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ABSTRACT

SYMBOL SYNCHRONIZATION FOR MSK SIGNALS
BASED ON MATCHED FILTERING

Sezginer, Serdar
M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Yal¢in Tamk

September 2003, 83 pages

In this thesis, symbol timing recovery in MSK signals is investigated making use
of matched filtering. A decision-directed symbol synchronizer cascaded with an
MLSE receiver is proposed for fine timing. Correlation (matched filter) method is
used to recover the timing epoch from the tentative decisions obtained from the
Viterbi algorithm. The fractional delays are acquired using interpolation and an
iterative maximum search process. In order to investigate the tracking
performance of the proposed symbol synchronizer, a study is carried out on three
possible optimum timing phase criteria: (i) Mazo criterion, (ii) the minimum
squared ISI criterion (msISI), and (iii) the minimum BER criterion. Moreover, a
discussion is given about the timing sensitivity of the MLSE receiver. The
performance of the symbol synchronizer is assessed by computer simulations. It is
observed that the proposed synchronizer tracks the variations of the channels
almost the same as the msISI criterion. The proposed method eliminates the cycle
slips very succesfully and is robust to frequency-selective multipath fading

channel conditions even in moderate signal-to-noise ratios.

Keywords: symbol timing, minimum shift keying (MSK), matched filtering,
optimum timing phase, Viterbi algorithm, multipath fading
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MSK SINYALLERI ICIN UYUMLU SUZGECLEMEYE DAYALI
SEMBOL ESZAMANLAMASI

Sezginer, Serdar
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Yal¢in Tamk

Eyliil 2003, 83 sayfa

Bu tezde, en kiiciik kaydirmali kiplenim (MSK) sinyalleri i¢in uyumlu siiz-
gecleme kullanilarak sembol zaman bilgisinin kazanimi incelenmistir. Hassas
zamanlama i¢in karara bagl en biiyiik olasilikli dizi kestirimi (MLSE) almac ile
birlestirilmis bir sembol eszamanlayicisi Onerilmistir. Zaman birimi Viterbi
algoritmasindan elde edilen kesin olmayan kararlarla ilinti (uyumlu siizgec)
yontemi kullanilarak kazanilmistir. Ufak zaman gecikmeleri aradegerleme ve
dongiilii en yiiksek arama ile elde edilmistir. Onerilen sembol eszamanlayicisinin
basarimini incelemek amaci ile olasi en iyi li¢ zamanlama evresi 0l¢iitii iizerine bir
calisma yapilmistir: (i) Mazo Olgiitii, (i1) en kiiciik karesi alinmig ISI (msISI)
Olciitii, ve (iii) en kiiciik BER olciitii. Ayrica, MLSE almacinin zamanlama
duyarliligindan bahsedilmistir. Sembol eszamanlayicisinin basarimi bilgisayar
benzetimleri kullamlarak degerlendirilmistir. Onerilen eszamanlayicinin kanal
degisimlerini msISI olciitiine ¢ok benzer takip ettigi gdzlenmistir. Onerilen
yontem devir kaymalarini basariyla elemektedir ve ortalama sinyal-giiriilti

oraninda bile frekansa bagimli cokyollu sontimlemeli kanallarda giirbiizdiir.

Anahtar kelimeler: sembol zaman bilgisi, en kii¢iik kaydirmali kiplenim, uyumlu

siizgecleme, en iyi zamanlama evresi, Viterbi algoritmasi, ¢okyollu soniimleme
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CHAPTER 1

INTRODUCTION

1.1.  Scope and Objective

In digital radio communications, the demand for reliable, high-speed and high-
quality transmission has led to an investigation of various receiver design
techniques. In order to determine the most suitable digital communication system,
every stage of the system has taken considerable attention. Symbol
synchronization or symbol timing recovery (STR) is one of the most critical
receiver functions in synchronous communication systems. Proper recovery and
tracking of the symbol timing are of crucial importance and necessary in the

demodulation and data detection for good performance.

The ideal timing phase for a given system depends on the overall impulse
response and thus on the characteristics of the communication channel. Multipath
fading with large delay spread, typically in urban area, introduces intersymbol
interference (ISI) in addition to the ambiguous delay in the transmission. Because
of this reason, determination of the proper sampling instants is one of the most
difficult problems in time-dispersive channels and an accurate analysis is
extremely difficult, if not possible. Most of the practical synchronizers are based
on heuristic algorithms that have been based on transmission systems with no
intersymbol interference (ISI) or with a time spread less than a symbol period

which is not so realistic for bandlimited channels.

For the recovery of the timing information in the presence of severe
channel effects, specifically designed synchronizers are needed. Feedforward

approaches based on maximum likelihood (ML) estimation are good candidates,



because of their rapid acquisition of symbol timing with the absence of hang-up
problems, which is common in feedback structures. Through the extensive
research on these approaches, the trend of designing receivers for bandwidth
efficient continuous phase modulation (CPM) schemes has created an attractive
area for the researchers interested in timing recovery. CPM is a constant envelope,
nonlinear modulation method which conserves and reduces energy and bandwidth
at the same time [1]. A special form of CPM is MSK which is very attractive for
transmission in a mobile radio environment with its constant envelope and
relatively narrow bandwidth [2]. In the last two decades, there have been
significant attempts on receiver designs for MSK signals including the
synchronization aspects. Timing recovery for MSK signals is first discussed by de
Buda [3] with a feedback approach. Feedforward approaches for symbol timing
estimation for MSK signals are discussed in several papers, [1][4]-[8], but not
much attention has been given to the effects of multipath fading on symbol

synchronization.

The objective of this thesis is to investigate a timing recovery algorithm
for MSK signals, which is able to extract the fractional delays even in the
presence of severe channel variations. The recovery of the timing epoch is
performed with correlation (matched filter) method together with an interpolator
and an iterative maximum search process. In acquisition mode, a data-aided
approach is used for the adjustment of the initial timing. Then, tracking is
performed with a decision-directed timing recovery. Maximum likelihood
sequence estimation (MLSE) with Viterbi algorithm (VA) is used for detection,
which is the optimum demodulation technique for data-modulated signals

received over a frequency-selective multipath fading channel.

The proposed STR scheme enables the fast and sensitive recovery of the
timing epoch. With such a precise timing recovery scheme, the question arises
about the optimality in timing recovery. The subject has received attention mainly
in early seventies and some possible optimum timing phase criteria are presented

in [9]-[11]. Three criteria are discussed in the context of this study; namely, the



Mazo criterion [10], the minimum squared ISI criterion and the minimum BER
criterion. Comparing these criteria, the behaviour and the performance of the

proposed scheme is observed for different fading channel characteristics.

In summary, the timing recovery is still a problem in time-dispersive
channels. The channel effects together with optimality in timing recovery have
taken scarce attention. The aim of this thesis study is to design a fast and robust
STR scheme for MSK signals with the ability of giving precise timing values even
in the presence of severe channel effects and compare its results with possible

optimum timing phase criteria.

1.2.  Outline of the Thesis

The thesis has the following outline:

In the next chapter, the basic concepts related to the model of the multipath

fading channel and the MLSE receiver implemented with VA are presented.

In Chapter 3, the statement of symbol synchronization problem and a
review of major symbol timing recovery methods are given. Following this, the

maximum likelihood estimation of the timing epoch is reviewed.

The proposed timing recovery scheme is presented in Chapter 4. First,
some possible criteria are given for comparison. Then, the correlation (matched
filter) method, interpolation and the iterative maximum search algorithm are

discussed.

Chapter 5 is devoted to the simulation results. Firstly, the model of the
simulated system is given and the details of the simulated chain are presented.
Following this, the tracking performance of the proposed scheme is discussed

with the simulation results.

In the last chapter, conclusions are drawn and possible future extensions to

this work are mentioned.



Signal model and the linearization of CPM are given in Appendix A. Error

performance analysis of the MLSE receiver is presented in Appendix B.



CHAPTER 2

CHANNEL MODEL AND MLSE RECEIVER

2.1. Introduction

In radio channels the delayed and attenuated versions of the transmitted signal are
added together at the receiver to produce multipath interference. Each signal path
is affected by a random amplitude fade and a phase shift that tends to change over
time. Due to the multipath nature of the communication channel, interference
occurs between adjacent symbols, which is known as intersymbol interference
(ISI). The best theoretical performance for demodulating operations over channels
with ISI and additive white Gaussian noise (AWGN) is the maximum likelihood
sequence estimation (MLSE) technique which is implemented efficiently by

means of Viterbi algorithm (VA).

This chapter addresses a few concepts about the model of the multipath
fading channels and the MLSE receiver used in the simulations. First, the channel
model is presented with its characterization and simulation modelling. Next,

MLSE and the VA are explained, respectively.

2.2. Channel Model

The mobile radio channel is based on the propagation of radio waves in a complex
transmission environment. With a receiver moving around channel appears to be
time varying. Since the channel variations as observed by the receiver are random,

the channel model is treated as a statistical one.



2.2.1. Characterization of Multipath Fading Channel

The physical fading channel can be characterized by the complex-valued time-
variant fading channel impulse response (CIR). Most radio channels are illustrated
by multipath propagation where a number of reflected or scattered radio rays

arrive at the receiving end [12].

Suppose that the transmitted signal is
s(t)=Refs, (e}, 2.1)

in which s,(¢) is the complex envelope of the signal. It is assumed that there are

multiple propagation paths. A propagation delay and an attenuation factor are
associated with each path. Usually the propagation delay changes only slowly
with time and may be assumed to remain stationary. Thus, the multipath channel

output can be written as

x(t)=Yc,(s(t-At,), (2.2)

where At, is the propagation delay and c, (¢) is the attenuation factor for the n-th

path. Substitution for s(¢) from equation (2.1) into equation (2.2) yields the result

x(t)= RC{Z ¢, (e s (t = A, )}e’“""} : (2:3)
The equivalent low-pass received signal, (¢) (without noise), is then
H(t)=D c, ()™ s, (t-At,). (2.4)

Since »(¢) is the response of an equivalent low-pass channel to the equivalent
low-pass signal, s,(¢), the equivalent low-pass channel may be expressed by the

time-variant impulse response



(Ase)= Za ()S(At—At), (2.5)

where & (At;t) represents the response of the channel at time ¢ due to an impulse

applied at time ¢—At [13]. Here, the complex random process «,(¢)

—jw.At,

introduced with its amplitude ¢, () and phase e . The low-pass equivalent of

the fading channel model may be depicted as in Figure 2.1.

si(t) . :
— > Propagation Delay Line
(1) (1) i (1) (1) i
...... —)(?
(1)
)y
Noise

Figure 2.1 Multipath fading channel model.

2.2.2. Channel Modelling

For practical simulations, different propagation models can be described by
defining discrete number of taps, each determined by their time delay and average
power. The time variation of each tap is determined according to a Doppler
spectrum, and the average power is adjusted using the power delay profile of the
channel. Doppler spectrum and the power delay profile are obtained according to

the scattering function of the channel [14].

The scattering function is a two dimensional representation of the received
signal power as a function of the propagation delay and the Doppler frequency,

e., S(At, f). In other words, it describes the manner in which the transmitted

power is distributed in time and frequency, upon passing through the channel.



