
DEVELOPMENT OF A COMPUTER PROGRAM FOR OPTIMUM DESIGN OF
DIVERSION WEIRS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

KAM�L HAKAN TURAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CIVIL ENGINEERING

SEPTEMBER 2004

Approval of the Graduate School of Natural and Applied Sciences

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of
Science.

This is to certify that we have read this thesis and that in our opinion it is fully adequate,
in scope and quality, as a thesis for the degree of Master of Science.

Examining Committee Members

Prof. Dr. Do�an Altınbilek (METU,CE)

Prof. Dr. A. Melih Yanmaz (METU,CE)

Prof. Dr. Uygur �endil (METU,CE)

Assoc. Prof. Dr. Nuri Merzi (METU,CE)

Engin Günindi, M.S.C.E. (DOLSAR A.�.)

Prof. Dr. A. Melih Yanmaz
Supervisor

Prof. Dr. Erdal Çokça
Head of Department

Prof. Dr. Canan Özgen
Director

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare that,
as required by these rules and conduct, I have fully cited and referenced all material
and results that are not original to this work.

Name, Last name :

Signature :

 iv

ABSTRACT

DEVELOPMENT OF A COMPUTER PROGRAM FOR OPTIMUM

DESIGN OF DIVERSION WEIRS

Turan, Kamil Hakan
M.Sc., Department of Civil Engineering

Supervisor: Prof. Dr. A. Melih Yanmaz

September 2004, 313 pages

A diversion weir is a headwork facility built across a river to raise the water level and to

divert water for various purposes, such as irrigation, hydropower generation, etc.

Diversion weirs with sidewise intakes are widely used in plain rivers. They are composed

of many structural components which are designed for different purposes. In this thesis, a

Windows-based, visual, user friendly program named WINDWEIR was developed in

Visual Basic.NET programming language for the optimum design of a diversion weir with

sidewise intake. It determines the overall dimensions of each of the components of the

diversion weir and the total cost of the whole structure. It also performs stability analysis.

It is such a flexible computer program that a design engineer can assess various

dimensions of the structure from viewpoints of safety and economy by performing quick

successive test runs to achieve an optimum solution among various alternatives.

Key words: Diversion weir, Sidewise Intake, Computer Aided Design.

 v

ÖZ

REGÜLATÖRLER�N OPT�MUM TASARIMINA YÖNEL�K B�R

B�LG�SAYAR PROGRAMI GEL��T�RME

Turan, Kamil Hakan
Yüksek Lisans, �n�aat Mühendisli�i Bölümü

Tez Danı�manı : Prof. Dr. A. Melih Yanmaz

Eylül 2004, 313 sayfa

Regülatör, sulama, elektrik enerjisi üretimi, vb. amaçlarla akarsu seviyesini kabartarak

akarsudan istenen miktarda suyun alınmasını sa�layan, akarsu üzerine in�aa edilen bir

çevirme yapısıdır. Yandan alı�lı regülatörler ova akarsularında sıkça kullanılmaktadır.

Yandan alı�lı regülatörler, de�i�ik amaçlar için tasarlanan bir çok yapısal parçadan

meydana gelmektedir. Bu tezde, yandan alı�lı bir regülatörün optimum tasarımına yönelik,

Visual Basic.Net programlama dilinde yazılmı� WINDWEIR adlı, Windows i�letim

sistemi altında çalı�an, görsel, kullanımı kolay bir bilgisayar programı geli�tirilmi�tir.

Program, regülatörün her bir parçasının bütün boyutlarını ve tüm yapının toplam

maliyetini belirlemekte ve yapının denge analizini yapmaktadır. Bu bilgisayar programı

ayrıca, hızlı ardı�ık denemelerle bir tasarım mühendisinin de�i�ik seçenekler arasından

optimum çözüme ula�abilmesi için yapının çe�itli boyutlarını güvenlik ve ekonomi

açılarından de�erlendirmesine olanak sa�layacak esnekliktedir.

Key words: Regülatör, Yandan Alı�lı Priz, Bilgisayar Destekli Tasarım.

 vi

ACKNOWLEDGEMENTS

The author wishes to express his deepest gratitude to his supervisor, Prof. Dr. A. Melih

Yanmaz for his guidance, advice, criticism and insight throughout the study. The author

also would like to express his special appreciation to Prof. A. Melih Yanmaz for his great

patience and tolerance over the delays in the study.

The author would like to thank his father, O�uz Turan for his suggestions and comments.

The remaining family members are also gratefully acknowledged for their motivations and

continuous supports.

 vii

TABLE OF CONTENTS

PLAGIARISM.…………………………………………………………..………………..iii

ABSTRACT.………………………………………………………………………………iv

ÖZ.…………………………………………………………………………………………v

ACKNOWLEDGEMENTS.………………………………………………………………vi

TABLE OF CONTENTS.………………………………………………………………...vii

LIST OF TABLES.………………………………………………………………...............x

LIST OF FIGURES.……………………………………………………………………….xi

LIST OF SYMBOLS.……………………………………………………………………xiii

CHAPTER

1. INTRODUCTION…………………………………………………………………1

2. DIVERSION WEIRS……………………………………………………………...3

2.1 Definition of Diversion Weirs…………………………………………...3

2.2 Classification of Diversion Weirs………………………………………..4

2.2.1 Classification According to Magnitude of Flood

Discharge………………………………………………...4

2.2.2 Classification According to Structural Design…….…….4

2.2.3 Classification According to Orientation of Intake……...5

2.3 Determination of the Location and Type of a Diversion Weir…………..9

2.4 Structural Components of Diversion Weirs with Sidewise Intakes……11

2.4.1 Spillway………………………………………………...13

2.4.2 Energy Dissipating Basin (Stilling Basin)……………..13

2.4.3 Sluiceway………………………………………………14

2.4.4 Guiding Wall…………………………………………...14

2.4.5 Sidewalls……………………………………………….15

2.4.6 Upstream Blanket………………………………………16

2.4.7 Riprap Section…………………………………….........16

2.4.8 Fish passage…………………………………………….16

2.4.9 Raft passage…………………………………………….17

2.4.10 Intake…………………………………………………...17

2.4.11 Some Appurtenant Structures…………………………..20

 viii

3. HYDRAULIC DESIGN OF DIVERSION WEIRS……………………………..21

3.1 Hydraulic Design of Diversion Weirs with Sidewise (lateral) Intakes….21

3.1.1 Water Surface Profile Computations…………………...22

3.1.2 Design of Structural Elements………………………….22

3.1.2.1 Design of Intake…………………………...23

3.1.2.2 Determination of Spillway and Sluiceway

Discharges…………………………………36

3.1.2.3 Design of Energy Dissipators……………..39

3.1.2.4 Design of Upstream Levees……………….41

3.1.2.5 Design of Diversion Facility……………....42

3.1.3 Design of Some Appurtenant Facilities………………..46

3.1.3.1 Riprap Design……………………………..46

3.1.3.2 Design of Flushing Pipe…………………...47

3.1.4 Seepage Analysis……………………………………….49

3.1.5 Stability Analysis………………………………………52

3.1.6 Design of the Sidewalls………………………………...53

4. DEVELOPMENT OF THE COMPUTER PROGRAM…………………………54

4.1 The scope of the Computer Program……………………………………54

4.2 Programming Language…………………………………………………54

4.3 Framework of the Program……………………………………………...57

4.3.1 Main Program ………………………………………….58

4.3.1.1 Water Surface Profile Computations……...59

4.3.1.2 Program Module for the Design of Intake...59

4.3.1.3 Program Module for the Determination of

Spillway and Sluiceway Discharges………63

4.3.1.4 Program Module for the Design of Energy

Dissipator………………………………….67

4.3.1.5 Program Module for the Determination of

Crest Elevation of Upstream Levees………70

4.3.1.6 Program Module for the Design of the

Diversion Facility………………………….70

4.3.1.7 Program Module for the Riprap Design…...73

4.3.1.8 Program Module for the Design of Flushing

Pipe..………………………………………73

 ix

4.3.1.9 Program Module for the Seepage

Analysis……………………………………76

4.3.1.10 Program Module for the Stability

Analysis……………………………………77

4.3.1.10.1 Stability against Uplift…...78

4.3.1.10.2 Stability against Shear and

Sliding……………………80

4.3.1.10.3 Stability against

overturning……………….84

4.3.1.10.4 Stability of the Sidewalls

(Design of the

Sidewalls)………………...86

4.3.1.11 Program Module for the Computation of the

Total Cost of the Diversion Weir………….88

4.3.2 Capabilities of the Program…………………………….89

4.3.3 Numerical Methods Utilized in the Program…………..88

4.3.4 Visual Interface of the Program………………………..93

5. APPLICATION………………………………………………………………….94

5.1 Definition of the Problem……………………………………………….94

5.2 Related Information………………………………………………….....94

5.3 Computations and Discussions…………………………………………95

6. CONCLUSIONS AND RECOMMENDATIONS……………………………..101

REFERENCES………………………………………………………………….……….103

APPENDICES

A. USER MANUAL FOR WINDWEIR………………………………………......106

A.1 Main Window of WINDWEIR……………………………………….106

A.2 Menu Items in WINDWEIR………………………………………….107

A.2.1 Menu Items Related to the File Management………..…107

A.2.2 Menu Items Related to the Input Data………………….109

A.2.3 Menu Items Related to the Computation……………….113

A.2.4 Menu Items Related to the Outputs…………………….114

A.2.5 Menu Items Related to the Help………………………..118

 B. SOURCE CODE OF WINDWEIR.…...………………………………….........119

 x

LIST OF TABLES

TABLES

3.1 Headloss coefficients due to transition types………………………………………...26

3.2 Fall velocities for quartz sand………………………………………………………..32

3.3 Values of C to be used in creep analysis……………………………………………..50

5.1 Input data obtained from the result of the water surface profile computations along

 the river site…………………………………………………………………………...93

 xi

LIST OF FIGURES

FIGURES

2.1 Sketch of a diversion weir with spillway……………………………………………...4

2.2 Sketch of a gated diversion weir………………………………………………………5

2.3 Sketch of a diversion weir with sidewise intake………………………………………6

2.4 Sketch of a diversion weir with frontal intake………………………………………...7

2.5 Sketch of a diversion weir with bottom intake………………………………………...8

2.6 Flow at bends………………………………………………………………………...10

2.7 Several orientations of intake………………………………………………………...11

2.8. Plan view of a typical diversion weir with a right sidewise intake…………………..12

2.9 Longitudinal profile of a typical spillway and stilling basin…………………………13

2.10 Longitudinal profile of a typical sluiceway and stilling basin……………………...14

2.11. Plan view and cross-section of sidewalls…………………………………………...16

2.12. Longitudinal profile of an intake……………………………………………………17

2.13 Types of transitions…………………………………………………………………19

3.1 Plan and profile of intake…………………………………………………………….24

3.2 Definition sketch for section-3 and section-8………………………………………..27

3.3 Definition sketch for settling basin design…………………………………………...31

3.4 Front view of the spillway and the sluiceways………………………………………37

3.5 Flow over the spillway and through the sluiceway. …………………………………37
3.6 Definition sketch for upstream levees………………………………………………..42
3.7 Definition sketch for diversion facility. ……………………………………………..44

3.8 Definition sketch for riprap design. ………………………………………………….46

3.9 Definition sketch for the design of flushing pipe. …………………………………...47

3.10 Definition sketch for Lane’s creep analysis.………………………………………..49

4.1 Flowchart illustrating the design of Intake…………………………………………...61

4.2 Flowchart for the determination of the spillway and sluiceway discharges……........63

4.3 Flowchart for the determination of the energy dissipators. ……………………….....68

4.4 Flowchart for the optimum design of diversion facility. …………………………….72

4.5 Definition sketch for the flushing pipe design algorithm. ………………………..….74

4.6 Flowchart for the design of flushing pipe...………………………………………….75

 xii

4.7 Definition sketch for the foundation dimensions of the spillway and stilling basin…77

4.8 Definition sketch for the foundation dimensions of the intake and settling basin.......79

4.9 Definition sketch for the stability of spillway stilling basin against uplift………......81

4.10 Definition sketch for the stability of sluiceway stilling basin against uplift………..81

4.11 Definition sketch for the stability of settling basin against uplift. …………………81

4.12 Definition sketch for the representation of spillway body with a trapezoidal

section……………………………………………………………………………...82

4.13 Definition sketch for stability against shear and sliding……………………………82

4.14 Definition sketch for stability against overturning for full upstream no tailwater

 case with respect to heel.……………………………………………………………85

4.15 Definition sketch for stability against overturning for empty upstream case with

respect to heel………………………………………………………………….......85

4.16 Definition sketch for stability against overturning for empty upstream case with

respect to toe…………………..…………………………………………………...85

4.17 Definition sketch for calculating the base pressures………………………………..86

4.18 Definition sketch for the design of the sidewalls…………………………………...87

4.19 Flowchart of the overall design of the diversion weir………………………………91

4.20 Flowchart representing the optimization of the bottom width at the beginning of

main irrigation canal……………………………………………………………….92

5.1 Cost versus main irrigation canal width for various thicknesses of stilling basin..….97

5.2 Cost versus main irrigation canal width for various length of upstream blanket……98

5.3 Cost versus main irrigation canal width for various heights of sheet piling…………99

A.1 Main window of WINDWEIR……………………………………………...……....106

A.2 Menu items related to the file management…………………………………….…..107

A.3 Window for selecting the project type……………………………………………...108

A.4 Menu items related to the input data………………………………………………..109

A.5 Input data window for intake profile………………………………………………..110

A.6 Input data window for spillway and sluiceway cross section………………………111

A.7 Window for the selection of the computation type…………………………………113

A.8 Window related to the computation processes….…………………………………..114

A.9 Menu items related to the outputs…………………………………………………..114

A.10 A typical output window displaying printout options……………………………..115

A.11 A typical output window for the selection of an available tabular output………...116

A.12 A typical output window for the selection of an available graphical output………117

A.13 A typical window displaying an available graphical output………………………117

 xiii

LIST OF SYMBOLS

A : cross-sectional area of flow;

Abs : base area of the spillway;

Ag : gross area at the beginning of intake;

An : net area through the rack bars;

Ash: area of the shear plane;

B : bottom width at the beginning of main irrigation canal;

B1 : bottom width at the end of intake;

B3n : the net width of the channel at the entrance of the main canal;

Bs : width of the settling basin;

Bsn : net width at the entrance of the intake;

Bsw : width of the base slab of the sidewall;

b : bottom width of the diversion canal;

bop : optimum bottom width of the diversion canal;

C : relative permeability of soil;

C0 : design discharge coefficient for vertical faced ogee crest;

CT : total cost of the diversion facility;

Cc : minor loss due to curvature;

Cch : cost of diversion canal;

Ccore : unit cost of embankment core construction;

Cdc : cost of downstream cofferdam;

Ce : unit cost of excavation;

Cex : unit cost of expropriation;

Cinc : design discharge coefficient with sloping upstream face;

Cl : unit cost of canal lining;

Cma : design discharge coefficient due to apron effect;

Cme : design discharge coefficient for varying heads;

Cms : the design discharge coefficient due to submergence effect;

Com : overall modified discharge coefficient due to USBR method;

Cper : unit cost of embankment pervious fill construction;

Ct : headloss coefficient due to transition;

Cuc : cost of upstream cofferdam;

 xiv

C' : the orifice discharge coefficient through the sluiceways;

D : median size of a particle;

Df : maximum diameter of objects entering the rackbars;

Dm : maximum possible size of material to be settled in the settling basin;

Dp : diameter of the flushing pipe;

Dr: diameter of the riprap;

d : depth of sluiceways;

dgwt : distance from the soil surface to the ground water table;

E3s : energy level at the riprap section at the downstream of the spillway;

E3sl : energy level at the riprap section at the downstream of the sluiceways;

El1 : Bed elevation where the pipe connects to river;

El2 : bed elevation at the end of the settling basin;

Eu : upstream energy level;

e : eccentricity;

FSo : factor of safety against overturning;

FSs : factor of safety against sliding;

FSss : factor of safety against shear and sliding;

FSu : factor of safety against uplift;

Fd : earthquake force;

Fh : hydrostatic force;

Fr : Froude number;

Fs : lateral active earth pressure;

Fu : uplift force;

Fuh : hydrostatic force acting on the subsurface portion of the spillway due to seepage;

Fw : upstream dynamic force due to earthquake;

f : freeboard;

fcf : friction coefficient between concrete and foundation;

fp : Darcy-Weisbach friction coefficient for the flushing pipe;

f*: elevation difference between the water surface elevation and the crest elevation of the

levee;

G : crest width of the cofferdam;

g : gravitational acceleration;

H : water depth above the crest of the spillway;

H0 : total head above the crest of the spillway;

Hd : horizontal inclination of outer layers of downstream cofferdam;

 xv

He: existing total head over the spillway other than the design total head;

Hnet : net total head between the upstream of the spillway and the riprap section;

Hsp: height of sheet piling;

Hu : horizontal inclination of outer layers of upstream cofferdam;

Hx : the elevation at point x relative to a datum;

h : water depth at the upstream of the spillway;

ha : velocity head above the crest of the spillway;

hd: elevation difference between the upstream energy grade line and the downstream

(riprap section) water level;

hr_min : minimum riprap thickness to be laid;

I : moment of inertia of the spillway base;

K : an orifice coefficient;

K1 : bed elevation at the beginning of the main irrigation canal;

K100 : upstream water surface elevation for the flood discharge, Q100;

K50 : upstream water surface elevation for the flood discharge, Q50;

K25 : upstream water surface elevation for the flood discharge, Q25;

K10 : upstream water surface elevation for the flood discharge, Q10;

K5 : upstream water surface elevation for the flood discharge, Q5;

Ka :active earth pressure coefficient;

Kab : contraction coefficient due to abutments;

Kb : water surface elevation at section-b of diversion canal;

Kbs : foundation elevation of the stilling basin;

Kc : water surface elevation over the step at the end of the diversion canal;

Kd : water surface elevation at the riprap section;

Kd100 : water surface elevation at the riprap section for the flood discharge, Q100;

Kd50 : water surface elevation at the riprap section for the flood discharge, Q50;

Kd25 : water surface elevation at the riprap section for the flood discharge, Q25;

Kd10 : water surface elevation at the riprap section for the flood discharge, Q10;

Kd5 : water surface elevation at the riprap section for the flood discharge, Q5;

Kp : contraction coefficient due to piers;

Kr : bottom elevation at the riprap section;

Ks : crest elevation of the spillway;

Ksl : crest elevation of the sluicegates;

Kst : thalweg elevation at the entrance of the intake (spillway axis);

Ksw : crest elevation of the sidewalls;

 xvi

Kta : minimum river bed elevation at section-a of the diversion canal;

Ktb : minimum river bed elevation at section-b of the diversion canal;

Ku : upstream water surface elevation;

Kus : bottom elevation of the stilling basin

Kv : Von Karman constant;

Kw: water surface elevation at a cross-section;

Kwi : water surface elevation in front of the intake;

kh : horizontal seismic earthquake coefficient;

ks : the equivalent sand roughness;

kv : vertical seismic earthquake coefficient;

L : crest length of the spillway;

Lc : length of curvature at the intake;

Lcr : creep length;

Ld : length of the riprap section;

Ldc : length of diversion canal;

Ld_min : minimum riprap length;

Le: width of sluiceway;

Lp : length of flushing pipe;

Ls : length of the settling basin;

Lub : length of upstream blanket;

Lx : the creep length up to point x;

LT : length of the valley at the crest elevation of the spillway;

Lt : length of transition;

M : the net moment about the centerline of the base of the spillway body;

nconc : Manning’s roughness coefficient for the concrete lined canal;

np : the number of bridge piers at the entrance of main irrigation canal;

npi : the number of bridge piers at the entrance of intake;

npipe : Manning’s roughness coefficient for the flushing pipe;

nps : the number of bridge piers above the spillway;

nriver : Manning’s roughness coefficient for the river;

nrow : number of the rows that the stones should be laid over;

nsl : number of sluiceways;

P : height of the spillway;

pa : lateral active earth pressure;

Q : discharge;

 xvii

Q100 : flood discharge having a return period of 100 years;

Q50 : flood discharge having a return period of 50 years;

Q25 : flood discharge having a return period of 25 years;

Q10 : flood discharge having a return period of 10 years;

Q5 : flood discharge having a return period of 5 years;

Qi : irrigation discharge;

Qs : discharge over the spillway;

Qsl : discharge through the sluiceways;

R : hydraulic radius;

Rc : radius of curvature;

r : is the sediment removal ratio;

So: mean river bed slope;

Sos : bed slope of settling basin;

Sodc : mean slope of the diversion canal;

fsS : average friction slope;

tp : the thickness of one pier at the entrance of main irrigation canal;

tpi : the thickness of one pier at the entrance of the intake;

tps: thickness of one pier over the spillway;

tsb : thickness of stilling basin;

tsl : thickness of one pier between the sluiceways;

tslab : base slab thickness of the sidewall;

tsw : thickness of the sidewall;

u : average flow velocity at a cross-section;

u5max : maximum allowable flow velocity at the end of settling basin;

us : average flow velocity in the settling basin;

ux : the uplift pressure head;

u* : shear velocity;

u*c : critical shear velocity which initiates sediment motion at the bed;

Vu : vertical inclination of outer layers of downstream cofferdam;

Vd : vertical inclination of outer layers of upstream cofferdam;

Vsb1 : volume of USBR type 1 stilling basin;

Vsb2 : volume of USBR type 2 stilling basin;

Vsb3 : volume of USBR type 3 stilling basin;

Vsb4 : volume of USBR type 4 stilling basin;

W : dead loads;

 xviii

Wf : fall velocity of a particle;

w : height of the downstream cofferdam;

wr : river width;

y : water depth at a cross-section;

y2,max : maximum value of the sequent depths of hydraulic jumps;

ycs : critical water depth at the toe of the spillway;

ycsl : critical water depth at the toe of the sluiceways;

yi : water depth in front of the entrance of the intake;

yo : normal water depth;

ys : depth of flow in the settling basin ;

z : height of upstream cofferdam;

zh : horizontal inclination of the trapezoidal canal;

� : step height at the end of diversion canal;

�s : end sill height of the spillway’s stilling basin;

�sd : downward step at the entrance of the settling basin;

�sl : end sill height of the sluiceways stilling basin;

�su : height of the upward sill at the end of the settling basin;

�u : upward sill at the beginning of the intake;

�E3s : headloss due to the hydraulic jump at the spillway downstream;

�E3sl : headloss due to the hydraulic jump at the sluiceways downstream;

�He : the minor loss above an upward sill;

�Hei : the minor loss above at the submerged curtain wall located at the entrance of the

intake;

�Hes : the minor loss above the downward sill, �sd ;

�Hg1 : minor loss due to gates;

�Hi : minor loss above the upward sill, �u ;

�Hs : frictional headloss through the settling basin;

�Ht : minor loss through the transition;

�Htr : minor loss at the thrashracks;

ΣH : total net horizontal force acting on the overall structure;

ΣLucre : the total creep length;

ΣLh : the total creep length in the horizontal direction.

ΣLv : the total creep length in the vertical direction;

ΣMo : total overturning moments;

ΣMr : total resisting moments;

 xix

ΣV : total net vertical force acting on the overall structure;

Σ�x : the length of the river along which water rise occurs;

φ : uplift reduction coefficient;

� : angle from the upstream face of the spillway to the vertical direction;

� : dimensionless velocity;

�conc : specific weight of concrete;

�w : specific weight of the water;

	 : angle of repose of the soil;

 : a parameter as a function of dimensionless velocity, β;

ρ : density of water;

�ac : allowable compressive strength of concrete;

�af : allowable compressive strength of foundation;

� : base pressure;

τo : shear stress through the pipe;

τoc : critical shear stress which initiates sediment motion at the bed;

τs : allowable shear stress in concrete.

 1

CHAPTER 1

INTRODUCTION

Diversion weirs are one of the significant structures of water resources systems since their

design and construction require comprehensive and detailed work in terms of several civil

engineering aspects. Although the governing part of their design is related to hydraulic

engineering, other civil engineering divisions, such as structural engineering, geotechnical

engineering, and environmental engineering are also incorporated in the design process.

Another difficulty in the design of a diversion weir is due to the fact that it has many

structural components which are considered for different and special purposes. Each of

these components are interrelated to each other in terms of the data used in their design.

Therefore, this situation entails an organization of the data throughout the method of

design.

Hydraulic design of a diversion weir consists of many open-channel hydraulics concepts

to be implemented. However, this causes a wide range of hydraulic theory to be applied in

order to design all the structural components. In addition to this difficulty, diversion weir

design also depends on many number of variables which affect the design in different

ways resulting in various alternatives. This is the typical characteristic of a water

resources engineering problem that forces the designer to choose the best design through

iterative type of computational procedure. However, an iterative approach requires great

amount of computational work to be performed which is very difficult without the

utilization of computer programs. For those reasons, computer softwares play an

important role in the design of hydraulic structures, such as diversion weirs. Especially,

with the improvement in the computer sciences, better designs are done by using

sophisticated computer packages.

There are many computer programs that deal with different aspects of hydraulics and

other engineering disciplines. However, most of these programs are developed for general

purposes to attract greater number of customers due to economical considerations by the

 2

developers of the packages. In this manner, a diversion weir design needs different

computer programs in order to perform the calculations corresponding to each of its

design problem. Although this is possible by using different packages in cooperation, by

this way, the efficiency of the designer decreases in terms of the time he spends for the

computations. This cumbersome process between one program to other also increases the

risk of making mistakes.

Among the different types, diversion weirs with sidewise intakes are widely used in

Turkey in plain rivers to divert water for irrigation purposes. By considering this fact, two

computer programs have been developed to fulfill the requirement of a computer aided

design for the diversion weirs with sidewise intakes ((Yanmaz and Cihangir, 1996),

(Yanmaz and Özaydın, 2000)). However, these programs were written for DOS operating

system which does not give a design engineer enough flexibility throughout the design of

a diversion weir. The aim of the current study is to develop a specialized software in

order to deal with the overall design of diversion weirs in context of hydraulic aspects by

extending the capabilities of these existing computer programs. More specifically, the

present study aimed to satisfy the needs by combining the hydraulic computations of the

components of the diversion weirs in a single computer program. A computer program

named WINDWEIR has been developed for this purpose. The program has a very flexible

visual interface working on the Windows operating system, which enhances the efficiency

of the user, resulting in better designs. In this study, it is intended to form a computer-

aided basis for an integrated design by assembling all the required aspects in a single

computer package.

This study is composed of the following chapters: Chapter 1 presents the general

information about the objective of the study. In Chapter 2, the detailed information about

the diversion weirs are introduced in parallel with the definitions of the corresponding

theories of hydraulics which establish a foundation for the design of the diversion weirs.

Hydraulic design of diversion weirs in a procedural way is explained in Chapter 3 which

constitutes the core of this study. In Chapter 4, the implementations of the algorithms

presented in Chapter 3 by WINDWEIR are clarified. An application of the program is

given in Chapter 5. Finally, the conclusions and the recommendations regarding this study

are presented in Chapter 6. Appendix A presents a user’s manual for WINDWEIR

whereas the source code of the program is given in Appendix B.

 3

CHAPTER 2

DIVERSION WEIRS

2.1 Definition of Diversion Weirs

A diversion weir is a structure built across a river to raise water elevation up to a

specified level and to divert the water in a specified orientation for different purposes,

such as irrigation, hydropower generation, flood control, etc. There are some important

criteria that should always be satisfied in the design of diversion weirs irrespective of

type. These criteria are listed below (Yanmaz, 2001):

1. The desired amount of water should be diverted for most of the time.

2. The sediment grains in water should not be allowed to enter the water

intake. However, no matter how perfect the design is, some sediment will

always exist in the diverted water. Therefore, an ideal design should aim

at limiting the amount of entrainment of especially coarse sediment into

the intake.

3. Headlosses in the intake should be minimized in order to have a low

spillway.

4. Accumulated objects in front of the intake should be easily flushed

downstream.

5. The flow velocity should be controlled in order to protect the river bed

from the erosion and to protect the related structures from scouring.

6. Water level fluctuations in front of the intake should be decreased.

As it is seen from the above criteria, one of the most important aspects, that should be

considered in the design is the prevention of entrainment of sediment into intakes.

Especially in rivers carrying large sediment loads, this is an important problem that should

be solved.

 4

2.2 Classification of Diversion Weirs

Diversion weirs can be classified according to various criteria (Yanmaz, 2001). These

classifications are presented in the following subsections.

2.2.1 Classification According to the Magnitude of Flood Discharge

In Turkey, diversion weirs are designed to withstand a flood discharge having a return

period of 100 years, Q100. Therefore, diversion weirs can be classified according to the

magnitude of Q100 as follows:

i. Small diversion weir (Q100 < 100 m3/s)

ii. Medium diversion weir (100 � Q100 � 500 m3/s)

iii. Large diversion weir (Q100 > 500 m3/s)

2.2.2 Classification According to Structural Design

i. Diversion weir with spillway : Raising of the water elevation is provided by

constructing a spillway across the river (see Figure 2.1). This study

concentrates basically on this type of diversion since most of the diversion

weirs in Turkey are designed for this type.

Figure 2.1. Sketch of a diversion weir with spillway.

 Spillway (Body)

Raised water level a

a

Raised water level

 Cross-section a-a
 initial soil profile (valley) Sluiceway

 5

ii. Gated diversion weir : Raising of the water surface elevation is provided by

lowering the gates between the piers constructed across the river as shown in

Figure 2.2. This type of diversion weirs are capable of controlling the

upstream water level in the case of discharge fluctuations. Also by the use of

gates, flushing of the accumulated sediment in the upstream part of the

structure is easier. However, continuous operation of gates under high

dynamic impact may cause some operational problems, which can be seen as

a disadvantage of a gated diversion weir. Çulcu (2000) and Arslan (1996) can

be referred for a detailed survey on gated diversion weirs.

Figure 2.2. Sketch of a gated diversion weir.

iii. Mixed type of diversion weirs : This type of diversion weir is composed of

the combination of spillway and gated weir.

2.2.3 Classification According to Orientation of Intake

i. Diversion weir with sidewise (lateral) intake : This type of intake is the most

commonly used type among the others. This is generally suitable for plain

rivers where the sediment concentration in the vertical direction is close to

 Bridge piers initial soil
profile
(valley)

 Bridge slab

 Gates

a

a
Raised water level

 Cross-section a-a

Water flow

 Footing

 6

uniform (see Figure 2.3). The present study is based on the computer assisted

hydraulic design of this type.

Figure 2.3. Sketch of a diversion weir with sidewise intake.

ii. Diversion weir with frontal intake : In this type of diversion weirs, the intake

structure is placed on top of the sluiceway to divert water with low sediment

concentration. A definition sketch shown in Figure 2.4 in which Q is the total

river flow and Qi is the diverted flow. With greater dimension of the

sluiceway better flow conditions can be facilitated. Normally, some sediment

is deposited in front of the sluiceway, but this sediment can easily be flushed

by water with the regular operation of sluice gates and by choosing a proper

bottom slope for the sluiceway, i.e. a recommended bottom slope is about

2.5% ((�endil, 1962), (Garbrecht, 1963), (Yanmaz, 2001)). Since proper

sediment handling can be established by frontal intakes, this type of structure

is best suited to steep sloped rivers where sediment handling is a more

important problem that should be solved.

 Spillway and
Energy dissipator

River
flow

River
flow

Diverted flow

Sidewise (lateral) Intake

a a

b

b

 Cross-section a-a Cross-section b-b

 7

Figure 2.4. Sketch of a diversion weir with frontal intake.

iii. Diversion weir with drop (bottom) intake : This type of intakes divert the

water from the crest of a spillway which is composed of screens as shown in

Figure 2.5. Water is taken into a drop structure while it is flowing over the

crest. This structure is best suited for very steep sloped mountainous rivers

where sediment deposition is a very important problem to handle. With a

sidewise intake, this problem is very difficult and uneconomic to overcome

since a large settling basin is required under such conditions. In addition,

 Top view

Screens

 Frontal
intake

Screens

 Sluiceway

 Front view

Spillway
(Body)

Diverted flow

Q

Qi Q - Qi

River flow

 Sluicegate

a

a

 Cross-section a-a

River bed

Screens

Qi

to intake
(diverted flow)

to river

 Sluicegate
(sediment flushing)

 initial soil profile (valley)

 Spillway (Body)

Raised water level

 8

some other structural components may be needed to handle the sediment

problem. Therefore, if the bed slope of the river is greater than 5%, a drop

type of intake is recommended. However, still some important precautions are

needed in order to overcome the sediment which falls into the drop. For a

more detailed information about diversion weirs with drop intake, Çeçen

(1962) is to be referred.

Figure 2.5. Sketch of a diversion weir with bottom intake.

Q

Diverted flow Qi

Q - Qi

Screens

Isometric view

Side view

Drop intake

canal

Q - Qi

Q

Qi

Screens

Bottom
intake

water level

River flow

 9

2.3 Determination of the Location and Type of a Diversion Weir

Purpose of the diversion weir, topography, soil conditions, orientation of the intake,

sediment transportation and river morphology plays important role in determination of the

location and the type of a diversion weir. For example, if a diversion weir is planned for

irrigation purposes, generally the location is determined according to the location and the

topography of the irrigation area. In a similar way, if a diversion weir is to be constructed

to form a by-pass channel to protect an important hydraulic structure from excessive flow,

then the river location where the structure is to be built is of importance.

 Generally, in designing a diversion weir, the structure is desired to be built on a narrow

section of the river in order to minimize the size and the cost of the structure. However, if

upstream water level rises too much then big uplift forces due to excessive seepage

increases the size of the structure which leads to higher construction, maintenance, and

operation costs. Therefore, in general, for narrow valleys gated diversion weirs are

recommended, while in wide valleys diversion weirs with spillway should be desired.

Although above recommendations are important, in general, a final decision of the

diversion weir type should be obtained after making some economical and hydraulic

analyses iteratively.

In the design of diversion weirs, which are planned especially for irrigation purposes, one

of the most important issue that should be considered is sediment transportation. For

irrigation purposes, the main aim is to divert clean water from the river. Construction of

the structure effects the flow conditions of the river which causes changes in the river

morphology, such as erosion, deposition etc. By considering these effects, it can be

concluded that gated diversion weirs are more suitable in rivers carrying large amounts of

sediment loads, so that sediment can be transported by the proper operation of the gates.

Another important issue is the flow conditions at bends. In Figure 2.6 flow conditions in a

river bend are shown. Bends cause secondary flows which in turn cause sediment

deposition in the inner edge of the bend while erosion takes place in the outer edge due to

the effects of centrifugal force. The effect of secondary current is strongest at about two

times the river width downstream from the point where the river width downstream from

the point where the river axis intersects the outer bank. Therefore, it would be more

 10

favorable to construct the water intake structure at this location (see Figure 2.6). This

advantage of the bends should also be considered in determination of the diversion weir

location. Furthermore, it may be a good decision to generate an artificial bend in the lack

of a natural bend in order to access this advantage of bends. For a more detailed study

regarding the hydraulics of flow at the bends, studies of Çulcu (2000) and Özbek (1989)

are also to be examined.

Figure 2.6. Flow at bends (Yanmaz, 2001).

Regarding the secondary flows at the bends, Habermaas (1955) has performed some

model studies under constant channel bed slope and resulted in the solution that the effect

of secondary flows can be diminished by the existence of an enlarged flow section in the

upstream of the intake. Figure 2.7 shows the several orientations of intake regarding the

sediment control facilities as the results of Habermaas’s studies.

In the light of the above discussions it can be stated that there exist many alternatives in

the design of diversion weirs. Most of the time, the best solution is found as a result of

iterative studies. Therefore, all the criteria on the determination of location and type of

diversion weirs are to be examined in a detailed manner and the most reasonable solution

is achieved by making joint hydraulic, structural, and economical analyses.

a

Rc

a
SURFACE FLOW

SUBSURFACE FLOW

DEPOSITION

SCOUR

Plan

Cross-section a-a

INNER
EDGE

wr

2wr

Diversion

OUTER
EDGE

 11

Figure 2.7. Several orientations of intake (Habermaas, 1955).

2.4 Structural Components of Diversion Weirs with Sidewise Intakes

The general layout of a diversion weir with a sidewise intake is shown in Figure 2.8.

Structural components are described in the following subsections.

a

b

c

d

% 100 G

% 0

% 100 G

E 300

480

K

E % 50 G

% 100 G

480

K

E % 95 G

% 100 G

% 100 G

600 % 100 G

% 0 G

 % 0 G

% 100 G
600

% 100 G

e

G = SEDIMENT LOAD
E = MAIN CANAL
K= INTAKE CANAL

 % 5 G

%50 G

K

E

E

K

K

 12

Fi
gu

re
 2

.8
. P

la
n

vi
ew

 o
f a

 ty
pi

ca
l d

iv
er

si
on

 w
ei

r w
ith

 a
 ri

gh
t s

id
ew

is
e

in
ta

ke
.

 13

2.4.1 Spillway

Spillway is the main structural component of a diversion weir. The most important

function of the diversion weir is fulfilled by the spillway by raising the upstream water

level. In this way, water is diverted to the intake structure at a specified elevation.

Sometimes in addition to the spillway body, a bridge is constructed over the spillway for

service facilities. In Figure 2.9 longitudinal profile of a typical spillway can be seen.

2.4.2 Energy Dissipating Basin (Stilling Basin)

Stilling basin is the structure which is built at the toe of the spillway to prevent the

scouring of river bed. It is made of concrete blocks of compressive strength 250 kgf/cm2

placed in 5 m lengths approximately. The thickness of these blocks are determined

according to the safety of the slab against uplift. Longitudinal profile of a typical stilling

basin is also shown in Figure 2.9.

Figure 2.9. Longitudinal profile of a typical spillway and stilling basin.

Upstream
sidewall

Sheet piling
Riprap

Downstream
sidewall

Drain Filter Stilling basin

Cutoff

upstream
blanket

Spillway

Construction
joints

Sill

 14

2.4.3 Sluiceway

It is an important structural component of a diversion weir, which flushes the sediment

accumulated in front of the intake. Sluiceways have vertical lift gates called as sluicegates.

In front of the sluicegates, usually a submerged curtain is constructed. Deposited

sediment is flushed downstream to the river through the sluiceway. When sediment is

deposited up to a certain level, sluicegates are opened and deposited sediment is

discharged to the river by the help of the high flow velocities occurred through

sluicegates. Sluiceways are designed to have a bottom slope of about 1/20 to 1/50 in order

to facilitate flushing of the sediment to river (see Figure 2.10 for the longitudinal profile of

a typical sluiceway and stilling basin).

Figure 2.10. Longitudinal profile of a typical sluiceway and stilling basin.

2.4.4 Guiding Wall

In order to help sediment handling, a guiding wall is placed between the spillway and

sluiceway to deflect the sediment towards the sluiceway. This wall is called guiding wall.

Its orientation is an important issue and can be determined through hydraulic model

Riprap

Upstream
sidewall

downstream
sidewall

Stilling basin

Cutoff

upstream
blanket

Sheet piling Construction joints

Sill

Submerged
curtain

Bridge

Guiding
wall

Gate

 15

studies. According to the studies made by Özbek (1989), the following results were

obtained.

• Guiding wall length is an important factor in the design of diversion weirs

with sidewise intakes. It is seen that for the same amount of sediment

deposition, when small amount of water is discharged to the intake,

shorter guiding wall is needed, whereas longer guiding wall is necessary

when large amount of water is to be discharged to the intake. As a result it

is stated that; a guiding wall should be constructed in such a length that it

should cover the entrance of the water intake.

• Angle between the flow direction and the guiding wall should be about

150 ~ 200 .

• For a better sediment handling, flow through the sluiceway should not be

in submerged conditions.

• In order to achieve a well sediment flushing, higher and longer guiding

walls should be preferred. Although high and long guiding wall increases

minor headlosses, it gives better results from sediment handling point of

view.

• Sluicegates should be closed for a better deflection of sediment to the

front of the sluiceway.

2.4.5 Sidewalls

Sidewalls are the retaining walls which confine the river flow. Both gravity and cantilever

type reinforced concrete retaining walls can be used for sidewalls. Usually, cantilever type

is more preferable due to economical reasons. Plan view and cross-section of typical

sidewalls are shown below in Figure 2.11.

 16

Figure 2.11. Plan view and cross-section of sidewalls (Yanmaz, 2001).

2.4.6 Upstream Blanket

They are formed of concrete blocks of 4*4 m2 in dimensions. An approximate thickness

of 30 cm is used as the thickness of these blocks. The main reason of the construction of

these blocks is to retard the seepage path. Also a sheet pile is driven at the end of the

upstream blanket to further increase the seepage path. By the construction of sheet pile

and upstream blanket, uplift forces decrease such that the desired level of safety against

uplift is achieved. In Figures 2.8, 2.9 and 2.10, upstream blanket and sheet pile are shown.

2.4.7 Riprap Section

At the end of the stilling basin, large ripraps are laid at least 75 cm thick and 10 m long in

order to protect the river bed.

2.4.8 Fish passage

A fish passage is the component which consists of successive pools to facilitate the

passage of fish from one side to other side of the structure. This structure has secondary

RIVER BOTTOM

 RIVER FLOW

a a

Plan View Cross-section a-a

1:n

FILL

1:n
FILL

SIDEWALLS

 17

importance in the design of diversion weirs, because it is required to be built at sites where

fishing is of economic importance.

2.4.9 Raft passage

Similar to the fish passage, a raft passage is constructed for log transportation. It is

important at sites where log transportation is important as in the case of Scandinavian

countries.

2.4.10 Intake

Intake is an important structural component of a diversion weir because the water is taken

from the river through this component. The required discharge taken from the river is

transmitted to the main channel. The amount of discharge taken is controlled by the proper

opening of the gates installed at the entrance of the intake. There are some structural

components that compose the intake structure. Figure 2.12 shows the longitudinal profile

of a typical intake and its components. These components are described below.

Figure 2.12. Longitudinal profile of an intake.

Gate

Bridge Submerged
curtain

Filter

upstream
blanket

Sheet
piling

Drain
pipe

Settling basin

Sill Transition

Flushing gate

 18

• Submerged Curtain : It is built within the flow section of water

perpendicular to the flow direction and placed in front of the gates in

order to prevent some floating objects, such as ice, logs, etc., to enter into

the intake. A minimum of 50~60 cm depth from the top of the intake is

recommended for the height of a submerged curtain.

• Screens : They are the racks placed in front of the gates to prevent the

entrainment of floating objects and coarse sediment into the intake.

• Settling basin : It is the enlarged compartment of intake serving for further

sediment handling purposes. The fine particles of sediment entering into

intake are captured at the settling basin. Length of the settling basin is the

main variable in capturing the sediment. Required length is calculated due

to the settlement of sediment grains up to a specified size. Although a

settling basin is usually a single large compartment with a rectangular

cross-section, some settling basins may be composed of successive small

compartments neighboring to each-other.

• Flushing pipe : The settled sediments deposited at the end of the settling

basin should also be discharged to the river. Therefore, a flushing pipe is

constructed at the end of settling basin which joins the river to flush the

deposited sediment to the river. Flushing pipe is designed to operate in

pressurized flow conditions. Therefore, when the required amount of

sediment is deposited at the settling basin, the gates in front of the main

canal is closed in order to achieve pressurized flow conditions in the

flushing pipe. Therefore, irrigation is stopped while the flushing pipe is in

operation. However, in the case of settling basin having some

compartments in series, some of the gates of the main canal are kept open

to continue irrigation. A flushing pipe is a circular conduit whose

diameter and slope are determined in order to achieve self-cleansing. A

minimum diameter of 60 cm is recommended for the conduit (Yanmaz,

2001).

 19

• Transition : It is the structural part of the intake that connects the

rectangular settling basin to trapezoidal main irrigation canal. Bends are

used in order to change the flow direction. There are different types of

transitions, which can be seen in Figure 2.13. Straight Transition is widely

used because of ease of its construction. However, higher headlosses

occur through the straight transition. A Streamlined Transition is the best

one because of its geometry that minimizes the headlosses, but its

construction is difficult. In character, a Broken-Back type of transition is

between straight transition and streamlined transition such that the

headloss generated is smaller than a straight transition, but higher than a

streamlined transition and its construction is more difficult than the

straight transition but easier than the streamlined transition. The suitable

type is chosen by concerning both constructional difficulties and

hydraulics.

Figure 2.13. Types of transitions (Sungur, 1988).

Straight transition Broken-back transition

Streamlined transition

 20

At the entrance of the intake, an upward sill with a minimum height of 60 cm above the

bottom of sluiceway is constructed such that the entrainment of the bed load into the

intake is avoided. However, water striking to the sill may generate secondary flows

causing some of the sediments to enter into the intake. Because of this possibility,

sluiceway should be operated with care concerning this problem.

2.4.11 Some Appurtenant Structures

The construction of a diversion weir is similar to the construction of a small dam in

various aspects. Therefore, in addition to the structural components of a diversion weir,

some appurtenant structures are needed. These appurtenant structures are described below.

• Levees : They prevent the flooding of the environment because of the

raised water at the upstream of the diversion weir.

• Cofferdams : A dry construction zone is provided by the construction of

cofferdams in the upstream and downstream part of the construction zone.

At the end of the construction period of the diversion weir, the cofferdams

are demolished and river starts to flow in its original bed by passing

through the diversion weir.

• Diversion Facility : River flow is diverted by a diversion canal usually

having a capacity of flow with return periods of 5 or 10 years.

 21

CHAPTER 3

HYDRAULIC DESIGN OF DIVERSION WEIRS

3.1 Hydraulic Design of Diversion Weirs with Sidewise (lateral) Intakes

Design of a diversion weir is a complicated and tedious work, because all of the structural

components of the diversion weir are designed separately but in cooperation such that

design results of any component are inputs for the next component. Therefore,

computations regarding all of these components should be carried out in a systematical

procedure. The sequence of design computations are as follows:

• Water Surface Profile Computations

• Design of Structural Elements

o Intake

o Spillway

o Sluiceways

o Energy Dissipator

o Sidewalls

o Levees

o Diversion Facility

� Diversion Canal

� Cofferdams

• Design of some appurtenant facilities

o Riprap Design

o Flushing Canal

• Seepage Analysis

• Stability Analysis

 22

3.1.1 Water Surface Profile Computations

After the planning stage in which the location of the diversion weir is selected, the first

step in the hydraulic design is water surface profile computations which are made along

the river reach where the spillway and corresponding energy dissipator are constructed.

This is a very important process, because the computations related to the structural

components of the diversion weir depend mostly on the water surface elevations. Since

the flow in a plain river is usually in sub-critical regime, the computational direction is

from the downstream toward the upstream. Therefore, the downstream rating curve needs

to be constructed in order to be used as a boundary condition for the hydraulic design.

For determining the downstream rating curve, firstly a flood frequency analysis for the

annual series of the maximum discharges should be made to calculate the flood discharge

values for various return periods. Downstream rating curve is plotted for the discharges

for the return periods of 5, 10, 25, 50, and 100 years. Therefore, the values of Q100, Q50,

Q25, Q10, and Q5 are needed for hydraulic analysis and design computations. Although a

diversion weir is designed for Q100, it should also serve with a good hydraulic performance

under smaller discharges, such as Q50, Q25, Q10, and Q5. Once these discharges are

obtained, the water surface profile computations can be carried out using HEC-RAS

(USACE, 1998) and BHSA (Yanmaz and Bulut, 2001) program packages, which will not

be covered in this thesis.

3.1.2 Design of Structural Elements

After water surface profile computations are made, the next step in the design of a

diversion weir is the determination of the dimensions of the structural components by

considering hydraulic criteria. Each sequential component is dimensioned by making

necessary hydraulic computations in a systematical order. In this section, hydraulic design

of each component is explained.

 23

3.1.2.1 Design of Intake

Design of structural elements starts with the design of intake. The main aim in the design

of intake is to find the crest elevation of the overflow spillway. Starting from a known

water elevation at the beginning of the main irrigation canal, all the headlosses through the

intake are computed to find the corresponding water level at the entrance of the intake.

This is the minimum water elevation which must occur at the entrance of the intake in

order to provide the specified water level at the beginning of the irrigation canal for the

required irrigation discharge. This elevation is incremented by approximately 10 cm

accounting for water level fluctuations in front of the intake and further frictional losses

through the intake. The resulting elevation is taken as the crest elevation of the overflow

spillway. In this section, the headlosses through the intake are examined to explain the

design of intake starting from the irrigation canal to the entrance of the intake where crest

elevation of spillway is determined. Figure 3.1 shows the plan view and profile of intake

indicating the headlosses that should be considered. All the following computations are

explained with reference to Figure 3.1.

The required discharge taken to the intake is controlled by the proper operation of the

gates. Although Parshall flumes can be used for discharge measurement purposes, they are

not recommended for the reason that they cause considerable headloss in the intake.

Instead of using Parshall flumes, appropriate use of gates at the entrance can enable the

measurement of discharge.

Since the flow in the intake is in sub-critical regime, the boundary condition to be used in

headloss computations is the water level at the beginning of the main irrigation canal

which is section-1 in Figure 3.1. Therefore, calculations through the intake is performed

from the downstream (section-1) to the upstream (section-9) by using the energy equation.

Hydraulic computations are carried out to find water surface elevations at each section of

the intake by taking into account the related headlosses as follows:

• Cross-section-1: The bed elevation, K1, at the beginning of the main irrigation canal

is an input variable, which is obtained as a result of application of the layout of the

irrigation project on a physical map. The main irrigation canal has a trapezoidal

 24

Fi
gu

re
 3

.1
. P

la
n

an
d

pr
of

ile
 o

f i
nt

ak
e.

 25

cross-section having side slopes of 1V:1.5H. These side slopes are specifically

recommended by taking into account both constructional difficulties and hydraulics

performance (USBR, 1952). In addition to these input data, with the known

irrigation discharge, Qi, channel bottom width, B, Manning’s roughness coefficient,

and the channel bed slope, S0, the normal depth, y1 is computed by using Manning’s

equation. Thus, the water surface elevation at that section (section-1), Kw1 is

determined as follows:

111 yKK w += (3.1)

Calculated water depth, y1, should be checked if it is greater than the critical depth of

that section, y1c such that y1 1.1y1c in order to be convinced that the flow is in a

stable sub-critical regime. The reason behind this check is to provide stable flow

conditions such that in close vicinity of critical depth, the flow is said to be unstable.

• Cross-section-2: The entrance of the intake and settling basin are usually designed for

rectangular cross-section, therefore, a transition connects the trapezoidal main

irrigation canal to the intake. Various types of transitions, which are shown in Figure

2.13, can be used for that purpose. The headloss generated due to the transition is

expressed as follows:

)
2

(
2

2
2

1

g
uu

CH tt

−=∆ (3.2)

 where, �Ht : minor loss through the transition;

 Ct : headloss coefficient due to transition;

 u1 : average flow velocity at section-1;

 u2 : average flow velocity at section-2;

 g : gravitational acceleration.

Corresponding headloss coefficients due to different types of transitions can be

obtained in Table 3.1. The flow depth at section-2 can be determined by applying the

energy equation between section-1 and section-2 as follows:

 26

g
u

y
g
uu

C
g

u
y t 2

)
2

(
2

2
2

2

2
2

2
1

2
1

1 +=−++ (3.3)

The water depth at section-2 can be expressed as y2=Q/(B1u2) where B1 is the width

of the rectangular canal at section-2 and submitted in Equation (3.3). Minimum value

of 2B is proposed for the value of B1 (Yanmaz and Cihangir, 1996). Then, Equation

(3.3) can be solved for y2. Condition of u1 u2 should be satisfied for an inlet type of

transition. If this condition is not fulfilled, the value of B1 is incremented beyond 2B

value successively until the required condition is obtained. The water level at this

section, Kw2 is found by applying the energy equation by the insertion of calculated u2

value to Equation (3.4).

g
u

KH
g

u
K wtw 22

2
2

2

2
1

1 +=∆++ (3.4)

Table 3.1. Headloss coefficients due to transition types (Chow, 1959).

Type of Transition Ct

Warped type 0.10

Cylinder-quadrant type 0.15

Simplified straight-line type 0.20

Straight-line type 0.30

Square-ended type 0.30+

The length of transition, Lt , can be determined from French (1987) :

 21 65.1)(35.2 yzBBL ht +−= (3.5)

where zh=1.5 is the horizontal value of the side slopes of the main irrigation canal.

Since the transition length is usually not long enough to cause considerable frictional

 27

loss, the headloss due to friction is usually eliminated in Equation (3.4). In case of a

long transition, it should also be considered in the calculations.

• Cross-section-3 : As seen in Figure 3.2, a gate is placed at section-3 to regulate the

flow and to prevent the entrainment of flow into the main irrigation canal during the

flushing of the sediment accumulated in the settling basin. The gates are installed

between a number of piers, thus, the flow velocity through the gate opening, u3 can be

determined by calculating the net flow area (see Figure 3.2).

1
23

3 *2 g
n

i HgK
yB

Q
u ∆== (3.6)

 where, B3n, is the net width of the channel at section-3 which can be expressed as:

 ppn tnBB −= 13 (3.7)

where,

np : the number of piers;

 tp : the thickness of one pier;

K : an orifice coefficient which can be taken approximately as 0.65 (Sungur,

 1988);

�Hg1 : minor loss due to gates.

 Figure 3.2. Definition sketch for section-3 and section-8.

Curtain wall

Plan view Cross-section a-a

tp

pier B1

flow

a a

gate

gate y3 y2

 28

By making proper substitutions the water depth, y3 and water surface elevation, Kw3

can be determined by applying the energy equations as follows:

 1

2
2

2

2
3

3 22 gH
g

u
y

g
u

y ∆++=+ (3.8)

1

2
2

2

2
3

3 22 gww H
g

u
K

g
u

K ∆++=+ (3.9)

• Cross-section-4 : The width of the settling basin is larger than the width at the

entrance of the main irrigation canal. Therefore, a transition is provided between the

entrance of the main irrigation canal (section-3) and the end of the settling basin

(section-4) by a curvature having proper radius. The width of the rectangular settling

basin, Bs is greater than the width at the entrance of the main irrigation canal, B1 by a

reasonable amount, e.g. 1~ 2 m in order to obtain the desired amount of sediment

deposition in the settling basin as a result of the flow velocity. By considering the

local site conditions, the designer should select appropriate values for the length, Lc,

and the radius, r of the curvature. The minor loss generated by this curvature, �Hc, can

be determined as a certain percentage of the difference of the velocity heads at the

beginning and end of the curvature.

)
2

(
2

4
2

3

g
uu

CH cc

−
=∆ (3.10)

where, u3 and u4 are flow velocities at sections 3 and 4, respectively. Minor loss

coefficient Cc can be taken as 0.2 (Sungur, 1988). As in previous sections, application

of energy equations between these sections gives the water depth, y3 and water surface

elevation, Kw3 at the end of the settling basin as follows:

g
u

yH
g

u
y c 22

2
3

3

2
4

4 +=∆++ (3.11)

 29

g
u

KH
g

u
K wcw 22

2
3

3

2
4

4 +=∆++ (3.12)

where, u4 = Qi / (Bsy4).

• Cross-section-5 : At the end of the settling basin, an upward sill is required in order to

route the accumulated sediment in the settling basin to the flushing pipe. As well, the

entrainment of the deposited sediments to the irrigation canal is avoided by the

construction of this upward sill. An appropriate small velocity is required to facilitate

the suspended particles to settle down. Maximum permissible velocity of 0.3 m/s is a

reasonable value to be selected in the design (Yanmaz, 2001). By selecting the height

of the upward sill, �su in the range of 0.5 to 1.0 meter, the energy equation is applied

as:

esu H
g

u
y

g
u

y ∆+++∆=+
22

2
4

4

2
5

5 (3.13)

where,

 �He : the minor loss above the upward sill ;

 u5 = Qi / (Bsy5).

Minor loss above an upward sill, �He , can be determined from the equation below

(Yanmaz, 2001):

)
3
2

(88.2 4
2/3

eesi HyHBQ ∆+∆= (3.14)

Equation (3.13) and Equation (3.14) are solved for y5, and the water depth at section-

5 is obtained by satisfying the limitation; u5 � 0.3 m/s. If the limitations cannot be

satisfied by the selected value of �su, then firstly, �su is increased up to 1.0 m. If again

the requirement cannot be obtained, the width of the settling basin Bs is increased

until the required condition is satisfied. In the process which Bs is incremented, all the

computations are renewed from cross-section-4, since the new value of Bs must also

 30

be used in the computation step of cross-section-4. When the limitation is satisfied,

the water surface elevation, Kw5 is determined from the following equation:

eww H
g

u
K

g
u

K ∆++=+
22

2
4

4

2
5

5 (3.15)

• Cross-section-6 : This is the section where settling basin starts. In order to find the

water surface elevation at this section, the headloss through the settling basin should

be determined. For this purpose, the length of the settling basin needs to be

determined in order to calculate the frictional loss through the settling basin. The

length of settling basin, Ls, depends on the settlement of the sediments in the settling

basin which leads to the design of settling basin.

o Design of settling basin : The most important structural part of the intake is

settling basin in which sediments are settled to be flushed to the river by the

flushing pipe. Therefore, a relatively steep slope is needed in order to

facilitate the removal of the sediments from the bed until the end of the

settling basin. A bed slope of Sos = 0.01 is assigned for that reason (Sungur,

1988). Another important criterion to be considered in the design of the

settling basin is that although the storage section of the settling basin is filled

with sediment, the basin should still capture sediment. Thus, the minimum

length and depth of a settling basin should be selected to satisfy this

serviceability condition. Sümer (1977) proposed the following equation for

the length of a rectangular settling basin, Ls :

)1ln(
)(6

* r
K

y
u
u

L
v

s

s −−=
λ

 (3.16)

where,

us : average flow velocity in the settling basin ;

 y : depth of flow in the settling basin ;

 u* : shear velocity in the settling basin ;

 Kv : Von Karman constant which can be taken as 0.42 ;

 31

 : a parameter as a function of dimensionless velocity, β;

 r : is the sediment removal ratio.

Shear velocity can be determined from equation :

sgRSu 0* = (3.17)

where, R is the hydraulic radius in the settling basin. Sümer (1977) proposed

the relation between
 and β as :

17.187.8 βλ = (3.18)

In equation (3.18), dimensionless velocity, β is expressed as:

*uK

W

v

f=β (3.19)

where, Wf is the fall velocity (see Figure 3.3).

Figure 3.3. Definition sketch for settling basin design.

Fall velocity for quartz sand in water at 200
 can be obtained from the

following relations for different size of particles (Breuser and Raudkivi,

1991):

Wf

S0s

Ls

�su

�sd

 32

for D < 0.15 mm ; 2663DW f = (3.20)

for D >1.5 mm ; DW f 5.134= (3.21)

where Wf is in mm/s and D is in mm.

Fall velocities for the particles having a diameter in the range of 0.15�D� 1.5

mm are given in Table 3.2.

Table 3.2. Fall velocities for quartz sand (Breusers and Raudkivi,1991).

D (mm) Wf (mm/s)

0.15 14.8

0.2 21

0.3 36

0.4 50

0.5 64

0.6 76.4

0.7 88.6

0.8 99

0.9 110

1.0 121

1.2 137.3

1.5 166

The median size of the particle D, is the input variable such that the particles

of larger sizes should be settled in the settling basin. Smaller size of particles

like silt, clay and colloids are allowed to be transferred by the canal system to

the fields where they have a fertilizing function. A reasonable value 0.5 mm

for the input value of D can be chosen for the design of the settling basin

(Yanmaz, 2001). Having calculated the fall velocity for the chosen median

size, Equations (3.17), (3.18) and (3.19) are used to find necessary values u*

and
. For the flow depth in the settling basin, y, water depth at section-5, y5

 33

can be used in order to have a conservative result. Average flow velocity, us

and hydraulic radius R in the settling basin are calculated using the value of

y5. Finally, the length of the settling basin, Ls, is determined from Equation

(3.16) by the substitution of the necessary variables.

The obtained value of Ls may be increased by 2.0 meters to be more conservative

(Yanmaz, 2001). If the energy equation is applied between sections 5 and 6, then the

water depth at the beginning of the settling basin, y6, can be calculated:

g
u

ySLH
g

u
y ss 22

2
6

605

2
5

5 ++=∆++ (3.22)

where, �Hs is the frictional headloss through the settling basin which is equal to:

sfss LSH =∆ (3.23)

where, fsS is the average of the friction slopes at sections 5 and 6:

2

)
)

2
(

(
3/4

6

6

2
6

2

3/4
5

2
5

2

yB
A

un

R

un

S s
fs

+

+

= (3.24)

Hydraulic radius at section 5, R5, flow area at section-6, A6=Qi/u6 and the water depth

at section-6, y6=Qi/(Bsu6) are inserted into Equation (3.24) and friction slopes at

sections 5 and 6 are expressed by Manning’s equation. Then, the only unknown u6 is

determined from Equation (3.22) and inserted into Equation (3.25) in order to find

the water elevation at the beginning of the settling basin, Kw6:

g
u

KH
g

u
K wsw 22

2
6

6

2
5

5 +=∆++ (3.25)

 34

• Cross-section-7 : A downward step of �sd is placed at the entrance of the settling

basin. The minor loss above this sill is recommended to be taken as �Hes=0.02 m

(Sungur, 1988). Then, the flow depth of section-7 is determined from:

essd H
g

u
y

g
u

y ∆++=++∆
22

2
6

6

2
7

7 (3.26)

where u7=Qi/(Bsy7) and the water elevation at section-7, Kw7 is obtained by the

following equation:

esww H
g

u
K

g
u

K ∆++=+
22

2
6

6

2
7

7 (3.27)

• Cross-section-8 : This is the section where the entrance of the intake is placed. Similar

to section-3, gates are installed between the piers. The minor loss at the submerged

curtain wall located at the entrance of the intake can be computed in a similar way in

Equation (3.6):

ei
sn

i HgK
yB

Q
u ∆== 2

7
8 (3.28)

where, K=0.65 and Bsn is the net width which is equal to Bs-npi*tpi where, npi is the

number of piers and tpi is the thickness of one pier at this section. The flow depth, y8,

and the water surface elevation, Kw8 at the upstream of the gates are calculated by the

following equations:

 eiH
g

u
y

g
u

y ∆++=+
22

2
7

7

2
8

8 (3.29)

eiww H
g

u
K

g
u

K ∆++=+
22

2
7

7

2
8

8 (3.30)

 35

• Cross-section-9 : This is the beginning of the intake which is located in front of the

gates by an upward sill of height �u that should be in the range of 0.5 to 1.0 meter.

The purpose of the upward sill is to prevent the entrainment of the bed material into

the intake. The minor loss above the upward sill, �Hi, is determined in the same way

as Equation (3.14) except the subscripts of the variables which indicates this section:

)
3
2

(88.2 8
2/3

iisi HyHBQ ∆+∆= (3.31)

There are also trashracks which consists of racks of bars having 6 mm thickness at

the entrance of the intake to prevent the entrainment of floating objects to intake. The

minor loss at the thrashracks can be determined from (Baban, 1995):

g
u

A
A

A
A

H n

g

n

g

n
tr 2

))(
45.0

45.1(
2

2−−=∆ (3.32)

where, �Htr : minor loss at the thrashracks ;

 An : net area through the rack bars ;

 Ag : gross area at the beginning of intake;

 un=Qi / An.

Finally, the water surface elevation at the entrance of the intake, Kwi, is determined

from :

g
u

HHH
g

u
KK trieiwwi 22

2
8

2
7

7 −∆+∆+∆++= (3.33)

Once Kwi is obtained, the value of the upward sill, �u is computed by:

trstwiu HyKK ∆−−−=∆ 8 (3.34)

where, y8 : the water depth at section-8 ;

 Kst : thalweg elevation at the entrance of the intake (spillway axis);

 �Htr : minor loss at the thrashracks .

 36

If the calculated value of �u is not in the range of 0.5 to 1.0 meter, then the value of

the downward step at section-7, �sd is changed and all the calculations regarding �sd

is renewed up to this point until the required condition is satisfied.

• Crest elevation of the overflow spillway : The elevation, Kwi obtained from Equation

(3.33) is actually the crest elevation of the overflow spillway. However, in order to

consider the water level fluctuations in front of the intake and further frictional losses

through the intake, Kwi is incremented by 10 cm and the crest elevation of the spillway

is obtained as:

10.0+= wis KK (3.35)

The height of the spillway, P is determined by subtracting the thalweg elevation, Kst

at the spillway axis from the crest elevation of the spillway, Ks.

sts KKP −= (3.36)

3.1.2.2 Determination of Spillway and Sluiceway Discharges

The river discharge is separated into two such that a large amount flows over the spillway

while the rest flows through the sluiceways. Therefore, each of the discharge should be

determined in order to design the energy dissipators at the toe of the spillway and

sluiceways. By the continuity equation of flow, the design discharge, Q100, is equal to the

summation of the discharge over the spillway, Qs and the discharge through the sluiceway,

Qsl:

sls QQQ +=100 (3.37)

By using Equation (3.37) as the boundary condition for the computation process, the

spillway and the sluiceways discharges are found by a trial and error procedure. This

procedure can be summarized with reference to Figures 3.4 and 3.5 as follows:

 37

Figure 3.4. Front view of the spillway and the sluiceways.

Figure 3.5. Flow over the spillway and through the sluiceway.

Sluiceways

d

Le tsl

Spillway body

LT

L

K100

Ks

Ksl

Kst

Kd100

h

EGL

H0

�s

y1
y2

y3 Kr

�E
E3s

Eu

K100

Kst

Flow over the spillway

 H

ha Ks

Kst

h

d

EGL

�sl

y1

�E E3sl

y2

y3 Kr

Kd100

Eu

K100

Flow through the sluiceway

Ksl

 38

• The length of the valley, LT, at the crest elevation of the spillway is measured from the

cross-section at the spillway axis.

• The number of sluiceways and their corresponding dimensions are decided. This

yields the crest length of the spillway, L, by subtracting the total sluiceway width

from the length of the valley, LT.

• Upstream water level, K100 is assumed and the corresponding water depth, h, velocity

head, ha and the total head H0, are calculated by Equations (3.38), (3.39) and (3.40)

respectively.

stKKh −= 100 (3.38)

g

hL
Q

h T
a 2

2

100
��
�

�
��
�

�

= (3.39)

ahHH +=0 (3.40)

• Spillway discharge is computed with the data calculated above by Equation (3.41)

with all necessary discharge coefficient modifications according to USBR (1987)

specifications. If there are piers over the spillway, also the effective crest length

should be determined. Then, the spillway discharge Qs is obtained from:

 2/3
ooms LHCQ = (3.41)

where, L is the crest length and Com is the overall modified discharge coefficient.

• Sluiceway discharge is also calculated from Equation (3.42) with the value of the

calculated water depth, h, in the following form :

ghdLnCQ eslsl 2'= (3.42)

 39

ghdLnCQ eslsl 2'= (3.42)

where,

C' : the orifice discharge coefficient that can be taken to be 0.65 as a

 conservative value for the sake of simplicity,

nsl : number of sluiceways,

 d : depth of sluiceways,

 Le: width of sluiceway.

• Equation (3.37) is checked if it holds true with an allowable error. If Equation

(3.37) is not satisfied, then, a new value of K100 is assumed and all the

computations are repeated until Equation (3.37) is satisfied.

• For each flood discharge, these computations are performed and corresponding

spillway and sluiceway discharges are obtained.

3.1.2.3 Design of Energy Dissipators

One of the most important part in the design of the diversion weirs is the design of energy

dissipators. After the determination of the spillway and sluiceways discharges and the

upstream water levels as described in the previous section, the next step is to analyze the

flows at the toe of the spillway and sluiceways. Since the river flow is divided into two as

over the spillway and through the sluiceways, there exist different flow conditions at

these locations. Therefore, hydraulics of these locations are analyzed separately. This

may result different energy dissipators at the toe of the spillway and sluiceways. The

design procedure can be systemized with reference to Figures 3.4 and 3.5 as follows:

• The upstream energy elevation, Eu is computed by adding the value of ha

computed from Equation (3.39) to the upstream water level, K100.

au hKE += 100 (3.43)

 40

g

Ly
Q

yE

s

s 2

2

3
33

��
�

�
��
�

�

+= (3.44)

g

ytnLn
Q

yE slslesl

sl

sl 2

))1((

2

3
33

��
�

�
��
�

�

−+
+= (3.45)

 where,

 Qs : Spillway discharge,

 Qsl : sluiceway discharge,

 y3 : the water depth at the riprap section,

 L : crest length of the spillway,

 nsl : number of sluiceways,

 Le : width of the sluiceway,

 tsl : thickness of one pier.

• By ignoring the headloss at the face of the spillway and sluiceways, headloss due

to the jump is obtained both for spillway and sluiceway as below:

sus EEE 33 −=∆ (3.46)

slusl EEE 33 −=∆ (3.47)

• Critical water depths at the toe of the spillway, ycs and the sluiceways, ycsl are

calculated. From the ratios of �E/ycs and �E/ycsl , the conjugate depths of the jump

are found.

• According to the sequent depth and the tailwater depth, the energy dissipation

basin is selected (USBR, 1987). The required sill height at the downstream of the

basin is also calculated.

 41

• According to the sequent depth and the tailwater depth, the energy dissipation

basin is selected (USBR, 1987). The required sill height at the downstream of the

basin is also calculated.

• These calculations are performed for each flood discharge. Therefore, number of

flood discharge times energy dissipation basins are designed for the toes of both

spillway and sluiceways. A final single basin is selected among these alternatives

by considering the worst hydraulic conditions for both spillway and sluiceway.

• If the final designed basins for the spillway and sluiceway are both of the USBR

type 2,3, or 4, then the following inequality is checked to be true or not:

50>∆−∆ sls cm (3.48)

where, �s is the end sill height of the spillway’s stilling basin, whereas, �s is of

the sluiceways’ stilling basin.

• If inequality (3.48) is satisfied, this means that separate stilling basins should be

constructed for spillway and sluiceway divided by a wall with a common length

which is determined as the maximum value among the alternatives. If inequality

(3.48) is not satisfied, then a common stilling basin should be provided for both of

them with the greater sill height among �s and �sl.

3.1.2.4 Design of Upstream Levees

Levees are constructed in order to protect the upstream environment from flooding due to

the rise of the water at the upstream of the diversion weir (see Figure 3.6). Therefore, the

backwater amount should be determined. This directs to a water surface profile

computation through the river at the upstream of the diversion weir. Computations are

made for design discharge, Q100 from downstream to upstream. The downstream boundary

condition is the water level over the spillway, K100 which is determined during the design

process of the spillway and sluiceway.

 42

Figure 3.6. Definition sketch for upstream levees.

Water surface profile computations are carried out for a reasonable cross-section interval

until the uniform flow condition at the upstream is obtained.

3.1.2.5 Design of Diversion Facility

Diversion facility is designed to provide a dry construction zone during the construction

period of diversion weir. In order to provide a dry construction zone, cofferdams are

constructed at the upstream and downstream of the diversion weir and river flow is

diverted from its natural bed all the way through the construction zone by a diversion

canal . Since diversion canal will serve only during the construction period of the

diversion weir, it is usually designed to have a capacity of carrying flood discharges, Q5,

or Q10. In Figure 3.7, a sketch demonstrating the diversion facility is presented. Diversion

canal starts at a cross-section which is located approximately 100 meters upstream from

the spillway axis and connects to an appropriate river cross-section at the downstream of

the ripraps. The design procedure of the diversion canal is based on a cost analysis. For

different values of the bottom width of the diversion canal, b, total cost of the diversion

facility including the cost of the cofferdams and diversion canal is calculated and the

A

A

Q100 y100

ΣΣΣΣ�x

y

f*
f

LT

profile view

Cross-section A-A

1

zh

yo

K100

 43

relation between b and total cost, Ct is plotted. The value of b which gives the minimum

cost is selected as the bottom width of the diversion canal, bop.

In order to calculate the total cost for any value of b, first of all, a water surface profile

computation through the diversion canal is performed in order to find the water depth at

the beginning of the diversion canal. A downward step of height of � is formed at section-

b as shown in Figure 3.7 in order to provide a free fall such that a boundary condition is

formed to initiate water surface profile computations. The value of � is recommended to

be about 50 ~ 60 cm which is an input variable selected by the designer provided that the

condition Kc > Kb is guaranteed in order to generate freefall conditions over the step

where Kc is the water surface elevation over the step and Kb is the water surface elevation

at section-b (see Figure 3.7). Minimum river channel elevation at section-b is known from

the water surface profile computations made at the first stage of the diversion weir design.

At the free fall, the flow depth is approximately the critical water depth, yc, which is the

boundary condition. Other input needed for the water surface profile computation are Q10

and the average bed slope of the diversion canal which is determined from:

dc

tbta
odc L

KK
S

)(∆+−
= (3.49)

where,

 Kta : minimum river bed elevation at section-a;

 Ktb : minimum river bed elevation at section-b;

 � : step height at the end of diversion canal;

 Ldc : length of the diversion canal.

Then, with the boundary condition and the input data, water surface profile through the

diversion canal is determined by starting from section-b along the length of the diversion

canal, Ldc, whose end indicates the beginning of the diversion canal, section-a. The

standard step method can be used for such a computation. As the result of the water

surface profile computations, water depth, ymax at section-a which is the start of the

diversion canal is obtained. This value also determines the height of the cofferdam, z, such

that:

 44

fyz += max (3.50)

where, f is the freeboard height which is approximately 0.2(1+ymax).

Figure 3.7. Definition sketch for diversion facility.

The next step is the determination of the cost of the diversion facility. It includes the cost

of diversion canal, the upstream cofferdam and the downstream cofferdam which can be

determined from the following equations (Yanmaz, 2001):

 Core
(impervious)

Cross-section A-A

G=(z/5)+3

3 m

h

1

Cross-section B-B

z

f

bop

Hu:Hv

Hd:Hd

(Hu/Hv-1/2):1 (Hd/Hd-1/2):1

Section-b

Ktb

KB

Section-a

River
flow Dry construction zone

Downstream cofferdam

A A

 B

 B Ldc

Kc

Plan view

ymax yc Q10

� Diversion canal Sodc

Kta

Pervious soil

Upstream cofferdam

z

1.5

f

Profile view

 45

[] dcexlech LCzbCzbCzbzC)103()61.3()5.1(2 ++++++= (3.51)

��

�
	

��

�
�

�
�

�
�
�

� +−�
�

�
�
�

�
++++��

�
��

� += Tper
d

d

u

u
coreuc LCz

zzz
z

V
H

V
H

C
zz

C
2

)3(
2

)3
5

(2)(
2

)3((3.52)

��

�
	

��

�
�

�
�

�
�
�

� +−�
�

�
�
�

�
++++��

�
��

� += Tper
d

d

u

u
coredc LCw

www
w

V
H

V
H

C
ww

C
2

)3(
2

)3
5

(2)(
2

)3((3.53)

where, Cch : cost of diversion canal;

 Cuc : cost of upstream cofferdam;

 Cdc : cost of downstream cofferdam;

 z : height of upstream cofferdam;

 Ce : unit cost of excavation;

 Cl :unit cost of canal lining;

 Cex : unit cost of expropriation;

 Ldc : length of diversion canal;

 Ccore : unit cost of embankment core construction;

 Cper : unit cost of embankment pervious fill construction;

 LT : width of the river at the construction site;

 W : height of the downstream cofferdam which is about z-0.50;

 Hu : horizontal inclination of outer layers of upstream cofferdam;

 Vu : vertical inclination of outer layers of downstream cofferdam;

Hd : horizontal inclination of outer layers of downstream cofferdam;

 Vd : vertical inclination of outer layers of upstream cofferdam.

Total cost of the diversion facility, CT is calculated by adding the total costs of diversion

canal, upstream cofferdam and downstream cofferdam as follows:

dcucchT CCCC ++= (3.54)

As mentioned before; for different values of bottom width of the diversion canal, b, this

procedure explained above is repeated until the optimum value of b is obtained. Optimum

value of b is selected as the design value of the bottom width of the diversion canal.

 46

3.1.3 Design of Some Appurtenant Facilities

In addition to the main structural elements of the diversion weir, there are some

appurtenant components. The appurtenant facilities whose design procedures considered

in this study are :

• Riprap design,

• Design of flushing pipe.

