
 

 

 

 

A PROGRAMMABLE CONTROL UNIT FOR INDUSTRIAL APPLICATIONS 

 

 

 

 

 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 

MIDDLE EAST TECHNICAL UNIVERSITY 

 

 

 

BY 

 

MUSTAFA KEMAL GÜNGÖR 

 

 

 

 

 

 

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

IN 

THE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING 

 

 

 

 

DECEMBER 2003 



 ii

 

 

Approval of the Graduate School of Natural and Applied Sciences 

 
 

     Prof. Dr. Canan Özgen 
                                                                                                     Director 
 
 
I certify that this thesis satisfies all the requirements as a thesis for the degree of 

Master of Science. 

 
                                                                                    Prof. Dr. Mübeccel Demirekler 

                                                                                        Head of Department 
 
 

This is to certify that we have read this thesis and that in our opinion it is fully 

adequate, in scope and quality, as a thesis for the degree of Master of Science. 

 

 

                                                                            Prof. Dr. Mirzahan Hızal 
                                                                          Supervisor 

 
 
 
 
Examining Committee Members 
 

Prof. Dr. Ahmet Rumeli    
 
 
Prof. Dr. Mirzahan Hızal 
 
 
Prof. Dr. Arif Ertaş 
 
 
Prof. Dr. Nevzat Özay 
 
 
M.Sc. İlhan Koçar 



 iii

 

 

ABSTRACT 
 

A PROGRAMMABLE CONTROL UNIT FOR INDUSTRIAL 

APPLICATIONS 

 

GÜNGÖR, Mustafa Kemal 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Mirzahan Hızal 

 

December 2003, 130 Pages 

 

In this thesis, the automation of the long term and cyclic processes by using a 

programmable control unit is aimed. 

To achieve this goal, timing relays and various microcontrollers are 

investigated. PIC microcontroller is chosen to implement the control unit due to its 

advantages like high speed, Harvard and RISC architecture, low cost and flexibility 

for programming. Theory of the PIC microcontrollers is studied and a controller unit 

to be used in the mentioned processes is designed. Some features are added to the 

device to widen the application fields and consequently a multi-purpose 

programmable controller is realized. 

In the device, Microchip PIC16F877 is used as the microcontroller. The code 

of the controller is written in Assembly Language and is compiled with MPASM. 

This controller counts the signals coming from internal Timer 555 or external signals 

and activates ten different outputs in order. The operating times of the outputs can be 

changed by a keypad and shown in a display. 

By keeping the number of the used ports of the microcontroller, as few as 

possible, room for the future improvements and additions is provided. 

Keywords: Microcontroller, automation, PIC 



 iv

 

 

ÖZ 
 

ENDÜSTRİYEL UYGULAMALAR İÇİN PROGRAMLANABİLİR 

KONTROL ÜNİTESİ 
 

GÜNGÖR, Mustafa Kemal 

Yüksek Lisans , Elektrik-Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Mirzahan Hızal 

 

Aralık 2003, 130 sayfa 
 

Bu tezde, uzun süreli ve periyodik işlemlerin, programlanabilir bir kontrol 

ünitesi kullanılarak otomasyonu amaçlanmıştır. 

Bu amaçla, zaman röleleri ve çeşitli mikrodenetleyiciler incelenmiştir. 

Kontrol ünitesini gerçekleştirmek için yüksek hız, Harvard ve RISC mimarisi, düşük 

maliyet ve programlanma kolaylığı gibi avantajları nedeniyle PIC mikrodenetleyici 

seçilmiştir. PIC’in teorisi üzerinde çalışılarak söz konusu işlemlerde kullanılabilecek 

bir kontrol ünitesi tasarlanmıştır. Cihazın kullanım alanlarını genişletmek için bazı 

fonksiyonlar eklenmiş ve sonuçta çok amaçlı programlanabilir bir kontrolörün 

yapımı gerçekleştirilmiştir.  

Cihazda, mikrodenetleyici olarak Microchip PIC 16F877 kullanılmıştır. 

Denetleyicinin programı Assembly dilinde yazılmış ve MPASM yazılımı 

kullanılarak derlenmiştir. Kontrolör, bünyesinde bulunan Timer 555’in ürettiği veya 

harici olarak gelen sinyalleri saymakta ve on farklı çıkışı sırasıyla aktive etmektedir. 

Çıkışların çalışma süreleri klavye yardımıyla değiştirilebilirken göstergede de 

izlenebilmektedir. 

Mikrodenetleyicinin mümkün olduğunca az portu kullanılarak ileride 

yapılabilecek değişiklik ve eklentilere olanak sağlanmıştır. 

Anahtar Kelimeler:  Mikrodenetleyici, otomasyon, PIC 



 v

 

 

 

ACKNOWLEDGEMENTS 
 

  

I would like to express my sincere appreciation to Prof. Dr. Mirzahan Hızal 

for his guidance and insight throughout this thesis study. 

 

 I would like to also thank my wife, Esra, for her great support and 

understanding. 



 vi

 

 

TABLE OF CONTENTS 

 

ABSTRACT................................................................................................................ iii 

ÖZ ............................................................................................................................... iv 

ACKNOWLEDGEMENTS ......................................................................................... v 

TABLE OF CONTENTS............................................................................................ vi 

LIST OF TABLES ....................................................................................................... x 

LIST OF FIGURES .................................................................................................... xi 

LIST OF ABBREVIATIONS...................................................................................xiii 

CHAPTER 

1.  INTRODUCTION.............................................................................................. 1 

2.  PIC 16F877 MICROCONTROLLER................................................................ 5 

2.1 MICROCONTROLLERS – THE GENERAL......................................... 5 
2.2 PIC MICROCONTROLLERS................................................................. 6 

2.2.1 General View ................................................................................... 6 
2.2.2 Architecture Overview..................................................................... 7 

2.2.2.1 Harvard Architecture.................................................................... 8 
2.2.2.2 Long Word Instructions ............................................................. 10 
2.2.2.3 Single Word Instructions............................................................ 10 
2.2.2.4 Instruction Pipeline .................................................................... 10 
2.2.2.5 Single Cycle Instructions ........................................................... 10 
2.2.2.6 Reduced Instruction Set ............................................................. 11 
2.2.2.7 Register File Architecture .......................................................... 11 
2.2.2.8 Orthogonal (Symmetric) Instructions ........................................ 11 

2.3 PIC 16F877 ARCHITECTURE............................................................. 11 
2.3.1 Features of the PIC16F877 ............................................................ 11 

2.3.1.1 Microcontroller Core Features ................................................... 11 
2.3.1.2 Peripheral Features..................................................................... 12 

2.3.2 Block Diagram and Pinout Description of PIC16F877 ................. 14 
2.3.3 Memory Organization .................................................................... 17 

2.3.3.1 Program Memory Organization ................................................. 17 
2.3.3.2 Data Memory Organization........................................................ 18 
2.3.3.3 PCL and PCLATH ..................................................................... 19 
2.3.3.4 Program Memory Paging ........................................................... 20 
2.3.3.5 Indirect Addressing, INDF and FSR Registers .......................... 20 



 vii

2.3.4 I/O Ports ......................................................................................... 21 
2.3.4.1 PortA and the TRISA Register................................................... 23 
2.3.4.2 PortB and the TRISB Register ................................................... 24 
2.3.4.3 PortC and the TRISC Register ................................................... 25 
2.3.4.4 PortD and the TRISD Register................................................... 25 
2.3.4.5 PortE and the TRISE Register.................................................... 25 
2.3.4.6 Parallel Slave Port ...................................................................... 26 

2.3.5 Data EEPROM and Flash Program Memory ................................. 27 
2.3.6 Timer0 Module............................................................................... 29 

2.3.6.1 Timer0 Interrupt ......................................................................... 29 
2.3.6.2 Using Timer0 with an External Clock ....................................... 30 
2.3.6.3 Prescaler ..................................................................................... 30 

2.3.7 Timer1 Module............................................................................... 30 
2.3.7.1 Timer1 Operation in Timer Mode.............................................. 31 
2.3.7.2 Timer1 Counter Operation ......................................................... 31 
2.3.7.3 Timer1 Operation in Synchronized Counter Mode.................... 32 
2.3.7.4 Timer1 Operation in Asynchronous Counter Mode................... 32 
2.3.7.5 Timer1 Oscillator ....................................................................... 33 

2.3.8 Timer2 Module............................................................................... 33 
2.3.8.1 Timer2 Prescaler and Postscaler ................................................ 33 
2.3.8.2 Timer2 Prescaler and Postscaler ................................................ 34 

2.3.9 Capture/Compare/PWM Modules.................................................. 34 
2.3.9.1 Capture Mode............................................................................. 35 
2.3.9.2 Compare Mode........................................................................... 35 
2.3.9.3 PWM Mode................................................................................ 35 

2.3.10 Master Synchronous Serial Port (MSSP) Module ......................... 35 
2.3.10.1 SPI Mode................................................................................... 36 
2.3.10.2 MMSP I2C Operation................................................................ 37 
2.3.10.3 Connection Considerations for I2C Bus .................................... 38 

2.3.11 Addressable Universal Synchronous Asynchronous Receiver 
Transmitter (USART).................................................................... 39 

2.3.12 Analog to Digital Converter (A/D) Module................................... 40 
2.3.13 Special Features of the CPU .......................................................... 41 

2.3.13.1 Configuration Bits..................................................................... 42 
2.3.13.2 Oscillator Configurations .......................................................... 42 
2.3.13.3 Reset.......................................................................................... 43 
2.3.13.4 Power-On Reset (POR)............................................................. 44 
2.3.13.5 Power-Up Timer (PWRT)......................................................... 44 
2.3.13.6 Oscillator Start-Up Timer (OST) .............................................. 45 
2.3.13.7 Brown-Out Reset (BOR)........................................................... 45 
2.3.13.8 Time-Out Sequence................................................................... 45 
2.3.13.9 Power Control/Status Register (PCON).................................... 45 
2.3.13.10 Interrupts ................................................................................. 46 
2.3.13.11 Context Saving During Interrupts ........................................... 47 
2.3.13.12 Watchdog Timer (WDT)......................................................... 48 
2.3.13.13 Power-Down Mode (SLEEP).................................................. 48 
2.3.13.14 In-Circuit Debugger ................................................................ 50 
2.3.13.15 Program Verification/Code Protection.................................... 51 



 viii

2.3.13.16 ID Locations............................................................................ 51 
2.3.13.17 In-Circuit Serial Programming................................................ 51 
2.3.13.18 Low Voltage ICSP Programming ........................................... 51 

3.  PIC PROGRAMMING .................................................................................... 53 

3.1 INTRODUCTION ................................................................................. 53 
3.2 MPLAB IDE .......................................................................................... 54 
3.3 MPASM ................................................................................................. 54 

3.3.1 Overview of Assembler.................................................................. 55 
3.3.2 Assembler Input/Output Files ........................................................ 57 

3.3.2.1 Source Code Format (.ASM) ..................................................... 58 
3.3.2.2 Listing File Format (.LST)......................................................... 59 
3.3.2.3 Error File Format (.ERR) ........................................................... 59 
3.3.2.4 Hex File Formats (.HEX, .HXL, .HXH).................................... 60 
3.3.2.5 Symbol and Debug File Format (.COD).................................... 60 
3.3.2.6 Object File Format (.O).............................................................. 60 

3.3.3 MPLAB Projects and MPASM...................................................... 60 
3.3.4 Directive Language ........................................................................ 61 

3.4 IC-PROG................................................................................................ 61 
3.4.1 General ........................................................................................... 61 
3.4.2 Main View...................................................................................... 62 
3.4.3 Code Area ...................................................................................... 62 
3.4.4 Data Area ....................................................................................... 63 
3.4.5 Configuration Area ........................................................................ 63 

3.5 PROPIC II .............................................................................................. 64 

4.  THE CONTROL UNIT HARDWARE AND SOFTWARE ........................... 65 

4.1 GENERAL ............................................................................................. 65 
4.2 THE OPERATION OF THE DEVICE.................................................. 66 

4.2.1 Read Mode ..................................................................................... 66 
4.2.2 Edit Mode....................................................................................... 67 

4.3 DESCRIPTION OF THE SOFTWARE ................................................ 67 
4.3.1 The Beginning of the Program....................................................... 67 
4.3.2 ISR Interrupt Service Routine........................................................ 67 
4.3.3 Timer0 Interrupt Service Routine .................................................. 68 
4.3.4 On Index Procedure ....................................................................... 69 
4.3.5 Load Compare Value Procedure .................................................... 70 
4.3.6 Relays Handler Procedure.............................................................. 71 
4.3.7 LCD Handler Procedure................................................................. 71 
4.3.8 Clock Interrupt Service Routine..................................................... 72 
4.3.9 Main Routine.................................................................................. 74 

4.3.9.1 Read Mode ................................................................................. 76 
4.3.9.2 Edit Mode................................................................................... 76 

4.4 HARDWARE OF THE CONTROLLER UNIT.................................... 76 
4.4.1 MCU Unit ...................................................................................... 76 
4.4.2 Relay Board.................................................................................... 78 
4.4.3 LCD Display .................................................................................. 79 
4.4.4 Keypad ........................................................................................... 79 
4.4.5 Power Supply and Clock Generator............................................... 81 



 ix

5.  APPLICATIONS OF THE CONTROL UNIT:  
POWER CABLE ACCESSORIES TESTS AND ELECTRO DISCHARGE 
MACHINING................................................................................................... 83 

5.1 Thermal Cycling Test............................................................................. 83 
5.1.1 Installation...................................................................................... 83 
5.1.2 Method of the Test ......................................................................... 84 
5.1.3 Immersion test for outdoor terminations........................................ 85 

5.1.3.1 Installation.................................................................................. 85 
5.1.3.2 Method ....................................................................................... 86 

5.1.4 Automation method with the control unit ...................................... 86 
5.2 Screen Fault Current Initiation Test....................................................... 86 

