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ABSTRACT

MOTION ESTIMATION USING COMPLEX DISCRETE
WAVELET TRANSFORM

Sar1, Hiiseyin

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Mete Severcan

September 2003, 82 Pages

The estimation of optical flow has become a vital research field in image sequence
analysis especially in past two decades, which found applications in many fields such as
stereo optics, video compression, robotics and computer vision. In this thesis, the complex
wavelet based algorithm for the estimation of optical flow developed by Magarey and
Kingsbury is implemented and investigated.

The algorithm is based on a complex version of the discrete wavelet transform (CDWT),
which analyzes an image through blocks of filtering with a set of Gabor-like kernels with
different scales and orientations. The output is a hierarchy of scaled and subsampled
orientation-tuned subimages. The motion estimation algorithm is based on the relationship
between translations in image domain and phase shifts in CDWT domain, which is satisfied
by the shiftability and interpolability property of CDWT. Optical flow is estimated by using
this relationship at each scale, in a coarse-to-fine (hierarchical) manner, where information
from finer scales is used to refine the estimates from coarser scales.

The performance of the motion estimation algorithm is investigated with various image
sequences as input and the effects of the options in the algorithm like curvature-correction,

interpolation kernel between levels and some parameter values like confidence threshold



maximum number of CDWT levels and minimum finest level of detail are also experimented
and discussed.
The test results show that the method is superior to other well-known algorithms in

estimation accuracy, especially under high illuminance variations and additive noise.

Key words: Stereo vision, phase based motion estimation, complex discrete wavelet

transform, gabor filters, subband tree decomposition.
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KARMASIK AYRIK DALGACIK DONUSUMU KULLANARAK
HAREKET KESTIRIMI

Sar1, Hiiseyin
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Mete Severcan

Eyliil 2003, 82 Sayfa

Optik akig kestirimi, 6zellikle son yirmi yilda, sirali goriintii analizi konusunda c¢ok
Oonemli bir arastirma alani haline gelmis ve stereo optik, video sikigtirmasi, robotlar ve
bilgisayarla gorme gibi konularda uygulama alanlari bulmustur. Bu tezde, Magarey ve
Kingsbury’nin optik akis tahmini i¢in gelistirdigi karmasik ayrik dalgacik doniisiimii tabanl
algoritma arastirilmis ve uygulanmistir.

Algoritma, resmi farkli 6lgek ve yonelimlerdeki Gabor benzeri siizge¢ kullanilan
bloklardan gegirerek analiz eden, ayrik dalgacik doniisiimiiniin kompleks bir versiyonuna
dayanir. Cikti, olgeklenmis ve altérneklenmis yonelim-akortlu altresimlerin siradiizeninden
olusmustur. Hareket kestirim algoritmasi, karmasik ayrik dalgacik doniisiimiiniin
aradegerlendirilebilirlik ve kaydirilabilirlik 6zelligi tarafindan saglanan, resim alanindaki
degisimler ve doniisiim alanindaki faz kaymalari arasindaki bagintiya dayanir. Optik akis her
Olgekte bu bagmtiyr kullanarak, diisiik ¢oziiniirliikten yiiksek ¢oziiniirliige giden ve yiiksek
coziiniirlitkteki verilerin diisiik ¢oziintirliikteki verileri rafine etmek igin kullanildigi bir

mantikla tahmin edilir.



Hareket kestirim algoritmasinin performanst farkli resimler girdi olarak kullanilarak
arastirilmis ve egrilik diizeltmesi, diizeyler arasi aradegerleme tipi gibi modifikasyonlarin ve
giivenilirlik esik degeri, maksimum seviye ve en detayli ¢Oziiniirlik gibi parametrelerin
etkisi analiz edilmistir.

Test sonuglar1 gosteriyor ki, metod iyi bilinen diger algoritmalara oranla dzellikle yiiksek
aydimlatma degisimleri ve giiriiltii eklenmesi kosullar1 altinda ¢ok daha iyi kestirim

dogrulugu vermektedir.

