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ABSTRACT 
 

DEVELOPMENT AND VALIDATION OF TWO-DIMENSIONAL       

DEPTH-AVERAGED FREE SURFACE FLOW SOLVER 

 

Yılmaz, Burak 

M.Sc., Department of Civil Engineering 

Supervisor: Assoc. Prof. Dr. �smail AYDIN 

 

September 2003, 101 pages 

 

 

A numerical solution algorithm based on finite volume method is developed for 

unsteady, two-dimensional, depth-averaged shallow water flow equations. The model 

is verified using test cases from the literature and free surface data obtained from 

measurements in a laboratory flume. Experiments are carried out in a horizontal, 

rectangular channel with vertical solid boxes attached on the sidewalls to obtain free-

surface data set in flows where three-dimensionality is significant. Experimental data 

contain both subcritical and supercritical states. The shallow water equations are 

solved on a structured, rectangular grid system. Godunov type solution procedure 

evaluates the interface fluxes using an upwind method with an exact Riemann solver. 

The numerical solution reproduces analytical solutions for the test cases successfully. 

Comparison of the numerical results with the experimental two-dimensional free 

surface data is used to illustrate the limitations of the shallow water equations and 

improvements necessary for better simulation of such cases. 

 

Keywords: Free surface flows, shallow flows, depth-averaged equations, Godunov 

type solution, Riemann solvers 
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ÖZ 
 

SERBEST YÜZEYL� AKIMLARDA �K�-BOYUTLU DER�NL�K 

ORTALAMALI DENKLEMLER�N ÇÖZÜMÜ �Ç�N YAZILIM 

GEL��T�R�LMES� VE DO�RULANMASI 

 

Yılmaz, Burak 

Yüksek Lisans, �n�aat Mühendisli�i Bölümü 

Tez Danı�manı: Doç. Dr. �smail AYDIN 

 

Eylül 2003, 101 sayfa 

 

 

Zamanla de�i�en, iki boyutlu, derinlik-ortalamalı sı� su akım denklemleri için sonlu 

hacim metodunu temel alan sayısal çözüm algoritması geli�tirilmi�tir. Model, 

literatürden test problemleri ve laboratuar kanalından elde edilen serbest yüzey 

verileri kullanılarak sınanmı�tır. Deneyler üç boyutlulu�u öne çıkan serbest yüzeyli 

akımlardan veri elde etmek için yan duvarlarına dü�ey kutular yerle�tirilmi� 

dikdörtgen kesitli, yatay bir kanalda gerçekle�tirilmi�tir. Deneysel veriler hem 

kritiküstü hem de kritikaltı durumları içermektedir. Sı� su denklemleri;  sıralı, 

dikdörtgen ızgara sistemi üzerinde çözülmü�tür. Godunov tipi çözüm prosedürü ara-

yüzey akılarını rüzgar yönü metodu kullanarak tam Riemann çözücüsüyle 

hesaplamaktadır. Mevcut sayısal yakla�ım analitik çözümlü test problemlerini 

ba�arıyla çözmektedir. Sayısal çözümlerin iki-boyutlu deney verileri ile 

kar�ıla�ırılması yapılarak sı� su denklemlerinin kullanımındaki sınırlamalara ve bu 

durumlar için gerekli iyile�tirmelere i�aret edilmi�tir. 

 

Anahtar Kelimeler: Serbest yüzeyli akımlar, sı� akımlar, derinlik-ortalamalı 

denklemler, Godunov tipi çözümler, Riemann çözücüler 
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 I shall be telling this with a sigh 

Somewhere ages and ages hence:   

Two roads diverged in a wood, and I—   

I took the one less traveled by,   

And that has made all the difference… 

Robert Frost 
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CHAPTER 1 

 

INTRODUCTION 

 
 

1.1 Introduction and Problem Statement  

For many hydraulic engineering problems, the analysis of flow in open 

channels is required. Analytical and numerical solutions of the one-

dimensional, open channel flow equations are very common and have been in 

use for many years. However, most of the flows in nature are three-

dimensional and must be treated as three dimensional or at least two-

dimensional for accurate predictions. Kuipers and Vreugdenhill (1973) 

developed one of the first mathematical models on two dimensional, depth-

averaged equations using the finite difference scheme and since then several 

researchers focused on this concept using different techniques.  

Successful simulation of flow requires numerical methods capable of 

taking into account rapidly varying topography, bed roughness of different 

scales, vegetation, arbitrarily shaped flow obstructions, free surface and 

variations of bed boundaries which must be determined as a part of the 

solution.  

Flows with a free surface constitute a large scale of problems of 

scientific and practical interest, but computationally these problems are very 

challenging. The main difficulty of solving the whole problem is related with 

the free surface. Free surface is a boundary to satisfy boundary conditions but 

location of the boundary itself is unknown and so the domain on which the 

equations solved is unknown. 



  

In the literature, there is considerable amount of publications on the 

solution of free surface problems considering many effects, such as bottom 

friction, viscous effects, side friction, Coriolis effect, etc. Numerical studies are 

conducted with finite difference methods, finite element methods, finite 

volume methods or other methods.  

The shallow water wave equations have become a common tool for 

modeling many problems involving unsteady flows. The shallow water wave 

equations have their origins in the 19th century work of the French 

mathematician de Saint Venant (Cunge et.al.,1994). The most challenging 

feature of these equations is the permission of the equations to discontinuous 

solutions even the initial data are smooth. The non-linearity of the equations 

causes the analytical solution of the equations limited to special cases. As a 

result, numerical methods must be used to obtain solutions to practical 

problems, which include discontinuities in the solution. Until the last decade, 

widely used methods were the finite difference and finite element methods, but 

these methods created several problems. Finite difference methods do not 

conserve mass and require special techniques to overcome discontinuities and 

finite element methods conserve mass over the domain but not at each node; 

both methods produce oscillations at discontinuities. Finite volume methods 

solve the integral form of the equations in computational cells. In other words, 

mass and momentum are conserved in each cell even there is a discontinuity. 

Fluxes can be evaluated at cell faces that allow capturing wave propagation. 

These finite volume schemes have been developed for general hyperbolic 

conservation laws and have been used widely in gas dynamics with Euler 

equation. Recently, these techniques have been applied (Toro, 2001) to the 

solution of shallow water wave equations. 

 

 



  

1.2 Scope and Objectives of the Thesis 

The purpose of this study is to develop a basic solver for two-dimensional 

unsteady free surface flows and to test it in respect to numerical accuracy and 

satisfying different types of boundary conditions in flows where three-

dimensionality is significant. The study consists of three stages; experimental 

measurement of surface profiles in a laboratory model, development of a 

numerical code and numerical computation of the surface profiles for the 

experimental cases and several test cases for which analytical solutions are 

available in the literature.  

 

1.3 Description of the Thesis 

This thesis is composed of five chapters. In Chapter 1, an introduction is given. 

In Chapter 2, the experimental setup is described. Experimental procedure and 

conducted experiments are presented. The numerical data of the experimental 

study are also provided in appendices. 

In Chapter 3, the mathematical formulation of the problem and 

approaches to solve the system of equations are given. The governing 

equations that will be used in this study are derived in this section and the 

numerical methods used and the code developed are discussed.  

In Chapter 4, the results from experimental and numerical studies are 

compared. Also the results of the numerical study with some test cases are 

given. In Chapter 5, the study is finalized by summarizing the basic 

conclusions of the work and recommendations for future studies.  

 

 

 



  

 

 

 

CHAPTER 2 

 

EXPERIMENTAL SET-UP AND MEASUREMENTS 

 
 
 

2.1 Experimental Set-up  

A horizontal rectangular water flume available in the Hydromechanics 

Laboratory of Civil Engineering Department of Middle East Technical 

University is modified (Fig. 2.1) to collect free surface data. The sidewalls are 

made of glass and the channel bottom is made of fiberglass. The channel is 

0.67 m wide and 12 m long. In the working section, rectangular boxes of 

0.10x0.25 m dimensions were attached on the sidewalls of the channel to create 

a three-dimensional flow field. When there is no control from the tail water, 

flow is supercritical and three-dimensional. When the tail water is raised to 

keep the flow as subcritical, two-dimensional treatment becomes more 

justified. The rectangular boxes are arranged in a staggered manner to generate 

asymmetrical, rapidly-varying water surface profiles. Strong vortex structures 

on horizontal plane around the sharp corners are observed. Water depth in the 

channel is affected by the tail-water control mechanism located at the end of 

the channel. A rectangular weir controls the flowrate given into the channel. 

Photographs showing different views of flow patterns in the channel are 

printed in Appendix A. 

 
 
 



  

 

Figure 2.1. Experimental set-up 



  

2.2 Determination of flowrate 

A sharp crested rectangular weir made of fiberglass is used in the 

determination of flowrate. The discharge is computed from the equation 

(Henderson, 1966): 

2/3
ld HLg2

3
2

CQ ⋅⋅⋅⋅=                                 (2.1) 

where Q is discharge, Cd is the discharge coefficient, Ll is the effective length 

of the crest and H is the measured water head over the crest, excluding the 

velocity head. The discharge coefficient, Cd, in Equation (2.1) is determined by 

the equation given by Rehbock in 1929. (Addison, 1954 and King, 1954): 
 

P
H

08.0
H1000

1
605.0Cd ⋅+

⋅
+=          (2.2) 

where P is the weir height. 

2.3 Velocity profile at the inlet section 

The channel length is not enough to obtain uniform flow conditions in the 

channel. However, symmetry of flow on horizontal plane at the inlet section is 

needed to simplify the boundary conditions for numerical studies. Flow 

conditions at the inlet of the working section was investigated by measuring the 

velocity distributions on vertical and horizontal planes. Pitot-Prandtl tube was 

used to measure the point velocity of water in the channel. Vertical velocity 

distribution shown in Fig. 2.2 shows that the measurement at 60 % of the depth 

gives the average velocity and the horizontal measurements are done at this 

depth. Measured velocity profiles shown in Fig. 2.3 demonstrate that the flow 

at the inlet of the working section is symmetrical . 
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Figure 2.2. Vertical velocity distribution at the midpoint of inlet section 
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Figure 2.3. Velocity profile at the inlet section across the cross-section 



  

2.4 Measurement of water surface profiles 

Water surface profile measurements are done with a point gauge that is mobile 

in horizontal plane. The surface measurements are conducted for three 

reference flowrates of 0.02, 0.04, 0.06 m3/s in the channel. The reference 

discharges are chosen by considering the experimental conditions and 

workability in the channel.  

Surface measurements are taken at 28 measuring stations located at 0.1 

m spacing along the channel axis (Fig.2.4). At each measurement station 23 

measurement points were located at 0.03 m spacing. All together 644 point 

gauge measurements were done to describe the surface profile in the working 

section for a given test case. A test case is defined by a fixed discharge and a 

fixed tailwater configuration. When a test case is maintained, water depths are 

measured with a point gauge paying attention on the fluctuations of the free 

surface. Two readings of water surface level at each measuring point were 

taken as the minimum and the maximum. The mean surface level was defined 

as the average of the minimum and maximum readings by assuming normal 

distribution holds for the variation of surface profile.  

Downstream or tail water conditions play a great role on the flow 

patterns in the channel as it has a horizontal bed. Two kinds of tail water 

conditions are obtained by the tailgate configurations. The first case is obtained 

by completely lowering the tailgate, with no control on the flow. And the 

second case is obtained by rising the tailgate so that the upstream is submerged. 

The position of the tailgate for the second case is arranged so that the flow in 

the whole channel remains subcritical. The conditions of the test cases 

considered in this thesis are described in Table 2.1. Measured surface profiles 

for the six test cases are presented in Figures 2.5~2.10. 

 

 

 

 



  

Table 2.0-1. Experimental cases 

Test 

Case 

Discharge 

(m3/s) 

Tailgate 

control 

A1 0.02 No control 

A2 0.02 Submerged 

B1 0.04 No control 

B2 0.04 Submerged 

C1 0.06 No control 

C2 0.06 Submerged 
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Figure 2.4. Plan view of the measuring channel with measuring points indicated by intersections of the gridlines 
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Figure 2.5. Water surface profile of experimental case A1 
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Figure 2.6. Water surface profile of experimental case A2 
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Figure 2.7. Water surface profile of experimental case B1 
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Figure 2.8.  Water surface profile of experimental case B2 
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Figure 2.9.  Water surface profile of experimental case C1 
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Figure 2.10. Water surface profile of experimental case C2 



  

 



  

 

 

 

CHAPTER 3 

 

GOVERNING EQUATIONS 

 

 

 

Mathematical models to describe fluid motion in certain practical problems are 

based on Reynolds Averaged Navier-Stokes (RANS) equations. In practice 

when forming a mathematical model, many assumptions are made to simplify 

the problem under consideration, and the most basic equations that will capture 

the required phenomena are used. In open channel flow the most commonly 

used models fall under the classification of shallow water equations, in which it 

is assumed that the flow is shallow relative to the dimensions of the problem 

considered and the fluid is incompressible. As with all fluid flow models, the 

basis for forming a shallow water model is to form a continuity equation, 

corresponding to conservation of mass, and to apply the laws governing 

classical physics which results in equation of motion. Depending on the 

construction, such equations can often be written as conservation laws 

representing the conservation of a particular quantity such as momentum or 

energy. Additional terms may be included to add other effects such as friction, 

geometry variation, viscosity, etc. and these are referred as source terms which 

generally correspond to some form of loss or gain from the system. 

 

 



  

3.1 Two-dimensional Depth-Averaged Shallow Flow Equations 

Mathematical models called as shallow flow equations, govern a wide variety 

of physical phenomena. An important class of problems of practical interest 

involves water flows with a free surface under the influence of gravity. This 

class includes tides in oceans, breaking of waves on shallow beaches, roll 

waves in open channels, flood waves in rivers, surges and dam-break wave 

modeling. The shallow flow approximation can also be applied to obtain 

mathematical models for flows of heterogeneous mixtures and for the modeling 

of atmospheric flows. 

The development of the two-dimensional depth-averaged free surface flow 

equations require some simplifying assumptions: 

• Depth-averaged values are sufficient to describe the flow properties 

which vary over the depth.   

• Vertical velocity and acceleration are negligible. 

• Density is constant. 

• Pressure distribution is hydrostatic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Flow with a free surface under gravity 
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In Fig. 3.1, x,y and z denote the axis directions, h denotes the water 

surface height from bottom, b denotes the channel bottom function, u (z) and 

v (z) denote the local time-averaged velocity components, u and v denote the 

depth-averaged values where; 

�
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=
hb

b

dz)z(u
h
1

u  ,      (3.1) 

�
+

=
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b

dz)z(v
h
1

v        (3.2) 

There are two boundaries with respect to vertical axis on which implicit 

equations of surface can be written as: 

Free surface boundary:  

0)y,x(b)t,y,x(hz =−−=φ      (3.3.a) 

Bottom boundary: 

0)y,x(bz =−=φ       (3.3.b) 

The condition that the fluid at the boundary flows along the boundary and 

never leaves the boundary that there exists no flux across the boundary namely 

the kinematic condition is, 
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If the kinematic condition is applied to the boundaries, 
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for the free surface; 
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for bottom; 
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Conservation laws; conservations of mass, x-momentum, y-momentum 

and z-momentum, are written in terms of time-averaged quantities. 
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where µ, ρ and g are the dynamic viscosity, density and gravitational 

acceleration, respectively. Last terms in momentum equations are Reynolds 

stresses arise from the averaging. Vertical components of velocity and 

acceleration are negligible. Eq. 3.10 results in, 
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Integrating continuity equation (Eq. 3.7) with respect to depth 
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Using Leibniz’s rule; 
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Substituting equations 3.5.b, 3.6.b, 3.16 and 3.17 into equation 3.15 results in, 
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Integrating x-momentum equation with respect to depth,  
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Applying closure hypotheses; 
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results in approximate x-momentum equation 
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Rewriting equation 3.23 in terms of stresses, 
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Similarly, y direction momentum equation is arranged as, 
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The shallow water equations can be written in matrix form as; 
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where, 
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If equation (3.26) is written in quasi-linear form, the characteristics of the 

equations can be determined. 
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The time dependent two-dimensional shallow water equations are hyperbolic  

for a wet bed as they have real and distinct eigenvalues. The eigenvalues of A 

and B are given as, 

ghu,u,ghu A3A2A1 +=λ=λ−=λ  

and 

ghv,v,ghv B3B2B1 +=λ=λ−=λ  

The solution methods described are based on the wet bed assumption, when the 

bed is specified as dry bed, h =0, the problem needs special treatment and can 

be understood from the eigenvalues that unless the water height is zero, there 

are distinct and real values of eigenvalues..  

