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ABSTRACT 
 

 

MOTION ESTIMATION USING COMPLEX DISCRETE 

WAVELET TRANSFORM  
 

 

Sarı, Hüseyin 

 

M.Sc., Department of Electrical and Electronics Engineering 

 

Supervisor: Prof. Dr. Mete Severcan 

 

September 2003, 82 Pages 

 

 

     The estimation of optical flow has become a vital research field in image sequence 

analysis especially in past two decades, which found applications in many fields such as 

stereo optics, video compression, robotics and computer vision. In this thesis, the complex 

wavelet based algorithm for the estimation of optical flow developed by Magarey and 

Kingsbury  is implemented and investigated.  

     The algorithm is based on a complex version of the discrete wavelet transform (CDWT), 

which analyzes an image through blocks of filtering with a set of Gabor-like kernels with 

different scales and orientations. The output is a hierarchy of scaled and subsampled 

orientation-tuned subimages. The motion estimation algorithm is based on the relationship 

between translations in image domain and phase shifts in CDWT domain, which is satisfied 

by the shiftability and interpolability property of CDWT. Optical flow is estimated by using 

this relationship at each scale, in a coarse-to-fine (hierarchical) manner, where information 

from finer scales is used to refine the estimates from coarser scales. 

     The performance of the motion estimation algorithm is investigated with various image 

sequences as input and the effects of the options in the algorithm like curvature-correction, 

interpolation kernel between levels and some parameter values like confidence threshold 



 iv

maximum number of CDWT levels and minimum finest level of detail are also experimented 

and discussed. 

     The test results show that the method is superior to other well-known algorithms in 

estimation accuracy, especially under high illuminance variations and additive noise.  

 

Key words: Stereo vision, phase based motion estimation, complex discrete wavelet 

transform, gabor filters, subband tree decomposition. 
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ÖZ 
 

 

KARMAŞIK AYRIK DALGACIK DÖNÜŞÜMÜ KULLANARAK 

HAREKET KESTİRİMİ  

 
 

Sarı, Hüseyin 

 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

 

Tez Yöneticisi: Prof. Dr. Mete Severcan 

 

Eylül 2003, 82 Sayfa 

 

 

     Optik akış kestirimi, özellikle son yirmi yılda, sıralı görüntü analizi konusunda çok 

önemli bir araştırma alanı haline gelmiş ve stereo optik, video sıkıştırması, robotlar ve 

bilgisayarla görme gibi konularda uygulama alanları bulmuştur. Bu tezde, Magarey ve 

Kingsbury’nin optik akış tahmini için geliştirdiği karmaşık ayrık dalgacık dönüşümü tabanlı 

algoritma araştırılmış ve uygulanmıştır.  

     Algoritma, resmi farklı ölçek ve yönelimlerdeki Gabor benzeri süzgeç kullanılan 

bloklardan geçirerek analiz eden, ayrık dalgacık dönüşümünün kompleks bir versiyonuna 

dayanır. Çıktı, ölçeklenmiş ve altörneklenmiş yönelim-akortlu altresimlerin sıradüzeninden 

oluşmuştur. Hareket kestirim algoritması, karmaşık ayrık dalgacık dönüşümünün 

aradeğerlendirilebilirlik  ve kaydırılabilirlik özelliği tarafından sağlanan, resim alanındaki 

değişimler ve dönüşüm alanındaki faz kaymaları arasındaki bağıntıya dayanır. Optik akış her 

ölçekte bu bağıntıyı kullanarak, düşük çözünürlükten yüksek çözünürlüğe giden ve yüksek 

çözünürlükteki verilerin düşük çözünürlükteki verileri rafine etmek için kullanıldığı bir 

mantıkla tahmin edilir. 
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     Hareket kestirim algoritmasının performansı farklı resimler girdi olarak kullanılarak 

araştırılmış ve eğrilik düzeltmesi,  düzeyler arası aradeğerleme tipi gibi modifikasyonların ve 

güvenilirlik eşik değeri, maksimum seviye ve en detaylı çözünürlük gibi parametrelerin 

etkisi analiz edilmiştir. 

     Test sonuçları gösteriyor ki, metod iyi bilinen diğer algoritmalara oranla özellikle yüksek 

aydınlatma değişimleri ve gürültü eklenmesi koşulları altında çok daha iyi kestirim 

doğruluğu vermektedir. 

   

Anahtar kelimeler: Çift kanallı görme, faza dayalı hareket kestirimi, karmaşık ayrık dalgacık 

dönüşümü, gabor süzgeçleri, altband ağaç ayrışımı. 
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CHAPTER 1 
 
 
 

INTRODUCTION 
 

 

 

     Humans and animals naturally develop the ability to discern objects, ascertain their 

motion, and navigate in three-dimensional space to interact with their surroundings. All of us 

are equipped with a pair of eyes and perform visual functions such as depth perception, 

object recognizing, tracking etc., through the use of this stereovision mechanism. Although 

this effective visual perception mechanism has not yet been fully explained or matched by 

any artificial vision system, the idea of incorporating such vision in machines gave rise to 

investigations and implementations in neurophysiological and computer vision areas 

especially in the past two decades. 

     Numerous studies in both areas have shown that motion is a basic data for visual 

functions. In fact, the analysis of a sequence of images provides information about the three-

dimensional shape and structure of objects, the relative depth between different objects or 

their trajectories and direction of motion, which could not be obtained from a single image. 

Therefore, research work on motion estimation has already been carried out to various 

applications in which a compact representation of the changes between the successive frames 

in a digital image sequence is required. One application is the obstacle detection and 

navigation in robotics. Another application is the egomotion recovery, i.e. estimation of the 

observer motion. Also much work has also been generated in the field of video coding, since 

compression of image sequences using motion estimation reduces the bandwidth 

requirement for an efficient transmission. It also finds place in medicine and meteorology by 

processing related images. Another area of high importance is the detection and tracking of 

moving targets in military applications.         

     In the past decade, wavelets has become an important analysis technique for motion 

estimation. The success of wavelet analysis when applied to motion estimation problem has 

shown its suitability as an approach to the stereovision problem. The work presented here is 
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concerned with motion estimation based on wavelet analysis developed by J. Magarey and 

N. Kingsbury [1]. 

 

 

1.1  Stereo Vision 
     Stereo vision is related with the recovery of the three dimensional shape of a scene based 

on two images taken of that scene from slightly different viewpoints. Human vision system 

can be modeled as two cameras separated by a constant distance often referred to as a stereo 

head. (Figure 1.1) 

 

 
Figure 1.1  Model of human visual system 

 

     For the process of obtaining stereo image pairs, the common method is to use two 

cameras displaced from each other by a known distance. Another method is to use a moving 

camera. When the sensor itself is moving, motion detection alone is not enough. The sensor 

motion generates an apparent motion of the background, which needs to be compensated or 

segmented from the target motion, in order to allow detection of motion. In each case, the 

only detectable motion in an image sequence follows from the spatio-temporal changes of 

the gray level intensity function of the sequence, known as the optical flow. As expected, 

second image is not the purely shifted version of the first image. This is because the changes 

can be caused by the relative motion between the changing three dimensional scene and 

imaging device, but can also be produced by changes in the image formation process itself, 

such as illumination changes or noise in the electronics. Here, the work will be on stereo 

image pairs, which are taken from stationary cameras i.e. identifying true motion vectors. If 

desired, then this true motion vectors can be used to reconstruct depth information [10, 23] 

since the distance between two image sources is known. 
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1.2 The Motion Estimation Problem 
     The motion estimation problem deals with the analysis of motion in two-dimensional 

digital images, which are the snapshots of a three-dimensional moving scene taken at 

successive instants of time as shown in Figure 1.2.  

 

 
Figure 1.2 Model of obtaining 2-D projections of a 3D-scene 

 

     In the ideal case, any two-dimensional point in an image may correspond to another two-

dimensional point in the following image. This can be formulated as,   

 

                                                             ( ) ( )xuxdxu nn
ρρρ

=+−
ˆ

1                                              (1.1)   

 

where xρ is the position vector of the pixel in the current image, xdρˆ  represents the 

displacement vector of the pixel with xdx ρρ ˆ+  representing the location of the pixel in the 

reference image and { }Znun ε,  is the scalar intensity function of the image number n. But in 

real life, there are a lot of factors effecting this one-to-one correspondence, i.e. addition of 

some means of noise to current image. So the image sequence is observed to be noise 

corrupted which can be formulated as 

 

                                                  ( ) ( ) ( )xexuxI nnn
ρρρ

+=                                            (1.2) 

 

     The frames are captured by a camera at a given frame rate and each frame can be viewed 

as a function of the light intensity information taken by the camera at different time instants. 

Since the captured sequence represents a projection of the three-dimensional scene to two 

dimensions, any image is not a purely shifted version of the previous image and the 

relationship between the observable changes in image intensities and the motion of three-

dimensional objects in the scene is complicated. This complicated relationship is caused by 

the loss of information in the process of projection from three to two dimensions. This is 
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known as the projection ambiguity or the correspondence problem, which means that several 

points in the three-dimensional scene with potentially different motions may project to the 

same two-dimensional point in the image. 

     There are also other reasons for this complexity, which adds some kinds of noise to the 

motion estimation process. These are the effects like occlusion, illumination changes, 

aberrations and distortions in the image acquiring optics, etc. Another interesting factor is 

whether moving objects are rigid or change shape during the motion, for example, a smiling 

human face. 

     Because of the loss of information while projecting from three-dimensional space to two-

dimensional space, the problem is ill-posed, i.e. a unique solution of the correspondence 

problem does not always exist.  

     Notice that a distinction is sometimes made between the true motion field, which is the 

2D projection of the relative 3D motion between scene and camera, and the optical flow 

field, which describes the variation of the grayscale pattern over space and time. Ideally, they 

are identical if the image formation process is free of illumination changes, noise in 

electronics, object shape changes, etc.    

 

 

1.3 Approaches To The Motion Estimation Problem 
     The motion estimation algorithms can, in general, be classified into two main categories. 

These are low-level and high-level computer vision algorithms.  

     High-level methods are based on extracting high-level features of the image, such as 

edges, corners, object boundaries or complete objects in order to solve the correspondence 

problem. The advantage of the feature-based approaches is that matching only on the basis of 

these features is relatively fast due to the small number of points extracted from each image. 

Also false matches are relatively less, because matching is only attempted for the points, 

which are easiest to match. However, the number of false matches for the feature based 

approaches increases with a scene containing wide featureless regions (smooth surfaces) or 

when features in an image are occluded in the other. Also, even there are no occlusions in the 

images, a highly featured area also increases the number of false matches.    

     Low-level approaches use low-level image descriptors (like intensity) of the image for 

motion estimation process. The low-level approaches are also referred as the optical flow 

estimation approaches, which can be categorized into gradient-based, block-matching and 

frequency domain techniques. This work, referred to as the CDWT motion estimation 

algorithm, will be on optical flow approaches and corresponds to the latter category. 
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1.4 The CDWT Motion Estimation Algorithm 
     The CDWT motion estimation algorithm is based on the complex discrete wavelet 

transform, developed by Magarey and Kingsbury [1, 2, 3, 7]. In order to compute the motion 

field, the algorithm uses the relation between the phase of the transform coefficients and 

translations in the image domain. The choice of the algorithm from a wide variety of 

approaches is because of three main factors. 

• The algorithm uses a discrete wavelet transform implementation similar to a method 

developed by Mallat[11], which makes use of  an efficient pyramidal algorithm 

based on convolutions with one-dimensional 4-tap filters. 

• The basic filter pair used in implementation may be modeled as Gabor filters, which       

have a strong implication from a physiological/biological point of view. In fact, 

there are various investigations on modeling the mammalian vision system with a 

preprocessing stage in which Gabor filters constitute the main component. 

• Motion estimation is based on the phase of the complex wavelet coefficients. The       

phase-based motion estimation is relatively robust and evolution of constant phase       

contours of the complex filter outputs gives a truer picture of the underlying        

spatiotemporal structure than that of constant intensity contours, which are used in       

gradient-based methods. 

 

     This work describes the investigation and application of the CDWT motion estimation 

algorithm. The algorithm is implemented in Matlab. Also, experiments are done and results 

are extracted in order to compare the performances of the modifications and parameter 

changes in the algorithm. 

 

 

1.5 Thesis Outline 
     The organization of the thesis is as follows.     

     Chapter 2 presents a review of motion estimation techniques. It focuses on low-level 

motion estimation techniques and gives detailed information on them. 