3.1.3.1 Riprap Design

The riprap section consists of large stones in order to protect the river bed. The size of the

stones that would not subject to motion are determined by the following equation

(Bayazıt, 1971):

020RSDr = (3.55)

where, Dr: diameter of the riprap;

 R: hydraulic radius of the river under the design flows;

 S0: mean river bed slope.

Ripraps of diameter, Dr, are laid for the length of Ld which is determined from:

 3
3/2

100 5.13 yqLd −= (3.56)

where, q100 = Q100 / Lt .

Figure 3.8. Definition sketch for riprap design.

y3

Ld

min 75 cm
thick

riprap Dr

stone size

Kr

Kd100

 47

The length of the riprap section, Ld should be at least 10 m and the thickness of the stones

laid should be greater than 75 cm.

3.1.3.2 Design of Flushing Pipe

Flushing pipe is located at the end of the settling basin and connected to the river in order

to discharge accumulated sediment to the river as displayed in Figure 3.9. Maximum

possible size of material to be settled in the settling basin, Dm is chosen to be flushed

through the flushing canal. Then, the flushing pipe diameter, Dp and the slope, S0 of the

flushing pipe is designed in order to provide discharging of the sediment of selected size

Dm. The design process can be summarized as follows:

• Critical shear stress for the size of the material, Dm is determined from:

2
*coc uρτ = (3.57)

where, u*c is the critical shear velocity which initiates sediment motion and ρ

is the density of water. u*c is a function of material size, Dm and can be

determined from the following equation for materials whose sizes are in the

range of 1mm < Dm < 100 mm (Yanmaz, 2002):

m
mmc D

DDfu
0065.0

030.0)(* −== (3.58)

Figure 3.9. Definition sketch for the design of flushing pipe.

settling basin

riprap

flushing pipe

energy dissipator

intake

river flow

 48

• A circular pipe of minimum diameter of φ600 mm is chosen. It is assumed

that the gates of the main canal are closed during the flushing in order to

guarantee pressurized flow such that the minimum bed slope corresponding to

median size, Dm is selected by following trial and error procedure:

o Shear stress in the pipe is determined from:

2

8
u

f p
o ρτ = (3.59)

where, fp is Darcy-Weisbach friction factor for the pipe.

o Friction factor, fp is obtained by rough pipe assumption such that

fp = f(ks/Dp) where ks is the equivalent sand roughness.

o Shear stress through the pipe,τo and critical shear stress τoc which is

calculated from equation (3.57) is equated to calculate the pipe slope

which will initiate flushing of the sediment as follows:

oc
p

o u
f

τρτ == 2

8
 (3.60)

Equation (3.60) is solved for the average velocity in the pipe that will

start flushing, u.

o By using Manning’s equation, with the calculated value of u from

Equation (3.60), the friction slope that will initiate the sediment

motion in the pipe, Sf is determined:

3/4

22

)
4

(p

pipe
f D

un
S = (3.61)

 49

o The pipe bed slope which provide flushing is selected such that:

fSS >0 (3.62)

so that; ocττ >0 .

3.1.4 Seepage Analysis

Seepage is an important concept in the design of a diversion weir, since the degree of

uplift forces are highly affected by the seepage through the foundation of the spillway and

energy dissipater. For that reason, an elaborate seepage analysis should be made to check

if required precautions should be taken in order to overcome problems related to seepage

phenomenon. In the literature, there have been many different approaches about the

seepage analysis. The main methods regarding seepage analysis can be stated as:

• Finite difference techniques,

• Finite element techniques,

• Electrical analog models,

• Flow net analysis,

• Lane’s creep analysis.

Figure 3.10. Definition sketch for Lane’s creep analysis.

sheet
pile

Kst

upstream
blanket

Cutoff wall

Creep length, ΣLcr

Kd

x
Lx

Hx

h

Hnet

Ku

 50

Finite element and finite difference techniques are sophisticated approaches in the

determination of seepage through the foundation. Also, flow net analysis is quite

cumbersome approach. In case of diversion weirs, a simpler method called Lane’s creep

analysis (USBR, 1987) is a good approach to be used for the determination of seepage.

This method is based on the investigation of more than 300 diversion weirs in the U.S.A..

The minimum creep length adjacent to the structure to prevent the piping problem can be

determined by this method. Piping is an important problem such that in case of high

seepage, the erosion of the finer particles occur in the soil and this causes blank spaces in

the soil which may accelerate the settlement of the structure. In Lane’s creep analysis, the

creep length is related to the effective hydraulic head, Hnet, which is the elevation

difference between the upstream and the downstream water levels, and a coefficient

reflecting the relative permeability of soil, C (see Table 3.3).

Table 3.3. Values of C to be used in creep analysis (Kashef, 1987).

Foundation Material C

Very fine sand or silt 8.5

Fine sand 7.0

Medium sand 6.0

Coarse sand 5.0

Fine gravel 4.0

Medium gravel 3.5

Coarse gravel including cobbles 3.0

Boulders with some cobbles and gravel 2.5

Soft clay 3.0

Medium clay 2.0

Hard clay 1.8

Very hard clay or hardpan 1.6

According to the field measurements of Lane, the permeability of an alluvial bed in the

horizontal direction is about three times the permeability in the vertical direction. This

means that the vertical seepage force is approximately three times greater than the

horizontal seepage force. By considering this fact, the total creep length is determined in

 51

such a manner that the vertical lengths adjacent to structure is taken as they are, while the

horizontal distances are taken as one third of their actual length. For the inclined elements:

if the inclination with respect to the horizontal is greater than or equal to 450; that element

is considered as vertical, otherwise it is taken to be a horizontal member.

The total creep length is determined by the summation of the all distances adjacent to the

structure with reference to Figure 3.10:

 hvcr LLL Σ+Σ=Σ
3
1

 (3.63)

where, ΣLcr : the total creep length;

 ΣLv : the total creep length in the vertical direction;

ΣLh : the total creep length in the horizontal direction.

With the values of C and Hnet, the required condition for the minimum creep length for no

piping, Lcr is determined from the following condition:

netcr CHL ≥ (3.64)

Possible maximum value of the net head, Hnet, should be considered in the inequality

(3.64) in order to consider the worst condition. The cases giving different values of Hnet

are:

• Overflowing case : Hnet = Ku – Kd ,

• Full upstream no tailwater case : Hnet = Ks – Kr .

The overflowing case is considered for each flood discharge situation. The greater value

of Hnet among all of these cases is selected for the value of Hnet in inequality (3.64) to be

on the safe side. If the condition is not satisfied, some precautions to increase the creep

length should be taken, such as placing deeper sheet piles and cutoff walls or increasing

the length of the upstream blanket (see Figure 3.10).

The uplift pressure at any point x of the structure needs to be determined in order to

calculate the uplift force acting on the structure. After using Lane’s creep analysis, if

 52

ΣLcr=C*Hnet the uplift force at any point x of the structure adjacent to the foundation can

be determined from:

)(
C
L

Hhu x
xx +−= (3.65)

where,

 ux : the uplift pressure head ;

 h : the upstream water depth;

Hx : the elevation at point x relative to a datum which can be selected as river

thalweg elevation at the spillway axis;

Lx : the creep length up to point x.

If ΣLcr � CHnet , then the upstream and downstream water level difference is proportioned

uniformly with respect to the total creep length where the pressure head ux is to be

determined.

3.1.5 Stability Analyses

As the last step in the design procedure of the diversion weir, the stability of the structure

should be checked against various threats as follows (Yanmaz, 2001):

• Safety against sliding : The whole structure is considered.

• Safety against overturning : Only the spillway body is considered.

• Stability against uplift : The stilling basins and the settling basin are checked to be

safe against uplift force causes by the seepage beneath the structures.

Usually, the governing stability problem of the diversion weirs seems to be the one against

the uplift forces due to the excessive seepage beneath the structure. Therefore, some

precautions which decrease the seepage forces need to be taken in order to overcome this

problem. The detailed clarifications about the stability analysis is mentioned in parallel

with the development algorithm of the program which is covered in Chapter 4.

 53

3.1.6 Design of the Sidewalls

Sidewalls act like retaining walls whose crest elevations in the upstream and downstream

are determined by incrementing the corresponding water levels by an appropriate

freeboard value. They may be concrete gravity or reinforced concrete cantilever type

depending on several conditions such as foundation material, economical concerns,

stability requirements, etc. The overall dimensions of the walls are decided by according

to the stability analysis such as an ordinary retaining wall design. The computational

procedure regarding the design of the sidewalls is covered in Chapter 4.

 54

CHAPTER 4

DEVELOPMENT OF THE COMPUTER PROGRAM

4.1 The scope of the Computer Program

A computer program named WINDWEIR was developed in order to carry out the

optimum design of diversion weirs by considering hydraulic aspects. The program is

capable of analyzing the diversion weirs with overflow spillway and sidewise (lateral)

intakes. It is a user-friendly computer program that works in Microsoft Windows

Operating System. Like most of the Windows programs, it has a windows based user-

interface with many additional visual components. The prefix in the name of the program,

WIN, emphasizes the windows based user-interface, while the name following this prefix,

DWEIR, remarks the word, “diversion weir”. The user-interface and algorithm of the

program make it very flexible for a designer to assess various dimensions of the structure

from viewpoints of safety and economy.

Diversion weirs are structures having many components. Most of the commercial

hydraulic packages include more general hydraulic concepts in order to be accessed by a

greater number of customers. However, this situation generates a need for hydraulic

software concerning more specific type of problems. This is also true for the design of

diversion weirs. The aim of this study is to satisfy these needs by combining the hydraulic

computations of the components of the diversion weirs in a single computer program.

4.2 Programming Language

There are many programming languages, which are used in the development of computer

programs. Each of them has some advantages and disadvantages in terms of their abilities

that play important role in writing the code. In computer sciences, there exists a common

idea that, a flexible programming language is usually difficult to use, and an easy

 55

language is not very flexible to develop sophisticated programs. Examples to some of the

programming languages, which have strong capabilities are C, C++, etc. Contrary to these

languages, Basic, Fortran 77, etc. are considered to be the kind of languages that are not

flexible enough to develop complicated programs, but their usages are easy. From the

programmer point of view, the criterion in selecting the programming language usually

depends on the type of program to be developed. Because, there is not such a language

that will always meet all the requirements of the programmer irrespective of the type of

the problem which will be programmed. Therefore, a programmer should select the

programming language having features which will fit his/her requirements.

Another important feature in the choice of the programming language is the support of the

language for visual environment. In early days of computer sciences, most of the

applications were working in a console, such as DOS environment. In parallel to the

improvements in the operating systems, programming idea also changed dramatically. The

most subtle change occurred is the user-interface design. With the development of the

visual operating systems, such as Microsoft Windows, the visual interface concept entered

to the programming languages also. One of the first programming languages, which

supported visual programming, is Microsoft Visual Basic. It was easy as its predecessor,

Microsoft QBasic and was giving chance to the programmer to develop visual programs

that work in Microsoft Windows Operating System. Before Microsoft Visual Basic, visual

programming was not very easy. Most of the time Microsoft Visual C++ was used to

achieve visual interface that is a very difficult language to work with. However, since the

Visual Basic was developed as a visual programming language, not only Visual Basic

became popular, but also visual programming became very popular for the programmers.

Nowadays, most of the programming languages have built-in supports in the language

itself for visual programming, such as Borland C++, Borland Delphi, Java, Visual C++,

etc.

For the final point that should be considered in selecting the programming language is its

independence from the operating system to execute. In other words, in traditional

programming languages like Visual C++, Visual Basic 6.0, Borland C++, etc., the

program can only execute in the operating system where it was compiled. If it is ported to

some other operating system, it will need to be recompiled in that operating system and a

new executable file is generated for that operating system. This hampers the portability of

 56

the program. In the past years where internet was not so developed, this was not a

problem, but with the wide use of internet today, this also begins to be a problem. The

revolution to handle this problem was the development of the programming language,

Java introduced by Sun Microsystems, Inc. Now, Microsoft also follow this vision by its

programming environment, Visual Studio.NET. Microsoft Visual Basic.NET is the new

version of Visual Basic that handles this portability problem. In summary, Visual

Basic.NET works on a software called .NET framework which simulates the operating

system. Therefore, wherever this software exists, any program that was developed by

.NET programming language is able to execute irrespective of the operating system. This

is an important feature, but causes a little decrease in the execution performance of the

program. However, all the computer industry is in the vision of this type of programming

which is seen to be the future of the programming.

In development of a program, different computer languages may be used cooperatively by

some restrictions. This approach is used in some programs such that main module of the

program is written in some language, and the visual interface is coded in some other

language. This is especially seen in old programs which were written in DOS operating

system. In order to promote them to a visual program, instead of writing all the program in

a visual environment, only the interface is written with the visual language and the

interface is linked with the old written program. HEC-RAS package (USACE, 1998) is an

example for this approach such that the main body of the program was written in Fortran,

whereas the visual interface is coded in a visual environment. However, it is better to

write all the program in a visual programming language for the reason that the

programmer has much more flexibility in developing the program and this yields a more

flexible and user-friendly program.

At the first stage of the development of WINDWEIR, all the criteria mentioned above was

evaluated and as a conclusion, Microsoft Visual Basic.NET was chosen to be the

programming language of WINDWEIR. Visual Basic.NET is both a flexible and easy

programming language to develop an engineering program. It has very strong capabilities

that gives the programmer high flexibility in writing the program code. For the years,

Visual Basic usually was not seen as a very professional language, however with Visual

Basic.NET this idea changed such that most of the advanced programmers see Visual

Basic.NET as a well structured, full object-oriented language. Therefore, it should not be

 57

considered as the new version of Visual Basic 6.0, it can be said as a wholly new

programming language because of many number of important revisions.

Visual Basic.NET is a fully object oriented language. Classes are the main concept of

object oriented programming which give more abstraction over the code modules. In

Visual Basic.NET, there are many predefined classes which give the programmer to

generate a very visual and complicated program. In addition to these predefined classes,

the programmer can also write his/her own classes. WINDWEIR was written in a fully

object oriented way such that all the code are abstracted as classes. This makes the

program to be more flexible both in use and further development. In terms of civil

engineering point of view, the language is highly sufficient to handle the design

algorithms of diversion weirs. In terms of speed, as stated before, the program cannot be

seen as fast as a program developed under C++ because of Visual Basic.NET’s language

characteristics. On the other hand, WINDWEIR does not need great amounts of CPU

time, since it was not coded with a CPU-time consuming algorithm. Program was

developed and tested on a PC with 256 MB RAM and Pentium-3, 733 MHz processor.

The tests give satisfactory results in terms of program’s execution efficiency. A PC having

lower configuration is also sufficient to execute the program provided that a Pentium

processor with 128 MB RAM is minimally recommended for an efficient use of its visual

interface. The program is able to be executed on any environment providing that the .NET

framework is installed on the operating system. For the time being Microsoft supports

operating systems, Windows 98, Windows Me, Windows 2000 and Windows XP for the

.NET framework. In future versions of Windows, Microsoft is expected to give built-in

support to .NET framework . ((Davis, 2002), (Pala, 2003), (Microsoft Corporation, 2002))

4.3 Framework of the Program

As stated before, WINDWEIR is a visual program that is based on windows and many

other visual components. In general, a visual program is developed by a model based on

two types of programming; the main program and the visual-interface programming.

WINDWEIR also follows this approach. Therefore, the framework of the program can be

summarized as follows:

 58

• Main program : As indicated in Chapter 2, a diversion weir has various structural

components. Each of these components are alone different hydraulic and

structural problems to be solved separately. WINDWEIR was developed for the

purpose of combining the solutions of these components as a whole. Therefore,

the program performs many number of computations regarding each of the

components of a diversion weir having sidewise intake and an overflow spillway.

In order to constitute a flexible program, it was intended to code the design of

each components in different modules. Then, all of these modules which are able

to work separately were combined such that the results of the modules are

transferred between. As a result of this interconnection between these modules,

the whole diversion weir is designed and analyzed. In other words, it may be

thought that WINDWEIR consists of many small subprograms that altogether

forms the main program.

• Visual-interface: This part of coding is not related to the hydraulic concepts of

diversion weirs such that it consists of lines of codes related to the visual interface

of the program. WINDWEIR is based on window forms as any classical program

that works on Windows operating system. There are many visual components that

are assembled on these windows forms which build the user-interface.

Details of the model mentioned above and corresponding solution algorithms are

explained in the subsequent sections. Also, a user manual for the program is presented in

Appendix A, and the source code of WINDWEIR is given in Appendix B.

4.3.1 Main Program

Main part of the program deals with the design of the structural components of the

diversion weir by considering hydraulic aspects. The codes of this part form the core of

the program which makes all the hydraulic computations. Each component of the

diversion weir are programmed separately. Therefore, modeling of each component will

be described individually by following the corresponding design procedures as explained

in Chapter 3. Since comprehensive explanations about the design procedures have already

 59

been discussed in Chapter 3, this chapter cites only the explanations about the

implementation of these algorithms.

4.3.1.1 Water Surface Profile Computations

As explained widely in Chapter 3, the first process in the design of the diversion weir is to

perform water surface profile computations of the river in the close vicinity of the

construction site. However, WINDWEIR is not capable of performing water surface

profile computations. Some software packages, which are specialized for that purpose

such as HEC-RAS (USACE, 1998) and BHSA (Yanmaz and Bulut, 2001) can be used in

order to obtain the water surface profile. The required outputs of these computations are

entered directly to the program by the user. WINDWEIR requires the following input data

in order to set up further calculations:

• The minimum bed elevation of the section where the spillway is

constructed, Kst,

• The minimum bed elevation of the riprap section, Kr,

• Mean river bed slope, So,

• Manning’s roughness coefficient of the river, nriver,

• Water surface elevations at the riprap section (tailwater elevations) for

corresponding flood discharges: Kd100, Kd50, Kd25, Kd10, Kd5.

4.3.1.2 Program Module for the Design of Intake

The purpose of this module is to calculate the spillway crest elevation and the overall

dimensions of the intake through necessary hydraulic computations. For that purpose,

calculation starts by assuming uniform flow at the beginning of the main irrigation canal.

Therefore, with the input data related to the main irrigation canal, the normal depth at the

beginning of the irrigation canal is calculated by Manning’s equation. Starting with the

total head at this section, all the headlosses through the intake are calculated from the

downstream to the upstream as described in Chapter 3. The total head in front of the

entrance of the intake is obtained by adding the summation of all these headlosses to the

 60

total head at the main irrigation canal according to Bernoulli’s energy equation. Therefore,

water surface elevation in front of the entrance of the intake is obtained and the spillway

crest elevation is determined by incrementing this elevation by 10 cm.

As explained in Chapter 3, a typical intake profile is considered to be formed of nine

cross-sections where headlosses occur (see Figure 3.1). Therefore, WINDWEIR makes

the computations in this manner that the headlosses at each cross-section is calculated in

sub-modules in the program. Throughout the computation process, there are some

conditions to be satisfied, such as the flow velocity limitation at the end of the settling

basin, entrance sill height limitation, etc., which are all enlightened in Chapter 3. In case

the conditions are not satisfied, the necessary modifications for corresponding conditions

are made and with the modifications done, the required sections are recomputed

recursively until the desired conditions hold true. The flowchart illustrating the algorithm

that WINDWEIR uses in the design of the intake can be seen in Figure 4.1.

The input data required for the execution of this module are listed below:

• The irrigation discharge, Qi,

• The bottom slope of the main irrigation canal, S0,

• The bottom elevation at the beginning of the main irrigation canal, K1,

• The bottom width at the beginning of the main irrigation canal, B,

• Horizontal inclination of the trapezoidal main irrigation canal, zh,

• Manning’s roughness coefficient for the canal, n,

• Number of piers at the entrance of the main irrigation canal, np,

• Thickness of the piers at the entrance of the main irrigation canal, tp,

• Number of piers at the entrance of the intake canal, npi,

• Thickness of the piers at the entrance of the intake, tpi,

• Settling basin slope, Sd,

• Minimum size of sediment to be settled in the settling basin, Dm,

• Sediment removal ratio, r,

• Maximum diameter of objects entering the rackbars, Df,

• Headloss coefficient for the transition between the main irrigation canal and

intake, Ct,

• Headloss coefficient due to curvature, Cc,

 61

Figure 4.1. Flowchart illustrating the design of Intake.

START

SUBROUTINE section-2

SUBROUTINE section-3

SUBROUTINE section-4

SUBROUTINE section-1

SUBROUTINE section-5

 u1>u2

YES

increase B1
NO

 u5>umax

increase �su

�su=1.0 m.

YES

NO

YES
increase Bs SUBROUTINE section-6

SUBROUTINE section-7

SUBROUTINE section-8

SUBROUTINE section-9

0.5 <�u< 1.0

 NO

Decrase or
increase �sd

STOP

YES

NO

SUBROUTINE Input-Data

OUTPUTS:
� Overall dimensions of intake
� Water surface profile through the intake
� Spillway crest elevation

 62

• Maximum allowable flow velocity at the end of settling basin, u5max

• Initial value for the upward sill height, �su,

• Initial value for the downward sill height, �sd,

There exists three main limitations to be satisfied throughout the execution of the module

which are listed below:

• u1>u2 ; flow velocity at the irrigation canal should be grater than the velocity at the

end of the intake to provide inlet type of transition. The bottom width at the end of

intake, B1 is increased until this condition is satisfied.

• u5 < u5max ; flow velocity at the end of the settling basin should be small enough to

provide the settlement of the sediments. If this condition is not satisfied, firstly the

value of �su is increased up to 1 m. If still it is not satisfied, the width of the

settling basin, Bs is increased until the condition is provided to be true.

• 0.5m<�u<1.0m ; entrance sill height, �u should be in the range of 0.5 m to 1.0 m.

Otherwise, the value of downward sill height, �sd is changed to provide this

condition.

After the execution of the module, the following outputs are obtained which satisfy

necessary limitations:

• Overall dimensions of the intake structure,

• Water surface profile through the intake,

• Crest elevation of the spillway, Ks.

Nevertheless, the main output of this module is the crest elevation of the spillway which

will be used as input for the following program modules related to other structural

components of the diversion weir.

 63

4.3.1.3 Program Module for the Determination of Spillway and Sluiceway

Discharges

After the execution of the module regarding to the intake design, the next process is to

determine the discharges over the spillway and through the sluiceways. According to the

procedure explained in Chapter 3, the upstream water elevation over the spillway and

sluiceways, K, is assumed to be equal to the crest elevation of the spillway, Ks as an initial

guess. The corresponding spillway discharge, Qs and sluiceway discharge, Qsl are

calculated with this assumed K value and the summation of these values are checked with

the total discharge. If they are equal enough with an allowable error, assumed value of K

is taken as the upstream water surface elevation, otherwise the assumed value is increased

until the summation of the spillway and sluiceway discharges are equal to the total

discharge. The flowchart for this module is presented in Figure 4.2.

Figure 4.2. Flowchart for the determination of the spillway and sluiceway discharges.

START

ASSUME K = Ks

SUBROUTINE Spillway Discharge

SUBROUTINE Sluiceway Discharge

Q = Qs + Qsl increase the value of K

STOP

YES

NO

SUBROUTINE Input-Data

OUTPUTS:
� Spillway and sluiceway

discharges for each flood
discharges

u/s water elevations for each flood

 64

This module of the program repeats this algorithm for each flood discharges, Q100, Q50,

Q25, Q10, Q5 and corresponding outputs for these flood discharges are obtained. The input

data required for the execution of this module are as follows:

• Total valley width where spillway and sluiceways are constructed, LT,

• Number of piers above the spillway, nps (if a bridge exists over the spillway),

• Thickness of the bridge piers, tps (if a bridge exists over the spillway),

• Contraction coefficient due to piers, Kp (if a bridge exists over the spillway),

• Contraction coefficient due to abutments, Kab (if a bridge exists over the

spillway),

• Width of each sluiceway, Le,

• Number of sluiceways, nsl,

• Depth of the sluiceways, d,

• Thickness of walls between sluiceways, tsl,

• Bottom elevation at spillway section, Kst,

• Spillway crest elevation, Ks,

• Flood discharges, Q100, Q50, Q25, Q10, Q5,

• Water surface elevations at the riprap section for each flood discharge, Kd100, Kd50,

Kd25, Kd10, , Kd5,

• Bottom elevation at the riprap section, Kr.

The module gives the following outputs:

• Spillway crest length, Ls,

• Flow over the spillway for each flood discharge, Qs100, Qs50, Qs25, Qs10, Qs5,

• Flow through the sluiceways for each flood discharge, Qsl100, Qsl50, Qsl25, Qsl10,

Qsl5,

• Upstream water surface elevations over the spillway for each flood discharge,

K100, K50, K25, K10, K5.

The outputs are used as input for the following module named; design of energy

dissipators.

 65

For the determination of spillway discharge, USBR (1987) method explained in Chapter 3

was implemented. Therefore modified spillway coefficient, Com is obtained from the

related graphs which are converted into following regression equations (Yanmaz, 2001):

• For the design discharge coefficient for vertical faced ogee crest, C0:

7719.1)(414.1)(3081.2)(982.1

)(915.0)(2148.0)(0201.0

0

2

0

3

0

4

0

5

0

6

0

++−+

−+−=

H
P

H
P

H
P

H
P

H
P

H
P

Co

 (4.1)

• For the design discharge coefficient with sloping upstream face, Cinc:

o For � = 180
;

3

0

2

000

)(01.0)(04.0)(06.004.1
H
P

H
P

H
P

C
Cinc −+−= (4.2)

o For � = 330
;

3

0

2

000

)(004.0)(01.0)(02.001.1
H
P

H
P

H
P

C
Cinc −+−= (4.3)

• For the design discharge coefficient for varying heads, Cme:

79.0)(32.0)(14.0)(03.0
0

2

0

3

00

++−=
H
H

H
H

H
H

C
C eeeme (4.4)

• For the design discharge coefficient due to apron effect, Cma:

98.180)(14.815)(1.1520)(7.1506

)(08.836)(11.246)(015.30

23

456

0

−
+

+
+

−
+

+

+
−

+
+

+
−=

e

d

e

d

e

d

e

d

e

d

e

dma

H
dh

H
dh

H
dh

H
dh

H
dh

H
dh

C
C

 (4.5)

 66

• For the design discharge coefficient due to submergence effect, Cms:

0242.0)(212.11)(258.66)(51.224

)(22.426)(35.416)(95.161

23

456

0

++−+

−+−=

e

d

e

d

e

d

e

d

e

d

e

dms

H
h

H
h

H
h

H
h

H
h

H
h

C
C

 (4.6)

where,

P :spillway height;

 H0 : total head over the spillway;

 � : angle from the upstream face of the spillway to the vertical direction;

 He: existing total head over the spillway other than the design total head;

d : water depth at the downstream (riprap section);

hd: elevation difference between the upstream energy grade line and the

downstream (riprap section) water level.

The overall discharge coefficient, C0m is obtained by multiplying the effects of each

aforementioned case and spillway discharge is calculated from:

2/3
00 ** HLCQ sms = (4.7)

where the definitions of the variables were already explained.

For the determination of sluiceway discharge, orifice discharge coefficient, C, is taken to

be 0.65 as recommended in DS� (1988) for simplicity. Then the sluiceway discharge is

computed by the equation:

ghdLnQ eslsl 265.0= (4.8)

where h is the water depth over the sluiceway and the other variables are as explained

before.

 67

4.3.1.4 Program Module for the Design of Energy Dissipator

This module of the program is responsible for the design of the energy dissipator at the toe

of the spillway. The energy dissipator design depends on the hydraulic jump phenomenon

occurs at the toe of the spillway and sluiceway. Therefore, the program examines the two

different hydraulic conditions at the toe of the spillway and sluiceway, respectively.

Consequently, calculations are performed for both locations. According to the hydraulic

jump conditions, the required energy dissipators are designed as explained in Chapter 3

(see Figure 4.3 for the flowchart of this module).

The program firstly calculates the energy levels at the upstream and downstream (riprap

section) of the spillway and sluiceways for each flood discharges. By ignoring the

headlosses at faces of the spillway and sluiceways, the initial water depth of the hydraulic

jump is calculated from the calculated upstream energy level. WINDWEIR implements

the momentum equation in order to find the conjugate of the initial water depth. Although

it is not widely used, the program is also capable of solving momentum equation for

stilling basins having trapezoidal cross sections. As a final process, the required sill height

of the stilling basin is determined by applying the energy equation between the end of the

jump and the riprap section. After obtaining the results of hydraulic jump, the required

stilling basin types are selected for the hydraulic criteria given by USBR (1987). As

mentioned before, for each flood discharge, the program designs two different stilling

basins; one for the spillway’s downstream, the other for the sluiceway’s downstream.

Among these designs, the program chooses the stilling basin having the maximum length

for both the spillway and sluiceway toe. Similar to length of the stilling basin, the height

of the end sill is chosen to be the maximum value among the sill heights. As a result,

stilling basins at the toe of the spillway and sluiceway are determined. The program

checks the differences between the spillway and sluiceway sill heights, �s and �sl

respectively, such that:

• if 50<∆−∆ sls cm; program chooses the greater value of the end sill and a

common stilling is designed for both spillway and sluiceway provided that the

longer stilling basin is selected as the common design.

 68

Figure 4.3. Flowchart for the design of the energy dissipators.

START

SUBROUTINE u/s energy level

SUBROUTINE: Spillway d/s
energy levels for each flood

discharge

SUBROUTINE: Sluiceway d/s
energy level for each flood

discharge

STOP

YES

NO

SUBROUTINE: Spillway d/s
energy dissipator for each flood

discharge

SUBROUTINE: Sluiceway d/s
energy dissipator for each flood

discharge

SUBROUTINE: selection of the
final designed stilling basin for

spillway d/s among the
alternatives; Ls, �s

SUBROUTINE: selection of the
final designed stilling basin for

sluiceway d/s among the
alternatives; Lsl , �sl

SUBROUTINE : Input Data

��s-�sl�<50 cm

SUBROUTINE: Design
common stilling basin for both

spillway andd sluiceway

SUBROUTINE: Design
seperate stilling basins for

spillway andd sluicewaywith
common length

OUTPUTS:
� Energy dissipator types and

corresponding dimensions

NO TERMINATE TERMINATE

Energy
dissipators are
of the USBR
Type 1, 2 ,3,4

YES

YES NO

 69

• if 50≥∆−∆ sls cm; separate stilling basins are designed for spillway and

sluiceway provided that both stilling basins have a common length but different

end sills divided by a wall. The value of the common length is the greatest length

among the initially calculated stilling basins.

The program is capable of designing the following types of USBR stilling basins: Type I,

Type II, Type III and Type IV. Design of the energy dissipators of USBR Type V, Type

VI and Type VII are not considered by the program. Whenever the program finds that

these unconsidered types are needed due to hydraulic conditions, then it terminates

execution by giving related error message.

The input data required for this module for execution are as follows:

• Flood discharges, Q100, Q50, Q25, Q10, Q5,

• Flow over the spillway for each flood discharge, Qs100, Qs50, Qs25, Qs10, Qs5,

• Flow through the sluiceways for each flood discharge, Qsl100, Qsl50, Qsl25, Qsl10,

Qsl5,

• Upstream water surface elevations over the spillway for each flood discharge,

K100, K50, K25, K10, K5,

• Water surface elevations at the riprap section for each flood discharge, Kd100, Kd50,

Kd25, Kd10, , Kd5,

• Bottom elevation at the riprap section, Kr,

• Bottom elevation at spillway section, Kst,

• Number of sluiceways, nsl,

• Thickness of walls between sluiceways, tsl,

• Width of each sluiceway, Le,

• Total valley width where spillway and sluiceways are constructed, LT.

The outputs of this module are as follows:

• Types of the energy dissipators at the toe of spillway and sluiceway,

• Overall dimensions of both energy dissipators,

• The decision on whether a common stilling basin or separate stilling basins is to

be designed.

 70

4.3.1.5 Program Module for the Determination of Crest Elevation of Upstream

Levees

In this module of the program, crest elevations of upstream levees are calculated. Water

surface profile computations are carried out through the gradually varied flow which

begins from the spillway axis to the upstream of the river where uniform flow starts.

WINDWEIR implements the Standard Step Method for the water surface profile

computations in prismatic channels (Henderson, 1966). For that reason, the portions of the

river at the upstream of the spillway is modeled as a prismatic channel having a

trapezoidal cross-section. The computation is performed for the design discharge, Q100.

Necessary amount of freeboard is added to the computed water surface profile and the

crest elevations of the levees are evaluated.

Following inputs are required by the module for the determination of the water surface

profile at the upstream of the spillway:

• Design discharge, Q100,

• Upstream water surface elevations over the spillway for design discharge, K100,

• Manning’s roughness coefficient of the river, nriver,

• Bottom elevation at spillway section, Kst,

• Total valley width where spillway and sluiceways are constructed, LT,

• Mean river bed slope, So,

• Cross-section interval for the water surface profile computation, �x,

• Horizontal inclination of the trained river’s side slope, zh.

The outputs of the module are:

• Water surface profile at the upstream of the spillway until the uniform flow,

• Total length of the gradually varied flow, ΣLx,

• Crest elevations of the levees.

4.3.1.6 Program Module for the Design of the Diversion Facility

In this module, the cofferdams and the diversion canal are designed. The program

implements the cost analysis described in Chapter 3 regarding the design of diversion

 71

facility. According to that algorithm, after resolving the locations of the upstream and

downstream cofferdams, the water surface profile computations between these locations

are made for different bottom widths of the diversion canal. This computation repeats the

cost computations for each bottom width of the canal since the cost of the cofferdams also

depend on the results of the water surface profile through diversion canal.

The program starts with a bottom width of 1.0 meter and all the calculations regarding the

total cost of diversion facility are made. Then, the computations are renewed by

incrementing the bottom width by 10 cm. When the program finds the optimum width

which gives minimum cost, it terminates execution. This optimum value yields the design

of the diversion facility with corresponding dimensions (see Figure 4.4).

For the water surface profile computations, the Standard Step Method is used as in the

design of the upstream levees. The required input data for this module are :

• Flood Discharge for which the diversion canal is designed, Q10,

• Minimum river bed elevation at the beginning of the diversion canal, Kta,

• Minimum river bed elevation of river cross-section to which the end of the

diversion canal connects, Ktb,

• The step height at the end of diversion canal, �,

• The length of the diversion canal, Ldc,

• The width of the river at the construction site, LT,

• Horizontal inclination of the trapezoidal diversion canal, z,

• Horizontal inclination of the upstream cofferdam’s upstream slope, Hu,

• Horizontal inclination of the upstream cofferdam’s downstream slope, Hd,

• Cross-section interval for the water surface profile computation, �x,

• Unit cost of excavation, Ce,

• Unit cost of canal lining, Cl,

• Unit cost of expropriation, Cex,

• Unit cost of embankment core construction, Ccore,

• Unit cost of the embankment pervious fill construction, Cper.

The program module gives the following outputs:

• Optimum bottom width of the diversion canal, bop,

 72

• Total cost of the upstream cofferdam of the optimum design, Cuc,

• Total cost of the downstream cofferdam of the optimum design, Cdc,

• Total cost of the diversion canal of the optimum design, Cch,

• Total cost of the diversion facility of the optimum design, CT,

• Water surface profile through the diversion canal of the optimum design.

Figure 4.4. Flowchart for the optimum design of diversion facility.

START

STOP

SUBROUTINE: Input Data

OUTPUTS:
� Optimum bottom width
� Total cost of the diversion facility of

the optimum design
� WSP through diversion canal of the

optimum design

ASSUME b = 1.0 m

SUBROUTINE: Water surface
profile computation through

diversion canal

SUBROUTINE : Cost
Computations

increase the value of b CT(i +1) > CT(i)

ASSUME CT(i) = very high value

NO

YES

 73

4.3.1.7 Program Module for the Riprap Design

The program calculates the size of the riprap and the required riprap length in this module

by applying Equations (3.55) and (3.56), respectively. If the computed length is less than

the minimum required length, then the riprap length is chosen to be the. minimum

required length. Also, the minimum required riprap thickness is divided into the computed

riprap size in order to find the number of rows that the ripraps should be laid over. The

input data of this module are as follows:

• Tailwater depth under the design flood discharge at the riprap section, y3,

• Width of the riprap section, LT,

• Design flood discharge, Q100,

• Mean river bed slope, S0,

• Minimum riprap length, Ld_min,

• Minimum riprap thickness to be laid, hr_min.

The program gives the following outputs:

• Size of riprap, Dr,

• Length of riprap, Ld,

• Number of the rows that the stones should be laid over, nrow.

4.3.1.8 Program Module for the Design of Flushing Pipe

The maximum size of the material to be settled in the settling basin, Dm is taken as input

to the program and the corresponding critical shear stress to facilitate sediment motion is

computed by the program. For the pipe material given as input, the minimum bed slope of

the pipe that will start flushing is calculated. The program selects a bed slope which is

greater than this value. In order to implement this algorithm which is explained in Chapter

3, the program start by assuming a bed slope of pipe which gives the maximum possible

bed slope. This assumption is reasonable, because the maximum bed slope also yields the

minimum pipe length which minimizes the cost of the flushing pipe. The minimum bed

slope of the pipe is obtained in a direction which is from the end of settling basin to the

 74

river cross-section where the alignment of the pipe is perpendicular with the river. By

referring to Figure 4.5, the program calculates the horizontal distance of the pipe, Lp as :

2
1

2
2 LLLp −= (4.9)

where; L2 is the horizontal distance from the start of the intake to the flushing gate at the

end of the settling basin, and L1 is the horizontal projection of L2 on the river direction

which is equal to L2* cos(�i), and �i is the angle between the river and the intake flow

directions as seen in Figure 4.5. The pipe bed slope, S0 is calculated from:

p
o L

ElEl
S 12 −

= (4.10)

in which, El2 and El1 are the elevations at the beginning and end of the pipe, respectively.

Figure 4.5. Definition sketch for the flushing pipe design algorithm.

The program assumes a pipe of minimum diameter, Dp of φ600 for the initial try and

calculates the corresponding friction slope, Sf in the pipe that will start flushing according

to the pipe material characteristics by the use of Manning’s equation. A rough pipe

assumption is made by the program such that Darcy-Weisbach friction factor, fp, is

calculated from the following equation:

75.12log2
1

10 +=
s

p

p k

D

f
 (4.11)

flushing pipe

intake

settling basin

riprap

energy dissipator river flow

�i L1

L2

El2

El1

 75

where ks is a equivalent sand roughness and Dp is the diameter of the pipe. If the

calculated friction slope smaller than the pipe bed slope, then the program stops the

execution such that the flushing gate is designed with this diameter of the pipe. Otherwise,

a greater pipe diameter is assumed until the friction slope in the pipe gets smaller than the

pipe slope. Flowchart of this algorithm is given in Figure 4.6.

Figure 4.6. Flowchart for the design of flushing pipe.

The input data required for the execution of this module are as follows:

• Maximum possible size of the material to be flushed, Dm,

• Minimum diameter of the pipe for the initial guess, Dp,

• Manning’s roughness coefficient of the pipe, npipe,

• Equivalent sand roughness, ks,

• Horizontal distance between the beginning of the intake and the end of the

settling basin, L2,

START

STOP

SUBROUTINE: Input Data

ASSUME DP=minimum value

SUBROUTINE: Compute the friction
slope of pipe, Sf that starts flushing

SUBROUTINE: Compute minimum
possible pipe bed slope, S0

So > Sf increase Dp

OUTPUTS:
� Diameter of the pipe, Dp
� Bed slope of the pipe, S0

YES

NO

 76

• Angle between the river and the intake flow directions, �i,

• Bed elevation at the end of the settling basin, El2,

• Bed elevation where the pipe connects to river, El1.

The main outputs are:

• Diameter of the pipe, Dp,

• Bed slope of the pipe, S0.

4.3.1.9 Program Module for the Seepage Analysis

WINDWEIR implements Lane’s creep analysis for the seepage computations. Details of

this method were presented in the related sections in Chapter 3. In this module, the

dimensions of the foundations of the spillway are needed in order to calculate the

corresponding creep length. For that reason, these dimensions are introduced as input to

the module in addition to the hydraulic input data, such as the upstream and downstream

water elevations for different flood discharges. Having calculated the creep length

according to the foundation dimensions, it is compared with the minimum creep length

which depends on the values of the relative permeability of the soil and the net head

occurring between the upstream and downstream of the diversion weir.

The program does not make any modification if the minimum creep length is not satisfied.

Because there are many alternatives that can be done in order to increase the seepage path,

such as increasing the upstream blanket, sheet piling, cutoff walls or some other

specialized precautions. It is the designer’s responsibility to satisfy the seepage condition

by modifying the dimensions of various structural components to increase the creep length

throughout the successive executions of the program.

This module of the program performs seepage analysis by defining the foundation

geometry in the following way: As it is seen in Figure 4.7, the dimensions of the

foundation are described by seven number of points whose elevations and the horizontal

distances between them are required input data for the program. Besides, the upstream

blanket length, Lub, and the height of sheet piling, Hsp are other necessary inputs.

 77

Figure 4.7. Definition sketch for the foundation dimensions of the spillway and stilling

basin.

The overall input data required for the seepage analysis are listed below:

• Relative permeability of the soil, C,

• Upstream water surface elevations over the spillway for each flood discharge,

K100, K50, K25, K10, K5,

• Water surface elevations at the riprap section for each flood discharge, Kd100, Kd50,

Kd25, Kd10, , Kd5,

• Crest elevation of the spillway Ks,

• Bottom elevation at the riprap section, Kr,

• Foundation geometry as described above.

The module gives the following outcome:

• Total creep length, Lcr,

• Minimum creep length for no piping, C*Hnet,

• The end result if the structure is satisfactory or not for seepage.

4.3.1.10 Program Module for the Stability Analysis

WINDWEIR performs the stability analysis with respect to the following criteria:

• Stability against uplift,

• Stability against sliding and shear,

• Stability against overturning.

Kr

EL7

Hsp

Kd

Ks

EL1 EL2

EL3 EL4 EL5
EL6

Ls L1 L2 L3 L4 L5 Lub

�
Stilling basin

upstream
blanket

Sheet
piling

y2
y3

y1

K

 78

In the stability calculations, the program module follows some general policy. For each

stability analysis, the forces acting on the corresponding structure are calculated and

according to the need of the stability check, also the moments generated by these forces

with respect to critical points of the structure are computed. Then, corresponding safety

criterion is checked whether the structure is safe or not. If the structure is not satisfactory,

the program does not make any alteration in the parameters, such as geometry of the

structure, etc., that affect the safety in order to satisfy the criterion. This is because, there

are many alternatives that can be made to provide the safety. Therefore, the necessary

changes that should be done are left to the designer. The designer is responsible to satisfy

the safety by changing the appropriate variables. For example, foundation elevations can

be changed to increase in the weight of the corresponding structure which increases the

safety. As a result, the designer should make such modifications and performs successive

executions of the program until the desired criteria are satisfied.

4.3.1.10.1 Stability against Uplift

Stability analysis against uplift is carried out both for the stilling basin and settling basin.

Usually a common stilling basin at the toe of the spillway and sluiceway exists as the

result of the energy dissipator calculations. However, sometimes, separate stilling basins

may exist at the downstreams of the spillway and sluiceway. For those cases, foundation

geometries of these stilling basins become different from each other such that stability

calculations against uplift should be performed separately for each part. WINDWEIR

follows the same approach in stability calculations.

Throughout the stability computations against uplift, the factor that threats the safety is the

uplift force produced by seepage phenomenon. Therefore whenever the uplift force needs

to be computed, the corresponding creep length is also computed in order to determine the

uplift force. Therefore, foundation geometry is also required for uplift calculations.

Similar to spillway and its stilling basin’s foundation geometry, intake foundation

geometry is also composed of seven points (see Figure 4.8).

 79

Figure 4.8. Definition sketch for the foundation dimensions of the intake and settling

basin.

The program takes the required minimum factor of safety against uplift as 1.20 by default.

However, the minimum factor of safety can also be input to the module to gain more

flexibility. For all the uplift computations, the factor of safety against uplift is computed

from:

u
u F

W
FS = (4.12)

where, W is the weight of the basin, and Fu is the uplift force acting to the basin.

As seen in Figures 4.9, 4.10 and 4.11, stability against uplift is performed for full

upstream no tailwater case which is the most risky condition in terms of safety against

uplift. The weight of the stilling basin and settling basin are computed by the input data;

geometry of the basins, some of which are calculated as output in the preceding modules.

The seepage path is calculated from point-1 to point-2 as described in Figures 4.9, 4.10

and 4.11. For the full upstream condition, water level is taken to be the crest elevation of

the spillway, Ks, by ignoring the flow over the spillway to be more conservative.

However, for the settling basin, the gate is assumed to e closed with the upstream water

level for design discharge, K100.

If the safety against uplift is not satisfied, the program gives the message, “the filters and

drains beneath the construction should be installed” and applies uplift reduction

Settling basin

EL1
EL2

EL3 EL4 EL5

EL6 EL7

L1 L2 L3 L4 L5 Ls Lub

Hsp

�u �su
�sd

upstream
blanket

Sheet piling

 80

coefficient to the uplift force. Then, the program rechecks the safety criterion. If criterion

is still not satisfied, then the program does not make further modification. As stated

before, the designer is assumed to be responsible for further modifications to provide a

safe solution.

The program module requires the following input data for processing:

• Specific weight of the water, �w,

• Specific weight of the concrete, �conc,

• Uplift reduction coefficient, φ,

• Minimum allowable factor of safety against uplift, FSu,

• Foundation dimensions of the basin,

• Height of the end sill, �,

• Slope of the basin, S0 (required only for settling basin),

• Water elevation in full upstream case,

• Bed elevation at the end of the basin.

The obtained results of the module are:

• Weight of the basin, W,

• Uplift force, Fu,

• Factor of safety against uplift, FSu,

• The end result indicating whether or not the structure is satisfactory against uplift.

4.3.1.10.2 Stability against Shear and Sliding

For the stability against shear and sliding, the overall structure (body + apron) is

considered. The program makes two assumptions in the implementation of the algorithm:

1. The effects of cut off walls and passive resistance are ignored,

2. Spillway body is modeled by an equivalent trapezoidal section.

 81

Figure 4.9. Definition sketch for the stability of spillway stilling basin against uplift.

Figure 4.10. Definition sketch for the stability of sluiceway stilling basin against uplift.

Figure 4.11. Definition sketch for the stability of settling basin against uplift.

Kr

Ks

Stilling basin

1 2

Fu

W

Spillway

u1
u2

L
�

Kst

1 2

Fu

W
Settling basin

Gate closed
K100

intake

L

u1
u2

�
Kst

Kend

Stilling basin

Ks

Kr 1 2

Fu

W
Sluiceways

L

u1 u2

Kst

�

Gate closed

 82

Figure 4.12. Definition sketch for the representation of spillway body with a trapezoidal

section.

The equivalent trapezoidal representation of the spillway body is left to the designer.

Therefore, the program requires the crest thickness of the trapezoidal section, tc as input in

order to describe the trapezoidal section (see Figure 4.12). Then, the program models the

overall structure (body +apron) by ignoring the cut off walls as seen in Figure 4.13.

Figure 4.13. Definition sketch for stability against shear and sliding.

The definitions of the forces shown in Figure 4.13 are listed below:

• W : dead loads,

• Fu : Uplift force,

• Fd : earthquake force,

• Fh : hydrostatic force ,

Kst Fh
Fw

Fuh
Fs W1

Fdh1

Fdh2 Fdh3

Fdv1

Fdv2 Fdv3

W2 W3

Kr

1

Fu

2

3

5

Cut off walls are ignored

Kst

Spillway
Body

4

Ks

tc

 83

• Fw : upstream dynamic force due to earthquake,

• Fs : lateral active earth pressure,

• Fuh : hydrostatic force acting on the subsurface portion of the spillway due to

seepage.

The program does not consider the effect of ice load in the computations. The seepage

path adjacent to the beneath of the modeled body and apron is computed from point-1 to

point-5. According to the calculated creep length, the hydrostatic pressures at points 2, 3

and 4 are computed and the uplift force, Fu, and the subsurface hydrostatic force, Fuh, are

determined with these uplift pressures. The computation how the seepage pressure is

distributed along the seepage path was described clearly in Chapter 3. If the uplift

reduction was applied in the previous module that deals with the stability against uplift,

the program reduces the uplift force in this module also. The minimum factor of safety

against sliding, FSs, is computed from:

H

Vf
FS cf

s Σ
Σ

=
*

 (4.13)

where, fcf : friction coefficient between concrete and foundation,

 ΣV : total net vertical force acting on the overall structure,

ΣH : total net horizontal force acting on the overall structure.

The minimum factor of safety required against shear and sliding, FSss is computed from:

H

AVf
FS sshcf

ss Σ
+Σ

=
τ5.0*

 (4.14)

where, Ash: area of the shear plane,

 τs : allowable shear stress in concrete.

The program takes the values of the minimum factor of safeties as below by default

(Yanmaz, 2001):

• For sliding: 1.2,

• For shear and sliding: 3.0.

 84

4.3.1.10.3 Stability against Overturning

In this module, only the spillway body is checked against overturning with the calculated

forces in the previous module. The program performs overturning checks for the

following conditions as seen in Figures 4.14, 4.15, and 4.16:

• Full upstream with no tailwater case with respect to heel of the spillway,

• Empty upstream case with respect to heel of the spillway,

• Empty upstream case with respect to toe of the spillway.

For each case mentioned above, the moments created by each force are calculated and the

factor of safety against overturning, FS0 is calculated as:

0M

M
FS r

o Σ
Σ

= (4.15)

where,

 ΣMr : total resisting moments,

 ΣMo : total overturning moments.

The program takes the minimum factor of safety to be provided against overturning as 1.5

by default. Having calculated the moments, the base pressures resulting beneath the

spillway body are also checked to be in the allowable range. The base pressures, � , are

calculated by the following equation:

I
cM

A
V

bs

*
�

Σ=σ (4.16)

where,

 ΣV : total net vertical force acting on the base of the spillway,

 M : the net moment about the centerline of the base,

 c : equal to B/2, where B is the base width of the spillway body,

 I : moment of inertia of the spillway base equal to (B3/12),

 Abs : base area of the spillway.

 85

Figure 4.14. Definition sketch for stability against overturning for full upstream no

tailwater case with respect to heel.

Figure 4.15. Definition sketch for stability against overturning for empty upstream case

with respect to heel.

Figure 4.16. Definition sketch for stability against overturning for empty upstream case

with respect to toe.

Kst

Fs W1

Fdh1

Fdv1

heel toe

Kst

Fs W1

Fdh1

Fdv1

heel toe

Kst Fh
Fw

Fuh
Fs W1

Fdh1

Fdv1

Fu

heel toe

Ks

Ks

Ks

 86

The net moment about the centerline of the base can be calculated by the relation

M=ΣV*e , where e is the eccentricity which is equal to (B/2 – x). And the value of x

shown in Figure 4.17 is calculated from:

V
MM

x or

Σ
Σ−Σ

= (4.17)

where the definitions of the variables are as explained before.

Figure 4.17. Definition sketch for calculating the base pressures.

4.3.1.10.4 Stability of the Sidewalls (Design of the Sidewalls)

The program is capable of design of cantilever type reinforced concrete retaining walls as

the sidewalls. For the analysis of reinforced concrete retaining walls, Rankine’s theory of

earth pressure is used (Craig, 1987). Therefore, the program performs the stability analysis

of the sidewalls by using Rankine’s theory. The active earth pressure is calculated by the

active earth pressure coefficient, Ka, as follows:

θ
θ

sin1
sin1

+
−=aK (4.18)

where, 	 is the angle of repose of the soil. And the lateral active earth pressure, pa , in a

cohesionless soil is determined from:

zKp aa **γ= (4.19)

where, �s is the unit weight of the soil and z is the soil depth over the point considered.

ΣΣΣΣV

heel toe

�min
�max

M

B
c e x

 87

The crest elevations of the sidewalls are known from the water level within the energy

dissipation basin. The program determines the crest elevation from the water level at the

end of the hydraulic jump, which is the sequent depth of the jump, y2 as seen in Figure 4.7.

As indicated before, energy dissipators are selected among various alternatives which each

correspond to different flood discharges. Therefore, in a similar way, the maximum value

of y2 among these flow possibilities is selected and incremented by appropriate freeboard

to find the crest elevation of the sidewalls, Ksw, as follows:

)1(2.0 max,2max,2 yyKK ussw +++= (4.20)

where, Kus is the base elevation of the stilling basin and y2,max is the maximum value of y2

(see Figure 4.18).

The program requires the following dimensions of the sidewall that are illustrated in

Figure 4.18 :

• Distance from the soil surface to the ground water table, dgwt,

• Base slab thickness of the sidewall, tslab,

• Thickness of the sidewall, tsw,

• Width of the base slab, Bsw.

Figure 4.18. Definition sketch for the design of the sidewalls.

Stilling
basin

Kus

Ksw

Kbs

GWT

tslab

dgwt

tsw

Bsw

y2,max

 88

The program performs the stability of the sidewall against sliding with these chosen

dimensions and other related data, such as the angle of repose of the soil, 	, unit weight of

the soil, �s, etc. The program takes the minimum required factor of safety against sliding

as 1.5 by default. Also, the base pressures are checked to observe if they are in the

allowable limits. Therefore, all the forces acting on the sidewall are calculated and the

stability checks are performed as an ordinary retaining wall. If the sidewall stability is not

satisfied, then the program has an option of increasing the width of the base slab, Bsw until

the stability is provided.

4.3.1.11 Program Module for the Computation of the Total Cost of the Diversion

Weir

After the overall dimensions of the diversion weir are determined, then the total cost of the

structure is evaluated from the designed dimensions of each structural component. The

following components are involved in the cost computations:

• Intake,

• Spillway,

• Stilling basins,

• Gates,

• Sidewalls,

• Guiding wall,

• Riprap,

• Flushing canal,

• Diversion facility.

For the components; intake, spillway, stilling basins, sidewalls, guiding wall, the concrete

volume, flushing pipe are calculated from the designed dimensions of these structures and

this volume is multiplied by the unit cost of concrete which is an input value for the

program. For the cost of the gates at the intake and sluiceway, the weight of the total steel

used from the gate dimensions is multiplied by the unit cost of steel which is also an input

value for the program. The cost of the riprap is calculated by multiplying the volume of

the riprap by the corresponding unit cost. Finally, all these costs are summed up to find the

total cost of the diversion weir.

 89

The volume of the spillway body is computed from its equivalent trapezoidal

representation given by the user, and the total concrete volume of USBR stilling basins are

determined from the following equations (Seçkiner, 1999):

Volume of USBR type 1 stilling basin for 1 meter slab thickness, Vsb1:

)107.12487.111521.0(1
2

111 −+−= rrsb FFLyV (4.21)

Volume of USBR type 2 stilling basin for 1 meter slab thickness, Vsb2:

)3.4022.0
4

(2
2

2

2
1

2 yy
y

LVsb ++= (4.22)

Volume of USBR type 3 stilling basin for 1 meter slab thickness, Vsb3:

)7.235.0
4

(2
2

4
2

3

2
1

3 yHH
y

LVsb +++= (4.23)

in which,
6

)4(11
3

rFy
H

+
= and

9
)9(11

4
rFy

H
+

=

Volume of USBR type 4 stilling basin for 1 meter slab thickness, Vsb4:

)1.6
75.1

(2
2

4

2
1

4 yH
y

LVsb ++= (4.24)

where, L is the width of the basin, y1 and y2 are the conjugate depths of the hydraulic

jump, respectively, and Fr1 is the Froude number at the toe of the spillway.

4.3.2 Capabilities of the Program

WINDWEIR is developed to perform the design of the diversion weirs having overflow

spillway and sidewise intake. The program has built-in ability to solve two different types

 90

of problem on the subject of the diversion weirs with sidewise intake and overflow

spillway:

1. The overall design of the diversion weir,

2. Optimization of the bottom width of the main irrigation canal.

The program was coded in many sub-modules, each of them was explained in the

preceding sections. All these sub-modules are assembled to perform the overall design of

the diversion weir. Each of these sub-modules are linked in the appropriate order as seen

in the flowchart presented in Figure 4.19.

The program can also find the optimum bottom width of the main irrigation canal by an

iterative cost analysis. The bottom width at the beginning of the irrigation canal, B, is

initialized with 1.0 meter and the overall design of the diversion weir is done. Then, the

value of B is incremented and the corresponding overall design is renewed. For each

bottom width, the designed diversion weir is checked against safety for all conditions as

described in preceding sections. If the diversion weir is safe under all conditions, then this

is an acceptable design to be considered in the cost analysis. This computation is repeated

until the bottom width that yields the minimum cost among the acceptable designs is

found. The flowchart representing this procedure is presented in Figure 4.20.

4.3.3 Numerical Methods Utilized in the Program

Throughout the computation processes, many nonlinear equations are needed to be solved

for the desired variables. There are many numerical techniques in the literature to find the

roots of a nonlinear equation. The most common algorithms which are used in the

computer programming can be listed as follows:

• Bracketing methods

o The bisection method of Bolzano

o Regula Falsi method

• Slope methods

o Newton-Raphson method

o Secant method

 91

Figure 4.19. Flowchart of the overall design of the diversion weir.

START

STOP

MODULE : Input Data

MODULE : Intake design

MODULE : Determination of the Spillway and
Sluiceway Dicharges

MODULE : Design of the Energy Dissipators

MODULE : Seepage Analysis

MODULE : Stability Analysis

MODULE : Design of Sidewalls

MODULE : Design of upstream levees

MODULE : Riprap Design

MODULE : Flushing canal design

MODULE : Design of diversion facility

OUTPUTS:
� Overall dimensions of Diversion weir

MODULE : Cost computations

 92

Figure 4.20. Flowchart representing the optimization of the bottom width at the beginning

of main irrigation canal.

START

STOP

MODULE: Input Data

ASSUME : B=1.0 m.

MODULE : Design of the whole Diversion
weir

Are all checks
satisfied ?

MODULE : Add the current design to the list
of the acceptable designs

CT,dw(i +1) > CT,dw(i)

OUTPUTS:
� Optimum bottom width of the main

irrigation canal, Bop
� List of summary of all trials
� Overall dimensions of the diversion weir

which corresponds to the optimum bottom
width

inrease the value
of B

YES

NO

YES

NO

 93

Among these methods, WINDWEIR implements Secant method to solve the nonlinear

equations expressed through the design of the diversion weir. The reason behind this

choice is that Secant method converges to the root faster when compared with the

bracketing methods. It is also as fast as Newton-Raphson method, but it is an easier

algorithm to implement.

All the nonlinear equations can be solved by using Secant method provided that the

related equation itself along with its first and second derivatives are continuous functions

over the range of its roots. The program calculates all the desired variables, such as critical

depth, yc, normal depth y0, alternate depths, conjugate depths, etc by implementing the

algorithm of Secant method. The details of Secant method can be found in any book

related to numerical analysis.

4.3.4 Visual Interface of the Program

WINDWEIR has visual user-interface as a typical computer program that works under

Microsoft Windows operating system. Overall user-interface of the program is composed

of three groups:

1. User interface related to the input data,

2. User interface related to the computation process,

3. User interface related to the outputs (results).

A brief user-manual of the program in parallel with the main screenshots of the user-

interfaces is presented in Appendix A.

 94

CHAPTER 5

APPLICATION

5.1 Definition of the Problem

Hydraulic design of a diversion weir having overflow spillway and sidewise intake is to

be performed by the use of WINDWEIR. The irrigation demand is diverted by the

sidewise intake which is located at the right bank. The portions of the river at the upstream

of the structure are assumed to be trained to have a suitable trapezoidal cross-section.

Optimum bottom width of the main irrigation canal is determined by making cost analysis

by WINDWEIR. In addition to these computations, the thickness of the stilling basin,

length of the upstream blankets and the height of the sheet piling is varied such that the

variation of the optimum bottom width of the main irrigation canal with respect to these

changes are examined.

5.2 Related Information

The related input information is given as below:

• The irrigation discharge is 4.4 m3/s,

• The bottom slope of the main irrigation canal is 0.0004,

• The bottom elevation at the beginning of the main irrigation canal is 650.10 m,

• The length of the diversion canal is 225 m,

• Relative permeability of soil , C=5,

• Friction coefficient between the structure and foundation, f=0.75,

• Manning’s roughness coefficients are nriver =0.03 , nconc=0.016,

• The specific weights are �conc=24 kN/m3, and �w=10 kN/m3,
• Allowable shear stress between the spillway and foundation =1500 kN/m2,

 95

• Allowable compressive strengths: Concrete: �ac=4000 kN/m2
, and Foundation:

�af=3000 kN/m2,

• The seismic earthquake coefficients: Horizontal: kh=0.06, Vertical: kv=0.03,

• There will be two sluiceways with suitable dimensions,

• Bed elevation at the spillway axis, Kst =649.20 m,

• Bed elevation at the riprap section, Kr=649.07 m.

The water surface profile computations along the river site are performed by HEC-RAS

(USACE, 1998) computer package. The results of these computations which are required

for WINDWEIR as input data are tabulated in Table 5.1.

Table 5.1. Input data obtained from the results of the water surface profile computations

along the river site.

Flood discharge
name

Discharge (m3/s) Water surface elevations at the riprap
section (m)

Q100 384 652.20
Q50 324 651.98
Q25 294 651.85
Q10 254 651.67
Q5 204 651.40

The unit cost values taken in the determination of the total cost of the structure are as

follows:

• Unit cost of the concrete works for the spillway, stilling basin, etc., is taken as

$132.91/m3
 (Seçkiner, 1999),

• Unit cost of steel appurtenances for the steel gates is taken as 6$ /kg,

• Unit cost of riprap is taken as 16$/m3.

5.3 Computations and Discussions

WINDWEIR was executed by inserting the required data presented in the previous

section. Mainly, the program was executed for the following three objectives:

• To examine the effects of the thickness of the stilling basin, tsb,

• To examine the effects of the length of the upstream blanket, Lub,

• To examine the effects of the height of the sheet piling, Hsp.

 96

For the first part, the cost optimization with respect to the bottom width of the main

irrigation canal was made for the following values of the stilling basin slab thicknesses:

tsb=0.8 m, tsb=0.9 m, tsb=1.0 m, tsb=1.1 m All the other variables are taken as constant

through these alternatives in order to examine the effect of the slab thickness of the basin.

For each of these values, the curves of cost versus bottom width of the irrigation canal, B,

are plotted as seen Figure 5.1. The triangle symbol on the curves represents the boundary

of the acceptable designs from which all of the checks including the stability analysis are

satisfied. As expected, smaller bottom widths of the irrigation canal causes higher water

elevations at the upstream of the diversion weir. This causes stability problems as a result

of high hydrostatic and uplift forces. When the slab thickness of the stilling basin is

increased, the acceptable designs start at smaller bottom widths of the main irrigation

canal, because the stability of the stilling basin against uplift is satisfied by increasing the

stilling basin weight. As a result, it is seen from Figure 5.1 that, the acceptable design

limit shifts leftwards by the increase of the thickness of the stilling basin.

For the second part, the effect of the upstream blanket is examined. The length of the

upstream blankets are increased by 4 m. Figure 5.2 shows that the acceptable design limit

shifts leftward by increasing the length of the upstream blanket. As a result, if the length

of the upstream blanket increases, safety of the structure increases because smaller uplift

force is generated due to the increase in creep length.

For the last part of the problem, the effect of the height of the sheet piling is examined for

the values of 2, 4, and 6 m by holding all the other variables as constant. As expected,

deeper sheet piling reduces the uplift forces by increasing the seepage path, resulting in

shifting of the acceptable design limit leftwards. This situation is clearly seen in Figure

5.3.

Among these analyses, it can be resulted that, uplift is an important problem which

threatens stability by the uplift forces. Therefore, the stability against overturning or shear

and sliding play secondary roles in the stability requirements. This is an expected result

that the weight of the spillway body is usually enough to resist against overturning and

sliding tendencies. However, the weight of the basin may not be enough to resist against

the uplift forces due to seepage. As the second result from these analyses, to increase the

slab thickness of the basin is a reasonable precaution to satisfy the stability against uplift.

97

Figure 5.1. Cost versus main irrigation canal width for various thicknesses of stilling basin (Lub=8.0 m, Hsp=2.0 m).

98

Figure 5.2. Cost versus main irrigation canal width for various lengths of upstream blanket (tsb=1.0 m, Hsp=2.0 m).

99

Figure 5.3. Cost versus main irrigation canal width for various heights of sheet piling (tsb=1.0 m, Lub=8.0 m).

 100

 An increase of 10 cm in the thickness of the slab enhance the safety against uplift in a

considerable amount. Also the length of the upstream blanket can be increased to provide

safety against uplift. However, the analyses show that it costs more to increase the length

of the upstream blanket when compared with the increase in the slab thickness of the

basin. Deeper sheet piling results lower cost with respect to upstream blanket for

providing the uplift stability. This is also expected, because seepage force is smaller for

the vertical direction than the horizontal direction. However, it is also not as effective as

increasing of the slab thickness.

After these analyses, a designer comes to the decision stage for the assignment of

appropriate values for the bottom width of the main irrigation canal, the length of the

upstream blanket and the height of the sheet piling. For slab thickness of 0.8 m, the

optimum bottom width of the main irrigation canal is obtained as 6.75 m whereas for the

case with tsb=1.1 m, the optimum bottom width corresponds to 3.0 m. Comparison of these

two curves indicates that 55% reduction of the bottom width would only lead to 1%

increase in the total cost, which is relatively small. Therefore, it seems that selection of 3.0

m of bottom width for the main irrigation canal is a reasonable decision considering the

savings from expropriation cost due to main canal construction. Inspection of Figures 5.1,

5.2 and 5.3 indicates that smallest costs are obtained for fixed values of Lub=8.0 m and

Hsp=2.0 m under various possibilities of slab thicknesses. Therefore, it is advisable to

choose B=3.0 m, Lub=8.0 m, and Hsp=2.0 m.

 101

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

A user friendly computer program which has a visual user-interface is developed for the

optimum design of diversion weirs with reference to all corresponding hydraulic

computations in an integrated manner. It enables the designer to assess various dimensions

of the structure from viewpoints of safety and economy. The program covers the type of

diversion weirs having overflow spillway and sidewise intake.

The program should be executed on the assumption that the site is ready for construction

with excavation, filling and foundation treatments were completed. Also, the soil beneath

the structure is assumed to be homogenous in the design algorithms of WINDWEIR.

Almost all of the structural components of a diversion weir with sidewise intake are

considered by the program. Each component is analyzed for a particular hydraulic

condition with desired conformity and the overall dimensions of this component are

determined by satisfying the necessary stability criteria. Optimum design can be selected

among several alternatives by executing the program in an iterative manner.

The program is also able to perform cost analysis in order to determine the optimum

design with respect to the bottom width at the beginning of the main irrigation canal. The

capabilities of the program enables a designer to solve different types of problems related

to diversion weirs, such as planning and design of irrigation systems. In this manner,

optimum irrigation discharge which corresponds to maximum crop yield of an irrigation

system can be obtained by performing cost analysis including the total costs of both

diversion weir and the irrigation system by successive execution of the program.

The program is specifically developed for diversion weirs having an overflow spillway.

As a suggested further study, the scope of the program can be extended to consider other

types of diversion weirs, such as gated diversion weir and the diversion weirs with drop

 102

and frontal intakes. Also the optimization algorithms can be sophisticated in a manner that

the design of the irrigation system can also be added to the program.

It is believed that a design engineer can evaluate various alternatives for the dimensions of

a diversion weir by successive executions of the program and select the feasible design by

considering the safety and economy. The designer may then achieve the final design

among these alternatives by examining the corresponding outputs of the program by

considering also the local site conditions and the purpose of the project.

 103

REFERENCES

Arslan, M., 1996, “Dolu Gövdeli ve Kapaklı Ba�lamalar”, Civil Engineering Department,
Gazi University, Ankara.

Baban, R. B., 1995. “Design of Small Diversion Weirs”, New York: John Wiley and Sons.

Bayazıt, M., 1971. “Loose Boundary Hydraulics”, Publications of �stanbul Technical
University, No: 835, �stanbul (in Turkish).

Breusers, H.N.C., and Raudkivi, A.J., 1991. “Scouring-Hydraulics Structures Design
Manual 2”, International Association for Hydraulic Research, A. A. Bakema,
Rotterdam/Brookfield, Holland.

Chow, V.T., 1959. “Open Channel Hydraulics.”, McGraw Hill, New York.

Craig, R.F., 1987. “Soil Mechanics”, Melbourne: Van Nostrand Reinhold.

Çeçen K., 1962. “Vah�i Derelerden Su Alma”, Publications of �stanbul Technical
University, No: 485, �stanbul (in Turkish).

Çulcu I., 2000. “Regülatörlerin Hidrolojik ve Morfolojik Yönden �rdelenmesi”,
Unpublished M.Sc. Thesis, Civil Engineering Department, Gazi University, Ankara (in
Turkish).

Davis, H., 2002. “Visual Basic.NET Programming”, Sybex.

DS�, 1998. “Design Criteria for Diversion Weirs”, Ankara (in Turkish): Publications of
the Turkish State Hydraulic Works.

French, R.H., 1987. “Open Channel Hydraulics”, Singapore: McGraw Hill.

Garbrecht, G., 1963. “Frontale Wasserfassung in Geschiebeführenden Flüssen”,
DieBautechnik, No.5, pp.162-167 (in German).

 104

Habermaas, F., 1955. “Sediment Motion in Channel Bifurcations”, Wasserkraft und
Wasserwirthcraft, No.59 and 10 (in German).

Henderson, F.M., 1966. “Open Channel Flow”, New York: Mac Millan Publishing Co.
Inc.

Kashef, A.I., 1987. “Groundwater Engineering”, Singapore: McGraw Hill.

Microsoft Corporation, 2002. “Microsoft Visual Basic .NET Language Reference”,
Microsoft Press, USA.

Özbek, T., 1989, “Yanal Su Alma Yapılı Dolu Gövdeli Ba�lamalarda Ayırma Duvarının
Sürüntü Maddesine Etkisi”, Ankara (in Turkish): Publications of the Turkish State
Hydraulic Works.

Pala, Z.,2003. “Visual Basic .net”, Türkmen Kitabevi, �stanbul (in Turkish).

Seçkiner, G., 1999. ”Computer Assisted Lay-out Design of Concrete Gravity Dams”,
Unpublished M.Sc. Thesis, Civil Engineering Department, Middle East Technical
University, Ankara.

Sungur, T., 1988. “Hydraulic Structures-Vol.2: Diversion Weirs”, Ankara (in Turkish):
Publications of the Turkish State Hydraulic Works.

Sümer, B. M., 1977. “Settlement of Solid Particles in Open Channel Flow”, J. Hydraulics
Division, ASCE, Vol. 103, No. HY11, pp. 323-327.

�endil, U., 1962. “Study of Sediment Conditions at Direct Intakes”, Unpublished M.Sc.
Thesis, CE Dept., METU, Ankara.

USACE, 1998. “HEC-RAS (User’s Manual: Version 2.2)”, US Army Corps of Engineers
Hydrologic Engineering Center, Davis, California.

USBR, 1952. “Canals and related structures.”, Design and Construction manual.(3).

USBR, 1987. “Design of Small Dams”, Third Edition, Washington: Water Resources
Technical Publication.

 105

Yanmaz, A. M., and Cihangir, E., 1996. “A Computer Program for Hydraulic Design of
Diversion Weirs with Lateral Intakes”, Turkish J. of Engineering and Environmental
Sciences, 20, pp. 1-6.

Yanmaz, A. M., and Özaydın, V., 2000. “An approach to Optimum Hydraulic Design of
Diversion Weirs”, CD-ROM Proc. Watershed Management Conference, ASCE, Fort
Collins, Colorado, USA.

Yanmaz, A. M., and Bulut, F., 2001. “Computer Aided Analysis of flow Through River
Bridges”, CD-ROM Proceedings of World Water and Environmental Resources Congress,
ASCE, Orlando, USA.

Yanmaz, A. M., 2001. “Applied Water Resources Engineering”, Metu Press, Ankara.

Yanmaz, A. M., 2002. “Köprü Hidroli�i”, Metu Press, Ankara (in Turkish).

 106

APPENDIX A

USER-MANUAL FOR WINDWEIR

A.1 Main Window of WINDWEIR

After an introductory screen appears, the main window of the program comes to the

screen as seen in Figure A.1. This window is the major user-interface through which all

the desired manipulations are performed. It appears during the running of the program in

the computer memory such that when it is closed, then the program ends. There are five

main menu items on this window. Each menu item includes some sub-menu items, which

are related to the different modules of the program. These major menu items are named as

follows in order of their appearances from the left to the right on the window:

• File,

• Input Data,

• Run,

• Outputs,

• Help.

Figure A.1. Main window of WINDWEIR.

 107

Just at the bottom of the main menu items, there exists a toolbar with some buttons which

are shortcuts for mostly used sub-menu items. At the bottom of the window, there is a

status bar which includes some information about the working program, such as the

project title and the location of the project file on disk.

A.2 Menu Items in WINDWEIR

Since there are many actions that can be performed in the program, the user-interface

contains many menu items. Therefore, all of these menu items are grouped according to

their relation to the sub-modules of the program. Each menu item, which forms the main

user-interface is explained in the following subsections.

A.2.1 Menu Items Related to the File Management

Under the menu item, named “File”, there exists seven sub menu-items (see Figure A.2),

which are all explained as follows:

Figure A.2. Menu items related to the file management.

• New Project : By clicking this menu item, a small window appears in order to

initiate a new project (see Figure A.3). There are two options that can be selected.

The first one is to start a project for the design of the whole diversion weir and the

 108

second one is to start a project for the design of the selected component of the

diversion weir.

Figure A.3. Window for selecting the project type.

After the desired option is selected, the program starts such that all the variables in

the program are assigned to their default values. The following part of the manual

includes the explanations related to the design of whole diversion weir case. For

the other options, the user-manual included in the program should be followed.

• Open Project : By clicking this menu item, a window for the selection of the

project files appears and the project file to be opened is chosen by the user. The

project file extension of WINDWEIR is “.dwr”.

• Save Project : This menu item saves the working project on the program. If this is

the first time to save the project, a new window appears such that the location and

the name of the project file to be saved are required. Otherwise, the project is

saved over the existing project file.

• Save Project As : If the project is desired to be saved on another location than the

existing location, this menu item is used.

 109

• Delete Project : This menu item deletes the selected project from the disk.

• Project Summary : By this window, some information about the project can be

entered, such as the name of the project engineer, title of the project or some

comments about the project.

• EXIT : This menu item ends the program by removing the executing file from the

computer memory.

A.2.2 Menu Items Related to the Input Data

There are many input data required for the design of a diversion weir. Therefore, all of

these are grouped for the sake of simplicity (see Figure A.4). These input data are grouped

under following sub-menu items:

Figure A.4. Menu items related to the input data.

• Main Data : This window groups the input data related to main irrigation canal and

the river. Also the flood discharges for various return periods and the corresponding

tailwater surface elevations are entered through this window.

 110

• Intake Data : The window which appears after clicking on this menu item deals with

the input data related to the design of the intake. This group of data are also

subdivided into two such that one of them groups the input data related to the plan

view of the intake, and the other one groups the input data related to the profile view

of the intake as follows:

o Plan Geometry : The required input data that are illustrated in the plan view

of the intake are entered on this window.

o Profile Geometry : On this window, the required input data that are illustrated

in the profile view of intake are entered. The foundation geometry of the

intake is also described on this window. The foundation elevations can be

entered by the slab thicknesses or by directly the elevation values. The user

selects the desired way by available radio buttons (see Figure A.5).

Figure A.5. Input data window for intake profile.

 111

• Spillway and Sluiceway Data : Similar to the input data related to the design of the

intake, the input data on spillway and sluiceways are also divided into two sub-groups

as cross-section view, and profile view, which are described as follows:

o Cross-section Geometry : The input data illustrated in the cross-section

geometry of the spillway and sluiceways are entered on this window. There is

also an option of viewing the plan view of the spillway and sluiceways on this

window by clicking the corresponding label on the window. In case of the

existence of a bridge over the spillway, which is the default case, the

corresponding checkbox is checked in order to enter the input data related to

the bridge, such as discharge contraction coefficients due to the bridge piers

and abutments, etc. If there is not a bridge over the spillway, the entrance of

the bridge data are not allowed by the program (see Figure A.6).

Figure A.6. Input data window for spillway and sluiceway cross section.

