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ABSTRACT 
 

 

DESIGN SCALING OF AEROBALLISTIC RANGE MODELS 
 

Kutluay, Ümit 

M.Sc., Department of Mechanical Engineering  

Supervisor: Prof. Dr. Tuna Balkan 

Co-supervisor: Dr. Gökmen Mahmutyazıcıoğlu 

 

December 2004, 144 pages 

 

 

The aim of this thesis is to develop a methodology for obtaining an optimum 

configuration for the aeroballistic range models. In the design of aeroballistic range 

models, there are mainly three similarity requirements to be matched between the 

model and the actual munition: external geometry, location of the centre of gravity 

and the ratio of axial mass moment of inertia to the transverse mass moment of 

inertia. Furthermore, it is required to have a model with least possible weight, so 

that the required test velocities can be obtained with minimum chamber pressure 

and by use of minimum propellant while withstanding the enormous launch 

accelerations. This defines an optimization problem: to find the optimum model 

internal configuration and select materials to be used in the model such that the 

centre of gravity location and the inertia ratio are matched as closely as possible 

while the model withstands the launch forces and has minimum mass. To solve this 

problem a design methodology is devised and an optimization code is developed 

based on this methodology. Length, radius and end location of an optimum cylinder 

which has to be drilled out from the model are selected as the design variables for 

the optimization problem. Built–in functions from the Optimization Toolbox of 

Matlab® are used in the optimization routine, and also a graphical user interface is 



 v

designed for easy access to the design variables. The developed code is a very 

useful tool for the designer, although the results are not meant to be directly applied 

to the final product, they form the starting points for the detailed design. 

 

Keywords: Aeroballistics, Aeroballistic Range, Aeroballistic Range Testing, 

Aeroballistic Range Models, constrained optimization 
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ÖZ 
 

 

ÖLÇEKLENDİRİLMİŞ AEROBALİSTİK DENEME 

MODELLERİNİN TASARIMI 
 

Kutluay, Ümit 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Tuna Balkan 

Ortak Tez Yöneticisi: Dr. Gökmen Mahmutyazıcıoğlu 

 

Aralık 2004, 144 sayfa 

 

 

Bu çalışmanın amacı, aerobalistik deneme modellerinin en iyi konfigürasyonlarının 

belirlenmesinde kullanılacak bir yöntem geliştirilmesidir. Aerobalistik Model 

tasarımında, model ile gerçek mühimmat arasında sağlanması gereken başlıca üç 

benzerlik gereksinimi vardır: dış geometri, ağırlık merkezinin konumu, eksenel 

eylemsizlik değerinin yanal eylemsizlik değerine oranı. Bunlara ek olarak, istenen 

test hızına en düşük miktarda barut kullanarak, en düşük yanma odası basınçları 

altında ulaşılabilmesi için modelin mümkün olduğunca hafif olması da 

gerekmektedir. Bu gereksinimler, ağırlık merkezi konumunu ve eylemsizliklerin 

oranını mümkün olduğunca yakın bir şekilde tuttururken, en düşük kütleye sahip 

olan ve fırlatma yüklerine dayanan en iyi model iç konfigürasyonunun bulunması 

ve modelde kullanılan malzemelerin seçilmesi şeklinde bir eniyileme problemi 

tanımlamaktadır. Bu problemin çözümü için bir tasarım yöntemi geliştirilmiş ve bu 

yöntem kullanılarak bir kod yazılmıştır. En iyilime probleminin tasarım 

değişkenleri olarak, modelin içerisinden çıkartılması gereken bir silindirin 

uzunluğu, yarıçapı ve bittiği nokta seçilmiştir. Eniyileme alt programı olarak, 
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Matlab® yazılımının Optimization Toolbox fonksiyonları kullanılmış ve tasarım 

parametrelerinin kullanıcı tarafından kolaylıkla değiştirilebilmesi için bir de grafik 

arayüz tasarlanmıştır. Bu çalışma sonunda geliştirilen kod, tasarımcı için çok 

faydalı bir araç olsa da çıktıları son ürün üzerinde kullanılmak için değil, detaylı 

tasarıma girdi oluşturmak içindir. 

 

Anahtar kelimeler: Aerobalistik, Aerobalistik Test Altyapısı, Aerobalistik Test, 

Aerobalistik Test Modeli, kısıtılı eniyileme 
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CHAPTER 1  
 

INTRODUCTION 
 

 

 

Aeroballistics is the science of motion of projectiles1 in flight. The motion of a 

projectile in flight is characterized by the aerodynamic parameters such as drag and 

lift coefficients and also by stability derivatives. To obtain these parameters, the 

first method that comes to mind is full scale flight testing. However, full scale 

flight testing is usually not feasible because of high costs and difficulties of 

controlling the test conditions. Furthermore, it is often not possible to flight test the 

projectile in the early stages of the design work. 

 

These difficulties related to aerodynamic parameter estimation from the results of 

full scale flight testing are overcome by the use of alternative methods where the 

required parameters are obtained at relatively low costs and under controlled 

conditions. These methods can be classified as [1]: 

• Computational Aerodynamics 

• Theoretical and Empirical Aerodynamics 

• Experimental Aerodynamics (Wind Tunnel Testing) 

• Experimental Flight Dynamics (Aeroballistic Range Testing) 

 

The importance of computational methods in engineering can not be neglected. 

However, Computational Aerodynamics, often referred as CFD – Computational 

Fluid Dynamics, is far from being the best tool for the prediction for the 

                                                 
1 Projectile is the common name given to the flying objects that follow a ballistic flight path. The 

word “ballistic” is derived from the Roman weapon “ballista”. 
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aerodynamic parameters for the projectiles, mostly because of the computational 

speed limitations. The results of CFD analysis are of little importance unless they 

are validated using experimental data [1], [2].  

 

The most fundamental aerodynamic parameters for simple projectile geometries 

can be obtained by the use of the results of theoretical and empirical aerodynamics 

with relatively high computational speed and acceptable accuracy. However, when 

new and complex geometries are considered, the empirical aerodynamics fails to 

give satisfactory results. Furthermore, like CFD, the results of the empirical 

aerodynamics are not reliable unless there exists experimental data for justification.  

 

There are basically two types of aerodynamic facilities used for the derivation of 

aerodynamic parameters experimentally: wind tunnels and aeroballistic ranges. The 

major difference between a wind tunnel and aeroballistic range is the way the flight 

conditions are simulated.  

 

In wind tunnels the medium, which is usually air, is accelerated mostly by the help 

of propeller(s). The body, for which the aerodynamic parameters are sought is 

mostly constrained and balanced so that the desired flight conditions such as the 

angle of attack or pitch angle are simulated. Although wind tunnel testing has an 

important place in research on projectile aerodynamics, different wind tunnels are 

needed for the wide Mach number range a projectile flies through, which can 

increase the test costs drastically. The most important drawback of wind tunnel 

testing for predicting the aerodynamic parameters of projectiles is the way models 

are mounted in the test section. The pressure distribution on the base of the 

projectile is very important from ballistic point of view. However, this pressure 

distribution is distorted due to the base sting, which holds the model, which in turn, 

affects the accuracy of the test results [1]. 

 

In contrast to wind tunnel testing, the model itself is accelerated to the required test 

velocities using some kind of gun in aeroballistic range testing (i.e. the model is 

“launched” from the gun). The motion of the dynamically scaled model is tracked 
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by data acquisition systems downrange and the aerodynamic parameters are 

predicted from the flight data acquired.  

 

Although the purpose of the aeroballistic range tests was the optimization of the 

spin stabilized shells for munitions until 1940’s [3], aeroballistic range facilities are 

widely used in the development of transonic, supersonic and hypersonic missiles 

and airplanes as well as investigation of atmospheric re-entry of long range missiles 

and re-entry vehicles. Flight dynamics characteristics, aerophysics of wake 

phenomena, aerodynamic heating and aerodynamic parameters for the flight 

vehicles can be determined from aeroballistic range tests [4]. These ranges are also 

used for research on material behavior under very high loads, high speed impact 

and investigation of the effects of space debris on satellites and other orbital 

vehicles. After the tragic events of September 11th 2001 and the loss of the Space 

Shuttle Columbia during re-entry in February 1st 2003, most of the research in 

aeroballistic ranges world-wide is concentrated on the hyper velocity impact and 

new material development for shock absorbing. 

 

There are basically three types of guns that are used in aeroballistic ranges: powder 

gas guns, compressed air guns and light gas guns. Powder gas guns are traditional 

guns that are operated by the ignition of the gunpowder and are very useful tools 

for low to intermediate (up to Mach 5.0) velocities. When higher velocities are 

needed, compressed air guns and light gas guns are feasible solutions. Compressed 

air guns, as the name suggests, works on the principle of accelerating the models by 

the sudden expansion of compressed air. They reach higher speeds when compared 

to powder gas guns. Light gas guns use highly compressed hydrogen or helium and 

by sudden expansion of the gasses models are accelerated to very high speeds (up 

to 13 km/s – nearly Mach 40). The other types of guns that are used in aeroballistic 

ranges are railguns, coilguns and ram accelerators [5]. The first two are 

electromagnetic guns, where the last one is derived from the ramjet concept. 

 

The flight history of the model is recorded by the help of either photographic or 

yaw-card stations and sometimes both methods are applied together. In 
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photographic stations, a photograph of the model or its shadow is captured along 

with the time information from a time/velocity measurement system. These images 

are later processed to obtain the attitude of the model and subsequently, the 

required aerodynamic parameters are estimated. In yaw-card stations, the model 

punches the cards as it travels downrange the facility and time information of the 

punching instant is kept. The cards are post processed to find the model’s attitude 

at the time of the punching and the model’s attitude throughout the range, i.e. flight 

history, is obtained.  

 

With the advances in the technology, very high speed motion cameras are also used 

to visualize some special events like the muzzle exit or sabot separation. There are 

cameras capable of recording images up to 120,000 frames per second. In open-air 

facilities, it is also possible to track the flight of the model for very long distances 

using special mirrors and motion systems especially designed for ballistic testing. 

 

 

 

 

Figure 1.1 Powder gas gun used at FML 

 

 

TÜBİTAK-SAGE, a member of Aeroballistic Range Association (ARA) since 

1996, owns the only aeroballistic range facility in Turkey: the Flight Mechanics 
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Laboratory (FML). FML was constructed as an open air aeroballistic range facility 

in 1997, [6] and the test section was later covered in 1999, [7], [8]. The length of 

the test section was originally 100 m, although it has been increased to 200 m in 

2002, making it one of the longest in the world. A view of the test section is shown 

in Figure 1.2. The models are accelerated to velocities in excess of M 5.0 by the 

powder gas gun of diameter 100 mm and barrel length of 5.5 m. The operating 

chamber pressure of the gun is 2000 bars (Figure 1.1). 

 

The facility currently has 30 yawcard stations and 8 photographic stations to gather 

the flight data of the projectiles. Examples of images taken from both type of 

stations are given in Figure 1.3 and Figure 1.4. The time of the flight is measured 

by sensors at every station and also by the velocity measurement system. 

 

 

 

 

Figure 1.2 Test section of the Flight Mechanics Laboratory (TÜBİTAK-SAGE) 
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Figure 1.3 Image from a yaw card after the test 

 

 

 

 

Figure 1.4 Image from a photographic station after the test 

 

 

 

For aerodynamic testing where the similarity of the flow patterns are important, the 

Reynolds number, which is the ratio of inertia forces to viscous forces is kept 

constant, [9]. Mach number, which is defined as the ratio of the flow velocity to the 
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ratio of the speed of sound, is equally important to the experimental aerodynamics 

as the Reynolds number, [9], [10].  

 

Aeroballistic range tests are performed at full-scale Mach numbers. Although there 

are a small number of aeroballistic ranges where the medium can be changed so 

that the test Reynolds number is matched to that of the full-scale Reynolds number, 

FML does not have such a capability. However, as the Mach number increases, the 

scaling effects of the unmatched Reynolds numbers become less and less 

important. So for the Mach number range where the FML used, the scale effects 

due the Reynolds number is neglected. 

 

Another issue in free-flight model testing is the effect of gravity. Since the gravity 

can not be scaled, an error is introduced to the results of the tests. However, 

contribution of this error is small, since the duration of an aeroballistic range test is 

very short [9]. 

 

The projectile itself is the very heart of successful aeroballistic range testing. The 

models that are to be tested should be dynamically scaled. That is, the dimensions, 

and the centre of gravity location of the actual munition should be scaled down 

while the ratio of the axial inertia to the transverse inertia of the model should be 

matched to the actual munition value. Once these scaling requirements are 

satisfied, the flow pattern as well as the model’s translational and rotational motion 

will be similar to the actual munition’s motion. However, in scale model testing, all 

of the scaling requirements are not fulfilled at the same time, but tests are designed 

for certain similitude requirements that are important to the goals of the specific 

test under consideration [11]. Most of the time, it is not possible to scale down 

every geometrical detail of the original body due to the manufacturing and material 

constraints. Also it is not possible to match the centre of gravity location and the 

inertia ratio at the exact scaled down value but they are matched within some 

tolerance. So the models used in aeroballistic ranges are never true scaled models 

but often adequate models, which will give satisfactory results with negligible 

effects of scaling. 



 8

 

In this study, the model design is the main concern. 

 

1.1 AIM OF THE STUDY 
 

The projectile used in aeroballistic range testing usually consists of two parts, the 

model and the sabot2 [3].  

 

The model is the scaled replica of the actual body, for which the aerodynamic 

parameters are required. The sabot’s duty is to protect and support the model within 

the barrel of the gun and accelerate it to the desired test velocity. There are 

basically two types of sabot in use for aeroballistic range testing: pusher type 

sabots and puller type sabots. For pusher type sabots, the model is accelerated by 

“pushing” it from the base while supporting it from the sides. The base part of the 

pusher type sabot is often named as pusher (Figure 1.5) [8]. Puller type sabots are 

used when the base area of the model does not provide a sufficient surface for 

pusher contact (Figure 1.6) [12], [13], [14].  

 

 

 

 

Figure 1.5 Model, sabot and pusher 
                                                 
2 “Sabot” is a French word meaning wooden shoe. When used in aeroballistics, it refers to the 

support which is used to launch aeroballistic range models and sub-caliber projectiles. 
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Figure 1.6 Model and puller type sabot 

 

 

 

The design process of an aeroballistic range model is not a straightforward work. 

There are many strict requirements imposed on the designer some of which can be 

summarized as follows [2], [3], [7], [15]:  

• The projectile should be scaled such that it fits into the gun. 

• The original exterior geometry should be matched.  

• The location of the center of gravity should be scaled and matched. 

• The ratio of the axial inertia to the transverse inertia of the model should be 

matched to that of the actual munition. 

• The model should withstand the launch accelerations, since the launch loads 

are far more greater than the inflight loads. 

• The surface quality of the original body should be scaled. 

• The weight of the model should be as small as possible to keep the required 

chamber pressure minimum. 

 

In general, it is not possible to scale every geometrical detail of the actual munition. 

This is mostly due to the difficulties in production and costs. 

 

The approach to aeroballistic range model design is given in [2] as a flow chart and 

it is obvious that this process is an iterative work (Figure 1.7). In fact, the 
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aeroballistic range model design process includes the mechanical design of sabot as 

well. However, sabot design is a very broad and complex subject and is not 

included in this study. Most of the time, it is not possible to obtain the optimum 

model configuration by calculations alone but a corrective redesign is necessary 

after proof firing tests that are performed to see if the model fulfills the above 

mentioned requirements. This design work takes a great deal of time and effort of 

the engineer, thus a need for a computer aided design methodology arose at 

TÜBİTAK-SAGE.  

