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ABSTRACT 

IMAGE SEGMENTATION WITH IMPROVED 

REGION MODELING 

 
 

Ersoy, Ozan 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. A. Aydın Alatan 

                                         December 2004, 76 pages 

 

Image segmentation is an important research area in digital image processing with 

several applications in vision-guided autonomous robotics, product quality 

inspection, medical diagnosis, the analysis of remotely sensed images, etc. The 

aim of image segmentation can be defined as partitioning an image into 

homogeneous regions in terms of the features of pixels extracted from the image. 

Image segmentation methods can be classified into four main categories: 1) 

clustering methods, 2) region-based methods, 3) hybrid methods, and 4) bayesian 
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methods. In this thesis, major image segmentation methods belonging to first 

three categories are examined and tested on typical images. Moreover, 

improvements are also proposed to well-known Recursive Shortest-Spanning Tree 

(RSST) algorithm. The improvements aim to better model each region during 

merging stage. Namely, grayscale histogram, joint histogram and homogeneous 

texture are used for better region modeling. 

Keywords: Image Segmentation, Clustering, Region-Based, RSST, Recursive 

Shortest-Spanning Tree 
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ÖZ 

GELİŞTİRİLMİŞ BÖLGE MODELLEMESİYLE 

RESİM BÖLÜTLEME 

 
 

Ersoy, Ozan 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Assoc. Prof. Dr. A. Aydın Alatan 

                                              Aralık 2004, 76 sayfa 

Resim bölütleme, dijital resim işlemenin görsel-yönlendirimli otonom robotik, 

ürün kalite denetimi, tıbbi teşhis, uzaktan algılanan resimler gibi alanlarda  

uygulamaları olan önemli bir araştırma konusudur. Resim bölütlemenin amacı, bir 

resmi, resimden çıkarılan belirleyici niteliklere göre türdeş bölgelerine ayırmak 

olarak tanımlanabilir. 

Resim bölütleme metodları dört kategori içinde sınıflandırılabilir:            

1) kümeleme metodları, 2) bölge-tabanlı metodlar, 3) melez metodlar, ve 4) 

bayesgil metodlar. Bu tezde, ilk üç kategoriye ait başlıca resim bölütleme 

metodları incelenmekte ve tipik resimler üzerinde test edilmektedir. Ayrıca, iyi 
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bilinen özyinelemeli-en-kısa-ağaç yöntemi (RSST) üzerine geliştirmeler 

önerilmiştir. Geliştirmeler, birleştirme aşamasında her bölgeyi daha iyi 

modellemeyi amaçlamaktadır. Daha iyi bölge modellemesi için gri-ölçek 

histogram,  birleşik histogram ve homojen örgü kullanılmıştır. 

Anahtar Kelimeler: Resim Bölütleme, Kümelendirme, Bölge-Tabanlı, RSST, 

Özyinelemeli-En-Kısa-Ağaç 
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CHAPTER 1 

INTRODUCTION 

 

An important area of digital image processing is the segmentation of an image 

into homogeneous regions. Image segmentation is one of the most challenging 

problems of digital image processing and many different approaches and methods 

have been proposed in the literature. However, there is still not an exact solution 

that can be applied to all image types and obtains perfect results. 

 

1.1 Definition of the Image Segmentation Problem 

Image segmentation is a low-level image processing task that aims at partitioning 

an image into homogeneous regions in terms of the features of pixels extracted 

from the image [1]. The definition of a region homogeneity depends on the 

application. Examples for such homogeneity features are pixel gray level, pixel 

RGB color, range of the pixel from the camera, position of the pixel, local 

covariance matrix, etc. [2] 
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The results of image segmentation are often used as initial parameters to higher-

level digital image processing tasks and have many important application areas 

such as vision-guided autonomous robotics, product quality inspection, medical 

diagnosis and the analysis of remotely sensed images.  

 

1.2 Scope of the Thesis 

This thesis aims comparative analysis of major image segmentation methods, as 

well as proposing some improvements. Major image segmentation algorithms, 

namely K-Means, Fuzzy C-Means, Seeded Region Growing, Recursive Shortest-

Spanning Tree and K-Means with Connectivity Constraint, are analyzed and 

applied on test images. Moreover, improvements to region modeling of Recursive 

Shortest-Spanning Tree algorithm are proposed and tested. Namely, grayscale 

histogram, joint histogram and homogeneous texture are used for better region 

modeling. 

 

1.3 Organization of the Thesis 

In Chapter 2, the overview of image segmentation methods in the literature is 

presented.  
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In Chapter 3, major image segmentation algorithms are examined and 

experimental results on test images are given. 

In Chapter 4, some improvements to region modeling of well-known Recursive 

Shortest-Spanning Tree algorithm are proposed. 

In Chapter 5, some concluding remarks are stated on the performance of image 

segmentation algorithms. 
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CHAPTER 2  

OVERVIEW OF IMAGE SEGMENTATION 

METHODS 

 

2.1 Image Segmentation Problem 

As already defined, image segmentation is a low-level image processing task that 

aims at partitioning an image into homogeneous regions in terms of the features of 

pixels extracted from the image [1].  

A more formal definition of image segmentation can be given in the following 

way [3]: 

Let I denote an image and let H define a certain “homogeneity predicate”; then the 

segmentation of I is a partition P of I into a set of N regions Rn, n = 1, …,N, such 

that:  

1)  with U
N

n n IR
1=

= Φ≠mn RR I  , n ≠ m 

2) H(Rn) = TRUE  n∀
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3) H(Rn  Rm) = FALSE   U nR∀ and Rm adjacent. 

Here, Condition 1 states that the partition has to cover the whole image, whereas 

Condition 2 indicates that each region has to be homogeneous with respect to the 

predicate H, and finally Condition 3 states that the two adjacent regions cannot be 

merged into a single region that satisfies the predicate H. 

In a large number of applications in image processing and computer vision, 

segmentation plays a fundamental role as the first step before applying to images 

higher-level operations, such as recognition, semantic interpretation and 

representation. Image segmentation has important applications in vision-guided 

autonomous robotics, product quality inspection, medical diagnosis and the 

analysis of remotely sensed images [3].  

 

2.2 Main Approaches to Image Segmentation 

The problem of image segmentation is an important research field and many 

segmentation methods have been proposed in the literature. The methods can be 

divided into 4 main categories:  

1) clustering methods,  

2) region-based methods, 
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3) hybrid methods, and 

4) Bayesian methods. 

 

2.2.1 Clustering Methods 

Clustering may be defined as the process of organizing objects into groups whose 

members are similar in some way. The following definitions may be functional 

[4]: 

i) A cluster is a set of entities, which are “alike”, while entities from 

different clusters are not “alike”. 

ii) A cluster is an aggregation of points in the test space such that the 

distance between any two points in the cluster is less than the distance 

between any point in the cluster and any point not in it. 

iii) Clusters may be described as connected regions of a multi-

dimensional space containing a relatively high density of points, separated 

from other such regions by a region containing a relatively low density of 

points. 

Research into clustering algorithms has been useful in many applications, mainly 

in the field of pattern recognition and data mining. Clustering methods can be 

divided into two categories: hierarchical and partitional [5]. Within each of the 
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types there exists a wealth of subtypes and different algorithms for finding the 

clusters.  

