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IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

IN
THE DEPARTMENT OF INFORMATION SYSTEMS

DECEMBER 2003



Approval of the Graduate School of Informatics.

Prof. Dr. Neşe Yalabık
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ABSTRACT

FACIAL FEATURE EXTRACTION USING DEFORMABLE TEMPLATES

Serçe, Hakan

M.Sc., Department of Information Systems

Supervisor: Prof. Dr. Uğur Halıcı

December 2003, 181 pages

The purpose of this study is to develop an automatic facial feature extraction

system, which is able to identify the detailed shape of eyes, eyebrows and mouth

from facial images. The developed system not only extracts the location infor-

mation of the features, but also estimates the parameters pertaining the contours

and parts of the features using parametric deformable templates approach.

In order to extract facial features, deformable models for each of eye, eye-

brow, and mouth are developed. The development steps of the geometry, imag-

ing model and matching algorithms, and energy functions for each of these

templates are presented in detail, along with the important implementation is-

sues. In addition, an eigenfaces based multi-scale face detection algorithm which

incorporates standard facial proportions is implemented, so that when a face is

detected the rough search regions for the facial features are readily available.

The developed system is tested on JAFFE (Japanese Females Facial Ex-

pression Database), Yale Faces, and ORL (Olivetti Research Laboratory) face

image databases. The performance of each deformable templates, and the face
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detection algorithm are discussed separately.

Keywords: Computer Vision, Facial Feature Finding, Deformable Templates,

Eye Template, Eyebrow Template, Mouth Template, Active Contours (Snakes),

Eigenfaces, Image Pyramid
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ÖZ

ŞEKİL DEĞİŞTİREBİLEN ŞABLONLAR KULLANARAK YÜZ

ÖZNİTELİKLERİNİ BULMA

Serçe, Hakan

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Prof. Dr. Uğur Halıcı

Aralık 2003, 181 sayfa

Bu çalışma yüz görüntüleri üzerinde gözler, kaşlar ve ağızın detaylı şekillerini

belirleyebilen bir otomatik yüz öznitelikleri bulma sistemi geliştirmek amacı

ile yapılmıştır. Geliştirilen sistem, sadece özniteliklerin yerlerini belirlemekle

kalmayıp, özniteliklerin dış hatları ve parçaları ile ilgili parametreleri de ke-

stirmektedir.

Yüz özniteliklerini çıkarabilmek için, göz, kaş ve ağız şekil değistirebilen

şablonları ayrı ayrı geliştirilmiştir. Bu şablonların herbirinin geometrisi, gö-

rüntüleme modeli, eşleme algoritması ve enerji fonksiyonlarının geliştirilmesi

adımları, gerçekleştirmeye yönelik önemli noktaları ile birlikte detaylı bir şekilde

sunulmuştur. Ayrıca, eigen-yüz tabanlı çok-ölçekli ve standart yüz oranlarını

içeren bir yüz tespit etme algoritması geliştirilmiştir, öyle ki görüntüde bir yüz

tespit edildiğinde yüz özniteliklerinin kabaca yerleri de bulunmuş olmaktadır.

Geliştirilen sistem, JAFFE (Japanese Females Facial Expression Database),

Yale Faces, ve ORL (Olivetti Research Laboratory) yüz görüntüleri veri taban-
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ları kullanılarak test edilmiştir. Geliştirilen herbir şablon ile yüz tespit etme

algoritmasının performansları ayrı ayrı tartışılmıştır.

Anahtar Kelimeler: Bilgisayarlı Görme, Yüz Öz Niteliklerinin Yerlerinin Saptan-

ması, Şekil Değiştirebilen Şablonlar, Göz Şablonu, Kaş Şablonu, Ağız Şablonu,

Aktif Eğriler, Eigen Yüz, Görüntü piramidi
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CHAPTER 1

Introduction

1.1 Background and Rationale of the Study

Facial feature extraction is the process of segmentation of facial features such

as eyes, eyebrows, and lips, from static images or video sequences that con-

tain faces. In general, the term facial feature extraction is widely used when

static images are the concern, and tracking is used for referring the process of

continuously extracting and tracking the features from video sequences. Facial

feature extraction has long been a popular area of research mainly because of its

wide range of application areas including: face recognition [1, 2], facial expres-

sion analysis [3], security systems (iris), photography (red eye correction), multi

modal speech recognition and lipreading [4, 5], gaze tracking, human computer

interfaces [6, 7], driver monitoring systems, and automatic facial animation[8],[9,

p.6].

The starting problem in most of the cases of facial feature extraction is face

detection, which deals with locating faces in images. Face detection is a problem

on its own, on which significant research has been conducted. Principle com-

ponent analysis (PCA) based [10], and connectionist approaches [11] have been

successfully used in previous researches for face detection in arbitrary images.

Different approaches have been applied to facial feature extraction success-

1



fully. One of these approaches is the eigenfeatures method, which is a PCA

based technique. Eigenlips for tracking lips for multi-modal speech and speaker

recognition is used in [12]. Their approach concentrated on estimating the outer

lip contour from the lip intensity image using PCA. Eigeneyes as an alternative

to eigenfaces for face recognition is used in [1]. The idea behind the study is that

the regions around the eyes are enough to recognize peoples, which is proved

with the reported results of their study.

Elastic bunch graph technique used in [13] exploits Gabor jets for registering

facial feature points. Their method aim face recognition by using similarity

measures on the elastic bunch graph and the Gabor wavelet responses of facial

feature points at different scales and orientations.

Classical template matching is most of the time too simplistic and rigid for

facial feature detection, but it yields considerable performance when used in

controlled conditions. Eye, eyebrow and mouth templates for detecting facial

feature extraction is used in [14], in initializing step of their facial expression

synthesis system. This method is also used in [15] for locating mouth and eye

corners. The study does not use templates for detection of the features as a

whole, but only for detecting corners of these features.

Integral projection method uses the maxima and minima of horizontal and

vertical integral projections of the human face for locating the facial features.

An in-depth analysis of this technique is provided in [16].

Deformable templates approach [17] proposes a solution to the limitations of

classical template matching, by allowing deformation of the template geometry

and providing relative invariance to illumination conditions. Deformable tem-

plates are successfully employed for facial feature extraction in the literature

[18, 19, 20, 17, 21, 22, 23, 24, 25, 26, 27].

Active contours, which can be considered as generic deformable templates

based on parametric curves, are used for extracting the contours of facial features

[5].
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1.2 Approach

In this thesis, deformable templates approach is exploited for developing an au-

tomatic facial feature extraction system. The system extracts location and de-

tailed shape information of eye, eyebrow, and mouth features from static images.

Deformable template geometries, imaging models, and matching algorithms are

designed and developed for each of these features. The study provides the steps

for developing a parametric deformable template in detail, along with important

implementation issues.

The developed system is tested on randomly selected images from JAFFE,

ORL and Yale Faces databases. The performance of the deformable models are

assessed by comparing the parameters of automatically fitted models against

the hand-fitted models. The deviations of the two are used to measure the

performance of the models.

In addition, an eigenfaces based multi-scale face detection algorithm is imple-

mented. A face model which incorporates standard facial proportions is designed

and used in the face detection algorithm. This provides that the rough search

regions for the facial features are readily available when a face is detected. This

algorithm is tested on all the images available in the three image databases, and

the results are discussed.

1.3 Road Map

Chapter 2 provides image processing background information on low-level im-

age processing operations, and object description and recognition techniques.

Histogram equalization, smoothing, edge detection, corner detection and peak-

valley detection are explained as relevant low level image processing operations.

Then, classical template matching, deformable template matching, and active

contours(snakes) are discussed as important approaches related to object shape

description and recognition.

Chapter 3 presents some of the important studies on facial feature extraction.

The chapter first gives a brief literature survey on face detection. Then, it
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present the studies on facial feature extraction.

Chapter 4 provides detailed information pertaining the design and develop-

ment of the facial feature extraction system, which extracts the detailed shape

and position information of eyes, eyebrows and lips. The chapter presents the

geometries, imaging models and matching algorithms of the deformable tem-

plates, and the development of the energy functions is explained in details. In

addition, the algorithm developed for providing automatic initialization is also

presented.

Chapter 5 presents our testing approach and discusses the results of the tests.

Chapter 6 concludes the study by summarizing the overall study and results,

and providing the limitations and further improvement opportunities.

Lastly the complete results of the tests, the images in the test sets, and the

training sets are provided in the Appendices.
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CHAPTER 2

Image Processing Background

This chapter presents foundations of image processing related to the following

areas in the study: low-level image processing operations such as histogram

equalization, smoothing, edge detection, corner detection and peak-valley de-

tection, and object description recognition operations such as classical template

matching, deformable template matching, and active contours(snakes).

2.1 Low Level Image Processing

Low level image processing is needed for extracting useful information in order

to build higher level operations upon, and eliminate irrelevant data. Low level

processing does not produce any information that is not available in the unpro-

cessed or raw image. Instead, it filters out the irrelevant bulk of information.

Numerous low level processing operations have been developed, each providing

useful outputs for different purposes. In the following sections, The following

low level image processing operations are explained:

• histogram equalization,

• smoothing,

• edge detection,
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• corner detection, and

• valley/peak detection.

2.1.1 Histogram Equalization

The histogram of an image shows the distribution of pixels according to the grey

levels [28, 29]. Figure 2.1 depicts the histograms of a synthetic image, and a

real-life image.

The Algorithm 2.1 from [29] defines how the histogram of an image is formed.

Let I(x, y) be the input image
Let b be the bits used per pixel in the image
1. Create an array histogram with 2b elements
2. for all grey levels, i, do
2.1 histogram[i ]=0
3. for all pixel coordinates x and y , do
3.1 Increment histogram[I(x, y)] by 1

Algorithm 2.1: Forming the histogram of an image

Histogram is not a unique property of an image, i.e. two completely differ-

ent images can have the same histograms. One of the most important benefits

provided by histograms is the means to perform optimal contrast improvement

[29]. Histogram equalization, performs a non-linear mapping of grey levels, so

that the histogram is flattened as much as possible. The non-linear mapping

of histogram equalization provides that more gray levels are allocated for the

gray levels with higher number of pixels in the original histogram. Figure 2.2

shows the effect of histogram equalization. The Algorithm 2.2 adapted from

[29] defines how histogram equalization is performed. Instead of perform-

ing the histogram equalization globally for the whole image, one can do it for

smaller patches of an image locally. This approach is used in adaptive histogram

equalization technique. Although adaptive histogram equalization yields better

results in many cases, it suffers from high computational needs.
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Figure 2.1: Histograms of a synthetic image and a real-life image. The synthetic
image contains only a few levels of grey, while the real-life image contains all
available levels of grey.
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Figure 2.2: The effect of histogram equalization on the image and its histogram.
The histogram of the histogram equalized image is more spread on the x axis.
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Let I(x, y) be the input image
Let g(x, y) be the resulting image
1. Compute the scaling factor, α =255/number of pixels
2. Calculate histogram using Algorithm 2.1
3. c[0] = α x histogram[0]
4. for all grey levels, i, do
4.1 c[i ] = c[i-1 ] + α x histogram[i ]
5. for all pixel coordinates x and y , do
5.1 g(x, y) = c[I(x, y)]

Algorithm 2.2: Histogram equalization

2.1.2 Smoothing

Smoothing is a neighborhood operation that performs low pass filtering. Smooth-

ing is mostly used for elimination of sudden changes caused by noise in the im-

age and it is usually implemented in two different ways: median filtering, and

averaging. Median filtering relies on selection of the median1 grey level in a

neighborhood. Median filtering is a powerful scheme for smoothing, but it is

computationally expensive, because it requires sorting for the neighborhood of

each pixel. Figure 2.3 illustrates the power of median filtering.

Averaging is mostly prefered to median filtering because of computational

considerations. This type of smoothing is equivalent to convolving the im-

age with a kernel containing the averaging weights. The result of smoothing

1
Median is the value in the middle in an ordered set of values.

(a) (b) (c)

Figure 2.3: Smoothing with median filtering. a)Original image b)Noisy (Salt
and pepper noise) image c)Smoothing of (b) with median filtering
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(a) (b) (c)

Figure 2.4: Smoothing with different averaging kernels. a)Original noisy image
b)Smoothing with a 3x3 averaging filter c)Smoothing with a 5x5 averaging filter

Figure 2.5: A plot of the gaussian function g(x, y) = e
−(x2+y2)

2σ2

with sample smoothing kernels is given in Figure 2.4. Smoothing can be per-

formed using weighted averaging as well. Giving a higher weight to the pixel in

question is quite reasonable, for instance. Probably the most popular example

for such a weighted averaging is smoothing with a Gaussian kernel. A Gaus-

sian kernel is generated by discretization of the continuous Gaussian function

g(x, y) = e
−(x2+y2)

2σ2 . A plot of this function is given in Figure 2.5. The following

are two discretizations of Gaussian function:
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(2.1)

Figure 2.6 shows an example of smoothing an image by using these two

discretizations of Gaussian function, h1 and h2.

(a) (b)

Figure 2.6: Smoothing using gaussian kernels

2.1.3 Edge Detection

Edge detection is a very important low level operation, which is used for isolating

the edges on an image. Edges are important because edges provide invaluable

information that can be used for recognizing objects.

Edge detection is usually performed by detecting pixels of sudden brightness

change. In calculus, change is measured by means of derivatives. In the case

of edge detection, horizontal and vertical derivatives at each pixel are used for

estimating the magnitude and orientation of the edge on a pixel. Different

kernels have been developed for estimating the horizontal and vertical derivatives

on images. Prewitt kernels and Sobel kernels used for this purpose are given

below:
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Figure 2.7: Edge magnitude orientation
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hx(Sobel) =
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hy(Sobel) =
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1 2 1








(2.3)

Calculation of the magnitude and orientation from the horizontal and vertical

derivatives are performed as follows:

Let I(x,y) be the image function. And let Ix(x0, y0) be the horizontal deriva-

tive and Iy(x0, y0) is the vertical derivative of the coordinate (x0, y0). Then the

magnitude of the edge of (x0, y0) is defined as
√

I2
x + I2

y and the orientation is

Θ = tan−1( Iy

Ix
). This can be seen more clearly in Figure 2.7.

Different approaches exist for detecting edges using horizontal and vertical

derivatives. A simple algorithm is provided for detecting edges in Algorithm 2.3:

1. Calculate Ix and Iy

2. Calculate edge magnitude image as
√

I2
x + I2

y

3. Threshold the edge magnitude image

Algorithm 2.3: Edge detection algorithm

This simple algorithm can give satisfying results for many applications. Fig-

ure 2.8 illustrates the effect of this algorithm with different thresholds, using

Sobel kernel.
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(a) (b)

(c) (d)

Figure 2.8: Edge detection using Sobel kernels. a)Original image, b)Edge mag-
nitudes, c)Edge magnitudes thresholded with T=50, d)Edge magnitudes thresh-
olded with T=150)

A more sophisticated method based on derivatives is Canny edge detection.

Canny’s edge detector makes use of different scales, hysteresis thresholding and

non-maximal suppression. The details of Canny’s edge detector can be found in

[28, 29].

2.1.4 Corner Detection

Corners are the region, where two or more edges join with a high curvature.

Similar to edges, corners provide valuable information for object matching. The

simplest corner detector is the Moravec detector [28]. Moravec operator gener-

ates high responses for corners and sharp edges. The Moravec operator given in

[28] is:

MO(i, j) =
1

8
×

i+1∑

k=i−1

j+1
∑

l=j−1

|I(k, l) − I(i, j)| (2.4)

Another corner detector based on scale-space analysis is given in [30] as:

IxxI
2
y − 2IxIyIxy + IyyI

2
x (2.5)

where the subscripts denote partial derivatives. This operator gives high re-

sponse at corners.
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Another well-known corner detector is Plessey Feature Point Detector [31].

Plessey feature point detector uses the following matrix:

M =





∑
I2
x

∑
Ixy

∑
Ixy

∑
I2
y



 (2.6)

where the summations are calculated in the neigbourhood of a given pixel. If

the two eigen values of the matrix M are large in the neighborhood of a certain

point, then a small motion in any direction will cause an important change in

grey level. This property indicates that a given pixel is a corner. Considering

this, the following cornerness measure is proposed by Harris [31]:

R = detM − k(traceM)2 (2.7)

where k is a parameter suggested to be set to 0.04 by Harris. Figure 2.9 gives

the responses of Moravec, Plessey and scale-space corner detectors.

Other more sophisticated methods for corner detection are SUSAN [32] cor-

ner detector, and Kitchen-Rosenfeld [33] corner detectors.
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(a) (b)

(c) (d)

Figure 2.9: Results of different corner detection algorithms. a)The original
image, b)Corners detected by Moravec operator, c)Corners detected by Plessey
corner detector, d)Corners detected by Scale-space theory based corner detector.
Note that (b), (c) and (d) are inverted for improving visibility.)

2.1.5 Peak Valley Detection

Peak and Valley potentials depict useful proportion of images. A peak is a pixel

or a region that has a high intensity value compared to its surroundings. And

conversely a valley is a pixel or a region that has a low intensity value compared

to its surroundings. Figure 2.10 illustrated peak and valley potentials of an

image considering a small neighborhood.

Peak and valley potentials are used for locating eyes in [34, 21]. Peak and

(a) (b) (c)

Figure 2.10: Peak and valley potentials. a)Original image, b)Peak potential,
c)Valley potential
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Figure 2.11: Valley template geometry and image model [18]

valley potentials are calculated using a morphological technique in [35, 36]. A

more interesting approach to peak and valley computation is described in [18].

Their approach is based on deformable templates, which will be described in

section 2.2.2. The valley template, the geometry and its relation to the intensity

values is depicted in Figure 2.11.