2.2.2.1. Doppler Spectrum Type

Simulation of the fading spectrum appropriate to mobile radio communication is
obtained by properly shaping the spectrum of the independent noise sources with

the Doppler spectrum, S(f). It simply determines the time variations of the
channel. When S(f) becomes equal to the delta function O6(f), the channel

appears to be time-invariant.

In this thesis, for modelling the time variations of the channel, the well-
known classical Doppler spectrum is used. In this spectrum type, all the angle
between the vehicle speed and radio waves are assumed to be equally probable.
This is the most commonly used, and in a certain sense the worst case Doppler

spectrum. It is formulated by the scattering function as

S, (f)=S(Az,. 1)

:Lz for fe(—fd,fd), (2.6)
-7
Sa

where A¢, is the propagation delay for the n-th path. f, =Y f. represents the
c

maximum Doppler shift, with the vehicle speed v(m/s), the wavelength A(m),
and the carrier frequency f, [15]. Since the spectra of all the tap weights are

assumed to be the same in the simulations, the subscript » is dropped in the
following illustrations. As an example, Classical Doppler spectrum for mobile

speed of 90 km/h and with a carrier frequency 1800 MHz is shown in Figure 2.2.



0 i i
-150 -100 -50 0 50 100 150
fitiz)

Figure 2.2 Classical Doppler Spectrum (f; = 150 Hz).

2.2.2.2. Power Delay Profile

The average power for each tap is described by the power delay profile, P(Az).
The power delay profiles are defined as [15]

fd
P(At,) =P, [S(At,, )df , .7
~fa

where F, is the normalizing power and P(Atf,) is the power transmitted by tap 7.

As an example, the continuous power delay profile of the simulated channel

model is shown in Figure 2.3 with the relation

(~4n) 0<At<7
P(At)z{e » Jor O<Ar<Tus, 2.8)

0, elsewhere,

which is a typical case for urban (non-hilly) area (TU).
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Figure 2.3 A TU Channel Power Delay Profile.

In summary, the variations of the taps are determined by the Doppler
spectrum according to (2.6). This is accomplished with adjusting the spectra of the

tap weights by filtering the complex white noise, w(¢), as in Figure 2.4.

w(r) a, (1)

—> H(f) ——

Figure 2.4 Adjustment of the spectrum of a tap weight.

Thus, the power spectral density of the n-th tap weight can be expressed with the

relation

S == S,.(f), (2.9)

10



where S, (f) is the power spectral density of the white noise. Since the power

spectral density of the white noise is a constant (say unity) for all frequencies, the

magnitude of the shaping filter response H(f) becomes

| H(f)|=S(f). (2.10)

As a result, the tap weights may be obtained by filtering the white noise with the
shaping filter given in (2.10), together with the power level adjusted according to
the power delay profile, P(At), with the relation shown in equation (2.8). Further,

a, (t)’s are circularly symmetric zero-mean Gaussian processes.

Finally, it is noteworthy to mention that in order to provide Rayleigh
distribution for the envelope, two independent Gaussian low-pass noise sources
with identical spectra are added in quadrature. The output corresponding to the tap
weights then has a Rayleigh distributed envelope and a uniformly distributed
phase component. In Figure 2.5, an example of a Rayleigh fading envelope is
provided for a Doppler shift of 150 Hz. Notice how the magnitude drops down to

a very low level at certain time instants and deep fades occur.

11
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-20

Figure 2.5 Rayleigh fading envelope ( f, =150 Hz).

2.3. MLSE Receiver for MSK Signals in Multipath Fading Channels

In this section, the background information relating the derotation technique
employed for the reception of MSK signals, and the MLSE receiver structure

implemented with Viterbi algorithm are presented.

2.3.1. MSK Signals and Derotation

MSK modulation type belongs to the class of continuous phase modulations (i.e.,
binary CPM with modulation index 4 =1/2) (See Appendix A). This modulation
type is essentially nonlinear and classical MLSE algorithms for receiver side
cannot be employed directly. However, it has been shown in [16] that binary CPM
signals can be represented approximately as pulse amplitude modulated (PAM)
signals by adopting a suitable pulse shape. Hence, as shown in Appendix A,

baseband equivalent MSK signals can be expressed exactly as

s, ()= ﬁ:exp(jg Zbk]g(t—iT), (2.11)

12



where g(¢) denotes the real-valued pulse shaping function and b, ’s € {+1} are the
input data bits to the modulator. The energy constant /2E /N, is dropped for

convenience. For MSK signal, g(¢) is a one half cycle sinusoid with duration of

two symbol periods as shown in Figure 2.6.

0.8

0 : . i ; ; : . i ;
0 02 04 06 08 1 12 14 16 18 2
T

Figure 2.6 Pulse shape of linearized MSK signal.

As in GSM system, for ease in implementation, the data to the modulator
is precoded by the rule b, =a,a, ,, where a,’s e{t1} are the original

information bits. Using this property and assuming that the data sequence be

defined for k =i, in (2.11) [17] gives

s,(t)ziexp[ ng Jg(t—iT)

i=i, k=i,

= exp( j%aka,(_l jg(t —iT). (2.12)
i=iy k=i,
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Using the equality exp( j%a 4, ) =ja,a, ,equation (2.12) can be rewritten as

0 i

s,(t): iﬁjakakflg(t—iT) = Zj("'i"”)Hakakflg(t—iT). (2.13)

i=ig k=i i=iy k=i,

i i—1
Since [ [a,a,, =a,a, ][4 and a; =1 forall k, we get

k=i, k=i,

si(0)= 7", Y a,j'glt~iT). (2.14)

i=iy

(=ig+1)

Finally, assuming the terms «, , =1 and j =1 which are independent of i

and letting i, — —oo, the general result is obtained as

s,(t)= ia[jig(t—iT). (2.15)

j=—0

The signal at the receiver will in general have passed through a frequency-

selective channel with a complex impulse response %.(¢), and a receiver filter

with an impulse response g,(¢) in order to reduce adjacent channel interference

and noise. The received signal then becomes (in the absence of noise)

r(t)= Y a,j'h(t—iT), (2.16)
where h(t)=g(t)®h. (1) ® g, (¢) is the overall impulse response of the system
from the source to the detector input where ® denotes convolution. The received
signal possesses a rotational structure because of the factor ;' in the equation
(2.16). This causes a 7/2 phase rotation on the complex plane from symbol to

symbol. This can be avoided by means of a derotation technique, [18], by
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multiplying the received signal by the complex function: q(t)=(— j)i for

iT <t < (i+1T. Finally, the signal takes the form

ra (1) = q(O)r(6) = Y a,hy (t ~iT) (2.17)

with the derotated impulse response #,(¢)=q(¢)h(¢). Thus, the rotational
structure of the signal »(¢) is removed and a linear PAM receiver model can be
obtained. The form of r,(¢) given in (2.17) allows classical MLSE detection of
the transmitted data sequence by the use of Viterbi algorithm (See Section 2.3.2).

In the sequel, the subscripts indicating the derotation will be dropped for

convenience.

2.3.2. MLSE Receiver and Viterbi Algorithm

The conventional MLSE receiver generally consists of an ML sequence estimator
implemented by the Viterbi algorithm (VA). Viterbi algorithm wuses the
knowledge of channel characteristics and of the received signal in order to find
the most likely transmitted data sequence. The algorithm does not attempt to
equalize the received waveform, so that the performance of this receiver is
dependent on the available estimate of the channel impulse response (CIR).

Throughout the study, the perfect estimation of the channel is assumed.

In the previous section, it is shown that the received signal can be
expressed as the convolution of the transmitted data bits with the overall impulse
response. Thus, including the additive noise of the transmission medium, the

received signal can be expressed as
K-1
r(t) =Y ah(t—kT)+w(r), (2.18)
k=0

where a,’s € {t1} are the transmitted bits, w(¢) is the white Gaussian noise

process, and K is the observation interval in symbols. 4(¢) is the overall system
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impulse response after derotation which accounts for the pulse shaping of the

modulation, selectivity of the channel and the receiver filter.

With the assumption that the function /4(¢) is known, the received signal in

the absence of noise may be reconstructed for each possible sequence. Let the

reconstructed complex baseband signal for the m-th sequence be denoted as
K-1
s,(O)=> a;h(t—kT). (2.19)
k=0

The MLSE algorithm atttempts to find the transmitted sequence
a= [ao a...a ,H] that maximizes the log likelihood function (LLF) [13]

0

In[p, s (r(0) | )] o — |

—ool

r(t) - E a,h(t—kT)| dt. (2.20)

The direct solution of this maximization problem is to select the one among the

M =2% possible vectors @ which maximizes (2.20). It is obvious that as the
length of the transmitted vector a gets larger, the maximization of the LLF
function becomes computationally inefficient. To reduce this computational load

Viterbi algorithm can be used.

In the literature, there are basically two approaches for the application of
the Viterbi algorithm to this problem. One of them is by Forney [19] and the other
by Ungerboeck [20]. The Forney’s approach follows the standard Viterbi
algorithm and theoretically requires the whitening filter. On the other hand,
Ungerboeck’s approach directly uses the non-whitened samples. In this study, the
receiver structure proposed by Ungerboeck is considered which includes a

matched filter and a modified VA.

If we turn our attention to the LLF again, we see that maximizing (2.20)

for the m-th sequence is equivalent to maximizing the function
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A, = 2Re§[(a,’:’)* Tr(t)h*(t—kT)dt}

k

—00

=~

->> (a) a Th*(t—kT)h(t—iT)dt. (2.21)

k

=0
-1 K-1
i=0

Il
=]

—00

We may rewrite equation (2.21) as

A, - 2Re[§(a,:")*yk} >y v A 222)

where
Ve = ¥(KT) = [rOR (¢~ KT, 2.23)
x, = x(kT) = Th*(t)h(t kTt (2.24)

In words, y, is a sample taken at time k7 at the output of a filter matched to the
overall impulse response /4(¢#) when the input is the received signal r(¢), and x,

is a sample of the autocorrelation function of A(?).

This clarifies that the computation of the likelihood function requires
passing r(#) through a matched filter with impulse response 4" (—¢) followed by
processing of the sampled outputs of the matched filter. Next, the Viterbi
algorithm is employed by evaluating the LLF recursively and discarding the

unlikely sequences.

For practical reasons, the analog MF can be replaced with discrete
transversal MF having a finite number of taps. To approximate the true MF
characteristics, the number of taps of the discrete MF must include all the
significant components of the overall impulse response. For a sampling rate of

1/T,=N/T at the ouput of the receiver filter, 7, -spaced taps may be sufficient to

17



assure the optimum performance of the MLSE receiver if the received signal one-

sided bandwidth is limited to 1/27,. Then, the equations (2.23) and (2.24) can be

re-expressed as

¥, = y(KT) = S r(nT )W (nT, —KT), (2.25)
x, = x(kT) = Nﬁjlh*(nTs)h(nTs +kT), (2.26)

n=0

where y, and x, are obtained by downsampling the outputs of the discrete

transversal MF to the sampled values of the inputs 7(¢) and A(z), respectively.