5.2.1 Installation...................................................................................... 87 
5.2.2 Method ........................................................................................... 87 

5.2.2.1 Solidly Earthed System.............................................................. 87 
5.2.2.2 Unearthed or Impedance Earthed System.................................. 88 

5.2.3 Automation method with the control unit ...................................... 88 
5.3 Electro Erosion Machining .................................................................... 89 

5.3.1 Introduction .................................................................................... 89 
5.3.2 Advantages and Disadvantages of EDM........................................ 90 
5.3.3 Automation method with the control unit ...................................... 91 

6.  CONCLUSIONS.............................................................................................. 93 

REFERENCES........................................................................................................... 95 

APPENDICES 

A. THE SOURCE CODE OF THE CONTROLLER………………………… 97

B. INSTRUCTION SET OF THE PIC 16F877...…………………………….. 123

C. MPASM DIRECTIVE SUMMARY………………...……………………..128

 

 



 x

 

 

 

LIST OF TABLES 

 

 
TABLE 
 

2.1  Key Features of PIC16F877................................................................................ 13 

2.2  PIC16F877 Pinout Description ........................................................................... 15 

2.3  Data Memory Bank Select Bits........................................................................... 18 

2.4  CCP Mode – Timer Resources Required ............................................................ 34 

2.5  Debugger Resources............................................................................................ 50 

3.1  MPASM Default Extensions............................................................................... 57 

4.1  EEPROM Organization....................................................................................... 70 

5.1  Sample values of the parameters in EDM process.............................................. 92 

 



 xi

 

 

LIST OF FIGURES 

 

FIGURES 
 

2.1 Microprocessor system contrasted with microcontroller system........................... 6 

2.2 Harvard vs. von Neumann Block Architectures .................................................... 9 

2.3 Block Diagram of PIC 16F877 ............................................................................ 14 

2.4 Pin Diagram of PIC 16F877................................................................................. 15 

2.5 Program Memory Map And Stack ....................................................................... 17 

2.6 Loading of PC in Different Situations ................................................................. 19 

2.7 Direct/Indirect Addressing ................................................................................... 21 

2.8 Typical I/O Port ................................................................................................... 22 

2.9 Timer1 Incrementing Edge .................................................................................. 31 

2.10 Sample Device Configuration For I2C Bus........................................................ 39 

2.11 RC Oscillator Mode ........................................................................................... 43 

3.1 Generating Absolute Code ................................................................................... 55 

3.2 Creating a Reusable Object Library..................................................................... 56 

3.3 Generating Executable Code From Object Modules ........................................... 57 

3.4 Project Relationships – MPASM ......................................................................... 60 

3.5 Main View of IC-Prog ......................................................................................... 62 

4.1 Flow Chart of the ISR Interrupt Service Routine ................................................ 68 

4.2 Flow Chart of the T0 Interrupt Service Routine .................................................. 69 

4.3 Flow Chart of the LCD Handler .......................................................................... 71 

4.4 Flow Chart of the Clock Interrupt Service Routine ............................................. 73 

4.5 Flow Chart of the Main Routine .......................................................................... 74 

4.6 Circuit Diagram of the MCU ............................................................................... 77 

4.7 Circuit Diagram of the Relay Board .................................................................... 78 

4.8 Circuit Diagram of the LCD Module ................................................................... 80 



 xii

4.9 Circuit Diagram of the Keyboard......................................................................... 81 

4.10 Circuit Diagram of the Power Supply................................................................ 82 

5.1 Terminations tested in air..................................................................................... 84 

5.2 Joints tested in air................................................................................................. 84 

5.3 Thermal Cycle...................................................................................................... 85 

5.4 Diagram of the EDM Process .............................................................................. 89 

5.5 Diagram of the Wire EDM Process ..................................................................... 90 



 xiii

 

 

 

LIST OF ABBREVIATIONS 
  

 

PIC : Peripheral Interface Controller 

 RISC : Reduced Instruction Set Computer 

 CISC : Complex Instruction Set Computer  

 CPU : Central Processing Unit 

 MCU : Microcontroller Unit 

PWM : Pulse Width Modulation 

rms : Root Mean Square 

I2C : Inter-Integrated Circuit 

IDE : Integrated Development Environment 

A/D : Analog-to-Digital 

ROM : Read Only Memory 

 RAM : Random Access Memory 

 



 1

 

 

CHAPTER 1  

 

INTRODUCTION 

 

 
As it is known, the microcontrollers have been used widely in industrial 

automation. Before the microprocessor-based systems, the automation was being 

made by using mechanical and electrical contactors and relays. They were very 

complicated, had many connections and components. When a modification or 

addition was required, the most of these connections needed to be changed. In most 

cases, this was even harder than making a new one. With the development of 

microprocessor-based systems, the required variations can be carried out by doing 

modifications only in software, without any change in hardware. Therefore, the 

systems which are easy to develop and have few components have taken place of the 

old ones that have more components resulting in more risk for failure. 

Switching of the devices, such as energizing of a heater or switching off the 

power supply, is only possible by an operator if no automation system is used. In 

some applications, timing is very important and no error is allowed. However, some 

errors or delays may be caused by the operator. To reduce possibility of occurrence 

of these events and to decrease the dependency on him, a microcontroller-based 

control unit can be used.  

In this thesis, a control unit by using a microcontroller is designed with the 

aim of the automation of the long term and/or periodic processes such as power cable 

accessories tests and electro discharge machining. To use this unit in the different 

applications, it is planned as a general purpose controller by additional features and 

improvements. 



 2

To achieve this objective, to automate the switching of the devices, using 

timing relays may be an alternative. They can be on-delay or off-delay type and they 

are connected and set to proper operating times. However, this method has some 

drawbacks. The cost of the system is higher than the microcontroller-based system 

and the size is bigger since multiple timing relays must be used. Moreover they can 

not count the external clock signals and upgrading of this unit is more complex. 

A microcontroller-based control system is designed to realize this project. 

These systems are compact, cost is lower and they are more flexible for 

reprogramming. 

The Microchip PIC 16F877 is used as a microcontroller in this study. The 

main reasons of choosing this chip are its architecture and price. PIC 

microcontrollers are RISC (Reduced Instruction Set Computer) machines with only 

thirty-odd instructions. Each instruction usually executes in one internal clock. PICs 

have reduced addressing modes (direct and indirect addressing). 2K x 14 words on 

PIC 16Fxx is approximately equivalent to 4Kx8 words on other 8-bit 

microcontrollers. 

16F877 has Flash type program memory, so it does not have to be taken off 

the board to load the program. Flash memory can be electrically programmed on-

board over 1.000.000 times. 

EEPROM memory makes it easier to apply microcontrollers to devices where 

permanent storage of various parameters is needed. 

On the other hand, CISC machines like Intel 80x86, 8051 or Motorola 

68HC11 have many instructions usually more than 100, many addressing modes and 

it usually takes more than one internal clock cycle to execute instructions. For 

instance, Motorola 68HC12 can be used but unfortunately it would not be well suited 

for this project. It is too powerful, too expensive and too picky (i.e. it requires a very 

precise circuit layout in order to function properly). 

Low cost, low consumption, high speed, easy handling, more development 

tools and flexibility make PIC 16F877 applicable in our project. 

The reason of the using assembly language in the software is its high speed 

and low code size. 



 3

The device in this study counts the clock signals, increments the counter and 

if it reaches the values loaded before, activates the relevant relay. There are two 

alternatives for this clock signal. It can be produced by internal clock generator, so 

the control unit operates as a programmable timer which controls the different 

devices. The second case is that, signals come to the microcontroller externally. 

Furthermore, the device includes an Up/Down signal input. This signal is 

useful if the decrement of the counter is required in the application. It can be 

employed in the automation of the systems which involve the two opposite process 

such as mechanical movement in opposite directions. Counter of the microcontroller 

increases or decreases according to this signal.  

One of the application fields of the U/D input is systems at which clock 

signals are generated by a position sensor. Position sensor sends the clock signals to 

the microcontroller while a device is moving. But, due to the vibration, the device 

moves in the opposite direction, so some unwanted signals are produced and sent. In 

this situation, sensor changes the signal from Up to Down or vice versa, therefore the 

counter increments or decrements. This is the well-known industrial application. 

The third input for this controller is an external reset. By using this input, it 

can operate periodically. To achieve it, one of the output relays is connected to this 

input and set the appropriate value. At this value, relay operates; its contacts are 

closed and the microcontroller resets, so the process starts from beginning. This 

feature is very useful in cyclic processes.  

It is possible to change the loaded operating times of the relays by entering 

new values using keypad. The counted clock signals and the operating times of the 

relays can be shown on LCD display. 

 

The organization of the thesis is as follows: 

 

¾ In Chapter 2, the theory of the microcontroller PIC 16F877 is studied in 

detail. 

 

¾ In Chapter 3, the programming of the PIC microcontrollers is described. The 

hardware and software required to achieve it are defined. 



 4

¾ In Chapter 4, subject is the hardware and the software of the controller unit. 

The flowcharts and the circuit diagrams are included in this chapter. 

 

¾ In Chapter 5, power cable accessories tests are explained. The automation of 

these tests is an application of the control unit designed in this study.  

 

¾ In Chapter 6, the final conclusions on this study are made and the further 

work on this area is proposed. 

 

 



 5

 

 

 

CHAPTER 2  

 

 

PIC 16F877 MICROCONTROLLER 
 

 

2.1 MICROCONTROLLERS – THE GENERAL 

A digital computer typically consists of three major components: The Central 

Processing Unit (CPU), program and data memory, and an Input/Output (I/O) 

system. The CPU controls the flow of information among the components of the 

computer. It also processes the data by performing digital operations. A 

microprocessor is a CPU that is compacted into a single-chip semiconductor device 

and they are general-purpose devices, suitable for many applications. 

A microcontroller is an entire computer manufactured on a single chip. The 

I/O and memory subsystems contained in a microcontroller specialize these devices 

so that they can be interfaced with hardware and control functions of the 

applications. Since microcontrollers are powerful digital processors, the degree of 

control and programmability they provide significantly enhances the effectiveness of 

the application. Microcontrollers are usually dedicated devices embedded within an 

application. In order to serve applications, they have a high concentration of on-chip 

facilities such as serial ports, parallel input-output ports, timers, counters, interrupt 

control, analog-to-digital converters, random access memory, and read only memory. 

Figure 2.1 shows a comparison between a microprocessor system and a 

microcontroller system. 

 



 6

 

 

  Figure 2.1 Microprocessor system contrasted with microcontroller system 

Most of the microcontrollers have an 8-bit word size, at least 64 bytes of R/W 

memory, and 1 K byte of ROM. The range of I/O lines varies considerably, from 16 

to 40 lines. However, most of these devices cannot be easily programmed unless they 

include EPROM on the chip. 

 

2.2 PIC MICROCONTROLLERS  

2.2.1 General View 

The PICmicro was originally designed around 1980 by General Instrument as 

a small, fast, inexpensive embedded microcontroller with strong I/O capabilities.  

PIC stands for "Peripheral Interface Controller".  General Instrument recognized the 



 7

potential for the little PIC and eventually spun off Microchip, to fabricate and market 

the PICmicro. 

The PICmicro has some advantages in many applications over the older chips 

such as the Intel 8048/8051/8052 and its derivatives, the Motorola MC6805/6hHC11, 

and many others.   Its unusual architecture is ideally suited for embedded control.  

Nearly all instructions execute in the same number of clock cycles, which makes 

timing control much easier.  The PICmicro is a RISC (Reduced Instruction Set 

Computer) design, with only thirty-odd instructions to remember; its code is 

extremely efficient, allowing the PIC to run with typically less program memory than 

its larger competitors. 

Very important, though, is the low cost, high available clock speeds, small 

size, and incredible ease of use of the PIC.  For timing-insensitive designs, the 

oscillator can consist of a cheap RC network.  Clock speeds can range from low 

speed to 20MHz.  Versions of the various PICmicro families are available that are 

equipped with various combinations ROM, EPROM, OTP (One-Time 

Programmable) EPROM, EEPROM, and FLASH program and data memory.  An 18-

pin PICmicro typically devotes 13 of those pins to I/O, giving the designer two full 

8-bit I/O ports and an interrupt.  In many cases, designing with a PICmicro is much 

simpler and more efficient than using an older, larger embedded microprocessor. 

PICmicro processors are found in an incredible array of products.  Remote 

controls, display panels, cars, appliances, weather stations, ham radio equipment, 

clocks, motor controllers, sensors, programmable thermostats, robots, toys, battery 

chargers, computer peripherals, almost anything using some sort of programmable 

logic.  

2.2.2 Architecture Overview 

PICmicro devices have a number of architectural features commonly found in 

RISC microprocessors. These include: 

• Harvard Architecture 

• Long Word Instructions 

• Single Word Instructions 

• Single Cycle Instructions 



 8

• Instruction Pipelining 

• Reduced Instruction Set 

• Register File Architecture 

• Orthogonal (Symmetric) Instructions 

2.2.2.1 Harvard Architecture 

Harvard architecture has the program memory and data memory as separate 

memories and are accessed from separate buses. This improves bandwidth over 

traditional von Neumann architecture in which program and data are fetched from 

the same memory using the same bus. In other words, the von Neumann architecture 

uses the same bus for program memory, data memory, I/O, registers, etc.  This makes 

it easy to bring the common bus out to device I/O pins for adding memory, but it 

limits the bus bandwidth that can be used for any one function since the bus is 

shared.  Von Neumann processors are generally microcoded, CISC (Complex 

Instruction Set Computer) designs (though there are exceptions). To execute an 

instruction, a von Neumann machine must make one or more (generally more) 

accesses across the 8-bit bus to fetch the instruction. Then data may need to be 

fetched, operated on, and possibly written. As can be seen from this description, that 

bus can be extremely congested. While with a Harvard architecture, the instruction is 

fetched in a single instruction cycle (all 14-bits). While the program memory is being 

accessed, the data memory is on an independent bus and can be read and written. 