 

This thesis study is done in order to develop a methodology which will be the basis 

for a computer code that will be used to obtain the optimum aeroballistic model 

configuration which will match the center of gravity and ratios of inertia criteria 

with minimum possible error while minimizing the weight. The aim of this study is 

neither to decide on the best optimization method in designing aeroballistic range 

models, nor to design the optimum aeroballistic range model of a low-drag general 

purpose aircraft bomb or an unguided artillery rocket. The code will be used as a 

first order computer aided design tool in the design and scaling of the aeroballistic 

range models. Once the outputs of the code are obtained, they are used as inputs for 

detailed mechanical design before the manufacturing. 

 

The goals of the study can be summarized as follows: 

• The methodology should be generic, i.e. it should cover all type of models. 

• The code should run on Windows operating systems. 

• The code should have a graphical user interface (GUI) for ease of usage. 

• The results of the code should be saved to files for later reference. 

• The code should be capable of modeling the most common geometries used 

in aeroballistic range testing. 

• The code should perform a preliminary stress analysis of the model. 
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MathWorks Inc.’s Matlab® 6.5.1 is selected as the development platform for the 

code. There are basically two reasons behind this selection: first the advantages of 

Matlab® as a programming language when compared to the traditional languages 

like C and FORTRAN, and second the Optimization Toolbox, which is a collection 

of functions that are specifically developed for optimization problems. This 

approach eliminated the need to create the optimization functions from scratch but 

to use the existing and proven functions and embed them into the aeroballistic 

range models’ optimization code. 

 

1.2 SCOPE OF THE STUDY 
 

The foundations of the work are primarily based on calculus and strength of 

materials. In Chapter 2, the detailed mathematical formulations for the geometrical 

calculations and the solid modeling methods are presented. Also a simple method 

for estimating the dynamic stress on the model during launch is formulated in 

detail. The derivation of the objective function for the general optimization 

problem of the design scaling of aeroballistic range models is also done in this 

chapter together with the constraints function. 

 

In Chapter 3, a brief overview of the optimization techniques that are used 

commonly in the literature are presented. The methods are not investigated in 

detail, since the main concern of the study is to develop a design methodology to be 

used in actual design work and not to discuss the optimization methods. 

 

The flowchart of the code is given and design methodology is explained in detail in 

Chapter 4. This chapter also includes the test cases selected to test, debug and 

verify the code. The first test case is a medium range unguided artillery rocket. The 

second test case is a Low Drag General Purpose (LDGP) Aircraft Bomb.  

 

In Chapter 5, the evaluation of the study is done, concluding remarks are made and 

recommendations on the future work are presented.  
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CHAPTER 2  
 

FORMULATION 
 

 

 

2.1 AEROBALLISTIC RANGE MODEL DESIGN 
 

The challenge in the design of an aeroballistic range model is to find the optimum 

model configuration which matches the location of the centre of gravity and the 

ratio of the axial inertia to the transverse inertia of the model. It is also important to 

minimize the model weight so that the required test velocities can be reached with 

smaller chamber pressures. This is important in material selection, since the smaller 

the pressure is the easier and cheaper to find a material that holds the launching 

stresses. 

 

Obviously, above mentioned requirements define an optimization problem. There 

are three objectives in this optimization: 

1. Match the centre of gravity location 

2. Match the inertia ratio 

3. Minimize the weight. 

 

The first objective can be formulated as follows: 

 

  
2

1 1
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model
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f  (2.1) 

 

where Cgmodel denotes the location of the centre of gravity of the model. Cggoal is 

the scaled location of the actual centre of gravity location and obtained by 
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multiplying the actual location of centre of gravity from the nose with scale factor 

(λ) as shown in Equation (2.2). 

 

  λ⋅= actualgoal CgCg  (2.2) 

 

The second objective can be formulated as: 
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where Ix is the axial inertia and Iy is the transverse inertia.  

 

There are two coordinate frames used in the calculations. One of them is located at 

the centre of gravity of the munition and x axis is along the symmetry axis of the 

body and the other is located at the nose tip and the x axis is coincident with the 

first frame (Figure 2.1). The centre of gravity location is calculated with respect to 

frame 2 and moments of inertia are calculated with respect to frame 1. 

 

The third objective can be formulated as: 

 

  
10003

modelm
f =  (2.4) 

 

where mmodel denotes the weight of the model and it is normalized with a reference 

weight of 1000 grams (most aeroballistic range models tested at FML weights 

about 1kg) in order to have a dimensionless objective function 
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Figure 2.1 Coordinate frames used in calculations 

 

 

 

Obviously, this multi-objective optimization problem can be redefined as a single 

objective optimization problem by the use of appropriate weights. Then the 

objective function becomes [2]: 
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In the flow of the design work (Figure 1.7) the problem is to minimize the 

differences in the cg location and the ratio of the inertias of the model with a fixed 

external geometry and the goal values while minimizing the weight. This is done in 

an iterative manner starting with an initial guess of the model configuration (i.e. 

initial material selection for the parts of the model as well as initial internal 

configuration) and trying to find an optimum value by changing the design 

parameters. 

 

Most aeroballistic range models are manufactured with cylindrical holes drilled 

inside. This is due to the ease of manufacturability, since it is really easy to drill out 

a cylinder from the model to match the required parameters. Then, this 
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manufacturing approach can be applied directly to the optimization problem in 

hand: 

 

“Find the optimum cylinder that has to be drilled out from the model” 

 

First step is to define the cylinder: any cylinder can be defined with a length, radius 

and start/end point with respect to some axis. Then, the “optimum cylinder” can be 

defined with the following states (Figure 2.2): 

• x1: the length of the cylinder 

• x2: the radius of the cylinder 

• x3: the end point of the cylinder on x axis 

 

 

 

 

Figure 2.2 The definition of the optimum cylinder 

 

 

 

So the objective function given in Equation (2.5) is in fact a function of x1, x2 and 

x3 since all the mass properties of the model is now dependent on the parameters of 

the cylinder that is drilled out as well as the materials used in the model and the 



 17

external dimensions of the model (scale). Then, the difference between the centre 

of gravity location and inertia ratio of the model and the goal values is simply the 

mass properties of the cylinder provided that the external dimensions and materials 

selected are fixed. 

 

Having defined the objective function, the next step in the optimization is to define 

the constraints. First of all there are lower and upper bounds for the states. These 

are simple geometrical facts and can be summarized as follows: 

 

  31 xx <  (2.6) 

 

  fxx <3  (2.7) 

 

  ))((min
3,12 xOx

xx
<  (2.8) 

 

  10 x<  (2.9) 

 

  20 x<  (2.10) 

 

  30 x<  (2.11) 

 

where xf is the length of the model and O(x) denotes the offset curve of the model 

external geometry, which is generated due to manufacturability considerations (i.e. 

the model should have a finite wall thickness). 

 

Another constraint is related to the strength of the model. Since the model will be 

under axial compressive loads during launch [16], the value of the axial 

compressive stress at any cross-section of the model should not exceed the yield 

strength of the material at that section Equation (2.12). 

 

  yieldncompressio σσ <  (2.12) 
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Then the constraints can be shown in matrix notation as 
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  0~ <c  (2.14) 

 

2.2 AEROBALLISTIC RANGE MODEL GEOMETRIES 
 

The geometries of the projectiles are usually axisymmetric or mirror symmetric, 

regardless of their type (i.e. air to ground/ground to ground, guided/unguided, etc.), 

but in this study only axisymmetric projectiles are considered. The typical 

projectile geometry has an aerodynamically shaped nose (cone or blunt), a 

cylindrical body and an afterbody (cylindrical, flare, boat tail). All of these 

geometries can be approximated by use of simple mathematical functions. 

 

2.2.1 Nose Profile 

 

The typical geometry of the nose section of a projectile has a special name: ogive3. 

There are mainly four types of ogives used in aeroballistics [17]: 

• Tangent Ogive 

• Von Karman Ogive 

• ½ Power Parabolic Ogive 
                                                 
3 “Ogive” is a French word meaning the arch or rib which crosses a Gothic vault diagonally. When 

used in ballistics, it refers to the front consisting of the conical head of a missile or rocket that 

protects the payload from heat during its passage through the atmosphere. 
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• Conical Ogive 

 

However, simplest and mostly used one of the four is the tangent ogive. Tangent 

ogive is basically an arc, fit to the nose of the projectile with the following 

boundary conditions (Figure 2.3): 

 

1. The arc passes through the nose start location (0, 0). 

2. The arc passes through the nose end location (nl, nr) 

3. Derivative of the arc equation with respect to x is zero at the nose 

end location. 

 

General equation of a circle with centre at (a, b) and radius R is given in Equation 

(2.15).  

 

  222 )()( Rbyax =−+−  (2.15) 

 

Above mentioned boundary conditions are applied and equations (2.16), (2.17) and 

(2.20) are obtained where nl denotes the nose length and nr denotes the nose radius 

at the nose end. 

 

  22 )( axRby −−+=  (2.16) 

 

  222 Rba =+  (2.17) 

 

  222 )()( Rbnranl =−+−  (2.18) 
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Equation (2.19) implies that: 

 



 20

  nla =  (2.20) 

 

That is, the x coordinate of the centre of the circle is nose length distance away 

from the origin of the Coordinate Frame 2 (Figure 2.1). Substituting Equation 

(2.20) into Equation (2.17) and Equation (2.18) y coordinate of the center of the arc 

is obtained as Equation (2.21). Then it can be easily shown that the radius of the arc 

is given by Equation (2.22). Furthermore the equation of the tangent ogive is given 

in Equation (2.23). 
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Figure 2.3 Tangent Ogive 
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2.2.2 Body Profile 

 

The body of the projectile is usually a cylinder. However, there are some 

projectiles with expanding/contracting bodies (truncated cone). So it is best to 

model the body with a generic line equation as Equation (2.24) where bstart denotes 

the body start location, bend denotes the body end location, brstart denotes the body 

radius at the start and brend denotes the body radius at the end.  
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2.2.3 Tail Profile 

 

The tail section of a projectile is usually a boat tail or a flare. The geometry 

equation for the tail section can be obtained in a similar manner to Equation (2.24), 

as, 
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2.2.4 Fin Planform 

 

The most general fin planform is formed by four simpler geometric parts (Figure 

2.4). Then 6 parameters are needed to define this figure: 

• Root chord (c) 

• Maximum span (b) 

• Leading edge sweep angle 1 (α1) 

• Leading edge sweep angle 2 (α2) 

• Trailing edge sweep angle (α3)  
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• Fin start location (finstart) 

 

Using these 6 parameters, the formula of the fin can be derived as follows: 

 

  )1tan(α⋅= xy  (2.26) 
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Figure 2.4 General fin planform 

 

 

 

Substituting Equation (2.26) and Equation (2.27) into Equation (2.28) x is obtained 

in terms of known values as. 
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Since all of the vertices are known, then the equations for the fin can be easily 

obtained in terms of body radius at the fin start (finstartradius) and the above defined 

parameters as line equations. 

 

2.3 ESTIMATING THE LAUNCH LOADS 
 

One of the greatest challenges in aeroballistic range model design is the prediction 

of the models’ strength under launch loads. The projectile (i.e. model and the sabot) 

is subjected to extreme accelerations during launch (in the order of 1000g’s). 

Although there are a number of analytical and experimental methods derived to 

estimate whether the model will hold these stresses or fail, the design of model and 

sabot packages is largely a trial and error procedure based on experience, [18], 

[19]. 

 

The experimental approach is to statically test the sabot/model packages in a 

compression test machine and predict the failing load, [19],[20]. This approach 

gives acceptable predictions for most of the time, although there are cases in which 

the dynamic behavior of the sabot/model is different from the static behavior. 

 

The analytical approach tries to estimate the launch loads and employs stress 

analysis under static loading making use of the elementary principles of strength of 

materials neglecting the dynamic effects [3],[18],[19]. Although this approach may 

seem as oversimplified, it has not been necessary to make it more complex, since a 

successful model/sabot design is usually obtained with a small number of proof 

firings and great deal of experience [3].  

 

In this approach, first step is to calculate the acceleration during the model travel in 

the barrel of the gun, which would give the desired test velocity. Thus, once the 

length of the barrel (lbarrel) and the test velocity (Vmuzzle) is known, the constant 

acceleration (a) is obtained from the basic acceleration formula as: 
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A correction factor is multiplied to the constant acceleration of Equation (2.30) in 

order to get a better prediction of dynamic loads, since the peak acceleration will be 

higher than this constant value. The proper way to estimate the peak acceleration 

factor is based on the previous acceleration measurements in the gun with similar 

projectiles at similar muzzle velocities. It is stated in [3] that this value lies within 

the range 3-5.  

 

This is also verified with the results presented in [21]. Figure 2.5 shows the 

acceleration versus time plot for the FML model of Reference [21], obtained as a 

by-product of a dynamic finite element analysis (FEA), which was carried out in 

order to predict whether the designed model could withstand the expected chamber 

and barrel pressures. FEA was carried out using MARC Mentat 2003 software. The 

velocity versus time plot for the same model is shown in Figure 2.6. It is seen that 

for a muzzle velocity of 504 m/s, maximum acceleration experienced by the model 

is 51200 m/s2. For a barrel length of 5.5 meters, the constant acceleration value 

obtained by using Equation (2.30) is 23092 m/s2. According to the range given in 

[3] the peak acceleration is between 69276 m/s2 and 115460 m/s2. So, the limits 

given in [3] are in fact conservative values and can be used in aeroballistic range 

model design if no other data are available. 
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Figure 2.5 Acceleration versus time for a FML model (FEA Result) 
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Figure 2.6 Velocity versus time for a FML model (FEA Result) 
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Then the maximum force acting on the base of the model during the launch is a 

axial compressive force caused by the acceleration of the mass ahead of it [19]. 

Thus, for any cross-section of the model, the axial compressive stress is defined as, 

[3], [16]: 

 

  
i

peak
c A

ma ′⋅
=σ  (2.31) 

 

where apeak is the peak acceleration, m` is the total mass of all sections ahead of the 

particular section for which the axial compressive stress is calculated and Ai is the 

cross-sectional area. The model is assumed to withstand the launch loads unless the 

value of the axial compressive stress at any transverse section is greater that the 

yield strength of the material at that particular cross section.  

 

Although the analytical approach gives acceptable approximations, it is better to 

carry out a finite element analysis of the projectile before the proof tests using 

commercial FEA tools, in order to validate the results foreseen by the static stress 

analysis approach [21].  
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CHAPTER 3  
 

OPTIMIZATION TECHNIQUES 
 

 

 

3.1 OPTIMIZATION THEORY 
 

A system is defined as optimal, if it satisfies the performance criteria better than 

any other possible system while not violating the defined constraints [22]. 

 

The general optimization problem is defined as: 
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 (3.1) 

 

where x is a vector of length n design parameters, l121 h,...,h,g,...,g,f  are design 

functions where the function f is called the objective function, the constraint 

,...,m  i     for  )x(gi 10 =≤
r  is called an inequality constraint, and the constraint 

,...,lm  i     for  )x(gi 10 +==
r  is called an equality constraint. The design 

parameter x is limited by upper and lower limits, which are often named as side 

constraints [23], [24], [25]. 

