learning problemS. The first 

is to search in the space of behaviors in order to find one that performs well in the 

environment. This approach has been taken by work in genetic algorithms and 

genetic programming, as well as some more novel search techniques (Schmidhuber, 

1996). The second is to use statistical techniques and dynamic programming 

methods to estimate the utility of taking actions in states of the world. 

Reinforcement learning differs from the more widely studied problem of supervised 

learning in several ways. The most important difference is that there is no 

presentation of input/output pairs.  Instead, after choosing an action the agent is told 

the immediate reward and the subsequent state, but is not told which action would 

have been in its best long-term interests. It is necessary for the agent to gather useful 

experience about the possible system states, actions, transitions and rewards actively 

to act optimally. Supervised learning can be achieved by numeric methods such as 

NN or by deliberate planning where the supervisor supplies relevant information 

about the environment to the agent. Most of these algorithms need representation or 

model of the world namely the predefined knowledge of the world. Modeling of the 

world is not possible or feasible for most of the complex real world probleme. RL 

methods are generally independent of the environment that the agent experiences. 

RL methodology is based on agent’s interactions with the environment.  Another 

difference from supervised learning is that on-line performance is important: the 

evaluation of the system is often concurrent with learning.  Online performance of a 

RL algorithm is very important with respect to other supervised learning techniques. 

Generally for real world and simulated environments the agent should perform its 

actions in limited amount of time. 
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For real world tasks, world models are not available a priori, they have to be 

developed first. For most complex problems a complete model is not even needed, 

since it is unlikely that the agent (policy) will traverse all states – the agent’s 

subjective world is only an approximation of the objective world. RL provides us a 

framework for training an agent by exploring an environment and learning from the 

outcomes of such trials [17]. In RL problems, an agent receives input from the 

environment, selects and executes an action, and receives reward which tells how 

good its last action was. The goal of the agent for each state is to select the action 

which leads to the largest future discounted cumulative rewards which is the 

definition of the learning task itself [18]. To solve this problem RL defines two 

parameters as state value and Q-value. Q-value is the average estimated gain by 

taking a specific action in a specific state. The state value is the best action’s Q-

value. This recursive definition is the underlying idea behind the RL methods. 

Calculation of these values may vary among definitions and implementations of 

algorithms but the fundamental idea is the same.  

 In the last two decades, RL has been extensively studied in artificial intelligence. 

The field of single-agent RL is nowadays mature, with well-understood theoretical 

results and many practical techniques (Suttonand Barto, 1998). 

On the contrary, the field of multiagent reinforcement learning in which many agents 

are simultaneously learning by interacting with the environment and with each other, 

is less mature. The main reason is that many theoretical results for single-agent RL 

do not directly apply in the case of multiple agents. There are also computational 

issues like the difficulty of dealing with exponentially large state/action spaces, and 

the intractability of several distributed decision making algorithms (Bernstein et al., 

2000). 

Recent efforts involve linking multiagent RL with game-theoretic models of 

learning, with promising results (Claus and Boutilier, 1998; Wang and Sandholm, 

2003). 
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2.4.2    REINFORCEMENT-LEARNING MODEL 

In the standard reinforcement-learning model, an agent is connected to its 

environment via perception and action. On each step of interaction the agent receives 

as input, i, some indication of the current state, s, of the environment; the agent 

chooses an action, a, to generate as output. The action changes the state of the 

environment, and the value of  this state transition is communicated to the agent 

through  a scalar reinforcement signal, r. The agent’s behavior, B, should choose 

actions that thend to increase the long-run sum of values of the reinforcement signal.  

Formally, the model consists of 

• a discrete set of environment states, S; 

• a discrete set of agent actions, A; and 

• a set of scalar reinforcement signals; typically {0,1}, or the real numbers. 

The figure also includes an input function I, which determines how the agent views 

the environment state. 

An intuitive way to understand the relation between the agent and its environment is 

with the following example dialogue. 

              Environment: You are in state 65. You have 4 possible actions.                        
Agent:               I’ll take action 2. 

              Environment:  You received a reinforcement of  7 units. You are now in    
state 15.    

              Agent:               I’ll take action 1. 

              Environment:  You received a reinforcement of  -4 units. You are now in     
state 65. You have 4 possible actions.          

             Agent:               I’ll take action 2. 

             Environment:  You received a reinforcement of  5 units. You are now in 
state 44. You have 5 possible actions. 

              .                          . 

              .                          . 

              .                          .              
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The agent’s job is to find a policy π, mapping states to actions, that maximizes some 

long-run measure of reinforcement. In general, we expect that the environment will 

be non-deterministic; that is, that taking the same action in the same state on two 

different occasions may result in different next states and/or different values. 

Some aspects of reinforcement learning are closely related to search and planning 

issues in artificial intelligence. AI search algorithms generate a satisfactory trajectory 

through a graph of states. Planning operates in similar manner, but typically within a 

construct with more complexity than agraph, in which satates are represented by 

compositions of logical expressions instead of atomic symbols. These AI algorithms 

are less general than the reinforcement-learning methods, in that they require a 

predefined model of state transitions, and with a few exceptions assume 

determinism. On the other hand, reinforcement learning, at least in the kind of 

discrete cases for which theory has been developed, assumes that the entire state 

space can be enumerated and stored in memory – an assumption to which 

conventional search algorithms are not tied. [19] 

2.4.3    EXPLORATION POLICIES 

An important issue in multiagent RL is how an agent chooses his exploration policy.  

One major difference between reinforcement learning and supervised learning is that 

a reinforcement-learner must explicitly explore its environment. If all observed 

rewards are exactly equal, a simple method is to select a joint action in state s 

according to a Boltzmann distribution over joint actions using the current Q(i)(s, a) 

(which will be the same for all agents). Each agent can sample a joint action from 

this distribution by using the same random number generator (and same seed). This 

ensures that all agents will sample the same exploration action a. Then each agent 

can select his action ai as the component i of the selected a. 

Q-learning with an exploration policy like the above and common knowledge 

assumptions about parameters like the random number generator and seed, implies in 

effect that each agent runs Q-learning over joint actions identically and in parallel. 
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This guarantees the convergence of the algorithm, under conditions similar to those 

in single-agent Q-learning. Equivalently, if a transition model is available, value 

iteration can also be performed by each agent identically. In this way, the whole 

multiagent system is effectively treated as a `big' single agent, and the learning 

algorithm is simply reproduced by each agent.  

2.4.4 MARKOV DECISION PROCESSES 

Problems with delayed reinforcement are well modeled as Markov decision 

processes MDPs). An MDP consists of 

• a set of states S, 

• a set of actions A, 

• a reward function R : S × A → R, and 

• a state transition function T : S × A → Π(S), where a member of Π (S) is a 

probability distribution over the set S (i.e. it maps states to probabilities). We 

write T(s, a, s') for the probability of making a transition from state s to state 

s' using action a. 