These separated buses allow one instruction to execute while the next instruction is 

fetched. A comparison of Harvard vs. von-Neumann architectures is shown in Figure 

2.2. 

The Harvard architecture uses separate program memory and data memory 

busses.  This makes it easy to design the processor for very efficient use of program 

memory, since the program memory bus can be of a much different width than the 

data memory.   Instructions usually (always in the case of the PIC) take up only one 

program memory location, compared to one, two or even three in a typical von 

Neumann design.   Harvard-architecture machines are generally non-microcoded, 

RISC (Reduced Instruction Set Computer) designs (again, exceptions are to be 

found).  One drawback to the Harvard architecture is that it is very difficult to bring 



 9

the memory address and data busses out to device pins, so adding external program 

memory is difficult at best.  For this reason, most Harvard machines have only 

internal program memory. 

For example, the popular PIC16F84 contains 1K words of FLASH program 

memory, 68 bytes of data RAM, and 64 bytes of data EEPROM.  While this seems 

like an extremely limited amount of code and data space, the PIC's incredibly 

compact code makes the most of it.   1024 instruction word memory actually means 

1024 instructions, no less.  Even immediate-mode instructions, where an operand is 

part of the instruction itself, takes only one memory location, as do CALL and 

GOTO instructions.  There even exists a single-chip implementation of a TCP/IP 

stack and HTTP server written for a 16F84. 

The PIC is also a non-microcoded design.  In larger processors, each binary 

machine language instruction often is "executed" by a series of microcode steps.   

While this is a great approach for building large, complex processors with a wide 

range of instructions, it also leads to great complexity and takes up a lot of real 

estate.  The PIC uses the instruction word itself, decoded by logic gates as it is read 

from program memory, to control the flow of data through the chip. 

The seemingly odd 14-bit instruction word length is a direct result of the 

internal architecture of the processor itself.  In the case of the 16F84 or 16C711, we 

need 13 bits just to address all of program memory.  In the case of the smaller 16C54 

with only 512 words of program memory and 25 bytes of RAM, we can get by with a 

12-bit instruction word -- which is exactly what the 16C54 uses.  Conversely, with 

more memory we would use a longer instruction word, like the 16 bits in the 18Cxxx 

family. 

 

Figure 2.2 Harvard vs. von Neumann Block Architectures 

von-Neumann 

8 14 8 

 
Data 

Memory 
 

CPU 

 
 
Program
Memory

 
CPU 

 
 
Program

and 
Data 

Memory
 

Harvard 



 10

2.2.2.2 Long Word Instructions 

Long word instructions have a wider (more bits) instruction bus than the 8-bit 

Data Memory Bus. This is possible because the two buses are separate. This further 

allows instructions to be sized differently than the 8-bit wide data word which allows 

a more efficient use of the program memory, since the program memory width is 

optimized to the architectural requirements.  

2.2.2.3 Single Word Instructions 

Single Word instruction opcodes are 14-bits wide making it possible to have 

all single word instructions. A 14-bit wide program memory access bus fetches a 14-

bit instruction in a single cycle. With single word instructions, the number of words 

of program memory locations equals the number of instructions for the device. This 

means that all locations are valid instructions. 

Typically in the von Neumann architecture, most instructions are multi-byte. 

In general, a device with 4-KBytes of program memory would allow approximately 

2K of instructions. This 2:1 ratio is generalized and dependent on the application 

code. Since each instruction may take multiple bytes, there is no assurance that each 

location is a valid instruction.  

2.2.2.4 Instruction Pipeline 

The instruction pipeline is a two-stage pipeline which overlaps the fetch and 

execution of instructions. The fetch of the instruction takes one machine cycle, while 

the execution takes another machine cycle. However, due to the overlap of the fetch 

of current instruction and execution of previous instruction, an instruction is fetched 

and another instruction is executed every single machine cycle.  

2.2.2.5 Single Cycle Instructions 

With the Program Memory bus being 14-bits wide, the entire instruction is 

fetched in a single machine cycle. The instruction contains all the information 

required and is executed in a single cycle. There may be a one cycle delay in 



 11

execution if the result of the instruction modified the contents of the Program 

Counter. This requires the pipeline to be flushed and a new instruction to be fetched.  

2.2.2.6 Reduced Instruction Set 

When an instruction set is well designed and highly orthogonal (symmetric), 

fewer instructions are required to perform all needed tasks. With fewer instructions, 

the whole set can be more rapidly learned.  

2.2.2.7 Register File Architecture 

The register files/data memory can be directly or indirectly addressed. All 

special function registers, including the program counter, are mapped in the data 

memory.  

2.2.2.8 Orthogonal (Symmetric) Instructions 

Orthogonal instructions make it possible to carry out any operation on any 

register using any addressing mode. This symmetrical nature and lack of “special 

instructions” make programming simple yet efficient. In addition, the learning curve 

is reduced significantly. The instruction set uses only two non-register oriented 

instructions, which are used for two of the cores features. One is the SLEEP 

instruction which places the device into the lowest power use mode. The other is the 

CLRWDT instruction which verifies the chip is operating properly by preventing the 

on-chip Watchdog Timer (WDT) from overflowing and resetting the device. 

 

2.3 PIC 16F877 ARCHITECTURE  

2.3.1 Features of the PIC16F877 

2.3.1.1 Microcontroller Core Features 

• RISC (Reduced Instruction Set Computer) CPU 

• Only 35 single word instructions 



 12

• All single cycle instructions except for program branches which are two cycle 

• Operating speed: DC - 20 MHz clock input 

         DC - 200 ns instruction cycle 

• Up to 8K x 14 words of FLASH Program Memory, 

  Up to 368 x 8 bytes of Data Memory (RAM) 

  Up to 256 x 8 bytes of EEPROM Data Memory 

• Interrupt capability (up to 14 sources) 

• Eight level deep hardware stack 

• Direct, indirect and relative addressing modes 

• Power-on Reset (POR) 

• Power-up Timer (PWRT) and Oscillator Start-up Timer (OST) 

• Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation 

• Programmable code protection 

• Power saving SLEEP mode 

• Selectable oscillator options 

• Low power, high speed CMOS FLASH/EEPROM technology 

• Fully static design 

• In-Circuit Serial Programming (ICSP) via two pins 

• Single 5V In-Circuit Serial Programming capability 

• In-Circuit Debugging via two pins 

• Processor read/write access to program memory 

• Wide operating voltage range: 2.0V to 5.5V 

• High Sink/Source Current: 25 mA 

• Low-power consumption: 

   - < 0.6 mA typical at 3V, 4 MHz 

   - 20 µA typical at 3V, 32 kHz 

   - < 1 µA typical standby current 

2.3.1.2 Peripheral Features 

• Timer0: 8-bit timer/counter with 8-bit prescaler 

• Timer1: 16-bit timer/counter with prescaler, can be incremented during SLEEP via 

   external crystal/clock 



 13

• Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler 

• Two Capture, Compare, PWM modules 

   - Capture is 16-bit, max. resolution is 12.5 ns 

   - Compare is 16-bit, max. resolution is 200 ns 

   - PWM max. resolution is 10-bit 

• 10-bit multi-channel Analog-to-Digital converter 

• Synchronous Serial Port (SSP) with SPI (Master mode) and I2C (Master/Slave) 

• Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI) with  

   9-bit address detection 

• Parallel Slave Port (PSP) 8-bits wide, with external RD, WR and CS controls 

  (40/44-pin only) 

• Brown-out detection circuitry for Brown-out Reset (BOR) 

Table 2.1  Key Features of PIC16F877 

Operating Frequency DC - 20 MHz 

RESETS (and Delays) POR, BOR 
(PWRT, OST) 

FLASH Program Memory 
(14-bit words) 8K 

Data Memory (bytes) 368 

EEPROM Data Memory 256 

Interrupts 14 

I/O Ports Ports A,B,C,D,E 

Timers 3 

Capture/Compare/PWM Modules 2 

Serial Communications MSSP, USART 

Parallel Communications PSP 

10-bit Analog-to-Digital Module 8 input channels 

Instruction Set 35 instructions 



 14

2.3.2 Block Diagram and Pinout Description of PIC16F877 

 
 

Device Program 
FLASH Data Memory Data 

EEPROM 
PIC 16F877 8 K 368 Bytes 256 Bytes 

 

Figure 2.3 Block Diagram of PIC 16F877 

 
 
 



 15

 

 

Figure 2.4 Pin Diagram of PIC 16F877 

Table 2.2  PIC16F877 Pinout Description 

Pin Name Pin# I/O/P 
Type 

Buffer 
Type Description 

OSC1/CLKIN 13 I ST/CMOS(4) Oscillator crystal input/external clock source 
input. 

OSC2/CLKOUT 14 O — 

Oscillator crystal output. Connects to crystal or 
resonator in crystal oscillator mode. In RC mode, 
OSC2 pin outputs CLKOUT which has 1/4 the 
frequency of OSC1, and denotes the instruction 
cycle rate. 

 
MCLR/Vpp 1 I/P ST 

Master Clear (Reset) input or programming 
voltage input. 
This pin is an active low RESET to the device. 

 
RA0/AN0 

 
2 

 
I/O 

 
TTL 

PORTA is a bi-directional I/O port. 
RA0 can also be analog input0. 

 
RA1/AN1 

 
3 

 
I/O 

 
TTL 

 
RA1 can also be analog input1. 

RA2/AN2/VREF- 4 I/O TTL RA2 can also be analog input2 or negative 
analog reference voltage. 

RA3/AN3/VREF+ 5 I/O TTL RA3 can also be analog input3 or positive 
analog reference voltage. 



 16

Table 2.2 PIC16F877 Pinout Description (Continued) 
 

RA4/T0CKI 6 I/O ST RA4 can also be the clock input to the Timer0 
timer/counter. Output is open drain type. 

 
RA5/SS/AN4 7 I/O TTL RA5 can also be analog input4 or the slave 

select for the synchronous serial port. 
 
 
 
 
RB0/INT 

 
 
 
 

33 

 
 
 
 

I/O 

 
 
 
 

TTL/ST(1) 

PORTB is a bi-directional I/O port. PORTB can 
be software programmed for internal weak pull-
up on all inputs. 
 
RB0 can also be the external interrupt pin. 

RB1 34 I/O TTL  
RB2 35 I/O TTL  

RB3/PGM 36 I/O TTL RB3 can also be the low voltage programming 
input. 

RB4 37 I/O TTL Interrupt-on-change pin. 
RB5 38 I/O TTL Interrupt-on-change pin. 
RB6/PGC 39 I/O TTL/ST(2) Interrupt-on-change pin or In-Circuit Debugger 

pin. Serial programming clock. 

RB7/PGD 40 I/O TTL/ST(2) Interrupt-on-change pin or In-Circuit Debugger 
pin. Serial programming data. 

 
 
RC0/T1OSO/T1CKI 

 
 

15 

 
 

I/O 

 
 

ST 

PORTC is a bi-directional I/O port. 
 
RC0 can also be the Timer1 oscillator output or 
a Timer1 clock input. 

RC1/T1OSI/CCP2 16 I/O ST RC1 can also be the Timer1 oscillator input or 
Capture2 input/Compare2 output/PWM2 output. 

RC2/CCP1 17 I/O ST RC2 can also be the Capture1 input/Compare1 
output/PWM1 output. 

RC3/SCK/SCL 18 I/O ST 
RC3 can also be the synchronous serial clock 
input/output for both SPI and I2C modes. 

RC4/SDI/SDA 23 I/O ST 
RC4 can also be the SPI Data In (SPI mode) or 
data I/O (I2C mode). 

RC5/SDO 24 I/O ST RC5 can also be the SPI Data Out (SPI mode). 
RC6/TX/CK 25 I/O ST RC6 can also be the USART Asynchronous 

Transmit or Synchronous Clock. 
RC7/RX/DT 26 I/O ST RC7 can also be the USART Asynchronous 

Receive or Synchronous Data. 
 
 
 
RD0/PSP0 

 
 
 

19 

 
 
 

I/O 

 
 
 

ST/TTL(3) 

PORTD is a bi-directional I/O port or parallel 
slave port when interfacing to a microprocessor 
bus. 

RD1/PSP1 20 I/O ST/TTL(3)  
RD2/PSP2 21 I/O ST/TTL(3)  
RD3/PSP3 22 I/O ST/TTL(3)  
RD4/PSP4 27 I/O ST/TTL(3)  
RD5/PSP5 28 I/O ST/TTL(3)  
RD6/PSP6 29 I/O ST/TTL(3)  
RD7/PSP7 30 I/O ST/TTL(3)  
 
 
 
RE0/RD/AN5 

 
 
 

8 

 
 
 

I/O 

 
 
 

ST/TTL(3) 

PORTE is a bi-directional I/O port. 
 
RE0 can also be read control for the parallel 
slave port, or analog input5. 

 
RE1/WR/AN6 9 I/O ST/TTL(3) RE1 can also be write control for the parallel 

slave port, or analog input6. 
 
RE2/CS/AN7 10 I/O ST/TTL(3) RE2 can also be select control for the parallel 

slave port, or analog input7. 
Vss 12,31 P — Ground reference for logic and I/O pins. 
VDD 11,32 P — Positive supply for logic and I/O pins. 

 
Legend:     I = input   O = output    I/O = input/output     P = power 
   — = Not used  TTL = TTL input  ST = Schmitt Trigger input 
 
Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt. 
         2: This buffer is a Schmitt Trigger input when used in Serial Programming mode. 
         3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used 
             in the Parallel Slave Port mode (for interfacing to a microprocessor bus). 
         4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise. 



 17

2.3.3 Memory Organization 

There are three memory blocks in each of the PIC16F877 MCUs. The 

Program Memory and Data Memory have separate buses so that concurrent access 

can occur. The other data memory block is EEPROM. 

2.3.3.1 Program Memory Organization 

The PIC16F877 has a 13-bit program counter capable of addressing an 8K x 

14 program memory space. It has 8K x 14 words of FLASH program memory. 

