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ABSTRACT 

SYMBOL SYNCHRONIZATION FOR MSK SIGNALS                         

BASED ON MATCHED FILTERING 

Sezginer, Serdar 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Yalçın Tanık 

September 2003, 83 pages 

In this thesis, symbol timing recovery in MSK signals is investigated making use 

of matched filtering. A decision-directed symbol synchronizer cascaded with an 

MLSE receiver is proposed for fine timing. Correlation (matched filter) method is 

used to recover the timing epoch from the tentative decisions obtained from the 

Viterbi algorithm. The fractional delays are acquired using interpolation and an 

iterative maximum search process. In order to investigate the tracking 

performance of the proposed symbol synchronizer, a study is carried out on three 

possible optimum timing phase criteria: (i) Mazo criterion, (ii) the minimum 

squared ISI criterion (msISI), and (iii) the minimum BER criterion. Moreover, a 

discussion is given about the timing sensitivity of the MLSE receiver. The 

performance of the symbol synchronizer is assessed by computer simulations. It is 

observed that the proposed synchronizer tracks the variations of the channels 

almost the same as the msISI criterion. The proposed method eliminates the cycle 

slips very succesfully and is robust to frequency-selective multipath fading 

channel conditions even in moderate signal-to-noise ratios. 

Keywords: symbol timing, minimum shift keying (MSK), matched filtering, 

optimum timing phase, Viterbi algorithm, multipath fading 
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ÖZ 

MSK SİNYALLERİ İÇİN UYUMLU SÜZGEÇLEMEYE DAYALI                

SEMBOL EŞZAMANLAMASI 

Sezginer, Serdar 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Yalçın Tanık 

Eylül 2003, 83 sayfa 

Bu tezde, en küçük kaydırmalı kiplenim (MSK) sinyalleri için uyumlu süz-

geçleme kullanılarak sembol zaman bilgisinin kazanımı incelenmiştir. Hassas 

zamanlama için karara bağlı en büyük olasılıklı dizi kestirimi (MLSE) almacı ile 

birleştirilmiş bir sembol eşzamanlayıcısı önerilmiştir. Zaman birimi Viterbi 

algoritmasından elde edilen kesin olmayan kararlarla ilinti (uyumlu süzgeç) 

yöntemi kullanılarak kazanılmıştır. Ufak zaman gecikmeleri aradeğerleme ve 

döngülü en yüksek arama ile elde edilmiştir. Önerilen sembol eşzamanlayıcısının 

başarımını incelemek amacı ile olası en iyi üç zamanlama evresi ölçütü üzerine bir 

çalışma yapılmıştır: (i) Mazo ölçütü, (ii) en küçük karesi alınmış ISI (msISI) 

ölçütü, ve (iii) en küçük BER ölçütü. Ayrıca, MLSE almacının zamanlama 

duyarlılığından bahsedilmiştir. Sembol eşzamanlayıcısının başarımı bilgisayar 

benzetimleri kullanılarak değerlendirilmiştir. Önerilen eşzamanlayıcının kanal 

değişimlerini msISI ölçütüne çok benzer takip ettiği gözlenmiştir. Önerilen 

yöntem devir kaymalarını başarıyla elemektedir ve ortalama sinyal-gürültü 

oranında bile frekansa bağımlı çokyollu sönümlemeli kanallarda gürbüzdür. 

Anahtar kelimeler: sembol zaman bilgisi, en küçük kaydırmalı kiplenim, uyumlu 

süzgeçleme, en iyi zamanlama evresi, Viterbi algoritması, çokyollu sönümleme 
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CHAPTER 1 

INTRODUCTION 

1.1. Scope and Objective 

In digital radio communications, the demand for reliable, high-speed and high-

quality transmission has led to an investigation of various receiver design 

techniques. In order to determine the most suitable digital communication system, 

every stage of the system has taken considerable attention. Symbol 

synchronization or symbol timing recovery (STR) is one of the most critical 

receiver functions in synchronous communication systems. Proper recovery and 

tracking of the symbol timing are of crucial importance and necessary in the 

demodulation and data detection for good performance.  

 The ideal timing phase for a given system depends on the overall impulse 

response and thus on the characteristics of the communication channel. Multipath 

fading with large delay spread, typically in urban area, introduces intersymbol 

interference (ISI) in addition to the ambiguous delay in the transmission. Because 

of this reason, determination of the proper sampling instants is one of the most 

difficult problems in time-dispersive channels and an accurate analysis is 

extremely difficult, if not possible. Most of the practical synchronizers are based 

on heuristic algorithms that have been based on transmission systems with no 

intersymbol interference (ISI) or with a time spread less than a symbol period 

which is not so realistic for bandlimited channels.  

For the recovery of the timing information in the presence of severe 

channel effects, specifically designed synchronizers are needed. Feedforward 

approaches based on maximum likelihood (ML) estimation are good candidates, 
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because of their rapid acquisition of symbol timing with the absence of hang-up 

problems, which is common in feedback structures. Through the extensive 

research on these approaches, the trend of designing receivers for bandwidth 

efficient continuous phase modulation (CPM) schemes has created an attractive 

area for the researchers interested in timing recovery. CPM is a constant envelope, 

nonlinear modulation method which conserves and reduces energy and bandwidth 

at the same time [1]. A special form of CPM is MSK which is very attractive for 

transmission in a mobile radio environment with its constant envelope and 

relatively narrow bandwidth [2]. In the last two decades, there have been 

significant attempts on receiver designs for MSK signals including the 

synchronization aspects. Timing recovery for MSK signals is first discussed by de 

Buda [3] with a feedback approach. Feedforward approaches for symbol timing 

estimation for MSK signals are discussed in several papers, [1][4]-[8], but not 

much attention has been given to the effects of multipath fading on symbol 

synchronization. 

The objective of this thesis is to investigate a timing recovery algorithm 

for MSK signals, which is able to extract the fractional delays even in the 

presence of severe channel variations. The recovery of the timing epoch is 

performed with correlation (matched filter) method together with an interpolator 

and an iterative maximum search process. In acquisition mode, a data-aided 

approach is used for the adjustment of the initial timing. Then, tracking is 

performed with a decision-directed timing recovery. Maximum likelihood 

sequence estimation (MLSE) with Viterbi algorithm (VA) is used for detection, 

which is the optimum demodulation technique for data-modulated signals 

received over a frequency-selective multipath fading channel. 

The proposed STR scheme enables the fast and sensitive recovery of the 

timing epoch. With such a precise timing recovery scheme, the question arises 

about the optimality in timing recovery. The subject has received attention mainly 

in early seventies and some possible optimum timing phase criteria are presented 

in [9]-[11]. Three criteria are discussed in the context of this study; namely, the  
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Mazo criterion [10], the minimum squared ISI criterion and the minimum BER 

criterion. Comparing these criteria, the behaviour and the performance of the 

proposed scheme is observed for different fading channel characteristics. 

 In summary, the timing recovery is still a problem in time-dispersive 

channels. The channel effects together with optimality in timing recovery have 

taken scarce attention. The aim of this thesis study is to design a fast and robust 

STR scheme for MSK signals with the ability of giving precise timing values even 

in the presence of severe channel effects and compare its results with possible 

optimum timing phase criteria. 

1.2. Outline of the Thesis 

The thesis has the following outline: 

In the next chapter, the basic concepts related to the model of the multipath 

fading channel and the MLSE receiver implemented with VA are presented. 

In Chapter 3, the statement of symbol synchronization problem and a 

review of major symbol timing recovery methods are given. Following this, the 

maximum likelihood estimation of the timing epoch is reviewed. 

The proposed timing recovery scheme is presented in Chapter 4. First, 

some possible criteria are given for comparison. Then, the correlation (matched 

filter) method, interpolation and the iterative maximum search algorithm are 

discussed. 

Chapter 5 is devoted to the simulation results. Firstly, the model of the 

simulated system is given and the details of the simulated chain are presented. 

Following this, the tracking performance of the proposed scheme is discussed 

with the simulation results. 

In the last chapter, conclusions are drawn and possible future extensions to 

this work are mentioned. 
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 Signal model and the linearization of CPM are given in Appendix A. Error 

performance analysis of the MLSE receiver is presented in Appendix B. 
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CHAPTER 2 

CHANNEL MODEL AND MLSE RECEIVER 

2.1. Introduction 

In radio channels the delayed and attenuated versions of the transmitted signal are 

added together at the receiver to produce multipath interference. Each signal path 

is affected by a random amplitude fade and a phase shift that tends to change over 

time. Due to the multipath nature of the communication channel, interference 

occurs between adjacent symbols, which is known as intersymbol interference 

(ISI). The best theoretical performance for demodulating operations over channels 

with ISI and additive white Gaussian noise (AWGN) is the maximum likelihood 

sequence estimation (MLSE) technique which is implemented efficiently by 

means of Viterbi algorithm (VA). 

This chapter addresses a few concepts about the model of the multipath 

fading channels and the MLSE receiver used in the simulations. First, the channel 

model is presented with its characterization and simulation modelling. Next, 

MLSE and the VA are explained, respectively. 

2.2. Channel Model 

The mobile radio channel is based on the propagation of radio waves in a complex 

transmission environment. With a receiver moving around channel appears to be 

time varying. Since the channel variations as observed by the receiver are random, 

the channel model is treated as a statistical one.  
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2.2.1.   Characterization of Multipath Fading Channel 

The physical fading channel can be characterized by the complex-valued time-

variant fading channel impulse response (CIR). Most radio channels are illustrated 

by multipath propagation where a number of reflected or scattered radio rays 

arrive at the receiving end [12].  

Suppose that the transmitted signal is 

( ) })(Re{ tjw
l

cetsts = , 

in which ( )tsl  is the complex envelope of the signal. It is assumed that there are 

multiple propagation paths. A propagation delay and an attenuation factor are 

associated with each path. Usually the propagation delay changes only slowly 

with time and may be assumed to remain stationary. Thus, the multipath channel 

output can be written as 

( ) ∑ ∆−=
n

nn ttstctx )()( , 

where nt∆  is the propagation delay and )(tcn  is the attenuation factor for the n-th 

path. Substitution for )(ts  from equation (2.1) into equation (2.2) yields the result 

( )
















∆−= ∑ ∆− tjw

n
nl

tjw
n

cnc ettsetctx )()(Re . 

The equivalent low-pass received signal, )(tr  (without noise), is then 

( ) ∑ ∆−= ∆−

n
nl

tjw
n ttsetctr nc )()( . 

Since )(tr  is the response of an equivalent low-pass channel to the equivalent 

low-pass signal, )(tsl , the equivalent low-pass channel may be expressed by the 

time-variant impulse response 

(2.1)

(2.4)

(2.3)

(2.2)
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( ) ∑ ∆−∆=∆
n

nnc ttttth )()(; δα , 

where );( tthc ∆  represents the response of the channel at time t due to an impulse 

applied at time tt ∆−  [13]. Here, the complex random process )(tnα  is 

introduced with its amplitude )(tcn  and phase nc tjwe ∆− . The low-pass equivalent of 

the fading channel model may be depicted as in Figure 2.1. 

 

 

 

 

 

 

Figure 2.1 Multipath fading channel model. 

 

2.2.2.   Channel Modelling  

For practical simulations, different propagation models can be described by 

defining discrete number of taps, each determined by their time delay and average 

power. The time variation of each tap is determined according to a Doppler 

spectrum, and the average power is adjusted using the power delay profile of the 

channel. Doppler spectrum and the power delay profile are obtained according to 

the scattering function of the channel [14]. 

The scattering function is a two dimensional representation of the received 

signal power as a function of the propagation delay and the Doppler frequency, 

i.e., ),( ftS ∆ . In other words, it describes the manner in which the transmitted 

power is distributed in time and frequency, upon passing through the channel. 