The geometric model for valley is a circle of radius rb and a surrounding

of radius rw (See Figure 2.11). The imaging model specifies that the intensities

inside the valley and its surroundings conform to normal distribution with means

µb and µw, and with standard deviation σb and σw. Based on this assumptions,

a measure of fitness related to Fisher’s linear discriminant [37] is proposed in

[34] as:

M =
µ̂b − µ̂w

h + γ
√

ñbσ̂2
b + ñwσ̂2

w

(2.8)

which depicts the ratio of between classes scatter to within class scatter. In this

formula:

ñb =
nb

(nb + nw)
and ñw =

nw

(nb + nw)
(2.9)

where nb and nw are the number of pixels in the valley an its surroundings.

h = max(I(x, y))−min(I(x, y)) which is an adjustment value for preventing M

to take very large values for very small σb and σw values and γ is a dimensionless

constant.

µb and µw, σb and σw are the means and standard deviations of the a-trimmed
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valley and surrounding pixel intensities. a-trimming provides robustness to noise

by excluding the extremes from the samples. In order to calculate a-trimmed

estimates, the data is first ordered and the lowest a1 percent and highest a2 per-

cent of the data is thrown away, ie. trimmed. The template is used successfully

in [34] in their eye template.

2.2 Object Description and Recognition

The notion of shape representation is first introduced in [38]. Shape representa-

tion is an essential step for object recognition. The low level image processing

operations explained in section 2.1 extracts useful information from the image,

but a means to combine this data for recognition is missing without the notion

of shape representation. Shape representation or object description is a difficult

process which may involve one or more of the followings [28, p.229] :

• boundary description (2D / 3D),

• region based descriptions,

• statistical properties, and

• feature points.

Different object descriptions and shape representation methods are used in

different studies. In the following sections some of the object recognition tech-

niques are described along with the shape representation used in the technique.

2.2.1 Classical Template Matching

Classical template matching uses correlation for finding likeliness to a fixed size

template. Correlation is usually implemented using convolution. The template

(the convolution kernel ) gives higher responses in the regions where the feature

being searched appears.

Classical Template Matching is an easy and fast approach, and it performs

very well in certain problems, but it has the following major limitations [18]:
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Templates have a fixed size. Objects appear in different sizes in reality. In

addition, the same object might appear in different sizes because of the

proximity to the imaging device (objects far away appear smaller, and

objects closer to the imaging device appear larger).

Templates have a rigid shape. In reality objects does not have ideal, fixed

shapes. Usually impurities and variations exist for the same kind of ob-

jects. Even the same object can appear in different shapes because of 2D

projection to the imaging surface (rotated circular objects may appear as

elliptical objects ).

Lightning conditions are not considered. Classical templates does not take

into account the differences in lightning conditions enough. However, dif-

ferent lightning conditions can dramatically affect the result of correlation

calculation used for template matching.

2.2.2 Deformable Template Matching

Deformable templates propose solution to the limitations of classical template

matching, by allowing deformation of the template geometry and providing rel-

ative invariance to lightening condition.

A deformable template consists of three basic elements [34]:

1. Geometrical Model. A parametric geometrical model defines the geome-

try for the template and introduces constraints on the deformation of the

geometry. This model includes the prior probabilities for the parameters.

These prior probabilities correspond to a geometric measure of fitness.

Considering an eye template, for instance, the prior probabilities should

yield higher values for a normal eye, and lower probabilities for an abnor-

mal eye, and even less values for objects that are not eyes.

2. Imaging Model. The imaging model specifies how a deformable template

of specific geometry is related to specific intensity values (or colors) in a
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given image. This corresponds to an imaging measure of fitness. Con-

sidering an eye template again, for instance, the imaging model should

state that iris would be much darker than the whites of the eye, and it

should also state that the boundaries of iris and eye correspond to high

edge values in the image.

3. Matching Algorithm. An algorithm using the geometrical and imaging

measures of fitness to match the template to the image. The algorithm

might define how the template will be initialized, which optimization al-

gorithm will be used for energy minimization (gradient descent, downhill

simplex, genetic algorithms, etc), which states will be involved during the

minimization, and so on.

A probabilistic formalization of the definition of deformable templates is also

provided in [34]. Suppose T (g) specifies the geometrical model of the template

with prior probability P (T (g)) on the template parameters denoted as g (note

that g is a vector). The imaging model P (I|T (g)) gives the probability of

producing an image I from a template T (g). Thus P (I|T (g))P (T (g)) gives the

probability of producing a feature (which is to be detected with the template)

from a template T (g).

Based on these probabilities, a measure of fitness, which can be expressed as

probability of detection of a template, can be defined by using Bayes’ theorem.

The probability of detection of a template is P (T (g)|I). We can calculate this

probability as follows :

P (T (g)|I) =
P (I|T (g))P (T (g))

P (I)
(2.10)

Equation 2.10 gives the probability of detection of a template, P (T (g)|I),

in terms of the imaging model and the prior probabilities. By maximizing this

probability with respect to the template parameters (g) candidate matches for

the template can be found. This probability can also be used as a confidence

measure for the matches.
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In practice, usually energy minimization approach is employed instead of

probabilistic approaches [34, 21]. Energy minimization approach involves devel-

oping energy functions which will favor a normal object geometry conforming

to the imaging model when minimized. Thus, the total energy of the template

is defined as

E(g) = Eprior(g) + Edata(g), (2.11)

where Eprior dictates the geometrical model or the geometrical constraints and

Edata dictates the imaging model. In [18] the connection between the energy

minimization approach and the probabilistic approach is presented by means

of Gibbs distribution [39]. Gibbs distribution is defined as P (g) = e−βE(g)/Z,

where β and Z are constants. In this representation, maximizing P (g) is equiv-

alent to minimizing E(g).

Deformable templates have been successfully applied to facial feature extrac-

tion as explained in Chapter 3.

2.2.3 Active Contours (Snakes)

Active contours or snakes are proposed in [40]. An active contour is defined

as an energy minimizing spline. The energy function of a snake involves terms

to attract the snake to the desired features on an image. Snakes are usually

employed for detecting object boundaries especially in occluded or noisy images.

Snakes deform continuously for minimizing their energy function, so they can

be considered as a special case of a general technique for matching a deformable

mode to an image [28].

Snake energy function is composed of the following terms: [41, 42, 43]

1. Internal Forces. Internal forces provide the smoothness of the snake by

introducing tension and stiffness terms.

2. External Forces. External forces come from high level sources such as hu-

man operators or automatic initialization procedures.
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3. Image Forces. Image intensity and other potentials derived from image in-

tensity are used to drive the model towards salient features such as light

and dark regions, edges, and terminations.

Snake is represented as a parametrically defined function as v(s) = [x(s), y(s)],

where x(s), y(s) are x,y coordinates and sε[0, 1]. The energy of the snake can

be written as

Esnake =

∫ 1

0

Esnake(v(s)) ds

=

∫ 1

0

{[Eintern(v(s))] + [Eextern(v(s))] + [Eimage(v(s))]} ds (2.12)

where Eintern represents the internal energy of the spline due to bending, Eextern

external constraint forces, and Eimage denotes image forces. Usually, snakes

are implemented using spline curves, for ensuring the smoothness of the curve

effortlessly [9, 28].

2.2.3.1 Internal Energy

The internal energy of a snake element is defined as follows:

Eintern = α(s)|vs(s)|2
︸ ︷︷ ︸

+ β(s)|vss(s)|2
︸ ︷︷ ︸

Tension Stiffness
(2.13)

Equation 2.13 contains a first derivative term controlled by α(s), and a second

derivative term controlled by β(s). The first derivative term introduces tension,

resulting in the contraction of the snake like an elastic band. The second deriva-

tive introduces a force which makes the snake resist bending (stiffness). Another

description of Equation 2.13 is as follows: the snake, by construction, tries to

zero out (or at least keep constant) its velocity and acceleration with respect to

its parameter.

In the absence of any other constraints, a snake collapses to a point in order

to minimize Eintern. Adjusting α(s) and β(s) allows controlling the relative

importance of tension and stiffness terms. For example, a corner can be allowed

by setting β(s) = 0 in one part of the snake. However, in most applications α(s)

and β(s) are selected as uniform weights (simply α and β).
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2.2.3.2 External Energy

External energy terms reflect attraction and repulsion constraints coming from

human operators or automatic initialization procedures. Attraction and repul-

sion forces drive snakes to or from specified features. In order to introduce an

attractive force between a snake element and a spatial point x in an image, for

instance, the following energy term can be used.

Eextern(v(s)) = k|x − v(s)|2 (2.14)

This energy is minimum when a v = x, thus it is an attractive force. Energy

terms for repulsive forces can be introduced similarly.

2.2.3.3 Image Energy Functionals

The potential energy P is generated by processing an image I(x, y), and it pro-

duces a force that can be employed to drive snakes towards features of interest.

The potential energy can be constructed by considering application specific re-

quirements. However, in general, lines, edges and terminations are used in order

to construct the image potential energy.

P = Eimage = wlineEline + wedgeEedge + wtermEterm (2.15)

The minimization of the potential energy P given in Equation 2.15 can be per-

formed by gradient descent.

2.2.3.4 Snake Minimization

Previous paragraphs described the energy function of a snake, which needs to

be minimized to find the optimum configuration of the snake which reveals

the salient features in the image. Different approaches were proposed for this

minimization problem. Originally [40] proposed a semi-implicit method, which

considers explicit use of forces in addition to the variational calculus based min-

imization method. A more efficient method is proposed in [44], which makes

use of a greedy algorithm. Another method used for snake minimization is
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dynamic programming, which performs the minimization as a straightforward

search instead of by means of derivatives as used in the variational approach.

The methods employed for minimizing the snake energy usually suffer from

oscillations. A number of methods have been proposed for eliminating the oscil-

lation, during the minimization. [45] proposed a method which starts minimizing

in highly blurred images and then gradually reduces the image blurring making

the snake fit more accurately to the salient features. Gradient vector flow based

snakes provide a wider range of attraction to the features, which eliminates the

issues related the initialization of the snakes comparably [42, 43].
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CHAPTER 3

Previous Work on Facial Feature Extraction

Facial feature extraction has long been a popular area of research, because it

is a prerequisite for face recognition and facial expression analysis, which are

research areas of longing interest on their own [46, 3, 47, 48].

This chapter will first present a brief literature survey on Face Detection.

Then, some of the important studies on facial feature extraction will described.

3.1 Face Detection

The first problem to be solved by a system that performs automatic facial feature

extraction is detection of a face or faces in an image or image sequence. In most

of the works in automatic facial expression analysis, controlled conditions are

assumed for the image or image sequence that will be used to obtain face images.

Human perceptual system effortlessly detects faces in uncontrolled condi-

tions. Moreover, human observers can detect not only a single face in a scene

but multiple faces having different alignments, scales, lightning conditions at

first sight of a scene, even if they are partially occluded by other objects. We

are not only able to detect faces that are partially occluded, but our percep-

tual system can also guess the occluded part as well. This is a very difficult

problem for a computer vision system. Even the most sophisticated computer

vision systems developed for face detection purposes are far from reaching the
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performance of human vision system.

In automated face detection systems, usually, the presence of one face in the

image is known beforehand, and the facial image is assumed to occur in frontal

view. In addition, the head alignment is assumed to be nearly vertical, i.e. only

minimal rotation of the head is tolerated. In spite of these controlled conditions,

detection of the exact location of a face is not an easy problem, because faces

can occur in different scales, part of a face can be occluded (by a hand), etc.

In this section some of the well-established face detection methods will be

explained. An exhaustive survey on face detection techniques is given in [11].

3.1.1 Eigenfaces

Eigenfaces approach [10] is a PCA (Principle Component Analysis) based ap-

proach for detecting faces. In this approach, faces are represented as points in a

space called eigenspace. Face detection is performed by computing the distance

of image windows to the space of faces. Assuming raw images as points in a high

dimensional space (for an NxM image, the dimension of such a space is NxM)

is impractical for two reasons. Firstly, working in very high dimensional spaces

is computationally too expensive, and secondly, raw images contain statistically

irrelevant data which degrades the performance of the system. Principal com-

ponent analysis reduces the dimensionality of a feature space by restricting the

attention to those directions along which the scatter is greatest [37]. Thus,

principal component analysis is used for projecting the raw face images onto

the eigenspace of a representative set of normalized face images, for eliminating

redundant and irrelevant information. Figure 3.1 depicts the standard eigen-

faces presented in the eigenfaces demo web page of the MIT Media Lab [49].

Eigenfaces approach is used for both detection and recognition of faces. For the

recognition part, the Euclidian distances of a given image to each of the images

in the training set is computed in the eigenspace and recognition is performed

by choosing the shortest distance image in the training set. For the detection

of faces, the distance to the space of faces (eigenspace) is used. Distance to
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Figure 3.1: Standard eigenfaces [49]

the space of faces is the reconstruction error, which occurs when an image is

projected onto the face space and then projected back to the original space. If

the distance of a given image from the eigenspace is less than a predetermined

threshold value then the image is accepted as a face image. This topic will be

elaborated later in Chapter 4.

3.1.2 Neural Networks

Neural networks, especially multi layer perceptron, have been used by many

researchers for face detection and face recognition, and promising results were

reported [50]. The first advanced neural approach which performed reasonably

on a large and difficult dataset was Rowley et al. [11].

The system described in [51] incorporates prior knowledge of face in a reti-

nally connected neural network shown in Figure 3.2. The system works in two

stages: filtering, and arbitrating. Filtering is performed using neural networks at

each location in the image at different scales for the occurrence of a face. Then,

arbitrating is performed for merging and eliminating the overlapping detections.

The first component of the system is a neural-network based filter that

receives a 20x20 pixel region of the image, and signals the existence or non-

existence of a face in the region by outputting a number between -1 and 1. The

25



Figure 3.2: Neural network for face detection [51]
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system aims multi scale face detection by repeatedly sub-sampling the input

image by a factor of 1.2, and re-applying the filter at each scale.

The filtering algorithm performs lightning correction and histogram equal-

ization before testing the existence of a face using a neural network. The neural

network has retinal connections to its input layer, and the hidden layer contains

three different types of hidden units which are chosen to allow the hidden units

to represent features that might be important for face detection.

As a last step the system merges overlapping detections, and eliminates some

of the false detections by employing a simple heuristic.

Their system was trained using a very large set of face images at different

scales and rotations. They performed tests on a variety of images from news-

papers, web, and TV images, and they reported up to % 92.7 face detection

rates.

3.2 Facial Feature Extraction

In this section previous research on facial feature extraction is presented in the

following categories:

• Eigenfeatures,

• Gabor Jets,

• Template Matching,

• Deformable Templates,

• Snakes, and

• Integral Projection.

3.2.1 Eigenfeatures

Eigenfeatures approach is similar in nature to the eigenfaces approach described

in Section 3.1.1. The main difference is that, PCA is performed for each of the
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features to be detected, instead of for the whole face. After applying PCA to a

representative training set of images; eigeneyes, eigenmouth, eigennose etc. are

calculated. Individual eigenfeature responses and combined responses of eigen-

features are used in [2] for face recognition. The study reports that eigenfeatures

approach yields superior results.

Eigenlips is employed in [12] for tracking lips mainly for multi-modal speech

and speaker recognition purposes. Instead of using lip intensity images directly,

their approach concentrated on estimating the outer lip contour from the lip

intensity image. They first developed an eigenlip classifier using PCA on 105

images (3 different poses of 35 different speakers) for locating the mouth region.

Then, they manually labeled the outer lip contours on these images and applied

PCA again, this time trying to reduce the dimensionality of the lip contour

(eigencontour). They then developed a linear regression based method for esti-

mating the outer lip contour when lip intensities are given, using eigenlips and

eigencontours. The resulting lip contour estimator is reported to be estimate

the rough outer corner of the lips reasonably well.

Eigeneyes is used in [1] as an alternative to eigenfaces for face recognition.

The study is motivated with the idea that the regions around the eyes are enough

to recognize peoples. The system developed with this study is superior to the

classical eigenfaces approach with respect to computational needs, because the

eigeneyes approach uses much smaller vectors than the eigenfaces approach.

The reported results demonstrated that eigeneyes are comparable to eigenfaces

face recognition systems, and most of the time eigeneyes performed better than

eigenfaces.

3.2.2 Gabor Jets

In [13], elastic bunch graphs (face bunch graphs) are employed for face recog-

nition. In their study, the nodes of the graph corresponds to fiducial points,

and at each node Gabor wavelet responses at different scales and orientations

are stored. Gabor wavelets are biologically motivated convolution kernels which
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has the shape of plane waves restricted by a Gaussian envelop function. Gabor

wavelets of different orientations and scales respond differently to the features

having different orientations and scales. The research employs this property of

Gabor wavelets for collecting scale and orientation invariant metrics for match-

ing. A jet is a set of Gabor wavelet coefficients at different orientations and

scales. In their study, a jet contains 40 coefficients corresponding to 5 scales and

8 orientations. Figure 3.3 illustrates the elastic bunch graph approach.

In their study, a small number of representative training images are used

for constructing a model face bunch graph. Then, fiducial points are located at

input images using jet comparison and matching algorithms for face recognition

purposes.
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Figure 3.3: The graph representation of a face is based on the Gabor wavelets
transform, a convolution with a set of wavelet kernels[13].
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3.2.3 Classical Template Matching

Template matching is one of the basic approaches used in feature detection.

Simple template matching involves convolution of an image with a mask that

corresponds to the feature to be detected. High values of the convolved image

indicate good matches between the template and the image. Good matches are

interpreted as detected features.

Classical template matching performs reasonably only in controlled lighten-

ing conditions, and when the size of the features does not vary. Although these

assumptions are unrealistic, in specific applications they can be satisfied. One

such case is reported in [14]. They developed a system for facial expression

synthesis from single neutral (showing no expression) face images. Their system

employs eye, eyebrow and mouth templates for extracting facial features. In

their study binary templates shown in Figure 3.4 are used and the facial feature

extraction algorithm is initialized manually by setting the position of the tip

of the nose. After manual initialization, the algorithm tries to determine the

region of eyes by using the Eyes Template, then it uses the single eye template

for finding the locations of individual eyes, and lastly eyebrow template is used

for finding eyebrows. Mouth template is applied to the region below the nose

tip to find mouth.