     Chapter 3 describes the motion estimation algorithm developed by Magarey and 

Kingsbury [1], which is the basis of this work. The algorithm is based on a complex version 

of the discrete wavelet transform developed by Mallat [11]. This chapter is composed of two 

main parts. The first part describes the complex discrete wavelet transform, starting with a 

short summary of the wavelet transform in continuous and discrete domains, the 



 6

implementation using a quadrature mirror filter (QMF) bank, and finally the Gabor-like 

complex-valued FIR filters, which are the basis of the CDWT implementation. The second 

part is composed of the description of the motion estimation algorithm itself, which uses the 

CDWT coefficients at various resolutions in order to estimate motion in a coarse-to-fine 

manner. This is done by matching the phases of the CDWT coefficients, which are directly 

related to the displacements in the image domain. 

     Chapter 4 is composed of the simulation analysis and results, with synthetic tree 

sequences as inputs, of the implemented motion estimation algorithm. Also some options are 

introduced and their contributions to the performance of the proposed algorithm are 

analyzed. 
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CHAPTER 2 
 
 
 

REVIEW OF MOTION ESTIMATION TECHNIQUES 
 

 

 

     As mentioned in the previous chapter, there are several methods that can be used to 

estimate optical flow. Since motion estimation is a research area for nearly two decades and 

much effort spent on the subject, giving a detailed review of motion estimation techniques 

would be hard and impractical. In this chapter, most popular methods will be introduced 

which show a closer relation with the work investigated here. These methods can be 

classified into three main categories, which are gradient-based, block-matching and 

frequency domain techniques. This work can be classified mostly in the last group. There are 

also other techniques such as pel-recursive and Bayesian algorithms. But, mostly three 

standard motion estimation techniques will be emphasized, since they show a closer relation 

to the work investigated here. However, a brief introduction about pel-recursive and 

Bayesian methods is given. 

     There are practical limitations in the above-mentioned methods, which can be overcome 

by use of multiresolution concept or hierarchical approach. This subject will be introduced in 

chapter 3. 

 

 

2.1 Motion Estimation Techniques 
     Almost all motion estimation techniques are based on the assumption that any change in 

the image intensity is only due to the motion in the scene. This means that while an object is 

moving along a direction, the image intensity of any moving part of the object remains 

constant. Since image intensity is a function of time, intensity at any image point 

( )Txxx 21=
ρ

 at time instant t, can be represented as ( )txI ,ρ
. Using constant intensity 

assumption, it can be said that any point in the image will appear with a displaced location in 

a later time. 
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                                                          ( ) ( )txIdttxdxI ,, ρρρ
=++                                          (2.1) 

 

If the left side of the equation is rewritten using a Taylor expansion, 

 

                                      ( ) ( ) ( ) ( ) Tdt
t

txIxdtxItxIdttxdxI ε+
∂

∂
+∇+=++

,.,,,
ρ

ρρρρρ
         (2.2) 

 

where ∇  is the gradient operator with respect to the position parameter xρ, and Tε  is the 

error term representing higher order terms in Taylor series expansion. Neglecting higher 

order terms, substituting (2.2) in (2.1) and dividing both sides by dt  results in a popular 

equation known as the optical flow constraint (OFC): 

 

                                                         ( ) ( ) 0,., =
∂

∂
+∇

t
txIvtxI

ρ
ρρ

                                           (2.3) 

 

where the vector ( )
T

T

dt
dx

dt
dxvvv ⎟

⎠
⎞

⎜
⎝
⎛== 21

21
ρ

 represents the velocity along the motion 

direction. The solution of the equation results in a straight line in ( )21 ,vv  space as shown in 

Figure 2.1. Notice that presence of two variables for one equation makes optical flow 

estimation an ill-posed problem. 

     OFC also implies that, at any point, only the component of the motion parallel to the 

image spatial gradient, i.e. motion perpendicular to the image edges, is recoverable. This is 

known as the aperture problem, which means that the component of the motion along the 

direction of an edge cannot be determined unless the size of the aperture of the analyzing 

window is larger than the length of the edge. An illustration of the aperture problem is given 

in Figure 2.2. 

     From a discrete point of view, the images of the 3D scene taken at equally spaced time 

instants can be considered as a sequence of pictures. By this, the time variable of the 

intensity function of any point in the image can be dropped and a discrete version of 

equation (2.1) can be written as 

 

                                                           ( )( ) ( )nIndnI kk
ρρρ

=++1                                             (2.4) 
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                                        2V        OFC constraint line       

 

                                                    aV                                                                                

                                                                                ( )txI ,∇  

 

                                                                                   bV  

                                                                                     cV  

                                                                                                             1V           
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Figure 2.2 The aperture problem 

 

where )(nI k
ρ

 represents the intensity value of a pixel at location ( )Tnnn 21=
ρ

 in frame k, 

and ( )nd ρ
 is the corresponding displacement vector. However, since this displacement is the 

quantity to search, the equation may be rewritten as an error function of the displacement 

vector i.e. a similarity measure can be written between pixels in adjacent frames as a 

function of estimated displacement vector, 

 

                                            ( )( ) ( )( ) ( )nIndnIndn kkDFD
ρρρρρ

−+= +1,ε                                 (2.5) 
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where DFDε  is known as the displaced frame difference (DFD). When ( )nd ρ
 is truly 

estimated, the DFD will be zero under constant intensity flow and translational motion 

conditions. Therefore, the displacement vector estimation can be done by minimizing DFDε  

with respect to ( )nd ρ
.  Notice that equation (2.4) should fail in the case of motion due to 

rotations, dilations or occlusions in the image. However, if these deformations are small, the 

corresponding motions may be approximated by translations, and equation (2.4) may become 

a reasonable assumption. In such a case, we may write ( )( )ndnI k
ρρ

++1  using a Taylor series 

expansion 

 

                                            ( )( ) ( ) ( ) ( ) ε+∇+=+ +++ ndnInIndnI kkk
ρρρρρ .111                        (2.6) 

 

which can be substituted in equation (2.5) yielding 

 

                                           ( )( ) ( ) ( ) ( ) ( )ndnInInIndn kkkDFD
ρρρρρρ ., 11 ++ ∇+−=ε                   (2.7) 

 

ignoring higher order terms. 

     If we divide the above expression by the time interval t∆  between frames and take the 

limit as 0→∆t , we obtain again the OFC in time domain. 

     The motion estimation techniques that will be described next use one of these viewpoints, 

i.e. they either use the OFC directly by measuring the spatiotemporal rate of change of the 

image intensity or they minimize the DFD over a set of local regions by searching over a set 

of motion vectors. 

 

 

2.1.1 Gradient Based Techniques 
     Gradient-based techniques provide an estimate of the optical flow field in terms of 

spatiotemporal intensity gradients. Usually the OFC is used in conjunction with an 

appropriate spatiotemporal smoothness constraint, which requires that the velocity vector 

varies slowly over a neighborhood.  

     Optical flow constraint was first used to estimate motion by Cafforio and Rocca [21]. 

They attempted to segment the image into a fixed background and a moving object region 

using dynamic programming. They assumed velocity to be constant within the region of 

movement and minimized the quantity 
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                                                      ( ) ( )
t

txIvtxIOFC ∂
∂

+∇=
,.,

ρ
ρρε                                         (2.8) 

 

Horn and Schunck [12] imposed a global smoothness constraint on the optical flow field 

from which a second quantity to be minimized comes. This quantity is the sum of squares of 

the spatial gradients of the velocity components 

 

                                                    ( ) ( ) 2
2

2
1

2 ,, txvtxvSC
ρρ

∇+∇=ε                                    (2.9) 

 

Combining these two quantities result in a total error to be minimized, 

 

                                                  ( )∫ +=
image SCOFCglobal xdv ρρ 2222 )( εαεε                               (2.10) 

 

where α  is the relative weighting factor between the two error terms and it indicates the 

importance of global smoothness constraint relative to the OFC. Equation (2.8) can be 

analytically solved. But solution of equation (2.10) requires a series of Gauss-Seidel 

iterations for convergence to the minimizing solution, ( )xv ρ
, over the whole image. 

     Instead of a global smoothness constraint, Lucas and Kanade [13] proposed a local 

smoothness constraint, by assuming that the motion vector is the same for a particular image 

region ℜ . This can be expressed as the minimization of the squared DFD with respect to the 

displacement vector d
ρ

, 

 

                                                          ( ) ( )∑
ℜ

=
ε

εε
x

DFDlocal xwd 22 ρρ
                                         (2.11) 

 

where ( )xw ρ
 is a window function, giving more weight to the central part of the region. 

Using equation (2.7) and ignoring the higher order term, the minimization of (2.11) with 

respect to the displacement vector d
ρ

 can be expressed as 

 

                                   ( ) ( ) ( ) ( ) ( )[ ] ( ) 0. 111 =∇∇+−∑
ℜ

+++
εx

kkkk xIxdxIxIxIxw ρρρρρρ
               (2.12) 

 

which represents an overdetermined system of linear equations on the two displacement 

components, and its solution may be found using standard least squares techniques.      
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     An alternative to the global and local smoothness constraints is to use a constraint on 

second order derivatives of the image intensity function for the velocity vector. The 

constraint is the conservation of the spatial intensity gradient ( )txI ,ρ
∇ , i.e. 

 

                                                                  
( )[ ] 0,

=
∇

dt
txId ρ

                                               (2.13) 

 

which gives 
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But for this method to be successful, there must not be first-order deformations of intensity 

in the image such as dilation or rotation, which is commonly present in real image 

sequences.   The problem with this assumption is that it does not allow for first-order 

deformations of intensity, such as dilation or rotation, commonly present in image 

sequences. Because of this, second-order methods often produce less accurate estimates than 

other methods. 

     Both local and global gradient-based methods rely on the assumption of smoothness of 

the optical flow field. The local methods present difficulties in regions where the spatial 

gradients change slowly. The local information is insufficient and therefore constraint 

equations arising from different (neighboring) points provide essentially the same constraint 

on the optical flow. The global methods reduce these problems, since the information is 

propagated over the image. However, the errors are also propagated. In this case, the main 

problem is that the smoothness constraint does not hold across motion boundaries i.e. it blurs 

motion edges.         

     Gradient methods also suffer from the fact that the OFC is often violated. Since the 

Taylor expansion used in order to derive this constraint is truncated i.e. higher order terms 

are neglected, the OFC breaks down for large motion vectors. A subclass of gradient-based 

methods, known as pel-recursive (iterative gradient) algorithms, represents an attempt to 

overcome this problem. In this algorithm, an initial displacement field ( )id
ρ

 is computed. 

This is then updated recursively using the Taylor expansion of ( )( )idxI
ρρ

+  around ( )id
ρ

, 
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producing a refined estimate ( )1+id
ρ

. The main drawback of these algorithms is that the 

iterative procedure may converge to a local minimum rather than to the global one. 

     Bayesian techniques [24], which may be considered as a generalization of gradient-based 

techniques, make use of probabilistic smoothness constraints in addition to the OFC in order 

to estimate the motion field. Since optical flow fields include image noise, lighting changes, 

low contrast regions, aperture problem, and multiple motions in a single localized region, a 

probabilistic framework would allow these uncertainties to be represented in the 

computations, and passed along to the next stage of computation. For this purpose, a 

conditional probability function of the velocity based on the image intensity gradient may be 

used. 

     Other techniques developed to deal with larger motions are hierarchical gradient-based 

methods. These are usually based on a Gaussian pyramid, which is a multiresolution 

structure composed of successively smoother and subsampled versions of the image. These 

image versions are obtained through iterative filtering of the image with a Gaussian kernel 

followed by subsampling. The motion estimation is performed in a coarse-to-fine way, i.e. 

estimation starts at the coarsest resolution, and these estimates are used as initial points to 

motion estimation at the next finer resolution. 

 

 

2.1.2 Block-Matching Techniques 

     Block-matching techniques can be considered as the first and most popular methods for 

practical motion estimation because of their less hardware complexity requirement and 

implementation ease. In block-matching techniques, a regional direct search procedure on 

image is used instead of using a Taylor series expansion to estimate d
ρ

 in terms of the 

intensity derivatives. The starting point of block-matching techniques is the DFD extended 

over a region, named as displaced region difference (DRD), 

 

                                            ( ) ( )( )∑
ℜ

+ −+=ℜ
εx

mmm xIdxIzdDRD
ρ

ρρρρ
1),(                          (2.15) 

 

where z is a distortion function and m represents the number of picture in frame sequence. 