3.2 Solution Methods 

Prior to the development of computers and their application to CFD, analytical 

techniques had to be used for solving partial differential equations. However 

their application even to the simplest problem require extensive hand 

computation. One particular method suited to solving problems based on 

conservation laws is the method of characteristics. One-dimensional St. Venant 

equations can be formulated with this method, but for most of the problems of 

practical interest it is not possible to find exact solutions by using analytical 

techniques. As a result, this has lead to the development of numerical methods. 

 



  

3.3 Numerical Solution Methods 

3.3.1 General Classification of numerical methods 

Many techniques are available for numerical simulation work; finite difference, 

finite element and finite volume methods are the widely used methods for 

solving general fluid flow problems. There is no strict definition as how to 

identify a method. The following general descriptors are taken from Hirsch 

(1988). 

A finite difference method represents the problem through a series of 

values at particular points or nodes. Expressions for the unknowns are derived 

by replacing the derivative terms in the model equations with truncated Taylor 

series expansions. The earliest numerical schemes are based upon finite 

difference methods and it is the one of the easier methods to implement.  

The basis of the finite element method is to divide the domain into 

elements such as triangles or quadrilaterals and to place nodes to each element 

at which the numerical solution is determined. The solution at any position is 

then represented by a series expansion of the nodal values. Spectral methods 

can be considered as a subset of the finite element methods. 

The finite volume method is based upon forming a discretisation from 

an integral form of the model equations, and subdividing the domain into finite 

volumes. Within each volume, the integral relationships are applied locally so 

exact conservation at each cell is achieved. The resulting expressions for the 

unknowns often appear similar to finite difference approximations and may be 

considered as a special case of finite difference or finite element techniques 

depending on the method used. For most of the fluid modeling problems based 

on conservation principles, the finite volume method has become the most 

popular approach for general fluid flow problems. Within the context of open 

channel flows, earlier works focused on the application of finite difference and 

finite element schemes, however recently finite volume methods are used 

widely. 



  

In order to quantify how well a particular numerical scheme performs 

in generating a solution to a problem, there are some criteria to be satisfied. 

These concepts are accuracy, consistency, stability and convergence. In theory 

these criteria apply to any form of numerical method though they are easily 

formulated for finite difference schemes. A brief introduction to these concepts 

based on Hirsch (1988) and Smith (1985) is given below. 

Accuracy is a measure of how well the discrete solution represents the 

exact solution of the problem. Two quantities exist to measure this, the local 

error or the truncation error, which measures how well the difference equations 

match the differential equations, and the global error which reflects the overall 

error which cannot be computed unless the exact solution is known. 

Mathematically, for a method to be consistent the truncation error must 

decrease as the step size is reduced. For a scheme to be used practically, it must 

be consistent. 

If a scheme is said to be stable then any errors in the solution will 

remain bounded. In practice if an unstable method is used the solution will tend 

to infinity. Most methods have stability limits which place restrictions on the 

size of grid spacing (i.e. ∆x, ∆t) usually in terms of a limit on the CFL 

(Courant-Friedrichs-Lewy) number.  

Another requirement is that the numerical scheme should be 

convergent, which by definition means the numerical solution should approach 

to the exact solution as the grid spacing is reduced. It is usually not easy to 

prove the convergence of a scheme, instead Lax’s Equivalence theorem is used 

which states that, ‘ for a well posed initial value problem and a consistent 

method, stability implies convergence.’ A well-posed problem must have the 

following conditions; 

• A solution must exist. 

• The solution should be unique. 

• The solution should depend on the initial and boundary data. 



  

In this work the numerical solution is achieved by using finite volume method, 

so the finite volume methods will be explained in more detail in the following 

sections. 

3.3.2 Finite Volume Methods 

The fundamental difference between finite volume and finite difference 

methods is that in finite difference methods the differential form of the 

equations are discretised, whereas for finite volume methods the discretisation 

is performed on an integral formulation of the equations. The resulting 

discretisation often resembles the ones obtained in finite difference methods. 

The basis of the finite volume methods is to construct an integral form of the 

governing equations which is valid for any arbitrary closed volume. 

 

3.3.2.1 Godunov type methods 

Godunov methods use the wave propagation information to construct the 

numerical schemes. This is achieved in various approaches, at the highest level 

local Riemann problem is solved exactly and at the lowest level just the sign of 

a single wave at intercell boundary is given. Centred methods do not use any 

propagation information so it is easier to construct the scheme. 

One of the first attempts to develop an upwind scheme suitable for 

solving systems of conservation laws was by Courant, Isaacson and Rees  

(Courant et.al.,1952) introduced as CIR method. The CIR method was based 

on tracing the characteristics from one time level to the next and employed the 

characteristic form of the equations. Originally this technique was considered 

for the Euler  equations, however as the construction was not based on the 

conservation form of the equations, the method was not succesful in solving 

problems containing discontinuities. In 1959, Godunov published a new 

technique which differed from previous schemes in that it assumed the 

numerical solution was constant within each cell, instead of considering nodal 

values. The basis of the method was to solve a series of Riemann problems 



  

between each of the cell interfaces and this led to an expression for the 

numerical flux. The method was explicit and required that the time step was 

limited in such a way that neighboring Riemann problems would not interact. It 

was the starting point for the Riemann based schemes with which this thesis is 

concerned. 

If the one-dimensional system of conservation laws is considered, Eq. 

3.26 takes the following form; 

0)U(FU xt =+       (3.30) 

This is called the differential form of the conservation laws and is valid only 

for the case in which the solution is smooth throughout the system. In the 

presence of discontinuities integral form of the equations must be used. 

� =− 0)dt)U(FdxU(      (3.31) 

where the line integration is performed along the boundary of the domain. By 

choosing a quadrilateral control volume in x-t plane of dimensions   

[ ] [ ]1nn
2/1i2/1i t,tXx,x +

+−  , another expression of the integral form of the 

conservation laws can be written as; 
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The integral averages of U(x,t) at t = tn and t = tn+1 over the length ∆xi are 

defined as ;  
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Also the integral averages of the flux at positions xi-1/2 and xi+1/2 are defined as; 
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Using these definitions the integral form of the conservation laws becomes, 
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where intercell fluxes are calculated at the boundaries of the cell. The upwind 

method of Godunov is a scheme that utilises the solution of local Riemann 

problem whether exactly or approximately. Scheme is first order in space and 

time, and higher order extensions are possible. It is assumed that the initial data 

Un at the time t = tn is a set of integral averages Ui over the control volume and 

this results in a piece-wise constant distribution of data as shown in Fig.3.2. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.  Upwind method for one-dimensional flow 
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This piece-wise distribution requires a solution of Riemann problem with left 

and right data states to find the intercell set of primary variables. Godunov flux 

at the boundaries can be defined as the physical flux function evaluated with 

intercell solution of primary variables. 

))0(U(FF 2/1i2/1i ++ =  and  ))0(U(FF 2/1i2/1i −− =  

Two items are needed to evaluate the Godunov flux: 

• The solution of the Riemann problem, with given initial data, UL=Ui 

and UR=Ui+1  

• A solution sampling procedure to identify the required value at x/t = 0. 

To simulate transmissive boundaries, n
m

n
1m

n
m

n
1m

n
m

n
1m utut,unun,hh === +++  are 

set and for solid reflective boundaries, n
m

n
1m

n
m

n
1m

n
m

n
1m utut,unun,hh =−== +++  

where un denotes the normal, ut denotes the tangential velocity component 

with respect to the boundary and subscripts m and m+1 denote boundary cell 

and imaginary cell, respectively. Fig. 3.3 shows the orientation of these nodes. 

 

 

 

 

Figure 3.3. Orientation of boundary nodes 

 

3.3.2.2 Riemann problem and Riemann Solvers 

Having introduced Godunov’s method and obtained the update formula 

which is based on the solution of a Riemann problem, it is necessary to explain 

what a Riemann problem is. The Riemann problem is defined as an initial 

value problem of the form given in Eq. 3.30 with the initial conditions shown 

in Fig. 3.2 where the initial values may be discontinuous across xo. The 

solution of the Riemann problem has different approaches but all have certain 

properties in common. The constant states LU  and RU  are linked by waves, 

where the number of the waves present in the solution is the same as the 

Node m 

Node m+1 

Boundary 
Node m-1 



  

number of equations in the conservation law. The region between the waves is 

referred as star region and within this section variables are constant. The types 

of waves present depend on the system being considered and for shallow water 

equations the waves are either shock or rarefaction waves.  

3.3.2.3 Exact Solution of Riemann Problem 

The Riemann problem is a generalisation of the dam break problem. Toro 

(1992) presented an exact Riemann solver based on which his earlier work for 

compressible gas dynamics. This method reduces the problem to the solution of 

a non-linear equation for the water depth by an iterative technique. The 

remaining flow variables follow directly through the complete structure of the 

solution of the Riemann problem. 

There are several reasons for studying the exact solution of the 

Riemann problem. First, it is the simplest initial value problem for the full set 

time-dependent non-linear equations, the solution of which may include 

simultaneously both smooth and discontinuous solutions. The information 

provided by the Riemann problem solution is fundamental to the understanding 

of basic features of wave propagation in shallow water models. Exact solution 

can be used locally in Godunov-type methods and just a bit expensive than the 

approximate Riemann solvers. 

For the x-split two-dimensional shallow water equations, if the exact solution 

of the Riemann problem is concerned shown in Figure 3.2; the structure of the 

general solution looks like in Fig. 3.4, three waves seperate four constant 

states, subscripts *,L,R  show the variable’s region as star region, left of the 

waves and right of the waves, respectively.  

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

Figure 3.4.  Structure of the general solution of the Riemann problem 

 

If we denote , [ ] Tv,u,hW =  primitive variables, these four states are 

WL (left data), WR (right data), W*L , W*R . W*L and W*R are the unknown 

quantities of the problem in the star region. The left and the right waves are 

either shock or rarefaction waves and the middle wave is always a shear wave. 

Part of the solution is to determine the types of the waves for the given initial 

conditions. Across the left and right waves both h and u change but v remains 

constant, across the shear wave v changes discontinuously and both h and u 

remain constant. If we denote the depth and velocity in the star region as *h  

and *u , types of non-linear left and right waves are determined by; 

:hh L* > left wave is a shock wave 

:hh L* ≤ left wave is a rarefaction wave  

:hh R* >  right wave is a shock wave  

:hh L* ≤ right wave is a rarefaction wave 

Left and right waves are not affected by the tangential velocity component, so 

by a single algebraic, non-linear equation for the water depth *h  is obtained 

connecting left and right data states. 
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3.3.2.3.1 Solution for *h  and *u  

The solution *h  for the described Riemann problem is given by the roots of the 

following algebraic equation; 

)uu()h,h(f)h,h(f)h(f LRRRLL −++=      (3.36) 

 where the functions fL and fR are defined as; 
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The solution for the particle velocity *u  in the star region is given by: 

( ))h,h(f)h,h(f
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)uu(
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u L*LR*RRL* −++=   (3.39) 

There are four possible cases to consider connecting *u  to the data states 

across the left and right waves and each wave is analysed seperately. If the left 

wave is a rarefaction wave, 

)aa(2uu L*L* −−=         (3.40) 

since  gha =  

)h,h(fuu L*LL* −=       (3.41.a) 

)ghgh(2)h,h(f L*L*L −=     (3.41.b) 

if the right wave is a rarefaction wave, 

)h,h(fuu R*RR* −=       (3.42.a) 

)ghgh(2)h,h(f R*L*R −=     (3.42.b) 

if the left wave is a shock wave, 

)h,h(fuu L*LL* −=       (3.43.a) 
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if the right wave is a shock wave, 
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Elimination of *u  in all cases gives the equation 3.36; 

0uu)h,h(f)h,h(f LRR*RL*L =−++     (3.36) 

Assuming the root of *h  is available by the iterative solution, velocity in star 

region is defined as; 
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3.3.2.3.2 Iterative solution for *h  

There is no explicit solution of the Equation 3.36. As the derivative of the 

function is available, the use of Newton-Raphson method is possible; 
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As a starting value for the iteration, a h0 value is assumed using two rarefaction 

approximation to the celerity; 
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The iteration is stopped whenever the change in h is smaller than a prescribed 

tolerance, 

TOL
2/)hh(

hh
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3.3.2.3.3 Sampling the solution 

W(x,t) is needed at an arbitrary point (x, *t ), where xL < x < xR and *t  

is an arbitrary positive time. For a given time *t , the solution is only dependent 

on x and gives a profile at the given time. Sampling procedure is just the 

determination of the solution whether in the left of the shear or right of the 

shear as shown in Fig. 3.4. There are two possibilities for a given point,  

• Point lies in the left of the shear wave. 

The solution on the left side of the shear wave is determined by the character of 

the left wave. If L* hh > , the left wave is a shock wave and the complete 

solution is; 
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If L* hh ≤ , the left wave is a rarefaction wave and the complete solution is; 
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• Point lies in the right of the shear wave. 

Similarly like the previous case, if R* hh > , the right wave is a shock wave and 

the complete solution is; 
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If R* hh ≤ , the right wave is a rarefaction wave and the complete solution is; 
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where the variables are given as; 

LLLL qauS −=       (3.52) 

RRRR qauS +=       (3.53) 
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LLHL auS −=        (3.55) 

**TL auS −=        (3.56) 

RRHR auS +=        (3.57) 

**TR auS +=        (3.58) 
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This exact solution is valid for split two dimensional equations including the 

solution for the tangential velocity component. This procedure is valid only for 

the wet bed case in which the water depth is everywhere positive.  

3.3.2.4 Approximate Solutions of Riemann Problem 

To compute numerical solutions by Godunov type methods, approximate  

Riemann solvers may be used. Making the choice between exact and 

approximate solvers is motivated by computational cost, simplicity and 

correctness. Correctness should be the governing criterion. Widely used 

approximate solvers can be listed as; HLL, HLLC, Roe’s and Osher’s 

approximate Riemann solvers (Toro, 1997)  

 

3.3.3 Application of numerical Methods to open channel flow 

Having introduced the ideas and methodologies behind numerical techniques, 

this section goes on to review the application of computational methods to 

open channel flow. The purpose of this section is to illustrate the progress of 

computational hydraulics in recent years and to highlight what has been 



  

achieved within the field. In addition, surveying the literature provides a means 

to identify suitable test cases for analyzing the performance of numerical 

schemes. 

The review is divided into two subsections. The first part includes one-

dimensional studies and details of the various methods. The second subsection 

is intended to give an overview of how the original one-dimensional methods 

have been extended to higher dimensions. 

3.3.3.1 One-dimensional Studies 

Fennema and Chaudhry (1986) presented a paper introducing three explicit 

schemes to the Saint Venant equations and compared the results for problems 

containing shocks with solutions from the implicit Preissmann scheme. Three 

methods considered were the McCormack, Lambda and Gabutti schemes, all of 

which are second order accurate. The paper showed a number of results for 

flows containing bores and illustrated how the explicit schemes gave rise to 

numerical oscillations around the discontinuity. By the addition of artificial 

viscosity, the oscillations were reduced and the profiles became similar to the 

results produced by the Preissmann scheme. The point highlighted by the paper 

was the computational simplicity of explicit schemes when compared with 

implicit ones, and comparing with the Preissmann scheme 10-25 % of CPU 

time is required. 

Alcrudo, Garcia-Navarro and Saviron (1992) extended the application 

of Roe’s scheme to shallow water flows to include prismatic channels of 

arbitrary cross section. A series of solutions were presented and contrasted with 

those obtained from the McCormack and Lax-Friedrichs schemes. In particular 

the examples considered highlighted the shock capturing ability of Roe’s 

scheme. Solutions for the dam-break problem with a depth ratio of 100:1 were 

shown. The Mc Cormack scheme was used with artificial viscosity and this 

enabled a solution to be produced, however the results were poor and included 

an unphysical stationary jump. The Lax-Friedrichs scheme generated a 

reasonable solution typical of  a first order scheme. The two other problems 



  

illustrated in the paper considered the case of one bore propagating over 

another, and a situation in which the bores traveling in opposing directions. 

The Roe scheme performed well for both of the problems. However 

McCormack scheme created oscillations near the bores. 

