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ABSTRACT 

 

DAMAGE DETECTION IN STRUCTURES USING 

VIBRATION MEASUREMENTS 

 

AYDOĞAN, Mustafa Özgür 

M.S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. H. Nevzat ÖZGÜVEN 

December 2003, 89 Pages 

 

Cracks often exist in structural members that are exposed to repeated 

loading, which will certainly lower the structural integrity. A crack on a 

structural member introduces a local flexibility which is a function of the crack 

depth and location. This may cause nonlinear dynamic response of the structure. 

 

In this thesis, a new method is suggested to detect and locate a crack in a 

structural component. The method is based on the fact that nonlinear response of 

a structure with a crack will be a function of the crack location and crack 

magnitude. The method suggested is the extension of a recently developed 

technique for identification of non-linearity in vibrating multi degree of freedom 

 iii



system. In this method, experimentally measured receptances at different 

forcing levels are used as input, and the existence and location of a nonlinearity 

are sought. 

 

In order to validate the method, simulated experimental data is used. 

Characteristics of a cracked beam are simulated by using experimentally 

obtained analytical expressions, given in the literature. The structure itself is 

modelled by using finite element method. Several case studies are performed to 

test and demonstrate the applicability, efficiency and sensitivity of the method 

suggested. The effect of crack depth on nonlinear system response is also 

studied in numerical examples.  

 

Keywords: Structural Dynamics, Crack Detection, Crack Identification, 

Nonlinear Identification, Nonlinear Vibrations, Non-Linear Dynamics. 
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ÖZ 

 

TİTREŞİM  ÖLÇÜMLERİNİ KULLANARAK YAPILARDA 

HASAR TESBİTİ 

 

AYDOĞAN, Mustafa Özgür 

Yüksek Lisans, Makine Mühendisliği Bölümü 

Tez Danışmanı: Prof. Dr. H. Nevzat ÖZGÜVEN 

Aralık 2003, 89 Sayfa 

 

Çatlaklar, genellikle, tekrarlanan yüklemelere maruz kalan yapı 

elemanlarında, yapısal bütünlüğü bozan bir etken olarak ortaya çıkar. Yapısal bir 

eleman üzerindeki bir çatlak, bulunduğu bölgede, çatlağın yeri ve derinliğine bağlı 

fazladan bir esneklik oluşturur. Bu da, söz konusu yapıda doğrusal olmayan 

dinamik tepkilere neden olur. 

 

 Bu tezde, yapılardaki hasarların tesbiti ve yerinin belirlenmesi için yeni bir 

yöntem önerilmiştir. Bu yöntem, içinde çatlak bulunduran yapının doğrusal 

olmayan tepkilerinin, söz konusu çatlağın yeri ve büyüklüğünün bir fonksiyonu 

olacağı gerçeğine dayanır. Önerilen yöntem, çok serbestlik dereceli titreşen 
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sistemlerde doğrusal olmayan elemanların tanılanması için, önceki çalışmalarda 

geliştirilen bir yöntemin geliştirilmiş halidir. Bu yöntemde, değişik kuvvet 

düzeylerinde elde edilen deneysel tepki fonksiyonları girdi olarak kullanılarak, söz 

konusu yapıdaki hasarın varlığı ve yeri araştırılmaktadır. 

 

 Yöntemin geçerliliğinin saptanması için, deneysel veriler yerine teorik 

olarak hesaplanmış değerler kullanılmıştır. Üzerinde çatlak bulunan yapının 

modellenmesinde, çeşitli kaynaklarda verilen ve deneysel çalışmalar sonucunda 

elde edilen analitik ifadeler kullanılmıştır. Yapının kendisi, sonlu eleman tekniği 

kullanılarak modellenmiştir. Önerilen yöntemin uygulanabilirliğini, verimliliğini 

ve hassasiyetini göstermek için çeşitli örnek uygulamalar incelenmiştir.  Çatlağın 

derinliğinin, doğrusal olmayan sistem tepkelerine etkisi de çeşitli sayısal 

çözümlemelerle araştırılmıştır. 

 

Anahtar Kelimeler: Yapısal Dinamik, Çatlak Tesbiti, Çatlak Tanılanması,Doğrusal 

Olmayan Sistem Tanılanması, Doğrusal Olmayan Titreşimler 
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“If you have built castles in the air, your work need not be lost; 

                             there is where they should be.  

                             Now put the foundations under them”. 

 

Henry David Thoreau. 

           (1817~1862) 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Cracks are generally the main reasons of sudden structural failures 

during machine operations. They may cause serious damage or injury; therefore 

detecting damage in structural components at the earliest possible stage has 

become an important aspect in today’s engineering. There are various 

techniques in crack detection. One of the techniques in non destructive detection 

and locating of cracks is the use of vibration response of the structures. 

 

The presence of a crack in a structural component leads to a local 

reduction in stiffness and an increase in damping which will affect its vibration 

response. The crack opens and closes in time depending on the vibration 

amplitude. This makes the system nonlinear. However, a damage in a structure, 

in general, may introduce linear or nonlinear modification to the structure [1]. If 

a linear-elastic structure remains linear-elastic after damage is introduced, then 
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this is said to be a linear damage. In this case, the vibratory response of the 

damaged structure can still be modeled by a linear equation of motion. On the 

other hand, if linear-elastic structure begins to behave in a nonlinear manner 

after the damage is introduced, then it is called nonlinear damage. A fatigue 

crack that subsequently opens and closes under harmonic excitation is a kind of 

nonlinear damage.   

 

Damage identification methods are classified according to the type of 

measured data and the technique to gather that data. They are mainly based upon 

the shifts in natural frequencies or dynamically measured flexibilities and 

changes in mode shapes. Such changes are usually detected by matrix update or 

stiffness error methods and neural network methods which compare and contrast 

the damaged and the undamaged specimens.  

 

Rytter [2] defined four levels of damage identification as:  

 

 Determination of the damage that is present in the structure,  level 1, 

 Determination of the geometric location of the damage, level 2, 

 Quantification of the severity of the damage, level 3, 

 Prediction of the remaining service life of the structure, level 4. 

 

There are two types of problems related to damaged structures. Namely, 
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forward (direct) problem and inverse problem. The forward problem is to find 

out the effect of damages on the structural dynamic properties. For example, 

calculating natural frequency shifts of a structural component due to a known 

type of damage. In such problems, damage is modeled mathematically, and then 

the measured natural frequencies are compared to the predicted ones to 

determine the damage. This problem can be classified as level 1 damage 

identification [1].  

 

The inverse problem, on the other hand, consists of detecting, locating 

and quantifying damages present on a structural component. For example, 

calculating damage parameters, such as crack length and location. This problem 

can be classified as level 2 or level 3 damage identification [1].  

 

Many studies in the literature use open crack models and calculate the 

change in natural frequency in order to detect the presence of cracks. But, the 

assumption that cracks are always open during vibration is not realistic. In order 

to overcome this unrealistic assumption, in some studies which are mentioned in 

the next chapter, cracks are modelled with bilinear behavior. In this approach, 

damaged structure is associated with two flexibility values: one for the state of 

crack open and the other for the crack close. This approach does not account for 

the crack surface interference during fatigue, and furthermore the crack is 

assumed to have two perfectly flat surfaces and exist only in the fully open or 
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fully closed states. In reality, however, the roughness of the fracture surface, 

corrosion debris in the crack, plastic deformation left in the wake of a 

propagating crack and hydraulic wedging produced by oil trapped in the crack 

may lead to partial crack closure [3]. Therefore, the flexibility of the damaged 

component having a crack will change continuously with time.  
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CHAPTER 2 

 

 

LITERATURE SURVEY AND PRESENT STUDY 

 

 

2.1 Literature Survey 

 

Qian et al. [4] developed a FE cracked beam model for a cantilever beam 

with an edge crack. They proposed a simple method for determining the crack 

position, which is based on the relationship between the crack and eigenvalues of 

the beam. 

 

 Rizos et al. [5] investigated the flexural vibrations of a cantilever beam 

with a rectangular cross-section having a transverse surface crack which is 

modelled as a massless rotational spring. They also assumed that the crack is fully 

open and has uniform depth. As an experimental study, they forced the beam by a 

harmonic exciter to vibrate at one of the natural modes of vibration and measured 

the amplitudes at two positions. 
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Ostachowicz and Krawczuk [6] modelled a beam having an open and 

closed single-sided crack by triangular disk finite elements with two dof at each 

node. They showed the importance of two dimensionless ratios (the ratio of the 

distance along the beam from a reference point to the point where the crack is 

located to the beam’s total length, and the ratio of crack’s depth to the beam’s 

depth) in determining the crack location and magnitude. Then, they investigated 

the effects of open double-sided and single-sided cracks on the natural frequencies 

of the flexural vibrations of a cantilever beam [7]. In this work, stiffness at crack 

location is calculated by using structural intensity factors at the crack location.  

 

Kam and Lee [8] developed a procedure for identifying a crack in a 

structure. In this study, the structure is discretized into a set of elements and the 

crack is assumed to be located within one of the elements. Strain energy 

equilibrium equation for the cracked structure is derived based on the conservation 

of energy for estimating the crack size. 