Accessing a location above the physically implemented address will cause a 

wraparound. The RESET vector is at 0000h and the interrupt vector is at 0004h. 

 

Figure 2.5 Program Memory Map And Stack 



 18

2.3.3.2 Data Memory Organization 

The data memory is partitioned into multiple banks which contain the 

General Purpose Registers and the Special Function Registers. Bits RP1 

(STATUS<6>) and RP0 (STATUS<5>) are the bank select bits. 

Table 2.3  Data Memory Bank Select Bits 

RP1 : RP0 Bank 

00 0 

01 1 

10 2 

11 3 

 

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank 

are reserved for the Special Function Registers. Above the Special Function 

Registers are General Purpose Registers, implemented as static RAM. All 

implemented banks contain Special Function Registers. Some frequently used 

Special Function Registers from one bank may be mirrored in another bank for code 

reduction and quicker access. 

- General Purpose Register File (GPR) 

PIC 16F877 has banked memory in the GPR area. GPRs are not initialized by 

a Power-on Reset and are unchanged on all other resets. 

The register file can be accessed either directly, or using the File Select 

Register FSR, indirectly. Some PICs have areas that are shared across the data 

memory banks, so a read / write to that area will appear as the same location (value) 

regardless of the current bank. This area is referred as the Common RAM. 

- Special Function Registers 

The Special Function Registers are registers used by the CPU and peripheral 

modules for controlling the desired operation of the device. These registers are 

implemented as static RAM.  

The Special Function Registers can be classified into two sets: core (CPU) 

and peripheral. 



 19

PIC 16F877 has banked memory in the SFR area. Switching between these 

banks requires the RP0 and RP1 bits in the STATUS register to be configured for the 

desired bank. Some SFRs are initialized by a Power-on Reset and other resets, while 

other SFRs are unaffected. 

2.3.3.3 PCL and PCLATH 

The program counter (PC) is 13-bits wide. The low byte comes from the PCL 

register, which is a readable and writable register. The upper bits (PC<12:8>) are not 

readable, but are indirectly writable through the PCLATH register. On any RESET, 

the upper bits of the PC will be cleared. Figure 2.6 shows the two situations for the 

loading of the PC. The upper example in the figure shows how the PC is loaded on a 

write to PCL (PCLATH<4:0> → PCH). The lower example in the figure shows how 

the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> → PCH). 

 

 
Figure 2.6 Loading of PC in Different Situations 

- Computed GOTO 

A computed GOTO is accomplished by adding an offset to the program 

counter (ADDWF PCL). When doing a table read using a computed GOTO method, 



 20

care should be exercised if the table location crosses a PCL memory boundary (each 

256 byte block). 

- Stack 

The PIC16F877 has an 8-level deep x 13-bit wide hardware stack. The stack 

space is not part of either program or data space and the stack pointer is not readable 

or writable. The PC is PUSHed onto the stack when a CALL instruction is executed, 

or an interrupt causes a branch. The stack is POPed in the event of a RETURN, 

RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or 

POP operation. 

The stack operates as a circular buffer. This means that after the stack has 

been PUSHed eight times, the ninth push overwrites the value that was stored from 

the first push. The tenth push overwrites the second push (and so on). 

2.3.3.4 Program Memory Paging 

16F877 is capable of addressing a continuous 8K word block of program 

memory. The CALL and GOTO instructions provide only 11 bits of address to allow 

branching within any 2K program memory page. When doing a CALL or GOTO 

instruction, the upper 2 bits of the address are provided by PCLATH<4:3>. When 

doing a CALL or GOTO instruction, the user must ensure that the page select bits are 

programmed so that the desired program memory page is addressed. If a return from 

a CALL instruction (or interrupt) is executed, the entire 13-bit PC is popped off the 

stack. Therefore, manipulation of the PCLATH<4:3> bits is not required for the 

return instructions (which POPs the address from the stack). 

2.3.3.5 Indirect Addressing, INDF and FSR Registers 

The INDF register is not a physical register. Addressing the INDF register 

will cause indirect addressing. Indirect addressing is possible by using the INDF 

register. Any instruction using the INDF register actually accesses the register 

pointed to by the File Select Register, FSR. Reading the INDF register itself, 

indirectly (FSR = ‘0’) will read 00h. Writing to the INDF register indirectly results in 

a no operation (although status bits may be affected). An effective 9-bit address is 



 21

obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as 

shown in Figure 2-7. 

 

Figure 2.7 Direct/Indirect Addressing 

2.3.4 I/O Ports 

General purpose I/O pins can be considered the simplest of peripherals. They 

allow the PICmicro to monitor and control other devices. To add flexibility and 

functionality to a device, some pins are multiplexed with an alternate function(s). 

These functions depend on which peripheral features are on the device. In general, 

when a peripheral is functioning, that pin may not be used as a general purpose I/O 

pin. 

For most ports, the I/O pin’s direction (input or output) is controlled by the 

data direction register, called the TRIS register. TRIS<x> controls the direction of 

PORT<x>. A ‘1’ in the TRIS bit corresponds to that pin being an input, while a ‘0’ 

corresponds to that pin being an output. An easy way to remember is that a ‘1’ looks 

like an I (input) and a ‘0’ looks like an O (output). 

The PORT register is the latch for the data to be output. When the PORT is 

read, the device reads the levels present on the I/O pins (not the latch). This means 

that care should be taken with read-modify-write commands on the ports and 

changing the direction of a pin from an input to an output. 



 22

Figure 2.8 shows a typical I/O port. This does not take into account peripheral 

functions that may be multiplexed onto the I/O pin. Reading the PORT register reads 

the status of the pins whereas writing to it will write to the port latch. All write 

operations (such as BSF and BCF instructions) are read-modify-write operations. 

Therefore a write to a port implies that the port pins are read; this value is modified, 

and then written to the port data latch. 

 

 

 

Figure 2.8 Typical I/O Port 

 
When peripheral functions are multiplexed onto general I/O pins, the 

functionality of the I/O pins may change to accommodate the requirements of the 

peripheral module. Examples of this are the Analog-to-Digital (A/D) converter and 

LCD driver modules, which force the I/O pin to the peripheral function when the 

device is reset. In the case of the A/D, this prevents the device from consuming 

excess current if any analog levels were on the A/D pins after a reset occurred. 



 23

With some peripherals, the TRIS bit is overridden while the peripheral is 

enabled. Therefore, read-modify-write instructions (BSF, BCF, XORWF) with TRIS 

as destination should be avoided. 

PORT pins may be multiplexed with analog inputs and analog VREF input. 

The operation of each of these pins is selected, to be an analog input or digital I/O, 

by clearing/setting the control bits in the ADCON1 register (A/D Control Register1). 

When selected as an analog input, these pins will read as ‘0’s. 

The TRIS registers control the direction of the port pins, even when they are 

being used as analog inputs. The user must ensure the TRIS bits are maintained set 

when using the pins as analog inputs. 

2.3.4.1 PortA and the TRISA Register 

PORTA is a 6-bit wide, bi-directional port. The corresponding data direction 

register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA 

pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). 

Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., 

put the contents of the output latch on the selected pin). 

Reading the PORTA register reads the status of the pins, whereas writing to it 

will write to the port latch. All write operations are read-modify-write operations. 

Therefore, a write to a port implies that the port pins are read; the value is modified 

and then written to the port data latch. 

Pin RA4 is multiplexed with the Timer0 module clock input to become the 

RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain 

output. All other PORTA pins have TTL input levels and full CMOS output drivers. 

Other PORTA pins are multiplexed with analog inputs and analog VREF 

input. The operation of each pin is selected by clearing/setting the control bits in the 

ADCON1 register (A/D Control Register1). 

The TRISA register controls the direction of the RA pins, even when they are 

being used as analog inputs. The user must ensure the bits in the TRISA register are 

maintained set when using them as analog inputs. 

 



 24

2.3.4.2 PortB and the TRISB Register 

PORTB is an 8-bit wide, bi-directional port. The corresponding data direction 

register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB 

pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). 

Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., 

put the contents of the output latch on the selected pin). 

Three pins of PORTB are multiplexed with the Low Voltage Programming 

function: RB3/PGM, RB6/PGC and RB7/PGD. 

Each of the PORTB pins has a weak internal pull-up. A single control bit can 

turn on all the pull-ups. This is performed by clearing bit RBPU 

(OPTION_REG<7>). The weak pull-up is automatically turned off when the port pin 

is configured as an output. The pull-ups are disabled on a Power-on Reset. 

Four of the PORTB pins, RB7:RB4, have an interrupt-on-change feature. 

Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 

pin configured as an output is excluded from the interrupt-on-change comparison). 

The input pins (of RB7:RB4) are compared with the old value latched on the last 

read of PORTB. The “mismatch” outputs of RB7:RB4 are OR’ed together to 

generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>). 

This interrupt can wake the device from SLEEP. The user, in the Interrupt 

Service Routine, can clear the interrupt in the following manner: 

a) Any read or write of PORTB. This will end the mismatch condition. 

b) Clear flag bit RBIF. 

A mismatch condition will continue to set flag bit RBIF. Reading PORTB 

will end the mismatch condition and allow flag bit RBIF to be cleared. 

The interrupt-on-change feature is recommended for wake-up on key 

depression operation and operations where PORTB is only used for the interrupt-on-

change feature. Polling of PORTB is not recommended while using the interrupt-on-

change feature. 

This interrupt-on-mismatch feature, together with software configurable pull-

ups on these four pins, allow easy interface to a keypad and make it possible for 

wake-up on key depression. 



 25

RB0/INT is an external interrupt input pin and is configured using the 

INTEDG bit (OPTION_REG<6>). 

2.3.4.3 PortC and the TRISC Register 

PORTC is an 8-bit wide, bi-directional port. The corresponding data direction 

register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC 

pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). 

Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., 

put the contents of the output latch on the selected pin). 

PORTC is multiplexed with several peripheral functions. PORTC pins have 

Schmitt Trigger input buffers.  

When the I2C module is enabled, the PORTC<4:3> pins can be configured 

with normal I2C levels or with SMBus levels by using the CKE bit (SSPSTAT<6>). 

When enabling peripheral functions, care should be taken in defining TRIS 

bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an 

output, while other peripherals override the TRIS bit to make a pin an input. Since 

the TRIS bit override is in effect while the peripheral is enabled, read-modify-write 

instructions (BSF, BCF, XORWF) with TRISC as destination, should be avoided.  

2.3.4.4 PortD and the TRISD Register 

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is 

individually configurable as an input or output. 

PORTD can be configured as an 8-bit wide microprocessor port (parallel 

slave port) by setting control bit PSPMODE (TRISE<4>). In this mode, the input 

buffers are TTL. 

2.3.4.5 PortE and the TRISE Register 

PORTE has three pins (RE0/RD/AN5, RE1/WR/AN6, and RE2/CS/AN7) 

which are individually configurable as inputs or outputs. These pins have Schmitt 

Trigger input buffers. 

The PORTE pins become the I/O control inputs for the microprocessor port 

when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make certain 



 26

that the TRISE<2:0> bits are set, and that the pins are configured as digital inputs. 

Also ensure that ADCON1 is configured for digital I/O. In this mode, the input 

buffers are TTL. 

TRISE register controls the parallel slave port operation. PORTE pins are 

multiplexed with analog inputs. When selected for analog input, these pins will read 

as ’0’s. 

TRISE controls the direction of the RE pins, even when they are being used 

as analog inputs. The user must make sure to keep the pins configured as inputs 

when using them as analog inputs. 

2.3.4.6 Parallel Slave Port 

PORTD operates as an 8-bit wide Parallel Slave Port (PSP) or microprocessor 

port, when control bit PSPMODE (TRISE<4>) is set. In Slave mode, it is 

asynchronously readable and writable by the external world through RD control 

input pin RE0/RD and WR control input pin RE1/WR. 

The PSP can directly interface to an 8-bit microprocessor data bus. The 

external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting 

bit PSPMODE enables port pin RE0/RD to be the RD input, RE1/WR to be the WR 

input and RE2/CS to be the CS (chip select) input. For this functionality, the 

corresponding data direction bits of the TRISE register (TRISE<2:0>) must be 

configured as inputs (set). The A/D port configuration bits PCFG3:PCFG0 

(ADCON1<3:0>) must be set to configure pins RE2:RE0 as digital I/O. 

There are actually two 8-bit latches: one for data output, and one for data 

input. The user writes 8-bit data to the PORTD data latch and reads data from the 

port pin latch (note that they have the same address). In this mode, the TRISD 

register is ignored, since the external device is controlling the direction of data flow. 

A write to the PSP occurs when both the CS and WR lines are first detected 

low. When either the CS or WR lines become high (level triggered), the Input Buffer 

Full (IBF) status flag bit (TRISE<7>) is set on the Q4 (fourth quarter) clock cycle, 

following the next Q2 cycle, to signal the write is complete. The interrupt flag bit 

PSPIF (PIR1<7>) is also set on the same Q4 clock cycle. IBF can only be cleared by 

reading the PORTD input latch. The Input Buffer Overflow (IBOV) status flag bit 



 27

(TRISE<5>) is set if a second write to the PSP is attempted when the previous byte 

has not been read out of the buffer. 

A read from the PSP occurs when both the CS and RD lines are first detected 

low. The Output Buffer Full (OBF) status flag bit (TRISE<6>) is cleared 

immediately, indicating that the PORTD latch is waiting to be read by the external 

bus. When either the CS or RD pin becomes high (level triggered), the interrupt flag 

bit PSPIF is set on the Q4 clock cycle, following the next Q2 cycle, indicating that 

the read is complete. OBF remains low until data is written to PORTD by the user 

firmware. 

When not in PSP mode, the IBF and OBF bits are held clear. However, if flag 

bit IBOV was previously set, it must be cleared in firmware. 

An interrupt is generated and latched into flag bit PSPIF when a read or write 

operation is completed. PSPIF must be cleared by the user in firmware and the 

interrupt can be disabled by clearing the interrupt enable bit PSPIE (PIE1<7>). 