 112

o Profile Geometry : The input data illustrated in the profile view of the

spillway and sluiceways are entered on this window. Similar to the case of

the intake, the foundation geometry can be described by entering the slab

thicknesses or the elevation values. The program assumes the same

foundation profile for the spillway and sluiceways. However, due to the

hydraulic limitations as stated in Chapter 3, these elevations may be different

for spillway and sluiceway foundations.

• Sidewalls : This menu item brings the window related to the design of the sidewalls

on the screen. All the required data are entered on this window. There is also an

option of increasing the bottom width of the retaining wall to satisfy the safety

criteria. If this option is selected, the program increases the bottom width until the

desired safety is satisfied. In that case, the entered bottom width value is assumed to

be the initial value for the iteration. If this option is not selected, then the program

does not make any iteration to satisfy the safety criteria. It only reports the result.

• Upstream levees and appurtenant facilities : This menu item brings the window

related to the input data for the design of the upstream levees and appurtenant

facilities. Input data regarding the design of the ripraps and the flushing pipe are also

entered on this window.

• Diversion facility : Input data related to the design of the diversion facility are entered

on the window appearing after clicking this menu item. The diversion canal design

discharge is selected among the flood discharges, which are entered at the main data

window.

• Material and unit cost data : This window contains three groups of data, which are

material data, safety criteria, and the unit cost values.

After entering the input data, they must be activated by pressing the button named

“APPLY THE DATA”. By doing so, the entered data are assigned to the corresponding

variables of the program. If the data are not activated, the program will give error during

the execution.

 113

A.2.3 Menu Items Related to the Computation

Under the menu item named “Run”, there is only one menu item named as “Start

Computation”. This menu item brings the computation window on the screen. On this

window, there are two options for the computation type. The first one is for analyzing the

whole diversion weir and the second one is for the optimization of the bottom width at the

entrance of the main irrigation canal. The first option is the default one. If it is selected,

the computation is started by pressing the button named “START COMPUTATION” (see

Figure A.7).

Figure A.7.Window for the selection of the computation type.

During the computation process, a window appears, which shows the computation status

by giving appropriate messages (see Figure A.8). If there is an error in the computation,

the corresponding error message is also displayed on this window. The end of the

computation is understood by the message “COMPUTATION ENDS”. This means that

computation is performed successfully without any error and the outputs are ready for

examining. This window is closed by pressing the button named “CLOSE” and then the

main window appears for inspection of the results. This is done through the menu items

grouped in the main menu item named “Outputs”. Details of these menu items related to

outputs are explained in the following section.

 114

Figure A.8. Window related to the computation processes.

A.2.4 Menu Items Related to the Outputs

Since there are many structural components in a diversion weir, there exists many results

related to each component. Therefore, all the results are grouped under the major menu

item named “Outputs” to be examined (see Figure A.9).

Figure A.9. Menu items related to the outputs.

 115

Each window is brought by these menu items which contain three menu items (see Figure

A.10).

Figure A.10. A typical output window displaying printout options.

• Printout : Under this menu item, there are five sub-menu items related to the

print-out capabilities of the program as shown in Figure A.10. They are

summarized as follows:

o Page Setup : This menu item brings a window for changing the page setup

values, such as the orientation of the page and the margins, etc.

o Print Preview : This menu item previews the page to be printed.

o Print : The window showing the print-out features appears by clicking this

menu item. The button named “OK” is pressed on this window to start

printing.

o Print to File : This menu item brings a window for exporting the results to

different formats, such as a text file. “File Txt (.*txt)” from the options

“Save as type” is selected to export the results to a text file by entering the

name and location of the file to be exported. Some additional formats,

such as a web page format are also available for exporting the results.

 116

o Send E-mail : By using this menu item, the results can be sent to another

user via e-mail.

• Tables : This menu item contains available tabular results of the designed

component. Some components may have a single tabular result whereas some

may have more than one tabular result. The desired results can be accessed on the

same window by selecting the corresponding sub-menu item under this menu (see

Figure A.11). All the components have at least one tabular result.

Figure A.11. A typical output window for the selection of an available tabular output.

• Graphs : This menu item brings the list of the graphical outputs for the results of

the corresponding component. However, all the components do not have a

graphical output. In these cases, this menu item becomes unavailable. Figure A.12

shows a typical window for the selection of an available graphical output. When

the desired graphical output is selected, a new window displaying the

corresponding graphical result appears (see Figure A.13).

In the windows displaying graphical outputs, there are also three menu items:

o Printout : By this menu item, the printout of the graph is obtained.

 117

o Choose Graph : This menu item gives the user to select some portions of

the graph or the whole graph.

o Graph Options : Some features of the graph, such as displaying the

gridlines, etc., can be modified by this menu item.

Figure A.12. A typical output window for the selection of an available graphical output.

Figure A.13. A typical window displaying an available graphical output.

 118

All the sub-menu items under the major menu item, “Outputs” on the main window of the

program give the following outputs:

• Intake Hydraulics Computations,
• Spillway and Sluiceway discharges and energy,
• Seepage Analysis results,

• Stability Analysis results,

• Sidewalls Stability Analysis Results,

• Crest elevation of upstream levees,

• Diversion Facility,

• Appurtenant facilities,

• Cost computations,

• Optimization results.

Menu item, “Optimization results”, is only available if the computation for the

minimization of the total cost by optimizing the bottom width at the entrance of the main

irrigation canal is performed.

A.2.5 Menu Items Related to the Help

This menu item is used in order to access help and information about the program. Also

e-mail address of the developer of the program can be obtained on the window appearing

as a result of clicking the sub-menu item, “About” under the major menu item, “Help”.

The developer of the program can be reached through this e-mail address for any

discussion about the program.

 119

APPENDIX B

SOURCE CODE OF WINDWEIR

'*---*
'| CLASS-1: Class1.vb |
'| (Hydraulic Computations) |
'| (This is the core of the program) |
'*---*
Imports System.Math
Imports dweir_code.General_Hydraulic_Functions
Imports dweir_code.General_Hydraulic_Functions.OCH_func
Imports dweir_code.Appurtenant_fac
Imports dweir_code.cost_computations
Imports dweir_code.intake_design
Imports dweir_code.levees_and_diversion
Imports dweir_code.splw_slcw_design
Imports dweir_code.stability_analysis
Imports dweir_code.computations.error_hand
'***
'* General note: all input data classes were implemented *
'* with copy constructors; however other classes were *
'* implemented with copy constructors only when needed. *
'***
Namespace General_Hydraulic_Functions
#Region "Data structures"
 'computation information structure
 <Serializable()> Public Class computation_information 'in order to give information about computation
 Public percent As Single
 Public message As String
 Public state As Byte '0:normal comp, 1:error 2:warning 3:accepted (these will match some colors)
 Public Sub New(ByVal inp As computation_information) 'copy constructor
 Me.percent = inp.percent
 Me.message = inp.message
 Me.state = inp.state
 End Sub
 Public Sub New()
 End Sub
 End Class
 'stilling basin data for determining details of stilling basin type
 <Serializable()> Public Class stillingbasin
 Public type As String
 Public L As Single
 Public delta As Single 'delta is same as delta_usbr; delta is the sill height found from energy equation
(min sill height)
 Public delta_usbr As Single 'delta_usbr is sill heigh proposed by USBR, if deltausbr>delta delta should
be used (because delta is theoretical min value
 Public B As Single
 Public y1 As Single
 Public y2 As Single
 Public y3 As Single
 Public Fr1 As Single
 Public u1 As Single
 Public TW As Single
 Public n_chute_blocks As Integer
 Public n_baffle_piers As Integer
 Public vol_chute_blocks As Single

 120

 Public vol_baffle_piers As Single
 Public Sub New(ByVal inp As stillingbasin) 'copy constr
 Me.type = inp.type
 Me.L = inp.L
 Me.delta = inp.delta
 Me.B = inp.B
 Me.delta_usbr = inp.delta_usbr
 Me.Fr1 = inp.Fr1
 Me.n_baffle_piers = inp.n_baffle_piers
 Me.n_chute_blocks = inp.n_chute_blocks
 Me.TW = inp.TW
 Me.u1 = inp.u1
 Me.vol_baffle_piers = inp.vol_baffle_piers
 Me.vol_chute_blocks = inp.vol_chute_blocks
 Me.y1 = inp.y1
 Me.y2 = inp.y2
 Me.y3 = inp.y3
 End Sub
 Public Sub New()
 End Sub
 End Class
 'point decleration for structure determining
 <Serializable()> Public Class c_point 'coordinate point (in order to not distinguish with graphics point)
 Public x As Single
 Public y As Single
 Sub New(ByVal xx As Single, ByVal yy As Single)
 x = xx
 y = yy
 End Sub
 Public Sub New(ByVal inp As c_point) 'copy constr
 Me.x = inp.x
 Me.y = inp.y
 End Sub
 Public Sub New()
 End Sub
 End Class
#End Region
#Region "Classes"
 <Serializable()> Public Class OCH_func 'declared as public in order to access the module members

'**
'* MODULE DECLERATION: OPEN CHANNEL HYDRAULICS CALCULATIONS *
'**
'* EXPLANATION: -These functions are for "Open Channel Hydraulic Calculations" *
 '* -These functions are for "Trapezoidal Channels" *
 '* (They can be simply used for "Rectangular" and "Triangular" channels *
 '* by giving "B" and "mh" proper values") *
 '* -The ground slope(teta) is assumed to be less than 6 degrees. *
'* (if teta<=6 degrees cos^2>=0.99 meaning that pressure distribution can be *
'* assumed as hydrostatic.) *
'* (P=gamma*y ---> y:water depth (perpendicular to the canal(ground) surface) *
'***
'* WRITTEN BY: KAMIL HAKAN TURAN *
'* DATE:13.08.2003 *
'***
 Public Const g = 9.81 'm/s2
 Public Const nu = 10 ^ -6 'm2/s
 Public Const pwater = 1000 'kg/m3
 'max iteration limits
 Public Shared max_iter = 500
 Public Shared Function f_T(ByVal B As Single, ByVal mh As Single, ByVal y As Single) As Single

 121

 Return (B + 2 * (mh * y))
 End Function
 Public Shared Function f_A(ByVal B As Single, ByVal mh As Single, ByVal y As Single) As Single
 Return ((B + f_T(B, mh, y)) / 2 * y)
 End Function
 Public Shared Function f_P(ByVal B As Single, ByVal mh As Single, ByVal y As Single) As Single
 Return (B + 2 * (((mh * y) ^ 2 + y ^ 2) ^ 0.5))
 End Function
 Public Shared Function f_R(ByVal B As Single, ByVal mh As Single, ByVal y As Single) As Single
 Return (f_A(B, mh, y) / f_P(B, mh, y))
 End Function
 Public Shared Function f_Dy(ByVal B As Single, ByVal mh As Single, ByVal y As Single) As Single
 Return (f_A(B, mh, y) / f_T(B, mh, y))
 End Function
 Public Shared Function f_Qmann(ByVal B As Single, ByVal mh As Single, ByVal y As Single, ByVal n
As Single, ByVal So As Single) As Single
 Return (f_A(B, mh, y) / n * (f_R(B, mh, y) ^ (2 / 3)) * (So ^ 0.5))
 End Function
 Public Shared Function f_flow(ByVal Fr As Single) As String
 If Round(Fr, 2) < 1 Then
 Return "subcritical"
 ElseIf Round(Fr, 2) = 1 Then
 Return "critical"
 Else
 Return "supercritical"
 End If
 End Function
 Public Overloads Shared Function f_u(ByVal Q As Single, ByVal A As Single) As Single
 Return (Q / A)
 End Function
 Public Overloads Shared Function f_u(ByVal Q As Single, ByVal y As Single, ByVal mh As Single,
ByVal B As Single) As Single
 Return (Q / f_A(B, mh, y))
 End Function
 Public Overloads Shared Function f_velhead(ByVal u As Single) As Single
 Return u ^ 2 / (2 * g)
 End Function
 Public Overloads Shared Function f_velhead(ByVal Q As Single, ByVal y As Single, ByVal mh As
Single, ByVal B As Single) As Single
 Return (f_u(Q, y, mh, B) ^ 2) / (2 * g)
 End Function
 Public Shared Function f_HGL(ByVal Kb As Single, ByVal y As Single) As Single
 Return (Kb + y)
 End Function
 Public Shared Function f_EGL(ByVal Kb As Single, ByVal u As Single, ByVal y As Single) As Single
 Return (Kb + y + u ^ 2 / (2 * g))
 End Function
 Public Overloads Shared Function f_Fr(ByVal u As Single, ByVal D As Single) As Single
 Return (u / (g * D) ^ 0.5)
 End Function
 Public Overloads Shared Function f_Fr(ByVal Q As Single, ByVal y As Single, ByVal mh As Single,
ByVal B As Single) As Single
 Return (f_u(Q, y, mh, B) / (g * f_Dy(B, mh, y)) ^ 0.5)
 End Function
 Public Overloads Shared Function f_Sf(ByVal Q As Single, ByVal n As Single, ByVal A As Single,
ByVal R As Single) As Single
 Return ((Q * n) / (A * (R ^ (2 / 3)))) ^ 2
 End Function
 Public Overloads Shared Function f_Sf(ByVal Q As Single, ByVal y As Single, ByVal B As Single,
ByVal mh As Single, ByVal n As Single) As Single
 Return ((Q * n) / (f_A(B, mh, y) * (f_R(B, mh, y) ^ (2 / 3)))) ^ 2

 122

 End Function
 Public Overloads Shared Function f_ynormal(ByVal Q As Single, ByVal B As Single, ByVal mh As
Single, ByVal n As Single, ByVal Sf As Single) As Single
 'Secant method is used to iterate the normal depth.
 Dim y0, y1, temp As Single
 Dim delta0, delta1 As Single
 Dim i As Integer = 0
 y0 = 1000
 y1 = 990
 Do Until Abs(y1 - y0) <= 0.001
 delta0 = Q - f_Qmann(B, mh, y0, n, Sf)
 delta1 = Q - f_Qmann(B, mh, y1, n, Sf)
 temp = y1 - (delta1 * (y1 - y0) / (delta1 - delta0))
 y0 = Round(y1, 3)
 y1 = Round(temp, 3)
 i += 1
 If i >= max_iter Then
 Exit Do
 End If
 Loop
 Return y1
 End Function
 Public Overloads Shared Function f_ynormal(ByVal Q As Single, ByVal B As Single, ByVal mh As
Single, ByVal n As Single, ByVal Sf As Single, ByVal y0 As Single, ByVal y1 As Single, ByVal epsilon As
Single) As Single
 'Secant method is used to iterate the normal depth.
 Dim temp As Single
 Dim delta0, delta1 As Single
 Dim i As Integer = 0
 Do Until Abs(y1 - y0) <= epsilon
 delta0 = Q - f_Qmann(B, mh, y0, n, Sf)
 delta1 = Q - f_Qmann(B, mh, y1, n, Sf)
 temp = y1 - (delta1 * (y1 - y0) / (delta1 - delta0))
 y0 = y1
 y1 = temp
 i += 1
 If i >= max_iter Then
 Exit Do
 End If
 Loop
 Return Round(y1, 3)
 End Function
 Public Overloads Shared Function f_ycritical(ByVal Q As Single, ByVal B As Single, ByVal mh As
Single) As Single
 'Secant method is used to iterate the critical depth.
 Dim y0, y1, temp As Single
 Dim delta0, delta1 As Single
 Dim i As Integer = 0
 y0 = 1000
 y1 = 990
 Do Until Abs(y1 - y0) <= 0.001
 delta0 = Q ^ 2 * f_T(B, mh, y0) - g * f_A(B, mh, y0) ^ 3
 delta1 = Q ^ 2 * f_T(B, mh, y1) - g * f_A(B, mh, y1) ^ 3
 temp = y1 - (delta1 * (y1 - y0) / (delta1 - delta0))
 y0 = Round(y1, 3)
 y1 = Round(temp, 3)
 i += 1
 If i >= max_iter Then
 Exit Do
 End If
 Loop

 123

 Return y1
 End Function
 Public Overloads Shared Function f_ycritical(ByVal Q As Single, ByVal B As Single, ByVal mh As
Single, ByVal y0 As Single, ByVal y1 As Single, ByVal epsilon As Single) As Single
 'Secant method is used to iterate the critical depth.
 Dim temp As Single
 Dim delta0, delta1 As Single
 Dim i As Integer = 0
 Do Until Abs(y1 - y0) <= epsilon
 delta0 = Q ^ 2 * f_T(B, mh, y0) - g * f_A(B, mh, y0) ^ 3
 delta1 = Q ^ 2 * f_T(B, mh, y1) - g * f_A(B, mh, y1) ^ 3
 temp = y1 - (delta1 * (y1 - y0) / (delta1 - delta0))
 y0 = y1
 y1 = temp
 i += 1
 If i >= max_iter Then
 Exit Do
 End If
 Loop
 Return Round(y1, 3)
 End Function
 Public Shared Function f_Sfc(ByVal Q As Single, ByVal B As Single, ByVal mh As Single, ByVal n As
Single) As Single
 Return ((Q * n) / (f_A(B, mh, f_ycritical(Q, B, mh)) * (f_R(B, mh, f_ycritical(Q, B, mh)) ^ (2 / 3)))) ^
2
 End Function
 Public Overloads Shared Function f_Es(ByVal Q As Single, ByVal y As Single, ByVal mh As Single,
ByVal B As Single) As Single
 Return y + ((f_u(Q, y, mh, B)) ^ 2) / (2 * g)
 End Function
 Public Overloads Shared Function f_Es(ByVal Q As Single, ByVal y As Single, ByVal u As Single) As
Single
 Return y + (u ^ 2) / (2 * g)
 End Function
 Public Overloads Shared Function f_Esmin(ByVal Q As Single, ByVal B As Single, ByVal mh As
Single) As Single
 Return f_ycritical(Q, B, mh) + f_Dy(B, mh, f_ycritical(Q, B, mh)) / 2
 End Function
 Public Overloads Shared Function f_Esmin(ByVal ycritical As Single, ByVal Dycritical As Single) As
Single
 Return ycritical + Dycritical / 2
 End Function
 Public Overloads Shared Function f_yalternate(ByVal Es As Single, ByVal Q As Single, ByVal B As
Single, ByVal mh As Single) As Single() 'returns an array
 Dim yalternate(1) As Single
 'Secant method is used to iterate the critical depth.
 Dim y0, y1, temp As Single
 Dim delta0, delta1 As Single
 Dim i As Integer = 0
 y0 = 1000
 y1 = 990
 Do Until Abs(y1 - y0) <= 0.001
 delta0 = Es - f_Es(Q, y0, mh, B)
 delta1 = Es - f_Es(Q, y1, mh, B)
 temp = y1 - (delta1 * (y1 - y0) / (delta1 - delta0))
 y0 = Round(y1, 3)
 y1 = Round(temp, 3)
 i += 1
 If i >= max_iter Then
 Exit Do
 End If

 124

 Loop
 yalternate(0) = y1 'subcritical depth
 'for the second alternate depth (second root of the equation)
 'initialize the variables again
 i = 0
 y0 = 0.01
 y1 = 0.005

 Do Until Abs(y1 - y0) <= 0.001
 delta0 = Es - f_Es(Q, y0, mh, B)
 delta1 = Es - f_Es(Q, y1, mh, B)
 temp = y1 - (delta1 * (y1 - y0) / (delta1 - delta0))
 y0 = Round(y1, 3)
 y1 = Round(temp, 3)
 i += 1
 If i >= max_iter Then
 Exit Do
 End If
 Loop
 yalternate(1) = y1 'supercritical depth
 Return yalternate
 End Function
 Public Overloads Shared Function f_yalternate(ByVal Es As Single, ByVal Q As Single, ByVal B As
Single, ByVal mh As Single, ByVal y00 As Single, ByVal y10 As Single, ByVal y01 As Single, ByVal y11
As Single, ByVal epsilon0 As Single, ByVal epsilon1 As Single) As Single() 'returns an array
 Dim yalternate(1) As Single
 'Secant method is used to iterate the critical depth.
 Dim temp As Single
 Dim delta0, delta1 As Single
 Dim i As Integer = 0
 Do Until Abs(y10 - y00) <= epsilon0
 delta0 = Es - f_Es(Q, y00, mh, B)
 delta1 = Es - f_Es(Q, y10, mh, B)
 temp = y10 - (delta1 * (y10 - y00) / (delta1 - delta0))
 y00 = Round(y10, 3)
 y10 = Round(temp, 3)
 i += 1
 If i >= max_iter Then
 Exit Do
 End If
 Loop
 yalternate(0) = y10
 'for the second alternate depth (second root of the equation)
 'initialize the variables again
 i = 0
 y00 = 0.01
 y11 = 0.005
 Do Until Abs(y10 - y00) <= epsilon1
 delta0 = Es - f_Es(Q, y01, mh, B)
 delta1 = Es - f_Es(Q, y11, mh, B)
 temp = y11 - (delta1 * (y11 - y01) / (delta1 - delta0))
 y01 = Round(y11, 3)
 y11 = Round(temp, 3)
 i += 1
 If i >= max_iter Then
 Exit Do
 End If
 Loop
 yalternate(1) = y11
 Return yalternate
 End Function

 125

 Public Shared Function f_ycentroid(ByVal B As Single, ByVal mh As Single, ByVal y As Single) As
Single
 Return (2 * (y ^ 2 * mh / 2 * y / 3) + B * y * y / 2) / (B * y + y * mh * y)
 End Function
 Public Overloads Shared Function f_Fs(ByVal ycentroid As Single, ByVal Q As Single, ByVal A As
Single) As Single

 Return (ycentroid * A + Q ^ 2 / (g * A))
 End Function
 Public Overloads Shared Function f_Fs(ByVal Q As Single, ByVal B As Single, ByVal mh As Single,
ByVal y As Single) As Single
 Return (f_ycentroid(B, mh, y) * f_A(B, mh, y)) + Q ^ 2 / (g * f_A(B, mh, y))
 End Function
 Public Overloads Shared Function f_Re(ByVal u As Single, ByVal R As Single) As Single
 Return u * R / nu
 End Function
 Public Overloads Shared Function f_Re(ByVal u As Single, ByVal B As Single, ByVal mh As Single,
ByVal y As Single) As Single
 Return u * f_R(B, mh, y) / nu
 End Function
 Public Overloads Shared Function f_Kw1(ByVal Kw0 As Single, ByVal hl As Single, ByVal u0 As
Single, ByVal u1 As Single) As Single
 Return Kw0 + f_velhead(u0) + hl - f_velhead(u1)
 End Function
 Public Overloads Shared Function f_Kw1(ByVal Q As Single, ByVal Kw0 As Single, ByVal hl As
Single, ByVal mh0 As Single, ByVal B0 As Single, ByVal mh1 As Single, ByVal B1 As Single, ByVal y0 As
Single, ByVal y1 As Single) As Single
 Return (Kw0 + f_velhead(f_u(Q, y0, mh0, B0)) + hl - f_velhead(f_u(Q, y1, mh1, B1)))
 End Function
 'hydraulic jump: Fs1=Fs2
 Public Overloads Shared Function f_yconjugate(ByVal y As Single, ByVal B As Single, ByVal mh As
Single, ByVal Q As Single) As Single
 Dim Fs1 As Single = f_Fs(Q, B, mh, y)
 'Secant method is used to iterate the normal depth.
 Dim y0, y1, temp As Single
 Dim delta0, delta1 As Single
 Dim i As Integer = 0
 y0 = 1000
 y1 = 990
 Do Until Abs(y1 - y0) <= 0.001
 delta0 = Fs1 - f_Fs(Q, B, mh, y0)
 delta1 = Fs1 - f_Fs(Q, B, mh, y1)
 temp = y1 - (delta1 * (y1 - y0) / (delta1 - delta0))
 y0 = Round(y1, 3)
 y1 = Round(temp, 3)
 i += 1
 If i >= max_iter Then
 Exit Do
 End If
 Loop
 Return y1
 End Function
 Public Overloads Shared Function f_yconjugate(ByVal y As Single, ByVal B As Single, ByVal mh As
Single, ByVal Q As Single, ByVal y0 As Single, ByVal y1 As Single, ByVal epsilon As Single) As Single
 Dim Fs1 As Single = f_Fs(Q, B, mh, y)
 'Secant method is used to iterate the normal depth.
 Dim temp As Single
 Dim delta0, delta1 As Single
 Dim i As Integer = 0
 Do Until Abs(y1 - y0) <= epsilon
 delta0 = Fs1 - f_Fs(Q, B, mh, y0)

 126

 delta1 = Fs1 - f_Fs(Q, B, mh, y1)
 temp = y1 - (delta1 * (y1 - y0) / (delta1 - delta0))
 y0 = Round(y1, 3)
 y1 = Round(temp, 3)
 i += 1
 If i >= max_iter Then
 Exit Do
 End If
 Loop
 Return y1
 End Function
 Public Overloads Shared Function f_hl_hydjump(ByVal Q As Single, ByVal y1 As Single, ByVal y2 As
Single, ByVal mh As Single, ByVal B As Single) As Single
 Return f_Es(Q, y1, mh, B) - f_Es(Q, y2, mh, B)
 End Function
 Public Overloads Shared Function f_hl_hydjump(ByVal Q As Single, ByVal y As Single, ByVal mh As
Single, ByVal B As Single) As Single
 Dim y2 As Single = f_yconjugate(y, B, mh, Q)
 Return f_Es(Q, y, mh, B) - f_Es(Q, y2, mh, B)
 End Function
 'conjugate depths calculation from head loss
 Public Shared Function f_yconjugatehl(ByVal hl As Single, ByVal B As Single, ByVal mh As Single,
ByVal Q As Single) As Single()
 Dim yconjugate(1) As Single
 'Secant method is used to iterate the normal depth.
 Dim y0, y1, temp As Single
 Dim delta0, delta1 As Single
 Dim i As Integer = 0
 y0 = 0.01
 y1 = 0.005
 Do Until Abs(y1 - y0) <= 0.001
 delta0 = hl - f_hl_hydjump(Q, y0, mh, B)
 delta1 = hl - f_hl_hydjump(Q, y1, mh, B)
 temp = y1 - (delta1 * (y1 - y0) / (delta1 - delta0))
 y0 = Round(y1, 3)
 y1 = Round(temp, 3)
 i += 1
 If i >= max_iter Then
 Exit Do
 End If
 Loop
 yconjugate(0) = y1
 yconjugate(1) = f_yconjugate(yconjugate(0), B, mh, Q)
 Return yconjugate
 End Function
 'some specific functions
 Public Shared Function f_y_hl_type1(ByVal Q As Single, ByVal B1 As Single, ByVal mh1 As Single,
ByVal coeff As Single, ByVal velhead0 As Single, ByVal Es0 As Single) As Single

'***
'* WHEN TO USE THE FUNCTION: *
'* this is a depth calculation from a typical energy equilibrium with head loss *
'* type of head loss function: hl=C*(u0^2-u1^2)/(2*g) *
'***
 'Secant method is used to iterate the depth y1
 Dim y0, y1, temp As Single
 Dim delta0, delta1 As Single
 Dim hl As Single
 y0 = 1000
 y1 = 990
 Dim i As Integer = 0

 127

 Do Until Abs(y1 - y0) <= 0.001
 hl = coeff * (velhead0 - f_velhead(Q, y0, mh1, B1))
 delta0 = Es0 + hl - f_Es(Q, y0, 0, B1)
 hl = coeff * (velhead0 - f_velhead(Q, y1, mh1, B1))
 delta1 = Es0 + hl - f_Es(Q, y1, 0, B1)
 temp = y1 - (delta1 * (y1 - y0) / (delta1 - delta0))
 y0 = Round(y1, 3)
 y1 = Round(temp, 3)
 i += 1
 If i >= max_iter Then
 Exit Do
 End If
 Loop
 Return y1
 End Function
 Public Shared Function f_delta_He(ByVal Q As Single, ByVal B As Single, ByVal y0 As Single) As
Single
 'headloss over a sill: Q=2.88*Bs*(2/3*delta_He^(3/2)+y*delta_He^(0.5))
 ' secant method is used to find delta_He
 Dim delta_He0, delta_He1, temp As Single
 Dim delta0, delta1 As Single
 Dim i As Integer = 0
 '- because of the fact that delta_He must be positive, it converges from point zero
 delta_He0 = 0.005
 delta_He1 = 0.001
 Do Until Abs(delta_He1 - delta_He0) <= 0.001
 delta0 = Q - 2.88 * B * (2 / 3 * (delta_He0 ^ 1.5) + y0 * (delta_He0 ^ 0.5))
 delta1 = Q - 2.88 * B * (2 / 3 * (delta_He1 ^ 1.5) + y0 * (delta_He1 ^ 0.5))
 temp = delta_He1 - (delta1 * (delta_He1 - delta_He0) / (delta1 - delta0))
 delta_He0 = Round(delta_He1, 3)
 delta_He1 = Round(temp, 3)
 i += 1
 If i >= max_iter Then
 Exit Do
 End If
 Loop
 Return delta_He1
 End Function
 Public Shared Function f_Ls(ByVal Kv As Single, ByVal lamda As Single, ByVal r As Single, ByVal y
As Single, ByVal us As Single, ByVal ustar As Single) As Single
 Return (-6 * (us / ustar) * y * Log((1 - r), E) / (Kv * lamda))
 End Function
 Public Overloads Shared Function f_ustar(ByVal R As Single, ByVal So As Single) As Single
 Return (g * R * So) ^ 0.5
 End Function
 Public Overloads Shared Function f_ustar(ByVal y As Single, ByVal B As Single, ByVal mh As Single,
ByVal So As Single) As Single
 Return (g * f_R(B, mh, y) * So) ^ 0.5
 End Function
 'critical sher velocity
 Public Shared Function f_ustarc(ByVal delta As Single, ByVal Dm As Single) As Single
 Dim Dstar As Single
 Dstar = ((delta * g * Dm ^ 3) / (nu ^ 2)) ^ (1 / 3)
 If (Dstar / 2.15) < 1 Then
 Return ((Dstar / 2.15) * nu / Dm)
 ElseIf (((Dstar / 2.5) ^ (5 / 4)) >= 1 And ((Dstar / 2.5) ^ (5 / 4)) <= 10) Then
 Return ((Dstar / 2.5) ^ (5 / 4)) * nu / Dm
 Else
 Return ((Dstar / 3.8) ^ (8 / 5)) * nu / Dm
 End If
 End Function

 128

 Public Shared Function f_beta(ByVal Wf As Single, ByVal Kv As Single, ByVal ustar As Single) As
Single
 Return (Wf / (Kv * ustar))
 End Function
 Public Overloads Shared Function f_lamda(ByVal beta As Single) As Single
 Return (8.87 * beta ^ 1.17)
 End Function
 Public Overloads Shared Function f_lamda(ByVal Wf As Single, ByVal Kv As Single, ByVal ustar As
Single) As Single
 Return (8.87 * f_beta(Wf, Kv, ustar) ^ 1.17)
 End Function
 Public Shared Function f_Wf(ByVal Dm As Single) As Single
 Dim i As Integer = 0
 Dim Wf_m(,) As Single = {{0.15 / 1000, 14.8 / 1000}, {0.3 / 1000, 36.1 / 1000}, {0.4 / 1000, 50 /
1000}, _
 {0.5 / 1000, 64 / 1000}, {0.6 / 1000, 76.4 / 1000}, {0.8 / 1000, 99 / 1000}, {0.9 / 1000, 110 / 1000}, {1
/ 1000, 121 / 1000}, _
 {1.2 / 1000, 137.3 / 1000}, {1.5 / 1000, 166 / 1000}}
 If Dm < 0.00015 Then 'Dm<0.15 mm
 Return (663 * Dm ^ 2)
 ElseIf Dm > 0.0015 Then 'Dm>1.5 mm
 Return (134.5 * Dm ^ 0.5)
 Else
 Do Until (Wf_m(i, 0) >= Dm)
 i += 1
 If i >= max_iter Then
 Exit Do
 End If
 Loop
 Return (Wf_m(i, 1) - (Wf_m(i, 0) - Dm) * (Wf_m(i, 1) - Wf_m(i - 1, 1)) / (Wf_m(i, 0) - Wf_m(i - 1,
0)))
 End If
 End Function
 Public Shared Function f_poly(ByVal F As Single, ByVal c0 As Single, ByVal p0 As Single, ByVal c1
As Single, ByVal p1 As Single, ByVal c2 As Single, ByVal p2 As Single, ByVal c3 As Single, ByVal p3 As
Single, ByVal c4 As Single, ByVal p4 As Single) As Single()
 'roots of a genereral polynomial function
 'F(y)=c0*y^p0+c1*y^p1+c2*y^p2+c3*y^p3+c4*y^p4
 'secant method is used to find the roots
 Dim yresult(1) As Single
 Dim y0, y1, temp As Single
 Dim delta0, delta1 As Single
 Dim i As Integer = 0
 y0 = 1000
 y1 = 990
 Do Until Abs(y1 - y0) <= 0.001
 delta0 = F - (c0 * (y0 ^ c0) + c1 * (y0 ^ c1) + c2 * (y0 ^ c2) + c3 * (y0 ^ c3) + c4 * (y0 ^ c4))
 delta1 = F - (c0 * (y1 ^ c0) + c1 * (y1 ^ c1) + c2 * (y1 ^ c2) + c3 * (y1 ^ c3) + c4 * (y1 ^ c4))
 temp = y1 - (delta1 * (y1 - y0) / (delta1 - delta0))
 y0 = Round(y1, 3)
 y1 = Round(temp, 3)
 i += 1
 If i >= max_iter Then
 Exit Do
 End If
 Loop
 yresult(0) = y1 'first root (subcritical depth)
 'for the second alternate depth (second root of the equation)
 'initialize the variables again
 i = 0
 y0 = 0.01

 129

 y1 = 0.005
 Do Until Abs(y1 - y0) <= 0.001
 delta0 = F - (c0 * (y0 ^ c0) + c1 * (y0 ^ c1) + c2 * (y0 ^ c2) + c3 * (y0 ^ c3) + c4 * (y0 ^ c4))
 delta1 = F - (c0 * (y1 ^ c0) + c1 * (y1 ^ c1) + c2 * (y1 ^ c2) + c3 * (y1 ^ c3) + c4 * (y1 ^ c4))
 temp = y1 - (delta1 * (y1 - y0) / (delta1 - delta0))
 y0 = Round(y1, 3)
 y1 = Round(temp, 3)
 i += 1
 If i >= max_iter Then
 Exit Do
 End If
 Loop
 yresult(1) = y1 'second root (subcritical depth)
 Return yresult
 End Function
 Public Shared Function f_chocking_test(ByVal Q As Single, ByVal y0 As Single, ByVal mh As Single,
ByVal B As Single) As Boolean
 If f_Es(Q, y0, mh, B) < f_Esmin(Q, B, mh) Then
 Return False
 Else
 Return True
 End If
 End Function
 Public Shared Function f_chocking_dz_max(ByVal Q As Single, ByVal y0 As Single, ByVal mh As
Single, ByVal B As Single) As Single
 'only an upward step causes discontinuity (no other section properties changes)
 'in this case y1 becomes critical depth, because energy reduces to min energy
 Return (f_Es(Q, y0, mh, B) - f_Esmin(Q, B, mh))
 End Function
 Public Shared Function f_chocking_B_min(ByVal Q As Single, ByVal mh As Single, ByVal y0 As
Single, ByVal B As Single) As Single
 'only bottom with decrease causes discontinuity (no other section properties changes)
 'secant method is used to find B
 Dim E0 As Single = f_Es(Q, y0, mh, B)
 Dim B0, B1, temp As Single
 Dim delta0, delta1 As Single
 Dim i As Integer = 0
 B0 = 0.01
 B1 = 0.005
 Do Until Abs(B1 - B0) <= 0.001
 delta0 = E0 - f_Esmin(Q, B0, mh)
 delta1 = E0 - f_Esmin(Q, B1, mh)
 temp = B1 - (delta1 * (B1 - B0) / (delta1 - delta0))
 B0 = Round(B1, 3)
 B1 = Round(temp, 3)
 i += 1
 If i >= max_iter Then
 Exit Do
 End If
 Loop
 Return B1
 End Function
 Delegate Function f_type1(ByVal arg1 As Single) As Single
 Delegate Function f_type2(ByVal arg1 As Single, ByVal arg2 As Single) As Single
 Delegate Function f_type3(ByVal arg1 As Single, ByVal arg2 As Single, ByVal arg3 As Single) As
Single
 Delegate Function f_type4(ByVal arg1 As Single, ByVal arg2 As Single, ByVal arg3 As Single, ByVal
arg4 As Single) As Single
 Delegate Function f_type5(ByVal arg1 As Single, ByVal arg2 As Single, ByVal arg3 As Single, ByVal
arg4 As Single, ByVal arg5 As Single) As Single

 130

 Public Shared Function f_implicite_root(ByVal fconst As Single, ByVal f1 As f_type1, ByVal f2 As
f_type2, ByVal f3 As f_type3, ByVal f4 As f_type4, ByVal f5 As f_type5, ByVal c1 As Single, ByVal c2 As
Single, ByVal c3 As Single, ByVal c4 As Single, ByVal c5 As Single, ByVal uargno2 As Byte, ByVal
uargno3 As Byte, ByVal uargno4 As Byte, ByVal uargno5 As Byte, ByVal ParamArray args() As Single) As
Single

'***
'* EXPLANATION: Implicite function solver by taking function arguments *
'* Argument types are function because of flexibility in use of the *
 '* function (in order to make function as a general solver) *
 '* NOTES: in order to use functions as arguments "Delegates(function pointers)" were used. *
'* 5 types of functions were used; f_type1, f_type2,..... *
'* In delegate names, f_typeX; X indicares the no.of arguments of the func. *
'* Paramarray args(); are for the arguments of the delegates used in function *
'* "uargno" are for the unkown parameter which is to be found.In order to *
'* know where the unknown parameter is placed as the argument of the original *
'* function, this argument was used.It is the place of the unknown parameter *
'* in the original function's argument list. *
'***
 'Secant method is used to iterate the depth.
 Dim y0, y1, temp As Single
 Dim delta0, delta1 As Single
 Dim i As Integer = 0
 y0 = 1000
 y1 = 990
 Do Until Abs(y1 - y0) <= 0.001
 delta0 = fconst
 delta1 = fconst
 If c1 <> 0 Then
 delta0 += c1 * f1.Invoke(y0)
 delta1 += c1 * f1.Invoke(y1)
 End If
 If c2 <> 0 Then
 Select Case uargno2
 Case 1
 delta0 += c2 * f2.Invoke(y0, args(0))
 delta1 += c2 * f2.Invoke(y1, args(0))
 Case 2
 delta0 += c2 * f2.Invoke(args(0), y0)
 delta1 += c2 * f2.Invoke(args(0), y1)
 End Select
 End If
 If c3 <> 0 Then
 Select Case uargno3
 Case 1
 delta0 += c3 * f3.Invoke(y0, args(1), args(2))
 delta1 += c3 * f3.Invoke(y1, args(1), args(2))
 Case 2
 delta0 += c3 * f3.Invoke(args(1), y0, args(2))
 delta1 += c3 * f3.Invoke(args(1), y1, args(2))
 Case 3
 delta0 += c3 * f3.Invoke(args(1), args(2), y0)
 delta1 += c3 * f3.Invoke(args(1), args(2), y1)
 End Select
 End If
 If c4 <> 0 Then
 Select Case uargno4
 Case 1
 delta0 += c4 * f4.Invoke(y0, args(3), args(4), args(5))
 delta1 += c4 * f4.Invoke(y1, args(3), args(4), args(5))

 131

 Case 2

 delta0 += c4 * f4.Invoke(args(3), y0, args(4), args(5))
 delta1 += c4 * f4.Invoke(args(3), y1, args(4), args(5))
 Case 3
 delta0 += c4 * f4.Invoke(args(3), args(4), y0, args(5))
 delta1 += c4 * f4.Invoke(args(3), args(4), y1, args(5))
 Case 4
 delta0 += c4 * f4.Invoke(args(3), args(4), args(5), y0)
 delta1 += c4 * f4.Invoke(args(3), args(4), args(5), y1)
 End Select
 End If
 If c5 <> 0 Then
 Select Case uargno5
 Case 1
 delta0 += c5 * f5.Invoke(y0, args(6), args(7), args(8), args(9))
 delta1 += c5 * f5.Invoke(y1, args(6), args(7), args(8), args(9))
 Case 2
 delta0 += c5 * f5.Invoke(args(6), y0, args(7), args(8), args(9))
 delta1 += c5 * f5.Invoke(args(6), y1, args(7), args(8), args(9))
 Case 3
 delta0 += c5 * f5.Invoke(args(6), args(7), y0, args(8), args(9))
 delta1 += c5 * f5.Invoke(args(6), args(7), y1, args(8), args(9))
 Case 4
 delta0 += c5 * f5.Invoke(args(6), args(7), args(8), y0, args(9))
 delta1 += c5 * f5.Invoke(args(6), args(7), args(8), y1, args(9))
 Case 5
 delta0 += c5 * f5.Invoke(args(6), args(7), args(8), args(9), y0)
 delta1 += c5 * f5.Invoke(args(6), args(7), args(8), args(9), y1)
 End Select
 End If
 temp = y1 - (delta1 * (y1 - y0) / (delta1 - delta0))
 y0 = Round(y1, 3)
 y1 = Round(temp, 3)
 i += 1
 If i >= max_iter Then
 Exit Do
 End If
 Loop
 Return y1
 End Function
 '***
 '* SPILLWAY HYDRAULICS FUNCTIONS *
 '***
 Public Overloads Shared Function f_Co(ByVal P As Single, ByVal Ho As Single) As Single
 Dim x As Single = P / Ho
 If (x < 2.8) Then
 Return (-0.0201 * (x ^ 6) + 0.2148 * (x ^ 5) - 0.915 * (x ^ 4) + 1.982 * (x ^ 3) - 2.3081 * (x ^ 2) +
1.414 * (x) + 1.7719)
 Else
 Return 2.18
 End If
 End Function
 Public Overloads Shared Function f_Co(ByVal P_over_Ho As Single) As Single
 Dim x As Single = P_over_Ho
 If (x < 2.8) Then
 Return (-0.0201 * (x ^ 6) + 0.2148 * (x ^ 5) - 0.915 * (x ^ 4) + 1.982 * (x ^ 3) - 2.3081 * (x ^ 2) +
1.414 * (x) + 1.7719)
 Else
 Return 2.18
 End If

 132

 End Function
 Public Overloads Shared Function f_CincCo(ByVal P_over_Ho As Single, ByVal alfa As Single) As
Single
 'alfa in degrees
 Dim x As Single = P_over_Ho
 If alfa = 0 Then
 Return 1
 ElseIf alfa = 18 Then
 Return (1.01 - 0.02 * x + 0.01 * (x ^ 2) - 0.004 * (x ^ 3))
 ElseIf alfa = 33 Then
 Return (1.04 - 0.06 * x + 0.04 * (x ^ 2) - 0.01 * (x ^ 3))
 ElseIf alfa = 45 Then
 Return (1.06 - 0.13 * x + 0.1 * (x ^ 2) - 0.03 * (x ^ 3))
 'should be revised; maybe it is not true to make interpolation or extrapolation
 ElseIf alfa > 0 And alfa < 18 Then
 Return (f_CincCo(x, 18) - (f_CincCo(x, 33) - f_CincCo(x, 18)) / (33 - 18) * (18 - alfa))
 ElseIf (alfa > 18 And alfa < 33) Then
 Return (f_CincCo(x, 18) + (f_CincCo(x, 33) - f_CincCo(x, 18)) / (33 - 18) * (alfa - 18))
 ElseIf alfa > 33 And alfa < 45 Then
 Return (f_CincCo(x, 33) + (f_CincCo(x, 45) - f_CincCo(x, 33)) / (45 - 33) * (alfa - 33))
 ElseIf alfa > 45 Then
 Return (f_CincCo(x, 45) + (f_CincCo(x, 45) - f_CincCo(x, 33)) / (45 - 33) * (alfa - 45))
 End If
 End Function
 Public Overloads Shared Function f_CincCo(ByVal P As Single, ByVal Ho As Single, ByVal alfa As
Single) As Single
 'alfa in degrees
 Dim x As Single = P / Ho
 If alfa = 0 Then
 Return 1
 ElseIf alfa = 18 Then
 Return (1.01 - 0.02 * x + 0.01 * (x ^ 2) - 0.004 * (x ^ 3))
 ElseIf alfa = 33 Then
 Return (1.04 - 0.06 * x + 0.04 * (x ^ 2) - 0.01 * (x ^ 3))
 ElseIf alfa = 45 Then
 Return (1.06 - 0.13 * x + 0.1 * (x ^ 2) - 0.03 * (x ^ 3))
 'should be revised; maybe it is not true to make interpolation or extrapolation
 ElseIf alfa > 0 And alfa < 18 Then
 Return (f_CincCo(x, 18) - (f_CincCo(x, 33) - f_CincCo(x, 18)) / (33 - 18) * (18 - alfa))
 ElseIf (alfa > 18 And alfa < 33) Then
 Return (f_CincCo(x, 18) + (f_CincCo(x, 33) - f_CincCo(x, 18)) / (33 - 18) * (alfa - 18))
 ElseIf alfa > 33 And alfa < 45 Then
 Return (f_CincCo(x, 33) + (f_CincCo(x, 45) - f_CincCo(x, 33)) / (45 - 33) * (alfa - 33))
 ElseIf alfa > 45 Then
 Return (f_CincCo(x, 45) + (f_CincCo(x, 45) - f_CincCo(x, 33)) / (45 - 33) * (alfa - 45))
 End If
 End Function
 Public Shared Function f_CmeCo(ByVal He As Single, ByVal Ho As Single) As Single
 Dim x As Single = He / Ho
 Return (0.03 * (x ^ 3) - 0.14 * (x ^ 2) + 0.32 * (x) + 0.79)
 End Function
 Public Shared Function f_CmaCo(ByVal hd As Single, ByVal d As Single, ByVal He As Single) As
Single
 Dim x As Single = (hd + d) / He
 If (x <= 1.7) Then
 Return (-30.015 * (x ^ 6) + 246.11 * (x ^ 5) - 836.08 * (x ^ 4) + 1506.7 * (x ^ 3) - 1520.1 * (x ^ 2) +
815.14 * (x) - 180.98)
 Else
 Return 1
 End If
 End Function

 133

 Public Shared Function f_CmsCo(ByVal hd As Single, ByVal He As Single) As Single
 Dim x As Single = hd / He
 If (x < 0.7) Then
 Return (-161.95 * (x ^ 6) + 416.35 * (x ^ 5) - 426.22 * (x ^ 4) + 224.51 * (x ^ 3) - 66.258 * (x ^ 2) +
11.212 * (x) + 0.0242)
 Else
 Return 1.0
 End If
 End Function
 Public Shared Function f_Cgate(ByVal d As Single, ByVal H1 As Single) As Single
 Dim x As Single = d / H1
 Return (-13.168 * (x ^ 6) + 29.721 * (x ^ 5) - 25.295 * (x ^ 4) + 9.8034 * (x ^ 3) - 1.5358 * (x ^ 2) -
0.0995 * (x) + 0.7341)
 End Function
 Public Overloads Shared Function f_Kp(ByVal description As String) As Single
 If description = "square" Then
 Return 0.02
 ElseIf description = "rounded" Then
 Return 0.01
 Else
 Return 0
 End If
 End Function
 Public Overloads Shared Function f_Kp(ByVal type As Byte) As Single
 If type = 1 Then 'x=1; square
 Return 0.02
 ElseIf type = 2 Then 'x=2; rounded
 Return 0.01
 Else 'x=3; pointed
 Return 0
 End If
 End Function
 Public Overloads Shared Function f_Ka(ByVal description As String) As Single
 If description = "square" Then
 Return 0.2
 ElseIf description = "rounded" Then
 Return 0.1
 Else
 Return 0
 End If
 End Function
 Public Overloads Shared Function f_Ka(ByVal type As Byte) As Single
 If type = 1 Then
 Return 0.2
 ElseIf type = 2 Then
 Return 0.1
 Else
 Return 0
 End If
 End Function
 'better function, H is needed for check
 Public Overloads Shared Function f_Qsplw(ByVal Ct As Single, ByVal L As Single, ByVal Ho As
Single, ByVal H As Single) As Single
 'no gated (or gates are fully open) overflow type spillway;
 'for this type the total effects are considered .
 If (H >= 0 And L >= 0) Then
 Return Ct * L * Ho ^ (3 / 2)
 Else
 Return 0
 End If
 End Function

 134

 'have some problem, Ho maybe greater but, H may be lower; therefore above func is better, because of
the fact that the H is the real criteria to be considered.
 Public Overloads Shared Function f_Qsplw(ByVal Ct As Single, ByVal L As Single, ByVal Ho As
Single) As Single
 'no gated (or gates are fully open) overflow type spillway;
 'for this type the total effects are considered .
 If (Ho >= 0 And L >= 0) Then
 Return Ct * L * Ho ^ (3 / 2)
 Else
 Return 0
 End If
 End Function
 Public Shared Function f_Qsplw_g(ByVal C As Single, ByVal H1 As Single, ByVal d As Single, ByVal
L As Single) As Single
 'gated overflow spillway; only gate constant C is considered,
 ' but gates are fully open, it is a non-gated overflow spillway
 Dim H2 As Single = H1 - d
 Return 2 / 3 * ((2 * g) ^ 0.5) * C * L * (H1 ^ 1.5 - H2 ^ 1.5)
 End Function
 Public Shared Function f_Qslcw(ByVal C As Single, ByVal A As Single, ByVal h As Single) As Single
 If (h >= 0 And A >= 0) Then
 Return (C * A * (2 * g * h) ^ 0.5)
 Else
 Return 0
 End If
 End Function
 'stilling basin type calculation
 Public Shared Function f_sbtype(ByVal y1 As Single, ByVal y2 As Single, ByVal y3 As Single, ByVal
Q As Single, ByVal B As Single) As stillingbasin
 Dim result As New stillingbasin()
 Dim u1 As Single
 Dim Fr1 As Single
 Dim H3, H4 As Single
 u1 = f_u(Q, y1, 0, B)
 Fr1 = f_Fr(Q, y1, 0, B)

 H3 = (y1 * (4 + Fr1)) / 6
 H4 = (y1 * (9 + Fr1)) / 9
 'these are common for all type
 result.y1 = y1
 result.y2 = y2
 result.y3 = y3
 result.u1 = u1
 result.Fr1 = Fr1
 result.B = B
 If (y2 = y3) Then
 result.type = "I"
 result.L = y1 * (-0.1521 * Fr1 ^ 2 + 11.487 * Fr1 - 12.107)
 result.n_baffle_piers = 0
 result.vol_baffle_piers = 0
 result.n_chute_blocks = 0
 result.vol_chute_blocks = 0
 ElseIf (y2 > y3) Then
 If (Round(Fr1, 1) >= 4.5 And Round(u1, 0) >= 15) Then
 result.type = "II"
 result.L = 4.3 * y2
 result.TW = 0.97 * y2
 result.delta_usbr = 0.2 * y2
 result.delta = f_Es(Q, y2, 0, B) - f_Es(Q, y3, 0, B)
 result.n_baffle_piers = 0
 result.vol_baffle_piers = 0

 135

 result.n_chute_blocks = CInt(B / (2 * y1))
 result.vol_chute_blocks = result.n_chute_blocks * (y1 ^ 3) / 2
 ElseIf (Round(Fr1, 1) >= 4.5 And Round(u1, 0) < 15) Then
 result.type = "III"
 result.L = 2.7 * y2
 result.TW = 0.83 * y2
 result.delta_usbr = H4
 result.delta = f_Es(Q, y2, 0, B) - f_Es(Q, y3, 0, B)
 result.n_baffle_piers = CInt(B / (1.5 * H3))
 result.vol_baffle_piers = result.n_baffle_piers * (0.7 * H3 * 0.75 * H3)
 result.n_chute_blocks = CInt(B / (2 * y1))
 result.vol_chute_blocks = result.n_chute_blocks * (y1 ^ 3) / 2
 ElseIf (Round(Fr1, 1) >= 2.5 And Round(Fr1, 0) < 4.5) Then
 result.type = "IV"
 result.L = 6.1 * y2
 result.TW = y2
 result.delta_usbr = H4
 result.delta = f_Es(Q, y2, 0, B) - f_Es(Q, y3, 0, B)
 result.n_baffle_piers = 0
 result.vol_baffle_piers = 0
 result.n_chute_blocks = CInt(B / (3.5 * y1))
 result.vol_chute_blocks = result.n_chute_blocks * (4 * y1 ^ 3) / 2
 Else
 result.type = "NA"
 result.L = 0
 result.TW = 0
 result.delta_usbr = 0
 result.delta = 0
 result.n_baffle_piers = 0
 result.vol_baffle_piers = 0
 result.n_chute_blocks = 0
 result.vol_chute_blocks = 0
 End If
 ElseIf (y2 < y3) Then
 result.type = "V"
 result.L = 0
 result.TW = 0
 result.delta_usbr = 0
 result.delta = 0
 result.n_baffle_piers = 0
 result.vol_baffle_piers = 0
 result.n_chute_blocks = 0
 result.vol_chute_blocks = 0
 End If
 Return result
 End Function
 'seepage analysis (Lane's creep analysis) functions
 Public Shared Function f_Lcreep(ByVal crpath() As c_point) As Single
 'crpath:creep_path
 Dim i As Integer
 Dim alfa As Single
 Dim Lcr As Single = 0 ' creep length
 For i = 0 To (crpath.GetUpperBound(0) - 1) 'last point is boundary (not a length)
 'alfa in degrees
 alfa = Abs(Atan((crpath(i + 1).y - crpath(i).y) / (crpath(i + 1).x - crpath(i).x)) * 360 / (2 * PI))
 If alfa >= 45 Then 'vertical
 Lcr = Lcr + Abs(crpath(i + 1).y - crpath(i).y)
 Else 'horizantal
 Lcr = Lcr + Abs(crpath(i + 1).x - crpath(i).x) / 3
 End If
 Next

 136

 Return Lcr
 End Function
 'Darcy_Weissbach friction coeff. functions
 Public Shared Function f_f_roughp(ByVal Dp As Single, ByVal ks As Single) As Single
 Dim r As Single = Dp / 2
 Return (1 / (2 * Log10(r / ks) + 1.75)) ^ 2
 End Function
#Region "Polynomial calculations"
 Public Shared Function f_poly_A(ByVal points() As c_point) As Single
 'Assume that the last point is connected to the first point (there is need to define the first point as the
last point again)
 'this function may return area + or - acc to the direction used
 'area is + in ccw, - in cw directions.
 ' + or - value is needed for centroid calculations therefore another function taking the absolute was
defined
 Dim i As Integer
 Dim area As Single = 0
 For i = 0 To points.GetUpperBound(0) - 1
 area = area + (points(i).x * points(i + 1).y - points(i + 1).x * points(i).y)
 Next
 area = area / 2
 Return area
 End Function
 Public Shared Function f_poly_area(ByVal points() As c_point) As Single
 'this function returns the abs area of polygon
 Return Abs(f_poly_A(points))
 End Function
 Public Shared Function f_poly_centr(ByVal points() As c_point) As c_point
 'Asssume that the points of the polygon are arranged in clockwise
 'Assume that the last point is connected to the first point (no need to define the first point twice)
 Dim i As Integer
 Dim centr As New c_point(0, 0)
 Dim A As Single
 A = f_poly_A(points)
 For i = 0 To points.GetUpperBound(0) - 1
 centr.x = centr.x + (points(i).x + points(i + 1).x) * (points(i).x * points(i + 1).y - points(i + 1).x *
points(i).y)
 centr.y = centr.y + (points(i).y + points(i + 1).y) * (points(i).x * points(i + 1).y - points(i + 1).x *
points(i).y)
 Next

 centr.x = centr.x / (6 * A)
 centr.y = centr.y / (6 * A)
 Return centr
 End Function
#End Region
 Public Shared Function f_trap_centr_d_from_l(ByVal b As Single, ByVal a As Single) As Single
 'typical trapezoid cenroid with a smaller width whereas b greater width
 'l is the vertical length of trap
 Return (a ^ 2 + b ^ 2 + a * b) / (3 * (a + b))
 End Function
 Public Shared Function f_trap_centr_d_from_b(ByVal b As Single, ByVal a As Single, ByVal l As
Single) As Single
 'typical trapezoid cenroid with a smaller width whereas b greater width
 Return (l * (2 * a + b)) / (3 * (a + b))
 End Function
 'for computation messages
 Public Shared Function f_comp_inf(ByVal percent As Single, ByVal message As String, ByVal state As
Byte) As computation_information
 Dim result As New computation_information()
 result.percent = percent

 137

 result.message = message
 result.state = state
 Return result
 End Function
 End Class
 <Serializable()> Public Class xsec_hyd
 '***
 '* CLASS DECLERATION: X-SECTIONAL HYDRAULIC CALCULATIONS *
 '***
 '* EXPLANATION: 3 types of problem can be solved *
 '* Each type is explained in "Construction Region" of the class. *
 '* Each constructor corresponds to 1 type of problem. *
 '***
 '* GIVEN : acc.to the type of problem, it changes (look at "Constructor Region") *
 '***
 '* OUTPUT: All hydraulic characteristic of that cross-section. *
 '***
 '* WRITTEN BY: KAMIL HAKAN TURAN *
 '* DATE:13.08.2003 *
 '***
#Region "Private variables: (class core)"
 Private prb_type As Byte 'to indicate the type of problem
 Private y As Single 'normal depth as section)
 Private B As Single
 Private mh As Single
 Private n As Single
 Private A As Single
 Private P As Single
 Private T As Single
 Private Dy As Single
 Private R As Single
 Private Sf As Single
 Private Q As Single
 Private u As Single
 Private vel_head As Single
 Private Hgl As Single
 Private Egl As Single
 Private ycritical As Single
 Private Fr As Single
 Private flow As String
 Private Kb As Single 'bottom elevation of x-section(ground elevation)
 Private Sfc As Single
 Private Es As Single
 Private Esmin As Single
 Private km_xsec As Single 'horizantal cross section km (for functionality of other computations)
 Private tslab As Single 'slab thickness for concrete volume comp
 Private twall As Single 'wall thickness for concrete volume comp
#End Region
#Region "class interface"
 Private Sub compute()
 Select Case prb_type
 Case 1
 Q = f_Qmann(B, mh, y, n, Sf)
 Case 2
 y = f_ynormal(Q, B, mh, n, Sf)
 Case 3
 Sf = f_Sf(Q, y, B, mh, n)
 End Select
 T = f_T(B, mh, y)
 A = f_A(B, mh, y)
 P = f_P(B, mh, y)

 138

 R = A / P
 Dy = A / T
 u = f_u(Q, A)
 vel_head = f_velhead(u)
 Fr = f_Fr(u, Dy)
 flow = f_flow(Fr)
 ycritical = f_ycritical(Q, B, mh)
 Es = f_Es(Q, y, u)
 Esmin = f_Esmin(Q, B, mh)
 Hgl = f_HGL(Kb, y)
 Egl = f_EGL(Kb, u, y)
 Sfc = f_Sfc(Q, B, mh, n)
 End Sub
#End Region
#Region "Poperties section: "
 '"_p" hold for the word "Property"; read and write allowed
 '"_pro" hold for the word "Property"; Read Only....pro
 '"_pwo" hold for the word "Property"; Write Only...pwo
 Public Property tslab_p() As Single
 Set(ByVal Value As Single)
 tslab = Value
 End Set
 Get
 Return tslab
 End Get
 End Property
 Public Property twall_p() As Single
 Set(ByVal Value As Single)
 twall = Value
 End Set
 Get
 Return twall
 End Get
 End Property
 Public Property km_xsec_p() As Single
 Set(ByVal Value As Single)
 km_xsec = Value
 End Set
 Get
 Return km_xsec
 End Get
 End Property
 Public ReadOnly Property prb_type_pro() As Byte
 Get
 Return prb_type
 End Get
 End Property
 Public ReadOnly Property y_pro() As Single
 Get
 Return y
 End Get
 End Property
 Public ReadOnly Property B_pro() As Single
 Get
 Return B
 End Get
 End Property
 Public ReadOnly Property mh_pro() As Single
 Get
 Return mh
 End Get

 139

 End Property
 Public ReadOnly Property n_pro() As Single
 Get
 Return n
 End Get
 End Property
 Public ReadOnly Property A_pro() As Single
 Get
 Return A
 End Get
 End Property
 Public ReadOnly Property P_pro() As Single
 Get
 Return P
 End Get
 End Property
 'not important for hydraulics, only to determine canal structure
 'freeboard
 Public ReadOnly Property f_pro() As Single
 Get
 Return 0.2 * (1 + y)
 End Get
 End Property
 'canal top elevation
 Public ReadOnly Property Kt_pro() As Single
 Get
 Return (f_pro + y + Kb)
 End Get
 End Property
 'canal height
 Public ReadOnly Property z_pro() As Single
 Get
 Return (Kt_pro - Kb_pro)
 End Get
 End Property
 Public ReadOnly Property T_pro() As Single
 Get
 Return T
 End Get
 End Property
 Public ReadOnly Property Dy_pro() As Single
 Get
 Return Dy
 End Get
 End Property
 Public ReadOnly Property R_pro() As Single
 Get
 Return R
 End Get
 End Property
 Public ReadOnly Property Sf_pro() As Single
 Get
 Return Sf
 End Get
 End Property
 Public ReadOnly Property Q_pro() As Single
 Get
 Return Q
 End Get
 End Property
 Public ReadOnly Property u_pro() As Single

 140

 Get
 Return u
 End Get
 End Property
 Public ReadOnly Property vel_head_pro() As Single
 Get
 Return vel_head
 End Get
 End Property
 Public ReadOnly Property Hgl_pro() As Single
 Get
 Return Hgl
 End Get
 End Property
 Public ReadOnly Property Egl_pro() As Single
 Get
 Return Egl
 End Get
 End Property
 Public ReadOnly Property ycritical_pro() As Single
 Get
 Return ycritical
 End Get
 End Property
 '
 Public ReadOnly Property Fr_pro() As Single
 Get
 Return Fr
 End Get
 End Property
 Public ReadOnly Property flow_pro() As String
 Get
 Return flow
 End Get
 End Property
 Public ReadOnly Property Kb_pro() As Single
 Get
 Return Kb
 End Get
 End Property
 Public ReadOnly Property Sfc_pro() As Single
 Get
 Return Sfc
 End Get
 End Property
 Public ReadOnly Property Es_pro() As Single
 Get
 Return Es
 End Get
 End Property
 Public ReadOnly Property Esmin_pro() As Single
 Get
 Return Esmin
 End Get
 End Property
 Public ReadOnly Property Aconc_sides_pro() As Single 'concrete area
 Get
 Return (Sqrt(1 + mh ^ 2) * z_pro * 2 * twall)
 End Get
 End Property
 Public ReadOnly Property Aconc_slab_pro() As Single 'concrete area

 141

 Get
 Return B * tslab
 End Get
 End Property
 Public ReadOnly Property Aconc_tot_pro() As Single 'concrete area
 Get
 Return (Sqrt(1 + mh ^ 2) * z_pro * 2 * twall) + B * tslab
 End Get
 End Property
#End Region
#Region "Constructor section:"
 'copy constructor
 Public Sub New(ByVal inp As xsec_hyd)
 Me.A = inp.A
 Me.B = inp.B
 Me.Dy = inp.Dy
 Me.Egl = inp.Egl
 Me.Es = inp.Es
 Me.Esmin = inp.Esmin
 Me.flow = inp.flow
 Me.Fr = inp.Fr
 Me.Hgl = inp.Hgl
 Me.Kb = inp.Kb
 Me.km_xsec = inp.km_xsec
 Me.mh = inp.mh
 Me.n = inp.n
 Me.P = inp.P
 Me.prb_type = inp.prb_type
 Me.Q = inp.Q
 Me.R = inp.R
 Me.Sf = inp.Sf
 Me.Sfc = inp.Sfc
 Me.T = inp.T
 Me.tslab = inp.tslab
 Me.twall = inp.twall
 Me.u = inp.u
 Me.vel_head = inp.vel_head
 Me.y = inp.y
 Me.ycritical = inp.ycritical
 End Sub
 Public Sub New(ByVal water_depth As Double, ByVal horizantal_inclination As Double, ByVal
bottom_width As Double, ByVal manning_n As Double, ByVal friction_slope As Double, Optional ByVal
bottom_elevation As Double = 0.0, Optional ByVal xsection_km As Double = 0.0, Optional ByVal inp_tslab
As Double = 0, Optional ByVal inp_twall As Double = 0)
 '**
 '* PROBLEM TYPE-1 : MANNING DISCHARGE CALCULATION *
 '* GIVEN: xsection data,normal depth *
 '* OUTPUT: Q: Manning discharge *
 '**
 prb_type = 1
 y = water_depth
 mh = horizantal_inclination
 B = bottom_width
 n = manning_n
 Sf = friction_slope
 Kb = bottom_elevation
 km_xsec = xsection_km
 tslab = inp_tslab
 twall = inp_twall
 Me.compute()
 End Sub

 142

 Public Sub New(ByVal discharge As Double, ByVal horizantal_inclination As Double, ByVal
bottom_width As Double, ByVal manning_n As Double, ByVal friction_slope As Double, ByVal description1
As Boolean, Optional ByVal bottom_elevation As Double = 0.0, Optional ByVal xsection_km As Double =
0.0, Optional ByVal inp_tslab As Double = 0, Optional ByVal inp_twall As Double = 0)
 ''**
 '* PROBLEM TYPE-2 : NORMAL DEPTH CALCULATION *
 '* GIVEN: x-section data, discharge *
 '* OUTPUT: y: normal depth *
 '**
 prb_type = 2
 Q = discharge
 mh = horizantal_inclination
 B = bottom_width
 n = manning_n
 Sf = friction_slope
 Kb = bottom_elevation
 km_xsec = xsection_km
 tslab = inp_tslab
 twall = inp_twall
 Me.compute()
 End Sub
 Public Sub New(ByVal discharge As Double, ByVal water_depth As Double, ByVal
horizantal_inclination As Double, ByVal bottom_width As Double, ByVal manning_n As Double, ByVal
description1 As Boolean, ByVal description2 As Boolean, Optional ByVal bottom_elevation As Double = 0.0,
Optional ByVal xsection_km As Double = 0.0, Optional ByVal inp_tslab As Double = 0, Optional ByVal
inp_twall As Double = 0)
 ''**
 '* PROBLEM TYPE-3 : FRICTION SLOPE CALCULATION *
 '* GIVEN: x-section data, discharge,normal depth *
 '* OUTPUT: Sf: friction slope *
 '**
 prb_type = 3
 Q = discharge
 y = water_depth
 mh = horizantal_inclination
 B = bottom_width
 n = manning_n
 Kb = bottom_elevation
 km_xsec = xsection_km
 tslab = inp_tslab
 twall = inp_twall

 Me.compute()
 End Sub
#End Region
 End Class
 <Serializable()> Public Class ws_profile
 'this class is only for trapezoidal type prismatic channels (bed elev and xsec constant)
 'for the time being it is only for subcritical flows (mild slope); calculation; from d/s to u/s
 Public Shared max_iter_sstep As Integer = 500
 Public Shared max_iter_wsp_ynormal As Integer = 500
 Public Shared max_iter_wsp_Lx As Integer = 500
#Region "Private variables"
 'input and output
 Private xsec(0) As xsec_hyd 'initially 1 xsec, in need it will be increased dynamically (redim)
 Private err(0) As Single
 Private H2a As Single 'second xsec head (1st eqn)
 Private H2b As Single 'second xsec head (2nd eqn)
 Private dx As Single
 Private Lx As Single
 Private y_start As Single

 143

 Private y_end As Single
 Private prb_type2 As Boolean
 Private Lx_end As Single
 Private y_end_comp As Single
 Private So As Single 'channel bed slope const, req to find the elev of new xsec
 Private Sf_ave As Single 'average friction slope btw sections
 'in order to use this function in other class it was declared as public
 Public Shared Function f_dy2(ByVal inp_err As Single, ByVal inp_dx As Single, ByVal inp_Fr2 As
Single, ByVal inp_Sf2 As Single, ByVal inp_R2 As Single) As Single
 Return (inp_err / (1 - inp_Fr2 ^ 2 + 3 * inp_Sf2 * inp_dx / (2 * inp_R2)))
 End Function
 Private Sub calculate_y2(ByVal i As Integer)
 Dim y_assumed As Single
 Dim dy2 As Single
 Dim iter As Integer = 0
 'a big assumed value,from d/s to u/s y2 will be greater than the preceding
 y_assumed = xsec(i).y_pro + 10
 err(i) = 1000 'initially big value
 Do Until (Abs(err(i)) <= 0.0001)
 xsec(i + 1) = New xsec_hyd(xsec(0).Q_pro, y_assumed, xsec(0).mh_pro, xsec(0).B_pro,
xsec(0).n_pro, True, True, xsec(i).Kb_pro + So * dx, xsec(i).km_xsec_p - dx)
 H2a = xsec(i + 1).Egl_pro
 Sf_ave = (xsec(i).Sf_pro + xsec(i + 1).Sf_pro) / 2
 H2b = xsec(i).Egl_pro + Sf_ave * dx
 err(i) = H2a - H2b
 dy2 = f_dy2(err(i), dx, xsec(i + 1).Fr_pro, xsec(i + 1).Sf_pro, xsec(i + 1).R_pro)
 y_assumed -= dy2
 iter += 1
 If iter >= max_iter_sstep Then
 Exit Do
 End If
 Loop
 End Sub
#End Region
#Region "Class interface"
 Private Sub compute()
 Dim i As Integer
 'check the input (the program works for subcritical regime)
 If (xsec(0).flow_pro <> "supercritical") Then
 If prb_type2 = False Then
 If (y_end > xsec(0).y_pro) Then
 i = 0
 Lx = 0
 Do Until (Round(xsec(i).y_pro, 3) >= Round(y_end, 3))
 ReDim Preserve xsec(xsec.GetUpperBound(0) + 1)
 ReDim Preserve err(xsec.GetUpperBound(0))
 calculate_y2(i)
 Lx += dx
 i += 1
 If i >= max_iter_wsp_ynormal Then
 Exit Do
 End If
 Loop
 y_end_comp = xsec(i).y_pro
 Else
 i = 0
 Lx = 0
 Do Until (Round(xsec(i).y_pro, 3) <= Round(y_end, 3))
 ReDim Preserve xsec(xsec.GetUpperBound(0) + 1)
 ReDim Preserve err(xsec.GetUpperBound(0))
 calculate_y2(i)

 144

 Lx += dx
 i += 1
 If i >= max_iter_wsp_ynormal Then
 Exit Do
 End If
 Loop
 y_end_comp = xsec(i).y_pro
 End If
 Else
 Lx = 0
 Do Until (Lx >= Lx_end)
 ReDim Preserve xsec(xsec.GetUpperBound(0) + 1)
 ReDim Preserve err(xsec.GetUpperBound(0))
 calculate_y2(i)
 Lx += dx
 i += 1
 If i >= max_iter_wsp_Lx Then
 Exit Do
 End If
 Loop
 y_end_comp = xsec(i).y_pro
 End If
 End If
 End Sub
#End Region
#Region "Properties"
 Public ReadOnly Property xsec_pro() As xsec_hyd()
 Get
 Return xsec
 End Get
 End Property
 Public ReadOnly Property err_pro() As Single()
 Get
 Return err
 End Get
 End Property
 Public ReadOnly Property y_end_comp_pro() As Single
 Get
 Return y_end_comp
 End Get
 End Property
 Public ReadOnly Property Lx_pro() As Single
 Get
 Return Lx
 End Get
 End Property
#End Region
#Region "Constructors"
 Public Sub New(ByVal inp_Q As Single, ByVal inp_n As Single, ByVal inp_B As Single, ByVal inp_So
As Single, ByVal inp_Kb As Single, ByVal inp_mh As Single, ByVal inp_y_start As Single, ByVal
inp_y_end As Single, ByVal inp_dx As Single)
 'computation is made for a boundary depth; therefore Lx(length when this depth occurs) calculated
 xsec(0) = New xsec_hyd(inp_Q, inp_y_start, inp_mh, inp_B, inp_n, True, True, inp_Kb, 0)
 y_start = inp_y_start
 y_end = inp_y_end
 So = inp_So
 dx = inp_dx
 prb_type2 = False
 Me.compute()
 End Sub

 145

 Public Sub New(ByVal inp_Q As Single, ByVal inp_n As Single, ByVal inp_B As Single, ByVal inp_So
As Single, ByVal inp_Kb As Single, ByVal inp_mh As Single, ByVal inp_y_start As Single, ByVal
inp_Lx_end As Single, ByVal inp_dx As Single, ByVal inp_Lx_type As Boolean) 'prb_type is only for
making overloading
 'computation is made for a a determined length ; therefore y(wdepth) at that length loc is calculated.
 xsec(0) = New xsec_hyd(inp_Q, inp_y_start, inp_mh, inp_B, inp_n, True, True, inp_Kb, 0)
 y_start = inp_y_start
 So = inp_So
 dx = inp_dx
 Lx_end = inp_Lx_end
 prb_type2 = True
 Me.compute()
 End Sub
#End Region
 End Class
#End Region
End Namespace
Namespace intake_design
#Region "data structures"
 <Serializable()> Public Class intake_input_data
 Public Qi As Single ': irrigation discharge
 Public Bop As Single ': optimum bottom width of main irrigation canal
 Public So As Single ': bottom slope of main irrigation canal
 Public mh As Single ': vertical slope of side of trapezoidal canal (main irrigation canal)
 Public n As Single ': Manning's roughness coeff.for lined canals (main irrigation canal and
intake structure)
 Public K0 As Single ': bottom elevation at the beginning of the main irrigation canal
 Public B1 As Single ': bottom width at section-1 (rect.intake canal) B1~2*Bop
 Public B1_inc As Single ': increment value for B1
 Public t As Single ': thickness of piers at section-2
 Public np As Integer ': no of piers at section-2
 Public Bs As Single ': channel width at section-3
 Public Bs_inc As Single ': Bs increment value
 Public Sd As Single ': Settling basin slope
 Public Dm As Single ': min size of sediment to be settled in settling basin
 Public r As Single ': sediment removal ratio
 Public np2 As Integer ': no of piers at section-7 (entrance of the intake)
 Public t2 As Single ': thickness of piers at section-7 (entrance of the intake)
 Public t_tr As Single ': thickness of rackbars at the entrance of intake
 Public n_tr As Integer ': number of rackbars
 Public Dfo As Single ': max. diameter of floating objects to be allowed to enter the intake
 Public dsu As Single ': upward sill height (at section-4)
 Public dsu_max As Single ': max.allowable value for upward sill height (at section-4)
 Public dsu_inc As Single ': increment value for calculating upward sill height (at section-4)
 Public Ls As Single ': length of settling basin
 Public Ls_inc As Single ': increment value for calculation of Ls
 Public dsd As Single ': downward step height at section-6
 Public dsd_inc As Single ': increment value for calculation of downward step height
 Public du_min As Single ': min.allowable height for upward step (infront of intake)
 Public du_max As Single ': max.allowable height for upward step (infront of intake)
 Public dHes As Single ': minorloss above dsd (default=0.02)
 Public Cc As Single ': headloss coeff through the curvature (default~0.2)
 Public Cyc As Single ': coeff of critical depth at section-1 in order to calculate limitation
(default=1.1)
 Public Ct As Single ': headloss coeff. through the transition btw section-0 and section-1
(default=0.3 for straight transition)
 Public K As Single ': headloss coeff.through the gate (orifice constant) (at section-3 to section-4
and at entrance of intake)
 Public Kv As Single ': the Von Korman constant for calculation of Ls (settling basin length)
 Public u4_max As Single ': max allowable velocity for settlement of sediment at section-5

