
 iv

A STUDY IN COMBINATORIAL AUCTIONS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

BETÜL B�LGE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

JULY 2004

 v

Approval of the Graduate School of Informatics

 Prof. Dr. Ne�e YALABIK
 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master
of Science.

 Assoc. Prof.Dr. Onur DEM�RÖRS
 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Ferda Nur ALPASLAN

 Supervisor

Examining Committee Members

Prof. Dr. Semih B�LGEN _____________________

Prof. Dr. Faruk POLAT _____________________

Assoc. Prof. Dr. Ferda Nur ALPASLAN _____________________

Assist. Prof. Dr. Erkan MUMCUO�LU _____________________

Dr. Altan KOÇY���T _____________________

 vi

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this wok.

Betül Bilge

 iv

ABSTRACT

A STUDY IN COMBINATORIAL AUCTIONS

Bilge, Betül

M.S., Department of Information Systems

Supervisor: Assoc. Prof. Dr. Ferda Nur Alpaslan

July 2004, 101 pages

By the emergence of electronic commerce and low transaction costs on the Internet, an

interest in the design of new auction mechanisms has been arisen. Recently many

researchers in computer science, economics, business, and game theory have presented

many valuable studies on the subject of online auctions, and auctions theory.

When faced from a computational perspective, combinatorial auctions are perhaps the

most challenging ones. Combinatorial auctions, that is, auctions where bidders can bid

on combinations of items, tend to lead to more efficient allocations than traditional

auction mechanisms in multi-item multi-unit situations where the agents’ valuations of

the items are not additive. However, determining the winners to maximize the revenue

is NP-complete.

 v

In this study, we first analyze the existing approaches for combinatorial auction

problem. Based on this analysis, we then choose three different approaches, which are

search approach, descending simultaneous auctions approach, and IP (Integer

Programming) formulation approach to build our models. The performances of the

models are compared using computer simulations, where we model bandwidth

allocation system. Finally a combinatorial auction tool is built which can be used for

online auctions and e-procurement systems.

Keywords: Auctions, Combinatorial Auctions, Multi-item multi-unit auctions,

Simultaneous auctions, Integer Programming, Linear Programming, e-commerce, e-

procurement, Winner determination, Simulation, Bandwidth allocation

 vi

ÖZ

TÜMLE��K AÇIK ARTIRMALAR ÜZER�NE B�R ÇALI�MA

Bilge, Betül

Master, Bili�im Sistemleri Bölümü

Tez yöneticisi: Doç. Dr. Ferda Nur Alpaslan

Temmuz 2004,101 sayfa

Elektronik i�in ilerlemesi ve i�lem ücretlerinin �nternette dü�ük olması sebebiyle yeni

açık artırma mekanizmaları tasarlamak için ilgi artmı�tır. Yakın zamanda bilgisayar

bilimleri, ekonomi, i�, ve oyun teorisi üzeride çalı�an pek çok bilim adamı açık artırma

teorileri üzerinde çok de�erli çalı�malar yapmı�lardır.

��lemsel açıdan bakıldı�ında, tümle�ik açık artırmalar en göze çarpan açık artırma türü

olarak kar�ımıza çıkmaktadır. Tümle�ik açık artırmalarda, teklif verenler satılan

parçaların bile�imine bir teklif verebilir. Bu tür açık artırmalar, teklif verenlerin satılan

parçalara biçtikleri de�erin toplamsal olmadı�ı, çok-parça çok-birim olan açık artırma

modellerinde geleneksel açık artırmalara gore çok daha verimli payla�tırma sa�lar.

Ama tümle�ik açık artırmalarda kazancı azami hadde çıkaracak, kazanaları

belirlemenin NP-Complete oldu�u görülmüstür.

 vii

Bu çalı�mada, önce tümle�ik açık artırma problemi için yapılmı� olan yakla�ımlar

incelenmi�tir. Bu inceleme sonunda üç farklı yakla�ım seçilmi� ve bu yakla�ımlar

modellenmi�tir. Bu yakla�ımlar : arama yolu, e�zamanlı azalan acık artırma yolu, ve

sayısal programlama yoludur. Bu modellerin performansı yapılan simulasyonla

kar�ıla�tırılmı�tır. Bu simulasyonda bant geni�li�i payla�tırımı modellenmi�tir. Son

olarak bir tümle�ik açık artırma aracı yapılmı�tır.

Anahtar Kelimeler : Açık Artırma, Tümle�ik açık artırma, Cok-parça çok-birim açık

artırmaları, E�zamanlı açık artırmalar, Sayısal programlama, Lineer programlama, e-i�,

e-tedarik, Kazanan belirleme, Simulasyon, Bant geni�li�i payla�tırımı

 viii

Aileme,

Teman, Hayrettin, Bu�ra ve Burak Bilge.

Rüzgarda bir yapraktım,

Dalınıza tutundum.

Ya�murda bir damlaydım,

Çiçe�inize çi� oldum.

Sizsiz bu kocaman ormanda kaybolurdum.

Her�ey için

TE�EKKÜRLER…

 ix

ACKNOWLEDGEMENTS

I express sincere thanks to my advisor Assoc. Prof. Dr. Ferda Nur Alpaslan for

providing insight and guidance as well as encouragement and inspiration throughout

this research.

Special thanks go to my friends Gökhan Erbay, Beyza Özkan, Fatma Cemile Serçe and

Nigar �en Kökta� for their valuable comments, suggestions, and supports.

Finally, my deepest thanks are to my parents and brothers who supported and motivated

me with their never ending patience, tolerance and understanding throughout the study.

Thanks are also to everyone who helped me directly or indirectly in the development

and writing of this thesis by providing guidance and support.

 x

TABLE OF CONTENTS

ABSTRACT.. iv

ÖZ ... vi

ACKNOWLEDGEMENTS.. ix

TABLE OF CONTENTS... x

LIST OF TABLES.. xiii

LIST OF FIGURES .. xiv

LIST OF ABBREVIATIONS AND ACRONYMS ... xvi

CHAPTER

1 Introduction.. 1

1.1 Background... 2

1.1.1 Negotiation Models.. 3

1.2 Problem Statement.. 6

1.3 Road Map.. 9

2 Review of Literature .. 10

2.1 Introduction to Auctions ... 10

2.2 Auction Settings.. 11

2.3 The Standard Auction Types .. 11

2.4 Evaluation Criteria.. 14

2.4.1 Social Welfare.. 15

2.4.2 Pareto Efficiency.. 15

 xi

2.4.3 Individual Rationality .. 15

2.4.4 Stability.. 15

2.4.5 Computational Efficiency .. 16

2.4.6 Distribution and Communication Efficiency... 16

2.4.7 Incentive Compatibility ... 16

2.5 Classification of Auctions... 16

2.5.1 People Aspect .. 19

2.5.2 Goods Aspect... 19

2.5.2.1 Number of items: ... 19

2.5.2.2 Number of attributes: ... 20

2.5.2.3 Homogeneity:... 20

2.5.3 Process Aspect ... 20

2.5.3.1 Reverse versus forward (Descending vs. Ascending): 20

2.5.3.2 Open-cry versus sealed-bid:... 21

2.5.3.3 Rounds of auction: ... 21

2.5.3.4 Discriminative versus non-discriminative: .. 21

2.5.3.5 Non-Repudiation:... 22

2.5.3.6 Sequential versus Parallel versus combinatorial:............................... 22

2.6 Winner Determination in Combinatorial Auctions... 27

2.6.1 Integer Programming Formulation Approach to Combinatorial Auctions

 29

2.6.1.1 Dynamic Programming.. 31

2.6.1.2 Generalized Vickrey Auction .. 31

2.6.1.3 More Compact CAP Representation.. 35

2.6.2 Search Solutions to CAP.. 36

2.7 Multi-item Multi-unit Setting Formulation... 43

3 Implementation .. 44

3.1 Introduction... 45

3.2 Detailed Descriptions.. 48

3.2.1 Information about Models ... 48

3.2.1.1 The Search Model (SM) .. 49

 xii

3.2.1.2 The Descending Simultaneous Auctions Model (DSAM) 55

3.2.1.3 IP Formulation Model (IPFM)... 61

3.2.2 A Simple Combinatorial Auction Tool (CATool)................................. 64

3.2.2.1 Functional Requirements ... 66

3.2.2.2 Design of the CATool.. 69

3.2.2.3 User Interface of CATool .. 70

4 Experimental Results ... 76

4.1 Introduction... 76

4.2 Simulation Model ... 76

4.3 Simulation Parameters .. 77

4.4 Evaluation Criteria.. 77

5 Conclusion and Future Work... 81

REFERENCES .. 84

APPENDICES ... 88

A: Class and Sequence Diagrams .. 89

B: Simulation Runs.. 96

 xiii

LIST OF TABLES

Table 1 Adjacency List structure ... 52

Table 2 Use Case Descriptions .. 67

 xiv

LIST OF FIGURES

Figure 1 three different possible competitive negotiation models in an e-marketplace

(from [12]) ... 3

Figure 2 A classification of classic auction types (from [34])....................................... 17

Figure 3 SEARCH1. (From [24]) .. 38

Figure 4 Bidtree data structure and stopmask (from [24])... 39

Figure 5 Branch-on-items vs. Branch-on-bids (from [26]).. 42

Figure 6 Component Diagram ... 46

Figure 7 Main Class Diagram.. 49

Figure 8 Example for articulation points (from [26]) .. 54

Figure 9 Server side structure .. 64

Figure 10 Client Side structure .. 65

Figure 11 UC01 Use Case Model ... 66

Figure 12 CATool starting screen.. 71

Figure 13 Index.html.. 72

Figure 14 Preview of the created products Html ... 73

Figure 15 After the auction end time arrives and the winners found 74

Figure 16 Mail Form.. 75

Figure 17 Network Model (from [30]) .. 77

Figure 18 Total revenue of the network... 78

Figure 19 Bandwidth allocation percentages... 78

Figure 20 Time to find the solution ... 79

 xv

A 1 MainClass Initialization Sequence Diagram part1 (Initialization of the Search

Model).. 89

A 2 Class Diagram for BOBalgorithm Package .. 90

A 3 MainClass Initialization Sequence Diagram part3 (Initialization of the Descending

Simultaneous Auctions Model) ... 91

A 4 Class Diagram for SIMULalgorithm Package.. 92

A 5 MainClass Initialization Sequence Diagram part2 (Initialization of the IP

Formulation Model)... 93

A 6 Class Diagram for GVAalgorithm package.. 93

A 7 Class Diagram of the CATool... 94

A 8 Class Diagram for Threads Package ... 95

A 9 Class Diagram for Simulator Package .. 95

 xvi

LIST OF ABBREVIATIONS AND ACRONYMS

API Application Programming Interface

AUSM Adaptive User Selection Mechanism

BOB Branch on Bids

CABOB Combinatorial Auction Branch on Bids

CAP Combinatorial Auction Problem

CATool Combinatorial Auction Tool

DFS Depth First Search

DSAM Descending Simultaneous Auctions Model

FCC Federal Communication Commission

GLPK GNU Linear Programming Kit

GVA Generalized Vickrey Auction

GUI Graphical User Interface

IDA* Iterative deepening A* Search

IP Integer Programming

IPFM IP Formulation Model

LDS Limited Discrepancy Search

LP Linear Programming

MIP Mixed Integer Programming

OR Operations Research

SM Search Model

SPP Set Packing Problem

 xvii

VCG Vickrey Clarke Groves

VCL Visual Component Library

 1

CHAPTER 1

1 Introduction a

As the Internet has grown and become widely used, commerce has been shifted to this

world. Recently many researchers in computer science, economics, business and game

theory are interested in e-commerce, and a very rapid progress can be seen in the area.

According to the Object Management Group (OMG, http://www.omg.org), commerce

is at its heart an exchange of information. Electronic marketplaces are places where

buyers and sellers can come together, exchange information, negotiate and transact as

in traditional marketplaces. In the recent years, agent technology has also been applied

to e-commerce. By addition of the software agent technologies several time consuming

stages of commerce can be automated, since unlike traditional software, software

agents are personalized, continuously running, and semi-autonomous [18]. As a result,

many agent-oriented software systems have been developed that model different

commerce areas, for example Fox et al. [8] demonstrated agent-based supply-chain

architectures and Arpınar et al. [1] proposed an electronic marketplace called

MOPPET, where the commerce process in the marketplace was modeled as agent-

based workflows.

It is seen that auctions are one of the most successful negotiation protocol and account

for an enormous volume of transactions on the Internet. In an auction, a seller sells

goods to several potential buyers. Determining the auction’s winner and its payment is

trivial in single-item auctions. The problem is also computationally tractable in multi-

item (homogeneous or heterogeneous) auctions when agents’ valuations for different

 2

items are additive, meaning that total valuation can be determined in an additive

manner by their valuations for single items. But the problem starts when bidder (buyer)

agents have preferences over bundles, i.e. a bidder’s valuation for the bundle need not

to be equal to the sum of his valuations of the individual items in the bundle, that is

valuation need not to be additive. This problem is referred to as the combinatorial

auction problem. In a combinatorial auction, a seller is faced with a set of price offers

for various bundles of goods, and his aim is to allocate the goods in a way that

maximizes his revenue.

In this study, we focus on combinatorial auctions problem; especially multi-item multi-

unit auctions in which bidders have preferences over bundles and their valuation for the

bundle is not additive. After reviewing the previous works, we decide to build three

different models using different approaches of the previous works. The performance of

each model is compared and analyzed using computer simulation where we model

bandwidth allocation among multiple users. Based on the performance of the models

and some other situations, one of the models is chosen and a simple web server is built

which has the ability of performing combinatorial auction and can be used for online

auctions, and e-procurement systems and can be used as a test bed for combinatorial

auctions

1.1 Background

E-marketplaces which employ multi-agent technology can be analyzed as marketplaces

that is entirely open and decentralized, i.e. no single site controls the market, and each

participant initializes an agent that will act in the interest of its owner, or as

marketplaces where the participants agree upon certain set of rules about what can be

bought and sold in this e-marketplace and how this can be done, i.e. they negotiate.

Negotiation is a crucial part of commercial activities in physical as well as in electronic

markets.

 3

Guttman et al. described negotiation as a form of decision-making where two or more

parties jointly search a space of possible solutions in order to reach a consensus [12].

Game Theory and economics describe such an interaction in terms of protocols and

strategies, where the protocols include the rules (i.e. legal actions) of the game [12].

Guttman et al. [12] analyzed several electronic markets and their corresponding

negotiation protocols from economic, game theoretic and business perspectives. Three

different possible competitive negotiation models in an e-marketplace can be seen in

Figure 1 which is taken from [12].

Figure 1 three different possible competitive negotiation models in an e-marketplace {seller is

denoted by M (“merchant”) and the buyer by C (“consumer”)}(from [12])

1.1.1 Negotiation Models

The previous existing marketplaces are categorized according to the classification

schema given in Figure 1. These are as follows:

 4

Negotiation Model A

Comparison-shopping agents (also known as shopping bots) fit in this category.

Shopping agent research dates to the Web’s early years. Some comparison – shopping

agents are given below.

BargainFinder, which was developed in 1995 by Andersen Consulting, was one of the

first shopping agent. It was implemented for getting and comparing prices for CD’s

from virtual retailers. However, because that some retailers blocked access since they

did not want to complete on price, BargainFinder stopped operation [7].

Ringo, which was one of the earliest commercial software-agent technologies, makes

personalized recommendations for music albums and artists on the basis of

collaborative filtering by using options of like-minded users. [29].

Menczer at al. [7] claimed that most of the comparison-shopping agents that are

available to consumers were biased, i.e. presenting results only from partner companies

that pay fees to participate. In order to make user-centered business viable, they

developed IntelliShopper, which learns shoppers’ individual preferences and

autonomously monitors vendor sites for items matching with those preferences.

Negotiation Model B

Online auctions fit in this category. Online auctions represent a model for the way the

Internet is shaping the new economy. Online auctions are a very hot topic which many

researches are interested in. Some online auction agents are given below.

eBay [6] supports, among other features, an English auction with reserve price and

proxy bidding for the bidders. eBay’s over 10 million monthly visitors provide the

necessary critical mass of buyers (bidders) and sellers to set market prices for their

goods. The more bids that come in, the more competition there is, and higher prices are

more possible. On eBay, the seller can set an open minimum bid that serves as the

starting price for the auction. Additionally, the seller also has the option of setting a

 5

hidden reserve price below which she is not obligated to sell. Once the bidding level

exceeds the reserve, bidder is indicated.