The state transition function probabilistically specifies the next state of the 

environment as a function of its current state and the agent's action. The reward 

function specifies expected instantaneous reward as a function of the current state 

and action. The model is Markov if the state transitions are independent of any 

previous environment states or agent actions.[19] 

In this section we address the single-agent case. In an MDP we assume that in each 

state st at time t the agent receives from the environment an immediate reward or 

reinforcement R(st) Є IR. The task of the agent is to maximize its total discounted 

future reward R(st) + γR(st+1) + γ2R(st+2) + _ _ _ , where γ Є [0, 1] is a discount rate 

that ensures that even with infinite sequences the sum is finite. Clearly, the 

discounted future reward will depend on the particular policy of the agent, because 

different policies result in different paths in the state space. 
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Given the above, the optimal utility of a state s for a particular agent can be defined 

as the maximum discounted future reward this agent can receive in state s by 

following some policy:                                                                                                        
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where the expectation operator E[.] averages over rewards and stochastic transitions. 

Similarly, we can define an optimal action value Q*(s, a) as the maximum 

discounted future reward the agent can receive after taking action a in state s. A 

policy π*(s) that maximizes the above expression is optimal policy. We should note 

that there can be many optimal policies in a given task, but they all share a unique 

U*(s) and Q*(s, a).   
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This is called the Bellman equation, and the solutions of this set of equations (one 

for each state) define the optimal utility of each state. A similar recursive definition 

holds for action values: 
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2.4.4.1   Value Iteration 

A simple and effcient method for computing optimal utilities in an MDP when the 

transition model is available is value iteration. We start with random utility values 
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U(s) for each state and then iteratively apply (Eqn 2.2) turned into an assignment 

operation: 
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(Eqn. 2-4) 

It is repeated until convergence which is measured in relative increase in U(s) 

between two successive update steps. Value iteration converges to the optimal U*(s) 

for each state. 

2.4.4.2  Q-Learning 

 

One of the disadvantages of value iteration is that it assumes knowledge of the 

transition model P(s´|s, a). However, in many applications the transition model is 

unavailable, and we would like to have a learning method that does not require a 

model. Q-learning is such a model-free method in which an agent repeatedly 

interacts with the environment and tries to estimate the optimal Q*(s, a) by trial-and-

error. In particular, the agent starts with random estimates Q(s, a) for each state-

action pair, and then begins exploring the environment. During exploration it 

receives tuples in the form (s, R, a, s´) where s is the current state, R is the current 

reward,a is an action taken in state s, and s´ is the resulting state after executing a. 

From each tuple, the agent updates its action value estimates as : 
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where λ Є (0, 1) is a learning rate that controls convergence. Note that the 

maximization in (Eqn 2.5) is over all actions a´ from the resulting state s´. 

If all state-action pairs are visited infinitely often and λ decreases slowly with time, 

Q-learning can been shown to converge to the optimal Q*(s, a). Moreover, this holds 

irrespective of the particular exploration policy by which the agent selects its actions  
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 above. A common choice is the so-called є-greedy policy by which in state s the 

agent selects a random action with probability є, and action a = arg maxa´Q(s; a´) 

with probability 1- є, where є < 1 is a small number. Alternatively, the agent can 

choose exploration action a in state s according to a Boltzmann distribution 
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 (Eqn. 2-6) 

where τ controls the smoothness of the distribution (and thus the randomness of the 

choice), and is decreasing with time. 

2.5     CEREBELLAR MODEL ARTICULATION CONTROLLER 

Cereballar Model Articulation Controller ( CMAC) was first described by Albus in 

1975 as a simple model of the cortex of the cerebellum. [2] It is a biologically 

insprired learning method like neural networks and is generally used as a function 

approximator and state generalizer in RL problems.  

[3] present a novel combination of CMACs and world models. CMACs use filters 

mapping sensor based inputs to a set of activated cells. Each filter partitions the input 

space into sub-sections in a prewired way such that each ( possibly multi-

dimensional) subsection is represented by exactly one discrete cell of the filter. For 

game playing, a filter may represent different but similar positions and the activated 

cell may represent the presence of a particular position. In a RL context each cell has 

a Q-value for each action. The Q-values of currently active cells are averaged to 

compute the overall Q-values required for action selection. 

In principle filters may yield arbitrary divisions of the input space, such as 

hypercubes. To avoid the curse of dimensionality one may use hashing to group a 

random set of inputs into a equilanve class. 
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Figure 2-9 A two input CMAC (table form) 

In Figure 2-9, there are 15 input quantization steps between [0, 1].  Any value 

between [0, 1] is mapped to an integer value between [0, 15].  The indexes ( q1, q2) 

are used to look up weights in na two-dimensional lookup tables ( na = 5 is the 

number of association neurons activated for any input).  The number of AUs 

(association units shown in Figure 2-9) determines the generalization of a CMAC. 

The AU tables store one weight value in each cell, and cells are displaced along each 

axis by some constant. With this displacement every AU table in association layer 

gains ability to activate different neurons with respect each other. [20] 

2.6 FEEDBACK FROM THE OTHER STUDIES 

Ashley Tews and his team RoboRoos is a good example for potential field planner. 

Their system is based on the superposition of potential fields. In the paper [26], they 

are concentrated on multi-robot cooperation with potential fields. The planner which 

is centralised controller, examines the state of the game from the robot’s perspective 
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and makes decisions as to that robot’s next action and uses the potential fields to 

determine locations for the robots to carry out those actions. 

             

Figure 2-10 Contour plot example showing the kicking coordinate potential field 

CS Freiburg [15] also used potential fields for the evaluation of the roles. 

Distinguishing between different areas of responsibility, 4 roles are created: 

• Active: which is in charge of dealing with the ball 

• Strategic: which is in charge of securin the defense 

• Support: which is in charge of supporting the team members in different 

areas considering the team situation, offense or defence. 

• Goalkeeper: which is in charge of securing its goal. 

 

Figure 2-11 Potential field for determining the strategic position 

Role distribution is similar to our study but we are not interested in which situation 

the tam is in.  
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The team members finds the most appropriate positions for each 3 role, active, 

strategic, support by using potential fields. After a field player has determined the 

best active, strategic, and support poses from its perspective, it estimates utilities for 

each role, which are based on the role itself and on an approximation of the time it 

would take the player to reach the corresponding preferred pose. The utility for a 

preferred pose p  is calculated from the following constituents. 