 

Armon et al. [9] developed a method for detecting and locating cracks in a 

beam. They formulated the fractional eigenvalue shifts for four modes of a 

clamped-free beam and plotted curves of these shifts as a function of position onto 

the same axes. They defined regions on this plot that were specified by a rank 

ordering operation of the fractional eigenvalue shifts. Furthermore, they performed 

experiments on cracked and uncracked beams to find the change in natural 
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frequencies and rank-ordered these data as well. By matching between rank orders 

of the data and plot, the cracks were located along the length of the beam. 

 

Narkis [10] studied the effects of damages on the structural dynamic 

characteristics. This study was limited to uniform cantilever and simply supported 

beam. 

 

Sundermeyer and Weaver [11] modelled a cracked vibrating beam to 

determine crack location, depth and opening load of it. They modeled the crack by 

a rotational spring the compliance of which is calculated basing on linear elastic 

fracture mechanics and Castigliano's Theorem. Two seperate beam model were 

formed for open-crack and close-crack cases by utilizing Bernoulli-Euler Beam 

Equation. For open-crack case, they broke-up the beam into two sections and 

considered boundary conditions of displacement, bending moment, shear and 

continuity at the crack location. For close-crack case, the beam was treated as a 

continuous Bernoulli beam. They illustrated the dependence of frequency 

spectrum on crack position for a variety of crack sizes. These illustrations were 

used to extract the crack parameters. They also investigated the effect of static load 

on crack signature. 

 

 Dimarogonos [12] presented a state of art review of various methods in 

tackling the cracked structure problem. In this study, cracked beams, plates, 
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turbine rotors, turbine blades, pipes and shells were considered and identification 

methods were reviewed. 

 

 Ruotolo et al. [13] investigated the response of a vibrating cantilever beam 

with a closing crack under sinusoidal loads at various frequencies. In this work,  

the crack was modelled as fully open or fully closed, while the undamaged part of 

the beam was modelled by Euler-type finite elements with two nodes and two 

degrees of freedom at each node. Incremental form for the cracked beam were 

solved with an implicit time integration, which means that new stiffness matrices 

were formed at each  time step. They illustrated that frequency response functions 

are strongly depend upon the position of the crack, and this fact may be used for 

damage detection. In a later work, Ruotolo and Surace [14] developed a method 

for non-destructive detection and sizing of cracks in beams by using the modal 

parameters of the lower modes. 

 

Nandwana and Maiti [15] applied the method proposed by Rizos, 

Asparagathos and Dimaragonas [5] for the detection of location and size of a crack 

in a stepped cantilever beam based on measurements of the first three natural 

frequencies. They obtained curves for the variation of stiffness with crack location 

basing on the measured natural frequencies, and graphed them on the same axes. 

From the intersection of these curves, the crack location was extracted. The crack 

size was determined by using the relationship between stiffness and crack size 

obtained by Ostachowicz  and Krawkczuk [7]. 
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Chati et al [16],  performed modal analysis of a cantilever beam with a 

transverse edge crack by modelling the opening and closing of a crack as a 

piecewise linear system. In this work, a finite element model was used with crack-

close and crack-open cases. For each of the linear regions, an eigenvalue problem 

was defined and then the two sets of natural frequencies were combined to develop 

the "effective natural frequencies" of the cracked beam. In order to verify the 

results, a two degree of freedom piecewise-linear system was used and the 

nonlinear normal modes of vibration were obtained by perturbation methods. 

 

 Chondros et al [17] developed a continuous cracked beam vibration theory 

for longitudinal vibrations of Euler-Bernoulli beams with an edge crack by using 

Hu-Washizu-Barr variational formulation to develop the differential equation and 

the boundary conditions of  cracked beam.  

 

Boltezar et al [18] presented a procedure to detect a crack site on free-free 

uniform beams, where a crack is introduced into the system model with an 

equivalent linear spring connecting two segments of the beam. 

 

Rivola and White [19], studied the effects of crack closure on the dynamic 

behaviour of the cantilever beams. The system response was analyzed by using 

bispectral analysis. 

 

Masoud et al. [20] investigated the coupling effect between the crack depth  
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and the axial load on the natural frequencies of an axially loaded fixed-fixed Euler-

Bernoulli beam with symmetrical double sided crack. 

 

Cheng et al. [21] investigated dynamic behaviour of a a cracked cantilever 

beam modelled as a one degree of freedom lumped parameter system vibrating at 

its first mode. The stiffness of the structure was modelled as a continuous function 

having regions corresponding to fully open, partially open and fully closed phases 

of the crack. The analysis was performed at both time and frequency domains. In 

this work, it is concluded that the reduction in natural frequency is much more 

smaller for a continuous breathing crack (or fatigue crack as they called) than an 

open crack; therefore fatigue cracks would be difficult to be recognized by 

frequency monitoring and a crack detection procedure by an open crack model 

would underestimate the "crack severity". It is  suggested that detection  of fatigue 

cracks should base on nonlinear features of frequency response functions rather 

than changes in natural frequencies. 

 

Shifrin and Ruotolo [22] developed a method to calculate the natural 

frequencies of a beam with multiple open cracks where the cracks are represented 

as massless rotational springs. But their study was restricted to uniform beams 

only. 

 

Chinchalkar [23] developed a numerical method to locate the crack in a 

beam of varying depth with different boundary conditions. Finite element analysis 
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was used to solve the model where the effect of the crack was taken into account 

as a rotational spring between two adjacent nodes. For each of three measured 

natural frequencies, the graphs of stiffness versus crack location were plotted on to 

same graph and from the intersection of these three curves, the crack locations 

were extracted. 

 

Khan et al. [24], demonstrated that structural defects can be detected and 

located using a continously scanning laser Doppler vibrometer. 

 

Lee and Chung [25],  presented a method for identifying a crack on a beam 

type structure by using natural frequency data. They developed a FEA model of 

the cracked structure by using strain energy concept and modified the system 

parameters until the first natural frequency of the FE model is equal to the 

experimental value, from where they identified the crack depth. By utilizing the 

Gudmunson equation (a relation between the crack size ratio, crack position ratio 

and undistorted natural frequency), they estimated the location of the crack. 

  

 Tysfansky and Bresnevich [26], worked on mathematical simulations of 

bending vibrations of a cracked aeroplane wing subject to harmonic excitation. 

They recognized the influence of fatigue crack on the excitation of superharmonic 

responses within the structure. 
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Khiem and Lin [27], carried out a natural frequency analysis for a multiple 

cracked beam on the basis of the transfer matrix method, in which the cracks were 

modelled as rotational springs. The effects of positions and depths of multiple 

cracks upon the natural frequencies of the beam were sought. Positions on the 

beam at which cracks do not affect certain natural frequencies were found, and 

they are called critical points. In this study, it suggested that this property may be 

used to detect crack position when it is recognized that a certain frequency is 

unchanged. 

 

Kerschen and Golinval [28], utilized the restoring force surface method for 

the identification of a bilinear beam from the measured dynamic response. The 

beam was modelled as a single degree of freedom system. 

 

Viola et al. [29] developed a crack identification method  to locate the 

crack and to calculate the depth of it by using modal data for a Timoshenko Beam 

modelled by finite elements. They constructed three dimensional surfaces for the 

first three natural frequencies based upon the dimensionless crack location and 

crack depth parameters. They also formed error functions for the mode shapes of 

the cracked beam. 

 

Krawczuk [30] proposed a method for damage detection in beamlike 

structures basing on the "genetic algorithm" and gradient-search technique. The 

beam was modelled with a transverse and non-propagating crack by applying 
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"spectral beam finite element method" and then an objective error function was 

formed depending upon the changes in measured dynamic responses of a cracked 

beam. Then the size and the location of the crack was estimated by an iterative 

procedure comparing the measured values with the values obtained from 

calculations for various locations and crack sizes. 

 

Saavedra and Cuitino [31], developed a cracked finite element flexibility 

matrix, based on strain energy density function given by linear fracture mechanic 

theory, to be used in finite element analysis of crack systems. A time varying 

"stiffness matrix" due to the opening and closing of the crack was formulated by 

using a step function. They studied the dynamic response of a cracked free-free 

beam and a U-frame excited by a harmonic force. It was found out that noticeable 

changes occur in the frequency spectra of the steady state vibrations of a damaged 

beam, such as additional peaks at the harmonics of the forcing frequency 

especially at even harmonics. 

 

Li [32] developed a method for determining the natural frequencies and 

mode shapes of a multi-step beam with arbitrary number of cracks. The local 

flexibility induced by cracks was modelled with massless rotational springs. 

 

Leonard et al. [3] investigated the effects of a crack on modal behaviour of 

a cantilever beam. They used damping criterion, harmonic distortion criterion, 

bispectrum transform and auto-bicoherent frequency spectrograms and  
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coherent power of amplitude modulation tools for the crack detection purposes. 

 

Sinha et al. [33] developed a method to locate and identify the cracks on a 

beam by using a gradient-based updating technique. Euler-Bernoulli beam 

elements were used and the effect of the crack to the system was introduced by a 

variation in the local flexibility parameter EI. The crack was assumed to be always 

open. In a later work, Sinha and Friswell [34], sought experimental vibration 

behaviour of a free-free beam with a breathing crack under harmonic excitation. 

Open-crack and close-crack phases were assumed to be obtained depending on the 

harmonic forcing applied. 

 

Pugno and Surace [35] introduced a technique to simulate the dynamic 

response of a beam with several breathing cracks subjected to harmonic excitation. 