In [15] an application of template matching for locating mouth and eye cor-

ners is presented. Their study does not use templates for the whole eye or mouth,

instead it uses smaller templates for detecting corners of these features. After

detecting corner locations, geometrical verification conditions are considered for

eliminating irrelevant matches. The geometrical conditions used for verification

are :

1. The eye orientations, and mouth orientation (the lines connecting the left

and right corners for each feature) is approximately parallel to the line

connecting the center of the eyes,

2. The length of the left and right eyes are equal,
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(a) (b)

(c)

(b)

Figure 3.4: Templates for matching different facial regions. a)The eyes template
for locating eyes, b)The single eye template for locating left(right) eye, c)The
eyebrow template for locating left(right) eyebrow, d)The mouth template for
locating mouth. [14]

3. The calculated center of the mouth is equally distant to mouth corners.

The system is tested on Miss America and Claire video sequences and performed

up to %91 correct tracking rate for mouth corners and up to %74 for eye corners.

3.2.4 Deformable Templates

In this section, some of the important studies on facial feature extraction by

using deformable templates are explained.

The pioneering study on facial feature detection using deformable templates

was presented in [17] and [18]. Most of the studies afterwards use variations of

the templates developed in these studies [24, 25, 26, 27]. In this section we will

first provide an in-depth review of the eye templates presented in [18]. Then

some of the other important contributions will also be reviewed.

3.2.4.1 An Eye Deformable Template

Peak and valley potentials (see section 2.1.5) are used in [17] in the design of

their eye template. The geometry of the eye template is shown in Figure 3.5,

in which the parabolas specified by the template correspond to the following
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parametric curves:

x(α) = xt + e1 + a − ( a
b2

)2e2 for the upper parabola and

x(α) = xt +e1−c − ( c
b2

2e2 for the lower parabola, where e1 and e2 are directions

defined by Θ, namely e1 = (cosΘ, sinΘ) and e2 = (−sinΘ, cosΘ).

The positions of the centers of the peaks are xt + p1e1 and xt + p2e1, where

p2 is a negative number.

In order to specify the prior probabilities an energy term, Eprior, is defined.

This energy term imposes relations on the template parameters, such as the

center of the eye is close to the center of the iris. The energy term used for

specifying prior probabilities is given as follows:

Eprior =
k1

2
||xt−xc||2 +

k2

2
(p1−p2−(r+b)2 +

k3

2
(b−2r)2 +k4(2c−a)2 +(b−2a)2

(3.1)

where k1, k2, k3, and k4 are the coefficients used to combine the energy tems.

a

c

r b

b

xt, yt : Template Center
xc,yc : Iris Center

p1
p2

Figure 3.5: Eye template. The geometry of the eye template is specified by
eleven parameters g = (xt, xc, r, a, b, c, Θ, p1, p2). xt: The center of the whole
template (xt, yt); xc : The center of the iris, modelled as a circle (xc, yc); r :
The radius of the iris; a, b, c : The parameters of the parabolas which bound the
eye template; Θ: The orientation of the template; p1 and p2 : The parameters
used to locate the position of the centers of the peaks in the left and right side
of the iris [17].

The imaging model of the template uses the following assumptions:

• The iris corresponds to a valley in the image intensity,

• The whites of the eye correspond to peaks in the image intensity,

• The boundaries of the eye and the iris correspond to edges in the image,
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• The iris is a dark (low intensity values) region in the image, and

• The whites of the eye are bright (high intensity values) regions in the image

Thus in order to utilize this imaging model, peak, valley and edges of an

image are extracted. In [17], peak, valley and edges are computed by using

morphological filters and then smoothed by convolving with a Gaussian filter,

given the edge, valley and peak fields Ψe(x, y),Ψv(x, y) and Ψp(x, y)

The algorithm used for matching the template to the image defines an energy

function, E, which makes use of the geometrical model and the imaging model.

The energy function is minimized by changing the parameters of the template

using gradient descent algorithm.

E has contributions from the valley (the iris), peaks (the whites of the eyes)

and edges (boundaries of the iris and the eyes).

E = Ev + Ep + Ee + EI + Eprior + Einertia , (3.2)

where

Ev : The part of the energy function which considers valleys,

Ep : The part of the energy function which considers peaks,

Ee : The part of the energy function which considers edges,

EI : The part of the energy function which considers intensities,

Eprior: The part of the energy function which considers the prior probabilities

as defined before,and

Einertia: The part of the energy function which is used for fixing the iris param-

eters after the first epochs.
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The detailed formula of these energy functions are given below [17]:

Ev = − C1

|Rb|

∫

Rb

Ψv(x)dA, (3.3)

Ep = − C6|Ψp(xt + p1e1) + Ψp(xt + p2e1)|, (3.4)

Ee = − c2

|∂Rb|

∫

∂Rb

Ψe(x)ds − c3

|∂Rw|

∫

∂Rw

Ψe(x)ds (3.5)

EI = − c4

|Rb|

∫

Rb

I(x)dA − c5

|Rw|

∫

Rw

I(x)ds (3.6)

Einertia = − k5

2
(r − rold)

2 +
k6

2
||xold

t − xt||2 (3.7)

and Eprior is defined in Equation 3.1 before while explaining the prior probabil-

ities .

Some of the terms used in the formula above are explained below:

Rb : The region corresponding to the iris,

Rw : The region corresponding to the whites of the eyes,

∂Rb : The region corresponding to the iris boundary,

∂Rw : The region corresponding to the eye boundary,

|Rb| : The area of the iris,

|Rw| : The area of the whites of the eye,

|∂Rb| : The length of the iris boundary,

|∂Rw| : The length of the eye boundary, and

ci and ki are coefficients.

The algorithm tries to minimize the energy function, E, by using a search

strategy based on steepest descent. It first locates the iris by using the val-

ley potentials, the peaks are used to orient the template and then the in-

tensity values are used for fine tuning, etc. The updating of the parameters

g = (xt, xc, r, a, b, c, , p1, p2) is done by steepest descent in each epoch, that is:

dg

dt

= −∇E = −(
∂E

∂xt

,
∂E

∂xc

,
∂E

∂r
,
∂E

∂a
,
∂E

∂b
,
∂E

∂c
,
∂E

∂Θ
,
∂E

∂p1

,
∂E

∂p2

) (3.8)

In the first epoch c1 is the only non-zero coefficient. This means only the valley

fields are considered. The center of the eye template, xt, is set equal to the

center of the iris, xc. So in the first epoch the iris drags the template towards
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the eye. In the next epoch the coefficients c2 and c4 are switched on to better

localize the iris. After this stage the position and size of the iris is considered

fixed and k5 and k6 are switched on, in order to fix these. This assures that the

parameter values of iris can affect the remainder of the template, but the other

parameters cannot affect the iris.

3.2.4.2 A More Robust Eye Deformable Template

A more robust deformable template is proposed in [18] for extracting eyes, which

considers a number of aspects where it is possible to make improvements on the

template presented in [17]. These aspects are as follows:

1. Instead of detecting the valley and peak fields by using morphological

filters, it would be better to use deformable templates for this purpose,

2. Instead of using a fixed scale for detecting peaks and valleys, an automated

approach should be employed.

3. The deformable templates should be made more invariant to occlusion

and degradations caused by noise. This can be achieved by using a more

sophisticated measure of fitness.

4. The initialization of the templates should be automated, which was done

manually in the template explained previously.

In order to satisfy these aspects, Algorithm 3.1 is provided in [18]:

3.2.4.3 Deformable Templates using a spring model

Deformable templates for extracting eye and mouth features are proposed in

[21]. One of the distinctive properties of these templates is that, the geometrical

model of these templates are defined on a spring model which tries to avoid

deformations on an initially set template. The simplified geometry of mouth

and eye templates used in [21] are given Figure 3.6 and Figure 3.7.
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1. Valley template runs over the whole image with different
scales. The iris candidates who are very close to each other
are eliminated and the iris candidates above the threshold
are selected as potential iris candidates.

2. The same process is repeated for peak template

3. The possible eye candidates are determined by selecting
linear white/black/white regions

4. The eye template runs over all possible eye candidates

5. The eye is selected from the candidates which gives higher
results.

Algorithm 3.1: Eye Feature Localizing using the more robust template. The val-
ley and peaks templates referred in the algorithm are explained in section 2.1.5.

Du

Dl
Dmouth Lll

L lu

L ulL uu

Figure 3.6: Mouth Template.Luu : upper boundary of upper lip, Lul : lower
boundary of upper lip, Llu : upper boundary of lower lip, Lll : lower boundary
of lower lip, Du : upper lip region, Dl :lower lip region, Dmouth : the regions
between the two lips
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Deye Eu

El

Figure 3.7: Eye template. Eu : upper boundary of the eye model,El:lower
boundary of the eye model, Deye :inner region of the eye

As seen in Figure 3.6 and Figure 3.7, a deformable template framework is

developed in [21] for representing the geometric constraints by using a spring

model in order to allow minimum deformation from the initial geometry. The

elastic energy of the deformable template τ(T ) is defined as:

Eelastic(T, τ) =
∑

iετ(T )

ki(li − l′i)
2 (3.9)

where li and l′i are the lengths of natural and current length and ki is the stiffness.

3.2.4.4 Multi-state templates for mouth extraction

There are some problems with the approach of using deformable templates in

estimating mouth features [19]. One of the problems is about the complexity of

the cost functions to be minimized for finding a good match. The other problem

is that the selection of the open or close mouth template is done manually.

In order to solve these problems, [19] introduced, a deformable template-

based algorithm for estimating mouth feature automatically in a head-and-

shoulder videophone sequence. The features of the mouth are then described by

a mouth-closed and a mouth-open deformable template as seen in Figure 3.8.

The mouth features are represented by the corners points of the mouth and lip

outline parameters.
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Figure 3.8: The parameterized Deformable Templates for a)Mouth-closed de-
formable template, b)Mouth-open deformable template. W m

l and Wm
r are the

mouth corner points. Cm
i (i = 1, 2, 3) and Om

i (i = 1, 2, 3, 4) are the lip outline
parameters. [19]

Lip outline parameters include the information about the opening of the

mouth and the thickness of the lips. Estimation of the lip outline parameters

includes four steps:

1. The estimation of the candidates for the lip outline parameters

2. The determination of whether the mouth is open or close

3. The deformable template matching

4. The verification of the estimates for lip outline parameters

Figure 3.9 depicts the candidates for the lip outline parameters and determina-

tion of whether the mouth is closed or open.
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Figure 3.9: Lip outline parameters [19]

After the determination of the state of the mouth, deformable template

matching was used to select the upper and lower lip outline parameters. The

study introduced a simplified cost functions for both mouth-open and mouth-

closed templates.

The Mouth-open function is given as follows:

∫ m

0

k1f1 + k2f2 + k3f3 → MIN (3.10)

with f1 being

f1 = −
4∑

i=1

1

Lyi

∮

Ey(X)ds (3.11)

where Ey is the edge strength extracted from the y component of the image

using a morphological edge detector, Lyi(i = 1, 2, 3, 4) are the lengths of the

parabolas seen in Figure 3.8(b), so that f1 is the average of the edge strength
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over Lyi
(i = 1, 2, 3, 4), f2 being

f2 = −|mAm
u
− mAm

o
| − |mAm

l
− mAm

o
| + σAm

u
+ σAm

o
+ σAm

l
(3.12)

and f3 being

f3 = |σAm
u
− σAm

o
| + |σAm

o
− σAm

l
| + |σAm

l
− σAm

u
| (3.13)

, where mAm
u
, mAm

l
, mAm

o
and σ2

Am
u
, σ2

Am
u
, σ2

Am
o

are the means and the variances

of the Cr component of the image in the regions of the upper lip Am
u , the lower

lip Am
l and in the region between the lips Am

o .

The mouth-closed cost function[19]:

∫ c

m

k1f1 + k2f2 + k3f3 → MIN (3.14)

with f1 being

f1 = −
3∑

i=1

1

Lyi

∮

Ey(X)ds (3.15)

where Lyi
(i = 1, 2, 3) are the lengths of the parabolas (Figure 3.8.a), f2 being

f2 = −|mAm
u
− mAm

l
| + σAm

u
+ σAm

l
(3.16)

f3 being

f3 = |σAm
u
− σAm

l
| (3.17)

Coefficients ki(i = 1, 2, 3) are the weighting factors which were set to 1 in

the experiments.

In order to validate the study, experimental results obtained with typical

videophone sequence were used. The results of this evaluation indicated that

this deformable template-based algorithm was 37 % successful in automatically

estimating the mouth features of the images.

3.2.4.5 Other Deformable Template Research

A robust method of tracking lip contours is proposed in [52]. The authors used a

multi-state mouth model which involves three lip states such as open, relatively
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closed, and tightly closed. They also combined lip color, shape and motion in

information in their model. The system is tested on 5000 images by using a

facial expression database which consists of image sequences of children and

adults of European, African and Asian ancestry. It is reported that the method

accurately tracked lip motion and was robust to variation in facial appearance

among subjects, specularity, mouth state, and head motion.

A system to track head position and facial features in real time is presented

in [22]. This system processes head and facial feature tracking separately. In

the system, first, the head position is reconstructed by means of a model based

head tracker, which matches a 3D generic textured head model and 2D image

features extracted from the input sequence. After the pose reconstruction, the

input image is warped into the texture map of the model. The result of this

process is the stabilized view of the face. By using this stabilized view of the

face, the system uses multi-state deformable templates for detecting the face

features such as eyebrows, eyes and lips (Figure 3.10).

Head tracking and facial feature tracking algorithms are tested in [22]. Ac-

cording to the results, it was found out that the performance of the head tracking

algorithm was about 30 frame/s on a Pentium III 600, while face expression re-

construction process running at about 45 frame/s.

Deformable templates are used for the automatic estimation of the chin and

cheek contours of a person is used in [23].

Lip extraction and tracking through Bayesian models which involves design-

ing parametric template modes for describing the shape of he lips are conducted

in [20]. The lower lip template proposed in [20] is shown in Figure 3.11.

3.2.5 Active Contours (Snakes)

Snakes are in a way generic deformable templates which use an imaging model

that considers the image potentials on the contour of the snake only. The main

source of problem when using snakes is that they need a good starting config-

uration. The initialization of the snakes are usually performed manually or by
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Figure 3.10: a)Mouth Template, b)Eye Template and c)Eye Template [22]

employing other techniques beforehand to estimate the rough location of the

features of interest. In the following paragraphs some of the studies that use

snakes for facial feature extraction are explained.

An active contour lip model is used in [4] to track the lips of a speaker in a

bimodal speech recognition system. The active contour model used in their study

is based on cubic B-splines. In order to overcome the initialization problem, the

study employs a color segmentation algorithm. The authors performed color

segmentation on hue-saturation space of the sub-sampled image. Then they

choose the largest connected component with position and aspect ratio lying

within some reasonable constraints. The cubic B-spline based active contour

model is defined as follows:

Xk(u) = Φ0(u)Pk−1 + Φ1(u)Pk + Φ2(u)Pk+1 + Φ0(3)Pk+2 , (3.18)

where Xk(u) is the points in the kth segment, Φi(u)’s are the cubic B-spline basis
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Figure 3.11: Lower lip template [20]

functions, and Pk’s are control points of the spline defined as affine transforma-

tions of the control points of the initial contour as follows:

Pk = c + A.Pk (3.19)

The study used a coarse-to-fine search strategy for estimating lip contours

by moving in the normal direction of the snake control points and looking for lip

boundaries. They than deformed the active contour model towards the bound-

aries. The study reports real-time performance.

Catmull-Rom splines are used for implementing the active contour used for

extracting lip boundaries in [5]. Catmull-Rom splines have desirable properties

such as local control and interpolation of control points. Their system is initial-

ized by another face tracker system. They used the coordinate of the tip of the

nose as an input, and they first estimated the corners of the mouth by extracting

the line connecting the corners. They used a snake growing algorithm to detect

the upper and lower lip contours separately. The system is reported to yield

real-time performance.

3.2.6 Integral Projection

The integral projection of a potential Ψ(x, y) is calculated by summing the values

in a specific direction. Usually the horizontal and vertical integral projections

have been exploited for determining the vertical and horizontal positions of

facial features. Horizontal and vertical integral projections denoted by ΨH(x)
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and ΨV (y) are calculated according to the following formula (generalized from

[53]) :

ΨH(x) =
∑

y

Ψ(x, y) , and (3.20)

ΨV (y) =
∑

x

Ψ(x, y) . (3.21)

The horizontal and vertical projections - ΨH(y), ΨV (x) - of an image is

depicted in Figure 3.12.

Figure 3.12: Integral projection

The local minima and maxima of ΨH(y) and ΨV (x) provide cues on the

positions of facial features.

An in-depth analysis of integral projections is provided in [16]. Instead of

horizontal and vertical integral projections, the terms X-Relief and Y-Relief

are used. The boundaries of facial features is extracted in [16] by evaluating

the topographical grey level y-projection (Y-Relief) and x-projection (X-Relief)

(Figure 3.13). Matching of minima in Y-Relief is used as a base for feature

extraction. Moreover, the X-Relief characteristics of each feature is determined

through extensive experimentation with many face images [16].