• Distance to the target position 

• Angle necessary for the robot to turn toward the preferred position 

• Objects between the player and the target position 

• Angle necessary to turn the robot at the preferred position into the orientation 

of the preferred pose. 

The total utility for the preferred pose p is computed as the the weighted sum of all 

criteria. 

In order to decide which role to take, a player sends the utilities estimated for each 

role to its teammates and compares them with the received ones. Each player 

objective is to tale a role so that the sum of the utilities of all players is maximized.  

RoboRoos and CS Freiburg find the best location to shoot, to defense and to 

suppport in the field using potential fields. They calculate every effecting potential 

field for every point in the field.  

A similar study with CS Freiburg can be seen in [11]. It shows how heuristic bidding 

functions that use globally shared information may be used to determine which robot 

is the most suitable role for each task and it also describes how obstacle avoidance 

may be combined with coordination through the use of artificial potential fields.  

 

Figure 2-12 Bidding function for the primary attacker 
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The ClockWorkOrange[21] also uses utility functions for selecting the most 

appropriate role. Besides coordinating the team as a whole the Team skills module 

has a secomd task: selecting the next action for a robot which will benefit the team as 

a whole the most. In the paper, action selection can be defined as the problem of 

finding an optimal policy for mapping an agent’s internal state to an action. Optimal 

is defined as maximizing a certain optimality criterion. Markov Decision Process is 

used in action selection algorithm. 

In multi-agent Markov Decision Process, there are S states, N agent and A actions. 

The reward function R(s) determines receiving rewards of team of agents in state S. 

Each agent should choose its action to maximize the expected reward. 

The policy is summarized in the paper as following: 

Simulate each of the actions in set A on the current world state, evaluate the reward 

of the resulting world state, estimate the probability each action will succeed and 

calculate the utility of each action. The utility is the product of the reward and the 

probability of success. For each resulting world state we can repeat this process, 

updating the utility of the end state by multiplying the probabilities of success of the 

actions in the sequence leading to this end state with the reward of the end state. [4] 

Hwang [22] uses Q-Learning for its cooperative strategy architecture. Temporal-

difference has some advantages for solving reinforcement learning problems. TD 

does not require a model of the environment, of its reward and of next-state 

probability distributions and TD updates the estimate value just only waiting one 

time step, that is, it can learn without final outcome. Since accelerating the 

convergence rate and avoiding to a local optimum problems occured he develos its 

Adaptive Q-Learning algorithm The algorithm regulates the three parameters: 

• learning rate 

• discount rate 

• temperature T in Boltzmann distribution 

dynamically. 
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Figure 2-13 Adaptive Q-Learning algorithm[ 22] 

Q-Learning  causes a lot of researchers to study on that subject because of its 

approprateness to dynamic, complex and model free systems. 

Q(λ) Learning is selected because of the eligibility traces utility. Tatlıdede [20] used 

Q(λ) Learning in his research. The state  includes the relative distances between each 

player and the distances between each player and ball. So it has a big state space. Its 

system is a distributed sytem and each player decides its own action according to the 

state it senses. Different from him we used the oppurtunity of potential fileds and 

decrease the dimensionality of positional state variables, and can add more 

distinguishing variables like ball direction. Tatlıdede selects the basic actions like 

shoot, move, dribble as its action set, but we prefer to use roles like attack, defense 

and support. 

Wiering,[3] Stone[4][23] are the ones which used CMAC as function approximater 

in their Reinforcement Learning Level. 
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CHAPTER 3 

 

PROPOSED METHOD 

 

 

3.1      SYSTEM REPRESENTATION 

Soccer is a complex game where a team has to meet several requirements at the same 

time.The ball control is a hard and complex task, therefore it requires real talent and 

that is why the social community rewards soccer players. A good cooperative system 

includes dynamic role switching, good robot behaviors and formations. 

Our system is acentralized system that learns to assign appropriate roles to the 

teammates according to the dynamically changing conditions. The environment is 

not under the control of any team, since you can not control your opponents. In most 

of the soccer matches the teams are aware  of their opponent’s strategies. So the 

experiences learnt while playing are extremely important. 

We proposed a self-learning cooperative strategy for a robot soccer game. We select 

reinforcement learning because it suggests an unsupervised learning through trial and 

error. The sytem is free to  try actions in its action set in real or simulated 

environment and receives rewards for all of its actions. The system’s goal is to 

choose actions so as to maximize the expected sum of rewards over some time 

horizon.           
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        Figure 3-1 The agent-environment interaction  

The soccer game environment is so dynamic that it is hard to track the fas

environment. The sensing system should be powerful, the decision system

fast and adaptive. To model the environment is hard, the system should lea

do with the rewards and punishments it takes. Since the goal of the teams

the matches by scoring more goals to the opponent goal, the rewards are th

the opponent’s goal and the punishments are the scores at the home goal. 

Since TD methods can learn directly from raw experience without a mo

environment’s dynamics and update estimates based in part on oth

estimates, without waiting for a final outcome[24] we decide to use th

learning level.  

Learning an action-value function rather than a state-value function is mor

in our role assignment system. The aim is to select the most valuable act

condition the system senses, so Q( s, a ) values are used. 

 Q [ ),(),(),(),( 111 ttttttttt asQasQrasQas ]−++= +++ γα            (Eq

where α  is the learning rate and γ  is the discount rate.  

This update is done after every transition from a nonterminal state st.  

It is straightforward to design an on-policy control algorithm based on

prediction method.  As in all on-policy methods, we continually estimate 
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behavior policy π, and at the same time change π toward greediness with respect to 

Qπ . [24] 

We select Max-random exploration rule which selects the greedy action with 

probability Pmax and selects a random action. 

1. Generate a number ran from the uniform distribution [0, 1] 

2. if   ran ≤  Pmax 

2.1   select action with highest Q-value 

    2.2  Else select random action a { }nAAA ,........, 21∈  

Figure 3-2 Pmax Algorithm 

The important issues in Q-learning is the problem of how to accelerate the 

convergence rate and how to avoid converging to a local optimum. In order to solve 

these issues, three parameters that can affect the performance of Sarsa-learning, 

which are learning rate, discount rate and  exploration rate, are left variable since 

fixing the three parameters is not suitable for learning systems because systems will 

easily converge to a local optimum. 

Regulating the three parameters dynamically is thus important.  

For exploration purposes, it is efficient if the learning rate is taken a large value and 

the discount rate  small in the initial stage of learning in order to ensure that systems 

can have more opportunities to search unknown knowledge. 

During the learning phase Pmax is increased steadily to decrease exploration rate. At 

the very beginning , the agent explores many actions in a given state. 

We train our team during matches, each match is a trial or an episode as defined in 

Figure 3-3. Not only the action and state pair before the scoring of a goal is 

important, but we need to consider also the previous pairs that bring us reward. 