Garcia- Navarro and Saviron (1992) applied the McCormack scheme to 

a variety of discontinuous flow problems in rectangular channels. The paper 

included details of how to apply the method of characteristics to the boundaries 

in order to generate appropriate boundary data and also showed how to 

incorporate discontinuous flows at the upstream boundary. Results were 

presented for four test problems. The first was the uniform motion of a shock 

through a smooth rectangular channel. The second problem involved the 

propagation and reflection of shock waves in a channel which was closed at the 

downstream boundary. The third case considered was one shock propagating 

over another to form a larger shock. The conclusion made from this experiment 

was that comparisons made between this scheme and a third order explicit 

method showed that ‘it was not worth going further for this kind of problems’. 

The final example included the effect of source terms and consisted of flow 

over a ladder of cascades, which were enforced by use of internal weir 

boundary condition. The steady state numerical solution was shown, which 

contained small oscillations due to the presence of the weirs. 

In another paper Alcrudo et.al. (1992) introduced a TVD variant of the 

McCormack scheme. Results were shown for five different test cases. The first 

problem was the ladder of cascades problem in the previous paper but with 

different choices of S0 and n. Comparing the TVD and non TVD versions of 

the scheme, small oscillations were seen to be removed when the flux limiters 

are introduced. The second problem considered was a flood wave in a sloping 

trapezoidal channel. The TVD version of the program performed much better 

than the non-TVD version. The final two examples presented the solutions for 

flow through a converging- diverging channel created by a sinusoidal width 

variation. Again the TVD version performed better than the other. 



  

Yang, Hsu and Chang (1993) presented results from five different 

numerical methods for a number of problems. The schemes considered were 

based on two general formulations, giving rise to a set of finite difference and 

finite element methods. The schemes selected corresponded to a second order 

TVD method, a second order ENO (essentially non oscillatory) and a third 

order ENO scheme with finite difference formulations and second order TVD 

and ENO schemes by finite element methods. For all five schemes results were 

shown for the dam break problem. All of the methods produced practically 

identical results in which the shock was well resolved and no oscillations were 

present.  

Zoppou and Roberts (2003) published their paper on explicit schemes 

for dam-break simulations. A number of numerical schemes for solving one-

dimensional wave equations applied to problems containing discontinuities in 

the solution have been examined. 

3.3.3.2 Two-dimensional Studies 

Fennema and Chaudhry (1989) applied the Beam and Warming scheme to the 

two-dimensional shallow water equations. Using an approximate factorization 

two-dimensional problem was re-expressed as two one-dimensional problems. 

The method was applied to the partial dam break problem. The effects of 

friction and bed slope were included in the study with various boundary 

conditions, but the paper presented results for a flat frictionless channel. It was 

noted that McCormack scheme fails for a depth ratio larger than 4:1.  

Toro (1992) presented several Riemann solvers within the context of 

shallow water flows, and considered their application through the Weighted 

Average Flux method (WAF) to a series of one-dimensional and two-

dimensional problems. The paper illustrated how to determine the exact 

solution of the Riemann problem for the one-dimensional Saint-Venant 

equations, which led to the development of Toro’s exact solver, the two-

rarefaction approximate Riemann solver and two-shock approximate Riemann 

solver. The paper also considered the approximate Riemann solvers of Roe and 



  

Harten,Lax and van Leer (HLL). The WAF method was constructed by 

considering the solution of a Riemann problem at the cell interfaces; which is 

explained in previous sections. The resulting scheme is second order so it can 

produce non-physical oscillations, but a corresponding TVD method can be 

constructed by applying a flux limiter. Satisfactory results are obtained using 

approximate solvers for the classical dam break problem and circular dam-

break problem. 

Fraccarollo and Toro (1995) compared numerical results generated by 

the WAF scheme with experimental data obtained from a dam-break problem. 

The HLL Riemann solver was used together with a flux limiter to produce the 

numerical data. The comparison between the experimental and computational 

results highlighted certain differences, particularly near the dam location. 

However the overall the numerical approach was seen to predict the 

predominant flow features. 

Toro (2001) presented his exact solver with various methods to be used 

including the finite volume method.  

Bradford and Sanders (2002) published their study on finite volume 

model for flooding of arbitrary topography. MUSCL scheme with Roe 

approximate Riemann solver is used, and reported to be an accurate and robust 

approach for solving the shallow water equations. Special techniques are 

introduced to overcome difficulties created by the topography. 

Caleffi, Valiani and Zanni (2003) compared physical model data and 

numerical results with a new explicit TVD algorithm. The solution obtained is 

based on a Godunov type scheme with HLL approximate Riemann solver. 

Dam-break, circular dam-break, hydraulic jump and partial dam-break 

problems gave reasonable results except unusual bed changes in the 

topography.  

 



  

3.4 Numerical methods used in this study 

Godunov type upwind finite volume method is used to solve unsteady, two-

dimensional, depth-averaged shallow flow equations derived in section 3.1. 

Exact Riemann solver introduced by Toro (2001) is adapted to the solution to 

compute the primitive variables at the interfaces. 

3.4.1 Solution Scheme 

Let us recall the two dimensional shallow water equation (Eq. 3.26) 

)U(S)U(G)U(FU yxt =++      

where the terms described in Eq. 3.27 will be as follows, noting that the 

viscous stresses in source term are neglected,  
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As can be seen in the source term, viscous stresses are neglected in the current 

model. The updating conservative formula becomes; 
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where Fi+1/2,j is the intercell flux corresponding to the intercell boundary 

between cells (i,j) and (i+1,j). There are many choices for evaluating this flux; 

here the Godunov flux is concerned in which the flux is computed from the 

values at the interfaces. For any cell considered, there exists a Riemann 

problem to be solved whose data states are j,iU  and j,1iU + and the solution is 

denoted by j,2/1iU + . Godunov flux j,2/1iF +  at the intercell boundary is defined in 

terms of the solution obtained, j,2/1iU + . Same procedure is used again for the 

other direction to compute the flux 2/1j,iG + . 



  

For a cell to be updated to the next time level, all fluxes at the interfaces are 

computed using the exact Riemann solver. Considering the cell (i,j), j,2/1iF + , 

j,2/1iF − , 2/1j,iG + , 2/1j,iG −  are used to compute the next time level.  

However, when using Riemann solver, choosing the left and right initial data 

states affects the convergence of the solution. For this reason, initial data states 

UL and UR for an interface are extrapolated from the neighboring cells called as 

boundary extrapolated values. By this way, the data states to be included in 

Riemann solution consists of intercell values instead of center values. In order 

to avoid the numerical oscillations, a constraint is enforced in data 

reconstruction step by limiting the slopes when extrapolating. If the slope of 

any variable between cell centers is denoted by �i, the limited slopes are; 
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Then this value is used instead of the �i. The parameter � is a limiting variable 

and �=1 reproduces the Minbee limiter, while �=2 produce the Superbee, in 

this study Minbee is used (Toro, 2001). Using this limited slope, extrapolation 

is carried out as; x
2
1

WW ij,i
L
j,i ∆∆−=  . 

3.4.2 Initial and Boundary Conditions 

Initial conditions are specified in the whole domain as the water depth and 

velocity values of the inflow boundary. 

Three types of boundary conditions are specified, inflow, outflow and wall 

boundaries. Wall boundaries are specified as slip boundary conditions. The 

values of water depth and velocity component tangent to the boundary are 

given as the same with the boundary cell and the velocity component normal to 

the boundary is given reverse. For inflow boundaries surface data obtained 

from the experiments are given and kept constant during the solution. Velocity 

is given as uniform which is an acceptable assumption as illustrated in Fig. 2.3. 

For the outflow boundary, again the experimental surface data is given to the 



  

boundary nodes. The other variables (velocity components) are extrapolated 

from the domain. 

3.4.4 Source Terms 

Source terms coming from viscous stresses are neglected and since the solution 

is computed on a horizontal channel bottom slope term automatically vanishes. 

Bottom friction is modeled according to the following formulas (Kuipers and 

Vreugdenhil 1973):  
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The Manning’s coefficient is taken as 0.01 for the plexiglas used. 

3.4.5 Convergence and Stability 

In practical computations, one chooses a value of CFL close to the maximum 

allowed. For non-linear systems such as the shallow flow equations, a reliable 

estimate for time step must be found which is given below. An unreliable 

estimate may cause the scheme to crash no matter how sophisticated the 

intercell fluxes are computed. The recommended CFL for two-dimensional 

shallow flows is CFL<0.5. In the present study CFL = 0.4 is used unless a 

problem is faced.  
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Time step is determined using the minimum of the time steps computed in both 

directions. 

3.4.6 Solution procedure 

The cell average values in a cell are updated to next time level with Eq. 3.61. in 

a single step, involving flux contributions from all intercell boundaries. This 

conservative formula is the extension of the one-dimensional formulation and it 

is completely determined once the intercell numerical fluxes are specified. 

After observing the behavior of the errors with time for all the cases, a 

maximum of 40 seconds is realized to be sufficient to reach the steady state. 



  

However, computer was run for 90 seconds and the solution was obtained by 

taking time average of all variables from 60 seconds to 90 seconds to eliminate 

the noise in the computed values. The algorithm used is as follows; 

1. Specify the initial conditions for primitive variables 

2. Calculate the time step using CFL condition 

3. Specify the boundary conditions 

4. Update the Riemann problem variables using a slope limiter 

5. Solve the Riemann problem for all interfaces as explained in section 

3.3.2.3 

6. Compute the primitive variables for next time step using Eq. 3.61 

7. Go to step 2, if output time is not reached yet. 



  

 

 
 
 

CHAPTER 4 

 

RESULTS AND DISCUSSIONS 

 
 
 

4.1 Test Cases 

The capabilities and performance of the numerical scheme for the solution of 

the shallow water equations is illustrated by considering several test cases 

given in the literature. The test cases considered are one-dimensional dam 

break for different conditions and a two-dimensional dam break case. Since the 

examples are from literature, all the details of how they are set up are not given 

here. 

4.1.1 Test Case 1 : One –Dimensional Dam Break 1 

This example is generally used to illustrate shock-capturing capabilities of the 

schemes and it is used by several researchers to compare Riemann solvers with 

each other and to compare schemes with first or higher order accuracies. 

The problem is set-up as follows: A dam is initially situated in the 

middle of the domain. The initial condition is given as 5 m water depth at the 

upstream of the dam and 0.3 m water depth at the downstream. The dam is 

removed instantaneously and the model is run for 10 seconds. The 

computational domain is divided into 300 cells. The size of each cell is 1x1 m 

 

 

 

 



  

Table 4.0-1.  Comparison of one-dimensional dam break results, Test Case 
1 

Table 4.1.  Comparison of one-dimensional dam break results, Test Case 1 

Scheme 
Velocity at dam site  

 (m/s) 

Water depth at dam site 

     (m) 

Exact 4.670    2.220 

Osher 4.661   2.222 

FVS 4.463   2.316 

HLL 4.459   2.285 

HLLC 4.459   2.285 

Roe 4.717   2.212 

Roe entropy fixed 4.639   2.233 

Current study 4.659   2.221 

 
Comparison of the results of the present model and others taken from Erduran 

et.al.(2002) is shown in Table 4.1. Current model computes the velocity and 

water depth at the dam site more accurate than the other models except the 

model using Osher’s Riemann solver for velocity. When the water depth is 

considered current model gives the most accurate result.  

4.1.2 Test Case 2 : One –Dimensional Dam Break 2 

The problem is set-up as follows; A dam is initially situated in the middle of 

the domain. The initial flow condition is given as 10 m water upstream of the 

dam and 0.0 m water depth downstream. The dam is removed instantaneously 

and the model is run for 50 seconds. The computational domain is 2000 meters.  

The cell size is varied to observe the mesh size and accuracy relationship. 

Figure 4.1 shows the solution for two different mesh sizes and the analytical 

solution. Analytical solution stated in the paper by Zoppou and Roberts(2003) 

is given in Table 4.2, where 0h  denotes the initial upstream depth and 

1h denotes the initial downstream depth. 

 



  

Table 4.2.  Analytical solution of one-dimensional dam break problem 
(Zoppou , Roberts (2003)), Test Case 2. 

Table 4.2.  Analytical solution of one-dimensional dam break problem 
(Zoppou , Roberts (2003)), Test Case 2. 
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Figure 4.1. Comparison of analytical and numerical solutions of one-
dimensional dam break problem, Test Case 2. 



  

 
 
This example shows the importance of mesh size on the accuracy of the 

solution, but the point must be considered is the efficiency of the model. The 

more accurate results are obtained with the longer computational times. For 

this test case run time ratio was 1:15 considering the solutions with 100 cells 

and 2000 cells.   

4.1.3 Test Case 3: Two –Dimensional Dam Break  

The aim of this test case is to study the code ability to reproduce discontinuous 

solutions with particular attention to two-dimensionality of the flow field. The 

problem is set-up as follows; the geometry of the problem consists of a 200 x 

200 m basin as illustrated in Figure 4.2. The initial water level of the dam is 10 

m and the tail water is 5 m high. At the instant of dam failure, water is released 

into the downstream side through a breach 75 m wide, forming a wave that 

propagates while spreading laterally. At the same time a negative wave 

propagates upstream. The problem domain was discretisized into 1x1 m 

meshes and the computational model was run for up to 7.2 s after the dam 

break. Fig. 4.3.a and 4.3.b show the three-dimensional view of the water 

surface plots for the present study and from Anastasiou and Chan(1997)  

respectively.  

 

 

 

 

 

 

 

 

Figure 4.2.  Definition of problem domain for two-dimensional dam break, 
Test Case 3.  
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Figure 4.3.  Surface plot of two-dimensional dam break problem, Test 
Case 3 (a) Solution with the current model. (b) Solution by Anastasiou and 
Chan (1997).  
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As illustrated in Fig. 4.3., the flow is characterized by a rarefaction 

wave traveling upstream and a shock wave traveling downstream, spreading of 

wave laterally can be easily observed in the figure. Unlike the one-dimensional 

problem there is no exact results for this test so accuracy cannot be discussed, 

but the solution given in Figure 4.3.b is taken from accepted results in the 

literature. 

4.2 Free surface Profiles 

The computed surface profile plots corresponding to the present experimental 

cases are given in Figures 4.4.~4.9. In general, computed surface patterns 

reproduce the measured surface profiles with exception of Case A2 and Case 

C2. The solutions in these two cases have large numerical oscillations which 

could not be damped by the selected slope limiter. 

To focus on the variation of water depth in the flume, six cross-

sectional profiles and one longitudinal profile are plotted for each case 

described in Table 2.1. For the cross-sectional figures, water levels are shown 

as minimum, maximum and time-averaged values for the numerical study and 

minimum and maximum values for the experimental study at the stations x = 0, 

1, 1.5, 2, 2.5, 3 meters across the channel. For the longitudinal figures profiles 

along the centerline (y=0.33 m) of the flume are plotted. These comparisons 

are given in Figures 4.10~4.21. The differences between minimum and 

maximum readings of the water levels in the experiments are small, indicating 

small fluctuations of the water surface. However, in the numerical 

computations there are very large positive oscillations which cause the time 

average values to differ from the experimental values.   