 146

 Public delta_Kwi As Single ': Kwi increment for calculating Ks in order to calculate crest elev. of
spillway
 Public Kst As Single ': min.channel elev at the most u/s section (section where spillway is
constructed)
 Public hl_add As Single ': any additional headloss value for calculation flexibility of different
problems
 'no need for hydraulic computations but needed for km_xsec
 Public L12 As Single ': dist betw sect-1 and sect-2
 Public Lc As Single ': length of curvature
 Public Lentr As Single ': length at the entrance of intake (computed from creep lengths; no
additional input)
 Public Sub New(ByVal inp As intake_input_data)
 With Me
 .B1 = inp.B1
 .B1_inc = inp.B1_inc
 .Bop = inp.Bop
 .Bs = inp.Bs
 .Bs_inc = inp.Bs_inc
 .Cc = inp.Cc
 .Ct = inp.Ct
 .Cyc = inp.Cyc
 .delta_Kwi = inp.delta_Kwi
 .Dfo = inp.Dfo
 .dHes = inp.dHes
 .Dm = inp.Dm
 .dsd = inp.dsd
 .dsd_inc = inp.dsd_inc
 .dsu = inp.dsu
 .dsu_inc = inp.dsu_inc
 .dsu_max = inp.dsu_max
 .du_max = inp.du_max
 .du_min = inp.du_min
 .hl_add = inp.hl_add
 .K = inp.K
 .K0 = inp.K0
 .Kst = inp.Kst
 .Kv = inp.Kv
 .L12 = inp.L12
 .Lc = inp.Lc
 .Lentr = inp.Lentr
 .Ls = inp.Ls
 .Ls_inc = inp.Ls_inc
 .mh = inp.mh
 .n = inp.n
 .n_tr = inp.n_tr
 .np = inp.np
 .np2 = inp.np2
 .Qi = inp.Qi
 .r = inp.r
 .Sd = inp.Sd
 .So = inp.So
 .t = inp.t
 .t2 = inp.t2
 .t_tr = inp.t_tr
 .u4_max = inp.u4_max
 End With
 End Sub
 Public Sub New()
 End Sub
 End Class
#End Region

 147

#Region "classes"
 <Serializable()> Public Class intake

'**
'** CLASS DECLERATION: TYPICAL INTAKE HYDRAULICS CALCULATIONS **
'**
'** EXPLANATION: A typical intake structure is hydraulicly computed. The class assumes **
'** that; the intake has typical sub-structures.Therefore the class does **
'** not have great flexibility for the computation of different intake **
'** structures. However, by given appropriate values (such as zero) some **
'** sections of the intake can be neglected.But you can not directly add **
'** sections to the typical sections. For this kind of flexible problems **
'** program structure should be expanded or some kind of computational **
'** games can be made in order to approach the output (spillway height) **
'** For the last section, an additional head loss variable is put inorder **
'** to take care of the additional sections. **
'**
'** HOW TO USE THE CLASS: There are 2 constructors, one is for the use of the class **
'** with some default values; therefore the default values are not **
'** given as input data. **
'** The other one is more general constructor in which the default **
'** values must also be given as input data. **
'** With initial data, the class is initialised and then with **
'** "compute" method,the computation is made. For this part, every **
'** limitation is considered and input data is changed with this **
'** consideration. If you dont want the input values be changed by **
'** program after the computation, assign to the suitable(write allowed) **
'** properties the desired value.No need to use "compute" method again. **
'** Because "compute" method is executed automatically with the **
'** assignment procedure. **
'** Note that for the first time the program changes the values. **
'**
'** GIVEN: All the necessary input data **
'**
'** OUTPUT: The spillway crest elevation and the other hydraulic properties of the intake sections. **
'**
 Public Shared max_iter_B1 As Integer = 500
 Public Shared max_iter_dsu As Integer = 500 'for recursion
 Public Shared max_iter_Bs As Integer = 500 'for recursion
 Public Shared max_iter_dsd As Integer = 1000 'for recursion (for inrement 500 for decrement 500; total
1000)
#Region "Private variables"
 'inputs
 Private input_data As intake_input_data 'most used intake input data structure
 'outputs
 'readonly ones:
 Private Lt As Single 'length of transition
 Private Wf As Single
 Private ustar As Single
 Private us As Single
 Private ys As Single
 Private beta As Single
 Private lamda As Single
 Private An As Single
 Private Ag As Single
 Private un As Single
 Private Kwi As Single
 Private Ks As Single
 Private P As Single 'P is the spillway height from spillway thalweg elevation (imp: not from the
base of the spillway body)
 Private B2n As Single

 148

 Private dHi As Single
 Private dHtr As Single
 Private hl_section(8) As Single
 Private xsec(8) As xsec_hyd

 Private limits(8) As Boolean 'limitation variable if the required limitation for the section holds
 Private du_i As Single 'initial du value
 Private du As Single 'exact du value (including trashrack headloss)
 Private Bsn As Single
 Private compute_n_tr As Boolean
 Private compute_Ls As Boolean
 Private change_B1 As Boolean
 Private change_Bs As Boolean
 Private change_dsu As Boolean
 Private change_dsd As Boolean
 'recursion iteration variable
 Private iter_dsu As Integer = 0
 Private iter_Bs As Integer = 0
 Private iter_dsd As Integer = 0
 Private Sub section_0()
 With input_data
 xsec(0) = New xsec_hyd(.Qi, .mh, .Bop, .n, .So, True, .K0)
 End With
 With (xsec(0))
 If .y_pro >= 1.1 * .ycritical_pro Then
 limits(0) = True
 Else
 limits(0) = False
 End If
 End With
 hl_section(0) = 0
 End Sub
 Private Sub section_1()
 Dim i As Integer = 0
 Dim y1 As Single
 With input_data
 'hydraulic calculations
 y1 = f_y_hl_type1(.Qi, .B1, 0, .Ct, xsec(0).vel_head_pro, xsec(0).Es_pro)
 xsec(1) = New xsec_hyd(.Qi, y1, 0, .B1, .n, True, True, .K0)
 hl_section(1) = .Ct * (xsec(0).vel_head_pro - xsec(1).vel_head_pro)
 'limitations
 If xsec(0).u_pro > xsec(1).u_pro Then
 limits(1) = True
 ElseIf change_B1 Then
 'if limitation change is to be considered
 Do Until (xsec(0).u_pro > xsec(1).u_pro)
 .B1 += .B1_inc
 y1 = f_y_hl_type1(.Qi, .B1, 0, .Ct, xsec(0).vel_head_pro, xsec(0).Es_pro)
 xsec(1) = New xsec_hyd(.Qi, y1, 0, .B1, .n, True, True, .K0,)
 hl_section(1) = .Ct * (xsec(0).vel_head_pro - xsec(1).vel_head_pro)
 i += 1
 If i >= max_iter_B1 Then
 Exit Do
 End If
 Loop
 If i < max_iter_B1 Then limits(1) = True
 Else
 limits(1) = False
 End If
 'length of transition
 Lt = 2.35 * (.B1 - .Bop) + 1.65 * .mh * xsec(1).y_pro

 149

 End With
 End Sub
 Private Sub section_2()
 Dim u2, y2 As Single
 With input_data
 B2n = .B1 - .np * .t
 u2 = .Qi / (B2n * xsec(1).y_pro)
 'minor loss at the gate
 hl_section(2) = ((u2 / .K) ^ 2) / (2 * g)
 y2 = f_yalternate(xsec(1).Es_pro + hl_section(2), .Qi, B2n, 0)(0) 'subcritical depth; script(0)
 xsec(2) = New xsec_hyd(.Qi, y2, 0, B2n, .n, True, True, .K0)
 'no limitation but for program systematic
 limits(2) = True
 End With
 End Sub
 Private Sub section_3()
 Dim y3 As Single
 With input_data
 y3 = f_y_hl_type1(.Qi, .Bs, 0, .Cc, xsec(2).vel_head_pro, xsec(2).Es_pro)
 xsec(3) = New xsec_hyd(.Qi, y3, 0, .Bs, .n, True, True, .K0)
 hl_section(3) = .Cc * (xsec(2).vel_head_pro - xsec(3).vel_head_pro)
 'no limitation but for program systematic it was used
 limits(3) = True
 End With
 End Sub
 Private Sub section_4()
 Dim y4 As Single
 Dim i As Single
 With input_data
 hl_section(4) = f_delta_He(.Qi, .Bs, xsec(3).y_pro)
 y4 = f_yalternate(xsec(3).Es_pro + .dsu + hl_section(4), .Qi, .Bs, 0)(0) 'subcritical depth subscrip=0
 xsec(4) = New xsec_hyd(.Qi, y4, 0, .Bs, .n, True, True, xsec(3).Kb_pro - .dsu)
 'limitation
 If xsec(4).u_pro <= .u4_max Then
 limits(4) = True
 ElseIf ((change_dsu) And (.dsu <= .dsu_max)) Then
 .dsu += .dsu_inc
 y4 = f_yalternate(xsec(3).Es_pro + i + hl_section(4), .Qi, .Bs, 0)(0) 'subcritical depth subscript=0
 xsec(4) = New xsec_hyd(.Qi, y4, 0, .Bs, .n, True, True, xsec(3).Kb_pro - .dsu)
 section_3()
 section_4() 'recursive;
 iter_dsu += 1
 If iter_dsu >= max_iter_dsu Then
 Exit Sub
 End If
 ElseIf change_Bs Then
 .Bs += .Bs_inc
 y4 = f_yalternate(xsec(3).Es_pro + i + hl_section(4), .Qi, .Bs, 0)(0) 'subcritical depth subscript=0
 xsec(4) = New xsec_hyd(.Qi, y4, 0, .Bs, .n, True, True, xsec(3).Kb_pro - .dsu)
 section_3()
 section_4() 'recursive;
 iter_Bs += 1
 If iter_Bs >= max_iter_Bs Then
 Exit Sub
 End If
 Else
 limits(4) = False
 End If
 End With
 End Sub
 Private Sub section_5() 'settling basin

 150

 With input_data
 Dim y5 As Single
 us = xsec(4).u_pro
 ys = xsec(4).y_pro
 ustar = f_ustar(ys, .Bs, 0, .Sd)
 Wf = f_Wf(.Dm)
 beta = f_beta(Wf, .Kv, ustar)
 lamda = f_lamda(beta)
 If compute_Ls Then
 .Ls = f_Ls(.Kv, lamda, .r, ys, us, ustar)
 .Ls += .Ls_inc
 End If
 y5 = f_implicite_root(f_Es(.Qi, xsec(4).y_pro, 0, xsec(4).B_pro) + .Ls / 2 * f_Sf(.Qi, xsec(4).n_pro,
xsec(4).A_pro, xsec(4).R_pro) - .Ls * .Sd, Nothing, Nothing, Nothing, AddressOf f_Es, AddressOf f_Sf, 0, 0,
0, -1, .Ls / 2, 0, 0, 2, 2, 0, 0, 0, .Qi, 0, .Bs, .Qi, .Bs, 0, .n)
 xsec(5) = New xsec_hyd(.Qi, y5, 0, .Bs, .n, True, True, xsec(4).Kb_pro + .Ls * .Sd)
 'head loss: Ls*(Sf5+Sf6)/2
 hl_section(5) = (f_Sf(.Qi, xsec(4).y_pro, xsec(4).B_pro, xsec(4).mh_pro, xsec(4).n_pro) + f_Sf(.Qi,
xsec(4).y_pro, xsec(4).B_pro, xsec(4).mh_pro, xsec(4).n_pro)) / 2 * .Ls
 'limitation (no limitation here, but for programming systematics
 limits(5) = True
 End With
 End Sub
 Private Sub section_6()
 Dim y6 As Single
 With input_data
 hl_section(6) = .dHes
 y6 = f_yalternate(f_Es(.Qi, xsec(5).y_pro, xsec(5).mh_pro, xsec(5).B_pro) + hl_section(6) - .dsd,
.Qi, .Bs, 0)(0) 'subcritical value needed,therefore subscript=0
 xsec(6) = New xsec_hyd(.Qi, y6, 0, .Bs, .n, True, True, xsec(5).Kb_pro + .dsd)
 'limitation (no limitation here, but for programming systematics
 limits(6) = True
 End With
 End Sub
 Private Sub section_7()
 Dim y7, u7, hl_orifice As Single
 With input_data
 Bsn = .Bs - .np2 * .t2
 u7 = .Qi / (Bsn * xsec(6).y_pro) 'approximate headloss
 'headloss at orifice, intake.
 hl_section(7) = ((u7 / .K) ^ 2) / (2 * g)
 y7 = f_yalternate(xsec(6).Es_pro + hl_section(7), .Qi, Bsn, 0)(0) 'subcritical depth
 xsec(7) = New xsec_hyd(.Qi, y7, 0, Bsn, .n, True, True, xsec(6).Kb_pro)
 'limitation (no limitation here, but for programming systematics
 limits(7) = True
 End With
 End Sub
 Private Sub section_8()
 Dim y8 As Single
 With input_data
 'headloss above the upward hill
 dHi = f_delta_He(.Qi, Bsn, xsec(7).y_pro)
 'headloss through the trashracks
 If compute_n_tr Then
 .n_tr = CInt(Floor((Bsn / (.Dfo + .t_tr)) / 10) * 10) '????should be revised.
 End If
 An = (Bsn - .n_tr * .t_tr) * xsec(7).y_pro
 Ag = Bsn * xsec(7).y_pro
 un = .Qi / An
 dHtr = (1.45 - 0.45 * An / Ag - (An / Ag) ^ 2) * (un ^ 2) / (2 * g)
 'total headloss

 151

 hl_section(8) = dHi + dHtr + .hl_add 'hl_add is added to last cross section to play with the crest elev
of spillway
 Kwi = xsec(6).Egl_pro + hl_section(7) + hl_section(8) - xsec(7).vel_head_pro
 Ks = Kwi + .delta_Kwi
 P = Ks - .Kst
 du_i = (Kwi - .Kst) - xsec(7).y_pro
 'limitation
 If (du_i >= .du_min And du_i <= .du_max) Then
 limits(8) = True
 ElseIf change_dsd Then
 If du_i < .du_min Then
 .dsd += .dsd_inc
 section_6()
 section_7()
 section_8() 'recursive :no loop needed, recursive is also a loop already
 iter_dsd += 1
 If iter_dsd >= max_iter_dsd Then
 Exit Sub
 End If
 ElseIf du_i > .du_max Then
 .dsd -= .dsd_inc
 section_6()
 section_7()

 section_8() 'recursive
 iter_dsd += 1
 If iter_dsd >= max_iter_dsd Then
 Exit Sub
 End If
 End If
 Else
 limits(8) = False
 End If
 'finally, the most u/s section at the intake is calculated (after u/s sill "du")
 du = (Kwi - .Kst) - hl_section(8) - xsec(7).y_pro '(remember calculation rule: from d/s to u/s)
 y8 = Kwi - .Kst
 'now no pier exist in xsex; so Bs was taken as bottom width
 xsec(8) = New xsec_hyd(.Qi, y8, 0, .Bs, .n, True, True, .Kst)
 End With
 End Sub
 'xsec km are determined
 Private Sub determine_xsec_km()
 Dim mh_delta = 2 'step hor. inclinations are taken as 2
 With input_data
 xsec(0).km_xsec_p = 0
 xsec(1).km_xsec_p = xsec(0).km_xsec_p - Lt
 xsec(2).km_xsec_p = xsec(1).km_xsec_p - .L12
 xsec(3).km_xsec_p = xsec(2).km_xsec_p - .Lc
 xsec(4).km_xsec_p = xsec(3).km_xsec_p - .dsu * mh_delta
 xsec(5).km_xsec_p = xsec(4).km_xsec_p - .Ls
 xsec(6).km_xsec_p = xsec(5).km_xsec_p - .dsd * mh_delta
 xsec(7).km_xsec_p = xsec(6).km_xsec_p - .Lentr
 xsec(8).km_xsec_p = xsec(7).km_xsec_p
 End With
 End Sub
#End Region
#Region "Properties Section"
#Region "read only properties"
 Public ReadOnly Property input_data_pro() As intake_input_data
 Get
 Return input_data

 152

 End Get
 End Property
 Public ReadOnly Property tp_pro() As Single
 Get
 Return input_data.t
 End Get
 End Property
 Public ReadOnly Property tp2_pro() As Single
 Get
 Return input_data.t2
 End Get
 End Property
 Public ReadOnly Property np_pro() As Single
 Get
 Return input_data.np
 End Get
 End Property
 Public ReadOnly Property np2_pro() As Single
 Get
 Return input_data.np2
 End Get
 End Property
 Public ReadOnly Property Wf_pro() As Single
 Get
 Return Wf
 End Get
 End Property
 Public ReadOnly Property Lt_pro() As Single
 Get
 Return Lt
 End Get
 End Property
 Public ReadOnly Property ustar_pro() As Single
 Get
 Return ustar
 End Get
 End Property
 Public ReadOnly Property us_pro() As Single
 Get
 Return us
 End Get
 End Property
 Public ReadOnly Property lamda_pro() As Single
 Get
 Return lamda
 End Get
 End Property
 Public ReadOnly Property ys_pro() As Single
 Get
 Return ys
 End Get
 End Property
 Public ReadOnly Property du_i_pro() As Single
 Get
 Return du_i

 End Get
 End Property
 Public ReadOnly Property beta_pro() As Single
 Get
 Return beta

 153

 End Get
 End Property
 Public ReadOnly Property un_pro() As Single
 Get
 Return un
 End Get
 End Property
 Public ReadOnly Property Ag_pro() As Single
 Get
 Return Ag
 End Get
 End Property
 Public ReadOnly Property An_pro() As Single
 Get
 Return An
 End Get
 End Property
 Public ReadOnly Property du_p() As Single
 Get
 Return du
 End Get
 End Property
 Public ReadOnly Property P_pro() As Single
 Get
 Return P
 End Get
 End Property
 Public ReadOnly Property B2n_pro() As Single
 Get
 Return B2n
 End Get
 End Property
 Public ReadOnly Property Ks_pro() As Single
 Get
 Return Ks
 End Get
 End Property
 Public ReadOnly Property Kwi_pro() As Single
 Get
 Return Kwi
 End Get
 End Property
 Public ReadOnly Property dHtr_pro() As Single
 Get
 Return dHtr
 End Get
 End Property
 Public ReadOnly Property dHi_pro() As Single
 Get
 Return dHi
 End Get
 End Property
 Public ReadOnly Property Bsn_pro() As Single
 Get
 Return Bsn
 End Get
 End Property
 Public ReadOnly Property hl_section_pro() As Single()
 Get
 Return hl_section
 End Get

 154

 End Property
 Public ReadOnly Property xsec_pro() As xsec_hyd()
 Get
 Return xsec
 End Get
 End Property
 Public ReadOnly Property limits_pro() As Boolean()
 Get
 Return limits
 End Get
 End Property
#End Region
#Region "read and write allowed"
 Public Property dsd_p() As Single
 Get
 Return input_data.dsd
 End Get
 Set(ByVal Value As Single)
 change_dsd = False
 input_data.dsd = Value
 Me.compute()
 End Set
 End Property
 Public Property dsu_p() As Single
 Get
 Return input_data.dsu
 End Get
 Set(ByVal Value As Single)
 change_dsu = False
 input_data.dsu = Value
 Me.compute()
 End Set
 End Property
 Public Property n_tr_p() As Single
 Get
 Return input_data.n_tr
 End Get
 Set(ByVal Value As Single)
 compute_n_tr = False
 input_data.n_tr = Value
 Me.compute()
 End Set
 End Property
 Public Property Bs_p() As Single
 Get
 Return input_data.Bs
 End Get
 Set(ByVal Value As Single)
 change_Bs = False
 input_data.Bs = Value
 Me.compute()
 End Set
 End Property
 Public Property Ls_p() As Single
 Get
 Return input_data.Ls
 End Get
 Set(ByVal Value As Single)
 compute_Ls = False
 input_data.Ls = Value
 Me.compute()

 155

 End Set
 End Property
 Public Property B1_p() As Single
 Get
 Return input_data.B1
 End Get
 Set(ByVal Value As Single)
 change_B1 = False
 input_data.B1 = Value
 Me.compute()
 End Set
 End Property
#End Region
#End Region
#Region "Class interface"
 Private Sub compute()
 section_0()
 section_1()
 section_2()
 section_3()
 section_4()
 section_5()
 section_6()
 section_7()
 section_8()
 determine_xsec_km()
 End Sub
#End Region
#Region "Constructors"
 Public Sub New(ByVal input As intake_input_data)
 input_data = input
 compute_n_tr = True
 compute_Ls = True
 change_B1 = True
 change_Bs = True
 change_dsu = True
 change_dsd = True
 Me.compute()
 End Sub
#End Region
 End Class
#End Region
End Namespace
Namespace splw_slcw_design
#Region "Data structures"
 <Serializable()> Public Class C_splw
 Public Co As Single
 Public Cinc As Single
 Public Cme As Single
 Public Cma As Single
 Public Cms As Single
 Public Com As Single 'this is the overall product of the constants Com=C0*Cinc*Cme*Cma*Cms
 Public Sub New(ByVal inp As C_splw) 'copy constr
 Me.Co = inp.Co
 Me.Cma = inp.Cma
 Me.Cinc = inp.Cinc
 Me.Cme = inp.Cme
 Me.Cms = inp.Cms
 Me.Com = inp.Com
 End Sub
 Public Sub New()

 156

 End Sub
 End Class
 <Serializable()> Public Class splw_slcw_Q_input_data
 Public bridge_exist As Boolean
 Public Lt As Single
 Public np As Single 'if there is bridge over spillway; number of bridge piers
 Public tp As Single 'if there is bridge over spillway; thickness of each pier.
 Public Kp As Single 'piers contraction constant
 Public Ka As Single 'abutments contraction constant
 Public Le As Single
 Public nsl As Single
 Public d As Single
 Public tsl As Single
 Public Kst As Single 'thalweg(bottom) elevation at spillway section.(spillway thalweg elev)
 Public Ks As Single 'Spillway crest elevation...splway height; P=Ks-Kst
 Public Q() As Single 'total discharge values
 Public mh_s As Single 'u/s slope , horizantal component of slope; mv=1
 Public Kd() As Single 'downstream (tailwater) elevations for various discharges
 Public Kr As Single 'downstream (tailwater) river bottom (ground surface) elevations for various
discharges. interpolated section (riprap section)
 Public profile() As String 'profile name for discharges
 Public Sub New(ByVal inp As splw_slcw_Q_input_data)
 With Me
 .bridge_exist = inp.bridge_exist
 .d = inp.d
 .Ka = inp.Ka
 .Kd = inp.Kd.Clone() 'arrays should be cloned otherwise pointer equality occurs and this is
dangerous (not an exact copy occurs in that case)
 .Kp = inp.Kp
 .Kr = inp.Kr
 .Ks = inp.Ks
 .Kst = inp.Kst
 .Le = inp.Le
 .Lt = inp.Lt
 .mh_s = inp.mh_s
 .np = inp.np
 .nsl = inp.nsl
 .profile = inp.profile.Clone()
 .Q = inp.Q.Clone()
 .tp = inp.tp
 .tsl = inp.tsl
 End With
 End Sub
 Public Sub New()
 End Sub
 End Class
 <Serializable()> Public Class energy_dissp_input_data
 Public profile() As String 'profile name for discharges
 Public Q() As Single
 Public Qs() As Single
 Public Qsl() As Single
 Public K() As Single
 Public Kd() As Single
 Public Kr As Single
 Public Kst As Single
 Public nsl As Single
 Public tsl As Single
 Public Le As Single
 Public Lt As Single
 Public n_aprch As Single 'approach manning
 Public Sub New(ByVal inp As energy_dissp_input_data) 'copy constr

 157

 With Me
 .K = inp.K.Clone()
 .Kd = inp.Kd.Clone()
 .Kr = inp.Kr
 .Kst = inp.Kst
 .Le = inp.Le
 .Lt = inp.Lt
 .n_aprch = inp.n_aprch
 .nsl = inp.nsl
 .profile = inp.profile.Clone()
 .Q = inp.Q.Clone()
 .Qs = inp.Qs.Clone()
 .Qsl = inp.Qsl.Clone()
 .tsl = inp.tsl
 End With
 End Sub
 Public Sub New()
 End Sub
 End Class
#End Region
#Region "Classes"
 <Serializable()> Public Class splw_slcw_Q
 'iteration limits
 Public Shared max_iter_K As Integer = 5000
#Region "private variables"
 'inputs
 Private input_data As splw_slcw_Q_input_data
 'outputs
 Private Ls As Single
 Private Ls_net As Single 'net crest length; length-pier thicknesses
 Private Ls_eff As Single 'effective crest lengh; net crest length - contraction effects
 Private Cs() As C_splw 'overflow spillway constants
 Private xsec_aprch() As xsec_hyd 'xsec infront of spillway and sluiceways; approach cross_section
 Private Qs() As Single
 Private Qsl() As Single
 Private Ho() As Single
 Private H() As Single
 Private K() As Single 'K100,K50,etc...
 Private Function f_diff_Q(ByVal i As Integer, ByVal Ki As Single) As Single
 With input_data
 Dim P As Single = .Ks - .Kst
 xsec_aprch(i) = New xsec_hyd(.Q(i), Ki - .Kst, 0, .Lt, 0.016, True, True, .Kst)
 Ho(i) = xsec_aprch(i).Egl_pro - .Ks
 H(i) = xsec_aprch(i).Hgl_pro - .Ks
 Ls_eff = Ls_net - 2 * (.np * .Kp + .Ka) * Ho(i)
 Cs(i) = New C_splw()
 'design head and varying head calculations
 If (i = 0) Then
 Cs(i).Co = f_Co(P, Ho(i))

 Else
 Cs(i).Co = Cs(0).Co
 End If
 Cs(i).Cinc = f_CincCo(P, Ho(i), Atan(.mh_s) / (2 * PI) * 360)
 Cs(i).Cme = f_CmeCo(Ho(i), Ho(0)) 'Ho(0): design discharge
 Cs(i).Cma = f_CmaCo(xsec_aprch(i).Egl_pro - .Kd(i), .Kd(i) - .Kr, Ho(i))
 Cs(i).Cms = f_CmsCo(xsec_aprch(i).Egl_pro - .Kd(i), Ho(i))
 Cs(i).Com = Cs(i).Co * Cs(i).Cinc * Cs(i).Cme * Cs(i).Cma * Cs(i).Cms 'total of the effects
 Qs(i) = f_Qsplw(Cs(i).Com, Ls_eff, Ho(i), H(i)) 'H(i) needed for check, overloaded function
 Qsl(i) = f_Qslcw(0.65, .nsl * .d * .Le, (Ki - .Kst))
 ' Debug.WriteLine("Cs(i).Cinc=" & Cs(i).Cinc)

 158

 'Debug.WriteLine("Cs(i).Cma=" & Cs(i).Cma)
 'Debug.WriteLine("Cs(i).Cme=" & Cs(i).Cme)
 'Debug.WriteLine("Cs(i).Cms=" & Cs(i).Cms)
 ''Debug.WriteLine("Cs(i).Com=" & Cs(i).Com)
 Return (.Q(i) - (Qs(i) + Qsl(i)))
 End With
 End Function
#End Region
#Region "Properties"
 Public ReadOnly Property input_data_pro() As splw_slcw_Q_input_data
 Get
 Return Me.input_data
 End Get
 End Property
 Public ReadOnly Property Qsl_pro() As Single()
 Get
 Return Qsl
 End Get
 End Property
 Public ReadOnly Property Qs_pro() As Single()
 Get
 Return Qs
 End Get
 End Property
 Public ReadOnly Property Cs_pro() As C_splw()
 Get
 Return Cs
 End Get
 End Property
 Public ReadOnly Property Ho_pro() As Single()
 Get
 Return Ho
 End Get
 End Property
 Public ReadOnly Property K_pro() As Single()
 Get
 Return K
 End Get
 End Property
 Public ReadOnly Property xsec_aprch_pro() As xsec_hyd()
 Get
 Return xsec_aprch
 End Get
 End Property
 'sluiceway gate top el; just like spillw crest determ 10 cm freeboard added
 'in fact xsec_approach tan da bulunabilir
 Public ReadOnly Property Ksl_pro() As Single
 Get
 Return K(0) + 0.1
 End Get
 End Property
 Public ReadOnly Property Le_pro() As Single
 Get
 Return Me.input_data.Le
 End Get
 End Property
 Public ReadOnly Property Lt_pro() As Single
 Get
 Return Me.input_data.Lt
 End Get
 End Property

 159

 Public ReadOnly Property Ls_pro() As Single
 Get
 Return Ls
 End Get
 End Property
 Public ReadOnly Property tsl_pro() As Single
 Get
 Return Me.input_data.tsl
 End Get
 End Property
 Public ReadOnly Property tp_pro() As Single
 Get
 Return Me.input_data.tp
 End Get
 End Property
 Public ReadOnly Property nsl_pro() As Single
 Get
 Return Me.input_data.nsl
 End Get
 End Property
 Public ReadOnly Property np_pro() As Single
 Get
 Return Me.input_data.np
 End Get
 End Property
 Public ReadOnly Property Ls_net_pro() As Single
 Get
 Return Ls_net
 End Get
 End Property
 Public ReadOnly Property Ls_eff_pro() As Single
 Get
 Return Ls_eff
 End Get
 End Property
 'Note: L=Ls+Lsl+tsl (tsl: guide wall thickness)
 Public ReadOnly Property Lsl_pro() As Single
 Get
 With Me.input_data
 Return .nsl * .Le + (.nsl - 1) * .tsl
 End With
 End Get
 End Property
#End Region
#Region "Class interface"
 Private Sub compute()
 With input_data
 'initialize_data
 ' note Q(0) is always design discharge
 Dim i As Integer
 Dim iter As Integer = 0
 Dim Ki_a, Ki_b, Ki_c, Ki_c0 As Single
 Dim dx As Single
 Dim f_Ki_c As Single
 ' Dim delta As Single = 0.5
 Dim epsilon As Single = 0.1
 Ls = .Lt - .nsl * .tsl - .nsl * .Le
 Ls_net = Ls - .np * .tp 'net crest length
 For i = 0 To .Q.GetUpperBound(0)
 'regula Falsi method
 Ki_a = .Kst 'a 'assumed start value for K(i)

 160

 'find the second bondary
 Ki_b = .Kst
 While (f_diff_Q(i, Ki_b) > 0)
 Ki_b += 10 'b
 End While
 iter = 0 'reset the iteration num
 Do
 If (iter >= max_iter_K) Then
 Exit Do
 End If
 Ki_c = (Ki_a + Ki_b) / 2
 f_Ki_c = f_diff_Q(i, Ki_c)
 If (f_Ki_c = 0) Then
 Exit Do
 ElseIf (Sign(f_diff_Q(i, Ki_b)) = Sign(f_diff_Q(i, Ki_c))) Then
 Ki_b = Ki_c
 Else
 Ki_a = Ki_c
 End If
 iter += 1
 ' Debug.WriteLine(Ki_c)
 ' Debug.WriteLine(f_diff_Q(i, Ki_c))
 Loop Until (Abs(f_diff_Q(i, Ki_c)) <= epsilon) 'if it comes to below the ground elev stop
 K(i) = Ki_c
 'Debug.WriteLine("-----------------------")
 Next
 End With
 End Sub
#End Region
#Region "Constructors"
 Public Sub New(ByVal input As splw_slcw_Q_input_data)
 input_data = input
 'for output arrays
 With input
 ReDim Cs(.Q.GetUpperBound(0))
 ReDim xsec_aprch(.Q.GetUpperBound(0))
 ReDim Qs(.Q.GetUpperBound(0))
 ReDim Qsl(.Q.GetUpperBound(0))
 ReDim Ho(.Q.GetUpperBound(0))
 ReDim H(.Q.GetUpperBound(0))
 ReDim K(.Q.GetUpperBound(0))
 End With
 Me.compute()
 End Sub
#End Region
 End Class
 <Serializable()> Public Class energy_dissp
#Region "Private variables"
 'input data
 Private input_data As energy_dissp_input_data
 'output data
 Private xsecus() As xsec_hyd
 Private xsecds_sl() As xsec_hyd
 Private xsecds_s() As xsec_hyd
 Private hl_s() As Single
 Private hl_sl() As Single
 Private stillbas_s() As stillingbasin
 Private stillbas_sl() As stillingbasin
 Private sb_common As Boolean 'common or sepearate stillbasin: 0 for seperate 1 for common
 Private resultsb_s As stillingbasin 'result, final choices
 Private resultsb_sl As stillingbasin

 161

 'select sthe appropriate stilling basin from various alternatives
 Private Sub select_resultsb(ByVal sb_s() As stillingbasin, ByVal sb_sl() As stillingbasin)
 Dim i As Integer
 Dim pos As Integer 'position for the required index
 Dim L As Single = 0
 Dim delta As Single = 0
 'sort the stillbasin arrays acc to their lengths
 'spillway
 For i = 0 To sb_s.GetUpperBound(0)
 'finds max length and the other information
 If sb_s(i).L >= L Then
 L = sb_s(i).L
 pos = i
 End If
 'finds the max delta
 If sb_s(i).delta >= delta Then
 delta = sb_s(i).delta
 End If
 Next
 resultsb_s = New stillingbasin(sb_s(pos)) 'copy constr
 resultsb_s.delta = delta
 'sluiceway
 'initialize the sorting
 L = 0
 delta = 0
 For i = 0 To sb_sl.GetUpperBound(0)
 'finds max length and the other information
 If sb_sl(i).L >= L Then
 L = sb_sl(i).L
 pos = i
 End If
 'finds the max delta
 If sb_sl(i).delta >= delta Then
 delta = sb_sl(i).delta
 End If
 Next
 resultsb_sl = New stillingbasin(sb_sl(pos)) 'copy_constr
 resultsb_sl.delta = delta
 'decide if common or seperate stilling basin
 If Abs(resultsb_s.delta - resultsb_sl.delta) <= 0.5 Then
 sb_common = True
 'choose greater of delta to both
 resultsb_s.delta = Max(resultsb_s.delta, resultsb_sl.delta)
 resultsb_sl.delta = resultsb_s.delta
 'common stilling basin (the one with greater length)
 If Max(resultsb_s.L, resultsb_sl.L) = resultsb_s.L Then
 resultsb_sl = resultsb_s
 Else
 resultsb_s = resultsb_sl
 End If
 Else
 sb_common = False
 'common length but different stilling basins
 resultsb_s.L = Max(resultsb_s.L, resultsb_sl.L)
 resultsb_sl.L = resultsb_s.L
 End If
 End Sub
#End Region
#Region "Properties"
 Public ReadOnly Property y2max_s_pro() As Single 'required for sidewall height
 Get

 162

 Dim i As Integer
 Dim y2max_s As Single = 0
 For i = 0 To stillbas_s.GetUpperBound(0)
 If y2max_s < stillbas_s(i).y2 Then y2max_s = stillbas_s(i).y2
 Next
 Return y2max_s
 End Get
 End Property
 Public ReadOnly Property y2max_sl_pro() As Single 'required for sidewall height
 Get
 Dim i As Integer
 Dim y2max_sl As Single = 0
 For i = 0 To stillbas_sl.GetUpperBound(0)
 If y2max_sl < stillbas_sl(i).y2 Then y2max_sl = stillbas_sl(i).y2
 Next
 Return y2max_sl
 End Get
 End Property
 Public ReadOnly Property input_data_pro() As energy_dissp_input_data
 Get
 Return Me.input_data
 End Get
 End Property
 Public ReadOnly Property xsecus_pro() As xsec_hyd()
 Get
 Return xsecus
 End Get
 End Property
 Public ReadOnly Property xsecds_s_pro() As xsec_hyd()
 Get
 Return xsecds_s
 End Get
 End Property
 Public ReadOnly Property xsecds_sl_pro() As xsec_hyd()
 Get
 Return xsecds_sl
 End Get
 End Property
 Public ReadOnly Property hl_s_pro() As Single()
 Get
 Return hl_s
 End Get
 End Property
 Public ReadOnly Property hl_sl_pro() As Single()
 Get
 Return hl_sl
 End Get
 End Property
 Public ReadOnly Property stillbas_s_pro() As stillingbasin()
 Get
 Return stillbas_s
 End Get
 End Property
 Public ReadOnly Property stillbas_sl_pro() As stillingbasin()
 Get
 Return stillbas_sl
 End Get
 End Property
 Public ReadOnly Property resultsb_s_pro() As stillingbasin
 Get
 Return resultsb_s

 163

 End Get
 End Property
 Public ReadOnly Property resultsb_sl_pro() As stillingbasin
 Get
 Return resultsb_sl
 End Get
 End Property
 Public ReadOnly Property sb_common_pro() As Boolean
 Get
 Return sb_common
 End Get
 End Property
 Public ReadOnly Property Lsb_pro() As Single
 Get
 Return resultsb_s.L
 End Get
 End Property
 Public ReadOnly Property type_s_pro() As Byte
 Get
 Return resultsb_s.type
 End Get
 End Property
 Public ReadOnly Property type_sl_pro() As Byte
 Get
 Return resultsb_sl.type
 End Get
 End Property
 Public ReadOnly Property delta_s_pro() As Single
 Get
 Return resultsb_s.delta
 End Get
 End Property
 Public ReadOnly Property delta_sl_pro() As Single
 Get
 Return resultsb_sl.delta
 End Get
 End Property
#End Region
#Region "class interface"

 Private Sub compute()
 Dim i As Integer
 Dim yconjugates_s(1) As Single ' for y1 and y2 for spillway
 Dim yconjugates_sl(1) As Single ' for y1 and y2 for sluiceway
 Dim L As Single
 With input_data
 L = .Lt - .nsl * .tsl - .nsl * .Le
 For i = 0 To .Q.GetUpperBound(0)
 'u/s energy grade level
 xsecus(i) = New xsec_hyd(.Q(i), .K(i) - .Kst, 0, .Lt, .n_aprch, True, True, .Kst)
 'd/s energy grade level at spillway and sluiceway after hyd jump (not tw)
 xsecds_s(i) = New xsec_hyd(.Qs(i), .Kd(i) - .Kr, 0, L, .n_aprch, True, True, .Kr)
 xsecds_sl(i) = New xsec_hyd(.Qsl(i), .Kd(i) - .Kr, 0, (.nsl * .Le + (.nsl - 1) * .tsl), .n_aprch, True,
True, .Kr)
 'head losses between u/s and d/s for spillway and sluiceway (head loss through hyd jump)
 ' assume no head loss occurs at spillway face and sluiceway entrance
 hl_s(i) = xsecus(i).Egl_pro - xsecds_s(i).Egl_pro
 hl_sl(i) = xsecus(i).Egl_pro - xsecds_sl(i).Egl_pro
 yconjugates_s = f_yconjugatehl(hl_s(i), xsecds_s(i).B_pro, xsecds_s(i).mh_pro,
xsecds_s(i).Q_pro)

 164

 yconjugates_sl = f_yconjugatehl(hl_sl(i), xsecds_sl(i).B_pro, xsecds_sl(i).mh_pro,
xsecds_sl(i).Q_pro)
 stillbas_s(i) = f_sbtype(yconjugates_s(0), yconjugates_s(1), xsecds_s(i).y_pro, xsecds_s(i).Q_pro,
xsecds_s(i).B_pro)
 stillbas_sl(i) = f_sbtype(yconjugates_sl(0), yconjugates_sl(1), xsecds_sl(i).y_pro,
xsecds_sl(i).Q_pro, xsecds_sl(i).B_pro)
 Next
 End With
 'select the design final sb from the alternatives
 select_resultsb(stillbas_s, stillbas_sl)
 End Sub
#End Region
#Region "Constructors"
 Public Sub New(ByVal input As energy_dissp_input_data)
 input_data = input
 With input
 ReDim xsecus(.K.GetUpperBound(0))
 ReDim xsecds_sl(.K.GetUpperBound(0))
 ReDim xsecds_s(.K.GetUpperBound(0))
 ReDim hl_s(.K.GetUpperBound(0))
 ReDim hl_sl(.K.GetUpperBound(0))
 ReDim stillbas_s(.K.GetUpperBound(0))
 ReDim stillbas_sl(.K.GetUpperBound(0))
 End With
 Me.compute()
 End Sub
#End Region
 End Class
 <Serializable()> Public Class splw_profile
 'to be filled...
 End Class
#End Region
End Namespace
Namespace Appurtenant_fac
#Region "Classes"
 <Serializable()> Public Class riprap_des
#Region "Private variables"
 'inputs
 Private y3 As Single 'tailwater depth under Qdesign (for ex=Kd100)
 Private Lt As Single 'width of the river section
 Private Qdes As Single 'design discharge (max disch; for ex=Q100)
 Private So As Single 'mean river bed slope
 Private min_riprap_height As Single ' min total riprap height
 Private Ld_min As Single 'minimum riprap length
 'outputs
 Private D As Single 'min diameter of riprap
 Private R As Single 'hydraulic radius
 Private Ld_comp As Single 'comp length of riprap
 Private Ld As Single 'decided Ld
 Private nrow As Single 'number of riprap row
 Private Vriprap As Single 'volume of riprap section
#End Region
#Region "Class interface"
 Private Sub compute()
 Dim q As Single
 q = Qdes / Lt
 R = y3 * Lt / (Lt + 2 * y3)
 D = 20 * R * So
 Ld_comp = 3 * q ^ (2 / 3) - 1.5 * y3
 If Ld_comp < Ld_min Then
 Ld = Ld_min

 165

 Else
 Ld = Ld_comp
 End If
 nrow = Ceiling(min_riprap_height / D)
 Vriprap = Ld * nrow * D * Lt
 End Sub
#End Region
#Region "Properties"
 ReadOnly Property inp_Ld_min_pro() As Single
 Get
 Return Ld_min
 End Get
 End Property
 ReadOnly Property inp_min_riprap_height_pro() As Single
 Get
 Return min_riprap_height
 End Get
 End Property
 ReadOnly Property inp_So_pro() As Single
 Get
 Return So
 End Get
 End Property
 ReadOnly Property inp_y3_pro() As Single
 Get
 Return y3
 End Get
 End Property
 ReadOnly Property inp_Lt_pro() As Single
 Get
 Return Lt
 End Get
 End Property
 ReadOnly Property inp_Qdes_pro() As Single
 Get
 Return Qdes
 End Get
 End Property
 ReadOnly Property D_pro() As Single
 Get
 Return D
 End Get
 End Property
 ReadOnly Property Ld_pro() As Single
 Get
 Return Ld
 End Get
 End Property
 ReadOnly Property Ld_comp_pro() As Single
 Get
 Return Ld_comp
 End Get
 End Property
 ReadOnly Property R_pro() As Single
 Get
 Return R
 End Get
 End Property
 ReadOnly Property nrow_pro() As Single
 Get
 Return nrow

 166

 End Get
 End Property
 ReadOnly Property Vriprap_pro() As Single
 Get
 Return Vriprap
 End Get
 End Property
#End Region
#Region "Constructors"
 Public Sub New(ByVal inp_y3 As Single, ByVal inp_Lt As Single, ByVal inp_Qdes As Single, ByVal
inp_So As Single, ByVal inp_min_riprap_height As Single, ByVal inp_Ld_min As Single)
 y3 = inp_y3
 Lt = inp_Lt
 Qdes = inp_Qdes
 So = inp_So
 min_riprap_height = inp_min_riprap_height
 Ld_min = inp_Ld_min
 Me.compute()
 End Sub
#End Region
 End Class
 <Serializable()> Public Class flushing_canal
 'iteration limits
 Public Shared max_iter_Dp As Integer = 100
#Region "Private variables"
 'inputs
 'assume fully-rough pipe (f=f(ks/D); for fully rough pipe) for hydraulic comp. of pipe
 Private Dm As Single 'max possible size of material to be settled
 Private Dp As Single ' diameter of the flushing pipe
 Private n As Single 'manning roughness coeff for the pipe
 Private ks As Single ' rougness coeff.
 Private delta As Single '(=1.65) relative density of the uniform sediment
 Private Lstill As Single 'horizantal length from the stilling basin
 Private Elstill As Single 'elevation at end of stilling basin
 Private Lsettl As Single 'horizantal length from the settling basin
 Private Elsettl As Single 'elevation at the end of settling basin
 Private incDp As Single ' pipe diameter tril increment
 'outputs
 Private ustarc As Single
 Private Tsoc As Single ' critical shear stress
 Private Tso As Single ' shear stress
 Private Lflush_h As Single ' horizantal length of flushing canal
 Private Sf As Single ' friction loss through pipe
 Private So As Single 'required pipe(flushing canal) bed slope
 Private f As Single ' darcy-weisbach friction factor
 Private u As Single 'velocity in pipe to satisfy the flushing of the settlement
 Private fi As Single 'for initial pipe diam
 Private ui As Single 'for initial pipe diam
 Private Sfi As Single 'min bed slope for initial pipe data(initial Sf)
#End Region
#Region "Class interface"
 Private Sub compute()
 Dim i As Integer = 0
 Lflush_h = Sqrt(Lsettl ^ 2 - Lstill ^ 2)
 So = Abs(Elsettl - Elstill) / Lflush_h
 Sf = 1000000 'initially a big value for first computation
 ustarc = f_ustarc(delta, Dm)
 Tsoc = pwater * ustarc ^ 2
 'for initial pipe diameter calculations
 fi = f_f_roughp(Dp, ks)
 ui = (Tsoc * 8 / (fi * pwater)) ^ 0.5

 167

 Sfi = (n ^ 2) * (ui ^ 2) / ((Dp / 4) ^ (4 / 3))
 Sf = Sfi
 While (So <= Sf And i <= max_iter_Dp)
 f = f_f_roughp(Dp, ks)
 u = (Tsoc * 8 / (f * pwater)) ^ 0.5
 Tso = f / 8 * pwater * u ^ 2
 Sf = (n ^ 2) * (u ^ 2) / ((Dp / 4) ^ (4 / 3))
 Dp += incDp
 i += 1
 End While
 End Sub
#End Region
#Region "Properties"
 Public ReadOnly Property inp_Dm_pro() As Single
 Get
 Return Dm
 End Get
 End Property
 Public ReadOnly Property inp_n_pro() As Single
 Get
 Return n
 End Get
 End Property
 Public ReadOnly Property inp_ks_pro() As Single
 Get
 Return ks
 End Get
 End Property
 Public ReadOnly Property inp_delta_pro() As Single
 Get
 Return delta
 End Get
 End Property
 Public ReadOnly Property inp_Lstill_pro() As Single
 Get
 Return Lstill
 End Get
 End Property
 Public ReadOnly Property inp_ELstill_pro() As Single
 Get
 Return Elstill
 End Get
 End Property
 Public ReadOnly Property inp_Lsettl_pro() As Single
 Get
 Return Lsettl
 End Get
 End Property
 Public ReadOnly Property inp_incDp_pro() As Single
 Get
 Return incDp
 End Get
 End Property
 Public ReadOnly Property inp_Elsettl_pro() As Single
 Get
 Return Elsettl
 End Get
 End Property
 Public ReadOnly Property ustarc_pro() As Single
 Get
 Return ustarc

 168

 End Get
 End Property
 Public ReadOnly Property Tsoc_pro() As Single
 Get
 Return Tsoc
 End Get
 End Property
 Public ReadOnly Property Tso_pro() As Single
 Get
 Return Tso
 End Get
 End Property
 'horizantal length of flushing canal
 Public ReadOnly Property Lflush_h_pro() As Single
 Get

 Return Lflush_h
 End Get
 End Property
 'real (3d) length of flushing canal (need for cost calculations)
 Public ReadOnly Property Lflush_pro() As Single
 Get
 Return Sqrt(Lflush_h ^ 2 + (Elsettl - Elstill) ^ 2)
 End Get
 End Property
 Public ReadOnly Property Sf_pro() As Single
 Get
 Return Sf
 End Get
 End Property
 Public ReadOnly Property So_pro() As Single
 Get
 Return So
 End Get
 End Property
 Public ReadOnly Property f_pro() As Single
 Get
 Return f
 End Get
 End Property
 Public ReadOnly Property u_pro() As Single
 Get
 Return u
 End Get
 End Property
 Public ReadOnly Property Dp_pro() As Single
 Get
 Return Dp
 End Get
 End Property
 Public ReadOnly Property Sfi_pro() As Single
 Get
 Return Sfi
 End Get
 End Property
 Public ReadOnly Property fi_pro() As Single
 Get
 Return fi
 End Get
 End Property
 Public ReadOnly Property ui_pro() As Single

 169

 Get
 Return ui
 End Get
 End Property
#End Region
#Region "Constructors"
 Public Sub New(ByVal inp_Dm As Single, ByVal inp_Dp As Single, ByVal inp_n As Single, ByVal
inp_ks As Single, ByVal inp_delta As Single, ByVal inp_Lstill As Single, ByVal inp_Elstill As Single, ByVal
inp_Lsettl As Single, ByVal inp_Elsettl As Single, ByVal inp_incDp As Single)
 Dm = inp_Dm
 Dp = inp_Dp
 n = inp_n
 ks = inp_ks
 delta = inp_delta
 Lstill = inp_Lstill
 Elstill = inp_Elstill
 Lsettl = inp_Lsettl
 Elsettl = inp_Elsettl
 incDp = inp_incDp
 Me.compute()
 End Sub
 Public Sub New(ByVal inp_Dm As Single, ByVal inp_Dp As Single, ByVal inp_n As Single, ByVal
inp_ks As Single, ByVal inp_delta As Single, ByVal inp_Lsettl As Single, ByVal inp_Elsettl As Single,
ByVal inp_incDp As Single, ByVal inp_alfa_int As Single, ByVal inp_Kr As Single, ByVal inp_delta_sb As
Single, ByVal inp_So_river As Single, ByVal inp_Lstill_tot As Single)
 Dm = inp_Dm
 Dp = inp_Dp
 n = inp_n
 ks = inp_ks
 delta = inp_delta
 Lsettl = inp_Lsettl
 Elsettl = inp_Elsettl
 incDp = inp_incDp
 Lstill = Lsettl * Cos(inp_alfa_int * 2 * PI / 360)
 If Lstill < inp_Lstill_tot Then
 Elstill = inp_Kr - inp_delta_sb
 Else
 Elstill = inp_Kr - inp_So_river * (Lstill - inp_Lstill_tot)
 End If
 Me.compute()
 End Sub
#End Region
 End Class
#End Region
End Namespace
Namespace stability_analysis
#Region "Data structures"
 <Serializable()> Public Class MVo 'overturning moment base stress calc
 Public EMo As Single
 Public EMr As Single
 Public B_base As Single
 Public c_base As Single
 Public I_base As Single
 Public A_base As Single
 Public M_base As Single
 Public x_base As Single
 Public e_base As Single
 Public EV_base As Single
 Public Vtoe As Single
 Public Vheel As Single
 Public ma() As Single 'moment arm

 170

 Public M() As Single 'moment
 Public F() As Single 'force
 Public FSo As Single
 Public OK_o As Boolean
 Public OK_vmax As Boolean
 Public OK_vmin As Boolean
 Public Sub New(ByVal inp As MVo)
 With Me
 .A_base = inp.A_base
 .B_base = inp.B_base
 .c_base = inp.c_base
 .e_base = inp.e_base
 .EMo = inp.EMo
 .EMr = inp.EMr
 .EV_base = inp.EV_base
 .F = inp.F.Clone()
 .FSo = inp.FSo
 .I_base = inp.I_base
 .M = inp.M.Clone()
 .M_base = inp.M_base
 .ma = inp.ma.Clone()
 .OK_o = inp.OK_o
 .OK_vmax = inp.OK_vmax
 .OK_vmin = inp.OK_vmin
 .Vheel = inp.Vheel
 .Vtoe = inp.Vtoe
 .x_base = inp.x_base
 End With
 End Sub
 Public Sub New()
 End Sub
 End Class
 <Serializable()> Public Class stab_geom_input_data
 'inputs
 Public Ks As Single
 Public Kr As Single
 Public Kst As Single 'needed for sliding (no need for uplift)
 Public delta As Single 'delta sill value for stillb
 Public mh_delta As Single ' needed for sliding (no need for uplift)
 Public creep_path() As c_point
 Public str_start As Integer 'start of the structure(whole)(need for sliding and overturn)
 Public sb_start As Integer
 Public sb_end As Integer
 Public Ssb As Single 'settling basin slope ; needed only for settling basin, because for stilling basin it is
zero (horizantal)
 Public Sub New(ByVal inp As stab_geom_input_data)
 With Me
 Dim i As Integer
 For i = 0 To .creep_path.GetUpperBound(0) 'exact copy of the object array
 .creep_path(i) = New c_point(inp.creep_path(i))
 Next
 .delta = inp.delta
 .Kr = inp.Kr
 .Ks = inp.Ks
 .Kst = inp.Kst
 .mh_delta = inp.mh_delta
 .sb_end = inp.sb_end
 .sb_start = inp.sb_start
 .Ssb = inp.Ssb
 .str_start = inp.str_start
 End With

 171

 End Sub
 Public Sub New()
 End Sub
 End Class
 <Serializable()> Public Class stab_mtrl_input_data 'material input data
 Public gconc As Single
 Public gwater As Single
 Public Sallw_cf As Single 'allowable shear stress btw conc and found
 Public Callf As Single 'allowable foundation stress (for sidewalls)
 Public Cac As Single 'allowable comp stress for concrete
 Public Caf As Single 'allowable comp stress for foundation
 Public kh As Single 'hor seismic earthq coeff.
 Public kv As Single 'ver seismic eq coeff.
 Public Callw As Single 'foundation allowable stress
 Public f As Single ' friction coeff btw soil and foundation
 Public ured_perc As Single 'uplift reduction percentage when drains added (in floating point
representation, not in percentage)
 Public gdry As Single 'dry unit weight of soil
 Public gsat As Single 'saturated unit weight of soil
 Public teta As Single 'angle of repose of the soil (in degrees)
 Public alfa As Single 'earth inclination at sidewalls (zero for hor)
 Public Sub New(ByVal inp As stab_mtrl_input_data)
 With Me
 .alfa = inp.alfa
 .Cac = inp.Cac
 .Caf = inp.Caf
 .Callf = inp.Callf
 .Callw = inp.Callw
 .f = inp.f
 .gconc = inp.gconc
 .gdry = inp.gdry
 .gsat = inp.gsat
 .gwater = inp.gwater
 .kh = inp.kh
 .kv = inp.kv
 .Sallw_cf = inp.Sallw_cf
 .teta = inp.teta
 .ured_perc = inp.ured_perc
 End With
 End Sub
 Public Sub New()
 End Sub
 End Class
 <Serializable()> Public Class stab_Fs_input_data
 Public Fsu As Single 'factor safety against uplift
 Public FSs As Single 'factor safety against sliding
 Public FSss As Single 'factor of safety against shear and sliding
 Public FSo As Single 'factor of safety against overturning
 Public Vmax As Single
 Public Vmin As Single
 Public FSo_sw As Single 'factor of safety for sidewalls
 Public FSs_sw As Single 'factor of safety for sidewalls
 Public Vmax_sw As Single
 Public Vmin_sw As Single
 Public Sub New(ByVal inp As stab_Fs_input_data)
 With Me
 Me.FSo = inp.FSo
 Me.FSo_sw = inp.FSo_sw
 Me.FSs = inp.FSs
 Me.FSs_sw = inp.FSs_sw
 Me.FSss = inp.FSss

 172

 Me.Fsu = inp.Fsu
 Me.Vmax = inp.Vmax
 Me.Vmax_sw = inp.Vmax_sw
 Me.Vmin = inp.Vmin
 Me.Vmin_sw = inp.Vmin_sw
 End With
 End Sub
 Public Sub New()
 End Sub
 End Class
 <Serializable()> Public Class stab_sidewall_input_data
 Public Kus As Single
 Public y2max As Single
 Public tc As Single
 Public tc_base As Single
 Public El_base As Single 'need to determine the base elev of ret wall; this is simply stillbas base elev.
 Public t1 As Single
 Public t2 As Single
 Public t3 As Single
 Public mh_free As Single 'slope where sidewall is free (no earth exist)
 Public gwd As Single 'ground water depth from soil surface
 Public fsoil As Single 'freeboard from soil (earth side) if no freeboard =0
 Public q_surch As Single
 Public coulomb_type As Boolean
 Public change_dim_type As Byte
 Public Sub New(ByVal inp As stab_sidewall_input_data)
 With Me
 .change_dim_type = inp.change_dim_type
 .coulomb_type = inp.coulomb_type
 .El_base = inp.El_base
 .fsoil = inp.fsoil
 .gwd = inp.gwd
 .Kus = inp.Kus
 .mh_free = inp.mh_free
 .q_surch = inp.q_surch
 .t1 = inp.t1
 .t2 = inp.t2
 .t3 = inp.t3
 .tc = inp.tc
 .tc_base = inp.tc_base
 .y2max = inp.y2max
 End With
 End Sub
 Public Sub New()
 End Sub
 End Class
#End Region
#Region "Classes"
 <Serializable()> Public Class seepage_analysis
#Region "Private variables"
 'inputs
 Private profile() As String 'no need for comp, need for other
 Private C As Single 'relative permeability
 Private K() As Single 'u/s water level for various discharges
 Private Kd() As Single 'd/s tailwater level for various discharges
 Private Kr As Single ' d/s riprap(tailwater) thalweg elevation
 Private Ks As Single 'spillway crest elevation
 Private creep_path() As c_point 'creep_path points determining creep path
 'outputs
 Private H_overf() As Single 'net head for overflowing cases
 Private H_funtw As Single 'net head for full u/s no tailwater case

 173

 Private Hnet As Single 'net critic (max) head for all cases above: overflowing cases + full u/s no tw
case
 Private satisfactory As Boolean 'if minimum creep length for no piping was satisfied or not
 Private Lcr As Single 'creep length
 Private ELx() As Single
 Private Function Hmax(ByVal H1() As Single, ByVal H2 As Single) As Single
 Dim temp() As Single = H1.Clone()
 Array.Sort(temp)
 Return (Max(temp(temp.GetUpperBound(0)), H2))
 End Function
#End Region
#Region "Class interface"
 Private Sub compute()
 Dim i As Integer
 Dim temp(0) As c_point 'temp array of points for creep path and weight of body
 'overflowing cases
 For i = 0 To K.GetUpperBound(0)
 H_overf(i) = K(i) - Kd(i)
 Next
 'full u/s no tw case
 H_funtw = Ks - Kr
 'ceep length calculation
 Lcr = f_Lcreep(creep_path)
 'max head (critical head)
 Hnet = Hmax(H_overf, H_funtw)
 'ELx calculation
 ELx(0) = 0 'initial point
 temp(0) = New c_point(creep_path(0).x, creep_path(0).y) 'recall no change to temp, otherwise, if temp
is changed, creep_path values changes; think as pointer logic
 For i = 1 To creep_path.GetUpperBound(0)
 ReDim Preserve temp(i)
 temp(i) = New c_point(creep_path(i).x, creep_path(i).y)

 ELx(i) = f_Lcreep(temp)
 Next
 If Lcr >= C * Hnet Then
 satisfactory = True
 Else
 satisfactory = False
 End If
 End Sub
#End Region
#Region "Properties"
 Public ReadOnly Property profile_pro() As String()
 Get
 Return profile
 End Get
 End Property
 Public ReadOnly Property ELx_pro() As Single()
 Get
 Return ELx
 End Get
 End Property
 Public ReadOnly Property inp_creep_path_pro() As c_point()
 Get
 Return creep_path
 End Get
 End Property
 Public ReadOnly Property inp_Ks_pro() As Single
 Get
 Return Ks

 174

 End Get
 End Property
 Public ReadOnly Property inp_Kr_pro() As Single
 Get
 Return Kr
 End Get
 End Property
 Public ReadOnly Property inp_Kd_pro() As Single()
 Get
 Return Kd
 End Get
 End Property
 Public ReadOnly Property inp_K_pro() As Single()
 Get
 Return K
 End Get
 End Property
 Public ReadOnly Property inp_C_pro() As Single
 Get
 Return C
 End Get
 End Property
 Public ReadOnly Property H_overf_pro() As Single()
 Get
 Return H_overf
 End Get
 End Property
 Public ReadOnly Property Hnet_pro() As Single
 Get
 Return Hnet
 End Get
 End Property
 Public ReadOnly Property H_funtw_pro() As Single
 Get
 Return H_funtw
 End Get
 End Property
 Public ReadOnly Property satisfactory_pro() As Boolean
 Get
 Return satisfactory
 End Get
 End Property
 Public ReadOnly Property Lcr_pro() As Single
 Get
 Return Lcr
 End Get
 End Property
 Public ReadOnly Property CH_pro() As Single
 Get
 Return C * Hnet
 End Get
 End Property
#End Region
#Region "Constructors"
 Public Sub New(ByVal inp_C As Single, ByVal inp_K() As Single, ByVal inp_Kd() As Single, ByVal
inp_Ks As Single, ByVal inp_Kr As Single, ByVal inp_creep_path() As c_point, ByVal inp_profile() As
String)
 profile = inp_profile
 C = inp_C
 K = inp_K
 Kd = inp_Kd

 175

 Kr = inp_Kr
 Ks = inp_Ks
 creep_path = inp_creep_path
 ReDim H_overf(inp_K.GetUpperBound(0))
 ReDim ELx(inp_creep_path.GetUpperBound(0))
 Me.compute()
 End Sub
#End Region
 End Class
 <Serializable()> Public Class stab_uplift_sb
 '**--**
 '** This class can be used for both settling basin and stilling basin **
 '** For settling basin-> Ssb must be input **
 '** For stilling basin-> Ssb=0 **
 '** Ls determined automatically by sb_start and sb_end data **
 '** Ssb imp for (Ls*Ssb); in order to find settl basin start el **
 '** for stilling basin; it is horizantal; no need **
 '** Kr: d/s elev of settlbas (for settlbas) **
 '** Kr: riprap sect elev (stillbas) **
 '--**
 '** Ssb: stilling/settling basin upper slope (for stillbas Ssb=0 (hor) **
 '--**
 '** NOTE: **
 '** last place to change the geom for stab because following sliding and **
 '** overturning calculated by cutting the cutoffs of the actual geometry **
 '** Therefore; vol computations of base are made here....... **
 '**--**
#Region "Private variables"
 'input
 Private stillbas_type As Boolean 'if structure is stillbas=true elseif settlbas =false
 Private input_geom As stab_geom_input_data
 Private gwater As Single
 Private gconc As Single
 Private ured_perc As Single
 Private FSu As Single
 'outputs
 Private ELx() As Single
 Private hx() As Single
 Private shead() As Single
 Private ux() As Single
 Private Lcr As Single 'creep length
 Private Hnet As Single 'net head
 Private hl_per_Lx As Single
 Private Fu As Single 'uplift force
 Private Wa As Single 'weight of body
 Private FSu_comp As Single 'computed factor of safety
 Private Elsb_ds As Single 'upper elevation of the downstream of stilling/settling basin
 Private Elsb_us As Single 'upper elevation of the upstream of stilling/settling basin
 Private satisfactory As Boolean 'if satisfactory, it is true else not
 Private drains_add As Boolean 'if drains_add needed it is true else not
 Private FSu_final As Single 'after the uplift reduction (if drains added)
 Private Fu_final As Single ' after drains added
#End Region
#Region "Class interface"
 Private Sub compute()
 Dim i As Integer
 Dim temp(0) As c_point 'temp array of points for creep path and weight of body
 With input_geom
 If stillbas_type = False Then
 ReDim Preserve .creep_path(.sb_end + 1)
 ReDim ELx(.creep_path.GetUpperBound(0))

 176

 ReDim hx(.creep_path.GetUpperBound(0))
 ReDim shead(.creep_path.GetUpperBound(0))
 ReDim ux(.creep_path.GetUpperBound(0))
 .creep_path(.sb_end + 1) = New c_point(.creep_path(.sb_end).x, .creep_path(.sb_end).y)
 .creep_path(.sb_end + 1).y = .Kr - .delta
 Hnet = .Ks - .creep_path(.sb_end + 1).y 'now the last creep point is this
 Else
 Hnet = .Ks - .Kr
 End If
 Lcr = f_Lcreep(.creep_path)
 hl_per_Lx = Hnet / Lcr
 'initial point
 ELx(0) = 0
 hx(0) = 0
 shead(0) = .Ks - .creep_path(0).y
 ux(0) = shead(0) - hx(0)
 temp(0) = New c_point(.creep_path(0).x, .creep_path(0).y)
 For i = 1 To .creep_path.GetUpperBound(0)
 ReDim Preserve temp(i)
 temp(i) = New c_point(.creep_path(i).x, .creep_path(i).y)
 ELx(i) = f_Lcreep(temp)
 hx(i) = hl_per_Lx * ELx(i)
 shead(i) = .Ks - .creep_path(i).y
 ux(i) = shead(i) - hx(i)
 Next
 'rest is same for settl and still bas
 'compute Fu and weight of body
 ReDim temp(Abs(.sb_end - .sb_start) + 3)
 Fu = 0
 For i = .sb_start To (.sb_end - 1)
 Fu = Fu + (ux(i) + ux(i + 1)) / 2 * gwater * (.creep_path(i + 1).x - .creep_path(i).x)
 temp(i - .sb_start) = New c_point(.creep_path(i).x, .creep_path(i).y)
 Next
 Fu_final = Fu '(no reduction yet,so Fu_red=Fu)
 Elsb_ds = .Kr - .delta
 Elsb_us = Elsb_ds + .Ssb * Abs(.creep_path(.sb_end).x - .creep_path(.sb_start).x)
 temp(.sb_end - .sb_start) = New c_point(.creep_path(.sb_end).x, .creep_path(.sb_end).y)
 temp(.sb_end - .sb_start + 1) = New c_point(.creep_path(.sb_end).x, Elsb_ds)
 temp(.sb_end - .sb_start + 2) = New c_point(.creep_path(.sb_start).x, Elsb_us)
 temp(.sb_end - .sb_start + 3) = New c_point(temp(0).x, temp(0).y) 'close the polygon
 Wa = f_poly_area(temp) * gconc 'kn/m for unit width of the canal
 FSu_comp = Wa / Fu 'kn/m
 FSu_final = FSu_comp
 If (FSu_comp >= FSu) Then
 satisfactory = True
 drains_add = False
 Else
 Fu_final = Fu * (1 - ured_perc)
 FSu_final = Wa / Fu_final
 drains_add = True
 If (FSu_final >= FSu) Then
 satisfactory = True
 Else
 satisfactory = False
 End If
 End If
 End With
 End Sub
#End Region
#Region "Properties"
 Public ReadOnly Property inp_stillbas_type_pro() As Boolean

 177

 Get
 Return stillbas_type
 End Get
 End Property
 Public ReadOnly Property input_geom_pro() As stab_geom_input_data
 Get
 Return input_geom
 End Get
 End Property
 Public ReadOnly Property inp_gwater_pro() As Single
 Get
 Return gwater
 End Get
 End Property
 Public ReadOnly Property inp_gconc_pro() As Single
 Get
 Return gconc
 End Get
 End Property
 Public ReadOnly Property inp_ured_perc_pro() As Single
 Get
 Return ured_perc
 End Get
 End Property
 Public ReadOnly Property inp_Fsu_pro() As Single
 Get
 Return FSu
 End Get
 End Property
 'creep path to use at sliding and overturning analysis
 Public ReadOnly Property geom_for_so_pro() As stab_geom_input_data
 Get
 'hep pointer mantigi ile dusun...
 Dim geom_data As New stab_geom_input_data()
 Dim El_bottom As Single
 Dim i As Integer
 With input_geom
 El_bottom = Min(.creep_path(.sb_start).y, .creep_path(.sb_end).y)
 End With
 With geom_data
 .delta = input_geom.delta
 .Kr = input_geom.Kr
 .Ks = input_geom.Ks
 .Kst = input_geom.Kst
 .mh_delta = input_geom.mh_delta
 .sb_end = input_geom.sb_end
 .sb_start = input_geom.sb_start
 .Ssb = input_geom.Ssb
 .str_start = input_geom.str_start
 ReDim .creep_path(input_geom.creep_path.GetUpperBound(0))
 For i = 0 To .str_start
 .creep_path(i) = New c_point(input_geom.creep_path(i).x, input_geom.creep_path(i).y)
 Next
 For i = .str_start + 1 To .creep_path.GetUpperBound(0) - 1
 .creep_path(i) = New c_point(input_geom.creep_path(i).x, El_bottom)
 Next
 .creep_path(.creep_path.GetUpperBound(0)) = New
c_point(input_geom.creep_path(.creep_path.GetUpperBound(0)).x,
input_geom.creep_path(.creep_path.GetUpperBound(0)).y)
 End With
 Return geom_data

 178

 End Get
 End Property
 Public ReadOnly Property Area_sb_pro() As Single
 Get
 With input_geom
 Dim i As Integer
 Dim area_cutoff_ds As Single
 Dim geo_cutoff_ds(.creep_path.GetUpperBound(0) - .sb_end + 3) As c_point
 For i = .sb_end To .creep_path.GetUpperBound(0)
 geo_cutoff_ds(i - .sb_end) = .creep_path(i)
 Next
 geo_cutoff_ds(i - .sb_end) = geo_cutoff_ds(i - .sb_end - 1)
 geo_cutoff_ds(i - .sb_end).x = geo_cutoff_ds(i - .sb_end - 1).x -
(.creep_path(.creep_path.GetUpperBound(0)).x - .creep_path(.sb_end).x - .delta * .mh_delta)
 geo_cutoff_ds(i - .sb_end + 1) = New c_point(geo_cutoff_ds(i - .sb_end).x - .mh_delta * .delta,
Elsb_ds)
 geo_cutoff_ds(i - .sb_end + 2) = geo_cutoff_ds(0)
 area_cutoff_ds = f_poly_area(geo_cutoff_ds)
 Return (Wa / gconc + area_cutoff_ds)
 End With
 End Get
 End Property
 Public ReadOnly Property Area_cutoff_us_pro() As Single 'body above cutoff (spillway sluiceway body)
not added here(will be added following modules)
 Get
 With input_geom
 Dim i As Integer
 Dim area_cutoff_us As Single
 Dim geo_cutoff_us(.sb_start - (.str_start + 1) + 3) As c_point
 For i = .str_start + 1 To .sb_start
 geo_cutoff_us(i - (.str_start + 1)) = .creep_path(i)
 Next
 geo_cutoff_us(i - (.str_start + 1)) = geo_cutoff_us(i - (.str_start + 1) - 1)
 geo_cutoff_us(i - (.str_start + 1)).y = Elsb_us
 geo_cutoff_us(i - (.str_start + 1) + 1) = geo_cutoff_us(i - (.str_start + 1))
 geo_cutoff_us(i - (.str_start + 1) + 1).x = geo_cutoff_us(0).x
 geo_cutoff_us(i - (.str_start + 1) + 2) = geo_cutoff_us(0)
 area_cutoff_us = f_poly_area(geo_cutoff_us)
 Return area_cutoff_us
 End With
 End Get
 End Property
 Public ReadOnly Property Area_slab_tot_pro() As Single
 Get
 Return Area_sb_pro + Area_cutoff_us_pro
 End Get
 End Property
 Public ReadOnly Property ELx_pro() As Single()
 Get
 Return ELx
 End Get
 End Property
 Public ReadOnly Property L_blankets_pro() As Single
 Get
 With input_geom
 Return Abs(.creep_path(0).x - .creep_path(.str_start).x)
 End With
 End Get
 End Property
 Public ReadOnly Property L_sheetpile_pro() As Single
 Get

 179

 With input_geom
 Return Abs(.creep_path(0).y - .creep_path(1).y)
 End With
 End Get
 End Property
 Public ReadOnly Property L1_pro() As Single
 Get
 With input_geom
 Return Abs(.creep_path(.str_start + 1).x - .creep_path(.str_start + 2).x)
 End With
 End Get
 End Property
 Public ReadOnly Property Lcutoff_tot_pro() As Single
 Get
 With input_geom
 Return Abs(.creep_path(.str_start + 1).x - .creep_path(.sb_start).x)
 End With
 End Get
 End Property
 Public ReadOnly Property ux_pro() As Single()
 Get
 Return ux
 End Get
 End Property
 Public ReadOnly Property hx_pro() As Single()
 Get
 Return hx
 End Get
 End Property
 Public ReadOnly Property shead_pro() As Single()
 Get
 Return shead
 End Get
 End Property
 Public ReadOnly Property Lcr_pro() As Single
 Get
 Return Lcr
 End Get
 End Property
 Public ReadOnly Property Hnet_pro() As Single
 Get
 Return Hnet
 End Get
 End Property
 Public ReadOnly Property hl_per_Lx_pro() As Single
 Get
 Return hl_per_Lx
 End Get
 End Property
 Public ReadOnly Property Fu_pro() As Single
 Get
 Return Fu
 End Get
 End Property
 Public ReadOnly Property Wa_pro() As Single
 Get
 Return Wa
 End Get
 End Property
 Public ReadOnly Property Fsu_comp_pro() As Single
 Get

 180

 Return FSu_comp
 End Get
 End Property
 Public ReadOnly Property Fsu_pro() As Single
 Get
 Return FSu
 End Get
 End Property
 Public ReadOnly Property Elsb_ds_pro() As Single
 Get
 Return Elsb_ds
 End Get
 End Property
 Public ReadOnly Property Elsb_us_pro() As Single
 Get
 Return Elsb_us
 End Get
 End Property
 Public ReadOnly Property tsb_us_pro() As Single
 Get
 With input_geom
 Return Elsb_us - .creep_path(.sb_start).y
 End With
 End Get
 End Property
 Public ReadOnly Property tsb_ds_pro() As Single
 Get
 With input_geom
 Return Elsb_ds - .creep_path(.sb_end).y
 End With
 End Get
 End Property
 Public ReadOnly Property satisfactory_pro() As Boolean
 Get
 Return satisfactory
 End Get
 End Property
 Public ReadOnly Property drains_add_pro() As Boolean
 Get
 Return drains_add
 End Get
 End Property
 Public ReadOnly Property Fsu_final_pro() As Single
 Get
 Return FSu_final
 End Get
 End Property
 Public ReadOnly Property Fu_final_pro() As Single
 Get
 Return Fu_final
 End Get
 End Property
#End Region
#Region "Constructors"
 Public Sub New(ByVal inp_stillbas_type As Boolean, ByVal input As stab_geom_input_data, ByVal
inp_gwater As Single, ByVal inp_gconc As Single, ByVal inp_FSu As Single, ByVal inp_ured_perc As
Single)
 stillbas_type = inp_stillbas_type
 input_geom = input
 FSu = inp_FSu
 gwater = inp_gwater

 181

 gconc = inp_gconc
 ured_perc = inp_ured_perc
 With input_geom
 ReDim ELx(.creep_path.GetUpperBound(0))
 ReDim hx(.creep_path.GetUpperBound(0))
 ReDim shead(.creep_path.GetUpperBound(0))
 ReDim ux(.creep_path.GetUpperBound(0))
 End With
 Me.compute()
 End Sub
#End Region
 End Class
 <Serializable()> Public Class stab_sliding_and_overt
 'Assume that the spillway and apron is considered by neglecting the cutoff walls
 'and passive resistance
 'for sliding whole body with stilling basin and spillway is considered
 'for overturning only spillway body is considered.
#Region "Private variables"
 'inputs
 Private input_geom As stab_geom_input_data
 Private input_mtrl As stab_mtrl_input_data
 Private input_Fs As stab_Fs_input_data
 Private drains_add As Boolean ' if drains added before(output of stab_uflift is input this time)
 Private mh_ogee As Single 'spillway d/s slope (ogee shape slope)
 Private tc As Single 'crest thickness of spillway
 Private crest_auto As Boolean 'crest thickness calculated automatically
 'outputs**
 'creep calculations
 Private Lcr As Single
 Private hl_per_Lx As Single
 Private Hnet As Single
 Private ELx() As Single
 Private hx() As Single
 Private shead() As Single
 Private ux() As Single
 'shear and sliding check 'full u/s no tailwater
 Private Fu As Single 'uplift force
 Private Fh As Single 'hydrostatic force
 Private Fw As Single 'dynamic hydrostatic force
 Private Fuh As Single 'hydrostatic force below sheetpile
 Private Fs As Single 'lateral active eart pressure force
 Private W As Single ' weight of the body
 Private Fdh As Single 'hor dynamic force
 Private Fdv As Single 'ver dynamic force
 Private gsub As Single 'gsub=gsat-gdry
 Private Ka As Single 'lateral active earth press coef
 Private Ashear As Single 'area of shear plane
 Private FSs_comp As Single
 Private FSss_comp As Single
 Private Ftot_h As Single
 Private Ftot_v As Single
 Private OK_s As Boolean 'sliding
 Private OK_ss As Boolean 'shear and sliding
 'for overturning of spillway wrt heel (full u/s no tailwater case)
 Private MVoheel As MVo 'no subscript for full u/s no tailwater; because it is the default case
 'for overturning of spillway wrt heel (empty reservoir case)
 Private MVoheel_eu As MVo
 'for overturning of spillway wrt toe (empty reservoir case)
 Private MVotoe_eu As MVo
#End Region
#Region "Class interface"