By using harmonic balance method, they obtained a nonlinear system of algebraic 

equations and solved them iteratively to evaluate the response of a cracked beam. 

 

Kim et al. [36,37]  introduced a methodology to locate and estimate the size 

of damage in structures when a few natural frequencies or a few mode shapes were 

available. The method used a damage index algorithm that was based on the 

changes in modal strain energy. 

 

Waldron et al. [38], developed the so called operational deflection curves 

which are the actual vibration displacement and velocity patterns of a damaged 
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structure that is vibrating at steady-state. They found out that the damage was 

easier to detect at higher natural modes and also when the excitation point is close 

to the damaged area.  

  

Apart from identifying cracks in beams, several studies were performed for 

detecting and identifying any kind of nonlinearity in system. Rice [39] proposed a 

method to identify weakly nonlinear systems by using equivalent linearization. In 

this method, the equivalent linear stiffness and damping coefficient values were 

found out for each response level and a curve was fit to the changing equivalent 

stiffness and damping values. He tested the method on an aircraft trim panel 

connector and verified the mathematical model he developed by exciting the 

system by random forcing.  Lin and Ewins [40] developed a technique to localize 

nonlinearities in stiffness elements using measured data. The method requires 

response measurements at least two different excitation levels. The method was 

tested on an actual experimental system as well. The method gives the coordinates 

that have stiffness type of nonlinear element. Lee and Park [41] proposed a method 

for identifying nonlinearities in a structure. They found a restoring force vector 

through the difference of applied external force vector and the inertial force vector. 

The restoring force vector was used to obtain the linear equivalent of the system 

for that excitation level by minimizing the sum of  squared error of actual and 

linearized restoring force vectors. Using the linear equivalent stiffness and 

damping matrices, the error matrix and the error vectors were obtained. Using the 

error matrix and error vectors, coordinates with nonlinear elements can be 
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obtained. Crawley and Aubert [42] introduced a force state mapping method for 

the identification of structural nonlinear elements. Restoring force method was 

utilized to identify the nonlinearities. The restoring force versus displacement and 

velocity of the degree of freedom under consideration was plotted as a three-

dimensional curve. The smooth linear surface of restoring force indicates that the 

system is linear. On the other hand, any surface distortion indicates the existance 

of a nonlinearity either in terms of displacement or velocity.  

 

Recently, Özer and Özgüven [43,44] proposed a technique for localization 

of nonlinearity in multi-degree of freedom systems by using first order frequency 

response function data. By this method, localization of  the coordinate to which 

nonlinear elements are connected, and the parametric identification of nonlinearity 

provided that nonlinearity is present only at ground connection of the structure, 

can be achieved. 

 

 

2.2 Present Study 

  

 The methods suggested, some of which are mentioned above, for crack 

detection in structures mainly utilize the shifts in natural frequencies and the 

changes in mode shapes. Three dimensional surfaces or two dimensional patterns 

or analytical expressions for the first two or three natural frequencies are 

constructed or error functions for the mode shapes of the cracked structure are 
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constructed for the identification purposes, which are based upon the 

dimensionless crack location and crack depth parameters. Frequency response 

functions, on the other hand, are used only to detect the damage by searching for 

the nonlinear features of frequency response functions such as side peaks around 

the resonant frequencies.  

 

 In this thesis, a new method to detect and locate a crack in a structural 

component is introduced. The method proposed is an extension of a recently 

developed technique for identification of non-linearity in vibrating multi degree of 

freedom systems.  The method exploits the nonlinear frequency response functions 

for the detection and identification of cracks in structures. 

  

 In Chapter 3, modelling of cracks in beams is presented. The necessary 

formulations and concepts for the suggested method are given in Chapter 4 and 

Chapter 5. 

  

 Several case studies are examined in Chapter 6. Discussions on the 

application results are performed in the same chapter.  

 

 Finally; conclusions, recommendations and future work are presented in 

Chapter 7. 
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CHAPTER 3 

 

 

MODELLING OF CRACKS IN BEAMS 

 

 

A crack in a solid can be stressed in three different modes [45], as 

illustrated in Figures 3.1, 3.2 and 3.3. Normal stresses lead to “opening mode” or 

mode I. In this mode, displacements of crack surfaces remain perpendicular to the 

plane of the crack. In “sliding mode” or mode II, in-plane shear occurs. The crack 

surfaces remain in the same plane of the crack and perpendicular to the leading 

edge of the crack. In the “tearing mode” or mode III, however, out-of-plane shear 

occurs where crack surface displacements remain in the plane of the crack and 

paralel to the leading edge of the crack. For a general loading, the superposition of 

the three modes is required to describe the behaviour of a cracked beam. 

 

 

 

                                                                                     18



M O D E  I
o p e n i n g  m o d e

 

Figure 3.1 Opening mode of crack surfaces 

 

 

 

       

MODE II
sliding mode

 

Figure 3.2 Sliding mode of crack surfaces 
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MODE III
tearing mode

 

                          Figure 3.3 Tearing mode of crack surfaces 

 

 

A crack on a structural member induces a local flexibility which is a 

function of the crack depth. It can be included into the system by an additional 

strain energy. This energy of the crack yields a local flexibility coefficient, which 

can be expressed by stress intensity factors calculated by means of the 

Castigliano’s theorem in the linear elastic range [46]. 

 

Figure 3.4 shows a prismatic beam under general loading, with a crack 

depth a along the z axis. The beam is excited by an axial force P1, shear forces P2, 

P3, and bending moments P4 and P5.  

 

                                                                                     20



P1

P2

P3

P4

P5

x

z

y

Figure 3.4   Beam element with transverse crack under general loading 

 

The Castigliano’s Theorem states that the partial derivative of the strain 

energy of a structure with respect to any load is equal to the displacement 

corresponding to that load [47]. Therefore, the additional displacement iδ  along 

the direction of force  due to the presence of a crack may be calculated by using 

Castigliano’s theorem as follows: 

iP

 

(1)

i
i

W
P

δ ∂
=

∂
 (3.1) 

  

where  denotes the additional strain energy due the presence of a crack, and 

can be expressed as [46], 

(1)W
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a a1
1

0 0

WW ( )da Jd
a

∂
= =

∂
a∫ ∫  (3.2) 

 

where  J= 1W a∂ ∂  is the strain energy density function. Therefore, Equation 3.1 

can be written as 

  

a

i
i 0

J(a)da
P

δ
⎡ ⎤∂

= ⎢ ⎥∂ ⎣ ⎦
∫  (3.3) 

  

 

Since Castigliano’s theorem provides a mean for finding deflections of 

structure by using the strain energy of the structure, the second derivative of the 

strain energy with respect to the load leads to the flexibility influence coefficients 

such as 

 

a2 (1) 2
(1) i

ij
j i j i j 0

Wc
P P P P P
δ∂ ∂ ∂

= = =
∂ ∂ ∂ ∂ ∂ ∫ J(a)da   (3.4) 

  

The strain energy density function J, in Equation 3.4, has the following 

form [46,48] 

 

5 5 5
2 2

In IIn I IIn
n 1 n 1 n 1

bJ ( K ) ( K ) (1 )( K )
E

ν
= = =

⎡ ⎤= + + +⎢ ⎥′ ⎣ ⎦
∑ ∑ ∑ 2  (3.5) 
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where =E for plane stress assumption, E′ 2E E (1 )ν′ = −  for plane strain 

assumption, E is the elastic modulus and ν  is the Poisson’s ratio,   are 

stres intensity factors for opening type, sliding type and tearing type cracks, 

respectively. Here n denotes the loading type and takes values 1 to 5 (See Figure 

3.4). Substituting  Equation 3.5 into Equation 3.4 yields 

IK , IIK , IIIK

 

a 2
(1) 2

ij m mn
m ni j0

1c (
E b P P

κ K ) da
⎡ ⎤∂

= ⎢ ⎥′ ∂ ∂⎢ ⎥⎣ ⎦
∑ ∑∫   (3.6) 

 

where = (1mκ )ν+  for m=III and mκ =1 for m=I, II and is the stress intensity 

factor of mode m (m=I, II, III) due to the forcing P

mnK

n (n=1, 2, 3, 4, 5).  