Both X-Relief and Y-Relief proposed in [16] can be used to determine left

and right, and upper and lower boundaries of a facial feature. According to that

study, the following steps are used to find the boundaries:

1. Calculate the mean gray-level for every row of the face region, which is

YR()
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Figure 3.13: Y-Relief and X-Reliefs for an example image [16]

2. Determine the minima in YR()

3. Find preceding maxima and succeeding maxima for each minima

4. Find the point where maximum change in YR() occurs in between the

current minimum and preceding maximum. This will be a candidate for

upper boundary

5. Find the point where maximum change in YR() occurs in between the

current minimum and succeeding maximum. This will be a candidate for

lower boundary

6. For each significant minimum in Y-Relief, calculate X-Relief. Each X-
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Relief element is calculated by taking the average of 3 pixels on the same

column but on neighboring rows. After that, X-Relief is smoothed in

horizontal direction by a filter of width 3 points (columns) to get rid of

small variations

7. Determine the minima in XR()

8. Find preceding maxima and succeeding maxima for each minima

9. Find the point where maximum change in XR() occurs in between the

current minimum and preceding maximum. This point will be a candidate

for left boundary

10. Find the point where maximum change in YR() occurs in between the

current minimum and succeeding maximum. This point will be a candidate

for right boundary

X-Relief and Y-Relief are used together to obtain more precise information

about facial features. The position of the minimum in Y-Relief and the shape

of corresponding X-Relief are processed together to match a minimum with a

facial feature. Fuzzy Set Theory was used in order to calculate the similarity

between the relief of a feature candidate and the characteristic relief.
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CHAPTER 4

Implementation

In this chapter the implementation of the facial feature extraction system is

explained. The system extracts the detailed shape and position information of

eyes, eyebrows and lips, which are the features that are considered important in

facial expression analysis, face recognition, lipreading and multi-modal speech

analysis systems.

The first step in fully automatic facial feature extraction systems is the de-

tection of key feature points or localizing the face. In this study an eigenfaces

based multi-scale face detection algorithm is developed for this purpose. The

algorithm performs a sequential search on the Gaussian pyramid of the input

image starting from the lowest sized level of the pyramid. A face model based

on adult facial proportions is developed and used in the face detection algo-

rithm. This provides that the rough search regions for the facial features are

readily available when a face is detected. After the algorithm finds the initial

search regions for the facial features, each of the deformable model is matched

separately.

The deformable models used in this study are parametric deformable tem-

plates, which define the geometry and imaging model for the desired features.

The geometry of the templates are inspired from previous studies, however the

energy functions are developed in this work. The geometrical models of each de-
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formable model are developed using both polygonal and spline-based geometries.

Spline based geometries seem to approximate the real geometries of the facial fea-

tures better. By implementing both polygonal and spline-based geometries, we

tried to achieve quantitative results on their performance in representing facial

features. In order to perform a coarse-to-fine grain matching, multiple epochs

are used in the matching algorithms of the templates. Energy minimization

is performed by using the Downhill Simplex algorithm described in [54]. Our

decision on the minimization algorithm is shaped by the simplicity of Down-

hill simplex. Minimization algorithms based on derivatives (Gradient Descent,

Conjugate Gradients, etc.) are not considered, because they require that the

derivatives of the energy functions are available, and in our case the derivatives

are not easily available. An overview of our system is given in Figure 4.1.

In the following sections we first explain in detail the face detection algorithm

developed for detecting faces and rough search regions for desired facial features.

Then, we present the deformable models developed for extracting eye, eyebrow

and mouth features.

4.1 Face Detection

The face detection algorithm implemented in this study is based on the eigen-

faces approach. Eigenfaces approach uses principle component analysis (PCA)

technique on a representative set of facial images in order to construct a lower

dimensional face space. In order to classify a given image as a face or non-face

image, the distance-to-eigenspace measure is used.

In the eigenface calculations, we use face images having 18x24 pixels resolu-

tion, which is reported to be the smallest resolution at which human beings can

perform recognition [55]. This small sizes provides high speed.

In addition, we developed an 18x24 face model corresponding to the search

window of our algorithm, and embedded adult facial proportions into this model,

so that the locations of facial features are readily available when a face is de-

tected.
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Our algorithm performs a sequential face search based on the distance-to-

space measure on the Gaussian pyramid of the input image. Searching on the

Gaussian pyramid provides multi-scale face detection capability to our algo-

rithm.

In the following sections the details pertaining the calculation of the eigen-

faces, the developed face model, and the pyramid search algorithm is explained.

4.1.1 Calculation of the Eigenfaces

In the calculation of eigenfaces, images of the same size have to be used. In

addition, using images which has the same features on the same spatial locations

is important. In order to satisfy these requirements, we normalized the images

in size, and orientation before starting PCA calculations. Before discussing

the details of the normalization procedure, the developed face model will be

presented, because the face model shapes the normalization procedure.

Face Model

The study presented in [55] reports that human beings are able to recognize

faces having as small as 18x24 pixels resolution. Probably even a smaller reso-

lution is sufficient for detection (compared to recognition) , however we decided

to use 18x24 pixels in our algorithm, because we were unable to find a similar

study for face detection.

Our face model incorporates standard adult facial proportions used in draw-

ing and similar arts [56, 57]. These proportions can be summarized as follows:

• eyes divide the face vertically into two halves,

• nose tip divides the eyes-to-chin region vertically into two halves,

• mouth divides the nose-tip-to-chin region vertically into two halves,

• eyes divide the face horizontally into five equal parts,

• and mouth corners are vertically aligned with the centers of the eyes.
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Figure 4.2: The face model used in face detection. The size of the face model is
18x24 and adult facial proportions are incorporated to define the rough locations
of the facial features.

In addition to these ratios, we have assumed that the eye and mouth heights

are equal to one half of the width of one eye. The face model conforming to

developed based on these assumptions are given in Figure 4.2.

Normalization of Face Images

Considering this face model we have designed a normalization procedure

which rotates and scales the image such that at the end we have an 18x24 image,

which contains inner eye corners in the screen cordinates xlefteye = (7,12) and

xrighteye = (11,12) (Note that when we say left eye we mean the eye that

appears to the left on the screen, not the left eye of the face). In order to

normalize the images we manually marked the inner corners of the eyes in each

image. The normalization procedure is given in Algorithm 4.1. A sample screen

depicting the normalization operation is provided in Figure 4.3.

PCA Calculations

The normalized M number of face images Ii are first converted to 432x1
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Figure 4.3: Normalization of training Images
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Let xl and xr be the manually selected inner eye corner locations
Let I be the image
Assume screen coordinates ( y gets larger while going down)
1. if xl.y != xr.y then
1.1. Correction angle θ = −tan−1((xr.y − xl.y)/(xr.x − xl.x))
1.2. Rotate I by θ around xl, rotate xl and xr

2. Calculate the scaling factor ρ = 4/(xr.x − xl.x),
because 4 is the normalized difference between the corners.
3. Scale I by ρ, scale xl and xr

4. Crop I so that the resulting image contains only the rectangle
Rect(xl.x − 7, xl.y, 18, 24)
5. Return the cropped image

Algorithm 4.1: Face image normalization for eigenface calculations

(432=18x24) vectors Γi. Then we compute the average face vector as follows:

Ψ =
1

M

M∑

i=1

Γi (4.1)

Then we subtract the mean face from the vectors as follows:

Φi = Γi − Ψ (4.2)

We compute the covariance matrix:

C =
1

M

M∑

n=1

ΦnΦT
n = AAT (432 × 432matrix), (4.3)

where A = [Φ1Φ2...ΦM ] (432xM matrix). Then we compute the eigenvalues and

eigenvectors of the covariance matrix and select the eigenvectors ui correspond-

ing to K largest value eigenvalues as the eigenfaces. The selected K eigenfaces

define a K dimensional space (eigenspace). In this space, a face image Φi is

represented by a vector :

Ωi =











wi
1

wi
2

...

wi
K











, i = 1, 2, ...,M (4.4)

where wi
j = uT

j Φi, and uj is the jth eigenface.
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Figure 4.4: An image pyramid

4.1.2 Face Detection Algorithm

Using the face model explained in 4.1.1 and eigenfaces approach, we implemented

a face detection algorithm which performs a sequential search on the Gaussian

pyramid of the input image.

Image pyramids are distinguished as M-Pyramids (Matrix Pyramids) and T-

Pyramids (Tree Pyramids) [28]. T-Pyramids are used when simultaneous access

to multiple resolution data is required, on the other hand M-Pyramids are used

when it is necessary to work with an image at different resolutions. Our algo-

rithm employs M-Pyramid data structure, which is a sequence {ML,ML−1, ...,M0}
of images, where ML has the same dimensions and elements as the original

data, and Mi−1 is derived from Mi by reducing the dimensions by one half (sub-

sampling). A Gaussian pyramid is a special case of an image pyramid in which

the image is blurred with a Gaussian kernel before sub-sampling. Figure 4.4

illustrates an image pyramid.

Our algorithm performs a sequential search starting from the smallest sized

pyramid level which is larger than our 18x24 search window. Searching in the

smaller sized levels of the pyramid allows our algorithm to detect faces much
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larger than 18x24 at a very high speed. Searching in different levels of the pyra-

mid provides that faces with different scales can be detected. In the sequential

search, our algorithm scans each 18x24 window in the levels of the pyramids

and constructs 432x1 vectors. Then the distance to face space is calculated.

Distance to face space is defined as follows :

ed = ||Φ − Φ̂|| (4.5)

where Φ = Γ − Ψ and Φ̂ =
∑K

i=1 wiui (wi = uT
i Φ). In order to decide that the

currently considered search window is a face we check ed against a threshold Td.

If ed < Td, then Γ is a face. In other words, distance to face space measure is the

reconstruction error. We first project the currently considered search window

onto the face space and then we project it back to the original space. If the

window is a face then the reconstruction process results in a very low error,

otherwise a considerable error is observed, because the face space is specialized

to represent face images. The images used in this study contain single faces,

and in order to provide high speed we employed this fact, i.e. the algorithm

stops searching when a face is found. Figure 4.5 illustrates the face detection

algorithm in action.
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Figure 4.5: A sample screen depicting the face detection process
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4.2 Extraction of Eyebrow: Eyebrow Deformable Tem-

plate

For the extraction of the left and right eyebrows a parametric deformable tem-

plate is developed. The template exploits the intensity, edge and corner po-

tentials of the eyebrow. The details of the template is given in the following

sections.

4.2.1 Template Geometry

The geometry of the Eyebrow template is illustrated in Figure 4.6. The geome-

try of the template is constructed by considering the possible occurrences of an

eyebrow, analyzing the occurrences in the available databases, and determining

the most likely deformation segments informally. An eyebrow template geome-

try composed of three points is used in [22]. Three points are enough to describe

the rough shape of the eyebrow, but we considered this template unsatisfactory

for describing the shape of the eyebrow in detail. As a result, a template with

more parameters is designed in this study.

After developing the geometry of the template, we constructed a list of con-

straints pertaining the geometry. Those constraints are listed in Table 4.1. The

constraints are used to develop an energy function (Eprior) which will aid us dur-

ing matching. Before starting to construct the energy function Eprior, reviewing

some facts will be helpful in understanding the process.

Fact 4.1 Let f and g be arbitrary variables that are required to be equal. Then

minimizing the function (f − g)2 is enough.

Justification: (f − g)2 can take only non-negative values, thus minimizing

(f − g)2 yields (f − g)2 = 0. And this means f = g.

Fact 4.1 provides enough information for forming the energy functions for

each of the constraints listed in Table 4.1, but we need to combine these energy

functions without violating each other.
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Figure 4.6: The geometry of the deformable eyebrow template. R2 is the planar
domain that represents the eyebrow, and R1 is the planar domain that represents
the surroundings of the eyebrow. c1 and c2 correspond to the corners of the
eyebrow, and l1, l2, u1, u2 are points that define the upper and lower contour of
the eyebrow a) The polygonal geometry b)Spline based geometry

Table 4.1: The geometrical constraints of the eyebrow template. The constraints
are developed by trial and error.

Constraint Formal Representation
1. u1 and l1 align vertically u1x = l1x

2. u2 and l2 align vertically u2x = l2x

3. u1 and u2 are horizontally 3|u1x − c1x| = |c1x − c2x| , and
evenly spaced 3|u2x − c2x| = |c1x − c2x|

4. l1 and l2 are horizontally 3|l1x − c1x| = |c1x − c2x| , and
evenly spaced 3|l2x − c2x| = |c1x − c2x|

5. Height is uniform between |u1y − l1y| = |u2y − l2y|
the curls of the eyebrow

6. The width of the template 10|u1y − l1y| = |c1x − c2x|
is ten times the height

59



Fact 4.2 Let E1 and E2 be energy functions that are required to be minimized.

If both E1 and E2 can take only non-negative values, and if E1 and E2 are

independent, then minimizing E = E1 + E2 minimizes both E1 and E2.

Justification: Minimizing E yield E = E1 + E2 = 0, and this means E1 = 0

and E2 = 0, because E1 and E2 can take only non-negative values. Thus, both

E1 and E2 are minimized.

Fact 4.2 requires that the energy functions that need to be combined have to be

independent. However, we cannot use fact 4.2 in this form, because most of our

constraints (and thus the energy functions representing them) are dependent to

the same variables. Fact 4.3 offers a solution to our problem.

Fact 4.3 Let E1 and E2 be energy functions that are required to be minimized.

If both E1 and E2 can take only non-negative values, and if E1 and E2 are

dependent, then minimizing E = k1E1 + k2E2 does not guarantee that both E1

and E2 are minimized, but the positive coefficients k1 and k2 shapes the preference

between E1 and E2 during minimization.

Justification: This time minimizing E is not guaranteed to yield E = k1E1 +

k2E2 = 0, because it is not guaranteed that both E1 and E2 can be zero at the same

time. Minimization will favor the energy function with the larger coefficient,

because otherwise a larger coefficient will be multiplied with a positive number

and this will result in a larger energy.

With the help of the Fact 4.3, constructing Eprior is straightforward. In the

following paragraphs, we will first develop the energy functions corresponding

to the first and second constraints in Table 4.1, then we will combine them. And

finally we will present the full Eprior.

The energy function E1 corresponding to the first constraint is E1 = (u1x −
l1x)

2 by Fact 4.1. Similarly, the energy function E2 corresponding to the second

constraint is E2 = (u2x − l2x)
2. E1 and E2 are independent functions, however

to be general we use Fact 4.3 to get the combined energy function E = k1(u1x −
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Table 4.2: The imaging model of the eyebrow template. I(x, y) denotes the
intensities, Ψc(x, y) denotes the corner potential, and Ψe(x, y) denotes the edge
potential. ∂T denotes the border of the template, and it is defined as the union
of the line segments as follows : ∂T = |c1u1|∪|u1u2|∪|u2c2|∪|c2l2|∪|l2l1|∪|l1c1|.
The measure of darkness MD is adapted from the measure of fit proposed for
valley detection [34] described in Section 2.1.5.

Property Formal Representation
1. Eyebrow corners c1 and c2 Choose c1 and c2

correspond to regions having high to maximize Ψc(c1) + Ψc(c2)
corner values in the image

2. Eyebrow boundary correspond to Choose all parameters
regions having high edge to maximize

∫

s ε ∂T
Ψe(x, y)ds

values in the image
3. The pixels inside the template Choose all parameters to

boundary have very low intensity maximize the darkness measure
values compared to the pixels

outside the template, i.e. eyebrow is MD = µ̂1−µ̂2

h+γ
√

ñ1σ̂2
1+ñ2σ̂2

2

darker than its surroundings
where the subscript 1 denotes
the region R1, and subscript 2

denotes the region R2 (See Figure 4.6)

l1x)
2 + k2(u2x − l2x)

2. Final Eprior is given as follows:

Eprior = k1(u1x − l1x)
2 + k2(u2x − l2x)

2

+ k3

[
(3|u1x − c1x| − |c1x − c2x|)2 + (3|u2x − c2x| − |c1x − c2x|)2

]

+ k4

[
(3|l1x − c1x| − |c1x − c2x|)2 + (3|l2x − c2x| − |c1x − c2x|)2

]

+ k5(|u1y − l1y| − |u2y − l2y|)2 + k6(10|u1y − l1y| − |c1x − c2x|) (4.6)

4.2.2 Imaging Model

The imaging model of the eyebrow template is designed to exploit the intensity,

edge and corner potentials of the underlying image. The imaging model is given

in Table 4.2.

The developed geometry and imaging model is used for locating the detailed

shape and position information of the left and right eyebrows. At first, we

planned to develop separate templates for each of the right and left eyebrows,
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but experimenting with the template showed that it is reasonable to use a single

template for both of the eyebrows.

The energy function Edata that combines the properties listed in Table 4.2 is

developed as follows :

Edata = −k7(Ψc(c1) + Ψc(c2)) − k8

∫

s ε ∂T

Ψe(x, y)ds

− k9(
µ̂1 − µ̂2

h + γ
√

ñ1(σ̂2
1) + ñ2(σ̂2

2)
) (4.7)

4.2.3 Matching Algorithm

The designed matching algorithm is an energy minimization algorithm. The

energy of the template Ebrow = Eprior + Edata is given below:

Ebrow = k1(u1x − l1x)
2 + k2(u2x − l2x)

2

+ k3

[
(3|u1x − c1x| − |c1x − c2x|)2 + (3|u2x − c2x| − |c1x − c2x|)2

]

+ k4

[
(3|l1x − c1x| − |c1x − c2x|)2 + (3|l2x − c2x| − |c1x − c2x|)2

]

+ k5(|u1y − l1y| − |u2y − l2y|)2 + k6(10|u1y − l1y| − |c1x − c2x|)

− k7(Ψc(c1) + Ψc(c2)) − k8

∫

s ε ∂T

Ψe(x, y)ds

− k9
µ̂1 − µ̂2

h + γ
√

ñ1σ̂2
1 + ñ2σ̂2

2

(4.8)

The minimization of this energy function is performed by employing a variety

of the Downhill Simplex algorithm. In order to find the optimum parameters c1,

c2, u1, u2,l1, and l2 that minimizes the energy function we developed a multi-

epoch algorithm. The epochs explained below provide a coarse to fine grain

optimization.

Rough Localization. In the first epoch only the location of the whole template

is modified, and this way a fast rough localization is performed. This epoch

is especially helpful when the initialization procedure performs poorly (See

Figure 4.7).

