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Mutlu Uysal, MSc (Teknokent)



I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I
also declare that, as required by these rules and conduct, I have fully cited
and referenced all material and results that are not original to this work.
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ABSTRACT

AN IMAGE RETRIEVAL SYSTEM BASED ON REGION CLASSIFICATION

Özcanli - Özbay, Özge Can

M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Fatoş Yarman - Vural

June 2004, 60 pages

In this thesis, a Content Based Image Retrieval (CBIR) system to query the objects

in an image database is proposed. Images are represented as collections of regions

after being segmented with Normalized Cuts algorithm. MPEG-7 content descriptors

are used to encode regions in a 239-dimensional feature space. User of the proposed

CBIR system decides which objects to query and labels exemplar regions to train

the system using a graphical interface. Fuzzy ARTMAP algorithm is used to learn

the mapping between feature vectors and binary coded class identification numbers.

Preliminary recognition experiments prove the power of fuzzy ARTMAP as a region

classifier. After training, features of all regions in the database are extracted and

classified. Simple index files enabling fast access to all regions from a given class are

prepared to be used in the querying phase. To retrieve images containing a particular

object, user opens an image and selects a query region together with a label in the

graphical interface of our system. Then the system ranks all regions in the indexed

set of the query class with respect to their L2 (Euclidean) distance to the query

region and displays resulting images. During retrieval experiments, comparable class

precisions with respect to exhaustive searching of the database are maintained which

demonstrates effectiveness of the classifier in narrowing down the search space.
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Keywords: Content Based Image Retrieval, Region Labeling, Region Classification,

fuzzy ARTMAP, MPEG-7.
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ÖZ

BÖLGE SINIFLANDIRMASINA DAYALI BİR GÖRÜNTÜ ERİŞİM SİSTEMİ

Özcanli - Özbay, Özge Can

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Fatoş Yarman - Vural

Haziran 2004, 60 sayfa

Bu çalışmada, veritabanlarında nesne içeriği araması yapabilecek bir görüntü sorgu-

lama sistemi önerilmektedir. Görüntüler Düzgelenmiş Kesikler (Normalized Cuts)

algoritması ile bölütlenmiş bir bölge kümesi şeklinde temsil edilmektedir. En alt

seviyede ise bölgeler, MPEG-7 standardı ile oluşturulan, 239 elemanlı bir öznitelik

vektörü ile betimlenmektedir. Kullanıcı hangi nesnelerin sorgulanacağına karar ver-

erek, geliştirilen bir arayüz aracılığı ile örnek bölgeler etiketlemekte ve sistemin eğitimi

için kullanılacak kümeleri oluşturmaktadır. Sistem, bölütlerin sınıflandırılmasında

bulanık ARTMAP sinir ağı mimarisini kullanmaktadır. Yapılan ön deneyler bu mi-

marinin erişim sistemlerinde kullanım için uygunluğunu ve bölge sınıflamasındaki

başarısını kanıtlamıştır. Eğitim aşamasından sonra, bölütlenen veri tabanındaki tüm

bölgelerden öznitelik vektörleri çıkartılarak, bu vektörler eğitilen bulanık ARTMAP

modülü tarafından sınıflandırılır. Sorgu aşamasında erişimi hızlandırmak amacıyla

her sınıfın bölge numaralarını kapsayan dizinler oluşturulur. Kullanıcı sistem arayüzü

sayesinde bir görüntü açarak, sorguda kullanılacak bölgeyi ve etiketi belirler. Sorgu

etiketine sahip sınıf bölgelerinin öznitelik vektörleri ile sorgu bölgesinin öznitelik vektörü

arasındaki L2 (Öklit) uzaklıkları hesaplanır ve sonuç görüntüleri bu uzaklığa göre

sıralanarak kullanıcıya gösterilir. Bir sınıfın tüm görüntüleri kullanılarak yapılan

erişim deneyleri sonucunda önerilen sistemin arama uzayını daraltmakta başarılı olduğu
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tüm veritabanının sınıflandırma kullanılmadan aranması ile alınan sonuçlar göz önüne

alındığında görülmektedir.

Anahtar Kelimeler: İçerig̃e dayalı görüntü erişimi, bölge etiketleme, bölge sınıflama,

bulanık ARTMAP, MPEG-7.
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CHAPTER 1

INTRODUCTION

Recent advances of the technology in digital imaging, broadband networking and dig-

ital storage devices make it possible to easily generate, transmit, manipulate and

store large numbers of digital images and documents. As a result, image databases

have become widespread in many areas such as art gallery and museum management,

architectural and engineering design, interior design, remote sensing and manage-

ment of earth resources, geographic information systems, medical imaging, scientific

database management systems, weather forecasting, fabric and fashion design, trade-

mark and copyright database management, law enforcement, criminal investigation,

picture archiving and communication systems. Furthermore, the rapid growth of the

World Wide Web has led to the formation of a very large but disorganized, publicly

available image collection. Recent studies show that there are 180 million digital im-

ages on publicly indexable Web and millions of new images are being produced every

day [41]. Thus, efficient image retrieval from digital image collections has been of great

interest over the last decade and several systems have been developed for research and

commercial purposes. (see: [37, 41, 44, 69, 88] for recent surveys.)

Retrieval problem is to select from a collection those images that are relevant to the

user request specified either in visual or textual form. In this thesis, we are interested

in using image content, i.e. only visual information, as a way of accessing the database.

Despite the apparent success in appearance based querying, available systems are still

far from retrieving images containing particular objects. Studies [7, 33, 34] reveal the

need to query in the “things” domain, which suggests integration of object recognition
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techniques with current retrieval architectures. However, object recognition is possible

via the utilization of certain representation schemes, which usually require segmenta-

tion of the object from the rest of the image. Current automatic image segmentation

methods are far from extracting objects. However, segmented regions coarsely corre-

spond to objects or parts of objects in a natural image. In this regard, segmentation

of images into coherent regions and representing them as collections of regions is a

strong candidate as an intermediate level representation [22, 90]. A learning system

that can efficiently discriminate objects under this representation is highly desirable.

In this thesis, fuzzy ARTMAP algorithm is investigated as a promising tool and a

system that can query objects in an inexactly segmented database is proposed.

Fuzzy ARTMAP is a supervised learning algorithm that can rapidly self-organize

stable categorical mappings between input and output vectors [16, 19]. One of the

major characteristics of fuzzy ARTMAP is that it can learn to attend to different

parts of the feature vector to classify each category. This is an implicit feature se-

lection, a major problem in CBIR applications, and is usually handled by automatic

(via relevance feedback) or manual weight adjustment. Also, fuzzy ARTMAP has a

many-to-one mapping capability, i.e. it can be trained to map regions that are dis-

similar according to their features to the same class. These superiorities reveal that

fuzzy ARTMAP can be successful at extracting complex objects in a database with

a large variety of images. Fuzzy ARTMAP has been used in many applications of

computer vision such as medical diagnosis [16], medical database analysis [42], land

cover classification via remote sensing [17] and satellite imagery recognition [67]. In

this study, fuzzy ARTMAP is used as the matching engine of our CBIR architecture.

CBIR applications transform pixel space to a feature space for efficient indexing

and searching. Thus, extraction of low-level visual features from images has been an

important aspect of retrieval research and led to the proposal of many schemes (see:

[88] for a good summary of feature extraction schemes used by a variety of systems).

Recently, this field of research is getting stabilized with the standardization of suc-

cessful visual content descriptors under the name MPEG-7 from MPEG community

[2, 4]. Our system uses these descriptors to extract color, texture and simple shape

features of image regions and, at the lowest level, represents each region with a 239

dimensional feature vector.
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It is relatively easy to match appearance of images automatically using low-level

features extracted. Since this approach handles queries similar to “get me the images

with high content of red at the middle”, available quantitative features are well suited

for the task. However, it is difficult to cope with high level semantic queries such

as “the Governor X, kissing a baby”. Such queries are to be handled with more

sophisticated methods to extract semantic content.

The main contribution of this thesis is to extract qualitative information from

the low-level quantitative representation in a hope to satisfy object level querying

needs. For this purpose, a learning framework based on fuzzy ARTMAP algorithm is

integrated into the CBIR architecture, where the user interferes with the system as a

trainer. He/she determines relevant object classes to be learned according to querying

needs and presents exemplars via a graphical interface. In this way, tedious training

set preparation task becomes an easier region labeling stage before querying. User

presence is an advantage of CBIR applications yet to be better utilized though there

are systems with promising efforts such as getting relevance feedbacks from the user.

In this perspective, our system is user-oriented and easily configurable according to

specific application needs or the content of the database to be searched.