Anabhtar kelimeler: Cift kanalli gorme, faza dayali hareket kestirimi, karmagik ayrik dalgacik

doniisiimii, gabor siizgegleri, altband aga¢ ayrigimi.
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CHAPTER 1

INTRODUCTION

Humans and animals naturally develop the ability to discern objects, ascertain their
motion, and navigate in three-dimensional space to interact with their surroundings. All of us
are equipped with a pair of eyes and perform visual functions such as depth perception,
object recognizing, tracking etc., through the use of this stereovision mechanism. Although
this effective visual perception mechanism has not yet been fully explained or matched by
any artificial vision system, the idea of incorporating such vision in machines gave rise to
investigations and implementations in neurophysiological and computer vision areas
especially in the past two decades.

Numerous studies in both areas have shown that motion is a basic data for visual
functions. In fact, the analysis of a sequence of images provides information about the three-
dimensional shape and structure of objects, the relative depth between different objects or
their trajectories and direction of motion, which could not be obtained from a single image.
Therefore, research work on motion estimation has already been carried out to various
applications in which a compact representation of the changes between the successive frames
in a digital image sequence is required. One application is the obstacle detection and
navigation in robotics. Another application is the egomotion recovery, i.e. estimation of the
observer motion. Also much work has also been generated in the field of video coding, since
compression of image sequences using motion estimation reduces the bandwidth
requirement for an efficient transmission. It also finds place in medicine and meteorology by
processing related images. Another area of high importance is the detection and tracking of
moving targets in military applications.

In the past decade, wavelets has become an important analysis technique for motion
estimation. The success of wavelet analysis when applied to motion estimation problem has

shown its suitability as an approach to the stereovision problem. The work presented here is



concerned with motion estimation based on wavelet analysis developed by J. Magarey and

N. Kingsbury [1].

1.1 Stereo Vision
Stereo vision is related with the recovery of the three dimensional shape of a scene based
on two images taken of that scene from slightly different viewpoints. Human vision system

can be modeled as two cameras separated by a constant distance often referred to as a stereo

head. (Figure 1.1)

A 3D SCENE

Horizontal

Bar \

Left Camera Right Camera

Figure 1.1 Model of human visual system

For the process of obtaining stereo image pairs, the common method is to use two
cameras displaced from each other by a known distance. Another method is to use a moving
camera. When the sensor itself is moving, motion detection alone is not enough. The sensor
motion generates an apparent motion of the background, which needs to be compensated or
segmented from the target motion, in order to allow detection of motion. In each case, the
only detectable motion in an image sequence follows from the spatio-temporal changes of
the gray level intensity function of the sequence, known as the optical flow. As expected,
second image is not the purely shifted version of the first image. This is because the changes
can be caused by the relative motion between the changing three dimensional scene and
imaging device, but can also be produced by changes in the image formation process itself,
such as illumination changes or noise in the electronics. Here, the work will be on stereo
image pairs, which are taken from stationary cameras i.e. identifying true motion vectors. If
desired, then this true motion vectors can be used to reconstruct depth information [10, 23]

since the distance between two image sources is known.



1.2 The Motion Estimation Problem
The motion estimation problem deals with the analysis of motion in two-dimensional
digital images, which are the snapshots of a three-dimensional moving scene taken at

successive instants of time as shown in Figure 1.2.

=
3;{5 N
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S

Figure 1.2 Model of obtaining 2-D projections of a 3D-scene

In the ideal case, any two-dimensional point in an image may correspond to another two-

dimensional point in the following image. This can be formulated as,
un_1(>‘<3+ d>‘<3)=un(>‘<3) (1.1)

where X is the position vector of the pixel in the current image, d)% represents the

displacement vector of the pixel with 1?+ dg representing the location of the pixel in the
reference image and {un , neZ} is the scalar intensity function of the image number n. But in

real life, there are a lot of factors effecting this one-to-one correspondence, i.e. addition of
some means of noise to current image. So the image sequence is observed to be noise

corrupted which can be formulated as

L, (K)=u,(X)+e,(X) (1.2)

The frames are captured by a camera at a given frame rate and each frame can be viewed
as a function of the light intensity information taken by the camera at different time instants.
Since the captured sequence represents a projection of the three-dimensional scene to two
dimensions, any image is not a purely shifted version of the previous image and the
relationship between the observable changes in image intensities and the motion of three-
dimensional objects in the scene is complicated. This complicated relationship is caused by

the loss of information in the process of projection from three to two dimensions. This is
3



known as the projection ambiguity or the correspondence problem, which means that several
points in the three-dimensional scene with potentially different motions may project to the
same two-dimensional point in the image.