 

2.2.1.1 Hierarchical Clustering 

Hierarchical clustering techniques are based on the use of a proximity matrix 

indicating the similarity between every pair of data points to be clustered. The end 

result is a tree of clusters, called a dendrogram representing the nested grouping 

of patterns and similarity levels at which groupings change. It proceeds 

successively by either merging smaller clusters into larger ones (agglomerative, 

bottom-up), or by splitting larger clusters (divisive, top-down). By cutting the 

dendrogram at a desired level, a clustering of data items into disjoint groups is 

obtained. The clustering methods differ in regards to the rules by which two small 

clusters are merged or a large cluster is split. Some of the hierarchical algorithms 

include Cobweb, Cure and Chameleon [5]. 

 

2.2.1.2 Partitional Clustering 

Partitional clustering attempts to directly decompose the data set into a set of 

disjoint clusters. An objective function expresses the wellness of a representation, 

and then the clustering algorithm tries to minimize this function in order to obtain 

the best representation. Partitional algorithms are categorized into Partitioning 

 7



Relocation Algorithms and Density-Based Partitioning. Algorithms of the first 

type are further categorized into Probabilistic Clustering (SNOB), K-Medoids, 

and K-Means. The second type of partitional algorithms are called Density-Based 

Partitioning, they include algorithms such as Dbscan, Optics Dbclasd, Denclue, 

Gdbscan [5]. 

A hierarchical clustering is a nested sequence of partitions, whereas a partition 

clustering is a single partition. Thus, a hierarchical clustering is a special sequence 

of partitional clustering. At the end of hierarchical clustering process, one cluster 

tree is formed. Traveling down the branches, the subsequent merge steps can be 

seen. Using hierarchical clustering is only practical on small data sets. 

Hierarchical clustering methods are clearly not practical in image segmentation 

process [4]. 

Partitional clustering techniques such as, K-means clustering and ISODATA have 

an advantage over the hierarchical clustering techniques, where a partition of the 

data points which optimizes some criterion functions. In hierarchical clustering 

once a data point is assigned to a particular cluster, it cannot be altered. Therefore, 

if a data point is incorrectly assigned to a particular cluster at an early stage, there 

is no way to correct the error. However, there is also a disadvantage of the 

partitional clustering techniques on how to determine the number of clusters, K 

[5]. 
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Clustering methods are global in the sense that they do not retain positional 

information. The major drawback is its invariance to spatial rearrangement of the 

pixels, which is an important aspect by the definition of segmentation. The 

resulting segments might not be connected and can be widely scattered. This also 

causes clustering methods be sensitive to noise and intensity inhomogenities. This 

lack of spatial modeling, however, can provide significant advantages for fast 

computation [6] [7]. 

K-Means and Fuzzy C-Means [4] are well-known clustering-based image 

segmentation algorithms and they are examined in Chapter 3.  

 

2.2.2 Region-Based Methods 

The region-based methods try to isolate areas of images that are homogeneous 

according to given set of characteristics. Two classical region-based methods are 

seeded region growing and split-and-merge [6]. 

  

2.2.2.1 Seeded Region Growing 

Seeded region growing is one of the most simple and popular region-based 

segmentation algorithms. It starts by choosing a (or some) starting point (or seed 

pixel). Then, the region grows by successively adding neighboring pixels that are 
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similar, according to a certain homogeneity criterion, increasing step by step the 

size of the region. This criterion can be, for example, to require that the variance 

of a feature does not exceed a threshold, or that the difference between the pixel 

and the average of the region is small. The growing process is continued until a 

pixel not sufficiently similar to be aggregated is obtained. It means that the pixel 

belongs to another object and the growing in this direction is complete. 

Monitoring the procedure gives an impression of regions in the interior of objects 

growing until boundaries correspond with the edges of the object. Important 

problems of seeded region growing are the selection of initial seeds that properly 

represent regions and the suitable homogeneity criterion to be used during the 

growing process [6]. 

 

2.2.2.2 Split-and-Merge 

One of the basic properties of segmentation is the existence of a predicate P which 

measures the region homogeneity. If this predicate is not satisfied for some 

region, it means that that region is inhomogeneous and should be split into 

subregions. On the other hand, if the predicate is satisfied for the union of two 

adjacent regions, then these regions are collectively homogeneous and should be 

merged into a single region [1][2]. A method towards the satisfaction of these 

homogeneity criteria is the split-and-merge algorithm. This technique consists, as 

its name denotes, of two basic steps. First, the image is recursively split until all 
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the regions verify a homogeneity criterion. Next, in a second step, all adjacent 

regions are reassembled in a way that resulting regions satisfy the homogeneity 

criterion. The steps are shown in Fig. 2.1. [6] 

The procedure can be summarized as follows [8][9]: 

i) If for any region Ri, P(Ri) = FALSE, then split Ri into four 

subquadrants. 

ii) If for any adjacent regions Ri and Rj, P(Ri  Rj) = TRUE, merge 

them. 

U

iii) If no further splitting or merging is possible, stop. Else go to step 1. 

 

 

 

 

 

 

 

 

Figure 2.1: Split-and-merge segmentation, (a) original image, (b) initial split 
in four square blocks, (c) splitting of the image in homogeneous blocks and 
(d) final segmentation after the merging. 
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A quad-tree structure is often used to affect the step of splitting: it is based on the 

recursive decomposition of the regions that does not satisfy the homogeneity 

criterion into four squared subregions, starting from the whole image. Therefore, 

an inverse pyramidal structure is built. The merging step consists of merging the 

adjacent blocks which represent homogeneous regions but have been divided by 

the regular decomposition [6]. 

Split-and-merge method does not suffer from predetermination of number of 

regions, or any other constraints. However, the main drawback is the artificial 

blocking effects on the resulting region boundaries [9]. The main advantage 

offered by region-based methods is that the regions obtained are certainly spatially 

connected and rather compact.  

Recursive Shortest-Spanning Tree algorithm [9], as will be explained in Chapter 

3, is another popular region-based algorithm. 

 

2.2.3 Hybrid Methods 

Hybrid image segmentation methods combine the principles of two or more 

primitive image segmentation techniques, either in a hierarchical or parallel 

manner to segment the images [5]. As mentioned in previous sections, both 

clustering methods and region-based methods have advantages and disadvantages. 

Hybrid methods aim to get use of advantageous parts of different techniques. For 
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example, clustering methods usually suffer from unconnected and scattered 

regions. The appropriate use of a region-based algorithm may help to overcome 

this problem. 

A typical example for hybrid methods is K-Means with Connectivity Constraint 

(KMC) algorithm [12], in which an initial K-Means clustering is further refined 

by considering the spatial coherence of neighboring pixels. KMC is examined in 

Chapter 3. 

 

2.2.4 Bayesian Methods 

Bayesian methods use probability calculus to quantify the plausibility of a 

hypothesis. In the case of image segmentation, this hypothesis is about the 

existence of a particular “hidden field” (label field realization) along with the data. 