Another crucial aspect of CBIR is indexing. Various methods have been used [37,

69] for fast access to databases which typically contain thousands of images. However,

it is well-known that conventional indexing schemes become to be infeasible for feature

vectors with dimensions higher than twenty since the overhead of indexing operations

exceeds the cost of an exhaustive search of the database. Our system proposes an effi-

cient indexing via classification of regions and narrows down the search space without

sacrificing precision in the retrieval stage.

In Chapter 2, representative CBIR systems will be briefly reviewed with emphasis

on systems with learning capabilities that can be considered to be good efforts to-

wards semantic querying. In Chapter 3, architectural details of our retrieval system

will be summarized and fuzzy ARTMAP algorithm will be introduced. In Chapter 4,

results of our preliminary experiments for region classification will be given. Retrieval

performance of our system will also be presented in this chapter and the results are

compared against exhaustive searching of the database. Lastly, Chapter 5 will con-

clude the thesis.
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CHAPTER 2

BACKGROUND ON RELATED CBIR SYSTEMS

Since 1990’s, Content Based Image Retrieval (CBIR) has become a very active research

area and the literature is broad to review. The available systems can be basically

classified as special and general purpose systems. The special purpose systems include:

Xenomania from the University of Michigan [10] for face image retrieval based on query

by example; Trademark image database system [45] for trademark retrieval using

shape information; and Center of Excellence for Document Analysis and Recognition

(CEDAR) system [83] from SUNY Buffalo for indexing and retrieving documents and

newspaper articles by captions. Some of the general purpose systems are QBIC (IBM)

[35], Photobook [65] and FourEyes [57] (MIT), VisualSEEK [80] and WebSEEK [79]

(Columbia University), Chabot [62] and Blobworld [22] (UC Berkeley), Illustra/Virage

[9], MARS [73] (University of Illinois at Urbana-Champaign), RetrievalWare from

Excalibur Technologies [29], and Netra [53] (UC Santa Barbara).

These systems differ from each other in three respects [69]:

1. Visual feature extraction,

2. Indexing,

3. Retrieval system design.

Visual feature extraction is a necessary step to achieve efficient indexing and search

with substantially reduced dimensions compared to raw pixel domain. Indexing is a

usually by-passed aspect of retrieval systems though constituting the most critique
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factor to increase retrieval performance in very large collections, such as WWW. Fur-

thermore, it can be correlated with similarity measure and retrieval algorithms of the

system to improve the efficiency. System design is about finding the optimum com-

binations of feature extraction and/or indexing methods coupled with the decisions

regarding user interaction at various stages of the process, such as query preparation

(e.g. sketch based or example based querying) or query refinement (e.g. giving rele-

vance feedback). Most of the available systems basically achieve appearance matching

which takes the global visual features of images into account without reference to the

semantic content of images [37]. Appearance is particularly helpful when the com-

position of the image is important. For example, one could search for stock photos

using a combination of appearance cues and keywords. Current state-of-the-art CBIR

systems give satisfactory results for such purposes. Figure 2.1 shows a sample query

result by a CBIR system making appearance matching. However, the problem is that

images with the right composition but the wrong semantics are often retrieved. At

this point, most of the systems with relevance feedback methods aim at excluding

such images via parameter adjusting to satisfy the user. Unfortunately, an optimum

parameter setting to catch the desired semantics may not always exist.

Figure 2.1: A sample appearance matching query from PicToSeek [40] system. The
query image is on the left, and the images on the right are the results with global
color feature matching.

An important step towards querying at object level is via localization of the global

techniques and the introduction of region-based querying and/or indexing. The cru-

cial question is how to form the regions. Malki et al. [54] propose a multiresolution
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quadtree representation of the images, by-passing the difficult segmentation step to

query the database of subimages formed at multi levels. This is the simplest approach

for localization other then representing the image as a fixed sized grid, i.e. single level

of resolution. Various segmentation-based approaches propose a better way of local-

ization. These systems differ from each other at the choice of automatic segmentation

algorithms, feature extraction schemes, and the matching algorithms used in retrieval.

Segmentation is imperfect for the images in the unrestricted domain of CBIR. Some

heuristics are proposed to overcome this drawback for different systems. Available

systems either retrieve regions directly or they have a certain global matching algo-

rithm utilizing region-wise similarity to retrieve images. Figure 2.2 shows a sample

query result by a CBIR system making region-based retrieval. Some representatives

Figure 2.2: An example region-based query from Blobworld [22] system. Highlighted
region is selected as the query region, and the system displays resultant images with
matching regions highlighted similarly.

of region-based querying systems are given below:

• Blobworld : Blobworld [22], which is developed at UC Berkeley, is a system

for image retrieval to find coherent image regions which roughly correspond

6



to objects. Each image is automatically segmented into regions (blobs) with

associated color and texture descriptors using a statistical method based on

Expectation-Maximization algorithm. Query is based on the attributes of one

or two regions of interest, rather than a description of the entire image. The

system allows the user to view the internal representation of the images to gain

insight on why some “nonsimilar” images are returned and modify the query

accordingly. A weighted distance scheme is used to combine different features

to measure similarity. Figure 2.2 shows a sample query with results from this

system. The on-line demo can be found at

http://elib.cs.berkeley.edu/vision.html.

• Netra : Netra is a prototype image retrieval system, developed at the UC

Santa Barbara [28, 53]. Color, texture, shape and spatial location information

of segmented image regions are used to search and retrieve similar regions from

the database. It allows the user to compose queries like ”retrieve all images

that contain regions that have the color of object A, texture of object B, shape

of object C, and lie in the upper one-third of the image” where the individual

objects A, B and C could be regions belonging to different images. The on-line

demo is at

http://maya.ece.ucsb.edu/Netra.

• Ikona : Ikona [13] is a prototype software for the IMEDIA (Image and multime-

dia indexing, browsing and retrieval) project, developed at INRIA. Ikona uses

the query-by-example approach for retrieving images and integrates advanced

features such as image signature combination and face detection. It supplies

hybrid text-image retrieval mode and query refinement with relevance feedback,

together with a region-based mode where the user can select a part of an image

and the system searches images (or parts of images) that are visually similar to

the selected part. The on-line demo can be found at

http://www-rocq.inria.fr/imedia/ikona/index.html.

• SIMPLIcity : SIMPLIcity (Semantics-sensitive Integrated Matching for Pic-

ture LIbraries) is an image retrieval system developed at Stanford University

[90]. In this system, images are represented by sets of regions, roughly corre-
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sponding to objects, that are characterized by color, texture, shape and location

properties. Segmentation is achieved by a simple algorithm based on k-means

clustering in feature space. As opposed to region-wise retrieval (as in Blobworld

for instance), images are retrieved as a whole by the help of a region matching

scheme that incorporates properties of all the regions in an image to measure

similarity. This overall similarity approach is to reduce the influence of inaccu-

rate segmentation. The on-line demo can be found at

http://wang.ist.psu.edu/IMAGE/.

There are other systems for region-based retrieval in the literature, such as Visu-

alSEEK [80] and Amore [60].

The region-based retrieval systems suffer from the main problem of “global” ap-

pearance matching systems in a “localized” manner. In this case, “regions” with the

right composition but the wrong semantics may be retrieved. Objects are often over-

segmented and their regions have dissimilar feature vectors. Simple distance measures

used in these systems are not capable of retrieving all the regions in a database from

the same class. Many complicated features are used in combination and it is difficult

for users to judge their relative importance for different queries. These combinations

are likely to be highly class-specific requiring automatic detection. In this thesis, a

learning framework is proposed to address these issues in a region-based CBIR system.

2.1 Towards High Level Semantics

Humans are accustomed to utilize high level concepts, like objects, people, places,

etc., to navigate through daily quests. These concepts come naturally to the users

and querying at this level of abstraction is required for successful CBIR systems if

success is defined to be user satisfaction. At this point, learning is ought to be an

inevitable part of a CBIR system. Thus, some off-line and/or on-line processing is

required to narrow down the semantic gap between the user needs and the current

system replies [69]. There are some CBIR systems that are built with a learning

framework (e.g. [12, 91, 15]) though this line of research is in its infancy stages with

many breakthroughs yet to be made.

First of all, finding tools in the current literature should be mentioned. These

tools use template matching techniques from object recognition as a way of estimating
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object-level semantics. Template matching refers to finding objects by matching image

patches with sample templates. A natural application of template matching is to

construct whole-image templates that correspond to particular semantic categories

[24, 77]. These templates can be constructed off-line and used to simplify querying

by allowing a user to use an existing template. If object appearance is steady and

suitable for template matching then specific object finding tools can be built such as

systems for finding faces [68, 66], pedestrians [63], naked people [39] and horses [38].

However, building a template matching system to retrieve objects from various classes

remains to be a difficult problem [37]. Preparation of generic templates is nontrivial

and requires significant effort for each object class to be searched. Method also suffers

from high variation of objects in appearance, pose, scale, articulation and occlusion,

in natural image domain of CBIR.