Another interesting system is eAuctionHouse, which supports several important

features including bidding via software agents and combinatorial auctions that

explained below. Sandholm et al. [25] states that eAuctionHouse is, to their knowledge,

the first and currently only Internet auction site that supports combinatorial auctions

[22, 23, 24, 26, 27, 31]. They also build another system called Nomad, which is a

mobile agent system, and integrate it with eAuctionHouse. With the Nomad system,

mobile agents travel to the eAuctionHouse site and practice in auctions on the user’s

behalf [25].

Negotiation Model C

 In this category the negotiation is bilateral. There are fewer existing systems in this

category. Below is a list of such systems.

Kasbah is one of the well known web-based multi-agent consumer-to-consumer

transactions system, which has buyer (bidder) and seller agents [12, 18]. Negotiations

between Kasbah buying and selling agents are bilateral, competitive and

straightforward. A user who wants to buy or sell a good creates an agent. To initialize

an agent, a user inputs to the system what s/he wants to buy or sell, the desired price,

the highest acceptable price for buying agents, the lowest acceptable price for selling

agents, and the date s/he wants the transaction to be completed. The user then may

choose for his agent one of several predefined negotiation strategies, gives it some

strategic direction, and sends it off into a centralized agent marketplace. Kasbah agents

seek out potential buyers or sellers and negotiate with them on behalf of their owners

[12, 18].

Tete-a-Tete is another important system that provides a unique negotiation approach to

retail sales [18]. Tete-a-Tete’s consumer owned shopping agents merchant owned sales

agents cooperatively negotiate across multiple terms of a transaction like warranties,

 6

delivery times, services contacts, return policies, gift services, and other merchant value

added services, which is different many of the other online negotiation systems that

competitively negotiate over price. Tete-a-Tete’s negotiations include an exchange of

XML-based proposals, critiques, and counter proposals. A shopping agent may receive

proposals from multiple sales agents. The shopping agent evaluates and orders them

based on how they fit their owner’s preferences. [18]

Lee et al. propose an auction agent system that is called MoCASS (Mobile

collaborative auction agent system) [17]. MoCAAS uses a collaborative mobile agent

and brokering mechanism, which mediates between the buyer and seller and executes

bidding asynchronously and autonomously. It consists of five main components, which

are buyer agent, broker agent, bid agent, and auctioneer agent. In MoCASS when a new

auctioneer agent is created, it registers itself with a broker agent. The buyer submits the

item’s identity and reserve-price to the buyer agent. The buyer agent submits the data

received to the broker agent. The broker agent searches for a recommendable

auctioneer agent and computes the expected price, then returns the results to the buyer

agent. The buyer selects an auctioneer agent among the auctioneer agents

recommended by the broker agent. The buyer agent creates the bid agent, and then

dispatches it to the selected auctioneer agent. The dispatched bid agent registers itself

with the auctioneer-agent, reads the auction information from the auctioneer agent’s

blackboard, and executes the bidding autonomously. The buyer agent receives the

intermediate auction information from the bid agent, and controls the bid agent. When

the auction ends, the auctioneer agent unregisters itself with the broker agent, and the

bid agent sends a ‘win’ or ‘fail’ message to the buyer agent [17].

1.2 Problem Statement

After the review of negotiation models and some of the previous work done on e-

marketplaces, it is seen that auctions are one of the most successful negotiation protocol

and account for an enormous volume of transactions on the Internet. In fact it should be

noted that fixed-price sale is a special case of negotiation. Benyoucef et al. describe the

 7

most basic form of negotiation as no negotiation at all i.e. fixed-price sale [2]. Most e-

marketplaces operate using this principle. Auctions are a bit more complex, but

auctioning is the most popular negotiation strategy at present. Auctions are also a

critical enabler for negotiations in agent-based electronic commerce environments.

Some agent environments focus on the intelligence of agents and concentrate on

teaching the agents effective strategies for negotiation. Sandholm et al. [25] also state

that electronic auctions are emerging as one of the most successful e-commerce

technologies among the current business models. Courcoubetis et al. [4] describe the

advantages of the auctions as, simplicity in determining market-based prices, and

efficiency, since as stated if the auction is properly designed, goods can be acquired by

those that value them most. Auctions may lead to higher revenues compared to

traditional methods of selling goods.

There are many possible ways to classify auctions such as ascending or descending,

single-item or multi-item, single or double, sealed-bid or open-cry, sequential or

parallel, and etc [3,5,19,21,22,23,24,26,27,31,32]. More information about auctions can

be seen in chapter 2. But as Tennenholtz [31] points out, the design of auctions

introduces deep problems and challenges both from game-theoretic and computational

perspectives.

In an auction, a seller sells goods to several potential buyers. Determining the auction’s

winner and its payment is trivial in single-item (i.e. single-object) auctions. The

problem is also computationally tractable in multi-item (homogeneous or

heterogeneous) auctions when agents’ valuations for different items are additive,

meaning that total valuation can be determined in an additive manner by their

valuations for single items. But the problem starts when bidder (buyer) agents have

preferences over bundles, i.e. a bidder’s valuation for the bundle need not to be equal

to the sum of his valuations of the individual items in the bundle, that is valuation need

not to be additive. This problem is referred to as the combinatorial auction problem and

it is generally intractable. Determining the winners in order to maximize revenue is NP-

complete [3, 19, 23, 24, 26, 31, 32].

 8

Examples of goods which are thought to exhibit such a property including procurement

of indirect materials (like PC, printer, UPS), logistics marketplaces, airport landing

slots, land parcels, oil leases, shipping space, markets for trucking services, electricity

market, electromagnetic spectrum licenses, bandwidth allocations [4,30], and etc. In

fact there are many other practical conditions where we need to use combinatorial

auctions e.g. when buying interrelated items. For example, a vacation package can be

considered as consisting of three items: a transportation ticket, a hotel room, and a ski

trip. The three items are obviously interrelated since the consumer would have to travel

to the location where the ski trip journey initiates on the date of the trip [2]. Another

interesting example is the study of Hunsberger et al. [14]. In their study Hunsberger et

al. present a mechanism based on a combinatorial auction that a group of agents may

use to solve the initial-commitment decision problem (ICDP). ICDP occurs when

rational, autonomous agents encounter an opportunity to collaborate on some group

activity and as a result they must decide whether to commit to doing that activity [14].

When we survey some of the previous works that are done on the multi-item auctions

in which bidders have preferences over bundles (i.e. combinatorial auction problem)

considering the computational aspects, we see that the previous works can be

categorized into three parts. One part tries to solve the unrestricted problem using

search algorithms [23, 24, 26], second part tries to solve the problem using OR

(Operation Research) methodologies and/or deals with the identification of tractable

cases of the combinatorial auctions problem [31, 32] and the last part deals with the

usage of sequential or simultaneous auctions in order to solve the combinatorial

auctions problem [3, 4, 19].

In this study, we focus on combinatorial auctions problem; especially multi-item multi-

unit auctions in which bidders have preferences over bundles and their valuation for the

bundle is not additive. After reviewing the previous works, we decided to build three

different models using different approaches of the previous works. The performance of

each model is compared and analyzed using computer simulation. We model bandwidth

 9

allocation among multiple users, since bandwidth allocation is one of the well known

examples where preferences of bundles are involved. It can be modeled as multi-item

multi-unit auctions which is one of the most complex situations that occur in

combinatorial auction problem. Based on the performance of the models and some

other situations, one of the models is chosen and a simple web server is built which has

the ability of performing combinatorial auction, and can be used for online auctions and

e-procurement systems. The details can be found in chapter 3.

1.3 Road Map

Chapter 2 provides a brief overview of the general concepts used throughout the thesis.

Also in chapter 2 the review of literature can be found.

Chapter 3 describes the models that are built, gives information about the computer

simulation, and the simple web service tool that is built. Also in this chapter, the

improvements of the thesis will be provided in detail.

Chapter 4 gives information about the simulation results.

Chapter 5 presents discussions, future work and conclusion.

 10

CHAPTER 2

2 Review of Literature a

2.1 Introduction to Auctions

A negotiation mechanism is mainly a protocol within which agents interact to

determine a contact. Auctions form a general class of such protocols. McAfee and

McMillan defined auctions as: “An auction is a market institution with an explicit set of

rules determining resource allocation and prices on the basis of bids from the market

participants.” [34].

Auctions are popular, distributed and autonomy-preserving ways of allocating items

such as goods, resources, services, etc. among agents. Auctions are relatively efficient

in terms of process and outcome [24]. Klemperer [16] points out that, auctions provide

a very valuable testing-ground for economic theory -especially for game theory with

incomplete information- since auctions are simple and well-defined economic

environments. Auctions also have many practical computer science applications. By the

emergence of electronic commerce and low transaction costs on the Internet, an interest

in the design of new auction mechanisms has been seen. Several successful web sites

exist for buying and selling items using auction protocols like eBay. Also recently

many researchers in computer science, economics, business and game theory have

presented many valuable studies on the subject of e-commerce, e-negotiations, online

auctions, and auction theory.

 11

In the following sections auction theory, different types of auctions and basic

terminology will be explained in more detail.

2.2 Auction Settings

Sandholm describes three qualitatively different auction settings that depend on how an

agent’s value of the item is formed. They are private value, common value, and

correlated value auctions [9].

In private value auctions, the value of the good depends only on the agent’s own

preferences. As Sandholm explains the key point is that the winning bidder will not

resell the item or get utility from showing it off to others, since in such cases the value

would depend on other agents’ valuations (valuation is the monetary equivalent of

expected utility).

In common value auctions, an agent’s value of an item depends entirely on other

agents’ values of it, i.e. the agents’ value is affected by learning any other agent’s

preferences or information contrast to the private value auctions. For example,

auctioning of treasury bills fit in this category [9,16].

In correlated value auctions, an agent’s value depends partly on its own preferences and

partly on others’ values. For example, a negotiation within a contracting setting best fits

in this category.

2.3 The Standard Auction Types

Four basic types of auctions that are generally used and analyzed are the English (first-

price open-cry, or ascending) auction, Dutch (descending) auction, first-price sealed-

bid auction, and Vickrey (second-price sealed-bid) auction. In this section while

describing the rules of the standard auction types, single-item auctions are given. Multi-

 12

item auctions and differences from single-item auctions can be seen in the next

sections.

In the English (first-price open-cry) auction, each bidder is free to raise his bid. This

auction can also be called “ascending auction”. When no bidder is willing to raise

anymore, the auction ends, and the highest bidder wins the item at the price of his bid.

Sandholm [9] describes an agent’s strategy as a series of bids as a function of his

private value, his prior estimates of other bidder’s valuations, and the past bids of

others. In private value English auctions, a bidder agent’s dominant strategy is to

always bid a small amount more than the current highest bid, and stop when his private

value price is reached. In correlated value auctions, the rules are often varied to make

the auctioneer increase the price at a constant rate or at a rate he thinks appropriate.

Also, sometimes open-exit is used where a bidder has to openly declare exiting without

a re-entering possibility which provides the other bidders more information regarding

the agent’s valuation. As can be seen English auctions i.e. ascending auctions can occur

in multi rounds, i.e. involves iterations. Also in English auctions, especially in

correlated or common value auctions, the problem of waiting other’s bids to see

variation in price, can occur [23].

In the Dutch (can also be called as descending) auction, the seller begins at a high price

and incrementally lowers until some bidder signals acceptance. The Dutch auction is

strategically equivalent to the first-price sealed-bid auction. Because in both games, an

agent’s bid matters only if it is the highest, and no relevant information is revealed

during the auction process. Like English auctions, Dutch auctions can also occur in

multi rounds, i.e. involve iterations. The Dutch auction got its name from the Dutch

flower auction, used in the sale of flowers in the Netherlands. Dutch auction has been

used traditionally for selling single objects such as works of art or single lots of a good

such as cut flowers, fish, etc. Dutch auctions are efficient in terms of real time since

usually the auctions are very short so that a lot of merchandise can be sold.

 13

In the first-price sealed-bid auction, each bidder submits one bid without knowing the

others’ bids. The highest bidder wins the item and pays the amount of his bid. An

agent’s strategy is his bid as a function of his private value and prior beliefs of others’

valuations. In general there is no dominant strategy for bidding in this auction. An

agent’s best strategy is to bid less than his true valuation, but how much less depends

on what the others bid. The agent would want to bid the lowest amount that still wins

the auction (this amount should not exceed his valuation). This auction type does not

involve iterations.

In the Vickrey (also called second-price sealed-bid) auction, each bidder submits one

bid without knowing the others’ bids. The highest bidder wins, but at the price of the

second highest bid. An agent’s strategy is his bid as a function of his private value and

prior beliefs of others’ valuations. Vickrey proves that a bidder’s dominant strategy in a

private value auction is to bid his true valuation [9]. This auction also involves no

iteration as first-price sealed-bid auction.

One problem with all four of the auction protocols is that they are not collusion proof,

i.e. the bidders may coordinate their bid prices so that the bids stay artificially low. In

this time, the bidders get the item at a lower price than they normally would. Collusion

agreements may be done more easily in the English and the Vickrey auctions, so the

first-price sealed-bid and the Dutch auctions are more preferable considering collusion

agreement. Rasmusen shows [9] this in the following example:. Let bidder Smith have

value 20, and every other bidder have value 18 for the auctioned item._ Say that the

bidders collude by deciding that Smith will bid 6 and everyone else will bid 5. In an

English auction this is self-enforcing, because if one of the other agents exceeds the

agreed price 5, Smith will observe this and will increase his bid up to 20, and the

cheater will not gain anything from breaking the coalition agreement. In the Vickrey

auction, the collusion agreement can just as well be that Smith bids 20, and others bid

5, because Smith will get the item for 5 anyway (second-price). Bidding 20 removes

the incentive from any bidder to break the coalition agreement. On the other hand, in a

first-price sealed-bid auction, if Smith bids anything below 20, the other agents have an

 14

incentive to bid higher than Smith’s bid because that would cause them to win the

auction. The same holds for the Dutch auction, meaning that breaking coalition

agreement in Dutch and first-price sealed-bid auctions are easier. However, for

collusion to occur under the Vickrey auction, the first-price sealed-bid auction, or the

Dutch auction, the bidders need to identify each other before the submission of bids. On

the other hand, in the English auction this is not necessary, because the bidders identify

themselves by shouting bids. In this work it is assumed that no coalition agreement will

occur.

A second problem that can occur in the auctions is the insincerity of the auctioneer, i.e.

seller. This can be a problem in the Vickrey auction. The auctioneer may overstate the

second highest bid to the highest bidder unless that bidder can verify it. An overstated

second offer would give the highest bidder a higher bill than he would receive if the

auctioneer were truthful. Rothkopf et al. states that [9] cheating by the auctioneer has

been suggested to be one of the main reasons why the Vickrey auction protocol has not

been widely adopted in auctions among humans. To solve the problem, cryptographic

electronic signatures could be used by the bidders so that the auctioneer could actually

present the second best bid to the winning bidder, and would not be able to alter it. The

other three auction protocols English, Dutch, and first-price sealed-bid, do not suffer

from lying by the auctioneer because the highest bidder gets the item at the price of his

bid. In this work, it is assumed that there is no lying auctioneer.

2.4 Evaluation Criteria

Sandholm [9] lists many types of criteria that can be used to evaluate negotiation

protocols. Auctions can also be evaluated using the criteria below. Takahashi et al. [30]

define the three desirable conditions for the auctions to satisfy as Individual

Rationality, Pareto Efficiency, and Incentive Compatibility.

 15

2.4.1 Social Welfare

Social welfare is the sum of all agents’ payoffs or utilities in a given solution. It

measures the global good of the agents. It can be used as a criterion for comparing

alternative mechanisms by comparing the solutions that the mechanisms lead to. In fact

when measured in terms of utilities, this criterion is a bit arbitrary, since each agent’s

utility function depends on the agent itself.

2.4.2 Pareto Efficiency

Pareto efficiency is another solution evaluation criterion. An allocation is Pareto

efficient if there is no other allocation in which some other individual is better off and

no individual is worse off. So Pareto efficiency measures global good, and it does not

require a utility comparison that depends on each agent as social welfare does. Social

welfare maximizing solutions are a subset of Pareto efficient ones.

2.4.3 Individual Rationality

Participation in a negotiation is individually rational to an agent, if the utility to the

agent when the resource is allocated to him is higher than the utility when he is not

allocated the resource. A mechanism is individually rational if participation is

individually rational for all agents. Only individually rational mechanisms are favorable

i.e. if the negotiated solution is not individually rational for some agent, that self-

interested agent should not participate in that negotiation.