4.3 Velocity Profiles 

The velocity profile from the experimental study is unavailable. For the 

sake of completeness, velocity profile at a specified case (B1) is plotted as a 

sample and the two-dimensionality of the velocity field is shown in Fig. 4.22 

by giving a plan view of the velocity field. 
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Figure 4.4.  Water surface profiles, Case A1 
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Figure 4.5.  Water surface profiles, Case A2 

Measured 

Computed 



  

 
 

0

0.1

0.2

0.3

0.4
h

(m
)

0

1

2

3

x (m)
0
0.25

0.5y (m)

 

0

0.1

0.2

0.3

0.4

h
(m

)

0

1

2

3

x (m)
0
0.25

0.5y (m)

 
Figure 4.6.  Water surface profiles, Case B1 
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Figure 4.7.  Water surface profiles, Case B2 
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Figure 4.8.  Water surface profiles, Case C1 
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Figure 4.9.  Water surface profiles, Case C2 
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Figure 4.10.   Comparison of measured and computed water surface profiles at certain cross-sections, Case A1 
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Figure 4.11.   Comparison of measured and computed water surface profiles along the channel centerline, Case 
A1  
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Figure 4.12.   Comparison of measured and computed water surface profiles at certain cross-sections, Case A2 
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Figure 4.13. Comparison of measured and computed water surface profiles along the channel centerline, Case 
A2 
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Figure 4.14.   Comparison of measured and computed water surface profiles at certain cross-sections, Case B1 
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Figure 4.15. Comparison of measured and computed water surface profiles along the channel centerline, Case 
B1 
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Figure 4.16.   Comparison of measured and computed water surface profiles at certain cross-sections, Case B2 
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Figure 4.17. Comparison of measured and computed water surface profiles along the channel centerline, Case 
B2 
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Figure 4.18. Comparison of measured and computed water surface profiles at certain cross-sections, Case C1 
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Figure 4.19. Comparison of measured and computed water surface profiles along the channel centerline, Case 
C1 
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Figure 4.20.   Comparison of measured and computed water surface profiles at certain cross-sections, Case C2 
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Figure 4.21. Comparison of measured and computed water surface profiles along the channel centerline, Case 
C2 
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Figure 4.22. Velocity vector field, Case B1 

 
 
 
 
 



  

 



  

4.4 Final Remarks 

As the comparisons of test cases and experimental cases with the 

numerical results are considered, it can be said that the current model is an 

acceptable and accurate model for one-dimensional problems and some of the 

two-dimensional problems. It is observed by Molls and Chaudhry (1995) that 

viscous stresses do not significantly affect the converged solution excluding 

recirculating flows. In the present experimental cases the flow is recirculating 

behind the boxes and there are strong vortex structures. Therefore, the 

experimental cases may need to be studied using the viscous stresses for more 

accurate results. In numerical computation of some experimental cases such as 

case A2 and C2, unacceptable oscillations of water surface levels are present 

which prevent a converged solution. This result may be due to failure of slope 

limiter used in extrapolations. On the other hand, viscous dissipation may be 

necessary to damp such oscillations. 

In numerical solutions, water levels on downstream faces of the solid 

boxes on the sidewalls are usually higher than the measured values. Such 

differences between measured and computed fields may be a result of energy 

losses in the real flow due to recirculation around the boxes. It is necessary to 

include a turbulence model into the computer code to simulate the complicated 

flow patterns. 

 

 

 

 

 
 
 
 
 

 
 
 
 



  

 

 

CHAPTER 5 

 

CONCLUSIONS 

 
 
 
A computer code is developed for Godunov type numerical solution of two-

dimensional depth-averaged shallow water equations using exact Riemann 

solver in finite volume scheme. 

• The code produced satisfactory results for the one-dimensional test cases 

for which analytical solutions are available. It can be used for dam-break 

analysis and one-dimensional study of flood waves. 

• The code can be used to compute the two-dimensional shallow flows. 

However, when the flow field is affected by sidewalls in a narrow domain , 

the shallow water assumption is not justified. If the code is to be used in 

such complicated flow fields for free surface computations, an appropriate 

turbulence model must be incorporated to account for turbulent stresses. 

• Approximate Riemann solvers may be used instead of exact Riemann 

solver to reduce cpu requirements. 
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APPENDIX A 
 

PHOTOGRAPHS FROM THE EXPERIMENTS  
 

 
 
 
 

Figure A.1.  Downstream view, Case B2 

 



  

 

 

 

Figure A.2.  Upstream view, Case B2 

 



  

 

Figure A.3.  Downstream view, Case B1 
 

 

Figure A.4.  Upstream view, Case B1 
 
 
 
 



  

 
 
 
 

APPENDIX B 
 

EXPERIMENTAL DATA 
 

Experimental data collected following the order of Table 2.1. is 

presented as the water heights measured from bottom to the water surface. Data 

are given with their nodal locations where their metric location can be seen in 

Fig. 2.4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



x (node)
y (node) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm)

1 10.39 12.27 10.4 11.79 8.71 9.88 8.46 9.7 8.63 9.44 9.15 9.68 9.54 10.24
2 10.14 11.71 10.05 11.25 8.57 9.82 8.54 9.48 8.4 9.1 9.12 9.73 9.6 10.22
3 9.77 11.4 9.68 11.04 8.87 9.72 8.6 9.29 8.6 9.12 8.99 9.6 9.79 10.11
4 9.24 10.57 9.36 10.47 8.82 9.72 8.63 9.39 8.42 9.01 8.84 9.43 9.38 9.9
5 8 8.95 8.32 9.35 8.6 9.44 8.37 9.28 8.18 8.8 8.66 9.28 9.4 9.88
6 7.54 8.18 8.38 9.15 8.74 9.47 8.21 9.03 8.05 8.86 8.83 9.28 9.38 9.78
7 6.78 7.29 8.53 9.51 8.81 9.33 8.22 8.72 8.22 9.29 9.02 9.53 9.28 9.68
8 6.39 7.03 8.62 9.6 9.12 9.91 8.3 9.15 8.19 9.31 8.97 9.55 9.05 9.63
9 5.92 6.78 8.95 9.61 9.17 9.86 8.02 9.11 8.47 9.14 9.03 9.67 9.11 9.88

10 5.65 6.26 9.39 10.14 10.15 10.75 8.7 9.32 8.7 9.35 8.99 9.74 8.21 8.7
11 5.46 6.13 9.67 10.2 10.35 11.1 9.44 10.37 9.01 9.87 9.37 10.49 7.66 8.53
12 4.66 5.64 9.99 10.58 10.59 11.5 9.81 10.78 10.24 11.02 10.01 10.88 8.05 8.65
13 4.37 5.22 10.28 10.86 10.94 12 10.67 11.41 10.95 12.14 10.9 12.32 8.72 9.55
14 3.16 4.11 10.66 11.56 11.62 12.6 11.08 11.73 11.73 12.78 11.7 12.62 9.41 10.14
15 1.5 2.29 11.56 12.34 12.32 13.14 11.67 12.31 11.88 12.81 12.11 13.67 9.93 10.58
16 0.55 1.04 13.04 13.91 12.1 13.63 11.87 12.82 12.27 13.25 12.98 14.12 10.59 11.37
17 0.29 0.39 13.51 14.31 12.54 13.69 12.2 13.45 12.42 13.41 13.17 14.43 11.61 12.39
18 0.3 0.45 13.68 14.67 13.62 14.31 12.61 13.58 12.41 13.37 13.1 14.29 11.97 12.83
19 0.3 0.5 13.88 14.77 13.23 14.15 12.93 14.28 12.74 13.52 13.27 14.38 12.15 13.18
20 0.34 0.6 14.05 14.81 13.51 14.27 13.13 14.31 12.95 13.82 13.55 14.19 12.64 13.67
21 0.34 0.56 14.04 14.79 13.92 14.64 13.61 14.7 13.37 14.09 13.13 14.04 12.87 13.72
22 0.28 0.5 13.87 15.09 13.75 14.62 13.71 14.57 13.49 14.08 13.28 14.04 12.84 13.92
23 0.26 0.56 13.91 15.19 13.76 14.66 13.53 14.49 13.2 14.11 13.45 14.15 13 13.98

5 6 71 2 3 4

                Table B.1. Experimental data, Case A1



x (node)
y (node)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

                Table B.1. Experimental data, Case A1

min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm)
15.31 15.63 15.03 15.53 15.05 15.59 14.99 15.28 14.81 15.12 14.55 14.93 14.13 14.59
15.13 15.74 15.04 15.54 15 15.56 14.9 15.18 14.86 15.11 14.58 14.9 14.19 14.69
15.42 15.9 14.95 15.48 14.99 15.38 14.87 15.13 14.83 15.12 14.73 15.01 14.13 14.77
15.39 15.91 14.79 15.32 14.96 15.27 14.84 15.11 14.76 15.13 14.67 15.1 14.34 14.65
15.33 15.84 14.73 15.18 14.88 15.2 14.76 15 14.77 15.12 14.61 14.97 14.2 14.65
15.18 15.72 14.53 15.13 14.76 15.19 14.42 14.85 14.58 14.95 14.43 14.9 14.22 14.53
14.49 14.99 14.41 15.04 14.6 15.05 14.02 14.47 14.55 15.01 14.29 14.68 14.17 14.45
13.42 14.28 14.32 14.83 14.54 15.02 13.66 14.1 14.5 14.87 14 14.31 14.08 14.38
11.88 12.53 13.91 14.48 14.33 14.76 13.16 13.65 14.3 14.64 13.61 14.18 13.86 14.16
11.11 12.06 13.71 14.17 13.84 14.78 12.98 13.37 13.89 14.21 13.17 13.43 13.77 14.05
10.83 11.67 13.27 13.66 13.77 14.47 12.7 13.15 13.3 13.67 12.62 13.1 13.69 13.92
11.37 11.72 12.76 13.32 13.08 14.12 12.44 12.77 12.54 13 12.41 13.06 13.57 13.78
11.27 11.64 12.2 12.87 12.47 13.46 12.14 12.63 12.34 12.8 12.22 12.97 13.53 13.83
11.32 11.6 11.96 12.43 12.06 12.81 12.08 12.48 12.41 12.68 12.37 12.78 13.64 13.9
11.19 11.61 11.67 12.15 12.08 12.67 12.28 12.61 12.38 12.67 12.36 12.68 13.8 14.15
11.37 12.2 11.81 12.21 11.94 12.43 12.11 12.47 12.25 12.57 12.18 12.6 14.01 14.2
11.57 12.61 11.7 12.31 11.74 12.47 12.12 12.43 12.18 12.5 12.3 12.55 15.58 15.76
11.69 12.88 11.82 12.51 12 12.4 12.18 12.51 12.27 12.46 12.29 12.63 15.84 16.05
12.07 12.96 11.82 12.44 12.01 12.29 12.1 12.53 12.27 12.56 12.2 12.54 15.89 16.07
12.05 13.24 11.68 12.47 11.86 12.35 12.16 12.54 12.29 12.64 12.34 12.64 15.88 16.09
12.16 13.19 11.72 12.51 11.7 12.42 12.11 12.58 12.17 12.58 12.31 12.7 15.89 16.05
12.4 13.33 11.77 12.48 11.84 12.45 12.16 12.52 12.28 12.57 12.27 12.7 15.74 16

12.15 13.66 11.63 12.58 11.7 12.54 12.13 12.61 12.23 12.66 12.22 12.71 15.71 15.93

13 149 10 11 128

Table B.1. (continued)



x (node)
y (node)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

                Table B.1. Experimental data, Case A1

min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm)
13.66 14.15 13.67 13.88 13.69 13.97 13.99 14.21 14.19 14.42 16 16.13 15.89 16
13.71 14.12 13.54 13.93 13.82 14.07 14.08 14.3 14.22 14.45 16.05 16.14 15.97 16.05
13.7 14.3 13.72 14.06 13.85 14.2 14.14 14.4 14.25 14.44 16.13 16.22 16.04 16.17

13.91 14.39 13.83 14.03 13.9 14.2 14.15 14.42 14.21 14.46 16.18 16.31 16.06 16.15
13.91 14.44 13.95 14.11 13.99 14.22 14.16 14.4 14.2 14.39 16.13 16.29 16.04 16.13
13.94 14.43 13.98 14.24 13.93 14.24 14.08 14.4 14.13 14.42 16.06 16.19 16.03 16.12
14.05 14.42 13.92 14.33 14.01 14.31 14.24 14.57 14.27 14.41 15.78 15.99 15.95 16.07
14.1 14.4 14.07 14.42 13.87 14.41 14.21 14.57 14.18 14.42 14.68 14.9 15.79 15.91

14.18 14.48 14.15 14.53 14 14.54 14.23 14.58 14.3 14.57 14.76 15.05 15.73 15.89
14.32 14.53 14.35 14.6 14.27 14.59 14.29 14.66 14.55 14.71 15.05 15.2 15.69 15.82
14.41 14.63 14.65 14.85 14.38 14.74 14.66 14.86 14.69 15 15.16 15.34 15.68 15.79
14.57 14.76 14.74 14.95 14.74 14.93 14.61 14.9 14.87 15.09 15.28 15.39 15.62 15.75
14.77 14.92 14.9 15.08 14.93 15.16 14.77 15 14.96 15.12 15.37 15.49 15.62 15.73

15 15.17 14.9 15.09 14.99 15.25 15 15.16 15.08 15.21 15.39 15.5 15.61 15.71
15.2 15.36 15.16 15.27 15.16 15.3 15.09 15.23 15.18 15.29 15.44 15.55 15.64 15.7

15.35 15.49 15.22 15.41 15.21 15.4 15.19 15.38 15.2 15.4 15.46 15.59 15.61 15.69
15.51 15.68 15.3 15.51 15.29 15.44 15.3 15.44 15.31 15.45 15.42 15.6 15.59 15.69
15.62 15.74 15.41 15.59 15.3 15.5 15.37 15.52 15.33 15.49 15.45 15.58 15.62 15.7
15.64 15.81 15.46 15.65 15.37 15.54 15.37 15.53 15.35 15.53 15.5 15.6 15.62 15.71
15.71 15.89 15.49 15.61 15.39 15.52 15.38 15.53 15.36 15.53 15.5 15.6 15.6 15.72
15.64 15.8 15.48 15.6 15.35 15.51 15.39 15.5 15.34 15.5 15.51 15.61 15.54 15.63
15.6 15.7 15.41 15.54 15.34 15.44 15.28 15.44 15.39 15.5 15.44 15.58 15.48 15.58

15.56 15.69 15.35 15.54 15.31 15.42 15.22 15.4 15.32 15.48 15.38 15.54 15.42 15.57
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Table B.1. (continued)



x (node)
y (node)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

                Table B.1. Experimental data, Case A1

min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm)
15.79 15.88 15.79 15.86 15.87 15.97 15.84 15.95 15.68 15.8 15.75 15.91 15.65 15.83
15.85 15.92 15.82 15.9 15.88 15.97 15.86 15.98 15.72 15.85 15.78 15.92 15.74 15.87
15.87 15.96 15.88 15.94 15.9 16 15.89 16 15.78 15.9 15.84 15.96 15.84 15.93
15.92 16 15.86 15.96 15.9 16 15.9 16.01 15.81 15.94 15.87 16 15.85 15.95
15.92 16.01 15.86 15.99 15.88 15.98 15.87 16 15.84 15.96 15.85 15.96 15.89 15.98
15.91 15.99 15.9 15.98 15.87 15.96 15.88 15.98 15.84 15.94 15.85 15.95 15.92 15.99
15.92 15.99 15.87 15.94 15.86 15.95 15.85 15.95 15.83 15.95 15.86 15.96 15.92 16
15.84 15.95 15.81 15.92 15.8 15.93 15.83 15.95 15.81 15.95 15.85 15.97 15.93 16.02
15.79 15.89 15.78 15.89 15.79 15.92 15.8 15.93 15.78 15.93 15.84 15.97 15.89 15.99
15.73 15.85 15.74 15.88 15.76 15.91 15.77 15.91 15.76 15.9 15.82 15.96 15.89 15.98
15.75 15.82 15.76 15.89 15.76 15.9 15.76 15.9 15.76 15.88 15.84 15.95 15.9 16
15.71 15.81 15.74 15.83 15.76 15.89 15.74 15.89 15.78 15.9 15.86 15.95 15.92 15.98
15.68 15.78 15.71 15.85 15.73 15.86 15.76 15.89 15.8 15.91 15.85 15.95 15.9 15.98
15.72 15.79 15.72 15.84 15.73 15.86 15.74 15.9 15.78 15.91 15.85 15.96 15.9 16
15.67 15.76 15.69 15.81 15.73 15.87 15.74 15.89 15.78 15.91 15.83 15.95 15.92 16
15.61 15.78 15.71 15.8 15.76 15.88 15.75 15.92 15.78 15.93 15.85 15.95 15.93 16.02
15.61 15.74 15.71 15.79 15.72 15.86 15.73 15.89 15.79 15.91 15.86 15.97 15.95 16.04
15.65 15.73 15.68 15.76 15.74 15.86 15.73 15.89 15.78 15.9 15.84 15.97 15.9 16
15.6 15.72 15.68 15.77 15.77 15.88 15.72 15.88 15.76 15.89 15.83 15.95 15.91 16.01

15.58 15.69 15.67 15.74 15.76 15.87 15.74 15.89 15.7 15.83 15.79 15.91 15.88 15.95
15.56 15.66 15.63 15.74 15.75 15.89 15.71 15.87 15.64 15.77 15.74 15.86 15.82 15.92
15.46 15.59 15.57 15.74 15.7 15.86 15.66 15.81 15.56 15.67 15.68 15.82 15.74 15.82
15.41 15.59 15.55 15.69 15.69 15.85 15.62 15.77 15.49 15.64 15.65 15.78 15.73 15.8