A natural step in determining image semantics is to label the type of material im-

age patches represent; for example, “grass”, “buildings”, etc., as opposed to “green”,

“grey”. At this point, human assistance is inevitable. A method is required to estab-

lish classes and provide exemplars. Automatic annotation is one possible, useful tool

to be utilized for speed and efficiency purposes and there is a recent promising work

for automatic annotation and region labeling using statistical methods on large anno-

tated databases [31, 11]. However, some form of human intervention is still required

in the form of prior annotation..

Image or region classification is a separate problem that is to be studied on its own.

However, CBIR is a good test field for various classification and/or learning algorithms

at this stage of low-level image processing which transforms raw image pixels into

new feature space or spaces where classification becomes feasible. In [82], Soysal et

al. propose to use different types of classifiers in combination to extract semantic

class information from standardized low level features and successfully classify images

into certain classes like “indoor”, “crowd”, “sky”, “forest”, etc. In this thesis, an

intermediate level region-based representation on top of low-level features is used

which enables images containing distinctive objects like “cheetah”, “flower”, “horse”,

etc. to be classified and a CBIR system which utilizes this classification to query

images at the level of objects is proposed.

Another advantage of CBIR applications in terms of integration of learning archi-
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tectures is that human assistance is available at various levels. For instance, a recent

trend is to utilize relevance feedbacks of users to refine queries according to user pref-

erences. In the following, some systems which can be considered as good efforts in

narrowing the gap between low-level feature extraction and higher level image seman-

tics will be presented. These systems basically differ at the classification methods

used and the type of learning adopted, i.e. on-line via relevance feedbacks or off-line

via user supplied training data. Athitsos et al. [8] propose a system to classify an im-

age as photograph or graphics to be used as a part of WebSeer [85], an image search

engine for the Web. They used color tests for classification combined with multiple

decision trees constructed using a training set of hand-labeled images. Belongie et al.

[12] propose a Bayesian approach to classify image regions. In the work of Wood et

al. [91], radial-basis function neural networks are used to classify regions with on-line

training using relevance feedbacks from the user, and in a related work of Campbell

et al. [15] multi layer perceptrons have been used for the same purpose but with a

training phase instead of learning from relevance feedbacks. All these systems utilize

classification to satisfy high level querying needs of users and/or for efficient indexing

and retrieval purposes.

The system proposed in this thesis adopts a neurocomputing approach to learn

and classify image regions. It is a region-based CBIR system with off-line supervised

learning using fuzzy ARTMAP neural network architecture. Prior region classification

avoids exhaustive similarity search in the retrieval phase in which only the regions from

the query object class are ranked and displayed to the user.

2.2 Fuzzy ARTMAP Neural Network Architecture

Adaptive Resonance Theory (ART) is proposed by Stephan Grossberg in 1976 and

a family of learning architectures followed in the last two decades that utilize ART

approach. These architectures are:

• ART 1 [18] for unsupervised clustering of binary input patterns.

• ART 2 [18] for unsupervised clustering of analog (continuous-valued) input pat-

terns.

• ARTMAP [18] for supervised classification of input patterns.
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• fuzzy ARTMAP [19] generalization of ARTMAP using fuzzy set operations.

Fuzzy ARTMAP is a promising architecture that has evolved from the biological

theory of cognitive information processing [16]. It has been used in many applica-

tions from diverse fields such as industrial design and manufacturing, the control

of mobile robots, face recognition, remote sensing land cover classification, target

recognition, medical diagnosis, electrocardiogram analysis, signature verification, tool

failure monitoring, chemical analysis, circuit design, protein/DNA analysis, 3D vi-

sual object recognition, musical analysis, and seismic, sonar, and radar recognition

(e.g., [16, 17, 23, 25, 42, 67, 76, 81]). Applications utilize the ability of ART systems

to rapidly learn to classify large databases in a stable fashion and to focus attention

upon feature groupings that are found to be important for each class. CBIR is a new

application domain for ART systems to be introduced. Details of fuzzy ARTMAP

algorithm will be given in Section 3.2.1

2.3 Visual Features and MPEG-7

MPEG-7 [2, 4] of ISO MPEG, also known as “Multimedia Content Description Inter-

face”, aims at providing standardized core technologies allowing description of audio-

visual data content in multimedia environments. This is a challenging task, given the

broad spectrum of requirements and targeted multimedia applications, and the broad

number of audiovisual features of importance in such context. In order to achieve

this goal, MPEG-7 standardizes: Descriptors (D) that define the syntax and se-

mantics of each feature representation, Description Schemes (DS) that specify the

structure and semantics of the relationships between their components, which may

be both Ds and DSs, a Description Definition Language (DDL) to allow the

creation of new DSs and possibly Ds, and to allow the extension and modification of

DSs, System Tools to support multiplexing of description, synchronization issues,

transmission mechanics, file format, etc. In this framework, DDL provides the mech-

anism to build a description scheme which in turn forms the basis for the generation

of a description. The standard has provided a reference software, namely the eX-

perimentation Model (XM), which is the simulation platform for the descriptors and

description schemes, coding schemes, and DDL. MPEG-7 Visual description tools in-

cluded in the XM consist of basic structures and descriptors that cover visual features
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such as color, texture, shape, motion and localization. Basically, there are eight color

descriptors:

• Color space,

• Dominant Colors,

• Color Quantization,

• GoF/GoP Color ,

• Color Structure,

• Color Layout and

• Scalable Color Histogram;

three texture descriptors:

• Edge Direction Histogram,

• Homogeneous Texture and

• Texture Browsing;

and three shape descriptors:

• region-based shape,

• contour-based shape and

• 3D shape.

In Section 3.1.1, descriptors used in our application to form feature vectors are ex-

plained briefly. In [5], each of the above descriptors are explained in detail with the

underlying algorithms and the supplementary issues such as color spaces, quantiza-

tion methods and coding schemes used. MPEG-7 enables the development of efficient,

configurable visual storage and access tools by supplying such content descriptors.

Low-level visual features can be extracted either globally from the whole image

or locally as in region-based systems. A particular difficulty is the choice of feature

extraction schemes. (feature selection problem). If more than one scheme is to be used,

which is the usual case in most of the applications, it is not easy to determine how
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to combine similarities measured according to different features. Most of the systems

use a linear weighted summation of the distance values (heterogenous features) [77].

Weight adjustment may be handled manually by the user of the CBIR system or

it may be automized via afore mentioned relevance feedback methods. However, it

is not certain that a linear combination suitable for a certain class of images is also

suitable for other classes of images. Minka et al. use techniques from machine learning

in FourEyes [57] system to infer appropriate features from user annotation practices,

using across-image groupings (which patches have been classified as “sky” in the past?)

and in-image groupings (which patches are classified as “sky” in this image?). As a

result a user annotating an image can benefit from past experience. In [87], Uysal

et al. propose a similarity based learning method to determine the feature that best

discriminates each class from MPEG-7 set and increase retrieval precision of the CBIR

system using this class-specific best feature. In [77], Sheikholeslami et al. train a multi

layer perceptron to find a nonlinear composite similarity value from the similarities

measured using different feature extraction methods. Similarly, in [51] Lee et al. use

radial basis function neural network for the same purpose of composing heterogenous

features in a nonlinear way, in this system user feedbacks are used for incremental

learning of feature importance values instead of off-line training.

In this thesis, a large feature vector with 239 dimensions is formed using MPEG-7

descriptors. Feature selection is handled implicitly via fuzzy ARTMAP architecture

which is capable of attending to salient features of classes during classification as

explained in Section 3.2.1.

2.4 Chapter Summary

In this chapter, some representative CBIR systems with region-based querying ca-

pabilities are overviewed as promising alternatives to global appearance matching of

classical CBIR systems. Though successful in certain aspects, these systems are far

from satisfying high level user needs during querying. Recent work that focuses on

image/region classification or clustering is summarized as promising efforts towards

high level semantics in CBIR applications. MPEG-7 content descriptors which are

used as low-level feature extraction schemes in this thesis are introduced and fuzzy

ARTMAP neural network architecture is presented shortly as the matching engine of
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the proposed system.
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CHAPTER 3

A CBIR SYSTEM BASED ON REGION

CLASSIFICATION

In this chapter, we will introduce a new CBIR system that works on a presegmented

image database. Users are able to query the database by sample regions. Our system

classifies database regions prior to the retrieval in order to narrow down the search

space. Fuzzy ARTMAP supervised learning algorithm [20] is used to classify the image

regions. In the training phase, sample regions from user-defined classes are hand-

labeled and feature vectors of these regions are fed into the fuzzy ARTMAP as input

vectors. Fuzzy ARTMAP learns the mapping between these vectors and binary coded

class identification numbers used as output vectors. In the database importing phase,

all regions in the database are classified by the trained fuzzy ARTMAP system. In the

querying phase, user selects a region and a label whose index is used for fast access.