(2.5)

α2(t) 

Σ 

Propagation Delay Line 
sl(t) 

α0(t) αn(t) 

Noise 

r(t) 

αn-1(t)
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2.2.2.1.   Doppler Spectrum Type 

Simulation of the fading spectrum appropriate to mobile radio communication is 

obtained by properly shaping the spectrum of the independent noise sources with 

the Doppler spectrum, )( fS . It simply determines the time variations of the 

channel. When )( fS  becomes equal to the delta function )( fδ , the channel 

appears to be time-invariant. 

In this thesis, for modelling the time variations of the channel, the well-

known classical Doppler spectrum is used. In this spectrum type, all the angle 

between the vehicle speed and radio waves are assumed to be equally probable. 

This is the most commonly used, and in a certain sense the worst case Doppler 

spectrum. It is formulated by the scattering function as 

   ),()( ftSfS nn ∆=  

                
2

1 







−

=

d

n

f
f

A
 for ( )dd fff ,−∈ , 

where nt∆  is the propagation delay for the n-th path. cd f
c
vf =  represents the 

maximum Doppler shift, with the vehicle speed v (m/s), the wavelength )(mλ , 

and the carrier frequency cf  [15]. Since the spectra of all the tap weights are 

assumed to be the same in the simulations, the subscript n is dropped in the 

following illustrations. As an example, Classical Doppler spectrum for mobile 

speed of 90 km/h and with a carrier frequency 1800 MHz is shown in Figure 2.2. 

(2.6)
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Figure 2.2 Classical Doppler Spectrum (fd = 150 Hz). 

 

2.2.2.2.   Power Delay Profile 

The average power for each tap is described by the power delay profile, )( tP ∆ . 

The power delay profiles are defined as [15] 

∫
−

∆=∆
d

d

f

f
nn dfftSPtP ),()( 0 , 

where 0P  is the normalizing power and )( ntP ∆  is the power transmitted by tap n . 

As an example, the continuous power delay profile of the simulated channel 

model is shown in Figure 2.3 with the relation  



 <∆<

=∆
∆−

,,0
,70,

)(
)(

elsewhere
stfore

tP
t µ

 

which is a typical case for urban (non-hilly) area (TU). 

(2.7)

(2.8)
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Figure 2.3 A TU Channel Power Delay Profile. 

 

 In summary, the variations of the taps are determined by the Doppler 

spectrum according to (2.6). This is accomplished with adjusting the spectra of the 

tap weights by filtering the complex white noise, )(tw , as in Figure 2.4. 

 

 

Figure 2.4 Adjustment of the spectrum of a tap weight. 

 

Thus, the power spectral density of the n-th tap weight can be expressed with the 

relation 

)()()( 2 fSfHfS w= , (2.9)

)( fH
)(tw )(tnα
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where )( fSw  is the power spectral density of the white noise. Since the power 

spectral density of the white noise is a constant (say unity) for all frequencies, the 

magnitude of the shaping filter response )( fH  becomes 

)(|)(| fSfH = . 

As a result, the tap weights may be obtained by filtering the white noise with the 

shaping filter given in (2.10), together with the power level adjusted according to 

the power delay profile, )( tP ∆ , with the relation shown in equation (2.8). Further, 

)(tnα ’s are circularly symmetric zero-mean Gaussian processes. 

Finally, it is noteworthy to mention that in order to provide Rayleigh 

distribution for the envelope, two independent Gaussian low-pass noise sources 

with identical spectra are added in quadrature. The output corresponding to the tap 

weights then has a Rayleigh distributed envelope and a uniformly distributed 

phase component. In Figure 2.5, an example of a Rayleigh fading envelope is 

provided for a Doppler shift of 150 Hz. Notice how the magnitude drops down to 

a very low level at certain time instants and deep fades occur. 

(2.10)
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Figure 2.5 Rayleigh fading envelope ( 150=df Hz). 

 

2.3. MLSE Receiver for MSK Signals in Multipath Fading Channels 

In this section, the background information relating the derotation technique 

employed for the reception of MSK signals, and the MLSE receiver structure 

implemented with Viterbi algorithm are presented.  

2.3.1.   MSK Signals and Derotation 

MSK modulation type belongs to the class of continuous phase modulations (i.e., 

binary CPM with modulation index 2/1=h ) (See Appendix A). This modulation 

type is essentially nonlinear and classical MLSE algorithms for receiver side 

cannot be employed directly. However, it has been shown in [16] that binary CPM 

signals can be represented approximately as pulse amplitude modulated (PAM) 

signals by adopting a suitable pulse shape. Hence, as shown in Appendix A, 

baseband equivalent MSK signals can be expressed exactly as 

( ) ( )∑ ∑
∞

−∞= −∞=

−







=

i

i

k
kl iTtgbjts

2
exp π , (2.11)



 

 13

where ( )tg  denotes the real-valued pulse shaping function and kb ’s { }1±∈  are the 

input data bits to the modulator. The energy constant 0/2 NEs  is dropped for 

convenience. For MSK signal, ( )tg  is a one half cycle sinusoid with duration of 

two symbol periods as shown in Figure 2.6. 

 
Figure 2.6 Pulse shape of linearized MSK signal. 

 

As in GSM system, for ease in implementation, the data to the modulator 

is precoded by the rule 1−= kkk aab , where ka ’s { }1±∈  are the original 

information bits. Using this property and assuming that the data sequence be 

defined for 0ik ≥  in (2.11) [17] gives 

( ) ( )∑ ∑
∞

= =
− −







=

0 0

12
exp

ii

i

ik
kkl iTtgaajts π  

        ( )∑∏
∞

= =
− −





=

0 0

12
exp

ii

i

ik
kk iTtgaaj π . (2.12)
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Using the equality 11)
2

exp( −− = kkkk ajaaajπ , equation (2.12) can be rewritten as 

( ) ( )∑∏
∞

= =
− −=

0 0

1
ii

i

ik
kkl iTtgajats ( ) ( )∑ ∏

∞

= =
−

+− −=
0 0

0
1

1

ii

i

ik
kk

ii iTtgaaj . 

Since ∏∏
−

=
−

=
− =

1
2

11
0

0

0

i

ik
kii

i

ik
kk aaaaa  and 12 =ka  for all k , we get 

( ) ( ) ( )∑
∞

=
−

+− −=
0

0

0
1

1

ii

i
ii

i
l iTtgjaajts . 

Finally, assuming the terms 110
=−ia  and 1)1( 0 =+−ij  which are independent of i 

and letting −∞→0i , the general result is obtained as 

( ) ( )∑
∞

−∞=

−=
i

i
il iTtgjats . 

The signal at the receiver will in general have passed through a frequency-

selective channel with a complex impulse response )(thc , and a receiver filter 

with an impulse response )(tg R  in order to reduce adjacent channel interference 

and noise. The received signal then becomes (in the absence of noise)  

∑
∞

−∞=

−=
i

i
i iTthjatr )()( , 

where )()()()( tgthtgth Rc ⊗⊗=  is the overall impulse response of the system 

from the source to the detector input where ⊗  denotes convolution. The received 

signal possesses a rotational structure because of the factor ij  in the equation 

(2.16). This causes a 2π  phase rotation on the complex plane from symbol to 

symbol. This can be avoided by means of a derotation technique, [18], by 

(2.14)

(2.13)

(2.15)

(2.16)
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multiplying the received signal by the complex function: ( )ijtq −=)(  for 

TitiT )1( +<≤ . Finally, the signal takes the form 

∑ −==
i

did iTthatrtqtr )()()()(  

with the derotated impulse response )()()( thtqthd = . Thus, the rotational 

structure of the signal )(tr  is removed and a linear PAM receiver model can be 

obtained. The form of )(trd  given in (2.17) allows classical MLSE detection of 

the transmitted data sequence by the use of Viterbi algorithm (See Section 2.3.2). 

In the sequel, the subscripts indicating the derotation will be dropped for 

convenience. 

2.3.2.   MLSE Receiver and Viterbi Algorithm 

The conventional MLSE receiver generally consists of an ML sequence estimator 

implemented by the Viterbi algorithm (VA). Viterbi algorithm uses the 

knowledge of channel characteristics and of the received signal in order to find 

the most likely transmitted data sequence. The algorithm does not attempt to 

equalize the received waveform, so that the performance of this receiver is 

dependent on the available estimate of the channel impulse response (CIR). 

Throughout the study, the perfect estimation of the channel is assumed.  

In the previous section, it is shown that the received signal can be 

expressed as the convolution of the transmitted data bits with the overall impulse 

response. Thus, including the additive noise of the transmission medium, the 

received signal can be expressed as 

)()()(
1

0
twkTthatr

K

k
k +−= ∑

−

=

, 

where ka ’s { }1±∈  are the transmitted bits, )(tw  is the white Gaussian noise 

process, and K  is the observation interval in symbols. )(th  is the overall system 

(2.17)

(2.18)
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impulse response after derotation which accounts for the pulse shaping of the 

modulation, selectivity of the channel and the receiver filter.  

With the assumption that the function )(th  is known, the received signal in 

the absence of noise may be reconstructed for each possible sequence. Let the 

reconstructed complex baseband signal for the m-th sequence be denoted as 

∑
−

=

−=
1

0
)()(

K

k

m
km kTthats . 

The MLSE algorithm atttempts to find the transmitted sequence 

[ ]110 −= Kaaaa K
r  that maximizes the log likelihood function (LLF) [13] 

[ ] ∫ ∑
∞

∞−

−

=

−−−∝ dtkTthatratrp
K

k
katr

21

0
)|( )()()|)((ln r
r . 

The direct solution of this maximization problem is to select the one among the 
KM 2=  possible vectors ar  which maximizes (2.20). It is obvious that as the 

length of the transmitted vector ar  gets larger, the maximization of the LLF 

function becomes computationally inefficient. To reduce this computational load 

Viterbi algorithm can be used.  

In the literature, there are basically two approaches for the application of 

the Viterbi algorithm to this problem. One of them is by Forney [19] and the other 

by Ungerboeck [20]. The Forney’s approach follows the standard Viterbi 

algorithm and theoretically requires the whitening filter. On the other hand, 

Ungerboeck’s approach directly uses the non-whitened samples. In this study, the 

receiver structure proposed by Ungerboeck is considered which includes a 

matched filter and a modified VA.  

If we turn our attention to the LLF again, we see that maximizing (2.20) 

for the m-th sequence is equivalent to maximizing the function 

(2.19)

(2.20)
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We may rewrite equation (2.21) as 

∑∑∑
−

=

−

=
−

−

=

−







=Λ

1

0

1

0

*
1

0

* )()(Re2
K

k

K

i

m
iik

m
k

K

k
k

m
km axaya , 

where 

∫
∞

∞−

−== dtkTthtrkTyyk )()()( * , 

∫
∞

∞−

+== dtkTththkTxxk )()()( * . 

In words, ky  is a sample taken at time kT  at the output of a filter matched to the 

overall impulse response )(th  when the input is the received signal )(tr , and kx  

is a sample of the autocorrelation function of )(th . 

This clarifies that the computation of the likelihood function requires 

passing )(tr  through a matched filter with impulse response )(* th −  followed by 

processing of the sampled outputs of the matched filter. Next, the Viterbi 

algorithm is employed by evaluating the LLF recursively and discarding the 

unlikely sequences. 