 Since Sarsa-learning algorithm only use one-step data, to take the effect of the 

previous pairs by using eligibility traces which are used to keep track of all the 

actions taken by the agent to reach a terminal state. The trace marks the memory 

 31 

 



parameters associated with the event as eligible for undergoing learning changes. 

When a TD error occurs, only the eligible states or actions are assigned credit or 

blame for the error.    

The idea in Sarsa( λ ) is to apply the TD(λ ) prediction method to state-action pairs 

rather than to states.  

             ( )aseasQasQ ttttttt ,),(),(1 αδ+=+                                        (Eqn 3-2) 

where 

             ( ) ( )tttttt asQasQr ,, 111 −+= +++ γδ ,                                            (Eqn 3-3) 

 

For all s, a             

( ) ( ) 1,, 1 += − asease tt γλ  if tss = and taa = ;         (Eqn 3-4) 

 ( ) ( )asease tt ,, 1−= γλ  otherwise.         (Eqn 3-5) 
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Initialize Q( s, a ) arbitrarily and e( s, a ) = 0, for all s,a 

Repeat (for each episode): 

      Initialize s, a 

      Repeat (for each step of episode): 

               Take action a, observe r, s' 

              Choose a'  from s' using policy derived from Q 

               δ ← r + γ Q( s' ,a' ) – Q( s, a ) 

               e( s, a ) ← e( s, a ) + 1 

                For all s, a: 

                          Q( s, a ) ← Q( s, a ) + α δ e( s, a ) 

                          e( s, a ) ← γ λ e( s, a) 

                 s ← s’ ; a ← a’ 

        until s is terminal   

Figure 3-3 Tabular Sarsa(λ) 

3.2      ACTION REPRESENTATION 

Soccer is a complex game where a team usually has to meet several requirements at 

the same time. To ensure that in any game situation a team is prepared to defend its 

own goal, but also ready to attack the opponent goal, the various team players have 

to carry out different tasks, and need to position themselves at appropriate strategic 

positions on the field. [15] 

A team strategy is the distribution of certain roles over the available field players. 

We define the roles as our actions of learning system. A role consists of a 

specification of an agent’s internal and external behaviors.[25] 
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• Attacker: is in charge of dealing with the ball. Its aim is approaching the ball 

and bringing the ball forward to the opponent goal. Its role is important 

because it provides to take rewards. It should position the ball between the 

opponent goal and itself. 

• Defencer: is in charge of securing the defense. Its aim is preventing the ball 

entering its own goal.  It finds the most suitable position between the ball and 

its goal without interrupting the goalkeeper. Its role is important because it 

avoids to take punishments. 

• Supporter: is in charge of supporting the other two players. Its aim is to stay 

ready to be assigned the appropriate role, attacker or defencer. It also helps 

the other teammates by preventing the opponent players actions. 

• Goalkeeper: is in charge of securing its own goal. It stays in its goal area and 

moves depending on the ball’s position and direction. 

3.3      STATES REPRESENTATION 

Since RL maps states to actions, one of the main issues of an RL application is 

modeling the state space. In soccer game state variables are numerous and the 

positional states are also continuous. The continuity in state variables is handled by 

quantization. Combining similar varibles decreases the number of state variables. 

Thus we are able to eliminate some of the state variables. CMACs method are used  

for primarily function approximation but also by quantization capability CMACs 

makes RL possible to applicable for large tasks such as soccer game. [ 23] 

Soccer game has a dynamic environment containing a ball, two goals and players. 

The coordinates of these objects in the environment are  important informations for 

the system to coordinate its team members. Some researchers [25] use these items’ 

relative distances to agent, composed of distance r and angle θ between the normal 

line and the agent as state variables.  With increasing number of agents, state space 

gets bigger and bigger and makes computation harder. So we select to use the 

opportunity of potential field methods.  
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Although we try to decrease the dimension of state vector with using resultant 

potential field, we can not say that we reach an reasonable dimension. Since we can 

not meet most of the states, CMAC value approximation method is used. 

3.3.1   OUR POTENTIAL FIELD STUDIES 

In our studies we used potential fields both as  state variables of our reinforcement 

learning system and  for the computation of our actions.  

This allows us to benefit from the speed and flexibility of potential fields. The 

possible impulsive and attractive potential forces on a soccer field may be similar to 

the fields in Figure 3-4. [ 16] 

 

 

Figure 3-4 Attractive and Impulsive Forces 

 

We select the equation below for the computation of our potential fields. 
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0

exp*α                                        (Eqn. 3.2) 

The benefit of using exponential equation is the easy implementation of variance, or 

the sharpness the potential field. 
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Figure 3-5 Figure of  Equation 3-2 where α =1, a = 1, b = 1, x0 = 0, y0 = 0 

 

Figure 3-6 Figure of Equation 3-2 where α =1, a = 0.8, b = 0.2,  x0 = 0.8, y0 = -0.5         

As state variables, for each three team member we take the magnitudes of resultant 

potential field exerted on each member, and the angle of the vector which directs 

each member in the potential environment. For the coordination of team behaviors in 

the learning level , the vectors of the ball, opponents and teammates take care. Ball 

has the most influencing field, and it is attractive effect on the member so it takes a 

negative value. The opponent has an repulsive effect to prevent collisions and to find 

clear path to the goal. But it has the least influencing field, because the members 

should also block the opponents, should go near to the opponents to take ball in case. 

The teammate has also an impulsive effect to prevent collisions and it has an bigger 
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influence than opponent field because team members should not block their team 

members and should help them to have a clear path. 

• BALL FIELD: 
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−= ball

ball

ball
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b
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22

exp*α                         (Eqn. 3-3) 

                 

Figure 3-7 Figure  of Potential Field and Vector Field of Ball Field 

 

• TEAMMATE FIELD: 
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Figure 3-8 Figure of Potential Field and Vector Field of  Teammate Field 
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• OPPONENT FIELD: 
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Figure 3-9 Figure of Potential Field and Vector Field of  Opponent Field                      

In Figure 3-10, graphical illustration of the one ball positioned at (0,0) point, one 

opponent positioned at (1,1) point, one teammate positioned at (1,-1) point is shown. 

          

Figure 3-10 Figure of Potential Field and Vector Field of  Opponent Field   

of one ball, one teammate and opponent in the area          

Since these state values are continuos, we should quantize them to make differences 

between states. 
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3.3.2   MEMBER’S ZONE 

The other state variable is the zones the team member is occupied in in that time 

interval. 