A priori knowledge, which can be exploited to improve the results, is used to 

regularize the inference of the hidden field, given the data. Formal optimization 

techniques are then used to work on the posterior inference. 

The Bayes rule states that: 

)()|()|( LPLXPXLP α , 

i.e. the posterior probability P(L|X) of the label field given the data is proportional 

to the product of the model probability P(X|L) and the prior probability of the 
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label realizations P(L). P(L) is defined using local information about the expected 

segmentation result (such as shape, etc.) and aims at encouraging spatial 

connectivity. [15] 

The prior probability model for the segmentation label field is usually assumed to 

be a Gibbs random field (GRF), which expresses the expectations about the spatial 

properties of the segmentation, i.e., the GRF assigns higher probabilities to the 

segmentation fields having connected regions. 

The feature image is explicitely assumed as the summation of two parts; one is a 

piecewise constant function, and the other is a Gaussian white noise with zero 

mean, µ, and variance, σ2. The segmentation is achieved by maximizing the a 

posteriori probability of the segmentation field, given the observed feature image. 

The mathematical formulation is as follows: 

The segmentation label field Z(x,y) is modeled by 

)}(exp{)( zUzZP −= α  

where U(z) is the Gibbs potential and is defined by 

∑
∈

=
Cc

c zVzU )()( . 

Here C is the set of all cliques, and Vc is the individual clique potential whose 

value depends only on z(x,y) where Cyx ∈),( . A clique is a set of points, c, 

which are all neighbours of each other. Clique examples for first order and second 
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order neighbourhood systems are shown in Fig. 2.2 [17]. Spatial connectivity of 

regions can be imposed by assigning low values to Vc(z), if z(x,y) is constant for 

all , and high values otherwise. Cyx ∈),(

 

 

 

 

 

(a) (b) 
 

Figure 2.2: Clique examples for (a) first order neighbourhood system, 
(b) second order neighbourhood system   

According to the above assumption about the formation of the image, the 

conditional probability of the observed feature image S, given Z is modeled by 
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The a posteriori probability can be manipulated using the Bayes rule: 
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Then, maximizing P(Z=z|S=s) is equivalent to minimizing 

∑ ∑ ∑
= ∈ ∈

+−=
K

i Ryx Cc
ci

i

zVyxsD
1 ),(

2 )(),(' λµ  

with respect to the segmentation mask z(x,y) [9]. 
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CHAPTER 3 

FUNDAMENTAL METHODS IN IMAGE 

SEGMENTATION 

 

3.1 Motivation 

In this chapter, some fundamental solutions to image segmentation problem are 

examined and tested to get some experience on their performances.  

Following the classification of image segmentation methods in Chapter 2, K-

Means and Fuzzy C-Means are chosen as typical examples of clustering-based 

algorithms. On the other hand, RSST and seeded region growing are tested among 

the methods in region-based approaches. Finally, as a typical example of hybrid 

methods, KMC algorithm is presented. 

The screenshots of the programs for the algorithms can be seen in Figs. 3.1 and 

3.2. The test images that are utilized during simulations are also shown in Figs. 

3.3 to 3.7, while the ground truth images are presented in Figs. 3.8 to 3.12. The 

algorithms are implemented on Borland C++ Builder version 5.0 and run on an 

AMD Athlon XP 1800+ computer with 512 MB DDR ram. 
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In evaluation of the experimental results, two metrics, namely ground truth error 

and normalized variance, are used. Ground truth error value represents how much 

the segmentation result differs from the ideal segmentation mask.  

On the other hand, normalized variance measures the compactness of the 

individual clusters. A natural measure of compactness is the average within-

cluster variance. For a single cluster, the variance, V(k), k=1, …, K, is given by 

( )∑
∈

−=
)()(

2)()(1)(
kCxsk

kMxs
N

kV  

where Nk is the number of pixels belonging to cluster k, s(x) is the feature vector 

for pixel x, C(k) is the cluster array and M(k) is the cluster center for cluster k, 

k=1, …, K.  

Averaging variances over K clusters gives 

∑
=

=
K

k
k NkVNV

1
/)(  

where N is the total number of pixels in the data set.  

It is useful to normalize this value by the overall variance, V0, 

( )∑
=

−=
N

x
NMxsV

1

2
0 /)(  

where M is the mean of the all pixels.  
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So the normalized variance, V*, is 

0

*

V
VV =  . 
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Figure 3.1: A screenshot of the utilized software during simulations. 

 

 

 

 

     

 

Figure 3.2: A screenshot of the utilized seeded region growing software. 
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Figure 3.3: Test image 1. Figure 3.4: Test image 2. 

Figure 3.5: Test image 3. Figure 3.6: Test image 4. 

Figure 3.7: Test image 5. 
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Figure 3.8: Ground truth image of 
test image 1 (K=2). 

F
t

Figure 3.10: Ground truth image of 
test image 3 (K=4). 

Figure 3.9: Ground truth image of 
test image 2 (K=3). 

Figure 3.12: Ground
test image 5 (K=3). 
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Figure 3.9: Ground truth image of
sample image 2 (K=3) 
igure 3.11: Ground truth image of 
est image 4 (K=3). 

 truth image of 



3.2 K-Means Algorithm 

The basic idea of K-Means algorithm is to start with an initial partition and assign 

patterns to clusters in order to reduce the error between the intensities of the pixels 

of a cluster and its mean. The error tends to decrease as the number of iterations 

increases, as expected is minimized for a fixed number of clusters, K [4].  

 

3.2.1 Algorithm 

The flowchart of K-Means algorithm is given in Fig. 3.13 [13]. The algorithm is 

as follows [4]: 

Step 1 

Select a cluster number K. Choose the mean values for K 

initial cluster centers randomly, as Mj(1), Mj(2), …, 

Mj(K), where j is the iteration number. In this thesis 

initial centers are determined from the analysis of 

gray-level histograms. 

Step 2 

Assign each pixel x to one of the clusters according to 

the relation 
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x∈ C(k) if )()()()( iMxskMxs jj −<−  for all i=1, …, K and 

i ≠ k 

where s(k) is the feature vector for pixel x and C(k) 

is the cluster array. 

Step 3 

Using new clusters C(k),  k=1, …, K, compute their 

cluster centers. The new cluster centers, Mj+1(k), k=1, 

…, K, can be determined as the averages of the patterns 

in each cluster as follows: 

∑
∈

+ =
)(

1 )(1
kCx

i
k

j
i

xs
N

M  

where Nk is the number of pixels in cluster k. 

Step 4 

Using the new cluster centers computed in the previous 

step, check whether the clustering is finished. 

Convergence is occurred, if none of the cluster centers 

are changed, that is 

if Mj(k) = Mj+1(k) for k=1, …, K 
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if j > MAXIT then stop. If j < MAXIT then increment j 

by 1 and return to step 2. 

If convergence occurs clustering is complete and final 

K clusters should be obtained. Convergence could be 

computationally very expensive, and hence, as a safety 

margin, a maximum number of iterations called MAXIT can 

be assigned for stopping without convergence. In this 

thesis, MAXIT value is taken as 10. 