2.4.4 Stability

If a self-interested agent is better off behaving in some other manner than desired, it

will behave in that manner so, among self-interested agents, mechanism should be

designed to be stable. The mechanism should motivate each agent to behave in the

desired manner. Sometimes it is possible to design mechanisms with dominant

 16

strategies. This means that an agent is best off by using a specific strategy no matter

what strategies the other agents use. However, often an agent’s best strategy depends

on what strategies other agents choose. In such settings dominant strategies do not

exist, and other stability criteria are needed and the most basic one is the Nash

equilibrium.

2.4.5 Computational Efficiency

Mechanisms should be designed so that when agents use them, as little computation is

needed as possible. The mechanisms with the lowest computational overhead have been

generally preferred to others.

2.4.6 Distribution and Communication Efficiency

Distributed protocols should be designed that prevents a single point of failure and a

performance bottleneck. Also the mechanisms should minimize the amount of

communication that is required to converge on a desirable solution. In some cases these

two goals conflict.

2.4.7 Incentive Compatibility

As Takahashi et al. [30] define incentive compatibility as a mechanism where truthful

bidding is the only dominant strategy. In an allocation satisfying incentive

compatibility, false bidding does not have any effect on the agent; therefore, an

effective allocation is always realized.

2.5 Classification of Auctions

As we have seen in the standard auction types section, there are four basic types of

auctions that are generally used: English (first-price open-cry, or ascending) auction,

Dutch (descending) auction, first-price sealed-bid auction, and Vickrey (second-price

 17

sealed-bid) auction. But there are many other types of auctions, and they can be

classified from many different perspectives. Wurman et al. [34] classify the auctions as

follows:

Single or double auctions: In single auctions (i.e. single-sided auctions) the bidders are

either of type “buyers” or of type “sellers”. English, Dutch, first-price sealed-bid, and

second-price sealed-bid auctions are single auctions. On the other hand, double

auctions are double-sided. They allow multiple buyers and sellers at once. The

continuous double auction (CDA), a general model for commodity and stock markets,

and clearing market or call market, markets that aggregate bids over time and clear at

schedule intervals, are showed as example for double auctions.

Sealed-bid or out-cry: In sealed-bid auctions the bids submitted by the participants are

not known until the auction closes. On the other hand, in the out-cry (or we can call

open-cry) auctions the bids are made public at the time they are made.

Ascending or descending: In the ascending auctions the bids begin low and keep

increasing until a deal is made. In the descending auction, the seller (or the auctioneer)

begins with a higher price and lowers it continuously until someone bids on it.

Their classification can be seen better in Figure 2, which is taken from [34]

Figure 2 A classification of classic auction types (from [34])

 18

A more complete classification can be found by looking at the E-negotiations Web

Page (http://enegotiations.wu-wien.ac.at/) and in [2]. They identify four aspects of e-

negotiations as: the “people” aspect which deals with the participants in the negotiation,

the “goods” aspect which is dedicated to the object of the negotiation, the “process”

aspect which is concerned with the negotiation protocol to be followed by the

participants, and finally the “evaluation criteria” aspect which covers the ways to

evaluate a negotiation process.

In the people aspect, e-negotiations are classified as number of parties (two or more

parties participating in a negotiation), bidding activity (single-sided or double-sided),

admission (seller-open (buyer-open) meaning that there is no restriction on the

admission of sellers (buyers) to participate in the negotiation, or seller-closed (buyer-

closed) meaning that there exist restrictions), collusion (collusive or non-collusive,

where collusion refers to agreements between buyers and/or sellers in order to achieve

mutual benefits) , and Anonymity(anonymous or non-anonymous).

In the goods aspect, they classify the e-negotiations as number of items (single-item or

multi-item), number of attributes (single-attribute or multiple-attribute), and

homogeneity (items can be homogeneous or heterogeneous).

In the process aspect, e-negotiations are classified as reverse versus forward, Single-

phased versus multi-phased (in a single-phased negotiation the rules are the same from

the beginning to the end of the negotiation, but in multi-phased negotiation rules are

allowed to change.), single-stage versus multi-stage (in a single-stage negotiation all

the attributes of the item are negotiated at the same time, but in a multi-stage

negotiation the parameters of the negotiation can be changed after a stage, enabling

another round of bidding), synchronized versus sequential versus combinatorial

(synchronized is also called simultaneous or parallel auction), open-cry versus sealed-

bid, information revelation (transparency of the market and the amount of information

available in the negotiation process), agent-mediated versus manual bidding,

discriminative versus non-discriminative, and non-repudiation.

 19

In the evaluation criteria aspect, they classify the e-negotiations as incentive

compatibility, computational complexity, convergence, speed of convergence, stability,

integrative versus distributive, efficiency, fairness, and correctness.

After analyzing these classification aspects, we merge the findings from the Wurman et

al. [34] and Benyoucef et al. [2] and we decide to classify the auctions using the

following aspects and criteria, as shown below.

2.5.1 People Aspect

People aspect deals with the participants in the auction.

Bidding Activity:

An auction can be single-sided meaning that only buyers or only sellers are allowed to

submit bids, or it can be double-sided meaning that multiple buyers and multiple sellers

are both allowed to submit bids. Dawid [5] describe the importance of double auction

models for the understanding of price formation in markets. He studies the learning

behavior of a population buyers and a population of sellers whose members are

repeatedly randomly matched to engage in a sealed-bid double auction by using GA

(Genetic Algorithm).

2.5.2 Goods Aspect

Goods aspect is used to classify the object of the auction.

2.5.2.1 Number of items:

Items in an auction can be goods or services. If one item is subject to auction, then the

auction is said to be a single-item auction. The standard auction types discussed before

were also explained from the single-item auction perspective. If more than one item is

subject to the auction, then the auction is called a multi-item auction.

 20

2.5.2.2 Number of attributes:

In an auction, if an item is negotiated on one attribute, which is generally the price of

the item, these auctions can be called as single-attribute auctions. If the item is

negotiated on multiple attributes of a deal (e.g., price, quality, terms of delivery), then

these auctions can be called as multiple-attribute auctions. Throughout this work we

used only single-attribute auctions.

2.5.2.3 Homogeneity:

In multi-item auctions items can be homogeneous (i.e. indistinguishable) or

heterogeneous (i.e. distinguishable) (e.g., a plane ticket and a ski trip). Also in

heterogeneous multi-item auctions some items may have multiple units (e.g. i units of x

item, j units of y item, also in section x bandwidth allocation will be modeled as

heterogeneous multi-item multi-unit auction)

2.5.3 Process Aspect

Process aspect deals with the auction’s mechanism.

2.5.3.1 Reverse versus forward (Descending vs. Ascending):

In a reverse auction or that is called as descending auctions the bids go down, i.e. the

seller (or the auctioneer) begins with a higher price and lowers it continuously until

someone bids on it. In a forward auction the bids go up, i.e. the bids begin low and keep

increasing until a deal is made; here the bids are made by the buyer agents. Online

reverse auctions are very popular in e-business and e-sourcing (electronic sourcing)

area. In online reverse auctions, multiple supplier (i.e. sellers in the industry) bid for a

contract from a buyer (the buyer submits a request for purchase (RFP)) for selling

goods and/or services. Reverse and forward auctions are generally include multiple

rounds of bidding. According to Jap [15] the popularity of online auctions can be

attributed to three factors, which are:

 21

• Creating immediate financial savings.

• Creating many process efficiencies.

• Enabling capabilities of emerging technologies .

More information about online reverse auctions and their use in business sector can be

found in [15].

2.5.3.2 Open-cry versus sealed-bid:

In an open-cry auction the bids made by a participant are known by the other

participants. Depending on the type of the auction the bids can either go up or down

(ascending/forward or descending/reverse). In a sealed-bid auction the participants

make secret bids. At the close of the auction the winning bid is determined and

announced. In a sealed-bid auction the bids can go up and down.

2.5.3.3 Rounds of auction:

An auction can include multiple bidding rounds or it can single round. Generally

ascending auctions (English auctions or forward auctions) and descending auction

(Dutch auctions or reverse auctions) include multiple bidding rounds, i.e. involves

iterations. But the first-price sealed-bid auctions and the Vickrey (also called second-

price sealed-bid) auctions involve no iteration.

2.5.3.4 Discriminative versus non-discriminative:

Usually, once the bidding phase is over, the bidder with the highest bid gets the item

being auctioned, but the price she pays could be the same as what she bid or lower. In a

Discriminative Auction (also known as Yankee Auction or first-price auction), the

winners pay what they bid. In a non-discriminative auction, people with winning bids

pay the price paid by the winning bidder with the lowest bid (for the sale of multiple

similar items). Finally, in a Vickrey Auction (also referred to as second price sealed bid

auction) the winner pays the price bid by the second highest bidder (for the sale of a

single item).

 22

2.5.3.5 Non-Repudiation:

In a negotiation, the participants are allowed or not to break their commitments i.e.

bidders can or cannot retract (withdraw) submitted bids

2.5.3.6 Sequential versus Parallel versus combinatorial:

These processes occur in multi-item (homogeneous or heterogeneous) auctions.

2.5.3.6.1 Sequential Auctions

In a sequential auction, the items are auctioned one at a time, i.e. n items are auctioned

individually one after the other. Determining the winners in such protocols is easy

because that can be done by picking the highest bidder for each item separately.

However if a bidder has preferences over bundles (combinations of items), bidding in

such auctions is difficult. To determine his valuation for an item, the bidder needs to

guess what items he will receive in later auctions, which requires speculation of what

the others will bid in the future because that affects what items he will receive.

Furthermore, what the others bid in the future depends on what they believe of others,

etc. This counter speculation introduces computational cost. In auctions with large

number of items, such look-ahead in the game tree is intractable [23, 24]. Moreover,

even if look-ahead were computationally manageable, usually some uncertainty

remains about the others’ bids because agents do not have exact information about each

other. Also as said before when bidders have preferences over bundles, that means

bidder’s valuation for the bundle need not to be equal to the sum of the his valuations

of the individual items in the bundle, i.e. valuation need not to be additive so to

determine valuation for an item from the bundle is very hard, also from this

perspective. These situations can lead to inefficient allocations where bidders do not get

the combinations that they want and do get combinations that they do not want.

 23

2.5.3.6.2 Parallel Auctions

In a parallel (also called simultaneous or synchronized) auction there are n items and

the items are opened for auction in parallel. A participant can make m distinct bids on

m distinct items (m not greater than n). The m bids are made simultaneously. The

auction usually runs multiple rounds of sealed bids, announcing the bids after each

round. Parallel auctions have the advantage that the others’ bids partially signal to the

bidder about what the others’ bids will end up being for the different items, so the

uncertainty and the need for look-ahead is not as drastic as in a sequential auction.

However, the same problems still exist. For example, when bidding for an item, the

bidder does not know his valuation because it depends on which other items he wins

(and also if he has a preferences over bundles, this is not additive as said before), which

in turn depends on how others will bid.

In parallel auctions, an additional difficulty arises. Each bidder would like to wait until

the end to see what the going prices will be, and to optimize his bids so as to maximize

payoff given the final prices. Because every bidder would want to wait, no bidding

would occur. As a solution to this problem, activity rules have been used [19]. But the

equilibrium bidding strategies in such auctions are not game-theoretically known [23].

Examples of Parallel Auctions

This idea of simultaneous auctions was first seen in 1994 by the Federal

Communication Commission (FCC). FCC uses such a format to sell licenses to use

bands of radio spectrum in the United States. The structure adopted was that of a

simultaneous ascending auction [19].

A simultaneous ascending auction is an auction for multiple items in which bidding

occurs in rounds. At each round, bidders simultaneously make sealed bids for any items

in which they are interested. After the bidding, round results are posted. For each item,

these results consist of the identities of the new bids and bidders as well as the

 24

“standing high bid” and the corresponding bidder. The initial standing high bid for each

item is given (it may be zero) and the “corresponding bidder” is the auctioneer. As the

auction progresses, the new standing high bid at the end of a round for an item is the

larger of the previous standing high bid or the highest new bid and the corresponding

bidder is the one who made that bid. In addition to the round results, the minimum bids

for the next round are also posted. These are computed from the “standing high bid” by

adding a predetermined bid increment. For spectrum licenses, the increments are

typically the larger of some fixed amount or a fixed percentage of the standing high bid.

A bid represents a real commitment of resources by the bidder. In the most common

version of the rules, a bidder is permitted to withdraw bids, but there is a penalty for

doing so: if the selling price of the item is less than the withdrawn bid, the withdrawing

bidder must pay the difference. In other applications, bid withdrawals are simply not

permitted.

A bidder’s eligibility to make new bids during the auction is controlled by the “activity

rule.” The rule is based on a “quantity” index, such as spectrum bandwidth or

population covered by a license that roughly corresponds to the value of the license.

During the auction, a bidder may not have active bids on licenses that exceed its

eligibility, measured in terms of the index.

At the outset of the auction, each bidder establishes its initial eligibility for bidding by

making deposits covering the quantity of spectrum for which it wishes to be eligible.

During the auction, a bidder is considered active for a license at a round if it makes an

eligible new bid for the license or if it owns the standing high bid from the previous

round. At each round, a bidder’s activity is constrained not to exceed its eligibility. If a

bid is submitted that exceeds the bidder’s eligibility, the bid is simply rejected.

The auction is conducted in a sequence of three stages, each consisting of multiple

rounds. The auction begins in stage 1 and the administrator advances the auction to

 25

stage 2 and later to stage 3 when there are two or more consecutive rounds with little

new bidding.

There are several different options for rules to close the bidding that were filed with the

regulator. One proposal, made by McAfee [19], specified that when a license had

received no new bids for a fixed number of rounds, bidding on that license would close.

That proposal was coupled with a suggestion that the bid increments for licenses should

reflect the bidding activity on a license. Another proposal, made by Wilson and

Milgrom [19], specified that bidding on all licenses should close simultaneously when

there is no new bidding on any license.

When the auction closes, the licenses are sold at prices equal to the standing high bids

to the corresponding bidders.

A second example that uses parallel auctions’ strategy is the work of Courcoubetis et

al. [4]. They design their auction mechanism for bandwidth allocation over paths (as

said before bandwidth allocation is also an area where preferences over bundles

situation occurs). Their mechanism consists of a set of simultaneous multi-unit Dutch

(i.e. descending price) auctions (MIDAS), one per link of the network.

2.5.3.6.3 Methods for fixing inefficient allocations in sequential and parallel

auctions

In sequential and parallel auctions, the computational cost of look-ahead and counter

speculation cannot be recovered, but attempts to fix the inefficient allocations that stem

from the uncertainties discussed above, have been developed.

One approach is to set up an after market where the bidders can exchange items among

themselves after the auction has closed. This approach can prevent some inefficiency,

but it may not lead to a Pareto efficient allocation in general and even if it does, it may

be impractical for large number of exchanges [23].

 26

Another approach is to allow bidders to retract their bids if they do not get the

combinations that they want. For example, in the FCC’s bandwidth auction, the bidders

were allowed to retract their bids as said before. In case of a retraction, the item was

opened for re-auction. If the new winning price was lower than the old one, the bidder

that retracted the bid had to pay the difference. This guarantees that retractions do not

decrease the auctioneer’s payoff. But, this brings to the retracting bidder considerable

risk [23]. Sandholm and Lesser explain Leveled Commitment protocol that can be use to

eliminate this risk [23]. This protocol allows the bidders to decommit but it also allows

the auctioneer to decommit. A bidder may want to decommit for example if he did not

get the combination that he wanted but only a subset of it. The auctioneer may want to

decommit for example if he believes that he can get a higher price for the item later on.

Each one of the methods above can be used to implement bid retraction before and/or

after the winning bids have been determined.

All these approaches try to fix inefficient allocations achieved in sequential or parallel

auctions, adapting a basically non-combinatorial process in some manner to take

account of combinatorial values. It would be desirable to get efficient allocations right

away in the auction itself, so no fixing would be required. Also since some of the

inefficiencies are fixed, generally but the solution may not be a optimum or a Pareto

efficient allocation as said before. Combinatorial auctions are an approach to achieve

efficient allocations in the first step. Here bidders can place bids on combinations of

goods which allows expressing dependencies and complementarities between goods.

2.5.3.6.4 Combinatorial Auctions

Combinatorial auctions are promising. Because they can be used in case of multiple

identical goods. These mechanisms are especially useful in situations where one has to

assign multiple heterogeneous goods simultaneously and bidders have preferences over

 27

different combinations of goods (i.e. preferences over bundles and valuation of the

bundles are not additive). Combinatorial (also called bundled) auctions allow for a

participant to make a single bid for m items. In a combinatorial auction, bidders may

place bids on combinations of items. This allows the bidders to express

complementarities between items instead of having to speculate into an item’s

valuation the impact of possibly getting other, complementary items. For example, the

FCC sees the desirability of combinatorial bidding in their bandwidth auctions, but so

far combinatorial bidding has not been allowed due to perceived intractability of winner

determination. Determining the winners in order to maximize revenue is NP-complete.