 

Figure 3-11 Environment Divided Into 3 Zone s 

3.3.3   BALL DIRECTION 

The last state variable is the ball direction. It gives knowledge about in which region 

the ball moves. The ball driection state is important for our sytem and it is one of the 

difference from the other systems. The detailed computation method is explained in 

4.3.3. The state is quantized as quadrants. The region which the ball enters gives the 

information if the ball is approaching our goal or the opponent’s goal. 

                                             

3.4   REWARD REPRESENTATION 

The use of a reward signal to formalize the idea of a goal is one of the most 

distinctive features of reinforcement learning. The agents always learns to maximize 

its reward, so that it becomes a crucial input for a system. A reward signal is a prior 

knowledge to an agent about how to achieve what we want it to do. The reward 

signal is our way of communicating to the system what we want it to achieve, not 

how we want it achieved. [24] 
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Since many reward finding have been already defined, its formalization remains a 

crucial issue. For example, if we define  the zone which the ball occupies as the 

reward signal and take as a positive reward the zone which it occupies near to the 

opponent’s goal, our system could make the mistake of dribbling the ball to the 

defined zone but forgetting to score by shooting the opponent’s goal or forgetting to 

defence its own goal. Because in reinforcement learning, the only aim of the system 

is to maximize its reward value. So dribbling the ball in that defined zone would be 

this maximization. 

As mentioned before , in soccer game our aim is to beat the opponent team by 

scoring more goals to their goal. So any score in the opponent’s goal provides us 

reward , r = 1, where r is the reward signal. And any score in our goal gives us 

punishment, r = -1.  In any other case the system takes r signal as r = 0. 
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CHAPTER 4 

 

EXPERIMENTS AND RESULTS 

 

 

Teambots simulation program is selected as the testbed for our experiments. It 

provides a a distributed controlled system. Teambots agents has the basic abilities 

such as 

• Move(x,y,v): Move to the point(x,y) with velocity v, 

• Turn(θ): Turn its heading as defined angle θ; 

• Kick: Kick the ball if canKick situation is available, 

• Sense: Senses ball, opponents and teammates, 

They also have communication property, they can take the directives sent and also 

informs the teammates about the objects he senses. 

Our team has 4 members. Each member is in charge of learning except one which is 

assigned as goalkeeper. Its role is not only to protect his goal but also to inform the 

roles assigned in the role assignment level to its teammates by communicating with 

them. 

Teambots provide distributed system based teams, but in our method we construct a 

centralised control system and manage this by giving the role assignment task to the 

goal-keeper. After constructing a communication system, we can get the information 

about the coordinates of the robots and the ball in the environment for using in our 

system. The collection of informatin, learning and role-assignment level is worked at 
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the interval which is seperated for the member which we assigned as goal-keeper. So 

we can define it as role assigner. 

The Q values are stored in files which are defined as CMAC files, which are saved as 

dat file.[38] At the very beginning of the program it is controlled that if these are 

created before or not. If they are not created, it means that it is the beginning of the 

learning and the sytem knows nothing. If  they are created, it means that learning is 

done before and the system knows as much as the storage of files.  

The number of CMAC files is the number of our actions. Their aim is the storage of 

Q(s, a) values. Since our state space is so big we use the coarse coding algorithm for 

the generalization between them, hashing function to  store the Q(s, a) values in a 

smaller space. 

We use 4 tiles, and our storage matrices’ dimension is 5000. At the beginning of the 

learning the  matrices which contain the Q(s, a) and e(s,a) values are zero. For each 

state 4 indexes are created by the function StateToActiveIndexes , for the selected 

action a the CMAC(a) file is opened and the changing values are stored in the  4 

indexes of the matrices of the CMAC (a) fie. 

Each match is defined as one episode or trial as defined in Sarsa (λ ). In Figure 4-1 

the total algorithm for each step is shown. In Figure 4-2 the Role Assignment and 

Learning Level is shown in detail and in Figure 4-3 State Assignment is shown in 

detail. 
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Figure 4-1 Cooperative Sytem Architecture 

Action 
StateTo 

ActiveTiles
Choose ActionState 

CMAC(a) file 

is opened 

Update Q(s,a) and e(s,a) values Reward 

 

Figure 4-2 Role Assignment and Learning Level Block Diagram 

• StateToActiveTiles: 2 dimensional hashing and tile coding diagram is shown 

in Figure 2.9.  Our state space is 10 dimensional. After state assignment, a 10 

dimensional matrix is entered to StateToActiveTiles program. 4 tiles are used 

in our sytem. 4 indexes between 0-4999 are created for the entering state 

matrix. After this step these 4 indexes are used during the learning level 

representing the state matrix. 
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• Choose Action: Max-random exploration rule is used as shown in          

Figure 3-2. 

• CMAC(a) file is opened: For 6 actions 6 CMAC file is available. For the 

selected action a, CMAC(a) is opened and the storage values are presented to 

be worked on. 

• Update Q(s,a) and e(s,a) values: Sarsa(λ) algorithms are used as shown in 

Figure 3-3. λ is selected as 0.9. Learning rate is 1 at the beginning and at each 

trial the learning rate is multiplied with decaylearning rate which is 0.98. 

4.1      STATE ASSIGNMENT 

Member   

0001 
ENV.INF ENV. INF Potential Field Func.

Vector Field Func. 

Member Zone Func.Member 4 
Member

0002 
ENV. INF 

(Goalkeeper) Ball Direction Func. 

Member 

0003 
ENV. INF 

State ( has 10 element) 

 

Figure 4-3 State Assignment Block Diagram 

ENV. INF represents the environmental information which includes ball position, 

teammembers’ positions, opponents’ positions sensed by the teammembers. The total 

information is collected by goalkeeper and is used in the state equations. State space 

has 10 elements as shown in Table 4-1. 
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Table 4-1 State Elements 

States Definitions # of Variables 

S[1] The resultant potential field magnitude effected on player with ID=1 3 

S[2] The resultant vector field angle effected on player with ID=1 4 

S[3] The resultant potential field magnitude effected on player with ID=2 3 

S[4] The resultant vector field angle effected on player with ID=2 4 

S[5] The resultant potential field magnitude effected on player with ID=3 3 

S[6] The resultant vector field angle effected on player with ID=3 4 

S[7] The zone which player with ID=1 occupied. 3 

S[8] The zone which player with ID=2 occupied. 3 

S[9] The zone which player with ID=3 occupied. 3 

S[10] The ball direction 4 

4.1.1    POTENTIAL AND VECTOR FIELD FUNCTIONS 

                

Figure 4-4TeamBots Simulation Program andPotential Field Shown Simultaneously 
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Since Teambots is an open source program, it lets the users change everything. For 

the visual following of potential fields, and the dynamically changing environment 

we add the potential field window by changing java file named SimulationCanvas,  

as shown in Figure 4-4. This potential field simulation provides us a simultaneous 

vision inspection of our system. Green areas represent the least values of potential 

fields which are the attractive fields such as ball field, opponent goal field. Red areas 

represent the most values of potential fields which are the impulsive fiels such as 

wall field, opponent field, teammate field. 