Figure 3.13: The flowchart of K-Means Algorithm. 
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3.2.2 Results 

The test images of Figs. 3.3 to 3.7 are utilized to assess the performance of K-

Means algorithm. During the simulations, cluster numbers are selected equal to 

the values which are used to define their respective ground truths in Figs. 3.8 to 

3.12. Segmented images are displayed in Figs. 3.14 to 3.18 and the results are 

summarized in Table 3.1. Observing the resultant images, one can easily state that 

K parameter only fixes the number of different gray levels the image contains. 

Hence, in all these images there are many (more than K) connected regions (but 

only K gray levels). However, in many applications, one should only be interested 

in connected regions which have semantic meanings. Clustering based methods 

simply can not deliver this information. 

 
Table 3.1: Numerical results of K-Means Algorithm for test images. 

IMAGE K # of 
Iterations 

Normalized 
Variance 

Ground 
Truth 
Error 

Elapsed 
Time 
(sec) 

Test Image 1 2 4 0,2171 0,0844 0,062 

Test Image 2 3 4 0,0756 0,3940 0,062 

Test Image 3 4 10(MAXIT) 0,0219 0,2190 0,172 

Test Image 4 3 6 0,1746 0,0485 0,109 

Test Image 5 3 5 0,1240 0,2529 0,094 
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Figure 3.17: Segmentation of test 
image 4 with K-Means.              

Figure 3.16: Segmentation of test 
image 3 with K-Means.              

Figure 3.15: Segmentation of test 
image 2 with K-Means.              

Figure 3.14: Segmentation of test 
image 1 with K-Means.              

 
 
 
 

Figure 3.18: Segmentation of test 
image 5 with K-Means.              



3.3 Fuzzy C-Means Algorithm 

In contrast to K-Means algorithm in which the pixels can have only two states for 

their membership to a region, in fuzzy clustering all the continuous membership 

degrees between zero and one are used instead of crisp assignments of the data to 

clusters. Fuzzy C-Means algorithm assigns each pixel a fuzzy membership for 

every class. The fuzzy membership corresponds to the probability of a particular 

pixel belonging to a particular class. Therefore, every pixel belongs to every class 

at the same time with different probabilities [18]. 

3.3.1 Algorithm 

The algorithm is as follows [4]: 
 

Step 1 

Select an initial partition with K clusters. Find 

random values for each fuzzy centroids Vk, for k=1, 

..., K. Subscript k on Vk shows the cluster number. 

Fuzzy centroids are defined as 

∑

∑

=

== N

i
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where N is the total pixel number in the image and 

)( ik xµ  is the fuzzy membership function. m is an 

arbitrary weighting exponent. The larger the chosen m 

the fuzzier is the assignment of membership to the 

cluster. m=2 gives the same segmentation results as K-

Means algorithm. In this thesis, m=10 is chosen. 

Step 2 

Set p = 1 where p is the iteration index. 

Step 3 

Using the Vk, k=1, ..., K, determined in step 1, 

compute the new fuzzy membership functions )( ik xµ  as 

follows 

( )
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where i = 1, ..., N and k = 1, ..., K 
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Step 4 

Compute the new fuzzy centroids Vk, for k=1, ..., K 

using 

( )

( )∑
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Step 5 

If  stop. Else set p = p+1 and go to step 3. 1+= pp µµ

Distance measure, d(x,y), is the Euclidian distance 

[4]: 

( )[ ]∑
=

−=−−=−=
n

i
ii

T yxyxyxyxyxd
1

2/12)()(),( . 

 

3.3.2 Results 

The test images of Figs. 3.7 to 3.11 are utilized to assess the performance of 

Fuzzy C-Means algorithm. During the simulations, cluster numbers are selected 

equal to the values which are used to define their respective ground truths in Figs. 

3.8 to 3.12. Segmented images are displayed in Figs. 3.19 to 3.23 and the results 
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are summarized in Table 3.2. Comparing the resultant images of K-Means and 

Fuzzy C-Means, one can observe that they are quite similar. Moreover, there are 

no noticeable differences between normalized variances and ground truth errors of 

two algorithms. However, elapsed times of Fuzzy C-Means are significantly high 

compared to elapsed times of K-Means algorithm. Apparently, the fuzziness 

concept utilized by Fuzzy C-Means does not improve the segmentation 

performance of the algorithm. Due to ignorance of spatial information in 

clustering algorithms, their segmentation performances are limited to a degree and 

expecting lower ground truth errors is pointless. In this sense, normalized variance 

is a more realistic metric for performance measure of the clustering algorithms. 

Normalized variances obtained in K-Means algorithm are sufficiently low. 

 

Table 3.2: Numerical results of Fuzzy C-Means Algorithm for test 
images.  

IMAGE K # of 
Iterations

Normalized 
Variance 

Ground 
Truth 
Error 

Elapsed 
Time 
(sec) 

Test Image 1 2 5 0,2171 0,0844 1,938 

Test Image 2 3 6 0,0755 0,4045 3,593 

Test Image 3 4 10 0,0244 0,2098 9,016 

Test Image 4 3 10 0,1746 0,0527 6,953 

Test Image 5 3 10 0,1240 0,2611 7,203 
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Figure 3.19: Segmentation of test 
image 1 with Fuzzy C-Means.           

Figure 3.20: Segmentation of test 
image 2 with Fuzzy C-Means.           

Figure 3.21: Segmentation of test 
image 3 with Fuzzy C-Means.        

Figure 3.22: Segmentation of test 
image 4 with     Fuzzy C-Means.            

Figure 3.23: Segmentation of test image 5 
with Fuzzy C-Means.              
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3.4 Seeded Region Growing 

The Seeded Region Growing (SRG) approach to image segmentation is based on 

dividing an image into regions with respect to a set of n seed points. It starts by 

choosing a (or some) starting point or seed pixel. Then, the regions grow by 

successively adding neighboring pixels that are similar, according to a certain 

homogeneity criterion, increasing step by step the size of the region [6]. 

3.4.1 Algorithm 

Each seed region is a connected component, comprising one or more points and is 

represented by a set Ai, where i = 1, …, n. Let  T be the set of all unallocated 

pixels that border at least one of the Ai, i.e. 

U UI
n

i

n

i ii AxNAxT
1 1

},)(:{
= =

Φ≠∉=  

where N(x) represents the set of immediate neighbours of the pixel x. A single 

step of the algorithm involves examining the neighbours of each x∈T in turn. If 

N(x) intersects a region Aj then a measure δ (x), of the difference (similarity) 

between x and the intersected region is calculated. In the simplest case, δ (x) is 

defined: 

)}({)()( ygmeanxgx
jAy∈−=δ , 
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where g(x) is the intensity (grey value) of the pixel x. If N(x) intersects more than 

one region, then Aj is taken to be that region for which δ (x) is a minimum. In this 

way, a δ  value is determined for each x∈T. Finally, the pixel z∈T that satisfies 

)}({min)( xz Tx δδ ∈=  

is appended to the region corresponding to δ (z). The new state of the regions 

{Ai} then constitutes the input to the next iteration. This process continues until all 

of the image pixels have been assimilated. [10] 

While implementing the SRG algorithm, a data structure denoted as the 

sequentially sorted list (SSL), is utilized. SSL is a linked list of pixel addresses, 

ordered with respect toδ . A pixel can arbitrarily be inserted into the list in the 

position prescribed by its δ  value. However, only the pixel with the smallest δ  

value can be removed from the SSL. Effectively, the SSL stores the points of the 

set T ordered according toδ  [10]. 