The most common distortion functions are mean square error (MSE) and maximum absolute 

difference (MAD). The aim of block-matching methods is to minimize the DRD and find the 

motion estimate d
ρ

 for which the DRD is minimum, i.e. 
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                                                    ( ) ( ){ }dDRDd md

ρ
ρ ,minargˆ ℜ=ℜ                                     (2.16) 

  

     Block-matching algorithms work by partitioning the image into blocks of the same size, 

and then assigning the same motion vector to all the pixels included by the block. For each 

block B, the motion vector is evaluated by matching the information content of the block in 

frame k with that of blocks of the same size within a search area S, placed in the following 

frame k+1 as shown in Figure 2.3.  

     In order to find an absolute minimum for the matching criterion (2.15), an exhaustive 

search of a series of discrete candidate displacements within a maximum displacement range 

must be performed. This technique is called full-search block matching. Despite the heavy 

computation it requires, it is widely used in video coding, due to its simplicity and ease of 

hardware implementation. 

     Instead of minimizing the squared DFD, a similar approach is to maximize the cross-

correlation between the blocks in the two frames. From the definition of the DFD (2.5) and 

equation (2.16), the expression to be minimized for generally used distortion function MSE 

is 

 

                                     ( )( ) ( ) ( )( ) ( )[ ]∑ +−++ ++
Bn

kkkk nIndnInIndnI
ε

ρρρρρρ
1

22
1 2                   (2.17) 

 

From this expression, it can be seen that finding the displacement d
ρ

 that minimizes (2.17) is 

equivalent to finding d
ρ

 that maximizes 
                                                                                                                        

                                                                                                                          frame k+1 

 

 
                                                     frame k 
 
                                                                                          

                                                   
          

                  Block                                                                                                  search window       

 

 

                                      Figure 2.3 Block-matching search algorithm 
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                                                     ( ) ( )( ) ( )[ ]∑ += +
Bn

kkB nIndnIdC
ε

ρρρρ
1                               (2.18) 

 

which is the expression for the cross-correlation defined over a block B of the intensity 

functions of frames k and k+1. 

     A problem with block-matching techniques is the high computational expense. For 

example, for a block containing 2N  pels, a full search over a region ℜ  comprising r 

candidates requires rN 23  addition and multiplication operations. However, fast search 

algorithms have been proposed in order to decrease the computational expenses of the full-

search algorithm. But they decreases the accuracy of the method. The most popular search 

algorithms are 3-step search, 2-D search, conjugate direction search and hierarchical search.   

     Another problem with block-matching techniques is that they produce integer estimates, 

since the search is performed over a discrete grid. In order to produce sub-pixel accuracy, the 

image intensity has to be interpolated at fractional pixel locations. 

     The block size is one of the most important parameters in any block-based motion 

estimation algorithm. Selection of the block size needs an optimization because of two facts. 

The window must be large enough in order to be able to estimate large displacements vectors 

(Otherwise, number of false matches with large displacement vectors increases). On the 

other hand, it should be small enough so that the displacement vector remains constant 

within the window. These two requirements can usually be addressed by hierarchical 

methods. For instance, Anandan proposed a block-matching coarse-to-fine algorithm based 

on a Laplacian pyramid [15], which is a multiresolution structure such as the Gaussian 

pyramid, but the pyramid images represent bandpass versions of the original one, rather than 

lowpass. Instead Dufaux and Moscheni [16] used an adaptive multigrid structure, in which 

the image is initially divided into a few large blocks, and a motion vector is estimated for 

each block. Then the corresponding block is equally divided into four children blocks, which 

inherit a motion estimate, which is a combination of the closest four parent blocks. This 

estimate is then refined using a block-matching technique at that grid, and the process is 

repeated until the finest grid. 

 

2.1.3 Frequency Domain Techniques  

     Frequency domain techniques estimate motion by transforming the image sequence to the 

frequency domain, and then minimizing some disparity measure (or maximizing a 

correlation measure) based on the transform coefficients rather than image intensities [9]. 

Approaches have been developed where the relevant measure is a function of either the 



 16

magnitude or the phase of the transform coefficients, given rise respectively to energy-based 

and phase-based techniques. 

     The cross-correlation expression given by equation (2.18) can be computed more 

efficiently in the frequency domain by using the property of the Fourier transform that 

convolution in the space domain is equivalent to multiplication in the frequency domain. 

 

                                                ( ) ( ) ( ){ }ΩΩ= +
−

ρρρ
kBkBB IIFdC ,1,

1 ˆˆ                                    (2.19) 

 

where ( )Ω
ρ

kBI ,
ˆ  is the Fourier transform of ( )nI k

ρ
 over the block B in frame k, 

( )Tww 21=Ω   is the spatial-frequency vector, and 1−F  indicates the inverse Fourier 

transform. Therefore the displacement vector d
ρ

 may be estimated by locating the peak of 

the cross-correlation function given by (2.19). This method is equivalent to performing a 

local cross-correlation, where the window function is a rectangular window. 

     Other approaches use phase correlation rather than the magnitude correlation to estimate 

motion. The idea of phase correlation-based motion estimation is originated from the shifting 

property of the Fourier transform. 

 

                                                             
( ) ( )

( ) ( )wFetf
wFtf

iwττ ⇔+
⇔

                                          (2.20) 

 

If equation (2.4) is written in frequency domain using equation (2.20), we get 

 

                                                           ( ) ( )Ω=Ω Ω
+

ρρ ρρ

k
di

k IeI
T ˆˆ

1                                             (2.21) 

 

where the displacement can be obtained by dividing the Fourier phase difference by angular 

frequency ω . However, the Fourier transform describes behavior over all time and shifts 

which are localized to a particular time interval can not be estimated by this method. To 

estimate local shifts we need a description which is responsive to local changes in the signal. 

For this purpose, Short-Time Fourier Transform (STFT) is proposed, which windows the 

Fourier basis functions to provide a time-frequency description of the signal, 

 

                                               ( ) ( ) ( )∫
+

−

−−=
T

T

jwt
x dtetwtxwSTFT

τ

τ

ττ ,                               (2.22) 
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where ( )tw  is a real-valued symmetric function defined over a finite interval [ ]TT ,−  (i.e. a 

window). This transform can be considered as an analysis of a signal by filters of finite 

extent in time and frequency. The product of the time and frequency resolutions depends on 

the form of the window w. The Gabor transform, for example, uses a Gaussian window, 

which achieves the best possible combination of frequency and time resolution [18]. 

     Fleet and Jepson [17] used the phase output of several Gabor filters, tuned to different 

spatiotemporal frequencies, in order to estimate the motion. They assumed that the phase of 

the filters’ outputs is constant along motion trajectories, ending up with 

 

                                                        ( ) ( ) 0,., =
∂

∂
+∇

t
txvtx

ρ
ρρ φφ                                          (2.23) 

 

i.e. an optical flow constraint on the phase φ  of each filter output, rather than on intensity. 

They used this equation to estimate normal velocities (i.e. along the phase spatial gradient 

( )tx,ρφ∇ ), and combined the estimates obtained from different filters over local regions to 

produce two-dimensional motion estimates. To support their use of the phase rather than of 

the amplitude of the Gabor filters, they made simulations to show that the evolution of 

constant phase contours was closer to the 2-D projection of the 3-D motion of the scene than 

the evolution of constant amplitude contours. Also, they showed that phase information is 

robust with respect to smooth illumination changes and small deformations caused by the 

perspective projection of moving three-dimensional objects, which cause deviation from the 

simple translation motion model used in most optical flow techniques.           

     The CDWT motion estimation algorithm investigated here is also related with the 

frequency domain class of motion techniques. As in Fleet and Jepson’s method, motion is 

estimated from the phase output of Gabor-like filters. However, these filters are implemented 

efficiently through a scheme derived from the discrete wavelet transform of Mallat [11]. The 

method is described with more details in the next chapter. 

 

 

2.2 Summary 
     This chapter has reviewed the most widely used strategies to the problem of motion 

estimation, in particular the ones belonging to the classes of gradient-based, block-matching 

and frequency domain techniques. 
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     Gradient-based methods produce real-valued motion fields but have limited measurement 

range and are susceptible to noise because of their use of spatiotemporal derivatives. Block-

based matching methods have arbitrary range and good immunity to noise but are limited in 

precision and are computationally expensive. Frequency domain methods have (in principle) 

infinite precision but greater computational cost than gradient-based methods because of the 

preprocessing stage for transformation. In particular, phase-based methods have 

demonstrated robustness to the failures of the translating-region assumption in real 

sequences. However, they often lack robustness to noise. 

     Hierarchical or coarse-to-fine estimation is a computationally efficient means of 

increasing measurement range and also improving noise immunity. Any estimation 

algorithm may be implemented in a hierarchical framework using a multiresolution 

representation of the input image such as a Gaussian or Laplacian pyramid.  

     In the next chapter, a hierarchical phase-based motion estimation algorithm, based on 

complex discrete wavelet transform, is introduced which combines efficiency, precision and 

robustness.  
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CHAPTER 3 
 
 
 

MOTION ESTIMATION BASED ON A COMPLEX 

DISCRETE WAVELET TRANSFORM 
 

 

 
     The wavelet transform has become a popular technique especially in the past two 

decades, which found applications in various fields such as signal and image processing, 

pattern recognition and computer vision, astronomy, acoustics and geophysics. There are two 

main factors for this popularity. 

     The first reason is due to the intrinsic nature of the wavelet transform, which has a good 

time-frequency localization property. In order to understand this, standard Fourier techniques 

must be analyzed first. These techniques analyze the total frequency content of a signal, 

using infinite exponential waves. Since the Fourier transform (FT) is suited to the analysis of 

periodic signals, if the frequency content of a signal at a particular time is required, e.g. if the 

instant at which a spike occurred in the signal is required, the FT will be unable to provide 

the information. The lack of FT is that it provides good frequency localization, but no time 

localization. 

     To overcome this problem, the short-time Fourier transform (STFT) was developed, 

which analyzes the signal at specific time locations by using windowed exponential waves. 

This is done through multiplication of the exponential waves by a suitable window function, 

centered at the required time instant. The Gabor transform, used in this work, is a particular 

case of the STFT, which uses a Gaussian kernel as the window function. Gabor [18] proved 

that with this window the STFT achieved the best joint time-frequency localization. 

     Besides the good joint time-frequency localization property, STFT still presents a 

problem of scale dependency caused by the window function. To understand this, think again 

of seeking the time location of a spike in the signal. If the width of the spike is much smaller 

or larger than the width of the analysis window, there will be still a problem of unability to 

specify the time instant of spike occurrence. To overcome this problem, WT which analyzes 
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a signal at different time locations with kernels of varying sizes is used where the kernels are 

formed by translations and dilations of a prototype function called the mother wavelet. 

     The second factor for the popularity of the wavelet transform is due to Mallat [11]. He 

introduced the idea of multiresolution decomposition and showed that the wavelet 

coefficients were suitable to represent the information difference between two different 

resolution versions of the same signal. He also pointed out the similarity between the wavelet 

transform and quadrature mirror filter (QMF) banks. This enables for an efficient 

implementation of a discrete version of the WT (DWT). 

     Combining the scale independence and time-frequency localization properties of the 

wavelet transform with the relation of local translations in the image with FT phase gives a 

good idea of an approach to ME problem. In this chapter, we describe the complex discrete 

wavelet transform based ME approach of Magarey and Kingsbury [1, 19]. This transform 

combines the efficiency of a QMF implementation, with the fact that the corresponding 

filters may be modeled as scaled Gabor functions, providing in this way the desired 

Fourier/wavelet combination. 

 

 

3.1 THE COMPLEX DISCRETE WAVELET TRANSFORM 
     In this section, we briefly review the continuous and discrete wavelet transforms in one 

and two dimensions as a basis to the more detailed description of the complex discrete 

wavelet transform of Magarey and Kingsbury [1, 19]. 

 

3.1.1 ONE-DIMENSIONAL WAVELET TRANSFORM 

3.1.1.1 Continuous time 

     The continuous wavelet transform of a one-dimensional signal )(xI  is defined as [ 20, 

22]  

 

                                              { } ∫
∞

∞−

== dxxxIDxIWT )()(),()( ταψατ                             (3.1) 

 

where )(xταψ  represents a set of wavelets, generated from the mother wavelet )(xψ by a 

change of scale ( the scale of )(xψ  is conventionally 1, and in )(xταψ  the scale parameter 

0〉α  ) and a translation in time ( the function )(xψ  is conventionally centered around 0, and 
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)(xταψ  is then centered around τ ). The set of wavelets generated from the mother wavelet 

is formulated as follows. 