 182

 Private Sub compute_sliding()
 Dim i As Integer
 Dim xR As Single 'spillway toe hor dist
 Dim alfa As Single 'angle of spillw ogee slope
 Dim temp(0) As c_point 'temp array of points for creep path and weight of body
 With input_geom
 Hnet = .Ks - .Kr
 Lcr = f_Lcreep(.creep_path)
 hl_per_Lx = Hnet / Lcr
 'code repetition, (may need optimization in future)
 'initial point
 ELx(0) = 0
 hx(0) = 0
 shead(0) = .Ks - .creep_path(0).y
 ux(0) = shead(0) - hx(0)
 temp(0) = New c_point(.creep_path(0).x, .creep_path(0).y)
 For i = 1 To .creep_path.GetUpperBound(0)
 ReDim Preserve temp(i)
 temp(i) = New c_point(.creep_path(i).x, .creep_path(i).y)
 ELx(i) = f_Lcreep(temp)
 hx(i) = hl_per_Lx * ELx(i)
 shead(i) = .Ks - .creep_path(i).y
 ux(i) = shead(i) - hx(i)
 Next
 'compute Fu
 Fu = input_mtrl.gwater * (ux(.str_start + 1) + ux(.creep_path.GetUpperBound(0) - 1)) / 2 *
Abs(.creep_path(.creep_path.GetUpperBound(0)).x - .creep_path(.str_start).x)
 'reduce the uplift if the draind added
 If drains_add Then Fu = Fu * (1 - input_mtrl.ured_perc)
 'compute Fuh
 Fuh = input_mtrl.gwater * (ux(.str_start) + ux(.str_start + 1)) / 2 * Abs(.creep_path(.str_start).y -
.creep_path(.str_start + 1).y)
 'compute Fh
 Fh = 1 / 2 * ((.Ks - .Kst) ^ 2) * input_mtrl.gwater
 'compute Fw (vertical u/s face 0.7)
 Fw = 0.726 * 0.7 * input_mtrl.kh * input_mtrl.gwater * (.Ks - .Kst) ^ 2
 'compute Fs
 gsub = input_mtrl.gsat - input_mtrl.gwater
 Ka = (1 - Sin(input_mtrl.teta * 2 * PI / 360)) / (1 + Sin(input_mtrl.teta * 2 * PI / 360))
 Fs = 1 / 2 * input_mtrl.gwater * Ka * (.creep_path(.str_start).y - .creep_path(.str_start + 1).y) ^ 2
 'compute W
 ReDim temp(.creep_path.GetUpperBound(0) - .str_start + 6) ' for the determination of closed
polygon
 For i = 0 To (.creep_path.GetUpperBound(0) - .str_start)
 temp(i) = New c_point(.creep_path(.str_start + i).x, .creep_path(.str_start + i).y)
 Next
 i -= 1 'next ' gorunce i arttiriliyor, bu sebeple i bir azaltilmali
 temp(i + 1) = New c_point(temp(i).x - (Abs(.creep_path(.creep_path.GetUpperBound(0)).x -
.creep_path(.sb_end).x) - .delta * .mh_delta), temp(i).y)
 temp(i + 2) = New c_point(temp(i + 1).x - .delta * .mh_delta, temp(i + 1).y - .delta)
 temp(i + 3) = New c_point(temp(i + 2).x - Abs(.creep_path(.sb_end).x - .creep_path(.sb_start).x),
temp(i + 2).y)
 'may be modifed that R can be input in future
 If crest_auto Then 'crest thickness of spillway is not given
 alfa = Atan(1 / mh_ogee)
 xR = 0.5 * (.Ks - .Kst) * Tan(alfa / 2) 'assume that R=0.5*P ; to be modified
 temp(i + 4) = New c_point(temp(i + 3).x - xR - (.Ks - temp(i + 3).y) * mh_ogee - xR, .Ks)
 Else 'crest thickness is given
 temp(i + 4) = New c_point(temp(0).x + tc, .Ks)
 End If
 temp(i + 5) = New c_point(temp(0).x, temp(i + 4).y)

 183

 temp(i + 6) = New c_point(temp(0).x, temp(0).y) 'close the polygon
 'crest thickness of the spillway
 tc = Abs(temp(i + 5).x - temp(i + 4).x)
 W = f_poly_area(temp) * input_mtrl.gconc
 'compute Fdh and Fdv
 Fdh = input_mtrl.kh * W
 Fdv = input_mtrl.kv * W
 Ftot_h = Fw + Fh + Fs + Fuh + Fdh
 Ftot_v = W - Fdv - Fu
 'FSs and FSss computed
 FSs_comp = input_mtrl.f * Ftot_v / Ftot_h
 Ashear = Abs(.creep_path(.str_start).x - .creep_path(.creep_path.GetUpperBound(0)).x) * 1 ' calc
made for 1 meter width
 FSss_comp = (input_mtrl.f * Ftot_v + 0.5 * Ashear * input_mtrl.Sallw_cf) / Ftot_h
 'checks
 If (FSs_comp >= input_Fs.FSs) Then
 OK_s = True
 Else
 OK_s = False
 End If
 If (FSss_comp >= input_Fs.FSss) Then
 OK_ss = True
 Else
 OK_ss = False
 End If
 End With
 End Sub
 Private Sub compute_overt()
 Dim i As Integer
 'note that forces always in the following order
 'Fw - 0
 'Fh - 1
 'Fs - 2
 'Fuh - 3
 'Fdh - 4
 'W - 5
 'Fdv - 6
 'Fu - 7
 With input_geom
 Dim temp(.sb_start - .str_start + 4) As c_point 'temp array of points for weight of spillway body
 For i = 0 To (.sb_start - .str_start)
 temp(i) = New c_point(.creep_path(.str_start + i).x, .creep_path(.str_start + i).y)
 Next
 temp(i) = New c_point(temp(i - 1).x, .creep_path(.creep_path.GetUpperBound(0)).y - .delta)
 temp(i + 1) = New c_point(temp(0).x + tc, .Ks)
 temp(i + 2) = New c_point(temp(0).x, .Ks)
 temp(i + 3) = New c_point(temp(0).x, temp(0).y) 'close the polygon
 'Fw-0
 MVoheel.F(0) = Fw
 MVoheel.ma(0) = 0.412 * (.Ks - .Kst) + Abs(temp(0).y - temp(1).y)
 'Fh-1
 MVoheel.F(1) = Fh
 MVoheel.ma(1) = (.Ks - .Kst) / 3 + Abs(temp(0).y - temp(1).y)
 'Fs-2
 MVoheel.F(2) = Fs
 MVoheel.ma(2) = Abs(temp(0).y - temp(1).y) / 3
 'Fuh-3
 MVoheel.F(3) = Fuh
 MVoheel.ma(3) = f_trap_centr_d_from_b(ux(.sb_start + 1), ux(.str_start), Abs(temp(0).y -
temp(1).y))
 'W-5

 184

 MVoheel.F(5) = f_poly_area(temp) * input_mtrl.gconc * 1 'for 1 meter
 MVoheel.ma(5) = Abs(f_poly_centr(temp).x - temp(.sb_start - .str_start).x)
 'Fdh-4
 MVoheel.F(4) = MVoheel.F(5) * input_mtrl.kh
 MVoheel.ma(4) = Abs(f_poly_centr(temp).y - temp(.sb_start - .str_start).y)
 'Fdv-6
 MVoheel.F(6) = MVoheel.F(5) * input_mtrl.kv
 MVoheel.ma(6) = Abs(f_poly_centr(temp).x - temp(.sb_start - .str_start).x)
 'Fu-7
 MVoheel.F(7) = (ux(.str_start + 1) + ux(.sb_start)) / 2 * Abs(temp(.sb_start - .str_start).x -
temp(1).x) * input_mtrl.gwater
 MVoheel.ma(7) = Abs(temp(.sb_start - .str_start).x - temp(1).x) -
f_trap_centr_d_from_b(ux(.str_start + 1), ux(.sb_start), Abs(temp(.sb_start - .str_start).x - temp(1).x))
 If drains_add = True Then MVoheel.F(7) = (1 - input_mtrl.ured_perc) * MVoheel.F(7)
 MVoheel.EMo = 0
 For i = 0 To 7
 MVoheel.M(i) = MVoheel.F(i) * MVoheel.ma(i)
 MVoheel.EMo = MVoheel.EMo + MVoheel.M(i)
 Next
 MVoheel.EMo = MVoheel.EMo - MVoheel.M(5)
 MVoheel.EMr = MVoheel.M(5)
 MVoheel.FSo = MVoheel.EMr / MVoheel.EMo
 If MVoheel.FSo >= input_Fs.FSo Then
 MVoheel.OK_o = True
 Else
 MVoheel.OK_o = False
 End If
 'Note:remember arraya are objects; reference type(not value type) MVotoe_eu=MVoheel behaves
like pointer equality; so that if one change, the other also changes
 'empty u/s case wrt toe
 For i = 0 To MVoheel.M.GetUpperBound(0)
 MVotoe_eu.F(i) = MVoheel.F(i)
 MVotoe_eu.ma(i) = MVoheel.ma(i)
 Next
 MVotoe_eu.F(0) = 0
 MVotoe_eu.F(1) = 0
 MVotoe_eu.F(3) = 0
 MVotoe_eu.F(7) = 0
 MVotoe_eu.ma(5) = Abs(f_poly_centr(temp).x - temp(1).x)
 MVotoe_eu.ma(6) = Abs(f_poly_centr(temp).x - temp(1).x)
 For i = 0 To 7
 MVotoe_eu.M(i) = MVotoe_eu.F(i) * MVotoe_eu.ma(i)
 Next
 MVotoe_eu.EMo = MVotoe_eu.M(4) + MVotoe_eu.M(6)
 MVotoe_eu.EMr = MVotoe_eu.M(2) + MVotoe_eu.M(5)
 MVotoe_eu.FSo = MVotoe_eu.EMr / MVotoe_eu.EMo
 If MVotoe_eu.FSo >= input_Fs.FSo Then
 MVotoe_eu.OK_o = True
 Else
 MVotoe_eu.OK_o = False
 End If
 'Note:remember arraya are objects; reference type(not value type) MVotoe_eu=MVoheel behaves
like pointer equality; so that if one change, the other also changes
 'empty u/s case wrt heel
 For i = 0 To MVoheel.M.GetUpperBound(0)
 MVoheel_eu.F(i) = MVoheel.F(i)
 MVoheel_eu.ma(i) = MVoheel.ma(i)
 Next
 MVoheel_eu.F(0) = 0
 MVoheel_eu.F(1) = 0
 MVoheel_eu.F(3) = 0

 185

 MVoheel_eu.F(7) = 0
 For i = 0 To 7
 MVoheel_eu.M(i) = MVoheel_eu.F(i) * MVoheel_eu.ma(i)
 Next
 MVoheel_eu.EMo = MVoheel_eu.M(2) + MVoheel_eu.M(4) + MVoheel_eu.M(6)
 MVoheel_eu.EMr = MVoheel_eu.M(5)
 MVoheel_eu.FSo = MVoheel_eu.EMr / MVoheel_eu.EMo
 If MVoheel_eu.FSo >= input_Fs.FSo Then
 MVoheel_eu.OK_o = True
 Else
 MVoheel_eu.OK_o = False
 End If
 End With
 End Sub
 Private Sub compute_base_pressures()
 With input_geom
 'full u/s no tailwater case wrt heel
 MVoheel.B_base = Abs(.creep_path(.str_start + 1).x - .creep_path(.sb_start).x)
 MVoheel.EV_base = MVoheel.F(5) - MVoheel.F(6) - MVoheel.F(7)
 MVoheel.x_base = (MVoheel.EMr - MVoheel.EMo) / MVoheel.EV_base
 MVoheel.e_base = MVoheel.B_base / 2 - MVoheel.x_base
 MVoheel.c_base = MVoheel.B_base / 2
 MVoheel.M_base = MVoheel.EV_base * MVoheel.e_base
 MVoheel.I_base = MVoheel.B_base ^ 3 / 12
 MVoheel.A_base = MVoheel.B_base * 1 'for unit width
 MVoheel.Vheel = MVoheel.EV_base / MVoheel.A_base + MVoheel.M_base * MVoheel.c_base /
MVoheel.I_base
 MVoheel.Vtoe = MVoheel.EV_base / MVoheel.A_base - MVoheel.M_base * MVoheel.c_base /
MVoheel.I_base
 If Max(MVoheel.Vtoe, MVoheel.Vheel) <= input_Fs.Vmax Then
 MVoheel.OK_vmax = True
 Else
 MVoheel.OK_vmax = False
 End If
 If Min(MVoheel.Vtoe, MVoheel.Vheel) >= input_Fs.Vmin Then
 MVoheel.OK_vmin = True
 Else
 MVoheel.OK_vmin = False
 End If
 'empty u/s case (wrt toe)************************************
 MVotoe_eu.B_base = Abs(.creep_path(.str_start + 1).x - .creep_path(.sb_start).x)
 MVotoe_eu.EV_base = MVotoe_eu.F(5) - MVotoe_eu.F(6)
 MVotoe_eu.x_base = (MVotoe_eu.EMr - MVotoe_eu.EMo) / MVotoe_eu.EV_base
 MVotoe_eu.e_base = MVotoe_eu.B_base / 2 - MVotoe_eu.x_base
 MVotoe_eu.c_base = MVotoe_eu.B_base / 2
 MVotoe_eu.M_base = MVotoe_eu.EV_base * MVotoe_eu.e_base
 MVotoe_eu.I_base = MVotoe_eu.B_base ^ 3 / 12
 MVotoe_eu.A_base = MVotoe_eu.B_base * 1 'for unit width
 MVotoe_eu.Vtoe = MVotoe_eu.EV_base / MVotoe_eu.A_base + MVotoe_eu.M_base *
MVotoe_eu.c_base / MVotoe_eu.I_base
 MVotoe_eu.Vheel = MVotoe_eu.EV_base / MVotoe_eu.A_base - MVotoe_eu.M_base *
MVotoe_eu.c_base / MVotoe_eu.I_base
 If Max(MVotoe_eu.Vtoe, MVotoe_eu.Vheel) <= input_Fs.Vmax Then
 MVotoe_eu.OK_vmax = True
 Else
 MVotoe_eu.OK_vmax = False
 End If
 If Min(MVotoe_eu.Vtoe, MVotoe_eu.Vheel) >= input_Fs.Vmin Then
 MVotoe_eu.OK_vmin = True
 Else
 MVotoe_eu.OK_vmin = False

 186

 End If
 'empty u/s case (wrt heel)**************************************
 MVoheel_eu.B_base = Abs(.creep_path(.str_start + 1).x - .creep_path(.sb_start).x)
 MVoheel_eu.EV_base = MVoheel_eu.F(5) - MVoheel_eu.F(6)
 MVoheel_eu.x_base = (MVoheel_eu.EMr - MVoheel_eu.EMo) / MVoheel_eu.EV_base
 MVoheel_eu.e_base = MVoheel_eu.B_base / 2 - MVoheel_eu.x_base
 MVoheel_eu.c_base = MVoheel_eu.B_base / 2
 MVoheel_eu.M_base = MVoheel_eu.EV_base * MVoheel_eu.e_base
 MVoheel_eu.I_base = MVoheel_eu.B_base ^ 3 / 12
 MVoheel_eu.A_base = MVoheel_eu.B_base * 1 'for unit width
 MVoheel_eu.Vheel = MVoheel_eu.EV_base / MVoheel_eu.A_base + MVoheel_eu.M_base *
MVoheel_eu.c_base / MVoheel_eu.I_base
 MVoheel_eu.Vtoe = MVoheel_eu.EV_base / MVoheel_eu.A_base - MVoheel_eu.M_base *
MVoheel_eu.c_base / MVoheel_eu.I_base
 If Max(MVoheel_eu.Vtoe, MVoheel_eu.Vheel) <= input_Fs.Vmax Then
 MVoheel_eu.OK_vmax = True
 Else
 MVoheel_eu.OK_vmax = False
 End If
 If Min(MVoheel_eu.Vtoe, MVoheel_eu.Vheel) >= input_Fs.Vmin Then
 MVoheel_eu.OK_vmin = True
 Else
 MVoheel_eu.OK_vmin = False
 End If
 End With
 End Sub
#End Region
#Region "Properties"
 Public ReadOnly Property input_geom_pro() As stab_geom_input_data
 Get
 Return input_geom
 End Get
 End Property
 Public ReadOnly Property input_mtrl_pro() As stab_mtrl_input_data
 Get
 Return input_mtrl
 End Get
 End Property
 Public ReadOnly Property input_Fs_pro() As stab_Fs_input_data
 Get
 Return input_Fs
 End Get
 End Property
 Public ReadOnly Property inp_drains_add_pro() As Boolean
 Get
 Return drains_add
 End Get
 End Property
 Public ReadOnly Property inp_mh_ogee_pro() As Single
 Get
 Return mh_ogee
 End Get
 End Property
 Public ReadOnly Property inp_tc_pro() As Single
 Get
 Return tc
 End Get
 End Property
 Public ReadOnly Property inp_crest_auto_pro() As Boolean
 Get
 Return crest_auto

 187

 End Get
 End Property
 Public ReadOnly Property Area_conc_splw_pro() As Single
 Get
 'F(5) is the weight of the body of splw
 Return (MVoheel.F(5) / Me.input_mtrl.gconc)
 End Get
 End Property
 Public ReadOnly Property MVoheel_pro() As MVo
 Get
 Return MVoheel
 End Get
 End Property
 Public ReadOnly Property MVoheel_eu_pro() As MVo
 Get
 Return MVoheel_eu
 End Get
 End Property
 Public ReadOnly Property MVotoe_eu_pro() As MVo
 Get
 Return MVotoe_eu
 End Get
 End Property
 Public ReadOnly Property FSo_pro() As Single
 Get
 Return input_Fs.FSo
 End Get
 End Property
 Public ReadOnly Property Vmax_pro() As Single
 Get
 Return input_Fs.Vmax
 End Get
 End Property
 Public ReadOnly Property Vmin_pro() As Single
 Get
 Return input_Fs.Vmin
 End Get
 End Property
 Public ReadOnly Property tc_pro() As Single
 Get
 Return tc
 End Get
 End Property
 Public ReadOnly Property crest_auto_pro() As Boolean
 Get
 Return crest_auto
 End Get
 End Property
 Public ReadOnly Property mh_ogee_pro() As Boolean
 Get
 Return mh_ogee
 End Get
 End Property
 Public ReadOnly Property ELx_pro() As Single()
 Get
 Return ELx
 End Get
 End Property
 Public ReadOnly Property ux_pro() As Single()
 Get
 Return ux

 188

 End Get
 End Property
 Public ReadOnly Property hx_pro() As Single()
 Get
 Return hx
 End Get
 End Property
 Public ReadOnly Property shead_pro() As Single()
 Get
 Return shead
 End Get
 End Property
 Public ReadOnly Property Lcr_pro() As Single
 Get
 Return Lcr
 End Get
 End Property
 Public ReadOnly Property Hnet_pro() As Single
 Get
 Return Hnet
 End Get
 End Property
 Public ReadOnly Property hl_per_Lx_pro() As Single
 Get
 Return hl_per_Lx
 End Get
 End Property
 Public ReadOnly Property Fu_pro() As Single
 Get
 Return Fu
 End Get
 End Property
 Public ReadOnly Property Fh_pro() As Single
 Get
 Return Fh
 End Get
 End Property
 Public ReadOnly Property Fw_pro() As Single
 Get
 Return Fw
 End Get
 End Property
 Public ReadOnly Property Fuh_pro() As Single
 Get
 Return Fuh
 End Get
 End Property
 Public ReadOnly Property Fs_pro() As Single
 Get
 Return Fs
 End Get
 End Property
 Public ReadOnly Property Fdh_pro() As Single
 Get
 Return Fdh
 End Get
 End Property
 Public ReadOnly Property Fdv_pro() As Single
 Get
 Return Fdv
 End Get

 189

 End Property
 Public ReadOnly Property W_pro() As Single
 Get
 Return W
 End Get
 End Property
 Public ReadOnly Property gsub_pro() As Single
 Get
 Return gsub
 End Get
 End Property
 Public ReadOnly Property Ka_pro() As Single
 Get
 Return Ka
 End Get
 End Property
 Public ReadOnly Property Ashear_pro() As Single
 Get
 Return Ashear
 End Get
 End Property
 Public ReadOnly Property Ftot_h_pro() As Single
 Get
 Return Ftot_h
 End Get
 End Property
 Public ReadOnly Property Ftot_v_pro() As Single
 Get
 Return Ftot_v
 End Get
 End Property
 Public ReadOnly Property FSs_pro() As Single
 Get
 Return input_Fs.FSs
 End Get
 End Property
 Public ReadOnly Property FSss_pro() As Single
 Get
 Return input_Fs.FSss
 End Get
 End Property
 Public ReadOnly Property FSs_comp_pro() As Single
 Get
 Return FSs_comp
 End Get
 End Property
 Public ReadOnly Property FSss_comp_pro() As Single
 Get
 Return FSss_comp
 End Get
 End Property
 Public ReadOnly Property OK_s_pro() As Boolean
 Get
 Return OK_s
 End Get
 End Property
 Public ReadOnly Property OK_ss_pro() As Boolean
 Get
 Return OK_ss
 End Get
 End Property

 190

 Public ReadOnly Property drains_add_pro() As Boolean
 Get
 Return drains_add
 End Get
 End Property
#End Region
#Region "Constructors"
 'if crest thickness is calculated automatically
 Public Sub New(ByVal input1 As stab_geom_input_data, ByVal input2 As stab_mtrl_input_data, ByVal
input3 As stab_Fs_input_data, ByVal inp_drains_add As Boolean, ByVal inp_mh_ogee As Single, ByVal
inp_tc As Single, ByVal inp_crest_auto As Boolean)
 input_geom = input1
 input_mtrl = input2
 input_Fs = input3
 drains_add = inp_drains_add
 crest_auto = inp_crest_auto 'if crest_auto=true ; tc not impartant, mh_ogee important, otherwise only tc
is important, mh_ogee not imp
 mh_ogee = inp_mh_ogee
 tc = inp_tc
 With input_geom
 ReDim ELx(.creep_path.GetUpperBound(0))
 ReDim hx(.creep_path.GetUpperBound(0))
 ReDim shead(.creep_path.GetUpperBound(0))
 ReDim ux(.creep_path.GetUpperBound(0))
 End With
 MVoheel = New MVo()
 ReDim MVoheel.F(7)
 ReDim MVoheel.ma(7)
 ReDim MVoheel.M(7)
 MVotoe_eu = New MVo()
 ReDim MVotoe_eu.F(7)
 ReDim MVotoe_eu.ma(7)
 ReDim MVotoe_eu.M(7)
 MVoheel_eu = New MVo()
 ReDim MVoheel_eu.F(7)
 ReDim MVoheel_eu.ma(7)
 ReDim MVoheel_eu.M(7)
 Me.compute_sliding()
 Me.compute_overt()
 Me.compute_base_pressures()
 End Sub
#End Region
 End Class
 <Serializable()> Public Class stab_sidewalls
 'iteration limits
 Public Shared max_iter_dim As Integer = 500 'for changing dim max iteration limits
#Region "Private variables"
 'inputs
 Private change_dim_type As Byte 'if Bsw is increased in order to satisfy safety
 Private beta, alfa, teta As Single 'beta: earthside slope in degrees
 Private gdry, gsat, gsub, gw, gconc As Single
 Private f As Single 'friction factor 'f=tanS ; S=atan(f)
 Private Kus As Single
 Private y2max As Single
 Private tc As Single
 Private tc_base As Single
 Private El_base As Single 'need to determine the base elev of ret wall; this is simply stillbas base elev.
 Private t1 As Single
 Private t2 As Single

 Private t3 As Single

 191

 Private mh_free As Single 'slope where sidewall is free (no earth exist)
 Private El_gwt As Single 'ground water table elevation
 Private fsoil As Single 'freeboard from soil (earth side) if no freeboard =0
 Private q_surch As Single
 Private coulomb_type As Boolean
 Private Fso_sw As Single
 Private FSs_sw As Single
 Private Vmax_sw As Single
 Private Vmin_sw As Single
 'outputs
 Private Bsw As Single
 Private mh_sw As Single 'for determining sidewall geometry at earthfill side
 Private Ka As Single
 Private P1, P2 As Single
 Private P_angle_h As Single 'for P1 and P2 force angle with horizantal in degrees

 Private S As Single
 Private Ksw As Single
 Private MVo_toe As MVo 'pointer (it is initialized at constructor)
 Private Ftot_h As Single
 Private Ftot_v As Single
 Private FSs_comp As Single
 Private OK_s As Boolean
 Private error_iter As Boolean
 'index of forces in the array................
 'P1h - 0
 'P2h - 1
 'Fh_ds - 2
 'P1v - 3
 'P2v - 4
 'Wb - 5
 'Wdry - 5
 'Wsat - 7
 'Fu - 8
 '...
 Private Sub compute_sliding_overt()
 Dim temp_b(8) As c_point 'for weight of the sidewall body
 Dim temp_s(4) As c_point 'for weight of the soils
 Dim i As Integer
 With MVo_toe
 'structure definition; ccw
 temp_b(0) = New c_point(0, El_base) 'heel point
 temp_b(1) = New c_point(Bsw, temp_b(0).y)
 temp_b(2) = New c_point(temp_b(1).x, temp_b(1).y + t1)
 temp_b(3) = New c_point(temp_b(2).x - t3, temp_b(2).y)
 temp_b(4) = New c_point(temp_b(3).x - (Ksw - Kus) * mh_sw, Ksw)
 temp_b(5) = New c_point(temp_b(4).x - tc, Ksw)
 temp_b(6) = New c_point(t2, Kus)
 temp_b(7) = New c_point(0, Kus)
 temp_b(8) = New c_point(temp_b(0).x, temp_b(0).y)
 'angles must be in radians in order to compute cos values
 S = Atan(f)
 beta = (Atan(1 / mh_sw))
 gsub = gsat - gw
 alfa = alfa * 2 * PI / 360
 teta = teta * 2 * PI / 360
 'Wb
 .F(5) = gconc * f_poly_area(temp_b)
 .ma(5) = f_poly_centr(temp_b).x - temp_b(0).x
 'Fh_ds
 .F(2) = 1 / 2 * gw * (El_gwt - temp_b(1).y) ^ 2

 192

 .ma(2) = (El_gwt - temp_b(1).y) / 3
 'Fu
 .F(8) = 1 / 2 * Bsw * gw * (El_gwt - temp_b(1).y)
 .ma(8) = 2 / 3 * Bsw
 'Ka
 If coulomb_type = True Then
 Ka = Sin(beta + teta) ^ 2 / (Sin(beta) ^ 2 * Sin(beta - S) * (1 + Sqrt(Sin(teta + S) * Sin(teta - alfa)
/ (Sin(beta - S) * Sin(alfa + beta))) ^ 2))
 'weight of the soil is not considered in coulomb type
 'Wdry
 .F(6) = 0
 .ma(6) = 0
 'Wsat
 .F(7) = 0
 .ma(7) = 0
 P_angle_h = (90 - beta + S) * 2 * PI / 360
 P1 = 1 / 2 * Ka * (q_surch + gdry * (temp_b(4).y - fsoil - El_gwt)) * (temp_b(4).y - fsoil -
El_gwt)
 P2 = ((q_surch + gdry * (temp_b(4).y - fsoil - El_gwt)) * Ka + (q_surch + gdry * (temp_b(4).y -
fsoil - El_gwt) + gsub * (El_gwt - temp_b(1).y)) * Ka) / 2 * (El_gwt - temp_b(1).y)
 'P1h
 .F(0) = P1 * Cos(P_angle_h)
 .ma(0) = El_gwt + (temp_b(4).y - fsoil - El_gwt) / 3 - temp_b(0).y
 'P1v
 .F(3) = P1 * Sin(P_angle_h)
 .ma(3) = temp_b(4).x + mh_sw * ((temp_b(4).y - fsoil - El_gwt) * 2 / 3 + fsoil) - temp_b(0).x
 'P2h
 .F(1) = P2 * Cos(P_angle_h)
 .ma(1) = f_trap_centr_d_from_b((q_surch + gdry * (temp_b(4).y - fsoil - El_gwt) + gsub *
(El_gwt - temp_b(1).y)) * Ka, (q_surch + gdry * (temp_b(4).y - fsoil - El_gwt)) * Ka, (El_gwt - temp_b(1).y))
 'P2v
 .F(4) = P2 * Sin(P_angle_h)
 .ma(4) = temp_b(4).x + (temp_b(4).y - temp_b(1).y - .ma(1)) * mh_sw - temp_b(0).x
 Else 'rankine
 Ka = (Cos(alfa) - Sqrt(Cos(alfa) ^ 2 - Cos(teta) ^ 2)) * Cos(alfa) / (Cos(alfa) + Sqrt(Cos(alfa) ^ 2 -
Cos(teta) ^ 2))
 'Wsat
 temp_s(0) = New c_point(temp_b(3).x, temp_b(3).y)
 temp_s(1) = New c_point(temp_b(2).x, temp_b(2).y)
 temp_s(2) = New c_point(temp_b(1).x, El_gwt)
 temp_s(3) = New c_point(temp_b(4).x + mh_sw * (temp_b(4).y - El_gwt), El_gwt)
 temp_s(4) = New c_point(temp_s(0).x, temp_s(0).y)
 .F(7) = gsat * f_poly_area(temp_s)
 .ma(7) = f_poly_centr(temp_s).x - temp_b(0).x
 'Wdry
 temp_s(0) = New c_point(temp_s(3).x, temp_s(3).y)
 temp_s(1) = New c_point(temp_s(2).x, temp_s(2).y)
 temp_s(3).x = temp_b(4).x + mh_sw * fsoil
 temp_s(3).y = temp_b(4).y - fsoil
 temp_s(2) = New c_point(temp_b(1).x, temp_s(3).y + Tan(alfa * 2 * PI / 360) * (temp_b(1).x -
temp_s(3).x))
 temp_s(4) = New c_point(temp_s(0).x, temp_s(0).y)
 .F(6) = gdry * f_poly_area(temp_s)
 .ma(6) = f_poly_centr(temp_s).x - temp_b(0).x
 P_angle_h = alfa
 P1 = 1 / 2 * Ka * (q_surch + gdry * (temp_s(2).y - temp_s(1).y)) * (temp_s(2).y - temp_s(1).y)
 P2 = ((q_surch + gdry * (temp_s(2).y - temp_s(1).y)) * Ka + (q_surch + gdry * (temp_s(2).y -
temp_s(1).y) + gsub * (temp_s(1).y - temp_b(1).y)) * Ka) / 2 * (temp_s(1).y - temp_b(1).y)
 'P1h
 .F(0) = P1 * Cos(P_angle_h)
 .ma(0) = (temp_s(2).y - 2 / 3 * (temp_s(2).y - temp_s(1).y)) - temp_b(0).y

 193

 'P1v
 .F(3) = P1 * Sin(P_angle_h)
 .ma(3) = temp_b(1).x - temp_b(0).x
 'P2h
 .F(1) = P2 * Cos(P_angle_h)
 .ma(1) = Abs(f_trap_centr_d_from_b((q_surch + gdry * (temp_s(2).y - temp_s(1).y) + gsub *
(El_gwt - temp_b(1).y)) * Ka, (q_surch + gdry * (temp_s(2).y - temp_s(1).y)) * Ka, El_gwt - temp_b(1).y))
 'P2v
 .F(4) = P2 * Sin(P_angle_h)
 .ma(4) = temp_b(1).x - temp_b(0).x
 End If
 For i = 0 To .M.GetUpperBound(0)
 .M(i) = .F(i) * .ma(i)
 Next
 'overturning
 .EMo = .M(0) + .M(1) + .M(2) + .M(8)
 .EMr = .M(3) + .M(4) + .M(5) + .M(6) + .M(7)
 .FSo = .EMr / .EMo
 If .FSo >= Fso_sw Then
 .OK_o = True
 Else
 .OK_o = False
 End If
 'sliding
 Ftot_h = .F(0) + .F(1) + .F(2)
 Ftot_v = .F(3) + .F(4) + .F(5) + .F(6) + .F(7) - .F(8)
 FSs_comp = f * Ftot_v / Ftot_h
 If FSs_comp > FSs_sw Then
 OK_s = True
 Else
 OK_s = False
 End If
 End With
 End Sub
 Private Sub compute_base_pressures()
 With MVo_toe
 .B_base = Bsw
 .EV_base = Ftot_v
 .x_base = (.EMr - .EMo) / .EV_base
 .e_base = .B_base / 2 - .x_base
 .c_base = .B_base / 2
 .M_base = .EV_base * .e_base
 .I_base = .B_base ^ 3 / 12
 .A_base = .B_base * 1 'for unit width
 .Vtoe = .EV_base / .A_base + .M_base * .c_base / .I_base
 .Vheel = .EV_base / .A_base - .M_base * .c_base / .I_base
 If Max(.Vtoe, .Vheel) <= Vmax_sw Then
 .OK_vmax = True
 Else
 .OK_vmax = False
 End If
 If Min(.Vtoe, .Vheel) >= Vmin_sw Then
 .OK_vmin = True
 Else
 .OK_vmin = False
 End If
 End With
 End Sub
#End Region
#Region "Class interface"
 Private Sub compute()

 194

 Dim i As Integer
 compute_sliding_overt()
 compute_base_pressures()
 If Me.coulomb_type = False Then '(rankine type; usually for RC cantilever type)
 'for cantilever, soil width t3 is tried to be increased for satisfactory criteria
 If Me.change_dim_type = 1 Then 'if Bw is change to satisfy stability criteria
 i = 0
 Do While (Me.satisfactory_pro = False)
 Me.t3 += 0.1 'due to my algorithm; also t3 must be increased in order to obtain my will
 Me.Bsw += 0.1 'inremented 10 cm
 compute_sliding_overt()
 compute_base_pressures()
 i += 1
 If i >= max_iter_dim Then
 Exit Do
 End If
 Loop
 If i > max_iter_dim Then error_iter = True
 ElseIf Me.change_dim_type = 2 Then
 Me.t3 = 0.1
 Me.Bsw = t2 + tc_base + t3
 i = 0
 Do While (Me.satisfactory_pro = False)
 Me.t3 += 0.1 'due to my algorithm; also t3 must be increased in order to obtain my will
 Me.Bsw += 0.1 'inremented 10 cm
 compute_sliding_overt()
 compute_base_pressures()
 i += 1
 If i >= max_iter_dim Then
 Exit Do
 End If
 Loop
 If i > max_iter_dim Then error_iter = True
 End If
 Else '(coulomb type; usually for gravity type)
 'for coulomb type tc_base is tried to be incresed by taking tc constant for satisfactory criteria
 If Me.change_dim_type = 1 Then 'if Bw is change to satisfy stability criteria
 i = 0
 Do While (Me.satisfactory_pro = False)
 Me.tc_base += 0.1 'due to my algorithm; also t3 must be increased in order to obtain my will
 Me.Bsw += 0.1 'inremented 10 cm
 mh_sw = (tc_base - (tc + mh_free * (Ksw - Kus))) / (Ksw - Kus)
 compute_sliding_overt()
 compute_base_pressures()
 i += 1
 If i >= max_iter_dim Then
 Exit Do
 End If
 Loop
 If i > max_iter_dim Then error_iter = True
 ElseIf Me.change_dim_type = 2 Then
 Me.tc_base = tc + mh_free * (Ksw - Kus) + 0.1
 Me.Bsw = t2 + tc_base + t3
 i = 0
 Do While (Me.satisfactory_pro = False)
 Me.tc_base += 0.1 'due to my algorithm; also t3 must be increased in order to obtain my will
 Me.Bsw += 0.1 'inremented 10 cm
 mh_sw = (tc_base - (tc + mh_free * (Ksw - Kus))) / (Ksw - Kus)
 compute_sliding_overt()
 compute_base_pressures()
 i += 1

 195

 If i >= max_iter_dim Then
 Exit Do
 End If
 Loop
 If i > max_iter_dim Then error_iter = True
 End If
 End If
 End Sub
#End Region
#Region "Properties"

 Public ReadOnly Property inp_beta_pro() As Single
 Get
 Return beta
 End Get
 End Property
 Public ReadOnly Property inp_alfa_pro() As Single
 Get
 Return alfa
 End Get
 End Property
 Public ReadOnly Property inp_teta_pro() As Single
 Get
 Return teta
 End Get
 End Property
 Public ReadOnly Property inp_gdry_pro() As Single
 Get
 Return gdry
 End Get
 End Property
 Public ReadOnly Property inp_gsat_pro() As Single
 Get
 Return gsat
 End Get
 End Property
 Public ReadOnly Property inp_gsub_pro() As Single
 Get
 Return gsub
 End Get
 End Property
 Public ReadOnly Property inp_gw_pro() As Single
 Get
 Return gw
 End Get
 End Property
 Public ReadOnly Property inp_gconc_pro() As Single
 Get
 Return gconc
 End Get
 End Property
 Public ReadOnly Property inp_f_pro() As Single
 Get
 Return f
 End Get
 End Property
 Public ReadOnly Property inp_Kus_pro() As Single
 Get
 Return Kus
 End Get
 End Property

 196

 Public ReadOnly Property inp_y2max_pro() As Single
 Get
 Return y2max
 End Get
 End Property
 Public ReadOnly Property inp_tc_pro() As Single
 Get
 Return tc
 End Get
 End Property
 Public ReadOnly Property inp_tc_base_pro() As Single
 Get
 Return tc_base
 End Get
 End Property
 Public ReadOnly Property inp_El_base_pro() As Single
 Get
 Return El_base
 End Get
 End Property
 Public ReadOnly Property inp_t1_pro() As Single
 Get
 Return t1
 End Get
 End Property
 Public ReadOnly Property inp_t2_pro() As Single
 Get
 Return t2
 End Get
 End Property
 Public ReadOnly Property inp_t3_pro() As Single
 Get
 Return t3
 End Get
 End Property
 Public ReadOnly Property inp_mh_free_pro() As Single
 Get
 Return mh_free
 End Get
 End Property
 Public ReadOnly Property inp_El_gwt_pro() As Single
 Get
 Return El_gwt
 End Get
 End Property
 Public ReadOnly Property inp_fsoil_pro() As Single
 Get
 Return fsoil
 End Get
 End Property
 Public ReadOnly Property inp_q_surch_pro() As Single
 Get
 Return q_surch
 End Get
 End Property
 Public ReadOnly Property inp_coulomb_type_pro() As Boolean
 Get
 Return coulomb_type
 End Get
 End Property
 Public ReadOnly Property inp_Fso_sw_pro() As Single

 197

 Get
 Return Fso_sw
 End Get
 End Property
 Public ReadOnly Property inp_FSs_sw_pro() As Single
 Get
 Return FSs_sw
 End Get
 End Property
 Public ReadOnly Property inp_Vmax_sw_pro() As Single
 Get
 Return Vmax_sw
 End Get
 End Property
 Public ReadOnly Property inp_Vmin_sw_pro() As Single
 Get
 Return Vmin_sw
 End Get
 End Property
 Public ReadOnly Property error_log_pro() As Boolean
 Get
 Return (error_iter)
 End Get
 End Property
 Public ReadOnly Property satisfactory_pro() As Boolean
 Get
 Return (Me.OK_s And Me.MVo_toe.OK_o And Me.MVo_toe.OK_vmax And
Me.MVo_toe.OK_vmin)
 End Get
 End Property
 Public ReadOnly Property Area_conc_pro() As Single
 Get
 Return (MVo_toe.F(5) / gconc)
 End Get
 End Property
 Public ReadOnly Property MVo_toe_pro() As MVo
 Get
 Return MVo_toe
 End Get
 End Property
 Public ReadOnly Property Ka_pro() As Single
 Get
 Return Ka
 End Get
 End Property
 Public ReadOnly Property P1_pro() As Single
 Get
 Return P1
 End Get
 End Property
 Public ReadOnly Property P2_pro() As Single
 Get
 Return P2
 End Get
 End Property
 Public ReadOnly Property S_pro() As Single
 Get
 Return S
 End Get
 End Property
 Public ReadOnly Property Ksw_pro() As Single

 198

 Get
 Return Ksw
 End Get
 End Property
 Public ReadOnly Property P_angle_h_pro() As Single
 Get
 Return P_angle_h
 End Get
 End Property
 Public ReadOnly Property Ftot_h_pro() As Single
 Get
 Return Ftot_h
 End Get
 End Property
 Public ReadOnly Property Ftot_v_pro() As Single
 Get
 Return Ftot_v
 End Get
 End Property
 Public ReadOnly Property FSs_comp_pro() As Single
 Get
 Return FSs_comp
 End Get
 End Property
 Public ReadOnly Property OK_s_pro() As Single
 Get
 Return OK_s
 End Get
 End Property
 Public ReadOnly Property coulomb_type_pro() As Boolean
 Get
 Return coulomb_type
 End Get
 End Property
#End Region
#Region "Constructors"
 'note: inp_change_Bsw has three values
 ' if 0; no change is done
 ' if 1; if initial value does not satisfy then incremented
 ' if 2; Bsw is calculated by setting a small initial value (real optimization; Bsw is output)
 Public Sub New(ByVal input1 As stab_mtrl_input_data, ByVal input2 As stab_Fs_input_data, ByVal
input3 As stab_sidewall_input_data)
 change_dim_type = input3.change_dim_type
 alfa = input1.alfa
 teta = input1.teta
 gdry = input1.gdry
 gsat = input1.gsat
 gconc = input1.gconc
 gw = input1.gwater
 f = input1.f
 FSs_sw = input2.FSs_sw
 Fso_sw = input2.FSo_sw
 Vmax_sw = input2.Vmax_sw
 Vmin_sw = input2.Vmin_sw
 MVo_toe = New MVo() 'create MVo_toe class
 ReDim MVo_toe.F(8) '9 forces
 ReDim MVo_toe.M(8)
 ReDim MVo_toe.ma(8)
 With input3
 Kus = .Kus
 y2max = .y2max

 199

 tc = .tc
 t1 = .t1
 t2 = .t2
 t3 = .t3
 tc_base = .tc_base
 mh_free = .mh_free
 El_base = .El_base
 fsoil = .fsoil
 q_surch = .q_surch
 coulomb_type = .coulomb_type
 End With
 Ksw = Kus + y2max + 0.2 * (1 + y2max) 'add freeboard also
 El_gwt = Ksw - input3.gwd
 mh_sw = (tc_base - (tc + mh_free * (Ksw - Kus))) / (Ksw - Kus)
 Bsw = t2 + tc_base + t3
 error_iter = False
 Me.compute()
 End Sub
#End Region
 End Class
#End Region
End Namespace
Namespace levees_and_diversion
#Region "Data Structures"
 <Serializable()> Public Class unit_costs_input_data
 'for diversion fac
 Public uCe As Single 'unit cost of excavation
 Public uCl As Single 'unit cost of canal lining
 Public uCex As Single 'unit cost of expropriation
 Public uCcore As Single 'unit cost of embankment core construction
 Public uCper As Single 'unit cost of embankment pervious fill constr
 Public Sub New(ByVal inp As unit_costs_input_data)
 With Me
 .uCcore = inp.uCcore
 .uCe = inp.uCe
 .uCex = inp.uCex
 .uCl = inp.uCl
 .uCper = inp.uCper
 End With
 End Sub
 Public Sub New()
 End Sub
 End Class
 <Serializable()> Public Class diversion_input_data
 Public Kta As Single
 Public Ktb As Single
 Public Kb As Single
 Public delta_s As Single 'start (try) value delta drop height at d/s diversion canal
 Public Q As Single
 Public profile_name As String 'which profile to use

 Public n As Single ' manning
 Public Ldc As Single
 Public dx As Single 'increment dist for standart step
 Public Lt As Single 'width of the river at the construction site; can be taken as width at spillway axis
 Public mh_u As Single 'u/s cofferdam u/s slope
 Public mh_d As Single 'u/s cofferdam d/s slope
 Public mh As Single 'trap canal side slope
 Public Sub New(ByVal inp As diversion_input_data)
 With Me
 .delta_s = inp.delta_s

 200

 .dx = inp.dx
 .Kb = inp.Kb
 .Kta = inp.Kta
 .Ktb = inp.Ktb
 .Ldc = inp.Ldc
 .Lt = inp.Lt
 .mh = inp.mh
 .mh_d = inp.mh_d
 .mh_u = inp.mh_u
 .n = inp.n
 .profile_name = inp.profile_name
 .Q = inp.Q
 End With
 End Sub
 Public Sub New()
 End Sub
 End Class
 <Serializable()> Public Class diversion_try_output_data
 Public b As Single
 Public delta As Single
 Public Kc As Single
 Public Kc_Kb As Single
 Public yc As Single
 Public ymax As Single
 Public Kcb As Single 'bottom elev of pointc
 Public Sodc As Single 'slope changes for each delta change
 Public z As Single
 Public w As Single
 Public Ct As Single
 Public Cc As Single
 Public Cuc As Single
 Public Cdc As Single
 Public Sub New(ByVal inp As diversion_try_output_data)
 With Me
 .b = inp.b
 .Cc = inp.Cc
 .Cdc = inp.Cdc
 .Ct = inp.Ct
 .Cuc = inp.Cuc

 .delta = inp.delta
 .Kc = inp.Kc
 .Kc_Kb = inp.Kc_Kb
 .Kcb = inp.Kcb
 .Sodc = inp.Sodc
 .w = inp.w
 .yc = inp.yc
 .ymax = inp.ymax
 .z = inp.z
 End With
 End Sub
 Public Sub New()
 End Sub
 End Class
#End Region
#Region "Classes"
 <Serializable()> Public Class levees
#Region "private variables"
 'inputs
 Private Kdes As Single
 Private Qdes As Single

 201

 Private n As Single
 Private Kst As Single
 Private Lt As Single
 Private So As Single
 Private dx As Single
 Private z As Single
 'outputs
 Private wsprofile As ws_profile
 Private ynormal As Single 'normal depth
 Private f_star() As Single
 Private El_levee_crest() As Single
#End Region
#Region "Class interface"
 Private Sub compute()
 Dim y_start As Single
 Dim i As Integer
 ynormal = f_ynormal(Qdes, Lt, z, n, So)
 wsprofile = New ws_profile(Qdes, n, Lt, So, Kst, z, Kdes - Kst, ynormal, dx)
 ReDim f_star(wsprofile.xsec_pro.GetUpperBound(0))
 ReDim El_levee_crest(wsprofile.xsec_pro.GetUpperBound(0))
 For i = 0 To wsprofile.xsec_pro.GetUpperBound(0)
 f_star(i) = wsprofile.xsec_pro(i).f_pro + 2
 El_levee_crest(i) = wsprofile.xsec_pro(i).Hgl_pro + f_star(i)
 Next
 End Sub
#End Region
#Region "Properties"
 Public ReadOnly Property inp_Kdes_pro() As Single
 Get
 Return Kdes
 End Get
 End Property
 Public ReadOnly Property inp_Qdes_pro() As Single
 Get
 Return Qdes
 End Get
 End Property
 Public ReadOnly Property inp_n_pro() As Single
 Get
 Return n
 End Get
 End Property
 Public ReadOnly Property inp_Kst_pro() As Single
 Get
 Return Kst
 End Get
 End Property
 Public ReadOnly Property inp_Lt_pro() As Single
 Get
 Return Lt
 End Get
 End Property
 Public ReadOnly Property inp_So_pro() As Single
 Get
 Return So
 End Get
 End Property
 Public ReadOnly Property inp_dx_pro() As Single
 Get
 Return dx
 End Get

 202

 End Property
 Public ReadOnly Property inp_z_pro() As Single
 Get
 Return z
 End Get
 End Property
 '*******************************
 Public ReadOnly Property wsprofile_pro() As ws_profile
 Get
 Return wsprofile
 End Get
 End Property
 Public ReadOnly Property ynormal_pro() As Single
 Get
 Return ynormal
 End Get
 End Property
 Public ReadOnly Property f_star_pro() As Single()
 Get
 Return f_star
 End Get
 End Property
 Public ReadOnly Property El_levee_crest_pro() As Single()
 Get
 Return El_levee_crest
 End Get
 End Property
#End Region
#Region "Constructors"
 Public Sub New(ByVal inp_Kdes, ByVal inp_Kst, ByVal inp_Lt, ByVal inp_z, ByVal inp_Qdes, ByVal
inp_So, ByVal inp_n, ByVal inp_dx)
 Qdes = inp_Qdes
 Kdes = inp_Kdes
 Kst = inp_Kst
 Lt = inp_Lt
 z = inp_z
 So = inp_So
 dx = inp_dx
 n = inp_n
 Me.compute()
 End Sub
#End Region
 End Class
 <Serializable()> Public Class diversion_fac
 Public Shared max_iter_delta As Integer = 100
 Public Shared max_iter_Bdiv As Integer = 100
 Public Shared inc_b = 0.25
#Region "Private variables"
 'inputs
 Private input_div As diversion_input_data
 Private input_uC As unit_costs_input_data 'unit costs
 'outputs
 Private wsprofile(0) As ws_profile 'firstly 1 calc (initial calc) water surface profile calculations
 Private div_try(0) As diversion_try_output_data 'diversion data for each try
 Private index_opt As Integer 'optimum value's index in the arrays
 Private error_log As Boolean
 'same for u/s and d/s cofferdams, only for d/s cofferdam w is used instead of w
 Public Shared Function f_Ccoffers(ByVal inp_z As Single, ByVal inp_mh_u As Single, ByVal
inp_mh_d As Single, ByVal inp_Ccore As Single, ByVal inp_Cper As Single, ByVal inp_Lt As Single) As
Single

 203

 Return (inp_Ccore * (3 + inp_z) * inp_z / 2 + (((inp_mh_u + inp_mh_d) * inp_z + 2 * (inp_z / 5 + 3))
* inp_z / 2 - (3 + inp_z) * inp_z / 2) * inp_Cper) * inp_Lt
 End Function
 Public Shared Function f_Cc(ByVal inp_b As Single, ByVal inp_z As Single, ByVal inp_uCe As Single,
ByVal inp_uCl As Single, ByVal inp_uCex As Single, ByVal inp_Ldc As Single) As Single
 Return ((inp_b * inp_z + 1.5 * inp_z ^ 2) * inp_uCe + (inp_b + 3.61 * inp_z) * inp_uCl + (inp_b + 3 *
inp_z + 10) * inp_uCex) * inp_Ldc
 End Function
 Private Sub check_Ks_Kb(ByVal inp_i As Integer)
 Dim i As Integer = 0
 With div_try(inp_i)
 'initial check (check of the delta start value)
 .delta = input_div.delta_s
 .yc = f_ycritical(input_div.Q, .b, input_div.mh)
 .Kc = input_div.Ktb + .yc + .delta
 .Kc_Kb = .Kc - input_div.Kb
 'if initial not satisfied incement delta
 While (.Kc_Kb < 0.3) And i <= max_iter_delta 'Kc-Kb>=0.3 meter
 .delta += 0.1 'increment for delta was taken as 10 cm
 .yc = f_ycritical(input_div.Q, .b, input_div.mh)
 .Kc = input_div.Ktb + .yc + .delta
 .Kc_Kb = .Kc - input_div.Kb
 i += 1
 End While
 .Kcb = input_div.Ktb + .delta
 .Sodc = (input_div.Kta - .Kcb) / input_div.Ldc
 End With
 End Sub
 Private Sub compute_cost(ByVal inp_i As Integer)
 With div_try(inp_i)
 .Cc = Me.f_Cc(.b, .z, input_uC.uCe, input_uC.uCl, input_uC.uCex, input_div.Ldc)
 .Cdc = Me.f_Ccoffers(.z, input_div.mh_u, input_div.mh_d, input_uC.uCcore, input_uC.uCper,
input_div.Lt)
 .Cuc = Me.f_Ccoffers(.w, input_div.mh_u, input_div.mh_d, input_uC.uCcore, input_uC.uCper,
input_div.Lt)
 .Ct = .Cuc + .Cdc + .Cc
 End With
 End Sub
 Private Sub compute_ymax_z_w(ByVal inp_i)
 With div_try(inp_i)
 .ymax = wsprofile(inp_i).y_end_comp_pro
 .z = .ymax + 0.2 * (1 + .ymax)
 .w = .z - 0.5
 End With
 End Sub
#End Region
#Region "Class interface"
 Private Sub compute()
 Dim i As Integer = 0
 Dim j As Integer
 With input_div
 'initial try
 div_try(0) = New diversion_try_output_data()
 div_try(0).b = inc_b '0.25 start try value
 Me.check_Ks_Kb(0)
 wsprofile(0) = New ws_profile(.Q, .n, div_try(0).b, div_try(0).Sodc, div_try(0).Kcb, .mh,
div_try(0).yc, .Ldc, .dx, True)
 Me.compute_ymax_z_w(0)
 Me.compute_cost(0)
 Do
 i += 1

 204

 If i >= max_iter_Bdiv Then
 Exit Do
 End If
 ReDim Preserve wsprofile(wsprofile.GetUpperBound(0) + 1)
 ReDim Preserve div_try(div_try.GetUpperBound(0) + 1)
 div_try(i) = New diversion_try_output_data()
 div_try(i).b = div_try(i - 1).b + inc_b 'increment 0.25
 Me.check_Ks_Kb(i)
 wsprofile(i) = New ws_profile(.Q, .n, div_try(i).b, div_try(0).Sodc, div_try(0).Kcb, .mh, 1.001 *
div_try(i).yc, .Ldc, .dx, True)
 Me.compute_ymax_z_w(i)
 Me.compute_cost(i)
 'Debug.WriteLine(div_try(i).b & " " & div_try(i).Cuc & " " & div_try(i).Cdc & " " &
div_try(i).Cc & " " & div_try(i).Ct)
 Loop While (div_try(i - 1).Ct >= div_try(i).Ct) 'if i greater than 100, means above 100 iterations,
there is a problem and quit
 index_opt = i - 1
 If (index_opt = 100) Then
 error_log = True 'means that an optimal solution curve can't be reached (iteration not enough)
 Else
 error_log = False
 'in order to see a good curve; some extra data generated beyond the optimum value
 For j = i + 1 To i + 30
 ReDim Preserve wsprofile(wsprofile.GetUpperBound(0) + 1)
 ReDim Preserve div_try(div_try.GetUpperBound(0) + 1)
 div_try(j) = New diversion_try_output_data()
 div_try(j).b = div_try(j - 1).b + inc_b 'increment 0.25
 Me.check_Ks_Kb(j)
 wsprofile(j) = New ws_profile(.Q, .n, div_try(j).b, div_try(j).Sodc, div_try(j).Kcb, .mh, 1.001 *
div_try(j).yc, .Ldc, .dx, True)
 Me.compute_ymax_z_w(j)
 Me.compute_cost(j)
 Next
 End If
 End With
 End Sub
#End Region
#Region "Properties"
 Public ReadOnly Property input_div_pro() As diversion_input_data
 Get
 Return input_div
 End Get
 End Property
 Public ReadOnly Property input_uC_pro() As unit_costs_input_data
 Get
 Return input_uC
 End Get
 End Property

 Public ReadOnly Property wsprofile_pro() As ws_profile()
 Get
 Return wsprofile
 End Get
 End Property
 Public ReadOnly Property div_try_pro() As diversion_try_output_data()
 Get

 Return div_try
 End Get
 End Property
 Public ReadOnly Property opt_values_pro() As diversion_try_output_data

 205

 Get
 Return div_try(index_opt)
 End Get
 End Property
 Public ReadOnly Property opt_wsprofile_pro() As ws_profile
 Get
 Return wsprofile(index_opt)
 End Get
 End Property
 Public ReadOnly Property error_log_pro() As Boolean
 Get
 Return error_log
 End Get
 End Property
#End Region
#Region "Constructors"
 Public Sub New(ByVal input1 As diversion_input_data, ByVal input2 As unit_costs_input_data)
 Me.input_div = input1
 Me.input_uC = input2
 Me.compute()
 End Sub
#End Region
 End Class
#End Region
End Namespace
Namespace cost_computations
#Region "Data structures"
 <Serializable()> Public Class costs_input_data
 'pointer to the calculated classes
 Public int_hyd As intake_design.intake 'intake hydraulic
 Public int_geom As stability_analysis.stab_uplift_sb 'intake
 Public splw_geom As stability_analysis.stab_uplift_sb 'spillway
 Public slcw_geom As stability_analysis.stab_uplift_sb 'sluiceway
 Public Q_splw_slcw As splw_slcw_design.splw_slcw_Q
 Public energy_dissp As splw_slcw_design.energy_dissp
 Public sidewalls_splw_geom As stability_analysis.stab_sidewalls 'sidewalls
 Public sidewalls_slcw_geom As stability_analysis.stab_sidewalls 'sidewalls
 Public slide_overt As stability_analysis.stab_sliding_and_overt
 Public riprap_geom As Appurtenant_fac.riprap_des 'riprap
 Public flush_geom As Appurtenant_fac.flushing_canal 'flushing canal
 Public divfac_geom As levees_and_diversion.diversion_fac 'diversion facility
 'levees to be added
 'new inputs...........(input as directly to the class)
 'unit cost values
 Public uC_conc As Single
 Public uC_riprap As Single
 Public uC_steel As Single
 Public tslab As Single 'some additional data for trap/rect canal dimensions
 Public twall As Single 'some additional data for trap/rect canal dimensions
 Public Lp, Lp2, tg, tg2, t_blanket, t_sheet, width_tr As Single 'pier lengths and gate thicknesses ;
width_tr: width of rackbars
 Public Lp_slcw, tg_slcw As Single 'slcw pier length and gate thickness
 Public Lp_bridge, tslab_bridge, width_bridge As Single 'brigge over splw,slcw and intake if exists
 Public Sub New(ByVal inp As costs_input_data)
 With Me
 .divfac_geom = inp.divfac_geom
 .energy_dissp = inp.energy_dissp
 .flush_geom = inp.flush_geom
 .int_geom = inp.int_geom
 .int_hyd = inp.int_hyd
 .Lp = inp.Lp

 206

 .Lp2 = inp.Lp2
 .Lp_bridge = inp.Lp_bridge
 .Lp_slcw = inp.Lp_slcw
 .Q_splw_slcw = inp.Q_splw_slcw
 .riprap_geom = inp.riprap_geom
 .sidewalls_slcw_geom = inp.sidewalls_slcw_geom
 .sidewalls_splw_geom = inp.sidewalls_splw_geom
 .slcw_geom = inp.slcw_geom
 .slide_overt = inp.slide_overt
 .splw_geom = inp.splw_geom
 .t_blanket = inp.t_blanket
 .t_sheet = inp.t_sheet
 .tg = inp.tg
 .tg2 = inp.tg2
 .tg_slcw = inp.tg_slcw
 .tslab = inp.tslab
 .tslab_bridge = inp.tslab_bridge
 .twall = inp.twall
 .uC_conc = inp.uC_conc
 .uC_riprap = inp.uC_riprap
 .uC_steel = inp.uC_steel
 .width_bridge = inp.width_bridge
 .width_tr = inp.width_tr
 End With
 End Sub
 Public Sub New()
 End Sub
 End Class
#End Region
#Region "Classes"
 <Serializable()> Public Class costs
 Const gsteel = 7800 'kgf/m3
 Const steel_conc_ratio = 80 'kgf/m3 :for 1 m3 concrete 80 kg steel exists approximately
#Region "Private variables"
 'inputs**
 'pointer to the calculated classes
 Private int_hyd As intake_design.intake 'intake hydraulic
 Private int_geom As stability_analysis.stab_uplift_sb 'intake
 Private splw_geom As stability_analysis.stab_uplift_sb 'spillway
 Private slcw_geom As stability_analysis.stab_uplift_sb 'sluiceway
 Private Q_splw_slcw As splw_slcw_design.splw_slcw_Q
 Private energy_dissp As splw_slcw_design.energy_dissp
 Private sidewalls_splw_geom As stability_analysis.stab_sidewalls 'sidewalls
 Private sidewalls_slcw_geom As stability_analysis.stab_sidewalls 'sidewalls
 Private slide_overt As stability_analysis.stab_sliding_and_overt
 Private riprap_geom As Appurtenant_fac.riprap_des 'riprap
 Private flush_geom As Appurtenant_fac.flushing_canal 'flushing canal
 Private divfac_geom As levees_and_diversion.diversion_fac 'diversion facility
 'levees to be added
 'new inputs...........(input as directly to the class)
 'unit cost values
 Private uC_conc As Single
 Private uC_riprap As Single
 Private uC_steel As Single
 Private tslab As Single 'some additional data for trap/rect canal dimensions
 Private twall As Single 'some additional data for trap/rect canal dimensions
 Private Lp, Lp2, tg, tg2, t_blanket, t_sheet, width_tr As Single 'pier lengths and gate thicknesses ;
width_tr: width of rackbars
 Private Lp_slcw, tg_slcw As Single 'slcw pier length and gate thickness
 Private Lp_bridge, tslab_bridge, width_bridge As Single 'brigge over splw,slcw and intake if exists
 'outputs**

 207

 'intake
 Private vol_slab_int As Single 'bottom foundation concrete
 Private vol_sides_int As Single
 Private vol_piers_int
 Private vol_us_blanket_int As Single
 Private vol_us_sheetp_int As Single
 Private wgh_rackbars_int As Single
 Private wgh_gates_int As Single 'weight of gates
 'spillway
 Private vol_slab_splw As Single
 Private vol_body_splw As Single
 Private vol_chute_blocks_splw As Single
 Private vol_baffle_piers_splw As Single
 Private vol_us_blanket_splw As Single
 Private vol_us_sheetp_splw As Single
 Private vol_sidewall_splw As Single
 'sluiceway
 Private vol_slab_slcw As Single
 Private vol_body_slcw As Single
 Private vol_chute_blocks_slcw As Single
 Private vol_baffle_piers_slcw As Single
 Private vol_us_blanket_slcw As Single
 Private vol_us_sheetp_slcw As Single
 Private vol_sidewall_slcw As Single
 Private vol_piers_slcw As Single 'midwall for slcw gates
 Private vol_guiding_wall As Single 'wall between splw and slcw (if seperate energy dissp exist this wall
extends to the end of stillbas)
 Private wgh_gates_slcw As Single
 'appert fac
 Private vol_riprap As Single
 Private vol_flush As Single
 'bridge
 Private vol_brigde_piers As Single 'if bridge exist over spillway
 Private vol_bridge_slab As Single 'if bridge exist over spillway
 'diversion fac
 Private cost_canal As Single
 Private cost_uscdam As Single
 Private cost_dscdam As Single
 Private cost_div_fac As Single
 Private Sub compute_intake()
 Dim i As Integer
 vol_slab_int = 0
 vol_sides_int = 0
 With int_hyd
 'initialization
 .xsec_pro(0).tslab_p = tslab
 .xsec_pro(0).twall_p = twall
 'slab volume
 For i = 1 To 3
 .xsec_pro(i).tslab_p = tslab
 vol_slab_int += (.xsec_pro(i).Aconc_slab_pro + .xsec_pro(i - 1).Aconc_slab_pro) / 2 *
Abs(.xsec_pro(i).km_xsec_p - .xsec_pro(i - 1).km_xsec_p)
 Next
 vol_slab_int += int_geom.Area_slab_tot_pro * .xsec_pro(7).B_pro
 vol_slab_int += (Abs(.xsec_pro(7).km_xsec_p - .xsec_pro(6).km_xsec_p) +
Abs(.xsec_pro(7).km_xsec_p - .xsec_pro(5).km_xsec_p)) / 2 * .dsd_p * .xsec_pro(7).B_pro
 'sides volume
 For i = 1 To 7
 .xsec_pro(i).twall_p = twall
 vol_sides_int += (.xsec_pro(i).Aconc_sides_pro + .xsec_pro(i - 1).Aconc_sides_pro) / 2 *
Abs(.xsec_pro(i).km_xsec_p - .xsec_pro(i - 1).km_xsec_p)

 208

 Next
 'rackbars volume
 wgh_rackbars_int = (.Ag_pro - .An_pro) * width_tr * gsteel
 'piers
 vol_piers_int = (.xsec_pro(1).z_pro + .xsec_pro(2).z_pro) / 2 * .tp_pro * .np_pro * Lp
 vol_piers_int += (.xsec_pro(6).z_pro + .xsec_pro(7).z_pro) / 2 * .tp_pro * .np_pro * Lp2
 'gates
 wgh_gates_int = (.xsec_pro(1).z_pro + .xsec_pro(2).z_pro) / 2 * tg * .B2n_pro * gsteel
 wgh_gates_int += (.xsec_pro(6).z_pro + .xsec_pro(7).z_pro) / 2 * tg2 * .Bsn_pro * gsteel
 'us_blanket and sheetpile
 vol_us_blanket_int = int_geom.L_blankets_pro * .xsec_pro(8).B_pro * t_blanket
 vol_us_sheetp_int = int_geom.L_sheetpile_pro * .xsec_pro(8).B_pro * t_sheet
 End With
 End Sub
 Private Sub compute_splw()
 With slcw_geom
 vol_slab_splw = .Area_slab_tot_pro * Me.Q_splw_slcw.Ls_pro
 vol_body_splw = Me.slide_overt.Area_conc_splw_pro * Me.Q_splw_slcw.Ls_pro
 With Me.energy_dissp
 vol_chute_blocks_splw = .resultsb_s_pro.vol_chute_blocks
 vol_baffle_piers_splw = .resultsb_s_pro.vol_baffle_piers
 End With
 'us_blanket and sheetpile
 vol_us_blanket_splw = splw_geom.L_blankets_pro * Me.Q_splw_slcw.Ls_pro * t_blanket
 vol_us_sheetp_splw = splw_geom.L_sheetpile_pro * Me.Q_splw_slcw.Ls_pro * t_sheet
 End With
 End Sub
 Private Sub compute_slcw()
 With slcw_geom
 'this seperation computation is made here because; spillway length is assumed to be excluding the
midwall whenever seperate or common stillbas exists
 If (Me.energy_dissp.sb_common_pro = False) Then 'seperate energy dissp
 vol_slab_slcw = .Area_slab_tot_pro * Me.Q_splw_slcw.Lsl_pro
 vol_body_slcw = (.L1_pro + .Lcutoff_tot_pro) / 2 * (int_hyd.xsec_pro(8).Kb_pro - .Elsb_us_pro)
* Me.Q_splw_slcw.Lsl_pro 'Kst is taken from intake last section bottom el
 Else 'common energy dissip; meaning that midwall filled with sluiceway stillbas
 vol_slab_slcw = .Area_slab_tot_pro * (Me.Q_splw_slcw.Lsl_pro + Me.Q_splw_slcw.tsl_pro)
 vol_body_slcw = (.L1_pro + .Lcutoff_tot_pro) / 2 * (int_hyd.xsec_pro(8).Kb_pro - .Elsb_us_pro)
* (Me.Q_splw_slcw.Lsl_pro + Me.Q_splw_slcw.tsl_pro) 'Kst is taken from intake last section bottom el
 End If
 With Me.energy_dissp
 vol_chute_blocks_slcw = .resultsb_sl_pro.vol_chute_blocks
 vol_baffle_piers_slcw = .resultsb_sl_pro.vol_baffle_piers
 End With
 'us_blanket and sheetpile
 vol_us_blanket_slcw = slcw_geom.L_blankets_pro * Me.Q_splw_slcw.Lsl_pro * t_blanket
 vol_us_sheetp_slcw = slcw_geom.L_sheetpile_pro * Me.Q_splw_slcw.Lsl_pro * t_sheet
 'piers
 vol_piers_slcw = (Q_splw_slcw.Ksl_pro - int_hyd.xsec_pro(8).Kb_pro) * Me.Q_splw_slcw.tsl_pro
* Lp_slcw * (Q_splw_slcw.nsl_pro - 1)
 'gates
 wgh_gates_slcw = (Q_splw_slcw.Ksl_pro - int_hyd.xsec_pro(8).Kb_pro) *
Me.Q_splw_slcw.Le_pro * tg_slcw * Me.Q_splw_slcw.nsl_pro * gsteel
 End With
 End Sub
 Private Sub compute_sidewalls()
 'sidewalls-splw
 vol_sidewall_splw = Me.sidewalls_splw_geom.Area_conc_pro * Me.energy_dissp.Lsb_pro
 'sidewalls-slcw
 vol_sidewall_slcw = Me.sidewalls_slcw_geom.Area_conc_pro * Me.energy_dissp.Lsb_pro
 End Sub

 209

 Private Sub compute_guiding_wall()
 Dim El_base_splw, El_base_slcw As Single 'for temp var to compute Hmidwall if seperate dissp bas
exists
 With Me.splw_geom.geom_for_so_pro
 El_base_splw = .creep_path(.sb_end).y
 End With
 With Me.slcw_geom.geom_for_so_pro
 El_base_slcw = .creep_path(.sb_end).y
 End With
 'in all cases common guiding wall until entrance of stilling bas will exist
 With slcw_geom
 'guiding wall (may need to recompute; not exactly true)
 vol_guiding_wall = (.L_blankets_pro + .Lcutoff_tot_pro) * Me.Q_splw_slcw.tsl_pro *
(Q_splw_slcw.Ksl_pro - int_hyd.xsec_pro(8).Kb_pro)
 End With
 'extension of guidewall(midwall) computed as thickness*Lstillbas*H
 'H=spillway ve sluceway sidewalllarin crest elev larinin max olani - spillway ve sluiceway stillbas
bottom elevnin min olani
 'bylece H en safe durum olmus olur.
 'Note: midwall 'in toprak alti (foundation) kismi ihmal edilmistir.
 With Me.energy_dissp
 If .sb_common_pro = False Then 'seperate stillbas; guiding wall extends to the end of stillbasins
 vol_guiding_wall += (Max(Me.sidewalls_splw_geom.Ksw_pro,
Me.sidewalls_slcw_geom.Ksw_pro) - Min(El_base_splw, El_base_slcw)) * Me.Q_splw_slcw.tsl_pro *
.Lsb_pro
 End If
 End With
 End Sub
 Private Sub compute_riprap()
 vol_riprap = Me.riprap_geom.Vriprap_pro
 End Sub
 Private Sub compute_flush()
 Dim t As Single = Me.flush_geom.Dp_pro / 10 + 0.005 ' et kalinligi, capin 10 sa birinin 5 mm fazlasi
olarak alinmistir.
 Me.vol_flush = Me.flush_geom.Lflush_pro * PI * (Me.flush_geom.Dp_pro * t + t ^ 2)
 End Sub
 Private Sub compute_bridge()
 With Me.Q_splw_slcw
 vol_brigde_piers = .np_pro * .tp_pro * Lp_bridge * (.Ksl_pro - int_hyd.Ks_pro)
 vol_bridge_slab = (.Lt_pro + int_hyd.xsec_pro(8).B_pro) * width_bridge * tslab_bridge
 End With
 End Sub
 Private Sub compute_diversion()
 With Me.divfac_geom
 cost_canal = .opt_values_pro.Cc
 cost_uscdam = .opt_values_pro.Cuc
 cost_dscdam = .opt_values_pro.Cdc
 cost_div_fac = .opt_values_pro.Ct
 End With
 End Sub
#End Region
#Region "Class interface"
 Public Sub compute()
 Me.compute_intake()
 Me.compute_splw()
 Me.compute_slcw()
 Me.compute_sidewalls()
 Me.compute_guiding_wall()
 Me.compute_riprap()
 Me.compute_flush()
 Me.compute_bridge()

 210

 Me.compute_diversion()
 End Sub
#End Region
#Region "Properties"
 'intake**
 Public ReadOnly Property vol_conc_int_pro() As Single
 Get
 With Me
 Return .vol_us_blanket_int + .vol_us_sheetp_int + .vol_piers_int + .vol_sides_int + .vol_slab_int
 End With
 End Get
 End Property
 Public ReadOnly Property wgh_rackbars_int_pro() As Single
 Get
 With Me
 Return wgh_rackbars_int
 End With
 End Get
 End Property
 Public ReadOnly Property wgh_gates_int_pro() As Single
 Get
 With Me
 Return wgh_gates_int
 End With
 End Get
 End Property
 Public ReadOnly Property wgh_steel_int_pro() As Single
 Get
 With Me
 Return wgh_gates_int + wgh_rackbars_int
 End With
 End Get
 End Property
 Public ReadOnly Property cost_steel_int_pro() As Single
 Get
 With Me
 Return wgh_steel_int_pro * .uC_steel
 End With
 End Get
 End Property
 Public ReadOnly Property cost_conc_int_pro() As Single
 Get
 With Me
 Return vol_conc_int_pro * .uC_conc
 End With
 End Get
 End Property
 Public ReadOnly Property cost_tot_int_pro() As Single
 Get
 With Me
 Return cost_conc_int_pro + cost_steel_int_pro
 End With
 End Get
 End Property
 'splw**
 Public ReadOnly Property vol_conc_splw_pro() As Single
 Get
 With Me
 Return .vol_us_blanket_splw + .vol_us_sheetp_splw + .vol_body_splw + .vol_slab_splw +
.vol_baffle_piers_splw + .vol_chute_blocks_splw
 End With

 211

 End Get
 End Property
 Public ReadOnly Property cost_conc_splw_pro() As Single
 Get
 With Me
 Return vol_conc_splw_pro * .uC_conc
 End With
 End Get
 End Property
 Public ReadOnly Property cost_tot_splw_pro() As Single
 Get
 With Me
 Return cost_conc_splw_pro
 End With
 End Get
 End Property
 'slcw**
 Public ReadOnly Property vol_conc_slcw_pro() As Single
 Get
 With Me
 Return .vol_us_blanket_slcw + .vol_us_sheetp_slcw + .vol_body_slcw + .vol_slab_slcw +
.vol_piers_slcw + .vol_baffle_piers_slcw + .vol_chute_blocks_slcw
 End With
 End Get
 End Property
 Public ReadOnly Property wgh_gates_slcw_pro() As Single
 Get
 With Me
 Return wgh_gates_slcw
 End With
 End Get
 End Property
 Public ReadOnly Property wgh_steel_slcw_pro() As Single
 Get
 With Me
 Return wgh_gates_slcw
 End With
 End Get
 End Property
 Public ReadOnly Property cost_steel_slcw_pro() As Single
 Get
 With Me
 Return wgh_steel_slcw_pro * .uC_steel
 End With
 End Get
 End Property
 Public ReadOnly Property cost_conc_slcw_pro() As Single
 Get
 With Me
 Return vol_conc_slcw_pro * .uC_conc
 End With
 End Get
 End Property
 Public ReadOnly Property cost_tot_slcw_pro() As Single
 Get
 With Me
 Return cost_conc_slcw_pro + cost_steel_slcw_pro
 End With
 End Get
 End Property
 'guiding wall

 212

 Public ReadOnly Property vol_guiding_wall_pro() As Single
 Get
 With Me
 Return vol_guiding_wall
 End With
 End Get
 End Property
 Public ReadOnly Property cost_guiding_wall_pro() As Single
 Get
 With Me
 Return vol_guiding_wall_pro * .uC_conc
 End With
 End Get
 End Property
 'sidewalls
 Public ReadOnly Property vol_sidewall_splw_pro() As Single
 Get
 With Me
 Return .vol_sidewall_splw
 End With
 End Get
 End Property
 Public ReadOnly Property wgh_steel_sidewall_splw_pro() As Single
 Get
 With Me
 Return .vol_sidewall_splw * steel_conc_ratio
 End With
 End Get
 End Property
 Public ReadOnly Property vol_sidewall_slcw_pro() As Single
 Get
 With Me
 Return .vol_sidewall_slcw
 End With
 End Get
 End Property
 Public ReadOnly Property wgh_steel_sidewall_slcw_pro() As Single
 Get
 With Me
 Return .vol_sidewall_slcw * steel_conc_ratio
 End With
 End Get
 End Property
 Public ReadOnly Property vol_conc_sidewall_tot_pro() As Single
 Get
 With Me
 Return .vol_sidewall_slcw + .vol_sidewall_splw
 End With
 End Get
 End Property
 Public ReadOnly Property wgh_steel_sidewall_tot_pro() As Single
 Get
 With Me
 Return .wgh_steel_sidewall_slcw_pro + .wgh_steel_sidewall_splw_pro
 End With
 End Get
 End Property
 Public ReadOnly Property cost_sidewall_tot_pro() As Single
 Get
 With Me
 'reinforced concrete steel unit cost=1/10*(steel gate unit cost)