 

 Equation 3.6 gives the flexibility coefficients for general loading. For 

simplicity, by neglecting axial loads P1 and P2 and the moment P4 about y axis, 

considering only P=P3 and M=P5, from Equations 3.2 and and 3.5, the following 

expression can be obtained for the additional strain energy 

 

a
1 2 2

IM IP IIP
0

W b ((K K ) K ) E )da,′= + +∫  (3.7) 

  

where [46] 
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2
IM IK (6M bh ) aF (sπ= ),  (3.8) 

  

 2
IP IK (3PL bh ) aF (s),π=  (3.9) 

  

IIP IIK (P bh) aF (s),π=  (3.10)

  

4

I
0.923 0.199(1 sin( s / 2))F (s) (2 s) tan( s / 2)

cos( s / 2)
ππ π

π
+ −

=  (3.11)

  

2 3
2

II
1.122 0.561s 0.085s 0.18sF (s) (3s 2s )

1 s
− + +

= −
−

 (3.12)

  

 Having the analytical expression for , the additional flexibility 

coefficient may be calculated  as 

1W

 

 
2 (1)

(1)
ij

i j

Wc ,
P P

∂
=

∂ ∂
                1P P,=     2P M,=     i, j 1, 2.=  (3.13)

  

The strain energy of a finite beam element without a crack, on the other 

hand, can be written by neglecting shear force, as  
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L
0

0

1W (M P
2EI

= +∫ )dz  (3.14)

  

2 3 2 2 3
0 P L PML M LW

6EI 2EI 2EI
= + +  (3.15)

 

From Equation 3.13, the flexibility coefficient for the uncracked case can 
also be obtained  as 

 
 

2 (0)
(0)

ij
i j

Wc ,
P P

∂
=

∂ ∂
                  1P P,=      2P M,=      i, j 1, 2,=  (3.16)

  

Then the total flexibility coefficient becomes 

 

(0) (1)
ij ij ijc c c= + .  (3.17)

  

By using the equilibrium condition, (See Figure 3.5) 

 

[ ]T T
i i i 1 i 1 i 1 i 1(P M P M ) T (P M ) ,+ + + +=  (3.18)

 

where   

[ ]
T1 L 1 0

T
0 1 0 1
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 (3.19)
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and using the principle of virtual work, the stiffness matrix of the undamaged 

finite element can be written as; 

 

[ ] [ ] [ ]1T (0)
ue

K T c T
−

⎡ ⎤= ⎣ ⎦ .  (3.20)

  

 

[ ]
2 2

3ue

2 2

12 6L 12 6L
6L 4L 6L 2LEIK ,
12 6L 12 6LL

6L 2L 6L 4L

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− − −
⎢ ⎥−⎣ ⎦

 (3.21)

 

and  for the cracked finite element; 

 

[ ] [ ] [ ]1T (1)
ce

K T c T
−

⎡ ⎤= ⎣ ⎦ .  (3.22)

  

 

[ ] [ ] [ ]

12 (1) 2 (1)

T

ce 2 (1) 2 (1)

W W
P P P MK T T
W W

M P M M

−
⎡ ⎤∂ ∂
⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥=
∂ ∂⎢ ⎥

⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

.  (3.23)
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                                         Figure 3.5  Beam finite element. 

 

According to the Saint-Venant principle, the stress field in a structure with 

a crack is affected only in the region adjacent to the crack. This means that the 

finite element stiffness matrix of an uncracked element adjacent to an element with 

crack may be regarded as unchanged. Therefore, while constructing the global 

stiffness matrix of the structure when the nonlinearity caused by the crack is 

excited, changing or updating only the cracked finite beam element matrix would 

be valid.  

 

It is assumed that the presence of the crack does not affect the mass [ ]M  

and the damping [ ]C  matrices. For a single FE , the mass matrix may be 

formulated as follows [49],  
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[ ]
2 2

e

3 2

156 22L 54 13L
22L 4L 13L 3LALM
54 13L 156 22L420
13L 3L 22L 4L

ρ
−⎡ ⎤

⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥− − −⎣ ⎦

 (3.24)

  

where ρ  is the density of the beam material and A is the cross sectional area of 

the finite beam element.  

 

If modal damping is assumed, then the damping matrix can be defined as 

 

[ ] T 1 1
e

C ( )− −= Ξ ΠΞ  (3.25)

  

where Ξ is the mass normalized modal matrix and  Π  is  

[ ]

1 n1

2 n2

n nn

0 . . 0
0 . .

2 . . . . .
. . . . .
0 0 . .

ζ ω
ζ ω

ζ ω

0
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥Π =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.26)

  

Here, iζ  is the ith modal damping ratio and niω is the ith natural frequency.  
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CHAPTER 4 

 

 

QUASILINEARIZATION OF NONLINEAR MULTI DEGREE 

OF FREEDOM SYSTEMS 

 

 

 

4.1 Introduction             

  

A linear system is the one whose performance obeys the principle of 

superposition. The principle of superposition states that if an input  produces 

the output and an input produces the output , then for the input 

,  where a and b are constants, the response will be , 

for all , , a and b. A nonlinear system, on the other hand, may be defined 

as the one for which the principle of superposition is not valid, which means that, 

the response of the system to an input can not be found although the response to 

some other input is known.  

1f (t)

1x (t) 2f (t) 2x (t)

1 2af (t) bf (t)+ 1 2ax (t) bx (t)+

1f (t) 2f (t)
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If a linear structure is excited harmonically then its steady state response 

will be harmonic with a frequency equal to the excitation frequency and frequency 

response function will be independent of force amplitude. Steady state response of 

a nonlinear structure excited by harmonic forcing, on the other hand, may consist 

of  subharmonics, a bias term, fundamental harmonic, and superharmonics. 

Therefore, the frequency response characteristics will become extremely sensitive 

to the input type, amplitude, frequency and initial conditions that the system is 

exposed to.  

 

4.2 Describing Functions 

 

To deal with nonlinear problems, an approximate analysis called quasi-

linearization is widely utilized [50-53]. The term Quasi-linearization is used for 

simply replacing the system nonlinearity by an approximate  linear gain which 

depends upon the type, amplitude and the frequencies of the input. These linear 

gains, or the quasi-linear approximating functions, are commonly called as 

Describing Functions (DF). The basic idea is to design a linear approximator to 

minimize the mean-squared difference between the output of that approximator 

and the output of the nonlinearity [54]. 

 

The describing function method is closely related to the method of slowly 

varying amplitude and phase, which is proposed by Krylov and Bogoliubov [55] 

and Bogoliubov and Mitropolsky [54].  
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The describing function linearises the nonlinearity by defining a transfer 

function as the relation of the fundamental components of the input and output. 

Consider a nonlinearity 

 

n(y, y)&  (4.1) 

 

which is excited by a sinusoidal input in the form  

 

y Ysin( ),ψ=  (4.2) 

 

where tψ ω= and dot denotes differentation with respect to time. The nonlinearity 

for this input can be expressed by using Fourier series expansion as 

 

m m
m 1

n(Ysin( ), Y cos( )) A (Y, )sin(m t (Y, )),ψ ω ψ ω ω ϕ ω
∞

=

= +∑  (4.3) 

 

 

Describing function ν  can be defined as  

phasor representation of ouput component at frequency m(Y,m )
phasor representation of input component at frequency m

ων ω
ω

      
=

      
 
 

 (4.4) 

 

mi (Y,m )mA (Y, ) e
Y

ϕ ωω
=  (4.5) 
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Describing function approach  assumes that the linear part of the system 

acts as a very good low-pass filter [56]. This means that, generally, the higher 

harmonics of the output are excluded in the describing function formulation, and 

only the fundamental harmonic component is taken into consideration. (Figure 4.1) 

 

 

 

 

       Figure 4.1 Definition of describing function 

 

The describing function for n , therefore, can be found by multiplying 

both sides of equations by 

(y, y)&

sin( )ψ  and cos( )ψ , and then integrating with respect to 

ψ : 
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2

1
0

1A cos( ) n(Ysin( ),Y cos( ))sin( )d ,
π

ψ ψ ω ψ ψ ψ
π

= ∫  (4.6) 

 

2

1
0

1A sin( ) n(Asin( ),A cos( ))cos( )d ,
π

ψ ψ ω ψ ψ ψ
π

= ∫  (4.7) 

 

 

Multiplying Equation (4.6)  by i and adding to Equation (4.7),  and then dividing 

both sides of the resultant equation by Y yield the most general form of the 

sinusoidal-input describing function: 

 

1

2
i i1

0

A i(A, ) e n(Ysin( ),Y cos( ))e d
Y A

π
ϕ ψν ω ψ ω

π
−= = ∫ ψ ψ  (4.8) 

 

 

In order to explain the use of describing functions in calculating harmonic 

response of nonlinear systems,  consider a SDOF system with a nonlinear restoring 

force excited by a harmonic force: 

 

mx Cx Kx n(x, x) Fsin( t).ω+ + + =&& & &  (4.9) 
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In order to solve this problem by describing function method, the response of the 

nonlinear system x(t) is assumed to be close enough to a sinusoidal oscillation as: 

 

x Xsin( t ) Xsin( )ω γ ψ≅ + =  (4.10)

 

where X  is the response amplitude, ω  is the excitation frequency, and γ  is the 

phase angle. 

 

Since the variable x(t) is assumed to have a sinusoidal form, then  the 

nonlinear function  may be complex and will be a periodic function of 

time. Therefore, it can be expressed in a Fourier series as:  

n(x, x)&

 

0 1n(x, x) N ( , X) N ( , X)Xsin( t )ω ω ω= +& γ+  

2iN ( , X)Xsin( t ) HigherOrderTerms.ω ω γ+ + +  
(4.11)

 

where the bias term is   

 

2

0
0

1N N(Xsin( ), X cos( ))d ,
2

π

ψ ω ψ
π

= ∫ ψ  (4.12)

 

and the real and the imaginary parts of the fundamental harmonic are 
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2

1
0

1N N(Xsin( ), X cos( ))sin( )d ,
X

π

ψ ω ψ ψ
π

= ∫ ψ  (4.13)

 

2

2
0

1N N(Xsin( ), X cos( )) cos( )d .
X

π

ψ ω ψ ψ
π

= ∫ ψ  (4.14)

 

The Equation given by (4.11) can be defined as the optimum equivalent 

linear complex stiffness representation of the nonlinear function  when the 

response of the nonlinear system x(t) is close enough to a sinusoidal oscillation. If  

 is symmetrical around the origin, then  becomes zero. If the 

nonlinearity is not frequency dependent, then  becomes zero.  

n(x, x)&

n(x, x)& 0N

2N

 

 

4.3  Response Analysis of Nonlinear Structures due Periodic Excitation 

 

Consider a nonlinear structure, vibrating under the effect of a periodic 

external forcing. If the structure is modelled as a discrete system with n 

degrees of freedom, then the matrix differential equation of motion can be 

written as 

 

[ ]{ } [ ]{ } [ ]{ } { } { }M x C x K x N f ,+ + + =&& &  (4.15)
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where [M], [C], [H] and [K] denote linear mass, viscous damping, structural 

damping and stiffness matrices, respectively. { }x  is the vector of generalized 

displacements. {f} and {N} denote the external forcing and the internal nonlinear 

forces, respectively. 