2.3.5 Data EEPROM and Flash Program Memory 

The Data EEPROM and FLASH Program Memory are readable and writable 

during normal operation over the entire VDD range. These operations take place on a 

single byte for Data EEPROM memory and a single word for Program memory. A 

write operation causes an erase-then-write operation to take place on the specified 

byte or word. A bulk erase operation may not be issued from user code (which 

includes removing code protection). 

Access to program memory allows for checksum calculation. The values 

written to program memory do not need to be valid instructions. Therefore, up to 14-

bit numbers can be stored in memory for use as calibration parameters, serial 

numbers, packed 7-bit ASCII, etc. Executing a program memory location containing 

data that form an invalid instruction, results in the execution of a NOP instruction. 

The EEPROM Data memory is rated for high erase/write cycles. The FLASH 

program memory is rated much lower, because EEPROM data memory can be used 

to store frequently updated values. An on-chip timer controls the write time and it 

will vary with voltage and temperature, as well as from chip to chip.  



 28

A byte or word write automatically erases the location and writes the new 

value (erase before write). Writing to EEPROM data memory does not impact the 

operation of the device. Writing to program memory will cease the execution of 

instructions until the write is complete. The program memory cannot be accessed 

during the write. During the write operation, the oscillator continues to run, the 

peripherals continue to function and interrupt events will be detected and essentially 

“queued” until the write is complete. When the write completes, the next instruction 

in the pipeline is executed and the branch to the interrupt vector will take place, if the 

interrupt is enabled and occurred during the write. 

Read and write access to both memories take place indirectly through a set of 

Special Function Registers (SFR). The six SFRs used are: 

• EEDATA 

• EEDATH 

• EEADR 

• EEADRH 

• EECON1 

• EECON2 

The EEPROM data memory allows byte read and write operations without 

interfering with the normal operation of the microcontroller. When interfacing to 

EEPROM data memory, the EEADR register holds the address to be accessed. 

Depending on the operation, the EEDATA register holds the data to be written, or 

the data read, at the address in EEADR. The PIC16F874 has 128 bytes of EEPROM 

data memory and therefore, requires that the MSb of EEADR remain clear. The 

EEPROM data memory on this device does not wrap around to 0, i.e., 0x80 in the 

EEADR does not map to 0x00. The PIC16F877 has 256 bytes of EEPROM data 

memory and therefore, uses all 8-bits of the EEADR. 

The FLASH program memory allows non-intrusive read access, but write 

operations cause the device to stop executing instructions, until the write completes. 

When interfacing to the program memory, the EEADRH:EEADR registers form a 

two-byte word, which holds the 13-bit address of the memory location being 

accessed. The register combination of EEDATH:EEDATA holds the 14-bit data for 

writes, or reflects the value of program memory after a read operation. Just as in 



 29

EEPROM data memory accesses, the value of the EEADRH:EEADR registers must 

be within the valid range of program memory, depending on the device: 0000h to 

3FFFh for the PIC16F877. Addresses outside of this range do not wrap around to 

0000h (i.e., 4000h does not map to 0000h on the PIC16F877). 

2.3.6 Timer0 Module 

The Timer0 module timer/counter has the following features: 

• 8-bit timer/counter 

• Readable and writable 

• 8-bit software programmable prescaler 

• Internal or external clock select 

• Interrupt on overflow from FFh to 00h 

• Edge select for external clock 

Timer mode is selected by clearing bit T0CS (OPTION_REG<5>). In Timer 

mode, the Timer0 module will increment every instruction cycle (without prescaler). 

If the TMR0 register is written, the increment is inhibited for the following two 

instruction cycles. The user can work around this by writing an adjusted value to the 

TMR0 register. 

Counter mode is selected by setting bit T0CS (OPTION_REG<5>). In 

Counter mode, Timer0 will increment either on every rising, or falling edge of pin 

RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge 

Select bit, T0SE (OPTION_REG<4>). Clearing bit T0SE selects the rising edge.  

The prescaler is mutually exclusively shared between the Timer0 module and 

the Watchdog Timer. The prescaler is not readable or writable. 

2.3.6.1 Timer0 Interrupt 

The TMR0 interrupt is generated when the TMR0 register overflows from 

FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked 

by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the 

Timer0 module Interrupt Service Routine before re-enabling this interrupt. The 

TMR0 interrupt cannot awaken the processor from SLEEP, since the timer is shut-off 

during SLEEP. 



 30

2.3.6.2 Using Timer0 with an External Clock 

When no prescaler is used, the external clock input is the same as the 

prescaler output. The synchronization of T0CKI with the internal phase clocks is 

accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the 

internal phase clocks. Therefore, it is necessary for T0CKI to be high for at least 

2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC 

delay of 20 ns).  

2.3.6.3 Prescaler 

There is only one prescaler available, which is mutually exclusively shared 

between the Timer0 module and the Watchdog Timer. A prescaler assignment for the 

Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-

versa. This prescaler is not readable or writable.  

The PSA and PS2:PS0 bits (OPTION_REG<3:0>) determine the prescaler 

assignment and prescale ratio. 

When assigned to the Timer0 module, all instructions writing to the TMR0 

register (e.g. CLRF 1, MOVWF 1, BSF 1,x....etc.) will clear the prescaler. When 

assigned to WDT, a CLRWDT instruction will clear the prescaler along with the 

Watchdog Timer. The prescaler is not readable or writable. 

2.3.7 Timer1 Module 

The Timer1 module is a 16-bit timer/counter consisting of two 8-bit registers 

(TMR1H and TMR1L), which are readable and writable. The TMR1 Register pair 

(TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The 

TMR1 Interrupt, if enabled, is generated on overflow, which is latched in interrupt 

flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by 

setting/clearing TMR1 interrupt enable bit TMR1IE (PIE1<0>). 

 

Timer1 can operate in one of two modes: 

• As a timer 

• As a counter 



 31

The operating mode is determined by the clock select bit, TMR1CS 

(T1CON<1>). 

In Timer mode, Timer1 increments every instruction cycle. In Counter mode, 

it increments on every rising edge of the external clock input. 

Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON 

(T1CON<0>). Timer1 also has an internal “RESET input”. This RESET can be 

generated by either of the two CCP modules. 

When the Timer1 oscillator is enabled (T1OSCEN is set), the 

RC1/T1OSI/CCP2 and RC0/T1OSO/T1CKI pins become inputs. That is, the 

TRISC<1:0> value is ignored, and these pins read as ‘0’. 

2.3.7.1 Timer1 Operation in Timer Mode 

Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this 

mode, the input clock to the timer is FOSC/4. The synchronize control bit T1SYNC 

(T1CON<2>) has no effect, since the internal clock is always in sync. 

2.3.7.2 Timer1 Counter Operation 

Timer1 may operate in either a Synchronous, or an Asynchronous mode, 

depending on the setting of the TMR1CS bit. 

When Timer1 is being incremented via an external source, increments occur 

on a rising edge. After Timer1 is enabled in Counter mode, the module must first 

have a falling edge before the counter begins to increment. 

 

 

 
Figure 2.9 Timer1 Incrementing Edge 



 32

2.3.7.3 Timer1 Operation in Synchronized Counter Mode 

Counter mode is selected by setting bit TMR1CS. In this mode, the timer 

increments on every rising edge of clock input on pin RC1/T1OSI/CCP2, when bit 

T1OSCEN is set, or on pin RC0/T1OSO/T1CKI, when bit T1OSCEN is cleared. 

If T1SYNC is cleared, then the external clock input is synchronized with 

internal phase clocks. The synchronization is done after the prescaler stage. The 

prescaler stage is an asynchronous ripple-counter. 

In this configuration, during SLEEP mode, Timer1 will not increment even if 

the external clock is present, since the synchronization circuit is shut-off. The 

prescaler, however, will continue to increment. 

 

2.3.7.4 Timer1 Operation in Asynchronous Counter Mode 

If control bit T1SYNC (T1CON<2>) is set, the external clock input is not 

synchronized. The timer continues to increment asynchronous to the internal phase 

clocks. The timer will continue to run during SLEEP and can generate an interrupt-

on-overflow, which will wake-up the processor. However, special precautions in 

software are needed to read/write the timer. 

In Asynchronous Counter mode, Timer1 cannot be used as a time-base for 

capture or compare operations. 

Reading TMR1H or TMR1L while the timer is running from an external 

asynchronous clock, will guarantee a valid read (taken care of in hardware). 

However, the user should keep in mind that reading the 16-bit timer in two 8-bit 

values itself, poses certain problems, since the timer may overflow between the 

reads. 

For writes, it is recommended that the user simply stop the timer and write 

the desired values. A write contention may occur by writing to the timer registers, 

while the register is incrementing. This may produce an unpredictable value in the 

timer register. 

Reading the 16-bit value requires some care.  

 
 



 33

2.3.7.5 Timer1 Oscillator 

A crystal oscillator circuit is built-in between pins T1OSI (input) and T1OSO 

(amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The 

oscillator is a low power oscillator, rated up to 200 kHz. It will continue to run 

during SLEEP. It is primarily intended for use with a 32 kHz crystal. 

The Timer1 oscillator is identical to the LP (Low Power Crystal) oscillator. 

The user must provide a software time delay to ensure proper oscillator start-up. 

2.3.8 Timer2 Module 

Timer2 is an 8-bit timer with a prescaler and a postscaler. It can be used as 

the PWM time-base for the PWM mode of the CCP module(s). The TMR2 register is 

readable and writable, and is cleared on any device RESET. 

The input clock (FOSC/4) has a prescale option of 1:1, 1:4, or 1:16, selected 

by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>). 

The Timer2 module has an 8-bit period register, PR2. Timer2 increments 

from 00h until it matches PR2 and then resets to 00h on the next increment cycle. 

PR2 is a readable and writable register. The PR2 register is initialized to FFh upon 

RESET. 

The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 

to 1:16 scaling inclusive) to generate a TMR2 interrupt (latched in flag bit TMR2IF, 

(PIR1<1>)). 

Timer2 can be shut-off by clearing control bit TMR2ON (T2CON<2>), to 

minimize power consumption. 

2.3.8.1 Timer2 Prescaler and Postscaler 

The prescaler and postscaler counters are cleared when any of the following 

occurs: 

• a write to the TMR2 register 

• a write to the T2CON register 

• any device RESET (POR, MCLR Reset, WDT Reset, or BOR) 

TMR2 is not cleared when T2CON is written. 



 34

2.3.8.2 Timer2 Prescaler and Postscaler 

The output of TMR2 (before the postscaler) is fed to the SSP module, which 

optionally uses it to generate shift clock. 

2.3.9 Capture/Compare/PWM Modules 

Each Capture/Compare/PWM (CCP) module contains a 16-bit register which 

can operate as a: 

• 16-bit Capture register 

• 16-bit Compare register 

• PWM Master/Slave Duty Cycle register 

Both the CCP1 and CCP2 modules are identical in operation, with the 

exception being the operation of the special event trigger. 

 

CCP1 Module: 

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit 

registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register 

controls the operation of CCP1. The special event trigger is generated by a compare 

match and will reset Timer1. 

 

CCP2 Module: 

Capture/Compare/PWM Register2 (CCPR2) is comprised of two 8-bit 

registers: CCPR2L (low byte) and CCPR2H (high byte). The CCP2CON register 

controls the operation of CCP2. The special event trigger is generated by a compare 

match and will reset Timer1 and start an A/D conversion (if the A/D module is 

enabled). 

Table 2.4  CCP Mode – Timer Resources Required 

CCP Mode Timer Resource 
Capture Timer1 
Compare Timer1 

PWM Timer2 
 
 



 35

2.3.9.1 Capture Mode 

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 

register when an event occurs on pin RC2/CCP1. An event is defined as one of the 

following: 

• Every falling edge 

• Every rising edge 

• Every 4th rising edge 

• Every 16th rising edge 

The type of event is configured by control bits CCP1M3:CCP1M0 

(CCPxCON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF 

(PIR1<2>) is set. The interrupt flag must be cleared in software. If another capture 

occurs before the value in register CCPR1 is read, the old captured value is 

overwritten by the new value. 

2.3.9.2 Compare Mode 

In Compare mode, the 16-bit CCPR1 register value is constantly compared 

against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is: 

• Driven high 

• Driven low 

• Remains unchanged 

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 

(CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set. 

2.3.9.3 PWM Mode 

In Pulse Width Modulation mode, the CCPx pin produces up to a 10-bit 

resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data 

latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output. 

2.3.10 Master Synchronous Serial Port (MSSP) Module 

The Master Synchronous Serial Port (MSSP) module is a serial interface, 

useful for communicating with other peripheral or microcontroller devices. These 



 36

peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D 

converters, etc. The MSSP module can operate in one of two modes: 

• Serial Peripheral Interface (SPI) 

• Inter-Integrated Circuit (I2C) 

2.3.10.1 SPI Mode 

The SPI mode allows 8 bits of data to be synchronously transmitted and 

received simultaneously. All four modes of SPI are supported. To accomplish 

communication, typically three pins are used: 

• Serial Data Out (SDO) 

• Serial Data In (SDI) 

• Serial Clock (SCK) 

Additionally, a fourth pin may be used when in a Slave mode of operation: 

• Slave Select (SS) 

When initializing the SPI, several options need to be specified. This is done 

by programming the appropriate control bits (SSPCON<5:0> and SSPSTAT<7:6>). 

These control bits allow the following to be specified: 

• Master mode (SCK is the clock output) 

• Slave mode (SCK is the clock input) 

• Clock Polarity (Idle state of SCK) 

• Data input sample phase (middle or end of data output time) 

• Clock edge (output data on rising/falling edge of SCK) 

• Clock Rate (Master mode only) 

• Slave Select mode (Slave mode only) 

To enable the serial port, MSSP Enable bit, SSPEN (SSPCON<5>) must be 

set. To reset or reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON 

registers, and then set bit SSPEN. This configures the SDI, SDO, SCK and SS pins 

as serial port pins. For the pins to behave as the serial port function, some must have 

their data direction bits (in the TRIS register) appropriately programmed. That is: 

• SDI is automatically controlled by the SPI module 

• SDO must have TRISC<5> cleared 

• SCK (Master mode) must have TRISC<3> cleared 



 37

• SCK (Slave mode) must have TRISC<3> set 

• SS must have TRISA<5> set and register ADCON1 must be set in a way that pin   

  RA5 is configured as a digital I/O 

Any serial port function that is not desired may be overridden by 

programming the corresponding data direction (TRIS) register to the opposite value. 