 213

 Return .wgh_steel_sidewall_tot_pro * .uC_steel / 10 + .vol_conc_sidewall_tot_pro * .uC_conc
 End With
 End Get
 End Property
 'riprap
 Public ReadOnly Property vol_riprap_pro() As Single
 Get
 With Me
 Return vol_riprap
 End With
 End Get
 End Property
 Public ReadOnly Property cost_riprap_pro() As Single
 Get
 With Me
 Return vol_riprap_pro * .uC_riprap
 End With
 End Get
 End Property
 'flushing canal
 Public ReadOnly Property vol_flush_pro() As Single
 Get
 With Me
 Return .vol_flush
 End With
 End Get
 End Property
 Public ReadOnly Property cost_flush_pro() As Single
 Get
 With Me
 Return vol_flush_pro * .uC_conc
 End With
 End Get
 End Property
 'bridge
 Public ReadOnly Property vol_conc_bridge_pro() As Single
 Get
 With Me
 Return .vol_bridge_slab + .vol_brigde_piers
 End With
 End Get
 End Property
 Public ReadOnly Property wgh_steel_bridge_pro() As Single
 Get
 With Me
 Return .vol_conc_bridge_pro * steel_conc_ratio
 End With
 End Get
 End Property
 Public ReadOnly Property cost_bridge_pro() As Single
 Get
 With Me
 'for reinf conc steel ucost 1/10 of gates...
 Return vol_conc_bridge_pro * .uC_conc + wgh_steel_bridge_pro * .uC_steel / 10
 End With
 End Get
 End Property
 'diversion fac
 Public ReadOnly Property cost_canal_div_pro() As Single
 Get
 With Me

 214

 Return .cost_canal
 End With
 End Get
 End Property
 Public ReadOnly Property cost_dscdam_div_pro() As Single
 Get
 With Me
 Return .cost_dscdam
 End With
 End Get
 End Property
 Public ReadOnly Property cost_uscdam_div_pro() As Single
 Get
 With Me
 Return .cost_uscdam
 End With
 End Get
 End Property
 Public ReadOnly Property cost_tot_div_pro() As Single
 Get
 With Me
 Return .cost_div_fac
 End With
 End Get
 End Property
 '***
 'total cost of diversion weir
 Public ReadOnly Property cost_tot_dweir_pro() As Single
 Get
 With Me
 Return .cost_bridge_pro + .cost_tot_div_pro + .cost_tot_int_pro + .cost_tot_slcw_pro +
.cost_tot_splw_pro + .cost_riprap_pro + .cost_flush_pro + .cost_guiding_wall_pro + .cost_sidewall_tot_pro
 End With
 End Get
 End Property
#End Region
#Region "Constructors"
 Public Sub New(ByVal input1 As costs_input_data)
 With input1
 Me.divfac_geom = .divfac_geom
 Me.energy_dissp = .energy_dissp
 Me.flush_geom = .flush_geom
 Me.int_geom = .int_geom
 Me.int_hyd = .int_hyd
 Me.Lp = .Lp
 Me.Lp2 = .Lp2
 Me.Lp_bridge = .Lp_bridge
 Me.Lp_slcw = .Lp_slcw
 Me.Q_splw_slcw = .Q_splw_slcw
 Me.riprap_geom = .riprap_geom
 Me.sidewalls_slcw_geom = .sidewalls_slcw_geom
 Me.sidewalls_splw_geom = .sidewalls_splw_geom
 Me.slcw_geom = .slcw_geom
 Me.slide_overt = .slide_overt
 Me.splw_geom = .splw_geom
 Me.t_blanket = .t_blanket
 Me.t_sheet = .t_sheet
 Me.tg = .tg
 Me.tg2 = .tg2
 Me.tg_slcw = .tg_slcw
 Me.tslab = .tslab

 215

 Me.tslab_bridge = .tslab_bridge
 Me.twall = .twall
 Me.uC_conc = .uC_conc
 Me.uC_riprap = .uC_riprap
 Me.uC_steel = .uC_steel
 Me.width_bridge = .width_bridge
 Me.width_tr = .width_tr
 End With
 Me.compute()
 End Sub

#End Region
 End Class
#End Region
End Namespace
Namespace computations
#Region "Data structures"
 <Serializable()> Public Class objects_state
 Public st_intake_des As Boolean
 Public st_splw_Q As Boolean
 Public st_energy_dissp As Boolean
 Public st_riprap_des As Boolean
 Public st_flush_des As Boolean
 Public st_seepage_des As Boolean
 Public st_int_uplift As Boolean
 Public st_splw_uplift As Boolean
 Public st_slcw_uplift As Boolean
 Public st_stab_slide_overt As Boolean
 Public st_stab_sw_splw As Boolean
 Public st_stab_sw_slcw As Boolean
 Public st_levees_des As Boolean
 Public st_div_fac As Boolean
 Public st_costs As Boolean
 Public st_summary_result As Boolean
 Public st_try_summary_results As Boolean
 Public st_try_summary_results_OK As Boolean
 Public Sub New(ByVal inp As objects_state)
 With Me
 .st_costs = inp.st_costs
 .st_div_fac = inp.st_div_fac
 .st_energy_dissp = inp.st_energy_dissp
 .st_flush_des = inp.st_flush_des
 .st_int_uplift = inp.st_int_uplift
 .st_intake_des = inp.st_intake_des
 .st_levees_des = inp.st_levees_des
 .st_riprap_des = inp.st_riprap_des
 .st_seepage_des = inp.st_seepage_des
 .st_slcw_uplift = inp.st_slcw_uplift
 .st_splw_Q = inp.st_splw_Q
 .st_splw_uplift = inp.st_splw_uplift
 .st_stab_slide_overt = inp.st_stab_slide_overt
 .st_stab_sw_slcw = inp.st_stab_sw_slcw
 .st_stab_sw_splw = inp.st_stab_sw_splw
 .st_summary_result = inp.st_summary_result
 .st_try_summary_results = inp.st_try_summary_results
 .st_try_summary_results_OK = inp.st_try_summary_results_OK
 End With
 End Sub
 Public Sub New()
 End Sub
 End Class

 216

 <Serializable()> Public Class project_type
 Public prj_main_module As Boolean
 Public prob_type As Byte 'gated or not
 Public comp_type As Byte 'optimize or not; for the time being; 0: normal, 1:optimize by Bmain
 Public prj_title As String
 Public prj_eng As String
 Public prj_def As String
 Public prj_date As Date
 Public Sub New(ByVal inp As project_type)
 With Me
 .comp_type = inp.comp_type
 .prj_date = inp.prj_date
 .prj_def = inp.prj_def
 .prj_eng = inp.prj_eng
 .prj_main_module = inp.prj_main_module
 .prj_title = inp.prj_title
 .prob_type = inp.prob_type
 End With
 End Sub
 Public Sub New()
 End Sub
 End Class
 <Serializable()> Public Class dweir_input_data
 Public input_intake As intake_input_data
 Public input_Q_splw_slcw As splw_slcw_Q_input_data
 Public input_energy_dissipators As energy_dissp_input_data
 Public C As Single 'creep constant
 Public So_river, min_riprap_height, Ld_min, n_river, dx_levees, z_levees As Single
 Public Dm_flush, Dp_flush, n_flush, ks_flush, alfa_int As Single
 Public input_geom_intake As stab_geom_input_data
 Public input_geom_splw As stab_geom_input_data
 Public input_geom_slcw As stab_geom_input_data
 Public input_mtrl As stab_mtrl_input_data
 Public input_sidewalls_splw As stab_sidewall_input_data
 Public input_sidewalls_slcw As stab_sidewall_input_data
 Public input_Fs As stab_Fs_input_data
 Public input_uCosts As unit_costs_input_data
 Public input_diversion As diversion_input_data
 Public input_dweir_cost As costs_input_data
 Public Hsp_spl, Lub_spl, Hsp_int, Lub_int As Single
 Public El_spl() As Single
 Public L_spl() As Single
 Public El_int() As Single
 Public L_int() As Single
 Public tc_splw As Single
 Public mh_ogee As Single
 Public crest_auto As Boolean
 Public dim_int_by_El As Boolean
 Public dim_splw_by_El As Boolean
 Public Sub New(ByVal inp As dweir_input_data)
 With Me
 .alfa_int = inp.alfa_int
 .C = inp.C
 .crest_auto = inp.crest_auto
 .dim_int_by_El = inp.dim_int_by_El
 .dim_splw_by_El = inp.dim_splw_by_El
 .Dm_flush = inp.Dm_flush
 .Dp_flush = inp.Dp_flush
 .dx_levees = inp.dx_levees
 .El_int = inp.El_int.Clone
 .El_spl = inp.El_spl.Clone

 217

 .Hsp_int = inp.Hsp_int
 .Hsp_spl = inp.Hsp_spl
 .input_diversion = inp.input_diversion
 .input_dweir_cost = inp.input_dweir_cost
 .input_energy_dissipators = inp.input_energy_dissipators
 .input_Fs = inp.input_Fs
 .input_geom_intake = inp.input_geom_intake
 .input_geom_slcw = inp.input_geom_slcw
 .input_geom_splw = inp.input_geom_splw
 .input_intake = inp.input_intake
 .input_mtrl = inp.input_mtrl
 .input_Q_splw_slcw = inp.input_Q_splw_slcw
 .input_sidewalls_slcw = inp.input_sidewalls_slcw
 .input_sidewalls_splw = inp.input_sidewalls_splw
 .input_uCosts = inp.input_uCosts
 .ks_flush = inp.ks_flush
 .L_int = inp.L_int.Clone
 .L_spl = inp.L_spl.Clone
 .Ld_min = inp.Ld_min
 .Lub_int = inp.Lub_int
 .Lub_spl = inp.Lub_spl
 .mh_ogee = inp.mh_ogee
 .min_riprap_height = inp.min_riprap_height
 .n_flush = inp.n_flush
 .n_river = inp.n_river
 .So_river = inp.So_river
 .tc_splw = inp.tc_splw
 .z_levees = inp.z_levees
 End With
 End Sub
 Public Sub New()
 End Sub
 End Class
 <Serializable()> Public Class optimization_try_output_data
 Public B_main As Single
 Public Qirr As Single
 Public Qdes As Single 'Q100
 Public P As Single 'spillway height
 Public tc As Single 'spillway crest thickness
 Public Lsettl As Single 'settling basin length
 Public Bs As Single 'settling basin width
 Public xsec_main As xsec_hyd
 Public xsec_int As xsec_hyd
 Public Ks As Single
 Public Qdes_splw As Single 'Qs100
 Public Qdes_slcw As Single 'Qsl100
 Public K_des As Single 'K100
 Public sb_splw As stillingbasin
 Public sb_slcw As stillingbasin
 Public common_sb As Boolean
 Public Lcr As Single 'seepage
 Public CH As Single 'seepage
 Public OK_seepage As Boolean
 Public FSu_int As Single
 Public FSu_splw As Single
 Public FSu_slcw As Single
 Public FSs As Single
 Public FSss As Single
 Public FSs_sw_splw As Single
 Public FSs_sw_slcw As Single
 Public MVoheel As MVo

 218

 Public MVoheel_eu As MVo
 Public MVotoe_eu As MVo
 Public MVo_sw_splw As MVo
 Public MVo_sw_slcw As MVo
 Public OK_uplift_int As Boolean
 Public OK_uplift_splw As Boolean
 Public OK_uplift_slcw As Boolean

 Public OK_s As Boolean
 Public OK_ss As Boolean
 Public OK_s_sw_splw As Boolean
 Public OK_s_sw_slcw As Boolean
 Public Lx_tot As Single 'levees length
 Public B_div As Single
 Public riprap_Ld As Single
 Public riprap_D As Single
 Public riprap_nrow As Integer
 Public flush_So As Single
 Public flush_Dp As Single
 Public flush_Lh As Single 'horizantal length
 Public cost_int As Single
 Public cost_splw As Single
 Public cost_slcw As Single
 Public cost_sidewalls As Single
 Public cost_guidingwall As Single
 Public cost_riprap As Single
 Public cost_flush As Single
 Public cost_divfac As Single
 Public cost_bridge As Single
 Public cost_dweir As Single
 Public err_occured As Boolean
 Public accepted As Boolean
 Public Sub New(ByVal inp As optimization_try_output_data)
 With Me
 .B_main = inp.B_main
 .Qirr = inp.Qirr
 .Qdes = inp.Qdes
 .P = inp.P
 .tc = inp.tc
 .Lsettl = inp.Lsettl
 .Bs = inp.Bs
 .xsec_main = inp.xsec_main
 .xsec_int = inp.xsec_int
 .Ks = inp.Ks
 .Qdes_splw = inp.Qdes_splw
 .Qdes_slcw = inp.Qdes_slcw
 .K_des = inp.K_des
 .sb_splw = inp.sb_splw
 .sb_slcw = inp.sb_slcw
 .common_sb = inp.common_sb
 .Lcr = inp.Lcr
 .CH = inp.CH
 .OK_seepage = inp.OK_seepage
 .FSu_int = inp.FSu_int
 .FSu_splw = inp.FSu_splw
 .FSu_slcw = inp.FSu_slcw
 .FSs = inp.FSs
 .FSss = inp.FSss
 .FSs_sw_splw = inp.FSs_sw_splw
 .FSs_sw_slcw = inp.FSs_sw_slcw
 .MVoheel = inp.MVoheel

 219

 .MVoheel_eu = inp.MVoheel_eu
 .MVotoe_eu = inp.MVotoe_eu
 .MVo_sw_splw = inp.MVo_sw_splw
 .MVo_sw_slcw = inp.MVo_sw_slcw
 .OK_uplift_int = inp.OK_uplift_int
 .OK_uplift_splw = inp.OK_uplift_splw
 .OK_uplift_slcw = inp.OK_uplift_slcw
 .OK_s = inp.OK_s
 .OK_ss = inp.OK_ss
 .OK_s_sw_splw = inp.OK_s_sw_splw
 .OK_s_sw_slcw = inp.OK_s_sw_slcw
 .Lx_tot = inp.Lx_tot
 .B_div = inp.B_div
 .riprap_Ld = inp.riprap_Ld
 .riprap_D = inp.riprap_D
 .riprap_nrow = inp.riprap_nrow
 .flush_So = inp.flush_So
 .flush_Dp = inp.flush_Dp
 .flush_Lh = inp.flush_Lh
 .cost_int = inp.cost_int
 .cost_splw = inp.cost_splw
 .cost_slcw = inp.cost_slcw
 .cost_sidewalls = inp.cost_sidewalls
 .cost_guidingwall = inp.cost_guidingwall
 .cost_riprap = inp.cost_riprap
 .cost_flush = inp.cost_flush
 .cost_divfac = inp.cost_divfac
 .cost_bridge = inp.cost_bridge
 .cost_dweir = inp.cost_dweir
 .err_occured = inp.err_occured
 .accepted = inp.accepted
 End With
 End Sub
 Public Sub New()
 End Sub
 End Class 'converted to class to overcome binary serialization bug; in future everything should be
converted to class
#End Region
#Region "Classes"
 'for this part computations must be made explicitely, not in constructor region
 'Ex: dim x as new whole_dweir(....)
 ' x.compute()
 <Serializable()> Public Class whole_dweir
#Region "Private variables"
 <NonSerialized()> Private lview As System.Windows.Forms.ListView
 <NonSerialized()> Private progbar As System.Windows.Forms.ProgressBar
 Private comp_inf As Queue
 'input data for objects
 Private input_intake As intake_input_data
 Private input_Q_splw_slcw As splw_slcw_Q_input_data
 Private input_energy_dissipators As energy_dissp_input_data
 Private C As Single 'creep constant
 Private So_river, min_riprap_height, Ld_min, n_river, dx_levees, z_levees As Single
 Private Dm_flush, Dp_flush, n_flush, ks_flush, alfa_int As Single
 Private input_geom_intake As stab_geom_input_data
 Private input_geom_splw As stab_geom_input_data
 Private input_geom_slcw As stab_geom_input_data
 Private input_mtrl As stab_mtrl_input_data
 Private input_sidewalls_splw As stab_sidewall_input_data
 Private input_sidewalls_slcw As stab_sidewall_input_data
 Private input_Fs As stab_Fs_input_data

 220

 Private input_uCosts As unit_costs_input_data
 Private input_diversion As diversion_input_data
 Private input_dweir_cost As costs_input_data
 Private Hsp_spl, Lub_spl, Hsp_int, Lub_int As Single
 Private El_spl() As Single
 Private L_spl() As Single
 Private El_int() As Single
 Private L_int() As Single
 Private tc_splw As Single
 Private mh_ogee As Single
 Private crest_auto As Boolean
 Private dim_int_by_El As Boolean
 Private dim_splw_by_El As Boolean
 Private comp_summary As New optimization_try_output_data() 'for initial (if no optimization exist)
 'objects to calculate dweir
 Private intake As intake
 Private Q_splw_slcw As splw_slcw_Q
 Private energy_dissipators As energy_dissp
 Private seepage As seepage_analysis
 Private uplift_intake As stab_uplift_sb
 Private uplift_splw As stab_uplift_sb
 Private uplift_slcw As stab_uplift_sb
 Private sliding_overturning As stab_sliding_and_overt
 Private sidewalls_splw As stab_sidewalls
 Private sidewalls_slcw As stab_sidewalls
 Private us_levees As levees
 Private diversion_fac As diversion_fac
 Private riprap As riprap_des
 Private flushing_canal As flushing_canal
 Private dweir_cost As costs
 Private Function f_accepted(ByVal weir_try As optimization_try_output_data) As Boolean
 With weir_try
 If .OK_uplift_int = False Then Return False
 If .OK_uplift_splw = False Then Return False
 If .OK_uplift_slcw = False Then Return False
 If .OK_seepage = False Then Return False
 If .OK_s = False Then Return False
 If .OK_ss = False Then Return False
 If .MVoheel.OK_o = False Then Return False
 If .MVoheel.OK_vmax = False Then Return False
 If .MVoheel.OK_vmin = False Then Return False
 If .MVoheel_eu.OK_o = False Then Return False
 If .MVoheel_eu.OK_vmax = False Then Return False
 If .MVoheel_eu.OK_vmin = False Then Return False
 If .MVotoe_eu.OK_o = False Then Return False
 If .MVotoe_eu.OK_vmax = False Then Return False
 If .MVotoe_eu.OK_vmin = False Then Return False
 If .OK_s_sw_splw = False Then Return False
 If .OK_s_sw_slcw = False Then Return False
 Return True
 End With
 End Function
#End Region
#Region "Class interface"
 Private Sub compute_wo_div_fac()
 'temporary variables
 Dim i As Integer
 'intake hydraulics***********************************
 intake = New intake(input_intake)
 comp_summary.Qirr = input_intake.Qi
 comp_summary.B_main = input_intake.Bop

 221

 comp_summary.xsec_main = intake.xsec_pro(0)
 comp_summary.xsec_int = intake.xsec_pro(8)
 comp_summary.Ks = intake.Ks_pro
 comp_summary.P = intake.P_pro
 comp_summary.Lsettl = intake.Ls_p
 comp_summary.Bs = intake.Bs_p
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(15, " Intake Hydraulics
Computation completed successfully...", 0))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)
 '**
 'Spillway_sluiceway discharges***********************
 With Me.input_Q_splw_slcw
 .Ks = intake.Ks_pro
 .Kst = Me.input_intake.Kst
 End With
 Q_splw_slcw = New splw_slcw_Q(input_Q_splw_slcw)
 comp_summary.Qdes = Me.Q_splw_slcw.input_data_pro.Q(0)
 comp_summary.Qdes_splw = Me.Q_splw_slcw.Qs_pro(0)
 comp_summary.Qdes_slcw = Me.Q_splw_slcw.Qsl_pro(0)
 comp_summary.K_des = Me.Q_splw_slcw.K_pro(0)
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(20, " Spillway and
Sluiceway Discharges Computation completed successfully...", 0))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)
 '**
 'Energy dissipators**
 With Me.input_energy_dissipators
 .K = Me.Q_splw_slcw.K_pro
 .Kd = Me.input_Q_splw_slcw.Kd
 .Kr = Me.input_Q_splw_slcw.Kr
 .Kst = Me.input_intake.Kst
 .Le = Me.input_Q_splw_slcw.Le
 .Lt = Me.input_Q_splw_slcw.Lt
 .nsl = Me.input_Q_splw_slcw.nsl
 .Q = Me.input_Q_splw_slcw.Q
 .Qs = Me.Q_splw_slcw.Qs_pro
 .Qsl = Me.Q_splw_slcw.Qsl_pro
 End With
 energy_dissipators = New energy_dissp(input_energy_dissipators)
 comp_summary.sb_splw = Me.energy_dissipators.resultsb_s_pro
 comp_summary.sb_slcw = Me.energy_dissipators.resultsb_sl_pro
 comp_summary.common_sb = Me.energy_dissipators.sb_common_pro
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(25, " Energy Dissipators
Computation completed successfully...", 0))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)
 '**
 'seepage analysis***
 Dim El_spl_temp() As Single = El_spl.Clone
 With Me.input_geom_splw
 If Me.dim_splw_by_El = False Then 'if dim are by slab thicknesses; they are converted to
elevations
 For i = 0 To 2
 El_spl_temp(i) = Me.input_intake.Kst - Me.El_spl(i)
 Next
 For i = 3 To Me.El_spl.GetUpperBound(0)
 El_spl_temp(i) = Me.input_energy_dissipators.Kr - Me.energy_dissipators.delta_s_pro -
Me.El_spl(i)
 Next
 End If
 ReDim .creep_path(12)
 .creep_path(0) = New c_point(0, Me.input_intake.Kst)
 .creep_path(1) = New c_point(0, .creep_path(0).y - Hsp_spl)

 222

 .creep_path(2) = New c_point(0, .creep_path(0).y - Hsp_spl)
 .creep_path(3) = New c_point(0, .creep_path(0).y)
 .creep_path(4) = New c_point(Lub_spl, .creep_path(0).y)
 .creep_path(5) = New c_point(Lub_spl, El_spl_temp(0))
 .creep_path(6) = New c_point(.creep_path(5).x + L_spl(0), El_spl_temp(1))
 .creep_path(7) = New c_point(.creep_path(6).x + L_spl(1), El_spl_temp(2))
 .creep_path(8) = New c_point(.creep_path(7).x + L_spl(2), El_spl_temp(3))
 .creep_path(9) = New c_point(.creep_path(8).x + Me.energy_dissipators.Lsb_pro - L_spl(3),
El_spl_temp(4)) 'remember Lsb whole length to the end of sill
 .creep_path(10) = New c_point(.creep_path(9).x + L_spl(3), El_spl_temp(5))
 .creep_path(11) = New c_point(.creep_path(10).x + L_spl(4), El_spl_temp(6))
 .creep_path(12) = New c_point(.creep_path(11).x, Me.input_Q_splw_slcw.Kr)
 .delta = Me.energy_dissipators.resultsb_s_pro.delta
 .Kr = Me.input_Q_splw_slcw.Kr
 .Ks = Me.intake.Ks_pro
 .Kst = Me.input_intake.Kst
 .mh_delta = 2
 .sb_end = 9
 .sb_start = 8
 .Ssb = 0
 .str_start = 4
 End With
 seepage = New seepage_analysis(C, Me.Q_splw_slcw.K_pro, Me.input_Q_splw_slcw.Kd,
Me.intake.Ks_pro, Me.input_Q_splw_slcw.Kr, Me.input_geom_splw.creep_path,
Me.input_Q_splw_slcw.profile)
 comp_summary.Lcr = Me.seepage.Lcr_pro
 comp_summary.CH = Me.seepage.CH_pro
 comp_summary.OK_seepage = Me.seepage.satisfactory_pro
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(30, " Seepage Analysis
completed successfully...", 0))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)
 '**
 'intake stability analysis (uplift)**
 Dim EL_int_temp() As Single = El_int.Clone
 With Me.input_geom_intake
 If Me.dim_int_by_El = False Then 'if dim are by slab thicknesses; they are converted to elevations
 For i = 0 To 2
 EL_int_temp(i) = Me.input_intake.Kst - Me.El_int(i)
 Next
 For i = 3 To Me.El_int.GetUpperBound(0)
 EL_int_temp(i) = Me.intake.xsec_pro(4).Kb_pro - Me.El_int(i)
 Next
 End If
 ReDim .creep_path(12)
 .creep_path(0) = New c_point(0, Me.input_intake.Kst)
 .creep_path(1) = New c_point(0, .creep_path(0).y - Hsp_int)
 .creep_path(2) = New c_point(0, .creep_path(0).y - Hsp_int)
 .creep_path(3) = New c_point(0, .creep_path(0).y)
 .creep_path(4) = New c_point(Lub_int, .creep_path(0).y)
 .creep_path(5) = New c_point(Lub_int, EL_int_temp(0))
 .creep_path(6) = New c_point(.creep_path(5).x + L_int(0), EL_int_temp(1))
 .creep_path(7) = New c_point(.creep_path(6).x + L_int(1), EL_int_temp(2))
 .creep_path(8) = New c_point(.creep_path(7).x + L_int(2), EL_int_temp(3))
 .creep_path(9) = New c_point(.creep_path(8).x + Me.intake.Ls_p, EL_int_temp(4))
 .creep_path(10) = New c_point(.creep_path(9).x + L_int(3), EL_int_temp(5))
 .creep_path(11) = New c_point(.creep_path(10).x + L_int(4), EL_int_temp(6))
 .creep_path(12) = New c_point(.creep_path(11).x, Me.intake.xsec_pro(3).Kb_pro)
 .delta = Me.intake.dsu_p 'delta is Dsu here
 .Kr = Me.intake.xsec_pro(3).Kb_pro 'for intake bottom elev at section-3 is considerd instead of Kr
 .Ks = Me.Q_splw_slcw.K_pro(0) 'for intake K100 is considered instead of Ks in spillway
 .Kst = Me.input_intake.Kst

 223

 .mh_delta = 2
 .sb_end = 9
 .sb_start = 8
 .Ssb = Me.input_intake.Sd 'settling basin slope
 .str_start = 4
 End With
 uplift_intake = New stab_uplift_sb(False, input_geom_intake, input_mtrl.gwater, input_mtrl.gconc,
input_Fs.Fsu, input_mtrl.ured_perc)
 comp_summary.FSu_int = Me.uplift_intake.Fsu_final_pro
 comp_summary.OK_uplift_int = Me.uplift_intake.satisfactory_pro
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(35, " Intake Stability
Analysis against Uplift completed successfully...", 0))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)
 '**
 'spillway stab analyis (uplift)***
 uplift_splw = New stab_uplift_sb(True, input_geom_splw, input_mtrl.gwater, input_mtrl.gconc,
input_Fs.Fsu, input_mtrl.ured_perc)
 comp_summary.FSu_splw = Me.uplift_splw.Fsu_final_pro
 comp_summary.OK_uplift_splw = Me.uplift_splw.satisfactory_pro
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(40, " Spillway Stability
Analysis against Uplift completed successfully...", 0))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)
 '**
 'sluiceway stab analysis (uplift)***
 With Me.input_geom_slcw
 .delta = Me.energy_dissipators.resultsb_sl_pro.delta
 .Kr = Me.input_Q_splw_slcw.Kr
 .Ks = Me.intake.Ks_pro
 .Kst = Me.input_intake.Kst
 .mh_delta = 2

 .sb_end = 9
 .sb_start = 8
 .Ssb = 0
 .str_start = 4
 ReDim .creep_path(input_geom_splw.creep_path.GetUpperBound(0))
 For i = 0 To .creep_path.GetUpperBound(0) 'new ile yepyeni yaratmaliyiz; cunku aksi taktirde
pointer assignment tehlikeli sonuc verecek
 .creep_path(i) = New c_point(input_geom_splw.creep_path(i).x,
input_geom_splw.creep_path(i).y)
 Next
 If Me.energy_dissipators.sb_common_pro = False Then 'if seperate still bas exist then redetermine
the sluiceway found elev by delta diff amount
 If Me.dim_splw_by_El = False Then
 .creep_path(.sb_start).y += Me.energy_dissipators.delta_s_pro -
Me.energy_dissipators.delta_sl_pro
 .creep_path(.sb_end).y += Me.energy_dissipators.delta_s_pro -
Me.energy_dissipators.delta_sl_pro
 End If
 End If
 End With
 uplift_slcw = New stab_uplift_sb(True, input_geom_slcw, input_mtrl.gwater, input_mtrl.gconc,
input_Fs.Fsu, input_mtrl.ured_perc)
 comp_summary.FSu_slcw = Me.uplift_slcw.Fsu_final_pro
 comp_summary.OK_uplift_slcw = Me.uplift_slcw.satisfactory_pro
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(45, " Sluiceway Stability
Analysis against Uplift completed successfully...", 0))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)
 '**
 'stab analysis (sliding and overturning)***

 224

 sliding_overturning = New stab_sliding_and_overt(Me.uplift_splw.geom_for_so_pro, input_mtrl,
input_Fs, Me.uplift_splw.drains_add_pro, mh_ogee, tc_splw, crest_auto)
 comp_summary.FSs = Me.sliding_overturning.FSs_comp_pro
 comp_summary.OK_s = Me.sliding_overturning.OK_s_pro
 comp_summary.FSss = Me.sliding_overturning.FSss_comp_pro
 comp_summary.OK_ss = Me.sliding_overturning.OK_ss_pro
 comp_summary.MVoheel = Me.sliding_overturning.MVoheel_pro
 comp_summary.MVoheel_eu = Me.sliding_overturning.MVoheel_eu_pro
 comp_summary.MVotoe_eu = Me.sliding_overturning.MVotoe_eu_pro
 comp_summary.tc = Me.sliding_overturning.tc_pro
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(50, " Spillway Stability
Analysis against Sliding and Overturning completed successfully...", 0))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)
 '**
 'Sidewalls (spillway side)***************************** *********************
 With Me.input_sidewalls_splw
 .fsoil = 0
 .Kus = Me.uplift_splw.Elsb_ds_pro
 .mh_free = 0
 .q_surch = 0
 .t2 = 0
 .y2max = Me.energy_dissipators.y2max_s_pro
 .El_base =
Me.uplift_splw.geom_for_so_pro.creep_path(Me.uplift_splw.geom_for_so_pro.sb_end).y 'bottom elev of
stillbas of simplified body of struct for sliding and overt is taken
 End With
 sidewalls_splw = New stab_sidewalls(input_mtrl, input_Fs, Me.input_sidewalls_splw)
 comp_summary.MVo_sw_splw = Me.sidewalls_splw.MVo_toe_pro
 comp_summary.FSs_sw_splw = Me.sidewalls_splw.FSs_comp_pro
 comp_summary.OK_s_sw_splw = Me.sidewalls_splw.OK_s_pro
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(55, " Spillway Sidewalls
Computation completed successfully...", 0))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)
 '**
 'Sidewalls (sluiceway side)********************************* ******************
 With Me.input_sidewalls_slcw
 .fsoil = 0
 .Kus = Me.uplift_slcw.Elsb_ds_pro
 .mh_free = 0
 .q_surch = 0
 .t2 = 0
 .y2max = Me.energy_dissipators.y2max_sl_pro
 .El_base =
Me.uplift_slcw.geom_for_so_pro.creep_path(Me.uplift_slcw.geom_for_so_pro.sb_end).y
 End With
 sidewalls_slcw = New stab_sidewalls(input_mtrl, input_Fs, Me.input_sidewalls_slcw)
 comp_summary.MVo_sw_slcw = Me.sidewalls_slcw.MVo_toe_pro
 comp_summary.FSs_sw_slcw = Me.sidewalls_slcw.FSs_comp_pro
 comp_summary.OK_s_sw_slcw = Me.sidewalls_slcw.OK_s_pro
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(60, " Sluiceway Sidewalls
Computation completed successfully...", 0))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)
 '**
 'Levees ***
 us_levees = New levees(Me.Q_splw_slcw.K_pro(0), Me.input_intake.Kst, Me.input_Q_splw_slcw.Lt,
z_levees, Me.input_Q_splw_slcw.Q(0), So_river, n_river, dx_levees)
 comp_summary.Lx_tot = Me.us_levees.wsprofile_pro.Lx_pro
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(65, " Upstream Levees
Computation Completed successfully...", 0))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)
 '**

 225

 'Appertunant facilities (riprap and flushing canal)
 riprap = New riprap_des(Me.energy_dissipators.resultsb_s_pro.y3, Me.input_Q_splw_slcw.Lt,
Me.input_Q_splw_slcw.Q(0), So_river, min_riprap_height, Ld_min)
 comp_summary.riprap_D = Me.riprap.D_pro
 comp_summary.riprap_Ld = Me.riprap.Ld_pro
 comp_summary.riprap_nrow = Me.riprap.nrow_pro
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(70, " Riprap Design
completed successfully...", 0))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)
 flushing_canal = New flushing_canal(Dm_flush, Dp_flush, n_flush, ks_flush, 1.65,
Me.intake.xsec_pro(4).km_xsec_p, Me.intake.xsec_pro(4).Kb_pro, 0.25, alfa_int, Me.input_Q_splw_slcw.Kr,
Me.energy_dissipators.resultsb_sl_pro.delta, So_river, Me.energy_dissipators.Lsb_pro +
Me.uplift_slcw.Lcutoff_tot_pro)
 comp_summary.flush_Dp = Me.flushing_canal.Dp_pro
 comp_summary.flush_So = Me.flushing_canal.So_pro
 comp_summary.flush_Lh = Me.flushing_canal.Lflush_h_pro
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(75, " Flushing Canal Design
completed successfully...", 0))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)
 '---
 comp_summary.accepted = Me.f_accepted(Me.comp_summary)
 If comp_summary.accepted = True Then
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(75, " Dweir is
SATISFACTORY", 3))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)
 Else
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(75, " Dweir is
UNSATISFACTORY", 2))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)
 End If
 End Sub
 Public Sub compute_w_div_fac_inp(ByVal div_fac As diversion_fac)
 Me.compute_wo_div_fac()
 Me.diversion_fac = div_fac
 comp_summary.B_div = Me.diversion_fac.opt_values_pro.b
 'cost calculations
**
 With Me.input_dweir_cost
 .divfac_geom = div_fac
 .energy_dissp = Me.energy_dissipators
 .flush_geom = Me.flushing_canal
 .int_geom = Me.uplift_intake
 .int_hyd = Me.intake
 .Q_splw_slcw = Me.Q_splw_slcw
 .riprap_geom = Me.riprap
 .sidewalls_slcw_geom = Me.sidewalls_slcw
 .sidewalls_splw_geom = Me.sidewalls_splw
 .slcw_geom = Me.uplift_slcw
 .splw_geom = Me.uplift_splw
 .slide_overt = Me.sliding_overturning
 End With
 dweir_cost = New costs(input_dweir_cost)
 comp_summary.cost_int = Me.dweir_cost.cost_tot_int_pro
 comp_summary.cost_splw = Me.dweir_cost.cost_tot_splw_pro
 comp_summary.cost_slcw = Me.dweir_cost.cost_tot_slcw_pro
 comp_summary.cost_sidewalls = Me.dweir_cost.cost_sidewall_tot_pro
 comp_summary.cost_guidingwall = Me.dweir_cost.cost_guiding_wall_pro
 comp_summary.cost_riprap = Me.dweir_cost.cost_riprap_pro
 comp_summary.cost_flush = Me.dweir_cost.cost_flush_pro
 comp_summary.cost_bridge = Me.dweir_cost.cost_bridge_pro
 comp_summary.cost_divfac = Me.dweir_cost.cost_tot_div_pro

 226

 comp_summary.cost_dweir = Me.dweir_cost.cost_tot_dweir_pro
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(95, " Cost Computations
completed successfully...", 0))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)

'**
 End Sub
 Public Sub compute()
 Me.compute_wo_div_fac()
 'diversion facility
**
 diversion_fac = New diversion_fac(Me.input_diversion, Me.input_uCosts)
 comp_summary.B_div = Me.diversion_fac.opt_values_pro.b
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(90, " Diversion Facility
Computation completed successfully...", 0))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)
 '**
 'cost calculations ***
 With Me.input_dweir_cost
 .divfac_geom = Me.diversion_fac
 .energy_dissp = Me.energy_dissipators
 .flush_geom = Me.flushing_canal
 .int_geom = Me.uplift_intake
 .int_hyd = Me.intake
 .Q_splw_slcw = Me.Q_splw_slcw
 .riprap_geom = Me.riprap
 .sidewalls_slcw_geom = Me.sidewalls_slcw
 .sidewalls_splw_geom = Me.sidewalls_splw
 .slcw_geom = Me.uplift_slcw
 .splw_geom = Me.uplift_splw
 .slide_overt = Me.sliding_overturning
 End With
 dweir_cost = New costs(input_dweir_cost)
 comp_summary.cost_int = Me.dweir_cost.cost_tot_int_pro
 comp_summary.cost_splw = Me.dweir_cost.cost_tot_splw_pro
 comp_summary.cost_slcw = Me.dweir_cost.cost_tot_slcw_pro
 comp_summary.cost_sidewalls = Me.dweir_cost.cost_sidewall_tot_pro
 comp_summary.cost_guidingwall = Me.dweir_cost.cost_guiding_wall_pro
 comp_summary.cost_riprap = Me.dweir_cost.cost_riprap_pro
 comp_summary.cost_flush = Me.dweir_cost.cost_flush_pro
 comp_summary.cost_bridge = Me.dweir_cost.cost_bridge_pro
 comp_summary.cost_divfac = Me.dweir_cost.cost_tot_div_pro
 comp_summary.cost_dweir = Me.dweir_cost.cost_tot_dweir_pro
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(95, " Cost Computations
completed successfully...", 0))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)

'***
 End Sub
#End Region
#Region "Properties"
 Public ReadOnly Property comp_summary_pro() As optimization_try_output_data
 Get
 Return Me.comp_summary
 End Get
 End Property
 Public ReadOnly Property intake_pro() As intake
 Get
 Return Me.intake
 End Get
 End Property

 227

 Public ReadOnly Property Q_splw_slcw_pro() As splw_slcw_Q
 Get
 Return Me.Q_splw_slcw

 End Get
 End Property
 Public ReadOnly Property energy_dissipators_pro() As energy_dissp
 Get
 Return Me.energy_dissipators
 End Get
 End Property
 Public ReadOnly Property seepage_pro() As seepage_analysis
 Get
 Return Me.seepage
 End Get
 End Property
 Public ReadOnly Property uplift_intake_pro() As stab_uplift_sb
 Get
 Return Me.uplift_intake
 End Get
 End Property
 Public ReadOnly Property uplift_splw_pro() As stab_uplift_sb
 Get
 Return Me.uplift_splw
 End Get
 End Property
 Public ReadOnly Property uplift_slcw_pro() As stab_uplift_sb
 Get
 Return Me.uplift_slcw
 End Get
 End Property
 Public ReadOnly Property sliding_overturning_pro() As stab_sliding_and_overt
 Get
 Return Me.sliding_overturning
 End Get
 End Property
 Public ReadOnly Property sidewalls_splw_pro() As stab_sidewalls
 Get
 Return Me.sidewalls_splw
 End Get
 End Property
 Public ReadOnly Property sidewalls_slcw_pro() As stab_sidewalls
 Get
 Return Me.sidewalls_slcw
 End Get
 End Property
 Public ReadOnly Property us_levees_pro() As levees
 Get
 Return Me.us_levees
 End Get
 End Property
 Public ReadOnly Property diversion_fac_pro() As diversion_fac
 Get
 Return Me.diversion_fac
 End Get
 End Property
 Public ReadOnly Property riprap_pro() As riprap_des
 Get
 Return Me.riprap
 End Get
 End Property

 228

 Public ReadOnly Property flushing_canal_pro() As flushing_canal
 Get
 Return Me.flushing_canal
 End Get
 End Property
 Public ReadOnly Property dweir_cost_pro() As costs
 Get
 Return Me.dweir_cost
 End Get
 End Property
#End Region
#Region "Constructors"
 Public Sub New(ByVal input As dweir_input_data)
 Me.lview = Nothing
 Me.progbar = Nothing
 Me.comp_inf = Nothing
 With input
 Me.alfa_int = .alfa_int
 Me.C = .C
 Me.Dm_flush = .Dm_flush
 Me.Dp_flush = .Dp_flush
 Me.dx_levees = .dx_levees
 Me.El_int = .El_int
 Me.El_spl = .El_spl
 Me.Hsp_int = .Hsp_int
 Me.Hsp_spl = .Hsp_spl
 Me.input_diversion = .input_diversion
 Me.input_dweir_cost = .input_dweir_cost
 Me.input_energy_dissipators = .input_energy_dissipators
 Me.input_Fs = .input_Fs
 Me.input_geom_intake = .input_geom_intake
 Me.input_geom_slcw = .input_geom_slcw
 Me.input_geom_splw = .input_geom_splw
 Me.input_intake = .input_intake
 Me.input_mtrl = .input_mtrl
 Me.input_Q_splw_slcw = .input_Q_splw_slcw
 Me.input_sidewalls_slcw = .input_sidewalls_slcw
 Me.input_sidewalls_splw = .input_sidewalls_splw
 Me.input_uCosts = .input_uCosts
 Me.ks_flush = .ks_flush
 Me.L_int = .L_int
 Me.L_spl = .L_spl
 Me.Ld_min = .Ld_min
 Me.Lub_int = .Lub_int
 Me.Lub_spl = .Lub_spl
 Me.min_riprap_height = .min_riprap_height
 Me.n_flush = .n_flush
 Me.n_river = .n_river
 Me.So_river = .So_river
 Me.tc_splw = .tc_splw
 Me.crest_auto = .crest_auto
 Me.mh_ogee = .mh_ogee
 Me.z_levees = .z_levees
 Me.dim_int_by_El = .dim_int_by_El
 Me.dim_splw_by_El = .dim_splw_by_El
 End With
 End Sub
 Public Sub New(ByVal input As dweir_input_data, ByVal inp_comp_inf As Queue, ByVal inp_lview As
System.Windows.Forms.ListView, ByVal inp_progbar As System.Windows.Forms.ProgressBar)
 Me.lview = inp_lview
 Me.progbar = inp_progbar

 229

 Me.comp_inf = inp_comp_inf
 With input
 Me.alfa_int = .alfa_int
 Me.C = .C
 Me.Dm_flush = .Dm_flush
 Me.Dp_flush = .Dp_flush
 Me.dx_levees = .dx_levees
 Me.El_int = .El_int
 Me.El_spl = .El_spl
 Me.Hsp_int = .Hsp_int
 Me.Hsp_spl = .Hsp_spl
 Me.input_diversion = .input_diversion
 Me.input_dweir_cost = .input_dweir_cost
 Me.input_energy_dissipators = .input_energy_dissipators
 Me.input_Fs = .input_Fs
 Me.input_geom_intake = .input_geom_intake
 Me.input_geom_slcw = .input_geom_slcw
 Me.input_geom_splw = .input_geom_splw
 Me.input_intake = .input_intake

 Me.input_mtrl = .input_mtrl
 Me.input_Q_splw_slcw = .input_Q_splw_slcw
 Me.input_sidewalls_slcw = .input_sidewalls_slcw
 Me.input_sidewalls_splw = .input_sidewalls_splw
 Me.input_uCosts = .input_uCosts
 Me.ks_flush = .ks_flush
 Me.L_int = .L_int
 Me.L_spl = .L_spl
 Me.Ld_min = .Ld_min
 Me.Lub_int = .Lub_int
 Me.Lub_spl = .Lub_spl
 Me.min_riprap_height = .min_riprap_height
 Me.n_flush = .n_flush
 Me.n_river = .n_river
 Me.So_river = .So_river
 Me.tc_splw = .tc_splw
 Me.crest_auto = .crest_auto
 Me.mh_ogee = .mh_ogee
 Me.z_levees = .z_levees
 Me.dim_int_by_El = .dim_int_by_El
 Me.dim_splw_by_El = .dim_splw_by_El
 End With
 End Sub
#End Region
 End Class
 <Serializable()> Public Class optimize_Bmain
 Public Shared max_iter_Bop As Integer = 100
 Public Shared inc_Bop = 0.1
#Region "Private variables"
 <NonSerialized()> Private lview As System.Windows.Forms.ListView
 <NonSerialized()> Private progbar As System.Windows.Forms.ProgressBar
 Private comp_inf As Queue
 'inputs
 Private input_dweir As dweir_input_data
 Private index_opt As Integer
 Private index_opt2 As Integer
 Private error_iter As Boolean
 Private div_fac As diversion_fac
 Private dweir_try(0) As whole_dweir
 Private dweir_try_OK(0) As whole_dweir 'accepted trys
#End Region

 230

#Region "Class interface"
 Public Sub compute()
 Dim i As Integer = 0
 Dim i_OK As Integer
 Dim j As Integer
 Dim k As Integer
 'compute div_fac seperately, it is independent from the whole dweir
 div_fac = New diversion_fac(Me.input_dweir.input_diversion, Me.input_dweir.input_uCosts)
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(15, " Diversion Facility
computations completed successfully...", 0))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)
 'start value for Bmain
 With input_dweir.input_intake
 .Bop = 1.0 '0.25
 .B1 = 2 * .Bop
 .Bs = .B1 + 1
 End With
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(10, "Try-" & i + 1 & " : B="
& input_dweir.input_intake.Bop & " m. Starts...", 0))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)
 Me.dweir_try(0) = New whole_dweir(input_dweir)
 Me.dweir_try(0).compute_w_div_fac_inp(div_fac) 'dont forget to use compute (for computations it is
necessary)
 'initial accepted value
 Do Until (Me.dweir_try(i).comp_summary_pro.accepted = True)
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(25, "Try-" & i + 1 & " :
B=" & input_dweir.input_intake.Bop & " m. Rejected", 2))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)
 i += 1
 If i >= max_iter Then
 Exit Do
 End If
 ReDim Preserve dweir_try(dweir_try.GetUpperBound(0) + 1)
 With input_dweir.input_intake
 .Bop += inc_Bop
 .B1 = 2 * .Bop
 .Bs = .B1 + 1
 End With
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(25 + i, "Try-" & i + 1 & "
: B=" & input_dweir.input_intake.Bop & " m. Starts...", 0))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)
 Me.dweir_try(i) = New whole_dweir(input_dweir)
 Me.dweir_try(i).compute_w_div_fac_inp(div_fac) 'dont forget to use compute (for computations it
is necessary)
 Loop
 i_OK = 0
 k = i
 'son birakilani yeniden kopyaliyoruz
 Me.dweir_try_OK(0) = New whole_dweir(input_dweir)
 Me.dweir_try_OK(0).compute_w_div_fac_inp(div_fac) 'dont forget to use compute (for computations
it is necessary)
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(25 + i, "Try-" & i + 1 & " :
B=" & input_dweir.input_intake.Bop & " m. Accepted...", 3))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)
 Do
 Do
 'only for visuality
 If (i <> k) Then
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf((i + 2) / 20 * 100,
"Try-" & i + 1 & " : B=" & input_dweir.input_intake.Bop & " m. Rejected...", 2))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)

 231

 End If
 i += 1
 If i >= max_iter Then
 Exit Do
 End If
 ReDim Preserve dweir_try(dweir_try.GetUpperBound(0) + 1)
 With input_dweir.input_intake
 .Bop += inc_Bop
 .B1 = 2 * .Bop
 .Bs = .B1 + 1
 End With
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(25 + i, "Try-" & i + 1 &
" : B=" & input_dweir.input_intake.Bop & " m. Starts...", 0))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)
 Me.dweir_try(i) = New whole_dweir(input_dweir)
 Me.dweir_try(i).compute_w_div_fac_inp(div_fac) 'dont forget to use compute (for computations
it is necessary)
 '
 Loop Until ((Me.dweir_try(i).comp_summary_pro.accepted = True))
 i_OK += 1
 If i >= max_iter_Bop Then
 Exit Do
 End If
 ReDim Preserve dweir_try_OK(dweir_try_OK.GetUpperBound(0) + 1)
 Me.dweir_try_OK(i_OK) = New whole_dweir(input_dweir)
 Me.dweir_try_OK(i_OK).compute_w_div_fac_inp(div_fac) 'dont forget to use compute (for
computations it is necessary)
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(25 + i, "Try-" & i + 1 & "
: B=" & input_dweir.input_intake.Bop & " m. Accepted...", 3))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)
 Loop While ((Me.dweir_try_OK(i_OK).comp_summary_pro.cost_dweir < Me.dweir_try_OK(i_OK -
1).comp_summary_pro.cost_dweir))
 index_opt = i_OK - 1
 index_opt2 = i - 1
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(25 + i, "Optimum width
found : Try-" & i + 1 & " : B=" & Me.dweir_try_OK(index_opt).comp_summary_pro.B_main & " m. ...", 0))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)
 If (index_opt = max_iter_Bop) Then
 error_iter = True 'means that an optimal solution curve can't be reached (iteration not enough)
 Else
 error_iter = False
 'in order to see a good curve; some extra data generated beyond the optimum value
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(25 + i, "Additional
iterations started to construct the optimization curve", 0))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)
 For j = i_OK + 1 To i_OK + 10
 k = i
 Do
 'only for visuality
 If (i <> k) Then
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf((i + 2) / 20 * 100,
"Try-" & i + 1 & " : B=" & input_dweir.input_intake.Bop & " m. Rejected...", 2))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)
 End If
 i += 1
 If i >= max_iter Then
 Exit Do
 End If
 ReDim Preserve dweir_try(dweir_try.GetUpperBound(0) + 1)
 With input_dweir.input_intake
 .Bop += inc_Bop

 232

 .B1 = 2 * .Bop
 .Bs = .B1 + 1
 End With
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(25 + i, "Try-" & i + 1
& ": B=" & input_dweir.input_intake.Bop & " m. ...Starts", 0))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)
 Me.dweir_try(i) = New whole_dweir(input_dweir)
 Me.dweir_try(i).compute_w_div_fac_inp(div_fac) 'dont forget to use compute (for
computations it is necessary)
 '
 Loop Until (Me.dweir_try(i).comp_summary_pro.accepted = True)
 ReDim Preserve dweir_try_OK(dweir_try_OK.GetUpperBound(0) + 1)
 Me.dweir_try_OK(j) = New whole_dweir(input_dweir)
 Me.dweir_try_OK(j).compute_w_div_fac_inp(div_fac) 'dont forget to use compute (for
computations it is necessary)
 If Not IsNothing(Me.comp_inf) Then Me.comp_inf.Enqueue(f_comp_inf(25 + i, " B=" &
input_dweir.input_intake.Bop & " m. ...Accepted", 3))
 add_inf(Me.comp_inf, Me.lview, Me.progbar)
 '
 Next
 End If
 End Sub
#End Region
#Region "Properties"
 Public ReadOnly Property error_iter_pro() As Boolean
 Get
 Return error_iter
 End Get
 End Property
 Public ReadOnly Property dweir_try_pro() As whole_dweir()
 Get
 Return dweir_try
 End Get
 End Property
 Public ReadOnly Property dweir_try_OK_pro() As whole_dweir()
 Get
 Return dweir_try_OK
 End Get
 End Property
 Public ReadOnly Property opt_dweir_pro() As whole_dweir
 Get
 Return dweir_try_OK(index_opt)
 End Get
 End Property
 Public ReadOnly Property opt_dweir_summarypro() As optimization_try_output_data
 Get
 Return dweir_try_OK(index_opt).comp_summary_pro
 End Get
 End Property
#End Region
#Region "Constructors"
 Public Sub New(ByVal input1 As dweir_input_data)
 Me.lview = Nothing
 Me.progbar = Nothing
 Me.comp_inf = Nothing
 input_dweir = input1
 input_dweir.crest_auto = True 'herzaman automatically calculate
 'input_dweir.input_sidewalls_slcw.change_dim_type = 2
 'input_dweir.input_sidewalls_splw.change_dim_type = 2
 'input_dweir.tc_splw = 0
 End Sub

 233

 Public Sub New(ByVal input1 As dweir_input_data, ByVal inp_comp_inf As Queue, ByVal inp_lview
As System.Windows.Forms.ListView, ByVal inp_progbar As System.Windows.Forms.ProgressBar)
 Me.lview = inp_lview
 Me.progbar = inp_progbar
 Me.comp_inf = inp_comp_inf
 input_dweir = input1
 input_dweir.crest_auto = True 'herzaman automatically calculate
 'input_dweir.input_sidewalls_slcw.change_dim_type = 2
 'input_dweir.input_sidewalls_splw.change_dim_type = 2
 End Sub
#End Region
 End Class
 <Serializable()> Public Class error_hand
 Public Shared Sub add_error_inf(ByVal lview As System.Windows.Forms.ListView)
 End Sub
 Public Shared Sub add_inf(ByVal inf_coll As Queue, ByVal lview As
System.Windows.Forms.ListView, ByVal progbar As System.Windows.Forms.ProgressBar)
 Dim i As Integer
 Dim inf As computation_information
 If (IsNothing(lview) = False And IsNothing(progbar) = False And IsNothing(inf_coll) = False) Then
 lview.Items.Insert(0, lview.Items.Count)
 inf = CType(inf_coll.Dequeue, computation_information)
 lview.Items(0).SubItems.Add(inf.message)
 If inf.percent <= 100 Then
 progbar.Value = inf.percent
 Else
 progbar.Value = 100
 End If
 Select Case inf.state
 Case 0 'normal exec
 lview.Items(0).ForeColor = System.Drawing.Color.Green
 Case 1 'error
 lview.Items(0).ForeColor = System.Drawing.Color.Red
 Case 2 'warning
 lview.Items(0).ForeColor = System.Drawing.Color.DarkRed
 Case 3 'accepted
 lview.Items(0).ForeColor = System.Drawing.Color.Blue
 End Select
 End If
 End Sub
 End Class
#End Region
End Namespace
'*---*
'| END OF CLASS-1 |
'*---*

'*---*
'| FORM-1 : Form1.vb |
'*---*
Public Class frm_about
 Inherits System.Windows.Forms.Form
#Region " Windows Form Designer generated code "
 Public Sub New()
 MyBase.New()
 'This call is required by the Windows Form Designer.
 InitializeComponent()
 'Add any initialization after the InitializeComponent() call
 End Sub
 'Form overrides dispose to clean up the component list.

 234

 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
 End Sub
 'Required by the Windows Form Designer
 Private components As System.ComponentModel.IContainer
 'NOTE: The following procedure is required by the Windows Form Designer
 'It can be modified using the Windows Form Designer.
 'Do not modify it using the code editor.
 ‘This part of code is generated automatically. Details are hidden.
#End Region
 Private Sub LinkLabel1_LinkClicked(ByVal sender As System.Object, ByVal e As
System.Windows.Forms.LinkLabelLinkClickedEventArgs) Handles LinkLabel1.LinkClicked
 e.Link.LinkData = "www.metu.edu.tr"
 System.Diagnostics.Process.Start(e.Link.LinkData.ToString())
 End Sub
 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Button1.Click
 Me.Dispose()
 End Sub
 Private Sub LinkLabel2_LinkClicked(ByVal sender As System.Object, ByVal e As
System.Windows.Forms.LinkLabelLinkClickedEventArgs) Handles LinkLabel2.LinkClicked
 e.Link.LinkData = "mailto:khturan@hotmail.com"
 System.Diagnostics.Process.Start(e.Link.LinkData.ToString())
 End Sub
 Private Sub frm_about_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MyBase.Load
 End Sub
 Private Sub LinkLabel3_LinkClicked(ByVal sender As System.Object, ByVal e As
System.Windows.Forms.LinkLabelLinkClickedEventArgs) Handles LinkLabel3.LinkClicked
 e.Link.LinkData = "www.ce.metu.edu.tr"
 System.Diagnostics.Process.Start(e.Link.LinkData.ToString())
 End Sub
End Class
'*---*
'| END OF FORM-1 |
'*---*

'*---*
'| FORM-10 : Form10.vb |
'*---*
Public Class frm_prj_summary
 Inherits System.Windows.Forms.Form
#Region " Windows Form Designer generated code "
 Public Sub New()
 MyBase.New()
 'This call is required by the Windows Form Designer.
 InitializeComponent()
 'Add any initialization after the InitializeComponent() call
 End Sub
 'Form overrides dispose to clean up the component list.
 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If

 235

 End If
 MyBase.Dispose(disposing)
 End Sub
 'Required by the Windows Form Designer
 Private components As System.ComponentModel.IContainer
 'NOTE: The following procedure is required by the Windows Form Designer
 'It can be modified using the Windows Form Designer.
 'Do not modify it using the code editor.
 ‘This part of code is generated automaticallt. Details are hidden.
#End Region
 Private Sub frm_prj_summary_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 Me.TextBox1.Text = frm_main.prj_type.prj_title
 Me.TextBox2.Text = frm_main.prj_type.prj_eng
 Me.TextBox3.Text = frm_main.prj_type.prj_def
 Try 'if invalid time is loaded; then catch error and make the value as todays date
 Me.DateTimePicker1.Value = frm_main.prj_type.prj_date
 Catch
 Me.DateTimePicker1.Value = Today
 End Try
 End Sub
 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Button1.Click
 Me.Button1.Enabled = False
 frm_main.prj_type.prj_title = Me.TextBox1.Text
 frm_main.prj_type.prj_eng = Me.TextBox2.Text
 frm_main.prj_type.prj_def = Me.TextBox3.Text
 frm_main.prj_type.prj_date = Me.DateTimePicker1.Value
 Me.Dispose()
 End Sub
 Private Sub TextBox1_TextChanged(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles TextBox1.TextChanged
 End Sub
 Private Sub TextBox2_TextChanged(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles TextBox2.TextChanged
 End Sub
 Private Sub TextBox3_TextChanged(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles TextBox3.TextChanged
 End Sub
 Private Sub DateTimePicker1_ValueChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles DateTimePicker1.ValueChanged
 End Sub
 Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Button2.Click
 Me.Dispose()
 End Sub
End Class
'*---*
'| END OF FORM-10 |
'*---*

'*---*
'| FORM-12 : Form12.vb |
'*---*
Public Class frm_splash
 Inherits System.Windows.Forms.Form
#Region " Windows Form Designer generated code "
 Public Sub New()
 MyBase.New()
 'This call is required by the Windows Form Designer.

 236

 InitializeComponent()
 'Add any initialization after the InitializeComponent() call
 End Sub
 'Form overrides dispose to clean up the component list.
 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
 End Sub
 'Required by the Windows Form Designer
 Private components As System.ComponentModel.IContainer
 'NOTE: The following procedure is required by the Windows Form Designer
 'It can be modified using the Windows Form Designer.
 'Do not modify it using the code editor.
 ‘This part of code is generated automatically. Details are hidden.
#End Region
 Private counter As Integer = 0
 Private frm_mainc As New frm_main()
 Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Timer1.Tick
 counter += 1
 If counter = 5 Then
 Me.Timer1.Enabled = False
 frm_mainc.Show()
 Me.Hide()
 End If
 End Sub
End Class
'*---*
'| END OF FORM-12 |
'*---*

'*---*
'| FORM-13 : Form13.vb |
'*---*
Imports dweir_code.General_Hydraulic_Functions
Imports dweir_code.General_Hydraulic_Functions.OCH_func
Imports dweir_code.intake_design
Imports dweir_code.splw_slcw_design
Imports dweir_code.stability_analysis
Imports dweir_code.Appurtenant_fac
Imports dweir_code.levees_and_diversion
Imports dweir_code.cost_computations
Imports dweir_code.computations
Imports System.Math
Imports System.IO
Imports Microsoft.VisualBasic.Strings
Imports System.Runtime.Serialization
Imports System.Runtime.Serialization.Formatters.Binary
Public Class frm_main
 Inherits System.Windows.Forms.Form
#Region " Windows Form Designer generated code "
 Public Sub New()
 MyBase.New()
 'This call is required by the Windows Form Designer.
 InitializeComponent()
 'Add any initialization after the InitializeComponent() call

 237

 End Sub
 'Form overrides dispose to clean up the component list.
 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
 End Sub
 'Required by the Windows Form Designer
 Private components As System.ComponentModel.IContainer
 'NOTE: The following procedure is required by the Windows Form Designer
 'It can be modified using the Windows Form Designer.
 'Do not modify it using the code editor.
 ‘This part of the code is generated automatically. Details are hidden.
#End Region
#Region "Program main variables, objects and data structures "
 'project type 'note this is a user def data structure
 Public Shared prj_type As New project_type()
 Public Shared output_tables_index As Integer '0:intake; 1:spilway_slcw_q,....
 Public Shared obj_state As New objects_state()
 'input data structures
 Public Shared inp_intake As New intake_input_data()
 Public Shared inp_Q_splw_slcw As New splw_slcw_Q_input_data()
 Public Shared inp_energy_dissp As New energy_dissp_input_data()
 Public Shared inp_int_geom As New stab_geom_input_data()
 Public Shared inp_splw_geom As New stab_geom_input_data()
 Public Shared inp_slcw_geom As New stab_geom_input_data()
 Public Shared inp_sw_splw As New stab_sidewall_input_data()
 Public Shared inp_sw_slcw As New stab_sidewall_input_data()
 Public Shared inp_mtrl As New stab_mtrl_input_data()
 Public Shared inp_FS As New stab_Fs_input_data()
 Public Shared inp_unit_costs As New unit_costs_input_data()
 Public Shared inp_div As New diversion_input_data()
 Public Shared inp_cost_comp As New costs_input_data()
 'input data main
 Public Shared Qirr As Single
 Public Shared So_main As Single
 Public Shared K1 As Single
 Public Shared B_main As Single
 Public Shared n_conc As Single
 Public Shared mh_main As Single
 Public Shared n_river As Single
 Public Shared Kt As Single
 Public Shared Kr As Single
 Public Shared So_river As Single
 Public Shared Q() As Single
 Public Shared Kd() As Single
 Public Shared profile() As String
 Public Shared C As Single
 Public Shared Saf As Single
 Public Shared Sac As Single
 Public Shared f As Single
 Public Shared Tall As Single
 Public Shared Fi As Single
 Public Shared kh As Single
 Public Shared kv As Single
 Public Shared gconc As Single
 Public Shared gwater As Single
 Public Shared teta As Single

 238

 Public Shared gdry As Single
 Public Shared gsat As Single
 'input data intake-1
 Public Shared Lc As Single
 Public Shared L23 As Single
 Public Shared np As Integer
 Public Shared tp As Single
 Public Shared tg As Single
 Public Shared Lp As Single
 Public Shared npi As Integer
 Public Shared tpi As Single
 Public Shared Lpi As Single
 Public Shared tgi As Single
 Public Shared tr As Single
 Public Shared Df As Single
 Public Shared Sd As Single
 Public Shared Dm As Single
 Public Shared r As Single
 Public Shared Ct As Single
 Public Shared Cc As Single
 Public Shared u5 As Single
 'input data intake-2
 Public Shared Lub_int As Single
 Public Shared Hsp_int As Single
 Public Shared Dsu As Single
 Public Shared maxDsu As Single
 Public Shared Dsd As Single
 Public Shared minDu As Single
 Public Shared maxDu As Single
 Public Shared L_int(4) As Single
 Public Shared El_int(6) As Single
 Public Shared dim_int_by_El As Boolean 'if dim by found elev or slab thicknesses
 'input data spl_slcw-1
 Public Shared Lt As Single
 Public Shared nsl As Integer
 Public Shared Le As Single
 Public Shared d As Single
 Public Shared tsl As Single
 Public Shared brdg_exist As Boolean 'if there exist bridge or not
 Public Shared np_brdg As Integer
 Public Shared tp_brdg As Single
 Public Shared Lp_brdg As Integer
 Public Shared tslab_brdg As Integer 'slab thickness of bridge
 Public Shared wslab_brdg As Integer 'slab width of bridge
 Public Shared Kp As Single
 Public Shared Ka As Single
 Public Shared Lp_slcw As Single
 Public Shared tg_slcw As Single
 'input data spl_slcw-2
 Public Shared tc_splw_auto As Boolean 'if program calculates crest thickness automatically
 Public Shared tc_splw As Single
 Public Shared Lub_spl As Single
 Public Shared Hsp_spl As Single
 Public Shared mh_spl As Single 'mh_ogee
 Public Shared L_spl(4) As Single
 Public Shared El_spl(6) As Single
 Public Shared dim_splw_by_El As Boolean 'if dim by found elev or slab thicknesses
 'input data sidewalls and levees
 Public Shared coulomb_type As Boolean 'gravity=coulomb=true ; cantilever=rankine=false
 Public Shared sw_comp_type As Byte '0:no dim change; 1:change if not satisfy ; 2:find the optimum by
start with zero

 239

 Public Shared tc_sw As Single
 Public Shared tslab_sw As Single
 Public Shared tb_sw As Single
 Public Shared B_sw As Single
 Public Shared gwd_sw As Single
 Public Shared dx_levee As Single
 Public Shared z_levee As Single
 'input data diversion
 Public Shared Ldc As Single
 Public Shared mh_div As Single
 Public Shared Kta As Single
 Public Shared Qdiv As Single
 Public Shared Ktb As Single
 Public Shared Kb As Single
 Public Shared delta_div As Single
 Public Shared mh_uc As Single
 Public Shared mh_dc As Single
 Public Shared uCe As Single
 Public Shared uCl As Single
 Public Shared uCex As Single
 Public Shared uCcore As Single
 Public Shared uCper As Single
 Public Shared dx_div As Single
 'input data appertunant fac
 Public Shared t_ripmin As Single
 Public Shared Ld_ripmin As Single
 Public Shared Dm_flush As Single
 Public Shared Dp_flush As Single
 Public Shared ks_flush As Single
 Public Shared n_flush As Single
 Public Shared alfa_flush As Single
 'safety criteria
 Public Shared FSu As Single
 Public Shared FSs As Single
 Public Shared FSss As Single
 Public Shared FSo As Single
 Public Shared FSs_sw As Single
 Public Shared Vmax As Single
 Public Shared Vmin As Single
 'unit cost values
 Public Shared uCco As Single
 Public Shared uCcs As Single
 Public Shared uCrip As Single
 'program core objects (pointers)***
 Public Shared intake_des As intake
 Public Shared splw_Q As splw_slcw_Q
 Public Shared energy_dissp As energy_dissp
 Public Shared riprap_des As riprap_des
 Public Shared flush_des As flushing_canal
 Public Shared seepage_des As seepage_analysis
 Public Shared int_uplift As stab_uplift_sb
 Public Shared splw_uplift As stab_uplift_sb
 Public Shared slcw_uplift As stab_uplift_sb
 Public Shared stab_slide_overt As stab_sliding_and_overt
 Public Shared stab_sw_splw As stab_sidewalls
 Public Shared stab_sw_slcw As stab_sidewalls
 Public Shared levees_des As levees
 Public Shared div_fac As diversion_fac
 Public Shared costs As costs
 Public Shared summary_result As optimization_try_output_data
 Public Shared try_summary_results() As optimization_try_output_data

 240

 Public Shared try_summary_results_OK() As optimization_try_output_data
#End Region
#Region "form variables (to access to other forms)"
 'form objects
 ' Public Shared frm_collection As New Collection()
 Public Shared frm_prj_typec As frm_prj_type
 Public Shared frm_inputc As frm_input
 Public Shared frm_computec As frm_compute
 Public Shared frm_out_intc As frm_outputs
 Public Shared frm_prj_summaryc As frm_prj_summary
#End Region
 Private prj_path As String = "" 'to handle the project file path; initially it is set empty meaning that not
saved yet
 Private prj_changed As Boolean = False 'if it was changed by inputting data
 Private Sub frm_main_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MyBase.Load
 'need for new custom datagrid control
 Me.StatusBarPanel1.Text = "WINDWEIR"
 Me.StatusBarPanel2.Text = "Project Title: "
 Me.StatusBarPanel3.Text = "Project File: "
 End Sub
 Private Sub MenuItem1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem1.Click
 End Sub
 Private Sub MenuItem3_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem3.Click
 End Sub
 Private Sub MenuItem4_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem4.Click
 End Sub
 Private Sub MenuItem11_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem11.Click
 End Sub
 Private Sub MenuItem13_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem13.Click
 End Sub
 Private Sub MenuItem14_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem14.Click
 Application.Exit()
 End Sub
 Private Sub MenuItem6_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem6.Click
 End Sub
 Private Sub MenuItem8_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem8.Click
 End Sub
 Private Sub MenuItem15_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem15.Click
 frm_inputc.Show()
 frm_inputc.tab_input.SelectedIndex = 0
 End Sub
 Private Sub MenuItem19_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem19.Click
 frm_inputc.Show()
 frm_inputc.tab_input.SelectedIndex = 7
 End Sub
 Private Sub MenuItem20_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem20.Click
 End Sub
 Private Sub MenuItem27_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem27.Click

 241

 End Sub
#Region "My Procedures"
#Region "new project"
 Private Sub new_project()
 reset_all_variables()
 frm_prj_typec = New frm_prj_type()
 frm_prj_typec.ShowDialog()
 Me.initialize_frm_variables(Me.prj_type)
 Me.StatusBarPanel2.Text = "Project Title: " & prj_type.prj_title
 Me.StatusBarPanel3.Text = "Project File: " & prj_path
 End Sub
 Private Sub reset_all_variables()
 'firstly clear all forms
 Dim frm_childs As Form
 'unload all child forms
 For Each frm_childs In Me.MdiChildren
 If Not (frm_childs Is Nothing) Then
 frm_childs.Dispose()
 End If
 Next
 'unload unchild forms by hand
 If Not (frm_prj_summaryc Is Nothing) Then

 frm_prj_summaryc.Dispose()
 End If
 If Not (frm_computec Is Nothing) Then
 frm_computec.Dispose()
 End If
 Me.frm_inputc = Nothing
 Me.frm_computec = Nothing
 Me.frm_out_intc = Nothing
 Me.frm_prj_summaryc = Nothing
 Me.prj_path = ""
 prj_type = New project_type()
 'input data structures
 inp_intake = New intake_input_data()
 inp_Q_splw_slcw = New splw_slcw_Q_input_data()
 inp_energy_dissp = New energy_dissp_input_data()
 inp_int_geom = New stab_geom_input_data()
 inp_splw_geom = New stab_geom_input_data()
 inp_slcw_geom = New stab_geom_input_data()
 inp_sw_splw = New stab_sidewall_input_data()
 inp_sw_slcw = New stab_sidewall_input_data()
 inp_mtrl = New stab_mtrl_input_data()
 inp_FS = New stab_Fs_input_data()
 inp_unit_costs = New unit_costs_input_data()
 inp_div = New diversion_input_data()
 inp_cost_comp = New costs_input_data()
 'input data main
 Qirr = 0
 So_main = 0
 K1 = 0
 B_main = 0
 n_conc = 0
 mh_main = 0
 n_river = 0
 Kt = 0
 Kr = 0
 So_river = 0
 Q = Nothing
 Kd = Nothing

 242

 profile = Nothing
 C = 0
 Saf = 0
 Sac = 0
 f = 0
 Tall = 0
 Fi = 0
 kh = 0
 kv = 0
 gconc = 0
 gwater = 0
 teta = 0
 gdry = 0
 gsat = 0
 'input data intake-1
 Lc = 0
 L23 = 0
 np = 0
 tp = 0
 tg = 0
 Lp = 0
 npi = 0
 tpi = 0
 Lpi = 0
 tgi = 0
 tr = 0
 Df = 0

 Sd = 0
 Dm = 0
 r = 0
 Ct = 0
 Cc = 0
 u5 = 0
 'input data intake-2
 Lub_int = 0
 Hsp_int = 0
 Dsu = 0
 maxDsu = 0
 Dsd = 0
 minDu = 0
 maxDu = 0
 L_int = Nothing
 El_int = Nothing
 dim_int_by_El = False 'if dim by found elev or slab thicknesses
 'input data spl_slcw-1
 Lt = 0
 nsl = 0.0R
 Le = 0
 d = 0
 tsl = 0
 brdg_exist = False 'if there exist bridge or not
 np_brdg = 0
 tp_brdg = 0
 Lp_brdg = 0
 tslab_brdg = 0 'slab thickness of bridge
 wslab_brdg = 0 'slab width of bridge
 Kp = 0
 Ka = 0
 Lp_slcw = 0
 tg_slcw = 0

 243

 'input data spl_slcw-2
 tc_splw_auto = False 'if program calculates crest thickness automatically
 tc_splw = 0
 Lub_spl = 0
 Hsp_spl = 0
 mh_spl = 0 'mh_ogee
 L_spl(4) = Nothing
 El_spl(6) = Nothing
 dim_splw_by_El = False 'if dim by found elev or slab thicknesses
 'input data sidewalls and levees
 coulomb_type = False 'gravity=coulomb=true ; cantilever=rankine=false
 sw_comp_type = 0 '0:no dim change; 1:change if not satisfy ; 2:find the optimum by start with zero
 tc_sw = 0
 tslab_sw = 0
 tb_sw = 0
 B_sw = 0
 gwd_sw = 0
 dx_levee = 0
 z_levee = 0
 'input data diversion
 Ldc = 0
 mh_div = 0
 Kta = 0
 Qdiv = 0
 Ktb = 0
 Kb = 0
 delta_div = 0
 mh_uc = 0
 mh_dc = 0
 uCe = 0
 uCl = 0
 uCex = 0
 uCcore = 0
 uCper = 0
 dx_div = 0
 'input data appertunant fac
 t_ripmin = 0
 Ld_ripmin = 0
 Dm_flush = 0
 Dp_flush = 0
 ks_flush = 0
 n_flush = 0
 alfa_flush = 0
 'safety criteria
 FSu = 0
 FSs = 0
 FSss = 0
 FSo = 0
 FSs_sw = 0
 Vmax = 0
 Vmin = 0
 'unit cost values
 uCco = 0
 uCcs = 0
 uCrip = 0
 'program core objects (pointers)***
 intake_des = Nothing
 splw_Q = Nothing
 energy_dissp = Nothing
 riprap_des = Nothing
 flush_des = Nothing

 244

 seepage_des = Nothing
 int_uplift = Nothing
 splw_uplift = Nothing
 slcw_uplift = Nothing
 stab_slide_overt = Nothing
 stab_sw_splw = Nothing
 stab_sw_slcw = Nothing
 costs = Nothing
 levees_des = Nothing
 div_fac = Nothing
 'refresh the states
 frm_computec.load_obj_states()
 End Sub
 Private Sub initialize_frm_variables(ByVal prj_type As project_type)
 With Me
 If prj_type.prj_main_module = True Then 'main modules
 If prj_type.prob_type = 0 Then 'dweir with overflow spillw
 .frm_inputc = New frm_input()
 .frm_out_intc = New frm_outputs()
 .frm_inputc.Show()
 ElseIf prj_type.prob_type = 1 Then 'gated dweir
 'code to add in future
 End If
 Else 'secondary modules
 'code to add in future
 End If
 End With
 End Sub
#End Region
#Region "open project procedures"
 Private Sub open_project()
 Dim open_diag As New OpenFileDialog()
 With open_diag
 .InitialDirectory = Application.ExecutablePath
 .DefaultExt = "dwr"
 .FileName = "project1"
 .Filter = "DWR Files" & " (*.dwr)|*.dwr|All Files (*.*)|*.*"
 If .ShowDialog = DialogResult.OK Then
 Me.open_project_data(.FileName)
 End If
 End With
 Me.StatusBarPanel2.Text = "Project Title:" & prj_type.prj_title
 Me.StatusBarPanel3.Text = "Project File:" & prj_path
 End Sub
 Private Sub open_project_data(ByVal filename As String)
 Dim fs As FileStream = New FileStream(filename, FileMode.Open)
 Dim r As StreamReader = New StreamReader(fs)
 Dim inp_fname As String

 Dim out_fname As String
 Try
 'first clear all variables
 reset_all_variables()
 prj_type.prj_main_module = r.ReadLine()
 prj_type.prob_type = r.ReadLine()
 prj_type.comp_type = r.ReadLine()
 'after project type read, initialize the frm_variables
 initialize_frm_variables(Me.prj_type)
 inp_fname = LSet(filename, Len(filename) - 3) & "inp"
 Me.open_input_data(inp_fname)
 With obj_state