Now, an incremental metric is required to process the VA in a recursive

fashion. Thus, A, is used to refer to the partial computation of the metric up to

k = n for the m-th sequence (where n < K ), then

A, =2Re{i(a,:”>*yk}ii(a:’)*xkia,-”’ . (227)

k=0 i=0

For the VA, A, may be computed recursively from the previous partial sum for

mn

the same sequence, A, ), as [15]

m

a

n

X, (2.28)

Ay = Ay + 2Re[(a;" )y, ]— ZRe{(a;” ) anka;,"} -
k=0

The equation may be further simplified. Since a, € {1}, the last term will

always yield the same value for a given channel characteristic and can be
discarded. Further, the factor of 2 for the other two terms may be dropped. Since

any practical channel response /(¢) will span an interval of LT seconds, x, will
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be zero for |k |> L . Hence, the summation in the second term can be rewritten as

L
Zxka;’lk . Finally, the recursive metric calculation reduces to
k=1

L
Amn = Am(n—l) + Re{(a;n) |:yn - Zxkar:n—k :|} N (229)
k=1

The second term is nothing but the incremental metric that is employed in
the VA for transitions in between the states. It should be noted that the complexity
of the incremental metric depends critically on the summation in the second term,
thus on the coefficients x,. In other words, the incremental metric depends only

m

on a’,.,a ie., on the last L+1 bits of the data sequence. Then, the

n 2 n-L >
summation term in the brackets can have 2" distinct values depending on the

possible combination of the state vector S, =(a, ,,a, ,,...,a,, ) which consists of

the previous L binary bits.

Viterbi algorithm compares the metrics of all sequences going into the
same state at each instant k7" and choose a survivor with the largest metric. The
process is repeated for each of the 2" states. For binary signalling, each survivor
gives rise to two extended sequences, but these are then pruned back to single

survivor path by metric comparison of the two incoming sequences to each state.

Finally, it must be noted that the critical parameter which determines the
number of states and hence the complexity of the receiver is the number of
significant component of /4, . In this study, it is assumed that the overall impulse
response, including the effect of pulse shaping filter, channel and the receiver
filter, spans a time interval of 3 symbols, i.e., L is chosen to be 2. This simply
corresponds to the 2> =4 states in the Viterbi algorithm. This is discussed in

Chapter 5.
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CHAPTER 3

SYMBOL SYNCHRONIZATION REVIEW

3.1. Introduction

Timing recovery is one of the most critical functions that are performed at the
receiver of a synchronous digital communication system. The receiver must know
not only the frequency at which the outputs of the demodulators are sampled, but

also where to take the samples within each symbol interval.

In this chapter, firstly the definition of symbol synchronization is
presented. Second, a review of symbol timing recovery (STR) methods is given to
highlight the attributes. In the context of this review, a brief history of timing
recovery with some applications on MSK signals is included. Finally, the
maximum likelihood estimation of the timing recovery and the Modified Cramér-

Rao Bound is presented.

3.1.1. Symbol Timing Recovery

In a digital communication system, the output of the demodulator must be
sampled periodically at the precise sampling time instants that minimize the
detector error probability. The process of extracting the clock signal for
determining the accurate locations of the maximum eye openings for reliable
detection is usually called symbol synchronization or symbol timing recovery
(STR). A circuit that is able to predict such locations is called a timing (or) clock

synchronizer.
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Figure 3.1 illustrates the block diagram of a typical baseband receiver
model with a channel introducing an arbitrary delay z. The received signal is

composed of signal plus noise:

r(t)=s(t—7)+w(t), 3.1)

where w(¢) is a white Gaussian noise process. The received waveform is first
filtered to remove the out-of-band noise and then sampled at 7-spaced instants,

t, =kT +7,where 7 is the timing epoch that accounts for the propagation time of

the signal from the transmitter to the receiver.

o) ), x(kD) i,
RECEIVER /
> >
FILTER +——> DETECTOR
Sample at

kT +71

| TmMING
>| RECOVERY [~777~"

Figure 3.1 Typical block diagram of a baseband receiver.

The task of the timing recovery function, as stated, is to sample at the
optimum sampling instants, which amounts to the maximum eye opening at the
output of the receiver filter. This will ensure that the samples passed to the
remaining receiver processes, including data detection, have the maximum
available average signal-to-noise ratio (SNR) and hence a bit error rate (BER) as

close as possible to optimum.

In selecting the STR scheme for a particular situation, some factors should
be considered such as the modulation scheme being used, the transmission
environment, the cost of implementation, the mode of the transmission (i.e. burst
mode or continuous transmission) and physical limitations on size and power
together with the complexity. The most important of these are the modulation

scheme and the length of transmission. Next subsection gives some attention to
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these facts within the consideration of the general forms of the timing recovery

schemes.

3.1.2. Existing STR Schemes

The symbol synchronization literature is so vast as to comprise many technical
papers with applications in diverse areas. This enormous knowledge has been
elaborated in excellent books, the latest of which are by Meyr and Ascheid [21],
Meyr, Moeneclaey and Fechtel [12], and Mengali and D’ Andrea [22].

The process of symbol timing recovery (STR) varies according to the
application. Existing symbol synchronizers appear in two main classes whether
they are modeled with analog or digital methods. The former work on continuous-
time waveforms where the latter perform the recovery of the timing epoch by
operating on signal samples taken at a suitable rate. Since the proposed scheme
basically resembles digital synchronizer schemes, in this general review of
existing schemes the main emphasis is given to the digital timing recovery.
Digital symbol synchronization methods are well established in the
synchronization literature with many technical papers and the books by Meyr,

Fechtel and Moeneclaey [12], and Mengali and D’ Andrea [22].

As shown in Figures 3.2 and 3.3, the digital implementation of the
synchronization process may take place using with either feedback (FB) or
feedforward (FF) schemes [22]. The received signal can be sampled prior to or
after the matched filter in both schemes. Each structure has its own particular
merits. In both cases a low pass filter (LPF) limits the bandwidth of the received
waveform. A typical feedback scheme is depicted in Figure 3.2. Here, the timing
error detector (TED) takes the output of the timing corrector to generate an error

signal e(k) proportional to the difference between 7 and its current estimate. The

error signal is then filtered to reduce the variance of the timing error and the

output is used to recursively update the timing estimates.
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VT,
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LOOP < TED
FILTER

Figure 3.2 Feedback configuration.

On the other hand, feedforward methods derive an estimate of the timing
epoch by applying a non-linear process within the STR circuit to the received
signal samples. The estimate can then be used to adjust the sample timing to the
optimum location. Generally, the tracking ability of the FB methods is superior to
FF ones and they have less jitter when SNR is poor. But one can achieve fast

acquisition times by employing FF schemes.

(1) x(?) x(kT,) WKT) dT;)t:ci?r
S LPF / | MATCHED > TIMING Ly
A FILTER CORRECTOR
E T, A
Fixed @
clock
> STR

Figure 3.3 Feedforward configuration.

In the schemes described in Figures 3.2 and 3.3, a fixed clock whose ticks
are not locked to the incoming data, controls the sampling. This is referred to as
non-synchronized sampling. The sampling process can be performed also in a
synchronized manner by feeding the number controlled oscillator (NCO) directly
with the output of the STR circuit, as shown in Figure 3.4. Here the sampler is

commanded by the NCO pulses at times {f, }. Note that, as an example, the

sampling process is performed after the MF and the analog MF in the figure may
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be replaced by a digital MF inside the loop, as in the previous Figures 3.2 and 3.3.
Moreover, synchronous sampling can be used both with feedback and

feedforward schemes.

To data

0] nD) / W) detector
MATCHED . >

FILTER

tk:kT+T

STR

NCO

A

Figure 3.4 Synchronous sampling.

For completeness, it is valuable to mention about the timing correction
block shown in Figures 3.2 and 3.3. Timing correction is generally performed

with interpolators with the desired interpolation times {tk } It serves to provide

the decision device with signal samples with the corrected timing values, i.e., with

minimum intersymbol interference.

Also the timing synchronizers can be divided into two broad classes. First,
synchronizers which use estimates of the received data values in obtaining the
timing information are called decision-directed (DD) or data-aided (DA). In
literature, DA timing recovery is generally referred to estimation of the timing
epoch by using some preamble known to the receiver. The second class of
synchronizers determines the timing phase error without using knowledge of the
received data values. These are called non-decision-directed (NDD) or non-data-
aided (NDA). Decision-directed STR schemes closely approach the performance
bound but they are generally intolerant of carrier phase offset. Conversely, non-
data-aided structures have poorer performance despite the fact that they are

tolerant of carrier phase offset.
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Since the second half of the last century, many timing recovery methods
have been proposed with a steady performance improvement. Initially, timing
synchronization information was transmitted on a separate channel. In the early
1960s, researchers have dwelled upon the investigation of new timing recovery
schemes that all the transmitted energy is devoted to the transmission of the data

signal, instead of dividing it between a data and a synchronization channel.

Early timing recovery methods were feedforward based and relied on the
extraction of timing information from a discrete frequency component at the
symbol rate. The frequency component is generally produced by feeding the
baseband signal through a non-linearity, and then filtering the unwanted
frequency components using a narrow bandpass filter or a phase locked loop
(PLL). As the techniques for the analysis of the structures advanced through the
1970s, many classic papers were published mainly by Kobayashi in 1971 [23],
Franks and Bubrouski in 1974 [24] and a very innovative one for synchronous
digital receivers by Mueller and Muller in 1976 [9]. The tutorial paper by Franks
in 1980 [25] described the symbol synchronization methods including the ones
based on the maximum likelihood estimation criterion in the special issue of the
IEEE Transactions on Communications (August 1980). This issue was devoted to

synchronization and comprised many other papers with valuable contributions.

With the rapid advance in digital signal processing (DSP) devices, both the
feedforward and feedback methods are increasingly being implemented in fully
digital forms [12]. The papers mentioned above formed the bases of the extensive
research on the digital synchronization. Further research has been devoted to the
digital synchronization of nonlinear modulations formats, namely, continuous
phase modulation (CPM) [1][26]. Next section gives the details of the research on

symbol synchronization in MSK signals.

3.2. Symbol Synchronization in MSK Signals

MSK is a subset of the continuous phase modulation (CPM) schemes (See

Appendix A). Having constant envelope, they are very attractive in radio systems
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employing low-cost non-linear power amplifiers. However, because of the
implementation complexity and synchronization problems, not much attention is
given to the symbol timing recovery of CPM signals especially for transmission in

fading channels.

Symbol timing recovery for CPM signals has been first discussed by de
Buda [3], specifically for minimum shift keying (MSK), where a nonlinearity is
used to generate tones at the clock frequency. This algorithm was further analyzed
in some papers and in [27] it has been shown that it can be used for any CPM
signal. The problem with these Buda-like [26] synchronizers is their poor

performance with the smoothed frequency pulses.

A decision-directed (DD) algorithm based on the maximum likelihood
(ML) techniques is proposed in [28] and [7] using MSK modulation. Former
provides the joint ML estimation of carrier phase, timing epoch and data, but
suffers from spurious locks in the maximization of the likelihood function. The
latter presents an all digital implementation with a feedforward carrier and clock
synchronization. Although it is well suited for VLSI implementation, it includes

some additional blocks to avoid hang-up problems.