 

The problem given in Equation (3.1) can be stated as follows [24]: 
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“Minimize the objective function f, subject to l equality constraints and m 

inequality constraints, with n design variables lying between the prescribed lower 

and upper limits” 

 

A vector x satisfying all the inequality and equality constraints is called a feasible 

solution to the problem. The collection of all these type of solutions forms the 

feasible region. 

 

3.2 MULTI OBJECTIVE OPTIMIZATION 
 

Most of the time, the real engineering problems are highly non-linear with more 

than one objective to minimize. So, the objective function is usually a vector of 

objectives, which must be traded off in some way to reach an optimal. This leads to 

the concept of noninferiority [25]: 

 

“A noninferior solution is the one in which an improvement in one of the objective 

requires a degradation of another”. 

 

 

Figure 3.1 Set of non-inferior solutions 
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Consider the feasible region of Λ in Figure 3.1. The points denoted by A and B 

represent two specific non-inferior solution points, since an improvement in one 

objective F1, requires a degradation in the other objective F2, i.e.: 

 

  AFBFAFBF 22,11 ><  (3.2) 

 

It is clear that, for any point defined in Λ, if an improvement can be obtained in the 

objectives then that point is not a noninferior point, thus is of no use to the solution 

of the optimization problem.  

 

Multi objective optimization concerns the generation and selection of noninferior 

points. Although there are a number of methods for multi objective optimization, 

the one used in this study is the weighted sum strategy.  

 

The weighted sum strategy converts the multi objective optimization problem to a 

single objective scalar problem by constructing a weighted sum of all of the 

objectives (3.3) [25]. 
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The weighting coefficients do not necessarily indicate the relative importance of 

the objectives or allow trade offs between the objectives to be expressed.  

 

3.3 UNCONSTRAINED OPTIMIZATION 
 

There are many methods used for unconstrained optimization, which are classified 

according to the derivative information that they are (not) using. Some methods 

only use function evaluations, while others employ the gradient information to 

reach the optimal solution.  
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Gradient methods are more efficient when the function to be minimized is 

continuous in its first derivative, where higher order methods like Newton’s 

method are only feasible when the second order information is readily known or 

easily calculated. The methods that only use function evaluations, such as pattern 

search method, are most suitable for problems that are very nonlinear or have a 

number of discontinuities. 

 

Proceeding two sections give brief information about the most common method 

that is used for unconstrained minimization, Quasi-Newton Method and line search 

algorithm. Detailed information and the implementation steps are available in 

references [24], [25]. 

 

3.3.1 Quasi-Newton Methods 

 

The most popular methods that use the gradient information are Quasi–Newton 

methods. These methods calculate curvature information at each iteration step and 

formulate a quadratic problem of the form: 

 

  bxcHxx TT

x
++

2
1

min  (3.4) 

 

where H is a positive definite symmetric matrix (the Hessian matrix), c is a 

constant vector and b is a constant. The optimal solution is obtained when: 

 

  0)( ** =+=∇ cHxxf  (3.5) 

 

where the optimal solution point x* is: 

 

  cHx 1* −−=  (3.6) 

 

The mostly used method to calculate and update the Hessian matrix at each 

iteration step is the Broyden – Fletcher – Goldfarb – Shanno (BFGS) method. 
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BFGS has an advantage of quadratic convergence and also robustness by carrying 

forward information from previous iterations [24]. The BFGS method is formulated 

as: 
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where  

 

  kkk xxs −= +1  (3.8) 

 

  )()( 1 kkk xfxfq ∇−∇= +  (3.9) 

 

The gradient information can be obtained analytically or numerically by using 

finite differences. Thus, at each iteration step, the design variables are perturbed in 

order to calculate the rate of change of the objective function. 

 

At each major iteration step (k), a line search is performed in the direction of: 

 

  )(1
kkk xfHd ∇−= −  (3.10) 

 

3.3.2 Line Search 

 

Line search is a search method that is used as part of a larger optimization 

algorithm. At each iteration step of the main algorithm, the line-search method 

searches along the line containing the current point, xk, parallel to the search 

direction as given in Equation (3.10). Then the next iterate is of the form: 
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where xk denotes the current iterate, dk is the search direction, and α* is a scalar 

step size. 

 

The line search method attempts to decrease the objective function along the line 

by minimizing polynomial interpolation models of the objective function. The line 

search procedure has two main steps [25]: 

• Bracketing the points to be searched on the line. This step is used to decide 

on the step length, α. 

• Sectioning the bracket to subintervals, where the minimum of the objective 

function is approximated by using polynomial interpolation (cubic or 

quadratic). 

 

The resulting step length α satisfies the Wolfe conditions [25]: 
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where c1 and c2 are constants with 0 < c1 < c2 < 1. 

 

The first condition Equation (3.12) requires that α sufficiently decreases the 

objective function. The second condition Equation (3.13) ensures that the step 

length is not too small. 

 

3.4 CONSTRAINED OPTIMIZATION 
 

The common approach to constrained optimization problems is to transform the 

problem into a simpler subproblem, which can be solved iteratively. Although early 

optimization methods employed a translation of the constrained minimization 

problem to an unconstrained minimization problem through application of a 
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penalty function, modern methods are focused on the solution of Kuhn-Tucker 

(KT) equations.  

 

The KT equations are necessary conditions for optimality for a constrained 

optimization problem. If the problem is a convex problem, that is, f(x) and 

,...,m  i)x(gi 1, =
r , are convex functions, then the KT equations are both necessary 

and sufficient for a global solution point.  

 

In addition to the constraints of Equation (3.1), the Kuhn-Tucker equations can be 

stated as: 
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The first equation describes a canceling of the gradients between the objective 

function and the active constraints at the solution point. For the gradients to be 

canceled, Lagrange multipliers (λi,i=1,…,m) are necessary to balance the 

deviations in magnitude of the objective function and constraint gradients. Because 

only active constraints are included in this canceling operation, Lagrange 

multipliers of the non-active constraints are set to zero. This is stated implicitly in 

the last two equations of Equation set (3.14). 

 

The solution of the KT equations forms the basis to many nonlinear programming 

algorithms such as constrained quasi-Newton methods. These methods are 

commonly referred to as Sequential Quadratic Programming (SQP) methods, since 

a Quadratic Programming (QP) subproblem is solved at each major iteration step 

(also known as Iterative Quadratic Programming, Recursive Quadratic 

Programming, and Constrained Variable Metric methods). 
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Next two sections give brief information about the SQP. Detailed information 

about this method and the implementation steps are available in references [24], 

[25]. 

 

3.4.1 Sequential Quadratic Programming (SQP) 

 

SQP allows the use of Newton’s method for constrained optimization as done for 

unconstrained optimization.  

 

At each major iteration step, the Hessian matrix is approximated using the 

Lagrange multiplier through an application of quasi-Newton method. This is then 

used to generate a QP subproblem, whose solution is used to form a search 

direction for line searching procedure. 

 

3.4.2 Quadratic Programming (QP) Subproblem 

 

The bounds of the design variables of Equation (3.1) are expressed as inequality 

constraints and a quadratic approximation for the Lagrangian function is obtained 

as: 
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Then the QP subproblem is defined as [25]: 
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The solution of this subproblem is used to form a new iterate 

 

  kkkk dxx ⋅+=+ α1  (3.17) 
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where the step size αk is determined by line search procedure. The Hk matrix is the 

positive definite approximation of the Hessian matrix of the Lagrangian function 

Equation (3.15). The most common method used to update the Hk is BFGS method. 

 

3.5 GLOBAL OPTIMIZATION 
 

The optimization methods described in the previous section are called “classical” 

methods and they have a common drawback: global optimization is not guaranteed. 

Thus, depending on the initial guess, the algorithm may or may not converge to a 

solution, and even if it converges to a solution this solution point may only be a 

local extremum of the objective function. 

 

To deal with this problem, non-classical methods have been derived such as 

simulated annealing and genetic algorithms. The names are not coincidental since 

the basic ideas behind these algorithms are derived from processes of nature. 

 

Simulated annealing is analogous to a metallurgical process in which metals are 

cooled to obtain different crystalline structures based on minimum potential 

energy. Genetic algorithm is based on the natural selection phenomena seen in 

nature, leading to better and stronger generations.  

 

The classical methods tend to move towards the local extremum closest to the 

starting point and they can not identify if this point is a local or global extremum. 

However, global optimization techniques are primarily searching algorithms, which 

sweep the entire solution domain to find the best possible solution, i.e. the global 

optimum solution. In simulated annealing a search direction is generated randomly 

and the minimum of the objective function is sought. Sometimes, an increase in the 

function value is permitted in the search direction to escape from a potential 

sticking to a local minimum. In genetic algorithms, a population of solutions is 

generated and is evolved towards a global optimum solution. 
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The main disadvantage of the global optimization techniques is that, they require 

huge amount of iterations and take very long to find the solution. Detailed 

information about the global optimization techniques can be found in references 

[22] and [24]. 

 

3.6 OPTIMIZATION USING MATLAB® 
 

The world wide known and respected commercial engineering package Matlab® 

has a collection of special functions that are used for optimization of a wide range 

of real world problems. This collection of functions is named as the Optimization 

Toolbox. The types of problems that can be solved using the toolbox are given in 

Optimization Toolbox User’s Guide as: 

• Unconstrained nonlinear minimization 

• Constrained nonlinear minimization including goal attainment problems, 

minimax problems and semi-infinite optimization problems. 

• Quadratic and linear programming 

• Non-linear least squares curve fitting 

• Non-linear system of equation solving 

• Constrained linear least squares 

• Sparse and structured large-scale problems. 

 

The specific Matlab® Optimization Toolbox function that is used for this study is 

fmincon, which is developed for the finding a minimum to constrained nonlinear 

multi variable functions starting with an initial estimate. fmincon uses a SQP 

method, in which an estimate of the Hessian of the Lagrangian is updated at each 

iteration step using BFGS formula for the solution of the QP subproblem. Although 

fmincon is a very useful tool, like the rest of the Optimization Toolbox, it has 

some limitations and setbacks. The biggest of these is the local minimization which 

is a common problem for all the classical methods. This brings the code sensitivity 

to the initial conditions. One workaround proposed by MathWorks, is to run the 

fmincon with a number of different initial conditions and use the best result of 
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these runs as the optimal solution, provided that the function to be minimized is 

continuous and real valued as well as the constraints [26].  
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CHAPTER 4  
 

DESIGN METHODOLOGY AND TEST CASES 
 

 

 

4.1 THE OPTIMIZATION CODE – FMLCAD 
 

The theoretical background of the study is established in Chapter 2 and Chapter 3. 

As explained in Chapter 1, the aim of the study is to develop a methodology which 

will be the basis of a code that will be used in the design optimization of the FML 

models.  

 

The development platform is selected to be Matlab®. Although Matlab® is very 

powerful when it comes to calculations, the graphical user interface supporting 

capabilities are limited. Nevertheless, a GUI is designed using the GUIDE tool of 

Matlab® for easy data input to the code (Figure 4.1). The caller function for the 

GUI is named as FMLCAD – Flight Mechanics Laboratory Computer Aided 

Design Tool. 

 

 

 



 39

 

Figure 4.1 User Interface of the FMLCAD 

 

 

 

 

Figure 4.2 FMLCAD hierarchy 
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FMLCAD is made up of nine functions. The hierarchy of these functions is given 

in Figure 4.2. All the input entered by the user using the GUI is passed to the main 

function, myoptimization.m. This function calls all the subfunctions and displays 

the optimal results at the end. Optimization is carried out by the fmincon function 

of the Optimization Toolbox. 

 

Total length of the functions, excluding fmincon and other Optimization Toolbox 

functions which are called by fmincon during optimization, is 3586 lines 

including the comments. GUI function fmlcad.m is the longest of all with 1768 

lines and parallel axis transformation function PA.m is the shortest with 3 lines. 

Flow chart of FMLCAD is presented in Figure 4.3. 

 

FMLCAD requires the actual munitions’ properties together with the test 

conditions as input from the user and tries to find an optimum design configuration 

for the FML model. The “optimum configuration” defines the materials set used for 

the model and the internal configuration (i.e. the parameters of the optimum 

cylinder described in Chapter 2). 

 

All of the inputs of FMLCAD are listed as: 

• Actual munitions’ mass properties 

o Weight (grams) 

o Location of the centre of gravity (from the nose - cm) 

o Axial inertia (gr cm2) 

o Transverse inertia (gr cm2) 

• Actual munitions’ geometry 

o Distance of the end of the nose section from the munitions’ nose 

(cm) 

o Radius of the munition at the end of the nose section (cm) 

o Distance of the end of the body section from the munitions’ nose 

(cm) 

o Radius of the munition at the end of the body section (cm) 
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o Total length of the munition (cm) 

o Radius of the munition at the base (cm) 

• Test and facility parameters: 

o Mach number 

o Speed of sound at the facility (m/s) 

o Length of the barrel (cm) 

o Peak acceleration factor 

• Material selection: 

o Up to three different materials 

o Yield strengths (Pa) 

o Densities (gr/cm3) 

• Other inputs that must be provided by the user: 

o Scale factor 

o Weighting factors for the objectives 

o Offset distance (cm) 

 

Once started, the target values are calculated using the actual munition parameters 

and scale factor. Actual geometry is scaled down using scale factor and geometry 

matrices are filled for equally distributed 500 axial stations along the model 

longitudinal axis (x axis). Then, geometrical constraints are generated using this 

geometry information and offset value input by user. 

 

Next step is to generate the initial conditions set, which defines the starting points 

for the optimization routine. The formal approach should be to define the minimum 

and maximum values of the states and generate the initial condition set depending 

on these values. Thus, for three design variables (x1, x2, x3) there are 27 different 

initial guesses containing all possible combinations of the minimum, maximum and 

mean values of the design variables. However, this approach, although very simple 

and straightforward, can not be applied since for most of the combinations; the 

initial guess of the design variables violates the geometrical constraints defined in 

Chapter 2. It is preferred to start the optimization routine with an initial condition 

set that does not violate the constraints. So, an alternative approach is developed 
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for the generation of the initial conditions. In this approach, the allowable domain 

(i.e. the domain defined by the geometrical constraints) for the design variables are 

swept using a generic formula derived by trial and error method. 8 different initial 

guess sets are defined, which span the model domain according to the following 

formula: 
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where  AS: the matrix that keeps the positions of the axial stations from the nose, 

 ns: number of stations (500),  

 ds: the distance between axial stations, 

 Offset: the matrix that keeps the offset information of the external curve. 

fno: (stands for first non-zero offset) denotes the first axial location for 

which the offset curve has a positive value.  

4 additional initial conditions are defined by taking the mirror images of the first 4 

with respect to the model half length and modifying the x2 guess in Equation (4.1) 

if necessary. So a total number of 12 initial conditions are swept for each external 

geometry configuration. The initial guess matrix is plotted for the geometries of the 

test cases respectively in Figure 4.4 and Figure 4.5. 
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Figure 4.4 Initial guess sets for the geometry of test case 1 
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Figure 4.5 Initial guess sets for the geometry of test case 2 
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Up to 27 different external configurations may be defined depending on the number 

of different materials selected. For each external configuration case the 

optimization routine is called for each initial condition and the optimum solution 

for that case is selected among the results of these runs depending on the weights 

input by the user. For this purpose a Figure of Merit (FOM) is defined as: 

 

  321 1000
w

m
wErrIwErrCgFOM model ×+×+×=  (4.2) 

 

where ErrCg is the error in centre of gravity location, ErrI is the error in inertia 

ratio, mmodel is the final weight of the model and wi is the weighting factors input by 

user. 