 

 The kth element of { }N  can be defined as a sum 

 

n

k k
j 1

N n
=

= j ,∑  (4.16)

where  denotes the nonlinear restoring force element acting between the 

coordinates k and j when k

kjn

j,≠  and between the ground and the coordinate k when 

.   may be a function of  inter-coordinate displacements and their derivates 

such that 

k j= kjn

),kj kj kj, kj kj, kj,...n n (y y , y y= & && &  (4.17)

 

where  

 

kj k jy x x ,= −  when k j,≠  (4.18)

 

kj ky x ,=  when k j.=  (4.19)
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and has the following symmetry pro

.

perty: 

 

kj jkn n=  (4.20)

 

The external periodic forcing can be represented as a sum of infinite 

mbe

), (4.21)

 

here 

 

nu r of  sinusoids such as: 

 

{ } { } { } im
m m

m 0 m 0
f f Im( F e ψ

∞ ∞

= =

= =∑ ∑  

w

 

t.ψ ω=  (4.22)

 

{ }m
F is the real vector corresponding to the forcing amplitude of the mth harmonic. 

The r

). (4.23)

 

he kth element of the complex vector

esponse of the structure due to this periodic excitation can be defined as  

 

{ } { } { } im
m m

m 0 m 0
x x Im( X e ψ

∞ ∞

= =

= =∑ ∑  

 

 { }m
X  can be written as  T
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( ) k mi( )
k k mm

X (X ) e ϑ=  . (4.24)

 

 

k m(X )  and ( )k mϑ  are the real displacement amplitude and the phase for the kth 

coodin d for tate an he harmonic component with the frequency mω . Note that 

 

{ } { }0 0
X X=  . (4.25)

 

Similar to Equations (4.23), (4.24) and (4.25), the inter-coordinate relative 

), (4.26)

 

here 

 when  ,

 

 

displacements and nonlinear restoring force elements can be represented as:  

  

im
kj kj m kj m

m 0 m 0
y (y ) Im( (Y ) e ψ

∞ ∞

= =

= =∑ ∑  

w

 

kj m k m j m(Y ) (X ) (X ) ,= − k j≠  (4.27)

 

nd 

 

a
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kk m k m(Y ) (X ) ,=   (4.28)

As in Equation (4.25),  may be expressed as, 

 

kj m(Y )

 

kj mi( )) (Y ) e ,β=   kj m kj m(Y (4.29)

and 

 

 

kj 0 kj 0,(Y ) (Y )=   (4.30)

For the nonlinear restoring force element, 

(A ) e ),ψ

= =

  (4.31)

 

 

 

im
kj kj m kj m

m 0 m 0
n (n ) Im(

∞ ∞

= =∑ ∑

kj mi( )
kj m kj m(A ) (A ) e ,φ=   (4.32)

 

kj 0 kj 0(A ) (A ) .=   (4.33)
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The series expression for  consists of the bias term with real amplitude kjn kj 0(A )  

and sinusoidal terms with complex amplitudes .  kj m(A ) kj 0(A )  and  can be 

found out by using the Fourier integrals given below: 

kj m(A )

 

2

kj 0 kj
0

1(A ) n d
2

π

ψ
π

= ∫   (4.34)

 

2
im

kj m kj
0

i(A ) n e d ,
π

ψ ψ
π

−= ∫  m 1  .≥ (4.35)

 

In evaluating the above integrals, the following form of  is used: kjy

 

kj kj m kj m
0

y (Y ) sin(m ( )ψ β
∞

= +∑ ).   (4.36)

 The describing function of order m, kj m( )ν , can be defined as the optimum 

equivalent quasi-linear  complex gain of the nonlinear force n  for the harmonic 

displacement , and can be expressed as  

kj

kj m(y )

 

kj m
kj m

kj m

(A )
( )

(Y )
ν = .  (4.37)
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kj m( )ν  can be found by using the following integrals: 

 

2

kj 0 kj
0kj 0

1( ) n d ,
2 (Y )

π

ν ψ
π

= ∫   (4.38)

 

 

2
im

kj m kj
kj m 0

i( ) n e d ,
(Y )

π
ψν ψ

π
−= ∫   m 1,≥ (4.39)

 

kj m kj m( ) ( )ν ν= kj m( , (Y ) ),ω           m 0,1,2,3,4,.....=  (4.40)

 

 

The internal nonlinear forces can be expressed in terms of the describing functions 

as: 

 

( ) im
kj kj kj mm

m 0

n Im( (Y ) e )ψν
∞

=

= ∑ ,

).

 (4.41)

 

 

{ } { } { } im
m m

m 0 m 0

N n Im( e ψ
∞ ∞

= =

= =∑ ∑  (4.42)
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{ }m
 is the complex amplitude vector of internal nonlinear forces at frequency 

mω . Its kth element is given by: 

 

  

n

k m kj m kj m
j 1

( ) ( ) (Y )ν
=

=∑  (4.43)

 

 

If Equations (4.21), (4.23) and (4.42) are substituted, in complex form, into the 

matrix differential Equation of motion (4.15), the following equation can be 

obtained by grouping terms with same frequencies: 

 

 

[ ] { } { }1
mm mm

X N F ,α − + = (m 0,1,2,3,4.....), =  (4.44)

 

where 

 

[ ] [ ] [ ] [ ] [ ]2
m

( K (m M i C i H ) ,α ω ω 1−= − + +   (4.45)

 

is the receptance matrix of the linear part of the structure at frequency mω . 
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 If we express the complex amplitude vector of internal nonlinear force 

, as a matrix ( [m( ) ]m
∆ ) multipled by the displacement amplitude vector for the 

mth harmonic, { }m
X , 

 

{ } [ ] { }m m
X ,= ∆

m

,

  (4.46)

 

then from the following equation 

{ }
n n

k kj kj m kj kj mm
j 1 j 1

( )(Y ) ( )(X )ν
= =

= = ∆∑ ∑   (4.47)

 

we can define the elements of [ ]m
∆ as 

n

kk m kj m
j 1

( ) ( )ν
=

∆ = ∑ ,   (4.48)

 

kj m kj m( ) ( ) ,ν∆ = − k j, ≠  (4.49)

 

 

Inserting Equation (4.46) into Equation (4.44), it can be easily obtained that, 

 

{ } [ ] { }m mm
X F ,= Θ (m 0,1,2,3,4,......), =  (4.50)
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where [ ]m
Θ  is the response level dependent quasi-linear receptance matrix of the 

structure at frequency mω ,  and can be expressed as,  

 

[ ] [ ] [ ] [ ] [ ] [ ]2
m m

( K (m M i C i H ).ω ωΘ = − + + + ∆   (4.51)

 

If structure is linear then Equation (4.52) reduces to  

 

{ } [ ] { }m mm
X F ,α= (m 0,1,2,3,4,......), =  (4.52)

 

The linear receptance matrix [ ]m
α  is a function of frequency ω , and linear 

coefficient matrices of the structure. The pseudo-receptance matrix [ ]m
Θ , on the 

other hand, is a function of frequency ω , linear and nonlinear matrices of the 

structure and all harmonic response amplitudes. Note that, [ ]m
Θ  is a displacement 

dependent matrix. Therefore, the response of a nonlinear system can be obtained 

through Equations (4.51) and (4.50) only by using an iterative procedure.  
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CHAPTER 5 

 

 

DETECTION AND LOCALIZATION OF CRACKS IN BEAMS 

 

 

5.1 Introduction           

   

From Equations (4.51), [ ]m
∆  can be obtained as; 

 

[ ] [ ] [ ]1 1α− −∆ = Θ −  (5.1) 

 

 

Here and in the following equations, subscript m is dropped for convenience.  

 

Post multiplying both sides of the Equation (5.1) by [ ]Θ  yields 

 

[ ][ ] [ ] [ ][ ]I Z∆ Θ = − Θ  (5.2) 
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where [ ]Z  is the dynamic stiffness matrix of the linear part of the system, and 

defined as:  

 

[ ] [ ] [ ] [ ] [ ] [ ]( )1 2Z K M i Cα ω ω−= = − + + i H  (5.3) 

 

The ith column of Equation (5.2) can be expressed as 

 

[ ]{ } { } [ ]{ }i i Zς∆ Θ = − Θi  (5.4) 

 

where { }iς  is a vector of which ith element is unity while all other elements are 

zero, and { }iΘ  is the ith column of [ ]Θ . The rth row of Equation (5.4) yields, 

 

[ ]{ } [ ]{ }i i
r ir rZδ∆ Θ = − Θ  (5.5) 

 

where irδ  is the Kronecker Delta Function, [ ]r∆  and [ ]rZ  represent the rth rows of 

[ ]∆  and [ ]Z , respectively.  