There are also other reasons for this complexity, which adds some kinds of noise to the
motion estimation process. These are the effects like occlusion, illumination changes,
aberrations and distortions in the image acquiring optics, etc. Another interesting factor is
whether moving objects are rigid or change shape during the motion, for example, a smiling
human face.

Because of the loss of information while projecting from three-dimensional space to two-
dimensional space, the problem is ill-posed, i.e. a unique solution of the correspondence
problem does not always exist.

Notice that a distinction is sometimes made between the true motion field, which is the
2D projection of the relative 3D motion between scene and camera, and the optical flow
field, which describes the variation of the grayscale pattern over space and time. Ideally, they
are identical if the image formation process is free of illumination changes, noise in

electronics, object shape changes, etc.

1.3 Approaches To The Motion Estimation Problem

The motion estimation algorithms can, in general, be classified into two main categories.
These are low-level and high-level computer vision algorithms.

High-level methods are based on extracting high-level features of the image, such as
edges, corners, object boundaries or complete objects in order to solve the correspondence
problem. The advantage of the feature-based approaches is that matching only on the basis of
these features is relatively fast due to the small number of points extracted from each image.
Also false matches are relatively less, because matching is only attempted for the points,
which are easiest to match. However, the number of false matches for the feature based
approaches increases with a scene containing wide featureless regions (smooth surfaces) or
when features in an image are occluded in the other. Also, even there are no occlusions in the
images, a highly featured area also increases the number of false matches.

Low-level approaches use low-level image descriptors (like intensity) of the image for
motion estimation process. The low-level approaches are also referred as the optical flow
estimation approaches, which can be categorized into gradient-based, block-matching and
frequency domain techniques. This work, referred to as the CDWT motion estimation

algorithm, will be on optical flow approaches and corresponds to the latter category.

4



1.4 The CDWT Motion Estimation Algorithm

The CDWT motion estimation algorithm is based on the complex discrete wavelet
transform, developed by Magarey and Kingsbury [1, 2, 3, 7]. In order to compute the motion
field, the algorithm uses the relation between the phase of the transform coefficients and
translations in the image domain. The choice of the algorithm from a wide variety of
approaches is because of three main factors.

e The algorithm uses a discrete wavelet transform implementation similar to a method
developed by Mallat[11], which makes use of an efficient pyramidal algorithm
based on convolutions with one-dimensional 4-tap filters.

e The basic filter pair used in implementation may be modeled as Gabor filters, which
have a strong implication from a physiological/biological point of view. In fact,
there are various investigations on modeling the mammalian vision system with a
preprocessing stage in which Gabor filters constitute the main component.

e Motion estimation is based on the phase of the complex wavelet coefficients. The
phase-based motion estimation is relatively robust and evolution of constant phase
contours of the complex filter outputs gives a truer picture of the underlying
spatiotemporal structure than that of constant intensity contours, which are used in

gradient-based methods.

This work describes the investigation and application of the CDWT motion estimation
algorithm. The algorithm is implemented in Matlab. Also, experiments are done and results
are extracted in order to compare the performances of the modifications and parameter

changes in the algorithm.

1.5 Thesis Outline

The organization of the thesis is as follows.

Chapter 2 presents a review of motion estimation techniques. It focuses on low-level
motion estimation techniques and gives detailed information on them.