 

Then for each case the following are output: 

• Materials for the nose, body and tail sections 

• Length of the optimal cylinder 

• Radius of the optimal cylinder 

• End point of the optimal cylinder from the nose of the model 

• Mass of the model 

• Centre of gravity location for the model from the nose 

• Ratio of the axial inertia to the transverse inertia of the model 

• Percent error in centre of gravity location 

• Percent error in inertia ratio 

• Figure of merit (FOM) 

• Exit flag for the case 

 

The optimum solution for the FML model is the one with an exit flag equal to 1 

and minimum FOM value (different than zero), where exit flag is an identifier, 

which can take the values 1, 0 or -1, depending on whether the optimization routine 

converged to a solution, exceeded the allowed number of iterations or did not 

converge. The results are saved to files and also to Matlab® workspace.  
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4.2 TEST CASE – 1: MEDIUM – RANGE UNGUIDED 

ARTILLERY ROCKET 
 

The first case selected to test the FMLCAD is a medium range unguided artillery 

rocket. 

 

Table 4-1 shows the mass properties of the medium range unguided artillery rocket 

selected as the test case – 1. The external geometry of the rocket is given in Table 

4-2, Table 4-3 and shown in Figure 4.6. 

 

Scale factor for this rocket is selected to be 0.1 based on the similar models that 

were tested at FML. This scale factor gives a maximum diameter of 49.5 mm at the 

fin tips. Maximum Mach number at which the tests will be performed is selected as 

2.5. However, to investigate the effect of test velocity on the model design, 

FMLCAD is run twice using Mach 1.5 and Mach 2.5 as test velocities. Also two 

sets of weighting factors are used for each Mach number (Table 4-4). 

 

The most common materials used in manufacturing of aeroballistic range models 

and their properties are given in Table 4-5 [3], [30], [27]. For test case-1 the 

selected materials are Steel 4140, Aluminum 7075 T6 and Soft Yellow Brass. 

 

 

 

Table 4-1 Mass properties for test case - 1 

Mass (kg) 207.47 
Centre of gravity location (cm – from nose) 170.675 
Axial inertia (kg m2) 1.7068 
Transverse inertia (kg m2) 234.097 
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Table 4-2 Geometry properties for test case - 1 

Section End location 
(cm –from nose) End radius (cm) 

Nose 70.0 11.35 
Body 205.0 11.35 
Tail 393.7 11.35 

 

 

 

Table 4-3 Fin data 

Number of fins 4 
Starting coordinates from the nose (cm) (368.70,11.35) 
Root chord (cm) 25.0 
Maximum span length (cm) 13.40 
Reference thickness (cm) 1.0 
Leading edge sweep angle 1 (°) 90 
Leading edge sweep angle 2 (°) 0 
Trailing edge sweep angle (°) 90 

 

 

 

 

Figure 4.6 External geometry for test case – 1 

 

 

 

Table 4-4 Weighting factors for test case - 1 

Weighting factor set 1: [0.3333, 0.3333 , 0.3333] 
Weighting factor set 2: [0.4 ,0.4 , 0.2] 
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Table 4-5 Common materials for aeroballistic range models 

Material Density 
(gr/cm3)

Yield Strength 
(MPa) 

Steel 1040 7.84 593 
Steel 4140 7.84 1640 

Aluminum 2024T4 2.71 470 
Aluminum 7075T6 2.71 570 
Soft Yellow Brass 8.47 510 

Titanium 4.73 900 
Polycarbonate 1.2 850 

 

 

 

4.2.1 Results for Mach 1.5 

 

4.2.1.1 Weighting Factor Set 1: 

 

The optimum solution found by FMLCAD for this case is obtained with a brass 

nose section, steel body section and aluminum tail section. The results are 

presented in Table 4-6. Details of the results are given in Appendix B as tables. 

Optimization history for the states, objective function, constraint violation and the 

gradients of the objective function are given in following figures. 

 

It is seen from the results of Table 4-6 that the optimum solution found by the code 

is quite satisfactory with a mass of 680 grams and error in center of gravity location 

of 0.03 %. Error in inertia ratio (2.5%) is also satisfactory, although it is a little 

high when compared to the error in center of gravity location. 
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Table 4-6 Details of the optimum solution 

Initial x1: 4.36445
Initial x2: 0.98426
Initial x3: 22.10344

x1: 37.2172
x2: 0.38686
x3: 39.21252
Objective Function Value: 0.23105
Exit Flag: 1
Number of Iterations: 12
Final Step Size: 1
Optimization Algorithm: medium-scale: SQP, Quasi-Newton, line-search
Gradient of Objective Function wrt x1: 0.0087
Gradient of Objective Function wrt x2: 0.05163
Gradient of Objective Function wrt x3: -0.16855
Final Mass (gr): 680.07931
Final Cg Location (cm): 17.07284
Final Ix (grcm2): 501.01643
Final Iy (grcm2): 67018.29672
Final Inertia Ratio: 0.00748
Error in Cg Location (%): 0.0313
Error in Ix/Iy Ratio (%): 2.53492
Figure of Merit: 1.0821

Initial Conditions

Optimization Results
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Figure 4.7 Optimization history for x1 
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Figure 4.8 Optimization history for x2 
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Figure 4.9 Optimization history for x3 
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It is seen that second state (x2) reaches the vicinity of the optimum solution in less 

iteration steps when compared to x1 and x3. When the histories of the gradients of 

the objective function are examined it is noticed that, the final gradient value with 

respect to third design variable (x3) is higher than the values for x1 and x2. History 

of the maximum constraint violation indicates that, none of the constraints were 

violated during the iterations. 
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Figure 4.10 Optimization history for objective function 
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Figure 4.11 Optimization history for constraint violation 
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Figure 4.12 Optimization history for the gradient of objective function wrt x1 
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Figure 4.13 Optimization history for the gradient of objective function wrt x2 
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Figure 4.14 Optimization history for the gradient of objective function wrt x3 

 

 

 



 55

The optimum internal geometry of the FML model for the medium range unguided 

artillery rocket of test case 1 is shown in Figure 4.15 together with the plot of the 

estimated axial compressive stress along the model axis (Figure 4.16). 
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Figure 4.15 Optimum geometry for test case 1 at Mach 1.5 with weighting set 1 
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Figure 4.16 Axial compressive stress plot 
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Figure 4.17 Yield strength 
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4.2.1.2 Weighting Factor Set 2: 

 

The optimum solution found by FMLCAD for this weighting factor set is obtained 

with a brass nose section, steel body section and aluminum tail section. The results 

are presented in Table 4-7. Details of the results are given in Appendix B as tables. 

Optimization history for the states, objective function, constraint violation and the 

gradients of the objective function are given in following figures. 

 

 

 

Table 4-7 Details of the optimum solution 

Initial x1: 4.36445
Initial x2: 0.98426
Initial x3: 22.10344

x1: 36.45766
x2: 0.3415
x3: 38.22935
Objective Function Value: 0.14116
Exit Flag: 1
Number of Iterations: 38
Final Step Size: 1
Optimization Algorithm: medium-scale: SQP, Quasi-Newton, line-search
Gradient of Objective Function wrt x1: 0.52119
Gradient of Objective Function wrt x2: 0.30093
Gradient of Objective Function wrt x3: -0.86957
Final Mass (gr): 701.30238
Final Cg Location (cm): 17.07313
Final Ix (grcm^2): 503.80847
Final Iy (grcm^2): 69375.06476
Final Inertia Ratio: 0.00726
Error in Cg Location (%): 0.033
Error in Ix2Iy Ratio (%): 0.39634
Figure of Merit: 0.312

Initial Conditions

Optimization Results
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It is seen from the results of Table 4-7 that the optimum solution found by the code 

is quite good with a mass of 701 grams, error in center of gravity location of 0.03 

% and error in inertia ratio of 0.3 %. Although the number of iterations made by 

fmincon is 38, the optimal solution is obtained at 18th step. When the optimization 

histories are examined, the reason becomes obvious: the states at the 18th iteration 

step give the minimum objective function value while satisfying the constraints. 
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Figure 4.18 Optimization history for x1 
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Optimization History (X2)

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40

Iteration #

X
2

 

Figure 4.19 Optimization history for x2 
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Figure 4.20 Optimization history for x3 
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It is seen that while the value of the objective function remains almost constant for 

the iterations after the 18th step, the gradient of the objective function tend to go to 

zero. However, because of the constraint violation no valid solution can be reached 

as a result of the iterations after step 18. So the optimum solution is the one that 

gives the minimum objective function value with no constraint violation, which is 

obtained at step 18.  
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Figure 4.21 Optimization history for objective function 
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Maximum Constraint Violation
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Figure 4.22 Optimization history for constraint violation 
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Figure 4.23 Optimization history for the gradient of objective function wrt x1 
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Gradient of Objective Function wrt X2
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Figure 4.24 Optimization history for the gradient of objective function wrt x2 
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Figure 4.25 Optimization history for the gradient of objective function wrt x3 
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The final inner geometry of the FML model for weighting factor set 2 is given in 

Figure 4.26. 
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Figure 4.26 Optimum geometry for test case 1 at Mach 1.5 with weighting set 2 
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Axial Compressive Stress (Mpa)
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Figure 4.27 Axial compressive stress plot 
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Figure 4.28 Yield strength 
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4.2.2 Results for Mach 2.5 

 

4.2.2.1 Weighting Factor Set 1: 

 

Once again, the optimum solution found by FMLCAD is obtained with a brass 

nose section, steel body section and aluminum tail section. The results are 

presented in Table 4-8. Details of the results are given in Appendix B as tables.  

 

Table 4-8 Details of the optimum solution 

Initial x1: 4.36445
Initial x2: 0.98426
Initial x3: 22.10344

x1: 37.2172
x2: 0.38686
x3: 39.21252
Objective Function Value: 0.23105
Exit Flag: 1
Number of Iterations: 12
Final Step Size: 1
Optimization Algorithm: medium-scale: SQP, Quasi-Newton, line-search
Gradient of Objective Function wrt x1: 0.0087
Gradient of Objective Function wrt x2: 0.05163
Gradient of Objective Function wrt x3: -0.16855
Final Mass (gr): 680.07931
Final Cg Location (cm): 17.07284
Final Ix (grcm^2): 501.01643
Final Iy (grcm^2): 67018.29672
Final Inertia Ratio: 0.00748
Error in Cg Location (%): 0.0313
Error in Ix/Iy Ratio (%): 2.53492
Figure of Merit: 1.0821

Initial Conditions

Optimization Results

 
 

 

 

When the results given in Table 4-8 are compared to those given in Table 4-6, it is 

seen that only difference between the optimizations at Mach 1.5 and Mach 2.5 is 

the maximum constraint violation at the initial guess.  
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The optimum internal geometry of the FML model for the medium range unguided 

artillery rocket of test case 1 is shown in Figure 4.29 together with the plot of the 

estimated axial compressive stress along the model axis (Figure 4.30). 
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Figure 4.29 Optimum geometry for test case 1 at Mach 2.5 with weighting set 1 
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Figure 4.30 Axial Compressive stress plot 
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Figure 4.31 Yield strength 
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4.2.2.2 Weighting Factor Set 2: 

 

Once again, the optimum solution found by FMLCAD for this case is obtained 

with a brass nose section, steel body section and aluminum tail section (Table 4-9). 

Details of the results are given in Appendix B.  

 

Table 4-9 Details of the optimum solution 

Initial x1: 4.36445
Initial x2: 0.98426
Initial x3: 22.10344

x1: 36.45766
x2: 0.3415
x3: 38.22935
Objective Function Value: 0.14116
Exit Flag: 1
Number of Iterations: 38
Final Step Size: 1
Optimization Algorithm: medium-scale: SQP, Quasi-Newton, line-search
Gradient of Objective Function wrt x1: 0.52119
Gradient of Objective Function wrt x2: 0.30093
Gradient of Objective Function wrt x3: -0.86957
Final Mass (gr): 701.30238
Final Cg Location (cm): 17.07313
Final Ix (grcm^2): 503.80847
Final Iy (grcm^2): 69375.06476
Final Inertia Ratio: 0.00726
Error in Cg Location (%): 0.033
Error in Ix2Iy Ratio (%): 0.39634
Figure of Merit: 0.312

Initial Conditions

Optimization Results

 
 

 

 

When the results of Table 4-9 are compared to those given in Table 4-7, it is seen 

that significant difference between the optimizations at Mach 1.5 and Mach 2.5 is 

the maximum constraint violation at the initial guess. 
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The final inner geometry of the FML model for weighting factor set 2 is given in 

Figure 4.32. 

 

-5

0

5

0 5 10 15 20 25 30 35

 

Figure 4.32 Optimum geometry for test case 1 at Mach 2.5 with weighting set 2 
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Figure 4.33 Axial compressive stress plot 
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Figure 4.34 Yield strength 

 

 

 

4.3 TEST CASE – 2: LOW DRAG GENERAL PURPOSE 

AIRCRAFT BOMB 
 

The second case selected to test the FMLCAD is a low drag general purpose 

aircraft bomb. 

 

Table 4-10 shows the mass properties of the LDGP aircraft bomb selected as the 

test case – 2. The external geometry of the bomb is given in Table 4-11, Table 4-12 

and shown in Figure 4.35. 
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Table 4-10 Mass properties for test case - 1 

Mass (kg) 910 
Centre of gravity location (cm – from nose) 160.0 
Axial inertia (kg m2) 22.33332 
Transverse inertia (kg m2) 536.976 

 

 

 

Table 4-11 Geometry properties for test case - 1 

Section End location 
(cm –from nose) End radius (cm) 

Nose 132.46 22.85 
Body 256.26 22.85 
Tail 381.5 8.138 

 

 

 

Table 4-12 Fin data 

Number of fins 4 
Starting coordinates from the nose (cm) (334.00, 13.70) 
Root chord (cm) 45.31 
Maximum span length (cm) 26.37 
Reference thickness (cm) 2.5 
Leading edge sweep angle 1 (°) 52 
Leading edge sweep angle 2 (°) 6.7 
Trailing edge sweep angle (°) 83.18 
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Figure 4.35 External geometry for test case - 2 

 

 

 

When the geometry of the test case is examined (Figure 4.35), it is seen that the 

fins are modeled parallel to the longitudinal axis of the munition. Although this 

approach introduces a small error in inertia calculations, its effect is negligible. 

This approach is also used in modeling fins by commercial software packages used 

in aeroballistics such as PRODAS (Projectile Design and Analysis Software) and 

APC 2002 (Aero Prediction Code 2002) [28]. 

 

Scale factor for this rocket is selected to be 0.08 based on the similar models that 

were tested at FML. This scale factor gives a maximum diameter of 52 mm at the 

fin tips. Maximum Mach number at the tests will be performed is selected as 1.2. 

However, to investigate the effect of test velocity on the model design, FMLCAD 

is run twice using Mach 0.6 and Mach 1.2 as test velocities. Also two sets of 

weighting factors are used for each Mach number (Table 4-13). 
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Table 4-13 Weighting factors for test case - 2 

Weighting factor set 1: [1,1,1] 
Weighting factor set 2: [0.4,0.4,0.2]

 

 

 

Like test case-1, Steel 4140, Aluminum 7075 T6 and Soft Yellow Brass are 

selected as materials for this case. 