 

3.4.2 Results 

The test images of Figs. 3.7 to 3.11 are utilized to assess the performance of SRG 

algorithm. During the simulations, region numbers are selected equal to the values 

which are used to define their respective ground truths in Figs. 3.8 to 3.12. 

Segmented images are displayed in Figs. 3.24 to 3.28 and the results are 
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summarized in Table 3.3. Apparently, the ground truth errors of SRG are much 

better than ground truth errors of K-Means and Fuzzy C-Means algorithms. 

However, elapsed times of SRG are considerably high compared to K-Means. 

Nevertheless, one can still state that SRG is a more powerful segmentation 

algorithm in the sense of connected regions. A drawback of SRG is the 

assignment of initial seed points. The seed points can be automatically or 

manually selected. However, it is not always easy to find suitable initial seed 

points. During the simulations, seed points are assigned manually. 

 

Table 3.3: Numerical results of SRG Algorithm for test 
images.  

IMAGE K Normalized 
Variance 

Ground 
Truth 
Error 

Elapsed 
Time 
(sec) 

Test Image 1 2 0,4635 0,0067 2,312 

Test Image 2 3 0,3955 0,0142 0,765 

Test Image 3 4 0,0751 0,0594 5,344 

Test Image 4 3 0,3358 0,0344 8,531 

Test Image 5 3 0,3922 0,1057 10,922 
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Figure 3.24: Segmentation of test 
image 1 with SRG.              

Figure 3.25: Segmentation of test 
image 2 with SRG.              

Figure 3.26: Segmentation of test 
image 3 with SRG.              

Figure 3.27: Segmentation of test 
image 4 with SRG.              

Figure 3.28: Segmentation of test 
image 5 with SRG.              
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3.5 RSST 

The RSST method is a powerful image segmentation method in the sense that it is 

relatively fast and requires no initial segmentation masks and parameters. 

Furthermore, it is a hierarchical segmentation scheme that is yielding 

segmentation masks of various scales, from the finest to the coarsest, as the 

algorithm evolves from the finest level to the coarsest levels, it may be stopped, 

when the number of regions is reduced to the desired number, K, which should be 

specified externally [11]. 

 

3.5.1 Fundamental Definitions in Graph Theory 

Graph Theory is the study of graphs and their applications. A graph G = (V, E) is 

made up of a set of vertices Vi and Vj connected to each other by links Ei,j, for i≠ j, 

and where Vi and Vj are the terminal vertices that the link connects. In a weighted 

graph the vertices and links have weights associated with them, namely vi and ei,j, 

respectively. Each vertex is not necessarily linked to every other, but if the 

vertices are linked together then the graph is complete. A partial graph has the 

same number of vertices but only a subset of the links of the original graph. A 

chain is a list of successive vertices in which each vertex is connected to the next 

vertex by a link in the graph. A cycle is a chain whose end links meet at the same 

vertex. A tree is a connected set of chains such that there are no cycles. A 
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spanning tree is a tree, which is also a partial graph. The shortest spanning tree of 

a weighted graph is a spanning tree such that the sum of its link weights, or some 

other monotonic function of its link weights, is a minimum for any possible 

spanning tree [11]. 

 

3.5.2 Algorithm 

The RSST algorithm consists of two functional blocks, namely, the initialization 

stage and the linking process. The flowchart of the RSST algorithm is given in 

Fig. 3.30. The RSST starts with a mapping of an image onto a weighted graph at 

the initialization stage. Each region or vertex initially contains only one pixel. The 

pixel intensity values of regions are used to evaluate vertex weights and link 

weights of the graph. A vertex weight (Vi) is defined as the average intensity value 

of the corresponding region, while a link weight (LWi) is evaluated by a link 

weight function or a cost function, which is basically a function of the vertex 

weights and the sizes (Ni) of the connected regions, i.e. 

ji

ji
jii NN

NN
VVLW

+
−=  

 All links are then sorted in order according to their link weights, and stored in a 

heap. In entering the linking process, a link with the least link weight in the graph 

is chosen to be the next link of the shortest spanning tree (SST). The chosen link 
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is saved and the connecting regions are merged. The vertex weight of the newly 

merged region is updated, hence, all surrounding links need to be recalculated and 

all loop-forming links, also known as duplicated links, will be removed. Merging 

procedure is illustrated in Fig.  3.29. Subsequently, all remaining links are sorted. 

Thus, the number of regions is progressively reduced from M x N in an M pixel by 

N pixel image, down to just one if desired. Those saved links form a spanning tree 

representation of the image. By noting the order in which the links are saved, 

hierarchical representation of the original image can also be created [11]. 
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Figure 3.29: Merging procedure,  
(a) Regions before merging (LW1 is assumed to be   

the smallest link weight). 
(b) Merged region with new V’ and N’. 
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Figure 3.30: The flowchart of the RSST algorithm.
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3.5.3 Results 

The test images of Figs. 3.7 to 3.11 are utilized to assess the performance of RSST 

algorithm. During the simulations, region numbers are selected equal to the values 

which are used to define their respective ground truths in Figs. 3.8 to 3.12. 

Segmented images are displayed in Figs. 3.31 to 3.35 and the results are 

summarized in Table 3.4. The ground truth errors of RSST are slightly higher than 

the ground truth errors of SRG. On the other hand, elapsed times of RSST are 

significantly low compared to elapsed times of SRG. Moreover, RSST does not 

require initial parameters other than assignment of number of regions, K. Thus, 

RSST appears to be an effective image segmentation algorithm. 

 

 

IMAGE K Normalized 
Variance 

Ground 
Truth 
Error 

Elapsed 
Time 
(sec) 

Test Image 1 2 0,4522 0,0112 0,625 

Test Image 2 3 0,3600 0,0613 0,563 

Test Image 3 4 0,0871 0,0842 0,531 

Test Image 4 3 0,2564 0,0427 0,859 

Test Image 5 3 0,3644 0,1043 0,875 

Table 3.4: Numerical results of RSST Algorithm for test 
images. 
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Figure 3.31: Segmentation of test 
image 1 with RSST.              

Figure 3.32: Segmentation of test 
image 2 with RSST.              

Figure 3.33: Segmentation of test 
image 3 with RSST.              

Figure 3.34: Segmentation of test 
image 4 with RSST.              

Figure 3.35: Segmentation of test 
image 5 with RSST.              
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3.6 KMC 

Clustering based on the K-Means algorithm is a widely used region segmentation 

method which, however, tends to produce unconnected regions. This is due to the 

propensity of the classical K-Means algorithm to ignore spatial information about 

the intensity values in an image, since it only takes into account the global 

intensity or color information. In order to alleviate this problem, an extended 

version of K-Means algorithm, namely KMC, is proposed [12]. In this algorithm, 

the spatial proximity of each region is also taken into account by defining a new 

center for the K-Means algorithm and by integrating the K-Means with a 

component labeling procedure. 