Rough Deforming. After the template is roughly located on the eyebrow, this

epoch starts. This epoch is a rough deforming state, in which we move
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(a) (b) (c)

Figure 4.7: Eyebrow rough localization epoch

u1 and l1 together, and likewise u2 and l2 are also moved together(See

Figure 4.8).

(a) (b)

(c) (d)

Figure 4.8: Eyebrow rough deforming epoch

Fine Tuning. Finally, all parameters are freely optimized in order to fine tune

the template (Figure 4.9).

(a) (b)

(c) (d)

Figure 4.9: Eyebrow fine tuning epoch
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4.2.4 Implementation Issues

In this section, we will provide the important issues regarding the implementa-

tion of the eyebrow template.

4.2.4.1 Template Geometry Issues

In the following the implementation issues regarding the geometry of the tem-

plate is discussed.

4.2.4.1.1 Computing The Initial Geometry The developed deformable

eyebrow template needs to be initialized by an external procedure. In order to

provide a uniform interface for any external procedure to set the initial con-

figuration of the template, we developed an initialization procedure based on a

rectangular bounding box. A specialized external procedure can directly provide

the initial geometry of the template, but we did not limit the template to such

specialized procedure. In addition, general purpose facial feature locating algo-

rithms like the one presented in [16] exist which compute a rectangular bounding

box for facial features. Considering these and the geometric constraints of the

eyebrow template given in Table 4.1, we compute the initial geometry using Al-

gorithm 4.2

4.2.4.1.2 Surroundings of The Eyebrow The imaging model of the eye-

brow template requires that a finite surroundings region be given (see property

3 given in Table 4.2). The surroundings of the eyebrow is not calculated di-

rectly, but it is calculated from the eyebrow geometry as top, down, right and

left margins. By considering the anatomical properties of the human face, the

margins specifying the surrounding is calculated as follows:

• top margin = half of the eyebrow height

• bottom margin = 1
4

of the eyebrow height

• left margin = 3 pixels
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Let box be the rectangular bounding box
1. Calculate auxiliary variables
1.1.Set width = box.width
1.2. Set height = width/10 (Using constraint 6)
1.3. Set upY = box.y
1.4. Set downY = box.y + height
1.5. Set c1x = box.x
1.6. Set u1x = c1x + width/3 (Using constraint 3)
1.7. Set u2x = c1x + 2*width/3 (Using constraint 3)
1.8. Set c2x = c1x + width
2. Calculate the final geometry parameters
2.1 Set c1 = new Point( c1x, downY )
2.1 Set c2 = new Point( c2x, downY )
2.2 Set u1 = new Point( u1x, upY )
2.3 Set l1 = new Point( u1x, downY )
2.2 Set u2 = new Point( u2x, upY )
2.3 Set l2 = new Point( u2x, downY )

Algorithm 4.2: Computing the initial geometry of the eyebrow template. The
algorithm calculates initial geometry parameters (c1, u1, u2, l1, l2 and c2) given a
rectangular bounding box. The calculated geometry conforms to the constraints
given in Table 4.1

• right margin = 3 pixels

These values are obtained by experimenting with the template. Bottom margin

is selected to be very small, because it is possible that eyes or eyelids, which

are usually as dark as the eyebrow, can appear just below the eyebrow. Left

and right margins are chosen just to provide some flexibility. Choosing larger

margins for left, right, and top margins seems meaningful, as there is large

regions of facial skin (which appear brighter than the eyebrow, providing a good

MD given in Table 4.2) in these directions. However, hair can cover some of the

skin in these regions. Thus the values are chosen as listed above.

4.2.4.1.3 Preventing The Geometry From Building An Invalid Shape

The geometry constraint provided in Table 4.1, and thus Eprior tries to impose

a well defined shape on the template. However, in some cases the minimization
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Figure 4.10: An invalid eyebrow template geometry. The minimization algo-
rithm sometimes gets caught to an invalid shape and it cannot recover, if the
penalty mechanism is not considered.

1. if u1 appears below l1, then add PENALTY × |u1y − l1y| to Ebrow

2. if u2 appears below l2, then add PENALTY × |u2y − l2y| to Ebrow

Algorithm 4.3: Penalty mechanism for the eyebrow template, used for preventing
the geometry from building an invalid shape. PENALTY is a large enough
number, such that minimizing E will guarantee that Eu−lpenalty is minimized.

algorithm happens to try invalid geometrical configurations and some times the

geometry becomes so tangled to be able to recover. Figure 4.10 shows one

such case. In order to prevent these cases we developed a mechanism which

adds penalty terms to Ebrow when an invalid geometry occurs. The penalty

mechanism is given in Algorithm 4.3

4.2.4.2 Image Boundary Considerations

Image boundaries need to be considered carefully, because Ebrow causes unex-

pected behavior when some part of the template is out of the image boundaries.

If some part of the template is out of the image boundary, then nothing is calcu-

lated for that part. Consider for example that the template as a whole is out of

the image boundary, then this means that we will not process any points. This

results in Ebrow = 0, which is a good enough minimum to drive the minimization

algorithm. The situation explained here results in nonsense minima, and needs

to be avoided. In order to avoid this, we add another penalty term

Eboundarypenalty = PENALTY × Area of (∂T \ ∂I) (4.9)
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to Ebrow, where ∂T denotes the planar domain representing the eyebrow tem-

plate, ∂I denotes the planar domain representing the image region, and ∂T \ ∂I

denotes the planar domain that represents the region that lies outside the image

boundary.

4.2.4.3 Energy Calculation Issues

In order to calculate the energy of a given template geometry and the image on

which the template matching will be performed, we implemented an algorithm

that traverses the image regions corresponding to the template geometry for

collecting statistics on the template which will be used for calculating Edata.

Calculation of Eprior is independent of the image and straightforward, with a

given geometry as given in Equation 4.6. In the following paragraphs we will

discuss the issues pertaining the calculation of Edata.

4.2.4.3.1 Finding where a given point lies in the template geometry

Collecting statistics from the image for calculating Edata will be discussed later,

but in order to collect those statistics we need to be able to understand whether

a given point lies on the boundary, inside the brow region (R2), inside the

surroundings region (R1) or near a corner. This classification is performed as

given in Algorithm4.4. The algorithm classifies a given point as one of the

followings:

• corner,

• on boundary,

• inside, or

• outside.

4.2.4.3.2 Collecting Statistics In order to collect the statistics needed for

calculating Edata, each point falling into the rectangular bounding box of the
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Let p be a given point for which we need to be classified
1. If ||p − c1|| ≤ 1 or ||p − c1|| ≤ 1
1.1 return CORNER
2. else if distance of p to at least one of the line segments
|c1u1|, |u1u2|, |u2c2|, |c2l2|, |l2l1|, and |l1c1| is smaller than or equal to 1.
2.1 return ON BOUNDARY
3. else if the polygon c1u1u2c2l2l1 contains p
3.1 return INSIDE
4. else return OUTSIDE

Algorithm 4.4: Finding where a given point lies in the eyebrow template geom-
etry

template geometry is traversed and different statistics are updated depending

on where this point lies in the geometry . The algorithm used for Collecting

Statistics is given in Algorithm 4.5.

4.2.4.3.3 Collected Template Statistics The algorithm collect four dif-

ferent statistics on the image:

Corner Statistics The corner potential of the image is calculated using the

Plessey corner detection technique explained in Section 2.1.4. Corner po-

tential is then normalized so that the values lie in the range [0, 1]. The

corner potential is then smoothed in order provide a smooth energy sur-

face for the minimization algorithm. The collected corner statistics are

the values of this normalized-smoothed corner potential near the corner

points of the template geometry (c1 and c2).

Boundary Edge Statistics The edge potential of the image is calculated us-

ing the Sobel kernels explained in Section 2.1.3. Edge potential is then

normalized so that the values lie in the range [0, 1]. Then edge potential

is smoothed similar to the corner potential. The collected boundary edge

statistics are the values of this normalized-smoothed edge potential near

the boundary of the template geometry.
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Let RI be the bounding box of the image
Let RT be the bounding box of the template
1. Set box = RI ∩ RT

2. for each point p in box
2.1 if p is a CORNER point
2.1.1 collect corner statistics for p
2.1.2 collect boundary edge statistics for p
2.2. if p is INSIDE the eyebrow region
2.2.1 collect inside intensity statistics for p
2.3. if p is OUTSIDE the eyebrow region
2.3.1 collect outside intensity statistics for p
2.4. if p is ON BOUNDARY of the eyebrow region
2.4.1 collect boundary edge statistics for p
2.4.1 collect inside intensity statistics for p

Algorithm 4.5: Collecting statistics of eyebrow template. The algorithm collects
four different statistical samples: 1)corners 2)boundary edges 3)inside intensities
4)outside intensities.

Inside Intensity Statistics The intensity potential of the image is normalized

so that the values lie in the range [0, 1]. Then smoothing is performed for

aiding the minimization. The collected inside intensity statistics are the

values of this normalized-smoothed intensity potential in region R2 shown

in Figure 4.6.

Outside Intensity Statistics Similar to the previous item, normalized-smoothed

intensity potential in region R1 shown in Figure 4.6 are collected.

4.2.4.4 Use of Downhill Simplex

Downhill simplex is an easy to implement algorithm, which provides optimiza-

tion without using any derivative information. This algorithm tries to find a

minimum by searching the energy surface by trial. Experimentation showed

that the algorithm gets unreasonably slower when the dimensionality of the

searched space increases. In our case, a search space of dimension 4 was enough

to put the algorithm into a very long lasting search. In order to overcome this
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limitation, we tried to perform optimization by modifying one-or two variables

at a time. Experimenting with the eyebrow template proved that this technique

performs reasonably fast for research purposes. We performed the minimization

in multiple epochs, each epoch having its own parameters which are modified

one after another in the downhill simplex algorithm.

First epoch has only one parameter : the location of the whole template.

Thus downhill simplex performs a fast optimization in the two dimensional

space. Second epoch has four parameters: one for c1, one for c2, one for u1

and l1 and one for u2 and l2. These parameters are minimized one after an-

other, just like a two dimensional minimization. And lastly, six parameters are

introduced, one for each of the template geometry parameters.

4.2.4.5 Coefficients of the Energy Function

We decided that each epoch should have its own set of coefficients, because

different constraints may need to be emphasized in different epochs. Thus we

implemented our model to support different coefficients in different epochs. The

selection of the coefficient values proved to be an important step which will be

discussed later.

4.3 Extraction of Eye: Eye Deformable Template

For the extraction of the left and right eyes a parametric deformable template is

developed. The template exploits the intensity, and edge potentials of the eye.

The details of the template is given in the following sections.

4.3.1 Template Geometry

The geometry of the Eye template is illustrated in Figure 4.11. The geometry

of the template is taken from [21]. The template proposed in [18] (given in Sec-

tion 3.2.4) is also evaluated, and a draft implementation is completed, but as a

less rigid template we have chosen the template geometry proposed in [21].
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Figure 4.11: The geometry of the deformable eye template. R1 is the planar
domain that represents the iris, R2 is the planar domain that represents the
whites of the eye, and R3 is the planar domain that represents the surroundings
of the eye. xc is the iris center, r is the iris radius, c1 and c2 correspond to
the corners of the eye, and up, down are points that define the upper and lower
contour of the eye
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Table 4.3: The geometrical constraints of the eye template. The constraints are
adapted from the energy function developed in [18]. XT denotes the template
center, XT = (c1 + c2 + up + down)/4, and TW denotes the template width,
which is TW = ||c1 − c2||.

Constraint Formal Representation
1. Iris center coincides with the xc = XT

template center
2. Iris radius is a fourth of the 4r = TW

template width
3. up is twice as far from the template ||XT − up|| = 2||XT − down||

center as down
4. Distance from up to template center 4||XT − up|| = TW

is a forth of template width
5. up and down are upx = XTx

horizontally in the middle downx = XTx

6. template is truly horizontal c1y = c2y

After developing the geometry of the template, we constructed a list of con-

straints pertaining the geometry. This constraints are listed in Table 4.3

The constraints presented in Table 4.3 are used to develop an energy function

(Eprior) which will aid us during matching. Eprior is developed using the facts

presented in Section 4.2.1 as follows:

Eprior = k1(xc − XT )2 + k2(4r − TW )2

+ k3(||XT − up|| − 2||XT − down||)2 + k4(4||XT − up|| − TW )2

+ k5

[
(upx − XTx)

2 + (downx − XTx)
2
]
+ k6(c1y − c2y)

2 (4.10)

4.3.2 Imaging Model

The imaging model of the eye template is designed to exploit the intensity, and

edge potentials of the underlying image. The imaging model is given in Table 4.4.

The developed geometry and imaging model is used for locating the detailed

shape and position information of the left and right eyes.

The energy function Edata that combines the properties listed in Table 4.4 is
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Table 4.4: The imaging model of the eye template. I(x, y) denotes the in-
tensities, and Ψe(x, y) denotes the edge potential. ∂T denotes the border of
the template, and it is defined as the union of the line segments as follows :
∂T = |c1up| ∪ |upc2| ∪ |c2down| ∪ |down c1|. The measure of darkness MD is
adapted from the measure of fit proposed for valley detection [34] described in
Section 2.1.5.

Property Formal Representation
1. Eye boundary correspond to Choose all parameters

regions having high edge to maximize
∫

s ε ∂T
Ψe(x, y)ds

values in the image
2. Iris is darker than eye whites Choose all parameters to

maximize the darkness measure

MD = µ̂2−µ̂1

h+γ
√

ñ2σ̂2
2+ñ1σ̂2

1

where the subscript 1 denotes
the region R1, and subscript 2

denotes the region R2 (See Figure 4.11)

developed as follows :

Edata = −k7

∫

s ε ∂T

Ψe(x, y)ds − k8(
µ̂2 − µ̂1

h + γ
√

ñ2σ̂2
2 + ñ1σ̂2

1

) (4.11)

The matching algorithm of the deformable template and implementation

issues will be described in the following sections.

4.3.3 Matching Algorithm

The designed matching algorithm is an energy minimization algorithm. The

energy of the template Eeye = Eprior + Edata is given below:

Eeye = k1(xc − XT )2 + k2(4r − TW )2

+ k3(||XT − up|| − 2||XT − down||)2 + k4(4||XT − up|| − TW )2

+ k5

[
(upx − XTx)

2 + (downx − XTx)
2
]
+ k6(c1y − c2y)

2

− k7

∫

s ε ∂T

Ψe(x, y)ds − k8(
µ̂2 − µ̂1

h + γ
√

ñ2σ̂2
2 + ñ1σ̂2

1

) (4.12)

The minimization of this energy function is performed by employing the

Downhill Simplex algorithm. In order to find the optimum parameters c1, c2,
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up, down,r, and xc that minimizes the energy function we developed a multi-

epoch algorithm. The epochs provide a coarse to fine grain optimization.

4.3.4 Implementation Issues

In this section, we will provide the important issues regarding the implementa-

tion of the eye template.

4.3.4.1 Template Geometry Issues

In the following paragraphs the implementation issues regarding the geometry

of the template is discussed.

4.3.4.1.1 Computing The Initial Geometry Similar to Eyebrow tem-

plate, considering the geometric constraints of the eye template given in Ta-

ble 4.3, we compute the initial geometry using Algorithm 4.6

4.3.4.1.2 Surroundings of The Eye Eye template does not rely on any

computations based on its surroundings, thus the margins are not as important

as those of the Eyebrow template. For that reason we just set a 2 pixel margin

for all sides.

4.3.4.1.3 Preventing The Geometry From Building An Invalid Shape

Similar to Eyebrow template, we developed a penalty mechanism for preventing

the template to get stuck to invalid shapes. Experimentation proved that eye

template is more likely to get stuck in invalid shapes, so we developed a more

thorough penalty mechanism. The penalty mechanism is given in Algorithm 4.7

4.3.4.2 Image Boundary Considerations

Image boundary considerations for the Eye template is the same as those of

Eyebrow template presented in section 4.2.4.2.
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Assume screen coordinates (y increases downwards)
Let box be the rectangular bounding box
Let λ a number showing the preference of valleyness to circle measure
Let N be the number of top scoring circles to consider using Hough
transform
1. Find the iris parameters
1.1. Find top N circles using Hough transform in box, as iris candidates
1.2. For each candidate circle calculate an iris measure
M = λ ∗ V alleyMeasurecandidate + HoughCircleMeasurecandidate

1.3. Select the circle with maximum M as the circle identifying iris (iris)
2. Calculate auxiliary variables
2.1. Set width = 6 × iris.radius
3. Calculate the final geometry parameters
3.1 Set c1 = new Point( iris.x - width/2, iris.y )
3.1 Set c2 = new Point( iris.x + width/2, iris.y )
3.2 Set up = new Point( iris.x, iris.y - iris.radius )
3.3 Set down = new Point( iris.x, iris.y + iris.radius )
3.2 Set xc = new Point( iris.x, iris.y )
3.3 Set r = iris.radius

Algorithm 4.6: Computing the initial geometry of the eye template. The algo-
rithm calculates initial geometry parameters (c1, c2, up, down, xc and r) given
a rectangular bounding box.