 

4.3.1 Results for Mach 0.6 

 

4.3.1.1 Weighting Factor Set 1: 

 

The optimum solution found by FMLCAD for this case is obtained with a steel 

nose section, brass body section and aluminum tail section. The results are 

presented in Table 4-14. Details of the results are given in Appendix C as tables. 

Optimization history for the states, objective function, constraint violation and the 

gradients of the objective function are given in following figures. 
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Table 4-14 Details of the optimum solution 

Initial x1: 29.54336
Initial x2: 0.08621
Initial x3: 30.2148

x1: 16.44918
x2: 1.2911
x3: 24.14132
Objective Function Value: 0.43893
Exit Flag: 1
Number of Iterations: 47
Final Step Size: 1
Optimization Algorithm: medium-scale: SQP, Quasi-Newton, line-search
Gradient of Objective Function wrt x1: 0.00349
Gradient of Objective Function wrt x2: -0.65202
Gradient of Objective Function wrt x3: -0.0067
Final Mass (gr): 911.00062
Final Cg Location (cm): 13.60652
Final Ix (grcm^2): 1851.69856
Final Iy (grcm^2): 45222.23794
Final Inertia Ratio: 0.04095
Error in Cg Location (%): 6.30097
Error in Ix/Iy Ratio (%): 1.54907
Figure of Merit: 2.92035

Initial Conditions

Optimization Results

 
 

 

 

It is seen from the results of Table 4-14 that the optimum solution found by the 

code is acceptable with a mass of 911 grams and error in inertia ratio of 1.5 % 

although error in centre of gravity location is higher than 5%. 
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Figure 4.36 Optimization history for x1 
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Figure 4.37 Optimization history for x2 
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Optimization History (X3)
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Figure 4.38 Optimization history for x3 

 

 

 

It is seen that it takes the optimization routine to reach a solution 47 iteration steps. 

However, when the results are examined it is seen that the value of the objective 

function is almost constant for iterations after step 31. This is also true for the value 

of the design variables. When the histories of the gradients are examined, it is seen 

that up to the 31st iteration step, value of the gradient with respect to x3 is relatively 

high when compared to the other two gradients. However, after step 31, both the 

values of the gradients of the objective function with respect top x1 and x3 

decrease while gradient with respect to x2 increase. Although, the improvement in 

the objective function value is very slow after step 32, at the end the gradients of 

the objective function with respect to x1 and x3 are almost zero. Also it is noted 

that there is constraint violation starting from 26th step until 46th step. However the 

final solution satisfies the constraints (no constraint violation). 
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Figure 4.39 Optimization history for objective function 
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Figure 4.40 Optimization history for constraint violation 
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Gradient of Objective Function wrt X1
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Figure 4.41 Optimization history for the gradient of objective function wrt x1 

 

 

 

Gradient of Objective Function wrt X2

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40 45 50

Iteration #

G
ra

di
en

t w
rt

 X
2

 

Figure 4.42 Optimization history for the gradient of objective function wrt x2 
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Gradient of Objective Function wrt X3
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Figure 4.43 Optimization history for the gradient of objective function wrt x3 

 

 

 

The optimum internal geometry of the FML model for the LDGP aircraft bomb of 

test case 2 is shown in Figure 4.44 together with the plot of the estimated axial 

compressive stress along the model axis (Figure 4.45). 
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Figure 4.44  Optimum geometry for test case 2 at Mach 0.6 with weighting set 1 
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Figure 4.45 Axial compressive stress 
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Figure 4.46 Yield strength 

 

 

 

4.3.1.2 Weighting Factor Set 2: 

 

The optimum solution found by FMLCAD for this case is obtained with a brass 

nose section and body section and aluminum tail section. The results are presented 

in Table 4-15 and following figures. Details of the results are given in Appendix C 

as tables. Optimization history for the states, objective function, constraint 

violation and the gradients of the objective function are given in following figures. 
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Table 4-15 Details of the optimum solution 

Initial x1: 5.03144
Initial x2: 1.07931
Initial x3: 25.8548

x1: 9.89645
x2: 1.08316
x3: 20.5008
Objective Function Value: 0.42098
Exit Flag: 1
Number of Iterations: 10
Final Step Size: 1
Optimization Algorithm: medium-scale: SQP, Quasi-Newton, line-search
Gradient of Objective Function wrt x1: -0.06787
Gradient of Objective Function wrt x2: -0.52214
Gradient of Objective Function wrt x3: 0.14423
Final Mass (gr): 1252.40588
Final Cg Location (cm): 13.5347
Final Ix (grcm^2): 2229.73693
Final Iy (grcm^2): 55206.79715
Final Inertia Ratio: 0.04039
Error in Cg Location (%): 5.73983
Error in Ix2Iy Ratio (%): 2.89029
Figure of Merit: 3.70253

Initial Conditions

Optimization Results

 
 

 

It is seen from the results of Table 4-15 that the optimum solution found by the 

code is acceptable with a mass of 1252 grams and error in inertia ratio of 2.9% 

although the error in center of gravity location is higher than 5%.  
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Figure 4.47 Optimization history for x1 
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Figure 4.48 Optimization history for x2 
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Optimization History (X3)
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Figure 4.49 Optimization history for x3 

 

 

It is seen that the value of the objective function and the design variables remain 

almost constant after 5th iteration. However, it takes the code to reach the optimum 

solution 10 steps, since the gradients of the objective function are improved 

although at the final solution the gradient with respect to x2 is relatively high when 

compared to gradients with respect to x1 and x3. 

 

 

 



 85
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Figure 4.50 Optimization history for objective function 
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Figure 4.51  Optimization history for constraint violation 
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Gradient of Objective Function wrt X1
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Figure 4.52 Optimization history for the gradient of objective function wrt x1 
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Figure 4.53 Optimization history for the gradient of objective function wrt x2 
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Gradient of Objective Function wrt X3
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Figure 4.54 Optimization history for the gradient of objective function wrt x3 

 

 

 

The final inner geometry of the FML model for weighting factor set 2 is given in 

Figure 4.55. 
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Figure 4.55 Optimum geometry for test case 2 at Mach 0.6 with weighting set 2 
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Figure 4.56 Axial compressive stress 
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Figure 4.57 Yield strength 

 

 

 

4.3.2 Results for Mach 1.2 

 

4.3.2.1 Weighting Factor Set 1: 

 

The optimum solution found by FMLCAD for this case is obtained with a brass 

nose section, steel body section and aluminum tail section. The results are 

presented in Table 4-16. Details of the results are given in Appendix C as tables. 

 

It is seen from the results of Table 4-16 that the optimum solution found by the 

code is acceptable with a mass of 1041 grams and error in inertia ratio of 1.9% 

although error in the center of gravity location is higher than 5%. When the results 

presented in Table 4-16 are compared to the results in Table 4-14, it is seen that 

with increasing test speeds the FOM values increase too. Also the optimum 

solutions for two test velocities are different. 
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Table 4-16 Details of the optimum solution 

Initial x1: 5.03144
Initial x2: 1.07931
Initial x3: 25.8548

x1: 17.81258
x2: 1.09852
x3: 24.9131
Objective Function Value: 0.54863
Exit Flag: 1
Number of Iterations: 32
Final Step Size: 1
Optimization Algorithm: medium-scale: SQP, Quasi-Newton, line-search
Gradient of Objective Function wrt x1: -0.18778
Gradient of Objective Function wrt x2: -0.63444
Gradient of Objective Function wrt x3: 0.43021
Final Mass (gr): 1041.58151
Final Cg Location (cm): 13.55742
Final Ix (grcm^2): 2027.51682
Final Iy (grcm^2): 47856.07561
Final Inertia Ratio: 0.04237
Error in Cg Location (%): 5.91733
Error in Ix/Iy Ratio (%): 1.86593
Figure of Merit: 2.94162

Initial Conditions

Optimization Results

 
 

 

 

The optimization histories for the states, objective function, constraints and the 

gradients of the objective function are given in the following figures. 
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Figure 4.58 Optimization history for x1 
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Figure 4.59 Optimization history for x2 
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Optimization History (X3)
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Figure 4.60 Optimization history for x3 

 

 

 

Although the number of iterations made by fmincon is 32, the optimal solution is 

obtained at 2nd step. When the results are examined, the reason is obvious: the 

states at the 2nd iteration step give the minimum objective function value while 

satisfying the constraints. Also it is noticed that, for most of the optimization steps 

the violated constraint is the strength constraint. 
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Figure 4.61 Optimization history for objective function 
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Figure 4.62 Optimization history for constraint violation 
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Gradient of Objective Function wrt X1
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Figure 4.63 Optimization history for the gradient of objective function wrt x1 
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Figure 4.64 Optimization history for the gradient of objective function wrt x2 
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Gradient of Objective Function wrt X3

-1

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35

Iteration #

G
ra

di
en

t w
rt

 X
3

 

Figure 4.65 Optimization history for the gradient of objective function wrt x3 

 

 

 

The optimum internal geometry of the FML model for the LDGP aircraft bomb of 

test case 2 is shown in Figure 4.66 together with the plot of the estimated axial 

compressive stress along the model axis (Figure 4.67). 
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Figure 4.66  Optimum geometry for test case 1 at Mach 2.5 with weighting set 1 

 

 

 

Axial Compressive Stress (Mpa)

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25 30
 

Figure 4.67 Axial compressive stress 
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Figure 4.68 Yield strength 

 

 

4.3.2.2 Weighting Factor Set 2: 

 

The optimum solution found by FMLCAD for this case is obtained with a brass 

nose and body section and aluminum tail section. The results are presented in Table 

4-17. Details of the results are given in Appendix C as tables. 

 

 

 



 98

Table 4-17 Details of the optimum solution 

Initial x1: 5.03144
Initial x2: 1.12619
Initial x3: 9.69664

x1: 13.87875
x2: 1.05182
x3: 22.13745
Objective Function Value: 0.54842
Exit Flag: 1
Number of Iterations: 50
Final Step Size: 1
Optimization Algorithm: medium-scale: SQP, Quasi-Newton, line-search
Gradient of Objective Function wrt x1: 6.40102
Gradient of Objective Function wrt x2: -0.61126
Gradient of Objective Function wrt x3: -11.01969
Final Mass (gr): 1183.29488
Final Cg Location (cm): 13.70533
Final Ix (grcm^2): 2201.89888
Final Iy (grcm^2): 53094.5771
Final Inertia Ratio: 0.04147
Error in Cg Location (%): 7.07293
Error in Ix2Iy Ratio (%): 0.28769
Figure of Merit: 3.18091

Initial Conditions

Optimization Results

 
 

 

 

It is seen from the results of Table 4-17 that the optimum solution found by the 

code is acceptable with a mass of 1183 grams and error in inertia ratio of 0.29% 

although the error in center of gravity location is higher than 5%. The optimization 

histories for the states, objective function, constraints and the gradients of the 

objective function are given in the following figures. 
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Figure 4.69 Optimization history for x1 
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Figure 4.70 Optimization history for x2 
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Figure 4.71 Optimization history for x3 

 

 

 

It is seen that although the total number of iterations is 50, the optimum solution is 

obtained at the step 4. The reason is obvious, the minimum value of the objective 

function with no constraint violation is obtained at this step. However, when the 

histories of the gradients of the objective function is examined it is seen that values 

of gradients are quite high. 
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Figure 4.72 Optimization history for objective function 
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Figure 4.73 Optimization history for constraint violation 
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Figure 4.74 Optimization history for the gradient of objective function wrt x1 
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Figure 4.75 Optimization history for the gradient of objective function wrt x2 
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Figure 4.76 Optimization history for the gradient of objective function wrt x3 

 

 

 

The final inner geometry of the FML model for weighting factor set 2 is given in 

Figure 4.77. 
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Figure 4.77 Optimum geometry for test case 2 at Mach 1.2with weighting set 2 
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Figure 4.78 Axial compressive stress plot 
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Figure 4.79 Yield strength 

 

 

 

4.4 SUMMARY OF THE RESULTS 
 

The results of the test cases are summarized in Table 4-18. It is seen that, for test 

case 1, medium range unguided artillery rocket, the optimum solutions found by 

FMLCAD are quite good. For weighting factor set 2 (w1 = 0.4, w2 = 0.4, w3 = 0.2), 

percent error in centre of gravity location between the targeted value and the 

resulting value is 0.03% and percent error in inertia ratio is 0.4%. The model 

weights are less than 750 gr for both weighting factor sets, which is almost half of 

the weight of similar aeroballistic range models designed and tested at the FML in 

the past. However, for test case 2, the percent errors in centre of gravity location 

and inertia ratio are higher than those found for test case 1, although they are still 

acceptable.  
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Table 4-18 Summary of Results 

Test 
Case 

Weighting 
Factor 

Mach 
# 

Error in Cg 
Location (%) 

Error in Inertia 
Ratio (%) 

Mass 
(gr) 

1.5 0.03 2.53 680.1 Set 1 
2.5 0.03 2.53 680.1 
1.5 0.03 0.40 701.3 

1 
Set 2 2.5 0.03 0.40 701.3 

0.6 6.30 1.55 911.0 Set 1 
1.2 5.92 1.87 1041.6 
0.6 7.07 0.29 1183.3 2 

Set 2 1.2 7.07 0.29 1183.3 
 

 

 

The computation time spent by FMLCAD during optimization is given in Table 

4-19. The test cases were solved on an AMD Athlon ThunderBird 1.2 GHz 

computer with 512 MB of RAM, which is a low-end system for today. When the 

test cases are solved on an Intel Centrino 1.6 GHz computer with 1 GB of RAM, a 

high end system for today, it is seen that the computation time is shortened by 50% 

for all of the test cases. 

 

 

 

Table 4-19 Computation time for the test cases 

Test Case Weighting Factor Mach # Total Computation  
Time (minutes) 

1.5 27 Set 1 
2.5 28 
1.5 26 1 

Set 2 2.5 28 
0.6 23 Set 1 
1.2 30 
0.6 23 2 

Set 2 1.2 30 
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CHAPTER 5  
 

DISCUSSION AND CONCLUSION 
 

 

 

5.1 DISCUSSION 
 

In this study, a computer aided design tool, based on the devised design 

methodology, is developed which will be used in the actual design optimization of 

aeroballistic range models. 

 

The optimization code, which is named as FMLCAD, takes the actual munition 

parameters as input from the user and tries to find the optimum aeroballistic range 

model configuration (materials selection and internal geometry) which satisfies the 

geometrical as well as test conditions imposed constraints.  

 

FMLCAD is intended to be used by a trained user who has some knowledge about 

aeroballistic range model design beforehand. Although the graphical user interface, 

which is very simple in appearance, provides easy access to the design variables 

and also save/load functionality for the model files, a trained designer is needed to 

enter the correct and error free inputs expected by the computational routines. The 

results of the code are not to be used directly for manufacturing purposes, but they 

are starting points for the detailed mechanical design process. After the results are 

obtained, the designer should work on material interfaces, fin connection details 

and make fine tuning on the final configuration before generating technical 

drawings for the manufacturing. 
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Objective function used in the optimization is derived in Chapter 2. Each time the 

weighting factors of this objective function are changed, a new optimization 

problem is defined. Thus, for each different weighting factor set, the optimum 

solution is different. Then, appropriate selection of the weighting factors is a 

critical issue in optimization of the aeroballistic range model design. Test cases are 

solved with two different sets of weighting factors and the results are compared in 

Table 4-18; the effects of the weighting factors are obvious. Model weight is 

smaller for set 1 (w1 = 0.3333, w2 = 0.3333, w3 = 0.3333) when compared to set 2 

(w1 = 0.4, w2 = 0.4, w3 = 0.2). But the percent errors in the other two objectives are 

usually smaller for set 2 when compared to set 1. 