[3, 19, 23, 24, 26, 31, 32]

Previous work on computational aspects of combinatorial auctions can be divided into

two parts. One part try to solve the unrestricted problem using search algorithms [23,

24, 26], second part try to solve the problem using OR (Operation Research)

methodologies and/or deals with the identification of tractable cases of the

combinatorial auctions problem and/or find an approximate solution [31, 32]. (Some

works deals with using sequential or simultaneous auctions in order to solve the

combinatorial auctions problem as stated above, but they do not consider the bidder’s

preference over bundles)

2.6 Winner Determination in Combinatorial Auctions

The determination of winners in non-combinatorial auctions is easy. Determining what

items each bidder gets, can be done by picking the highest bidder for each item

separately. This takes O(nm) time, here n is the number of bidders and m is the number

of items in the auction. In these auctions, determining the Vickrey price of each item,

can also be done O(nm) time by simply finding the second highest bid for each item.

 28

The determination of winners in combinatorial auctions is more difficult. Let M be the

set of items to be auctioned. Then any bidder agent, i, can place a bid, bi(S) > 0, for any

combination S ⊂ M.

Clearly, if several bids have been submitted on the same combination of items, and if

there are at most one copy of each item, for winner determination purposes the bid with

the highest price can simply be kept and the others can be discarded as irrelevant. (The

formulation for multi-item multi-unit case will be also given.)The highest bid price for

a combination is

b(S) = maxi�N bi(S) (1)

If agent i has not submitted a bid on combination S, then bi(S) = 0 (Sandholm states

that this assignment need not actually be carried out as long as special care is taken of

the combinations that received no bids [24]. Also he shows more compact

representation by not using the combinations that received no bids which will also be

explained)

Sandholm explains the winner determination in a combinatorial auction problem as a

goal to find a solution that maximizes the auctioneer’s revenue given that each winning

bidder pays the prices of her winning bids.

W A
max ()

S W

b S
∈ ∈
� (2)

where W is a partition, that is a set of subsets of items so that each item is included in at

most one of the subsets. Formally, let S = {S ⊆ M}. Then the set of partitions is

A = {W ⊆ S | S, S’ ∈ W �S � S’= Ø (3)

 29

The winner determination problem can also be formulated as an integer programming

problem where the decision variable xS = 1 if the (highest) bid for combination S is

chosen to be winning, and xS = 0 if not1.

Formally:

max () S

S M

b S x
⊂
�

s.t. 1S

i S

x
∈

≤� i M∀ ∈ (4)

Sx = 0, 1 S M∀ ⊂

Formulation 4 assumes that there is at most on copy of each item and no item in M is

assigned to more that 1 bidder, by the following constraint.

1S

i S

x
∈

≤� i M∀ ∈

Other Integer Program models can be seen in the next section. One way to optimally

solve the winner determination problem is to enumerate all exhaustive partitions of

items [23,24] But Sandholm [24] indicate that the number of exhaustive partitions is

O(mm) and w(mm/2). Therefore it is possible to enumerate all of the exhaustive

partitions only if the number of items in the auction is very small.

2.6.1 Integer Programming Formulation Approach to Combinatorial Auctions

Combinatorial auction problem (CAP) can be formulated as an Integer Program. In the

some of the previous studies’ integer program formulations every subset S of the items

being auctioned are considered, but in the coming sections other formulations which

consider only the given bids will be also explained.

Vries et al. in their survey gives examples of integer formulations of CAP in their study.

Formulation (4) is one of the formulations that they describe [32]. Let’s call

1 In this formulation every subset S of the items being auctioned are considered, but in the coming pages
other formulations can be seen in which only the bids will be considered instead of every possible subset.

 30

formulation (4) as CAP1. They note that, CAP1 correctly models the CAP when the bid

functions bi are all superadditive2, i.e. bi(A) + bi(B) � bi(A U B) for all i � N and A,B ⊂

M such that A � B = Ø which corresponds to the idea that the goods complement each

other.But Vries et al. state that when goods are substitutes, i.e. bi(A) + bi(B) > bi(A U B)

for some i � N and A,B ⊂ M, formulation 4 is incorrect. An optimal solution to CAP1

may assign sets A and B to bidder i and incorrectly record a revenue of bi(A)+bi(B)

rather than bi(A U B) to that allocation. This problem can be removed by the

introduction of dummy goods, g, as Vries et al point out. The bidder is then instructed

to replace the bids bi(A), bi(B) and bi(A U B) with bi(A U g), bi(B U g) and bi(A U B)

and to replace M by M U g. In this way by the constraints of the integer programming

formulation, if the set A is assigned to i then so is g and thus B cannot be assigned to i.

Another way to write the problem for (not necessarily superadditive) bids without

explicitly involving dummy items, described by Vries et al. [32], is the following

integer program. Let y(S, j) = 1 if the bundle S ⊆ M is allocated to i � N and zero

otherwise.

max () (,)j

j N S M

b S y S j
∈ ⊆
� �

s.t. (,) 1
i S j N

y S j
∈ ∈

≤�� i M∀ ∈ (5)

 (,) 1
S M

y S j
⊆

≤� j N∀ ∈

 (,) 0,1y S j = S M∀ ⊆ , j N∈

Let’s call formulation (5) as CAP2. The first constraint ensures that overlapping sets of

goods are never assigned and the second ensures that no bidder receives more than one

subset. Again in this formulation CAP2 every subset S of the items being auctioned are

2 In this study we deal with superadditive bids.

 31

considered. Formulations CAP1 and CAP2 are an instance of the Set Packing Problem

(SPP).

SPP include applications like switching theory, the testing of VLSI circuits, line

balancing and scheduling problems where one wishes to satisfy as much demand as

possible, without creating conflicts [32]. But as, Vries et al. state SPP is NP hard, and

no polynomial time algorithm for the SPP is known. In the coming sections other

different approaches to tackling the winner determination problem is discussed.

2.6.1.1 Dynamic Programming

Dynamic programming approach is discussed by Rothkopf et al. [23, 24].Based on the

b(S) function, the dynamic programming algorithm determines for each set S of items

the highest possible revenue that can be acquired using only the items in S. The

algorithm proceeds systematically from the smallest sets to the largest. The needed

optimal substructure property comes from the fact that for each set S, the maximal

revenue comes either from a single bid b(S), or from the sum of the maximal revenues

of two disjoint exhaustive subsets of S. For each S, all possible subsets (together with

that subset’s complement in S are tried.

Since the revenue maximizing solutions for the subsets need not be computed over and

over again, but only once, it has many savings compared to exhaustive search. The

dynamic programming algorithm takes 	(2m) and O(3m) steps and unfortunately this is

still too complex to scale to large numbers of items. Also as Sandholm points out that

the dynamic programming algorithm takes the same number of steps independent of the

number of actual bids. This is because the algorithm generates each combination S even

if no bids have been placed on S. [23, 24]

2.6.1.2 Generalized Vickrey Auction

Generalized Vickrey Auction (GVA) or the Vickrey-Clarke-Groves (VCG) is another

well known mechanism applied to combinatorial auctions generalizes the second price

 32

auction proposed by Vickrey [3]. GVA is an incentive compatible mechanism, in which

true relevation is the dominant strategy for a bidder. GVA maximizes the sum of the

declared utilities which are the true valuations of the bidders (incentive compatibility).

Therefore the allocation maximizes the social welfare. It is also Pareto optimal. In other

words, GVA assigns goods efficiently i.e. puts the goods in the hands of the bidder who

values it most.

Let M denote the set of items, N be the number of bidders. The GVA algorithm works

as follows as written in [32]:

1. Agent j reports vj. (Here vi(.) represents the value to bidder i of a particular

subset.)

2. The seller chooses the allocation that solves:

V = max () (,)j

j N S M

v S y S j
∈ ⊆
� �

 s.t. (,) 1
i S j N

y S j
∈ ∈

≤�� i M∀ ∈ (6)

 (,) 1
S M

y S j
⊆

≤� j N∀ ∈

 (,) 0,1y S j = S M∀ ⊆ , j N∈

 This optimal allocation is called as y* .

3. To compute the payment that each bidder must make let, for each k � N,

V-k = max
\

() (,)j

j N k S M

v S y S j
∈ ⊆
� �

 s.t.
\

(,) 1
i S j N k

y S j
∈ ∈

≤� � i M∀ ∈ (7)

 (,) 1
S M

y S j
⊆

≤� j N∀ ∈ \ k

 (,) 0,1y S j = S M∀ ⊆ , j N∈ \ k

 33

 Denote by yk the optimal solution to this integer program. Thus yk is the

efficient allocation when bidder k is excluded.

4. The payment that bidder k makes is equal to

V-k – [V - *() (,)k

S M

v S y S k
⊆
�] (8)

Bidder k's payment is the difference in “welfare” of the other bidders without

him and the welfare of others when he is included in the allocation. The

payment made by each bidder to the auctioneer is non-negative. In fact this is

not true in all economic environments.

If a seller were to adopt the GVA scheme, her total revenue would be [32]

*[() (,)]k k

k N k N S M

V V v S y S k−

∈ ∈ ⊆

− −� � �

= *() (,) ()k k

k N S N k N

v S y S k V V−

∈ ⊆ ∈

+ −�� � (9)

= ().k

k N

V V V−

∈

+ −�

If the number of bidders N and number of items M is large, GVA is impractical to

implement [3, 19, 32]. Since all the combinations are considered, the number of

combinations is 2M – 1.

Biswas et al. describe that there are two problems with this GVA scheme.

1) GVA may not be budget balanced i.e. may yield low revenue for the seller in

forward auction or very high price for the buyer in the reverse auction.

2) GVA requires optimal solution of N+1 allocation problems (where N is the

number of agents) which are NP-hard.

The second problem has led to many approximate solution schemes and interesting

auction algorithms. In he next sections two alternative solutions are described.

 34

2.6.1.2.1 Iterative Dutch Combinatorial Auctions

Biswas et al. [3] suggest an iterative Dutch auction scheme to reduce the complexity of

the two problems of GVA as stated above.

• In their iterative Dutch mechanisms the reserve prices for items are a natural

outcome in each iteration, since as known GVA is not budget balanced, and

setting the reserve prices for the items is difficult (since the agents bid for

bundles instead of individual items).

• As known the second problem of GVA as stated above (i.e. GVA is NP-hard)

depends on the size of the input. Therefore, in their algorithm, they reduce the

time to solve the problem by dividing the one shot GVA into smaller GVAs in

each iteration significantly. The overall solution obtained may not be optimal.

But they show that the solutions obtained using these iterative schemes lie

within provable worst case bounds. The time taken to solve the smaller GVAs

in each iteration is much less than the time taken to solve the complete problem,

since the solution time grows exponentially with size of the problem.

2.6.1.2.2 Adaptive User Selection Mechanism (AUSM)

Since it is infeasible to specify all relevant combinations in GVA, one idea to

economize on computing power is to specify combinations as the auction progresses.

One of the such proposal is based on a procedure called the “Adaptive User Selection

Mechanism” (AUSM) which was developed in experimental economics laboratories for

solving what the experimenters regarded as “difficult” resource allocation problems

[19].

AUSM differs from the simultaneous ascending auction in a number of respects. First,

allow bidding to take place continuously in time, rather than forcing bidders to bid

simultaneously in discrete rounds. Second, in place of an activity rule, follow the

experimenters’ technique of using random closing times, which motivate bidders to be

active before the end of the auction. Third, permit bids for combinations of items,

 35

rather than just for individual items. Fourth, allow the use of a “standby queue” on

which bidders may post bids that cannot, by themselves, displace existing bids but

which become available for use in new combinations [19].

2.6.1.3 More Compact CAP Representation

As seen in the previous formulations of CAP every subset S of items being auctioned

are considered, but in fact if no bid is received on some combination S, then those

partitions W that include S need not be considered [24]. Sandholm notes that by

capitalizing on this observation, one can restrict attention to relevant partitions [24].

The set of relevant partitions is:

A’ = {W ∈ A| S ∈ W � bid has been received on S } (10)

Meaning that we can restrict attention to the following set of combinations of items:

S’ = {S ⊆ M | bid has been received on S} (11)

The number of relevant bids is n = | S’ | . Now the winner determination can be

formulated as the following integer program as stated by Sandholm [24]

'
max () S

x S S

b S x
∈
� 'S S∀ ∈ : {0,1}Sx ∈ and i M∀ ∈ :

|

1S

S i S

x
∈

≤� (12)

Unfortunately as Sandholm states formulation (12) is also NP-Complete.[24].

Because of this NP-Completeness, some part deals with the identification of tractable

cases of the combinatorial auctions problem. Previous results in this category have

introduced a general technique for tackling the complexity of combinatorial auctions.

Several of them have dealt with the problem of winner determination in combinatorial

auctions as an integer programming [IP] problem, and considered linear programming

[LP] relaxations of that problem for isolating tractable cases of the general problem

[32]. Tennenholtz [31] expose and explore the use of b-matching techniques for the

combinatorial auctions setup, and employ b-matching techniques in various ways in

order to efficiently address several non-trivial instances of the combinatorial auctions

problem.

 36

In some of the previous works, they tried to solve the problem approximately. However

it is shown by a reduction from the maximum clique problem, that no polynomial time

algorithm for the winner determination problem for CAP can guarantee a solution that

is close to optimum [24]. As reviewed in [24], certain special cases can be

approximated slightly better.

Another approach is to restrict the allowable bids. For certain restrictions, which are

severe in the sense that only a small fraction of the combinations can be bid on, it is

seen that winners can be determined in polynomial time. Restrictions on the bids can

cause some economic inefficiencies because bidders may not be able to bid on the

combination they prefer [24, 26].

Lastly the third try to solve the unrestricted problem using their sophisticated search

algorithm. This method was shown to work very well on average, scaling optimal

winner determination up to hundreds of items and thousands of bids [23, 24, 26].

2.6.2 Search Solutions to CAP

One of the most well known solutions is generated by Sandholm , which try to solve

the unrestricted problem using search, the details of it can be found in [24]. It is based

on highly optimized search. The main characteristics of his method can be summarized

as follows:

• The method allows bidding on all combinations in order to avoid all of the

inefficiencies that occur in noncombinatorial auctions (The auctions that restrict

the combinations. Those auctions lead to economic inefficiency and

computational burden for the bidders that need to look ahead in a game tree and

counterspeculate each other.).

• The method finds the optimal solution (given enough time), unlike the

approximation algorithms.

• The method completely avoids loops and redundant generation of vertices,

when searching the graph of allocations

 37

• The method capitalizes heavily on the sparseness of bids. Sandholm points that

in practice the space of bids is likely to be extremely sparsely populated.

Sparseness of bids implies that the relevant partitions are a small subset of all

partitions. Unlike the dynamic program, this algorithm only searches in the

space of relevant partitions, so this method depends on the number of bids

received, while in the dynamic program it does not.

The method uses tree search to achieve these goals. Since only the highest bid is kept

for every combination of items for which a bid was received (all other bids are deleted),

the inputs is a list of bids, one for each S ∈ S:

{ B1, ..., Bn} = {(B1.S, B1.b), ..., (Bn.S, Bn.b)} (13)

Here Bi.S is the set of items in the bid, and Bi. is the price of the bid i.

Each path in the search tree consists of a sequence of disjoint bids, i.e., bids that do not

share items with each other (Bi .S � Bk.S = Ø for all bids i and k on the same path). As a

result at any point in the search, a path corresponds to a relevant partition (feasible

allocation).

Let U be the set of items that are already used on the path:

|

.
j

j
j B is on the path

U B S= � (14)

F be the set of free items:

F= M – U (15)

A path ends when no bid can be added to the path and this occurs when for every bid,

some of its items have already been used on the path (j, Bj .S � U
 Ø).

A tally g is kept of the sum of the prices of the bids on the path, as the search proceeds

down a path:

|

.
j

j
j B is on the path

g B b= � (16)

 38

At every search node, the revenue from the path, i.e., the g-value, is compared to the

best g-value found so far in the search tree to determine whether the current solution

(path) is the best one so far. If so, it is stored as the best solution found so far. Once the

search completes, the stored solution is an optimal solution (found up to that time if

every path could not be investigated in the given time bounds, i.e. not enough time to

finish the solution).