2.3.10.2 MMSP I2C Operation 

The MSSP module in I2C mode, fully implements all master and slave 

functions (including general call support) and provides interrupts on START and 

STOP bits in hardware, to determine a free bus (multi-master function). The MSSP 

module implements the standard mode specifications, as well as 7-bit and 10-bit 

addressing. 

A "glitch" filter is on the SCL and SDA pins when the pin is an input. This 

filter operates in both the 100 kHz and 400 kHz modes. In the 100 kHz mode, when 

these pins are an output, there is a slew rate control of the pin that is independent of 

device frequency. 

Two pins are used for data transfer. These are the SCL pin, which is the 

clock, and the SDA pin, which is the data. The SDA and SCL pins are automatically 

configured when the I2C mode is enabled. The SSP module functions are enabled by 

setting SSP Enable bit SSPEN (SSPCON<5>). 

The MSSP module has six registers for I2C operation. They are the: 

• SSP Control Register (SSPCON) 

• SSP Control Register2 (SSPCON2) 

• SSP Status Register (SSPSTAT) 

• Serial Receive/Transmit Buffer (SSPBUF) 

• SSP Shift Register (SSPSR) - Not directly accessible 

• SSP Address Register (SSPADD) 

The SSPCON register allows control of the I2C operation. Four mode 

selection bits (SSPCON<3:0>) allow one of the following I2C modes to be selected: 

• I2C Slave mode (7-bit address) 

• I2C Slave mode (10-bit address) 

• I2C Master mode, clock = OSC/4 (SSPADD +1) 



 38

• I2C firmware modes 

Before selecting any I2C mode, the SCL and SDA pins must be programmed 

to inputs by setting the appropriate TRIS bits. Selecting an I2C mode by setting the 

SSPEN bit, enables the SCL and SDA pins to be used as the clock and data lines in 

I2C mode. Pull-up resistors must be provided externally to the SCL and SDA pins for 

the proper operation of the I2C module. 

The CKE bit (SSPSTAT<6:7>) sets the levels of the SDA and SCL pins in 

either Master or Slave mode. When CKE = 1, the levels will conform to the SMBus 

specification. When CKE = 0, the levels will conform to the I2C specification. 

The SSPSTAT register gives the status of the data transfer. This information 

includes detection of a START (S) or STOP (P) bit, specifies if the received byte was 

data or address, if the next byte is the completion of 10-bit address, and if this will be 

a read or write data transfer. 

SSPBUF is the register to which the transfer data is written to, or read from. 

The SSPSR register shifts the data in or out of the device. In receive operations, the 

SSPBUF and SSPSR create a doubled buffered receiver. This allows reception of the 

next byte to begin before reading the last byte of received data. When the complete 

byte is received, it is transferred to the SSPBUF register and flag bit SSPIF is set. If 

another complete byte is received before the SSPBUF register is read, a receiver 

overflow has occurred and bit SSPOV (SSPCON<6>) is set and the byte in the 

SSPSR is lost. 

The SSPADD register holds the slave address. In 10-bit mode, the user needs 

to write the high byte of the address (1111 0 A9 A8 0). Following the high byte 

address match, the low byte of the address needs to be loaded (A7:A0). 

2.3.10.3 Connection Considerations for I2C Bus 

For standard-mode I2C bus devices, the values of resistors Rp and Rs in 

Figure 2-10 depend on the following parameters: 

• Supply voltage 

• Bus capacitance 

• Number of connected devices (input current + leakage current) 



 39

The supply voltage limits the minimum value of resistor Rp, due to the 

specified minimum sink current of 3 mA at VOL max = 0.4V, for the specified output 

stages. For example, with a supply voltage of VDD = 5V±10% and VOL max = 0.4V 

at 3 mA, Rp min = (5.5-0.4)/0.003 = 1.7 kΩ. VDD as a function of Rp is shown in 

Figure 2.10. The desired noise margin of 0.1VDD for the low level limits the 

maximum value of Rs. Series resistors are optional and used to improve ESD 

susceptibility. 

The bus capacitance is the total capacitance of wire, connections, and pins. 

This capacitance limits the maximum value of Rp due to the specified rise time 

(Figure 2.10). 

The SMP bit is the slew rate control enabled bit. This bit is in the SSPSTAT 

register, and controls the slew rate of the I/O pins when in I2C mode (master or 

slave). 

 
Figure 2.10 Sample Device Configuration For I2C Bus 

2.3.11 Addressable Universal Synchronous Asynchronous 

Receiver Transmitter (USART) 

The Universal Synchronous Asynchronous Receiver Transmitter (USART) 

module is one of the two serial I/O modules. (USART is also known as a Serial 

Communications Interface or SCI.) The USART can be configured as a full duplex 



 40

asynchronous system that can communicate with peripheral devices such as CRT 

terminals and personal computers, or it can be configured as a half duplex 

synchronous system that can communicate with peripheral devices such as A/D or 

D/A integrated circuits, serial EEPROMs etc. The USART can be configured in the 

following modes: 

• Asynchronous (full duplex) 

• Synchronous - Master (half duplex) 

• Synchronous - Slave (half duplex) 

Bit SPEN (RCSTA<7>) and bits TRISC<7:6> have to be set in order to 

configure pins RC6/TX/CK and RC7/RX/DT as the Universal Synchronous 

Asynchronous Receiver Transmitter. 

The USART module also has a multi-processor communication capability 

using 9-bit address detection. 

2.3.12 Analog to Digital Converter (A/D) Module 

The Analog-to-Digital (A/D) Converter module has five inputs for the 28-pin 

devices and eight for the other devices. 

The analog input charges a sample and hold capacitor. The output of the 

sample and hold capacitor is the input into the converter. The converter then 

generates a digital result of this analog level via successive approximation. The A/D 

conversion of the analog input signal results in a corresponding 10-bit digital 

number. The A/D module has high and low voltage reference input that is software 

selectable to some combination of VDD, VSS, RA2, or RA3. 

The A/D converter has a unique feature of being able to operate while the 

device is in SLEEP mode. To operate in SLEEP, the A/D clock must be derived from 

the A/D’s internal RC oscillator.  

The A/D module has four registers. These registers are: 

• A/D Result High Register (ADRESH) 

• A/D Result Low Register (ADRESL) 

• A/D Control Register0 (ADCON0) 

• A/D Control Register1 (ADCON1) 



 41

The ADCON0 register controls the operation of the A/D module. The 

ADCON1 register configures the functions of the port pins. The port pins can be 

configured as analog inputs (RA3 can also be the voltage reference), or as digital I/O. 

2.3.13 Special Features of the CPU 

PIC16F877 has a host of features intended to maximize system reliability, 

minimize cost through elimination of external components, provide power saving 

operating modes and offer code protection. These are: 

• Oscillator Selection 

• RESET 

   - Power-on Reset (POR) 

   - Power-up Timer (PWRT) 

   - Oscillator Start-up Timer (OST) 

   - Brown-out Reset (BOR) 

• Interrupts 

• Watchdog Timer (WDT) 

• SLEEP 

• Code Protection 

• ID Locations 

• In-Circuit Serial Programming 

• Low Voltage In-Circuit Serial Programming 

• In-Circuit Debugger 

PIC16F877 has a Watchdog Timer, which can be shut-off only through 

configuration bits. It runs off its own RC oscillator for added reliability.  

There are two timers that offer necessary delays on power-up. One is the 

Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the 

crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides 

a fixed delay of 72 ms (nominal) on power-up only. It is designed to keep the part in 

RESET while the power supply stabilizes. With these two timers on-chip, most 

applications need no external RESET circuitry. 

SLEEP mode is designed to offer a very low current Power-down mode. The 

user can wake-up from SLEEP through external RESET, Watchdog Timer Wake-up, 

or through an interrupt. 



 42

Several oscillator options are also made available to allow the part to fit the 

application. The RC oscillator option saves system cost while the LP crystal option 

saves power. A set of configuration bits is used to select various options. 

2.3.13.1 Configuration Bits 

The configuration bits can be programmed (read as '0'), or left unprogrammed 

(read as '1'), to select various device configurations. The erased or unprogrammed 

value of the configuration word is 3FFFh. These bits are mapped in program memory 

location 2007h. 

It is important to note that address 2007h is beyond the user program memory 

space, which can be accessed only during programming. 

 

2.3.13.2 Oscillator Configurations 

- Oscillator Types 

The PIC16F877 can be operated in four different oscillator modes. The user 

can program two configuration bits (FOSC1 and FOSC0) to select one of these four 

modes: 

• LP Low Power Crystal 

• XT Crystal/Resonator 

• HS High Speed Crystal/Resonator 

• RC Resistor/Capacitor 

- Crystal Oscillator/Ceramic Resonators 

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the 

OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation. The PIC16F877 

oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal 

may give a frequency out of the crystal manufacturers specifications. 

When in XT, LP or HS modes, the device can have an external clock source 

to drive the OSC1/CLKIN pin. 

 



 43

- RC Oscillator 

For timing insensitive applications, the “RC” device option offers additional 

cost savings. The RC oscillator frequency is a function of the supply voltage, the 

resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In 

addition to this, the oscillator frequency will vary from unit to unit due to normal 

process parameter variation. Furthermore, the difference in lead frame capacitance 

between package types will also affect the oscillation frequency, especially for low 

CEXT values. The user also needs to take into account variation due to tolerance of 

external R and C components used. Figure 2.11 shows how the R/C combination is 

connected to the PIC16F877. 

 

Figure 2.11 RC Oscillator Mode 

2.3.13.3 Reset 

The PIC16F877 differentiates between various kinds of RESET: 

 

• Power-on Reset (POR) 

• MCLR Reset during normal operation 

• MCLR Reset during SLEEP 

• WDT Reset (during normal operation) 

• WDT Wake-up (during SLEEP) 

• Brown-out Reset (BOR) 



 44

Some registers are not affected in any RESET condition. Their status is 

unknown on POR and unchanged in any other RESET. Most other registers are reset 

to a “RESET state” on Power-on Reset (POR), on the MCLR and WDT Reset, on 

MCLR Reset during SLEEP, and Brown-out Reset (BOR). They are not affected by 

a WDT Wake-up, which is viewed as the resumption of normal operation. The TO 

and PD bits are set or cleared differently in different RESET situations. These bits 

are used in software to determine the nature of the RESET. 

There is a MCLR noise filter in the MCLR Reset path. The filter will detect 

and ignore small pulses. 

It should be noted that a WDT Reset does not drive MCLR pin low. 

2.3.13.4 Power-On Reset (POR) 

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in 

the range of 1.2V - 1.7V). To take advantage of the POR, tie the MCLR pin directly 

(or through a resistor) to VDD. This will eliminate external RC components usually 

needed to create a Power-on Reset. A maximum rise time for VDD is specified. 

When the device starts normal operation (exits the RESET condition), device 

operating parameters (voltage, frequency, temperature,...) must be met to ensure 

operation. If these conditions are not met, the device must be held in RESET until the 

operating conditions are met. Brown-out Reset may be used to meet the start-up 

conditions. 

2.3.13.5 Power-Up Timer (PWRT) 

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up 

only from the POR. The Power-up Timer operates on an internal RC oscillator. The 

chip is kept in RESET as long as the PWRT is active. 

The PWRT’s time delay allows VDD to rise to an acceptable level. A 

configuration bit is provided to enable/disable the PWRT. The power-up time delay 

will vary from chip to chip due to VDD, temperature and process variation. 

 

 



 45

2.3.13.6 Oscillator Start-Up Timer (OST) 

The Oscillator Start-up Timer (OST) provides a delay of 1024 oscillator 

cycles (from OSC1 input) after the PWRT delay is over (if PWRT is enabled). This 

helps to ensure that the crystal oscillator or resonator has started and stabilized. 

The OST time-out is invoked only for XT, LP and HS modes and only on 

Power-on Reset or Wake-up from SLEEP. 

2.3.13.7 Brown-Out Reset (BOR) 

The configuration bit, BODEN, can enable or disable the Brown-out Reset 

circuit. If VDD falls below VBOR (about 4V) for longer than TBOR (about 100µS), the 

brown-out situation will reset the device. If VDD falls below VBOR for less than TBOR, 

a RESET may not occur. 

Once the brown-out occurs, the device will remain in Brown-out Reset until 

VDD rises above VBOR. The Power-up Timer then keeps the device in RESET for 

TPWRT (about 72mS). If VDD should fall below VBOR during TPWRT, the Brown-out 

Reset process will restart when VDD rises above VBOR with the Power-up Timer 

Reset. The Power-up Timer is always enabled when the Brown-out Reset circuit is 

enabled, regardless of the state of the PWRT configuration bit. 

2.3.13.8 Time-Out Sequence 

On power-up, the time-out sequence is as follows: The PWRT delay starts (if 

enabled) when a POR Reset occurs. Then OST starts counting 1024 oscillator cycles 

when PWRT ends (LP, XT, HS). When the OST ends, the device comes out of 

RESET. 

If MCLR is kept low long enough, the time-outs will expire. Bringing MCLR 

high will begin execution immediately. This is useful for testing purposes or to 

synchronize more than one PIC16F877 operating in parallel. 

2.3.13.9 Power Control/Status Register (PCON) 

The Power Control/Status Register, PCON, has up to two bits depending 

upon the device. 



 46

Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is unknown on a Power-on 

Reset. It must then be set by the user and checked on subsequent RESETS to see if 

bit BOR cleared, indicating a BOR occurred. When the Brown-out Reset is disabled, 

the state of the BOR bit is unpredictable and is, therefore, not valid at any time. 