The regions with the associated label, are ranked with L2 distance and displayed to

the user.

Figure 3.1 presents the overview of the proposed system, which will be explained

in detail in the following sections. In Section 3.1 preprocessing of images before being

used by the system is explained. Sections 3.2, 3.3 and 3.4 present main processing

stages together with their submodules. A detailed explanation of fuzzy ARTMAP

is given in Section 3.2.1 for completeness and the motivation to choose this neural

architecture is clarified as its key properties are presented.
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Figure 3.1: Overview of the proposed CBIR system.
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Figure 3.2: Sample images from Corel data set. Each row consists of images from
classes: bear, cheetah, elephant, penguin, plane.

3.1 Input Representation

Our system represents images as a collection of regions and works in the region domain

in all of its phases. Images are segmented automatically using Normalized Cuts [78]

algorithm to form regions. Figures 3.2, 3.3 show some sample images from the data

set. Figures 3.4 and 3.5 display segmented forms of the images.

Similar to most of the segmentation algorithms, Normalized Cuts has the tendency

to produce small regions. However, regions are coherent with respect to color and

texture features and they roughly correspond to objects or parts of objects. 8 largest
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Figure 3.3: Sample images from Corel data set. Each row consists of images from
classes: tiger, zebra, flower, horse, fox.
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Figure 3.4: Sample outputs of Normalized Cuts segmentation for images in Figure 3.2.

19



Figure 3.5: Sample outputs of Normalized Cuts segmentation for images in Figure 3.3.
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regions are selected from each image since regions smaller than a certain size become

problematic during feature extraction process. So each image is represented as a

collection of 3 to 8 regions.

3.1.1 Feature Extraction Module

At the lowest level, each region is represented by a feature vector extracted using

MPEG-7 visual content descriptors. To include a large variety of features extracted

with different computational methods, all the descriptors in MPEG-7 set that are

suitable for our application are used. For this purpose, the color descriptors:

• Color Layout (12 features)

• Color Structure (32 features)

• Dominant Color (4 features)

• Scalable Color (16 features)

are used. The remaining descriptor in the set, GoF/GoP (Group of Frames/Group

of Pictures), extends Scalable Color descriptor for still images to color description of

video segments or a collection of still images, so the proposed CBIR system is out of

the intended scope of this descriptor. The following texture descriptors are used:

• Edge Direction Histogram (80 features)

• Homogeneous Texture (60 features).

Texture Browsing descriptor is left out to avoid redundancy since it is only a com-

pressed version of Homogeneous Texture descriptor designed for fast browsing appli-

cations. From shape descriptors, only Region Shape (35 features) is used. Contour

Shape descriptor requires a clean segmentation of the object making it very unsuitable

for our application since region contours that we get are usually far from exact con-

tours of the objects they contain (see Figures 3.4 and 3.5). And Shape 3D descriptor

is designed for intrinsic description of mesh models in 3D databases so the proposed

CBIR system is out of the intended scope of this descriptor as well.

Feature extraction schemes of each descriptor are explained in detail in [5]. Color

Layout descriptor specifies the spatial distribution of colors in Y, Cr, Cb color space
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by the help of a DCT transformation. Local representative colors are determined

by dividing the image into 64 blocks and averaging 3 channels on these blocks. After

transformation, 12 of its coefficients are put into the feature vector. Color Structure

descriptor captures both color content (similar to that of a color histogram) and

the structure of this content in HMMD color space. This descriptor can distinguish

between two images containing identical amounts of a given color in their histograms

but with different structural groupings of the pixels with this color. Dominant Color

descriptor is configured to specify a set of dominant colors in each region using RGB

color space. In this thesis, the color value with the highest percentage of pixels is

found and put into the feature vector together with its percentage. Scalable Color

descriptor is a color histogram in the HSV color space, which is encoded by a Haar

transform. The number of coefficients used in the scalable representation is chosen

to be 16 among alternatives of 32 and 64 not to increase feature vector dimension.

Edge Direction Histogram represents the spatial distribution of five types of edges,

namely four directional edges (vertical, horizontal, 45 degree and 135 degree edges)

and one non-directional edge; the descriptor divides the image into a 4 by 4 grid and

finds the number of edges from each type in 16 regions. As a result, it encodes the

histogram in 80 bins. The Region Shape descriptor utilizes a set of Angular Radial

Transform coefficients. Angular Radial Transform is a 2D complex transform defined

on a unit disk in polar coordinates, and this descriptor uses twelve angular and three

radial functions to extract 35 features which are put directly into the feature vector.

Lastly, Homogeneous Texture descriptor is actually the Gabor filter, one of the

most commonly used texture feature in CBIR applications. Due to the inconvenience

of the scheme used in the eXperimentation Model software for modification to make

region-based filtering of images, Gabor Filter is implemented separately as described

in [55]. Scale and orientation parameters are selected properly to be compliant with

the standardized Homogeneous Texture descriptor as explained in [5]. In this way,

Gabor features of individual regions are extracted separately by finding their mean

oriented energies and energy variances. Resulting feature vector is of size 60 for 5

scales and 6 orientations (30 means and 30 variances).

All features are mapped to analog [0-1] scale and concatenated forming the final

feature vector of size 239 to represent each region. This mapping is required by the
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fuzzy ARTMAP module which will be explained next.

3.2 Training the System

Our system is trained off-line through the efficient graphical user interface, developed

in this study. Initially, user is expected to determine classes with distinctive objects,

which will be searched from the database. Appropriate labels for the regions of these

classes should be chosen and a set of regions from each object class should be hand-

labeled to form the training data. Some background regions might also be labeled

though not required. In Chapter 4, the minimum number of regions to be labeled for

satisfactory performance is found by experiments.

Figure 3.6 presents a snapshot of the GUI provided for region labeling. User opens

an image which is displayed in segmented form and selects a region together with a

label. This label is assigned to the selected region and the labeled region is added

to the list of the selected training set. If a region is labeled the second time, the

initial record is overwritten. Labels are automatically assigned unique identification

numbers on their first presentation and all the training sets are assured to use the

same id numbers for the same labels. It is relatively easy to label desired amounts of

regions from each class using this GUI which is opened from main querying GUI of

the system (Section 3.4).

3.2.1 Fuzzy ARTMAP Module

Once training sets are formed, by the help of another GUI which is also developed

for this study, all the regions in a training set are cropped to their bounding boxes

and features are extracted from these cropped regions. Feature vectors of a training

set constitute input vectors and binary coded class identification numbers constitute

output vectors to be mapped by fuzzy ARTMAP module.

ART stands for “Adaptive Resonance Theory”, proposed by Stephen Grossberg

in 1976. ART encompasses a wide variety of Neural Networks based explicitly on

neurophysiology. ART networks are defined algorithmically in terms of a set of dif-

ferential equations intended as plausible models of biological neurons. In practice,

ART networks are implemented using analytical solutions or approximations to these

differential equations.
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Figure 3.6: A snapshot from the region labeling GUI. Next Region button selects the
regions one by one for label setting. The top-right region of the image is shown to be
selected in this snapshot.

As discussed by Moore [59], the unsupervised ARTs are basically similar to many

iterative clustering algorithms in which each case is processed by:

1. finding the “nearest” cluster seed (prototype or template) to that case

2. updating that cluster seed to be “closer” to the case,

where “nearest” and “closer” can be defined in several different ways depending on

input representation and similarity measures. In ART, the framework is modified by

introducing the concept of “resonance” so that each case is processed by:

1. finding the “nearest” cluster seed that “resonates” with the case

2. updating that cluster seed to be “closer” to the case.

“Resonance” is actually a matter of being within a certain threshold of a second

similarity measure which will be explained in detail later in this section. A crucial

feature of ART is that if no seed resonates with the case, a new cluster is created.

This feature is said to solve the “stability-plasticity dilemma” which is to learn large

and evolving databases quickly and stably without catastrophically forgetting the past

knowledge.
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ARTMAP [21, 18] is a class of Neural Network architectures that perform incre-

mental “supervised” learning of recognition categories and multidimensional maps in

response to input vectors. ARTMAP was initially proposed to classify input patterns

represented as binary values. Carpenter et al. [19] refined the system to a general one

by redefining ART dynamics in terms of fuzzy set theory operations. Fuzzy ARTMAP

learns to classify inputs represented with a fuzzy set of features where each feature is

a value in [0-1] scale indicating the extent to which that feature is present.

Fuzzy ARTMAP architecture contains two fuzzy ART units ARTa and ARTb with

a MAP field in between (see Fig 3.7). The key operation takes place in ARTa which

categorizes the input patterns and a match tracking mechanism maps these cate-

gories to the class templates coded at ARTb. Match tracking ensures maximum code

compression at ARTa templates for minimum predictive error at ARTb templates.