Chapter 3 describes the motion estimation algorithm developed by Magarey and
Kingsbury [1], which is the basis of this work. The algorithm is based on a complex version
of the discrete wavelet transform developed by Mallat [11]. This chapter is composed of two
main parts. The first part describes the complex discrete wavelet transform, starting with a

short summary of the wavelet transform in continuous and discrete domains, the

5



implementation using a quadrature mirror filter (QMF) bank, and finally the Gabor-like
complex-valued FIR filters, which are the basis of the CDWT implementation. The second
part is composed of the description of the motion estimation algorithm itself, which uses the
CDWT coefficients at various resolutions in order to estimate motion in a coarse-to-fine
manner. This is done by matching the phases of the CDWT coefficients, which are directly
related to the displacements in the image domain.

Chapter 4 is composed of the simulation analysis and results, with synthetic tree
sequences as inputs, of the implemented motion estimation algorithm. Also some options are
introduced and their contributions to the performance of the proposed algorithm are

analyzed.



CHAPTER 2

REVIEW OF MOTION ESTIMATION TECHNIQUES

As mentioned in the previous chapter, there are several methods that can be used to
estimate optical flow. Since motion estimation is a research area for nearly two decades and
much effort spent on the subject, giving a detailed review of motion estimation techniques
would be hard and impractical. In this chapter, most popular methods will be introduced
which show a closer relation with the work investigated here. These methods can be
classified into three main categories, which are gradient-based, block-matching and
frequency domain techniques. This work can be classified mostly in the last group. There are
also other techniques such as pel-recursive and Bayesian algorithms. But, mostly three
standard motion estimation techniques will be emphasized, since they show a closer relation
to the work investigated here. However, a brief introduction about pel-recursive and
Bayesian methods is given.

There are practical limitations in the above-mentioned methods, which can be overcome
by use of multiresolution concept or hierarchical approach. This subject will be introduced in

chapter 3.

2.1 Motion Estimation Techniques

Almost all motion estimation techniques are based on the assumption that any change in
the image intensity is only due to the motion in the scene. This means that while an object is
moving along a direction, the image intensity of any moving part of the object remains
constant. Since image intensity is a function of time, intensity at any image point
f() = (X1 X, )T at time instant t, can be represented as I(f(),t). Using constant intensity

assumption, it can be said that any point in the image will appear with a displaced location in

a later time.



(X +d¥ t+dt)=1(Xt) 2.1)
If the left side of the equation is rewritten using a Taylor expansion,

1(R+dk t+dt)= I(Q,t)+VI(Q,t).dQ+%f’t)dt+gT 2.2)

where V is the gradient operator with respect to the position parameter kJ, and €T is the
error term representing higher order terms in Taylor series expansion. Neglecting higher
order terms, substituting (2.2) in (2.1) and dividing both sides by dt results in a popular

equation known as the optical flow constraint (OFC):

ViR )+ 2 (af’t) ) (2.3)

dx, dx
where the vector \F/’: (V1 v, )T = =1 /2
dt dt

T
j represents the velocity along the motion

direction. The solution of the equation results in a straight line in (V1 ,V2) space as shown in

Figure 2.1. Notice that presence of two variables for one equation makes optical flow
estimation an ill-posed problem.

OFC also implies that, at any point, only the component of the motion parallel to the
image spatial gradient, i.e. motion perpendicular to the image edges, is recoverable. This is
known as the aperture problem, which means that the component of the motion along the
direction of an edge cannot be determined unless the size of the aperture of the analyzing
window is larger than the length of the edge. An illustration of the aperture problem is given
in Figure 2.2.

From a discrete point of view, the images of the 3D scene taken at equally spaced time
instants can be considered as a sequence of pictures. By this, the time variable of the
intensity function of any point in the image can be dropped and a discrete version of

equation (2.1) can be written as

L (M d(F) =1, (%) (2.4)



V,  OFC constraint line

VI(x,t)

Vi

Figure 2.1. OFC constraint line with possible solutions v,,V, and Vv,

Key:

Current Frame [] Object in current frame
Object in previous frame
Region under consideration
W Correct motion vector
W Possible motion vectors