For practical reasons, the analog MF can be replaced with discrete 

transversal MF having a finite number of taps. To approximate the true MF 

characteristics, the number of taps of the discrete MF must include all the 

significant components of the overall impulse response. For a sampling rate of 

TNTs //1 =  at the ouput of the receiver filter, sT -spaced taps may be sufficient to 

(2.21)

(2.22)

(2.24)

(2.23)
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assure the optimum performance of the MLSE receiver if the received signal one-

sided bandwidth is limited to sT2/1 . Then, the equations (2.23) and (2.24) can be 

re-expressed as  

∑
−

=

−==
1

0

* )()()(
NK

n
ssk kTnThnTrkTyy , 

∑
−

=

+==
1

0

* )()()(
NK

n
ssk kTnThnThkTxx , 

where ky  and kx  are obtained by downsampling the outputs of the discrete 

transversal MF to the sampled values of the inputs )(tr  and )(th , respectively. 

Now, an incremental metric is required to process the VA in a recursive 

fashion. Thus, mnΛ  is used to refer to the partial computation of the metric up to 

nk =  for the m-th sequence (where Kn < ), then 

∑∑∑
= =

−
=

−







=Λ

n

k

n

i

m
iik

m
k

n

k
k

m
kmn axaya

0 0

*

0

* )()(Re2 . 

For the VA, mnΛ  may be computed recursively from the previous partial sum for 

the same sequence, )1( −Λ nm , as [15] 

[ ] 0

21

0

**
)1( )(Re2)(Re2 xaaxaya m

n

n

k

m
kkn

m
nn

m
nnmmn −








−+Λ=Λ ∑

−

=
−− .  

The equation may be further simplified. Since { }1±∈ka , the last term will 

always yield the same value for a given channel characteristic and can be 

discarded. Further, the factor of 2 for the other two terms may be dropped. Since 

any practical channel response )(th  will span an interval of LT seconds, kx  will 

(2.27)

(2.28)

(2.26)

(2.25)
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be zero for Lk >|| . Hence, the summation in the second term can be rewritten as 

∑
=

−

L

k

m
knk ax

1

. Finally, the recursive metric calculation reduces to 

















−+Λ=Λ ∑

=
−−

L

k

m
knkn

m
nnmmn axya

1

*
)1( )(Re . 

The second term is nothing but the incremental metric that is employed in 

the VA for transitions in between the states. It should be noted that the complexity 

of the incremental metric depends critically on the summation in the second term, 

thus on the coefficients kx . In other words, the incremental metric depends only 

on m
na ,.., m

Lna − , i.e., on the last 1+L  bits of the data sequence. Then, the 

summation term in the brackets can have L2  distinct values depending on the 

possible combination of the state vector ( )Lnnnn aaaS −−−= ,...,, 21  which consists of 

the previous L binary bits.  

Viterbi algorithm compares the metrics of all sequences going into the 

same state at each instant kT and choose a survivor with the largest metric. The 

process is repeated for each of the L2  states. For binary signalling, each survivor 

gives rise to two extended sequences, but these are then pruned back to single 

survivor path by metric comparison of the two incoming sequences to each state.  

Finally, it must be noted that the critical parameter which determines the 

number of states and hence the complexity of the receiver is the number of 

significant component of kh . In this study, it is assumed that the overall impulse 

response, including the effect of pulse shaping filter, channel and the receiver 

filter, spans a time interval of 3 symbols, i.e., L is chosen to be 2. This simply 

corresponds to the 422 =  states in the Viterbi algorithm. This is discussed in 

Chapter 5.  

(2.29)
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CHAPTER 3 

SYMBOL SYNCHRONIZATION REVIEW 

3.1. Introduction 

Timing recovery is one of the most critical functions that are performed at the 

receiver of a synchronous digital communication system. The receiver must know 

not only the frequency at which the outputs of the demodulators are sampled, but 

also where to take the samples within each symbol interval. 

In this chapter, firstly the definition of symbol synchronization is 

presented. Second, a review of symbol timing recovery (STR) methods is given to 

highlight the attributes. In the context of this review, a brief history of timing 

recovery with some applications on MSK signals is included. Finally, the 

maximum likelihood estimation of the timing recovery and the Modified Cramér-

Rao Bound is presented. 

3.1.1.   Symbol Timing Recovery 

In a digital communication system, the output of the demodulator must be 

sampled periodically at the precise sampling time instants that minimize the 

detector error probability. The process of extracting the clock signal for 

determining the accurate locations of the maximum eye openings for reliable 

detection is usually called symbol synchronization or symbol timing recovery 

(STR). A circuit that is able to predict such locations is called a timing (or) clock 

synchronizer. 
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Figure 3.1 illustrates the block diagram of a typical baseband receiver 

model with a channel introducing an arbitrary delay τ . The received signal is 

composed of signal plus noise: 

)()()( twtstr +−= τ , 

where )(tw  is a white Gaussian noise process. The received waveform is first 

filtered to remove the out-of-band noise and then sampled at T-spaced instants, 

τ̂+= kTtk , where τ̂  is the timing epoch that accounts for the propagation time of 

the signal from the transmitter to the receiver. 

 

 

 

 

Figure 3.1 Typical block diagram of a baseband receiver. 

 
The task of the timing recovery function, as stated, is to sample at the 

optimum sampling instants, which amounts to the maximum eye opening at the 

output of the receiver filter. This will ensure that the samples passed to the 

remaining receiver processes, including data detection, have the maximum 

available average signal-to-noise ratio (SNR) and hence a bit error rate (BER) as 

close as possible to optimum.  

In selecting the STR scheme for a particular situation, some factors should 

be considered such as the modulation scheme being used, the transmission 

environment, the cost of implementation, the mode of the transmission (i.e. burst 

mode or continuous transmission) and physical limitations on size and power 

together with the complexity. The most important of these are the modulation 

scheme and the length of transmission. Next subsection gives some attention to 

TIMING 
RECOVERY

RECEIVER 
FILTER DETECTOR 

r(t) x(t) x(kT) kâ  

Sample at 
   τ̂+kT  

(3.1)
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these facts within the consideration of the general forms of the timing recovery 

schemes. 

3.1.2.   Existing STR Schemes 

The symbol synchronization literature is so vast as to comprise many technical 

papers with applications in diverse areas. This enormous knowledge has been 

elaborated in excellent books, the latest of which are by Meyr and Ascheid [21], 

Meyr, Moeneclaey and Fechtel [12], and Mengali and D’Andrea [22].  

The process of symbol timing recovery (STR) varies according to the 

application. Existing symbol synchronizers appear in two main classes whether 

they are modeled with analog or digital methods. The former work on continuous-

time waveforms where the latter perform the recovery of the timing epoch by 

operating on signal samples taken at a suitable rate. Since the proposed scheme 

basically resembles digital synchronizer schemes, in this general review of 

existing schemes the main emphasis is given to the digital timing recovery. 

Digital symbol synchronization methods are well established in the 

synchronization literature with many technical papers and the books by Meyr, 

Fechtel and Moeneclaey [12], and Mengali and D’Andrea [22].  

As shown in Figures 3.2 and 3.3, the digital implementation of the 

synchronization process may take place using with either feedback (FB) or 

feedforward (FF) schemes [22]. The received signal can be sampled prior to or 

after the matched filter in both schemes. Each structure has its own particular 

merits. In both cases a low pass filter (LPF) limits the bandwidth of the received 

waveform. A typical feedback scheme is depicted in Figure 3.2. Here, the timing 

error detector (TED) takes the output of the timing corrector to generate an error 

signal )(ke  proportional to the difference between τ  and its current estimate. The 

error signal is then filtered to reduce the variance of the timing error and the 

output is used to recursively update the timing estimates.  
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Figure 3.2 Feedback configuration. 

 
On the other hand, feedforward methods derive an estimate of the timing 

epoch by applying a non–linear process within the STR circuit to the received 

signal samples. The estimate can then be used to adjust the sample timing to the 

optimum location. Generally, the tracking ability of the FB methods is superior to 

FF ones and they have less jitter when SNR is poor. But one can achieve fast 

acquisition times by employing FF schemes. 

 

 

 

 

Figure 3.3 Feedforward configuration. 

 
In the schemes described in Figures 3.2 and 3.3, a fixed clock whose ticks 

are not locked to the incoming data, controls the sampling. This is referred to as 

non-synchronized sampling. The sampling process can be performed also in a 

synchronized manner by feeding the number controlled oscillator (NCO) directly 

with the output of the STR circuit, as shown in Figure 3.4. Here the sampler is 

commanded by the NCO pulses at times { }kt . Note that, as an example, the 

sampling process is performed after the MF and the analog MF in the figure may 
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be replaced by a digital MF inside the loop, as in the previous Figures 3.2 and 3.3. 

Moreover, synchronous sampling can be used both with feedback and 

feedforward schemes.  

 

 

 

 

 

Figure 3.4 Synchronous sampling. 

 
For completeness, it is valuable to mention about the timing correction 

block shown in Figures 3.2 and 3.3. Timing correction is generally performed 

with interpolators with the desired interpolation times { }kt . It serves to provide 

the decision device with signal samples with the corrected timing values, i.e., with 

minimum intersymbol interference. 

Also the timing synchronizers can be divided into two broad classes. First, 

synchronizers which use estimates of the received data values in obtaining the 

timing information are called decision-directed (DD) or data-aided (DA). In 

literature, DA timing recovery is generally referred to estimation of the timing 

epoch by using some preamble known to the receiver. The second class of 

synchronizers determines the timing phase error without using knowledge of the 

received data values. These are called non-decision-directed (NDD) or non-data-

aided (NDA). Decision-directed STR schemes closely approach the performance 

bound but they are generally intolerant of carrier phase offset. Conversely, non-

data-aided structures have poorer performance despite the fact that they are 

tolerant of carrier phase offset.  
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Since the second half of the last century, many timing recovery methods 

have been proposed with a steady performance improvement. Initially, timing 

synchronization information was transmitted on a separate channel. In the early 

1960s, researchers have dwelled upon the investigation of new timing recovery 

schemes that all the transmitted energy is devoted to the transmission of the data 

signal, instead of dividing it between a data and a synchronization channel.  

Early timing recovery methods were feedforward based and relied on the 

extraction of timing information from a discrete frequency component at the 

symbol rate. The frequency component is generally produced by feeding the 

baseband signal through a non–linearity, and then filtering the unwanted 

frequency components using a narrow bandpass filter or a phase locked loop 

(PLL). As the techniques for the analysis of the structures advanced through the 

1970s, many classic papers were published mainly by Kobayashi in 1971 [23], 

Franks and Bubrouski in 1974 [24] and a very innovative one for synchronous 

digital receivers by Mueller and Muller in 1976 [9]. The tutorial paper by Franks 

in 1980 [25] described the symbol synchronization methods including the ones 

based on the maximum likelihood estimation criterion in the special issue of the 

IEEE Transactions on Communications (August 1980). This issue was devoted to 

synchronization and comprised many other papers with valuable contributions. 

With the rapid advance in digital signal processing (DSP) devices, both the 

feedforward and feedback methods are increasingly being implemented in fully 

digital forms [12]. The papers mentioned above formed the bases of the extensive 

research on the digital synchronization. Further research has been devoted to the 

digital synchronization of nonlinear modulations formats, namely, continuous 

phase modulation (CPM) [1][26]. Next section gives the details of the research on 

symbol synchronization in MSK signals. 

3.2. Symbol Synchronization in MSK Signals 

MSK is a subset of the continuous phase modulation (CPM) schemes (See 

Appendix A). Having constant envelope, they are very attractive in radio systems 
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employing low-cost non-linear power amplifiers. However, because of the 

implementation complexity and synchronization problems, not much attention is 

given to the symbol timing recovery of CPM signals especially for transmission in 

fading channels.  