Figure 3.8 shows the notation used in the rest of the section.

Figure 3.7: Simplified fuzzy ARTMAP architecture. Compared to the original archi-
tecture in [19], ARTb layer is modified not to contain the F b

1 layer of ARTb module.
The output of F b

0 is directly sent to F b
2 layer. And the clusters of ARTb are directly

the complemented class codes with this simplified architecture.

To solve category proliferation problem observed in noisy data, which is the ten-
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dency of cluster seeds to degenerate to zero vector and the continual creation of new

cluster seeds, Carpenter et al. [19] proposed to normalize the input vector for fuzzy

ARTMAP architecture. Normalization is achieved when ‖ A ‖≡ γ for some γ > 0,

for all inputs A. In [19], complement coding is proposed as a normalization rule that

preserves amplitude information and represents both the presence and absence of a

particular feature in the input pattern. The complement coded input A is defined to

be

A = (a, ac) ≡ (a1, . . . , aMa, a
c
1, . . . , a

c
Ma

)

where ac
i ≡ 1− ai. Note that

‖ A ‖ = ‖ (a, ac) ‖

=
Ma∑

i=1

ai +

(
Ma −

Ma∑

i=1

ai

)

= Ma,

so inputs are automatically normalized when they are complement coded.

| v | : size of vector v
‖ v ‖ : norm of vector v, where ‖ v ‖≡

∑|v|
i=1 vi

a : input vector to F a
0

A : input vector to F a
1

b : input vector to F b
0

B : input vector to F b
2

Ma, Mb : size of input vectors (i.e. | a |, | b | respectively)
Na, Nb : final number of category nodes in F a

2 and F b
2 respectively (Nb = 2Mb)

xa : F a
1 activity vector

xab : map field activity vector
α : choice parameter
β : learning rate parameter
ρa : vigilance for ARTa

ρ̄a : base-line vigilance for ARTa

ρab : vigilance for match tracking in the map field

Figure 3.8: Nomenclature.

Operation in ARTa: There are three fields of nodes in ARTa (see Fig 3.7): F a
0

represents the current input pattern in complemented form, F a
1 receives both bottom-

up input from F a
0 and top-down input from a field, F a

2 , that represents the active
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code or category. Each F a
2 category node j (j = 1, . . . , Na) is associated with a vector

wa
j ≡ (wj 1, . . . , wj 2Ma) of adaptive weights, or so-called long term memory (LTM)

traces. Initially all the category nodes are said to be uncommitted and

wj 1(0) = . . . = wj 2Ma = 1. (3.1)

A category node becomes committed, when its weight vector is updated for the first

time. The weight vector of a category node constitute the learned expectancy of the

system for that category. This expectancy is updated for each member of a category

during training and at the end of training it becomes a sort of template representing

the patterns of that category. Each LTM trace wji is monotonically nonincreasing

through time and hence converges to a limit [19].

There are three parameters that determine the dynamics of the system: choice

parameter α > 0, learning rate parameter β ∈ [0, 1], and a vigilance parameter ρa ∈

[0, 1]. For each input A and F a
2 category node j, the choice function, Tj , is defined by

Tj(A) =
‖ A∧ wa

j ‖
α+ ‖ wa

j ‖ ,

where the fuzzy AND operator is defined by

(p ∧ q)i = min(pi,qi)

for any same-dimensional vectors p and q. The category choice of the system is

indexed by J , where

TJ = max{Tj : j = 1, . . . , Na}. (3.2)

In this case, the J th node of F a
2 is said to become active. At any time, only one of the

category nodes can be active so if more than one of Tj ’s are maximal, the category

j with the smallest index is chosen. When a category node J becomes active, its

top-down weights are sent as input to F a
1 layer and the activation xa at this layer

becomes

xa = A∧ wa
J . (3.3)

If the match function, ‖ xa ‖ / ‖ A ‖ meets the vigilance criterion, i.e. if

‖ A∧ wa
J ‖

‖ A ‖
≥ ρa, (3.4)
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then the system enters into a resonance state. This is the state where input pattern

matches the expectancy for that category well enough (to the degree vigilance deter-

mines) to cause a resonance between the two activation fields of ARTa. Learning can

only occur when this resonance state is achieved. Otherwise, i.e. when

‖ A∧ wa
J ‖

‖ A ‖ < ρa,

a mismatch reset occurs. Then the value of the choice function TJ is set to 0 for the

duration of the presentation of the current input A to prevent the persistent selection

of the same category during search. A new index J is then chosen, by Equation 3.2.

The search process continues until a chosen category satisfies Equation 3.4. Once

search ends, the weight vector wa
J is updated according to the equation

wa (new)
J = β(A∧ wa (old)

J ) + (1 − β)wa (old)
J . (3.5)

When β is set to 1, this is equivalent to the fast learning option where the weight

vector is directly equated to xa, the activation at F a
2 field (Equation 3.3) when the

resonance occurs. It is notable that not the input pattern but the attended portions

of it are learned. This causes detection of relevant feature groupings of the categories

and focusing attention on these portions while trying to match new input patterns.

If the search ends at a new code, the code’s active memory representation begins by

learning the current input itself, i.e. the expectation for this new category is set to to

the current input pattern (fast learning).

For analog vectors, the degree to which q is a fuzzy subset of p is given by the

term
‖ p ∧ q ‖
‖ q ‖

[19]. When α ∼= 0, the choice function Tj primarily reflects the degree to which the

weight vector wa
j is a fuzzy subset of the input vector A. If

‖ A ∧wa
j ‖

‖ wa
j ‖ = 1,

then wa
j is a fuzzy subset of A and category j is said to be a fuzzy subset choice

for input A. When a fuzzy subset category choice exists, it is always selected over

other choices. In this case, by Equation 3.5, no recoding occurs if j is selected since

A ∧ wa
j = wa

j . If more than one category is a fuzzy subset choice, the small but
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positive parameter α breaks the tie by choosing J that maximizes ‖ wa
j ‖ among the

fuzzy subset choices.

Resonance depends on the degree to which A is a fuzzy subset of wa
J , by Equa-

tion 3.4. If category j is a fuzzy subset choice, then the match function value is given

by
‖ A ∧wa

j ‖
‖ A ‖ =

‖ wa
j ‖

‖ A ‖ .

Thus, choosing J to maximize ‖ wa
j ‖ among fuzzy subset choices also maximizes

the opportunity for resonance in Equation 3.4. There is a close linkage between

fuzzy subsethood and ART choice/resonance/learning that forms the foundation of

the computational properties of fuzzy ART [20].

Operation in ARTb: In the original fuzzy ARTMAP algorithm both ARTb and

ARTa are proposed to be fuzzy ART modules; however, in this thesis operation in

ARTb module is simplified for efficiency purposes eliminating the redundancy in this

module. Classes are represented with binary coding so if there are k classes in the

training set than Mb = log2k bits are necessary to form the class representation.

The class code of the current input is complemented and fed into the input layer F b
0

having 2Mb nodes to represent the class (see Fig 3.7). Nodes of this layer are directly

connected to F b
2 , so categories of ARTb are directly class codes, denoted by B. This

would still be the case if this module were to work with exact fuzzy ART algorithm

and with identical architecture to ARTa due to the nature of inputs to this module.

Match tracking in the MAP field: F ab is the map field between ARTa and

ARTb modules of the system. This field is used to form associations between cate-

gories of each module via the match tracking rule. According to this rule, the vigilance

parameter of ARTa increases in response to a predictive mismatch at ARTb and the

category structure of ARTa is reorganized not to repeat the error on subsequent pre-

sentations of the same input. Nodes in the F a
2 field of ARTa are connected to nodes

in F ab with adaptive weights, thus each node j in F a
2 is associated with a weight

vector wab
j ≡ (wab

1 , . . . , wab
Nb

). If node J of F a
2 resonates for a given input A, then the

activation at F ab is given by

xab = B ∧wab
J .

where B is the category coded at ARTb for the current input A. Nodes in the F b
2 field

of ARTb are connected to nodes in F ab with 1-to-1 pathways as opposed to adaptive
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weights, so the category in ARTb directly affects the activation in F ab. If a mismatch

occurs between the prediction at ARTb and wab
J , then a search for a better category in

ARTa is initiated, as follows. At the start of each input presentation, ARTa vigilance

parameter ρa is equated to a baseline vigilance, ρ̄a. The map field vigilance parameter

is ρab. If
‖ xab ‖
‖ B ‖ < ρab,

then ρa is increased until it is slightly larger than match function for A, i.e.