 

The term [ ]{ }iir rZδ − Θ , which is defined as “nonlinearity number”  

[41], or may be called as “nonlinearity coefficient”  for the r

rNLN

th coordinate, is an 

indication of nonlinear element connected to coordinate r. This term becomes zero, 
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if the rth row and column of  [ ]∆  are all zero. If there is a nonzero element in the 

rth row or column of [ ]∆ , then the term [ ]{ }iir rZδ − Θ  will yield a nonzero value 

for the rth coordinate, implying that one of the elements that are connected to the rth 

coordinate is nonlinear. From Equation (5.5),  can be written as, rNLN

 

r r1 1i r2 2i rnNLN ......= ∆ Θ + ∆ Θ + + ∆ Θni

ni

 (5.7) 

 

or can be written as , 

 

r ir r1 1i r2 2i rnNLN Z Z ...... Zδ= − Θ − Θ − Θ  (5.9) 

 

rNLN  can be calculated from the harmonic response of the structure measured at 

all coordinates connected to the rth coordinate, when the structure is excited at the 

coordinate i. Here  is obtained from the response at the low excitation levels, in 

order to make the structure behave as linear and to get the linear receptance, and  

 is obtained from the response at high excitation levels.  

Z

Θ

 

 The method described above will be used to detect and locate the cracks 

which create nonlinearity. 
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5.2      Computations of the Time Response of a Cracked Beam 

 

In the verification of the crack identification method suggested in this 

study, instead of experimental study, computer simulation results are used. In 

order to simulate the dynamic behaviour of a beam with crack, the following 

method is used. Note that the harmonic balance method given in Chapter 4 could 

have been used in determining the harmonic response of a nonlinear beam. 

However, since the identification method is based on the harmonic balance method 

given in Chapter 4, here a different method is employed for determining the 

nonlinear time response of the system.  

 

Let us consider the equation of motion for a linear system. After 

constructing the global mass, stiffness and damping matrices, the governing 

equation of motion can be written as: 

 

[ ]{ } [ ]{ } [ ]{ } { }M x C x K x Q sin( t)ω+ + =&& &  (5.10)

  

where   

 

{ } T
1 1 2 1 n nx (u u .. .. u )θ θ θ= , 

{ } T
1 2 nQ (Q Q .. Q )= , 

(5.11)
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and  , iu iθ  and  denote the displacement, rotation and external forcing at the iiQ th 

node, respectively. When Equation (5.10) is represented in state space form, it 

becomes,  

 

{ } [ ]{ } [ ]q A q B= +& u  (5.12)

 

 where 

 

{ } { }
{ }
x

q
x

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭&

, (5.13)

  

 

[ ]
[ ] [ ]

[ ] [ ] [ ] [ ]1 1

0 I
A ,

M K M C− −

⎡ ⎤
= ⎢ ⎥

− −⎢ ⎥⎣ ⎦
 (5.14)

  

 

[ ]
{ }

[ ] { }1

0
B

M Q−

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

, (5.15)

  

 

[ ] [ ] [ ]C I 0⎡ ⎤= ⎣ ⎦ , (5.16)

  

                                                                                     49



u sin( t)ω= , (5.17)

  

{ } { }D 0= .  (5.18)

 

 

 Solutions to Equation (5.12) are obtained by using the integrators in 

MATLAB R13 ®. Integrations are performed in Simulink for [0~4] or [0~6] 

seconds for the steady state solutions, using Ode23 (Bogachi-Shampine) and 

Ode45 (Dormand-Prince) for variable time step, and Ode5 (Dormand-Prince) and 

Ode4 (Runga-Kutta) for a fixed time step of 0.0001 seconds. For the piecewise 

stiffness nonlinearity caused by the cracked, the undamaged finite element 

stiffness matrix [ ]e
K , and the cracked finite element stiffness matrix [ ]ce

K , are 

switched between and updated on the global stiffness matrix for the cracked finite 

element with the condition upon its rotational coordinates.  

 

Figure 5.1 demonstrates the bilinear stiffness property of a cracked beam. 

Here m2 is the stiffness value (corresponding to any rotational or translational 

coordinate) of an uncracked finite beam element and m1 is the stiffness value of the 

uncracked part of a cracked finite beam element. Obviously, m1 and m2 take 

different values for rotational and translational coordinates. Stiffness matrix of an 

uncracked beam, [ ]ue
K , is determined by m2 values whereas the stiffness matrix 

for the uncracked part of a cracked beam, [ ]ce
K , is determined by m1 values. Note 
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that, [ ]ce
K  gives the stiffness matrix of a cracked beam element when the crack is 

open and [ ]ue
K  gives the stiffness matrix of the same cracked beam element when 

the crack is closed. Therefore during a cyclic motion of a cracked beam, at each 

time step it should be checked whether the crack is open or closed, and the 

stiffness matrix of the element is to be determined accordingly. 

 

 

                    

                     Figure 5.1 Bilinear stiffness model 

 

 

As it is mentioned in Chapter 1, the roughness of the fracture surface, 

corrosion debris in the crack, plastic deformation left in the wake of a propagating 
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crack, strain induced phase transformation in the fatigue zone and hydraulic 

wedging produced by oil trapped in the crack may lead to partial crack closure 

[30]. Figure 5.2 demonstrates a typical stiffness curve as a function of the applied 

load for a cracked beam. Because of the above mentioned interactions between the 

crack faces, a cracked beam may behave as an uncracked beam until the applied 

excitation becomes sufficiently high to overcome the closure load. This effect can 

be included into the crack model in Figure 5.2 by δ . 

 

 

                         

 

                    Figure 5.2 Bilinear crack model with crack closure effect 
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When the crack is located in the lower side of the beam (Figure 5.3),  if 

2 1 δΘ − Θ <  then the crack is not open, therefore the nonlinearity is not excited. In 

this case, undamaged beam finite element stiffness matrix [ ]e
K is valid on the 

global stiffness matrix during the simulation. However, when 2 1 δΘ − Θ > , then 

the crack is open, so that the nonlinearity is excited. This time, cracked finite 

element stiffness matrix [ ]ce
K becomes valid on the global stiffness matrix during 

the simulation. When the crack is located on the upper side of the beam, on the 

other hand, all conditions upon the rotational coordinates become vice versa, as it 

can be observed from Figure 5.4. 

 

 

      

                       Figure 5.3 Bilinear crack model with crack closure effect,   

                                      crack is on the lower side of the beam 

                                                                                     53



 

               Figure 5.4 Bilinear crack model with crack closure effect,  

crack is on the upper side of the beam 
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CHAPTER 6 

 

 

CASE STUDIES AND DISCUSSION OF RESULTS 

 

6.1 Introduction             

 

 In this part, several case studies are given to test and to demonstrate the 

applicability, efficiency and sensitivity of the method suggested. The crack is 

modelled as a bilinear crack having an asymmetric clearance caused by closure 

effects, as mentioned in the previous chapter.  

 

 In section 6.1, the applicability of the method suggested is sought by using 

a 3 dof cracked beam. In section 6.2, the locating sensitivity and the applicability 

of the method for different crack locations along the same beam are investigated 

by using a 6 dof cracked beam. The effect of the depth of the crack on localization 

of the crack is studied in section 6.3. In this section, a method for identification of 

the size of the crack is also suggested for specific structural components. And 

finally, in section 6.4, the applicability of the method for multiple cracks is 

studied.
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6.2   Verification of the Method for Detecting Crack 

 

The cracked cantilever beam, shown in Figure 6.1 is used to verify the method 

suggested in detecting cracks. The system has the following parameters (Case I): 

 

Material Aluminium 

Young's modulus 9E 69.79 10= ⋅  2N m  

Mass density 2600ρ =  3kg m  

Poison's ratio v 0.33=  

Length of the beam. l 1.214=   m

      Width of the beam cross section 3b 50 10−= ⋅  m  

Depth of the beam cross section 3h 25 10−= ⋅   m

Depth of the crack 3a 12 10−= ⋅   m

      Length of a beam finite element L 0.6107=   m

      Number of finite elements 2 

      Location of the crack In the 2nd finite element. 

 

c r a c k

q 1 q 3

q 2 q 4

 
   Figure 6.1 Cracked beam (4 dof)  
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First the dynamic response of the beam was calculated by using the method 

described in Section 5.2, at frequencies between 80 rad/sec and 100 rad/sec. Then 

at each frequency considered, nonlinearity numbers (NLNs) for all coordinates 

were calculated. The results are given in Figure 6.2.  

 

                             

Figure 6.2 NLN for cracked beam (Q1=F1= 5 N) 

 

As shown in the figure, the system has non-zero NLNs at all coordinates 

around 88 rad/sec which is the first natural frequency of the beam. Here we see 

that non-zero NLNs can be observed only around a resonance frequency. 

Furthermore, since the crack is in the second finite element, NLN for each 

coordinate of this element has a nonzero value, which is an expected result. It is 

also observed that most significant NLN belongs to the rotational coordinate q2, 
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and the NLNs corresponding to a translational coordinates, namely q1 and q3, and 

the NLN for rotational coordinate q4 are not as large as the NLN for rotational 

coordinate q2. 