Symbol timing recovery for CPM signals has been first discussed by de 

Buda [3], specifically for minimum shift keying (MSK), where a nonlinearity is 

used to generate tones at the clock frequency. This algorithm was further analyzed 

in some papers and in [27] it has been shown that it can be used for any CPM 

signal. The problem with these Buda-like [26] synchronizers is their poor 

performance with the smoothed frequency pulses.  

A decision-directed (DD) algorithm based on the maximum likelihood 

(ML) techniques is proposed in [28] and [7] using MSK modulation. Former 

provides the joint ML estimation of carrier phase, timing epoch and data, but 

suffers from spurious locks in the maximization of the likelihood function. The 

latter presents an all digital implementation with a feedforward carrier and clock 

synchronization. Although it is well suited for VLSI implementation, it includes 

some additional blocks to avoid hang-up problems.  

In order to solve the problems related with the mentioned algorithms some 

NDA structures are developed. A feedback scheme is presented in [29] and its 

performance is compared with de Buda synchronizer. In [4]-[6], feedforward 

NDA algorithms are discussed. Two of these methods, proposed by Mehlan, Chen 

and Meyr [4] and Lambrette and Meyr [5], recover the clock signal in an ad hoc 

manner by passing the received signal samples through a nonlinearity and a digital 

filter. The algorithm behind this ad hoc scheme is obtained specifically for pure 

MSK and not applicable to any other CPM format. In a different approach, [6], 

the non-data-aided recovery is obtained by applying maximum likelihood 

methods. Although it is simple and seems suitable for burst mode transmission the 

algorithm is obtained under the assumption of low SNR. This results in the 

deviation from the desired performance even in the moderate SNR values.  
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Timing recovery in MSK signals with multipath fading channels has 

received scarce attention thus far. Although, it is widely believed that 

conventional clock synchronizers can be used even with fading channels, a closer 

look at the question may be worthwhile. In [4] and [8], the effects of a flat fading 

channel are taken in consideration with the symbol synchronizer employing 

nonlinearity and filtering in a feedforward manner. Also, the effect of frequency-

selective channels is tested in [4], and a dramatic degradation is found in the bit 

error rate. 

Apart from these attempts, some researchers intended to assess the error 

probability degradation due to synchronization imperfections. In [30], the effect of 

symbol timing errors on the BER is analyzed for linear modulations and given the 

comparison with MSK under the channel effects with a delay spread less than a 

symbol interval. It has been pointed out that MSK signal suffers from severe BER 

degradation in accordance with the increased delay spread. In [31], the effect of 

the timing errors is discussed when a coarse timing correction is employed in an 

MLSE receiver. It has been observed that the performance of the receiver is 

affected slightly from the timing errors when the delay spread of the channel does 

not exceed several symbol periods.  

An example for the timing sensitivity of error probability of MSK signals 

is shown in Figure 3.5. The results are obtained under AWGN channel for 

different timing offset values. As is seen, for a value of τ 15% of the symbol 

period produces a signal energy loss less than 0.5 dB, but with a larger offset of 

0.3T a loss of 1 dB is noticeable. Thus, MSK signals may require well-designed 

symbol synchronizers in the presence of considerable timing errors. This is 

actually the case for the frequency-selective multipath fading channels.  
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Figure 3.5 Effect of timing errors on MSK modulation. 

 

3.3. Maximum Likelihood Timing Estimation 

It is widely recognized that maximum likelihood (ML) estimation techniques offer 

a systematic and conceptually simple guide to the solution of synchronization 

problems and they provide optimum or nearly optimum solutions.  

In this section the framework for maximum likelihood symbol timing 

recovery is established since most of the algorithms have been discovered by 

application of the ML estimation [25]. This is also the case for the proposed 

algorithm given in Section 4.3. The general formulation of the ML timing 

estimation is discussed in detail in [22] and [32]. 

Considering the baseband equivalent of the bandpass signal, the received 

signal in (3.1) can be described as  

)(),()( twtstr l += τ , 

: 0=τ

: T15.0=τ
: T3.0=τ

0/ NEb , dB 

(3.2)
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where τ  represents an arbitrary delay introduced by the channel to the trasmitted 

signal )(tsl . The notation ),( τtsl  is adopted to stress the dependence of the signal 

on the timing epoch. )(tw  is white Gaussian noise with spectral height 2/0N . 

The ultimate goal of a symbol synchronizer is to estimate the most likely 

value of the timing epoch. This is accomplished when synchronizer maximizes the 

a posteriori probability for all values of τ : 

{ }))(|(maxargˆ | trp rMAP ττ τ
τ

=  

given the observed signal )(tr  [33].  

ML estimation requires the determination of the signal )(tr  which 

maximizes the conditional probability density function )),(|)((| τtstrp lsr l
, that is, 

the most likely signal, ),( τtsl , which produces the received signal, )(tr , over a 

specific observation period 0T .  

We can rewrite the a posteriori probability using Bayes’ theorem:  

))((
)(

)|)(())(|( || trp
p

trptrp
r

rr
τ

ττ τ
ττ = , 

where the probability density function (pdf) ))(( trpr  describes the probability 

that )(tr  was received, and )(ττp  describes the probability that ),( τtsl  was 

transmitted with a delay of τ . In this case )(ττp  is a constant assuming the time 

delay has a uniform pdf over the interval [ ]T,0 . In addition, ))(( trpr  is simply a 

normalization constant.  

Let rr , )(τlsr  and wr  be the vector representations of )(tr , ),( τtsl  and )(tw  

over a complete orthonormal set { }K
ii t 1)( =φ . Then, the i-th component of rr  is given 

by [33] as  

(3.3)

(3.4)
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∫=
0

0

)()(
T

ii dtttrr φ . 

Similarly, 

∫=
0

0

)(),()(
T

illi dtttss φττ , 

∫=
0

0

)()(
T

ii dtttww φ . 

The standard form of the pdf for the sum of a known signal and AWGN, is 
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As the additive noise is considered to be white, the obsevations of noise, iw ’s, are 

independent, that is,  

{ } )(
2

0 ji
N

wwE ji −= δ . 

Hence, the pdf may be expanded over K components by taking the product of the 

pdfs for the individual sample observations and leads to the desired result  

∏
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within the observation interval 0T . To simplify the likelihood function the natural 

logarithm may be taken, which after some rearrangement, results in  

[ ] K

K

i
liir Csr

N
rp +−−= ∑

=1

2

0
| ))((1)|(ln τττ
r , 

(3.5)

(3.8)

(3.6)

(3.7)

(3.10)

(3.11)

(3.9)
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where 












=

KK N
C

)(
1ln

0π
. 

Equation (3.11) can be converted to the continuous time domain form by dropping 

the constant KC  as it is independent of the time delay and taking the limit as 

∞→K . Then, the result is 

dttstr
N

r
T

lL ∫ −−=Λ
0

2

0

)),()((1)|( ττr , 

where )|( τrL
r

Λ  is the continuous time log likelihood function (LLF). The 

squared term within the integral is a measure of the distance between the received 

and reference signals. Only the cross-correlation term in (3.13) contains useful 

information regarding the timing epoch. )(2 tr  is independent of τ , and the 

),(2 τtsl  term is simply the power of the transmitted signal during the observation 

interval 0T . Consequently, the most likely timing offset τ̂  can be expressed as the 

value of τ  which maximizes 

constdttstr
N

r
T

lL +=Λ ∫
0

),()(2)|(
0

ττr , 

that is, 

{ }












=Λ= ∫ dttstr
N

r
T

lL

0

),()(2maxarg)|(maxargˆ
0

τττ
ττ

r . 

The constant term is not included in (3.15), as it does not affect the maximization 

process. The final result will be used to explain the notion behind the proposed 

timing recovery algorithm in the next chapter.  

 

(3.12)

(3.13)

(3.14)

(3.15)
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3.4. Modified Cramér-Rao Bound 

To compare the performance of synchronizers, establishing bounds to ultimate 

accuracy is an important goal. However, in their applications to synchronization 

problems some difficulties are encountered. The Modified Cramér-Rao Bound  

(MCRB) is introduced not to exhibit such difficulties [22]. 

Cramér-Rao Bound (CRB) is a fundamental lower bound on the variance 

of unbiased estimates. This bound is expressed as 

{ }≥−ττ )(ˆ rVar r









∂
Λ∂

−=
∆

2

2 )|(ln
1)(

τ
τ

τ
rE

CRB

r

r  

                                       



















∂
Λ∂

=
2)|(ln

1

τ
τrEr

r , 

where rr  is the observation as defined in the previous section and {}⋅rE  is the 

expectation with respect to rr . Any estimate that satisfies the bound is an efficient 

estimate [33]. Because of the difficulty of computing )|( τrrΛ  for practical 

synchronization problems MCRB is used, which still applies to any unbiased 

estimator defined in the following form: 

{ } )()(ˆ τττ MCRBrVar ≥−
r  

with 











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∫
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2
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)(

T
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u dt
uts
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N
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τ
τ
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(3.16)

(3.17)

(3.18)
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in the case of baseband equivalent signals. In (3.18) the notation ),,( utsl
rτ  is used 

in place of ),( τtsl  and expectation {}⋅uE  is defined over the unwanted parameters 

ur  which may include the frequency offset, carrier phase and/or the data symbols. 

The relation between the CRB and MCRB is addressed in [34] as  

)()( ττ MCRBCRB ≥ . 

The equality holds only in two special cases: where ur  is perfectly known and the 

observation interval is much larger than the symbol interval or if there are no 

unwanted parameters. Equation (3.19) indicates that MCRB might be loose.  

The MCRB for binary CPM signals is given in [22] as 

00
22 /

1
8

1)(1
NEL

MCRB
T sζπ

τ =×  where ∫
∞

∞−

∆

= dttgTh )(22ζ . 

)(tg  is the frequency pulse shape and 0L  is the observation interval in terms of 

the symbol period.  

For binary MSK signalling with the frequency pulse shape 





 ≤≤

=
,,0

,0,
2
1

)(
elsewhere

Tt
Ttg  

(3.20) reduces to a simple form 

00
22 /

12)(1
NEL

MCRB
T sπ

τ =× . 

The relation given in (3.22) will be used for the comparison of the performance of 

the proposed STR scheme in the AWGN channel. 

(3.19)

(3.20)

(3.21)

(3.22)
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CHAPTER 4 

A DD STR BASED ON MATCHED FILTERING                                       

FOR MSK SIGNALS 

4.1. Introduction 

Transmission over frequency-selective fading channels necessitates specifically 

designed synchronizer structures and algorithms that are, in general, different 

from those for static channels. Feedforward approaches based on maximum 

likelihood (ML) estimation are good candidates and have received increasing 

attention [12][22][32]. They allow rapid acquisition and are well suited for burst-

mode data transmission.  

The proposed timing recovery scheme is based on the method of ML 

estimation of the timing epoch and does not employ any feedback loop. As a 

result, it does not suffer from hang-up problems which is common in feedback 

schemes. Correlation (matched filter) method is used for the recovery of the 

timing epoch. The cross-correlation between the received signal and the reference 

samples is interpolated and an iterative maximum search is performed for 

estimating the fractional delays.  

The chapter starts with a study on “optimum timing phase” concept and 

some possible approaches. Next, the structure of the timing recovery scheme is 

presented with explaining the correlation (matched filter) method, interpolation 

and the iterative maximization process. Finally, a discussion on the performance 

of the proposed timing recovery scheme is given. 
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4.2. Optimum Value Criteria for Timing Phase 

Although timing recovery is one of the most critical receiver functions in 

synchronous communication systems, not much attention is given for the 

investigation of the relation between the optimum timing phase criteria especially 

under the time-variant fading effects of the channel. The subject has received 

attention in early seventies and some possible optimum criteria have been 

presented in [9]-[11]. In [35], performance of some timing recovery algorithms 

are compared with the criterion proposed by Mazo [10] considering fading 

channel effects. In addition, a recent study [36] gives some attention to optimum 

timing values with emphasis on the timing sensitivity of MLSE receivers. 