In order to solve the problems related with the mentioned algorithms some
NDA structures are developed. A feedback scheme is presented in [29] and its
performance is compared with de Buda synchronizer. In [4]-[6], feedforward
NDA algorithms are discussed. Two of these methods, proposed by Mehlan, Chen
and Meyr [4] and Lambrette and Meyr [5], recover the clock signal in an ad hoc
manner by passing the received signal samples through a nonlinearity and a digital
filter. The algorithm behind this ad hoc scheme is obtained specifically for pure
MSK and not applicable to any other CPM format. In a different approach, [6],
the non-data-aided recovery is obtained by applying maximum likelihood
methods. Although it is simple and seems suitable for burst mode transmission the
algorithm is obtained under the assumption of low SNR. This results in the

deviation from the desired performance even in the moderate SNR values.
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Timing recovery in MSK signals with multipath fading channels has
received scarce attention thus far. Although, it is widely believed that
conventional clock synchronizers can be used even with fading channels, a closer
look at the question may be worthwhile. In [4] and [8], the effects of a flat fading
channel are taken in consideration with the symbol synchronizer employing
nonlinearity and filtering in a feedforward manner. Also, the effect of frequency-
selective channels is tested in [4], and a dramatic degradation is found in the bit

error rate.

Apart from these attempts, some researchers intended to assess the error
probability degradation due to synchronization imperfections. In [30], the effect of
symbol timing errors on the BER is analyzed for linear modulations and given the
comparison with MSK under the channel effects with a delay spread less than a
symbol interval. It has been pointed out that MSK signal suffers from severe BER
degradation in accordance with the increased delay spread. In [31], the effect of
the timing errors is discussed when a coarse timing correction is employed in an
MLSE receiver. It has been observed that the performance of the receiver is
affected slightly from the timing errors when the delay spread of the channel does

not exceed several symbol periods.

An example for the timing sensitivity of error probability of MSK signals
is shown in Figure 3.5. The results are obtained under AWGN channel for
different timing offset values. As is seen, for a value of 7 15% of the symbol
period produces a signal energy loss less than 0.5 dB, but with a larger offset of
0.37 a loss of 1 dB is noticeable. Thus, MSK signals may require well-designed
symbol synchronizers in the presence of considerable timing errors. This is

actually the case for the frequency-selective multipath fading channels.
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Figure 3.5 Effect of timing errors on MSK modulation.

3.3. Maximum Likelihood Timing Estimation

It is widely recognized that maximum likelihood (ML) estimation techniques offer
a systematic and conceptually simple guide to the solution of synchronization

problems and they provide optimum or nearly optimum solutions.

In this section the framework for maximum likelihood symbol timing
recovery is established since most of the algorithms have been discovered by
application of the ML estimation [25]. This is also the case for the proposed
algorithm given in Section 4.3. The general formulation of the ML timing

estimation is discussed in detail in [22] and [32].

Considering the baseband equivalent of the bandpass signal, the received

signal in (3.1) can be described as

rt) =s,(t,7)+w(t), (3.2)
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where 7 represents an arbitrary delay introduced by the channel to the trasmitted

signal s,(¢). The notation s,(¢,7) is adopted to stress the dependence of the signal

on the timing epoch. w(¢) is white Gaussian noise with spectral height N, /2.

The ultimate goal of a symbol synchronizer is to estimate the most likely
value of the timing epoch. This is accomplished when synchronizer maximizes the

a posteriori probability for all values of 7 :

Tyup = arg max{p,‘,, (7] r(t))} (3.3)

given the observed signal 7(¢) [33].

ML estimation requires the determination of the signal r(¢#) which
maximizes the conditional probability density function p, (r(¢)|s,(z,7)), that is,
the most likely signal, s,(#,7), which produces the received signal, r(¢), over a

specific observation period 7j, .
We can rewrite the a posteriori probability using Bayes’ theorem:

p.(7)
Py (r@®) = p, (r()| 1) ——, (3.4)
| | p.(r(®)
where the probability density function (pdf) p,(r(¢)) describes the probability
that r(¢) was received, and p_(7) describes the probability that s,(¢,7) was
transmitted with a delay of 7. In this case p_ (7) is a constant assuming the time

delay has a uniform pdf over the interval [O,T ] In addition, p, (r(¢)) is simply a

normalization constant.

Letr, 5,(r) and w be the vector representations of r(¢), s,(¢,7) and w(¢)
over a complete orthonormal set {¢,. (t)}l.li1 . Then, the i-th component of 7 is given

by [33] as
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= [r0g o). (3.5)

Similarly,
$,(0)= [5,6.08, 00t (3.6)
w, = [ (e 3.7)

The standard form of the pdf for the sum of a known signal and AWGN, is

(=5, (r))Z] 39

1
P (1l 7)= exp
| \/”No |: NO

As the additive noise is considered to be white, the obsevations of noise, w;,’s, are

independent, that is,

L

E{w.wA}z%&i—j). (3.9)

Hence, the pdf may be expanded over K components by taking the product of the

pdfs for the individual sample observations and leads to the desired result

I - _SH(T))T (.10

P (r|7)= WHCXP{ N,

within the observation interval 7. To simplify the likelihood function the natural

logarithm may be taken, which after some rearrangement, results in

In[p, 7 | r)]=—NiZ(n 5, () +Cy. G.11)

0 i=l
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where

(3.12)

1
Co=lIn——u |
n{(\/ﬂNo)K}

Equation (3.11) can be converted to the continuous time domain form by dropping

the constant C, as it is independent of the time delay and taking the limit as

K — oo . Then, the result is

A, (F|7) :—Nij(r(t)—s,(z,r))zdt, (3.13)

07,

where A, (7|7) is the continuous time log likelihood function (LLF). The

squared term within the integral is a measure of the distance between the received

and reference signals. Only the cross-correlation term in (3.13) contains useful

information regarding the timing epoch. r>(¢) is independent of 7, and the
s;(t,7) term is simply the power of the transmitted signal during the observation
interval 7;,. Consequently, the most likely timing offset 7 can be expressed as the

value of 7 which maximizes

A, (F|7)= Ni [r®s (. 0)dt + const, (3.14)

07,

that 1s,

T =arg maX{AL (7| z')} =arg max{Ni jr(t)s, (t, r)dt} . (3.15)

T T OTO

The constant term is not included in (3.15), as it does not affect the maximization
process. The final result will be used to explain the notion behind the proposed

timing recovery algorithm in the next chapter.
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3.4. Modified Cramér-Rao Bound

To compare the performance of synchronizers, establishing bounds to ultimate
accuracy is an important goal. However, in their applications to synchronization
problems some difficulties are encountered. The Modified Cramér-Rao Bound

(MCRB) is introduced not to exhibit such difficulties [22].

Cramér-Rao Bound (CRB) is a fundamental lower bound on the variance

of unbiased estimates. This bound is expressed as
1
2 —
E 0" In A(zr | 7)
or

= 1 (3.16)

. {EﬂnA(FU)T},
" or

where 7 is the observation as defined in the previous section and E,{} is the

Var{é(7) -7} > CRB(r)=—

expectation with respect to 7 . Any estimate that satisfies the bound is an efficient

estimate [33]. Because of the difficulty of computing A(7|7) for practical

synchronization problems MCRB is used, which still applies to any unbiased

estimator defined in the following form:
Var{#(¥) -t} > MCRB(z) (3.17)
with

N, /2
Os, (t, z,i)|’

A
MCRB(7)=

(3.18)

e e

7
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in the case of baseband equivalent signals. In (3.18) the notation s,(¢,7,u) is used
in place of s,(¢,7) and expectation E, {} is defined over the unwanted parameters

# which may include the frequency offset, carrier phase and/or the data symbols.
The relation between the CRB and MCRB is addressed in [34] as

CRB(r) > MCRB(7). (3.19)

The equality holds only in two special cases: where u is perfectly known and the
observation interval is much larger than the symbol interval or if there are no

unwanted parameters. Equation (3.19) indicates that MCRB might be loose.

The MCRB for binary CPM signals is given in [22] as

L mcrB(r)=—1 1
T 871, E./ N,

A o0
where ¢ =h’T j g (de.  (3.20)

g(t) is the frequency pulse shape and L, is the observation interval in terms of

the symbol period.

For binary MSK signalling with the frequency pulse shape

L, 0<t<T,
g(t)y=42T (3.21)
0, elsewhere,
(3.20) reduces to a simple form
1 2 1
—XxMCRB(7) = T 3.22
T? 2 7n’Ly E,/N, (3-22)

The relation given in (3.22) will be used for the comparison of the performance of

the proposed STR scheme in the AWGN channel.
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CHAPTER 4

A DD STR BASED ON MATCHED FILTERING
FOR MSK SIGNALS

4.1. Introduction

Transmission over frequency-selective fading channels necessitates specifically
designed synchronizer structures and algorithms that are, in general, different
from those for static channels. Feedforward approaches based on maximum
likelihood (ML) estimation are good candidates and have received increasing
attention [12][22][32]. They allow rapid acquisition and are well suited for burst-

mode data transmission.

The proposed timing recovery scheme is based on the method of ML
estimation of the timing epoch and does not employ any feedback loop. As a
result, it does not suffer from hang-up problems which is common in feedback
schemes. Correlation (matched filter) method is used for the recovery of the
timing epoch. The cross-correlation between the received signal and the reference
samples is interpolated and an iterative maximum search is performed for

estimating the fractional delays.

The chapter starts with a study on “optimum timing phase” concept and
some possible approaches. Next, the structure of the timing recovery scheme is
presented with explaining the correlation (matched filter) method, interpolation
and the iterative maximization process. Finally, a discussion on the performance

of the proposed timing recovery scheme is given.
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4.2. Optimum Value Criteria for Timing Phase

Although timing recovery is one of the most critical receiver functions in
synchronous communication systems, not much attention is given for the
investigation of the relation between the optimum timing phase criteria especially
under the time-variant fading effects of the channel. The subject has received
attention in early seventies and some possible optimum criteria have been
presented in [9]-[11]. In [35], performance of some timing recovery algorithms
are compared with the criterion proposed by Mazo [10] considering fading
channel effects. In addition, a recent study [36] gives some attention to optimum

timing values with emphasis on the timing sensitivity of MLSE receivers.

This section includes some possible criteria for establishing the notion

behind optimum values for timing phase.

4.2.1. Mazo Criterion

In this criterion, optimum timing phase is defined as the one which results in the
least MMSE, at the output of the equalizer. For most transmission systems the
bandwidth is greater than 1/27 where T is the symbol period. Therefore, when it
is sampled at a rate 1/7, the sampling phase will change the equivalent system
response by cancelling or augmenting the aliased components. It has been shown
by Mazo [10] that for a system consisting of a channel, a sampler and a forward
linear equalizer the optimum timing phase is found by maximizing the equivalent

channel magnitude response at the frequency 1/27, i.e., at the Nyquist band edge.