The potential fields in our state determination include the ball field as attractive, and 

teammates and opponents fields as repulsive. The ball has the most effective field 

because  it is important to know which member is in the ball field valley. Ball field 

has bigger area effect than the teammate and opponent field.   

In Matlab, a GUI program is written to show the potentials fields and vector fields 

graphically as shown in Figure 4-5, 4-6 and 4-7. This supplies us to examine our 

potential fields in different occupations of the objects, find the most appropriate 

values of variables..  

 

Figure 4-5 GUI Representing  Objects In Figure 4-5 

 Yellow ones are opponents, of blue ones are teammates and the red one is the ball.          
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Figure 4-6Potential Fields SoccerField. 

       

                        Figure 4-7Vector Fields of Objects In Figure 3-5. 

4.1.2   POTENTIAL FIELD MAGNITUDE AND QUANTIZATION 

• BALL FIELD: Ball field is the most effecting attractive field. It should get 

the biggest amplitude value. Besides amplitude, in large areas its influence should be 

noticed, so it should get also higher variance values than the other two repulsive field 

which are used in our states. By using our GUI program we find the most appropriate 

values for αball  as 0.8, aball as 0.5 and bball  as 0.5. 
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• TEAMMATE FIELD: Teammate field is one of the repulsive field of our 

state representation sytem. It has a smaller absolute amplitude value than the ball 

field has but a higher absolute amplitude value than the opponent field has. The 

players should take care of colliding with their teammates. By using our GUI 

program we find the most appropriate values for αteammate  as 0.4, ateammate as 0.1 and 

bteammate as 0.1. 
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• OPPONENT FIELD: Opponent field is one of the repulsive field of our 

state representation system. The players should take care of colliding with the 

opponents. But opponent field has the smallest absolute amplitude value and the 

smallest variance value since if the opponents have the ball, our players should not 

go away and moreover should block the opponents. By using our GUI program we 

find the most appropriate values for αteammate  as 0.2, ateammate as 0.05 and bteammate as 

0.05. 
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The resultant potential field is quantized to make a more discrete meaning to the 

learning level. The potential field is quantized as: 

• Valley:  If the value is smaller than -0.2 and quantization value is 1, 

• Smooth: If the value is between -0.2 and 0.2 and quantization value is 1, 
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• Hill: If the value is bigger than 0.2 and and quantization value is 1. 

4.1.3   VECTOR FIELD ANGLE AND QUANTIZATION 

Vector Field is normally the minus gradient of the potentail field.  
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In our calculations, when the components are so near to the member which the 

potentail field is calculated for since ( x - xball ) goes to zero, it prevents us to 

calculate the exact values. 

So we first find the vectors between components and members under calculation, and 

do vectoral addition. The angle of the vectors is the angle between component and 

member, and the magnitude is the potential field magnitude. 

 

ball opponent1 

Resultant vector 

teammate 
opponent2 

Figure 4-8 Vector Field Calculation 

The resultant angle is quantized as quadrants. 
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4.1.4   MEMBER ZONE 

We calculate the zone the member is in with our potential field equation. For the left 

of the area, Eqn 4-6 is used, if the member is in this area the value of U1 will be 

greater than 0.3 and  the state value for the member will be 1. If the member is in 

right of the ares, the value of the U2 will be greater than 0.3 and the state value for 

the member will be 3. Otherwise the state value will be 3, which means the member 

is occupied in the middle area. 

 

 

Figure 4-9 Figure of  Potentail Field of Soccer Field 
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4.1.5   BALL DIRECTION 

 

Figure 4-10 Ball direction 

Computation of ball direction: At time t, a vector between ball  and the center of 

the goal is created. A vector which is intersecting this vector with 90o is drawn. The 

regions  in which the ball is entering is computed by drawing two orthogonal vectors 

intersecting previous ones with 45o as shown in Figure 4-10. And a vector between 

the coordinates of the ball at time and at time (t-1) is drawn. The state value is the 

region the ball direction enters. 

4.2    ACTIONS 

Action vector has 3 variables, which are the roles of our teammates. Our system 

assigns different roles to each 3 members: 

• Attacker 

• Defencer 

• Supporter 

Goalkeeper is fixed. It is no use in the learning but its duty is to communicate with 

the teammates to inform their roles.  
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Table 4-2 Actions 

Actions Role for Teammate 1 Role for Teammate 2 Role for Teammate 3 

1 Attacker Defencer Supporter 

2 Attacker Supporter Defencer 

3 Defencer Attacker Supporter 

4 Defencer Supporter Attacker 

5 Supporter Attacker Defencer 

6 Supporter Defencer Attacker 

 

After role assignment, the algorithm shown below is run in the program. 

if (robot=GOALIE) then 

     apply Goalie Vector 

else 

     apply Wall Vector, Opponent Vector, Team Vector 

     if ( robot = Attacker) 

            apply Ball Vector1, Ball Vector2 

    else if ( robot = Defencer) 

            apply Defense Vector 

    else if ( robot = Supporter) 

                                   apply Supporter Vector 

Figure 4-11 Algorithm of Actions 
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After assigning roles to each member, they should know what to do according to 

their role. Each spesific role is in influence of specific vectors bring them to the 

appropriate positions.            

The vector calculations are same as we explained in part 4.1.3. The vector angle is 

the angle between the component and member and the magnitude is the potential 

field magnitude. 

1. WALL FIELD Vector:   It is a repulsive vector, cause the players stay a 

little bit far from themselves.  
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                     U                                                         (Eqn 4-8) 21 UUwall +=

                             

Figure 4-12 Potential Field and Vector Field of Wall 

 

2. OPPONENT FIELD Vector: :   It is a repulsive vector, causing the players 

stay  far from opponents to prevent collisions.  It is explained in part 4.1.3                              

3. TEAM FIELD Vector: :   It is a repulsive vector, causing the players stay  

far from teammates to prevent collisions.  It is explained in part 4.1.3           
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4. BALL FIELD Vector 1 : :   It is a attractive vector, directing the players to 

the ball. It is explained in part 4.1.3 

5. BALL FIELD Vector 2: We need this vector  because the attacker should 

place between the ball and his own goal. Otherwise scoring to his own goal 

can happen. The member should be affected by a vector which takes him 

behind the ball around a circle as shown in Figure 3-13. The method and 

details is taken from reference[16]. 