 

                                                        ⎟
⎠
⎞

⎜
⎝
⎛ −

=
α

τψ
α

ψ τα
xx 1)(                                             (3.2) 

 

where ℜτεα , . Notice for the scale factor α  that, very large scales mean global views 

(stretched wavelets), while very small scales mean detailed views(shrunk wavelets). 

     It is obvious that, the continuous wavelet transform is highly redundant for representation 

of a signal. This redundancy may be reduced by sampling the scale and translation 

parameters, resulting in the discrete wavelet transform. Daubechies [22] used a dyadic 

sampling for α  and a linear ( proportional to the scale ) sampling for τ , i.e., 02 αα j=  and 

Zkjk εατ ,,= . The transform can then be written as a set of integer-indexed coefficients 

        

                                                          dxxIxD jkjk )()(∫
∞

∞−

= ψ                                             (3.3) 

where 

                                                        ( )kxx jj
jk −= −− 22)( 2ψψ                                        (3.4) 

 

3.1.1.2 Discrete Time 

     In most signal processing applications, the signal is sampled in time ( )( )ZnnII ε,=  and 

a discrete version of the continuous wavelet transform (DWT) can be writen as, 

 

                                                    ( )∑ −=
k

jjj knkInD 2)()( )()( ψ                                    (3.5) 

or 

                                              ( ) ( ) ( )( )( ) ,...2,1,2 =↓∗= jnInD jjj ψ                                (3.6) 

 

where ( ) ( )njψ  are discrete-time wavelet filters and the operator j2↓  represents 

downsampling of j times.  

     The main difference between this transform and its equivalent in continuous time is that 

the filters )()( njψ  are not perfectly scaled versions of one another[20], i.e. they do not 

satisfy the relation 
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However, this relation tends to hold as ∞→j . 

 

3.1.1.3 Wavelet Transform As a Filter Bank 

     In [11], Mallat introduced the multiresolution analysis concept and showed the suitability 

of wavelet bases to represent the difference in information between approximations of a 

signal at different resolutions. In turn, there is a close connection between a multiresolution 

representation and a subband filtering scheme, thus making it possible to implement the 

DWT defined by (3.5) using this scheme. 

     In a subband filtering scheme, the input signal )(nI  is split into two and simultaneously 

analyzed by a pair of halfband filters, a lowpass filter 0h  and a highpass filter 1h , followed 

by downsampling by a factor of 2 as shown in Figure 3.1. The highpass filter provides the 

first level of detail after downsampling by 2, while the downsampled lowpass output 

becomes a coarse approximation to the input signal, each of which have half the resolution 

but double the scale. The output of the lowpass branch is then input to the next stage, and 

analyzed in the same way as the original signal. This structure is repeated as required, 

resulting in a subband decomposition tree shown in Figure 3.2. Note that due to the 

downsampling operation, the number of output samples equals the number of input ones, 

therefore the output signal is critically sampled i.e. has no redundancy. 

     The relation between the DWT and the subband filter bank is that the output of the 

highpass branches may be interpreted as the result of the convolution of the signal )(nI  with 

the corresponding discrete wavelet filters )( jψ  of equation (3.5). Since the filter pair  

 

 

 
Figure 3.1 Two-band building block for dyadic DWT. 
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Figure 3.2 Subband decomposition tree (3 levels) 

 

      

{ }10 ,hh  bears a direct relation with the wavelet filters )( jψ , using the Z-transform 

description of digital filters, this relation may be written as 
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where )(
10 , jandHH Ψ  stand respectively for the Fourier transforms of )(

10 , jandhh ψ , and 

iwez = . 

     Equation (3.8) shows that in order to obtain the thj  level coefficients of the transform, 

the input signal needs to be lowpassed and downsampled (j-1) times, and subsequently 

highpassed and downsampled once. The corresponding residual of this tree(i.e., the output of 

the thj  lowpass filter) may be obtained by a similar expression to (3.5) 

 

                                                     ( )∑ −=
k

jjj knkInI 2)()( )()( φ                                     (3.9) 

or 

                                                        ( ) ( ) ( )( )( ) jjj nInI 2↓∗= φ                                        (3.10) 

 

where )( jφ  is the equivalent scaling filter defined by the expression 
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(note that )( jΦ  is the Fourier transform of )( jφ ). As ∞→j , filtering by )( jφ tends to give 

the average value, or DC component, of the input signal. 

 

3.1.2 Two-Dimensional Discrete Wavelet Transform 

     As Mallat [11] shows, the wavelet transform in two dimensions may be implemented 

most efficiently by using a two-dimensional separable filter. This corresponds to writing 

two-dimensional mother wavelet as a multiplication of two one-dimensional functions and 

processing the columns and then rows of the image )(nI , as in the structure shown in Figure 

3.3. The result is four subimages, each having one quarter size of the original image, so the 

separable 2-d DWT has no redundancy as in the 1-d case. 

     )1(I  is a coarse version of the input image I. It has been lowpass filtered by 0h  and 

downsampled in each direction and therefore represents a half-resolution and double-scale 

version of the original image. Then, )1(I  is used as the input to the next level of the subband 

tree. The remaining bandpass subimages( outcoming from the application of 10hh , 01hh  and 

11hh  followed by corresponding downsampling in both directions) correspond to the two-

dimensional wavelet coefficients where ( ) ( ) ( ){ }jjj DDD ,3,2,1 ,,  contain detail in the 

horizontal, vertical and diagonal directions respectively. Mathematically, the lowpass 

subimages’ coefficients at scale j are 

 

 
Figure 3.3 Building block for separable DWT on image I. 
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ρ

ρρρρ 2)()( )()( φ                                   (3.12) 

 

and the bandpass subimages’ coefficients at scale j and subband s are 
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where )( jφ and ( ){ }3,2,1,, =sjsψ  are the corresponding two-dimensional scaling and 

wavelet filters, given by  
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ρ
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Figure 3.4 shows the partition of the unit (normalised) frequency cell by a single-level DWT. 

     Note that at a given scale, each of the above defined wavelet filters emphasises features in 

the input image positioned at different orientations. Therefore the filter ),1( jψ , which is a 

 

 
Figure 3.4 Partition of the two-dimensional unit frequency cell by a single-level separable 

DWT 
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combination of a highpass filter in the vertical direction and a lowpass filter in the horizontal 

direction, emphasises horizontal edges, while the filter ),2( jψ , which is the opposite 

combination, emphasises vertical edges. Finally, the filter ),3( jψ  emphasises diagonal edges, 

but note that it does not make distinction between diagonal edges oriented at 4π  or 43π  

radians. A solution to the distinction problem of diagonal edges will be introduced in section 

3.1.3.3 through the introduction of mirror filters. 

     To summarise, the separable 2-d DWT decomposes an image into a hierarchy of 

subimages of different scales and orientations by using a set of distinctly scaled and oriented 

spatial filters. 

 

3.1.3 COMPLEX DWT 

     In this section, the complex discrete wavelet transform (CDWT) developed by Magarey 

and Kingsbury [1, 2, 19] will be introduced. This transform uses a complex-valued filter pair 

{ }10 ,hh , instead of the real-valued pair used in Mallat’s DWT subband tree described 

before. The CDWT was developed to be used in the phase-based motion estimator described 

before.  

  

3.1.3.1 One-Dimensional CDWT 

     Up to now, we implemented DWT with real-valued filters. Since the ME algorithm uses 

the phase of a complex-valued transform, the { }10 ,hh  pair must be complex-valued and they 

may be modeled as Gabor filters [1, 19] 
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                                                         for n=-L,...,L-1,  

 

where 2L is the length of the filters, 0n  is set to 21−  to position the Gaussian window 

symmetrically in the interval [-L, L-1], and 0w  and 1w  are the center frequencies. For 

proper choices of  10 σσ and , Fourier transform of equation (3.18) and (3.19) can be writen 

as, 
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                                                 for [ ]πε 2,0w  

 

For a particular choice of the parameters 01010 ,,,, waa σσ  and 1w ( section 3.2.3 ), the 

equivalent wavelet and scaling filters ( equations (3.8) and (3.11) )  may also be 

approximated as Gabor functions [1, 19] 
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for n=-( j2 -1)L,..., ( j2 -1) (L-1), with 02 nn j
j

−= . The parameters jjjjj waa ,ˆ,,ˆ, σσ  and 

jŵ  can be calculated from the parameters of 0h  and 1h  using equations (3.8) and (3.11). 

     The wavelet and scaling filters given by (3.22) and (3.23) have the same characteristics as 

the real-valued ones, in terms of not being perfectly scaled versions of one another. 

However, as perfect scaling is a desirable property for the application in mind, a prefilter f is 

applied to the input signal before the first level of the tree. This prefilter is defined by the 

equation 

 

                                                          ( ) )(.)2(*0 nfnfh λ=                                            (3.24) 

 

where ( ) 200H=λ  and 0H  is the Fourier transform of 0h . The purpose of the prefilter f 

is to simulate an infinitely large DWT tree. Consequently the resulting f-modified equivalent 

wavelet and scaling filters satisfy the relation (3.7). The perfectly scaled one-dimensional 

CDWT can be implemented as a standard DWT ( Figure 3.2 ), except that the filters for the 

first level are fhh f *00 =  and fhh f *11 = , instead of 0h  and 1h .  

     Notice that in a perfectly scaled 1-d wavelet decomposition with its prefilter f has 

equivalent wavelet and scaling filters f-modified as follows, 
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                                                        ( ) ( ) ( )( )( )nfn jj
f ∗= ψψ                                              (3.25) 

                                                         ( ) ( ) ( )( )( )nfn jj
f *φφ =                                              (3.26) 

 

In turn, the f-modified wavelet and scaling filters ( )m
fψ  and ( )m

fφ  can still be approximated as 

Gabor filters: 
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where again the parameters can be calculated from those of 0h  and 1h  where, 

 

                                                                1
1 2 −= j

fjf ww                                                 (3.29) 

                                                                 1
0 2ˆ −= j

fjf ww                                               (3.30) 

 

showing that the ratio jfjf ww ˆ  is independent of m, as desired. 

Note: From now on, we assume the presence of the perfect-scaling prefilter f and therefore 

drop all f subscripts on filter names and parameters. 

 

3.1.3.2 Two-Dimensional CDWT 

     In case of two dimensions, the transform is implemented as previously described in 2-d 

for real-valued filters i.e. in a separable way, processing first the columns and then the rows 

of the input image. As previously mentioned, the resulting two-dimensional wavelet and 

scaling filters may also be modeled as two-dimensional Gabor functions, which are given by 

the multiplication of the corresponding one-dimensional filters as in equations (3.14) to 

(3.17). 

     In practise, filtering an image with this set of two-dimensional Gabor functions results in 

an orientation analysis, i.e., each filter emphasises features within the input image which are 

oriented in the preferred direction of the filter. These directions are perpendicular to the 

corresponding two-dimensional center frequency vectors. 
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Figure 3.5 Elliptical (quasi-circular) contours of the magnitude responses of the two-

dimensional CDWT wavelet filters at levels j and j-1. 
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3.1.3.3 Mirror filters 

     The 1-d CDWT wavelet filters have significant magnitude response only in the range 

[ ]π,0 . Since the 2-d wavelet filters are products of the 1-d wavelet and scaling filters, they 

also have significant magnitude responses in the same range. This implies that the output of 

the corresponding two-dimensional wavelet filters is mainly localised in the first quadrant of 

the unit frequency cell, as shown in Figure 3.5. In terms of the orientation selectivity just 

mentioned, this is equivalent to analysing only orientations ranging from 0 to 2π . 

However, real-valued images contain significant information in the first and second 

quadrants of the unit frequency cell ( the third and fourth quadrants are conjugated versions 

of the first and second quadrants ). 

     In order not to loose any information when moving to the CDWT domain, the second 

quadrant (negative horizontal frequency, positive vertical frequency) of the unit frequency 

cell (i.e. orientations within the interval [ 2π ,π )) must be covered. For this purpose, a set 

of mirror filters is added to the filter bank. This is achieved by using the complex conjugates 
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*
0h  and *

1h  in parallel with 0h  and 1h  when filtering the rows of the image (Figure 3.6). 