 

One notice about the weighting factors is that, they should be selected carefully, 

considering the requirements for the specific test. For example, when the 

aeroballistic range model being designed is a non-spinning one, the second 

objective, i.e. matching the inertia ratio, is not very important. Then in such a case, 

FMLCAD can be run with a weighting factor set like (w1 = 0.5, w2 = 0.0, w3 = 0.5) 

and centre of gravity location can be matched with a very small error. 

 

The fmincon function of the Optimization Toolbox of Matlab®, which is the 

optimization routine that runs under FMLCAD, uses a classical method (SQP and 

line search). Although this function works fine for most of the time, there is no 

guarantee that it will converge to a global extremum of the objective function. In 

fact, this is a common problem in optimization as long as the classical methods are 

applied. This is the reason behind the initial condition sensitivity of the design 

methodology derived in Chapter 4 and shown as flow chart in Figure 4.3. To 

overcome this problem, a set of initial conditions are generated, which span the 

entire solution domain (i.e. the region defined by the geometrical constraints) and 

for each external configuration all of these initial conditions are swept. Only way to 

overcome the initial guess sensitivity problem is to use methods that guarantee 

global optima. Currently there are two methods commonly used as global 

optimization techniques: simulated annealing and genetic algorithm. However, both 

of these methods take very long computational times to reach the solution.  
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For the test case 1, medium range unguided artillery rocket, the optimum solutions 

found are quite good. In fact, for the second weighting factor set, the results are 

even better than the similar aeroballistic range models that were actually designed 

and tested at FML. However, for test case 2, the percent errors in centre of gravity 

location and inertia ratio are relatively high when compared to test case 1. The 

reason behind this is the shape of the LDGP aircraft bomb. For the bomb to be 

carried externally, radius of the aft section must be decreased so that the bomb fits 

under the wing. However, this decreasing tail cross-section brings a big trouble to 

the aeroballistic range model design. During launch, the axial compressive stresses 

acting on the base of the model (i.e. the tail section) are so great that this section 

fails under the loading and in order to prevent this, the tail section is usually 

designed without any holes, which makes it almost impossible to match the 

required similarity parameters exactly. 

 

This is a well – known problem about the LDGP bomb geometry and only way to 

overcome this problem is to increase the effective sabot contact area which is used 

to accelerate the model. Alternative sabot designs have been proposed to be used 

with the aeroballistic range models of LDGP bombs, some of which “pull” the 

model from the maximum cross-section [13], [14] and some push the model by 

enclosing the tail cone instead of the base [2]. However, FMLCAD, currently, only 

works for traditional pusher type sabots and the best that can be obtained without 

any modification of the acceleration area are the results presented in Table 4-18. 

 

FMLCAD, being the first version of its kind, has some limitations. These can be 

listed as: 

• To run FMLCAD, Matlab® should be installed with the Optimization 

Toolbox. 

• FMLCAD stress routine assumes that, a traditional pusher type sabot is 

used to accelerate the model.  

• Sabot design is not included in the optimization routine. 

• Static loading assumed. 
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• Material interfaces are not modeled. 

• Fins are always modeled as parallel the longitudinal axis of the model. 

 

5.2 CONCLUSION 
 

In conclusion, the major objective of this thesis, which is to develop a code that 

will be used for actual design of aeroballistic range models, is achieved 

successfully. For this purpose, a design methodology which provides a successful 

approach to the aeroballistic range model design problem is derived. Developed 

code (FMLCAD) is tested with two test cases, which are taken from real life 

experiences. Both test cases are similar to the models that were tested at FML in 

the past and the results are highly satisfactory; for the first test case, even better 

than the actual models that were tested.  

 

Although it has some limitations as stated above, FMLCAD is a very useful tool 

and will satisfy the needs of the Flight Mechanics Division of TUBITAK-SAGE. 

By using this code, the aeroballistic range models will be designed in shorter time 

when compared to manual design. Currently, it takes an experienced designer about 

60 hours to design an aeroballistic range model from scratch, where most of the 

time is spent on selecting materials and deciding on internal geometry. However, 

by the use of FMLCAD, this design time will be reduced by at least 50%. Also for 

most cases, the code will provide better solutions than that can be reached by 

manual design. Furthermore, possible errors that may be caused by designers will 

be eliminated. 

 

5.3 FUTURE WORK 
 

As first future work, a version of the FMLCAD may be coded that uses the newly 

introduced Genetic Algorithm Toolbox of Matlab® Release 14 (Matlab® 7) and 

the results obtained using Optimization Toolbox and Genetic Algorithm Toolbox 

may be compared. However, this work should involve some modifications to the 

Genetic Algorithm Toolbox functions since in its current form Genetic Algorithm 
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Toolbox does not support constrained optimization. Next step in this future work 

should be to develop a code that decides on which method, i.e. classical or global, 

to use without user intervention. 

 

Some or all of the above mentioned limitations may be overcome in the future 

work, since the foundations of the design methodology is derived successfully in 

this thesis. 

 

First limitation, need to use Matlab, can be removed by coding FMLCAD on a 

different development platform and making it a stand alone application. However, 

this would require development of an optimization routine that will solve the 

problem instead of fmincon. Other functions of FMLCAD can be directly used or 

modified depending on the selected development platform. The development 

platform would be a high level language such as Delphi or Visual Basic. Also, an 

integration of the Mechanical Desktop environment can be done in this stand alone 

version, so that the technical drawings of the resulting optimum geometries may be 

generated automatically. 

 

Optimization of sabot design is a complex subject and may be examined in a future 

M.Sc. study. 

 

Another future work may be an improvement on the stress routine. It would not be 

feasible to use a finite difference approach at each iteration step in terms of CPU 

time, but a FEA may be applied to the final solution. This would eliminate the need 

to use another software for final strength analysis. 

 

The error introduced by modeling fins parallel to the longitudinal axis is very small 

and negligible. Even commercial software packages used in aeroballistics such as 

PRODAS and APC 2002 model the fins as always parallel. So it will not be 

necessary to make any additional work on this limitation in the future. 
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Another future work may be the addition of a module to find an optimum model 

configuration for a range of different test Mach numbers specified by user. 

Currently, FMLCAD only searches for the optimum result for only one test Mach 

number input by the user. However, based on the results of the test cases, it is seen 

that sometimes the optimum solution is different for different test Mach numbers. 

Then, it would be better if a future version of the code is developed which makes 

optimization for a range of Mach numbers and decides on the best possible 

configuration for that Mach number range. This approach would eliminate the need 

to use different model designs for different test Mach numbers and also shorten the 

time needed for design work. 

 

If the proposed future works are carried out, someday, FMLCAD may even 

become a complete design tool for aeroballistic range testing. 
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APPENDIX A 

 

INERTIA FORMULATIONS 
 

 

 

The external geometries of the components of an aeroballistic range model are 

defined in Chapter 2.2 . Here, the equations to calculate the mass, centre of gravity, 

axial and transverse moment of inertia are given.  

 

A.1 MASS PROPERTIES OF AN ARBITRARY GEOMETRY 
 

For a continuous function y(x), defined in the interval [x0, x1], the volume formed 

by a rotation of 360° around x axis is defined by: 

 

  ∫=
1

0

2)(
x

x

dxxyV π  (A.1) 

 

 

 

 

Figure A-1 A general function y(x) 
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Then the mass of the solid geometry formed by this volume is given by: 

 

  ∫==
1

0

2)(
x

x

dxxyVm πρρ  (A.2) 

 

The centre of gravity of this solid can be calculated by [29]: 

 

  
m

dmx

CM

dm

dm
∫

=

1

0  (A.3) 

 

where dm is obtained for a disc of dx thickness and y(x) radius (Figure A-2) as: 

 

  dxxydm 2)(πρ=  (A.4) 

 

Thus, centre of gravity takes the following form: 

 

  
m

dxxyx

CM

x

x
∫ ⋅

=

1

0

2)(πρ

 (A.5) 

 

The axial inertia of a thin disc is given by [29]: 

 

  
2

2rm
I disc

x
⋅

=  (A.6) 

 

The axisymmetric body of revolution given in Figure A-2 can be considered as 

made up of infinitesimally thin discs. Then the axial inertia becomes: 
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  ∫=
1

0
2

2dm

dm
x dmrI  (A.7) 

 

Since r=y(x) Equation (A.7) becomes as follows after substituting Equation (A.4): 

 

  ∫=
1

0

4)(
2
1

x

x
x dxxyI πρ  (A.8) 

 

 

 

 

Figure A-2 Body of revolution (axisymmetric body) 

 

 

 

The transverse inertia of a thin disc is given by [29]: 

 

  discy mxrI ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= 2

2

4
 (A.9) 

 

Similar to the derivation of Equation (A.8), total transverse inertia is obtained as: 
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A.2 MASS PROPERTIES OF COMMON SHAPES 
 

A.2.1 Rectangle 

 

Axial inertia of a rectangle (Figure A-3) is given by [30]: 

 

  
12

2
tan ygularrec

x
bm

I
⋅

=  (A.11) 

 

where by is the height (y distance) of the rectangle (Figure A-3).The transverse 

inertia of a rectangular area is given by [30]: 

 

  
12

2
tan xgularrec

y
bm

I
⋅

=  (A.12) 

 

  
12

tan yxgularrec
z

bbm
I

⋅⋅
=  (A.13) 

 

 

 

 

Figure A-3 Rectangular area 
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A.2.2 Triangle 

 

Axial inertia of a triangle is given by [30]: 

 

  
18

2
ytriangular

x
bm

I
⋅

=  (A.14) 

 

Transverse inertia of a triangle is given by: 
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xtriangular
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Figure A-4 Triangular area 
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A.3 CALCULATING THE MASS PROPERTIES OF 

COMPOSITE GEOMETRIES 
 

For a body of n parts, the mass properties are the combination of the properties of 

each of the subparts. The mass of each part is simply added to find the total mass. 

However, to find centre of gravity location and calculate the inertia values of the 

master body some mathematics is involved. The center of gravity location can be 

computed as follows [31]: 

 

  ∫= dmm  (A.17) 

 

  ∫ = 0rdm  (A.18) 

 

where r denotes the centre of gravity location of the master body (Figure A-5.) 

Then the centre of gravity location of a body consisting n parts becomes: 

 

  

∑

∑

=

=

⋅

=
n

i
i

n

i
ii

m

mr
r

1

1  (A.19) 

 

The inertia values of a body made of n parts can be computed once the centre of 

gravity locations are found. Consider the general fin geometry of Figure 2.4. The 

fin is made up of three triangles and a rectangle. Then the axial inertias of the fin 

can be calculated as [17]: 

 

  ( )( )∑ ⋅+= 2
yxx dmII

total
 (A.20) 

 

where dy is the y distance between the centre of the fin and the centre of gravity of 

the subpart (Figure A-6). 
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Figure A-5 The centre of gravity location for a body of n parts 

 

 

 

 

Figure A-6 Subparts for a general fin 

 

 

 

The transverse inertia calculation for the fins is handled similarly [17]: 
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  ( )( )∑ ⋅+= 2
xyy dmII

total
 (A.21) 

 

  ( )( )∑ ⋅+= 2
xzz dmII

total
 (A.22) 

 

where dx is the x distance between the centre of the fin and the centre of gravity of 

the subpart (Figure A-6). 

 

However, these transverse inertias are with respect to the local reference frames of 

each fin and must be transferred to the models frame of reference (Figure A-7). 

This is done by transforming the local frame of reference of each fin (xi, yi, zi) to 

the model’s frame of reference (X, Y, Z) by first a rotation of θi angle (Figure A-8) 

about xi axis and then application of parallel axis theorem [32]. The transformation 

matrix is defined as: 

 

 

 

 

Figure A-7 Local and global reference frames for a 4 finned model 
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The inertia tensor for a fin in local reference frame can be defined as: 
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Then the inertia tensor for the rotated local frame is obtained: 

 

  T
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The next step is to apply the parallel axis theorem: 
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where mi is the mass of the ith fin. 
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Figure A-8 Fin orientation 

 

 

 

The total inertia of the fins can be found by simply adding the inertia tensors of the 

fins: 
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where nfin is the total number of fins. The axial and transverse inertia contribution 

of the fins to the model is simply: 
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APPENDIX B 

 

DETAILS OF THE SOLUTION FOR TEST CASE 1 
 

 

The optimum solution is denoted with bold and italic rows in the following tables. 

Mass is in grams and the location of centre of gravity is measured in centimeters 

from nose. 
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B.1 RESULTS AT MACH 1.5 WITH WEIGHTING FACTOR 

SET 1 

Table B-1 Results for Test case – 1 at Mach 1.5 with weighting factor set 1 

Case
 # Nose Body Tail ErrCg(%) ErrI(%) FOM Flag

1 Steel Steel Steel 13.63 2.02 5.35 1
2 Steel Steel Aluminum 0.04 7.59 2.80 1
3 Steel Aluminum Steel 20.72 31.87 17.65 1
4 Steel Aluminum Aluminum 3.75 41.80 15.27 1
5 Steel Aluminum Brass 29.73 9.52 13.20 1
6 Steel Brass Aluminum 1.49 3.20 1.82 1
7 Steel Brass Brass 9.48 5.30 5.06 1
8 Steel Brass Steel 7.76 4.79 4.31 1
9 Steel Steel Brass 16.15 1.45 6.01 1

10 Aluminum Aluminum Aluminum 12.85 3.69 5.56 1
11 Aluminum Aluminum Steel 35.35 5.36 13.65 1
12 Aluminum Steel Aluminum 7.69 5.25 4.54 1
13 Aluminum Steel Steel 24.22 17.13 13.89 1
14 Aluminum Steel Brass 25.92 13.42 13.24 1
15 Aluminum Brass Steel 33.78 3.67 12.84 1
16 Aluminum Brass Brass 23.79 12.63 12.25 1
17 Aluminum Brass Aluminum 6.03 9.16 5.30 1
18 Aluminum Aluminum Brass 33.55 2.53 12.14 1
19 Brass Brass Brass 12.55 3.05 5.34 1
20 Brass Brass Aluminum 0.11 3.07 1.31 1
21 Brass Aluminum Brass 29.49 10.22 13.36 1
22 Brass Aluminum Aluminum 16.02 26.25 14.24 1
23 Brass Aluminum Steel 27.47 15.99 14.61 1
24 Brass Steel Aluminum 0.03 2.53 1.08 1
25 Brass Steel Steel 6.08 8.56 5.01 1
26 Brass Steel Brass 10.97 14.92 8.77 1
27 Brass Brass Steel 10.27 3.08 4.59 1  
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Table B-2 Results for Test case – 1 at Mach 1.5 with weighting factor set 1 

(cont’d) 