Bit1 is POR (Power-on Reset Status bit). It is cleared on a Power-on Reset 

and unaffected otherwise. The user must set this bit following a Power-on Reset. 

2.3.13.10 Interrupts 

The PIC16F877 has up to 14 sources of interrupt. The interrupt control 

register (INTCON) records individual interrupt requests in flag bits. It also has 

individual and global interrupt enable bits. 

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all 

unmasked interrupts, or disables (if cleared) all interrupts. When bit GIE is enabled, 

and an interrupt’s flag bit and mask bit are set, the interrupt will vector immediately. 

Individual interrupts can be disabled through their corresponding enable bits in 

various registers. Individual interrupt bits are set, regardless of the status of the GIE 

bit. The GIE bit is cleared on RESET. 

The “return from interrupt” instruction, RETFIE, exits the interrupt routine, 

as well as sets the GIE bit, which re-enables interrupts. 

The RB0/INT pin interrupt, the RB port change interrupt, and the TMR0 

overflow interrupt flags are contained in the INTCON register. 

The peripheral interrupt flags are contained in the special function registers, 

PIR1 and PIR2. The corresponding interrupt enable bits are contained in special 

function registers, PIE1 and PIE2, and the peripheral interrupt enable bit is contained 

in special function register INTCON. 

When an interrupt is responded to, the GIE bit is cleared to disable any 

further interrupt, the return address is pushed onto the stack and the PC is loaded 

with 0004h. Once in the Interrupt Service Routine, the source(s) of the interrupt can 

be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be 

cleared in software before re-enabling interrupts to avoid recursive interrupts. 

For external interrupt events, such as the INT pin or PORTB change interrupt, 

the interrupt latency will be three or four instruction cycles. The exact latency 



 47

depends when the interrupt event occurs. The latency is the same for one or two-

cycle instructions. Individual interrupt flag bits are set, regardless of the status of 

their corresponding mask bit, PEIE bit, or GIE bit. 

- INT Interrupt 

External interrupt on the RB0/INT pin is edge triggered, either rising, if bit 

INTEDG (OPTION_REG<6>) is set, or falling, if the INTEDG bit is clear. When a 

valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This 

interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF 

must be cleared in software in the Interrupt Service Routine before re-enabling this 

interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was 

set prior to going into SLEEP. The status of global interrupt enable bit, GIE, decides 

whether or not the processor branches to the interrupt vector following wake-up. 

- TMR0 Interrupt 

An overflow (FFh → 00h) in the TMR0 register will set flag bit T0IF 

(INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit 

T0IE (INTCON<5>). 

- PortB INTCON Change 

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The 

interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>). 

2.3.13.11 Context Saving During Interrupts 

During an interrupt, only the return PC value is saved on the stack. Typically, 

users may wish to save key registers during an interrupt, (i.e., W register and 

STATUS register). This will have to be implemented in software. 

Since the upper 16 bytes of each bank are common in the PIC16F877, 

temporary holding registers W_TEMP, STATUS_TEMP, and PCLATH_TEMP 

should be placed in here. These 16 locations don’t require banking and therefore, 

make it easier for context save and restore.  

 
 



 48

2.3.13.12 Watchdog Timer (WDT) 

The Watchdog Timer is a free running on-chip RC oscillator which does not 

require any external components. This RC oscillator is separate from the RC 

oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the 

clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been 

stopped, for example, by execution of a SLEEP instruction. 

During normal operation, a WDT time-out generates a device RESET 

(Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes 

the device to wake-up and continue with normal operation (Watchdog Timer Wake-

up). The TO bit in the STATUS register will be cleared upon a Watchdog Timer 

time-out. 

The WDT can be permanently disabled by clearing configuration bit WDTE. 

WDT time-out period values for the WDT prescaler (actually a postscaler, but shared 

with the Timer0 prescaler) may be assigned using the OPTION_REG register. 

2.3.13.13 Power-Down Mode (SLEEP) 

Power-down mode is entered by executing a SLEEP instruction. If enabled, 

the Watchdog Timer will be cleared but keeps running, the PD bit (STATUS<3>) is 

cleared, the TO (STATUS<4>) bit is set, and the oscillator driver is turned off. The 

I/O ports maintain the status they had before the SLEEP instruction was executed 

(driving high, low, or hi-impedance). 

For lowest current consumption in this mode, place all I/O pins at either VDD 

or VSS, ensure no external circuitry is drawing current from the I/O pin, power-down 

the A/D and disable external clocks. Pull all I/O pins that are hi-impedance inputs, 

high or low externally, to avoid switching currents caused by floating inputs. The 

T0CKI input should also be at VDD or VSS for lowest current consumption. The 

contribution from on-chip pull-ups on PORTB should also be considered. 

The MCLR pin must be at a logic high level (VIHMC). 

- Wake-Up from SLEEP 

The device can wake-up from SLEEP through one of the following events: 

1. External RESET input on MCLR pin. 



 49

2. Watchdog Timer Wake-up (if WDT was enabled). 

3. Interrupt from INT pin, RB port change or peripheral interrupt. 

External MCLR Reset will cause a device RESET. All other events are 

considered a continuation of program execution and cause a “wake-up”. The TO and 

PD bits in the STATUS register can be used to determine the cause of device 

RESET. The PD bit, which is set on power-up, is cleared when SLEEP is invoked. 

The TO bit is cleared if a WDT time-out occurred and caused wake-up. 

The following peripheral interrupts can wake the device from SLEEP: 

1. PSP read or write. 

2. TMR1 interrupt. Timer1 must be operating as an asynchronous counter. 

3. CCP Capture mode interrupt. 

4. Special event trigger (Timer1 in Asynchronous mode using an external clock). 

5. SSP (START/STOP) bit detect interrupt. 

6. SSP transmit or receive in Slave mode (SPI/I2C). 

7. USART RX or TX (Synchronous Slave mode). 

8. A/D conversion (when A/D clock source is RC). 

9. EEPROM write operation completion 

Other peripherals cannot generate interrupts since during SLEEP, no on-chip 

clocks are present. 

When the SLEEP instruction is being executed, the next instruction (PC + 1) 

is pre-fetched. For the device to wake-up through an interrupt event, the 

corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of 

the state of the GIE bit. If the GIE bit is clear (disabled), the device continues 

execution at the instruction after the SLEEP instruction. If the GIE bit is set 

(enabled), the device executes the instruction after the SLEEP instruction and then 

branches to the interrupt address (0004h). In cases where the execution of the 

instruction following SLEEP is not desirable, the user should have a NOP after the 

SLEEP instruction. 

- Wake-Up Using Interrupts 

When global interrupts are disabled (GIE cleared) and any interrupt source 

has both its interrupt enable bit and interrupt flag bit set, one of the following will 

occur: 



 50

• If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP 

instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will 

not be cleared, the TO bit will not be set and PD bits will not be cleared. 

• If the interrupt occurs during or after the execution of a SLEEP instruction, the 

device will immediately wake-up from SLEEP. The SLEEP instruction will be 

completely executed before the wake-up. Therefore, the WDT and WDT postscaler 

will be cleared, the TO bit will be set and the PD bit will be cleared. 

Even if the flag bits were checked before executing a SLEEP instruction, it 

may be possible for flag bits to become set before the SLEEP instruction completes. 

To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is 

set, the SLEEP instruction was executed as a NOP. 

To ensure that the WDT is cleared, a CLRWDT instruction should be 

executed before a SLEEP instruction. 

2.3.13.14 In-Circuit Debugger 

When the DEBUG bit in the configuration word is programmed to a ’0’, the 

In-Circuit Debugger functionality is enabled. This function allows simple debugging 

functions when used with MPLAB ICD. When the microcontroller has this feature 

enabled, some of the resources are not available for general use. Table 2.5 shows 

which features are consumed by the background debugger. 

 

Table 2.5  Debugger Resources 

I/O pins RB6, RB7 

Stack 1 level 

Program Memory Address 0000h must be NOP 

 Last 100h words 

Data Memory 0x070 (0x0F0, 0x170, 0x1F0) 
0x1EB - 0x1EF 

 
To use the In-Circuit Debugger function of the microcontroller, the design 

must implement In-Circuit Serial Programming connections to MCLR/VPP, VDD, 

GND, RB7 and RB6. This will interface to the In-Circuit Debugger module. 

 



 51

2.3.13.15 Program Verification/Code Protection 

If the code protection bit(s) have not been programmed, the on-chip program 

memory can be read out for verification purposes. 

2.3.13.16 ID Locations 

Four memory locations (2000h - 2003h) are designated as ID locations, where 

the user can store checksum or other code identification numbers. These locations are 

not accessible during normal execution, but are readable and writable during 

program/verify. It is recommended that only the 4 Least Significant bits of the ID 

location are used. 

2.3.13.17 In-Circuit Serial Programming 

PIC16F877 microcontroller can be serially programmed while in the end 

application circuit. This is simply done with two lines for clock and data and three 

other lines for power, ground, and the programming voltage. This allows users to 

manufacture boards with unprogrammed devices, and then program the 

microcontroller. This also allows the most recent firmware, or a custom firmware to 

be programmed. 

When using ICSP, the part must be supplied at 4.5V to 5.5V, if a bulk erase 

will be executed. This includes reprogramming of the code protect, both from an on-

state to off-state. For all other cases of ICSP, the part may be programmed at the 

normal operating voltages. This means calibration values, unique user IDs, or user 

code can be reprogrammed or added. 

2.3.13.18 Low Voltage ICSP Programming 

The LVP bit of the configuration word enables low voltage ICSP 

programming. This mode allows the microcontroller to be programmed via ICSP 

using a VDD source in the operating voltage range. This only means that VPP does not 

have to be brought to VIHH, but can instead be left at the normal operating voltage. In 

this mode, the RB3/PGM pin is dedicated to the programming function and ceases to 

be a general purpose I/O pin. During programming, VDD is applied to the MCLR pin. 



 52

To enter Programming mode, VDD must be applied to the RB3/PGM, provided the 

LVP bit is set. The LVP bit defaults to on (‘1’). 

If Low Voltage Programming mode is not used, the LVP bit can be 

programmed to a '0' and RB3/PGM becomes a digital I/O pin. However, the LVP bit 

may only be programmed when programming is entered with VIHH on MCLR. The 

LVP bit can only be charged when using high voltage on MCLR. 

It should be noted, that once the LVP bit is programmed to 0, only the High 

Voltage Programming mode is available and only High Voltage Programming mode 

can be used to program the device. 

When using low voltage ICSP, the part must be supplied at 4.5V to 5.5V, if a 

bulk erase will be executed. This includes reprogramming of the code protect bits 

from an on-state to off-state. For all other cases of low voltage ICSP, the part may be 

programmed at the normal operating voltage. This means calibration values, unique 

user IDs, or user code can be reprogrammed or added. 

 

 

 



 53

 

 

CHAPTER 3  

 

PIC PROGRAMMING 
 

 

3.1 INTRODUCTION 

To write a program for a PIC Microcontroller and to load it, there must be 

some software and hardware: 

• an ASCII editor 

• an assembler 

• a simulator 

• a programmer 

• a software for programmer 

 The first step for programming is the writing of the program to use a text 

editor. The alternatives are: 

- EDIT in DOS 

- NOTEPAD in WINDOWS 

- MPLAB Editor 

After writing the program, it must be saved in .asm type of file. 

 In the second stage, this .asm file is converted to hex file which machine can 

understand. At this point a simulator can be used for simulate the code. 

 The last step is to send the hex file to microcontroller by a device 

programmer and its software. 

  

 



 54

3.2 MPLAB IDE 

MPLAB IDE is a Windows-based Integrated Development Environment 

(IDE) for the PICmicro microcontroller (MCU) families. MPLAB IDE is used for 

writing, debugging, and optimizing PICmicro MCU applications for firmware 

product designs. MPLAB IDE includes a text editor for creating assembly language 

source code and an assembler to convert the source code into a form which can be 

programmed into the PIC microcontroller, simulator, and project manager.  

The MPLAB IDE features the following: 

• MPLAB Project Manager  

 Organizes the different files under one 'project'  

 Interfaces between the editor, assembler, linker, and simulator 

• MPLAB-SIM Software Simulator  

 Features debug capabilities: unlimited breakpoints, trace, examine/modify 

 registers, watch variables and time-stamp  

 Simulates core functions and peripherals  

• MPLAB Editor  

 Programmer’s editor to write and edit source files  

• MPASM Universal Assembler  

 Has macro capabilities, conditional assembly  

 Builds the HEX file (machine language) 

 

The most important component of the IDE is the integrated software 

simulator, which allows a designer to trace through their assembly code and watch 

the registers, RAM, ROM, and I/O ports. 

3.3 MPASM 

MPASM is a DOS or Windows-based PC application that provides a platform 

for developing assembly language code for PICmicro microcontroller (MCU) 

families. Generically, MPASM will refer to the entire development platform 

including the macro assembler and utility functions. 



 55

MPASM provides a solution for developing assembly code for all of 

Microchip’s 12-bit, 14-bit, 16-bit, and enhanced 16-bit core PICmicro 

microcontrollers. Notable features include: 

• All PICmicro MCU Instruction Sets 

• Command Line Interface 

• Command Shell Interfaces 

• Directive Language 

• Flexible Macro Language 

• MPLAB Compatibility 

3.3.1 Overview of Assembler 

MPASM can be used in two ways: 

• To generate absolute code that can be executed directly by a microcontroller. 

• To generate object code that can be linked with other separately assembled or 

compiled modules. 

Absolute code is the default output from MPASM. This process is shown in 

Figure 3.1. 

When a source file is assembled in this manner, all values used in the source 

file must be defined within that source file, or in files that have been explicitly 

included. If assembly proceeds without errors, a HEX file will be generated, 

containing the executable machine code for the target device. This file can then be 

used in conjunction with a device programmer to program the microcontroller. 