Conjugating 0h  and 1h  reflects their magnitude frequency responses about w=0, so the 

conjugated filters cover the frequency range [ ]0,π−   Consequently, the output of the first 

level of the CDWT tree is eight complex subimages, two being lowpass versions of the 

original image and six corresponding to the two-dimensional wavelet coefficients. The 

subimages coming from the conjugate filters branch contain information related to the 

second quadrant of the unit frequency cell (see Figure 3.7). In this way, the CDWT 

distinguishes between orthogonal diagonal edges, which is not true for the standard real-

valued DWT. 

 

 
Figure 3.6 Two-dimensional CDWT (2 levels) 

 

 
Figure 3.7 The magnitude responses of the mirror filters covering the second quadrant of the 

unit frequency cell. 
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     The subsequent levels of the tree are computed by applying 0h  and 1h  as usual to the first 

quadrant lowpass subimage, and the mirror filters to the second quadrant lowpass subimage. 

Overall, this implies a redundancy of 4 to 1 for the CDWT, independent of the depth of the 

tree. Hence the complex version of the DWT is not critically sampled, however, this 

redundancy is crucial for the success of the motion estimation method (Section 3.2). 

     The two-dimensional mirror scaling and wavelet filters are 
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and the corresponding center frequencies of the mirror wavelet filters are given by 
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3.1.3.4 Contributing Regions 

     At each scale of the transform, a pixel within a subband, or a subpel, contains information 

coming from a neighborhood surrounding the original pixel. The size of the contributing 

neighborhood at each level j (in relation to the pixel density of the original image) may be 

estimated by considering an approximately circular region with radius corresponding to 

twice the variance jσ  (see equation (3.22))  

 

3.1.4 Summary 

     In this section, 2-d CDWT, which is built separably by using complex-valued filters( 

modeled as Gabor Kernels ) is introduced. This transform analyses an image by 

decomposing it into a set of six orientation-tuned subbands at different resolutions. The 

inclusion of the mirror filters prevents information loss on transform by including the second 

quadrant of the unit frequency cell and provides emphasizing of diagonal orientations with 

different subbands. Figure 3.8 shows an example runtarget image and its CDWT 
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decomposition (5 levels). The upper right quadrant shows the real and imaginary parts of the 

finest vertical subband (top left and right of this quadrant) plus the real and imaginary parts 

of the mirror subband (bottom left and right). In the same way, the lower right quadrant 

shows the diagonal subbands, and the lower left quadrant shows the horizontal subbands. 

The upper left quadrant shows the same structure for the next coarser resolution, an so on. 

The smallest images in the upper left corner correspond to the lowpass residuals. Notice that, 

runtarget picture is used because of its wide-spectrum. 

 

 

3.2 Motion Estimation Algorithm 
     Figure 3.9 shows the hierarchical structure of our algorithm. 1I  and 2I  are the reference 

and current frames respectively, which are transformed by CDWT decomposition from top 

to bottom, producing six complex bandpass subimages at each stage, and then input to the 

algorithm. The CDWT bandpass subimages at each level j are inputs to the motion estimator,  

 

 
Figure 3.8  Frequency responses of subband filters in 2-d CDWT decomposition. 
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Figure 3.9 Hierarchical structure of CDWT-based motion estimation algorithm 
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whereas the lowpass subimages are inputs to the next decomposition stage. After CDWT 

decomposition is completed, motion estimation starts by matching the transform coefficients 

at the coarsest level maxj , producing a motion vector for each subpel at this resolution. The 

algorithm works then from coarse to fine, using at each level the corresponding transform 

coefficients plus the estimates of the previous coarser level to produce a denser and more 

accurate motion field. Our algorithm produces a single motion estimate at each subpel at a 

given level. Because we use a dyadic DWT, each level-j subpel directly subtends four level 

j-1 subpels. The output field of each estimator must be quadrupled in size ( interpolated by 2 

in each direction ) and scaled up by 2 before it can be used as an input to the next stage. The 

motion estimates are used as starting points for the next finer level of  estimation by means 

of a warping or subband interpolation step. This process is repeated until a pre-set finest 

resolution minj  is attained. The algorithm halts at level minj , where the motion field has a 

density of  min22 j− , i.e. the field contains one motion estimate per block of min2 j  by min2 j pels 

( )1min ≥j . To obtain a full resolution motion field( i.e. one motion vector for every pixel in 

the original image ), the motion field at level minj is upsampled and interpolated minj  times. 

 

 

3.2.1 SINGLE LEVEL ESTIMATION 

3.2.1.1 Subband Squared Differences 

     The algorithm is based on a matching criterion at subpel nρ and subband ( )js,  given by 
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where f
ρ

 is the offset vector. Since at least two distinct orientational subbands are needed to 

obtain unique estimate and all six orientational subbands to obtain a robust estimate, 

summing six subbands with a weighting factor gives the resultant matching criterion called 

the subband squared difference(SSD), given by 
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where ),(
1

jsD  and ),(
2

jsD  are the CDWT coefficients at level j and subband s of the reference 

and current frames, respectively. f( nρ) is the displacement of subpel nρ at scale j, which 

amounts to a displacement of ( )nfj ρ
×2  at the original resolution of the input images. ),( jsP  

is a weighting factor corresponding to the energy of the wavelet filter at subband s and scale 

j given by 
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where ),( jsΨ  is the Fourier transform of ),( jsψ . The idea behind this factor is to eliminate 

the filter dependency when combining the different subbands. In turn )( jε  is a factor 

introduced to avoid the scale dependency of ),( jsP  when combining the SSDs over different 

scales[1]. 

     The SSD is analogous to the squared DFD in the intensity domain which was described in 

chapter 2. But there are two significant differences between those quantities. The first one is, 

in the case of the SSD, the average is performed over the set of oriented subbands with the 

filter energy weighting factor rather than over a set of neighboring pixels in the image as in 

DFD case. The second one is that the computed displacement f
ρ

 for the SSD is real-valued 

rather than integer-valued. 

 

3.2.1.2 CDWT Coefficients Interpolation and Position Shiftability 

     The reason why this real-valued displacement vector may be computed follows 

from the interpolability property of the CDWT, i.e. the ability of the CDWT to 

produce real-indexed coefficients from the known integer-indexed ones. In turn this 

is possible due to another property, termed shiftability which CDWT approximately 

satisfies.[19]. Therefore we can write 
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where ),( js
fW  is a lowpass kernel modulated to the center frequency of the equivalent 

wavelet filter, i.e.  
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where fH  is a separable lowpass kernel given as, 
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The 1-d interpolator function ( )kh f  can be either Windowed Sinc or the Lagrange 

Interpolator [19]. Notice that the range of k depends on the range of f
ρ

 values required. In 

practise only a unit range ( in each direction ) needs to be considered, because the CDWT 

coefficients may always be integer-shifted to cope with values that fall outside that range. 

For example, 
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Here, the symbol ⎣ ⎦f
ρ

 indicates the floor operator on f
ρ

, i.e. the integer immediately to the 

left of f
ρ

 on the number line. 

     The simplest choice for the one-dimensional lowpass kernel )(kh f  is the staircase 

interpolator which is the trivial Lagrange interpolator (L=1), 
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                                        for f ε [-0.5,0.5]                                                          (3.45) 

 

In this case, equation (3.40) becomes 
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The above expression assumes that, for small f shifts, the magnitude of the CDWT 

coefficients is approximately constant, with only the phase changing according to the centre 

frequency of the corresponding wavelet filter. In his thesis [19] Magarey reports that this 

model “holds up well over the unit interval provided the original image has no strong 

spectral components in the passband of the filter, but is reasonably spectrally flat”. 

Therefore, as the filter bandwidth decreases as j increases, this property is more readily 

satisfied at the lower resolutions, where the greatest accuracy is required.   

 

3.2.1.3 Quadratic Surfaces 

     Consider the subband squared difference for one particular subband s, 
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This equation may be further expanded into 
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and the SSD can be further approximated as, 
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respectively. This shows that minimizing ( )jsSD ,  is very likely maximising the phase 

correlation between two subpels. We can characterise the ( )jsSD ,  surface around its 

minimum line by using the approximation 
2

1cos
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by equation (3.46) we find, 
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Figure 3.10 Contours of surfaces ( )3,sSD , s=1,...,6 and their sum ( )3SD  (centre bottom) for a 

typical displacement estimation. 
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equation (3.52)  
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     Expression (3.51) represents a quadratic surface, whose minimum is a straight line [1] i.e. 
( )jsSD ,  is a quadratic surface with parabolic cross-section and contours parallel to its 

minimum line as shown in Figure 3.10. If the minimum lines corresponding to each subband 

do not lie too far apart, the sum (equation (3.51) ) is also a quadratic surface, and it can be 

written in the form 
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where 1f  and 2f  are respectively the vertical and horizontal components of the real offset 

f
ρ

. 

     The parameters A, B, C, D, E, G are functions of the coefficients )(),(
1 nD js ρ

 and  

)(),(
2 nD js ρ

, of the centre frequencies ),( jsΩ , and of the phase difference )(),( njs ρθ , and can 

be directly derived from equations (3.38), (3.39), (3.48), (3.53) given by the expressions, 
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By using the above derived parameters, the surface minimum location is given by the 

expression 
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where the curvature parameters α,β,γ = A, B, C, and the surface minimum value is given by 
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Figure 3.11 Minimum lines of quadratic surfaces given by expression (3.51) (a) when the 

motion is well-defined, the minimum lines corresponding to the different oriented subbands 

closely intercept each other (b) when the motion is not well-defined 

 

which indicates the closeness of the match between )( 0
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1 fnD js
ρρ
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 over 

6,...,1=s . 

     It is interesting to note properties of these surfaces. The parameters { }γβα ,,  specify the 

orientation and eccentricity of the ellipses. In general, the larger they are, the steeper the 

surface is at the minimum point, hence the closer lie the intercepts with each other of the 

minimum lines arising from the individual subbands( e.g., as in Figure 3.11a ) This means 

that the corresponding motion estimate (minimum coordinates) is more precise (high 

confidence). Inversely, if the surface is flat in a particular direction( small curvature 

parameters ), it indicates unreliability( low confidence ) in the component of the motion in 

that direction( e.g. as in Figure 3.11b ). This has a closer relation with the aperture problem, 

mentioned in Chapter 2. The component of the motion along the direction of an edge can not 

be determined unless the size of the “aperture” of the analysing device is larger than the 

length of the edge. We will refer again to these properties when discussing curvature 

correction (Section 3.2.2.4).  

     There are also some special cases for finding the minimum location. Equation 3.61 will 

fail in finding the minimum location where ABC 42 = . There are two possible causes for 

this: 

• The null case, A=0. Since A is non-negative (see Equation 3.54), this must be the 

zero-activity case, in which all other parameters are zero as well. In such cases, set 

( )0,00 =f
ρ

. 
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Figure 3.12 Choice of minimum location closest to the origin in case when ( )jSD  is 

degenerate. 

 

• The degenerate case, 042 =− ABC . This situation is the manifestation of the 

aperture problem in the CDWT domain. Note that each individual (non-null) surface 
( )jsSD ,   falls into this category, so any signal that excites only one of the six 

subbands will produce a degenerate ( )jSD . In this case a unique minimum can not 

be found. Instead  there is a minimum line specified by 

                                               

                                                        02 21 =++ DCfAf                                           (3.64) 

 

where 0f
ρ

 is set to the value on the line with the smallest perpendicular distance from the 

origin as shown in Figure 3.12, given by the expression, 
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                                              (3.65) 

 

Besides this special cases, it is obvious that when a component of 0f
ρ

 outside the range 

[ ]5.0,5.0−  is produced, null values are also assigned. Because that range is the absolute 

limit of validity of the staircase approximation (equation 3.46) on which ME algorithm is 

based. 
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3.2.2 Hierarchical Estimation 

3.2.2.1 Interpolation and Scaling of Quadratic Surfaces 

     As previously mentioned, the hierarchical approach to ME is to use coarse level estimates 

as starting points or initial guesses. Therefore the first step is to compute the coarsest level 

maxj  motion estimate, which is output in the form of a field of SD parameters, ( )maxjSD = 

{ }δγβα ,,,,, 2010 ff  or { }GEDCBA ,,,,, . In other words, the parameters 

δγβα ,,,,, 2010 ff  are calculated for every subpel at that level. Before the ( )maxjSD  is input 

to the next finer stage 1max −j  of the motion estimation, it must be interpolated to attain the 

required pixel density, and scaled to account for the change in coordinate system ff
ρρ

2→ , 

producing a new field ( )maxjDS ′ . 

     The interpolation is done separately in the columns and then rows, by upsampling each 

column(row) followed by filtering with an interpolation kernel. The simplest interpolation is 

staircase, in which each parameter is simply copied to its four finer level neighbours. 