In this method the auctioneers also have the ability to keep some of the items. The

auctioneer’s possibility of keeping items is implemented as a preprocessing step in the

algorithm by placing dummy bids of price zero on those individual items that received

no bids alone.

In this method every relevant partition is represented in the search tree by exactly one

path from the root to a node. This is done by restricting the children in the search tree

according to the following criteria:

� Include the item with the smallest index among the items that have not been

used on the path yet (i* = min {i ∈ {1, . . . ,m}: i ∉ U})

� Not include items that have already been used on the path.

Formally, for any node, � , of the search tree,

children (�) = {B ∈ {B1, . . . ,Bn}: i* ∈ B.S, B.S � U = Ø } (17)

This search can be seen in Figure 3 below, which is taken from [24]

Figure 3 SEARCH1. This example search space corresponds to the bids listed on the left. In the

figure for each bid, the items are shown but the price is not (From [24])

 39

At any given node, �, of the tree, children(�) has to be determined. An easy approach is

to loop through a list of all bids at every search node, and accept a bid as a child if it

includes i*, and does not include items in U. This takes O(nm) time per search node

because it loops through the list of bids, and for each bid it loops through the list of

items.

Sandholm propose a more sophisticated scheme to make child generation faster. He

uses a secondary depth-first search, SEARCH2, to quickly determine the children of a

node. SEARCH2 takes place in a different space: a data structure which he calls the

Bidtree. Bidtree is a binary tree in which the bids are inserted up front as the leaves

(only those parts of the tree are generated for which bids are received) (Bidtree data

structure can be seen in Figure 4 which is taken from [24].

Figure 4 Bidtree data structure and stopmask (from [24])

Bidtree uses a Stopmask which differentiates the Bidtree from a classic binary tree. The

Stopmask is a vector with one variable for each item, i ∈M. Stopmask[i] can take on

any one of three values: BLOCKED, MUST, or ANY. If Stopmask[i] = BLOCKED,

SEARCH2 will never progress left at depth i (the root of the tree is at depth 1). This has

the effect that those bids that include item i are pruned instantly and in place. If, instead,

Stopmask[i] = MUST, then SEARCH2 cannot progress right at depth i . This has the

effect that all other bids except those that include item i are pruned instantly and in

place. Stopmask[i] = ANY corresponds to no pruning based on item i : SEARCH2 may

 40

go left or right at depth i . The basic principle is that at any given node of the main

search, Stopmask[i] = BLOCKED for all i ∈ U, and Stopmask [i*] =MUST, and

Stopmask[i] = ANY for all other values of i .

The algorithm is implemented as depth-first search, which executes in linear space. The

depth-first strategy causes feasible allocations to be found quickly as Sandholm state,

and the solution improves monotonically since the algorithm keeps track of the best

solution found so far. This implement the anytime feature: if the algorithm does not

complete in the desired amount of time, it can be terminated before the proper time, and

it guarantees a feasible solution that improves monotonically in time.

As Sandhom notes, the worst case complexity is O(nm). Where n is the number of bids

actually received, not the number of allowable combination of items. This method uses

an iterative deepening A* search (IDA*). It is a search strategy with a heuristic that

they developed specifically for the winner determination application, which is

guaranteed to find an optimal solution if heuristic is admissible. It does not comprise

optimality. Furthermore, before the main search a preprocessing search is run which

removes all the bids that are provably noncompetitive. Sakurai et al. [22] introduce the

idea of limited discrepancy search (LDS) instead of IDA* algorithm in the Sandholm’s

method [24]. The benefit of LDS is that it can avoid time-consuming re-computation of

heuristic function h(·), since LDS is less sensitive to the quality of h(·).

Sakurai et al. introduce LDS techniques to limit the search efforts to the regions where

good solutions are likely to exist. LDS is shown to be very effective for many

application problems. Compared to IDA*, the search performance of LDS is less

sensitive to the quality of the heuristic function. Therefore, LDS can find good

solutions without a precise heuristic function. Experimental evaluations using various

problem settings shows that the allocations are very close to the optimal solutions, and

this method can be extended to very-large-scale problem instances. Sakurai et al. point

out more specifically that, LDS can achieve better than 95% of the optimal solution in

about 1% of the running time compared with IDA*.

 41

In their algorithm they use also some part from Fujishima et al. [22]. Fujishima et al.

present an algorithm called the Combinatorial Auction Structured Search (CASS)

algorithm, which is based on the depth-first branch-&-bound algorithm. In their method,

Sakurai et al. use data structure called bins (bins are special data structures used in the

CASS algorithm) which is different from Sandholm’s method (as stated above he uses

a binary tree called Bidtree). Sakurai et al. use bins to determine the children of each

node in a search tree

Sandholm et al. [26] introduce a more sophisticated algorithm for optimal winner

determination. The enhancements include structural improvements that reduce search

tree size, faster data structures, and optimizations at search nodes based on driving

toward, identifying and solving tractable special cases. They also generalize

combinatorial auctions to auctions with multiple units of each item, to auctions with

reserve prices on singletons as well as combinations, and to combinatorial exchanges.

They also give algorithms for determining the winners in these generalizations.

The skeleton of the algorithm is a depth-first branch-and-bound tree search that

branches on bids. Sandholm et al. note that both of the previous search algorithms for

winner determination Fujima et al. [26] and Sandholm previous algorithm [24] branch

on items [26]. In the branch-on-items formulation, as a preprocessing step, a dummy

bid of price zero is submitted on every individual item that received no bids alone (to

represent the fact that the auctioneer can keep items) [24] but in branch-on-bids (BOB)

there is no need to place dummy bids. The differences between branch-on-items and

branch-on-bids can be seen in Figure 5 which is from [26].

In Figure 5 we see that in arrow means choosing the bid and out arrow means not

choosing the bid. For example, for the bids {1,2}, {2,3}, {3}, {1,3} if we choose bid

{1,2} (i.e. branch in {1,2}) , we can also choose bid {3} or not, but not the other bids

{2,3} and {1,3} (of course this figure is for multi-item single-unit, if this figure was for

multi-item multi-unit, then the remaining bids that can be branched in would be decided

 42

according to remaining resources. We take into account this factor in our search model

as can be seen in section 3.2.1.1)

Figure 5 Branch-on-items vs. Branch-on-bids (from [26])

The main advantage of BOB compared to the branch-on-items formulation is that BOB

is in line with the AI principle of least commitment [21]. In a branch-on-items tree, all

bids containing an item are committed at a node, while in BOB, choosing a bid to

branch on does not constrain future bid selections. BOB allows more refined search

control (better bid ordering).

Another advantage of the BOB algorithm can be seen when we consider multi-unit

setting. Previous winner determination algorithms cannot be used in the multi-unit

setting because they branch on items (Fujima et al. [26] and Sandholm previous

algorithm [24]). Even if each unit is treated as a separate item, the earlier algorithms

cannot be used if the demands are real-valued instead of integer [26].

 43

In this thesis, BOB algorithm is modeled because of it is advantageous to be used in

multi-item multi-unit settings (one of the most complex setting in Combinatorial

Auctions). More details of the BOB algorithm and the implemented model can be

found in chapter 3.

One of the models that is built is inspired from BOB algorithm. The second one is a

parallel auction mechanism. The last one is an IP (Integer Programming) formulation

which is similar to the formulation that is given in the next section. A simple web

server is also constructed which has the ability to the combinatorial auction and can be

used for online auctions and e-procurement systems. The details can be found in

chapter 3.

2.7 Multi-item Multi-unit Setting Formulation

In some auctions, there are multiple indistinguishable units of each item for sale. The

bids can be compressed and speed up winner determination by not treating every unit as

a separate item, since the bidders do not care which units of each item they get [26].

The bids are formulated as Bj = {(�j
1, �j

2 ,, �j
m),pj), where �j

k
 0 is the requested

number of units of item k, and pj is the price.

 The winner determination problem formulated by Sandholm et al. [26] is:

max
1

n

j j
j

p x
=
�

s.t.
1

n
i
j j i

j

x u
=

λ ≤� , i = 1, 2, ..., m (18)

 {0,1}jx ∈

where ui is the number of units of item i for sale and xj = 1 if bid j wins and xj = 0, if bid

j loses.

 44

CHAPTER 3

3 Implementation a

When we survey some of the previous works that are done on Combinatorial Auctions

Problem3, we see that the previous works can be categorized into three parts. One part

tries to solve the unrestricted problem using search algorithms [23, 24, 26], second part

tries to solve the problem using OR (Operation Research) methodologies and/or deals

with the identification of tractable cases of the combinatorial auctions problem [31, 32]

and the last part deals with the usage of sequential or simultaneous auctions in order to

solve the combinatorial auctions problem [3, 4, 19].

As can be seen in chapter 2, many of the previous studies were for single-unit

Combinatorial Auctions Problem and they cannot be used in multi-item multi-unit

settings. Also many of the previous studies compare different approaches to solve the

CAP, but they generally compare them by not considering multi-unit models excepts in

[28]. As a result, in this study, we decided to focus on multi-unit combinatorial

auctions. We decided to compare different approaches in order to solve multi-unit

combinatorial auctions problem, based on the settings given in chapter 4. We built three

different models from three different approaches. We compare their performances

using computer simulations where we model Bandwidth allocations system. And we

decided to build a simple combinatorial auction tool which can be used for online

3 More details of the previous works can be seen in chapter 2 – Review of Literature

 45

combinatorial auctions and can be used as a test bed for combinatorial auctions. In this

section the models that are built will be explained.

3.1 Introduction

The first model we build, tries to solve the CAP using search. The search algorithm in

this model is very similar to Sandholm’s sophisticated search algorithm but some

modifications are done [24, 26, 27]. This model finds the optimal solution when it is

given enough time. The second model is built by considering the simultaneous auctions

mechanisms used in order to solve the CAP. We were inspired from Courcoubetis et al.

for this model [4]. The third model is an IP formulation like the formulation given in

section 2.7 and uses the GNU Linear Programming Kit (GLPK)’s callable library in

order to find the solutions.

The performance of each model is compared to each other and analyzed using

computer simulations. We model bandwidth allocation among multiple users, since as

stated before bandwidth allocation is one of the well known examples where

preferences of bundles situation occurs. It can be modeled as multi-item multi-unit

auctions which is one of the most complex situations that occur in CAP. Based on the

performance of the models and some other situations, we chose one of the models and

built a simple Combinatorial Auction tool (CATool) which has the ability to the

combinatorial auction and can be used for online auctions, and e-procurement systems

and can be used as a test bed for combinatorial auctions.

All of the three models and the tool are developed by using C++ programming

language. The three models are developed by using Microsoft Visual Studio in ANSI

C++ but the tool is developed by using Borland C++ Builder and using its VCL (Visual

Component Library). Object-oriented analysis and design methodologies are utilized

throughout the development. The presented diagrams are created by using Rational

Rose tool. The code generation directly from the class diagrams functionality of the

 46

Rational Rose tool is also utilized. By using this functionality the integrity between the

class diagrams and codes is achieved. The component diagram can be seen in Figure 6.

Figure 6 Component Diagram

The Threads package implements the thread and mutex classes. These classes are used

by BOBalgorithm package and SIMULalgorithm package classes, since these models

are threaded applications. The relations between the classes in this package are depicted

as a class diagram, which is shown in Appendix-A Figure A8. The LThread class is

used to implement a thread class. Some of the BOBalgorithm and SIMULalgorithm

package classes are derived from this class since they are threaded applications.

LThread is built in a similar logic of the Borland C++ Builder’s TThread abstract class.

The Terminate method terminates the execution of the LThread. The Terminated

method checks whether the LThread is terminated or not. The Execute method is

responsible for checking the value of the Terminated property to determine if the thread

needs to exit. A LThread calls the Execute method when the LThread is created and

the CreateSuspended method is set to false, or when Resume is first called for the

LThreads that are created suspended by setting the CreateSuspended to true. And until

the LThread is terminated, the Suspend method is called or the Execute method finishes

the LThread executes the Execute method.

By the LMutex class the synchronization between threads are achieved. This is done by

Critical Sections. When a LMutex is created, it initializes critical section and deletes

 47

this critical section when the LMutex is deleted. The Lock method enters the critical

section and the Unlock method leaves the critical section. These are made by windows

functions.

The BOBalgorithm package implements the classes that implement the first model. The

relationships between the classes in this package are depicted as a class diagram, which

can be seen in Appendix-A Figure A2 and more detail is given in section 3.2.1.1 .

The SIMULalgorithm package implements the classes that implement the second

model. The relationships between the classes in this package are depicted as a class

diagram, which can be seen in Appendix-A A4 and more detail is given in section

3.2.1.2.

The GVAalgorithm package implements the classes that implement the third model.

This package uses functionalities from the GLPK package. As stated before GLPK is a

free Linear Programming Toolkit, this toolkit has callable libraries that can be called

from C++ code. In this work, we used this callable library in order to solve the IP

model. The relationships between the classes in this package are depicted as a class

diagram, which can be seen in Appendix-A A6 and more details about GLPK and the

IP model is given in the section 3.2.1.3

The GLPK package is a set of routines written in ANSI C and organized in the form of

a callable library. This package is intended for solving large-scale linear programming

(LP), mixed integer linear programming (MIP), and other related problems. This is a

free program. GLPK version 4-4 is used in this work. More information about GLPK

can be found at [10]

The Simulator package is a free ANSI C library for multi-stream random number

generation. More details can be found in [20]. In this package, we only collect the

ANSI C functions into a C++ class (Simulator). The class diagram for Simulator

package can be seen in Appendix-A Figure A9.

 48

The VCL package is the Borland C++ Builder’s Visual Component Library (VCL).

The CATool package implements the classes of the simple combinatorial auction tool

which has the ability to do the combinatorial auction and can be used for online

auctions. More details will be given in the 3.2.2.

3.2 Detailed Descriptions

We can divide the work done into two main parts. In the first part the three models are

built and the performance of each model is compared and the models are analyzed

using a computer simulation4. In the second part based on the performance of the

models and some other situations, a simple Combinatorial Auction Tool (CATool) is

built. In this section brief overviews of the deployed classes of the models and the tool

will be presented.

3.2.1 Information about Models

In Figure 7 Main class diagram can be seen. MainClass is the class that starts the

process. MainClass creates input files by using CreateInputFile method by using the

Simulator class functionalities5. By the pointers that MainClass includes the same input

file is evaluated by all of the three models, and the results of the evaluations and the

time passed to find the solutions for each model are calculated by MainClass. The

results can be seen in Chapter 4. Since the sequence diagram of this process from start

to end is too long and complex, we have split this sequence diagram into three in order

to explain the initialization process of the three models better.

4 The details of the simulation results can be found in Chapter 4
5 More details about the criteria used for creating the input files can be found in Chapter 4

 49

Figure 7 Main Class Diagram

3.2.1.1 The Search Model (SM)

To build this model, we were inspired by [24, 26, 27]. The high-level idea of branching

on bids was proposed by Sandholm et al. in the BOB algorithm [26]. However BOB

algorithm was not implemented. Sandholm et al. implements an algorithm called

CABOB (Combinatorial Auction Branch on Bids), which incorporates many of the

techniques proposed in BOB algorithm and some additional ones [27].

In our search model, we implement many features from the BOB algorithm, also get

some idea from CABOB algorithm and also use some features from the [24] like

BidTree. The entire search is done in the Graph class as seen in Appendix-A Figure A2.

Our algorithm finds optimal solution given enough time and our algorithm can be used

for multi-item multi-unit settings as [26] and [27].

 50

The Algorithm can be summarized as below. The skeleton of our algorithm is a depth-

first tree search that branches on bids. See Figure 5 for Branch on Bids formulation.

Below the sequence of operations can be seen.

Algorithm 1

1. Create the adjacency list, from the given bids and items, in order to represent

the bid graph6 (look at the BidTree class for details)

2. Create the first graph whose component no5 is 0. (a new instance of Graph

class)

Until the created graph terminates do

a. Run depth-first-search (DFS)7 in order to find the number of connected

components, say n.

b. If n shows that no nodes to branch on8. Then update the bid graph nodes,

optimum path cost and its corresponding path. If the optimum path is

found, then terminate else continue.

c. If n is 1 (i.e. the bid graph is connected), find an articulation point9 to

branch on10. And then update the current optimum path and current path

cost.

d. If n >1,

i. Create a new instance of Graph class Graphi for each

component11 i.

6 see the BidTree class for details
7 By the DFS method of the Graph class.
8 All of the bid graph nodes with component no same as the Graph object’s component no are deleted,

see BidTree class and Graph class.
9 By the FindArticulation method of Graph class
10 By the MarkInDeleted method of Graph class
11 Different component numbers are decided and updated in the DFS method as seen in the DFS

method’s explanation in Graph class.