 

3.6.1 Algorithm 

The algorithm is as follows [12]: 
 

Step 1 

The classical KM algorithm is performed for a small 

number of iterations. This result in K regions si, i=1, 

…, K, with intensity centers Ik, k=1, …, K. If Mk 

elements are assigned to sk then 
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The area of each region Ak is defined by Ak = Mk   

and the mean area of all regions ∑
=

=
K

k
kA

K
A

1

1
. 

Step 2 

For every pixel p = (x, y), the intensity differences 

are evaluated between center and pixel intensities as 

well as the distances between p and S. A generalized 

distance of a pixel p from a region sk is defined as 

follows: 
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where kSp −  is the Euclidian distance, Iσ , Sσ  are the 

standard deviations of intensity and spatial distance, 

respectively, and 1λ , 2λ  are regularization parameters. 

Normalization of the spatial distance kSp −  with the 

area of each region A/Ak is necessary in order to allow 

the creation of large connected regions; otherwise 

pixels with similar intensity with those of a large 

region would be assigned to neighboring smaller 

regions. If ),( ipD  < ),( kpD  for all k≠ i, p = (x, y) is 

assigned to region si. 

Step 3 

Based on the subdivision, and eight connectivity 

component labeling algorithm is applied. This algorithm 

finds all connected components and assigns a unique 

value to all pixels in the same component. Regions 

whose area remains below a predefined threshold are not 

labeled as separate regions. The component labeling 

algorithm produces L connected regions. For these 
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connected regions, the intensity Il and the spatial Sl 

are calculated. 

Step 4 

If the difference between the new and the old centers 

Il and Sl is below a threshold, 
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then stop, else goto Step 2 with K = L using the new 

intensity and spatial centers. Convergence could be 

computationally very expensive, and hence, as a safety 

margin, a maximum number of iterations called MAXIT can 

be assigned for stopping without convergence [4]. In 

this thesis, MAXIT value is taken as 10. 

 

Through the use of this algorithm, the ambiguity in the selection of the number of 

regions, K, which is a weakness of the K-Means algorithm, is resolved. Starting 

from any K, the component labeling algorithm produces or rejects regions 

according to their compactness. In this way K is automatically adjusted during the 

segmentation procedure [12]. 
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3.6.2 Results 

The test images of Figs. 3.7 to 3.11 are utilized to assess the performance of KMC 

algorithm. During the simulations, initial cluster numbers are selected equal to the 

values which are used to define their respective ground truths in Figs. 3.8 to 3.12 

and the other initial parameters of the algorithm are adjusted, so that final 

numbers of regions are equal to initial cluster numbers. Segmented images are 

displayed in Figs. 3.36 to 3.40 and the results are summarized in Table 3.5. The 

ground truth errors of KMC are slightly lower than the ground truth errors of 

RSST, but still higher than ground truth errors of SRG. However, elapsed times of 

KMC are significantly high compared to elapsed times of SRG and RSST, 

especially in textured images. Connected components labeling algorithm utilized 

in KMC enables to achieve connected regions, but increases the execution time. 

  Table 3.5: Numerical results of KMC Algorithm for test images. 

IMAGE K # of 
Iterations

Normalized 
Variance 

Ground 
Truth 
Error 

Elapsed 
Time 
(sec) 

Test Image 1 2 4(KM)+1 0,4487 0,0101 0,656 

Test Image 2 3 4(KM)+2 0,3612 0,0454 6,141 

Test Image 3 4 4(KM)+6 0,0641 0,0611 4,187 

Test Image 4 3 4(KM)+2 0,3214 0,0406 3,11 

Test Image 5 3 4(KM)+1 0,3862 0,0965 17,453 
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Figure 3.36: Segmentation of test 
image 1 with KMC.              

Figure 3.37: Segmentation of test 
image 2 with KMC.              

Figure 3.38: Segmentation of test 
image 3 with KMC.              

Figure 3.39: Segmentation of test 
image 4 with KMC.              

Figure 3.40: Segmentation of test 
image 5 with KMC.             
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3.7 Comparative Analysis 

Algorithms are applied on 5 test images. Normalized variance and ground truth 

error are utilized as performance metrics. Both metric values are bounded between 

0 and 1 with smaller values indicating better segmentation. Normalized variance 

can be defined as the average within-cluster intensity variance. Ground truth error 

value represents how much the segmentation result differs from the ideal 

segmentation mask. The comparison of normalized variance, ground truth error 

and elapsed time values of algorithms can be seen in Figs. 3.41, 3.42 and 3.43, 

respectively. 

The experimental results show that the normalized variances calculated for the 

segmentation results of clustering algorithms (K-Means and Fuzzy C-Means) are 

better than those of region-based algorithms.  This is expected due to the fact that 

normalized variance only measures the amount of intensity values of pixels in 

clusters, differ from the cluster means in average. The fuzziness concept included 

in Fuzzy C-Means algorithm causes the computational burden of this algorithm to 

increase significantly, however it does not improve the segmentation quality much 

according to normalized variance values compared to K-Means algorithm.  

On the other hand, ground truth error values are smaller for region-based 

algorithms (SRG and RSST) compared to clustering algorithms.  
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The KMC algorithm makes use of both intensity values and spatial information of 

the pixels. In this sense, the KMC is classified as a hybrid method. The 

connected-component labeling algorithm embedded in the KMC enables to get 

connected regions and also provides a dynamic determination of number of 

regions regardless of the initial K value. However, the computational complexity 

of the algorithm is significantly high. The results are summarized in Table 3.6. 

Among the analyzed algorithms, the RSST has proven to be a good choice in the 

sense it is fast and in most cases give reasonable results. 
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Figure 3.41: Chart showing Normalized Variances of 
algorithms during simulations. 
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Figure 3.42: Chart showing Ground Truth Errors of 
algorithms during simulations. 

Figure 3.43: Chart showing Elapsed Times of algorithms 
during simulations. 
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Approach Method Normalized 
Variance 

Ground 
Truth 
Error 

Elapsed 
Time 

Connected 
Regions 

K-Means LOW HIGH LOW NO 
Clustering Fuzzy C-

Means LOW HIGH AVERAGE NO 

SRG HIGH LOW AVERAGE YES 
Region-
Based 

RSST HIGH LOW LOW YES 

Hybrid KMC HIGH LOW AVERAGE YES 

Table 3.6: Summary of the simulation results. 
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CHAPTER 4 

RSST WITH IMPROVED REGION MODELING 

 

4.1 Introduction 

The experimental results have shown that RSST algorithm is a fast and powerful 

image segmentation algorithm. In RSST, each region is represented with its 

intensity mean. However, especially in textured parts of the images, the intensity 

mean is not adequate to explain the characteristics of a region. In this chapter, 

improvements to region modeling of RSST algorithm are examined. During the 

implementation of the proposed algorithms, first, test images are segmented into 

256 regions using classical RSST algorithm. Next, the proposed algorithms are 

applied to merge these 256 regions into desired number of regions. Test images 

are also segmented into 25 regions using K-Means algorithm and the results are 

used while preparing the histograms in the algorithms. This is done to reduce the 

computational load of the algorithms. Test images segmented into 256 regions 

with RSST algorithm are shown in Figs. 4.3 to 4.7. 