25 26 27 2822 23 24

Table B.1. (continued)



x (node)
y (node) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm)

1 15.56 16.67 15.11 15.9 14.17 15.21 14.03 14.99 14.42 15 14.64 15.26 14.78 15.31
2 15.63 16.52 14.85 15.87 14.13 15.07 13.99 14.73 14.28 14.92 14.61 15.18 14.7 15.4
3 15.51 16.37 15 15.81 14.21 14.97 14.09 14.78 14.28 14.78 14.47 15.19 14.88 15.48
4 15.4 16.14 14.73 15.61 14.3 14.9 14.06 14.67 14.19 14.76 14.4 15.07 14.65 15.23
5 14.83 15.96 14.62 15.48 14.43 15.03 14.01 14.74 14.11 14.62 14.56 15.07 14.84 15.28
6 14.58 15.79 14.36 15.41 14.35 14.98 13.92 14.58 14.12 14.56 14.34 14.91 14.71 15.23
7 14.22 15.65 14.33 15.1 14.39 14.92 14 14.64 14.22 14.7 14.41 14.99 14.58 15.2
8 13.63 14.87 14.09 14.91 14.08 15.12 14.01 14.67 14.17 14.8 14.51 15.04 14.54 15.11
9 13.29 14.34 13.92 14.53 14.28 15.08 14.19 14.95 13.97 14.78 14.41 14.98 14.45 15.26

10 12.92 14.47 14.08 14.61 14.48 15.24 14.3 14.99 14.19 14.85 14.56 15.15 14.62 15.43
11 12.57 14.11 14.17 14.67 14.85 15.54 14.46 15.27 14.21 15.04 14.6 15.31 14.82 15.51
12 12.95 14.07 14.29 15.04 15.28 15.9 15.06 15.68 14.76 15.5 14.9 15.64 14.75 15.56
13 13.38 14.34 14.69 15.36 15.46 16.26 15.6 16.27 14.96 15.72 15.47 16.11 15.03 15.8
14 13.66 14.27 14.69 15.43 15.92 16.65 15.82 16.67 15.34 16.16 15.83 16.52 15.6 16.44
15 13.61 14.23 15.33 15.86 16.34 17.15 16.07 16.82 15.46 16.48 15.9 16.76 16.03 17.11
16 13.57 14.21 16.33 17.15 16.56 17.34 16.28 16.93 15.92 17.07 15.87 16.88 16.19 17.3
17 13.76 14.19 17 17.72 16.87 17.47 16.58 17.4 16.45 17.36 16.12 16.93 16.36 17.38
18 13.78 14.16 17.3 18.28 16.9 17.85 16.71 17.61 16.76 17.45 16.29 17.1 16.43 17.39
19 13.81 14.21 17.2 18.34 17.16 17.93 17.04 17.69 16.86 17.44 16.59 17.24 16.56 17.32
20 13.8 14.14 17.15 18.28 17.14 17.97 17 17.81 16.83 17.55 16.81 17.6 16.67 17.39
21 13.76 14.16 17.34 18.26 17.21 17.92 17.26 17.84 17 17.53 16.93 17.63 16.72 17.51
22 13.59 14.12 17.28 18.33 17.12 17.94 16.9 17.77 16.93 17.69 16.86 17.6 16.7 17.43
23 13.63 14.04 17.41 18.31 17.19 17.95 17.08 17.84 17.12 17.65 17.07 17.64 16.73 17.54

1 2 3 4 5 6 7

                Table B.2. Experimental data, Case A2



x (node)
y (node)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

                Table B.2. Experimental data, Case A2

min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm)
18.03 18.49 17.91 18.6 18.08 18.5 17.97 18.3 17.86 18.19 17.53 18.08 17.35 17.88
17.96 18.68 18.02 18.48 18.13 18.49 18.05 18.37 17.88 18.16 17.51 18.1 17.3 17.88
18.04 18.73 17.77 18.46 18.04 18.4 17.9 18.24 17.79 18.14 17.68 18.21 17.3 17.96
18.29 18.76 17.79 18.49 17.98 18.36 17.89 18.27 17.88 18.2 17.7 18.24 17.47 18
18.21 18.68 17.73 18.44 17.74 18.34 17.85 18.25 17.7 18.22 17.78 18.22 17.5 18.12
18.01 18.63 17.43 18.06 17.79 18.26 17.83 18.17 17.68 18.15 17.63 18.14 17.57 17.96
17.58 18.31 17.33 18.02 17.53 18.09 17.66 18.13 17.51 18.07 17.62 18.02 17.4 17.91
16.42 17.05 17.25 17.82 17.43 18.06 17.4 17.97 17.17 17.71 17.55 17.97 17.33 17.78
15.44 16.31 17.22 17.8 17.51 17.97 17.18 17.74 17 17.43 17.47 17.91 17.3 17.76
14.7 15.82 17.13 17.62 16.97 17.81 17.12 17.53 16.71 17.27 17.27 17.72 17.3 17.68

14.61 15.83 16.86 17.31 16.63 17.41 16.61 17.21 16.6 17.03 17.17 17.57 17.05 17.47
15.2 15.91 16.57 17.11 16.33 17.12 16.42 16.93 16.4 16.87 16.91 17.46 17.03 17.36

15.18 15.81 16.17 16.73 16.11 16.79 16.19 16.75 16.18 16.64 16.47 17.01 16.8 17.15
15.29 16 15.98 16.62 16.19 16.67 16.11 16.68 16.28 16.7 16.27 16.8 16.7 17.09
15.61 16.32 15.88 16.51 16.04 16.58 16.09 16.58 16.31 16.67 16.26 16.62 16.77 17.25
15.89 16.5 15.97 16.49 15.93 16.46 16.19 16.57 16.35 16.85 16.29 16.67 18.01 18.26
16.2 16.71 15.9 16.45 15.73 16.32 16.21 16.52 16.34 16.71 16.32 16.73 18.37 18.71

16.09 16.83 15.82 16.41 15.83 16.36 15.91 16.43 16.22 16.73 16.3 16.82 18.59 18.88
16.14 16.89 15.98 16.49 15.87 16.26 16.01 16.38 16.29 16.73 16.26 16.75 18.63 18.95
16.39 16.92 15.94 16.63 15.83 16.27 16.17 16.51 16.34 16.69 16.44 16.82 18.65 18.94
16.19 16.96 15.72 16.46 15.86 16.33 15.97 16.54 16.39 16.73 16.51 16.85 18.62 18.89
16.15 17 15.91 16.51 15.81 16.34 15.95 16.54 16.18 16.7 16.41 16.91 18.59 18.78
16.3 17.05 16.08 16.6 15.73 16.41 16.07 16.52 16.28 16.71 16.3 16.9 18.48 18.81

8 9 10 11 12 13 14

Table B.2. (continued)



x (node)
y (node)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

                Table B.2. Experimental data, Case A2

min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm)
17.12 17.47 16.9 17.27 17.1 17.39 17.31 17.67 17.55 17.83 18.63 18.97 18.73 18.93
17.1 17.54 17.15 17.36 17.22 17.46 17.32 17.64 17.45 17.81 18.83 19.08 18.78 19
17.2 17.6 17.22 17.49 17.33 17.57 17.44 17.72 17.41 17.74 18.84 19.09 18.87 19.06

17.28 17.81 17.24 17.55 17.36 17.62 17.42 17.67 17.55 17.83 18.9 19.13 18.9 19.11
17.28 17.77 17.36 17.67 17.46 17.65 17.46 17.74 17.42 17.79 18.88 19.17 18.91 19.12
17.23 17.81 17.29 17.71 17.51 17.74 17.46 17.79 17.43 17.72 18.9 19.06 18.92 19.07
17.38 17.86 17.23 17.79 17.44 17.78 17.55 17.85 17.51 17.83 18.74 18.96 18.81 19.03
17.4 17.89 17.34 17.82 17.41 17.75 17.52 17.88 17.54 17.75 18.02 18.41 18.17 18.72

17.49 17.87 17.49 17.84 17.44 17.76 17.56 17.88 17.58 17.79 18.16 18.28 18.25 18.61
17.62 17.86 17.54 17.92 17.58 17.83 17.59 17.95 17.59 17.87 18.2 18.37 18.29 18.59
17.66 17.97 17.74 18.04 17.69 18.04 17.73 17.98 17.78 17.97 18.18 18.45 18.28 18.54
17.79 18.01 17.87 18.19 17.85 18.09 17.79 18.12 17.87 18.08 18.27 18.5 18.35 18.57
17.85 18.11 18.07 18.28 18.05 18.26 17.99 18.27 17.99 18.28 18.3 18.53 18.38 18.6
18.02 18.3 18.09 18.31 18.07 18.31 18.1 18.3 18.08 18.29 18.32 18.58 18.41 18.65
18.21 18.42 18.19 18.35 18.19 18.41 18.21 18.49 18.19 18.36 18.4 18.59 18.45 18.67
18.37 18.6 18.19 18.45 18.25 18.46 18.25 18.45 18.27 18.4 18.45 18.65 18.53 18.71
18.43 18.63 18.31 18.57 18.26 18.54 18.32 18.51 18.32 18.5 18.4 18.68 18.48 18.73
18.41 18.78 18.39 18.6 18.31 18.57 18.34 18.61 18.33 18.53 18.44 18.67 18.51 18.75
18.4 18.82 18.52 18.69 18.39 18.6 18.39 18.58 18.31 18.56 18.41 18.64 18.47 18.73

18.47 18.77 18.42 18.68 18.39 18.59 18.38 18.57 18.35 18.57 18.37 18.61 18.45 18.7
18.49 18.74 18.38 18.67 18.29 18.54 18.36 18.53 18.34 18.5 18.39 18.58 18.39 18.65
18.34 18.62 18.27 18.55 18.27 18.51 18.22 18.43 18.33 18.53 18.39 18.56 18.4 18.61
18.29 18.64 18.27 18.55 18.25 18.45 18.22 18.41 18.25 18.5 18.39 18.54 18.37 18.6
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Table B.2. (continued)



x (node)
y (node)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

                Table B.2. Experimental data, Case A2

min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm)
18.61 18.83 18.63 18.83 18.7 18.91 18.61 18.85 18.51 18.72 18.57 18.83 18.47 18.74
18.65 18.9 18.65 18.86 18.73 18.92 18.66 57.98 18.59 18.77 18.61 18.81 18.54 18.75
18.72 18.96 18.69 18.9 18.75 18.93 18.73 18.93 18.63 18.8 18.67 18.84 18.65 18.8
18.76 18.99 18.73 18.93 18.77 18.95 18.77 18.93 18.69 18.81 18.71 18.84 18.69 18.8
18.78 19.02 18.73 18.98 18.79 18.95 18.78 18.9 18.75 18.88 18.73 18.84 18.77 18.86
18.75 18.98 18.72 18.96 18.78 18.93 18.75 18.9 18.74 18.87 18.73 18.87 18.8 18.9
18.73 18.93 18.71 18.92 18.75 18.9 18.72 18.9 18.71 18.86 18.68 18.87 18.75 18.91
18.28 18.74 18.48 18.85 18.6 18.86 18.62 18.89 18.68 18.86 18.66 18.84 18.73 18.87
18.29 18.69 18.4 18.74 18.5 18.78 18.53 18.81 18.63 18.8 18.67 18.81 18.77 18.9
18.38 18.65 18.39 18.73 18.48 18.75 18.54 18.79 18.65 18.78 18.68 18.85 18.79 18.93
18.36 18.63 18.4 18.66 18.44 18.71 18.52 18.75 18.62 18.76 18.67 18.84 18.74 18.91
18.35 18.6 18.42 18.64 18.45 18.69 18.53 18.71 18.67 18.78 18.71 18.86 18.77 18.92
18.37 18.62 18.45 18.63 18.49 18.69 18.55 18.72 18.7 18.8 18.74 18.86 18.77 18.9
18.4 18.62 18.48 18.67 18.52 18.72 18.58 18.74 18.7 18.77 18.73 18.85 18.8 18.91

18.44 18.63 18.5 18.66 18.55 18.72 18.58 18.75 18.68 18.81 18.7 18.87 18.78 18.91
18.48 18.65 18.51 18.69 18.59 18.77 18.61 18.79 18.71 18.81 18.71 18.89 18.81 18.94
18.46 18.67 18.49 18.71 18.57 18.79 18.59 18.8 18.68 18.84 18.73 18.9 18.83 18.98
18.46 18.67 18.5 18.72 18.61 18.79 18.6 18.8 18.7 18.85 18.74 18.9 18.78 18.94
18.43 18.65 18.49 18.71 18.61 18.8 18.58 18.77 18.65 18.86 18.73 18.88 18.79 18.95
18.4 18.61 18.47 18.69 18.6 18.8 18.57 18.81 18.64 18.77 18.66 18.85 18.73 18.89

18.41 18.59 18.49 18.69 18.6 18.81 18.56 18.77 18.56 18.72 18.64 18.82 18.68 18.85
18.37 18.53 18.48 18.65 18.6 18.8 18.54 18.72 18.44 18.65 18.57 18.76 18.58 18.76
18.32 18.51 18.44 18.61 18.55 18.79 18.48 18.72 18.37 18.62 18.49 18.72 18.53 18.74

22 23 24 25 26 27 28

Table B.2. (continued)



x (node)
y (node) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm)

1 16.12 18.31 15.96 18.49 13.02 14.88 12.67 14.02 13.15 14.2 12.7 14.37 12.39 14.22
2 15.71 17.32 15.16 16.52 13.17 14.77 12.71 14.11 13.17 14.01 12.69 14.08 12.6 14.11
3 14.81 16.21 14.31 16.22 12.82 14.76 12.66 14.2 12.82 13.77 13.04 13.93 13.01 14.2
4 13.25 14.94 13.45 15.62 12.73 13.93 12.5 13.94 12.93 13.55 12.97 13.85 12.65 14.15
5 12.04 13.38 12.65 14.5 12.63 13.82 12.54 13.68 12.79 13.44 12.81 13.74 13.21 14.38
6 11.22 12.72 12.59 14.04 12.45 13.81 12.54 13.46 12.7 13.72 12.74 13.67 13.02 13.9
7 10.91 11.83 13.34 14.31 12.63 13.92 12.74 13.87 12.43 13.59 12.9 13.84 12.95 14.06
8 11.04 11.98 13.67 14.64 12.65 13.88 12.73 13.97 12.66 13.77 12.88 13.68 12.78 14.67
9 10.81 11.52 14.19 15.15 13.11 14.33 12.32 14.38 12.42 13.86 13 13.82 13.05 14.45

10 10.7 11.27 14.61 15.69 14.69 15.65 12.84 14.33 12.76 14.44 12.71 14.28 12.85 14.74
11 9.8 10.81 15.49 16.35 15.37 16.67 13.33 16.62 13.88 15.91 12.4 14.2 12.63 14.54
12 9.49 10.58 15.99 17.16 15.94 17.44 15.42 17.71 14.42 16.65 13.12 15.13 12.13 13.76
13 9.21 10.42 16.86 17.93 16.95 18.18 16.73 18.17 15.5 17.58 12.91 15.71 12.72 13.89
14 7.38 8.98 17.53 18.37 17.29 18.72 17.92 19.29 16.73 19.07 13.21 17.27 13.54 14.36
15 2.28 3.41 18.71 19.91 18.03 19.52 18.41 19.52 18.53 20.32 14.51 17.87 14.07 15.05
16 1.45 2.67 20.35 21.44 18.6 20.51 18.86 19.74 19.54 20.56 15.91 19.41 14.83 15.75
17 0.59 1.19 20.98 21.99 19.49 20.81 19.31 20.07 19.35 20.71 17.49 19.38 15.52 16.61
18 0.52 0.93 21.11 22.5 19.56 20.9 19.47 20.4 19.86 20.88 18.16 20.41 16.73 18.01
19 0.5 0.91 21.51 22.58 19.6 21.14 19.62 20.46 19.69 20.86 19.19 20.74 17.9 19.59
20 0.7 1.03 21.85 22.64 20.3 21.22 19.66 20.93 19.63 20.47 19.85 20.93 19.26 20.8
21 0.66 1.28 21.12 22.69 20.92 21.67 20.27 21.46 19.88 20.81 19.63 20.86 19.51 20.71
22 0.6 1.22 20.99 22.7 20.37 21.77 20.35 21.53 19.74 21 19.77 21.2 19.66 21.1
23 0.56 1.37 20.73 22.8 20.81 21.79 20.59 21.54 20 21.48 19.76 21.13 19.5 21.11