Case
 # x1 x2 x3 Mass Cg Ix/Iy

1 33.19 0.96 39.21 405.4 19.39 0.0071
2 0.87 0.14 37.42 764.4 17.06 0.0067
3 30.55 0.99 38.07 351.0 20.60 0.0050
4 27.33 0.98 34.33 256.3 17.71 0.0042
5 33.67 0.93 39.21 362.3 22.14 0.0066
6 20.40 0.20 39.21 790.8 16.81 0.0071
7 32.40 0.98 39.21 404.5 18.69 0.0069
8 32.48 0.98 39.21 391.7 18.39 0.0069
9 33.27 0.96 39.21 418.4 19.82 0.0072
10 32.24 0.98 39.21 140.2 19.26 0.0070
11 30.77 0.99 39.21 252.4 23.10 0.0077
12 10.32 0.20 39.21 682.7 18.38 0.0077
13 31.73 0.99 39.21 318.5 21.20 0.0085
14 31.16 0.96 39.08 378.2 21.49 0.0083
15 1.48 0.99 10.62 1072.3 22.83 0.0070
16 31.20 0.99 39.07 354.1 21.13 0.0082
17 12.48 0.25 39.21 713.8 18.10 0.0080
18 27.39 0.96 39.16 323.0 22.79 0.0075
19 33.11 0.97 39.21 427.3 19.21 0.0071
20 17.14 0.32 20.50 761.2 17.09 0.0071
21 33.82 0.92 39.21 379.7 22.10 0.0065
22 6.62 0.52 9.33 457.4 19.80 0.0054
23 33.34 0.93 38.87 359.5 21.76 0.0061
24 37.22 0.39 39.21 680.1 17.07 0.0075
25 32.40 0.98 39.21 392.5 18.11 0.0067
26 31.80 0.98 38.77 419.5 18.94 0.0062
27 32.89 0.96 39.21 429.1 18.82 0.0071  
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B.2 RESULTS AT MACH 1.5 WITH WEIGHTING FACTOR 

SET 2 

Table B-3 Results for Test case – 1 at Mach 1.5 with weighting factor set 2 

Case
 # Nose Body Tail ErrCg(%) ErrI(%) FOM Flag

1 Steel Steel Steel 6.21 7.87 5.71 1
2 Steel Steel Aluminum 0.03 7.58 3.20 1
3 Steel Aluminum Steel 27.86 15.49 17.41 1
4 Steel Aluminum Aluminum 3.75 41.80 18.27 1
5 Steel Aluminum Brass 28.28 17.29 18.30 1
6 Steel Brass Aluminum 1.58 1.50 1.37 1
7 Steel Brass Brass 14.73 0.45 6.16 1
8 Steel Brass Steel 6.57 1.20 3.29 1
9 Steel Steel Brass 13.06 11.91 10.07 1

10 Aluminum Aluminum Aluminum 12.85 3.69 6.64 1
11 Aluminum Aluminum Steel 35.35 5.36 16.33 1
12 Aluminum Steel Aluminum 2.60 2.27 2.00 1
13 Aluminum Steel Steel 23.74 16.41 16.13 1
14 Aluminum Steel Brass 25.27 16.29 16.69 1
15 Aluminum Brass Steel 33.78 3.67 15.19 1
16 Aluminum Brass Brass 23.95 17.32 16.58 1
17 Aluminum Brass Aluminum 10.88 12.60 9.51 1
18 Aluminum Aluminum Brass 36.24 6.09 16.99 1
19 Brass Brass Brass 11.64 15.95 11.12 1
20 Brass Brass Aluminum 0.08 3.05 1.41 1
21 Brass Aluminum Brass 28.65 11.15 16.00 1
22 Brass Aluminum Aluminum 2.96 43.20 18.52 1
23 Brass Aluminum Steel 25.08 26.49 20.70 1
24 Brass Steel Aluminum 0.03 0.40 0.31 1
25 Brass Steel Steel 11.10 4.78 6.43 1
26 Brass Steel Brass 13.84 19.43 13.39 1
27 Brass Brass Steel 6.95 5.82 5.19 1  
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Table B-4 Results for Test case – 1 at Mach 1.5 with weighting factor set 2 

(cont’d) 

Case
 # x1 x2 x3 Mass Cg Ix/Iy

1 31.94 0.98 39.21 391.5 18.13 0.0067
2 15.35 0.13 26.94 760.2 17.06 0.0067
3 33.28 0.94 38.93 344.1 21.82 0.0062
4 27.31 0.98 34.31 256.3 17.71 0.0042
5 32.91 0.95 38.82 350.7 21.89 0.0060
6 24.24 0.52 33.08 683.3 16.80 0.0072
7 33.14 0.96 39.21 423.7 19.58 0.0073
8 17.88 0.82 39.21 891.3 18.19 0.0074
9 32.00 0.98 38.82 406.1 19.30 0.0064
10 32.24 0.98 39.21 140.2 19.26 0.0070
11 30.75 0.99 39.21 252.4 23.10 0.0077
12 27.91 0.99 36.75 270.1 17.51 0.0071
13 31.66 0.99 39.21 320.4 21.12 0.0085
14 31.60 0.99 39.21 334.6 21.38 0.0085
15 1.47 0.99 10.61 1072.3 22.83 0.0070
16 31.60 0.99 39.21 344.0 21.15 0.0086
17 23.62 0.53 28.28 597.0 18.92 0.0082
18 30.41 0.99 39.21 268.0 23.25 0.0077
19 31.37 0.99 38.47 435.9 19.05 0.0061
20 17.28 0.32 20.50 762.5 17.08 0.0071
21 33.75 0.92 39.18 374.2 21.96 0.0065
22 26.70 0.98 33.70 270.8 17.57 0.0041
23 32.14 0.97 38.24 348.3 21.35 0.0054
24 36.46 0.34 38.23 701.3 17.07 0.0073
25 33.11 0.97 39.21 404.0 18.96 0.0069
26 31.18 0.99 38.26 433.5 19.43 0.0059
27 32.64 0.98 39.21 401.0 18.25 0.0069  
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B.3 RESULTS AT MACH 2.5 WITH WEIGHTING FACTOR 

SET 1 

Table B-5 Results for Test case – 1 at Mach 2.5 with weighting factor set 1 

Case
 # Nose Body Tail ErrCg(%) ErrI(%) FOM Flag

1 Steel Steel Steel 13.63 2.02 5.35 1
2 Steel Steel Aluminum 0.04 7.59 2.80 1
3 Steel Aluminum Steel 29.30 11.54 13.73 1
4 Steel Aluminum Aluminum 2.54 33.65 12.19 1
5 Steel Aluminum Brass 38.80 15.90 18.49 1
6 Steel Brass Aluminum 1.27 4.39 2.14 1
7 Steel Brass Brass 29.77 11.27 0.00 0
8 Steel Brass Steel 10.36 2.59 4.46 1
9 Steel Steel Brass 30.92 12.43 0.00 0

10 Aluminum Aluminum Aluminum 12.51 3.93 5.53 1
11 Aluminum Aluminum Steel 31.01 6.73 12.72 1
12 Aluminum Steel Aluminum 7.71 5.41 4.60 1
13 Aluminum Steel Steel 24.22 17.13 13.89 1
14 Aluminum Steel Brass 37.78 1.24 13.31 1
15 Aluminum Brass Steel 20.46 4.60 8.48 1
16 Aluminum Brass Brass 28.07 27331.10 0.00 0
17 Aluminum Brass Aluminum 14.45 10.59 8.49 1
18 Aluminum Aluminum Brass 54.03 2.40 19.07 1
19 Brass Brass Brass 31.48 27331.10 0.00 0
20 Brass Brass Aluminum 3.35 0.10 1.41 1
21 Brass Aluminum Brass 42.95 17.47 20.41 1
22 Brass Aluminum Aluminum 3.70 33.52 12.51 1
23 Brass Aluminum Steel 28.11 11.01 13.16 1
24 Brass Steel Aluminum 0.03 2.53 1.08 1
25 Brass Steel Steel 0.13 15.09 5.23 1
26 Brass Steel Brass 33.76 19.55 18.08 1
27 Brass Brass Steel 11.64 1.78 4.62 1  
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Table B-6 Results for Test case – 1 at Mach 2.5 with weighting factor set 1 

(cont’d) 

Case
 # x1 x2 x3 Mass Cg Ix/Iy

1 33.19 0.96 39.21 405.4 19.39 0.0071
2 0.87 0.14 37.42 764.4 17.06 0.0067
3 33.59 0.92 39.04 354.2 22.07 0.0064
4 15.71 0.86 32.74 386.3 17.50 0.0048
5 31.06 0.53 38.54 761.4 23.69 0.0061
6 14.24 0.33 28.03 771.5 16.85 0.0070
7 30.18 0.38 30.65 1123.9 22.15 0.0065
8 32.70 0.97 39.21 414.9 18.84 0.0071
9 29.71 0.37 30.19 1103.5 22.35 0.0064
10 32.16 0.99 39.21 140.8 19.20 0.0070
11 19.49 0.89 39.21 427.9 22.36 0.0078
12 4.51 0.27 39.21 683.4 18.38 0.0077
13 31.73 0.99 39.21 318.5 21.20 0.0085
14 25.55 0.57 33.11 916.3 23.52 0.0074
15 30.10 0.98 38.75 384.0 20.56 0.0076
16 38.73 ######## 39.21 ######### 21.86 2.0000
17 24.67 0.78 31.32 447.2 19.53 0.0081
18 2.58 0.94 22.69 793.0 26.29 0.0075
19 33.31 ######## 39.21 ######### 22.44 2.0000
20 4.35 0.55 38.92 797.2 16.50 0.0073
21 29.18 0.48 33.64 811.2 24.40 0.0060
22 27.77 0.84 34.77 324.6 17.70 0.0048
23 33.96 0.91 39.21 368.1 21.86 0.0065
24 37.22 0.39 39.21 680.1 17.07 0.0075
25 29.15 0.99 38.83 468.4 17.05 0.0062
26 20.34 0.75 27.91 926.0 22.83 0.0059
27 33.27 0.96 39.21 421.4 19.05 0.0072  
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B.4 RESULTS AT MACH 2.5 WITH WEIGHTING FACTOR 

SET 2 

Table B-7 Results for Test case – 1 at Mach 2.5 with weighting factor set 2 

Case
 # Nose Body Tail ErrCg(%) ErrI(%) FOM Flag

1 Steel Steel Steel 8.84 6.26 6.12 1
2 Steel Steel Aluminum 0.04 7.59 3.21 1
3 Steel Aluminum Steel 27.86 15.49 17.41 1
4 Steel Aluminum Aluminum 10.04 34.17 17.77 1
5 Steel Aluminum Brass 47.37 3.36 20.42 1
6 Steel Brass Aluminum 1.58 1.50 1.37 1
7 Steel Brass Brass 43.38 12.44 22.48 1
8 Steel Brass Steel 6.57 1.20 3.29 1
9 Steel Steel Brass 43.73 3.12 18.92 1

10 Aluminum Aluminum Aluminum 12.85 3.69 6.64 1
11 Aluminum Aluminum Steel 35.35 5.36 16.33 1
12 Aluminum Steel Aluminum 2.64 0.11 1.21 1
13 Aluminum Steel Steel 23.74 16.41 16.13 1
14 Aluminum Steel Brass 50.33 18.13 27.56 1
15 Aluminum Brass Steel 22.45 17.65 16.10 1
16 Aluminum Brass Brass 44.22 8.93 21.43 1
17 Aluminum Brass Aluminum 10.88 12.60 9.51 1
18 Aluminum Aluminum Brass 54.59 0.48 22.18 1
19 Brass Brass Brass 19.49 27331.10 0.00 0
20 Brass Brass Aluminum 2.98 5.47 3.52 1
21 Brass Aluminum Brass 43.28 15.17 23.55 1
22 Brass Aluminum Aluminum 3.71 37.92 16.73 1
23 Brass Aluminum Steel 25.83 25.77 20.71 1
24 Brass Steel Aluminum 0.03 0.40 0.31 1
25 Brass Steel Steel 8.65 6.82 6.27 1
26 Brass Steel Brass 26.54 20.44 0.00 0
27 Brass Brass Steel 9.18 4.06 5.38 1  
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Table B-8 Results for Test case – 1 at Mach 2.5 with weighting factor set 2 

(cont’d) 

Case
 # x1 x2 x3 Mass Cg Ix/Iy

1 32.56 0.98 39.21 383.2 18.58 0.0068
2 0.89 0.14 36.92 764.4 17.06 0.0067
3 33.28 0.94 38.93 344.1 21.82 0.0062
4 3.45 0.91 24.48 460.0 18.78 0.0048
5 32.58 0.71 36.17 611.4 25.15 0.0070
6 24.24 0.52 33.08 683.3 16.80 0.0072
7 21.81 0.87 27.25 796.2 24.47 0.0064
8 17.88 0.82 39.21 891.3 18.19 0.0074
9 17.89 0.81 22.18 910.5 24.53 0.0071
10 32.16 0.98 39.18 140.2 19.26 0.0070
11 30.75 0.99 39.21 252.4 23.10 0.0077
12 15.57 0.86 31.63 533.9 17.52 0.0073
13 31.66 0.99 39.21 320.4 21.12 0.0085
14 17.91 0.81 22.20 862.5 25.66 0.0086
15 31.62 0.99 39.21 329.6 20.90 0.0086
16 25.35 0.71 29.02 848.9 24.61 0.0079
17 23.62 0.53 28.28 597.0 18.92 0.0082
18 3.10 0.99 23.91 764.0 26.38 0.0073
19 37.37 ######## 39.21 ######### 20.39 2.0000
20 16.65 0.54 29.32 724.9 16.56 0.0069
21 32.62 0.40 34.79 832.8 24.45 0.0062
22 18.07 0.87 31.10 377.3 17.70 0.0045
23 32.19 0.96 38.27 350.3 21.48 0.0054
24 36.46 0.34 38.23 701.3 17.07 0.0073
25 32.80 0.98 39.21 394.4 18.54 0.0068
26 21.85 0.10 39.21 1208.9 21.60 0.0058
27 32.95 0.97 39.21 407.5 18.63 0.0070  
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APPENDIX C 

 

DETAILS OF THE SOLUTION FOR TEST CASE 2 
 

 

The optimum solution is denoted with bold and italic rows in the following tables. 