With the form of the received signal depicted in equation (2.18), the
samples at the time instants ¢ = kT + 7, can be re-expressed in the absence of

noise by

n()=Y h,(0)a,_, . 4.1)
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To point out the dependence of the samples on 7z, the notation 4, (7)=h(nT +7)

is used as in Section 3.3. These samples are related to their discrete Fourier

transform as
h,(0)= [H,(f,0e " df (4.2)

where

H, (f,0)=2 H(f +n/T)e 0. (4.3)

The exponential term in (4.3) reflects the effect of the timing phase. If the excess

bandwidth of the sampled received signal is assumed to be less than 100% , then
—jnr/T jnr /T
H, (/2T,r)=HQ1/2T)e’™" + H(-1/2T)e’™"" . (4.4)

According to the criterion proposed by Mazo [10], optimum timing phase
is defined as 7,, that maximizes the cost function ‘H o (12T, r)‘z and

opt

approximately given by

r = 21 larg(H (1/2T)) — arg(H (~1/2T))|+ kT, (4.5)
T

op

where £ is any integer.

The equation derived by Mazo is nothing but the slope of the phase
response between the frequencies {—1/27,1/2T}. Correspondingly, the timing

phase behaviour given with this relation can be characterized by the slope of the

phase response in a way given in the following formula:

1—:ﬁ[arg(H(fl))—arg(H(fz))]+kT (4.6)
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with f,=—f, =1/2T. This result directly gives the delay for linear phase

systems, and in some sense may show the general tendency of the time-variant
channel. Figures 4.1 and 4.2 show some examples for the timing values obtained

by the equation (4.6) for different f, and f,.

In Figure 4.1, the variations of the timing phase are obtained for a
multipath channel which is discussed in Chapter 5. Specifically, it corresponds to
a variation with a mobile speed of 50 km/h and a carrier frequency of 900 MHz.
The curves coincide in some specific interval and give the same delay. Other
instants, the values of timing phase differ for different frequency pairs. Of course,
this depends on the channel characteristics, but gives some information about the
channel variations and the effects on optimum timing phase. Similar conclusions
can be drawn for Figure 4.2. It gives the results of equation (4.6) under a faster

channel variation.

0.5 T T T T T T T T

Normalized timing phase

-------- fi—f= 18T
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0 2000 4000 6000 8000 10000 12000 14000 16000

t'T

Figure 4.1 Normalized timing phase obtained from Mazo criterion
(v =50 km/h, f.= 900 MHz).
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Figure 4.2 Normalized timing phase obtained from Mazo criterion
(v=90 km/h, f.= 1800 MHz).

4.2.2. Minimum Squared ISI (msISI) Criterion

Another criterion for the proper sampling is the determination of instants where
we achieve minimum ISI, i.e., maximum eye opening. Considering again the
general PAM form given in equation (2.18), the ideal set of samples are acquired
when the overall impulse response can be expressed by 4(0)=1, A(kT)=0,
k # 0 ; but this ideal set is never achieved in practice because of unknown channel

distortion. Considering this, the distortion can be defined as

> |nkT)f
D(O) =+ (4.7)
()

By changing the sampling instant for 4(¢) other than taking ¢ =0, we obtain an

appropriate measure for minimum distortion:
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> |h(z +kT)|*
D(r) = min£22

_ (4.8)
T |he)

This measure resembles minimization of the mean square distortion [9][11]. In
[11], some possible distortion criteria for performance evaluation are discussed.

Using (4.8) a possible optimum timing phase can be expressed as

> |z + kT)|*
, =argmin&——m——— 4.9)
‘ ()

Top

The above criterion may allow us to choose a meaningful sampling epoch
7, which results in minimum distortion. Because of the mathematical difficulty,
an explicit expression is not presented as the one given for Mazo criterion in
equation (4.5). Figures 4.3 and 4.4 show the results of the minimum squared ISI
(msISI) criterion given in equation (4.9) and the comparison with the Mazo

criterion with the same channels used in the previous figures.

It can be inferred that the two criteria track the channel variations and give
close results for the timing epoch. With a detailed look the similarity between the
msISI criterion and the timing estimates obtained by equation (4.6) with the
frequencies f, =—f, =1/4T 1s more clear especially in Figure 4.4. This is
actually a channel dependent fact and one may encounter different similarities

with different channel conditions.
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Figure 4.3 Comparison between the timing values obtained from msISI and Mazo
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Figure 4.4 Comparison between the timing values obtained from msISI and Mazo
criteria (v = 90 km/h, f.= 1800 MHz).
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It is interesting to note that the minimum squared ISI criterion defined by
equation (4.9) physically tends to minimize the ISI energy in the received signal
samples. This makes the msISI criterion much meaningful from the point of the
proposed symbol synchronizer. The proposed method discussed in section 4.3 also
has a tendency to increase the SNR value of the main component at the desired

sampling instant. Hence, the tracking behaviour is to be similar.

4.2.3. Minimum BER Criterion

Without any doubt, the most meaningful criterion for optimum sampling is the
minimization of the bit error probability. Considering the derivation given in
Appendix B, it can be inferred that for MLSE receiver the timing values which
maximize the minimum distance may be regarded as optimum. Hence, the
following relation is the best criterion for the MLSE receiver:

7,, =argmax {d im (T)} , (4.10)

T
where

dliin (T) = Eav (T)é;i

1 k+1-1k+1-1
=E,, (7)miny — z Zgixi—jg/ : (4.11)
gcE xo ik ok !
d’. (r) is the minimum distance as a function of the error vector & and the timing

epoch 7 (See Appendix B). E_(7r) is the average energy which changes

according to the sampling instant and &._ is the minimum value of the

normalized euclidean weight as defined in Appendix B.

Figure 4.5 shows the optimum timing values obtained from equation (4.10)
using the same channel statistics as in Figure 4.3. The results completely differ
from the ones obtained with the previous criteria. At a first glance, previously
discussed criteria seems to be unsatisfactory. Hopefully, this inference does not
much reflect the truth. The reason lies behind the timing sensitivity of the MLSE

receiver as discussed in detail in [31] and [36]. In [36], the effects of timing errors
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are studied on symbol-spaced MLSE receivers and the BER performance is
investigated with different timing phase criteria. It has been shown that for
bandlimited signals the timing appears to be uncritical with a coarse timing
recovery scheme even if the received signal is sampled below the sampling rate.
This is also discussed in [31] for GMSK signals and it is observed that with a free
runnig clock and a coarse timing recovery technique, depending on the maximum
energy search, the BER performance of an MLSE receiver varies slightly with a
timing error at the sampling instants even in the presence of excess ISI. This

directly explains the difference of the values obtained from the presented criteria.

-0.2

04

Normalized timing phase
=
)

0 2000 4000 6000 8000 10000 12000 14000 16000
vT

-0.8

Figure 4.5 Timing values obtained from the maximization of the
minimum distance.

Following this argument, the question arises about the degradation caused
when the received signal is sampled with the recently mentioned minimum
squared ISI (msISI) criterion. Figure 4.6 gives the minimum distance values for
timing values obtained from equation (4.10) and the msISI criterion. The result is
not surprising but specific for the channel used. It simply says that the distance is

almost not affected. In other words, the energy of the received signal samples do
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not change much in an interval including the timing instants determined by the
two criteria. This specific result is given only for illlustrating the behaviour of the
mentioned criteria in terms of the BER performance. As stated in Chapter 5, the
proposed scheme tracks the channel variations almost identically as the msISI
criterion. Hence, it can be inferred that there will be no significant degradation
from the point of BER performance of the receiver for the specified channels

when the proposed scheme is employed for symbol synchronization.
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: : : : —— : minimum BER
- = :mslSI

=y

L*x]
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(3%
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0 2000 4000 6000 8000 10000 12000 14000 16000
¥T

Figure 4.6 Minimum distance comparison between
minimum BER and msISI criteria.

These comments can also be made by examining equations (4.10) and
(4.11) in conjunction with the sampling theorem. In general, BER is dominated
with single error events, which correspond to single bit errors in the error vector

& in (B.6). That is, equation (4.11) becomes
dpw (D)= E, (7). (4.12)

Then, the minimum distance gives the average energy in the sampled received

signal. As seen in (4.12), the MLSE receiver behaves as an energy detector
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algorithm, i.e., the optimum timing values correspond to the instants where the
energy is maximized [31]. As a consequence, if the sampling rate with respect to
the bandwidth of the overall impulse response /4(#) does not violate the sampling

theorem, the performance will be independent of the timing phase.

4.3. Proposed DD STR for MSK Signals

In this thesis study, a decision-directed timing recovery scheme is proposed which
allows rapid acqusition and is robust in fading channel conditions. It simply
employs correlation (matched filter) method based on maximum likelihood (ML)
estimation of the timing epoch. For determining the fractional delays, classical

interpolation and an iterative maximum search algorithm are used.

4.3.1. Correlation (Matched Filter) Method

The method used for the recovery of the timing information is basically related to
the estimation of arrival time of a pulse [33]. The notion behind this symbol
timing estimation algorithm depends on the theory of maximum likelihood (ML)
estimation. A large number of algorithms are presented previously which use

several versions of ML estimators.

The proposed estimator does not give the estimates of the timing offset
explicitly. It is based on the determination of the maximum value of the log

likelihood function as a function of 7, i.e.,

7 =argmax{A, (7)}. (4.13)
Let us rewrite the likelihood function (3.14) obtained in Section 3.3:

A, (7)= Ni j r(t)s, (¢ — 7)dt . (4.14)

07,

The integral in (4.14) is just a convolution operation and the likelihood

function is simply the output of a filter with impulse response s,(—¢) and input

r(t) over the observation interval 7;. Then, the estimate of the symbol timing
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offset may be obtained by finding the timing instant which correponds to the
maximum of the output of the cross-correlation between the received and the

reference signal samples. The correlation function can be expressed as

R(t) = j r(u)s(u —t)du (4.15)

T
and the proper sampling instant is given by

Lomp = ATgMax R(z) . (4.16)
¢

The correlation function can also be viewed as the output of a filter
matched to reference signal when the input is the received signal. As a conclusion
of the above relation, producing the replica of the received signal is enough for
the estimation of the timing epoch even in the presence of the variations caused by
multipath and noise. In the proposed synchronizer, the samples of the replica of
the received signal are produced in a data-aided manner. In the acquisition mode
of the synchronizer training sequence is employed. After the initial adjustment of
the clock, the channel variations are tracked in a decision-directed manner using

the decisions coming from the MLSE receiver.

In the tracking mode with the detection through the trellis in the Viterbi
algorithm, the detector reliability depends on the decision delay. In other words,
the delay between the current time and the time instant that the decisions are taken
for timing recovery for symbol synchronization directly reflects the reliability of
the detector. It is generally not clear where the break-even point is between having
good decisions and short delays. This issue is the most important design criteria
for the decision-directed algorithms. In VA, the decision delay for reliable
detection is in the order of 5L (where L is the memory of the overall impulse
response) symbol intervals, which corresponds to 10 symbols in the proposed
structure. However, such a delay in the timing recovery process degrades the
tracking performance considerably in the presence of the channel variations. As a

compromise, a smaller delay can be employed but this may also result in
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performance degradation with fast channel variations. A reasonable solution to
this is to take the best survivor sequence assuming that it is sufficiently reliable
for timing recovery at the current time. These decisions are referred to as tentative

decisions.