Figure 2.2 The aperture problem

where |, (H) represents the intensity value of a pixel at location R = (n1 n, )T in frame Kk,

and d (H) is the corresponding displacement vector. However, since this displacement is the

quantity to search, the equation may be rewritten as an error function of the displacement
vector i.e. a similarity measure can be written between pixels in adjacent frames as a

function of estimated displacement vector,

€prp (H,d(H)): Lo (H"'d(H))_ Ik(h)) (2.5)



where &, is known as the displaced frame difference (DFD). When d(H) is truly
estimated, the DFD will be zero under constant intensity flow and translational motion

conditions. Therefore, the displacement vector estimation can be done by minimizing &pqp

with respect to d(r'i’) Notice that equation (2.4) should fail in the case of motion due to
rotations, dilations or occlusions in the image. However, if these deformations are small, the
corresponding motions may be approximated by translations, and equation (2.4) may become

a reasonable assumption. In such a case, we may write |, ,, (H+ d (H)) using a Taylor series

expansion

Lo (N d(W) =1, (F)+ VI, (R)d (W) + & (2.6)

which can be substituted in equation (2.5) yielding

€prp (H: d (H)) =l (H)_ Iy (H)+ Vi, (H)d (H) (2.7)

ignoring higher order terms.

If we divide the above expression by the time interval Al between frames and take the
limit as At — 0, we obtain again the OFC in time domain.

The motion estimation techniques that will be described next use one of these viewpoints,
i.e. they either use the OFC directly by measuring the spatiotemporal rate of change of the
image intensity or they minimize the DFD over a set of local regions by searching over a set

of motion vectors.

2.1.1 Gradient Based Techniques

Gradient-based techniques provide an estimate of the optical flow field in terms of
spatiotemporal intensity gradients. Usually the OFC is used in conjunction with an
appropriate spatiotemporal smoothness constraint, which requires that the velocity vector
varies slowly over a neighborhood.

Optical flow constraint was first used to estimate motion by Cafforio and Rocca [21].
They attempted to segment the image into a fixed background and a moving object region
using dynamic programming. They assumed velocity to be constant within the region of

movement and minimized the quantity

10
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Horn and Schunck [12] imposed a global smoothness constraint on the optical flow field
from which a second quantity to be minimized comes. This quantity is the sum of squares of

the spatial gradients of the velocity components
2 2
g2 = [V, (Rt) + vy, (Rt 2.9
Combining these two quantities result in a total error to be minimized,

8§Iobal (\[/)) = J-image (géFC + azgéc )d’? (2.10)

where « is the relative weighting factor between the two error terms and it indicates the
importance of global smoothness constraint relative to the OFC. Equation (2.8) can be
analytically solved. But solution of equation (2.10) requires a series of Gauss-Seidel

iterations for convergence to the minimizing solution, V(lk)), over the whole image.

Instead of a global smoothness constraint, Lucas and Kanade [13] proposed a local
smoothness constraint, by assuming that the motion vector is the same for a particular image

region ‘R . This can be expressed as the minimization of the squared DFD with respect to the

. 4
displacement vector d ,

etoad)= > w)e2eo @.11)

XeR

where W(y) is a window function, giving more weight to the central part of the region.
Using equation (2.7) and ignoring the higher order term, the minimization of (2.11) with

lJ
respect to the displacement vector d can be expressed as

ZW(Q)[I K+ (’?)_ I (Q)*‘ Vi, (Q)d (Q)]VI K+l (’?) =0 (2.12)

XeR

which represents an overdetermined system of linear equations on the two displacement
components, and its solution may be found using standard least squares techniques.

11



An alternative to the global and local smoothness constraints is to use a constraint on

second order derivatives of the image intensity function for the velocity vector. The

constraint is the conservation of the spatial intensity gradient VI (k),t), ie.

d[vI(¥.0)]

=0 2.13
at (2.13)
which gives
21 o
2 v

a>2<, c’ixzzax1 Uy at?x1 ~0 (2.14)

ol ol v, ol

OX,0X,  OX] otox,

But for this method to be successful, there must not be first-order deformations of intensity
in the image such as dilation or rotation, which is commonly present in real image
sequences. The problem with this assumption is that it does not allow for first-order
deformations of intensity, such as dilation or rotation, commonly present in image
sequences. Because of this, second-order methods often produce less accurate estimates than
other methods.

Both local and global g