This section includes some possible criteria for establishing the notion 

behind optimum values for timing phase. 

4.2.1.   Mazo Criterion  

In this criterion, optimum timing phase is defined as the one which results in the 

least MMSE, at the output of the equalizer. For most transmission systems the 

bandwidth is greater than T2/1  where T  is the symbol period. Therefore, when it 

is sampled at a rate T/1 , the sampling phase will change the equivalent system 

response by cancelling or augmenting the aliased components. It has been shown 

by Mazo [10] that for a system consisting of a channel, a sampler and a forward 

linear equalizer the optimum timing phase is found by maximizing the equivalent 

channel magnitude response at the frequency T2/1 , i.e., at the Nyquist band edge. 

With the form of the received signal depicted in equation (2.18), the 

samples at the time instants τ+= kTt , can be re-expressed in the absence of 

noise by 

∑ −=
n

nknk ahr )()( ττ . (4.1)
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To point out the dependence of the samples on τ , the notation )()( ττ += nThhn  

is used as in Section 3.3. These samples are related to their discrete Fourier 

transform as 

∫
∞

∞−

= dfefHh fnTj
eqn

πττ 2),()( , 

where 

∑ +−+=
n

Tnfj
eq eTnfHfH τπτ )/(2)/(),( . 

The exponential term in (4.3) reflects the effect of the timing phase. If the excess 

bandwidth of the sampled received signal is assumed to be less than %100 , then  

TjTj
eq eTHeTHTH // )2/1()2/1(),2/1( πτπττ −+= − . 

According to the criterion proposed by Mazo [10], optimum timing phase 

is defined as optτ  that maximizes the cost function 
2

),2/1( τTH eq  and 

approximately given by 

[ ] kTTHTHT
opt +−−= ))2/1(arg())2/1(arg(

2π
τ , 

where k  is any integer. 

 The equation derived by Mazo is nothing but the slope of the phase 

response between the frequencies }2/1,2/1{ TT− . Correspondingly, the timing 

phase behaviour given with this relation can be characterized by the slope of the 

phase response in a way given in the following formula: 

[ ] kTfHfH
ff

T
+−

−
= ))(arg())(arg(

)(2 21
21π

τ  

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)
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with Tff 2/121 =−= . This result directly gives the delay for linear phase 

systems, and in some sense may show the general tendency of the time-variant 

channel. Figures 4.1 and 4.2 show some examples for the timing values obtained 

by the equation (4.6) for different 1f  and 2f .  

 In Figure 4.1, the variations of the timing phase are obtained for a 

multipath channel which is discussed in Chapter 5. Specifically, it corresponds to 

a variation with a mobile speed of 50 km/h and a carrier frequency of 900 MHz. 

The curves coincide in some specific interval and give the same delay. Other 

instants, the values of timing phase differ for different frequency pairs. Of course, 

this depends on the channel characteristics, but gives some information about the 

channel variations and the effects on optimum timing phase. Similar conclusions 

can be drawn for Figure 4.2. It gives the results of equation (4.6) under a faster 

channel variation. 

 
Figure 4.1 Normalized timing phase obtained from Mazo criterion                        

(v = 50 km/h, fc = 900 MHz). 

: f1=-f2= 1/8T 
: f1=-f2= 1/4T 
: f1=-f2= 1/2T 



 

 38

 
Figure 4.2 Normalized timing phase obtained from Mazo criterion                           

(v = 90 km/h, fc = 1800 MHz). 

 

4.2.2.   Minimum Squared ISI (msISI) Criterion 

Another criterion for the proper sampling is the determination of instants where 

we achieve minimum ISI, i.e., maximum eye opening. Considering again the 

general PAM form given in equation (2.18), the ideal set of samples are acquired 

when the overall impulse response can be expressed by 1)0( =h , 0)( =kTh , 

0≠k ; but this ideal set is never achieved in practice because of unknown channel 

distortion. Considering this, the distortion can be defined as  

2
0

2

)0(

)(
)0(

h

kTh
D k

∑
≠= . 

By changing the sampling instant for )(th  other than taking 0=t , we obtain an 

appropriate measure for minimum distortion:  

(4.7)

: f1=-f2= 1/8T 
: f1=-f2= 1/4T 
: f1=-f2= 1/2T 
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2
0

2
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)(
min)(

τ

τ
τ

τ h

kTh
D k

∑
≠

+
= . 

This measure resembles minimization of the mean square distortion [9][11]. In 

[11], some possible distortion criteria for performance evaluation are discussed. 

Using (4.8) a possible optimum timing phase can be expressed as  

2
0

2

)(

)(
minarg

τ

τ
τ

τ h

kTh
k

opt

∑
≠

+
= . 

 The above criterion may allow us to choose a meaningful sampling epoch 

τ , which results in minimum distortion. Because of the mathematical difficulty, 

an explicit expression is not presented as the one given for Mazo criterion in 

equation (4.5). Figures 4.3 and 4.4 show the results of the minimum squared ISI 

(msISI) criterion given in equation (4.9) and the comparison with the Mazo 

criterion with the same channels used in the previous figures.  

 It can be inferred that the two criteria track the channel variations and give 

close results for the timing epoch. With a detailed look the similarity between the 

msISI criterion and the timing estimates obtained by equation (4.6) with the 

frequencies Tff 4/121 =−=  is more clear especially in Figure 4.4. This is 

actually a channel dependent fact and one may encounter different similarities 

with different channel conditions. 

(4.8)

(4.9)
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Figure 4.3 Comparison between the timing values obtained from msISI and Mazo 

criteria (v = 50 km/h, fc = 900 MHz). 

 

 
Figure 4.4 Comparison between the timing values obtained from msISI and Mazo 

criteria (v = 90 km/h, fc = 1800 MHz). 

: msISI 
: f1=-f2= 1/4T 
: f1=-f2= 1/2T 

: msISI 
: f1=-f2= 1/2T 
: f1=-f2= 1/4T 
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It is interesting to note that the minimum squared ISI criterion defined by 

equation (4.9) physically tends to minimize the ISI energy in the received signal 

samples. This makes the msISI criterion much meaningful from the point of the 

proposed symbol synchronizer. The proposed method discussed in section 4.3 also 

has a tendency to increase the SNR value of the main component at the desired 

sampling instant. Hence, the tracking behaviour is to be similar. 

4.2.3.   Minimum BER Criterion 

Without any doubt, the most meaningful criterion for optimum sampling is the 

minimization of the bit error probability. Considering the derivation given in 

Appendix B, it can be inferred that for MLSE receiver the timing values which 

maximize the minimum distance may be regarded as optimum. Hence, the 

following relation is the best criterion for the MLSE receiver: 

{ })(maxarg 2
min ττ

τ
dopt = , 

where 

.1min)(
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1 1
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2
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
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
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Ed

εετ

δττ

ε
r

 

)(2
min τd  is the minimum distance as a function of the error vector ε

r
and the timing 

epoch τ  (See Appendix B). )(τavE  is the average energy which changes 

according to the sampling instant and 2
minδ  is the minimum value of the 

normalized euclidean weight as defined in Appendix B.  

Figure 4.5 shows the optimum timing values obtained from equation (4.10) 

using the same channel statistics as in Figure 4.3. The results completely differ 

from the ones obtained with the previous criteria. At a first glance, previously  

discussed criteria seems to be unsatisfactory. Hopefully, this inference does not 

much reflect the truth. The reason lies behind the timing sensitivity of the MLSE 

receiver as discussed in detail in [31] and [36]. In [36], the effects of timing errors 

(4.11)

(4.10)
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are studied on symbol-spaced MLSE receivers and the BER performance is 

investigated with different timing phase criteria. It has been shown that for 

bandlimited signals the timing appears to be uncritical with a coarse timing 

recovery scheme even if the received signal is sampled below the sampling rate. 

This is also discussed in [31] for GMSK signals and it is observed that with a free 

runnig clock and a coarse timing recovery technique, depending on the maximum 

energy search, the BER performance of an MLSE receiver varies slightly with a 

timing error at the sampling instants even in the presence of excess ISI. This 

directly explains the difference of the values obtained from the presented criteria.  

 
Figure 4.5 Timing values obtained from the maximization of the              

minimum distance. 

 
Following this argument, the question arises about the degradation caused 

when the received signal is sampled with the recently mentioned minimum 

squared ISI (msISI) criterion. Figure 4.6 gives the minimum distance values for 

timing values obtained from equation (4.10) and the msISI criterion. The result is 

not surprising but specific for the channel used. It simply says that the distance is 

almost not affected. In other words, the energy of the received signal samples do 
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not change much in an interval including the timing instants determined by the 

two criteria. This specific result is given only for illlustrating the behaviour of the 

mentioned criteria in terms of the BER performance. As stated in Chapter 5, the 

proposed scheme tracks the channel variations almost identically as the msISI 

criterion. Hence, it can be inferred that there will be no significant degradation 

from the point of BER performance of the receiver for the specified channels 

when the proposed scheme is employed for symbol synchronization. 

 
Figure 4.6 Minimum distance comparison between                                    

minimum BER and msISI criteria. 

 
These comments can also be made by examining equations (4.10) and 

(4.11) in conjunction with the sampling theorem. In general, BER is dominated 

with single error events, which correspond to single bit errors in the error vector 

ε
r  in (B.6). That is, equation (4.11) becomes 

)()(2
min ττ avEd ≈ . 

Then, the minimum distance gives the average energy in the sampled received 

signal. As seen in (4.12), the MLSE receiver behaves as an energy detector 

(4.12)
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algorithm, i.e., the optimum timing values correspond to the instants where the 

energy is maximized [31]. As a consequence, if the sampling rate with respect to 

the bandwidth of the overall impulse response h(t) does not violate the sampling 

theorem, the performance will be independent of the timing phase. 

4.3. Proposed DD STR for MSK Signals 

In this thesis study, a decision-directed timing recovery scheme is proposed which 

allows rapid acqusition and is robust in fading channel conditions. It simply 

employs correlation (matched filter) method based on maximum likelihood (ML) 

estimation of the timing epoch. For determining the fractional delays, classical 

interpolation and an iterative maximum search algorithm are used. 

4.3.1.   Correlation (Matched Filter) Method 

The method used for the recovery of the timing information is basically related to 

the estimation of arrival time of a pulse [33]. The notion behind this symbol 

timing estimation algorithm depends on the theory of maximum likelihood (ML) 

estimation. A large number of algorithms are presented previously which use 

several versions of ML estimators. 

The proposed estimator does not give the estimates of the timing offset 

explicitly. It is based on the determination of the maximum value of the log 

likelihood function as a function of τ , i.e.,  

)}({maxargˆ ττ
τ

LΛ= . 

Let us rewrite the likelihood function (3.14) obtained in Section 3.3: 

dttstr
N T

lL ∫ −=Λ
0

)()(2)(
0

ττ . 

The integral in (4.14) is just a convolution operation and the likelihood 

function is simply the output of a filter with impulse response )( tsl −  and input 

)(tr  over the observation interval 0T . Then, the estimate of the symbol timing 

(4.13)

(4.14)
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offset may be obtained by finding the timing instant which correponds to the 

maximum of the output of the cross-correlation between the received and the 

reference signal samples. The correlation function can be expressed as 

∫ −=
0

)()()(
T

dutusurtR  

and the proper sampling instant is given by 

)(maxarg tRt
t

samp = . 