The tentative decisions are taken from the MLSE receiver and the matched
filter is produced with the MSK modulated tentative decisions. Then, the timing
epoch is estimated using the relation (4.16). This corresponds to the determination
of the maximum of the matched filter output, i.e., the correlation function defined
in (4.15). This is accomplished with interpolation and an iterative maximum

search process as explained in the following sections.

4.3.2. Interpolation

As stated before, interpolation in receivers is generally employed to shift the
received signal in time by the estimated timing offset value for fully digital
applications [12]. In this study, the interpolation is used for approximating the
correlation function other than determining the shifted sample values.
Interpolation filters are usually based on FIR filter structures due to linear phase
requirements. In the sequel, the classical interpolation method based on sampling

theorem is used.

Classical interpolation is derived from the sampling theorem which states

that a bandlimited signal with bandwidth B/2 can be reconstructed exactly if
f, = B. If the bandlimited signal is sampled at the Nyquist rate, the recovery

filter is the ideal rectangular filter. This rectangular filter which reconstructs the

analog signal without aliasing is unique and unrealizable.

The ideal interpolation formula, which forms the basis of sampling

theorem is, [37],

( t— mT]
R(t) = Z R(mT,) ﬂ 4.17)
i _mT3

N

T

s
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where 7, is the sampling period. The tilde indicates that the correlation function

has been produced using interpolation.

A data window may be applied to (4.17) to reduce the distortion caused by
the rectangular window and the associated Gibbs phenomena. Thus, if the signal
is sampled at a rate higher than the Nyquist rate, various recovery filters may be

designed.

In this thesis, raised cosine filter is used as the interpolation filter. The

impulse response of the raised cosine filter may be written as

cos(27pB;t)

: 4.18
1-16p°B,1> (4.18)

h,(t)=sinc(2B;t)
where B, is the symmetry frequency and p is the roll-off factor. Figure 4.7
shows the impulse response of the raised cosine filter for different values of p

with B, =1/2T .
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=
o

-0.2

Figure 4.7 Impulse response of raised cosine filter.
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According to the illustration of the samples in Figure 4.8, with an
oversampling rate of N =7/T,, the timing instants can be defined as
t, =kT +7, (4.19)

s

where 7 is the fractional delay and £ is the index of the nearest sampling instant.

| |

(k—1)T. kKT, k+DT. ¢

Figure 4.8 Illustration of k£ and 7 in determining the timing instant.

Using the notation in (4.19) the interpolation formula becomes

k+1,
R(t)= D RT)h[(k—m)T, +7] (4.20)
m=k—L,
with /,(¢) given in (4.18). Notice that, the summation in the equation (4.20) is
truncated to a smaller length N, =L, + L, +1 and this may distort the interpolated
signal, unless N, is sufficiently large. By changing the summation index in (4.20)

we may obtain

Rt = 3R, 4, (T, +7). @21

i=1I,

The length of the interpolator, N, =L, + L, +1, used in simulations has

been chosen to ensure that the variance of the timing estimates is tolerable. This

issue is discussed in the last section.
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4.3.3. Iterative Maximum Search

In determining the maximum of the correlation function, a simple and satisfactory
iterative process based on Bisection Method [38] is employed. The iteration

method presented here is similar to the one used in [32].

Bisection Method is a search algorithm with interval halving and a good
candidate in iterative timing recovery process. Once the initial maximum has been
located in an interval, the mid-point is taken as an estimate to z . Then, halving is
performed, as will be explained, to refine the estimate, and the procedure is

repeated until the interval is sufficiently small.
Application of the Bisection Method to STR:

The received baseband signal is sampled at a high enough sampling rate
(to satisfy Nyquist sampling criterion) with samples stored in a buffer. Before the

interpolation, the time interval [(k—l)T Y,(k+1)TS] is determined where ¢=kT,

corresponds to the maximum of the correlation function.

After the determination of the interval [(k—l)TS,(k+1)T ], including the

maximum point, the two maximum values are selected from the samples at

{(k=DT, kT, ,(k+1)T,} under the assumption that the optimum timing location

lies between them. If the timing offset is not an integer multiple of the sampling
period then the values of these samples differ in magnitude. Next, the procedure
of halving is performed between the two selected sampling instants. The value of
the correlation function is then evaluated for the new value of the timing offset

and then the maximum two is selected among the three values of the samples.

The processes of “interpolation & calculation” of the correlation function
and “maximum value selection” are then repeated until a sufficient number of
iterations have been processed. At this stage, the timing value at which the
correlation function has the maximum value is deemed to be the desired location.

The iterative algorithm based on the Bisection Method is shown in Figure 4.9.
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Figure 4.9 Illustration of the iteration process by Bisection Method.

4.3.4. Discussion on Performance of the Proposed STR Scheme

The accuracy of the estimate obtained by the presented method is affected by a
number of factors. In this subsection, these factors are discussed considering the
acquisition mode of the synchronizer, i.e., the data values used for correlation are
taken as known to the synchronizer. The results for the decision-directed mode of

the synchronizer are presented in Chapter 5.

The correlation function is obtained by convolving the samples of the
received signal with the corresponding reference signal, thus, oversampling rate
will play an important role in the simulations. As given in [4], 99.5 % of the
energy of the MSK signal is contained within a bandwidth of 1.5 times the symbol
rate. Considering the bandwidth of the MSK signal and bearing in mind the fact
that increasing the sampling rate will decrease the number of iterations in the

maximum search process, sampling rate of 7, =7/ N with N =4 may be a good

choice. This results in an accuracy of 1/128 (1/N *2"*") of a symbol period only

with n, =4 iterations. In addition, the symmetry frequency of the interpolation

filter is taken as 2/T with the roll-off factor of 0.5 considering the bandwidth of
the MSK signal.
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Apart from the mentioned practical settings, the ultimate accuracy is
limited by the variance of the timing estimate. From the point of the correlation
method used for the timing recovery, the primary factor in obtaining estimates
with low variance is the observation interval. The observation interval refers to

the block length L, used in the correlation which can be defined as the number of
the symbols used in timing recovery, i.e., 7, = L,T . Figure 4.10 gives the relation

of the variance to the block length for different SNR. As is seen, the block length
of 30 symbols is a good choice even for low SNR values. Considering the
moderate SNR values timing recovery can also be performed satisfactorily for
smaller L, values. In Chapter 5, the simulations are carried out generally for 30

symbols of block length. In addition, for some cases the comparison is given with

L, =20.
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Figure 4.10 Normalized timing standard deviation for different SNR values.

Following determination of the block length for correlation, it is valuable
to investigate the effect of the interpolation length. Figure 4.11 shows a typical
matched filter output for a block length of 30. The useful information about the
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timing epoch is in the main interval which contains the peak value at the matched
filter output. Consequently, the components used in the interpolation should
contain almost all the necessary samples; however, as the interval exceeds the
useful part, timing errors may result. This can severely degrade the performance
of the symbol synchronizer especially in low SNR and/or under fading channel

effects.

250 . : : :
200} | ]

Magnitude

0 50 100 150 200
t/TS

Figure 4.11 Matched filter output, SNR = 30 dB.

Tables 4.1 and 4.2 give the normalized standard deviation of the timing
values for block lengths of 15 and 30 symbols, respectively. The variance is
affected from the interpolation length much for the values of L, =L, =1, 1e.,
N, =3. Moreover, the values for 0 dB SNR in Table 4.1 implies that the timing

estimates may not be satisfactory for a block length of 15 symbols whatever the
interpolation length is. However, there is a remarkable decrease when the
interpolation length is increased from 3 to 5 for the remaining cases. This trend

does not continue as we increase the value of N, and the results for the

interpolation lengths of 5 and 7 do not much differ. Thus, it can be inferred that as
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the value of N, is increased further the variance does not change. This is actually

the case for high SNR values.

Table 4.1 Normalized timing standard deviation for Lo= 15.

0dB 10 dB 20 dB
Nr=3 0.1729 0.1501 0.1486
Ni=5 0.1555 0.0368 0.0112
Ni=17 0.1531 0.0442 0.0127

The standard deviation of the timing estimate may attempt to increase as
we increase N, as in Table 4.1. This is because of the distortion in the useful

interval which contains the peak of the correlation function for a shorter block

length.

In Table 4.2 the variance does not change much for N, =5 and N, =7 as

in Tabel 4.1, since the distortion is somehow compensated with increasing the
block length. The slight difference results from the sensitivity inherent in the
iteration process. With a larger number of iterations the performance may be
improved further with an increase in the complexity. In Section 5.3, the effect of
the block length together with the number of samples taken for interpolation is

shown for decision-directed timing recovery in AWGN channel.

Table 4.2 Normalized timing standard deviation for Lo= 30.

0dB 10 dB 20dB
Ni=3 0.1490 0.1488 0.1481
Ni=5 0.0906 0.0256 8.19%107
Ni=17 0.0917 0.0263 9.186%107
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When the channel is fading and not constant over the block length,
increasing the number of samples used in the interpolation may result in a larger
augmentation in the variance compared to Table 4.2. Figure 4.12 shows a matched
filter output in the presence of fading channel effects. The useful part around the
peak of the matched filter output is narrower, but not a problem in case the block
length is chosen long enough. This simply implies that even in time-variant
channel conditions as we choose the observation interval long enough for the

correlation, we obtain satisfactory results for small interpolation lengths.
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Figure 4.12 Matched filter output, SNR = 30 dB, fading channel.

Finally, Figure 4.13 summarizes the general flow in the timing recovery
process. The received samples are first taken into the data buffer and then passed
through the matched filter. Matched filter is obtained from the training sequence
or the tentative decisions depending on the mode of the timing recovery process.
Next, precise timing information is obtained by the iterative maximum search
process using interpolator and Bisection Method. The tracking performance of

this symbol synchronizer is discussed in the next chapter.
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Figure 4.13 General flow in the proposed timing recovery scheme.
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CHAPTER 5

SIMULATION & RESULTS

5.1. Introduction

The proposed decision-directed symbol synchronizer has been simulated with
software developed in MATLAB to observe the tracking performance under
various channel conditions. Since MATLAB is based on discrete-time signals, the
continuous-time signals are represented by their discrete samples taken at a rate

greater than the Nyquist rate for a proper simulation.

In this chapter, the model of the simulated system is given. After
introducing the general simulation chain, the channel model and the receiver
structure are examined. Finally, the tracking ability of the synchronizer is given
and compared with the minimum squared ISI (msISI) criterion mentioned in the

previous chapter.

5.2.  Simulation Model of the Communication System

Firstly, the data burst is formed with randomly generated information sequence
and a training sequence is placed in front of the burst for the acqusition of the
initial timing information in the receiver. The data burst is modulated with the
MSK modulator as shown in Figure 5.1. The output of the modulator is in the
form of discrete samples with a time resolution of 7°/100 which can be

considered as almost continuous.

The modulated samples are then passed through the multipath fading
channel. The simulated channel specifications are given in the next section.

Following this, white Gaussian noise is added to the signal and passed to the
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receiver. In the simulations bit-SNR is used as the performance criterion which is

the ratio of the average received power to the spectral height of the noise.

The signal processing in the simulations is carried out in baseband and the
RF part of the transmitter and the quadrature demodulation stage of the receiver
are not simulated. The simulation chain of the system can be modeled as in Figure

5.1.