 245

 obj_state.st_intake_des = r.ReadLine()
 obj_state.st_splw_Q = r.ReadLine()
 obj_state.st_energy_dissp = r.ReadLine()
 obj_state.st_riprap_des = r.ReadLine()
 obj_state.st_flush_des = r.ReadLine()
 obj_state.st_seepage_des = r.ReadLine()
 obj_state.st_int_uplift = r.ReadLine()
 obj_state.st_splw_uplift = r.ReadLine()
 obj_state.st_slcw_uplift = r.ReadLine()
 obj_state.st_stab_slide_overt = r.ReadLine()
 obj_state.st_stab_sw_splw = r.ReadLine()
 obj_state.st_stab_sw_slcw = r.ReadLine()
 obj_state.st_levees_des = r.ReadLine()
 obj_state.st_div_fac = r.ReadLine()
 obj_state.st_costs = r.ReadLine()
 obj_state.st_summary_result = r.ReadLine()
 obj_state.st_try_summary_results = r.ReadLine()
 obj_state.st_try_summary_results_OK = r.ReadLine()
 End With
 out_fname = LSet(filename, Len(filename) - 3) & "out"
 Me.open_output_data(out_fname)
 prj_type.prj_title = r.ReadLine
 prj_type.prj_eng = r.ReadLine
 prj_type.prj_date = r.ReadLine
 prj_type.prj_def = r.ReadToEnd 'should be at last in order to handle new line chars
 Me.prj_path = filename
 Catch ex As Exception
 MsgBox(ex.Message & ex.StackTrace)
 'MsgBox("An error occured while opening file." & Chr(13) & "Please check if it is a valid project
file.", MsgBoxStyle.Exclamation, "WINDWEIR")
 Me.prj_path = ""
 Finally
 r.Close()
 fs.Close()
 End Try

 End Sub
 Private Sub open_output_data(ByVal filename As String)
 Dim formatter As New BinaryFormatter()
 Dim stream As New FileStream(filename, FileMode.Open)
 Do Until stream.Position = stream.Length
 With obj_state
 If .st_intake_des Then frm_main.intake_des = CType(formatter.Deserialize(stream), intake)
 If .st_splw_Q Then frm_main.splw_Q = CType(formatter.Deserialize(stream), splw_slcw_Q)
 If .st_energy_dissp Then frm_main.energy_dissp = CType(formatter.Deserialize(stream),
energy_dissp)
 If .st_riprap_des Then frm_main.riprap_des = CType(formatter.Deserialize(stream), riprap_des)
 If .st_flush_des Then frm_main.flush_des = CType(formatter.Deserialize(stream), flushing_canal)
 If .st_seepage_des Then frm_main.seepage_des = CType(formatter.Deserialize(stream),
seepage_analysis)
 If .st_int_uplift Then frm_main.int_uplift = CType(formatter.Deserialize(stream), stab_uplift_sb)
 If .st_splw_uplift Then frm_main.splw_uplift = CType(formatter.Deserialize(stream),
stab_uplift_sb)
 If .st_slcw_uplift Then frm_main.slcw_uplift = CType(formatter.Deserialize(stream),
stab_uplift_sb)
 If .st_stab_slide_overt Then frm_main.stab_slide_overt = CType(formatter.Deserialize(stream),
stab_sliding_and_overt)
 If .st_stab_sw_splw Then frm_main.stab_sw_splw = CType(formatter.Deserialize(stream),
stab_sidewalls)

 246

 If .st_stab_sw_slcw Then frm_main.stab_sw_slcw = CType(formatter.Deserialize(stream),
stab_sidewalls)
 If .st_levees_des Then frm_main.levees_des = CType(formatter.Deserialize(stream), levees)
 If .st_div_fac Then frm_main.div_fac = CType(formatter.Deserialize(stream), diversion_fac)
 If .st_costs Then frm_main.costs = CType(formatter.Deserialize(stream), costs)
 If .st_summary_result Then frm_main.summary_result = CType(formatter.Deserialize(stream),
optimization_try_output_data)
 If .st_try_summary_results Then frm_main.try_summary_results =
CType(formatter.Deserialize(stream), optimization_try_output_data())
 If .st_try_summary_results_OK Then frm_main.try_summary_results_OK =
CType(formatter.Deserialize(stream), optimization_try_output_data())
 End With
 Loop
 stream.Close()
 End Sub
 Private Sub open_input_data(ByVal filename As String)
 'this code is not well structured; needs to be modified
 frm_inputc.dset_input.Clear()
 frm_inputc.dset_input.ReadXml(filename)
 load_input_data_to_controls()
 'reread the dataset; because the dataset is distorted because of radio_button initializations (found el or slab
thickness)
 'therefore after uploading data to controls, initial dataset must be reread to display the contents of
datagrids correctly
 frm_inputc.dset_input.Clear()
 frm_inputc.dset_input.ReadXml(filename)
 'only for div fac discharge it must be read at last
 frm_inputc.ComboBox4.SelectedIndex =
CInt(frm_inputc.dtbln_combo.Rows.Find(frm_inputc.ComboBox4.Name).Item(1))
 End Sub
 Private Sub load_input_data_to_controls()
 Dim c As Control
 Dim c2 As Control
 Dim text_b As TextBox
 Dim combo_b As ComboBox
 Dim check_b As CheckBox
 Dim radio_b As RadioButton
 Dim tab_page As TabPage
 Dim group_b As GroupBox
 With frm_inputc
 For Each tab_page In frm_inputc.tab_input.TabPages
 For Each c2 In tab_page.Controls
 If TypeOf (c2) Is GroupBox Then
 group_b = CType(c2, GroupBox)
 For Each c In group_b.Controls
 If TypeOf (c) Is TextBox Then
 text_b = CType(c, TextBox)
 text_b.Text = .dtbl_textbox.Rows.Find(text_b.Name).Item(1)
 ElseIf TypeOf (c) Is ComboBox Then
 combo_b = CType(c, ComboBox)
 combo_b.Text = .dtbln_combo.Rows.Find(combo_b.Name).Item(1)
 ElseIf TypeOf (c) Is CheckBox Then
 check_b = CType(c, CheckBox)
 check_b.Checked = .dtbln_checkbox.Rows.Find(check_b.Name).Item(1)
 ElseIf TypeOf (c) Is RadioButton Then
 radio_b = CType(c, RadioButton)
 radio_b.Checked = .dtbln_radio.Rows.Find(radio_b.Name).Item(1)
 End If
 Next
 ElseIf TypeOf (c2) Is TextBox Then
 text_b = CType(c2, TextBox)

 247

 text_b.Text = .dtbl_textbox.Rows.Find(text_b.Name).Item(1)
 ElseIf TypeOf (c2) Is ComboBox Then
 combo_b = CType(c2, ComboBox)
 combo_b.Text = .dtbln_combo.Rows.Find(combo_b.Name).Item(1)
 ElseIf TypeOf (c2) Is CheckBox Then
 check_b = CType(c2, CheckBox)
 check_b.Checked = .dtbln_checkbox.Rows.Find(check_b.Name).Item(1)
 ElseIf TypeOf (c2) Is RadioButton Then
 radio_b = CType(c2, RadioButton)
 radio_b.Checked = .dtbln_radio.Rows.Find(radio_b.Name).Item(1)
 End If
 Next
 Next
 End With
 End Sub
#End Region
#Region "save project procedure"
 Private Sub save_project()
 If Me.prj_path = "" Then 'if project was not saved before
 Dim save_diag As New SaveFileDialog()
 With save_diag
 .InitialDirectory = Application.ExecutablePath
 .DefaultExt = "dwr"
 .FileName = "project1"
 .Filter = "DWR Files" & " (*.dwr)|*.dwr|All Files (*.*)|*.*"
 .OverwritePrompt = True
 If .ShowDialog = DialogResult.OK Then
 Me.save_project_data(.FileName)
 End If
 End With
 Else 'if project was saved before
 Me.save_project_data(prj_path)
 End If
 Me.StatusBarPanel2.Text = "Project Title: " & prj_type.prj_title
 Me.StatusBarPanel3.Text = "Project File: " & prj_path
 End Sub
 Private Sub save_as_project()
 Dim save_diag As New SaveFileDialog()
 With save_diag
 .InitialDirectory = Application.ExecutablePath
 .DefaultExt = "dwr"
 .FileName = "project1"
 .Filter = "DWR Files" & " (*.dwr)|*.dwr|All Files (*.*)|*.*"
 .OverwritePrompt = True
 If .ShowDialog = DialogResult.OK Then
 Me.save_project_data(.FileName)
 End If
 End With
 Me.StatusBarPanel2.Text = "Project Title: " & prj_type.prj_title
 Me.StatusBarPanel3.Text = "Project File: " & prj_path
 End Sub
 'save the classes; serialize...
 Private Sub save_output_data(ByVal filename As String)
 Dim formatter As New BinaryFormatter()
 Dim stream As New FileStream(filename, FileMode.Create)
 Dim i As Integer
 With obj_state
 If (.st_intake_des) Then formatter.Serialize(stream, intake_des)
 If (.st_splw_Q) Then formatter.Serialize(stream, splw_Q)
 If (.st_energy_dissp) Then formatter.Serialize(stream, energy_dissp)
 If (.st_riprap_des) Then formatter.Serialize(stream, riprap_des)

 248

 If (.st_flush_des) Then formatter.Serialize(stream, flush_des)
 If (.st_seepage_des) Then formatter.Serialize(stream, seepage_des)
 If (.st_int_uplift) Then formatter.Serialize(stream, int_uplift)
 If (.st_splw_uplift) Then formatter.Serialize(stream, splw_uplift)
 If (.st_slcw_uplift) Then formatter.Serialize(stream, slcw_uplift)
 If (.st_stab_slide_overt) Then formatter.Serialize(stream, stab_slide_overt)
 If (.st_stab_sw_splw) Then formatter.Serialize(stream, stab_sw_splw)
 If (.st_stab_sw_slcw) Then formatter.Serialize(stream, stab_sw_slcw)
 If (.st_levees_des) Then formatter.Serialize(stream, levees_des)
 If (.st_div_fac) Then formatter.Serialize(stream, div_fac)
 If (.st_costs) Then formatter.Serialize(stream, costs)
 If (.st_summary_result) Then formatter.Serialize(stream, summary_result)
 If (.st_try_summary_results) Then formatter.Serialize(stream, try_summary_results)
 If (.st_try_summary_results_OK) Then formatter.Serialize(stream, try_summary_results_OK)
 End With
 stream.Close()
 End Sub
 Private Sub save_project_data(ByVal filename As String)
 Dim fs As FileStream = New FileStream(filename, FileMode.Create)
 Dim w As StreamWriter = New StreamWriter(fs)
 Dim inp_fname As String
 Dim out_fname As String
 w.WriteLine(prj_type.prj_main_module)
 w.WriteLine(prj_type.prob_type)
 w.WriteLine(prj_type.comp_type)
 inp_fname = LSet(filename, Len(filename) - 3) & "inp"
 Me.save_input_data(inp_fname)
 out_fname = LSet(filename, Len(filename) - 3) & "out"
 Me.save_output_data(out_fname)
 'write the core objects state
 w.WriteLine(obj_state.st_intake_des)
 w.WriteLine(obj_state.st_splw_Q)
 w.WriteLine(obj_state.st_energy_dissp)
 w.WriteLine(obj_state.st_riprap_des)
 w.WriteLine(obj_state.st_flush_des)
 w.WriteLine(obj_state.st_seepage_des)
 w.WriteLine(obj_state.st_int_uplift)
 w.WriteLine(obj_state.st_splw_uplift)
 w.WriteLine(obj_state.st_slcw_uplift)
 w.WriteLine(obj_state.st_stab_slide_overt)
 w.WriteLine(obj_state.st_stab_sw_splw)
 w.WriteLine(obj_state.st_stab_sw_slcw)
 w.WriteLine(obj_state.st_levees_des)
 w.WriteLine(obj_state.st_div_fac)
 w.WriteLine(obj_state.st_costs)
 w.WriteLine(obj_state.st_summary_result)
 w.WriteLine(obj_state.st_try_summary_results)
 w.WriteLine(obj_state.st_try_summary_results_OK)
 w.WriteLine(prj_type.prj_title)
 w.WriteLine(prj_type.prj_eng)
 w.WriteLine(prj_type.prj_date)
 w.WriteLine(prj_type.prj_def) 'should be at last in order to handle new line chars
 Me.prj_path = filename
 w.Close()
 fs.Close()
 End Sub
 Private Sub save_input_data(ByVal filename As String)
 'not well structured; needs to be modified
 Dim c As Control
 Dim c2 As Control
 Dim text_b As TextBox

 249

 Dim combo_b As ComboBox
 Dim check_b As CheckBox
 Dim radio_b As RadioButton
 Dim tab_page As TabPage
 Dim group_b As GroupBox
 Dim drow As DataRow
 With frm_inputc
 .dtbl_textbox.Clear()
 .dtbln_combo.Clear()
 .dtbln_checkbox.Clear()
 .dtbln_radio.Clear()
 For Each tab_page In frm_inputc.tab_input.TabPages
 For Each c2 In tab_page.Controls
 If TypeOf (c2) Is GroupBox Then
 group_b = CType(c2, GroupBox)
 For Each c In group_b.Controls
 If TypeOf (c) Is TextBox Then
 text_b = CType(c, TextBox)
 drow = .dtbl_textbox.NewRow
 drow(0) = text_b.Name
 drow(1) = text_b.Text
 .dtbl_textbox.Rows.Add(drow)
 ElseIf TypeOf (c) Is ComboBox Then
 combo_b = CType(c, ComboBox)
 drow = .dtbln_combo.NewRow
 drow(0) = combo_b.Name
 drow(1) = combo_b.Text
 .dtbln_combo.Rows.Add(drow)
 ElseIf TypeOf (c) Is CheckBox Then
 check_b = CType(c, CheckBox)
 drow = .dtbln_checkbox.NewRow
 drow(0) = check_b.Name
 drow(1) = check_b.Checked
 .dtbln_checkbox.Rows.Add(drow)
 ElseIf TypeOf (c) Is RadioButton Then
 radio_b = CType(c, RadioButton)
 drow = .dtbln_radio.NewRow
 drow(0) = radio_b.Name
 drow(1) = radio_b.Checked
 .dtbln_radio.Rows.Add(drow)
 End If
 Next
 ElseIf TypeOf (c2) Is TextBox Then
 text_b = CType(c2, TextBox)
 drow = .dtbl_textbox.NewRow
 drow(0) = text_b.Name
 drow(1) = text_b.Text
 .dtbl_textbox.Rows.Add(drow)
 ElseIf TypeOf (c2) Is ComboBox Then
 combo_b = CType(c, ComboBox)
 drow = .dtbln_combo.NewRow
 drow(0) = combo_b.Name
 drow(1) = combo_b.Text
 .dtbln_combo.Rows.Add(drow)
 ElseIf TypeOf (c2) Is CheckBox Then
 check_b = CType(c2, CheckBox)
 drow = .dtbln_checkbox.NewRow
 drow(0) = check_b.Name
 drow(1) = check_b.Checked
 .dtbln_checkbox.Rows.Add(drow)
 ElseIf TypeOf (c2) Is RadioButton Then

 250

 radio_b = CType(c2, RadioButton)
 drow = .dtbln_radio.NewRow
 drow(0) = radio_b.Name
 drow(1) = radio_b.Checked
 .dtbln_radio.Rows.Add(drow)
 End If
 Next
 Next
 'for only div fac discharge data seperate access needed
 .dtbln_combo.Rows.Find(.ComboBox4.Name).Item(1) = CStr(.ComboBox4.SelectedIndex)
 .dset_input.WriteXml(filename)
 End With
 End Sub
#End Region
#Region "delete project"
 Private Sub delete_project()
 Dim open_diag As New OpenFileDialog()
 Dim inp_fname As String
 Dim out_fname As String
 Dim msg_info As String = ""
 With open_diag
 .InitialDirectory = Application.ExecutablePath
 .DefaultExt = "dwr"
 .FileName = "project1"
 .Filter = "DWR Files" & " (*.dwr)|*.dwr"
 If .ShowDialog = DialogResult.OK Then
 Kill(.FileName)
 msg_info = "'" & .FileName & "' was deleted..." & Chr(13)
 inp_fname = LSet(.FileName, Len(.FileName) - 3) & "inp"
 out_fname = LSet(.FileName, Len(.FileName) - 3) & "out"
 If File.Exists(inp_fname) Then
 Kill(inp_fname)
 msg_info &= "'" & inp_fname & "' was deleted..." & Chr(13)
 End If
 If File.Exists(out_fname) Then
 Kill(out_fname)
 msg_info &= "'" & out_fname & "' was deleted..." & Chr(13)
 End If
 End If
 MsgBox(msg_info, MsgBoxStyle.Information, "Delete Project")
 End With
 End Sub
#End Region
 Public Shared Sub grid_load(ByVal dtbl As DataTable, ByVal num As Integer, ByVal name As String)
 Dim i As Integer
 Dim drow As DataRow
 For i = 0 To num - 1
 drow = dtbl.NewRow
 drow(0) = name & i + 1
 dtbl.Rows.Add(drow)
 Next
 End Sub
#End Region
 Private Sub MenuItem28_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem28.Click
 frm_inputc.Show()
 frm_inputc.tab_input.SelectedIndex = 8
 End Sub
 Private Sub MenuItem22_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem22.Click
 frm_inputc.Show()

 251

 frm_inputc.tab_input.SelectedIndex = 2
 End Sub
 Private Sub MenuItem21_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem21.Click
 frm_inputc.Show()
 frm_inputc.tab_input.SelectedIndex = 1
 End Sub
 Private Sub MenuItem2_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem2.Click
 Me.new_project()
 End Sub
 Private Sub MenuItem7_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem7.Click
 Me.open_project()
 End Sub
 Private Sub MenuItem9_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem9.Click
 Me.save_project()
 End Sub
 Private Sub MenuItem10_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem10.Click
 Me.save_as_project()
 End Sub
 Private Sub MenuItem12_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem12.Click
 frm_prj_summaryc = New frm_prj_summary()
 frm_prj_summaryc.Show()
 End Sub
 Private Sub MenuItem29_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem29.Click
 frm_computec = New frm_compute()
 frm_computec.ShowDialog()
 End Sub
 Private Sub MenuItem18_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem18.Click
 frm_inputc.Show()
 frm_inputc.tab_input.SelectedIndex = 6
 End Sub
 Private Sub MenuItem31_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem31.Click
 Me.output_tables_index = 1
 Me.frm_out_intc = New frm_outputs()
 Me.frm_out_intc.Show()
 End Sub
 Private Sub MenuItem32_Click_1(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MenuItem32.Click
 Me.output_tables_index = 2
 Me.frm_out_intc = New frm_outputs()
 Me.frm_out_intc.Show()
 End Sub
 Private Sub MenuItem30_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem30.Click
 Me.output_tables_index = 0
 Me.frm_out_intc = New frm_outputs()
 Me.frm_out_intc.Show()
 End Sub
 Private Sub MenuItem24_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem24.Click
 frm_inputc.Show()
 frm_inputc.tab_input.SelectedIndex = 3
 End Sub

 252

 Private Sub MenuItem25_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem25.Click
 frm_inputc.Show()
 frm_inputc.tab_input.SelectedIndex = 5
 End Sub
 Private Sub MenuItem26_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem26.Click
 frm_inputc.Show()
 frm_inputc.tab_input.SelectedIndex = 4
 End Sub
 Private Sub MenuItem33_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem33.Click
 Me.output_tables_index = 3
 Me.frm_out_intc = New frm_outputs()
 Me.frm_out_intc.Show()
 End Sub
 Private Sub MenuItem38_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem38.Click
 Dim frm_aboutc As New frm_about()
 frm_aboutc.ShowDialog()
 End Sub
 Private Sub MenuItem39_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem39.Click
 Me.delete_project()
 End Sub
 Private Sub ToolBar1_ButtonClick(ByVal sender As System.Object, ByVal e As
System.Windows.Forms.ToolBarButtonClickEventArgs) Handles ToolBar1.ButtonClick
 Select Case Me.ToolBar1.Buttons.IndexOf(e.Button)
 Case 0 'new project
 Me.new_project()
 Case 1 'open project
 Me.open_project()
 Case 2 'save project
 Me.save_project()
 End Select
 End Sub
 Private Sub MenuItem35_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem35.Click
 Me.output_tables_index = 5
 Me.frm_out_intc = New frm_outputs()
 Me.frm_out_intc.Show()
 End Sub
 Private Sub MenuItem37_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem37.Click
 Me.output_tables_index = 7
 Me.frm_out_intc = New frm_outputs()
 Me.frm_out_intc.Show()
 End Sub
 Private Sub MenuItem36_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem36.Click
 Me.output_tables_index = 6
 Me.frm_out_intc = New frm_outputs()
 Me.frm_out_intc.Show()
 End Sub
 Private Sub frm_main_DragDrop(ByVal sender As Object, ByVal e As
System.Windows.Forms.DragEventArgs) Handles MyBase.DragDrop
 Dim x() As String = e.Data.GetData(System.Windows.Forms.DataFormats.FileDrop)
 Me.open_project_data(x(0))
 Me.StatusBarPanel2.Text = "Project Title:" & prj_type.prj_title
 Me.StatusBarPanel3.Text = "Project File:" & prj_path
 End Sub

 253

 Private Sub frm_main_DragEnter(ByVal sender As Object, ByVal e As
System.Windows.Forms.DragEventArgs) Handles MyBase.DragEnter
 If e.Data.GetDataPresent(DataFormats.FileDrop) Then
 e.Effect = DragDropEffects.All
 Else
 e.Effect = DragDropEffects.None
 End If
 End Sub
 Private Sub MenuItem34_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem34.Click
 Me.output_tables_index = 4
 Me.frm_out_intc = New frm_outputs()
 Me.frm_out_intc.Show()
 End Sub
 Private Sub MenuItem41_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem41.Click
 Me.output_tables_index = 9
 Me.frm_out_intc = New frm_outputs()
 Me.frm_out_intc.Show()
 End Sub
 Private Sub MenuItem42_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem42.Click
 Me.output_tables_index = 8
 Me.frm_out_intc = New frm_outputs()
 Me.frm_out_intc.Show()
 End Sub
 Private Sub StatusBar1_MouseMove(ByVal sender As Object, ByVal e As
System.Windows.Forms.MouseEventArgs) Handles StatusBar1.MouseMove
 Me.StatusBarPanel3.ToolTipText = Me.StatusBarPanel3.Text
 End Sub
 Private Sub frm_main_Closed(ByVal sender As Object, ByVal e As System.EventArgs) Handles
MyBase.Closed
 End
 End Sub
End Class
'*---*
'| END OF FORM-13 |
'*---*

'*---*
'| FORM-2 : Form2.vb |
'*---*
Imports dweir_code.General_Hydraulic_Functions
Public Class frm_input
 Inherits System.Windows.Forms.Form
#Region " Windows Form Designer generated code "
Public Sub New()
 MyBase.New()
 'This call is required by the Windows Form Designer.
 InitializeComponent()
 'Add any initialization after the InitializeComponent() call
 End Sub
 'Form overrides dispose to clean up the component list.
 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If

 254

 MyBase.Dispose(disposing)
 End Sub
'Required by the Windows Form Designer
 Private components As System.ComponentModel.IContainer
 'NOTE: The following procedure is required by the Windows Form Designer
 'It can be modified using the Windows Form Designer.
 'Do not modify it using the code editor.
‘This part of code is generated automatically.Details are hidden.
#End Region
 Public changed_vmax As Boolean = False
 Public changed_vmin As Boolean = False
 Private Sub chk_bridge_CheckedChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles chk_bridge.CheckedChanged
 'unenable the bridge data if not checked
 Dim lbl As Label
 Dim ctrl As Control
 For Each ctrl In Me.gbox_bridge.Controls
 If ctrl.Enabled = True And (Not (TypeOf (ctrl) Is Label)) Then
 ctrl.Text = "" 'set to zero if unenabled
 End If
 ctrl.Enabled = Me.chk_bridge.Checked
 Next
 If Not chk_bridge.Checked Then
 If Me.PictureBox4.Image Is Me.PictureBox8.Image Then
 Me.PictureBox4.Image = Me.PictureBox9.Image
 Else
 Me.PictureBox4.Image = Me.PictureBox11.Image
 End If
 Else
 If Me.PictureBox4.Image Is Me.PictureBox9.Image Then
 Me.PictureBox4.Image = Me.PictureBox8.Image
 Else
 Me.PictureBox4.Image = Me.PictureBox10.Image
 End If
 End If
 Me.PictureBox4.Refresh()
 End Sub
 Private Sub comb_Kp_SelectedIndexChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles comb_Kp.SelectedIndexChanged
 With comb_Kp
 Select Case .SelectedIndex
 Case 1
 .Items.Item(0) = "0.02"
 Case 2
 .Items.Item(0) = "0.01"
 Case 3
 .Items.Item(0) = "0"
 End Select
 .SelectedItem = .Items.Item(0)
 End With
 End Sub
 Private Sub comb_Ka_SelectedIndexChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles comb_Ka.SelectedIndexChanged
 With comb_Ka
 Select Case .SelectedIndex
 Case 1
 .Items.Item(0) = "0.2"
 Case 2
 .Items.Item(0) = "0.1"
 Case 3
 .Items.Item(0) = "0"

 255

 End Select
 .SelectedItem = .Items.Item(0)
 End With
 End Sub
 Private Sub frm_input_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles
MyBase.Load
 'intake
 frm_main.grid_load(Me.dtbl_intake_l, 5, "L-")
 Me.RadioButton2_CheckedChanged(sender, e)
 'splw
 frm_main.grid_load(Me.dtbl_spl_l, 5, "L-")
 Me.RadioButton4_CheckedChanged(sender, e)
 'initialize some pictureboxes
 Me.PictureBox4.Image = Me.PictureBox8.Image
 Me.PictureBox1.Image = Me.PictureBox14.Image
 Me.PictureBox3.Image = Me.PictureBox12.Image
 End Sub
 Private Sub tab_input_SelectedIndexChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles tab_input.SelectedIndexChanged
 If tab_input.SelectedIndex = 7 Then
 If changed_vmax = False Then TextBox68.Text = Math.Min(Val(ComboBox2.Text) / 1.3,
Val(TextBox52.Text))
 If changed_vmin = False Then TextBox69.Text = (-0.05) * Val(TextBox52.Text)
 End If
 End Sub
 Private Sub TextBox69_KeyDown(ByVal sender As System.Object, ByVal e As
System.Windows.Forms.KeyEventArgs)
 changed_vmin = True
 End Sub
 Private Sub TextBox68_KeyDown(ByVal sender As System.Object, ByVal e As
System.Windows.Forms.KeyEventArgs)
 changed_vmax = True
 End Sub
 Protected Overrides Sub OnClosing(ByVal e As System.ComponentModel.CancelEventArgs)
 'closed prevented, if cancel=true demeseydik; once hide edip sonra kapatacakti
 e.Cancel = True
 Me.Hide()
 End Sub
 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Button1.Click
 Me.load_input_data()
 Me.load_input_data_structures()
 End Sub
 'GUI procedures when changing input type slab thickness or elevations
 Private Sub RadioButton2_CheckedChanged(ByVal sender As Object, ByVal e As System.EventArgs)
Handles RadioButton2.CheckedChanged
 'by lear method we delete data (but not the table schema)
 'if we also want to delete table shema; then refresh method is used)
 If Me.RadioButton1.Checked = False Then
 Me.DataGrid3.CaptionText = "Foundation El : (refer to figure)"
 Me.dtbl_spl_el.Clear()
 Me.dtbl_spl_el.Columns.Item(1).ColumnName = "Elevation (m.)"
 frm_main.grid_load(Me.dtbl_spl_el, 7, "El-")
 Me.PictureBox3.Image = Me.PictureBox13.Image
 Else
 Me.DataGrid3.CaptionText = "Slab thicknesses : (refer to figure)"
 Me.dtbl_spl_el.Clear()
 Me.dtbl_spl_el.Columns.Item(1).ColumnName = "Thickness (m.)"
 frm_main.grid_load(Me.dtbl_spl_el, 7, "t-")
 Me.PictureBox3.Image = Me.PictureBox12.Image
 End If

 256

 Me.PictureBox3.Refresh()
 End Sub
 Private Sub RadioButton4_CheckedChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles RadioButton4.CheckedChanged
 If Me.RadioButton3.Checked = False Then
 Me.dg_intake_el.CaptionText = "Foundation El : (refer to figure)"
 Me.dtbl_intake_el.Clear()
 Me.dtbl_intake_el.Columns.Item(1).ColumnName = "Elevation (m.)"
 frm_main.grid_load(Me.dtbl_intake_el, 7, "El-")
 Me.PictureBox1.Image = Me.PictureBox15.Image
 Else
 Me.dg_intake_el.CaptionText = "Slab thicknesses : (refer to figure)"
 Me.dtbl_intake_el.Clear()
 Me.dtbl_intake_el.Columns.Item(1).ColumnName = "Thickness (m.)"
 frm_main.grid_load(Me.dtbl_intake_el, 7, "t-")
 Me.PictureBox1.Image = Me.PictureBox14.Image
 End If
 Me.PictureBox1.Refresh()
 End Sub
#Region "my procedures"
 Private Sub load_input_data()
 Dim i As Integer = 0
 Dim frm As frm_main
 With frm
 'initialize the array type variables
 If Me.dtbl_Q_flood.Rows.Count <> 0 Then
 ReDim .Q(Me.dtbl_Q_flood.Rows.Count - 1)
 ReDim .Kd(Me.dtbl_Q_flood.Rows.Count - 1)
 ReDim .profile(Me.dtbl_Q_flood.Rows.Count - 1)
 For i = 0 To Me.dtbl_Q_flood.Rows.Count - 1
 .profile(i) = Me.dtbl_Q_flood.Rows(i).Item(0)
 .Q(i) = Me.dtbl_Q_flood.Rows(i).Item(1)
 .Kd(i) = Me.dtbl_Q_flood.Rows(i).Item(2)
 Next
 End If
 If Me.dtbl_intake_l.Rows.Count <> 0 Then
 ReDim .L_int(Me.dtbl_intake_l.Rows.Count - 1)
 For i = 0 To Me.dtbl_intake_l.Rows.Count - 1
 .L_int(i) = Me.dtbl_intake_l.Rows(i).Item(1)
 Next
 End If
 If Me.dtbl_intake_el.Rows.Count <> 0 Then
 ReDim .El_int(Me.dtbl_intake_el.Rows.Count - 1)
 For i = 0 To Me.dtbl_intake_el.Rows.Count - 1
 .El_int(i) = Me.dtbl_intake_el.Rows(i).Item(1)
 Next
 End If
 .dim_int_by_El = Me.RadioButton2.Checked 'gets if dims by found el or slab thickness
 If Me.dtbl_spl_el.Rows.Count <> 0 Then
 ReDim .L_spl(Me.dtbl_spl_l.Rows.Count - 1)
 For i = 0 To Me.dtbl_spl_l.Rows.Count - 1
 .L_spl(i) = Me.dtbl_spl_l.Rows(i).Item(1)
 Next
 End If
 If Me.dtbl_spl_el.Rows.Count <> 0 Then
 ReDim .El_spl(Me.dtbl_spl_el.Rows.Count - 1)
 For i = 0 To Me.dtbl_spl_el.Rows.Count - 1
 .El_spl(i) = Me.dtbl_spl_el.Rows(i).Item(1)
 Next
 End If
 .dim_splw_by_El = Me.RadioButton4.Checked 'gets if dims by found el or slab thickness

 257

 .Qirr = Val(Me.tb_Qirr.Text)
 .So_main = Val(Me.tb_So_main.Text)
 .B_main = Val(Me.tb_B_main.Text)
 .K1 = Val(Me.tb_K1.Text)
 .n_conc = Val(Me.tb_n_conc.Text)
 .mh_main = Val(Me.tb_mh_main.Text)
 .n_river = Val(Me.tb_n_river.Text)
 .Kt = Val(Me.TextBox48.Text)
 .Kr = Val(Me.TextBox49.Text)
 .So_river = Val(Me.TextBox92.Text)
 .C = Val(Me.ComboBox3.Text)
 .Sac = Val(Me.TextBox52.Text)
 .Saf = Val(Me.ComboBox2.Text)
 .f = Val(Me.ComboBox1.Text)
 .Tall = Val(Me.TextBox53.Text)
 .Fi = Val(Me.TextBox56.Text)
 .kh = Val(Me.TextBox54.Text)
 .kv = Val(Me.TextBox55.Text)
 .gconc = Val(Me.TextBox50.Text)
 .gwater = Val(Me.TextBox51.Text)
 .teta = Val(Me.TextBox75.Text)
 .gdry = Val(Me.TextBox74.Text)
 .gsat = Val(Me.TextBox73.Text)
 .Lc = Val(Me.TextBox84.Text)
 .L23 = Val(Me.TextBox85.Text)
 .np = Val(Me.TextBox4.Text)
 .tp = Val(Me.TextBox5.Text)
 .tg = 0.5 'default olarak 10 cm al, kullaniciyi bu detayla mesgul etme
 .Lp = Val(Me.TextBox86.Text)
 .npi = Val(Me.TextBox12.Text)
 .tpi = Val(Me.TextBox13.Text)
 .tgi = 0.5 'default olarak 10 cm al, kullaniciyi bu detayla mesgul etme
 .Lpi = Val(Me.TextBox87.Text)
 .tr = Val(Me.TextBox15.Text)
 .Df = Val(Me.TextBox16.Text)
 .Sd = Val(Me.TextBox9.Text)
 .Dm = Val(Me.TextBox10.Text)
 .r = Val(Me.TextBox11.Text)
 .Ct = Val(Me.TextBox1.Text)
 .Cc = Val(Me.TextBox2.Text)
 .u5 = Val(Me.TextBox17.Text)
 .Lub_int = Val(Me.TextBox79.Text)
 .Hsp_int = Val(Me.TextBox78.Text)
 .Dsu = Val(Me.TextBox7.Text)
 .maxDsu = Val(Me.TextBox18.Text)
 .Dsd = Val(Me.TextBox8.Text)
 .maxDu = Val(Me.TextBox19.Text)
 .minDu = Val(Me.TextBox20.Text)
 .dim_int_by_El = Me.RadioButton4.Checked
 .Lt = Val(Me.TextBox24.Text)
 .nsl = Val(Me.TextBox25.Text)
 .Le = Val(Me.TextBox26.Text)
 .d = Val(Me.TextBox27.Text)
 .tsl = Val(Me.TextBox80.Text)
 .Lp_slcw = Val(Me.TextBox90.Text)
 .tg_slcw = 0.5 'default olarak 10 cm al, kullaniciyi bu detayla mesgul etme
 .dim_int_by_El = Me.RadioButton2.Checked
 .brdg_exist = Me.chk_bridge.Checked
 .np_brdg = Val(Me.tb_Np.Text)
 .tp_brdg = Val(Me.tb_tp.Text)
 .Kp = Val(Me.comb_Kp.Text)

 258

 .Ka = Val(Me.comb_Ka.Text)
 .Lp_brdg = Val(Me.TextBox82.Text)
 .tslab_brdg = Val(Me.TextBox3.Text)
 .wslab_brdg = Val(Me.TextBox83.Text)
 .coulomb_type = False 'default; we eliminated the coulomb type in our program
 .sw_comp_type = IIf(Me.CheckBox2.Checked, 1, 0)
 .tc_sw = Val(Me.TextBox31.Text)
 .tslab_sw = Val(Me.TextBox30.Text)
 .tb_sw = Val(Me.TextBox88.Text)
 .B_sw = Val(Me.TextBox28.Text)
 .gwd_sw = Val(Me.TextBox29.Text)
 .z_levee = Val(Me.TextBox32.Text)
 .dx_levee = Val(Me.TextBox33.Text)
 .tc_splw_auto = Me.CheckBox1.Checked
 .tc_splw = Val(Me.TextBox81.Text)

 .mh_spl = Val(Me.TextBox21.Text)
 .Lub_spl = Val(Me.TextBox22.Text)
 .Hsp_spl = Val(Me.TextBox23.Text)
 .Ldc = Val(Me.TextBox34.Text)
 .mh_div = Val(Me.TextBox35.Text)
 .Kta = Val(Me.TextBox36.Text)
 If Me.ComboBox4.Items.Count <> 0 Then
 .Qdiv = Me.dtbl_Q_flood.Rows(Me.ComboBox4.SelectedIndex).Item(1)
 End If
 .Ktb = Val(Me.TextBox38.Text)
 .Kb = Val(Me.TextBox40.Text)
 .delta_div = Val(Me.TextBox41.Text)
 .dx_div = Val(Me.TextBox37.Text)
 .mh_uc = Val(Me.TextBox46.Text)
 .mh_dc = Val(Me.TextBox47.Text)
 .uCe = Val(Me.TextBox45.Text)
 .uCl = Val(Me.TextBox44.Text)
 .uCex = Val(Me.TextBox43.Text)
 .uCcore = Val(Me.TextBox42.Text)
 .uCper = Val(Me.TextBox39.Text)
 .t_ripmin = Val(Me.TextBox57.Text)
 .Ld_ripmin = Val(Me.TextBox58.Text)
 .Dm_flush = Val(Me.TextBox59.Text)
 .Dp_flush = Val(Me.TextBox60.Text)
 .ks_flush = Val(Me.TextBox77.Text)
 .n_flush = Val(Me.TextBox76.Text)
 .alfa_flush = Val(Me.TextBox61.Text)
 .FSu = Val(Me.TextBox63.Text)
 .FSs = Val(Me.TextBox64.Text)
 .FSss = Val(Me.TextBox65.Text)
 .FSo = Val(Me.TextBox66.Text)
 .FSs_sw = Val(Me.TextBox67.Text)
 .Vmax = Val(Me.TextBox68.Text)
 .Vmin = Val(Me.TextBox69.Text)
 .uCco = Val(Me.TextBox70.Text)
 .uCcs = Val(Me.TextBox71.Text)
 .uCrip = Val(Me.TextBox72.Text)
 End With
 End Sub
 Private Sub load_input_data_structures()
 Dim frm As frm_main
 'intake input
 With frm.inp_intake
 .Qi = frm.Qirr
 .So = frm.So_main

 259

 .Bop = frm.B_main
 .K0 = frm.K1
 .n = frm.n_conc
 .B1 = 2 * .Bop 'when recalculated; these must reentered also
 .B1_inc = 0.01
 .Bs = 10 '.B1 + 1 'when recalculated; these must reentered also
 .Bs_inc = 0.01
 .Cc = frm.Cc
 .Ct = frm.Ct
 .Cyc = 1.1
 .delta_Kwi = 0.1
 .Dfo = frm.Df
 .dHes = 0.02
 .Dm = frm.Dm
 .dsd = frm.Dsd
 .dsd_inc = 0.01
 .dsu = frm.Dsu
 .dsu_inc = 0.01
 .dsu_max = frm.maxDsu
 .du_max = frm.maxDu
 .du_min = frm.minDu
 .hl_add = 0
 .K = 0.65
 .Kst = frm.Kt
 .Kv = 0.42
 .Ls = 0 'no need
 .Ls_inc = 2
 .L12 = frm.L23
 .Lc = frm.Lc
 .Lentr = frm.L_int(0) + frm.L_int(1) + frm.L_int(2)
 .mh = frm.mh_main
 .n_tr = 0 'no need
 .np = frm.np
 .np2 = frm.npi
 .r = frm.r
 .Sd = frm.Sd
 .t = frm.tp

 .t2 = frm.tpi
 .t_tr = frm.tr
 .u4_max = frm.u5
 End With
 'splw and sluiceway Q input data
 With frm.inp_Q_splw_slcw
 .bridge_exist = frm.brdg_exist
 .d = frm.d
 .Ka = frm.Ka
 .Kd = frm.Kd
 .Kp = frm.Kp
 .Kr = frm.Kr
 .Kst = frm.Kt
 .Le = frm.Le
 .Lt = frm.Lt
 .mh_s = 0 'vertical spillway
 .np = frm.np_brdg
 .tp = frm.tp_brdg
 .nsl = frm.nsl
 .Q = frm.Q
 .profile = frm.profile
 .tsl = frm.tsl
 End With

 260

 'energy dissipator
 With frm.inp_energy_dissp
 .profile = frm.profile
 .Kd = frm.Kd
 .Kr = frm.Kr
 .Kst = frm.Kt
 .Le = frm.Le
 .Lt = frm.Lt
 .n_aprch = frm.n_river 'no need
 .nsl = frm.nsl
 .tsl = frm.tsl
 End With
 'intake geom input data
 With frm.inp_int_geom
 'for the time being no need to fill this data str(it is done at comp)
 End With
 'splw geom input data
 With frm.inp_splw_geom
 'for the time being no need to fill this data str(it is done at comp)
 End With
 'slcw geom input data
 With frm.inp_slcw_geom
 'for the time being no need to fill this data str(it is done at comp)
 End With
 'sidewalls_splw input data
 With frm.inp_sw_splw
 .change_dim_type = frm_main.sw_comp_type
 .coulomb_type = frm_main.coulomb_type
 .gwd = frm_main.gwd_sw
 .mh_free = 0
 .q_surch = 0
 .t1 = frm_main.tslab_sw
 .t2 = 0
 .tc = frm_main.tc_sw
 .tc_base = frm_main.tb_sw
 .t3 = frm_main.B_sw - .t2 - .tc_base
 End With
 'sidewalls_slcw input data
 frm.inp_sw_slcw = frm.inp_sw_splw
 'material data
 With frm.inp_mtrl
 .Cac = frm.Sac
 .Caf = frm.Saf
 .Callw = 0 'for the time being no need
 .f = frm.f
 .gconc = frm.gconc
 .gdry = frm.gdry
 .gsat = frm.gsat
 .gwater = frm.gwater
 .kh = frm.kh
 .kv = frm.kv
 .Sallw_cf = frm.Tall
 .teta = frm.teta
 .ured_perc = 1 - frm.Fi
 End With
 'FS data
 With frm.inp_FS
 .FSo = frm.FSo
 .FSs = frm.FSs
 .FSss = frm.FSss
 .Fsu = frm.FSu

 261

 .FSo_sw = 1.0 'we don't consider overturning only consider sliding
 .FSs_sw = frm.FSs_sw
 .Vmax = frm.Vmax
 .Vmin = frm.Vmin
 .Vmax_sw = frm.Vmax
 .Vmin_sw = frm.Vmin
 End With
 'unit costs input data
 With frm.inp_unit_costs
 .uCcore = frm.uCcore
 .uCe = frm.uCe
 .uCex = frm.uCex
 .uCl = frm.uCl
 .uCper = frm.uCper
 End With
 'diversion fac input_data
 With frm.inp_div
 .delta_s = frm.delta_div
 .dx = frm.dx_div
 .Kb = frm.Kb
 .Kta = frm.Kta
 .Ktb = frm.Ktb
 .Ldc = frm.Ldc
 .Lt = frm.Lt
 .mh = frm.mh_div
 .mh_d = frm.mh_dc
 .mh_u = frm.mh_uc
 .n = frm.n_conc
 .Q = frm.Qdiv
 If Me.ComboBox4.Items.Count <> 0 Then
 .profile_name = frm.profile(Me.ComboBox4.SelectedIndex)
 End If
 End With
 'cost calculations input_data
 With frm.inp_cost_comp
 .Lp = frm.Lp
 .Lp2 = frm.Lpi
 .Lp_bridge = frm.Lp_brdg
 .Lp_slcw = frm.Lp_slcw
 .t_blanket = 0.3
 .t_sheet = 0.3
 .tg = frm.tg
 .tg2 = frm.tgi
 .tg_slcw = frm.tg_slcw
 .tslab = 0.1 'trap/rect canal slab width
 .tslab_bridge = frm.tslab_brdg
 .twall = 0.1 'trap/rect canal wall width
 .width_bridge = frm.wslab_brdg
 .width_tr = frm.tr
 .uC_conc = frm.uCco
 .uC_riprap = frm.uCrip
 .uC_steel = frm.uCcs
 End With
 End Sub
#End Region
 Private Sub ComboBox3_SelectedIndexChanged_1(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ComboBox3.SelectedIndexChanged
 With ComboBox3
 Select Case .SelectedIndex
 Case 1
 .Items.Item(0) = "8.5"

 262

 Case 2
 .Items.Item(0) = "7.0"
 Case 3
 .Items.Item(0) = "6.0"
 Case 4
 .Items.Item(0) = "5.0"
 Case 5
 .Items.Item(0) = "4.0"
 Case 6
 .Items.Item(0) = "3.5"
 Case 7
 .Items.Item(0) = "3.0"
 Case 8
 .Items.Item(0) = "2.5"
 Case 9
 .Items.Item(0) = "2.0"
 Case 10
 .Items.Item(0) = "1.8"
 Case 11
 .Items.Item(0) = "1.6"
 End Select
 .SelectedItem = .Items.Item(0)
 End With
 End Sub
 Private Sub ComboBox1_SelectedIndexChanged_1(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ComboBox1.SelectedIndexChanged
 With ComboBox1
 Select Case .SelectedIndex
 Case 1
 .Items.Item(0) = "0.8"
 Case 2
 .Items.Item(0) = "0.7"
 Case 3
 .Items.Item(0) = "0.4"
 Case 4
 .Items.Item(0) = "0.3"
 Case 5
 .Items.Item(0) = "0.3"
 End Select
 .SelectedItem = .Items.Item(0)
 End With
 End Sub
 Private Sub ComboBox2_SelectedIndexChanged_1(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ComboBox2.SelectedIndexChanged
 With ComboBox2
 Select Case .SelectedIndex
 Case 1
 .Items.Item(0) = "5000"
 Case 2
 .Items.Item(0) = "3750"
 Case 3
 .Items.Item(0) = "3250"
 Case 4
 .Items.Item(0) = "375"
 Case 5
 .Items.Item(0) = "275"
 Case 6
 .Items.Item(0) = "275"
 Case 7
 .Items.Item(0) = "75"
 End Select

 263

 .SelectedItem = .Items.Item(0)
 End With
 End Sub
 'after changed...
 Private Sub CheckBox1_CheckedChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CheckBox1.CheckedChanged
 Me.Label88.Enabled = Not CheckBox1.Checked
 Me.TextBox81.Enabled = Not CheckBox1.Checked
 Me.Label26.Enabled = CheckBox1.Checked
 Me.TextBox21.Enabled = CheckBox1.Checked
 If Me.TextBox81.Enabled = False Then
 Me.TextBox81.Text = "0" 'remember in the computation class od spillway; if tc=0 crest thickness
calculated automatically
 End If
 If Me.TextBox21.Enabled = False Then
 Me.TextBox21.Text = "0" 'remember in the computation class od spillway; if tc=0 crest thickness
calculated automatically
 End If
 End Sub
 Private Sub gbox_bridge_Enter(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
gbox_bridge.Enter
 End Sub
 Private Sub LinkLabel1_LinkClicked(ByVal sender As System.Object, ByVal e As
System.Windows.Forms.LinkLabelLinkClickedEventArgs) Handles LinkLabel1.LinkClicked
 If Me.chk_bridge.Checked Then
 Me.PictureBox4.Image = Me.PictureBox8.Image
 Else
 Me.PictureBox4.Image = Me.PictureBox9.Image
 End If
 Me.PictureBox4.Refresh()
 End Sub
 Private Sub LinkLabel2_LinkClicked(ByVal sender As System.Object, ByVal e As
System.Windows.Forms.LinkLabelLinkClickedEventArgs) Handles LinkLabel2.LinkClicked
 If Me.chk_bridge.Checked Then
 Me.PictureBox4.Image = Me.PictureBox10.Image
 Else
 Me.PictureBox4.Image = Me.PictureBox11.Image
 End If
 Me.PictureBox4.Refresh()
 End Sub
End Class
'*---*
'| END OF FORM-2 |
'*---*

'*---*
'| FORM-3 : Form3.vb |
'*---*
Imports dweir_code.General_Hydraulic_Functions
Imports dweir_code.General_Hydraulic_Functions.OCH_func
Imports dweir_code.intake_design
Imports dweir_code.splw_slcw_design
Imports dweir_code.stability_analysis
Imports dweir_code.Appurtenant_fac
Imports dweir_code.levees_and_diversion
Imports dweir_code.cost_computations
Imports dweir_code.computations
Public Class frm_compute
 Inherits System.Windows.Forms.Form
#Region " Windows Form Designer generated code "

 264

 Public Sub New()
 MyBase.New()
 'This call is required by the Windows Form Designer.
 InitializeComponent()
 'Add any initialization after the InitializeComponent() call
 End Sub
 'Form overrides dispose to clean up the component list.
 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
 End Sub
 'Required by the Windows Form Designer
 Private components As System.ComponentModel.IContainer
 'NOTE: The following procedure is required by the Windows Form Designer
 'It can be modified using the Windows Form Designer.
 'Do not modify it using the code editor.
 ‘This part of code is generated automatically. Details are hidden.
#End Region
 Public thr As Threading.Thread
 Private whole_dweir As whole_dweir
 Private optimize_whole_dweir As optimize_Bmain
 Private frm_comp As frm_comp_process
 Private inp_whole_dweir As New dweir_input_data()
 Private comp_inf_list As New Queue()
 Private Sub frm_compute_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MyBase.Load
 Me.load_prj_inf()
 End Sub
#Region "my procedures"
 Private Sub load_prj_inf()
 Dim i As Integer
 If Me.ListView1.Items(0).SubItems.Count = 1 Then 'eger bir tanesi varsa hepsi de vardir mantigi..
 For i = 0 To 5
 Me.ListView1.Items(i).SubItems.Add("")
 Next
 End If
 With frm_main.prj_type
 Me.ListView1.Items(0).SubItems(1).Text = .prj_title
 Me.ListView1.Items(1).SubItems(1).Text = IIf(.prj_main_module, "Main Module", "Secondary
Module")
 Select Case .prob_type
 Case 0
 Me.ListView1.Items(2).SubItems(1).Text = "Diversion Weir with Overflow Spillway"
 Case 1
 Me.ListView1.Items(2).SubItems(1).Text = "Gated Diversion Weir"
 Case 2 'tirol type in future
 End Select
 Select Case .comp_type
 Case 0 'normal
 Me.ListView1.Items(3).SubItems(1).Text = "Normal Computation"
 Case 1 'optimization wrt to Bmain
 Me.ListView1.Items(3).SubItems(1).Text = "Optimization of bottom width at the beginning of
irrigation canal"
 Case 2
 End Select
 Me.ListView1.Items(4).SubItems(1).Text = .prj_eng
 Me.ListView1.Items(5).SubItems(1).Text = .prj_date

 265

 Me.TextBox1.Text = .prj_def
 End With
 End Sub
 Private Sub load_whole_dweir_input()
 With inp_whole_dweir
 .alfa_int = frm_main.alfa_flush
 .C = frm_main.C
 .dim_int_by_El = frm_main.dim_int_by_El
 .dim_splw_by_El = frm_main.dim_splw_by_El
 .Dm_flush = frm_main.Dm_flush
 .Dp_flush = frm_main.Dp_flush
 .dx_levees = frm_main.dx_levee
 .El_int = frm_main.El_int
 .El_spl = frm_main.El_spl
 .Hsp_int = frm_main.Hsp_int
 .Hsp_spl = frm_main.Hsp_spl
 .input_diversion = frm_main.inp_div
 .input_dweir_cost = frm_main.inp_cost_comp
 .input_energy_dissipators = frm_main.inp_energy_dissp
 .input_Fs = frm_main.inp_FS
 .input_geom_intake = frm_main.inp_int_geom
 .input_geom_slcw = frm_main.inp_slcw_geom
 .input_geom_splw = frm_main.inp_splw_geom
 .input_intake = frm_main.inp_intake
 .input_mtrl = frm_main.inp_mtrl
 .input_Q_splw_slcw = frm_main.inp_Q_splw_slcw
 .input_sidewalls_slcw = frm_main.inp_sw_slcw
 .input_sidewalls_splw = frm_main.inp_sw_splw
 .input_uCosts = frm_main.inp_unit_costs
 .ks_flush = frm_main.ks_flush
 .L_int = frm_main.L_int
 .L_spl = frm_main.L_spl
 .Ld_min = frm_main.Ld_ripmin
 .Lub_int = frm_main.Lub_int
 .Lub_spl = frm_main.Lub_spl
 .min_riprap_height = frm_main.t_ripmin
 .n_flush = frm_main.n_flush
 .n_river = frm_main.n_river
 .So_river = frm_main.So_river
 .tc_splw = frm_main.tc_splw
 .mh_ogee = frm_main.mh_spl
 .crest_auto = frm_main.tc_splw_auto
 .z_levees = frm_main.z_levee
 End With
 End Sub
 Private Sub load_final_input_data_struct_for_comp()
 With frm_main.prj_type
 If .prj_main_module = True Then 'main module ise
 If .prob_type = 0 Then 'overflow Dweir
 Me.load_whole_dweir_input()
 ElseIf .prob_type = 1 Then 'gated type

 'Will be added in the future...
 Else 'other; tirol type
 'Will be added in the future...
 End If
 Else 'secondary module
 'Will be added in the future...

 End If
 End With

 266

 Me.comp_inf_list.Enqueue(f_comp_inf(10, " Input Data loaded successfully", 0))
 error_hand.add_inf(Me.comp_inf_list, frm_comp.ListView1, frm_comp.ProgressBar1)
 End Sub
 Private Sub load_results_to_data_structures()
 With frm_main.prj_type
 If .prj_main_module = True Then 'main module ise
 If .prob_type = 0 Then 'overflow Dweir
 Select Case .comp_type
 Case 0 'normal exec
 frm_main.intake_des = whole_dweir.intake_pro
 frm_main.splw_Q = whole_dweir.Q_splw_slcw_pro
 frm_main.energy_dissp = whole_dweir.energy_dissipators_pro
 frm_main.riprap_des = whole_dweir.riprap_pro
 frm_main.flush_des = whole_dweir.flushing_canal_pro
 frm_main.seepage_des = whole_dweir.seepage_pro
 frm_main.int_uplift = whole_dweir.uplift_intake_pro
 frm_main.splw_uplift = whole_dweir.uplift_splw_pro
 frm_main.slcw_uplift = whole_dweir.uplift_slcw_pro
 frm_main.stab_slide_overt = whole_dweir.sliding_overturning_pro
 frm_main.stab_sw_splw = whole_dweir.sidewalls_splw_pro
 frm_main.stab_sw_slcw = whole_dweir.sidewalls_slcw_pro
 frm_main.levees_des = whole_dweir.us_levees_pro
 frm_main.div_fac = whole_dweir.diversion_fac_pro
 frm_main.costs = whole_dweir.dweir_cost_pro
 frm_main.summary_result = whole_dweir.comp_summary_pro
 Case 1 'optimize Bmain
 frm_main.intake_des = optimize_whole_dweir.opt_dweir_pro.intake_pro
 frm_main.splw_Q = optimize_whole_dweir.opt_dweir_pro.Q_splw_slcw_pro
 frm_main.energy_dissp = optimize_whole_dweir.opt_dweir_pro.energy_dissipators_pro
 frm_main.riprap_des = optimize_whole_dweir.opt_dweir_pro.riprap_pro
 frm_main.flush_des = optimize_whole_dweir.opt_dweir_pro.flushing_canal_pro
 frm_main.seepage_des = optimize_whole_dweir.opt_dweir_pro.seepage_pro
 frm_main.int_uplift = optimize_whole_dweir.opt_dweir_pro.uplift_intake_pro
 frm_main.splw_uplift = optimize_whole_dweir.opt_dweir_pro.uplift_splw_pro
 frm_main.slcw_uplift = optimize_whole_dweir.opt_dweir_pro.uplift_slcw_pro
 frm_main.stab_slide_overt = optimize_whole_dweir.opt_dweir_pro.sliding_overturning_pro
 frm_main.stab_sw_splw = optimize_whole_dweir.opt_dweir_pro.sidewalls_splw_pro
 frm_main.stab_sw_slcw = optimize_whole_dweir.opt_dweir_pro.sidewalls_slcw_pro
 frm_main.levees_des = optimize_whole_dweir.opt_dweir_pro.us_levees_pro
 frm_main.div_fac = optimize_whole_dweir.opt_dweir_pro.diversion_fac_pro
 frm_main.costs = optimize_whole_dweir.opt_dweir_pro.dweir_cost_pro
 frm_main.summary_result = optimize_whole_dweir.opt_dweir_summarypro
 'redim the tries
 Dim i As Integer
 ReDim
frm_main.try_summary_results(optimize_whole_dweir.dweir_try_pro.GetUpperBound(0))
 For i = 0 To frm_main.try_summary_results.GetUpperBound(0)
 frm_main.try_summary_results(i) =
optimize_whole_dweir.dweir_try_pro(i).comp_summary_pro
 Next
 ReDim
frm_main.try_summary_results_OK(optimize_whole_dweir.dweir_try_OK_pro.GetUpperBound(0))
 For i = 0 To frm_main.try_summary_results_OK.GetUpperBound(0)
 frm_main.try_summary_results_OK(i) =
optimize_whole_dweir.dweir_try_OK_pro(i).comp_summary_pro
 Next
 End Select
 ElseIf .prob_type = 1 Then 'gated type
 'Will be added in the future...
 Else 'other; tirol type
 'Will be added in the future...

 267

 End If
 Else 'secondary module
 'Will be added in the future...
 End If
 End With
 load_obj_states()
 Me.comp_inf_list.Enqueue(f_comp_inf(100, " COMPUTATION ENDS", 0))
 error_hand.add_inf(Me.comp_inf_list, frm_comp.ListView1, frm_comp.ProgressBar1)
 End Sub
 Public Shared Sub load_obj_states()
 'load the objects states
 With frm_main.obj_state
 .st_div_fac = Not IsNothing(frm_main.div_fac)
 .st_energy_dissp = Not IsNothing(frm_main.energy_dissp)
 .st_flush_des = Not IsNothing(frm_main.flush_des)
 .st_int_uplift = Not IsNothing(frm_main.int_uplift)
 .st_intake_des = Not IsNothing(frm_main.intake_des)
 .st_levees_des = Not IsNothing(frm_main.levees_des)
 .st_costs = Not IsNothing(frm_main.costs)
 .st_riprap_des = Not IsNothing(frm_main.riprap_des)
 .st_seepage_des = Not IsNothing(frm_main.seepage_des)
 .st_slcw_uplift = Not IsNothing(frm_main.slcw_uplift)
 .st_splw_Q = Not IsNothing(frm_main.splw_Q)
 .st_splw_uplift = Not IsNothing(frm_main.splw_uplift)
 .st_stab_slide_overt = Not IsNothing(frm_main.stab_slide_overt)
 .st_stab_sw_splw = Not IsNothing(frm_main.stab_sw_splw)
 .st_stab_sw_slcw = Not IsNothing(frm_main.stab_sw_slcw)
 .st_summary_result = Not IsNothing(frm_main.summary_result)
 .st_try_summary_results = Not IsNothing(frm_main.try_summary_results)
 .st_try_summary_results_OK = Not IsNothing(frm_main.try_summary_results_OK)
 End With
 End Sub
 Private Sub compute()
 'call the compute process form
 Me.comp_inf_list.Enqueue(f_comp_inf(5, " COMPUTATION STARTS", 0))
 error_hand.add_inf(Me.comp_inf_list, frm_comp.ListView1, frm_comp.ProgressBar1)
 Dim i As Integer = 0
 With frm_main.prj_type
 If .prj_main_module = True Then 'main module ise
 If .prob_type = 0 Then 'overflow Dweir
 Me.load_final_input_data_struct_for_comp()
 Select Case .comp_type
 Case 0 'normal exec
 whole_dweir = New whole_dweir(inp_whole_dweir, Me.comp_inf_list,
frm_comp.ListView1, frm_comp.ProgressBar1)
 whole_dweir.compute()
 load_results_to_data_structures()
 Case 1 'optimize Bmain
 optimize_whole_dweir = New optimize_Bmain(inp_whole_dweir, Me.comp_inf_list,
frm_comp.ListView1, frm_comp.ProgressBar1)
 optimize_whole_dweir.compute()
 load_results_to_data_structures()
 End Select
 ElseIf .prob_type = 1 Then 'gated type
 'Will be added in the future...
 Else 'other; tirol type
 'Will be added in the future...
 End If
 Else 'secondary module
 'Will be added in the future...
 End If

 268

 End With
 frm_comp.Button1.Text = "CLOSE"
 End Sub
#End Region
 'only one radio button is necessary, one click , others unclicked
 Private Sub RadioButton1_CheckedChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles RadioButton1.CheckedChanged
 If Me.RadioButton1.Checked = True Then
 frm_main.prj_type.comp_type = 0 'normal exec
 ElseIf Me.RadioButton2.Checked = True Then
 frm_main.prj_type.comp_type = 1 'optimize Bmain
 End If
 Me.load_prj_inf()
 End Sub
 Private Sub RadioButton2_CheckedChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles RadioButton2.CheckedChanged
 Me.load_prj_inf()
 End Sub
 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Button1.Click
 'always start from 0 (zero) in all our logic
 If Me.RadioButton1.Checked = True Then
 frm_main.prj_type.comp_type = 0 'normal exec
 ElseIf Me.RadioButton2.Checked = True Then
 frm_main.prj_type.comp_type = 1 'optimize Bmain
 End If
 thr = New Threading.Thread(AddressOf compute)
 Me.Hide()
 frm_comp = New frm_comp_process()
 thr.Start()
 frm_comp.ShowDialog()
 'thr.IsBackground = True
 '
 End Sub
End Class
'*---*
'| END OF FORM-3 |
'*---*

'*---*
'| FORM-8 : Form8.vb |
'*---*
Public Class frm_comp_process
 Inherits System.Windows.Forms.Form
#Region " Windows Form Designer generated code "
 Public Sub New()
 MyBase.New()
 'This call is required by the Windows Form Designer.
 InitializeComponent()
 'Add any initialization after the InitializeComponent() call
 End Sub
 'Form overrides dispose to clean up the component list.
 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
 End Sub

 269

 'Required by the Windows Form Designer
 Private components As System.ComponentModel.IContainer
 'NOTE: The following procedure is required by the Windows Form Designer
 'It can be modified using the Windows Form Designer.
 'Do not modify it using the code editor.
 ‘This part of code is generated automatically. Details are hidden.
#End Region
 Private Sub frm_comp_process_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 End Sub
 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Button1.Click
 If Me.Button1.Text = "STOP COMPUTATION" Then
 frm_main.frm_computec.thr.Suspend()
 Me.Button1.Text = "RESUME COMPUTATION"

 ElseIf Me.Button1.Text = "RESUME COMPUTATION" Then
 Me.Button1.Text = "STOP COMPUTATION"
 frm_main.frm_computec.thr.Resume()
 ElseIf Me.Button1.Text = "CLOSE" Then
 Me.Dispose()
 End If
 End Sub
 Private Sub frm_comp_process_Closed(ByVal sender As Object, ByVal e As System.EventArgs) Handles
MyBase.Closed
 frm_main.frm_computec.Dispose()
 End Sub
End Class
'*---*
'| END OF FORM-8 |
'*---*

'*---*
'| FORM-9 : Form9.vb |
'*---*
Public Class frm_prj_type
 Inherits System.Windows.Forms.Form
#Region " Windows Form Designer generated code "
 Public Sub New()
 MyBase.New()
 'This call is required by the Windows Form Designer.

 InitializeComponent()
 'Add any initialization after the InitializeComponent() call
 End Sub
 'Form overrides dispose to clean up the component list.
 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
 End Sub
 'Required by the Windows Form Designer
 Private components As System.ComponentModel.IContainer
 'NOTE: The following procedure is required by the Windows Form Designer
 'It can be modified using the Windows Form Designer.
 'Do not modify it using the code editor.
 ‘This part of code is generated automatically. Details are hidden.

 270

#End Region
 Private Sub ToolBar1_ButtonClick(ByVal sender As System.Object, ByVal e As
System.Windows.Forms.ToolBarButtonClickEventArgs) Handles ToolBar1.ButtonClick
 Me.Button1.Enabled = False 'in order to force the user to select a prj type
 With Me.ListView1
 Select Case Me.ToolBar1.Buttons.IndexOf(e.Button)
 Case 0 'main modules
 Me.ToolBarButton1.Pushed = True
 Me.ToolBarButton2.Pushed = False
 load_list_view(True)
 frm_main.prj_type.prj_main_module = True
 Case 1 'secondary modules
 Me.ToolBarButton1.Pushed = False
 Me.ToolBarButton2.Pushed = True
 load_list_view(False)
 frm_main.prj_type.prj_main_module = False
 End Select
 End With
 End Sub
 Private Sub load_list_view(ByVal main_module As Boolean)
 With Me.ListView1
 .Clear()
 If main_module = True Then
 .Items.Add("Diversion Weir with Overflow Spillway", 0)
 ' .Items.Add("Gated Diversion Weir", 1) to be added in the future
 Else
 .Items.Add("Intake Hydraulics", 2)
 .Items.Add("Discharges and Energy Dissipators", 3)
 .Items.Add("Seepage Analysis", 4)
 .Items.Add("Intake Stability Analysis against Uplift", 5)
 .Items.Add("Spillway Body+Apron Stability Analysis", 6)
 .Items.Add("Sidewalls", 7)
 .Items.Add("Upstream Levees", 8
 .Items.Add("Riprap Design", 9)
 .Items.Add("Flushing Canal", 10)
 .Items.Add("Diversion Facility", 11)
 End If
 End With
 End Sub
 Private Sub frm_prj_type_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MyBase.Load
 'default is the main_module
 load_list_view(True)
 frm_main.prj_type.prj_main_module = True
 End Sub
 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Button1.Click
 frm_main.prj_type.prob_type = Me.ListView1.FocusedItem.Index
 Me.Dispose()
 End Sub
 Private Sub ListView1_DoubleClick(ByVal sender As Object, ByVal e As System.EventArgs) Handles
ListView1.DoubleClick
 frm_main.prj_type.prob_type = Me.ListView1.FocusedItem.Index
 Me.Dispose()
 End Sub
 Private Sub ListView1_SelectedIndexChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ListView1.SelectedIndexChanged
 Me.Button1.Enabled = True
 End Sub
 Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Button2.Click

 271

 End Sub
End Class
'*---*
'| END OF FORM-9 |
'*---*

'*---*
'| FORM-4 : Form4.vb |
'*---*
mports System.Math
Imports CustomControls
Public Class frm_outputs
 Inherits System.Windows.Forms.Form
#Region " Windows Form Designer generated code "
 Public Sub New()
 MyBase.New()
 'This call is required by the Windows Form Designer.
 InitializeComponent()
 'Add any initialization after the InitializeComponent() call
 End Sub
 'Form overrides dispose to clean up the component list.
 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
 End Sub
 'Required by the Windows Form Designer
 Private components As System.ComponentModel.IContainer
 'NOTE: The following procedure is required by the Windows Form Designer
 'It can be modified using the Windows Form Designer.
 'Do not modify it using the code editor.
 ‘This part of code is generated automaticallt. Details are hidden.
#End Region
 Public Shared chart_no As Integer 'in order to access to charts (all charts not ordered, from 0 to)
 Private Sub frm_output_int_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 Select Case frm_main.output_tables_index
 Case 0 'intake
 Me.load_intake_tables()
 Case 1 'spillway_slcw Q
 Me.load_splw_slcw_Q_tables()
 Case 2
 Me.load_seepage_tables()
 Case 3
 Me.load_stab_analy_tables()
 Case 4 'sidewalls
 Me.load_sw_tables()
 Case 5
 Me.load_levees_tables()
 Case 6 'div fac
 Me.load_div_fac_tables()
 Case 7 'appert fac
 Me.load_app_fac_tables()
 Case 8 'cost
 Me.load_cost_tables()
 Case 9 'optimization summary
 Me.load_opt_Bmain_tables()

 272

 End Select
 End Sub
#Region "my procedures"
#Region "intake tables"
 Private Sub load_intake_tables()
 Me.ToolBarButton2.DropDownMenu = Me.mnu_int_tables
 Me.ToolBarButton3.DropDownMenu = Me.mnu_int_graphs
 'check if object is loaded (referenced)
 If IsNothing(frm_main.intake_des) = False Then
 Me.load_int_out()
 Me.load_int_out2()
 End If
 Me.GroupBox1.Text = "Outputs of the Intake computations"
 'show the default table
 Me.DataGridEx2.CaptionText = "Intake Water Surface Profile Table:"
 Me.DataGridEx2.AdjustColumnWidths(Me.dtbln_out_int)
 Me.DataGridEx2.DataSource = Me.dtbln_out_int
 End Sub
 Private Sub load_int_out()
 End Sub
#End Region
#Region "spillway and sluiceway discharge and energy dissipators table"
 Private Sub load_splw_slcw_Q_tables()
 Me.ToolBarButton2.DropDownMenu = Me.mnu_splw_slcw_Q_tables
 Me.ToolBarButton3.DropDownMenu = Me.mnu_splw_slcw_Q_graphs
 'check if object is loaded (referenced)
 If IsNothing(frm_main.splw_Q) = False Then
 Me.load_splw_slcw_Q_out()
 End If
 If IsNothing(frm_main.energy_dissp) = False Then
 Me.load_energy_dissp_out()
 End If
 Me.GroupBox1.Text = "Outputs of the Spillway-Sluiceway discharge computations and corresponding
energy dissipators"
 'show the default table
 Me.DataGridEx2.CaptionText = "Spillway - Sluiceway Discharge Table:"
 Me.DataGridEx2.AdjustColumnWidths(Me.dtbln_out_splw_slcw)
 Me.DataGridEx2.DataSource = Me.dtbln_out_splw_slcw
 End Sub
 Private Sub load_splw_slcw_Q_out()
 End Sub
 Private Sub load_energy_dissp_out()
 End Sub
#End Region
#Region "Seepage analysis tables"
 Private Sub load_seepage_tables()
 Me.ToolBarButton2.DropDownMenu = Me.mnu_seepage
 Me.ToolBarButton3.DropDownMenu = Me.mnu_seepage_graphs
 'check if object is loaded (referenced)
 If IsNothing(frm_main.seepage_des) = False Then
 Me.load_seepage_out()
 End If
 Me.GroupBox1.Text = "Outputs of the Seepage computations"
 'show the default table
 Me.DataGridEx2.CaptionText = "Seepage Computations Results Table:"
 Me.DataGridEx2.AdjustColumnWidths(Me.dtbln_out_seepage)
 Me.DataGridEx2.DataSource = Me.dtbln_out_seepage
 End Sub
 Private Sub load_seepage_out()
 Dim i As Integer
 Dim x As DataRow

 273

 With frm_main.seepage_des
 'values
 For i = 0 To .inp_K_pro.GetUpperBound(0) + 4 '+3 for columns; description, symbols and units, full
u/s no tailwater case
 Me.dtbln_out_seepage.Columns.Add(i + 1, Type.GetType("System.String"))
 Next
 For i = 0 To Me.dtbln_out_seepage.Columns.Count - 1
 Me.dtbln_out_seepage.Columns(i).DefaultValue = ""
 Next
 'insert output data
 x = Me.dtbln_out_seepage.NewRow
 x(0) = "MAX NET HEAD TABLE"
 Me.dtbln_out_seepage.Rows.Add(x)
 x = Me.dtbln_out_seepage.NewRow
 x(0) = "Description"
 x(1) = "Symbols"
 x(2) = "Units"
 Me.dtbln_out_seepage.Rows.Add(x)
 'cases
 x = Me.dtbln_out_seepage.NewRow
 x(0) = "Flow case"
 x(1) = ""
 x(2) = ""
 For i = 0 To .inp_K_pro.GetUpperBound(0)
 x(i + 3) = "Overflowing"
 Next
 x(i + 3) = "Full u/s no tailwater"
 Me.dtbln_out_seepage.Rows.Add(x)
 'flow profile
 x = Me.dtbln_out_seepage.NewRow
 x(0) = "Flow Profile"
 x(1) = ""
 x(2) = ""
 For i = 0 To .inp_K_pro.GetUpperBound(0)
 x(i + 3) = .profile_pro(i)
 Next
 Me.dtbln_out_seepage.Rows.Add(x)
 'Ku
 x = Me.dtbln_out_seepage.NewRow
 x(0) = "upstream water surface elevation"
 x(1) = "Ku"
 x(2) = "(m.)"
 For i = 0 To .inp_K_pro.GetUpperBound(0)
 x(i + 3) = .inp_K_pro(i)
 Next
 Me.dtbln_out_seepage.Rows.Add(x)
 'Kd
 x = Me.dtbln_out_seepage.NewRow
 x(0) = "tailwater water surface elevation"
 x(1) = "Kd"
 x(2) = "(m.)"
 For i = 0 To .inp_K_pro.GetUpperBound(0)
 x(i + 3) = .inp_Kd_pro(i)
 Next
 Me.dtbln_out_seepage.Rows.Add(x)
 'Ks
 x = Me.dtbln_out_seepage.NewRow
 x(0) = "crest elev. of spillway"
 x(1) = "Ks"
 x(2) = "(m.)"
 x(Me.dtbln_out_seepage.Columns.Count - 1) = .inp_Ks_pro

 274

 Me.dtbln_out_seepage.Rows.Add(x)
 'Kr
 x = Me.dtbln_out_seepage.NewRow
 x(0) = "tailwater bottom elevation"
 x(1) = "Kr"
 x(2) = "(m.)"
 x(Me.dtbln_out_seepage.Columns.Count - 1) = .inp_Kr_pro
 Me.dtbln_out_seepage.Rows.Add(x)
 'H
 x = Me.dtbln_out_seepage.NewRow
 x(0) = "net head"
 x(1) = "H"
 x(2) = "(m.)"
 For i = 0 To .inp_K_pro.GetUpperBound(0)
 x(i + 3) = .H_overf_pro(i)
 Next
 x(Me.dtbln_out_seepage.Columns.Count - 1) = .H_funtw_pro
 Me.dtbln_out_seepage.Rows.Add(x)
 x = Me.dtbln_out_seepage.NewRow
 Me.dtbln_out_seepage.Rows.Add(x)
 x = Me.dtbln_out_seepage.NewRow
 Me.dtbln_out_seepage.Rows.Add(x)
 'seepage path table
 x = Me.dtbln_out_seepage.NewRow
 x(0) = "SEEPAGE PATH TABLE"
 Me.dtbln_out_seepage.Rows.Add(x)
 x = Me.dtbln_out_seepage.NewRow
 x(0) = "Description"
 x(1) = "X-coordinate"
 x(2) = "Y-coordinate"
 x(3) = "creep length"
 Me.dtbln_out_seepage.Rows.Add(x)
 x = Me.dtbln_out_seepage.NewRow
 x(0) = "Symbols"
 x(1) = "x"
 x(2) = "y"
 x(3) = "ELx"
 Me.dtbln_out_seepage.Rows.Add(x)
 x = Me.dtbln_out_seepage.NewRow
 x(0) = "Units"
 x(1) = "(m.)"
 x(2) = "(m.)"
 x(3) = "(m.)"
 Me.dtbln_out_seepage.Rows.Add(x)
 For i = 0 To .inp_creep_path_pro.GetUpperBound(0)
 x = Me.dtbln_out_seepage.NewRow
 x(0) = "Point-" & i + 1
 x(1) = .inp_creep_path_pro(i).x
 x(2) = .inp_creep_path_pro(i).y
 x(3) = .ELx_pro(i)
 Me.dtbln_out_seepage.Rows.Add(x)
 Next
 x = Me.dtbln_out_seepage.NewRow
 Me.dtbln_out_seepage.Rows.Add(x)
 x = Me.dtbln_out_seepage.NewRow
 Me.dtbln_out_seepage.Rows.Add(x)
 'summary
 x = Me.dtbln_out_seepage.NewRow
 x(0) = "SUMMARY OF THE RESULTS"
 Me.dtbln_out_seepage.Rows.Add(x)
 x = Me.dtbln_out_seepage.NewRow