4.3.4.3 Energy Calculation Issues

In the following paragraphs we will discuss the issues pertaining the calculation

of Edata

4.3.4.3.1 Finding Where A Given Point Lies In The Template Ge-

ometry Similar to eyebrow template, a mechanism is needed to find where the

a point lies in the template geometry. This classification is performed as given

in Algorithm 4.8. The algorithm classifies a given point as one of the followings:

• outside,

• eye boundary,

• eye white,
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1. if up appears below down, then add PENALTY × |upy − downy| to
Eeye

2. if up appears below c1, then add PENALTY × |upy − c1y| to Eeye

3. if up appears below c2, then add PENALTY × |upy − c2y| to Eeye

4. if down appears above c1, then add PENALTY × |downy − c1y| to
Eeye

5. if down appears above c2, then add PENALTY × |downy − c2y| to
Eeye

6. if c2 appears in the left side of c1, then add PENALTY × |c2x − c1x|
to Eeye

7. if up appears in the left side of c1, then add PENALTY ×|upx− c1x|
to Eeye

8. if down appears in the left side of c1, then add PENALTY ×|downx−
c1x| to Eeye

9. if up appears in the right side of c2, then add PENALTY ×|upx−c2x|
to Eeye

10. if down appears in the right side of c2, then add PENALTY ×
|downx − c2x| to Eeye

Algorithm 4.7: Penalty mechanism for the eye template, used for preventing the
geometry from building an invalid shape.
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Let p be a given point for which we need to be classified
1. If p is outside the boundary of the polygon defined by points c1, c2,
up and down
1.1 return OUTSIDE
2. else if distance of p to at least one of the line segments
|c1up|, |up c2|, |c2down|, |down c1| is smaller than or equal to 1.
2.1 return EYE BOUNDARY
3. else if ||xc − p|| < R contains p
3.1 return IRIS
4. else if ||xc − p|| ≤ R + 1
4.1. return IRIS BOUNDARY
5. else return EYE WHITE

Algorithm 4.8: Finding where a given point lies in the eye template geometry

• iris boundary, or

• iris.

4.3.4.3.2 Collecting Statistics In order to collect the statistics needed for

calculating Edata, each point falling into the rectangular bounding box of the

template geometry is traversed and different statistics are updated depending

on where in the geometry this point lies. The algorithm used for collecting

statistics is given in Algorithm 4.9.

4.3.4.3.3 Collected Template Statistics The algorithm collects 8 differ-

ent statistics ( normalized-smoothed intensity and edge statistics for four differ-

ent regions: eye boundary, eye white, iris, boundar, iris ) on the image.

4.3.4.4 Use of Downhill Simplex

Downhill simplex is used in the manner explained in section 4.2.4.4.

4.3.4.5 Coefficients of the Energy Function

The coefficients of the energy function is explained in section 4.2.4.2.
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Let RI be the bounding box of the image
Let RT be the bounding box of the template
1. Set box = RI ∩ RT

2. for each point p in box
2.1 if p is a EYE BOUNDARY point
2.1.1 collect eye boundary edge statistics for p
2.1.2 collect eye boundary intensity statistics for p
2.2. if p is an EYE WHITE point
2.2.1 collect white edge statistics for p
2.2.2 collect white intensity statistics for p
2.3 if p is an IRIS BOUNDARY point
2.3.1 collect iris boundary edge statistics for p
2.3.2 collect iris boundary intensity statistics for p
2.4 if p is an IRIS point
2.4.1 collect iris edge statistics for p
2.4.2 collect iris intensity statistics for p

Algorithm 4.9: Collecting statistics of eye template.

4.4 Extraction of Mouth: Mouth Deformable Template

For the extraction of the mouth, a parametric deformable template is developed.

The template exploits the intensity and edge potentials of the mouth. The details

of the template is given in the following sections.

4.4.1 Template Geometry

The geometry of the Mouth template is illustrated in Figure 4.12. The geom-

etry of the template is taken from [21]. After developing the geometry of the

template. We constructed a list of constraints pertaining the geometry. This

constraints are listed in Table 4.5. A closed mouth template is also constructed

by combining u1In with l1In, u2In with l2In, and u3In with l3In.

The constraints presented in Table 4.5 are used to develop an energy function

(Eprior) which will aid us during matching. Eprior is developed using the facts

presented in Section 4.2.1 as follows:
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Figure 4.12: The geometry of the deformable mouth template. The geometry
is composed of points defining two polygons, one for the outer boundary of the
mouth, and another for the inner boundary.

Eprior = k1[(4||u1Out − u2Out|| − TW )2 + (4||u2Out − u3Out|| − TW )2

+ (4||u3Out − c2Out|| − TW )2 + (4||c2Out − l3Out|| − TW )2

+ (4||l3Out − l2Out|| − TW )2 + (4||l2Out − l1Out|| − TW )2

+ (4||l1Out − c1Out|| − TW )2 + (4||c1In − u1In|| − TW )2

+ (4||u1In − u2In|| − TW )2 + (4||u2In − u3In|| − TW )2

+ (4||u3In − c2In|| − TW )2 + (4||c2In − l3In|| − TW )2

+ (4||l3In − l2In|| − TW )2 + (4||l2In − l1In|| − TW )2

+ (4||l1In − c1In|| − TW )2] + k2(||c2Out − c2In||)2 (4.13)

4.4.2 Imaging Model

The imaging model of the mouth template is designed to exploit the edge po-

tentials of the underlying image. The imaging model is given in Table 4.6.
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Table 4.5: The geometrical constraints of the Mouth template. TW denotes the
width of the template.

Constraint Formal Representation
1. points are horizontally evenly 4||c1Out − u1Out|| = TW

spaced in each polygons 4||u1Out − u2Out|| = TW
4||u2Out − u3Out|| = TW
4||u3Out − c2Out|| = TW
4||c2Out − l3Out|| = TW
4||l3Out − l2Out|| = TW
4||l2Out − l1Out|| = TW
4||l1Out − c1Out|| = TW
4||c1In − u1In|| = TW
4||u1In − u2In|| = TW
4||u2In − u3In|| = TW
4||u3In − c2In|| = TW
4||c2In − l3In|| = TW
4||l3In − l2In|| = TW
4||l2In − l1In|| = TW
4||l1In − c1In|| = TW

2. Inner and outer corners are close ||c1Out − c1In|| = 0
||c2Out − c2In|| = 0

Table 4.6: The imaging model of the Mouth template. Ψe(x, y) denotes the edge
potential. ∂T denotes the border of the template.

Property Formal Representation
1. Mouth boundary correspond to Choose all parameters

regions having high edge to maximize
∫

s ε ∂T
Ψe(x, y)

values in the image

80



The developed geometry and imaging model is used for locating the detailed

shape and position information of the mouth.

The energy function Edata that represents the property listed in Table 4.6 is

developed as follows :

Edata = −k3

∫

s ε ∂T

Ψe(x, y)ds (4.14)

The matching algorithm of the deformable template and implementation

issues will be described in the following sections.

4.4.3 Matching Algorithm

The designed matching algorithm is an energy minimization algorithm. The

energy of the template Emouth = Eprior + Edata is given below:

Emouth = k1[(4||u1Out − u2Out|| − TW )2 + (4||u2Out − u3Out|| − TW )2

+ (4||u3Out − c2Out|| − TW )2 + (4||c2Out − l3Out|| − TW )2

+ (4||l3Out − l2Out|| − TW )2 + (4||l2Out − l1Out|| − TW )2

+ (4||l1Out − c1Out|| − TW )2 + (4||c1In − u1In|| − TW )2

+ (4||u1In − u2In|| − TW )2 + (4||u2In − u3In|| − TW )2

+ (4||u3In − c2In|| − TW )2 + (4||c2In − l3In|| − TW )2

+ (4||l3In − l2In|| − TW )2 + (4||l2In − l1In|| − TW )2

+ (4||l1In − c1In|| − TW )2] + k2(||c2Out − c2In||)2

− k3

∫

s ε ∂T

Ψe(x, y)ds (4.15)

The minimization of this energy function is performed by employing the

Downhill Simplex algorithm. The epochs provide a coarse to fine grain opti-

mization.

4.4.4 Implementation Issues

In this section, we will provide the important issues regarding the implementa-

tion of the mouth template.
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Let box be the rectangular bounding box
1. Calculate auxiliary variables
1.1. Set width = box.width
1.2. Set height = box.height
1.3. Set x = box.x
1.4. Set y = box.y
2. Calculate the final geometry parameters
2.1 Set c1Out = new Point( box.x, box.y + height/2 )
2.2 Set u1Out = new Point( box.x + width/4, box.y )
2.3 Set u2Out = new Point( box.x + width/2, box.y )
2.4 Set u3Out = new Point( box.x + 3*width/4, box.y )
2.5 Set c2Out = new Point( box.x + width, box.y + height/2 )
2.6 Set l3Out = new Point( box.x + 3*width/4, box.y + height )
2.7 Set l2Out = new Point( box.x + width/2, box.y + height )
2.8 Set l1Out = new Point( box.x + width/4, box.y + height )
2.9 Set c1In = new Point( box.x, box.y + height/2 )
2.10 Set u1In = new Point( box.x + width/4, box.y + height/3 )
2.11 Set u2In = new Point( box.x + width/2, box.y + height/3 )
2.12 Set u3In = new Point( box.x + 3*width/4, box.y + height/3 )
2.13 Set c2In = new Point( box.x + width, box.y + height/2 )
2.14 Set l3In = new Point( box.x + 3*width/4, box.y + 2*height/3 )
2.15 Set l2In = new Point( box.x + width/2, box.y + 2*height/3)
2.16 Set l1In = new Point( box.x + width/4, box.y + 2*height/3)

Algorithm 4.10: Computing the initial geometry of the mouth template. The
algorithm calculates initial geometry parameters given a rectangular bounding
box. The calculated geometry conforms to all of the constraints given in Ta-
ble 4.5

4.4.4.1 Template Geometry Issues

In the following paragraphs the implementation issues regarding the geometry

of the template is discussed.

4.4.4.1.1 Computing The Initial Geometry Similar to Eyebrow tem-

plate, considering the geometric constraints of the eye template given in Ta-

ble 4.5, we compute the initial geometry using Algorithm 4.10
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1. for each point x of the inner polygon 1.1. if x is not in the outer do-
main 1.1.1. find the minimum distance of x to the outer polygon (distx)
1.1.2. Add PENALTY × (ADJUSTMENT + distx) to Emouth

2. if u1Out appears below d1Out, then add PENALTY × |u1Outy −
d1Outy| to Emouth

3. if u2Out appears below d2Out, then add PENALTY × |u2Outy −
d2Outy| to Emouth

4. if u3Out appears below d3Out, then add PENALTY × |u3Outy −
d3Outy| to Emouth

5. if u1In appears below d1In, then add PENALTY ×|u1Iny −d1Iny|
to Emouth

6. if u2In appears below d2In, then add PENALTY ×|u2Iny −d2Iny|
to Emouth

7. if u3In appears below d3In, then add PENALTY ×|u3Iny −d3Iny|
to Emouth

Algorithm 4.11: Penalty mechanism for the mouth template, used for preventing
the geometry from building an invalid shape.

4.4.4.1.2 Surroundings of The Mouth Mouth template does not rely

on any computations based on its surroundings, thus the margins are not as

important as those of the Eyebrow template. For that reason we just set a 2

pixel margin for all sides.

4.4.4.1.3 Preventing The Geometry From Building An Invalid Shape

Similar to Eyebrow template, we developed a penalty mechanism for preventing

the template to get stuck to invalid shapes. The penalty mechanism is given

in Algorithm 4.11

4.4.4.2 Image Boundary Considerations

Image boundary considerations for the Mouth template is the same as those of

Eyebrow template presented in section 4.2.4.2.
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Let p be a given point for which we need to be classified
1. Calculate the minimum distance of the p to the polygons
2. If any of the distances is less than or equal to 1 return BOUNDARY
3. else return NON BOUNDARY

Algorithm 4.12: Finding where a given point lies in the mouth template geom-
etry

Let RI be the bounding box of the image
Let RT be the bounding box of the template
1. Set box = RI ∩ RT

2. for each point p in box
2.1 if p is a BOUNDARY point
2.1.1 collect boundary edge statistics for p
2.1.2 collect boundary intensity statistics for p

Algorithm 4.13: Collecting Statistics of Mouth Template.

4.4.4.3 Energy Calculation Issues

In the following paragraphs we will discuss the issues pertaining the calculation

of Edata

4.4.4.3.1 Finding Where A Given Point Lies In The Template Ge-

ometry Similar to eyebrow template, a mechanism is needed to find where

the a point lies in the template geometry. This classification is performed as

given in Algorithm4.12. The algorithm classifies a given either a boundary or

non-boundary.

4.4.4.3.2 Collecting statistics In order to collect the statistics needed for

calculating Edata, each point falling into the rectangular bounding box of the

template geometry is traversed and boundary statistics are collected. The algo-

rithm used for Collecting Statistics is given in Algorithm 4.13.
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4.4.4.3.3 Collected Template Statistics The algorithm collects 2 differ-

ent statistics (normalized-smoothed intensity and edge statistics for boundaries)

on the image.

4.4.4.4 Use of Downhill Simplex

Downhill simplex is used in the manner explained in section 4.2.4.4.

4.4.4.5 Coefficients of the Energy Function

The coefficients of the energy function is explained in section 4.2.4.2.

4.4.4.6 Selection of Open vs. Closed Mouth Template

The selection of open or closed mouth template for a given face image is currently

performed manually.
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CHAPTER 5

Results

In this chapter performance of the system is presented. Firstly, the image

databases used in this study are explained. Then, the test results for the devel-

oped face detection algorithm is provided, and a discussion on the performance of

the algorithm is provided. Then, the results observed for each of the deformable

models are discussed separately, because each model has its own dynamics. And

lastly the performance of the system as a whole is discussed.

5.1 Test Settings

Images from JAFFE (Japanese Female Facial Expression Database) [58], ORL

(Olivetti Research Laboratory) [59] and Yale Faces [60] databases are used for

assessing the performance of the developed face detection algorithm, deformable

models and the system as a whole. JAFFE database contains 213 images of 7

facial expressions (six basic expressions plus neutral expression) belonging to 10

Japanese female models. ORL database contains 10 different images of each of

40 distinct subjects. For some of the subjects, the database contains the images

taken at different times, varying lighting, facial expressions, and facial details

(glasses/no glasses). And lastly, Yale Faces database contains 165 images of 15

subjects. There are 11 images per subject, one for each of the following facial
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expressions or configurations: center-light, w/glasses, happy, left-light, w/no

glasses, normal, right-light, sad, sleepy, surprised, and wink.

5.2 Performance of the Face Detection Algorithm

In order to asses the performance of the developed face detection algorithm, we

divided all of images from JAFFE, ORL and Yale databases into two sets, one

for training and the other for testing. The training set contains 100 images of

faces with different illumination and facial expression, at different scales. The

images are first normalized as explained in section 4.1.1, and PCA computations

are performed on the normalized images. The randomly selected training images

are shown in Appendix J. Then the images in the test set are used for testing

the algorithm in the databases. In the tests first 90 eigenfaces are selected, and

a distance to face space threshold value of 450 is used. The results of the tests

are presented in Table 5.1.

Table 5.1: The results of the face detection algorithm tests

False Detection Correct Detection Failure to Detect
Name # % # % # %
JAFFE: 35 18 160 82 0 0
ORL: 0 0 209 100 0 0
YALE: 110 78 30 22 0 0
TOTAL: 145 26 379 74 0 0

The performance of the face detection algorithm is very poor in Yale face

database, because the illumination conditions in this database are quite different

from the other two databases. In fact, the illumination conditions are even dif-

ferent within the Yale face database. Since our algorithm does not perform any

brightness equalization, varying illumination conditions dramatically affected

the test results.

The 100 % success in ORL database is mainly because of the nature of the

images in that database. The database consists of images that contain only a

face.
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5.3 Test Settings for Deformable Templates

This section describes the test settings applicable for the tests of the each of the

deformable templates. The template specific settings will be provided later in

the appropriate sections if applicable.

Three sets of test images are constructed by randomly selecting from each

of these databases. The first set contains 20 images from the JAFFE database,

the second set contains 20 images from the Yale Faces database and the last set

contains 25 images from ORL database. The images contained in this sets are

shown in Appendix A.

After the image sets are constructed, templates are handfitted to the images

in the test sets, for right eyebrow, left eyebrow, right eye, left eye, and mouth,

and the results are stored. Then, the automatic deformable template matching

is performed and the results are compared with the handfitted results. The

comparison is performed by taking the absolute difference of parameters between

the handfitted and automatically fitted models. In order to normalize the pixel

differences, we divided them to the widths of the handfitted templates in order to

obtain differences between parameter values as percent of template width instead

of pixels. Also an analysis is performed for classifying the templates as one of

the followings:

No-hit: Template does not localize the feature at all.

Hit: Template barely finds the position of the feature, but half of its parameters

are more than 20 % different from the handfitted values. (20 % is a

subjective measure decided on by analysing the results)

Good: Almost all of the template parameters are within the 10 % range, with

at most two points lying within the 10-20 % range.

Very Good: All of the template parameters are within the 10 % range.

The results of each template is classified using above measure, in the following

sections.
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5.4 Performance of the Eyebrow Template

The detailed results of the eyebrow template is given in Appendix B and Ap-

pendix C. Both polygonal and spline-based eyebrow templates are tested. The

results of each test are given in detail.

The number of events and the percentage values of polygonal eyebrow tem-

plate test results are given in Table 5.2.

Table 5.2: Polygonal eyebrow templates analysis results of JAFFE, YALE &
ORL (%)

JAFFEavg Y ALEavg ORLavg

Left Right Left Right Left Right
Name # % # % # % # % # % # %
No Hit: 0 0 0 0 0 0 1 5 1 4 0 0
Hit: 0 0 0 0 2 1 0 0 2 8 0 0
Good: 8 40 5 25 7 35 4 0.2 14 58 13 54
Very Good: 12 60 15 75 11 55 15 75 7 29 11 46

The number of events and the percentage values of spline-based eyebrow

template test results are given in Table 5.3.