Another choice is the bilinear kernel given by [ ] 41331 . The scaling factors are  

 

                                                           4/,4/, AA αα →′′                                              (3.66)                                

                                                          4/,4/, BB ββ →′′                                               (3.67)  

                                                          4/,4/, CC γγ →′′                                                 (3.68) 

                                                         2/,2/, EDED →′′                                               (3.69) 

                                                         20102010 2,2, ffff →                                               (3.70) 

                                                        

3.2.2.2 Cumulative Squared Differences 

     Once obtained the field ( )maxjDS ′ , motion is estimated at level ( )1max −j  following the 

same procedure ( i.e., using equations (3.51) (3.53) (3.54) (3.38) ). The resulting field of 

parameters ( )1max −jSD  is added to ( )maxjDS ′  forming the cumulative squared difference 

(CSD) at level ( )1max −j . This process ( interpolate, find next estimate , add ) is repeated 

iteratively, i.e. 
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until the desired resolution minj  is attained. In this way, information from all resolutions is 

incorporated into one single quadratic surface to form the final motion estimate. This 

combination of information from all levels is a means to tackle the aperture problem, since 

surfaces originating from coarser levels( large support regions ) will be steeper and therefore 

contribute more to the cumulative surface than surfaces from finer levels( small support 

regions ). 

     In addition, as the scale dependency of the SSDs was eliminated through the introduction 

of the )( jε  factor in equation (3.38), this means that in fact the finer levels have greater 

weight, allowing for increasing adaptivity to local variations in the motion field. 

     Notice that, in some given references, there is no )( jε  factor in equation (3.38), instead 

),()1( fnDCS j
ρρ+′  term in equation (3.71) is multiplied by a weighting factor of 44λ . This 

term is chosen to stop level dependency of ( )jsP ,  factor given by equation (3.39). The effect 

is therefore to give the finer level information a greater weight in the final motion estimate.  

 

3.2.2.3 Coarse-to-Fine Approaches 

     When combining information from two subsequent levels, one of two approaches may be 

used. 

     The first approach is the non-refining strategy where the finer level estimate )( jSD  is 

computed independently of the previous level estimate )1( +′ jDCS . 

     The second approach is the refining strategy, where the previous level estimate is used to 

warp the CDWT coefficients of the reference image at the next finer level, using equation 

(3.40) to produce new coefficients 

 

                                                       )()( 0
),(

1
),(

,1 0
fnDnD jsjs

f

ρρρ
ρ −≈                                         (3.72) 

 

     Therefore the field )( jSD  is computed using the warped coefficients )(),(
,1 0

nD js
f

ρ
ρ  in place 

of the original )(),(
1 nD js ρ

. In addition, due to this warping a translation of the origin back to 

(0,0) is necessary before addition to the previous estimate )1( +′ jDCS . For a better 

understanding, the refining strategy can be stated as follows, 

• Estimate coefficients ( ) ( ){ }6,...,1,0
,

1 =′− nfnD js
ρρ

 using equations (3.40) to (3.42). 

• Form ( ) ( )0, ffnSD j ′+
ρρρ

 by using the interpolated coefficients instead of the integer 

indexed ones 
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• Find parameters of valid ( ) ( )fnSD j
ρρ,  from those of ( ) ( )0, ffnSD j ′+

ρρρ
 ( i.e. translate 

origin back to (0,0)) 

• Add valid )( jSD  to (scaled) )1( +′ jDCS  to form )( jCSD  (equation 3.71) 

• Transform ( )mCSD  to { },...,, βαf
ρ

 form. 

 

Instead of the staircase kernel used in equation (3.46), the interpolation in (3.72) is 

performed using a four-tap windowed-sinc kernel 
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                                             k = -2,...,1 

 

which Magarey[19] showed to provide better accuracy. 

     The main advantage of the refining strategy is that uniform motion of large-scale features 

can be found with high accuracy. However, because estimation can only refine valid 

previous level estimates, any motion of smaller scale features independent of large-scale 

motion will not be detected. The non-refining strategy allows scale-dependent motion to be 

estimated, while retaining the ability of coarse scale estimates to propagate down the 

pyramid in the absence of clear finer scale information. Consequently, in cases where the 

motion of small features may be assumed to broadly follow that of the larger, such as stereo 

matching, the refining strategy is likely to be suitable. However in video coding one may not 

make such an assumption, and the non-refining strategy may be preferable. 

     Another advantage of the refining strategy is about the maximum disparity value to be 

estimated with accuracy. Due to the limit on the range of f
ρ

 values imposed by the use of 

the staircase model when computing the SSDs, the maximum range of estimated 0f
ρ

 values 

is restricted to max25.0 j×  in each direction for the non-refining strategy, and 

( )minmaxmax 2...225.0 1 jjj +++× −  for the refining strategy. 

     Consequently, refining strategy increases maximum disparity value to be estimated with 

accuracy. But any motion of smaller scale features independent of large-scale motion can not 

be detected.   
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3.2.2.4 Curvature Correction 

     It has been stated previously that flat surfaces indicate low confidence in the motion 

estimate, while steep surfaces indicate high confidence. In addition, coarser levels estimates 

are more aperture-free than finer levels due to their large region of support. In a hierarchical 

approach, coarser level estimates, hopefully aperture free, must be passed down to aperture-

affected estimates at lower levels, where aperture-free estimates aimed to determine the 

parallel component of the motion. The curvature of the ( )jSD  surface parallel to the edge 

determines how much the component of motion in that direction being passed down from the 

coarser level is changed. To allow the parallel component of the coarser level estimate to 

propagate unchanged down the pyramid, aperture-affected ellipses at a fine level should be 

infinitely eccentric( i.e. ratio of major to minor axes is infinite ) and parallel to the 

underlying edge, indicating zero curvature in that direction. 

     As can be seen from Figure 3.10, each ( )jsSD ,  has infinite eccentricity. Consequently, if 

an edge is present, one of the six subbands (each having different orientation) will be excited 

and the sum, ( )jSD  will have infinite eccentricity. But in practice, the CDWT wavelet filters 

have non-zero bandwidth and any edge will induce activity in more than one subband, 

producing elliptical contours and therefore finite eccentricity. 

     The variation of eccentricity with edge angle is dependent on the properties of the original 

basis pair { }10 ,hh  - bandwidth and center frequencies. If a Gabor filter pair is chosen which 

responds to edges of all orientations with ellipses of near-constant eccentricity, it will be 

possible to correct the curvatures of edge-dominated surfaces to give them very large 

eccentricity, while leaving all other surfaces unchanged. In this way the parallel component 

of motion at fine-level aperture-affected subpels can be weakened, allowing the (more 

certain) parallel component of coarse-level estimates to propagate unchanged. 

     For this purpose, a circular bowl with the same minimum location 0f
ρ

 of ( )jSD , is 

subtracted from all ( )jSD . The modified quadratic surface is given by, 

 

                                ( ) ( ) ( ) ( ) ( ) ( )2
202

2
101,, fffffnSDfnDS jj −−−−=′ ρρ

ρρρρ
            (3.74) 

 

where ρ  [1, 19] is the radius of the circular bowl. The location and height δ  of the 

minimum of ( )jSD  are unaffected by curvature correction. The radius ρ  is chosen so that 

all surfaces with eccentricity tee ≥ , for some te ( In [19] Magarey showed that 3.5 is a 
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suitable value for te ), have very large eccentricity after correction. The derivation of ρ  is 

given in [19] as, 
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where 2λ  is defined as  

 

                                              ( ) 22
2 γβαβαλ +−−+=                                           (3.76) 

 

Consequently, curvature correction is applied to the entire field of surfaces ( )jSD  before 

combining with previous level surfaces ( )1+′ jDCS . 

 

3.2.2.5 Confidence Measure 

     The algorithm will produce estimates of motion, except some special cases ( see section 

3.2.1.3), regardless of testing the confidence of estimation. It is obvious that passing 

unconfident estimates (due to the break down of the translation model) to lower levels in a 

hierarchical manner will cause false matches. So, a confidence measure must be defined and 

the estimates, which does not satisfy the confidence criteria, must not be passed to finer 

levels. 

     The confidence measure adopted by Magarey et al. is based on the weighted sum of 

perpendicular distances from the six minimum lines given by each of the ),( jsSD  at the 

minimum point 0f
ρ

, i.e. the residual 
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where )(),( njs ρθ∇  is the phase gradient. In the ideal translational model case, all six 

constraint lines coincide and the residual is zero. On the other hand, if the six subbands 

consist of unrelated signals, the six lines are dispersed, and the residual is non-zero.  This 

residual may be computed from a quantity called the discrepancy 
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and from the surface minimum value )(nρδ ( given by equation (3.63) ) as  
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     Finally, the confidence measure is defined as  
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The reason for this definition is so that the highest values of )()( nC j ρ
 indicate the most 

certain estimates. The confidence measure always lies in the range [ ]1,∞−  due to the 

condition that residual is always positive.  

 

3.2.3 Filters’ Coefficients and Corresponding Gabor Parameters 

     One of the rotation invariant (RI) filter pair { }10 ,hh  utilised in this work corresponds to 

two 4-tap complex filters with coefficients, 

 

                                                 [ ] 1014410 iiiih ++−−=                                (3.82) 

                                            [ ] 14212525211 iiiih −+−+−−=                       (3.83) 

 

and corresponding Gabor parameters are 2=D , 5.00 −=n , 60 π=w , π76.01 =w , 

97.00 =σ , 07.11 =σ , 47.00 =a , and ia 43.01 = . 

     The second Gabor filter pair corresponds to two 8-tap complex filters with coefficients, 
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[ ] 10012.051141493593514145112.00 iiiiiiiih +−+++−−−−−=        

(3.84)                     

[ ] 10012.051141493593514145112.00 iiiiiiiih −−+−−+−+−−+−=

(3.85) 

 

and corresponding Gabor parameters are 4=D , 5.00 −=n , 60 π=w , π83.01 =w , 

27.10 =σ , 27.11 =σ , 39.00 =a , and 39.01 =a . 

 

     The prefilter f discussed before is a 3-tap complex filter with coefficients 

 

                                                             [ ] 55 iif −=                                                (3.86) 

 

 

3.2.4 Summary 

     This chapter has described the CDWT-based motion estimation algorithm of Magarey 

and Kingsbury[ 1, 2, 3, 7, 19]. The algorithm is based on a phase-matching criteria 

implemented in a hierarchical manner, i.e. it works by matching the transform phase at each 

level. This is achieved through the definition of a quantity called the subband square 

difference(SSD) at each subpel for all orientations (subbands). The six oriented SSD surfaces 

are added to produce a single matching surface whose minimum location is the motion 

estimate at that subpel. For the accuracy of estimates at each subpel, some improvement 

methods to the original method is introduced, such as confidence thresholding, curvature 

correction and refining strategy. In the next chapter, the algorithm will be analyzed and 

experimented. 

 

 

 

 

 

 

 

 

 

 

 



 49

 

 

CHAPTER 4 

 

 

 

SIMULATIONS 
 

 

 

     In previous chapter, the ME algorithm based on complex discrete wavelet transform is 

analyzed and implemented. The algorithm uses the relation between spatial translations of 

image intensity with phase shifts in Fourier domain in order to estimate motion in a 

hierarchical manner.  

     The ME algorithm has several choices of parameters and options for obtaining more 

accurate results for various stereo image pairs. In this chapter, the effect of parameter 

choices and option inclusions on accuracy of ME algorithm will be analyzed and 

experimented. The wide range of options and parameters that will be analyzed is given 

below: 

 

• CDWT Analysis Stage Options and Parameters 

Usage of 8-tap Gabor filters or 4-tap Gabor filters.  

• Options and Parameters In A Level 

Confidence Threshold  

Curvature Correction Parameter te  

• Options and Parameters Between Levels 

Number of Pyramid Levels maxj  

Choice of Finest Level minj  

Coarse-to-fine Interpolation Type 
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4.1 Test Data 
     In all motion estimation tests, synthetic image sequences are used in order to quantify the 

accuracy of the proposed algorithm with respect to true motion fields. Since, synthetic image 

sequences are obtained by a camera motion relative to a static scene, true motion vectors of 

the image sequence is readily known. 

     There is a constraint on input images coming from CDWT decomposition tree. The 

dimensions of the input images must be a multiple of max2 j . Because of this constraint, the 

original images may be extended to the nearest multiple of max2 j  or a portion of the original 

image with dimensions a multiple of max2 j  may be used. But in the second technique, there 

might be significant information loss. So, first technique is commonly used.  