The correlation function can also be viewed as the output of a filter 

matched to reference signal when the input is the received signal. As a conclusion 

of the above relation, producing the replica of the received signal is enough for 

the estimation of the timing epoch even in the presence of the variations caused by 

multipath and noise. In the proposed synchronizer, the samples of the replica of 

the received signal are produced in a data-aided manner. In the acquisition mode 

of the synchronizer training sequence is employed. After the initial adjustment of 

the clock, the channel variations are tracked in a decision-directed manner using 

the decisions coming from the MLSE receiver.  

In the tracking mode with the detection through the trellis in the Viterbi 

algorithm, the detector reliability depends on the decision delay. In other words, 

the delay between the current time and the time instant that the decisions are taken 

for timing recovery for symbol synchronization directly reflects the reliability of 

the detector. It is generally not clear where the break-even point is between having 

good decisions and short delays. This issue is the most important design criteria 

for the decision-directed algorithms. In VA, the decision delay for reliable 

detection is in the order of L5  (where L  is the memory of the overall impulse 

response) symbol intervals, which corresponds to 10 symbols in the proposed 

structure. However, such a delay in the timing recovery process degrades the 

tracking performance considerably in the presence of the channel variations. As a 

compromise, a smaller delay can be employed but this may also result in 

(4.15)

(4.16)
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performance degradation with fast channel variations. A reasonable solution to 

this is to take the best survivor sequence assuming that it is sufficiently reliable 

for timing recovery at the current time. These decisions are referred to as tentative 

decisions.  

The tentative decisions are taken from the MLSE receiver and the matched 

filter is produced with the MSK modulated tentative decisions. Then, the timing 

epoch is estimated using the relation (4.16). This corresponds to the determination 

of the maximum of the matched filter output, i.e., the correlation function defined 

in (4.15). This is accomplished with interpolation and an iterative maximum 

search process as explained in the following sections.  

4.3.2.   Interpolation 

As stated before, interpolation in receivers is generally employed to shift the 

received signal in time by the estimated timing offset value for fully digital 

applications [12]. In this study, the interpolation is used for approximating the 

correlation function other than determining the shifted sample values. 

Interpolation filters are usually based on FIR filter structures due to linear phase 

requirements. In the sequel, the classical interpolation method based on sampling 

theorem is used.  

Classical interpolation is derived from the sampling theorem which states 

that a bandlimited signal with bandwidth 2/B  can be reconstructed exactly if 

Bfs ≥ . If the bandlimited signal is sampled at the Nyquist rate, the recovery 

filter is the ideal rectangular filter. This rectangular filter which reconstructs the 

analog signal without aliasing is unique and unrealizable.  

The ideal interpolation formula, which forms the basis of sampling 

theorem is, [37], 

( )
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 47

where sT  is the sampling period. The tilde indicates that the correlation function 

has been produced using interpolation. 

A data window may be applied to (4.17) to reduce the distortion caused by 

the rectangular window and the associated Gibbs phenomena. Thus, if the signal 

is sampled at a rate higher than the Nyquist rate, various recovery filters may be 

designed.  

In this thesis, raised cosine filter is used as the interpolation filter. The 

impulse response of the raised cosine filter may be written as 

22161
)2cos()2(sin)(

tB
tBtBcth

T

T
TI ρ

πρ
−

= , 

where TB  is the symmetry frequency and ρ  is the roll-off factor. Figure 4.7 

shows the impulse response of the raised cosine filter for different values of ρ  

with TBT 2/1= . 

 
Figure 4.7 Impulse response of raised cosine filter. 

(4.18)

5.0=ρ

0=ρ

1=ρ
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According to the illustration of the samples in Figure 4.8, with an 

oversampling rate of sTTN /= , the timing instants can be defined as 

τ̂+= sk kTt , 

where τ̂  is the fractional delay and k is the index of the nearest sampling instant.  

 

 

 

 

Figure 4.8 Illustration of k and τ in determining the timing instant. 

 

Using the notation in (4.19) the interpolation formula becomes 

[ ]∑
+

−=

+−=
1

2

)()()(~ Lk

Lkm
sIsk TmkhmTRtR τ  

with )(thI  given in (4.18). Notice that, the summation in the equation (4.20) is 

truncated to a smaller length 121 ++= LLN I  and this may distort the interpolated 

signal, unless IN  is sufficiently large. By changing the summation index in (4.20) 

we may obtain 

( )[ ] ( )∑
−=

+−=
2

1

)(~ L

Li
sIsk iThTikRtR τ . 

The length of the interpolator, 121 ++= LLN I , used in simulations has 

been chosen to ensure that the variance of the timing estimates is tolerable. This 

issue is discussed in the last section.  

(4.19)

ktsTk )1( − skT sTk )1( +

τ

t  

(4.20)

(4.21)



 

 49

4.3.3.   Iterative Maximum Search 

In determining the maximum of the correlation function, a simple and satisfactory 

iterative process based on Bisection Method [38] is employed. The iteration 

method presented here is similar to the one used in [32].  

Bisection Method is a search algorithm with interval halving and a good 

candidate in iterative timing recovery process. Once the initial maximum has been 

located in an interval, the mid-point is taken as an estimate to τ . Then, halving is 

performed, as will be explained, to refine the estimate, and the procedure is 

repeated until the interval is sufficiently small.  

Application of the Bisection Method to STR: 

The received baseband signal is sampled at a high enough sampling rate 

(to satisfy Nyquist sampling criterion) with samples stored in a buffer. Before the 

interpolation, the time interval [ ]ss TkTk )1(,)1( +−  is determined where skTt =  

corresponds to the maximum of the correlation function.  

After the determination of the interval [ ]TkTk s )1(,)1( +− , including the 

maximum point, the two maximum values are selected from the samples at 

})1(,,)1{( sss TkkTTk +−  under the assumption that the optimum timing location 

lies between them. If the timing offset is not an integer multiple of the sampling 

period then the values of these samples differ in magnitude. Next, the procedure 

of halving is performed between the two selected sampling instants. The value of 

the correlation function is then evaluated for the new value of the timing offset 

and then the maximum two is selected among the three values of the samples. 

The processes of “interpolation & calculation” of the correlation function 

and “maximum value selection” are then repeated until a sufficient number of 

iterations have been processed. At this stage, the timing value at which the 

correlation function has the maximum value is deemed to be the desired location. 

The iterative algorithm based on the Bisection Method is shown in Figure 4.9. 
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Figure 4.9 Illustration of the iteration process by Bisection Method. 

 

4.3.4.   Discussion on Performance of the Proposed STR Scheme 

The accuracy of the estimate obtained by the presented method is affected by a 

number of factors. In this subsection, these factors are discussed considering the 

acquisition mode of the synchronizer, i.e., the data values used for correlation are 

taken as known to the synchronizer. The results for the decision-directed mode of 

the synchronizer are presented in Chapter 5. 

The correlation function is obtained by convolving the samples of the 

received signal with the corresponding reference signal, thus, oversampling rate 

will play an important role in the simulations. As given in [4], 99.5 % of the 

energy of the MSK signal is contained within a bandwidth of 1.5 times the symbol 

rate. Considering the bandwidth of the MSK signal and bearing in mind the fact 

that increasing the sampling rate will decrease the number of iterations in the 

maximum search process, sampling rate of NTTs /=  with 4=N  may be a good 

choice. This results in an accuracy of 1/128 ( 12*/1 +itnN ) of a symbol period only 

with 4=itn  iterations. In addition, the symmetry frequency of the interpolation 

filter is taken as T/2  with the roll-off factor of 0.5 considering the bandwidth of 

the MSK signal. 

))1(( sTkR −

1st iteration

2nd iteration

3rd iteration

)( skTR ))1(( sTkR +  

))2/1((~
sTkR +  

))4/1((~
sTkR +

))8/3((~
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 Apart from the mentioned practical settings, the ultimate accuracy is 

limited by the variance of the timing estimate. From the point of the correlation 

method used for the timing recovery, the primary factor in obtaining estimates 

with low variance is the observation interval. The observation interval refers to 

the block length 0L  used in the correlation which can be defined as the number of 

the symbols used in timing recovery, i.e., TLT 00 = . Figure 4.10 gives the relation 

of the variance to the block length for different SNR. As is seen, the block length 

of 30 symbols is a good choice even for low SNR values. Considering the 

moderate SNR values timing recovery can also be performed satisfactorily for 

smaller 0L  values. In Chapter 5, the simulations are carried out generally for 30 

symbols of block length. In addition, for some cases the comparison is given with 

200 =L .  

 
Figure 4.10 Normalized timing standard deviation for different SNR values. 

 
 Following determination of the block length for correlation, it is valuable 

to investigate the effect of the interpolation length. Figure 4.11 shows a typical 

matched filter output for a block length of 30. The useful information about the 

: 5/ 0 =NEb dB 
: 15/ 0 =NEb dB 
: 20/ 0 =NEb dB 
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timing epoch is in the main interval which contains the peak value at the matched 

filter output. Consequently, the components used in the interpolation should 

contain almost all the necessary samples; however, as the interval exceeds the 

useful part, timing errors may result. This can severely degrade the performance 

of the symbol synchronizer especially in low SNR and/or under fading channel 

effects.  

 
Figure 4.11 Matched filter output, SNR = 30 dB. 

 
Tables 4.1 and 4.2 give the normalized standard deviation of the timing 

values for block lengths of 15 and 30 symbols, respectively. The variance is 

affected from the interpolation length much for the values of 121 == LL , i.e., 

3=IN . Moreover, the values for 0 dB SNR in Table 4.1 implies that the timing 

estimates may not be satisfactory for a block length of 15 symbols whatever the 

interpolation length is. However, there is a remarkable decrease when the 

interpolation length is increased from 3 to 5 for the remaining cases. This trend 

does not continue as we increase the value of IN  and the results for the 

interpolation lengths of 5 and 7 do not much differ. Thus, it can be inferred that as 
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the value of IN  is increased further the variance does not change. This is actually 

the case for high SNR values. 

 

Table 4.1 Normalized timing standard deviation for L0 = 15. 

 0 dB 10 dB 20 dB 

NI = 3 0.1729 0.1501 0.1486 

NI = 5 0.1555 0.0368 0.0112 

NI = 7 0.1531 0.0442 0.0127 

 

The standard deviation of the timing estimate may attempt to increase as 

we increase IN  as in Table 4.1. This is because of the distortion in the useful 

interval which contains the peak of the correlation function for a shorter block 

length.  

In Table 4.2 the variance does not change much for 5=IN  and 7=IN  as 

in Tabel 4.1, since the distortion is somehow compensated with increasing the 

block length. The slight difference results from the sensitivity inherent in the 

iteration process. With a larger number of iterations the performance may be 

improved further with an increase in the complexity. In Section 5.3, the effect of 

the block length together with the number of samples taken for interpolation is 

shown for decision-directed timing recovery in AWGN channel.  

 

Table 4.2 Normalized timing standard deviation for L0 = 30. 

  0 dB 10 dB 20 dB 

 NI = 3  0.1490   0.1488 0.1481 

 NI = 5 0.0906  0.0256 8.19*10-3 

 NI = 7 0.0917  0.0263 9.186*10-3 
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When the channel is fading and not constant over the block length, 

increasing the number of samples used in the interpolation may result in a larger 

augmentation in the variance compared to Table 4.2. Figure 4.12 shows a matched 

filter output in the presence of fading channel effects. The useful part around the 

peak of the matched filter output is narrower, but not a problem in case the block 

length is chosen long enough. This simply implies that even in time-variant 

channel conditions as we choose the observation interval long enough for the 

correlation, we obtain satisfactory results for small interpolation lengths. 

 
Figure 4.12 Matched filter output, SNR = 30 dB, fading channel. 