 51

ii. Calculate an upper bound12 for the optimum solution that can be

found in Graphi . If the total heuristic upper bound values and

the current path cost is more than the optimum path cost, then

each the Graphi starts its process (i.e. goes to step a). Then wait

until each Graphi is terminated.

iii. Update current path cost. Then delete every child Graphi
13

 .

Then update the bid graph nodes, optimum path cost and its

corresponding path. If the optimum path is found, then terminate

else continue.

e. Go to step a if the graph is not terminated (i.e. time out occurs) or the

optimum solution has not been found.

BOBAuction Class

As seen from the sequence diagram Appendix-A Figure A1 the search model starts

when the MainClass creates the BOBAuction class. Then MainClass calls the

StartBOBAuction method to start the Search Model’s process. When this method is

called, BOBAuction class creates the BidTree class in order to create the Adjacency

List (for the input file that is created by the MainClass). Then BOBAuction class

creates the Graph class and then calls the Execute method of the Graph in order to start

the Search algorithm to find the solution for the given input. As seen from Appendix-A

Figure A1 then MainClass recursively check if a solution is found by calling the

IsBOBAuctionFinished method of the BOBAuction class, if in a given time limit the

solution can not be found then the search process is terminated by the main class and

the current optimal solution is get (not necessarily the optimal solution).

12 By the CalculateHeuristic method of the Graph class
13 The BacktoComponentno method of the Graph class is called for every Graphi in order to update the

component numbers

 52

BidTree Class

The BidTree class creates the adjacency list (AdjList). The adjacency list is used to

represent the bid graph (The vertices of the bid graph are the bids and two vertices

share an edge if the bids share items). The bid graph idea was given in [26] but our

representation is a bit different from this representation. In [26] they use an array to

store the nodes of bid graph G. The array entry for a node j points to a doubly-linked

list of bids that share items with the node j. But in our implementation, the adjacency

list is a vector (from C++ Standard Template Library - STL). It is a vector of Vertex

pointer type. As seen in Appendix-A Figure A2 Vertex is a struct defined in order to

store the bids information. Also vertex structure includes componentno information

which is used to determine connected components in the bid graph after DFS (depth

first search) which is done by the Graph class. In our algorithm there is one adjacency

list i.e. bid graph that is created by BidTree class once but as seen in [27], in the

CABOB algorithm there is a bid graph for every connected component. Below in Table

1 an example of adjacency list for bids {1, 2}, {1, 3}, {2, 3}, {3} can be seen. BidTree

class uses the BidTree data structure which is explained in [24]. The BidTree data

structure is used for every node j in the adjacency list to find the neighbor bids (bids

that share items with node j). The BidTree data structure is not used in [26] and in the

CABOB algorithm [27].

Table 1 Adjacency List structure

{1,2} {1,3} {2,3}

{1,3} {1,2} {2,3} {3}

{2,3} {1,2} {1,3} {3}

{3} {1,3} {2,3}

Graph Class

The Graph class is the class where the entire search is done. The Graph class is derived

from LThread class, i.e. the graph class is a thread. The graph class is designed as a

thread because decomposition leads to time saving since search time is super linear in

the size of G [27]. A Graph instance executes until the optimum solution is found or it

is terminated (i.e. time out occurs). While the Graph class is created the component no

 53

information is also given in the constructor. Every graph class is only interested on the

adjacency list members that have the same component number as the Graph class. So at

a time every graph class’s component number should be different than each other. This

is done by the Component class. Below some of the important methods are explained in

order to have a better understanding of the Algorithm 1.

DFS method finds the number of connected components. In [26] and [27] it is advised

that, if the set of items can be divided into subsets such that no bid includes items from

more than one subset, the winner determination should be done in each subset

separately. Since the search is super linear in the size of the problem, such

decomposition leads to a speedup. By using depth-first-search on the bid graph G, DFS

method finds the number of connected components, updates the component number of

each node by a different component number (every connected component has the same

component number). If the entire bid graph nodes are deleted this method also finds

that. If there are more that one connected component, for each connected component a

Graph class is created.

BacktoComponentno method updates the component numbers of the nodes back to the

original ones.

FindArticulation method finds articulation points. In addition to checking whether

decomposition has occurred, we pick a bid that leads to decomposition, if

FindArticulation finds an articulation bid. The algorithm to find an articulation point

can be found in [33]. In Figure 8 articulation points can be understood more easily, here

point D is an articulation point. This figure is from [26].

 54

Figure 8 Example for articulation points (from [26])

MarkInDeleted method is called when to branch on that bid (the “in” arrow in Figure

5). It sets the isdeleted attribute of the bid node to true. It updates the resources of the

items (for multi-item multi-unit setting), which the “branched in” bid wants. According

to the remaining resources it deletes some of its neighbors, then.

CalculateHeuristic method calculates an upper bound for the optimum solution that can

be found. Admissible heuristic setting is the same as [26]

| 0
max[()]

i
G j

J

j
i i i

j Vi M j
i S

p
h u

∈ λ >∈
∈

= − Λ
λ�

�
 (19)

i iu − Λ is the remaining units of item i. As showed earlier bids are formulated in our

setting as Bj = {(�j
1, �j

2 ,, �j
m),pj), where �j

k
 0 is the requested number of units of

item k, and pj is the price.

In CABOB algorithm [27] the upper bound is found by solving an LP by LP Solver. It

has been demonstrated that the upper bound from LP is significantly tighter than those

proposed by other combinatorial auction winner determination algorithms, by their

experiments [27]. Also the time taken to solve the LP at every node is negligible

compared (I think this depends on the LP solver) to the savings in the search due to

 55

enhanced pruning. In the algorithm CABOB, they control a special case called

INTEGER. If the LP returns integer values (xj = 0 or xj = 1) for each bid j, they use

this solution and since it is an optimal solution. Here the important point to note is that,

they state that this occur more often than they expected. It has been thought that the

speed of the CABOB algorithm mainly depends on the LP solver because of INTEGER

special case and finding upper bound by solving an LP. Sandholm et al. benchmark

CABOB against a general purpose integer programming package, CPLEX 7.0 (the

results can be found in [27].

3.2.1.2 The Descending Simultaneous Auctions Model (DSAM)

In this model we built descending simultaneous auction mechanism. To build this

model, we were inspired from [4] and [3]. Courcoubetis et al. [4] developed an auction

mechanism for bandwidth allocation in a network. Their mechanism consists of a set of

simultaneous multi-unit Dutch (i.e. descending price) auctions (MIDAS), one per link

of the network. Courcoubetis et al. [4] state that they have proved that when employing

ascending auctions, it is impossible to synchronize the auctions of the various links so

that all of them terminate at the same time. Also more information about Dutch

auctions can be found in [3]. Although high level idea was given in [4], we implement

our own rules and also the details of the model is decided and designed by us. By this

model we implement a descending simultaneous auctions model in order to solve the

combinatorial auctions problem. As explained before descending auctions can occur in

multi rounds (see section 2.3). In this model also auction occurs in multi round. As

explained before this model will not necessarily find the optimum solution (see section

2.3.5.6).

This model is implemented by the SIMULalgoithm package. In Appendix-A A3

sequence diagram of the initialization process by the MainClass can be seen. As seen

from the class diagram for the SIMULalgorithm package in Appendix-A A4, this

model is also a threaded application. This model can be used for multi-item multi-unit

 56

auctions. Each item is represented by a Seller class instance, and for each bidder there

is a corresponding Bidder class instance. There are also a single Auctioneer class

instance and a single Ortak class instance to help synchronization between sellers and

bidders. Here Ortak class is written by singleton pattern technique (design pattern).

State of the process can be one of the five possible states, which are: NewRound state,

StartBidding state, StartAllocation state, Result state and NotStarted state. Sellers are

only interested in the NewRound state, and StartAllocation state, whereas Bidders are

only interested in StartBidding state, and Result state. Auctioneers are interested in all

of the states. SimultaneousAuction class instance makes the initializations of the model

and the starts the model process.

The sequence of operations in every round, for the model can be summarized as below.

Algorithm 2

Every new round starts with a NewRound State. The state of the process is changed by

the Auctioneer class.

1) In the NewRound state all Sellers looks at their remaining units and to the entire

Bidders’ list in order to see if there are some Bidders still not terminated. If

there are still unallocated units of the item and there is at least one Bidder

active, Seller determines the new price of the item14 (in every round the items

unit price is decreased). Else terminates the seller. And lastly increase the seller

count in order to determine the number of Sellers that has processed in the

NewRound state.

2) While the Seller threads process as in the 1st step Auctioneer thread controls

whether all of the Sellers has processed the NewRound state or not, in parallel.

When every Seller has processed the NewRound state, the Auctioneer finds the

current active seller count. If it shows that all of the Sellers have terminated,

14 By calling CalculateSellingPrice method that is explained below

 57

then terminate the Auctioneer instance (i.e. the algorithm finishes and the

solution is found), else change the state to StartBidding state.

3) When the state is the StartBidding state, the Bidders process. Every Bidder first

controls if any of the Seller which sells one of the item the Bidder wants has

terminated, or has enough remaining units, and if the Bidders valuation is higher

than, all of the corresponding Sellers’ selling price. For example a Bidder

Bidderj wants 2 units from item a, and 3 units from item b and the total

valuation of the bidder is 10. If Sellera or Sellerb has terminated i.e. item a has

finished or item b has finished than Bidderj has no chance to buy his bid and

should terminate. If Sellera and Sellerb has not terminated but the remaining

units from a or b is smaller than the requested unit by Bidderj, than again

Bidderj should terminate since it has no chance to buy his bid, since as

explained before Bidderj’s valuation is for the specified units, i.e. not for below

or more. Lastly if Sellera and Sellerb are both active and have enough units from

item a and b, but total value of Sellera’s unit selling price times 2 and Sellerb’s

selling price times 3 is bigger than Bidderj’s total valuation, than Bidderj again

does not bid at this round and waits for the next round. We accept this rule since

we want to minimize the chance of misallocations. For example think that

Bidderj gets one of its items and waits for the next rounds for the unit selling

price to decrease to buy the other items, and say that at the end of the auction it

can’t buy the other items, than in this condition an unwanted allocation will

occur. In order to prevent this kind of unwanted allocations a Bidder bids for

items only if the Bidder can bid for all of the items simultaneously in the same

round. And lastly increase the bidder count in order to determine the number of

Bidders that has processed in the StartBidding state.

4) While the Bidder threads process as in the 3rd step, Auctioneer thread controls

whether all of the Bidders has processed the StartBidding state or not, in

parallel. When every Bidder has processed the StartBidding state, the

Auctioneer finds the current active bidder count. If it shows that all of the

Bidders have terminated, then terminate the Auctioneer instance (i.e. the

 58

algorithm finishes and the solution is found), else change the state to

StartAllocation state.

5) In the StartAllocation state, allocations are done by Sellers based on the bids

made by the Bidders. Each Seller first sorts its corresponding Bidders that bid

for the item that the Seller sells at the current round based on Bidders’ unit

valuation. Since the unit selling price is fixed for the item (different for each

item), the difference between Bidders is decided by their unit valuation. Then

each Seller considers its corresponding Bidders one by one from the highest to

the lowest. If the Seller has more remaining units than the Bidder’s request and

the Bidder is still active, than Seller allocates the Bidder’s requested unit to it

updates its resource and evaluates the other Bidders in the sequence, else (the

Bidder wants more units than the remaining units) make the Bidder inactive.

And lastly increase the seller count in order to determine the number of Sellers

that has processed in the StartAllocation state.

6) When all of the allocations done, the Auctioneer instance change the state to

Result state.

7) In the Result state the Bidders controls the items that they have been allocated

in the StartAllocations state by the corresponding Sellers. As seen in step 5 if an

item is allocated to a Bidder by a corresponding Seller, it is allocated as the

requested units of the Bidder not below or more, or the item is not allocated to

that Bidder at all (and the Bidder is made as inactive). Each Bidder first controls

its activity. If it is active which means that the Bidder has got all of the items it

wants, than the Bidder terminates by increasing the revenue of the process. If it

is inactive (which means that it could not get some items that it wants in the

StartAllocation state), then it gives all of the items that it has got in order to

prevent unwanted allocations, and the Bidder again becomes active and waits

for the next rounds. Of course this can also cause inefficient allocations but in

order to prevent unwanted allocations, we accept this inefficiency. And lastly

increase the bidder count in order to determine the number of Bidders that has

processed in the Result state.

 59

8) When every Bidder has processed the Result state, the Auctioneer finds the

current active bidder count. If it shows that all of the Bidders have terminated,

then terminate the Auctioneer instance (i.e. the algorithm finishes and the

solution is found), else change the state to NewRound state i.e. a new round

starts and go to step 1.

At every round the unit selling prices for every item are determined by the

corresponding Seller by calling the CalculateSellingPrice method. In this method,

slightly modified Variable Reduction Rates (VRR) policy is selected to reduce prices

(for more information about price reduction policies you can look at [4]. This policy

involves a decrement rate and at each round r the unit selling price of item i is

determined by the following equation where pi(r) is the selling price of item i at round r

pi(r) = max{pi(r-1) – max{[Cremaining(r;i) / Cinit(r)] * MaxDrop, 1}, reserve price} (20)

That is the decrement rate of item i at a round r is proportional to the fraction of the

current remaining units Cremaining(r;i) divided by its initial value Cinit(r). Thus the prices

reflect the demand. By this policy less demanded items’ unit prices will drop faster and

more demanded items’ unit prices will drop slower. The price at each link is reduced at

every round at least by 1 and at most by MaxDrop.

SimultaneousAuction Class

As seen from the sequence diagram in Appendix-A A3 the Descending Simultaneous

Auctions Model starts when the MainClass creates the SimultaneousAuction class.

Then MainClass calls the StartSimultaneousAuction method to start the Descending

Simultaneous Auctions Model’s process. When this method is called,

SimultaneousAuction class calls the SetStatus method of the Ortak class in order to set

the status of the process as NotStarted. Then for each item, SimultaneousAuction class

creates a Seller class and inserts it to the seller list of the Ortak class. Then the Resume

method of the Seller is called. Then for each bid a Bidder class is created. For each item

requested in the bid, Bidders AddItem method is called and the item is added to the

 60

bidder’s list and the bidder is added to the corresponding Seller’s list . The Bidder is

also added to the Bidder list of the Ortak class by calling the AddBidder method. The

Bidder’s resume method is called. Lastly an Auctioneer class is created and the status is

set to NewRound status. Then MainClass recursively check if a solution is found by

calling the IsSimultaneousAuctionFinished method of the SimultaneousAuction class,

if in a given time limit the solution can not be found then the process is terminated by

the MainClass. As seen in Appendix-A A3 the Release method is called in order to

delete all Sellers and all Bidders.

Seller Class

The Seller class is derived from LThread class, i.e. the Seller class is a thread. The

Seller class is designed as a thread because it needs to do parallel operations with

Bidder class and Auctioneer class as in the real marketplace. Sellers are only interested

in the NewRound state and StartAllocation state.Each item is represented by a Seller

class instance.

Bidder class

The Bidder class is derived from LThread class, i.e. the Bidder class is also a thread.

The Bidder class is designed as a thread because it needs to do parallel operations with

Seller class and Auctioneer class as in the real marketplace. Bidders are only interested

in StartBidding state, and Result state. For each bidder there is a corresponding Bidder

class instance.

Auctioneer Class

The Auctioneer class is derived from LThread class, i.e. the Auctioneer class is also a

thread. The Auctioneer class is designed as a thread because it needs to do parallel

operations with Bidder class and Seller class as in the real marketplace. Auctioneer is

interested in all of the states and controls the process. There is a single Auctioneer

Class.

 61

Ortak Class

In this model the Ortak class is a singleton class. It has a private static pointer of type

Ortak class. Instance method, which is also a static method, returns this reference. And

as a result every instance has a chance to reach that single instance and this helps to

synchronize between threads. There is a single Ortak Class.

3.2.1.3 IP Formulation Model (IPFM)

The IP Formulation in this model as the same as the formulation as explained in section

2.7. Although the name of the class is GVA, GVA algorithm is not implemented in this

formulation because of the problems that occurs in the GVA algorithm as explained in

section 2.6.1.2. To solve the IP model we choose the GLPK version 4.4.

GLPK (GNU Linear Programming Kit) is a set of routines written in the ANSI C

programming language and organized in the form of a callable library. It is intended for

solving linear programming (LP), mixed integer programming (MIP), and other related

problems. GLPK is currently developed and maintained by Andrew Makhorin,

Department for Applied Informatics, Moscow Aviation Institute, Moscow, Russia.