Data input MSK Fadin
> > - g >
Precoder > Modulator >| Channel ’\T/
w(r)
{kT; + 7}
Data output Symbol
MLSE
< (VA) < Synchronizer |€— ¥ LPF =
&Derotation A

Figure 5.1 General block diagram of the simulated system.

5.2.1. Simulated Channel Specifications

In the simulation model, the complex baseband signal is transmitted through the
tapped-delay-line (TDL) model of the time-variant frequency-selective fading
channel [13], namely,

L1

h (A1) = a, ()S(At —nAT). (5.1)

n=0
AT is the time delay between the successive taps of the TDL model of the
channel (also called the channel resolution) which generally satisfies AT <1/B,

where B is the two-sided bandwidth of the MSK signal. L. is the length of the

channel in terms of AT . For convenience, in the simulations, AT is choosen

simply as the sampling period 7, =7 /4. The tap weight coefficients are adjusted
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as explained in Chapter 2. The time spread of the channel is taken as L AT =2T

with the symbol period of 7'=3.5 us. This corresponds to 9 discrete taps with

exponentially decaying average power as in Figure 2.3.

In the simulations, two specific channel models are considered. One of
them considers a TU radio channel encountered by a vehicle travelling at a speed
of 50 km/h and communicating at a carrier frequency of 900 MHz. The second
channel with the same power delay profile is a faster one with a speed of 90 km/h,

where the carrier frequency is taken as 1800 MHz.

5.2.2. Receiver Structure

At the receiver part, the received signal is first passed through a low-pass filter
(LPF) to reject the out-of-band components. The LPF used in the simulations is an
8-pole Butterworth filter with two-sided bandwidth B. The filtered signal is

sampled with the rate 7, =7/4 for proper timing extraction at the time instants

determined by the symbol timing recovery circuit. This almost satisfies the

Nyquist criterion for MSK signals (See Section 4.3.4).

The symbol synchronizer adjusts the initial timing by passing the signal
samples through the filter matched to the MSK modulated training sequence,
which is known by the receiver. In general, specific sequences with good cross-
correlation properties are taken as the training sequences. In this study, training
sequence is taken as a random sequence with the specified block length for the
initial timing recovery. Next, the tracking of the timing phase with channel
variations is performed in a decision-directed manner using the tentative decisions
from the Viterbi algorithm. Tentative decisions are taken as the sequence

corresponding to the best survivor path as explained in Section 4.3.1.

The rotational structure of the signal is removed after the synchronization
using the precise timing instants, although the derotation function does not need to

be synchronized due to the perfect estimate of the channel as stated in [18].
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The derotated samples are fed to the MLSE receiver which includes a
discrete transversal matched filter followed with the Viterbi processor. Since the
channel is assumed to be perfectly known no restriction is made on the design of
the MLSE receiver. In the Viterbi processor, the decoding operation is carried out

at symbol rate so the output of the matched filter is downsampled to this.

The number of states in the Viterbi processor is determined by the number
of significant components of the overall impulse response. The linearized pulse
shape of the MSK signal spans a time interval of two symbols and the additional
ISI introduced by the LPF to the overall system impulse response may be assumed
negligible. Thus, with the channel impulse response described in the previous

section, the number of significant components of the overall impulse response

may be taken as 3, which corresponds to 2> =4 states in the Viterbi algorithm.

5.3. Tracking Performance of the Symbol Synchronizer

Before the discussion of the effects of channel variations on timing recovery, the
performance of the synchronizer is tested in additive white Gaussian channel.
Simulation of this channel involves the addition of the noise discarding the effects

of the channel variations.

In Figure 5.2, the standard deviation of the timing estimate is compared
with the MCRB given in Section 3.4. The bounds are plotted for two different
block lengths. In Figures 5.3 and 5.4, the interpolation length is taken into account

for the same block lengths and the comparison is given with MCRB.
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Figure 5.2 Performance of the symbol synchronizer in AWGN channel.

As seen from Figure 5.2, in both cases the estimates are close to the
bounds and the synchronizer seems to give satisfactory estimates in AWGN
channel. This is not a surprising but an important result to comment on severe
effects of time-variant channels as will be discussed next. The deviation for both
cases at low SNR values arises from the decision-directed nature of the proposed
timing recovery scheme. As the number of errors increase in the tentative
decisions, the variance deviates from the ultimate bound. However, the
improvement with increasing the block length from 15 to 30 symbols is

remarkable.

Figure 5.3 shows the deviation of the timing estimates for interpolation
lengths, N, =5 and N, =7. The results for moderate SNR values seem to be
close to the MCRB bound but for low SNR cases the decision errors cause
degradation in the performance. The effect of the interpolation length is negligible
and this is also valid for the increased block length in Figure 5.4. Moreover, the

effect of decision errors is compensated considerably.
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Figure 5.3 Performance of the symbol synchronizer for different interpolation
lengths in AWGN channel (Lo= 15).
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Figure 5.4 Performance of the symbol synchronizer for different interpolation
lengths in AWGN channel (Lo= 30).
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In the remaining part of the section the effects of the multipath fading
channels are discussed. The tracking performance of the proposed timing recovery
scheme is tested for the mentioned channel conditions at 30 dB SNR. As stated
before, the initial recovery of the timing epoch is performed using a randomly
generated training sequence with the specified block length. The block length is
taken as 30 symbols and the interpolation is performed within an interval of

N, =5, following the discussions made in Section 4.3.4 and in the previous

paragraphs. In addition, for some cases the performance is given for the block

length of L, =20 and SNR of 20 dB for comparison.

0.5 T T T T T T T T

Normalized timing estimate

-------- : Proposed Synchronizer

— : Minimum Squared ISI

_03 i L | L 1
0 2000 4000 6000 8000 10000 12000 14000 16000

v

Figure 5.5 Tracking performance of the proposed scheme
(L, =30,SNR =30dB, v=50 km/h, f, =900 MHz).

Figure 5.5 shows the tracking ability of the proposed symbol synchronizer
for the channel also used for comparison of the possible optimum timing criteria
in Chapter 4. The channel is TU model for 50 km/h mobile speed (TU50). It is
clear that the proposed scheme tracks the channel very similar to the values

obtained from the minimum squared ISI (msISI) criterion.
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The same channel is simulated in Figures 5.6 and 5.7. In Figure 5.6, SNR
is taken as 20 dB. Here, the tracking ability of the synchronizer is almost the same
except a slight increase in the variance. In Figure 5.7, the block length is
decreased to 20 symbols. However, the performance of the synchronizer is not

affected much compared to the previous situations.

0.5 T T T T T T T T

Normalized timing estimate

-0.2F

—  Minimum Squared ISI
-------- : Proposed Synchronizer
i i 1

.0.3 il L 1 I I
0 2000 4000 6000 8000 10000 12000 14000 16000

tT

Figure 5.6 Tracking performance of the proposed scheme
(L, =30, SNR=20dB, v=50 km/h, f, =900 MHz).
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Figure 5.7 Tracking performance of the proposed scheme
(L,=20,SNR=30dB, v=50 km/h, f, =900 MHz).

From the three figures mentioned, the performance of the proposed timing
recovery scheme can be treated as successful. But the problems about timing
recovery circuits arise in fading channels when deep fades occur in the main path.
The following figures show the tracking ability of the proposed scheme for
specific but informative cases considering the multipath fading channel specified

with a vehicle speed of 90 km/h and a carrier frequency of 1800 MHz.

Figure 5.8 illustrates the effect of the fast variations. In this time period the
channel variations are fast enough, but not much deep when a fade occurs in

which the synchronizer may loose its tracking ability.

In Figure 5.9, the same interval for the channel is simulated for a block

length of L, =20. Although the channel varies faster, the effect of the block

length is still negligible.
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Figure 5.8 Tracking performance of the proposed scheme
(L,=30,SNR=30dB, v=90 km/h, f, =1800 MHz).
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Figure 5.9 Tracking performance of the proposed scheme
(L, =20,SNR=30dB, v=90 km/h, f, =1800 MHz).
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In the following figures, more profound effects of the channel are shown.
At some instants the channel comes across with deep fades. As seen from Figure
5.10, the proposed symbol synchronizer manages successfully with these effects,
thanks to its ability to track the channel variations. The estimates are almost the

same as the ones obtained from the msISI criterion, which is no longer surprising.

Normalized timing estimate

031

04t : : .
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0 1000 2000 3000 4000 5000 6000 7000 8000
vT

Figure 5.10 Tracking performance of the proposed scheme
(L, =30,SNR=30dB, v=90 km/h, f, =1800 MHz).

In addition, the comparison is given between the msISI criterion and the
Mazo criterion in Figure 5.11 to strengthen the claim that the timing recovery
scheme tends to track the channel in the same way as the two possible optimum
timing phase criteria. In this figure, the three curves do not completely coincide

but detect the deep fades as the same as the proposed scheme.
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Figure 5.11 Comparison between msISI and Mazo criteria
(L, =30,SNR=30dB, v=90 km/h, f, =1800 MHz).

In some situations the effects of deep fades become more crucial and result
in highly catastrophic phenomena, namely, cycle slips. During a cycle slip, a burst
of symbol errors is inevitable due to a symbol shift in the recovered sequence.
Generally, cycle slips may occur both in feedforward and feedback synchronizers
[12]. It has been observed in simulations that the proposed method has not yielded

any cycle slip.

Figure 5.12 finalizes the discussion on the tracking performance of the
proposed scheme. It illustrates the performance of the proposed scheme in the
presence of a deep fade which may result in a cycle slip in conventional
synchronizers. Notice that there occurs a change in the estimated timing epoch
greater than a symbol period. It is interesting to note that the conventional

synchronizers give the values of the timing phase within an interval [O,T ] Hence,

such a jump in the timing estimate may not be tracked successfully, and may

result in a cycle slip.
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Figure 5.12 Tracking performance in the presence of a cycle slip
(L, =30, SNR=30dB, v=90 km/h, f, =1800 MHz).

As a conclusion, the proposed decision-directed symbol synchronizer can
be regarded as robust even in severe fading channel conditions. The timing epoch
obtained from the proposed scheme tracks the channel variations close to the
timing values obtained from the minimum squared ISI criterion and the proposed

scheme eliminates the cycle slips successfully.

68



CHAPTER 6

CONCLUSION

Throughout this thesis study, it has been realized that although there have been an
extensive amount of research on the area of symbol synchronization, there are still
important issues left to investigate. With the demand for high-speed, high-quality
and reliable communication, the need for proper symbol synchronization seems

not to vanish.

In this thesis, a decision-directed STR scheme for MSK signals was
proposed for the recovery of fractional delays with emphasis on multipath fading
channel conditions. Correlation (matched filter) method based on maximum
likelihood estimation was performed by using the samples of the received signal.
Precise timing estimation was achieved by employing interpolation and an
iterative maximum search process. The acquisition of the initial timing
information was performed with a training sequence; while in the tracking mode
tentative decisions from the MLSE receiver, implemented with VA, were used for
the symbol timing recovery. In addition, in order to investigate the tracking
performance of the proposed scheme, a study was carried out for optimum timing
phase criteria and three possible criteria are examined, namely, the Mazo, the

minimum squared IST and the minimum BER criteria.