 

Finally, Figure 4.13 summarizes the general flow in the timing recovery 

process. The received samples are first taken into the data buffer and then passed 

through the matched filter. Matched filter is obtained from the training sequence 

or the tentative decisions depending on the mode of the timing recovery process. 

Next, precise timing information is obtained by the iterative maximum search 

process using interpolator and Bisection Method. The tracking performance of 

this symbol synchronizer is discussed in the next chapter. 
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Figure 4.13 General flow in the proposed timing recovery scheme. 
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CHAPTER 5 

SIMULATION & RESULTS 

5.1. Introduction 

The proposed decision-directed symbol synchronizer has been simulated with 

software developed in MATLAB to observe the tracking performance under 

various channel conditions. Since MATLAB is based on discrete-time signals, the 

continuous-time signals are represented by their discrete samples taken at a rate 

greater than the Nyquist rate for a proper simulation. 

In this chapter, the model of the simulated system is given. After 

introducing the general simulation chain, the channel model and the receiver 

structure are examined. Finally, the tracking ability of the synchronizer is given 

and compared with the minimum squared ISI (msISI) criterion mentioned in the 

previous chapter. 

5.2. Simulation Model of the Communication System 

Firstly, the data burst is formed with randomly generated information sequence 

and a training sequence is placed in front of the burst for the acqusition of the 

initial timing information in the receiver. The data burst is modulated with the 

MSK modulator as shown in Figure 5.1. The output of the modulator is in the 

form of discrete samples with a time resolution of 100/T  which can be 

considered as almost continuous.  

The modulated samples are then passed through the multipath fading 

channel. The simulated channel specifications are given in the next section. 

Following this, white Gaussian noise is added to the signal and passed to the 
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receiver. In the simulations bit-SNR is used as the performance criterion which is 

the ratio of the average received power to the spectral height of the noise.  

 The signal processing in the simulations is carried out in baseband and the 

RF part of the transmitter and the quadrature demodulation stage of the receiver 

are not simulated. The simulation chain of the system can be modeled as in Figure 

5.1. 

 

 

 

 

 

 

Figure 5.1 General block diagram of the simulated system. 

 

5.2.1.   Simulated Channel Specifications 

In the simulation model, the complex baseband signal is transmitted through the 

tapped-delay-line (TDL) model of the time-variant frequency-selective fading 

channel [13], namely, 

∑
−
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T∆  is the time delay between the successive taps of the TDL model of the 

channel (also called the channel resolution) which generally satisfies BT /1≤∆ , 

where B  is the two-sided bandwidth of the MSK signal. cL  is the length of the 

channel in terms of T∆ . For convenience, in the simulations, T∆  is choosen 

simply as the sampling period 4/TTs = . The tap weight coefficients are adjusted 
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as explained in Chapter 2. The time spread of the channel is taken as TTLc 2=∆  

with the symbol period of 5.3=T  µs. This corresponds to 9 discrete taps with 

exponentially decaying average power as in Figure 2.3. 

 In the simulations, two specific channel models are considered. One of 

them considers a TU radio channel encountered by a vehicle travelling at a speed 

of 50 km/h and communicating at a carrier frequency of 900 MHz. The second 

channel with the same power delay profile is a faster one with a speed of 90 km/h, 

where the carrier frequency is taken as 1800 MHz.  

5.2.2.   Receiver Structure 

At the receiver part, the received signal is first passed through a low-pass filter 

(LPF) to reject the out-of-band components. The LPF used in the simulations is an 

8-pole Butterworth filter with two-sided bandwidth B. The filtered signal is 

sampled with the rate 4/TTs =  for proper timing extraction at the time instants 

determined by the symbol timing recovery circuit. This almost satisfies the 

Nyquist criterion for MSK signals (See Section 4.3.4).  

The symbol synchronizer adjusts the initial timing by passing the signal 

samples through the filter matched to the MSK modulated training sequence, 

which is known by the receiver. In general, specific sequences with good cross-

correlation properties are taken as the training sequences. In this study, training 

sequence is taken as a random sequence with the specified block length for the 

initial timing recovery. Next, the tracking of the timing phase with channel 

variations is performed in a decision-directed manner using the tentative decisions 

from the Viterbi algorithm. Tentative decisions are taken as the sequence 

corresponding to the best survivor path as explained in Section 4.3.1. 

The rotational structure of the signal is removed after the synchronization 

using the precise timing instants, although the derotation function does not need to 

be synchronized due to the perfect estimate of the channel as stated in [18]. 
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 The derotated samples are fed to the MLSE receiver which includes a 

discrete transversal matched filter followed with the Viterbi processor. Since the 

channel is assumed to be perfectly known no restriction is made on the design of 

the MLSE receiver. In the Viterbi processor, the decoding operation is carried out 

at symbol rate so the output of the matched filter is downsampled to this. 

The number of states in the Viterbi processor is determined by the number 

of significant components of the overall impulse response. The linearized pulse 

shape of the MSK signal spans a time interval of two symbols and the additional 

ISI introduced by the LPF to the overall system impulse response may be assumed 

negligible. Thus, with the channel impulse response described in the previous 

section, the number of significant components of the overall impulse response 

may be taken as 3 , which corresponds to 422 =  states in the Viterbi algorithm. 

5.3. Tracking Performance of the Symbol Synchronizer 

Before the discussion of the effects of channel variations on timing recovery, the 

performance of the synchronizer is tested in additive white Gaussian channel. 

Simulation of this channel involves the addition of the noise discarding the effects 

of the channel variations.  

In Figure 5.2, the standard deviation of the timing estimate is compared 

with the MCRB given in Section 3.4. The bounds are plotted for two different 

block lengths. In Figures 5.3 and 5.4, the interpolation length is taken into account 

for the same block lengths and the comparison is given with MCRB. 
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Figure 5.2 Performance of the symbol synchronizer in AWGN channel. 

 

As seen from Figure 5.2, in both cases the estimates are close to the 

bounds and the synchronizer seems to give satisfactory estimates in AWGN 

channel. This is not a surprising but an important result to comment on severe 

effects of time-variant channels as will be discussed next. The deviation for both 

cases at low SNR values arises from the decision-directed nature of the proposed 

timing recovery scheme. As the number of errors increase in the tentative 

decisions, the variance deviates from the ultimate bound. However, the 

improvement with increasing the block length from 15 to 30 symbols is 

remarkable.  

Figure 5.3 shows the deviation of the timing estimates for interpolation 

lengths, 5=IN  and 7=IN . The results for moderate SNR values seem to be 

close to the MCRB bound but for low SNR cases the decision errors cause 

degradation in the performance. The effect of the interpolation length is negligible 

and this is also valid for the increased block length in Figure 5.4. Moreover, the 

effect of decision errors is compensated considerably. 
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Figure 5.3 Performance of the symbol synchronizer for different interpolation 

lengths in AWGN channel (L0 = 15). 

 

 
Figure 5.4 Performance of the symbol synchronizer for different interpolation 

lengths in AWGN channel (L0 = 30). 
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In the remaining part of the section the effects of the multipath fading 

channels are discussed. The tracking performance of the proposed timing recovery 

scheme is tested for the mentioned channel conditions at 30 dB SNR. As stated 

before, the initial recovery of the timing epoch is performed using a randomly 

generated training sequence with the specified block length. The block length is 

taken as 30 symbols and the interpolation is performed within an interval of 

5=IN , following the discussions made in Section 4.3.4 and in the previous 

paragraphs. In addition, for some cases the performance is given for the block 

length of 200 =L  and SNR of 20 dB for comparison. 

 
Figure 5.5 Tracking performance of the proposed scheme                         
( 300 =L , SNR = 30 dB, 50=v  km/h, 900=cf  MHz). 

 

Figure 5.5 shows the tracking ability of the proposed symbol synchronizer 

for the channel also used for comparison of the possible optimum timing criteria 

in Chapter 4. The channel is TU model for 50 km/h mobile speed (TU50). It is 

clear that the proposed scheme tracks the channel very similar to the values 

obtained from the minimum squared ISI (msISI) criterion. 
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The same channel is simulated in Figures 5.6 and 5.7. In Figure 5.6, SNR 

is taken as 20 dB. Here, the tracking ability of the synchronizer is almost the same 

except a slight increase in the variance. In Figure 5.7, the block length is 

decreased to 20 symbols. However, the performance of the synchronizer is not 

affected much compared to the previous situations.  

 
Figure 5.6 Tracking performance of the proposed scheme                         
( 300 =L , SNR = 20 dB, 50=v  km/h, 900=cf MHz). 
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Figure 5.7 Tracking performance of the proposed scheme                         
( 200 =L , SNR = 30 dB, 50=v  km/h, 900=cf MHz). 

 

From the three figures mentioned, the performance of the proposed timing 

recovery scheme can be treated as successful. But the problems about timing 

recovery circuits arise in fading channels when deep fades occur in the main path. 

The following figures show the tracking ability of the proposed scheme for 

specific but informative cases considering the multipath fading channel specified 

with a vehicle speed of 90 km/h and a carrier frequency of 1800 MHz. 

Figure 5.8 illustrates the effect of the fast variations. In this time period the 

channel variations are fast enough, but not much deep when a fade occurs in 

which the synchronizer may loose its tracking ability.  

In Figure 5.9, the same interval for the channel is simulated for a block 

length of 200 =L . Although the channel varies faster, the effect of the block 

length is still negligible. 
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Figure 5.8 Tracking performance of the proposed scheme                         
( 300 =L , SNR = 30 dB, 90=v  km/h, 1800=cf  MHz). 

 

 
Figure 5.9 Tracking performance of the proposed scheme                         
( 200 =L , SNR = 30 dB, 90=v  km/h, 1800=cf  MHz). 
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In the following figures, more profound effects of the channel are shown. 

At some instants the channel comes across with deep fades. As seen from Figure 

5.10, the proposed symbol synchronizer manages successfully with these effects, 

thanks to its ability to track the channel variations. The estimates are almost the 

same as the ones obtained from the msISI criterion, which is no longer surprising. 

 
Figure 5.10 Tracking performance of the proposed scheme                       
( 300 =L , SNR = 30 dB, 90=v  km/h, 1800=cf  MHz). 

 

In addition, the comparison is given between the msISI criterion and the 

Mazo criterion in Figure 5.11 to strengthen the claim that the timing recovery 

scheme tends to track the channel in the same way as the two possible optimum 

timing phase criteria. In this figure, the three curves do not completely coincide 

but detect the deep fades as the same as the proposed scheme. 
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Figure 5.11 Comparison between msISI and Mazo criteria                        
( 300 =L , SNR = 30 dB, 90=v  km/h, 1800=cf  MHz). 

 

In some situations the effects of deep fades become more crucial and result 

in highly catastrophic phenomena, namely, cycle slips. During a cycle slip, a burst 

of symbol errors is inevitable due to a symbol shift in the recovered sequence. 

Generally, cycle slips may occur both in feedforward and feedback synchronizers 

[12]. It has been observed in simulations that the proposed method has not yielded 

any cycle slip. 

Figure 5.12 finalizes the discussion on the tracking performance of the 

proposed scheme. It illustrates the performance of the proposed scheme in the 

presence of a deep fade which may result in a cycle slip in conventional 

synchronizers. Notice that there occurs a change in the estimated timing epoch 

greater than a symbol period. It is interesting to note that the conventional 

synchronizers give the values of the timing phase within an interval [ ]T,0 . Hence, 

such a jump in the timing estimate may not be tracked successfully, and may 

result in a cycle slip. 

f1=-f2= 1/4T 
f1=-f2= 1/2T 
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Figure 5.12 Tracking performance in the presence of a cycle slip              

( 300 =L , SNR = 30 dB, 90=v  km/h, 1800=cf  MHz). 