ρa =
‖ xa ‖
‖ A ‖ + ε,

where ε denotes a small positive number. Then

‖ xa ‖=‖ A∧ wa
J ‖< ρa ‖ A ‖,

where J is the index of the active node in F a
2 . When this occurs node J is inhibited

(i.e. TJ = 0 for subsequent presentations of input A) and the search for a new category

J∗ that satisfies both

‖ xa ‖=‖ A ∧wa
J∗ ‖≥ ρa ‖ A ‖

and

‖ xab ‖=‖ B ∧ wab
J∗ ‖≥ ρab ‖ B ‖,

continues. The search looks for possible categories among committed nodes in F a
2

initially and if none satisfy above conditions then the next uncommitted node is chosen

since an uncommitted node always satisfies them. Hence search is assured to end

at least by committing a previously uncommitted node. When the search ends the

following learning rule associates the chosen category J with the class coded by B:

wab (new)
J = β(B ∧wab (old)

J ) + (1− β)wab (old)
J . (3.6)

Since wab
j are all initialized to be vectors of one as in Equation 3.1, and if β is set

to one as in fast learning option then wab
J is equated to the class coded by B. Thus

adaptive weights from F a
2 category nodes to the map field learn classes corresponding

to these categories. In the recall phase, when an input is presented to ARTa module,

wab
J vector of the chosen category J in F a

2 determines the class of the input.

Algorithms that are used to train and test the fuzzy ARTMAP module used in

this thesis are given by Algorithm 1 and Algorithm 2. In Algorithm 1, all inputs in
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the training set are presented once to the network and each input is assured to be

assigned to a category node in F a
2 field and mapped to the corresponding class via F ab

field. Algorithm 2 simply returns the class mapped by the node that becomes active

in F a
2 layer when the input is presented.

One well-known drawback of ART systems is that they are vulnerable to the order

of pattern presentation during training. Categories are formed differently depending

on this order. Carpenter et al. [19] propose a voting scheme in which more than one

classifiers are trained with randomly ordered versions of the same training set and

the class of an unknown pattern is taken to be the majority vote. This scheme is

also implemented and in Chapter 4, it has been showed that our system’s retrieval

performance is not effected significantly from pattern ordering during training.

3.2.2 Fuzzy ARTMAP as a Classifier in CBIR

In this thesis, fuzzy ARTMAP is chosen as a classifer regarding some of its key charac-

teristics that well-suit our application. First of all, it achieves a many-to-one mapping,

i.e. the number of category nodes in F a
2 field may exceed the number of classes in the

training data. Input patterns are categorized as much as needed for them to be recog-

nized by the fuzzy ARTMAP module and more than one category can be mapped to

the same class. For example, black and white regions of a penguin which are labeled

with the same keyword “penguin” can be categorized by different nodes in F a
2 field

while being associated to the same class. This is a very nice property since in this way,

regions can be grouped under proper classes even if their feature vectors are dissimilar.

Such a property cannot be achieved by classical distance-based similarity measuring

CBIR systems. For instance, our “bear” class (see Figure 3.2 and Chapter 4) having

polar, black and brown types has been split into 3 different classes in Carson et al. ’s

experiments [22].

Another key characteristic of fuzzy ARTMAP is that it learns top-down expec-

tations (weights between F a
2 and F a

1 ) that can bias the system to ignore masses of

irrelevant data. The system selectively searches for recognition categories whose top-

down expectations provide an acceptable match to bottom-up data. Each top-down

expectation begins to focus attention upon, and bind, that cluster of input features

that are part of the prototype which it has already learned, while suppressing fea-
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Algorithm 1 train fuzzy ARTMAP module

initialize F a
2 layer with one uncommitted node {Na = 1 initially}

initialize ρ̄a, ρab {' 1}, α {> 0}, β

for each input (a, classid) in the training set do
A = (a, ac)
form class code b from classid using binary coding
B = (b,bc)
ρa = ρ̄a

deinhibit all nodes in F a
2 layer

repeat
repeat

for each node j in F a
2 do

if j is not inhibited then

Tj =
‖A∧wa

j‖
α+‖wa

j ‖

else
Tj = 0

end if
find J with TJ = max{Tj}

end for
xa = A ∧wa

J

if ‖xa‖
‖A‖ < ρa then

inhibit J

if number of inhibited nodes = Na then
add an uncommitted node to F a

2 and increase Na by 1
end if

end if

until ‖xa‖
‖A‖ ≥ ρa {resonance between F a

1 and F a
2 }

xab = B ∧wab
J

if ‖xab‖
‖B‖ < ρab then

ρa = ‖xa‖
‖A‖ + ε

end if {go back to ARTa category search loop}

until ‖xab‖
‖B‖ ≥ ρab {resonance between F a

2 and F ab}

wa (new)
J = β(xa) + (1 − β)wa (old)

J

wab (new)
J = β(xab) + (1 − β)wab (old)

J

end for
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Algorithm 2 find the class of input vector a with the trained fuzzy ARTMAP module

A = (a, ac)

for each node j in F a
2 do

Tj =
‖A∧wa

j‖
α+‖wa

j ‖

end for
find J with TJ = max{Tj}
if TJ > 0 then

return the classid coded with normalized wab
J

else
return nochoice {fuzzy ARTMAP could not match this input, no response}

end if

tures that are not. In the recall phase, only the group of features that are attended

by the expectation of each class determine the classification. This process can be

regarded as a salient feature detection in the form of expectations for each class. For

instance, the system can learn to suppress texture and shape features to categorize

“sky” regions, or it can learn to suppress color features and attend to Gabor filter

responses at certain scales to categorize “flowers”. In this way, a large variety of fea-

tures extracted with different computational methods are used in combination and

their relative importance to discriminate different classes are detected.

A confidence measure, called vigilance, calibrates how well an input pattern needs

to match the expectation of a category in order for the corresponding category to

resonate with it and be chosen. High vigilance values result in finer categorization

and with low vigilance a broader categorization is achieved. In the extreme cases,

when the vigilance is 1, all the input patterns are put into different categories and

final number of category nodes in the F a
2 field equals the number of input patterns.

When the vigilance is 0, all the input patterns are put into the same category, and the

final number of category nodes in the F a
2 field equals 1. In fuzzy ARTMAP, the match

tracking rule sets the vigilance for ARTa module. Thus according to training data, fine

or broad categorization can be achieved to map the input vectors to classes properly.

For instance, if the user labels a particular dog kind with its name, e.g. “shepard”,

but all other dogs with only the keyword “dog”, then the system raises vigilance to

achieve finer categorization for shepard category which would otherwise be put into

one of dog categories. In this way, various levels of abstraction or classification of
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input patterns can be learned concurrently. This property well-suits the user guided

category determination phase proposed in this thesis.

ART based systems are proposed as a solution to the stability-plasticity dilemma

which is to learn large and evolving databases quickly and stably without catastroph-

ically forgetting the past knowledge. With the match-based learning property of ART

systems, they change their memories only when the inputs are close enough to their

expectations, or when something completely new occurs. This property enables stable

learning of large and evolving databases [16] as desirable for CBIR systems. Proposed

system can be modified in the future to continue learning across querying sessions as

in relevance feedback methods.

3.3 Importing a Database

In the database importing phase, by the help of a simple GUI, all the regions in the

database are cropped to their bounding boxes as in training phase and their features

are extracted. These feature vectors are presented to the trained fuzzy ARTMAP

module and index files are formed. The index file of each class simply contains region

identification numbers of the patterns of that class in the database.

3.4 Querying by Example Regions

In the querying phase, user determines the class of distinctive objects to query by

selecting its label and presents the system a query region which is used to rank the

results. If the query region is from the database, then the label it has been assigned

in the database importing phase is also displayed to the user. This gives the user a

chance to supply a different query region for better ranking if the current one is already

misclassified. L2 distance between each region in the query class index file and the

query region is found and results are displayed to the user in decreasing similarity.

If more than one regions are retrieved from the same image then it is displayed only

once in the first place. Figure 3.9 is a snapshot taken from a querying session.
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Figure 3.9: A snapshot from the region querying GUI. Query image is displayed in
segmented form for region selection.
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CHAPTER 4

Experiments

In this chapter, we present results of our experiments designed to analyze the effective-

ness of the proposed CBIR system based on fuzzy ARTMAP algorithm. Specifically,

the power of fuzzy ARTMAP is tested in classification of image regions prior to the

retrieval. Experiments are also prepared to measure size of the search space during

retrieval of images containing distinctive objects from a database.