GLPK is currently licensed under the GNU General Public License (GPL). GLPK is

free software; it can be redistributed and/or modified under the terms of the GNU

General Public License as published by the Free Software Foundation.

GLPK assumes the following formulation of linear programming (LP) problem:

Minimize (or maximize)

Z = c1xm+1 + c2xm+2 + ... + cnxm+n + c0 (21)

Subject to linear constraints

x1 = a11xm+1 + a12xm+2 +... + a1nxm+n

x2 = a21xm+1 + a22xm+2 +... + a2nxm+n (22)

xm = am1xm+1 + am2xm+2 +... + amnxm+n

And bounds of variables

 l1 ≤ x1 ≤ u1

 62

l2 ≤ x2 ≤ u2 (23)

…………….

lm+n ≤ xm+n ≤ um+n

where: x1 , x2, ..., xm - auxiliary variables; xm+1, xm+2, ... , xm+n - structural variables; Z -

objective function; c1 , c2 , ... , cn - objective coefficients; c0 - constant term ("shift") of

the objective function; a11 , a12 , ... , amn - constraint coefficients; l1 , l2 , ... , lm+n - lower

bounds of variables; u1 , u2 , ... , um+n - upper bounds of variables.

Auxiliary variables are also called rows, because they correspond to rows of the

constraint matrix (i.e. a matrix built of the constraint coefficients). Analogously,

structural variables are also called columns, because they correspond to columns of the

constraint matrix.

Bounds of variables can be finite as well as infinite. Besides, lower and upper bounds

can be equal to each other. Thus, the following types of variables are possible:

Bounds of variable Type of Variable

- ∞ < xk < + ∞ Free (unbounded) variable

 lk ≤ xk < + ∞ Variable with lower bound

- ∞ < xk ≤ uk Variable with upper bound

 lk ≤ xk ≤ uk Double-bounded variable

 lk = xk = uk Fixed variable

To solve the LP problem (21) - (23) is to find such values of all structural and auxiliary

variables, which:

a) Satisfy to all the linear constraints (22, and

b) Are within their bounds (23), and

c) Provide a smallest (in the case of minimization) or a largest (in the case of

maximization) value of the objective function (21).

 63

For solving LP problems GLPK uses a well known numerical procedure called the

simplex method. The simplex method performs iterations, where on each iteration it

transforms the original system of equality constraints (22) resolving them through

different sets of variables to an equivalent system called the simplex table (or

sometimes the simplex tableau).

MIP problem is LP problem in which some variables are additionally required to be

integer. GLPK assumes that MIP problem has the same formulation as ordinary (pure)

LP problem (21) – (23), i.e. includes auxiliary and structural variables, which may have

lower and/or upper bounds. However, in case of MIP problem some variables may be

required to be integer. This additional constraint means that a value of each integer

variable must be only integer number. As seen IP (Integer programming) is subset of

MIP and can also be solved by GLPK. The MIP solver currently is based on branch-

and-bound, so it is unable to solve hard or very large problems with a probable practical

limit of 100-200 integer variables. However, sometimes it is able to solve larger

problems of up to 1000 integer variables. More information about GLPK and GLPK

API routines can be found in [11]. In the GLPK_FAQ.txt file, which is in the GLPK

distribution doc directory, it is stated that on very large-scale instances CPLEX 8.0 dual

simplex is 10-100 times faster than the GLPK simplex solver and, much more robust. It

is also stated that in many cases GLPK is faster and more robust than lp_solve 4.0 for

pure LPs as well as MIP's. In the GLPK distribution doc directory, there is also a

bench.txt file which gives netlib benchmark results for GLPK. Other benchmarks can

be found for some of the well known LP and MIP solvers such as CPLEX, GLPK,

lp_solve, and OSL can be found on Hans Mittelmann's webpage at [13]

In the GVA class the SolveMip method formulates the IP for the given input, which is

created by the MainClass as seen from the sequence diagram Appendix-A A5. Then it

solves the IP by calling the appropriate GLPK API routines. One thing to be careful

while solving the MIP is, to first solve the LP relaxation of the MIP. If the simplex

method can’t solve the LP successfully than the MIP solution can not be found. Also

the optimum solution to the LP should be found otherwise the MIP can not be solved

 64

by the branch-and-bound method. As seen from the sequence diagram Appendix-A

A5, and the GVA class in Appendix-A A6, there is no mechanism to control the time

limit. This is because by the help of the GLPK API, we can limit the computing time,

by setting the control parameter LPX_K_TMLIM. Also by the GLPK API routine

lpx_print_mip the solution can be printed into a specified file.

3.2.2 A Simple Combinatorial Auction Tool (CATool)

After examining the experiment results, it can be seen that IP formulation gives better

results than the other two models considering evaluation times and revenue results (see

chapter 4). Because of this reason a simple Combinatorial Auction Tool (CATool) is

developed, which uses the IP formulation method to find winners. This tool is built by

Borland C++ Builder and using its valuable VCL. This tool has the ability to do online

combinatorial auctions. This tool has also the ability to be used as a simple web server.

This is a simple client-server application. Clients (bidders) connect to the web site of

the auction. Server gets the request from the clients, sends them corresponding pages.

Server accepts wishes until the current auction ends, then evaluates the winners,

updates the auction variables (including quantity, status, etc...) and sends the results to

clients (bidders). The Server and client side structures can be seen in Figure 9 and

Figure 10 respectively.

Figure 9 Server side structure

 65

Figure 10 Client Side structure

 66

3.2.2.1 Functional Requirements

Figure 11 UC01 Use Case Model

The functional requirements of the CATool are depicted with the help of use case

diagrams. Use cases can be seen in Figure 11. As seen the actors are Client, Winner

Determinator, Server Admin, CATManager, HTTP Server, Mail Server, and Timer.

The descriptions of the use cases are given in the following table, Table 2.

 67

Table 2 Use Case Descriptions

UC # UC Name UC Description

UC01-1 View Mails This use case is used by the client to see the

mails received about the results of the

auction

UC01-2 Fill Wish Form This use case is used by the client to fill the

wish list and other information like total

valuation, name and email information

UC01-3 Send Wish List This use case is used by the client in order

to send his wishes to the server.

UC01-4 Send Request By this use case the request of the clients

are sent to the HTTP Server

UC01-5 Prepare product html

page

This use case is used by the server admin to

prepare the products html page. The server

admin enters the products that will be sold

in the auction, sets their quantities, names,

and other related information. The

corresponding html is created by the given

name and the resources are updated

UC01-6 Set auction final time This use case is used by the Server Admin.

The server admin sets the time when the

corresponding auction will end.

UC01-7 Set Status This use case is used by the Server admin to

set the status in order to start the auction,

and enables timer

UC01-8 See prices This use case is used by the Server Admin

in order to see the prices given by the

bidders throughout the auction. This gives a

chance to analyze the auction.

 68

Table 2 Use Case Descriptions Cont.

UC01-9 Request to start This use case is used by the Server admin in

order to start the HTTP Server. This use

case uses the “Start server” use case in

order the start the HTTP Server

UC01-10 Confirm to send mail

to bidders

This use case is used by the server admin in

order to confirm to send to results to the

bidders. This use case uses “Send Results to

Clients” use case in order to send the results

UC01-11 Start server This use case is used by the HTTP Server in

order to start the server.

UC01-12 Send Respond This use case is used by the HTTP Server in

order to send respond to clients

UC01-13 Start Timer This use case is used by the Timer in order

to start the timer.

UC01-14 Send Results to Clients This use case is used by the CATManager

in order to send results to bidders. This use

case uses "send mail" use case.

UC01-15 Check Auction Final

Time

This use case is used by the CATManager

in order to check whether the auction final

time has come by the help of Timer

UC01-16 Response wish

requests

This use case is used by the CATManager

in order to respond requests. It uses "Send

Response" use case.

UC01-17 Accept wish requests This use case is used by the CATManager

in order to accept wish requests. Wishes are

accepted if an auction is started until the

auction final time arrives.

UC01-18 Finish Auction This use case is used by the CATManager

in order to evaluate the auction winners. It

uses “Find winners”, “Update Products

 69

Table 2 Use Case Descriptions Cont.

 Quantity”, and “Update Status” use cases in

order to do this.

UC01-19 Find Winners This use case is used by the CATManager

in order to find the auction winners. It uses

“Determine Winners” use case to do this.

UC01-20 Update Status This use case is used by the CATManager

in order to update the status.

UC01-21 Update Products

Quantity

This use case is used by the CATManager

in order to update the products quantity

after the auction

UC01-22 Determine Winners This use case is used by the Winner

Determinator in order to determine the

winners by the IP Formulation Model

UC01-23 Send Mail This use case is used by the Mail Sender in

order to send mails about results to the

bidders.

3.2.2.2 Design of the CATool

After the functional requirements analysis the design of the CATool is made. As seen

in the class diagram, Appendix-A A7, there are four classes which are the

CATMainForm, ProductsForm, MailForm, and WinnerDeterminator classes. Also VCL

classes are used for implementing GUI and some other functionality as seen in

Appendix-A A7.

CATMainForm class is the class where the main operations are done. The

functionalities of the Server Admin and CATManager are implemented in this class.

This class also has attributes for implementing GUI from VCL.

 70

ProductsForm class is used to preview the created products HTML page. This class also

has attributes for implementing GUI from VCL.

MailForm class sends results to bidders. This class also has attributes for implementing

GUI and sending messages over SMTP, from VCL. To send e-mails the SMTP service

is used that is provided by windows 2000.

WinnerDeterminator class is derived from TThread class of VCL. It implements the IP

formulation model to find winners.

3.2.2.3 User Interface of CATool

In this section brief description of the CATool will be presented by presenting sample

views of the system.

 71

Figure 12 CATool starting screen

The starting screen of the CATool can be seen in Figure 12. The user here can set the

auction end time, add the products that will be tried to be sold on the auction, create the

 72

products html and previews it, start the auction15 and HTTP server, and can see the logs

of the system. The path of the CATool is found when the starting form is created. So

when the HTTP server is created and for example for localhost 127.0.0.1 is entered

automatically the index.html (which is in the same directory of the CATool) can be

seen in the browser of the client. Index.html can be seen in Figure 13

Figure 13 Index.html

In Figure 14 we can see the view, after the products are added and CreateHtml button is

clicked. When the CreateHtml button is clicked the products html page is created by the

given name and the preview is presented to the user.

15 As seen in Figure 12 when the auction is not started the status bubble is in red, when the auction is

started it turns to green and when the auction finishes it turns into blue until the updates are done and

again it turns back to red.

 73

Figure 14 Preview of the created products Html

The screen after the auction end time arrives and winners are found can be seen in

Figure 15. It can be seen that the graph is dynamically updated when the bidders give

bids. And when the auction ends the status bubble turns into blue and the logs indicate

that winners are found. Then when finish auction button is clicked the Mail Form is

created as seen in Figure 16. In this form winners and losers are listed. And when Ok

button is clicked e-mail is send to bidders and the graph, which is seen in Figure 15, is

attached to the ongoing e-mails. After closing this form, the products and resources are

also updated.

 74

Figure 15 After the auction end time arrives and the winners found

 75

Figure 16 Mail Form

 76

CHAPTER 4

4 Experimental Results a

In this section, simulation model will be explained and the simulation results for the

three models that explained in Chapter 3 will be presented.

4.1 Introduction

Auctions have been proposed and applied to perform contract negotiation and resource

allocation in datagram networks and reservation-based networks. Many different

approaches can be found in the literature.

Bandwidth allocation is one of the well known examples where preferences of bundles

situation occurs, it can be modeled as multi-item multi-unit auctions which is one of the

most complex situation that occurs in CAP. As stated before many of the previous

studies can not be used in multi-unit settings. As a result, in order to analyze the

performance of the three models built in order to solve CAP, we model bandwidth

allocation system and by simulation we compare their performances.

4.2 Simulation Model

We model the network as in [30]. We choose a linear network to model as in Figure 17

which is taken from [30]. This is a network of N nodes. Let n denote a node ID, where

n = {0, 1, 2, …, N}. It is supposed that the distance between any two adjoining nodes n-

1, n is equal, and W denotes the total capacity of each link.

 77

Figure 17 Network Model (from [30])

4.3 Simulation Parameters

Some parameters are as in [30]

� The last node ID N: 9

� Capacity of each link W : 9

� Number of users i : 10 -30

� Demand for bandwidth of each user wi is random between 1 and 5

� Demand for links of user i (ni1, ni2) is random

� Total valuation of user i is random (it is calculated by unit valuation* wi* | ni1-

ni2| all of which are random)

� Unit price of a link is random and initially all of the links unit price is same

� Unit reserve price is 0 for all of the links

We also assume that the user say true valuations.

4.4 Evaluation Criteria

To evaluate the performance of three models, we look at the following evaluation

criteria

� Total revenue of the network which is the sum of total valuations of the users

that are allocated resource, can be seen in Figure 1816

� Bandwidth allocation percentage which indicates what percent of the available

bandwidth is allocated to users, can be seen in Figure 19

� Time to find the solution, can be seen in Figure 20

16 Since the revenue of DSAM also depends on the price reduction policy. But since the users are ready

to give their valuation, in the simulation results for DSAM the revenue are calculated from the winner’s

valuations as other models (not from the price of the unit link at the time of allocation)

 78

Total Revenue

0

50

100

150

200

250

300

350

10 15 20 25 30 35

#bidders

re
ve

nu
e SM

IPM

DSAM

Figure 18 Total revenue of the network

Used Bandwidth %

0

10

20

30

40

50

60

70

80

90

100

10 15 20 25 30 35

of bidders

al
lo

ca
te

d
ba

nd
w

id
th

 %

SM

IPM

DSAM

Figure 19 Bandwidth allocation percentages

 79

Elapsed time to find solution

0

10

20

30

40

50

60

70

10 15 20 25 30 35

of bidders

se
c

SM

IPM

DSAM

Figure 20 Time to find the solution

As seen from Figure 18 the total revenue is the same for SM and IPFM, and they are

higher than DSAM. This is because, SM finds the optimum solution given enough time

as stated before, and DSAM finds the optimum solution, if the corresponding MIP has

an optimum solution. Since the formulations are correct and time is enough both SM

and IPFM finds the optimum solutions, but DSAM could not always find the optimum

solutions. This is a normal condition because DSAM is a descending simultaneous

auction model and as explained before it is not designed to find optimum allocation.

But when we look at Figure 20 we see that DSAM and IPFM are faster than SM. Here

when we consider the three graphs we can say that IPFM is the most advantageous

model, because it finds the optimum solution and the fastest one. But for big numbers

(bidders and items i.e. more complex situation) we can’t say that IPFM always is the

fastest. Since the GLPK has variable limits when solving MIP (currently 100 variables).

 80

Other simulation runs can be seen in Appendix-B. Here from the runs we see that

DSAM’s revenue is 87.43% of SM and IPFM's revenue. DSAM’s allocated bandwidth

is 84.74% of SM and IPFM's allocated bandwidth.

SM can be made faster by finding better upper bounds also Sandholm et al. has listed

some techniques, which can be used at each search node to identify and solve tractable

special cases [26]. SM can be made faster by also using these techniques. Some of

these techniques are

• Avoiding branching on short bids

• Deleting items included in only one bid

• Interval bids. Sandholm et al. prove that if all n bids are interval bids in a

linearly ordered set of items [1,m], then an optimal allocation can be computed

in worst-case time O(n+ m).

• Identifying linear ordering. Sandholm et al. state that their interest is not to limit

the auctions to interval bids only, but rather to recognize whether the remaining

problem at any search node falls under this special case and to solve it by their

specialized fast algorithm. This requires an algorithm to check whether there

exists some linear ordering of items for which the given set of bids are all

interval bids. It turns out this problem as the interval graph recognition problem,

for which a linear-time solution exists [26]. The interval graph recognition

problem is to decide whether G is an interval graph, and to also construct the

intervals [26]. Algorithms on interval graphs that solves this problem can be

found in the lecture notes of Gabriel Valiente (2002).

This simulation also gives a chance to compare the three well known approaches for

multi-item multi-unit auctions. Many of the previous papers compare different

approaches to solve the CAP, but they generally compare them by not considering

multi-unit models except in [28]. So in this simulation three different approaches are

compared as first time based on the settings given in chapter 4.