Test images 2, 3, 5 and two new test images 6 and 7 are utilized during 

simulations. Test images 6 and 7 are shown in Figs. 4.1 and 4.2. These images are 
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especially selected due to their textural content. Test image 6 is an artificial 

image, created by merging different textures together. On the other hand, test 

image 7 is a natural scene with significant amount of textured areas. The proposed 

algorithms are implemented on Matlab version 6.5 and run on an AMD Athlon 

XP 1800+ computer with 512 MB DDR ram. 

In evaluation of the experimental results, ground truth error is used. The ground 

truth images of the test images utilized during the simulations are given in Figs. 

4.8 to 4.12. Region numbers (K) are selected equal to the values which are used to 

define the respective ground truth images. 

Segmentation results of test images with classical RSST algorithm are given in 

Figs. 4.13 to 4.17 and the results are summarized in Table 4.1. As it can be 

observed, classical RSST algorithm based on intensity means has difficulty in 

segmenting textured images. Small variances between the segmentation results of 

the RSST algorithm in Chapter 3 and Chapter 4 are due to implementation 

differences of the algorithm in Borland C++ Builder and Matlab. 

 

Figure 4.1: Test image 6. Figure 4.2: Test image 7. 
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Figure 4.4: Test Image 3 segmented 
into 256 regions with RSST. 
 

Figure 4.3: Test Image 2 segmented 
into 256 regions with RSST. 

Figure 4.6: Test Image 6 segmented 
into 256 regions with RSST. 
 

Figure 4.5: Test Image 5 segmented 
into 256 regions with RSST. 
 

Figure 4.7: Test Image 2 segmented 
into 256 regions with RSST. 
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Figure 4.12: Ground truth image of test 
image 7 (K=8). 
 

Figure 4.9: Ground truth image of 
test image 3 (K=4). 
 

Figure 4.8: Ground truth image of 
test image 2 (K=4). 
 

Figure 4.11: Ground truth 
image of test image 6 (K=7). 
 

Figure 4.10: Ground truth image 
of test image 5 (K=3). 
. 



 

 
 
 

IMAGE  K Ground 
Truth Error 

Elapsed Time 
(sec) 

Test Image 2 4 0,2544 32,344 

Test Image 3 4 0,0698 44,859 

Test Image 5 3 0,1162 48,063 

Test Image 6 7 0,4126 28,282 

Test Image 7 8 0,5981 45,797 

Table 4.1: Numerical results of classical RSST algorithm for test 
images. 
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Figure 4.15: Segmentation of test 
image 5 with RSST. 

Figure 4.14: Segmentation of test 
image 3 with RSST. 

Figure 4.13: Segmentation of test 
image 2 with RSST. 

Figure 4.16: Segmentation of 
test image 6 with RSST. 

 Figure 4.17: Segmentation of test 
image 7 with RSST. 

 58



4.2 Region Intensity Modeling by Histogram 

 

4.2.1 Proposed Method 

In classical RSST algorithm, intensity means are used while comparing the 

similarity of regions. In the proposed method, grayscale histogram of each region 

is used for region intensity modeling instead of means. The grayscale histogram 

contains more information about the grayscale characteristics of a region. As it 

can be seen in Fig. 4.18, the grayscale histograms of similar regions show similar 

chacteristics. The symmetric Kullbach-Leibler (KL) distance [16] is used to 

measure the difference between histograms. The symmetric Kullbach-Leibler 

distance can be defined as: 

 ∑
∈

−=
Sx xQ

xPxQxPQPD
)(
)(log))()(()||(  

where P(x) and Q(x) are the compared probability distributions over set S with 

members x. These values are estimated by normalized histogram values of each 

region. 

 

 59



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4

T

p

4

i

c

t

m

 

Figure 4.18: Histograms belonging to artificially segmented different 
regions for test image 7. 
.2.2 Simulation Results 

he test images of Figs. 3.4, 3.5, 3.7, 4.1 and 4.2 are utilized to assess the 

erformance of proposed algorithms. Segmented images are displayed in Figs. 

.19 to 4.23 and results are summarized in Table 4.2. It can be observed that there 

s a noticeable improvement in the segmentation performances compared to 

lassical RSST, especially in textured images, test image 5, 6 and 7. However, 

here are still undesired artifacts, like the leakage of up-middle region into the 

iddle region of test image 6. Ground truth errors are better than those of classical 
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RSST algorithms, whereas elapsed times are slightly worse, which is actually 

expected due to higher computational load of the proposed algorithm. 

 

 

IMAGE  K Ground 
Truth Error 

Elapsed Time 
(sec) 

Test Image 2 4 0,0707 42,032 

Test Image 3 4 0,0535 57,328 

Test Image 5 3 0,0883 61,421 

Test Image 6 7 0,1083 37,703 

Test Image 7 8 0,5039 55,578 

Table 4.2: Numerical results of RSST algorithm with Region 
Intensity Modeling by histogram for test images. 
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Figure 4.19: Segmentation of test 
image 2 with RSST with Region 
Intensity Modeling by histogram. 

Figure 4.20: Segmentation of test 
image 3 with RSST with Region 
Intensity Modeling by histogram. 

Figure 4.22: Segmentation of test 
image 6 with RSST with Region 
Intensity Modeling by histogram. 

Figure 4.21: Segmentation of test 
image 5 with RSST with Region 
Intensity Modeling by histogram. 
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Figure 4.23: Segmentation of test image 7 with RSST 
with Region Intensity Modeling by histogram. 



4.3 Region Intensity Modeling by Joint Histogram 

 

4.3.1 Proposed Method 

The comparison of intensities of neighboring pixels gives information about the 

intensity distribution of the pixels in that region. In the proposed method, the joint 

histograms which show the intensities of neighboring pixels in regions are used 

for region modeling. The creation of joint histograms is as illustrated in Fig. 4.24. 

As it can be seen in Fig. 4.25, the joint histograms of similar regions are also 

similar. 

 

 

 

 

 

 

Figure 4.24: Illustration of creation of joint histograms. 
 

 
 
 
 
 
 

 63



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.25: Joint histograms belonging to artificially segmented different 
regions for test image 7. 

 
 
 

 

4.3.2 Simulation Results 

The test images of Figs. 3.4, 3.5, 3.7, 4.1 and 4.2 are utilized to assess the 

performance of the proposed algorithm. Segmented images are displayed in Figs. 

4.26 to 4.30 and results are summarized in Table 4.3. The segmentation 

performances are generally worse than classical RSST algorithm. Joint histogram 

does not appear to be a good choice for region modeling of RSST. Furthermore, 

the initial segmentation performed by classical RSST algorithm to segment the 

test image into 256 regions results in loss of some of the texture information in the 
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test images, which also has a role in failure of this method. Ground truth errors of 

the proposed algorithm are worse than those of classical RSST algorithm, except 

for test image 6. Besides, elapsed times of this method are quite high compared to 

classical RSST and RSST with histogram-based region modeling. 