1 2 3 4 5 6 7

                Table B.3. Experimental data, Case B1



x (node)
y (node)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

                Table B.3. Experimental data, Case B1

min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm)
22.44 23.59 22.1 22.51 22.06 22.89 21.74 22.14 21.52 22.03 21.12 21.9 20.69 21.43
22.49 23.53 21.97 23.06 22.02 22.78 21.79 22.2 21.4 22.03 20.96 21.78 20.6 21.36
22.6 23.71 21.97 22.89 21.95 22.69 21.56 22.01 21.18 21.73 21.22 21.93 20.85 21.49

22.52 23.8 21.55 22.57 21.85 22.63 21.71 22 21.29 21.93 21.27 21.92 20.66 21.45
22.52 23.78 21.73 22.45 21.49 22.38 21.37 21.71 21.34 21.9 20.86 21.62 20.62 21.37
22.13 23.46 20.87 22.31 21.36 22.26 20.79 21.65 21.17 21.73 20.48 21.6 20.57 21.19
21.51 22.88 20.81 22.02 20.89 22.01 20.67 21.32 20.9 21.86 19.93 20.87 20.41 21
19.9 21.42 20.54 21.8 20.58 21.85 20.34 21.3 20.9 22.2 19.26 20.07 20.11 20.75

18.38 19.71 20.04 21.41 19.69 21.58 20.05 20.77 20.59 21.85 18.81 19.52 19.96 20.57
16.78 18.5 19.93 20.99 18.88 21.01 19.64 20.56 20 21.22 18.2 19.01 19.81 20.35
16.1 18.11 19.76 20.61 18.3 20.12 19.1 19.94 18.67 19.86 17.6 18.23 19.9 20.26

15.01 17.73 19.3 20.31 17.59 18.9 18.5 19.33 18.02 18.87 17.11 17.69 19.52 20.1
16.01 17.44 18.99 19.9 17.2 18.12 17.42 17.83 17.64 18.28 16.97 17.61 18.66 20.3
16.46 17.79 18.53 19.36 17.22 18.16 17.28 17.72 17.62 18.15 17.11 17.95 18.7 20.23
16.8 17.9 18.32 19.25 17.38 18.43 17.58 17.84 17.69 18.05 17.25 17.87 20.39 21.15

16.89 17.68 17.85 18.79 17.22 17.97 17.13 17.64 17.65 17.89 17.5 18 22.1 22.48
16.77 17.91 17.36 18.54 17.25 17.77 17.21 17.72 17.71 17.98 17.69 18.07 22.59 23.13
16.92 17.92 16.94 18.45 16.94 17.76 17.08 17.41 17.73 17.99 17.692 18.09 23.17 23.49
17.23 18.47 17.12 18.35 16.89 17.69 17.32 17.78 17.68 18.13 17.68 18.09 23.17 23.44
17.33 19.37 16.97 18.28 16.79 17.72 17.46 17.86 17.38 17.96 17.7 18.31 23.14 23.59
18.16 19.92 17.27 18.36 17.11 18.08 17.37 17.89 17.63 18.04 17.6 18.13 23.01 23.4
18.01 19.85 17.17 18.72 17.3 18.34 16.89 17.83 17.61 17.97 17.6 18.21 22.99 23.19
18.59 20.36 17.19 19.21 16.79 18.6 17.16 17.92 17.65 17.99 17.74 18.12 22.92 23.29
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x (node)
y (node)

1
2
3
4
5
6
7
8
9
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13
14
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                Table B.3. Experimental data, Case B1

min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm)
19.95 20.99 19.7 20.67 20.26 20.66 20.59 20.83 20.71 21.24 23.42 23.58 23.26 23.52
20.15 21.07 19.93 20.67 20.22 20.68 20.48 20.84 20.75 21.17 23.43 23.69 23.28 23.6
20.22 21.06 20.08 20.7 20.29 20.81 20.62 20.96 20.85 21.21 23.47 23.74 23.38 23.62
20.24 21.15 20.2 20.74 20.42 20.8 20.62 20.94 20.73 21.11 23.5 23.82 23.34 23.63
20.22 21.02 20.37 20.88 20.38 20.8 20.7 20.92 20.71 21.11 23.49 23.83 23.4 23.64
20.16 21 20.24 20.85 20.54 20.85 20.63 20.97 20.68 21.04 23.38 23.8 23.3 23.56
20.32 20.95 20.44 20.92 20.64 20.98 20.69 21.03 20.7 21.12 23.25 23.55 23.29 23.51
20.28 20.98 20.61 21.14 20.73 21.01 20.7 21.12 20.59 20.96 21.87 22.99 23.16 23.44
20.41 20.99 20.82 21.23 20.65 21.01 20.75 21.17 20.77 21.19 21.48 21.92 23.12 23.35
20.78 21.19 20.95 21.43 20.92 21.18 20.83 21.27 21.13 21.57 21.37 22.07 22.99 23.17
20.91 21.38 21.34 21.77 21.1 21.48 21.02 21.36 21.35 21.83 21.79 22.39 22.93 23.19
21.08 21.58 21.57 22.02 21.46 21.75 21.32 21.67 21.46 21.86 22.27 22.49 22.81 23.11
21.49 21.98 21.78 22.17 21.56 21.82 21.61 21.93 21.7 21.94 22.34 22.66 22.84 23.04
21.81 22.17 22.04 22.36 21.77 22.11 21.91 22.17 21.92 22.3 22.47 22.75 22.8 23.08
22.07 22.38 22.14 22.45 22.04 22.3 22.15 22.43 22.1 22.38 22.49 22.71 22.8 23.04
22.34 22.79 22.31 22.59 22.16 22.44 22.22 22.49 22.22 22.46 22.52 22.78 22.78 23
22.52 22.99 22.46 22.77 22.38 22.62 22.19 22.53 22.28 22.51 22.58 22.76 22.71 22.95
22.6 23.07 22.64 22.9 22.5 22.71 22.37 22.6 22.3 22.55 22.57 22.81 22.76 22.94
22.7 23.11 22.75 23 22.59 22.77 22.54 22.78 22.4 22.64 22.6 22.8 22.74 23
22.6 23.14 22.77 23.04 22.61 22.82 22.46 22.72 22.45 22.67 22.61 22.89 22.78 22.98

22.65 23.09 22.78 23.05 22.64 22.83 22.43 22.63 22.4 22.58 22.6 22.92 22.75 22.97
22.42 22.85 22.68 22.94 22.58 22.8 22.34 22.56 22.42 22.7 22.48 22.76 22.68 22.85
22.59 22.96 22.59 22.91 22.61 22.79 22.38 22.56 22.44 22.7 22.53 22.73 22.67 22.89
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Table B.3. (continued)



x (node)
y (node)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
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23

                Table B.3. Experimental data, Case B1

min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm)
23.46 23.66 23.38 23.5 23.45 23.61 23.34 23.48 23.1 23.22 23.28 23.44 23.31 23.45
23.41 23.63 23.45 23.57 23.48 23.6 23.36 23.48 23.18 23.32 23.26 23.44 23.38 23.56
23.5 23.66 23.48 23.62 23.5 23.61 23.38 23.52 23.21 23.33 23.34 23.49 23.39 23.58

23.36 23.64 23.5 23.63 23.52 23.61 23.42 23.56 23.26 23.42 23.44 23.59 23.43 23.57
23.42 23.61 23.49 23.68 23.46 23.58 23.38 23.5 23.29 23.43 23.43 23.53 23.47 23.64
23.32 23.54 23.45 23.64 23.4 23.57 23.4 23.53 23.34 23.5 23.38 23.54 23.46 23.62
23.31 23.51 23.44 23.61 23.41 23.54 23.41 23.59 23.34 23.48 23.4 23.52 23.44 23.58
23.23 23.45 23.44 23.56 23.39 23.51 23.41 23.55 23.33 23.49 23.44 23.54 23.49 23.63
23.1 23.32 23.36 23.53 23.4 23.52 23.42 23.56 23.33 23.49 23.41 23.55 23.49 23.63

23.08 23.3 23.3 23.48 23.42 23.53 23.35 23.53 23.35 23.47 23.4 23.51 23.42 23.54
23.1 23.28 23.38 23.5 23.42 23.55 23.32 23.46 23.36 23.45 23.44 23.56 23.47 23.61

23.04 23.22 23.3 23.46 23.43 23.52 23.3 23.48 23.36 23.49 23.45 23.53 23.46 23.59
23 23.16 23.3 23.42 23.4 23.48 23.27 23.43 23.37 23.49 23.45 23.53 23.44 23.59

22.98 23.12 23.28 23.42 23.37 23.5 23.35 23.48 23.35 23.49 23.45 23.57 23.51 23.66
22.91 23.05 23.27 23.4 23.34 23.48 23.31 23.45 23.35 23.49 23.45 23.55 23.48 23.62
22.9 23.08 23.25 23.39 23.33 23.49 23.38 23.5 23.32 23.51 23.42 23.54 23.56 23.66

22.85 23.03 23.21 23.38 23.33 23.46 23.35 23.49 23.3 23.48 23.47 23.59 23.55 23.67
22.8 23.02 23.18 23.34 23.33 23.45 23.32 23.53 23.34 23.5 23.49 23.61 23.52 23.64

22.84 23.05 23.17 23.33 23.32 23.46 23.35 23.48 23.38 23.52 23.42 23.59 23.5 23.62
22.83 23.04 23.2 23.4 23.41 23.56 23.35 23.51 23.29 23.44 23.4 23.55 23.4 23.54
22.81 23.02 23.22 23.35 23.37 23.49 23.32 23.44 23.23 23.37 23.35 23.45 23.37 23.52
22.81 22.99 23.08 23.36 23.29 23.53 23.24 23.36 23.16 23.26 23.28 23.46 23.34 23.49
22.57 22.85 23.02 23.28 23.31 23.45 23.2 23.34 23.1 23.25 23.24 23.38 23.26 23.38

22 23 24 25 26 27 28

Table B.3. (continued)



x (node)
y (node) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm)

1 25.96 27.58 25.2 26.86 24.29 26.1 24.36 25.39 24.6 25.93 24.77 25.88 25.18 26.01
2 25.71 27.31 24.98 26.19 24.22 26.08 24.27 25.58 24.68 25.61 25.28 25.72 25.31 26.1
3 25.79 27.21 24.61 26.28 24.15 25.56 24.33 25.5 24.59 25.36 24.92 25.58 25.14 26.12
4 25.8 27.26 24.62 26.18 24.14 25.42 24.2 25.3 24.53 25.27 24.71 25.68 25.31 26.01
5 25.64 27.1 24.31 25.87 24.4 25.35 24.37 25.34 24.41 25 24.78 25.68 24.99 26
6 24.89 27.05 24.04 25.5 24.15 25.32 24.43 25.28 24.46 24.94 24.74 25.66 25.03 25.81
7 24.13 26.44 23.6 25.43 24.16 25.33 24.33 25.29 24.23 24.96 25.03 25.59 24.96 25.62
8 23.11 25.28 23.43 25.05 24.01 25.35 24.34 25.12 24.46 25.05 25 25.72 24.76 25.66
9 22.99 24.87 23.68 25.09 24.51 25.37 24.08 25.12 24.37 25.18 25 25.75 24.95 25.75

10 22.9 24.69 23.99 25.22 24.93 25.91 24.27 25.43 24.48 25.41 24.88 25.64 25.16 26.11
11 22.6 24.46 24.19 25.21 25.33 26.04 24.42 25.54 24.62 25.49 24.9 25.61 25.17 26.41
12 22.94 24.15 24.56 25.39 25.84 26.86 24.91 25.87 24.92 25.7 25.5 26.3 25.3 26.2
13 22.51 24.5 24.86 25.94 26.37 27.51 25.58 26.95 25.56 26.53 25.87 26.9 24.92 26
14 23.63 24.65 24.87 26.18 26.43 27.7 26.38 27.21 26.37 27.23 26.62 27.56 25.44 26.97
15 23.65 24.74 25.82 26.92 27.18 28.05 26.97 27.94 26.57 27.46 27.14 28.18 26.14 27.63
16 23.83 24.44 26.93 28.09 27.4 28.55 27.47 28.45 26.94 27.82 26.92 28.01 26.82 28.49
17 24.01 24.55 27.87 28.99 27.93 28.65 27.77 28.51 27.35 28.31 27.03 28.07 27.14 28.52
18 24.01 24.53 27.95 29.12 28.15 28.92 27.78 28.72 27.46 28.26 27.36 28.27 27.57 28.52
19 24.03 24.66 28.48 29.37 28.21 28.96 28.08 28.8 27.56 28.42 27.62 28.59 27.48 28.4
20 24.05 24.64 28.52 29.5 28.35 29.21 27.91 29.08 27.9 28.82 27.88 28.91 27.27 28.76
21 23.89 24.64 28.56 29.6 28.21 29.22 27.93 29.1 28.03 28.79 27.79 28.7 27.5 28.77
22 23.88 24.57 28.99 29.84 28.23 29.14 28.14 29.12 28.13 28.82 27.91 28.76 27.53 28.55
23 23.88 24.65 28.78 29.91 28.12 29.24 28.39 29.23 27.89 28.9 27.92 28.96 27.7 28.77
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                Table B.4. Experimental data, Case B2



x (node)
y (node)

1
2
3
4
5
6
7
8
9

10
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12
13
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23

                Table B.4. Experimental data, Case B2

min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm)
29.11 30.23 29.22 29.85 29.09 29.66 28.98 29.45 28.81 29.36 28.6 29.21 28.12 28.76
29.52 30.23 29.06 29.68 28.96 29.54 28.86 29.29 28.71 29.29 28.51 29.05 28.1 28.81
29.33 30.27 29.05 29.75 28.97 29.51 28.86 29.27 28.61 29.29 28.63 29.2 28.27 28.84
29.52 30.26 28.77 29.68 28.87 29.47 28.71 29.47 28.73 29.3 28.66 29.17 28.27 28.88
29.4 30.21 28.53 29.78 28.78 29.4 28.76 29.43 28.78 29.48 28.58 29.17 28.29 28.86

29.31 30.18 28.33 29.46 28.4 29.38 28.67 29.25 28.49 29.15 28.49 29.08 28.03 28.95
28.92 29.63 28.06 29.15 28.61 29.35 28.6 29.29 28.37 29.01 28.44 29.03 28.1 28.87
27.51 28.78 28.1 28.9 28.26 29.18 28.54 29.28 28.06 28.67 28.28 28.97 27.99 28.65
26.78 27.58 27.83 28.81 28.28 28.94 28.23 29.02 27.85 28.4 28.09 28.83 27.93 28.47
25.7 26.61 27.51 28.48 27.74 28.49 27.61 28.63 27.51 28 27.87 28.56 27.9 28.33

25.41 26.27 27.6 28.17 27.33 28.27 27.16 28 27.37 27.9 27.51 28.28 27.75 28.26
25.2 26.37 27.4 28.05 27.13 27.68 26.76 27.5 26.97 27.64 27.4 28.12 27.48 27.91

25.28 26.41 27.27 27.87 26.66 27.56 26.69 27.23 26.87 27.34 26.77 27.81 27.06 27.89
25.66 26.61 26.82 27.56 26.4 27.34 26.56 27.25 26.86 27.36 26.82 27.41 27.19 27.8
25.82 26.5 26.88 27.52 26.54 27.18 26.62 27.18 26.95 27.32 26.76 27.27 27.65 28.32
26.18 27.12 26.5 27.32 26.54 27.13 26.45 27.13 26.78 27.19 26.79 27.31 29.01 29.28
26.12 27.51 26.51 27.35 26.55 27.14 26.71 27.1 26.66 27.26 26.63 27.31 29.42 29.85
26.52 27.45 26.6 27.43 26.34 27.06 26.61 27.14 26.73 27.36 26.66 27.34 29.7 30.09
26.87 27.78 26.44 27.3 26.4 27.05 26.52 27.09 26.77 27.36 26.68 27.29 29.7 30.13
26.72 27.76 26.31 27.3 26.36 27.06 26.42 27.1 26.66 27.28 26.71 27.54 29.77 30.11
26.79 28 26.56 27.42 26.41 27.11 26.59 27.17 26.57 27.3 26.71 27.69 29.77 30.16
26.63 27.88 26.24 27.52 26.41 27.19 26.47 27.26 26.6 27.37 26.72 27.72 29.59 30.08
26.69 27.96 26.67 27.59 26.24 27.3 26.35 27.4 26.74 27.37 26.6 27.73 29.6 30.12
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Table B.4. (continued)



x (node)
y (node)