Mass is in grams and the location of centre of gravity is measured in centimeters 

from nose. 
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C.1 RESULTS AT MACH 0.6 WITH WEIGHTING FACTOR 

SET 1 

Table C-1 Results for Test case – 2 at Mach 0.6 with weighting factor set 1 

Case
 # Nose Body Tail ErrCg(%) ErrI(%) FOM Flag

1 Steel Steel Steel 22.27 2.83 8.78 1
2 Steel Steel Aluminum 6.55 4.92 4.21 1
3 Steel Aluminum Steel 13.12 41.46 18.51 1
4 Steel Aluminum Aluminum 5.78 24.25 10.20 1
5 Steel Aluminum Brass 15.10 42.24 19.44 1
6 Steel Brass Aluminum 6.30 1.55 2.92 1
7 Steel Brass Brass 22.79 2.71 8.94 1
8 Steel Brass Steel 21.69 1.03 8.00 1
9 Steel Steel Brass 23.03 5.54 9.94 1

10 Aluminum Aluminum Aluminum 25.15 14.06 13.22 1
11 Aluminum Aluminum Steel 42.40 18.89 20.68 1
12 Aluminum Steel Aluminum 18.18 2.78 7.21 1
13 Aluminum Steel Steel 32.92 3.16 12.34 1
14 Aluminum Steel Brass 34.32 0.74 12.01 1
15 Aluminum Brass Steel 34.87 0.55 12.30 1
16 Aluminum Brass Brass 36.22 1.17 12.97 1
17 Aluminum Brass Aluminum 16.49 4.47 7.22 1
18 Aluminum Aluminum Brass 43.38 19.44 21.18 1
19 Brass Brass Brass 22.06 2.52 8.63 1
20 Brass Brass Aluminum 5.77 2.73 3.24 1
21 Brass Aluminum Brass 12.78 42.47 18.75 1
22 Brass Aluminum Aluminum 0.67 32.90 11.51 1
23 Brass Aluminum Steel 10.99 41.58 17.85 1
24 Brass Steel Aluminum 8.19 4.58 4.75 1
25 Brass Steel Steel 20.84 4.45 8.85 1
26 Brass Steel Brass 22.33 7.34 10.33 1
27 Brass Brass Steel 14.25 13.05 9.60 1  
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Table C-2 Results for Test case – 2 at Mach 0.6 with weighting factor set 1 

(cont’d) 

Case
 # x1 x2 x3 Mass Cg Ix/Iy

1 23.58 0.92 27.25 1228.5 15.65 0.0404
2 10.46 1.08 20.96 1163.3 13.64 0.0395
3 17.55 0.93 27.25 959.2 14.48 0.0243
4 20.63 1.13 25.44 578.4 13.54 0.0315
5 17.90 0.93 27.25 972.9 14.73 0.0240
6 16.45 1.29 24.14 911.0 13.61 0.0409
7 23.23 0.93 27.25 1305.6 15.72 0.0405
8 23.24 0.93 27.25 1284.1 15.58 0.0412
9 23.35 0.93 27.25 1254.3 15.75 0.0393
10 21.94 0.93 27.19 457.6 16.02 0.0357
11 27.19 0.64 29.68 731.0 18.23 0.0337
12 10.36 1.45 22.80 689.4 15.13 0.0427
13 13.89 1.18 25.12 943.4 17.01 0.0403
14 14.93 1.12 25.61 978.1 17.19 0.0413
15 0.75 0.58 23.01 1476.6 17.26 0.0418
16 0.09 0.53 3.10 1515.5 17.44 0.0411
17 8.14 1.60 21.52 702.5 14.91 0.0397
18 25.22 0.72 29.02 728.7 18.35 0.0335
19 23.62 0.92 27.25 1324.5 15.62 0.0405
20 10.48 1.08 20.78 1239.1 13.54 0.0405
21 17.70 0.93 27.25 1013.9 14.44 0.0239
22 17.65 0.11 30.40 963.4 12.89 0.0279
23 17.51 0.93 27.25 996.7 14.21 0.0243
24 0.08 0.08 30.40 1497.6 13.85 0.0397
25 23.56 0.93 27.25 1255.0 15.47 0.0397
26 23.87 0.87 27.25 1332.5 15.66 0.0385
27 17.12 0.86 27.74 1501.4 14.62 0.0362  
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C.2 RESULTS AT MACH 0.6 WITH WEIGHTING FACTOR 

SET 2 

Table C-3 Results for Test case – 2 at Mach 0.6 with weighting factor set 2 

Case
 # Nose Body Tail ErrCg(%) ErrI(%) FOM Flag

1 Steel Steel Steel 16.84 14.07 12.63 1
2 Steel Steel Aluminum 6.69 4.00 4.49 1
3 Steel Aluminum Steel 12.43 41.50 21.77 1
4 Steel Aluminum Aluminum 5.89 24.41 12.24 1
5 Steel Aluminum Brass 14.07 42.37 22.77 1
6 Steel Brass Aluminum 6.03 4.91 4.60 1
7 Steel Brass Brass 22.79 2.71 10.46 1
8 Steel Brass Steel 21.69 1.03 9.35 1
9 Steel Steel Brass 16.98 18.41 14.48 1

10 Aluminum Aluminum Aluminum 25.32 14.96 16.20 1
11 Aluminum Aluminum Steel 42.39 18.70 24.58 1
12 Aluminum Steel Aluminum 16.69 6.85 9.55 1
13 Aluminum Steel Steel 33.21 0.04 13.49 1
14 Aluminum Steel Brass 34.14 2.85 14.99 1
15 Aluminum Brass Steel 35.08 0.43 14.50 1
16 Aluminum Brass Brass 33.68 2.96 14.86 1
17 Aluminum Brass Aluminum 16.36 3.03 7.90 1
18 Aluminum Aluminum Brass 43.27 19.96 25.43 1
19 Brass Brass Brass 21.20 4.95 10.73 1
20 Brass Brass Aluminum 7.07 0.29 3.18 1
21 Brass Aluminum Brass 11.99 42.50 22.00 1
22 Brass Aluminum Aluminum 0.66 32.90 13.62 1
23 Brass Aluminum Steel 10.37 41.57 20.98 1
24 Brass Steel Aluminum 5.69 3.21 3.78 1
25 Brass Steel Steel 20.17 9.87 12.26 1
26 Brass Steel Brass 15.08 17.20 13.21 1
27 Brass Brass Steel 14.25 13.05 11.22 1  

 



 140

Table C-4 Results for Test case – 2 at Mach 0.6 with weighting factor set 2 

(cont’d) 

Case
 # x1 x2 x3 Mass Cg Ix/Iy

1 19.20 0.93 27.25 1320.5 14.96 0.0357
2 13.88 1.13 22.65 1062.2 13.66 0.0399
3 16.66 0.93 27.25 978.5 14.39 0.0243
4 20.58 1.13 25.41 579.0 13.55 0.0314
5 16.66 0.93 27.25 999.9 14.60 0.0240
6 10.77 1.23 21.08 1107.9 13.57 0.0396
7 23.22 0.93 27.25 1305.6 15.72 0.0405
8 23.23 0.93 27.25 1284.1 15.58 0.0412
9 5.03 1.08 25.85 1599.8 14.97 0.0339
10 21.32 0.98 26.83 445.9 16.04 0.0354
11 26.96 0.65 29.57 725.7 18.23 0.0338
12 8.02 1.59 21.52 684.5 14.94 0.0387
13 14.71 1.13 25.48 950.5 17.05 0.0416
14 14.33 1.15 25.36 972.7 17.17 0.0404
15 16.35 0.12 23.80 1478.0 17.29 0.0418
16 14.80 1.12 25.61 1021.7 17.11 0.0428
17 8.00 1.59 21.52 714.1 14.89 0.0403
18 24.13 0.77 28.54 708.2 18.34 0.0333
19 23.03 0.93 27.25 1336.2 15.51 0.0395
20 13.88 1.05 22.14 1183.3 13.71 0.0415
21 16.66 0.93 27.25 1037.6 14.33 0.0239
22 17.62 0.11 30.40 963.3 12.88 0.0279
23 16.66 0.93 27.25 1016.1 14.13 0.0243
24 15.15 1.12 23.23 1074.5 13.53 0.0403
25 21.55 1.02 26.46 1199.6 15.38 0.0375
26 17.30 0.86 27.80 1469.2 14.73 0.0344
27 17.10 0.86 27.74 1501.2 14.62 0.0362  
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C.3 RESULTS AT MACH 1.2 WITH WEIGHTING FACTOR 

SET 1 

Table C-5 Results for Test case – 2 at Mach 1.2 with weighting factor set 1 

Case
 # Nose Body Tail ErrCg(%) ErrI(%) FOM Flag

1 Steel Steel Steel 22.27 2.83 8.78 1
2 Steel Steel Aluminum 8.74 2.39 4.16 1
3 Steel Aluminum Steel 13.12 41.46 18.51 1
4 Steel Aluminum Aluminum 5.78 24.25 10.20 1
5 Steel Aluminum Brass 14.18 44.37 19.87 1
6 Steel Brass Aluminum 15.29 11.38 9.22 1
7 Steel Brass Brass 18.30 40.88 20.12 1
8 Steel Brass Steel 21.69 1.03 8.00 1
9 Steel Steel Brass 18.50 40.85 20.21 1

10 Aluminum Aluminum Aluminum 25.15 14.06 13.22 1
11 Aluminum Aluminum Steel 42.40 18.89 20.68 1
12 Aluminum Steel Aluminum 18.18 2.78 7.21 1
13 Aluminum Steel Steel 32.78 4.72 12.81 1
14 Aluminum Steel Brass 39.58 9.60 16.69 1
15 Aluminum Brass Steel 34.87 0.55 12.30 1
16 Aluminum Brass Brass 42.91 12.21 18.73 1
17 Aluminum Brass Aluminum 16.49 4.47 7.22 1
18 Aluminum Aluminum Brass 43.40 23.80 22.64 1
19 Brass Brass Brass 16.84 43.01 20.35 1
20 Brass Brass Aluminum 11.35 3.80 5.48 1
21 Brass Aluminum Brass 12.33 45.17 19.53 1
22 Brass Aluminum Aluminum 0.67 32.90 11.51 1
23 Brass Aluminum Steel 10.99 41.58 17.85 1
24 Brass Steel Aluminum 5.92 1.87 2.94 1
25 Brass Steel Steel 21.10 5.50 9.30 1
26 Brass Steel Brass 16.88 44.23 20.77 1
27 Brass Brass Steel 20.96 0.80 7.69 1  
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Table C-6 Results for Test case – 2 at Mach 1.2 with weighting factor set 1 

(cont’d) 

Case
 # x1 x2 x3 Mass Cg Ix/Iy

1 23.58 0.92 27.25 1228.5 15.65 0.0404
2 10.36 0.65 20.53 1351.2 13.92 0.0406
3 17.55 0.93 27.25 959.2 14.48 0.0243
4 20.63 1.13 25.44 578.4 13.54 0.0315
5 5.96 1.11 25.61 1050.9 14.62 0.0231
6 17.09 1.14 21.77 974.5 14.76 0.0463
7 10.04 1.56 21.88 1174.9 15.14 0.0246
8 23.24 0.93 27.25 1284.1 15.58 0.0412
9 7.82 1.59 21.13 1265.2 15.17 0.0246
10 21.94 0.93 27.19 457.6 16.02 0.0357
11 27.19 0.64 29.68 731.0 18.23 0.0337
12 10.36 1.45 22.80 689.4 15.13 0.0427
13 13.48 1.20 24.93 941.0 17.00 0.0396
14 20.04 1.15 25.36 901.9 17.87 0.0456
15 0.75 0.58 23.01 1476.6 17.26 0.0418
16 18.35 1.08 22.72 1079.6 18.29 0.0467
17 8.14 1.60 21.52 702.5 14.91 0.0397
18 22.21 0.79 27.85 718.5 18.36 0.0317
19 9.65 1.59 21.58 1207.2 14.96 0.0237
20 13.81 0.85 19.30 1296.6 14.25 0.0432
21 5.58 1.16 25.24 1087.3 14.38 0.0228
22 17.65 0.11 30.40 963.4 12.89 0.0279
23 17.51 0.93 27.25 996.7 14.21 0.0243
24 17.81 1.10 24.91 1041.6 13.56 0.0424
25 23.87 0.87 27.25 1308.6 15.50 0.0393
26 9.82 1.59 21.64 1183.3 14.96 0.0232
27 23.61 0.92 27.25 1303.1 15.48 0.0413  
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C.4 RESULTS AT MACH 1.2 WITH WEIGHTING FACTOR 

SET 2 

Table C-7 Results for Test case – 2 at Mach 1.2 with weighting factor set 2 

Case
 # Nose Body Tail ErrCg(%) ErrI(%) FOM Flag

1 Steel Steel Steel 16.84 14.07 12.63 1
2 Steel Steel Aluminum 7.25 1.71 3.80 1
3 Steel Aluminum Steel 12.43 41.50 21.77 1
4 Steel Aluminum Aluminum 0.39 29.35 12.08 1
5 Steel Aluminum Brass 14.18 44.37 23.63 1
6 Steel Brass Aluminum 9.68 0.23 4.26 1
7 Steel Brass Brass 17.95 39.15 23.07 1
8 Steel Brass Steel 21.69 1.03 9.35 1
9 Steel Steel Brass 18.25 43.18 24.81 1

10 Aluminum Aluminum Aluminum 25.32 14.96 16.20 1
11 Aluminum Aluminum Steel 42.39 18.70 24.58 1
12 Aluminum Steel Aluminum 16.69 6.85 9.55 1
13 Aluminum Steel Steel 35.66 2.54 15.56 1
14 Aluminum Steel Brass 35.57 1.62 15.12 1
15 Aluminum Brass Steel 35.08 0.43 14.50 1
16 Aluminum Brass Brass 32.96 8.59 16.88 1
17 Aluminum Brass Aluminum 16.36 3.03 7.90 1
18 Aluminum Aluminum Brass 37.38 31.11 27.54 1
19 Brass Brass Brass 17.30 41.47 23.78 1
20 Brass Brass Aluminum 7.07 0.29 3.18 1
21 Brass Aluminum Brass 12.51 44.98 23.19 1
22 Brass Aluminum Aluminum 0.66 32.90 13.62 1
23 Brass Aluminum Steel 10.37 41.57 20.98 1
24 Brass Steel Aluminum 1.00 11.96 5.43 1
25 Brass Steel Steel 21.07 4.93 10.66 1
26 Brass Steel Brass 15.24 40.15 22.42 1
27 Brass Brass Steel 14.22 13.06 11.21 1  
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Table C-8 Results for Test case – 2 at Mach 1.2 with weighting factor set 2 

(cont’d) 

Case
 # x1 x2 x3 Mass Cg Ix/Iy

1 19.20 0.93 27.25 1320.5 14.96 0.0357
2 14.71 1.06 23.12 1100.0 13.73 0.0409
3 16.66 0.93 27.25 978.5 14.39 0.0243
4 19.53 0.45 30.40 893.4 12.85 0.0294
5 5.96 1.11 25.61 1050.9 14.62 0.0231
6 5.88 0.45 19.23 1493.0 14.04 0.0417
7 10.46 1.52 22.19 1178.2 15.10 0.0253
8 23.23 0.93 27.25 1284.1 15.58 0.0412
9 9.19 1.59 21.58 1178.3 15.14 0.0236
10 21.31 0.98 26.83 445.9 16.04 0.0354
11 26.96 0.65 29.57 725.7 18.23 0.0338
12 8.02 1.59 21.52 684.5 14.94 0.0387
13 28.71 0.11 29.47 1411.1 17.36 0.0405
14 13.23 0.85 24.92 1208.5 17.35 0.0409
15 16.35 0.12 23.80 1478.0 17.29 0.0418
16 16.09 0.72 27.98 1293.3 17.02 0.0452
17 8.00 1.59 21.52 714.1 14.89 0.0403
18 10.61 0.98 26.77 722.9 17.58 0.0287
19 7.17 1.65 20.60 1340.0 15.01 0.0243
20 13.88 1.05 22.14 1183.3 13.71 0.0415
21 16.35 1.07 26.03 971.2 14.40 0.0229
22 17.62 0.11 30.40 963.3 12.88 0.0279
23 16.66 0.93 27.25 1016.1 14.13 0.0243
24 3.78 1.71 19.87 1221.3 12.93 0.0366
25 23.74 0.90 27.25 1282.1 15.50 0.0395
26 7.87 1.59 21.64 1304.1 14.75 0.0249
27 17.09 0.86 27.74 1502.4 14.62 0.0362  