It has been observed that the proposed synchronizer tracks the timing
epoch variations due to the time-variant multipath fading channel characteristics
and gives almost the same results as the values obtained from the so-called
minimum squared ISI criterion. However, this criterion was found to be

suboptimum in the sense of minimization of the BER. In addition, BER
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performance of the MLSE receiver was investigated from the timing accuracy
point of view. As it is mentioned in the literature, the MLSE receiver generally
requires maximum energy operation and for bandlimited signals, coarse timing
might be sufficient even if the received signal is sampled below the Nyquist rate.
Because of this reason, the fine timing recovery ability of the proposed scheme
does not seem to be necessary from the point of the performance of an MLSE
receiver. However, it tends to minimize the energy of the ISI present in the
received signal and may allow a reduced state MLSE receiver. This statement
does not guarantee the minimization of the bit error probability, however, the

proposed timing recovery scheme at least guarantees the reduction of ISI.

Although the motivation of the study is and the results of the simulations
are restricted to MSK signals, the proposed timing recovery scheme is modulation
independent and applicable to any modulation type as CPM signals. It may be
employed in both burst-mode and continuous transmission systems. The proposed
scheme, because of its sensitive recovery of the fractional delays, can be used in
repeaters and some network structures where fine timing estimation is important.
In addition, with its ML based structure and decision-directed recovery process,

the proposed scheme very successfully eliminates the possibility of cycle slips.

As a future work, the BER degradation may be investigated for the same
receiver in the presence of excess ISI and different channel conditions. In
addition, the performance of the synchronizer may be tested in unequalized
systems which are preferred for low cost and low-complexity implementations. In
unequalized systems ISI plays an important role, and with employing such a
precise timing recovery scheme a considerable improvement is expected in BER

performance.
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APPENDIX A

CPM SIGNALS

Continuous phase modulation (CPM) encompasses a class of signalling schemes
that conserve and reduce signal energy and bandwidth at the same time. CPM is a
constant envelope, nonlinear modulation method with memory. The constant
envelope property of CPM schemes makes possible to use non-linear amplifiers.
The phase is a continuous function of time since the data symbols modulate the

instantaneous phase of the transmitted signal.

A.1. Signal Model

The complex envelope of a CPM signal is given by [2]

s,(t)= 2E, o), (A.1)

A
where E_ is the signal energy per symbol, T is the symbol period, 07:{05,.} are
data symbols from the alphabet {i 1#3,... (M -1)} and ¢(t,@) is the

information-bearing phase:

(6@ = 2h j S gt~ iT)dr. (A2)

—opl=—00

The parameter /4 is the modulation index which takes on rational values as

h="2 (A.3)
p
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where k& and p are intergers. g(¢z) is termed as the frequency pulse and the
continuity of the phase implies that g(¢) does not contain any impulses. The

phase pulse ¢(¢) is defined with the relation
q(t) = jg(r)dr, —0<t<o, (A.4)

and is normalized in such a way that

O LEEY 2 s
7=, £ <0. (A-3)

It is clear from (A.5) that the frequency pulse is nonzero in the interval
te(0,LT), where L is an integer called the correlation length. Modulation
formats with L =1 are said to be full-response type whereas those with L >1 are

partial response type.

By choosing different frequency pulses and varying the parameters 4 and
M , a great variety of CPM schemes may be formed. In this thesis, the emphasis
is given on a subset of CPM formats, namely, minimum shift keying (MSK).

MSK coresponds to #=1/2, M =2 and a rectangular frequency pulse

(A.6)

) = 1/(21), 0<t<T,
&= 0, elsewhere.

Gaussian MSK (GMSK), which is used as the GSM and DECT modulation
scheme, is obtained by letting A=1/2, M =2 and taking g(t) as the

convolution of (A.6) with a Gaussian shaped pulse.

A.2. Linearization of CPM Signals

This part gives an overview of the so-called Laurent Expansion [16]. This is a
useful mathematical tool that provides good insight into the notion of MSK-type

modulation and forms the basis for discussions made in this thesis study.
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As stated recently, the frequency pulse is time-limited to the interval

(0,LT) and satisfies the conditions
LT l
[g(e)dr = - and g() =g (LT ~1). (A.7)
0

As in [16], the complex baseband signal s,(¢) can be expressed as the sum of

K =2"" PAM signals, i.e.,

2F K-1N-1 ha
s,(£)=1] TSZZ[e' “ e (t=nT) (A.8)
k=0 n=0

over the interval ¢ € [0, NT], where

n L—

1
Apw = 2.C; _Z ana/'ﬂk,j

Jj=1

(=]

i=

L-1
=ay, Z a, P,
Jj=1

L-1
:aO,n—L +Zan—j(l_ﬂk,j)+an, (A9)
Jj=1

where the coefficient S, ; is the j-th digit (0 or 1) in the binary representation of

the interger £, i.e.,

L—1
k=>2"p, ., ke[o,k-1] and B, €{0,1}. (A.10)
j=1
Finally, c, (¢) ’s are given by
L-1
() =5, ]5,.15, ), k€[0,K 1], (A.11)
Jj=1

where
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sin(e(t+ jT))

s.(t)= =s,(t+jT), A.12
() sin(zh) o(t+jT) (A.12)
(1), 0<t<LT,
o(t)y=<mh—@(t—LT), LT <t<2LT, (A.13)
0, elsewhere,
and ¢(1) = 27h| g(r)dz .
0
For MSK, L=1, h=1/2, and
1
—, 0<t<T,
glt)=121 (A.14)
0, elsewhere.

Therefore, we have K =2""' =1, so that the Laurent expansion of s,(¢) reduces to
a single function, namely c¢,(¢). This means that an MSK signal can be exactly

represented as a PAM waveform. It can be seen from (A.11)-(A.14) that
sin(ﬂj, 0<7<2T,
c, ()= 2T (A.15)
0, elsewhere.

This provides the well-known interpretation of MSK as offset-QPSK in which the
pulse shape is a half-cycle sinusoid with 2 symbol period interval. The complex

baseband representation for MSK is given by

5,(f) = 1/E [’“° (t—nT). (A.16)
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APPENDIX B

ERROR PERFORMANCE OF THE MLSE RECEIVER

The error performance of the MLSE receiver is given in a form similar to the one
in [13] adopted to the derivation presented by Ungerboeck [20]. Since the form
given in Appendix A is the linear form of MSK, the approach for PAM signals

can be used for the analysis.

With additive Gaussian noise and ISI, the metric given in (2.22) may be

rewritten as

K-1 K-1K-1
Am{a}ZZRe|:za;cnyk:|_ alrcnxkfiaim (Bl)
k=0 k=0 i=0
with
x, = x(kT) = j B (Oh(t + kT)dt (B.2)
and
Vi = Y(KT) = [r(Oh" (t=kT)dt =Y a, x, +1,, (B.3)
1

—00

where the symbols {a, } may take the values +1. 7, ’s are the noise samples at the

output of the matched filter. The trellis has 2" states at time &, as defined in

Section 2.3.2, as
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S.(a, ,a; 5,...,a,_ ;). (B.4)
With this notation the estimated state at time k& can be denoted by
AR CIRN PN (B.5)

with the corresponding estimated symbols {En} from the Viterbi algorithm.
Through the trellis, suppose that the estimated path diverges from the correct path

at time k and remerges with the correct path at time k + /, ie., S , =95, and

S,.,=8,.,,but S #8 for k<m<k+I.This is called an error event [5]. For

the channel spanning an interval of L +1 symbols, it follows that / > L +1.

In this error event, we have a, =a, for k—L<m<k-1 and

k+1—L<m<k+I[-1. The corresponding error vector £ is defined as
g = [gk Epay - EHFH] (B.6)
with
& =%(a}.—c7j),and & #0,¢6.,,,,#0. (B.7)
The normalized elements ¢, take on the values +1 and there is no sequence of L

consecutive elements that are zero.

To determine the probabilty of occurrence of the error event characterized
by the error vector £ given in (B.6), the procedure developed by Forney [19] is
followed. Let E be the set of error events £ permitted by the transmission code.

For a distinct error event £ to happen, the following three subevents E,, E, and

E, must occur:

E : attime k, §k =S,
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E,: the sequence of information symbols (a,,a,,,,...,a,,, ;) 1is such that
(@5 s s Oy 1) = (@ + 6,y + Epoe s Qpapip F Ear) 1S an

allowable data sequence;

E;: for k<m<k+I, the sum of the branch metrics of the estimated path

exceed the sum of the branch metrics of the correct path.

The probability of occurence of E; is
P(E,)=P(A, {a}< A, {a+E)). (B.8)

Subsituting (B.3) into (B.1) and observing x, = x_, , (B.8) becomes

k+1-1k+1-1 k+1-1
P(EQ:P[Z PICEAS <2Re{28[77i}). (B.9)
i=k

i=k  j=k

The second term in the inequality is a normally distributed random variable with

zero mean and variance [20]

i=k

Var{Z Re{kilgini }} =4N,0%(E), (B.10)

where the normalized euclidean weight is defined as

A 1 k+1-1k+1-1

51 E)=—> Dlex. ;. (B.11)
Xo =k j=k

Hence, the probability of the subevent £, becomes

P(E,) = QG Jrad? (E)J , (B.12)
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where y,, = E, /N, denotes the average SNR. Considering the situation given in

this study, the result needs some modification. In the case of different timing
errors both the normalized euclidean weight and the average energy will differ. To
proceed further for obtaining the general result for the probability of error, it is

meaningful to define the distance as
d’(£;1)=E, (1)0°(&;1). (B.13)

By substituting (B.13) in (B.12) we obtain

dz(g;T)J. (B.14)

1
P(E)=0| —.|———
(E3) Q[ 2w,
The probability of the subevent E, is difficult to compute because of its
dependence on the subevent E, [13]. However, P(E,|E,)=1-P(E), where
P(E) is the symbol error probability. Therefore, the probability P(E, | E,) can

be closely approximated by 1 in normal operating region. On the other hand, the
probability of the subevent E, depends only on the statistical properties of the
input sequence. For binary signalling with equally probable and statistically

independent symbols the probability of E, becomes
P(E,)=(1/2)"". (B.15)

Observing (B.14), (B.15) and P(E, | E,) =1, the probability of the error

event £ is upper bounded as

P < 12 4] @19
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Let E; be the subevent of £ containing all error events & with distance
0(€)=0. By defining A as the all possible values of o, the probability of error
is upper bounded by

EeE oeA N() g€Ey

P(E)=3 P(&)< ZQ(% MJ ZGJ . (B.17)

Due to the steep decrease of Q(x), P(E) is dominated by the term

corresponding to the minimum value of 6 denoted by J . for a given value of

min

7 . Hence, the bit error probability approaches asymptotically

A1 e @ 10"
P(E)~Q[2 N, JZ(ZJ : (B.18)

Z‘eE5mi"
where
drflin (T) = Eav (T)é‘ri

in

<L\ Xy ok =k

1 k+1-1k+i-1
=FE_ (r)min{— Z Zgl.xi_jej . (B.19)
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