 

 Figure 4-13 The resultant vector of Ball Field Vector 1 and Ball Field Vector 2 

6. GOALIE FIELD Vector: The goalie should stand between the goal and the 

ball. We generate a potential attractive field for goalie at a point according to 

Equation 4.9. The direction of an attractive force is towards the source of the 

field. 

 

X
X’

Y Y’ 

Figure 4-14 Goalie Field Vector 
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7. DEFENSE FIELD Vector:  The defense players try to stand in the middle 

of the ball and a point assigned on the goal line. 

 

Y 

X 

Figure 4-15 Defence Field Vector 

                                              2
XXdefencer=                                              (Eqn 4-10)                    

                                              
2
Y

defencer=Y                                                 (Eqn 4-11) 

 

8. SUPPORTER FIELD Vector: The last attractive field is supporter field, 

which creates fields behind the ball according to Equation 4-12 and 4-13. The 

parameter m indicates points on a circle with radius k and the ball at its 

center. 
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Supporter 

Figure 4-16 Supporter Field Vector 

                  )cos(mkxx ball ×−=                                            ( Eqn  4-12)     

                  )sin(mkyy ball ×±=                                            ( Eqn  4-13) 

 

The parameter m indicates two points on a circele with radius k and ball at its 

center.                                   

4.3 TRAINING EXPERIMENTS and PERFORMANCE ANALYSIS                           

We select 3 teams which are wriiten in Teambots simulaton program. They have 

different capabilities and different coopreataion systems. 

We trained our team with making 600 trials for each team. The properties of the 

teams and the match results and performance analysis is shown in the sub-chapters. 

After the performance analysis of 3 demo teams, we need a team which is as strong 

as us, or as weak as us. We create a new team which has members with the same 

abilities with our members, they can take the same roles and also are affected by the 

potential fields. The game strategy of the new team is the same strategy written in 

Figure 4-11. However, since this team has not the learning part , the role assignment 

is as follows: 
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If I am closest to ball 

          I am attacker 

Else If  I I am closest to home

           I am defender 

Else I am closest to position1 

           I am supporter 

Figure 4-17 Role Assignment of the new Team                                                     

4.3.1 Training Experiments with Team GoToBall 

Gotoball is a team with team members only going after the ball. The first one 

reaching the ball kicks the ball and then the other 3 one follows him in a line.  

The results of 50 matches against GoToBall before learning and after learning are 

shown in Figure 4-18 and Figure 4-19. 
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Figure 4-18 Goals Scored by GoToBall and Our team before learning 
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Figure 4-19 Goals Scored by GoToBall and Our team after learning 

 

4.3.1.1 Performance Analysis 

Training with them make the attacker gain abilities but this team has the 

disadvantage of shooting to his own goal. Not all the goals shown in Figure 4-14 and 

Figure 4-15 are scored by our team. Besides gaining attacker abilities, it has 

disadvantages that the real values can not be given to the state action pairs. In a non-

appropriate state that they shoot to their own goal, we rewarded our team wrongly. 

But this is not the fault of the system. Since reinforcement learning is the learning by 

trial-error and the team learns doing what gives it the the most reward and learns to 

follow the traces which brings it to the reward. In Figure 4-20, a snapshot of the 

match against is shown. The yellow ones are GoToBall team, and the left side is their 

own goal. They are going to score their own goal. Although our members are staying 

in the middle of the field, they will get reward. The lines behind the players show the 

path they are following in 2-3 seconds. This is also one of the utilities of Teambots.  
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Figure 4-20 A snapshot of the match against GoToBall Team(the yellow ones) 

With all experiments we notice that we have a strong defensive system, because our 

all players no matter attacker, defencer or supporter is affected by the ball field 

mostly. So even if the ball is in our zone all our players can protect our goal and kick 

it towards the other goal. And also our goalkeeper is not included in the role 

assignment learning part, he always knows his role. 

We choose GoToBall team as an easy team, but since all his members going after the 

ball, sometimes it seems very hard to reach the ball for our team members. We 

confirm our statement that opponent impulsive field’s strength should be small 

although obstacle avoidance is possible.  

After GoToBall team we tried some teams like BasicTeam which has more 

complicated strategy than GoToBall, and see that they do not confuse our team as 

much as GoToBall Team. Like GoToBall team, some teams have one special aim, 

like only protecting own goal. They do not score a goal but do not let the opponent 

team  score, training with such teams can make our learning strategy develop 

wrongly. 
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4.3.2  Training Experiments with Team BrianTeam 

BrianTeam is a stronger team which do not score their own goal like GoToBall. But 

their one disadvantage is their lack of goalkeeper. The team does not have an 

assigned goalkeeper, the players at the back behave like defencer and protect their 

goal. 

The results of 50 matches against BrianTeam before learning and after learning are 

shown in Figure 4-21 and Figure 4-22. 
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Figure 4-21 Goals Scored by BrianTeam and Our team before learning 
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Figure 4-22 Goals Scored by BrianTeam and Our team after learning 

4.3.2.1 Performance Analysis 

Their disadvantage of not having goalkeeper provides us advantage, our members 

find the chance to score and gain reward. If they have very strong defensive 

capability it will become harder for our team to find the opportunity to gain reward 

as experienced with AIKOHomoG team. 

We do 35 matches against BrianTeam with our Q-values gained while training with 

GoToBall Team to show that it is important how you train your team is important. 

Although we know that we can beat the BrianTeam after training with BrianTeam 

we can not get the same success after training our team with GoToBall Team.  
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Figure 4-23 Goals Scored by BrianTeam and Our team after training with GoToBall  

4.3.3  Training Experiments with Team AIKOHomo 

Although we say that we have good skills, our team has not properties of passing the 

ball to team members, or using the wall pass. With a team that has more complex 

abilities we should trian our team to develop our defensive abilities. 

AIKOHomo is the strongest team in our team set of consisting 25 teams, it has rarely 

lets our members go to their goal, tracks the ball and moves fastly and blocks the our 

member that has the ball. Its members pass the ball to the most appropriate member 

in the team strategy. 
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Figure 4-24 Goals Scored by AIKOHomoG and Our team before learning 
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Figure 4-25 Goals Scored by AIKOHomoG and Our team after learning 

4.3.3.1 Performance Analysis 

After training we manage to score opponents goal, the numbers of the opponents 

goals decrease also which shows that we learn to assign appropriate role assignment 

while ball is near our goal. Before learning, since it randomly selects the roles, it 

could make the mistake of changing its role while securing its goal as a defence 

player to support and place itself at a position around ball but not kick and secure the 
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goal. During training the team learns not to do these mistakes, because if it makes it 

get punishment. 