     A brief description of synthetic image sequences that will be used in testing the algorithm 

is given below. Note that the choice of the tree sequence is due to the property that motion 

can be well defined since the picture is not highly or weakly featured and the choice of 

Yosemite sequence is to test algorithm against discontinuous motion field. (Synthetic images 

can be obtained from ftp address ftp.csd.uwo.ca/pub/vision) 

 

Translating Tree(T.Tree): This and the following sequences are obtained by simulating 

camera motion relative to a scene featuring a tree on a smooth background. The current 

frame, shown in Figure 4.1(a), is the 160x160 extended version of the 20th translating tree 

image, which is a horizontally displaced version of the 18th translating tree sequence. The 

true motion field is composed of vectors with magnitudes ranging from 52.446.3 ≤≤ hord . 

The aim to use this sequence is to test ME algorithm for horizontal translational motion.  

Rotating Tree(R.Tree): This sequence is obtained by rotating the 20th translating tree image 

and rotating 1 degrees in counter-clock wise direction. The size of the images are extended 

to 160x160. The aim of this sequence is to test ME algorithm against 2d-translational motion 

i.e. horizontal and vertical translational motion. 

Diverging Tree(D.Tree): The sequence simulates camera motion towards the scene i.e. an 

analog zooming operation. The current and reference frames are 144x144 extended version 

of the 20th and 19th diverging tree images. The true motion field is composed of vectors 

ranging from ( )0,0  in the center to ( )2,2  pixels on edges. The aim to use this sequence is to 

test ME algorithm for divergent motion.  

Yosemite(Y.Seq.): The sequence is a simulated “fly-through” of Yosemite National Park, 

produced by Lynn Quam at Stanford Research Institute which is shown in Figure 4.1(b). The 

current and reference frames are 256x320 extended version of the 20th and 19th Yosemite 
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Figure 4.1 (a) Current frames of synthetic tree sequences (b) Current frame of Yosemite 

sequence 

 

 

sequence. The motion is of two kinds: divergent, as the camera moves along the line of the 

valley, and translating, as the clouds translate from left to right at 2 pels/frame. The 

maximum displacement is (3.86,-3.88) pels at the lower left corner. The aim to use this 

sequence is to test ME algorithm for discontinuous motion field. 

     Note that, by these four sequences, ME algorithm will be tested for motion in all possible 

dimensions and discontinuous motion fields. In Figure 4.2, the corresponding true motion 

vector fields for tree and Yosemite sequences are given, where knowledge of true motion 

vectors is necessary to quantify the accuracy of the estimates produced by the algorithm. 

 

 

4.2 Error Measurement 
     Since synthetic sequences are used for testing the algorithm, true motion vectors of the 

images are known. This enables error measurement of estimated optical flow fields with 

respect to known true motion fields. 

    If image sequences are thought of a set of slides in a projector, a 3d displacement estimate 

( )1,, 21 sss =
ρ

 with third dimension is set to 1 connects each pel to its corresponding pel in 

the next slide. Using this 3d displacement estimates, an error measure can be defined. One of 

the common error measurement choices is the relative error defined by equation (4.1). 
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                            (a)                                                                                         (b) 

 
(c) (d) 

 

Figure 4.2 True motion fields of synthetic sequences (a) Translating Tree (b) Diverging Tree 

(c) Rotating Tree (d) Yosemite 

 

 

                                                              ( )
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ρ −
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where d
ρ

 is the corresponding true motion vector. 
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Instead of relative error measure, mean error angle measure defined by equation (4.2) will be 

used due to the property that it handles large and small displacements without the 

amplification inherent in a relative measure error. 
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By using equation (4.2), error is calculated through averaging error angle of an inner portion. 

This is because of the fact that edge effected measurement results must be excluded from 

average value. For comparison with other algorithms, MSE values of all motion field 

estimates are also calculated using the final algorithm. 

 

4.3 Testing The Algorithm 
     In this section, various options and parameters of the ME algorithm will be analyzed and 

an optimum algorithm is investigated. 

  

4.3.1 Confidence Threshold 

     Confidence threshold is one of the most important parameters in popular ME algorithms. 

For this purpose, a scalar confidence measure (section 3.2.2.5) is defined which expresses 

the certainity of the motion estimate at given pel. This value can be in the range ( )1,∞−  

reaching ∞−  for random noise data, and 1 for a well-defined motion data. 

     In this test, the aim is to obtain an optimum value for confidence threshold.  

The criteria is to set confidence threshold to a high value which is enough to filter 

unconfident “possibly wrong” estimates and to a low value which does not reject confident 

“possibly true” estimates. In order to find an optimum value, a test is done on diverging tree 

sequence as shown in Figure 4.3, where the results are also given in Table 4.1. In test, both 

the field density and the mean error angle is calculated at level 2 for various confidence 

thresholds, where density is the number of confident pels over field size. Note that mean 

error angle is calculated for only confident pels. 

 

Discussion 

     In Figure 4.3, it can be seen that increasing confidence threshold decreases both mean 

error angle and field density. This means that as threshold increases, accuracy of the 

estimates also increases with decreasing number of confidently calculated pels. 
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Figure 4.3 Mean error angle and field density plots for diverging tree image at level 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1. Mean error angle and field density calculated for various confidence thresholds. 

 

Confidence 
Threshold 

Mean Error 
Angle 

Field 
Density 

0.7500 5.625 0.687 
0.7625 5.625 0.687 
0.7750 5.625 0.687 
0.7875 5.583 0.682 
0.8000 5.559 0.679 
0.8125 5.559 0.679 
0.8250 5.544 0.677 
0.8375 5.506 0.670 
0.8500 5.436 0.660 
0.8625 5.429 0.656 
0.8750 5.371 0.648 
0.8875 5.277 0.629 
0.9000 5.255 0.623 
0.9125 5.163 0.602 
0.9250 5.130 0.589 
0.9375 5.047 0.559 
0.9500 4.959 0.517 
0.9625 4.845 0.483 
0.9750 4.596 0.417 
0.9875 4.377 0.340 
1.0 3.924 0.102 
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     Notice that when confidence threshold is 0.95, 11.9 percent of improvement is achieved 

in mean error angle with a 17 percent rejection of pel estimates. After this point, the 

accuracy increases more with a highly reduced number of confident estimates. After 

confidence threshold value of 0.9625 more increase in accuracy is achieved with a 

dramatically decrease in density of estimates. Consequently, an optimum confidence 

threshold can be chosen between 0.95 and 0.9625. From now on, 0.95 for confidence 

threshold will be used as default.    

 

 

4.3.2 Number of Pyramid Levels maxj   

     There are two limitations on maximum number of levels maxj . The first limitation is 

induced by image size. If we factorize the image dimensions as, 

 

                                                       rlrrowsofNo 2__ ×=                                             (4.3) 

                                                       clccolsofNo 2__ ×=                                               (4.4) 

 

where r and c are odd, we must have, 

 

                                                              ( )cr llj ,minmax ≤                                                  (4.5) 

 

This limitation is due to the fact that an image must have at least 4 samples for a 2-d DWT to 

be possible. To increase the possible range of maxj , input images are boundary replicated to 

nearest multiple of max2 j′  where maxj′  is the desired maximum number of levels for subband 

tree decomposition. 

     The second limitation is the measurement range. Recall from chapter3 that, the maximum 

range for displacement estimation is max25.0 j×  i.e. the algorithm can not see motions bigger 

than max25.0 j× pels at original image resolution. In order to find an optimum value for maxj , 

these two criterias will constitute upper and lower limits. To examine the effect of maxj  on 

accuracy, minj  is fixed at 3 and a confidence threshold of 0.95 is used as found in section 

4.3.1. The results for the tree sequences are as given in Table 4.2. 
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Discussion 

     The most important point observed from the results is that there is dramatically high 

improvement as the maximum number of levels increases from 3 to 4. This is because of the 

 

 

 

 

 

Table 4.2. Mean error angles for tree sequences, minj  fixed to 3, using bilinear interpolation. 

 

fact that maxj  is equal to minj  where the multiresolution hierarchical approach is discarded 

i.e. image is processed in only one resolution resulting in high aperture affects. In this test, 

this condition causes obtaining relatively less number of confident estimates and detecting 

motions only smaller than 325.0 × . Consequently, this results in a relatively big mean error 

angle. 

     As the maximum number of levels, maxj , is increased from 4 to 6, the accuracy also 

increases with decreasing improvements. Since we are dealing with continuous motion 

fields, the optimum value of maxj  is the biggest possible value we can set, according to 

constraint in equation (4.5). This upper limit can be extended to any desired value with 

boundary value replication with increased edge effects. After overcoming this limitation, 

maxj  can be set to a high value so that the coarsest stage produces a field of resolution at 

least 4 by 4. But, it must be taken into account that boundary value replication increases edge 

effects in the image. Also the complexity of the algorithm increases as maxj  increases. 

Consequently, according to the results and algorithm complexity conditions, 5 seems to be 

an optimum value for maxj . 

     Note that, the main benefit of setting maxj  to a high value comes in addressing the 

aperture problem, and more generally in the propagation of high-confidence vectors from the 

edges of moving objects into their low-activity interiors. There is also the benefit of greater 

robustness resulting from larger contributing regions at the coarsest level. 

Jmax Jmin T.Tree D.Tree R.Tree 
3 3 11.49 9.51 11.61 
4 3 6.82 8.53 9.45 
5 3 6.74 8.10 8.99 
6 3 6.50 7.89 8.74 
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4.3.3 Choice Of Finest Level minj   

     After analyzing the optimum value of maxj by setting minj  to a constant value, we will 

now find an optimum value for minj  by setting maxj  to a suitable value. The algorithm halts 

at level minj . If 1min 〉j , the algorithm does not process motion estimation for finer levels and 

the output estimate will be the minj  times scaled and interpolated version of the estimate at 

level minj . By this way, the finest level of detail is effectively excluded from the estimation 

process. The number of subpels quadruples at every level, so the number of operations 

required for estimation increases geometrically as minj  decreases. The aim of this test is to 

determine whether the computation required to incorporate successively more detail provides 

sufficient benefit to accept this complexity.  

     In the test, confidence threshold is set to 0.95 and bilinear interpolation is used between 

levels. Then, maxj  is set to 5 and an optimum value of minj  is investigated through tree 

sequences for values ranging from 4 to 1. The results are listed in Table 4.3. 

 

Discussion 

     Analyzing Table 4.3, it can be seen that decreasing minj  down to 2 gives a high 

improvement in all cases. Setting  minj  to 1 gives little improvement in rotating tree 

sequence. But there is a decrease in accuracy for diverging and rotating tree sequences. 

     Since the complexity of the algorithm is nearly quadrupled by the inclusion of finest level 

of detail, a reduced version of the hierarchical algorithm may be used which uses the reduced 

CDWT tree and skips over the level 1 processing. It is obvious from the results that using a 

reduced version of the hierarchical algorithm will give the best tradeoff between complexity 

and accuracy.    

       

4.3.4 Field Interpolation Type 

     Up to now, we have analyzed optimal values for confidence threshold, maximum number 

of levels and finest level of detail. In this test, the effect of using staircase and bilinear 

interpolation kernels on accuracy will be analyzed using the results obtained before. For this 

purpose an algorith is used with a confidence threshold of 0.95, a maxj  of 5 and a minj  of 2. 

The results are given in Table 4.4. 
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Jmin Jmax T.Tree D.Tree R.Tree 
4 5 6.83 9.70 9.73 
3 5 6.74 8.10 8.99 
2 5 6.74 7.44 8.87 
1 5 6.73 7.61 8.96 

 

Table 4.3. Mean error angles for tree sequences, maxj  fixed to 5, using bilinear interpolation 

with confidence threshold set to 0.95. 

  

 

    

 

 

 

Table 4.4. Mean error angles of tree sequences using staircase and bilinear interpolation.   

 

Discussion 

     According to the results in Table 4.4, it is obvious that bilinear interpolation is much 

more superior to staircase interpolation. This condition is most apparent in diverging and 

rotating tree sequences where true motion field is not uniform. In translating tree sequence, 

this condition is less apparent due to uniform true motion field. From now on, bilinear 

interpolation will be used in following tests. 

 

4.3.5 Type Of Gabor Filters 

     In this test, use of 4.tap RI pair and 8-tap Gabor filters will be analyzed. For this purpose, 

the algorithm developed with options and parameters up to here is used. This means that an 

algorithm with maxj =5, minj =2, confidence threshold=0.95 is used with bilinear 

interpolation. The results obtained for 4-tap RI pair and 8-tap Gabor filters are given in Table 

4.5. 