 

As the forcing level is increased to Q1=10 N, it’s observed that NLN’s 

increase, as shown in Figure 6.3, but the same general observations still apply. 

 

 

Figure 6.3 NLN for cracked beam under harmonic force of (Q1=F1=10 N ) 

 

 In Figures 6.4 and 6.5, NLNs of the same coordinates to moments of 

magnitudes 1 N.m and 1.5 N.m, respectively, are plotted. The moments are applied 

at coordinate q2. From these graphs, it can be easily seen that, NLNs for the 

rotational coordinate q2 is higher in magnitude compared with other NLNs. By 
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comparing the shapes of the NLN curves around their peak points in Figures 6.2 

and 6.3 with those in Figures 6.4 and 6.5, it can be concluded that NLNs of the 

rotational coordinates obtained by the rotational excitation of the cracked beam is 

much more effective and indicative for detecting the crack. In addition, NLNs for 

translational coordinates obtained by rotational excitation may also be used for 

detecting cracks. However, NLNs for translational coordinates obtained by 

translational excitation (not given here) may yield misleading results and may not 

be used  for the detecting and locating purposes of cracks in beams.  

 

 

 

 

Figure 6.4 NLN for cracked beam (Q2=T1=1 N.m ) 
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Figure 6.5 NLN for cracked beam (Q2= T1=1.5 N.m). 

 

It is inevitable to have some degree of measurement error in all 

measurements. In order to observe the effect of measurement errors, the beam 

response data is polluted by multiplying the calculated receptance values by 

random numbers (generated by Matlab R13 ®. function “randn”) with a mean of 1 

and standard deviation of 0.03. Thus, measurement errors with standard deviation 

of 3% are imposed into the simulated measurement values. Then, in order to study 

the effect of using simulated measurement results with some error, NLNs are 

calculated for both a cracked and uncracked beams. In Figures 6.6 and 6.7, NLNs 

for only rotational coordinates are shown for both cracked and uncracked beams 

by exciting the system with a transverse force (Q1=5 N) and a moment (Q2=1 

N.m), respectively. NLNs obtained for uncracked beam are almost all zero, while 
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the cracked beam gives significant values, at the same excitation levels for the 

rotational coordinates q2 and q4.   

 

 

  Figure 6.6 NLN for cracked and uncracked beam  
(gathered by polluted receptance signal) (Q1= F1=5 N) 

 

 

                Figure 6.7 NLNs for cracked and uncracked beams  
                  (gathered by polluted receptance signal) (Q2= T1=1 N.m) 
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6.3  Determining Crack Location 

 

In this section, the method developed is used to determine the crack 

location. In order to illustrate the application of the method for determining the 

crack location, three case studies are given. 

 

The cracked beam used in these case studies has the following parameters.  

 

Material Aluminium 

Young's modulus 9E 69.79 10= ⋅  2N m  

Mass density 2600ρ =  3kg m  

Poison's ratio v 0.33=  

Length of beam. l 1.214=   m

      Width of beam 3b 50 10−= ⋅  m  

Depth of beam 3h 25 10−= ⋅   m

Depth of crack 3a 12 10−= ⋅   m

      Length of beam element L 0.4071=   m

      Number of finite elements 3 

      Location of the crack in the 1st finite element (Case II) 

in the 2nd finite element (Case III) 

in the 3rd finite element (Case IV) 
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CASE II: 

  

The crack is inserted into the 1st finite element at the lower part of the beam 

with a depth of a=h/2= 312 10−⋅ m (Figure 6.8). The beam is excited at the rotational 

coordinate q6, from the free end of the beam. Four different forcing values were 

tested: Q6=0.25 N.m, Q6=0.35 N.m, Q6=0.5 N.m, and Q6=1 N.m. It was observed 

that for  Q6=0.25 N.m and for Q6=0.35 N.m, the nonlinearity caused by the crack 

was not excited and did not yield an observeable difference between the 

receptance values at these two different forcing levels. Therefore, these are taken 

as the low forcing level measurement results. However, for Q6=0.5 N.m, and Q6=1 

N.m, the nonlinearity is excited and the values are used as the high forcing 

measurements and NLNs of the structure were calculated basing on these results 

(Figure 6.9). 

 

 

crack

q1

q2

q3

q4

q5

q6

 

   Figure 6.8  6 dof cracked beam (Case II) 

 

As it can be seen from Figure 6.9, NLN of  q4 and q6 have almost zero values 

when compared to the that of q2. This clearly indicates that there is a nonlinearity 
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in the beam specimen connected to the 2nd coordinate only. Thus it illustrates that 

the method can successfully be used to locate the location of the crack on the 

beam.  

 

 

                 Figure 6.9 NLN graph for 6 dof beam model (Q6=0.5 N.m) 

 

CASE III: 

 

In this case study, the crack is inserted in the 2nd finite element at the lower 

part again with a depth of a=h/2= 312 10−⋅ m (Figure 6.10). The excitation levels are 

all kept the same as the previous case study and NLNs of the structure were 

calculated (Figure 6.11). 
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crack

q1

q2

q3

q4

q5

q6

 

   Figure 6.10  6 dof cracked beam (Case III) 

 

NLN for q2 and q4 have almost the same values and also much higher compared to 

NLN of q6. This denotes that there is a nonlinearity in the system and have 

connections with these two coordinates, q2 and q4. From Figure 6.11, the crack can 

be located in between the rotational coordinates q2 and q4, that is at the 2nd finite 

element.  
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                 Figure 6.11 NLN graph for 6 dof beam model (Q6=0.5 N.m) 

CASE

n the 3

 IV: 

In this simulation, crack is inserted i rd finite element at the lower part 

of the beam again with a depth of s=h/2= 312 10−⋅ m (Figure 6.12). The excitation 

levels are all kept the same as before, and NLNs of the structure were calculated in 

the sam  range of frequencies (Figure 6.13). 

 

e

crack

q1

q2

q3

q4

q5

q6

  

   Figure 6.12  6 dof cracked beam (Case IV) 
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                 Figure 6.13 NLN graph for 6 dof beam model 

From Figure 6.13, the crack can easily be located between coordinates q4 

and q6, which means that the crack is in the 3rd finite element.  

ment. So, observing the 

aximum value of NLN in Case II is an expected result. 

6.4   Effect of Crack Depth on Localization 

ct of the crack depth on the localization is studied 

with numerical case studies.   

The depth of the crack is given values 

 

By examining Figures 6.9 of Case II, 6.11 of Case III and 6.13 of Case IV, 

a trend of decrease in NLN values can be observed. The maximum NLN is 

observed when the crack is in the 1st element, and the minimum value is obtained 

when it is in the 3rd element.  This is an expected observation since for all cases 

(Case II, Case III and Case IV) the beam is excited from the free end, which 

causes a large moment at the cantilevered side that leads to a maximum excitement 

of the nonlinearity caused by the crack in the first ele

m

 

 

 

In this section, the effe

 

3h 2 12 10a −≅ = ⋅ m ,  

3a h 4 6 10−≅ = ⋅ m , 3a h 8 3 10−≅ = ⋅ m  and 3a h 16 1.5 10−≅ = ⋅ m for the systems 

in Case II, Case III and Case IV. The NLN graphs for rotational coordinate q2 in 
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Case II, rotational coordinate q4 in Case III and rotational coordinate q6 in Case IV 

are given for the crack depths mentioned above, in Figures 6.14, 6.15 and 6.16, 

respectively.  

ate, then the 

one which gives the best indication is used in the following analysis. 

ove left, 

shifting the peak point on frequency axis.  

 

 

Note that the coordinate from which we can detect the crack is used in each 

case. If it can be detected from the NLN for more than one coordin

 

It is also interesting to observe softening spring effect from the Figure 6.14 

below. The beam has its 1st natural frequency at 88 Hz, however, as the severity of 

nonliearity is increased by the depth of the crack, NLN curve tends to m
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          Figure 6.14   NLN graph for q2 (CaseII) with various crack depths 

 

          Figure 6.15   NLN graph for q2 (CaseIII) with various crack depths 

 

 

     Figure 6.16   NLN graph for q2 (CaseIV) with various crack depths 
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When the depth of the crack is reduced, the location of the crack can still 

be determined; however smaller NLN will be obtained indicating that crack is 

smaller. Since NLN is a quantity that strongly depends upon the degree of 

nonlinearity in the structure, reduction in crack depth will reduce NLN as well. 

This means that it will be harder to detect and locate the crack when the crack 

depth is very small.  

ations, following chart can be constructed from the numerical 

results obtained: 

 

 

For specific structural components, dimensionless NLN charts may be 

constructed in order to detect, locate and even quantify the extent of damage. For 

example, from the NLNs of the interested beam for various crack depths and 

various crack loc

 

                                                                                     70



                  

The 1st column of NLN values (of q2) are obtained from Case II, the 2nd and 

the 3rd columns of NLN values (of q2 and q4) are obtained from Case III and the 4th 

and the 5th columns of NLN values (of q4 and q6) are obtained from Case IV. 

Crack depth ratio is the ratio of the height of the cross section of the beam to depth 

of crack. By obtaining such a table for a specific component and using it as a 

master, it may be possible to identify crack sizes in similar components.  

us dimensionless crack 

depth ratio in Figures 6.17, 6.18 and 6.19 in log-log scale.  