 275

 x(0) = "Description"
 x(1) = "Symbols"
 x(2) = "Units"
 Me.dtbln_out_seepage.Rows.Add(x)
 'max Hnet
 x = Me.dtbln_out_seepage.NewRow
 x(0) = "max net head"
 x(1) = "Hnet_max"
 x(2) = "(m.)"
 x(3) = .Hnet_pro
 Me.dtbln_out_seepage.Rows.Add(x)
 'C
 x = Me.dtbln_out_seepage.NewRow
 x(0) = "relative permeability"
 x(1) = "C"
 x(2) = ""
 x(3) = .inp_C_pro
 Me.dtbln_out_seepage.Rows.Add(x)
 'CH
 x = Me.dtbln_out_seepage.NewRow
 x(0) = "min. required creep length for no piping"
 x(1) = "C*H"
 x(2) = "(m.)"
 x(3) = .CH_pro
 Me.dtbln_out_seepage.Rows.Add(x)
 'Lcr
 x = Me.dtbln_out_seepage.NewRow
 x(0) = "calculated creep length"
 x(1) = "Lcr"
 x(2) = "(m.)"
 x(3) = .Lcr_pro
 Me.dtbln_out_seepage.Rows.Add(x)
 'satisfactory
 x = Me.dtbln_out_seepage.NewRow
 x(0) = "Satisfactory"
 x(1) = "Lcr > C*H"
 x(2) = ""
 x(3) = IIf(.satisfactory_pro, "OK", "not OK")
 Me.dtbln_out_seepage.Rows.Add(x)
 End With
 End Sub
#End Region
#Region "Stability Analysis tables"
 Private Sub load_stab_analy_tables()
 Me.ToolBarButton2.DropDownMenu = Me.mnu_stab
 Me.ToolBarButton3.DropDownMenu = Nothing 'no graph
 'check if object is loaded (referenced)
 If Not IsNothing(frm_main.int_uplift) Then
 Me.load_stab_uplift_int_out()
 End If
 If Not IsNothing(frm_main.splw_uplift) Then
 Me.load_stab_uplift_splw_out()
 End If
 If Not IsNothing(frm_main.slcw_uplift) Then
 Me.load_stab_uplift_slcw_out()
 End If
 If Not IsNothing(frm_main.stab_slide_overt) Then
 Me.load_stab_sliding_out()
 Me.load_stab_overt_out_funt()
 Me.load_stab_overt_out_er_wrt_toe()
 Me.load_stab_overt_out_er_wrt_heel()

 276

 End If
 Me.GroupBox1.Text = "Outputs of the Stability Analysis"
 'show the default table
 Me.DataGridEx2.CaptionText = "Intake Stability against Uplift Results Table:"
 Me.DataGridEx2.AdjustColumnWidths(Me.dtbln_out_stab_upl_int)
 Me.DataGridEx2.DataSource = Me.dtbln_out_stab_upl_int
 End Sub
 Private Sub load_stab_uplift_int_out()
 Dim i As Integer
 Dim x As DataRow
 With frm_main.int_uplift
 'create columns
 For i = 0 To 6
 Me.dtbln_out_stab_upl_int.Columns.Add(i + 1, Type.GetType("System.String"))
 Next
 For i = 0 To Me.dtbln_out_stab_upl_int.Columns.Count - 1
 Me.dtbln_out_stab_upl_int.Columns(i).DefaultValue = ""
 Next
 'insert output data
 'seepage table
 x = Me.dtbln_out_stab_upl_int.NewRow
 x(0) = "SEEPAGE TABLE"
 Me.dtbln_out_stab_upl_int.Rows.Add(x)
 'headers
 x = Me.dtbln_out_stab_upl_int.NewRow
 x(0) = "Description"
 x(1) = "X-coordinate"
 x(2) = "Y-coordinate"
 x(3) = "Creep length"
 x(4) = "head loss"
 x(5) = "Static head"
 x(6) = "uplift pressure"
 Me.dtbln_out_stab_upl_int.Rows.Add(x)
 'symbols
 x = Me.dtbln_out_stab_upl_int.NewRow
 x(0) = "Symbols"
 x(1) = "X"
 x(2) = "Y"
 x(3) = "ELx"
 x(4) = "hx"
 x(5) = "H"
 x(6) = "ux"
 Me.dtbln_out_stab_upl_int.Rows.Add(x)
 'units
 x = Me.dtbln_out_stab_upl_int.NewRow
 x(0) = "Units"
 x(1) = "(m.)"
 x(2) = "(m.)"
 x(3) = "(m.)"
 x(4) = "(m.)"
 x(5) = "(m.)"
 x(6) = "(m.)"
 Me.dtbln_out_stab_upl_int.Rows.Add(x)
 'values
 For i = 0 To .input_geom_pro.creep_path.GetUpperBound(0)
 x = Me.dtbln_out_stab_upl_int.NewRow
 x(0) = "Point-" & i + 1
 x(1) = .input_geom_pro.creep_path(i).x
 x(2) = .input_geom_pro.creep_path(i).y
 x(3) = .ELx_pro(i)
 x(4) = .hx_pro(i)

 277

 x(5) = .shead_pro(i)
 x(6) = .ux_pro(i)
 Me.dtbln_out_stab_upl_int.Rows.Add(x)
 Next
 x = Me.dtbln_out_stab_upl_int.NewRow
 Me.dtbln_out_stab_upl_int.Rows.Add(x)
 'summary of the results
 x = Me.dtbln_out_stab_upl_int.NewRow
 x(0) = "RESULTS OF SEEPAGE CALCULATION"
 Me.dtbln_out_stab_upl_int.Rows.Add(x)
 x = Me.dtbln_out_stab_upl_int.NewRow
 x(0) = "Description"
 x(1) = "Symbols"
 x(2) = "Units"
 Me.dtbln_out_stab_upl_int.Rows.Add(x)
 'ELx
 x = Me.dtbln_out_stab_upl_int.NewRow
 x(0) = "Total creep length"
 x(1) = "ELx"
 x(2) = "(m.)"
 x(3) = .Lcr_pro
 Me.dtbln_out_stab_upl_int.Rows.Add(x)
 'Hnet
 x = Me.dtbln_out_stab_upl_int.NewRow
 x(0) = "Net head"
 x(1) = "H"
 x(2) = "(m.)"
 x(3) = .Hnet_pro
 Me.dtbln_out_stab_upl_int.Rows.Add(x)
 'head loss per unit length
 x = Me.dtbln_out_stab_upl_int.NewRow
 x(0) = "head loss per unit length"
 x(1) = "H / ELx"
 x(2) = ""
 x(3) = .hl_per_Lx_pro
 Me.dtbln_out_stab_upl_int.Rows.Add(x)
 x = Me.dtbln_out_stab_upl_int.NewRow
 Me.dtbln_out_stab_upl_int.Rows.Add(x)
 x = Me.dtbln_out_stab_upl_int.NewRow
 Me.dtbln_out_stab_upl_int.Rows.Add(x)
 'Stability table
 x = Me.dtbln_out_stab_upl_int.NewRow
 x(0) = "UPLIFT STABILITY TABLE"
 Me.dtbln_out_stab_upl_int.Rows.Add(x)
 'headers
 x = Me.dtbln_out_stab_upl_int.NewRow
 x(0) = "Description"
 x(1) = "Symbols"
 x(2) = "Units"
 Me.dtbln_out_stab_upl_int.Rows.Add(x)
 'Wa
 x = Me.dtbln_out_stab_upl_int.NewRow
 x(0) = "weight of basin"
 x(1) = "Wa"
 x(2) = "(kN/m)"
 x(3) = .Wa_pro
 Me.dtbln_out_stab_upl_int.Rows.Add(x)
 'Fu
 x = Me.dtbln_out_stab_upl_int.NewRow
 x(0) = "Uplift force"
 x(1) = "Fu"

 278

 x(2) = "(kN/m)"
 x(3) = .Fu_pro
 Me.dtbln_out_stab_upl_int.Rows.Add(x)
 'drains add
 x = Me.dtbln_out_stab_upl_int.NewRow
 x(0) = "drains added"
 x(1) = ""
 x(2) = ""
 x(3) = IIf(.drains_add_pro, "YES", "NO")
 Me.dtbln_out_stab_upl_int.Rows.Add(x)
 If .drains_add_pro Then
 'drains add
 x = Me.dtbln_out_stab_upl_int.NewRow
 x(0) = "uplift reduction coeff"
 x(1) = "Fi"
 x(2) = ""
 x(3) = 1 - .inp_ured_perc_pro
 Me.dtbln_out_stab_upl_int.Rows.Add(x)
 'Fu_final
 x = Me.dtbln_out_stab_upl_int.NewRow
 x(0) = "reduced uplift force"
 x(1) = "Fu_red"
 x(2) = "(kN/m)"
 x(3) = .Fu_final_pro
 Me.dtbln_out_stab_upl_int.Rows.Add(x)
 End If
 'Factor of safety
 x = Me.dtbln_out_stab_upl_int.NewRow
 x(0) = "Factor of safety"
 x(1) = "FSu"
 x(2) = ""
 x(3) = .Fsu_final_pro
 Me.dtbln_out_stab_upl_int.Rows.Add(x)
 'Satisfactory
 x = Me.dtbln_out_stab_upl_int.NewRow
 x(0) = "Satisfactory"
 x(1) = IIf(.satisfactory_pro, "FSu >= " & .Fsu_pro, "FSu < " & .Fsu_pro)
 x(2) = ""
 x(3) = IIf(.satisfactory_pro, "OK", "not OK")
 Me.dtbln_out_stab_upl_int.Rows.Add(x)
 End With
 End Sub
 Private Sub load_stab_uplift_splw_out()
 Dim i As Integer
 Dim x As DataRow
 With frm_main.splw_uplift
 'create columns
 For i = 0 To 6
 Me.dtbln_out_stab_upl_splw.Columns.Add(i + 1, Type.GetType("System.String"))
 Next
 For i = 0 To Me.dtbln_out_stab_upl_splw.Columns.Count - 1
 Me.dtbln_out_stab_upl_splw.Columns(i).DefaultValue = ""
 Next
 'insert output data
 'seepage table
 x = Me.dtbln_out_stab_upl_splw.NewRow
 x(0) = "SEEPAGE TABLE"
 Me.dtbln_out_stab_upl_splw.Rows.Add(x)
 'headers
 x = Me.dtbln_out_stab_upl_splw.NewRow
 x(0) = "Description"

 279

 x(1) = "X-coordinate"
 x(2) = "Y-coordinate"
 x(3) = "Creep length"
 x(4) = "head loss"
 x(5) = "Static head"
 x(6) = "uplift pressure"
 Me.dtbln_out_stab_upl_splw.Rows.Add(x)
 'symbols
 x = Me.dtbln_out_stab_upl_splw.NewRow
 x(0) = "Symbols"
 x(1) = "X"
 x(2) = "Y"
 x(3) = "ELx"
 x(4) = "hx"
 x(5) = "H"
 x(6) = "ux"
 Me.dtbln_out_stab_upl_splw.Rows.Add(x)
 'units
 x = Me.dtbln_out_stab_upl_splw.NewRow
 x(0) = "Units"
 x(1) = "(m.)"
 x(2) = "(m.)"
 x(3) = "(m.)"
 x(4) = "(m.)"
 x(5) = "(m.)"
 x(6) = "(m.)"
 Me.dtbln_out_stab_upl_splw.Rows.Add(x)
 'values
 For i = 0 To .input_geom_pro.creep_path.GetUpperBound(0)
 x = Me.dtbln_out_stab_upl_splw.NewRow
 x(0) = "Point-" & i + 1
 x(1) = .input_geom_pro.creep_path(i).x
 x(2) = .input_geom_pro.creep_path(i).y
 x(3) = .ELx_pro(i)
 x(4) = .hx_pro(i)
 x(5) = .shead_pro(i)
 x(6) = .ux_pro(i)
 Me.dtbln_out_stab_upl_splw.Rows.Add(x)
 Next
 x = Me.dtbln_out_stab_upl_splw.NewRow
 Me.dtbln_out_stab_upl_splw.Rows.Add(x)
 'summary of the results
 'summary of the results
 x = Me.dtbln_out_stab_upl_splw.NewRow
 x(0) = "RESULTS OF SEEPAGE CALCULATION"
 Me.dtbln_out_stab_upl_splw.Rows.Add(x)
 x = Me.dtbln_out_stab_upl_splw.NewRow
 x(0) = "Description"
 x(1) = "Symbols"
 x(2) = "Units"
 Me.dtbln_out_stab_upl_splw.Rows.Add(x)
 'ELx
 x = Me.dtbln_out_stab_upl_splw.NewRow
 x(0) = "Total creep length"
 x(1) = "ELx"
 x(2) = "(m.)"
 x(3) = .Lcr_pro
 Me.dtbln_out_stab_upl_splw.Rows.Add(x)
 'Hnet
 x = Me.dtbln_out_stab_upl_splw.NewRow
 x(0) = "Net head"

 280

 x(1) = "H"
 x(2) = "(m.)"
 x(3) = .Hnet_pro
 Me.dtbln_out_stab_upl_splw.Rows.Add(x)
 'head loss per unit length
 x = Me.dtbln_out_stab_upl_splw.NewRow
 x(0) = "head loss per unit length"
 x(1) = "H / ELx"
 x(2) = ""
 x(3) = .hl_per_Lx_pro
 Me.dtbln_out_stab_upl_splw.Rows.Add(x)
 x = Me.dtbln_out_stab_upl_splw.NewRow
 Me.dtbln_out_stab_upl_splw.Rows.Add(x)
 x = Me.dtbln_out_stab_upl_splw.NewRow
 Me.dtbln_out_stab_upl_splw.Rows.Add(x)
 'Stability table
 x = Me.dtbln_out_stab_upl_splw.NewRow
 x(0) = "UPLIFT STABILITY TABLE"
 Me.dtbln_out_stab_upl_splw.Rows.Add(x)
 'headers
 x = Me.dtbln_out_stab_upl_splw.NewRow
 x(0) = "Description"
 x(1) = "Symbols"
 x(2) = "Units"
 Me.dtbln_out_stab_upl_splw.Rows.Add(x)
 'Wa
 x = Me.dtbln_out_stab_upl_splw.NewRow
 x(0) = "weight of basin"
 x(1) = "Wa"
 x(2) = "(kN/m)"
 x(3) = .Wa_pro
 Me.dtbln_out_stab_upl_splw.Rows.Add(x)
 'Fu
 x = Me.dtbln_out_stab_upl_splw.NewRow
 x(0) = "Uplift force"
 x(1) = "Fu"
 x(2) = "(kN/m)"
 x(3) = .Fu_pro
 Me.dtbln_out_stab_upl_splw.Rows.Add(x)
 'drains add
 x = Me.dtbln_out_stab_upl_splw.NewRow
 x(0) = "drains added"
 x(1) = ""
 x(2) = ""
 x(3) = IIf(.drains_add_pro, "YES", "NO")
 Me.dtbln_out_stab_upl_splw.Rows.Add(x)
 If .drains_add_pro Then
 'drains add
 x = Me.dtbln_out_stab_upl_splw.NewRow
 x(0) = "uplift reduction coeff"
 x(1) = "Fi"
 x(2) = ""
 x(3) = 1 - .inp_ured_perc_pro
 Me.dtbln_out_stab_upl_splw.Rows.Add(x)
 'Fu_final
 x = Me.dtbln_out_stab_upl_splw.NewRow
 x(0) = "reduced uplift force"
 x(1) = "Fu_red"
 x(2) = "(kN/m)"
 x(3) = .Fu_final_pro
 Me.dtbln_out_stab_upl_splw.Rows.Add(x)

 281

 End If
 'Factor of safety
 x = Me.dtbln_out_stab_upl_splw.NewRow
 x(0) = "Factor of safety"
 x(1) = "FSu"
 x(2) = ""
 x(3) = .Fsu_final_pro
 Me.dtbln_out_stab_upl_splw.Rows.Add(x)
 'Satisfactory
 x = Me.dtbln_out_stab_upl_splw.NewRow
 x(0) = "Satisfactory"
 x(1) = IIf(.satisfactory_pro, "FSu >= " & .Fsu_pro, "FSu < " & .Fsu_pro)
 x(2) = ""
 x(3) = IIf(.satisfactory_pro, "OK", "not OK")
 Me.dtbln_out_stab_upl_splw.Rows.Add(x)
 End With
 End Sub
 Private Sub load_stab_uplift_slcw_out()
 Dim i As Integer
 Dim x As DataRow
 With frm_main.slcw_uplift
 'create columns
 For i = 0 To 6
 Me.dtbln_out_stab_upl_slcw.Columns.Add(i + 1, Type.GetType("System.String"))
 Next
 For i = 0 To Me.dtbln_out_stab_upl_slcw.Columns.Count - 1
 Me.dtbln_out_stab_upl_slcw.Columns(i).DefaultValue = ""
 Next
 'insert output data
 'seepage table
 x = Me.dtbln_out_stab_upl_slcw.NewRow
 x(0) = "SEEPAGE TABLE"
 Me.dtbln_out_stab_upl_slcw.Rows.Add(x)
 'headers
 x = Me.dtbln_out_stab_upl_slcw.NewRow
 x(0) = "Description"
 x(1) = "X-coordinate"
 x(2) = "Y-coordinate"
 x(3) = "Creep length"
 x(4) = "head loss"
 x(5) = "Static head"
 x(6) = "uplift pressure"
 Me.dtbln_out_stab_upl_slcw.Rows.Add(x)
 'symbols
 x = Me.dtbln_out_stab_upl_slcw.NewRow
 x(0) = "Symbols"
 x(1) = "X"
 x(2) = "Y"
 x(3) = "ELx"
 x(4) = "hx"
 x(5) = "H"
 x(6) = "ux"
 Me.dtbln_out_stab_upl_slcw.Rows.Add(x)
 'units
 x = Me.dtbln_out_stab_upl_slcw.NewRow
 x(0) = "Units"
 x(1) = "(m.)"
 x(2) = "(m.)"
 x(3) = "(m.)"
 x(4) = "(m.)"
 x(5) = "(m.)"

 282

 x(6) = "(m.)"
 Me.dtbln_out_stab_upl_slcw.Rows.Add(x)
 'values
 For i = 0 To .input_geom_pro.creep_path.GetUpperBound(0)
 x = Me.dtbln_out_stab_upl_slcw.NewRow
 x(0) = "Point-" & i + 1
 x(1) = .input_geom_pro.creep_path(i).x
 x(2) = .input_geom_pro.creep_path(i).y
 x(3) = .ELx_pro(i)
 x(4) = .hx_pro(i)
 x(5) = .shead_pro(i)
 x(6) = .ux_pro(i)
 Me.dtbln_out_stab_upl_slcw.Rows.Add(x)
 Next
 x = Me.dtbln_out_stab_upl_slcw.NewRow
 Me.dtbln_out_stab_upl_slcw.Rows.Add(x)
 'summary of the results
 x = Me.dtbln_out_stab_upl_slcw.NewRow
 x(0) = "RESULTS OF SEEPAGE CALCULATION"
 Me.dtbln_out_stab_upl_slcw.Rows.Add(x)
 x = Me.dtbln_out_stab_upl_slcw.NewRow
 x(0) = "Description"
 x(1) = "Symbols"
 x(2) = "Units"
 Me.dtbln_out_stab_upl_slcw.Rows.Add(x)
 'ELx
 x = Me.dtbln_out_stab_upl_slcw.NewRow
 x(0) = "Total creep length"
 x(1) = "ELx"
 x(2) = "(m.)"
 x(3) = .Lcr_pro
 Me.dtbln_out_stab_upl_slcw.Rows.Add(x)
 'Hnet
 x = Me.dtbln_out_stab_upl_slcw.NewRow
 x(0) = "Net head"
 x(1) = "H"
 x(2) = "(m.)"
 x(3) = .Hnet_pro
 Me.dtbln_out_stab_upl_slcw.Rows.Add(x)
 'head loss per unit length
 x = Me.dtbln_out_stab_upl_slcw.NewRow
 x(0) = "head loss per unit length"
 x(1) = "H / ELx"
 x(2) = ""
 x(3) = .hl_per_Lx_pro
 Me.dtbln_out_stab_upl_slcw.Rows.Add(x)
 x = Me.dtbln_out_stab_upl_slcw.NewRow
 Me.dtbln_out_stab_upl_slcw.Rows.Add(x)
 x = Me.dtbln_out_stab_upl_slcw.NewRow
 Me.dtbln_out_stab_upl_slcw.Rows.Add(x)
 'Stability table
 x = Me.dtbln_out_stab_upl_slcw.NewRow
 x(0) = "UPLIFT STABILITY TABLE"
 Me.dtbln_out_stab_upl_slcw.Rows.Add(x)
 'headers
 x = Me.dtbln_out_stab_upl_slcw.NewRow
 x(0) = "Description"
 x(1) = "Symbols"
 x(2) = "Units"
 Me.dtbln_out_stab_upl_slcw.Rows.Add(x)
 'Wa

 283

 x = Me.dtbln_out_stab_upl_slcw.NewRow
 x(0) = "weight of basin"
 x(1) = "Wa"
 x(2) = "(kN/m)"
 x(3) = .Wa_pro
 Me.dtbln_out_stab_upl_slcw.Rows.Add(x)
 'Fu
 x = Me.dtbln_out_stab_upl_slcw.NewRow
 x(0) = "Uplift force"
 x(1) = "Fu"
 x(2) = "(kN/m)"
 x(3) = .Fu_pro
 Me.dtbln_out_stab_upl_slcw.Rows.Add(x)
 'drains add
 x = Me.dtbln_out_stab_upl_slcw.NewRow
 x(0) = "drains added"
 x(1) = ""
 x(2) = ""
 x(3) = IIf(.drains_add_pro, "YES", "NO")
 Me.dtbln_out_stab_upl_slcw.Rows.Add(x)
 If .drains_add_pro Then
 'drains add
 x = Me.dtbln_out_stab_upl_slcw.NewRow
 x(0) = "uplift reduction coeff"
 x(1) = "Fi"
 x(2) = ""
 x(3) = 1 - .inp_ured_perc_pro
 Me.dtbln_out_stab_upl_slcw.Rows.Add(x)
 'Fu_final
 x = Me.dtbln_out_stab_upl_slcw.NewRow
 x(0) = "reduced uplift force"
 x(1) = "Fu_red"
 x(2) = "(kN/m)"
 x(3) = .Fu_final_pro
 Me.dtbln_out_stab_upl_slcw.Rows.Add(x)
 End If
 'Factor of safety
 x = Me.dtbln_out_stab_upl_slcw.NewRow
 x(0) = "Factor of safety"
 x(1) = "FSu"
 x(2) = ""
 x(3) = .Fsu_final_pro
 Me.dtbln_out_stab_upl_slcw.Rows.Add(x)
 'Satisfactory
 x = Me.dtbln_out_stab_upl_slcw.NewRow
 x(0) = "Satisfactory"
 x(1) = IIf(.satisfactory_pro, "FSu >= " & .Fsu_pro, "FSu < " & .Fsu_pro)
 x(2) = ""
 x(3) = IIf(.satisfactory_pro, "OK", "not OK")
 Me.dtbln_out_stab_upl_slcw.Rows.Add(x)
 End With
 End Sub
 Private Sub load_stab_sliding_out()
 Dim i As Integer
 Dim x As DataRow
 With frm_main.stab_slide_overt
 'create columns
 For i = 0 To 6
 Me.dtbln_out_stab_slide_splw.Columns.Add(i + 1, Type.GetType("System.String"))
 Next
 For i = 0 To Me.dtbln_out_stab_slide_splw.Columns.Count - 1

 284

 Me.dtbln_out_stab_slide_splw.Columns(i).DefaultValue = ""
 Next
 'insert output data
 'seepage table
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "***SEEPAGE TABLE***"
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'headers
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "Description"
 x(1) = "X-coordinate"
 x(2) = "Y-coordinate"
 x(3) = "Creep length"
 x(4) = "head loss"
 x(5) = "Static head"
 x(6) = "uplift pressure"
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'symbols
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "Symbols"
 x(1) = "X"
 x(2) = "Y"
 x(3) = "ELx"
 x(4) = "hx"
 x(5) = "H"
 x(6) = "ux"
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'units
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "Units"
 x(1) = "(m.)"
 x(2) = "(m.)"
 x(3) = "(m.)"
 x(4) = "(m.)"
 x(5) = "(m.)"
 x(6) = "(m.)"
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'values
 For i = 0 To .input_geom_pro.creep_path.GetUpperBound(0)
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "Point-" & i + 1
 x(1) = .input_geom_pro.creep_path(i).x
 x(2) = .input_geom_pro.creep_path(i).y
 x(3) = .ELx_pro(i)
 x(4) = .hx_pro(i)
 x(5) = .shead_pro(i)
 x(6) = .ux_pro(i)
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 Next
 x = Me.dtbln_out_stab_slide_splw.NewRow
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'summary of the results
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "***RESULTS OF SEEPAGE CALCULATION***"
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "Description"
 x(1) = "Symbols"
 x(2) = "Units"
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'ELx

 285

 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "Total creep length"
 x(1) = "ELx"
 x(2) = "(m.)"
 x(3) = .Lcr_pro
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'Hnet
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "Net head"
 x(1) = "H"
 x(2) = "(m.)"
 x(3) = .Hnet_pro
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'head loss per unit length
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "head loss per unit length"
 x(1) = "H / ELx"
 x(2) = ""
 x(3) = .hl_per_Lx_pro
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 x = Me.dtbln_out_stab_slide_splw.NewRow
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 x = Me.dtbln_out_stab_slide_splw.NewRow
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'Stability table
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "***SLIDING STABILITY TABLE***"
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'headers
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "Description"
 x(1) = "Symbols"
 x(2) = "Units"
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'Vertical forces
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "VERTICAL FORCES"
 x(1) = ""
 x(2) = ""
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'Fu
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "Uplift force"
 x(1) = "Fu"
 x(2) = "(kN/m)"
 x(3) = -.Fu_pro '- is for force coordinate
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'drains add
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "drains added"
 x(1) = ""
 x(2) = ""
 x(3) = IIf(.drains_add_pro, "YES", "NO")
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 If .drains_add_pro Then
 'drains add
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "uplift reduction coeff"
 x(1) = "Fi"
 x(2) = ""
 x(3) = 1 - .input_mtrl_pro.ured_perc

 286

 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 End If
 x = Me.dtbln_out_stab_slide_splw.NewRow
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'crest thickness of spillway
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "crest thickness of spillway"
 x(1) = "tc"
 x(2) = "(m.)"
 x(3) = .tc_pro
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'W dead loads
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "Dead loads"
 x(1) = "W"
 x(2) = "(kN/m)"
 x(3) = .W_pro
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 x = Me.dtbln_out_stab_slide_splw.NewRow
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'vertical eq forces
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "Vertical eq. forces"
 x(1) = "Fdv"
 x(2) = "(kN/m)"
 x(3) = -.Fdv_pro
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'vertical forces total
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "Total Vertical forces"
 x(1) = "Fv_tot"
 x(2) = "(kN/m)"
 x(3) = .Ftot_v_pro
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 x = Me.dtbln_out_stab_slide_splw.NewRow
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 x = Me.dtbln_out_stab_slide_splw.NewRow
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'Horizantal forces
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "HORIZANTAL FORCES"
 x(1) = ""
 x(2) = ""
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'Fh
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "Hydrostatic force"
 x(1) = "Fu"
 x(2) = "(kN/m)"
 x(3) = .Fu_pro
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'Fuh
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "Hydrostatic force below u/s blanket"
 x(1) = "Fuh"
 x(2) = "(kN/m)"
 x(3) = .Fuh_pro
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'upstream dyn force
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "u/s dynamic force"

 287

 x(1) = "Fw"
 x(2) = "(kN/m)"
 x(3) = .Fw_pro
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'lateral earth pressure force Fs
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "Lateral active earth press.force"
 x(1) = "Fs"
 x(2) = "(kN/m)"
 x(3) = .Fs_pro
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'Horizantal eq force
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "Horizantal earthquake force"
 x(1) = "Fdh"
 x(2) = "(kN/m)"
 x(3) = .Fdh_pro
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'total Horizantal forces
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "Total horizantal forces"
 x(1) = "Fh_tot"
 x(2) = "(kN/m)"
 x(3) = .Ftot_h_pro
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 x = Me.dtbln_out_stab_slide_splw.NewRow
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 x = Me.dtbln_out_stab_slide_splw.NewRow
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'Factor of safety against sliding
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "***FACTOR OF SAFETY AGAINST SLIDING***"
 x(1) = ""
 x(2) = ""
 x(3) = ""
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'FSs
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "Factor of safety"
 x(1) = "FSs"
 x(2) = ""
 x(3) = .FSs_comp_pro
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'Satisfactory
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "Satisfactory"
 x(1) = IIf(.OK_s_pro, "FSs >= " & .FSs_pro, "FSs < " & .FSs_pro)
 x(2) = ""
 x(3) = IIf(.OK_s_pro, "OK", "not OK")
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 x = Me.dtbln_out_stab_slide_splw.NewRow
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'Factor of safety against shear and sliding
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "***FACTOR OF SAFETY AGAINST SHEAR&SLIDING***"
 x(1) = ""
 x(2) = ""
 x(3) = ""
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'Area shear plane
 x = Me.dtbln_out_stab_slide_splw.NewRow

 288

 x(0) = "Area of Shear plane"
 x(1) = "A"
 x(2) = "(m2)"
 x(3) = .Ashear_pro
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'f
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "friction coeff."
 x(1) = "f"
 x(2) = ""
 x(3) = .input_mtrl_pro.f
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'allow shear stress in concrete
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "allow shear stress in concrete"
 x(1) = "Sallw"
 x(2) = "(kN/m2)"
 x(3) = .input_mtrl_pro.Sallw_cf
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'FSss
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "Factor of safety"
 x(1) = "FSss"
 x(2) = ""
 x(3) = .FSss_comp_pro
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 'Satisfactory
 x = Me.dtbln_out_stab_slide_splw.NewRow
 x(0) = "Satisfactory"
 x(1) = IIf(.OK_ss_pro, "FSss >= " & .FSss_pro, "FSss < " & .FSss_pro)
 x(2) = ""
 x(3) = IIf(.OK_ss_pro, "OK", "not OK")
 Me.dtbln_out_stab_slide_splw.Rows.Add(x)
 End With
 End Sub
 Private Sub load_stab_overt_out_funt()
 End Sub
#End Region
#Region "appertunant fac"
 Private Sub load_app_fac_tables()
 End Sub
 Private Sub load_riprap_out()
 End Sub
#End Region
#Region "optimization Bmain summary"
 Private Sub load_opt_Bmain_tables()
 Me.ToolBarButton2.DropDownMenu = Me.mnu_opt_Bmain
 Me.ToolBarButton3.DropDownMenu = Me.mnu_opt_Bmain_graphs
 'check if object is loaded (referenced)
 If ((Not IsNothing(frm_main.try_summary_results)) And (Not
IsNothing(frm_main.try_summary_results_OK))) Then
 Me.load_opt_Bmain_out()
 End If
 Me.GroupBox1.Text = "Outputs of the optimization of bottom width of main irrigation canal"
 'show the default table
 Me.DataGridEx2.CaptionText = "Summary of the Optimization Tries Results Table:"
 Me.DataGridEx2.AdjustColumnWidths(Me.dtbln_out_opt_Bmain)
 Me.DataGridEx2.DataSource = Me.dtbln_out_opt_Bmain
 End Sub
 Private Sub load_opt_Bmain_out()
 Dim i As Integer

 289

 Dim x As DataRow
 With frm_main.try_summary_results
 'create columns
 Me.dtbln_out_opt_Bmain.Columns.Add("1", Type.GetType("System.String"))
 Me.dtbln_out_opt_Bmain.Columns.Add("2", Type.GetType("System.String"))
 Me.dtbln_out_opt_Bmain.Columns.Add("3", Type.GetType("System.String"))
 For i = 0 To .GetUpperBound(0)
 Me.dtbln_out_opt_Bmain.Columns.Add(i + 4, Type.GetType("System.String"))
 Next
 For i = 0 To Me.dtbln_out_opt_Bmain.Columns.Count - 1
 Me.dtbln_out_opt_Bmain.Columns(i).DefaultValue = ""
 Next
 'insert output data
 'headers
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Description"
 x(1) = "Symbols"
 x(2) = "Units"
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'accepted
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "DWEIR SATISFACTORY"
 x(1) = ""
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = IIf(frm_main.try_summary_results(i).accepted, "YES", "NO")
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Bmain
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "bottom width of main irrigation canal"
 x(1) = "Bmain"
 x(2) = "(m.)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).B_main
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'total cost
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Total Cost of Dweir"
 x(1) = "C_tot"
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).cost_dweir
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "-------------------------"
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'intake cost
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Cost of Intake"
 x(1) = "C_int"
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).cost_int
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'splw cost
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Cost of Spillway"

 290

 x(1) = "C_splw"
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).cost_splw
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'slcw cost
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Cost of Sluiceway"
 x(1) = "C_slcw"
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).cost_slcw
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'guiding wall
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Cost of guiding wall"
 x(1) = "C_gw"
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).cost_guidingwall
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'sw
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Cost of sidewalls"
 x(1) = "C_sw"
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).cost_sidewalls
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'riprap
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Cost of riprap"
 x(1) = "C_riprap"
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).cost_riprap
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'flush
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Cost of flushing canal"
 x(1) = "C_flush"
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).cost_flush
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'div fac
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Cost of diversion facility"
 x(1) = "C_div"
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).cost_divfac
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'bridge

 291

 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Cost of bridge"
 x(1) = "C_bridge"
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).cost_bridge
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "-------------------------"
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Bs
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Settling basin width"
 x(1) = "Bs"
 x(2) = "(m.)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).Bs
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Lsettl
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Settling basin length"
 x(1) = "Ks"
 x(2) = "(m.)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).Lsettl
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Ks
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Spillway crest Elevation"
 x(1) = "Ks"
 x(2) = "(m.)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).Ks
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'P
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Spillway height"
 x(1) = "Bs"
 x(2) = "(m.)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).P
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'tc
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Spillway Crest width"
 x(1) = "tc"
 x(2) = "(m.)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).tc
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Kdes
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Design Discharge Water Surface Elev. over Spillway"
 x(1) = "Kdes"
 x(2) = "(m.)"

 292

 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).K_des
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Qdes_splw
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Design Discharge"
 x(1) = "Qdes"
 x(2) = "(m3/s.)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).Qdes
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Qdes_splw
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Spillway Design Discharge"
 x(1) = "Qdes_splw"
 x(2) = "(m3/s.)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).Qdes_splw
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Qdes_slcw
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Sluiceway Design Discharge"
 x(1) = "Qdes_slcw"
 x(2) = "(m3/s.)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).Qdes_slcw
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'common stilling basin
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Common Stilling basin"
 x(1) = ""
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = IIf(frm_main.try_summary_results(i).common_sb, "YES", "NO")
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Lsb_splw
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Spillway Stilling basin length"
 x(1) = "Ls_splw"
 x(2) = "(m.)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).sb_splw.L
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Lsb_splw
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Spillway sill height"
 x(1) = "delta_splw"
 x(2) = "(m.)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).sb_splw.delta
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Lsb_slcw
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Sluiceway Stilling basin length"

 293

 x(1) = "Ls_slcw"
 x(2) = "(m.)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).sb_slcw.L
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Lsb_slcw
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Sluiceway sill height"
 x(1) = "delta_slcw"
 x(2) = "(m.)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).sb_slcw.delta
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'riprap
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "-------------------------"
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "RIPRAP"
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Ld
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Riprap length"
 x(1) = "Ld"
 x(2) = "(m.)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).riprap_Ld
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'D
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Riprap Stone Diameter"
 x(1) = "D"
 x(2) = "(m.)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).riprap_D
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'nrow
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "number of stone rows"
 x(1) = "nrow"
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).riprap_nrow
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'riprap
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "-------------------------"
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "FLUSHING CANAL"
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'D
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Flushing canal Diameter"
 x(1) = "Dp"
 x(2) = "(m.)"

 294

 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).flush_Dp
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'So
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Flushing canal slope"
 x(1) = "So"
 x(2) = "(m.)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).flush_So
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'L
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Flushing canal horizantal length"
 x(1) = "Lh"
 x(2) = "(m.)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).flush_Lh
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'SATISFACTORY CRITERIA
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "-------------------------"
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "SEEPAGE"
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Lcr
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Creep Length"
 x(1) = "Lcr"
 x(2) = "(m.)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).Lcr
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'CH
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "C*H"
 x(1) = "C*H"
 x(2) = "(m.)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).CH
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'seepage Satisfactory
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Satisfactory"
 x(1) = "Lcr >= C*H"
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = IIf(frm_main.try_summary_results(i).OK_seepage, "OK", "not OK")
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "-------------------------"
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "INTAKE UPLIFT"

 295

 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'intake FSu_int
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Intake FS against Uplift"
 x(1) = "FSu_int"
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).FSu_int
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'satisfactory_FSu_int
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Satisfactory"
 x(1) = "FSu_int >= " & frm_main.int_uplift.inp_Fsu_pro
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = IIf(frm_main.try_summary_results(i).OK_uplift_int, "OK", "not OK")
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "-------------------------"
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "SPILLWAY UPLIFT"
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'FSu_splw
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Spillway FS against Uplift"
 x(1) = "FSu_splw"
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).FSu_splw
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'satisfactory_FSu_splw
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Satisfactory"
 x(1) = "FSu_splw >= " & frm_main.splw_uplift.inp_Fsu_pro
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = IIf(frm_main.try_summary_results(i).OK_uplift_splw, "OK", "not OK")
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "-------------------------"
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "SLUICEWAY UPLIFT"
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'FSu_slcw
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Sluiceway FS against Uplift"
 x(1) = "FSu_slcw"
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).FSu_slcw
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'satisfactory_FSu_slcw
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Satisfactory"

 296

 x(1) = "FSu_slcw >= " & frm_main.slcw_uplift.inp_Fsu_pro
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = IIf(frm_main.try_summary_results(i).OK_uplift_slcw, "OK", "not OK")
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "-------------------------"
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "BODY+APRON SLIDING"
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'FSs
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Body+Apron FS against Sliding"
 x(1) = "FSs"
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).FSs
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'satisfactory_FSs
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Satisfactory"
 x(1) = "FSs >= " & frm_main.stab_slide_overt.input_Fs_pro.FSs
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = IIf(frm_main.try_summary_results(i).OK_s, "OK", "not OK")
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "-------------------------"
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "BODY+APRON SHEAR&SLIDING"
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'FSss
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Body+Apron FS against Shear&Sliding"
 x(1) = "FSss"
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).FSss
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'satisfactory_FSss
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Satisfactory"
 x(1) = "FSss >= " & frm_main.stab_slide_overt.input_Fs_pro.FSss
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = IIf(frm_main.try_summary_results(i).OK_ss, "OK", "not OK")
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "-------------------------"
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "BODY OVERTURNING (full u/s no tw)"
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'FSo

 297

 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Body FS against Overturning"
 x(1) = "FSo"
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).MVoheel.FSo
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'satisfactory_FSo
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Satisfactory (full u/s no tw)"
 x(1) = "FSo >= " & frm_main.stab_slide_overt.input_Fs_pro.FSo
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = IIf(frm_main.try_summary_results(i).MVoheel.OK_o, "OK", "not OK")
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Vtoe
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Base pressure at toe"
 x(1) = "Vtoe"
 x(2) = "(kN/m2)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).MVoheel.Vtoe
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Vheel
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Base pressure at heel"
 x(1) = "Vtoe"
 x(2) = "(kN/m2)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).MVoheel.Vheel
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Vmax satisfactory
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Satisfactory Max. base Pressure "
 x(1) = "Vmax <= " & frm_main.stab_slide_overt.input_Fs_pro.Vmax
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = IIf(frm_main.try_summary_results(i).MVoheel.OK_vmax, "OK", "not OK")
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Vmin satisfactory
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Satisfactory Min. base Pressure "
 x(1) = "Vmin >= " & frm_main.stab_slide_overt.input_Fs_pro.Vmin
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = IIf(frm_main.try_summary_results(i).MVoheel.OK_vmin, "OK", "not OK")
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "-------------------------"
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "BODY OVERTURNING (empty reserv. wrt heel)"
 Me.dtbln_out_opt_Bmain.Rows.Add(x)

 298

 'FSo empty reserv
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Body FS against Overturning"
 x(1) = "FSo"
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).MVoheel_eu.FSo
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'satisfactory_FSo
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Satisfactory (empty res.wrt heel)"
 x(1) = "FSo >= " & frm_main.stab_slide_overt.input_Fs_pro.FSo
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = IIf(frm_main.try_summary_results(i).MVoheel_eu.OK_o, "OK", "not OK")
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Vtoe
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Base pressure at toe"
 x(1) = "Vtoe"
 x(2) = "(kN/m2)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).MVoheel_eu.Vtoe
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Vheel
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Base pressure at heel"
 x(1) = "Vtoe"
 x(2) = "(kN/m2)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).MVoheel_eu.Vheel
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Vmax satisfactory
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Satisfactory Max. base Pressure "
 x(1) = "Vmax <= " & frm_main.stab_slide_overt.input_Fs_pro.Vmax
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = IIf(frm_main.try_summary_results(i).MVoheel_eu.OK_vmax, "OK", "not OK")
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Vmin satisfactory
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Satisfactory Min. base Pressure "
 x(1) = "Vmin >= " & frm_main.stab_slide_overt.input_Fs_pro.Vmin
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = IIf(frm_main.try_summary_results(i).MVoheel_eu.OK_vmin, "OK", "not OK")
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "-------------------------"
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "BODY OVERTURNING (empty reserv. wrt toe)"

 299

 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'FSo empty reserv wrt toe
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Body FS against Overturning"
 x(1) = "FSo"
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).MVotoe_eu.FSo
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'satisfactory_FSo
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Satisfactory (empty res.wrt toe)"
 x(1) = "FSo >= " & frm_main.stab_slide_overt.input_Fs_pro.FSo
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = IIf(frm_main.try_summary_results(i).MVotoe_eu.OK_o, "OK", "not OK")
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Vtoe
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Base pressure at toe"
 x(1) = "Vtoe"
 x(2) = "(kN/m2)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).MVotoe_eu.Vtoe
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Vheel
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Base pressure at heel"
 x(1) = "Vtoe"
 x(2) = "(kN/m2)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).MVotoe_eu.Vheel
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Vmax satisfactory
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Satisfactory Max. base Pressure "
 x(1) = "Vmax <= " & frm_main.stab_slide_overt.input_Fs_pro.Vmax
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = IIf(frm_main.try_summary_results(i).MVotoe_eu.OK_vmax, "OK", "not OK")
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Vmin satisfactory
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Satisfactory Min. base Pressure "
 x(1) = "Vmin >= " & frm_main.stab_slide_overt.input_Fs_pro.Vmin
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = IIf(frm_main.try_summary_results(i).MVotoe_eu.OK_vmin, "OK", "not OK")
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "-------------------------"
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow

 300

 x(0) = "SIDEWALLS (Spillway Side)"
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'FSs
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Sidewalls FS against Sliding"
 x(1) = "FSs"
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).FSs_sw_splw
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'satisfactory_FSs
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Satisfactory"
 x(1) = "FSs >= " & frm_main.stab_slide_overt.input_Fs_pro.FSs_sw
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = IIf(frm_main.try_summary_results(i).OK_s_sw_splw, "OK", "not OK")
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Vtoe
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Base pressure at toe"
 x(1) = "Vtoe"
 x(2) = "(kN/m2)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).MVo_sw_splw.Vtoe
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Vheel
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Base pressure at heel"
 x(1) = "Vtoe"
 x(2) = "(kN/m2)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).MVo_sw_splw.Vheel
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Vmax satisfactory
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Satisfactory Max. base Pressure "
 x(1) = "Vmax <= " & frm_main.stab_slide_overt.input_Fs_pro.Vmax_sw
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = IIf(frm_main.try_summary_results(i).MVo_sw_splw.OK_vmax, "OK", "not OK")
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Vmin satisfactory
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Satisfactory Min. base Pressure "
 x(1) = "Vmin >= " & frm_main.stab_slide_overt.input_Fs_pro.Vmin_sw
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = IIf(frm_main.try_summary_results(i).MVo_sw_splw.OK_vmin, "OK", "not OK")
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "-------------------------"
 Me.dtbln_out_opt_Bmain.Rows.Add(x)

 301

 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "SIDEWALLS (Sluiceway Side)"
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'FSo empty reserv wrt toe
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Sidewalls FS against Sliding"
 x(1) = "FSs"
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).FSs_sw_slcw
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'satisfactory_FSo
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Satisfactory"
 x(1) = "FSs >= " & frm_main.stab_slide_overt.input_Fs_pro.FSs_sw
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = IIf(frm_main.try_summary_results(i).OK_s_sw_slcw, "OK", "not OK")
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 x = Me.dtbln_out_opt_Bmain.NewRow
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Vtoe
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Base pressure at toe"
 x(1) = "Vtoe"
 x(2) = "(kN/m2)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).MVo_sw_slcw.Vtoe
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Vheel
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Base pressure at heel"
 x(1) = "Vtoe"
 x(2) = "(kN/m2)"
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = frm_main.try_summary_results(i).MVo_sw_slcw.Vheel
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Vmax satisfactory
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Satisfactory Max. base Pressure "
 x(1) = "Vmax <= " & frm_main.stab_slide_overt.input_Fs_pro.Vmax_sw
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = IIf(frm_main.try_summary_results(i).MVo_sw_slcw.OK_vmax, "OK", "not OK")
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 'Vmin satisfactory
 x = Me.dtbln_out_opt_Bmain.NewRow
 x(0) = "Satisfactory Min. base Pressure "
 x(1) = "Vmin >= " & frm_main.stab_slide_overt.input_Fs_pro.Vmin_sw
 x(2) = ""
 For i = 0 To .GetUpperBound(0)
 x(i + 3) = IIf(frm_main.try_summary_results(i).MVo_sw_slcw.OK_vmin, "OK", "not OK")
 Next
 Me.dtbln_out_opt_Bmain.Rows.Add(x)
 End With
 End Sub

 302

#End Region
#Region "Printout procedures"
 Private Sub print_preview(ByVal dtable As DataTable)
 Me.DataGridEx2.PageSettings = CustomControls.PageSetup.PageSettings
 Me.DataGridEx2.PrintPreview(Nothing, dtable,
CType(Me.BindingContext(Me.DataGridEx2.DataSource), CurrencyManager), 25, "Do you wish to
continue?", " ")
 End Sub
 Private Sub print_out(ByVal dtable As DataTable)
 Me.DataGridEx2.PageSettings = CustomControls.PageSetup.PageSettings
 Me.DataGridEx2.Print(Nothing, dtable, CType(Me.BindingContext(Me.DataGridEx2.DataSource),
CurrencyManager), " ")
 End Sub
#End Region
#End Region
 Private Sub MenuItem1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem1.Click
 Me.DataGridEx2.CaptionText = "Intake Water Surface Profile Table:"
 Me.DataGridEx2.AdjustColumnWidths(Me.dtbln_out_int)
 Me.DataGridEx2.DataSource = Me.dtbln_out_int
 End Sub
 Private Sub MenuItem2_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem2.Click
 Me.DataGridEx2.CaptionText = "Intake Computations Summary Table:"
 Me.DataGridEx2.AdjustColumnWidths(Me.dtbln_out_int2)
 Me.DataGridEx2.DataSource = Me.dtbln_out_int2
 End Sub
 Private Sub MenuItem4_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles
MenuItem4.Click
 frm_outputs.chart_no = 0
 Dim frm_graph As New frm_charts()
 frm_graph.Show()
 End Sub
 Private Sub GroupBox1_Enter(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
GroupBox1.Enter
 End Sub
 Private Sub MenuItem12_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
 End Sub
 Private Sub MenuItem10_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem10.Click
 Me.DataGridEx2.CaptionText = "Spillway - Sluiceway Discharges Table:"
 Me.DataGridEx2.AdjustColumnWidths(Me.dtbln_out_splw_slcw)
 Me.DataGridEx2.DataSource = Me.dtbln_out_splw_slcw
 End Sub
 Private Sub MenuItem11_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem11.Click
 Me.DataGridEx2.CaptionText = "Energy Dissipators Results Table:"
 Me.DataGridEx2.AdjustColumnWidths(Me.dtbln_out_energydis)
 Me.DataGridEx2.DataSource = Me.dtbln_out_energydis
 End Sub
 Private Sub MenuItem3_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem3.Click
 Me.print_preview(Me.DataGridEx2.DataSource)
 End Sub
 Private Sub MenuItem5_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem5.Click
 Me.print_out(Me.DataGridEx2.DataSource)
 Me.DataGridEx2.PageSettings = CustomControls.PageSetup.PageSettings
 End Sub
 Private Sub MenuItem6_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem6.Click

 303

 Me.DataGridEx2.CaptionText = "Seepage Computations Results Table:"
 Me.DataGridEx2.AdjustColumnWidths(Me.dtbln_out_seepage)
 Me.DataGridEx2.DataSource = Me.dtbln_out_seepage
 End Sub
 Private Sub MenuItem7_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem7.Click
 End Sub
 Private Sub MenuItem16_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem16.Click
 Me.DataGridEx2.PageSetup()
 Me.DataGridEx2.PageSettings = CustomControls.PageSetup.PageSettings
 End Sub
 Private Sub MenuItem17_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem17.Click
 frm_outputs.chart_no = 1
 Dim frm_graph As New frm_charts()
 frm_graph.Show()
 End Sub
 Private Sub MenuItem18_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem18.Click
 frm_outputs.chart_no = 2
 Dim frm_graph As New frm_charts()
 frm_graph.Show()
 End Sub
 Private Sub MenuItem19_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem19.Click
 Me.DataGridEx2.CaptionText = "Intake Stability against Uplift Results Table:"
 Me.DataGridEx2.AdjustColumnWidths(Me.dtbln_out_stab_upl_int)
 Me.DataGridEx2.DataSource = Me.dtbln_out_stab_upl_int
 End Sub
 Private Sub MenuItem20_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem20.Click
 Me.DataGridEx2.CaptionText = "Spillway Stability against Uplift Results Table:"
 Me.DataGridEx2.AdjustColumnWidths(Me.dtbln_out_stab_upl_splw)
 Me.DataGridEx2.DataSource = Me.dtbln_out_stab_upl_splw
 End Sub
 Private Sub MenuItem21_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem21.Click
 Me.DataGridEx2.CaptionText = "Sluiceway Stability against Uplift Results Table:"
 Me.DataGridEx2.AdjustColumnWidths(Me.dtbln_out_stab_upl_slcw)
 Me.DataGridEx2.DataSource = Me.dtbln_out_stab_upl_slcw
 End Sub
 Private Sub MenuItem9_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem9.Click
 Me.DataGridEx2.CaptionText = "Spillway Body Stability against Overturning Results Table:"
 Me.DataGridEx2.AdjustColumnWidths(Me.dtbln_out_stab_overt_splw)
 Me.DataGridEx2.DataSource = Me.dtbln_out_stab_overt_splw
 End Sub
 Private Sub MenuItem23_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem23.Click
 DataSetExport.Export(Me.DataGridEx2.DataSource)
 End Sub
 Private Sub MenuItem24_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem24.Click
 DataSetExport.SendEMail(Me.DataGridEx2.DataSource)
 End Sub
 Private Sub MenuItem13_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem13.Click
 Me.DataGridEx2.CaptionText = "Spillway Body+Apron Stability against Sliding Results Table (Full u/s
no Tailwater):"
 Me.DataGridEx2.AdjustColumnWidths(Me.dtbln_out_stab_slide_splw)

 304

 Me.DataGridEx2.DataSource = Me.dtbln_out_stab_slide_splw
 End Sub
 Private Sub MenuItem25_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem25.Click
 Me.DataGridEx2.CaptionText = "Spillway Body Stability against Overturning Results Table (Empty
reservoir wrt Toe):"
 Me.DataGridEx2.AdjustColumnWidths(Me.dtbln_out_stab_overt_splw_er_wrt_toe)
 Me.DataGridEx2.DataSource = Me.dtbln_out_stab_overt_splw_er_wrt_toe
 End Sub
 Private Sub MenuItem26_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem26.Click
 Me.DataGridEx2.CaptionText = "Spillway Body Stability against Overturning Results Table (Empty
reservoir wrt Heel):"
 Me.DataGridEx2.AdjustColumnWidths(Me.dtbln_out_stab_overt_splw_er_wrt_heel)
 Me.DataGridEx2.DataSource = Me.dtbln_out_stab_overt_splw_er_wrt_heel
 End Sub
 Private Sub MenuItem27_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem27.Click
 Me.DataGridEx2.CaptionText = "Crest Elevation of u/s Levees Results Table"
 Me.DataGridEx2.AdjustColumnWidths(Me.dtbln_out_levees)
 Me.DataGridEx2.DataSource = Me.dtbln_out_levees
 End Sub
 Private Sub MenuItem28_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem28.Click
 frm_outputs.chart_no = 3
 Dim frm_graph As New frm_charts()
 frm_graph.Show()
 End Sub
 Private Sub MenuItem29_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem29.Click
 Me.DataGridEx2.CaptionText = "Riprap Design Results Table:"
 Me.DataGridEx2.AdjustColumnWidths(Me.dtbln_out_riprap)
 Me.DataGridEx2.DataSource = Me.dtbln_out_riprap
 End Sub
 Private Sub MenuItem30_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem30.Click
 Me.DataGridEx2.CaptionText = "Flushing Canal Design Results Table:"
 Me.DataGridEx2.AdjustColumnWidths(Me.dtbln_out_flush)
 Me.DataGridEx2.DataSource = Me.dtbln_out_flush
 End Sub
 Private Sub MenuItem31_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem31.Click
 Me.DataGridEx2.CaptionText = "WSP for optimum width Results Table:"
 Me.DataGridEx2.AdjustColumnWidths(Me.dtbln_out_div_wsp)
 Me.DataGridEx2.DataSource = Me.dtbln_out_div_wsp
 End Sub
 Private Sub MenuItem32_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem32.Click
 Me.DataGridEx2.CaptionText = "Cost analysis for different canal widths Summary Table:"
 Me.DataGridEx2.AdjustColumnWidths(Me.dtbln_out_div_summary)
 Me.DataGridEx2.DataSource = Me.dtbln_out_div_summary
 End Sub
 Private Sub MenuItem33_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem33.Click
 frm_outputs.chart_no = 4
 Dim frm_graph As New frm_charts()
 frm_graph.Show()
 End Sub
 Private Sub MenuItem34_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem34.Click
 frm_outputs.chart_no = 5

 305

 Dim frm_graph As New frm_charts()
 frm_graph.Show()
 End Sub
 Private Sub MenuItem42_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem42.Click
 frm_outputs.chart_no = 6
 Dim frm_graph As New frm_charts()
 frm_graph.Show()
 End Sub
 Private Sub MenuItem41_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem41.Click
 Me.DataGridEx2.CaptionText = "Summary of the Optimization Tries Results Table:"
 Me.DataGridEx2.AdjustColumnWidths(Me.dtbln_out_opt_Bmain)
 Me.DataGridEx2.DataSource = Me.dtbln_out_opt_Bmain
 End Sub
 Private Sub MenuItem43_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem43.Click
 Me.DataGridEx2.CaptionText = "Costs of the Structures Results Table:"
 Me.DataGridEx2.AdjustColumnWidths(Me.dtbln_out_costs)
 Me.DataGridEx2.DataSource = Me.dtbln_out_costs
 End Sub
 Private Sub MenuItem35_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem35.Click
 Me.DataGridEx2.CaptionText = "Sidewalls Stability against Sliding Results Table:"
 Me.DataGridEx2.AdjustColumnWidths(Me.dtbln_out_sw_splw_slide)
 Me.DataGridEx2.DataSource = Me.dtbln_out_sw_splw_slide
 End Sub
End Class
'*---*
'| END OF FORM-4 |
'*---*

'*---*
'| FORM-11 : Form11.vb |
'*---*
Imports scpl2
Imports dweir_code.General_Hydraulic_Functions
Imports System.Math
Public Class frm_charts
 Inherits System.Windows.Forms.Form
#Region " Windows Form Designer generated code "
 Public Sub New()
 MyBase.New()
 'This call is required by the Windows Form Designer.
 InitializeComponent()
 'Add any initialization after the InitializeComponent() call
 End Sub
 'Form overrides dispose to clean up the component list.
 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
 End Sub
 'Required by the Windows Form Designer
 Private components As System.ComponentModel.IContainer
 'NOTE: The following procedure is required by the Windows Form Designer
 'It can be modified using the Windows Form Designer.

 306

 'Do not modify it using the code editor.
 ‘This part of code is generated automatically. Details are hidden.
#End Region
 Const serie_size As Integer = 20 'max serie sixe to show in a graph together
 'graphical elements (series= 2 of them forms a serie; because they are related eachother; line rep and point
rep)
 Private series As New Collection()
 Private xsec_int(11) As xsec_hyd
 Private Sub frm_charts_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MyBase.Load
 Me.load_chart_data(frm_outputs.chart_no)
 End Sub
#Region "general chart procedures"
 Private Sub add_plot(ByVal x() As Single, ByVal y() As Single, ByVal lcolor As Color, ByVal serie_name
As String)
 Dim lp As New LinePlot(New ArrayAdapter(x, y)) 'to plot line
 Dim pp As New PointPlot(New ArrayAdapter(x, y)) 'to plot point
 With Me.chart
 lp.Pen = New Pen(lcolor, 2)
 pp.Marker.Type = MarkerType.Cross1
 pp.Marker.Pen = New Pen(lcolor, 5)
 lp.Label = serie_name
 pp.Label = serie_name & " points"
 End With
 series.Add(lp, serie_name & "_l")
 series.Add(pp, serie_name & "_p")
 End Sub
 Private Sub remove_plot(ByVal serie_name As String)
 Me.chart.remove(series.Item(serie_name & "_l"))
 Me.chart.remove(series.Item(serie_name & "_p"))
 series.Remove(serie_name & "_l")
 series.Remove(serie_name & "_p")
 End Sub
 Private Sub load_default_chart_pro()
 'default chart properties
 With Me.chart
 .MajorGridPen.DashStyle = Drawing.Drawing2D.DashStyle.Dash
 .MajorGridPen.Color = Color.Gray
 .MinorGridPen.Color = Color.LightGray
 .MinorGridPen.DashStyle = Drawing.Drawing2D.DashStyle.Dot
 .TitleFont = New Font("Arail", 9, FontStyle.Bold, GraphicsUnit.Point)
 .XAxis1.LabelFont = New Font("Arial", 8, FontStyle.Italic, GraphicsUnit.Point)
 .YAxis1.LabelFont = New Font("Arial", 8, FontStyle.Italic, GraphicsUnit.Point)
 .XAxis1.GridDetail = Axis.GridType.None
 .YAxis1.GridDetail = Axis.GridType.None
 .LegendAttachTo(XAxisPosition.Bottom, YAxisPosition.Right)
 .HorizontalEdgeLegendPlacement = Legend.Placement.Inside
 .VerticalEdgeLegendPlacement = Legend.Placement.Inside
 .LegendBorderStyle = Legend.BorderType.Line
 .ShowLegend = True
 .Refresh()
 'refresh the graph options to all checked
 Me.MenuItem2.Checked = True
 Me.MenuItem5.Checked = False
 Me.MenuItem6.Checked = False
 End With
 End Sub
 Private Sub show_charts(ByVal title As String, ByVal xaxis As String, ByVal yaxis As String)
 Dim i As Integer
 'reset chart firstly
 'by this algorithm, everytime, chart is rescaled according to the existing plot data

 307

 Me.chart.Clear()
 For i = 1 To series.Count 'for collections indexs starts from 1
 Me.chart.Add(series.Item(i))
 Next
 'refresh default view everytime...
 load_default_chart_pro()
 ' every time to show chart titles
 Me.chart.Title = title
 Me.chart.XAxis1.Label = xaxis
 Me.chart.YAxis1.Label = yaxis
 Me.chart.Refresh()
 End Sub
 Private Sub load_chart_data(ByVal chart_no As Byte)
 Select Case chart_no
 Case 0 'intake water surface profile
 load_intake_wsp()
 Case 1 'K versus discharge graph (spillw sluiceway)Rating curve
 load_K_versus_Q()
 Case 2 'seepage
 load_seepage_path()
 Case 3 'crest el. of levees
 load_levees_wsp()
 Case 4
 load_div_wsp()
 Case 5
 load_div_costs()
 Case 6
 load_opt_Bmain_costs()
 End Select
 End Sub
#End Region
#Region "intake wsp"
 Private Sub add_int_plot_Kb()
 Dim i As Integer
 Dim xx(11), yy(11) As Single
 For i = 0 To xsec_int.GetUpperBound(0)
 xx(i) = xsec_int(i).km_xsec_p
 yy(i) = xsec_int(i).Kb_pro
 Next
 Me.add_plot(xx, yy, Color.Brown, "Ground surface")
 End Sub
 Private Sub add_int_plot_HGL()
 Dim i As Integer
 Dim xx(11), yy(11) As Single
 For i = 0 To xsec_int.GetUpperBound(0)
 xx(i) = xsec_int(i).km_xsec_p
 yy(i) = xsec_int(i).Hgl_pro
 Next
 Me.add_plot(xx, yy, Color.Blue, "HGL")
 End Sub
 Private Sub add_int_plot_EGL()
 Dim i As Integer
 Dim xx(11), yy(11) As Single
 For i = 0 To xsec_int.GetUpperBound(0)
 xx(i) = xsec_int(i).km_xsec_p
 yy(i) = xsec_int(i).Egl_pro
 Next
 Me.add_plot(xx, yy, Color.Green, "EGL")
 End Sub
 Private Sub load_intake_wsp()
 If Not (IsNothing(frm_main.intake_des)) Then 'if intake computations were made or not

 308

 Me.ToolBarButton2.DropDownMenu = Me.mnu_graph_int
 'readjust xsec for plot
 With frm_main.intake_des
 xsec_int(0) = .xsec_pro(0)
 xsec_int(1) = .xsec_pro(1)
 xsec_int(2) = New xsec_hyd(.xsec_pro(1))
 xsec_int(2).km_xsec_p = .xsec_pro(2).km_xsec_p
 xsec_int(3) = .xsec_pro(2)
 xsec_int(4) = .xsec_pro(3)
 xsec_int(5) = .xsec_pro(4)
 xsec_int(6) = .xsec_pro(5)
 xsec_int(7) = .xsec_pro(6)
 xsec_int(8) = New xsec_hyd(.xsec_pro(6))
 xsec_int(8).km_xsec_p = .xsec_pro(7).km_xsec_p
 xsec_int(9) = .xsec_pro(7)
 xsec_int(10) = .xsec_pro(8)
 xsec_int(11) = New xsec_hyd(.xsec_pro(8))
 xsec_int(11).km_xsec_p -= 1
 End With
 Me.add_int_plot_Kb()
 Me.add_int_plot_HGL()
 Me.add_int_plot_EGL()
 Me.show_charts("Intake Water Surface Elevations", "Horizantal distance (m.)", "Elevations (m.)")
 End If
 End Sub
#End Region
#Region "spilway sluiceway rating curve"
 Private Sub load_K_versus_Q()
 If Not (IsNothing(frm_main.splw_Q)) Then 'if splw_Q computations were made or not
 Me.ToolBarButton2.DropDownMenu = Me.mnu_graph_splw_Q
 Me.add_plot_K_Qtot()
 Me.add_plot_K_Qsplw()
 Me.add_plot_K_Qslcw()
 Me.show_charts("Rating Curve", "Discharges: Q (m3/s.)", "Water surface elevations: K (m.)")
 Me.chart.XAxis1.WorldMin = 0
 End If
 End Sub
 Private Sub add_plot_K_Qtot()
 With frm_main.splw_Q
 Me.add_plot(.input_data_pro.Q, .K_pro, Color.Green, "Total Discharge")
 End With
 End Sub
 Private Sub add_plot_K_Qsplw()
 With frm_main.splw_Q
 Me.add_plot(.Qs_pro, .K_pro, Color.DarkBlue, "Spillway Discharge")
 End With
 End Sub
 Private Sub add_plot_K_Qslcw()
 With frm_main.splw_Q
 Me.add_plot(.Qsl_pro, .K_pro, Color.Blue, "Sluiceway Discharge")
 End With
 End Sub
#End Region
#Region "seepage path"
 Private Sub load_seepage_path()
 If Not (IsNothing(frm_main.seepage_des)) Then 'if splw_Q computations were made or not
 Me.ToolBarButton2.DropDownMenu = Me.mnu_graph_seepage
 Me.add_plot_seepage_path()
 Me.show_charts("Seepage Path (Lane's Creep Analysis)", "Horizantal distances: (m.)", "Elevations:
(m.)")
 End If

 309

 End Sub
 Private Sub add_plot_seepage_path()
 Dim i As Integer
 Dim epsilon As Single = 0.5
 With frm_main.seepage_des
 Dim xx(.inp_creep_path_pro.GetUpperBound(0)) As Single
 Dim yy(.inp_creep_path_pro.GetUpperBound(0)) As Single
 For i = 0 To xx.GetUpperBound(0)
 xx(i) = .inp_creep_path_pro(i).x
 yy(i) = .inp_creep_path_pro(i).y
 Next
 'adjust u/s blanket thickness for visuality
 xx(2) += epsilon
 xx(3) += epsilon
 Me.add_plot(xx, yy, Color.Blue, "Seepage path")
 End With
 End Sub
#End Region
#Region "optimization Bmain costs"
 Private Sub load_opt_Bmain_costs()
 If (Not IsNothing(frm_main.try_summary_results) And Not
IsNothing(frm_main.try_summary_results_OK)) Then 'if intake computations were made or not
 Me.ToolBarButton2.DropDownMenu = Nothing
 Me.add_plot_dweir_costs_all()
 Me.add_plot_dweir_costs_accepted()
 Me.show_charts("Cost Analysis", "Bottom width: B(m.)", "Cost: CT ($)")
 End If
 End Sub
 Private Sub add_plot_dweir_costs_all()
 Dim i As Integer
 Dim xx(frm_main.try_summary_results.GetUpperBound(0)) As Single
 Dim yy(frm_main.try_summary_results.GetUpperBound(0)) As Single
 For i = 0 To frm_main.try_summary_results.GetUpperBound(0)
 xx(i) = frm_main.try_summary_results(i).B_main
 yy(i) = frm_main.try_summary_results(i).cost_dweir
 Next
 Me.add_plot(xx, yy, Color.Red, "costs_all")
 End Sub
 Private Sub add_plot_dweir_costs_accepted()
 Dim i As Integer
 Dim xx(frm_main.try_summary_results_OK.GetUpperBound(0)) As Single
 Dim yy(frm_main.try_summary_results_OK.GetUpperBound(0)) As Single
 For i = 0 To frm_main.try_summary_results_OK.GetUpperBound(0)
 xx(i) = frm_main.try_summary_results_OK(i).B_main
 yy(i) = frm_main.try_summary_results_OK(i).cost_dweir
 Next
 Me.add_plot(xx, yy, Color.Blue, "costs_accepted")
 End Sub
#End Region 'to be added
 Private Sub chart_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
chart.Load
 End Sub
 Private Sub MenuItem3_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem3.Click
 Me.PrintPreviewDialog1.ShowDialog()
 End Sub
 Private Sub MenuItem1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem1.Click
 Me.PageSetupDialog1.ShowDialog()
 End Sub

 310

 Private Sub MenuItem4_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem4.Click
 If PrintDialog1.ShowDialog() = DialogResult.OK Then
 Try
 PrintDocument1.Print()
 Catch
 MsgBox("An error occured during printing", MsgBoxStyle.Exclamation, "WIN-DWEIR / Printout")
 End Try
 End If
 End Sub
 Private Sub PrintDocument1_PrintPage(ByVal sender As System.Object, ByVal e As
System.Drawing.Printing.PrintPageEventArgs) Handles PrintDocument1.PrintPage
 Me.chart.Draw(e.Graphics, e.MarginBounds)
 e.HasMorePages = False
 End Sub
 Private Sub MenuItem7_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem7.Click
 If Not Me.MenuItem7.Checked Then
 Me.add_int_plot_Kb()
 Me.MenuItem7.Checked = Not Me.MenuItem7.Checked
 Else
 If series.Count > 2 Then
 Me.remove_plot("Ground surface")
 Me.MenuItem7.Checked = Not Me.MenuItem7.Checked
 End If
 End If
 Me.show_charts("Intake Water Surface Elevations", "Horizantal distance (m.)", "Elevations (m.)")
 End Sub
 Private Sub MenuItem8_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem8.Click
 If Not Me.MenuItem8.Checked Then
 Me.add_int_plot_HGL()
 Me.MenuItem8.Checked = Not Me.MenuItem8.Checked
 Else
 If series.Count > 2 Then
 Me.remove_plot("HGL")
 Me.MenuItem8.Checked = Not Me.MenuItem8.Checked
 End If
 End If
 Me.show_charts("Intake Water Surface Elevations", "Horizantal distance (m.)", "Elevations (m.)")
 End Sub
 Private Sub MenuItem9_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem9.Click
 If Not Me.MenuItem9.Checked Then
 Me.add_int_plot_EGL()
 Me.MenuItem9.Checked = Not Me.MenuItem9.Checked
 Else
 If series.Count > 2 Then
 Me.remove_plot("EGL")
 Me.MenuItem9.Checked = Not Me.MenuItem9.Checked
 End If
 End If
 Me.show_charts("Intake Water Surface Elevations", "Horizantal distance (m.)", "Elevations (m.)")
 End Sub
 Private Sub MenuItem10_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem10.Click
 If Not Me.MenuItem10.Checked Then
 Me.add_plot_K_Qtot()
 Me.MenuItem10.Checked = Not Me.MenuItem10.Checked
 Else
 If series.Count > 2 Then

 311

 Me.remove_plot("Total Discharge")
 Me.MenuItem10.Checked = Not Me.MenuItem10.Checked
 End If
 End If
 Me.show_charts("Rating Curve", "Discharges: Q (m3/s.)", "Water surface elevations: K (m.)")
 End Sub
 Private Sub MenuItem11_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem11.Click
 If Not Me.MenuItem11.Checked Then
 Me.add_plot_K_Qsplw()
 Me.MenuItem11.Checked = Not Me.MenuItem11.Checked
 Else
 If series.Count > 2 Then
 Me.remove_plot("Spillway Discharge")
 Me.MenuItem11.Checked = Not Me.MenuItem11.Checked
 End If
 End If
 Me.show_charts("Rating Curve", "Discharges: Q (m3/s.)", "Water surface elevations: K (m.)")
 End Sub
 Private Sub MenuItem12_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem12.Click
 If Not Me.MenuItem12.Checked Then
 Me.add_plot_K_Qslcw()
 Me.MenuItem12.Checked = Not Me.MenuItem12.Checked
 Else
 If series.Count > 2 Then
 Me.remove_plot("Sluiceway Discharge")
 Me.MenuItem12.Checked = Not Me.MenuItem12.Checked
 End If
 End If
 Me.show_charts("Rating Curve", "Discharges: Q (m3/s.)", "Water surface elevations: K (m.)")
 End Sub
 Private Sub MenuItem14_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem14.Click
 If Not Me.MenuItem14.Checked Then
 Me.add_plot_seepage_path()
 Me.MenuItem14.Checked = Not Me.MenuItem14.Checked
 Else
 If series.Count > 2 Then
 Me.remove_plot("Seepage path")
 Me.MenuItem14.Checked = Not Me.MenuItem14.Checked
 End If
 End If
 Me.show_charts("Seepage Path (Lane's Creep Analysis)", "Horizantal distances: (m.)", "Elevations:
(m.)")
 End Sub
 Private Sub MenuItem13_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem13.Click
 If Not Me.MenuItem13.Checked Then
 Me.add_plot_levees_Kb()
 Me.MenuItem13.Checked = Not Me.MenuItem13.Checked
 Else
 If series.Count > 2 Then
 Me.remove_plot("Bottom EL")
 Me.MenuItem13.Checked = Not Me.MenuItem13.Checked
 End If
 End If
 Me.show_charts("Crest Elevation of u/s Levees", "Horizantal distance (m.)", "Elevations (m.)")
 End Sub
 Private Sub MenuItem15_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem15.Click

 312

 If Not Me.MenuItem15.Checked Then
 Me.add_plot_levees_HGL()
 Me.MenuItem15.Checked = Not Me.MenuItem15.Checked
 Else
 If series.Count > 2 Then
 Me.remove_plot("HGL")
 Me.MenuItem15.Checked = Not Me.MenuItem15.Checked
 End If
 End If
 Me.show_charts("Crest Elevation of u/s Levees", "Horizantal distance (m.)", "Elevations (m.)")
 End Sub
 Private Sub MenuItem16_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem16.Click
 If Not Me.MenuItem16.Checked Then
 Me.add_plot_levees_EGL()
 Me.MenuItem16.Checked = Not Me.MenuItem16.Checked
 Else
 If series.Count > 2 Then
 Me.remove_plot("EGL")
 Me.MenuItem16.Checked = Not Me.MenuItem16.Checked
 End If
 End If
 Me.show_charts("Crest Elevation of u/s Levees", "Horizantal distance (m.)", "Elevations (m.)")
 End Sub
 Private Sub MenuItem17_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem17.Click
 If Not Me.MenuItem17.Checked Then
 Me.add_plot_levees_El_crest()
 Me.MenuItem17.Checked = Not Me.MenuItem17.Checked
 Else
 If series.Count > 2 Then
 Me.remove_plot("Crest EL")
 Me.MenuItem17.Checked = Not Me.MenuItem17.Checked
 End If
 End If
 Me.show_charts("Crest Elevation of u/s Levees", "Horizantal distance (m.)", "Elevations (m.)")
 End Sub
 Private Sub MenuItem18_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem18.Click
 If Not Me.MenuItem18.Checked Then
 Me.add_plot_div_wsp_Kb()
 Me.MenuItem18.Checked = Not Me.MenuItem18.Checked
 Else
 If series.Count > 2 Then
 Me.remove_plot("Bottom EL")
 Me.MenuItem18.Checked = Not Me.MenuItem18.Checked
 End If
 End If
 Me.show_charts("WSP of diversion canal", "Horizantal distance (m.)", "Elevations (m.)")
 End Sub
 Private Sub MenuItem19_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem19.Click
 If Not Me.MenuItem19.Checked Then
 Me.add_plot_div_wsp_HGL()
 Me.MenuItem19.Checked = Not Me.MenuItem19.Checked
 Else
 If series.Count > 2 Then
 Me.remove_plot("HGL")
 Me.MenuItem19.Checked = Not Me.MenuItem19.Checked
 End If
 End If

 313

 Me.show_charts("WSP of diversion canal", "Horizantal distance (m.)", "Elevations (m.)")
 End Sub
 Private Sub MenuItem20_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem20.Click
 If Not Me.MenuItem20.Checked Then
 Me.add_plot_div_wsp_EGL()
 Me.MenuItem20.Checked = Not Me.MenuItem20.Checked
 Else
 If series.Count > 2 Then '1 for line 1 for points
 Me.remove_plot("EGL")
 Me.MenuItem20.Checked = Not Me.MenuItem20.Checked
 End If
 End If
 Me.show_charts("WSP of diversion canal", "Horizantal distance (m.)", "Elevations (m.)")
 End Sub
 Private Sub MenuItem5_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem5.Click
 Me.MenuItem5.Checked = Not Me.MenuItem5.Checked
 If Me.MenuItem5.Checked Then
 Me.chart.XAxis1.GridDetail = Axis.GridType.Coarse
 Me.chart.YAxis1.GridDetail = Axis.GridType.Coarse
 Else
 Me.MenuItem6.Checked = False
 Me.chart.XAxis1.GridDetail = Axis.GridType.None
 Me.chart.YAxis1.GridDetail = Axis.GridType.None
 End If
 Me.chart.Refresh()
 End Sub
 Private Sub MenuItem2_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem2.Click
 Me.MenuItem2.Checked = Not Me.MenuItem2.Checked
 Me.chart.ShowLegend = Me.MenuItem2.Checked
 Me.chart.Refresh()
 End Sub
 Private Sub MenuItem6_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
MenuItem6.Click
 Me.MenuItem6.Checked = Not Me.MenuItem6.Checked
 If Me.MenuItem6.Checked Then
 Me.MenuItem5.Checked = True
 Me.chart.XAxis1.GridDetail = Axis.GridType.Fine
 Me.chart.YAxis1.GridDetail = Axis.GridType.Fine
 Else
 Me.chart.XAxis1.GridDetail = Axis.GridType.Coarse
 Me.chart.YAxis1.GridDetail = Axis.GridType.Coarse
 End If
 Me.chart.Refresh()
 End Sub
End Class
'*---*
'| END OF FORM-11 |
'*---*

'*---*
'| NOTE: |
'| The program uses two pre-compiled modules whose names are “scpl2.dll” and “CustomControls.dll”. Since|
'| they are pre-compiled modules, their source codes are not available, so the source codes of these modules |
'| can not be presented here. Program developer should be accessed for the integration of these modules into |
'| the program. |
'*---*