1
2
3
4
5
6
7
8
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                Table B.4. Experimental data, Case B2

min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm)
27.93 28.49 27.49 28.2 27.96 28.29 28 28.61 28.38 28.83 29.83 30.28 29.86 30.1
27.73 28.42 27.77 28.16 27.85 28.26 28.01 28.49 28.34 28.83 29.94 30.26 29.92 30.11
27.87 28.62 27.87 28.38 28.09 28.45 28.27 28.6 28.45 28.83 29.95 30.31 30.04 30.19
28.06 28.65 28.01 28.57 28.11 28.48 28.2 28.55 28.39 28.78 30.08 30.28 29.99 30.26

28 28.63 28.18 28.67 28.23 28.6 28.11 28.65 28.38 28.72 30.09 30.37 30.02 30.34
27.94 28.72 27.94 28.53 28.22 28.69 28.17 28.61 28.42 28.79 29.99 30.36 30.04 30.21
28.08 28.64 28.31 28.67 28.04 28.73 28.1 28.67 28.32 28.68 29.86 30.16 29.85 30.25
28.17 28.77 27.96 28.65 28.11 28.67 28.33 28.72 28.25 28.67 28.75 29.11 29.82 30.08
28.3 28.82 28.22 28.68 28.12 28.86 28.07 28.86 28.42 28.71 28.99 29.29 29.62 30.02

28.31 28.79 28.42 28.91 28.43 28.91 28.38 28.89 28.5 28.9 29.15 29.39 29.64 30.02
28.39 28.86 28.47 28.98 28.53 28.94 28.55 29.04 28.47 28.9 29.18 29.57 29.67 29.96
28.42 28.98 28.79 29.11 28.68 29.04 28.84 29.1 28.76 29.27 29.3 29.55 29.59 29.88
28.68 29.05 28.97 29.21 28.9 29.17 28.87 29.28 28.98 29.3 29.27 29.5 29.71 29.92
28.9 29.3 28.95 29.49 28.98 29.35 29.06 29.27 28.98 29.35 29.31 29.6 29.59 29.88

29.11 29.55 29.13 29.49 29.16 29.4 29.23 29.45 29.13 29.49 29.29 29.68 29.55 29.82
29.08 29.61 29.26 29.57 29.21 29.55 29.28 29.51 29.24 29.53 29.42 29.68 29.58 29.82
29.22 29.81 29.41 29.7 29.32 29.8 29.3 29.59 29.27 29.57 29.49 29.75 29.61 29.82
29.11 29.89 29.46 29.72 29.39 29.76 29.31 29.7 29.24 29.59 29.46 29.78 29.61 29.78
29.24 29.94 29.49 29.84 29.44 29.71 29.42 29.67 29.34 29.65 29.59 29.8 29.55 29.81
29.28 29.97 29.45 29.82 29.44 29.7 29.37 29.64 29.37 29.66 29.4 29.87 29.58 29.82
29.44 29.91 29.51 29.84 29.35 29.66 29.36 29.6 29.35 29.62 29.43 29.73 29.37 29.73
29.52 29.87 29.35 29.76 29.36 29.56 29.23 29.66 29.37 29.63 29.32 29.72 29.31 29.73
29.41 29.9 29.22 29.79 29.37 29.66 29.23 29.65 29.39 29.64 29.4 29.68 29.5 29.72
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Table B.4. (continued)



x (node)
y (node)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

                Table B.4. Experimental data, Case B2

min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm)
29.29 29.66 29.3 29.63 29.43 29.68 29.39 29.6225 29.24 29.455 29.33 29.5275 29.25 29.43
29.33 29.73 29.39 29.7 29.49 29.73 29.455 29.6975 29.3 29.545 29.325 29.5725 29.26 29.51
29.46 29.73 29.48 29.71 29.52 29.73 29.49 29.7 29.37 29.58 29.39 29.6 29.35 29.56
29.52 29.73 29.41 29.76 29.49 29.73 29.4825 29.715 29.385 29.61 29.4175 29.635 29.38 29.59
29.49 29.81 29.41 29.73 29.45 29.63 29.4325 29.6225 29.385 29.585 29.3775 29.5875 29.38 29.6
29.49 29.77 29.53 29.81 29.43 29.65 29.42 29.6325 29.37 29.575 29.38 29.5775 29.41 29.6
29.55 29.79 29.44 29.74 29.42 29.72 29.4075 29.6825 29.375 29.625 29.3925 29.6175 29.43 29.63
29.44 29.68 29.42 29.71 29.44 29.69 29.4325 29.675 29.405 29.64 29.4075 29.635 29.43 29.65
29.26 29.51 29.38 29.63 29.38 29.64 29.3825 29.62 29.375 29.59 29.4175 29.61 29.46 29.63
29.32 29.61 29.34 29.68 29.48 29.65 29.4575 29.6125 29.435 29.575 29.4625 29.5875 29.49 29.6
29.28 29.54 29.4 29.67 29.37 29.58 29.36 29.565 29.35 29.55 29.4 29.595 29.45 29.64
29.2 29.57 29.35 29.62 29.3 29.62 29.305 29.595 29.33 29.59 29.405 29.635 29.47 29.67

29.21 29.49 29.42 29.68 29.3 29.54 29.3125 29.55 29.315 29.55 29.3575 29.59 29.39 29.62
29.26 29.53 29.38 29.61 29.41 29.62 29.4 29.6125 29.38 29.595 29.42 29.6375 29.45 29.67
29.21 29.43 29.37 29.61 29.35 29.58 29.345 29.5675 29.37 29.585 29.425 29.6325 29.49 29.69
29.17 29.48 29.25 29.57 29.36 29.58 29.345 29.5675 29.35 29.575 29.395 29.6225 29.46 29.69
29.17 29.4 29.35 29.61 29.32 29.54 29.3225 29.525 29.365 29.55 29.4475 29.615 29.54 29.69
29.2 29.42 29.34 29.61 29.27 29.52 29.2675 29.505 29.295 29.52 29.3725 29.585 29.43 29.63

29.21 29.48 29.31 29.55 29.37 29.61 29.3325 29.5575 29.355 29.565 29.4275 29.6225 29.5 29.68
29.16 29.5 29.36 29.53 29.39 29.68 29.3575 29.615 29.325 29.55 29.4225 29.615 29.49 29.65
29.08 29.45 29.33 29.63 29.36 29.6 29.3025 29.5325 29.245 29.465 29.3575 29.5675 29.43 29.63
28.99 29.39 29.28 29.58 29.31 29.59 29.21 29.4975 29.08 29.375 29.21 29.5125 29.22 29.53
29.06 29.41 29.35 29.6 29.31 29.58 29.2225 29.5075 29.085 29.385 29.2275 29.5425 29.27 29.6
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Table B.4. (continued)



x (node)
y (node) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm)

1 19.62 21.81 19.03 20.6 14.89 18.02 14.6 16.5 15.17 16.94 15.6 16.85 15.59 17.3
2 18.16 20.41 18.22 19.55 16.04 17.37 14.69 16.37 15.4 16.51 15.49 16.58 15.44 17.01
3 17.41 19.6 17.19 18.73 15.69 17.17 14.72 16.29 15.32 16.32 15.61 16.6 15.52 16.81
4 17.01 18.64 16.62 18.17 15.39 16.92 14.6 16.05 15.1 16.22 15.28 16.45 15.58 16.84
5 15.17 16.91 15.2 17.12 14.79 16.6 13.96 15.98 15 16.21 15.36 16.34 15.99 17.1
6 14.21 15.44 14.79 16.33 14.75 16.32 14.84 16.12 14.94 16.15 15.56 16.5 15.88 17.01
7 14.28 15.13 15.44 16.53 14.02 16.53 14.93 16.39 14.92 16.08 15.37 16.43 15.58 16.68
8 14.45 15.4 16.4 17.57 14.15 16.39 14.5 16.18 15.27 16.2 15.42 16.45 15.66 16.75
9 14.52 15.26 17.42 18.28 15.71 17.48 14.42 16.48 15.25 16.42 15.39 16.41 15.41 16.81

10 14.23 15.37 18.25 19.38 17.99 19.65 15.51 17.89 15.11 16.91 14.59 15.98 16.45 17.61
11 13.89 15.34 19.02 20.03 19.48 20.77 17.32 20.01 16.02 17.83 13.29 15.36 16.8 17.86
12 13.68 14.9 19.69 20.96 20.47 21.58 19.89 21.39 16.26 18.41 13.78 15.09 16.32 17.75
13 13.34 15.27 20.45 21.98 21.32 22.41 21.4 22.94 17.65 20.46 13.67 15.2 16.12 17.53
14 11.36 13.44 21.95 23.13 22.29 23.53 22.42 23.71 20.28 21.85 14.79 16.18 16.09 17.5
15 2.36 2.87 22.98 24.19 23.01 24.3 22.91 23.97 21.92 23.83 15.67 16.74 16.62 18.14
16 0.55 1.35 24.15 25.44 23.5 25.03 23.21 24.76 22.82 24.63 17.11 20.62 17.49 18.4
17 0.64 1.37 24.9 26.53 24.13 25.54 23.57 24.87 23.44 24.71 19.6 22.26 18.22 19.48
18 0.68 1.36 25.17 27.12 24.33 25.82 23.74 25.17 23.32 24.58 21.09 23.91 18.99 20.98
19 0.7 1.3 25.66 27.28 24.43 26.07 23.95 25.2 23.84 24.75 23.2 24.48 20.8 22.09
20 0.69 1.38 25.35 27.15 24.47 26.2 23.98 25.51 23.93 24.78 23.35 25.05 22.67 24.69
21 0.67 1.37 25.33 27.25 24.72 26.19 24.29 25.71 23.85 24.95 23.75 25.02 23.4 24.85
22 0.6 1.3 25.29 27.2 24.89 26.09 24.22 25.75 23.81 24.97 23.78 25.08 23.45 25.03
23 0.57 1.26 25.09 27.38 24.81 26.1 24.52 25.92 24.12 25.23 23.95 25.32 23.69 25.41
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                Table B.5. Experimental data, Case C1



x (node)
y (node)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
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21
22
23

                Table B.5. Experimental data, Case C1

min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm)
26.9 28.16 26.51 27.32 26.56 27.43 26.34 27.22 26.14 26.93 25.9 26.93 25.3 26.49

26.86 28.03 26.5 27.39 26.72 27.51 26.31 27.1 26.13 26.97 25.88 27.1 25.4 26.41
27 28.17 26.53 27.36 26.74 27.29 26.22 27.07 26.14 26.98 26.19 27.1 25.41 26.58

27.12 28.24 26.31 27.34 26.51 27.27 26.36 27.14 26.07 26.86 25.83 26.9 24.97 26.59
27.06 28.42 25.87 27.18 26.01 27.21 25.97 26.9 25.94 26.83 25.57 26.68 24.92 26.12
26.69 28.02 25.03 27.04 25.87 27.03 25.89 26.91 25.84 26.68 24.93 26.22 24.55 25.87
26.02 27.21 24.84 26.55 25.62 26.66 26.02 26.9 25.5 26.3 23.72 24.95 24.57 25.17
25.28 26.23 24.63 26.24 25.13 26.22 26 26.88 24.46 26.19 22.89 23.79 24.36 24.8
23.55 25.08 24.14 25.9 24.01 26.04 25.35 27.05 23.39 25.41 22.49 23 24.39 24.86
21.93 23.49 23.81 25.48 23.33 25.06 24.62 26.26 21.9 24.71 21.91 22.51 24.44 24.89
20.41 22.8 23.2 24.99 22.54 23.8 23.54 25.1 21.66 23.41 21.36 22.17 24.23 25.11
20.07 22.13 22.5 24.22 21.57 22.91 22.22 23.6 21.14 22.35 20.77 21.53 24.2 25.09
20.22 21.93 21.67 23.43 20.9 22.02 21.32 22.46 21.26 22.17 20.19 21.27 23.58 25.05
20.09 21.69 21.46 22.95 20.27 21.36 20.78 21.57 21.08 22 20.4 21.67 24.17 25.36
19.83 21.5 20.56 22.24 20.57 21.55 20.78 21.55 21.18 21.9 21.31 21.91 25.49 26.29
19.7 21.11 20.44 21.86 20.34 21.63 20.43 21.37 20.95 21.58 21.37 21.89 27.44 27.86

19.77 21.39 20.21 21.54 20.25 21.23 20.23 21.42 20.99 21.71 21.5 22.12 27.84 28.55
19.76 21.57 20.33 21.76 20.39 21.45 20.37 21.4 21.12 21.93 21.33 22.23 28.16 28.92
20.33 22.35 20.24 21.72 20.43 21.24 20.43 21.36 21.16 21.97 21.31 22.2 28.36 28.94
20.76 22.53 20.48 22.21 20.33 21.32 20.6 21.49 21.11 22 21.52 22.35 28.41 28.93
21.9 23.47 20.62 22.21 20.52 21.51 20.81 21.72 21.07 22.08 21.45 22.34 28.25 28.82

22.43 23.84 20.39 22.32 20.27 21.59 20.8 21.78 21.04 22.2 21.51 22.36 28.11 28.8
22.38 24.29 20.66 22.6 20.33 21.68 20.89 22.03 21.08 22.21 21.38 22.4 28.19 28.82
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x (node)
y (node)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
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21
22
23

                Table B.5. Experimental data, Case C1

min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm)
24.64 25.76 24.59 25.3 24.4 25.69 24.86 25.62 25.12 25.9 28.57 29.13 28.46 28.8
24.71 25.73 24.77 25.46 24.65 25.55 24.89 25.55 25.21 25.81 28.66 29.15 28.43 28.86
24.93 25.74 24.77 25.45 24.79 25.44 25.03 25.53 25.3 25.93 28.79 29.27 28.53 28.89
25.01 25.77 24.73 25.54 25.12 25.56 24.9 25.52 25.23 25.88 28.72 29.23 28.64 28.94
24.65 25.78 24.68 25.6 24.97 25.61 25.04 25.52 25.27 25.76 28.78 29.28 28.6 28.84
24.83 25.71 24.79 25.52 25.11 25.56 24.95 25.46 25.25 25.72 28.57 29.08 28.54 28.88
24.96 25.72 24.82 25.61 25.07 25.63 25.08 25.59 25.3 25.78 28.27 28.79 28.43 28.78
25.21 26 24.76 25.57 25.04 25.74 25.17 25.69 25.28 25.81 27.18 27.82 28.33 28.61
25.51 26.06 25.33 25.82 25.06 25.8 25.14 25.63 25.3 25.87 27.12 27.56 28.11 28.55
25.9 26.32 25.64 26.05 25.55 26.1 25.48 25.92 25.57 26.1 27.07 27.54 28.06 28.35
26.3 26.71 25.97 26.35 25.81 26.17 25.89 26.28 25.49 26.03 27.18 27.52 28 28.27

26.42 26.89 26.09 26.56 25.98 26.29 26.41 26.79 25.78 26.21 27.23 27.55 27.87 28.11
26.68 27.18 26.41 26.77 26.37 26.71 26.55 27.11 26.32 26.65 27.29 27.57 27.8 28.1
26.81 27.3 26.57 26.97 26.87 27.24 26.68 27.05 26.72 27.04 27.3 27.56 27.85 28.08
27.1 27.57 27.07 27.39 27.09 27.4 26.8 27.15 26.81 27.08 27.3 27.6 27.87 28.09

27.57 27.89 27.27 27.66 27.27 27.57 26.89 27.21 26.98 27.3 27.28 27.68 27.85 28.03
27.71 28.21 27.56 27.89 27.33 27.7 27.01 27.45 27.16 27.43 27.32 27.69 27.77 27.94
27.86 28.27 27.7 28.04 27.5 27.79 27.12 27.52 27.24 27.53 27.35 27.75 27.8 28.04
27.7 28.34 27.87 28.18 27.58 27.97 27.24 27.57 27.35 27.66 27.4 27.76 27.79 28.08

27.88 28.37 27.97 28.29 27.74 28.06 27.27 27.59 27.26 27.63 27.45 27.77 27.8 28.1
27.93 28.36 27.95 28.25 27.69 28.05 27.23 27.61 27.25 27.66 27.53 27.8 27.68 28.01
27.79 28.33 27.96 28.14 27.68 28.01 27.18 27.59 27.28 27.64 27.52 27.85 27.6 27.91
27.78 28.43 27.9 28.13 27.71 28.02 27.1 27.57 27.24 27.7 27.39 27.87 27.65 27.95
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x (node)
y (node)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