4.1 Database

In our experiments, we used images from Corel data set [1] which is comprised of CD’s

with 100 images each. Each CD contains images that are grouped according to some

semantic or visual criteria, such as images from France, images of colored patterns,

images containing certain animals like cheetahs, eagles, elephants, etc. We have formed

a database from images of 10 classes with distinctive objects: tiger, cheetah, elephant,

bear (with polar bears, brown bears and black bears), penguin, plane, flower, zebra,

fox and horse. Each row in Figures 3.2 and 3.3 contain three sample images from a

class to give an idea about the amount of variation among members. Our database

contains 938 images with 100 images from each class except for zebra class having 38

images. After the database importing phase, the number of regions in the database is

6661.
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Table 4.1: Hand-labeled region counts from different classes in each training set.

class set 1 set 2 set 3 set 4 set 5
tiger 5 10 23 33 33
bear 5 10 20 30 30
plane 5 10 20 30 30

elephant 5 10 21 31 31
penguin 5 10 22 32 32
cheetah 5 10 20 30 30
horse 5 10 20 30 30
fox 5 10 20 30 30

zebra 5 10 19 29 30
flower 5 10 20 30 30
grass 5 10 6 16 0
river 0 0 6 9 0
sky 5 10 6 15 0
tree 5 10 6 16 0
snow 5 10 6 16 0
rocks 0 0 6 6 0
water 5 10 5 12 0
total 75 150 246 396 306

4.2 Training Sets

Five training sets with varying sizes and regions are formed in order to observe the

effect of the number of training data. These sets contain labeled samples of regions

from ten major classes and also some labeled background regions for completeness.

Images are chosen randomly from each class and the regions they contain are labeled

to form three sets. A fourth set is formed by merging second and third sets and a

fifth set is formed by eliminating background regions from fourth set to observe the

effect on classification and retrieval. The number of labeled samples from each class

are given in Table 4.1 for each set. With the labeling GUI developed, an image is

selected and desired regions are labeled in less than a minute.

4.3 Preliminary Classification Experiments

To demonstrate effectiveness of fuzzy ARTMAP in region classification, some prelim-

inary experiments are performed. Five test sets are formed from only object regions,

i.e. by eliminating background regions from training sets. Table 4.2 gives the number

of regions in test sets.
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Table 4.2: Number of regions in test sets prepared from training sets of Table 4.1.

class set1-test set2-test set3-test set4-test (set5)
tiger 5 10 23 33
bear 5 10 20 30
plane 5 10 20 30

elephant 5 10 21 31
penguin 5 10 22 32
cheetah 5 10 20 30
horse 5 10 20 30
fox 5 10 20 30

zebra 5 10 19 30
flower 5 10 20 30
total 50 100 205 306

Table 4.3: Number of ARTa nodes formed during training with presentation of the
patterns in their original form. Recoding rate (β) is 0.9 .

set 1 set 2 set 3 set 4 set 5
# of nodes 21 21 34 35 25

During labeling operation training sets are prepared such that exemplars of each

class are nearly in succession. Initial experiments are performed by presenting patterns

to the network in this original order during training. It is observed that number

of nodes allocated in categorization module, ARTa, of ARTMAP is larger than the

number of classes (see Table 4.3). This is due to the many-to-one mapping capability

of fuzzy ARTMAP. Classes like “penguin” have both white and black regions with

dissimilar feature vectors which are represented by different nodes but mapped to the

same class. Similarly for “bear” class having polar, black and brown types all with

the same label. (This class has been split into 3 different classes in Carson et al. ’s

experiments [22].) Number of nodes allocated is increased with the number of patterns

in training sets to capture within-class variations that are not obvious as in examples

given above.

Performance results with different combinations of train and test sets are given

in Table 4.4 for trained networks of Table 4.3. Table 4.4 demonstrates an expected

increase in classification performance with the increasing number of training patterns.

Users of our retrieval system are supposed to label sufficient amount of exemplars

from each class they wish to query. Performances are satisfactory for sets 3 and 4. So

from Table 4.1, we see that 15 to 30 regions should be labeled for each class. Usually
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Table 4.4: Test performances with different combinations of train and test sets (β =
0.9) with 10 classes.

Training Set Test Set Total Correct Total Error
set1 set1-test 50 (100.00 %) 0 (0.00 %)

set2-test 56 (56.00 %) 44 (44.00 %)
set3-test 91 (44.39 %) 114 (55.61 %)
set4-test 143 (46.73 %) 163 (53.27 %)

set2 set1-test 41 (82.00 %) 9 (18.00 %)
set2-test 100 (100.00 %) 0 (0.00 %)
set3-test 109 (53.17 %) 96 (46.83 %)
set4-test 176 (57.52 %) 130 (42.48 %)

set3 set1-test 29 (58.00 %) 21 (42.00 %)
set2-test 52 (52.00 %) 48 (48.00 %)
set3-test 205 (100.00 %) 0 (0.00 %)
set4-test 216 (70.59 %) 90 (29.41 %)

set4 set1-test 40 (80.00 %) 10 (20.00 %)
set2-test 77 (77.00 %) 23 (23.00 %)
set3-test 170 (82.93 %) 35 (17.07 %)
set4-test 306 (100.00 %) 0 (0.00 %)

set5 set1-test 40 (80.00 %) 10 (20.00 %)
set2-test 78 (78.00 %) 22 (22.00 %)
set3-test 171 (83.41 %) 34 (16.59 %)
set4-test 306 (100.00 %) 0 (0.00 %)
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Figure 4.1: Effect of learning rate (β) on test performances of training set 4.
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Figure 4.2: Effect of learning rate (β) on number of nodes formed in ARTa after
training with set 4.

there are more than one regions from a single object in images, this means that 10-15

images should be chosen and labeled from each class using our system interface. Also,

it is observed from Table 4.4 that classification performances of sets 4 and 5 are almost

the same, remember that set 5 is formed by removing all background regions from set

4.

Figure 4.1 is a plot of total correct percentages of the network, when trained with

varying recoding rates (β) using set 4 and Figure 4.2 shows the number of nodes

formed in ARTa after training. We observe that while test performances stay nearly

the same, number of nodes formed in ARTa increases with decreasing recoding rate.
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This is expected since low recoding rates cause templates to be updated very slowly.

Hence, entering into resonance with more specific templates becomes difficult which

increases number of category nodes formed in ARTa. We used β value of 0.9 for the

rest of our experiments as significant performance differences are not observed for

other values.

There are no other parameters of fuzzy ARTMAP to be set before training, how-

ever, it is well-known that fuzzy-ARTMAP is vulnerable to the order of pattern pre-

sentation during training. Different clusters are formed with different presentations of

the inputs during training. Carpenter et al. [19] propose a voting scheme to overcome

this vulnerability which is demonstrated to increase the classification performance as

well. Table 4.5 shows new performance rates when a classifier module with 10 voters

is used. Each voter is trained with a different random presentation of the same input

set and the category of a test pattern is taken to be the majority vote. If Tables 4.5

and 4.4 are compared, a performance increase though not significant is observed for

each training set. During our experiments, we also observed that increasing number

of voters does not affect the classification performance significantly as demonstrated

in Figure 4.3 for set 4.

These preliminary experiments show that sets 1 and 2 do not contain sufficient

amount of training patterns regarding their pure recognition performances. However,

about 80% of the test patterns are classified correctly when training sets contain

sufficient number of class regions as in sets 4 and 5. Still these sets contain around

30 regions which is a small number when compared to typical training set sizes of

learning systems. This shows that with relatively less training fuzzy ARTMAP is

effective at classifying image regions. Sets 3, 4 and 5 will be used in the next section

which demonstrates the retrieval performance of our system. The effect of voting

scheme on retrieval will also be shown.

4.4 Retrieval Experiments

All the regions in the database are treated as unknown patterns and classified using

our trained fuzzy ARTMAP modules. The training is performed in 6 different ways

resulting in 6 different modules. Three 1-voter systems are trained with sets 3, 4 and

5 with their original ordering of input patterns. Three 10-voter systems are trained

41



Table 4.5: Test performances with different combinations of train and test sets (β =
0.9). 10 voters are used each of which is trained with a different random presentation
of the input set.

Training Set Test Set Total Correct Total Error
set1 set1-test 50 (100.00 %) 0 (0.00 %)

set2-test 67 (67.00 %) 33 (33.00 %)
set3-test 104 (50.73 %) 101 (49.27 %)
set4-test 159 (51.96 %) 147 (48.04 %)

set2 set1-test 41 (82.00 %) 9 (18.00 %)
set2-test 100 (100.00 %) 0 (0.00 %)
set3-test 114 (55.61 %) 91 (44.39 %)
set4-test 186 (60.78 %) 120 (39.22 %)

set3 set1-test 32 (64.00 %) 18 (36.00 %)
set2-test 54 (54.00 %) 46 (46.00 %)
set3-test 205 (100.00 %) 0 (0.00 %)
set4-test 233 (76.14 %) 73 (23.86 %)

set4 set1-test 41 (82.00 %) 9 (18.00 %)
set2-test 78 (78.00 %) 22 (22.00 %)
set3-test 171 (83.41 %) 34 (16.59 %)
set4-test 306 (100.00 %) 0 (0.00 %)

set5 set1-test 41 (82.00 %) 9 (18.00 %)
set2-test 76 (76.00 %) 24 (24.00 %)
set3-test 174 (84.88 %) 31 (15.12 %)
set4-test 306 (100.00 %) 0 (0.00 %)
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Figure 4.3: Effect of increasing number of voters on test performances of training set
4. Number of voters are 3, 5, 10, 30 and 50.
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Table 4.6: The number of labeled database regions from each class after classification
with 1 voter systems.

class set 3 set 4 set 5
tiger 1016 392 406
bear 162 319 1569
plane 1134 1401 1471

elephant 267 230 172
penguin 1687 392 743
cheetah 393 404 424
horse 365 1091 723
fox 275 185 168

zebra 211 233 407
flower 865 516 578
grass 66 269 0
river 35 125 0
water 4 285 0
tree 153 486 0
snow 16 219 0
sky 8 110 0

rocks 4 4 0
total 6661 6661 6661

with 10 random orderings the same sets. There is no practical way of knowing exact

number of regions from each class in the database, but the number of regions assigned

to each class is shown in Tables 4.6 and 4.7.