 

 

The NLN values in the 1st, 3nd and 5th columns of Table 6.1 corresponding 

to the coordinates q2, q4 and q6 respectively, are plotted vers

 

Figure 6.17 Variation of NLN with crack depth ratio (Case II.) 
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Figure 6.18 Variation of NLN with crack depth ratio (Case III) 

 

 

 

Figure 6.19 Variation of NLN with crack depth ratio (Case IV). 
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The curves obtained, in all three cases (Case II, Case III, and Case IV), are 

almost straight lines, which is quite interesting. This property can also be used to 

identify the magnitude of the size of the crack, in the presence of such master 

curves for specific structures.  

 

6.4 The Effects of Multiple Cracks In Beams 

 

In this section, the effects of multiple cracks in a structure is investigated.  

The cracked beam used in the case study has the following parameters (Figure 

6.20): 

Material Aluminium 

Young's modulus 9E 69.79 10= ⋅  2N m  

Mass density 2600ρ =  3kg m  

Poison's ratio v 0.33=  

Length of the beam. l 1.214=   m

      Width of beam 3b 50 10−= ⋅  m  

Depth of beam 3h 25 10−= ⋅   m

Depth of crack 3a 12 10−= ⋅   m

      Length of the beam element L 0.2036=   m

      Number of finite elements 6 

      Location of the crack in the finite 1st element and in the 3rd

finite element at the same time. 
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Figure 6.20  12 dof cracked beam 

There exist two cracks in the beam specimen, one is in the 1st finite element 

at the l

 

ower part of the beam and the other is in the 3rd finite element at the lower 

part of the beam. Both has a depth of a=h/2= 312 10−⋅ m. The beam is excited at the 

rotational coordinate q12, from the free end of the beam. When, as an excitation 

moment the following values are used: Q12=0.25 N.m, Q12=0.5 N.m, Q12=1 N.m, 

Q12=1.5 N.m, Q12=2 N.m. and  Q12=2.5 N.m. For Q12=0.25 N.m and Q12=0.5 N.m, 

none of the the nonlinearities caused by the crack were excited; and therefore no 

observeable differences between the receptance values of the any coordinates were 

recorded. Therefore, these are taken as the low forcing levels measurement results. 

However, for Q12=1 N.m, Q12=1.5 N.m, Q12=2 N.m and  Q12=2.5 N.m, the 1st 

nonlinearity is excited and these values are considered as the high forcing 

measurements. 

 

The NLN curves of the rotational coordinates q2, q4, q6, q8, q10 and q12 are 

plotted at five different forcing levels mentioned above in Figure 6.21. It can be 

concluded from the study of figure that there are cracks in the 1st finite element 

located between q2 and the ground and also in the 3rd finite element located 
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between q6 and q8, from the fact that NLNs for these coordinates are nonzero 

around resonance. Although the 1st crack reveals itself at the forcing level of Q12=1 

N.m, the 2nd crack reveals its position on the beam when Q12=2N.m.  

 

 

 

                         Figure 6.21: NLN graph for 12 dof beam model 
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CHAPTER 7 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

In this thesis, detection and localization of cracks in structural systems  

from measured frequency response functions is studied. The method developed 

uses the experimentally measured receptances at different forcing levels as 

input, and gives the location of the crack as output, if it exists. The principle 

behind the method presented is that vibration signature (frequency response 

function) data is a sensitive indicator of structural integrity and may be exploited 

to detect, locate and even identify a damage, which creates nonlinearity. 

 

It is well known that, when a structural component has a crack, then the 

crack induces a local flexibility. This flexibility is a function of crack depth, 

therefore it alters the dynamic behaviour of the structure itself. In most of the 

previous work on the subject, the effect of crack on natural frequencies and mode 

shapes of the structure has been studied. In this study, however, detection and  

localization of a crack is aimed by using frequency response of the system at 
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different forcing levels. 

 

The method suggested is an extension of the method recently developed in 

a previous study. In order to verify the method suggested for detection and 

locating a crack type damage, the time simulation for cracked beams are made at 

several different excitation frequencies around the first resonant frequency so that 

nonlinear frequency response characteristics of damaged systems were obtained. 

Then this data are used in the method suggested as if they were experimentally 

obtained.  

 

Several case studies are performed to demonstrate the applicability of the 

technique. Case studies performed indicate that frequency response functions of 

rotational coordinates give the best results for crack detection when compared to 

those of translational counterparts. Similarly, using rotational excitation rather than 

translational one is much more effective and indicative for detection of cracks.  

 

The locating sensitivity of the method is also examined for different crack 

locations by several case studies. It is found that excitation point is also very 

important to detect cracks in beams. The method gives indicative results when the 

excitation point is selected such that the excitation excites the nonlinearity caused 

by the crack on beam.  
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The effect of the depth of the crack on localization of the crack is also 

studied. It is found that it becomes harder to detect and locate the crack when 

crack depth is small. This is so because the reduction in crack depth reduces the 

degree of nonlinearity in beam caused by crack.  

 

For the identification of the size of a crack, drawing a chart is suggested. 

For specific structural components, dimensionless charts may be constructed to 

quantify the extent of damage present in the structure. This kind of charts may be 

formed as a result of experiments done for different important and critical crack 

sizes and crack locations on that specific structures. The method bases on an 

interesting feature observed between NLN and size of the crack: logarithm of NLN 

is changing linearly with the logarithm of the depth of a crack.  

 

One important outcome of the case studies is that the method suggested is 

also applicable when there exists multiple cracks in the structure. The method is 

capable of  detecting and finding locations of the cracks in this case as well. 

 

It should be noted that single harmonic describing functions are used in the 

method suggested. The method presented is capable of detecting and locating the 

crack even only with that fundamental harmonic. However, it is also possible to 

include higher harmonics in the calculations which may improve the results, in the 
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expense of increasing the computation effort. During the time simulations of the 

cracked beams in case studies, it is observed that time responses include 

significant second harmonic components and noticeable bias terms when the 

excitation frequency is about half of the natural frequency of the beam. When it is 

dangerous to performe experiments around the first natural frequency, this feature 

may be exploited and the NLN can be extracted from the experiments around half 

of the first natural frequency. In this case, beside the first, zeroth and second 

harmonic describing functions must also be calculated. 

 

The technique can further be extended to include parametric identification 

of cracks in order to predict crack parameters, such as depth of crack. Since the 

type of the nonlinearity to be searched for is known, the nonlinearity matrix ∆ , 

which has the damage information in it,  may be constructed by dual input 

describing function concept (given at the appendix A) with unknown bilinear 

stiffness parameters and may be substituted into the Equation (5.7). Then, all the 

algebraic equations obtained can be optimized to calculate the bilinear stiffness 

parameters. For the optimization, either singular value decomposition or any other 

optimization method can be used. From the bilinear stiffness parameters, with an 

inverse calculation using the Equations (3.1) to (3.21), the depth of the crack may 

be calculated. In addition to dual input, including second harmonic describing 

function may also improve the accuracy of the identification procedure.  
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Neural network approach, which is widely used in crack detection 

applications [57-62], may also be adapted with the method suggested for the 

identification purposes. 

 

Finally, it may be claimed that the method developed may also be extended 

to detect, locate and quantify the cracks in rotating structural components, which is 

an important subject in crack detection [64-67]. 
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APPENDIX A 

 

 

DUAL INPUT DESCRIBING FUNCTIONS 

 

The input to the nonlinearity is taken to be  

x(t) B Asin( )ψ= +  (A.1) 

  

where tψ ω= ; the response of the nonlinearity for this input can be expressed as 

 

B Ay(t) B (B Asin( ))ν ν ψ= + +  (A.2) 

 

where using Equations (3.38) and (3.39), the DF coefficients Bν  and Aν  can be 

calculated as follows:  

 

2

A
0

1(A,B) y(B Asin( ))d
A

π

ν ψ ψ
π

= +∫  (A.3) 
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0

A 1
0

1(A, B) ( m (B Asin( ))sin( )d
A

ψ

ν ψ ψ
π

= +∫ ψ  

0

0

2m (B Asin( ))sin( )d
π ψ

ψ

ψ ψ ψ
−

+ +∫  

0

2

1m (B Asin( ))sin( )d )
π

π ψ

ψ ψ ψ
−

+∫  

(A.4) 

 

 

1 2 1 2 1
A 1

m m m m sin(2 )B(A,B) (2 cos( ) )
2 A 1 2

ψν ψ ψ
π

+ −
= + + −  (A.5) 

 

and 

2

B
0

1(A,B) y(B Asin( ))d
2 B

π

ν ψ ψ
π

= +∫  (A.6) 

 

0 0

0

B 1 2
0

1(A,B) ( m (B Asin( ))d m (B Asin( ))d
2 B

ψ π ψ

ψ

ν ψ ψ ψ ψ
π

−

= + + + +∫ ∫  

0

2

1m (B Asin( ))d )
π

π ψ

ψ ψ
−

+∫  

(A.7) 

 

1 2 1 2
B

m m m m A(A,B) ( (cos( ))
2 B0 0ν ψ ψ

π
+ −

= + − +  (A.8) 

 

Here 
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0
Ba sin( )

A
δψ −

=  (A.9) 

 

 

The above results are valid only for a restricted range of B, B Aδ − ≤ . Outside of 

this range,  is defined as, AN

 

A 1N m=  if B Aδ − > , 

A 2N m=  if B Aδ − < − . 
(A.11)
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