Table 5.3: Spline-based templates analysis results of JAFFE, YALE & ORL (%)

JAFFEavg Y ALEavg ORLavg

Left Right Left Right Left Right
Name # % # % # % # % # % # %
No Hit: 0 0 0 0 0 0 0 0 1 04 0 0
Hit: 1 5 0 0 9 1 1 5 0 0 0 0
Good: 6 30 5 25 14 70 3 15 14 58 4 17
Very Good: 13 65 15 75 6 30 16 8 9 38 20 83

Table 5.4 depicts the performance of polygonal deformable model with regard

to each template parameters. Table 5.5 depicts the performance of spline-based

deformable model with regard to each template parameters. In order the un-

derstand the difference between polygonal and spline-based eyebrow templates,

the comparison of the results of both templates are shown in Table 5.6.
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Table 5.4: Polygonal eyebrow template analysis results of JAFFE, YALE &
ORL in average pixels difference

JAFFEavg Y ALEavg ORLavg TOTALavg

Paramater Left Right Left Right Left Right Left Right
c1x 2.16 4.97 2.73 6.38 2.88 4.65 2.59 5.33
c1y 3.23 2.25 4.85 3.89 4.10 2.20 4.06 2.78
u1x 3.87 3.83 4.17 3.05 4.54 2.50 4.19 3.12
u1y 1.12 0.86 1.84 1.23 1.17 1.02 1.38 1.04
u2x 3.86 3.50 3.90 2.70 4.49 3.33 4.08 3.18
u2y 1.02 1.03 2.09 1.30 1.28 1.20 1.46 1.18
c2x 5.28 2.29 6.78 4.22 5.24 2.78 5.77 3.09
c2y 4.41 3.11 2.60 2.60 2.09 2.17 3.03 2.63
l2x 4.42 3.02 3.76 2.30 4.99 3.22 4.39 2.85
l2y 1.46 1.36 2.07 1.59 1.29 1.25 1.61 1.40
l1x 3.88 3.43 3.31 3.26 4.05 0.72 3.75 3.14
l2y 1.38 1.60 0.00 2.50 1.34 1.10 1.54 1.73

Table 5.5: Spline-based eyebrow template analysis results of JAFFE, YALE &
ORL in average pixels difference

JAFFEavg Y ALEavg ORLavg TOTALavg

Parameter Left Right Left Right Left Right Left Right
c1x 2.91 7.75 2.50 5.76 1.70 4.14 2.37 5.88
c1y 3.01 5.02 7.26 3.82 3.04 1.57 4.44 3.47
u1x 3.17 2.81 4.09 2.47 3.28 1.71 3.51 2.33
u1y 1.09 0.90 1.10 1.18 0.92 0.86 1.01 0.98
u2x 4.14 2.95 4.01 2.52 3.81 2.38 3.99 2.62
u2y 1.08 0.89 1.57 1.25 0.70 0.89 1.12 1.01
c2x 6.76 2.37 7.16 3.95 5.19 1.43 6.37 2.58
c2y 4.75 2.30 1.74 1.82 1.61 2.95 2.70 2.36
l2x 4.51 2.47 3.90 2.05 4.30 2.33 4.24 2.28
l2y 1.26 0.85 1.53 1.26 0.74 0.81 1.18 0.97
l1x 3.23 3.81 3.20 2.39 2.81 2.18 3.08 2.79
l2y 1.34 1.24 2.21 1.44 0.99 1.02 1.51 1.23
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Table 5.6: Comparison of polygonal and spline-based eyebrow templates

JAFFEavg Y ALEavg ORLavg

Parameter Eyebrow Eyebrow2 Eyebrow Eyebrow2 Eyebrow Eyebrow2
c1x 3.56 5.33 4.55 4.13 3.77 2.92
c1y 2.74 4.02 4.37 5.54 3.15 2.31
u1x 3.85 2.99 3.61 3.28 3.52 2.50
u1y 0.99 0.99 1.54 1.14 1.10 0.89
u2x 3.68 3.55 3.30 3.26 3.91 3.09
u2y 1.02 0.98 1.69 1.141 1.24 0.80
c2x 3.78 4.56 5.50 5.56 4.01 3.31
c2y 3.76 3.2 2.60 1.78 2.13 2.28
l2x 3.72 3.49 3.03 2.97 4.10 3.31
l2y 1.41 1.06 1.83 1.39 1.27 0.77
l1x 3.66 3.52 3.28 2.79 3.39 2.49
l2y 1.49 1.29 2.21 1.82 1,22 1.00

5.5 Performance of the Eye Template

The detailed results of the eye template is given in Appendix D and Appendix E.

Both polygonal and spline-based eye templates are tested. The results of each

test are given in detail.

The number of events and the percentage values of polygonal eye template

test results are given in Table 5.9.

Table 5.7: Polygonal eye templates analysis results of JAFFE, YALE & ORL
(%)

JAFFEavg Y ALEavg ORLavg

Left Right Left Right Left Right
Name # % # % # % # % # % # %
No Hit: 0 0 0 0 1 5 2 10 0 0 0 0
Hit: 0 0 0 0 1 5 2 10 1 4 0 0
Good: 0 0 0 0 1 5 2 10 5 21 5 21
Very Good: 20 100 15 100 17 85 14 70 18 75 19 79

The number of events and the percentage values of spline-based eye template

test results are given in Table 5.10.

Table 5.9 depicts the performance of polygonal deformable model with regard

to each template parameters.
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Table 5.8: Spline-based eye template analysis results of JAFFE, YALE & ORL
(%)

JAFFEavg Y ALEavg ORLavg

Left Right Left Right Left Right
Name # % # % # % # % # % # %
No Hit: 0 0 0 0 0 0 3 15 0 0 0 0
Hit: 0 0 0 0 1 5 0 0 0 0 0 0
Good: 0 0 0 0 2 1 1 5 9 38 7 29
Very Good: 20 100 20 100 17 85 16 80 15 63 17 71

Table 5.9: Polygonal eye templates analysis results of JAFFE, YALE & ORL in
average pixels difference

JAFFEavg Y ALEavg ORLavg TOTALavg

Parameter Left Right Left Right Left Right Left Right
xc 0.61 0.73 7.75 11.15 1.28 0.76 3.21 4.22
yc 0.73 0.95 7.47 7.78 0.58 0.53 2.93 3.09
r 0.80 0.77 0.82 0.78 0.54 0.47 0.72 0.67
c1x 2.10 2.06 7.31 11.33 3.22 3.20 4.21 5.53
c1y 3.66 1.38 8.86 8.50 0.78 0.76 4.43 3.55
c2x 2.54 2.42 8.87 13.20 2.89 1.90 4.77 5.4
c2y 3.02 1.35 7.89 7.80 1.39 1.86 4.10 3.67
upx 1.86 1.85 8.46 12.48 1.99 2.02 4.10 5.45
upy 1.61 1.59 7.81 8.01 1.05 1.28 3.49 3.63
downx 1.28 1.33 7.47 11.56 1.24 0.97 3.33 4.62
downy 0.95 0.87 8.30 7.87 2.88 2.26 4.04 3.67

Table 5.10 depicts the performance of spline-based deformable model with

regard to each template parameters.

In order the understand the difference between polygonal and spline-based

eye templates, the comparison of the results of both templates are shown in

Table 5.11.
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Table 5.10: Spline-based eye templates analysis results of JAFFE, YALE & ORL
in average pixels difference

JAFFEavg Y ALEavg ORLavg TOTALavg

Parameter Left Right Left Right Left Right Left Right
xc 0.72 1.32 7.30 1.16 1.10 0.89 3.04 1.12
yc 1.15 0.90 7.62 1.04 0.53 0.51 3.10 0.82
r 0.63 0.53 0.87 0.80 0.64 0.43 0.71 0.59
c1x 1.89 2.74 7.18 1.92 3.70 3.28 4.26 2.65
c1y 4.52 1.91 8.83 1.67 0.63 0.94 4.66 1.50
c2x 2.25 1.91 8.39 2.75 2.36 1.24 4.33 1.97
c2y 2.55 1.50 7.96 1.21 1.42 1.88 3.98 1.53
upx 2.57 2.56 8.71 2.77 2.43 2.66 4.57 2.66
upy 1.73 1.61 7.76 1.64 1.38 1.59 3.62 1.61
downx 1.77 1.85 7.07 1.55 1.11 1.07 3.31 1.49
downy 1.37 1.35 8.08 1.22 1.90 1.97 3.78 1.51

Table 5.11: Comparison of polygonal and spline-based eye templates

JAFFEavg Y ALEavg ORLavg

Parameter Eye Eye2 Eye Eye2 Eye Eye2
xc 0.67 1.02 9.45 4.23 1.02 0.99
yc 0.84 1.03 7.62 4.33 0.56 0.52
r 0.78 0.58 0.80 0.84 0.51 0.53
c1x 2.08 2.31 9.32 4.55 3.21 3.49
c1y 2.52 3.21 8.68 5.25 0.77 0.79
c2x 2.48 2.08 11.03 5.57 2.40 1.80
c2y 2.18 2.02 7.84 4.59 1.63 1.65
upx 1.85 2.57 10.47 5.74 2.01 2.54
upy 1.60 1.67 7.91 4.70 1.17 1.49
downx 1.31 1.81 9.51 4.31 1.10 1.09
downy 0.91 1.36 8.09 4.65 2.57 1.94
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5.6 Performance of the Mouth Template

Test results are in Appendix F, Appendix G, Appendix H, and Appendix I.

Both polygonal and spline-based mouth templates are tested. The results of

each test are given in detail.

The number of occurrences and the percentage values of polygonal mouth

closed template test results are given in Table 5.16.

Table 5.12: Polygonal mouth-closed template analysis results of JAFFE, YALE
& ORL (%)

Name JAFFEavg Y ALEavg ORLavg

Name # % # % # %
No Hit: 0 0 0 0 1 7
Hit: 0 0 0 0 0 0
Good: 0 0 9 50 2 14
Very Good: 14 100 9 50 11 79

The number of occurrences and the percentage values of spline-based mouth

closed template test results are given in Table 5.16.

Table 5.13: Spline-based mouth-closed template analysis results of JAFFE,
YALE & ORL (%)

Name JAFFEavg Y ALEavg ORLavg

Name # % # % # %
No Hit: 0 0 0 0 2 13
Hit: 0 0 0 0 1 7
Good: 0 0 8 44 2 13
Very Good: 14 100 10 56 12 80

The number of events and the percentage values of polygonal mouth open

template test results are given in Table 5.18.

The number of occurrences and the percentage values of spline-based mouth

open template test results are given in Table 5.19.

Table 5.16 depicts the performance of polygonal mouth-closed deformable

model with regard to each template parameters.

Table 5.17 depicts the performance of spline-based mouth-closed deformable

model with regard to each template parameters.
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Table 5.14: Polygonal mouth-open template analysis results of JAFFE, YALE
& ORL (%)

Name JAFFEavg Y ALEavg ORLavg

Name # % # % # %
No Hit: 0 0 0 0 0 0
Hit: 0 0 0 0 0 0
Good: 0 0 1 50 0 0
Very Good: 6 100 1 50 9 100

Table 5.15: Spline-based mouth-open template analysis results of JAFFE, YALE
& ORL (%)

Name JAFFEavg Y ALEavg ORLavg

Name # % # % # %
No Hit: 0 0 0 0 0 0
Hit: 0 0 0 0 0 0
Good: 0 0 1 50 1 11
Very Good: 6 100 1 50 8 89

Table 5.18 depicts the performance of polygonal mouth open deformable

model with regard to each template parameters.

Table 5.19 depicts the performance of spline-based mouth open deformable

model with regard to each template parameters.

In order the understand the difference between polygonal and spline-based

mouth-closed templates, the comparison of the results of both templates are

shown in Table 5.20.

In order the understand the difference between polygonal and spline-based

mouth open templates, the comparison of the results of both templates are

shown in Table 5.21.
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Table 5.16: Polygonal mouth-closed template analysis results of JAFFE, YALE
& ORL in average pixels difference

Parameter JAFFEavg Y ALEavg ORLavg TOTALavg

c1outx 2.81 9.96 2.62 5.13
c1outy 2.12 4.51 3.52 3.39
u1outx 2.05 6.52 2.34 3.63
u1outy 1.47 1.91 2.22 1.87
u2outx 2.84 6.34 2.23 3.81
u2outy 1.33 3.97 2.18 2.49
u3outx 1.26 7.35 2.00 3.54
u3outy 2.36 1.72 2.41 2.16
c2outx 4.63 9.10 2.85 5.53
c2outy 2.43 4.34 3.27 3.35
d3outx 1.60 7.42 2.31 3.77
d3outy 4.10 2.70 2.65 3.15
d2outx 2.74 6.28 2.51 3.85
d2outy 3.19 4.88 3.13 3.74
d1outx 2.35 6.61 2.72 3.89
d1outy 4.27 2.75 3.26 3.43
c1inx

2.81 9.96 2.62 5.13
c1iny

2.12 4.51 3.52 3.39
u1inx

2.98 6.16 2.45 3.87
u1iny

3.76 2.70 2.97 3.14
u2inx

2.68 6.45 2.25 3.79
u2iny

3.87 4.32 2.72 3.64
u3inx

2.99 8.00 2.29 4.43
u3iny

3.35 3.11 2.58 3.01
c2inx

4.63 9.10 2.85 5.53
c2iny

2.43 4.34 3.27 3.35
d3inx

2.99 8.00 2.29 4.43
d3iny

3.35 3.11 2.58 3.01
d2inx

2.68 6.45 2.25 3.79
d2iny

3.87 4.32 2.72 3.64
d1inx

2.98 6.16 2.45 3.87
d1iny

3.76 2.70 2.97 3.14
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Table 5.17: Spline-based mouth-closed template analysis results of JAFFE,
YALE & ORL in average pixels difference

Parameter JAFFEavg Y ALEavg ORLavg TOTALavg

c1outx 1.63 5.67 1.47 2.92
c1outy 1.59 4.09 3.05 2.91
u1outx 2.29 5.38 1.61 3.09
u1outy 1.01 2.15 2.32 1.83
u2outx 2.73 5.25 2.33 3.44
u2outy 1.61 3.59 2.92 2.71
u3outx 2.28 6.05 2.37 3.56
u3outy 1.54 2.07 2.22 1.94
c2outx 1.90 6.37 2.40 3.56
c2outy 1.18 3.87 3.49 2.85
d3outx 1.92 5.74 2.08 3.25
d3outy 2.70 3.40 3.05 3.05
d2outx 2.47 4.89 2.20 3.19
d2outy 1.68 4.45 4.28 3.47
d1outx 2.86 5.39 1.77 3.34
d1outy 2.75 3.56 3.12 3.14
c1inx

1.63 5.67 1.47 2.92
c1iny

1.59 4.09 3.05 2.91
u1inx

2.99 5.24 2.07 3.43
u1iny

3.24 3.04 2.79 3.02
u2inx

2.95 4.81 2.08 3.28
u2iny

2.88 4.18 3.25 3.44
u3inx

2.20 5.53 1.81 3.18
u3iny

3.05 3.46 2.37 2.96
c2inx

1.90 6.37 2.40 3.56
c2iny

1.18 3.87 3.49 2.85
d3inx

2.20 5.53 1.81 3.18
d3iny

3.05 3.46 2.37 2.96
d2inx

2.95 4.81 2.08 3.28
d2iny

2.88 4.18 3.25 3.44
d1inx

2.99 5.24 2.07 3.43
d1iny

3.24 3.04 2.79 3.02
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Table 5.18: Polygonal mouth-open template analysis results of JAFFE, YALE
& ORL in average pixels difference

Parameter JAFFEavg Y ALEavg ORLavg TOTALavg

c1outx 1.88 7.03 1.79 4.19
c1outy 5.81 6.14 2.80 6.85
u1outx 1.46 7.16 1.73 3.94
u1outy 2.08 0.73 1.25 2.05
u2outx 1.77 7.25 2.16 4.32
u2outy 4.33 5.49 1.34 5.16
u3outx 2.10 7.74 1.73 4.55
u3outy 1.33 0.23 1.12 1.34
c2outx 3.21 10.04 2.36 6.27
c2outy 4.53 7.40 2.50 6.32
d3outx 2.07 7.47 2.08 4.57
d3outy 2.52 3.00 1.80 3.28
d2outx 1.93 5.70 2.29 3.95
d2outy 7.13 7.84 3.15 8.42
d1outx 2.15 4.77 1.77 3.61
d1outy 2.99 3.46 2.06 3.84
c1inx

2.39 6.70 1.86 4.45
c1iny

4.45 5.98 2.27 5.71
u1inx

2.09 6.16 1.99 4.11
u1iny

2.92 4.86 2.35 4.35
u2inx

2.14 8.25 2.45 5.00
u2iny

4.67 8.28 2.34 6.66
u3inx

4.24 9.41 2.68 6.85
u3iny

3.48 4.52 2.40 4.63
c2inx

5.81 11.86 3.82 9.10
c2iny

4.03 7.09 2.28 5.81
d3inx

4.41 10.54 3.67 7.68
d3iny

1.61 4.95 2.12 3.43
d2inx

1.63 6.38 1.96 3.86
d2iny

3.77 0.48 2.23 3.41
d1inx

2.76 3.81 1.61 3.64
d1iny

2.55 3.32 2.22 3.54
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Table 5.19: Spline-based mouth-open template analysis results of JAFFE, YALE
& ORL in average pixels difference

Parameter JAFFEavg Y ALEavg ORLavg TOTALavg

c1outx 3.19 5.16 1.59 2.66
c1outy 6.98 10.73 2.50 5.49
u1outx 2.32 3.79 1.39 2.01
u1outy 1.60 2.67 1.32 1.50
u2outx 2.86 2.38 2.70 2.81
u2outy 2.43 7.42 2.09 2.31
u3outx 3.36 1.94 2.41 3.04
u3outy 0.79 2.17 1.70 1.09
c2outx 2.93 1.90 2.42 2.76
c2outy 5.70 11.39 2.40 4.60
d3outx 3.12 3.20 1.96 2.73
d3outy 3.49 8.12 2.34 3.11
d2outx 2.60 1.62 2.36 2.52
d2outy 2.33 9.30 2.41 2.36
d1outx 1.86 1.43 2.09 1.94
d1outy 4.21 7.94 2.73 3.72
c1inx