 

As a conclusion, the proposed decision-directed symbol synchronizer can 

be regarded as robust even in severe fading channel conditions. The timing epoch 

obtained from the proposed scheme tracks the channel variations close to the 

timing values obtained from the minimum squared ISI criterion and the proposed 

scheme eliminates the cycle slips successfully.  
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CHAPTER 6 

CONCLUSION 

Throughout this thesis study, it has been realized that although there have been an 

extensive amount of research on the area of symbol synchronization, there are still 

important issues left to investigate. With the demand for high-speed, high-quality 

and reliable communication, the need for proper symbol synchronization seems 

not to vanish. 

In this thesis, a decision-directed STR scheme for MSK signals was 

proposed for the recovery of fractional delays with emphasis on multipath fading 

channel conditions. Correlation (matched filter) method based on maximum 

likelihood estimation was performed by using the samples of the received signal. 

Precise timing estimation was achieved by employing interpolation and an 

iterative maximum search process. The acquisition of the initial timing 

information was performed with a training sequence; while in the tracking mode 

tentative decisions from the MLSE receiver, implemented with VA, were used for 

the symbol timing recovery. In addition, in order to investigate the tracking 

performance of the proposed scheme, a study was carried out for optimum timing 

phase criteria and three possible criteria are examined, namely, the Mazo, the 

minimum squared ISI and the minimum BER criteria.  

It has been observed that the proposed synchronizer tracks the timing 

epoch variations due to the time-variant multipath fading channel characteristics 

and gives almost the same results as the values obtained from the so-called 

minimum squared ISI criterion. However, this criterion was found to be 

suboptimum in the sense of minimization of the BER. In addition, BER 
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performance of the MLSE receiver was investigated from the timing accuracy 

point of view. As it is mentioned in the literature, the MLSE receiver generally 

requires maximum energy operation and for bandlimited signals, coarse timing 

might be sufficient even if the received signal is sampled below the Nyquist rate. 

Because of this reason, the fine timing recovery ability of the proposed scheme 

does not seem to be necessary from the point of the performance of an MLSE 

receiver. However, it tends to minimize the energy of the ISI present in the 

received signal and may allow a reduced state MLSE receiver. This statement 

does not guarantee the minimization of the bit error probability, however, the 

proposed timing recovery scheme at least guarantees the reduction of ISI. 

Although the motivation of the study is and the results of the simulations 

are restricted to MSK signals, the proposed timing recovery scheme is modulation 

independent and applicable to any modulation type as CPM signals. It may be 

employed in both burst-mode and continuous transmission systems. The proposed 

scheme, because of its sensitive recovery of the fractional delays, can be used in 

repeaters and some network structures where fine timing estimation is important. 

In addition, with its ML based structure and decision-directed recovery process, 

the proposed scheme very successfully eliminates the possibility of cycle slips. 

As a future work, the BER degradation may be investigated for the same 

receiver in the presence of excess ISI and different channel conditions. In 

addition, the performance of the synchronizer may be tested in unequalized 

systems which are preferred for low cost and low-complexity implementations. In 

unequalized systems ISI plays an important role, and with employing such a 

precise timing recovery scheme a considerable improvement is expected in BER 

performance. 
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APPENDIX A 

CPM SIGNALS 

Continuous phase modulation (CPM) encompasses a class of signalling schemes 

that conserve and reduce signal energy and bandwidth at the same time. CPM is a 

constant envelope, nonlinear modulation method with memory. The constant 

envelope property of CPM schemes makes possible to use non-linear amplifiers. 

The phase is a continuous function of time since the data symbols modulate the 

instantaneous phase of the transmitted signal.  

A.1. Signal Model 

The complex envelope of a CPM signal is given by [2]  

( ) ( )αφ r,2 tjs
l e

T
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ts = , 

where sE  is the signal energy per symbol, T  is the symbol period, { }iαα
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The parameter h  is the modulation index which takes on rational values as  

p
kh 2

= , 

(A.1)

(A.2)

(A.3)
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where k and p are intergers. )(tg  is termed as the frequency pulse and the 

continuity of the phase implies that )(tg  does not contain any impulses. The 

phase pulse )(tq  is defined with the relation 

∫
∞−

=
t

dgtq ττ )()( , ∞<<∞− t , 

and is normalized in such a way that 





<
≥

=
.0,0

,,2/1
)(

t
LTt

tq  

It is clear from (A.5) that the frequency pulse is nonzero in the interval 

),0( LTt ∈ , where L  is an integer called the correlation length. Modulation 

formats with 1=L  are said to be full-response type whereas those with 1>L  are 

partial response type. 

 By choosing different frequency pulses and varying the parameters h  and 

M , a great variety of CPM schemes may be formed. In this thesis, the emphasis 

is given on a subset of CPM formats, namely, minimum shift keying (MSK). 

MSK coresponds to 2/1=h , 2=M  and a rectangular frequency pulse 



 ≤<

=
.,0

,0),2/(1
)(

elsewhere
TtT

tg  

Gaussian MSK (GMSK), which is used as the GSM and DECT modulation 

scheme, is obtained by letting 2/1=h , 2=M  and taking )(tg  as the 

convolution of (A.6) with a Gaussian shaped pulse.  

A.2. Linearization of CPM Signals 

This part gives an overview of the so-called Laurent Expansion [16]. This is a 

useful mathematical tool that provides good insight into the notion of MSK-type 

modulation and forms the basis for discussions made in this thesis study.  

(A.5)

(A.6)

(A.4)
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As stated recently, the frequency pulse is time-limited to the interval 

),0( LT  and satisfies the conditions 

( )
2
1

0

=∫
LT

dg ττ  and )()( tLTgtg −= . 

As in [16], the complex baseband signal ( )tsl  can be expressed as the sum of 

12 −= LK  PAM signals, i.e., 
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where the coefficient jk ,β  is the j-th digit (0 or 1) in the binary representation of 

the interger k, i.e., 

∑
−

=

−=
1

1
,

12
L

j
jk

jk β , [ ]1,0 −∈ Kk  and }1,0{, ∈jkβ . 

Finally, )(tck ’s are given by 

∏
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=
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,
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j
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jkβ
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where 

(A.7)

(A.8)

(A.9)

(A.11)
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)(
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For MSK, 1=L , 2/1=h , and  

( )




 ≤≤

=
.,0

,0,
2
1

elsewhere

Tt
Ttg  

Therefore, we have 12 1 == −LK , so that the Laurent expansion of )(tsl  reduces to 

a single function, namely )(0 tc . This means that an MSK signal can be exactly 

represented as a PAM waveform. It can be seen from (A.11)-(A.14) that 





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
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

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π

 

This provides the well-known interpretation of MSK as offset-QPSK in which the 

pulse shape is a half-cycle sinusoid with 2 symbol period interval. The complex 

baseband representation for MSK is given by 

[ ]∑
−

=

−=
1

0
0 )(2)( ,02
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π
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(A.12)

(A.13)

(A.15)

(A.16)

(A.14)
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APPENDIX B 

ERROR PERFORMANCE OF THE MLSE RECEIVER 

The error performance of the MLSE receiver is given in a form similar to the one 

in [13] adopted to the derivation presented by Ungerboeck [20]. Since the form 

given in Appendix A is the linear form of MSK, the approach for PAM signals 

can be used for the analysis. 

With additive Gaussian noise and ISI, the metric given in (2.22) may be 

rewritten as 

{ } ∑∑∑
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−

=
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m
km axayaar  

with 

∫
∞

∞−

+== dtkTththkTxxk )()()( *  

and 

k
l

llkk xadtkTthtrkTyy η+=−== ∑∫ −

∞

∞−

)()()( * , 

where the symbols { }na  may take the values 1± . kη ’s are the noise samples at the 

output of the matched filter. The trellis has L2  states at time k , as defined in 

Section 2.3.2, as  

(B.1)

(B.2)

(B.3)



 

 80

),,,( 21 Lkkkk aaaS −−− K . 

With this notation the estimated state at time k  can be denoted by  

)~,,~,~(~
21 Lkkkk aaaS −−− K  

with the corresponding estimated symbols { }na~  from the Viterbi algorithm. 

Through the trellis, suppose that the estimated path diverges from the correct path 

at time k  and remerges with the correct path at time lk + , i.e., kk SS =
~  and 

lklk SS ++ =
~ , but mm SS ≠

~  for lkmk +<< . This is called an error event [5]. For 

the channel spanning an interval of 1+L  symbols, it follows that 1+≥ Ll .  

 In this error event, we have mama =~  for 1−≤≤− kmLk  and 

1−+≤≤−+ lkmLlk . The corresponding error vector εr  is defined as  

[ ]11 −−++= Llkkk εεεε K
r

 

with 

)~(
2
1

jjj aa −=ε , and 0≠kε , 01 ≠−−+ Llkε . 

The normalized elements jε  take on the values 1±  and there is no sequence of L  

consecutive elements that are zero.  

 To determine the probabilty of occurrence of the error event characterized 

by the error vector εr  given in (B.6), the procedure developed by Forney [19] is 

followed. Let E be the set of error events εr  permitted by the transmission code. 

For a distinct error event ε
r

 to happen, the following three subevents 1E , 2E  and 

3E  must occur: 

1E  : at time k , kk SS =
~ ; 

(B.4)

(B.5)

(B.6)

(B.7)
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2E : the sequence of information symbols ),,,( 11 −−++ Llkkk aaa K  is such that 

),,,()~,,~,~( 111111 −−+−++++−−++ +++= LlkLlkkkkkLlkkk aaaaaa εεε KK  is an 

allowable data sequence; 

3E : for lkmk +<≤ , the sum of the branch metrics of the estimated path 

exceed the sum of the branch metrics of the correct path.  

  The probability of occurence of 3E  is  

{ } { }( )ε
rrr

+Λ<Λ= aaPEP mm)( 3 . 

Subsituting (B.3) into (B.1) and observing *
kk xx −= , (B.8) becomes 
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The second term in the inequality is a normally distributed random variable with 

zero mean and variance [20] 
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where the normalized euclidean weight is defined as 
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Hence, the probability of the subevent 3E  becomes 







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2
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3 εδγ
r

avQEP , 

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)



 

 82

where 0/ NEavav =γ  denotes the average SNR. Considering the situation given in 

this study, the result needs some modification. In the case of different timing 

errors both the normalized euclidean weight and the average energy will differ. To 

proceed further for obtaining the general result for the probability of error, it is 

meaningful to define the distance as 

);()();( 22 τεδττε
rr

avEd = . 

By substituting (B.13) in (B.12) we obtain  
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. 

The probability of the subevent 1E  is difficult to compute because of its 

dependence on the subevent 3E  [13]. However, )(1)|( 31 EPEEP −= , where 

)(EP  is the symbol error probability. Therefore, the probability )|( 31 EEP  can 

be closely approximated by 1 in normal operating region. On the other hand, the 

probability of the subevent 2E  depends only on the statistical properties of the 

input sequence. For binary signalling with equally probable and statistically 

independent symbols the probability of 2E  becomes 

LlEP −= )2/1()( 2 . 

Observing (B.14), (B.15) and 1)|( 31 ≈EEP , the probability of the error 

event ε
r

 is upper bounded as 
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(B.14)

(B.15)
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Let δE  be the subevent of E  containing all error events εr  with distance 

δεδ =)(
r

. By defining ∆  as the all possible values of δ , the probability of error 

is upper bounded by 
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 Due to the steep decrease of )(xQ , )(EP  is dominated by the term 

corresponding to the minimum value of δ  denoted by minδ  for a given value of 

τ . Hence, the bit error probability approaches asymptotically  
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