 81

CHAPTER 5

5 Conclusion and Future Work a

 When we survey some of the previous works that are done on Combinatorial Auctions

Problem, we see that the previous works can be categorized into three parts. One part

tries to solve the unrestricted problem using search algorithms [23, 24, 26], second part

tries to solve the problem using OR (Operation Research) methodologies and/or deals

with the identification of tractable cases of the combinatorial auctions problem [31, 32]

and the last part deals with the usage of sequential or simultaneous auctions in order to

solve the combinatorial auctions problem [3, 4, 19].

As can be seen in chapter 2, many of the previous studies were for single-unit

Combinatorial Auctions Problem and many of the previous studies cannot be used in

multi-item multi-unit settings. Also many of the previous studies compare different

approaches to solve the CAP, but they generally compare them by not considering

multi-unit models excepts in [28]. As a result, in this study, we decided to focus on

multi-unit combinatorial auctions (multi-item multi-unit auctions in which bidders have

preferences over bundles and their valuation for the bundle is not additive). We decided

to compare different approaches in order to solve multi-unit combinatorial auctions

problem, based on the settings given in chapter 4. We built three different models from

three different approaches. We compare their performances using computer simulations

where we model Bandwidth allocations system based on the settings given in chapter 4.

And we decided to build a simple combinatorial auction tool which can be used for

online combinatorial auctions and can be used as a test bed for combinatorial auctions.

 82

The first model we build tries to solve the CAP using search methods. The search

algorithm of this model is very similar to Sandholm’s sophisticated search algorithm

but with some modifications [24, 26, 27]. This model finds the optimal solution when

given enough time. The second model is built by considering the simultaneous auctions

mechanisms used in to solve the CAP. We were inspired from Courcoubetis et al. for

the second model [4]. In this one we built a descending simultaneous auction

mechanism. In the last model we developed an IP formulation like the one given in

section 2.7 and used the GNU Linear Programming Kit (GLPK)’s callable library in

order to find the solutions. This model also finds the optimum solution, if the

corresponding MIP has an optimum solution and it is given enough time.

The performance of each model is analyzed and compared with the other models using

computer simulations, where we model bandwidth allocation among multiple users.

Because, as stated before, bandwidth allocation is one of the well known examples

where preferences of bundles situation occurs, it can be modeled as multi-item multi-

unit auctions which is one of the most complex situation that occurs in CAP. Most of

the previous studies can not be used in multi-unit settings. The simulation results of

Chapter 4 gives a chance to compare the three well known approaches for multi-item

multi-unit auctions based on the settings given in chapter 4. Many of the previous

papers compare different approaches to solve the CAP, but they generally compare

them by not considering multi-unit models except in [28]. So in our work, the three

approaches are compared as the first time based on the settings given in chapter 4. The

results have shown that the IP formulation model was advantageous for considerable

numbers of bidders and items for the used simulation settings.

Based on the performance of the models and some other situations, we choose the IP

formulation model and built a simple Combinatorial Auction tool (CATool) which can

be used for online auctions and e-procurement systems. The CATool uses IP

Formulation model in order to find winners. This tool is one of the first tools which can

serve as a web server and finds the winners using the IP Formulation.

 83

As a future work, SM can be improved by finding better upper bounds and also

identifying and solving tractable special cases as explained in chapter 4. Some

functionalities can be added to the CATool like personalization. Also the simulation

model can be made more complex including the bursty traffic conditions, which can

occur in bandwidth allocations and causes the variation of the required bandwidth. Also

other simulation models where preferences over bundles situation occurs, like

procurement of indirect materials, logistics marketplace and etc. can be built. By

modeling different user behaviors and marketplaces a better analysis on the three

models can be made. Building a more complex simulation model can also be a field of

research.

 84

REFERENCES

[1] Arpınar, S., Do�aç, A., &Tatbul N. (2000, July). An Open Electronic

Marketplace through Agent-based Workflows: MOPPET. International
Journal on Digital Libraries, 3(1), 36-59.

[2] Benyoucef, M., Alj, H., Vézeau, M., &Keller, R. K. (July 2001). Combined
Negotiations in E-Commerce: Concepts and Architecture. Electronic
Commerce Research Journal Special issue on Theory and Application of
Electronic Market Design, 1(3), 277-299.

[3] Biswas, S., &Narahari, Y. Iterative Dutch Combinatorial Auctions., To appear
in Special issue of Annals of Mathematics and Artificial Intelligence on the
Foundations of Electronic Commerce.

[4] Courcoubetis, C., Dramitinos, M.P, &Stamoulis, G.D. (2001, December). An
Auction Mechanism for Bandwidth Allocation over Paths. 17th International
Teletraffic Congress (ITC)

[5] Dawid, H. (1999). On the convergence of genetic learning in a double auction
market. Journal of Economic Dynamics & Control, 23, 1545-1567.

[6] eBay; URL: www.ebay.com

[7] Menczer, F., Street, W. N., &Monge, A.(2002). E. Adaptive Assistants or
Customized E-shopping. IEEE Intelligent Systems 17(6), 12-19.

[8] Fox, M.S., Barbuceanu, M., & Teigen R.(2000). Agent-Oriented Supply-
Chain Management. The International Journal of Flexible Manufacturing
Systems, 12, 165-188.

 85

[9] Weiss, G. (1999). Multiagent Systems A Modern Approach to Distributed
Artificial Intelligence. MIT Press

[10] GLPK home page URL: http://www.gnu.org/software/glpk/glpk.html

[11] GNU Linear Programming Kit Reference Manual.

[12] Guttman, R.H., & Maes, P. (1998). Cooperative vs. Competitive multi-agent
negotiations in retail electronic commerce. Proceedings of the Second
International Workshop on Cooperative Information Agents (CIA’98), Paris,
France, July 3-8

[13] Hans Mittelmann's webpage URL:http://plato.asu.edu/bench.html

[14] Hunsberger, L., Grosz, B.J. (2000). A Combinatorial Auction for
Collaborative Planning. In Proceedings of the Fourth International Conference
on Multi-Agent Systems (Boston, Massachusetts), IEEE Computer Society
Press, pp. 151-158.

[15] Jap, S.D (2002). “Online Reverse Auctions: Issues, Themes, and Prospects for
the Future”. Invited article for the Marketing Science Institute- Journal of the
Academy of Marketing Science Special Issue on Marketing to and Serving
Customers through the Internet: Conceptual Frameworks Practical Insights
and Research Directions. 30(4), 506-25.

[16] Klemperer, P. (May, 1999). Auction Theory: A Guide to the Literature.
Journal of Economics Surveys, 13(3), 227-286.

[17] Lee, K.Y., Yun, J.S., & Jo, G.S. (2003). MoCAAS: auction agent system
using collaborative mobile agent in electronic commerce. Expert Systems
with Applications, 24, 183-187

[18] Maes, P., Guttman, R. H, &Moukas, A. G. (1999) Agents that buy and sell.
Commun. ACM 42(3), 81-91.

 86

[19] Milgrom, P. (2000, April). Putting Auction Theory to Work: The

Simultaneous Ascending Auction. Journal of Political Economy

[20] Park, S., &Miller, K.(1998) Random Number Generators: Good Ones Are
Hard To Find . Communications of the ACM

[21] S. Russell, P. Norvig (1995). Artificial Intelligence: A Modern Approach,
Prentice Hall, Englewood Cliffs, NJ

[22] Sakurai, Y., Yokoo, M., &Kamei, K. (2000). An Efficient Approximate
Algorithm for Winner Determination in Combinatorial Auctions, Second
ACM Conference on Electronic Commerce (EC-00)

[23] Sandholm, T. (2000). Approaches to winner determination in combinatorial
auctions. Decision Support Systems, 24, 165-176.

[24] Sandholm, T. (2002). Algorithm for optimal winner determination in
combinatorial auctions. Artificial Intelligence, 135, 1-54.

[25] Sandholm, T., &Huai, Q (2000). Nomad: Mobile Agent System for an
Internet-Based Auction House. IEEE Internet Computing, 4(2), 80-86.

[26] Sandholm, T., &Suri, S. (2003). BOB: Improved winner determination in
combinatorial auctions and generalizations. Artificial Intelligence, 145, 33-58.

[27] Sandholm, T., Suri, S., Gilpin, A., &Levine, D. (2001). CABOB: A Fast
Optimal Algorithm for Combinatorial Auctions. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI), Seattle, WA

[28] Sandholm, T., Suri, S., Gilpin, A., &Levine, D. (2002). Winner Determination
in Combinatorial Auction Generalizations. In the Proceedings of the First
International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS), Bologna, Italy, July pp. 69-76.

 87

[29] Shardanand, U., &Maes, P., (1995). Social Information Filtering: Algorithms
for Automating “Word of Month”. Proc ACM Conf. Human Factors in
Computing Systems (CHI 95), ACM Press, 210-127.
URL:http://www.acm.org/sigchi/chi95/Electronic/documnts/papers/us_bdy.ht
m.

[30] Takahashi, E., &Tanaka, Y. (2001). Bandwidth Allocation by Using
Generalized Vickrey Auction. Asia Pacific Symposium on Information and
Telecommunication Technologies (APSITT2001), Kathmandu, Nepal/ Atami,
Japan, pp. 233-237.

[31] Tennenholtz, M. (2002). Tractable combinatorial auctions and b-matching.
Artificial Intelligence, 140, 231-243.

[32] Vries, S. de, &Vohra, R. (2003). Combinaorial Auctions: A Survey.
INFORMS Journal on Computing, 15(3), 284-309.

[33] Weiss, M.A. Data Structures and Algorithm Analysis in C++, 2nd Edition.
Addison-Wesley

[34] Wurman , P. R., Wellman, M. P., &Walsh, W.E (1998). The Michigan
Internet AuctionBot: A configurable auction server for human and software
agents. In Second International Conference on Autonomous Agents
(AGENTS-98), pages 301-308, Minneapolis, MN

 88

APPENDICES

 89

A: Class and Sequence Diagrams

�������� ��		

���
�
�
�����

���
������

��������

��

��������������	��������

���	����

������
�
�
�������	���������	�������

�������������	������������

������������
� ���!���"

#��$����!�"

%��$����
�
�
�����!�"

�&��'
�
�
�����!�"

&�������������	�!�"

(����	���
��	!�"

)��*�$��$�����	+!�"

,��$��$�����	+!
���-��."

�/�����0��	�!
������1���.2����"

�(��3���������
�!�"

�)��'�����!�"

�4��5�	
��!�"

4��
�
�
�����!	������	�����."

6��
������!�"

�#�������!���"

�%���	
�
�
����� ���	���!�"
�6������������!�"

����'
������!�"

A 1 MainClass Initialization Sequence Diagram part1 (Initialization of the Search Model)

 90

���������

�����������������

���������!"
'���������!"
������������1�!"

��
��7
!�����������	"

8�-�
��7

������1���

����
��	���0�����9
���-��.:.

������1���!�����������
������1���.2���;���������
������1���."
���
��!
�����
���-��."���0���
�	����!"�������

99	��
��::

<����
<��;��

������

���=>?������	�����
�*$�������	�����
�1@������	�����

�A1
����������	������
�A$�����	+�������.
�A�������	���0�����9���:

������!"
'
������!"
��	���
��	!"

���0��	�!"
�����������	�!"
3���������	�!"
$��$�����	+!"

*�$��$�����	+!"

<�A
������

�������
!�����������	"

�
�
�����

�
�	�����	������	�����.

�
�
�����!"
'
�
�
�����!"
$����
�
�
�����!"

�	
�
�
����� ���	���!"

���-��

��	������
���

0����7����7������
�����
���	�����
���
������	����	�������9���2��
���:

���-��!��	�������
���2��
������
���	������"
'
���-��!"
	
�
���	!"���0���

99	��
��::

�����

����������0�����9B����7.:
���������	������
���

��������	������
���
�������	����0�����9�����.:
��
����������
��������������1�������

��������0�����9B����7.:
���������0�����9B����7.:

�����!"
�����!"
'�����!"
>7��
��!"

 ��������
������!"
? $!"
���+?������!"

���+��?������!"
���+�
�?������!"
 ���?������!"

��+�������������!"

3���������
�!"
? $0�	��!"
����
���������	�!"

? $�!"
?����������	!"
����
����C�
��	���!"

8���	�;����

B����7

�����	�����7������
������0�����9B����7.:

?�����������	����0�����9B����7.:
0�	�����������
�
�������
���������

�����������������
�	��������������
7��;��������

B����7!"
'B����7!"

99	��
��::

<
��

<��������������$����

<������

A 2 Class Diagram for BOBalgorithm Package

 91

A 3 MainClass Initialization Sequence Diagram part3 (Initialization of the Descending

Simultaneous Auctions Model)

 92

A 4 Class Diagram for SIMULalgorithm Package

 93

�������� ��		

����B�

#��	��0����!�"

4��'�B�!�"

����B�!	������	�����."

������$�D
����

���;���������

A 5 MainClass Initialization Sequence Diagram part2 (Initialization of the IP Formulation Model)

�B�

7�����
���..

��	�
���	�����
���.

�+���������
���.

�
�	�����	������	�����.

�B�!�	���	������	�����."

'�B�!"

	��0����!"���0���

��3=

A 6 Class Diagram for GVAalgorithm package

 94

�������
!�����B��"

����E��
���	��
!�����B��"

3���
��	 ���

<3��0���
���	��

������
!�����B��"

�$��0��$��+��
!�����B��"

���	�B���
!�����B��"

������
!�����B��"

�?�������3��+��
!�����B��"

�����?����;
!�����B��"

�$����
!�����B��"

������� ���

<�����B���<?���3��+��

<C���$��0��

<��	�����
��	

<�����

<����3��+��

<3���
��3������	�� <	���
		����

�����		�;�
!�����B��"

���$��3
!�����B��"

�����+
�7
!�����B��"

��������>���
!�����B��"

<��A�
���������
<��A��������

<��A����
���

<��A����
�����

<��A����
��D

�����
!�����B��"

<��;	

�$����

����
!�����B��"

<	�A���

<	�A���	����

<	�A����	�

<	�A�+

<	�A���� <	�A����������

<	�A����0�

<	�A	�������

<	�A	���
	
	�A�����

���� ���

<��		�;�

<$��3	�����

<��A������	
<��A��	��	

<�����	
�����

<���������	

<�������	

<�������	��7�

<���	��

<���	����7�
<	�A�+

<	�A������

E�����?�����������

��3=

A 7 Class Diagram of the CATool

 95

A 8 Class Diagram for Threads Package

A 9 Class Diagram for Simulator Package

 96

B: Simulation Runs

Simulation Run 1

Total Revenue run no = 1

0

50

100

150

200

250

300

10 15 20 25 30 35

of bidders

re
ve

nu
e SM

IPM

DSAM

Used Bandwidth % run no = 1

0

10

20

30

40

50

60

70

80

90

10 15 20 25 30 35

of bidders

al
lo

ca
te

d
ba

dw
id

th
 %

SM

IPM

DSAM

 97

Elapsed time to find solution run no = 1

0

50

100

150

200

250

10 15 20 25 30 35

of bidders

se
c

SM

IPM

DSAM

Simulation Run 2

Total Revenue run no = 2

0

50

100

150

200

250

300

350

10 15 20 25 30 35

of bidders

re
ve

nu
e SM

IPM

DSAM

 98

Used Bandwidth % run no = 2

0

10

20

30

40

50

60

70

80

90

10 15 20 25 30 35

of bidders

ba
nd

w
id

th
 a

llo
ca

te
d

%

SM

IPM

DSAM

Elapsed time to find solution run no = 2

0

10

20

30

40

50

60

10 15 20 25 30 35

of bidders

se
c

SM

IPM

DSAM

 99

Simulation Run 3

Total Revenue run no = 3

0

50

100

150

200

250

300

350

10 15 20 25 30 35

of bidders

re
ve

nu
e SM

IPM

DSAM

Used Bandwidth % run no = 3

0

10

20

30

40

50

60

70

80

90

100

10 15 20 25 30 35

of bidders

al
lo

ca
te

d
ba

dw
id

th
 %

SM

IPM

DSAM

 100

Elapsed time to find solution run no = 3

0

10

20

30

40

50

60

70

80

10 15 20 25 30 35

of bidders

se
c

SM

IPM

DSAM1

Simulation Run 4

Total Revenue run no = 4

0

50

100

150

200

250

300

350

10 15 20 25 30 35

of bidders

re
ve

nu
e SM

IPM

DSAM

 101

Used bandwith % run no = 4

0

10

20

30

40

50

60

70

80

90

10 15 20 25 30 35

of bidders

al
lo

ca
te

d
ba

nd
w

id
th

 %

SM

IPM

DSAM

Elapsed time to find solution run no = 4

0

50

100

150

200

250

300

350

400

450

10 15 20 25 30 35

of bidders

se
c

SM

IPM

DSAM