2.80 4.83 1.36 2.32
c1iny

5.53 10.56 1.84 4.30
u1inx

3.12 2.79 1.31 2.52
u1iny

2.02 5.79 1.87 1.97
u2inx

3.41 3.38 2.59 3.14
u2iny

1.80 9.22 2.22 1.94
u3inx

4.27 3.04 2.26 3.60
u3iny

2.41 5.46 2.00 2.27
c2inx

5.07 3.49 2.43 4.19
c2iny

5.20 10.56 2.12 4.17
d3inx

3.43 3.90 2.44 3.10
d3iny

1.11 3.69 1.72 1.31
d2inx

2.43 1.51 2.45 2.43
d2iny

2.82 6.63 2.72 2.79
d1inx

2.89 1.20 2.13 2.63
d1iny

1.96 2.28 1.83 1.92
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Table 5.20: Comparison of polygonal and spline-based mouth-closed templates

JAFFEavg Y ALEavg ORLavg

Parameter Polygonal Spline Polygonal Spline Polygonal Spline
c1outx 2.81 1.63 9.96 5.67 2.62 1.47
c1outy 2.12 1.59 4.51 4.09 3.52 3.05
u1outx 2.05 2.29 6.52 5.38 2.34 1.61
u1outy 1.47 1.01 1.91 2.15 2.22 2.32
u2outx 2.84 2.73 6.34 5.25 2.23 2.33
u2outy 1.33 1.61 3.97 3.59 2.18 2.92
u3outx 1.26 2.28 7.35 6.05 2.00 2.37
u3outy 2.36 1.54 1.72 2.07 2.41 2.22
c2outx 4.63 1.90 9.10 6.37 2.85 2.40
c2outy 2.43 1.18 4.34 3.87 3.27 3.49
d3outx 1.60 1.92 7.42 5.74 2.31 2.08
d3outy 4.10 2.70 2.70 3.40 2.65 3.05
d2outx 2.74 2.47 6.28 4.89 2.51 2.20
d2outy 3.19 1.68 4.88 4.45 3.13 4.28
d1outx 2.35 2.86 6.61 5.39 2.72 1.77
d1outy 4.27 2.75 2.75 3.56 3.26 3.12
c1inx

2.81 1.63 9.96 5.67 2.62 1.47
c1iny

2.12 1.59 4.51 4.09 3.52 3.05
u1inx

2.98 2.99 6.16 5.24 2.45 2.07
u1iny

3.76 3.24 2.70 3.04 2.97 2.79
u2inx

2.68 2.95 6.45 4.81 2.25 2.08
u2iny

3.87 2.88 4.32 4.18 2.72 3.25
u3inx

2.99 2.20 8.00 5.53 2.29 1.81
u3iny

3.35 3.05 3.11 3.46 2.58 2.37
c2inx

4.63 1.90 9.10 6.37 2.85 2.40
c2iny

2.43 1.18 4.34 3.87 3.27 3.49
d3inx

2.99 2.20 8.00 5.53 2.29 1.81
d3iny

3.35 3.05 3.11 3.46 2.58 2.37
d2inx

2.68 2.95 6.45 4.81 2.25 2.08
d2iny

3.87 2.88 4.32 4.18 2.72 3.25
d1inx

2.98 2.99 6.16 5.24 2.45 2.07
d1iny

3.76 3.24 2.70 3.04 2.97 2.79
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Table 5.21: Comparison of polygonal and spline-based mouth-open templates

JAFFEavg Y ALEavg ORLavg

Parameter Polygonal Spline Polygonal Spline Polygonal Spline
c1outx 1.88 3.19 7.03 5.16 1.79 1.59
c1outy 5.81 6.98 6.14 10.73 2.80 2.50
u1outx 1.46 2.32 7.16 3.79 1.73 1.39
u1outy 2.08 1.60 0.73 2.67 1.25 1.32
u2outx 1.77 2.86 7.25 2.38 2.16 2.70
u2outy 4.33 2.43 5.49 7.42 1.34 2.09
u3outx 2.10 3.36 7.74 1.94 1.73 2.41
u3outy 1.33 0.79 0.23 2.17 1.12 1.70
c2outx 3.21 2.93 10.04 1.90 2.36 2.42
c2outy 4.53 5.70 7.40 11.39 2.50 2.40
d3outx 2.07 3.12 7.47 3.20 2.08 1.96
d3outy 2.52 3.49 3.00 8.12 1.80 2.34
d2outx 1.93 2.60 5.70 1.62 2.29 2.36
d2outy 7.13 2.33 7.84 9.30 3.15 2.41
d1outx 2.15 1.86 4.77 1.43 1.77 2.09
d1outy 2.99 4.21 3.46 7.94 2.06 2.73
c1inx

2.39 2.80 6.70 4.83 1.86 1.36
c1iny

4.45 5.53 5.98 10.56 2.27 1.84
u1inx

2.09 3.12 6.16 2.79 1.99 1.31
u1iny

2.92 2.02 4.86 5.79 2.35 1.87
u2inx

2.14 3.41 8.25 3.38 2.45 2.59
u2iny

4.67 1.80 8.28 9.22 2.34 2.22
u3inx

4.24 4.27 9.41 3.04 2.68 2.26
u3iny

3.48 2.41 4.52 5.46 2.40 2.00
c2inx

5.81 5.07 11.86 3.49 3.82 2.43
c2iny

4.03 5.20 7.09 10.56 2.28 2.12
d3inx

4.41 3.43 10.54 3.90 3.67 2.44
d3iny

1.61 1.11 4.95 3.69 2.12 1.72
d2inx

1.63 2.43 6.38 1.51 1.96 2.45
d2iny

3.77 2.82 0.48 6.63 2.23 2.72
d1inx

2.76 2.89 3.81 1.20 1.61 2.13
d1iny

2.55 1.96 3.32 2.28 2.22 1.83
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5.7 General Findings on Deformable Templates

According to the test results the following findings are obtained:

1. The developed deformable templates for eye, eyebrow, and mouth pro-

duced reasonable results. In some cases the deformable templates per-

formed badly. Sample results are provided in Figure 5.1, 5.2, 5.4, 5.4.

Sample results of the system as a whole is provided in Figure 5.8.

KM.SA3.11.256 (JAFFE)NA.SU2.209.256 (JAFFE)

subject1.centerlight(YALE)s94 (ORL)

(a) (b)

(c) (d)

Figure 5.1: Sample results of the polygonal eyebrow template

KM.SA3.11.256 (JAFFE)NA.SU2.209.256 (JAFFE)

subject1.centerlight(YALE)s94 (ORL)

(a) (b)

(c) (d)

Figure 5.2: Sample results of the spline-based eyebrow template

2. Using a single eye and eyebrow template for both left and right features

yields acceptable results.
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KM.DI3.22.256 (JAFFE)NA.SU2.209.256 (JAFFE)

subject2.sad(YALE)s101 (ORL)

(a) (b)

(c) (d)

Figure 5.3: Sample results of the polygonal eye template

3. Using splines or polygons for representing the template geometries did

not produce considerably different results. Although splines represent the

facial features more realistically, the results did not point out a difference.

The main reason for this is that, minimization with splines is more difficult

as they show more complex behavior when the template parameters are

modified. However, during the tests in some cases it is observed that spline-

based template performed superior compared to polygonal template. One

such case is depicted in Figure 5.7
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NA.SU2.209.256 (JAFFE)
(a)

KM.DI3.22.256 (JAFFE)

subject2.sad(YALE)

(b)

Figure 5.4: Sample results of the spline-based eye template

KM.SA3.11.256 NM.D1.107.256

S155.jpg subject04.normal.jpg

Figure 5.5: Sample results of the polygonal mouth template
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KM.SA3.11.256 NM.D1.107.256

S155.jpg subject04.normal.jpg

Figure 5.6: Sample results of the spline-based mouth template

(a) (b)

Figure 5.7: A case where spline based template outperformed polygonal template
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Figure 5.8: Sample results of the system
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CHAPTER 6

Conclusion

In this study, an automatic facial feature extraction system is developed. The

system first detects a face on a given static gray-scale image, and determines

rough search regions for facial features. Then, deformable templates developed

for each of eye, eyebrow and mouth are run on these search regions separately

for extracting facial feature parameters.

In order to detect faces with different sizes, an eigenfaces-based detection

algorithm is developed. Given a static gray-scale image, the algorithm builds

the Gaussian pyramid of the image, and then performs the search starting from

the smallest sized level of the pyramid to the higher sized levels. This search

allows the algorithm to detect faces in multiple scales. Our algorithm performs

the search using an 18x24 pixels face window, which is reported to be the smallest

resolution at which human beings can perform recognition. The average adult

facial proportions are used to embed the locations of facial features into our face

model, so that the rough locations of the facial features are readily available

when a face is detected.

The extraction of detailed location and shape information of facial features

is performed by using deformable models. Polygonal and spline based models

for each of the eyes, eyebrows and mouths are developed. The same eye model

is used for extracting left and right eye parameters. Similarly, the same eyebrow
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model is used for extracting left and right eyebrow parameters. For each of

the deformable models, geometrical and imaging models, energy functions and

matching algorithms are developed.

The system is tested on JAFFE, ORL and Yale facial image databases. The

developed face detection algorithm yielded on average 74% rates. In order to

asses the performance of the deformable models, the deviations of the feature pa-

rameters from the hand-fitted values are used. These deviations are interpreted

by using a subjective measure of goodness in addition to the pixel deviations.

According to the test results the acceptable (including good and very good sub-

jective measures) correct extraction of the feature parameters for the eyebrow

template is 77%, eye template is 90%, and mouth template is 70%.

6.1 Limitations and Future Work

The limitations of the face detection and feature extraction sub-systems of the

developed system is discussed separately in the following paragraphs. Future

work anticipated for overcoming the limitations are also presented.

6.1.1 Face Detection

The limitations of the developed face detection algorithm is summarized as fol-

lows.

Multiple face detection The algorithm is inherently suitable for multiple face

detection. In this study we stopped the search when a face is found for

achieving high speed, because we know in advance that the images contain

a single face. In order to apply the system on real-life cases, we need to

continue our search after finding a face, and some kind of non-maxima

suppression method should be employed to eliminate multiple detections

of the same face.

Invariance to illumination conditions Our algorithm does not perform any

brightness normalization. In order to provide illumination invariance, a
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preprocessing step using an overall brightness equalization, and histogram

equalization should be added.

Invariance to rotation The face detection algorithm developed in this thesis

can tolerate only a minimal rotation in the image plane. In order to provide

rotation invariance, multi-orientation eigenfaces can be used.

Improved Search Mechanism Our algorithm uses a sequential search win-

dow. A faster search mechanism can be developed based on saccadic

search.

Embedding Color Information Our algorithm is developed considering gray-

scale images, and thus we were unable to use color information. Using color

information in color images can drastically reduce the detection time, be-

cause a fast skin-color filtering can narrow our search region in the begin-

ning.

Improving the accuracy of the detected face location Our algorithm per-

forms a search on a Gaussian pyramid. When a face is found on smaller

size levels of the pyramid, the location of the face is calculated by finding

the location in the bottommost level of the pyramid. A pixel in one level

of the pyramid corresponds to four pixels in the next level, 16 pixels in

the next, and this goes on exponentially. So when we detect a face on

the third level from the bottom, then our point corresponds to 43 = 64

pixels (a 8x8 region) in the original image, so on average we are 4 pixels

away from the real location of the face. In order to overcome this lim-

itation, multiple eigenfaces for different scales can be developed. Then,

when a face is found at level k, a finer level search can be performed in the

2x2 region in level k + 1. This can improve the accuracy with negligible

computational burden.
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6.1.2 Feature Extraction

The limitations and future work related to the feature extraction sub-system of

the developed system are summarized as follows:

• The geometrical model should be developed based on statistical observa-

tions rather than empirical observations. A statistical approach can be

developed for constructing the geometrical model from a representative

sample data.

• Inter-feature validity checks should be employed in the system in order to

be more robust.

• Better initialization algorithms (such as the one used in eye template)

should be developed for each of the deformable models, because initial

configuration of the template affects the performance.

• More sophisticated optimization algorithms (Direction Set methods, Con-

jugate Gradient methods, etc.) should be used in order to provide more

speed and accuracy.

• In order to be a more general and complete facial feature extraction sys-

tem, deformable models for more facial features (nose, ears,etc.) can be

developed.

• Parallel implementation should be considered for faster processing, because

the extraction of each facial feature can be performed independently after

a face is detected and rough search regions are identified.

6.2 Application Areas

The system developed in this study can be used as a starting point in many

areas including the following:

• face recognition,
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• facial expression analysis,

• security systems (iris recognition),

• photography (red eye correction, etc.),

• multi modal speech recognition and lipreading,

• human computer interfaces,

• driver monitoring systems, and

• automatic facial animation.
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APPENDIX A

Test Sets
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KA.DI1.42.256 KA.HA2.30.256 KA.SA1.33.256 KA.SU2.37.256 KL.AN3.169.256

KL.FE2.175.256 KM.DI3.22.256 KM.SA3.11.256 MK.SA3.121.256KR.AN3.85.256

NA.AN3.213.256 NA.HA2.203.256 NA.SU2.209.256 NM.DI1.107.256 TM.FE3.198.256

TM.SA1.184.256 UY.AN2.147.256 UY.DI2.150.256 YM.DI3.66.256 YM.HA2.53.256

Figure A.1: Randomly selected JAFFE images

118



subject01.centerlight subject02.sad subject03.normal subject04.normal

subject05.normal subject06.glasses subject06.normal subject06.sad

subject08.centerligh subject09.noglasses subject09.normal subject09.sleepy

subject09.wink subject12.centerlight subject12.sad subject13.centerlight

subject14.wink subject15.happy subject15.normal subject15.surprised

Figure A.2: Randomly selected YALE images
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s39 s52 s71 s78 s85

s88 s94 s98 s101 s105

s111 s116 s121 s155 s162

s221 s225 s231 s294 s306

s309 s368 s405 s510 s1210

Figure A.3: Randomly selected ORL images
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APPENDIX B

Polygonal Eyebrow Template Detailed Test

Results
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Figure B.1: JAFFE polygonal left eyebrow template test results
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Figure B.2: JAFFE polygonal right eyebrow template test results
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Figure B.3: YALE polygonal left eyebrow template test results
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Figure B.4: YALE polygonal right eyebrow template test results
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Figure B.5: ORL polygonal left eyebrow template test results
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Figure B.6: ORL polygonal right eyebrow template test results
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APPENDIX C

Spline-based Eyebrow Template Detailed Test

Results
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Figure C.1: JAFFE spline-based left eyebrow template test results
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Figure C.2: JAFFE spline-based right eyebrow template test results
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Figure C.3: YALE spline-based left eyebrow template test results
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Figure C.4: YALE spline-based right eyebrow template test results
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Figure C.5: ORL spline-based left eyebrow template test results
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Figure C.6: ORL spline-based right eyebrow template test results
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APPENDIX D

Spline-based Eye Template Detailed Test

Results
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Figure D.1: JAFFE spline-based left eye template test results
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Figure D.2: JAFFE spline-based right eye template test results
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Figure D.3: YALE spline-based left eye template test results

138



Figure D.4: YALE spline-based right eye template test results
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Figure D.5: ORL spline-based left eye template test results
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Figure D.6: ORL spline-based right eye template test results
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APPENDIX E

Polygonal Eye Template Detailed Test Results
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Figure E.1: JAFFE polygonal left eye template test results
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Figure E.2: JAFFE polygonal right eye template test results
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Figure E.3: YALE polygonal left eye template test results
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Figure E.4: YALE polygonal right eye template test results
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Figure E.5: ORL polygonal left eye template test results
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Figure E.6: ORL polygonal right eye template test results
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APPENDIX F

Polygonal Mouth-Closed Template Detailed

Test Results
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Figure F.1: JAFFE polygonal mouth-closed template test results
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Figure F.2: JAFFE polygonal mouth-closed template test results (%)

151



Figure F.3: YALE polygonal mouth-closed template test results
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Figure F.4: YALE polygonal mouth-closed template test results (%)
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Figure F.5: ORL polygonal mouth-closed template test results
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Figure F.6: ORL polygonal mouth-closed template test results (%)

155



APPENDIX G

Spline-based Mouth-Closed Template Detailed

Test Results
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Figure G.1: JAFFE spline-based mouth-closed template test results
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Figure G.2: JAFFE spline-based mouth-closed template test results(%)
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Figure G.3: YALE spline-based mouth-closed template test results
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Figure G.4: YALE spline-based mouth-closed template test results(%)

160



Figure G.5: ORL spline-based mouth-closed template test results
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Figure G.6: ORL spline-based mouth-closed template test results (%)
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APPENDIX H

Polygonal Mouth-Open Template Detailed Test

Results

163



Figure H.1: JAFFE polygonal mouth-open template test results
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Figure H.2: JAFFE polygonal mouth-open template test results (%)
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Figure H.3: YALE polygonal mouth-open template test results
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Figure H.4: YALE polygonal mouth-open template test tesults (%)
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Figure H.5: ORL polygonal mouth-open template test results
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Figure H.6: ORL polygonal mouth-open template test results (%)
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APPENDIX I

Spline-based Mouth-Open Template Detailed

Test Results
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Figure I.1: JAFFE spline-based mouth-open template test results
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Figure I.2: JAFFE spline-based mouth-open template test results (%)
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Figure I.3: YALE spline-based mouth-open template test results
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Figure I.4: YALE spline-based mouth-open template test results (%)
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Figure I.5: ORL spline-based mouth-open template test results
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Figure I.6: ORL spline-based mouth-open template test results (%)
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APPENDIX J

Face Detection Training Set
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Figure J.1: Face detection training set (part 1)
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Figure J.2: Face detection training set (part 2)
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Figure J.3: Face detection training set (part 3)
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Figure J.4: Face detection training set (part 4)
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