                Table B.5. Experimental data, Case C1

min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm)
28.39 28.66 28.26 28.52 28.26 28.55 28.17 28.45 27.99 28.21 28.13 28.4 28.15 28.39
28.39 28.71 28.31 28.53 28.26 28.51 28.24 28.43 28.05 28.28 28.2 28.45 28.17 28.4
28.46 28.74 28.4 28.56 28.32 28.54 28.25 28.46 28.11 28.3 28.22 28.48 28.25 28.5
28.46 28.76 28.4 28.59 28.36 28.56 28.26 28.5 28.13 28.34 28.22 28.46 28.26 28.49
28.45 28.75 28.42 28.58 28.36 28.52 28.27 28.46 28.2 28.36 28.25 28.42 28.31 28.58
28.41 28.67 28.42 28.61 28.36 28.55 28.29 28.51 28.18 28.36 28.23 28.46 28.38 28.59
28.31 28.59 28.41 28.58 28.39 28.54 28.28 28.51 28.16 28.38 28.24 28.47 28.35 28.59
28.25 28.57 28.26 28.58 28.27 28.51 28.26 28.53 28.22 28.41 28.24 28.47 28.35 28.55
28.18 28.45 28.22 28.54 28.23 28.51 28.24 28.48 28.2 28.38 28.27 28.47 28.38 28.57
28.12 28.38 28.21 28.5 28.23 28.48 28.25 28.49 28.21 28.44 28.28 28.49 28.39 28.57
28.07 28.28 28.16 28.39 28.24 28.42 28.22 28.43 28.17 28.42 28.28 28.49 28.39 28.59
28.06 28.27 28.15 28.35 28.16 28.42 28.25 28.44 28.24 28.43 28.33 28.49 28.37 28.57
28.09 28.29 28.13 28.34 28.19 28.37 28.21 28.43 28.24 28.43 28.3 28.48 28.3 28.53
28.04 28.26 28.09 28.32 28.21 28.39 28.11 28.41 28.24 28.41 28.32 28.51 28.34 28.56
27.99 28.26 28.06 28.3 28.15 28.38 28.14 28.41 28.28 28.46 28.33 28.52 28.38 28.58
27.94 28.18 28.01 28.29 28.17 28.41 28.19 28.41 28.23 28.48 28.3 28.55 28.41 28.59
27.88 28.11 28.03 28.24 28.12 28.39 28.17 28.41 28.2 28.46 28.29 28.54 28.46 28.63
27.89 28.1 28.04 28.3 28.11 28.39 28.2 28.41 28.2 28.46 28.28 28.53 28.4 28.58
27.87 28.09 28.02 28.24 28.13 28.36 28.15 28.41 28.19 28.5 28.29 28.52 28.4 28.62
27.84 28.09 28.02 28.26 28.12 28.37 28.15 28.43 28.12 28.4 28.28 28.47 28.3 28.59
27.8 28.05 28 28.23 28.09 28.39 28.11 28.41 28.05 28.35 28.22 28.44 28.23 28.51

27.69 28.03 27.94 28.21 28.04 28.36 28.05 28.4 27.94 28.29 28.14 28.38 28.13 28.44
27.69 28.01 27.86 28.16 28.03 28.33 28.09 28.5 27.91 28.27 28.11 28.45 28.13 28.46
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Table B.5. (continued)



x (node)
y (node) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm)

1 28.16 30.5 27.16 29.46 25.78 28.23 25.76 27.59 26.03 27.92 26.29 27.87 26.73 28.42
2 28.44 30.41 26.32 28.57 25.62 27.73 25.62 27.32 25.97 27.62 26.34 27.66 26.48 28.02
3 27.7 29.81 26.17 28.64 25.89 27.34 25.66 27.06 25.89 27.37 26.34 27.66 26.61 28
4 27.04 29.53 26.27 28.45 25.66 27.29 25.67 26.96 25.93 27.22 26.37 27.51 26.49 27.88
5 25.8 28.73 25.59 27.91 25.25 27.5 25.84 27.16 25.78 27.22 26.27 27.44 26.78 27.93
6 25.03 27.74 25.35 27.34 25.21 27.55 25.54 27.07 25.53 27.11 26.34 27.42 26.63 27.78
7 24.11 27.68 24.43 26.45 25.49 27.42 25.61 27.2 25.29 27.25 26.38 27.53 26.6 27.67
8 23.71 26.52 25.11 26.93 25.63 27.68 25.4 27.36 25.43 27.12 26.29 27.57 26.19 27.75
9 23.72 25.98 25.52 27.14 25.71 27.69 25.5 27.41 25.74 27.21 26.26 27.57 26.18 27.71

10 23.21 25.6 25.78 28.04 26.09 28.06 25.77 27.55 25.69 27.38 26.49 27.6 25.71 27.86
11 22.97 25.03 26.29 28.19 27.14 29 26.01 27.8 26.16 27.94 26.9 27.99 25.51 27.6
12 23.43 25.28 26.35 28.6 28.16 29.67 26.92 28.63 26.95 28.64 26.88 28.28 25.3 27.32
13 23.4 25.47 27.08 29.28 28.71 30.42 27.96 29.66 28.08 29.67 27.28 28.47 25.69 27.24
14 23.85 25.87 28.15 29.6 29.29 30.91 28.68 30.36 28.83 30.37 28.3 30.04 26.09 27.5
15 24.47 26.06 29.25 30.84 30.1 31.39 29.05 30.97 29.41 30.99 29.73 31.47 27.03 28.32
16 24.84 25.9 30.5 32.03 30.16 31.73 29.6 31.32 29.85 31.47 30.07 31.99 27.39 29.8
17 25.01 26.12 31.18 32.84 30.64 32.13 30.27 31.74 29.83 31.54 30.79 32.31 28.13 29.97
18 25.08 26.05 31.63 33.28 30.94 32.51 30.78 32.28 29.94 31.77 30.43 32.36 29.04 30.9
19 25.23 26.07 31.78 33.37 31.19 32.9 30.94 32.53 30.28 31.88 30.48 32.36 30.01 31.65
20 25.18 26.23 31.68 33.4 31.33 33 31.02 32.61 30.46 32.12 30.47 32.25 29.89 31.75
21 25.12 26.2 31.8 33.46 31.42 33.07 31.29 32.8 30.77 32.42 30.63 32.04 30.1 31.68
22 25.1 26.17 31.89 33.6 31.28 33.04 31.23 32.76 30.94 32.43 30.68 32.07 30.1 31.65
23 24.91 26.34 31.74 33.55 31.32 33.04 31.29 32.84 30.98 32.55 30.76 32.39 30.08 32.08
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                Table B.6. Experimental data, Case C2



x (node)
y (node)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
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                Table B.6. Experimental data, Case C2

min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm)
32.84 33.92 32.64 33.7 32.87 33.6 32.48 33.46 32.41 33.42 32.37 33.26 31.91 32.82
32.97 33.89 32.85 33.67 32.59 33.61 32.69 33.55 32.48 33.36 32.33 33.15 31.89 32.86
33.03 34.02 32.83 33.71 32.67 33.59 32.69 33.49 32.44 33.29 32.32 33.22 31.97 32.92
33.09 34.1 32.63 33.67 32.7 33.58 32.6 33.34 32.54 33.35 32.26 33.3 31.99 32.97
32.89 33.98 32.44 33.35 32.72 33.6 32.47 33.39 32.4 33.3 32.33 33.26 31.79 32.86
32.73 33.81 32 33.2 32.53 33.49 32.09 33.27 32.35 33.18 32.09 33.22 31.66 32.72
32.1 33.48 31.33 32.8 32.36 33.27 31.76 32.91 32.48 33.29 31.79 32.93 31.67 32.52

30.98 32.45 31.13 32.77 32.13 33.06 31.15 32.36 32.49 33.56 31.5 32.45 31.5 32.28
29.68 32.08 31.03 32.55 31.96 32.94 30.57 31.64 32.31 33.65 30.81 31.82 31.35 32.11
28.6 30.46 30.95 31.97 31.51 32.68 30.46 31.31 31.78 32.9 30.37 31.22 31.39 31.99

27.74 29.81 30.77 31.79 30.62 32.28 30.21 31.13 30.9 31.86 30.04 30.9 31.26 31.9
28.1 29.37 30.67 31.51 29.68 31.72 29.83 30.74 30.13 31.04 29.41 30.55 31.23 31.81

27.88 29.51 30.08 30.97 29.16 30.81 29.62 30.43 29.76 30.47 29.3 30.32 30.61 31.76
27.95 29.26 29.52 30.35 29.59 30.67 29.59 30.42 29.74 30.4 29.38 30.47 30.73 31.5
28.06 29.43 28.85 29.92 29.3 30.04 29.56 30.31 29.61 30.43 29.57 30.45 31.58 32.25
27.74 29.67 28.56 29.82 29.34 30.33 29.48 30.17 29.66 30.44 29.56 30.34 32.91 33.54
28.29 30.27 28.71 30.23 29.24 30.12 29.42 30.11 29.67 30.35 29.69 30.42 33.52 34.1
28.59 30.75 29.03 30.3 29.07 30.05 29.38 30.09 29.73 30.32 29.67 30.48 33.66 34.16
28.95 30.83 28.93 30.24 29.14 30.1 29.39 30.1 29.68 30.42 29.59 30.48 33.89 34.35
29.14 30.9 28.8 30.02 29.29 30.19 29.31 30.28 29.77 30.48 29.73 30.56 33.88 34.39
29.26 30.98 28.84 30.07 29.29 30.24 29.37 30.24 29.53 30.61 29.71 30.59 33.82 34.33
29.41 31.2 29.17 30.47 29.24 30.26 29.35 30.37 29.5 30.58 29.51 30.63 33.72 34.32
29.33 31.46 29.08 30.5 29.1 30.24 29.31 30.33 29.6 30.58 29.48 30.53 33.71 34.42
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Table B.6. (continued)



x (node)
y (node)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

                Table B.6. Experimental data, Case C2

min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm)
31.35 32.34 31.16 32.09 31.22 32.01 31.79 32.25 31.82 32.53 34 34.56 33.95 34.47
31.54 32.32 31.32 32.13 31.37 32.15 31.78 32.26 31.9 32.66 34.08 34.66 34 34.55
31.4 32.25 31.43 32.1 31.58 32.2 31.87 32.43 31.92 32.61 34.11 34.61 34.09 34.53

31.57 32.64 31.43 32.2 31.69 32.2 31.83 32.4 31.94 32.57 34.14 34.63 34.14 34.59
31.59 32.62 31.47 32.27 31.78 32.24 31.9 32.46 32.02 32.47 34.22 34.76 34.11 34.61
31.63 32.58 31.54 32.31 31.65 32.33 31.78 32.46 32.02 32.45 34.08 34.62 34.15 34.63
31.68 32.54 31.7 32.43 31.56 32.46 31.85 32.55 31.83 32.4 33.85 34.44 34.04 34.47
31.78 32.57 31.75 32.52 31.71 32.41 31.87 32.54 31.9 32.57 32.77 33.75 33.94 34.31
31.66 32.65 31.89 32.5 31.73 32.54 31.98 32.61 31.99 32.59 32.88 33.6 33.89 34.21
31.93 32.75 32.01 32.62 31.86 32.65 32.09 32.72 32.21 32.79 33.09 33.68 33.72 34.13
32.28 32.84 32.24 32.9 32.32 33.03 32.19 32.7 32.48 33 33.14 33.6 33.7 34.05
32.45 33.08 32.49 33.05 32.48 33.1 32.42 32.96 32.66 33.04 33.16 33.65 33.63 34.03
32.59 33.09 32.83 33.27 32.67 33.22 32.77 33.21 32.79 33.28 33.28 33.7 33.62 34.03
32.82 33.3 33.01 33.49 32.79 33.31 32.81 33.32 32.83 33.29 33.37 33.78 33.6 33.98
33.07 33.51 33.08 33.6 32.97 33.49 32.98 33.42 32.94 33.41 33.36 33.75 33.6 33.95
33.31 33.82 33.29 33.75 33.09 33.61 33.08 33.62 33.06 33.54 33.41 33.88 33.56 34.01
33.33 33.93 33.46 33.9 33.27 33.75 33.2 33.68 33.15 33.57 33.42 33.89 33.5 33.96
33.58 34.16 33.5 34.01 33.3 33.78 33.21 33.7 33.23 33.59 33.46 33.83 33.56 33.93
33.7 34.19 33.58 34.15 33.36 33.92 33.29 33.78 33.26 33.71 33.46 33.87 33.58 33.98

33.52 34.22 33.59 34.09 33.38 33.91 33.28 33.78 33.38 33.85 33.42 33.92 33.62 33.94
33.7 34.19 33.62 34.1 33.36 33.92 33.23 33.75 33.32 33.82 33.4 33.89 33.59 33.88

33.59 34.18 33.51 34.04 33.37 33.88 33.18 33.75 33.23 33.74 33.35 33.82 33.47 33.87
33.55 34.2 33.51 33.96 33.45 33.85 33.12 33.73 33.29 33.86 33.35 33.87 33.42 33.85
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Table B.6. (continued)



x (node)
y (node)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

                Table B.6. Experimental data, Case C2

min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm) min (cm) max (cm)
33.92 34.26 33.8 34.3 33.95 34.34 33.76 34.23 33.69 34.11 33.81 34.26 33.72 34.21
33.94 34.3 33.93 34.27 33.83 34.26 33.78 34.26 33.7 34.13 33.82 34.25 33.8 34.18
34.04 34.39 34.01 34.38 33.94 34.33 33.84 34.26 33.75 34.19 33.86 34.26 33.93 34.19
33.98 34.41 33.96 34.35 34.04 34.43 33.87 34.26 33.84 34.25 33.9 34.27 33.98 34.29
33.99 34.43 33.99 34.34 33.97 34.35 33.82 34.28 33.85 34.29 33.92 34.29 33.98 34.33
33.94 34.35 34.02 34.34 33.9 34.3 33.86 34.24 33.85 34.26 33.99 34.35 34.04 34.37
33.87 34.38 34.03 34.33 33.92 34.29 33.86 34.22 33.88 34.24 33.96 34.3 34.05 34.4
33.82 34.31 33.93 34.3 33.92 34.3 33.88 34.26 33.88 34.25 34.01 34.31 34.03 34.39
33.78 34.3 33.89 34.29 33.89 34.28 33.85 34.22 33.84 34.24 33.98 34.31 34.03 34.4
33.75 34.17 33.88 34.22 33.9 34.31 33.83 34.21 33.84 34.25 33.93 34.32 34.01 34.41
33.72 34.11 33.87 34.21 33.82 34.23 33.85 34.24 33.85 34.23 33.92 34.35 34.03 34.4
33.69 34.06 33.83 34.19 33.9 34.28 33.84 34.23 33.84 34.24 33.91 34.32 33.96 34.36
33.72 34.03 33.79 34.2 33.83 34.32 33.82 34.2 33.86 34.24 33.92 34.3 33.96 34.34
33.68 33.95 33.8 34.17 33.81 34.27 33.85 34.19 33.86 34.27 33.97 34.34 33.99 34.33
33.64 33.97 33.72 34.15 33.79 34.22 33.85 34.2 33.86 34.23 33.98 34.37 34.02 34.39
33.72 34.04 33.73 34.12 33.78 34.19 33.88 34.21 33.89 34.26 33.96 34.31 34.01 34.37
33.61 33.97 33.75 34.11 33.81 34.2 33.88 34.17 33.91 34.26 34 34.37 34.04 34.41
33.58 33.96 33.73 34.13 33.83 34.18 33.86 34.23 33.86 34.25 33.93 34.38 33.97 34.33
33.54 33.9 33.69 34.13 33.84 34.28 33.81 34.26 33.87 34.26 33.95 34.32 34 34.39
33.51 33.91 33.7 34.11 33.87 34.29 33.88 34.29 33.85 34.22 33.93 34.3 34.01 34.38
33.53 33.85 33.68 34.15 33.85 34.27 33.79 34.21 33.8 34.13 33.83 34.31 33.97 34.32
33.42 33.8 33.61 34.11 33.78 34.21 33.74 34.2 33.66 34.06 33.79 34.27 33.9 34.22
33.33 33.77 33.65 34.12 33.85 34.33 33.74 34.21 33.59 34.09 33.78 34.24 33.87 34.25
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Table B.6. (continued)