 

Discussion 

     In all tree sequences, using 8-tap Gabor filters shows high improvements with respect to 

use of 4-tap RI pair. The main reason for this is the number of coefficients in 8-tap Gabor 

filters. Since they have more coefficients, they are good approximations to ideal Gabor 

Interpolation 
Type T.Tree D.Tree R.Tree 
Staircase 7.15 9.80 11.19 
Bilinear 6.74 7.44 8.87 
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filters. Consequently, using 8-tap Gabor filters will highly increase accuracy of the optimal 

algorithm.   

 

Filter Pair T.Tree D.Tree R.Tree 
4-tap RI 6.74 7.44 8.87 

8-tap Gabor 5.91 6.67 7.92 
 

Table 4.5. Mean error angles for 4-tap RI pair and 8-tap Gabor filters with maxj =5, minj =2, 

confidence threshold = 0.95, using bilinear interpolation. 

 

 

4.3.6 Curvature Correction 

     The aim of this test is to analyze curvature correction option (section 3.2.2.4) on accuracy 

of ME algorithm. In order to analyze effect of curvature correction, algorithm is processed 

with a wide range of te  values. Recall from section 3.2.2.4 that, te  is the eccentricity 

threshold above which ellipses of confidence become greatly elongated after correction is 

applied. The confidence ellipses of edge-based estimates of all orientations should all be so 

transformed, while those of estimates should be left relatively unchanged. The algorithm 

options and parameters developed in tests up to now is again used. The results are listed in 

Table 4.6 and mean error angles are plotted against te  in Figure 4.4 

     Note that, since 8-tap Gabor filters’ output eccentricities differs with edge orientation 

[19], applying curvature correction to these filters is meaningless and gives worse results as 

te  value is decreased from ∞+ . Figure 4.5 illustrates application of curvature correction to 

translating tree sequence for 8-tap Gabor filters. 

 

Discussion 

     From the test results obtained in Table 4.6, it is clearly seen that curvature correction has 

great effect on increasing accuracy. In Figure 4.4, as the eccentricity threshold decreases 

from ∞+  to 3.5, accuracy of the ME algorithm increases in all tree sequences. But if 

eccentricity threshold continues to decrease, the mean error angle dramatically increases. 

This is due to changing the curvature of the aperture free estimates with aperture-affected 

ones. In all tests, it has been found that 3.5 is the optimum value for eccentricity threshold te  

using 4-tap RI pair. From Figure 4.5, it can be seen that applying curvature correction for 8-

tap Gabor pair reduces accuracy as expected from the theory. 
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Figure 4.4 Mean error angle plots of tree                 Table 4.6. Mean error angles of tree                        

sequences for various te  values.                              sequences for various te  values. 

(a) Translating tree  (b) Diverging Tree  

(c) Rotating tree                                                                                  

 

 

     Up to now, we have two different optimum algorithms for ME. The first algorithm uses 

4-tap RI pair with curvature correction and the second algorithm uses 8-tap Gabor filters. 4-

tap RI pair requires less than half the number of operations required by the 8-tap pair to 

implement the CDWT. The actual computational saving is even greater than this because the 

et T.Tree D.Tree R.Tree 
0 7.141 10.584 10.346 

0.5 7.141 10.584 10.346 
1 7.141 10.584 10.346 

1.5 7.050 9.867 10.152 
2 6.864 8.468 9.556 

2.5 6.769 7.706 9.104 
3 6.737 7.458 8.849 

3.5 6.725 7.411 8.801 
4 6.725 7.404 8.799 

4.5 6.728 7.409 8.807 
5 6.731 7.415 8.816 

5.5 6.733 7.420 8.824 
6 6.734 7.423 8.832 

6.5 6.736 7.426 8.837 
7 6.737 7.428 8.842 

7.5 6.738 7.430 8.846 
8 6.739 7.432 8.849 

8.5 6.740 7.433 8.852 
9 6.740 7.434 8.854 

9.5 6.741 7.435 8.856 
10 6.741 7.436 8.858 
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Figure 4.5 Curvature correction to translating tree sequence using 8-tap Gabor filters 

 

 

RI pair has rational coefficients, so the entire tree may be implemented using integer 

operations. On the other side, 8-tap pair gives better results in terms of accuracy. From now 

on, one have to consider the accuracy gain achieved and complexity increased. Our choice is 

the first algorithm, which uses 4-tap RI pair with curvature correction. 

     Figure 4.6 illustrates estimated motion fields of tree and Yosemite sequences at 8-pel 

resolution where the final algorithm is used. Also, mean error angle and MSE are calculated 

for four sequences using the final algorithm and corresponding softwares for pel-recursive 

and half-pel BM algorithms [25]. The results are given in Table 4.7 and Table 4.8.  

 

4.3.7 Illuminance Variation 

     In this test, the current frame of the translating tree sequence was subjected to two 

separate uniform perturbations of intensity: addition of an offset and scaling. The aim is to 

simulate simple cases of illuminance variation between the frames of a sequence. The offset 

test is done for offset values ranging from 0 to 8 and the scaling test is done for scale values 

ranging from 0.95 to 1.04. Figure 4.7 illustrates results for translating tree sequence. Also, 

the results for pel-recursive and half-pel BM algorithms that are obtained by using the 

corresponding softwares [25] are discussed in discussion section. 

 

Discussion 

     In each test, it can be clearly seen that CDWT based ME algorithm is perfectly immune. 

This is because of the fact that phase of the CDWT coefficients is independent from both 

kinds of perturbation. Considering results of pel-recursive and half-pel BM algorithms 
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obtained from corresponding softwares, a strong robustness of CDWT based ME algorithm 

can be clearly seen. Pel-recursive and half-pel BM algorithms have mean error angles of 

10.12 and 11.71 respectively for translating tree sequence and have mean error angle 

deviations against illuminance variations up to 1218 and 1711 percent respectively. But 

CDWT based ME algorithm is invariant to simple illumination changes.   

 

4.3.8 Noise Immunity 

     In this test, white Gaussian noise of varying variances is added to diverging tree sequence 

in order to analyze robustness of the algorithm against noise. Also, the results for Pel-

recursive and half-pel BM algorithms that are obtained by using the corresponding softwares 

[25] are discussed in discussion section. Figure 4.8 shows the results. 
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Figure 4.6 Estimated motion fields of tree and Yosemite sequences at 8-pel resolution with 

95.0=ThresholdConfidence , 5max =j , 2min =j , using 4-tap RI pair, bilinear 

interpolation with curvature correction 

 

Algorithm T.Tree D.Tree R.Tree Yosemite 
CDWT 6.725 7.411 8.801 12.612 

Half-pel BM 9.923 11.122 14.712 15.614 
Pel-recursive 10.678 10.983 14.118 16.219 

 

Table 4.7. Mean error angle of tree and Yosemite sequences 
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Algorithm T.Tree D.Tree R.Tree Yosemite 
CDWT 55.18 67.83 87.32 141.67 

Half-pel BM 101.14 118.49 135.14 158.14 
Pel-recursive 111.91 119.90 132.21 144.19 

 

Table 4.8. MSE of tree and Yosemite sequences 

 

 

Discussion 

     The CDWT algorithm is more robust to additive noise when compared with pel-recursive 

and half-pel BM algorithms. Note that when variance is increased to 0.08, the increase in 

mean error angle is about 59 percent where using pel-recursive and half-pel BM algorithms 

with corresponding softwares [25] give results about 310 and 550 percent respectively.  

                              (a)                                                                  (b) 

Figure 4.7 Mean error angles against uniform intensity perturbations (a)Additive offset (b) 

Scaling 

 

 

 

 

 

  

 

 

 

 

Figure 4.8 Mean error angle under addition of white Gaussian noise 
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4.4 Summary  
     This chapter has described various tests applied to CDWT ME algorithm in order to find 

effect of options and parameters on accuracy. Tests are carried out on synthetic sequences 

with known true motion fields. Use of these sequences enables measurement of accuracy in 

terms of a defined error measure. To measure errors, mean error angle measure is used 

instead of relative error due to obtaining better results on relatively small valued estimates. 

     The starting point of the tests is finding an optimum value for confidence threshold. A 

value of 0.95 is found, where for a lower value, the number of false estimates increases and 

for a higher value, the number of rejected confident estimates increases. After finding 

confidence threshold, the number of maximum levels maxj  is found to be as big as possible 

for a better accuracy. Then, the optimum value of finest level of detail minj  is found to be 2, 

where a value of 1 does not provide desired accuracy in all sequences when compared with 

added algorithm complexity. After finding the main parameters of the ME algorithm, the 

effect of staircase and bilinear interpolation between levels is analyzed and found that 

bilinear interpolation is superior to staircase interpolation. Then, for a better tree 

decomposition, the effect of using 8-tap Gabor filters is analyzed and found that 8-tap Gabor 

filters give better results with respect to 4-tap RI pair.  In the last test, curvature correction 

option is analyzed and an optimum value of 3.5 is found for eccentricity threshold te using 

4-tap RI pair. Then two algorithms, which use 4-tap RI pair with curvature correction and 8-

tap pair, are discussed in terms of accuracy and algorithm complexity. Consequently, the 

algorithm using 4-tap RI pair with curvature correction is chosen. Moreover, the CDWT 

based motion estimation algorithm is compared with two popular motion estimation 

algorithms in terms of MSE and mean error angle measures. Finally, the robustness of 

algorithm against illumination changes and noise is analyzed. 
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CHAPTER 5 

 

 

 

CONCLUSIONS & FUTURE WORK 

 

 
     As can be seen from the test results in previous chapter, CDWT based motion estimation 

algorithm gives better results according to other most challenging algorithms. In this chapter, 

a comparison of the proposed algorithm according to other popular algorithms and a list of 

future works will be given. 

 

   

5.1 CONCLUSIONS 
     From the test results in previous chapter, CDWT based ME algorithm is constructed with 

parameters and options as confidence threshold = 0.95, 5max =j , 2min =j , using 4-tap RI 

pair with bilinear interpolation and curvature correction with an eccentricity threshold of 

5.3=te . From the results given in Table 4.7 and Table 4.8, it can be clearly seen that 

CDWT based motion estimation gives relatively more robust estimates for tree sequences 

according to half-pel BM and pel-recursive algorithms. But this robustness is weak in 

Yosemite sequence, where motion field is discontinuous. In order to get robust estimates for 

stereo image pairs with discontinuous motion fields, further investigations can be done. 

     In illuminance variation and noise immunity tests, it is clearly seen that using the phase 

information gives robustness to CDWT based ME algorithm especially in simple illuminance 

variation conditions. The algorithm gives much better results according to other popular 

algorithms in case of additive noise and is perfectly immune against simple illuminance 

variation conditions. This property is important especially for real life conditions where 

illuminance variance is a commonly encountered condition for real digital image sequences. 
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     The proposed algorithm’s computational complexity is also much more less according to 

other popular algorithms. The algorithm with our choice of options and parameters has a 

computational complexity of 234 flops per image pel where half-pel BM and pel-recursive 

algorithms have 584 and 609 flops per image pel, respectively. With this relatively less 

computational complexity, the proposed algorithm is suitable for real time motion estimation 

applications. 

     Consequently, the CDWT based motion estimation algorithm is superior to other 

challenging algorithms in terms of accuracy, robustness and computational complexity. But 

further improvements can be done in order to have more robust estimates for discontinuous 

motion fields.   

     

 

5.2 FUTURE WORK 
     For future work, some extra options that increase accuracy under various conditions may 

be listed. The first is the use of iterative approaches. Iterative refinement strategy includes 

warping of current level wavelet coefficients according to the estimate done previously in 

that level. This procedure can be iteratively applied for desired times to increase accuracy. 

Another iterative approach is the refining strategy, where previous level estimates are used to 

refine current level estimates in terms of warping current level coefficients. Both iterative 

options increase accuracy under various input image sequences. But they may give worse 

accurate results in some cases where motion at coarsest level (starting point estimate) is not 

estimated as accurate as required. Another option is using variable local frequency instead of 

predefined constant center frequencies for all levels. The last option to increase accuracy is 

the inclusion of an external regularization field to all level estimates with use of the 

directional confidence measure. This approach increases accuracy by smoothing untextured 

regions while preserving sharp features. 

     Moreover, this algorithm can be modified to process colored images and it can be used to 

extract 3d structures in scenes.       
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