It is observed from Tables 4.6 and 4.7 that the number of training patterns effect

the results substantially. Set 3 contains fewer number of labeled background regions,

compared to the distinctive object regions, as a result fewer number of background re-

gions are labeled in the database. This is partly due to fuzzy ARTMAP’s representing

classes with more exemplars with more generic templates since the template gets more

and more generic by “fuzzy-or”ing with more and more patterns. And partly due to

the fact that there are generally fewer number of background regions compared to

distinctive object regions in the images. Although we do not know the exact number

of regions from each class, regions from rocks, water, river, etc. classes do not appear

as frequently as distinctive object regions. (The latter are assured to be present in

all relevant images of their class.) Obviously, no region is assigned to a class when it

is not learned by the system during training. This is observed for training set 5 in

Tables 4.6 and 4.7. Tables contain the value 0 for all background classes as they are
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Table 4.7: The number of labeled database regions from each class after classification
with 10 voter systems.

class set8 set9 set10
tiger 586 365 408
bear 146 357 1488
plane 1166 1512 1449

elephant 111 211 162
penguin 1000 467 945
cheetah 410 393 457
horse 415 907 778
fox 1260 298 237

zebra 643 257 243
flower 829 663 494
grass 45 258 0
river 15 113 0
sky 4 217 0
tree 7 344 0
snow 12 196 0
rocks 8 99 0
water 4 4 0
total 6661 6661 6661

not present in this training set (Table 4.1). All the regions are forced to be classified

to be one of the object regions in this case. Since primary aim of our application is

object retrieval, wrong classification of background regions does not constitute a big

drawback. Indeed, experiments presented in the rest of this section will demonstrate

that retrieval performances with sets 4 and 5 are almost the same.

To see the querying performance of the system, Algorithm 3 is run for each class.

This algorithm finds average recall and precision for each class by automatically query-

ing with all regions of each image in the class. The recall and precision for an image is

set to be the values of one of its regions giving best recall and precision. Since one of

these regions is assured to belong to the distinctive object of the class, it is assumed

that no other region can give better recall and precision values for that class. The

motivation is that if a user runs a query with this image, he/she would select one of

the distinctive object regions and at best get the precision and recall found with this

automatic method. In this way, the burden of preparing a query manually for each

image of the class is avoided. The algorithm initially finds the set of regions assigned

to this class using index file of the class. This set is used for querying and the search
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space is reduced depending on the size of this set for each class.

Algorithm 3 Find the average recall and precision for a given class

t = total number of relevant images of this class in the database

m = match threshold

find SLR where SLR = set of regions labeled with the label of this class

for each image i of the class

for each region r of i

for each region rr in SLR

find the Euclidean distance between r and rr

sort SLR according to the distance values

take 1 region per image and find the sorted image list LSI

correct = the relevant images of this class in top m images in LSI

recall region = correct / t

precision region = correct / m

recall image = best of all recall region values

precision image = best of all precision region values

recall class = average of all recall image values

precision class = average of all precision image values

To determine the effectiveness of the system, a baseline is needed for comparison.

This baseline is obtained by querying the database without using the classification.

An automatic method similar to Algorithm 3 is used which simply finds the Euclidean

distance of each region in the database to all other regions (Algorithm 4) instead of

to the labeled set of the class (SLR in Algorithm 3). This method is feasible in

these experiments since the database size is not so large (6661 regions). However,

the complexity is O(n2) where n is the number of regions in the database and as

the database grows this method loses its feasibility. Our system reduces the size of

the search space by labeling regions in the database, and it not only speeds up the

querying process but also enables larger databases to be searched effectively. Table 4.8

shows the CPU time that each session of querying takes, where the speed up achieved
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Table 4.8: The CPU time in seconds for each querying session.

class base set 3 set 4 set 5
tiger 215.87 32.11 12.44 12.98
bear 207.24 4.91 9.42 45.95
plane 143.3 24.27 29.9 31.66

elephant 211.7 8.48 7.23 5.47
penguin 190.94 48.75 11.32 21.27
cheetah 193.99 11.72 11.86 12.53
horse 205.95 11.33 33.03 22.22
fox 205.05 8.49 5.83 5.31

zebra 67.33 2.24 2.4 4.22
flower 220.61 26.81 16.01 18.09

is clearly observed.

46



Algorithm 4 Find the baseline average recall and precision for a given class.

t = total number of relevant images of this class in the database

m = match threshold

for each image i of the class

for each region r of i

for each region rr in the database

find the Euclidean distance between r and rr

sort the database regions according to the distance values

take 1 region per image and find the sorted image list LSI

correct = the relevant images of this class in top m images in LSI

recall region = correct / t

precision region = correct / m

recall image = best of all recall region values

precision image = best of all precision region values

recall class = average of all recall image values

precision class = average of all precision image values
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Algorithms 3 and 4 are run for 5 different match threshold values: 10, 20, 30, 40

and 50. Performance of our systems are shown in Figures 4.4, 4.5 and 4.6. Figures

are the recall/precision plots of the class averages. Both baseline values and 1-voter

and 10-voter systems’ values are plotted for comparison.
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Figure 4.4: Average recall and precision values for each class with training set 3.

For most of the classes, precision rates are comparable to the baseline values, which

demonstrates the effectiveness of our system in narrowing the search space. Also, for

certain classes like “flowers” precision is highly improved as exhaustive searching of

the database creates many false alarms. Only “fox” and “plane” classes seem to

suffer from our method, which might be due to the high variability within members
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Figure 4.5: Average recall and precision values for each class with training set 4.
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Figure 4.6: Average recall and precision values for each class with training set 5.
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of these classes (see Figures 3.2 and 3.3 for examples). Apparently, fuzzy ARTMAP

is insufficient to group input patterns of these classes and find salient features to

attend to for each group. Although a large number of database regions are labeled as

“plane”, most of these are false alarms regarding low precision values. Also it should

be noted that voting mechanism is not effective in increasing precision values proving

the relative unimportance of the presentation of the patterns during training for this

task.

51



CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis, a CBIR system with learning capabilities is proposed to query object

content of databases. Images are represented as collections of coherent regions with

respect to color and texture which are segmented via Normalized Cuts algorithm.

At the lowest level, MPEG-7 content descriptors are used to form a feature vector

to represent each region. It has become possible to attach meaning to these image

regions via classification of their feature vectors. A user-friendly graphical interface

has been developed for integrating a training module into the system. Tedious training

set preparation task has become an easier labeling operation via this interface.

Fuzzy ARTMAP Neural Network architecture is used as the matching engine of

our system. Preliminary experiments show that ARTMAP is effective at attending to

different salient features for each class and classifying regions successfully despite the

high dimension of the feature space. Comparably high precision values in retrieval with

respect to exhaustive searching further prove this effectiveness. Correct classification

of certain classes, like planes, due to their high within-class variation remains as a

challenge. This difficulty might be overcome in a retrieval system by the use of certain

background regions to support the query. As a future study, we plan to improve our

system in this direction to allow querying via combinations of different regions from

both object and background classes to increase retrieval precision.

Fuzzy ARTMAP systems have the capability of learning to classify databases in a

stable fashion without catastrophically forgetting their past knowledge. This property

makes them especially suitable to continue learning during querying similar to sys-
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tems using relevance feedbacks of users. These feedbacks can be used to present new

patterns to the fuzzy ARTMAP module after each querying session and continously

update its current experience. Performance achieved via the off-line training stage

proposed in this thesis can be improved by this on-line training strategy.

The system can also be utilized to organize image databases, since unknown regions

can be labeled and/or auto-annotated. It is capable of attaching meaning to regions

after being trained by the user. This serves for the purpose of accessing object content

and semantic organization of databases, the ultimate aim of retrieval systems.
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