 

 

IMAGE  K Ground 
Truth Error 

Elapsed 
Time (sec) 

Test Image 2 4 0,409 173,578 

Test Image 3 4 0,4362 247,079 

Test Image 5 3 0,4604 230,187 

Test Image 6 7 0,2738 169,922 

Test Image 7 8 0,616 227,562 

Table 4.3: Numerical results of RSST algorithm with Region 
Intensity Modeling by joint histogram for test images. 
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Figure 4.28: Segmentation of test  
image 5 with RSST with Region 
Intensity Modeling by joint histogram. 

Figure 4.27: Segmentation of test  
image 3 with RSST with Region 
Intensity Modeling by joint histogram. 

Figure 4.26: Segmentation of test  
image 2 with RSST with Region 
Intensity Modeling by joint histogram. 

Figure 4.29: Segmentation of test 
image 6 with RSST with Region 
Intensity Modeling by joint histogram. 

Figure 4.30: Segmentation of test image 7 with RSST w
Region Intensity Modeling by joint histogram. 

ith 
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4.4 Region Intensity Modeling by Texture 

The region modeling based on region intensity means of classical RSST algorithm 

is not sufficient to segment the texture areas in the images successfully. To 

overcome this problem, the use of a texture feature, namely homogeneous texture 

descriptor, is proposed in this section. 

 

4.4.1 Proposed Method 

In this method, homogeneous texture feature [14] is used for region modeling. 

This descriptor characterizes the region texture by using the energy and energy 

deviations in a set of frequency channels which is shown in Fig. 4.31. The 

frequency space from which the texture features in the image are extracted is 

partitioned with equal angles of 30 degrees in the angular direction and with an 

octave division in the radial direction, as shown in Fig. 4.31. The partitions in the 

frequency domain are denoted as the feature channels. On top of the feature 

channels, a 2D Gabor function is applied. The standard deviations of the applied 

Gabor function are determined by processing the Gabor function with its 

neighbour functions at half maximum in both radial and angular directions. The 

descriptor consists of the mean and standard deviation of the image intensity, the 

energies and the energy deviations of the feature channels. Finally these values are 
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used to decide which regions are to be merged. In the simulations, the mean and 

energy values are used to determine the similarity of corresponding regions. 

 

 

 

 

 

 

Figure 4.31: Feature layout for texture feature extraction. 
 

 

 

4.4.2 Simulation Results 

The test images of Figs. 3.4, 3.5, 3.7, 4.1 and 4.2 are utilized to assess the 

performance of proposed algorithm. Segmented images are displayed in Figs. 4.32 

to 4.36 and the results are summarized in Table 4.4. Segmentation performance of 

this method is similar to segmentation performance of first proposed method, 

namely region intensity modeling by histogram. The proposed algorithm is more 

successful especially in segmenting textured images, compared to classical RSST 
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algorithm, and slightly better than region intensity modeling by histogram. The 

ground truth errors of this method are generally better than those of classical 

RSST except for test image 2. However, elapsed times of the algorithm are very 

high.  

 

 

IMAGE  K Ground 
Truth Error 

Elapsed Time 
(sec) 

Test Image 2 4 0,3394 356,157 

Test Image 3 4 0,0575 435,594 

Test Image 5 3 0,0851 411,766 

Test Image 6 7 0,1018 349,937 

Test Image 7 8 0,4086 401,234 

Table 4.4: Numerical results of RSST algorithm with Region 
Intensity Modeling by texture for test images. 
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Figure 4.35: Segmentation of test 
image 6 with RSST with Region 
Intensity Modeling by texture. 

Figure 4.32: Segmentation of test 
image 2 with RSST with Region 
Intensity Modeling by texture. 

Figure 4.33: Segmentation of test 
image 3 with RSST with Region 
Intensity Modeling by texture. 

Figure 4.34: Segmentation of test 
image 5 with RSST with Region 
Intensity Modeling by texture. 

Figure 4.36: Segmentation of test image 7 with 
RSST with Region Intensity Modeling by texture. 
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4.5 Comparative Analysis 

The proposed methods are applied on five test images. Ground truth error is 

utilized as the performance metric. Ground truth error is bounded between 0 and 1 

with smaller values indicating better segmentation. The comparison of ground 

truth error and elapsed time values of proposed methods are shown in Fig. 4.37 

and 4.38. 

The experimental results show that segmentation performances of RSST with 

region intensity modeling by histogram and by texture are better than 

segmentation performance of classical RSST with region modeling by intensity 

means, especially in textured images. However, region intensity modeling based 

on joint histogram utilized in second proposed method fails to improve the 

segmentation performance. 

The ground truth errors of histogram based and texture based RSST are generally 

better than those of classical RSST. On the other hand, the ground truth errors of 

joint histogram based RSST are worse than classical RSST. 

The elapsed times of classical RSST and histogram based RSST are close to each 

other and are at acceptable levels. The elapsed times of joint histogram based and 

texture based RSST are higher than these two methods; texture based RSST 

having the highest elapsed time values among all. 
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Figure 4.37: Chart showing Ground Truth Errors of proposed 
methods during simulations. 
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Figure 4.38: Chart showing Elapsed Times of proposed 
methods during simulations. 

 72



 

CHAPTER 5 

CONCLUSIONS 

 

This thesis is focused on comparison of fundamental image segmentation 

algorithms. Furthermore, possible improvements to one of the algorithms, the 

RSST algorithm, are also investigated. The conclusions, which are based on 

simulation results, can be summarized as follows: 

The experimental results show that each algorithm has advantageous properties as 

well as some specific drawbacks. None of them gives a complete solution to this 

challenging problem. 

Intensity clustering methods provide low computation times. However, since they 

neglect spatial information of the pixels, the resulting regions are not connected 

and are mostly widely scattered, especially in textured images. Between the two 

clustering algorithms tested, Fuzzy C-Means algorithm [ ] does not provide 

significantly better results than the classical K-Means algorithm [ ]. However, due 

to the fuzziness concept included in the Fuzzy C-Means algorithm, its 

computational load is extremely high compared to K-Means. 
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The region-based methods, Seeded Region-Growing [ ] and RSST [ ] algorithms 

provide satisfactory results with relatively acceptable computation times. 

KMC algorithm [ ] combines clustering and region-based approaches. The 

connected-component labeling algorithm within KMC enables getting connected 

regions and also provides a dynamic determination of number of regions 

regardless of the initial value of K. However, the resulting computational burden it 

brings causes the algorithm to significantly slow down, especially in textured 

regions. 

For improving the region modeling of RSST, three methods are proposed, namely 

region intensity modeling by histogram and joint histogram as well as by texture. 

Among the proposed methods, better segmentation performances are obtained by 

histogram-based and texture-based methods, compared to classical RSST 

algorithm. However, joint histogram utilized in the second proposed method does 

not appear to be a good choice for region modeling of RSST. Among the three 

proposed methods, region intensity modeling by use of texture feature provides 

best segmentation performances on textured test images.  The homogeneous 

texture descriptor, utilized in this method, enables to segment textured areas in the 

images more successfully. However, elapsed times of region intensity modeling 

by histogram are far better compared to elapsed times of region intensity 

modeling by texture. 
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