4.3.4 Training Experiments with New Team 

As explained before, after training several teams we decided to train our team with a 

team equal to ur team. But since its role assignment algorithm is rule based as shown 

in Figure 4-17, it gives simple but effective decisions. 

The results of the matches against New Team before learning and after learning are 

shown in Figure 4-26 and Figure 4-27. 
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Figure 4-26 Goals Scored by NewTeam and Our team before learning 
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Figure 4-27 Goals Scored by NewTeam and Our team after learning 

4.3.4.1 Performance Analysis 

At first we could not get efficient result, since it has the same abilities with us, it 

does not shoot his own goal, fast and is mostly affected by ball. The same things can 

be written as in part 4.3.31. But the main difference from the other set trainings is the 

free ball persistence. 

 The free ball problem occurred at most among these two teams. Free ball decision is 

given when the ball could not move. In some situations, especially when the ball is 

between 2 opposite team members and wall, and oscillating continuosly, the system 

can not give the free ball decision because the ball is moving and then two team 

should wait the new cycle to begin at the middle of the field. Our team learn to 

persist and not to change its role during this interval. Because it leaves , it gives an 

oppurtunity to the New Team to score and our team takes punishment. 

Another experiment we did with New Team. We trained our team against New Team 

with exploration rate equal to 0. But we notice that it has the problem of local 

optimum and gives usually the same action since it does not explore while training. 
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Figure 4-28 A snapsnot from the match between New Team and our Team 

 

Figure 4-29A snapsnot from the match between New Team and our Team 

Figure 4-28 and 4-29 shows the faults of the system, the members which is the most 

available for attack role is not assigned and the same action persists a while. 
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So many training experiments could be done, first training with a basic team to 

improve the attacking behaviors, then with values in the system with a more 

complicated team to improve offensive behaviors. But it is a reality the system 

develops itself with the rewards it takes, if at the same situations it could get negative 

rewards because of the opponent team complexity, the system will decrease the value 

of that state action pair.  

With whom you train your system is important. New and specific exercises to your 

system should be developed and the team should train with them, in a control of a 

trainer.                                                         
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CHAPTER 5 
 

CONCLUSIONS 
 
 
 
5.1 CONCLUSIVE REMARKS 

 
In this research, we designed and tested a reinforcement learning system which takes 

its input from a competitive, dynamic world like roboccer and gives its output as the 

coordination of  some agents like the team members. For the simulation of our team 

we used Teambots program, besides some difficulties like freeball decision problem, 

or its distributed controlled system it has many advantages since it is fully open 

source and provides various team programs. In our experiments we used these teams 

as opponents.  

In reinforcement learning , learning is achieved through trial and error interactions 

with the dynamic environment. The main factors affected the learned policy are 

generalization of state space, value functions and opponent team. In our system 

potential field method is used to reduce state space dimension and to take the agents 

to the most attracting positions in the field. According to our results, we can say that 

potential field method is very effective in such dynamic environments. Sarsa(λ)- 

Learning shows good performance results in terms of speed of execution and 

convergence rate. 

However it is hard to build competition level team by using only standard modeling. 

In our system the success of the team does not only belong to the reinforcement 

learning system success. Because rewards effect our system state action selectivity,  

if we have very basic roles, even if the system chooses the best action we can not get 

reward to increase its selectivity 
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5.2   FUTURE WORK 

For future work reward shaping can be studied. In our system only negative and 

positive goals are used as rewards, but changing of the ball direction could be added 

to the system  as feedback to show  how their members are effective during game 

except shooting goals. But in this study, the researcher should be careful because the 

team could make the mistake of forgetting its main goal while maximizing its reward 

in simpler methods. Reward formalization is a crucial issue and should be studied 

and developed carefully. 

As  stated in the results chapter, a trainee system could be developed to train our 

system under control like the human teams do. Instead of training the team with 

arbitrary teams, a trainee system which make the team learn special traces will 

improve the system’s performance. The team learns what to do against a team but its 

training depends only to the performance of the opponent team. Special trainee 

systems could be developed to learn different strategies.
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                                          APPENDIX 

 

 

GENERATION of POTENTIAL FIELD proposed by Michael A. Goodrich  

                                                 ATTRACTIVE FIELD 

                                    

 

One way to think of a potential field is to think of it as a mapping from one vector 

into another vector. For the 2-D navigation in the figure, it is the mapping from the 

vector  

v = [x, y]T into the gradient vector ∆= [∆x,∆y]T (the superscript T represents 

"transpose" - I use it because I like column vectors better than row vectors). Now, we 

could find ∆ by defining some vector function of v and then taking the gradient of 

this function, but I prefer a more direct approach. To generate the above fields, I just 

defined ∆x and ∆y in terms of v as follows: 

• Let (xG,yG) denote the position of the goal. Let r denote the radius of the 
goal.  

Let v = [x,y]T denote the (x,y) position of the agent. 
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• Find the distance between the goal and the agent 
: 22 )()( GG yyxxd −+−=  

• Find the angle between the agent and the goal θ = tan-1 







−
−

xx
yy

G

G
(I use the 

atan2 function because it gives you the angle in the correct quadrant.) 

 

• Set ∆x and ∆y according to the following: 

                               if d < r                       ∆x = ∆y = 0 

                          if rsdr +≤≤      ∆x = α(d - r) cos(θ)  and  ∆y = α (d - r) sin(θ) 

                              if d > s + r              ∆x = αscos(θ)  and  ∆y = αssin(θ) 

This sets up a goal as a circle with radius r. When the agent reaches the goal no 

forces from the goal act upon it, whence when d < r both ∆x and ∆y are set to zero. 

The field has a spread of s and the agent reaches the extent of this field when d = s + 

r. Outside of this circle of extent, the vector magnitude is set to the maximum 

possible value. Within this circle of extent but outside of the goal's radius, the vector 

magnitude is set proportional to the distance between the agent and the goal. I 

include the constant 0>α  so that the strength of the field can be easily scaled. 

                                            REPULSIVE FIELD 
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• Let (xG,yG) denote the position of the obstacle. Let r denote the radius of the 
obstacle.  

Let v = [x,y]T denote the (x,y) position of the agent. 

 

• Find the distance between the goal and the agent 
: 22 )()( OO yyxxd −+−=  

• Find the angle between the agent and the goal θ = tan-1 







−
−

xx
yy

O

O
(I use the 

atan2 function because it gives you the angle in the correct quadrant.) 

 

• Set ∆x and ∆y according to the following: 

                               if d < r                      ∆x = -sign(cos(θ))∞ ∆y = -sign(sin(θ))∞  

                        if   ∆x = -β(s + r - d) cos(θ)  and  ∆y = -β (s + r -d) sin(θ) rsdr +≤≤

                              if d > s + r                                         ∆x = ∆y = 0 
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