 

 
Figure 3.1 Generating Absolute Code 

 

 



 56

MPASM also has the ability to generate an object module that can be linked 

with other modules using Microchip’s MPLINK linker to form the final executable 

code. This method is very useful for creating reusable modules that do not have to be 

retested each time they are used. Related modules can also be grouped and stored 

together in a library using Microchip’s MPLIB Librarian. Required libraries can be 

specified at link time, and only the routines that are needed will be included in the 

final executable. 

 

A visual representation of this process is shown in Figure 3.2 and Figure 3.3. 

 

 

Figure 3.2 Creating a Reusable Object Library 



 57

 
Figure 3.3 Generating Executable Code from Object Modules 

3.3.2 Assembler Input/Output Files 

These are the default file extensions used by MPASM and the associated 

utility functions. 

Table 3.1  MPASM Default Extensions 

 



 58

3.3.2.1 Source Code Format (.ASM) 

The source code file may be created using any ASCII text file editor. It 

should conform to the following basic guidelines. 

Each line of the source file may contain up to four types of information: 

• labels 

• mnemonics 

• operands 

• comments 

The order and position of these are important. Labels must start in column 

one. Mnemonics may start in column two or beyond. Operands follow the 

mnemonic. Comments may follow the operands, mnemonics or labels, and can start 

in any column. The maximum column width is 255 characters. 

Whitespace or a colon must separate the label and the mnemonic, and the 

mnemonic and the operand(s). Multiple operands must be separated by a comma. 

- Labels 

A label must start in column 1. It may be followed by a colon (:), space, tab 

or the end of line. 

Labels must begin with an alpha character or an under bar ( _ ) and may 

contain alphanumeric characters, the under bar and the question mark. 

Labels may be up to 32 characters long. By default they are case sensitive, 

but case sensitivity may be overridden by a command line option. If a colon is used 

when defining a label, it is treated as a label operator and not part of the label itself. 

- Mnemonics 

Assembler instruction mnemonics, assembler directives and macro calls must 

begin in column two or greater. If there is a label on the same line, instructions must 

be separated from that label by a colon, or by one or more spaces or tabs. 

- Operands 

Operands must be separated from mnemonics by one or more spaces, or tabs. 

Multiple operands must be separated by commas. 



 59

- Comments 

MPASM treats anything after a semicolon as a comment. All characters 

following the semicolon are ignored through the end of the line. String constants 

containing a semicolon are allowed and are not confused with comments. 

3.3.2.2 Listing File Format (.LST) 

The listing file format produced by MPASM is straight forward: 

The product name and version, the assembly date and time, and the page 

number appear at the top of every page. 

The first column of numbers contains the base address in memory where the 

code will be placed. The second column displays the 32-bit value of any symbols 

created with the SET, EQU, VARIABLE, CONSTANT, or CBLOCK directives. The 

third column is reserved for the machine instruction. This is the code that will be 

executed by the PICmicro MCU. The fourth column lists the associated source file 

line number for this line. The remainder of the line is reserved for the source code 

line that generated the machine code. 

Errors, warnings, and messages are embedded between the source lines, and 

pertain to the following source line. 

The symbol table lists all symbols defined in the program. The memory usage 

map gives a graphical representation of memory usage. ‘X’ marks a used location 

and ‘-’ marks memory that is not used by this object. The memory map is not printed 

if an object file is generated. 

3.3.2.3 Error File Format (.ERR) 

MPASM by default generates an error file. This file can be useful when 

debugging the code. The MPLAB Source Level Debugger will automatically open 

this file in the case of an error. The format of the messages in the error file is: 

<type>[<number>] <file> <line> <description> 

For example: 

Error[113]  C:\PROG.ASM  7 : Symbol not previously defined (start) 

 



 60

3.3.2.4 Hex File Formats (.HEX, .HXL, .HXH) 

MPASM is capable of producing different hex file formats. 

3.3.2.5 Symbol and Debug File Format (.COD) 

When MPASM is used to generate absolute code, it produces a COD file for 

use in MPLAB debugging of code. 

3.3.2.6 Object File Format (.O) 

Object files are the relocatable code produced from source files. 

3.3.3 MPLAB Projects and MPASM 

MPLAB projects are composed of nodes (Figure 3.4). These represent files 

used by a generated project. 

• Target Node – Final Output 

   - HEX File 

• Project Nodes – Components 

   - Assembly Source Files 

 

 

Figure 3.4 Project Relationships – MPASM 

Projects are used to apply language tools, such as assemblers, compilers and 

linkers, to source files in order to make executable (.HEX) files. This diagram shows 

the relationship between the final .HEX file and the component .ASM files used to 

create it. 

 



 61

3.3.4 Directive Language 

Directives are assembler commands that appear in the source code but are not 

translated directly into opcodes. They are used to control the assembler; its input, 

output, and data allocation. 

There are five basic types of directives provided by MPASM: 

• Control Directives – Control directives permit sections of conditionally assembled 

  code. 

• Data Directives – Data Directives are those that control the allocation of memory 

  and provide a way to refer to data items symbolically, that is, by meaningful names. 

• Listing Directives – Listing Directives are those directives that control the MPASM 

  listing file format. They allow the specification of titles, pagination, and other 

  listing control. 

• Macro Directives – These directives control the execution and data allocation 

  within macro body definitions. 

• Object File Directives – These directives are used only when creating an object file. 

3.4 IC-PROG 

3.4.1 General 

IC-Prog is a Windows based software to control a development programmer 

for PIC microcontrollers. It is used to send the .HEX file to the MCU.  

In order for this software to operate a programmer has to be attached to the 

computer and hardware and software have to be set up appropriately.   

The main area of IC-Prog shows the information that needs to be 

programmed into the specified device. All devices at least have a Code area where 

information can be stored. Devices like EEPROMs only have this Code area. 

Other devices like most microcontrollers have additional storage areas, like 

the Data area. Normally the Code area contains code that will be executed by the 

microcontroller and the data area contains some fixed data like tables for calculating 

etc. 

Most microcontrollers, like PIC, have a Configuration area as well. This 

configuration information will configure the microcontroller with some initial 



 62

settings at bootup. This configuration information is different and unique for each 

microcontroller. 

3.4.2 Main View 

IC-Prog intends to display the information in all areas in such a way, that it is 

easy to see what the information means. The Code and Data area will display the 

information in hexadecimal values and character values: The left part of the Code 

and Data area contains the address on which the information is stored. The middle 

part contains the information in hexadecimal values and the right part contains the 

SAME information, but displayed in character values. 

 

 
Figure 3.5 Main View of IC-Prog 

3.4.3 Code Area 

Each row in the Code area will display 8 words. So each row the address will 

be incremented with 8. A word is normally 16 bits wide so IC-Prog will show 0000 



 63

to FFFF as a hexadecimal value. Some devices only have 14 bit, 12 bit or 8 bit 

words, so the maximum hexadecimal value will be 3FFF, 0FFF or 00FF, but IC-prog 

will always display a hexadecimal value using 4 digits. The character values only use 

the lower 8 bits of the 16 bit data word, because the standard character range only 

runs from 0 to 255 (8 bits). (Figure 3.5) 

3.4.4 Data Area 

Each row in the Data area will also display 8 words, but these words are by 

default always 8 bits. They will always be displayed as 2 digit hexadecimal words 

with a minimum of 00 and a maximum of FF. (Figure 3.5) 

3.4.5 Configuration Area 

The configuration area of device will be shown with drop down combo boxes 

and checkboxes. The user can select the desired configuration, and IC-Prog will 

calculate the according configuration word. This calculated configuration word is 

also displayed at the bottom of the configuration area. 

These configuration elements are device specific, and so this configuration 

area will look different for each selected device.  

Often a specific configuration element can only be enabled or disabled. This 

results in IC-Prog calculation a zero for a specific bit in the configuration word or a 

one. This can be the other way around if a specific configuration element is inverted 

inside the device. IC-Prog automatically inverts a configuration element if this is 

needed. To enable a configuration element, a mark is placed in the checkbox. To 

disable a configuration element, the mark is removed from a checkbox. 

Some devices have so much configuration elements; the configuration area 

cannot contain them all. Then IC-Prog will create a second (or a third) configuration 

area, which user can select by using the arrows in the upper right corner of this area. 

If a device has only 1 configuration area, then these arrows will be disabled.  

When user selects a device from the menu, IC-Prog will automatically 

determine the device type and adjust the main view. All devices have a Code area at 

least, so this part of the main view is always visible. Some devices (like EEPROMs) 

do not have a Data area, so IC-Prog will not show this area. Instead it will extend the 

Code area to get a full view. Some devices also don’t have configuration 



 64

information, and IC-Prog will leave it blank. Only the checksum value will be 

visible. 

3.5 PROPIC II 

Propic II is one of the hardware alternatives that is used to transfer the code to 

MCU. It operates with a software like IC-Prog. 

 



 65

 
 
 
 
 

CHAPTER 4  

 
 

THE CONTROL UNIT 

HARDWARE AND SOFTWARE 

 

 

4.1 GENERAL 

In this thesis study, a multi-purpose programmable control unit is designed 

and implemented. The Microchip’s PIC 16F877 is used as a microcontroller and the 

program of the controller is written in Assembly language. 

MPLAB Editor is used for writing the source code. This source code is saved 

as .asm file. Then this .asm file is compiled and converted to .hex file (machine code) 

by using MPASM. The source code of the program is included in this document as 

attachment. 

The hardware of the unit is composed of MCU Unit, Relay Board, Keypad, 

LCD Display and a clock generator. 

Power input and clock generator which produce clock signals in two different 

frequencies, are on a board. Microcontroller is on the board that is connected to 

Keypad and LCD. Ten relays, the outputs, are on another one. 

 

 

 



 66

4.2 THE OPERATION OF THE DEVICE 

In this control unit, there are four inputs:  

• Clock Signal Input 

• U/D (Up/Down) Signal Input 

• Index (External Reset) Input 

• Keypad 

The outputs are the ten relays and LCD Display. 

This controller counts the clock signals coming to its interrupt input and it 

displays them on the LCD. When it reaches the values saved before, the 

corresponding relay is activated and the LED for this relay is ON. 

With the coming clock signals, the counter increases. If U/D input goes to 

down (0), the counter decreases with the clocks. This feature was developed for that 

the device may be connected to a position sensor or another device generating these 

two signals; clock and U/D. U/D signal refers to two opposite movement direction.  

The ten relays are activated in order. So the operating times must be in order. 

That is firstly relay A is activated and then B, C…. The time and the status of the 

next relay to be operated are displayed on the LCD. 

The other feature of the device is that relays can be wanted to be ON 

continuously or ON until the next relay operation. In other words the status of relays 

may be temporary or continuous. 

The above mentioned external reset input can be used at the end of the 

operation. The other alternative is that to operate the device periodically, this input 

can be connected to one of the relays. For example for the cable tests that will be 

mentioned in the next chapter, it must be run periodically and so one of the relay is 

connected to external reset. This will be explained in the next chapter in detail. 

4.2.1 Read Mode 

The controller allows the user to read and to change the operating times of the 

relays. If the (*) key is pressed on the keypad, the device wants from the user to enter 

the relay number. After pressing the number, associated relay time and status is 

displayed on the LCD. This is the read mode. 

 



 67

4.2.2 Edit Mode 

On the other hand, if (#) is pressed, again the relay number is wanted from 

the user. After entering the number, the user must enter a valid operating time for the 

relevant relay. This value has to be higher than the previous relay and lower than the 

value of the next relay. The maximum number of signals the device can count is 

999.999. And the last step for this write mode is to enter the status of the relay. This 

status can be continuous or temporary. If “0” is pressed the status of the relay is 

continuous, if “1” is pressed it is temporary. 

4.3 DESCRIPTION OF THE SOFTWARE 

The program of the device is written in assembly language and it can be 

examined part by part. It includes interrupt service routines, procedures and main 

routine.  

4.3.1 The Beginning of the Program 

In the beginning of the program, the microcontroller which is 16F877 is 

declared by using the LIST directive and the format of the .hex file is chosen as Intel 

hex format. This format produces one 8-bit hex file with a low byte, high byte 

combination. Since each address can only contain 8 bits in this format, all addresses 

are doubled. This file format is useful for transferring PICmicro series code to 

programmers. 

With the CONFIG directive, the configuration bits are set. In the program 

PWRT and BODEN are set as ON, the others are set to OFF. 

At the second part, the addresses of the registers and the ports are defined.  

4.3.2 ISR Interrupt Service Routine 

At the ISR Interrupt Service Routine, the values of the W and STATUS 

registers are saved for normal program flow, so the MCU may continue without 

error. PortD is saved for correct key input routines. Key input routines may be 

interrupted, so saving of PortD is vital. 



 68

 

Figure 4.1 Flow Chart of the ISR Interrupt Service Routine 

4.3.3 Timer0 Interrupt Service Routine 

Timer0 Interrupt Service Routine checks if the index is on. If it is on, then 

on_index procedure is performed. If it is not on, TIMER value increments and LCD 

handler is done. When TIMER reaches to eight, relay handler is called. This is to 

satisfy that about four relays refresh cycle corresponds to one complete LCD refresh 

cycle. One complete LCD refresh cycle is completed about 30-40 LCD handler 

routines. 

LCD refresh and relay refresh are put into interrupt service routine. The 

temporary registers of LCD and relays are loaded within the execution cycles so no 

delays occur while refreshing LCD. One character is send every Timer0 interrupt and 

Y

Y

PortD and W, STATUS 
reg. saved 

Clock interrupt ? Clock int. 
isr 

Timer interrupt ? T0 int. 
isr 

restore 
PortD, W and STATUS 

end isr

N

N



 69

the time for “LCD to execute the command” is used for normal program execution of 

MCU. 

 
  

Figure 4.2 Flow Chart of the T0 Interrupt Service Routine 

4.3.4 On Index Procedure 

On index is a position that the device stays at ‘zero’ condition and does not 

count. 

In the on_index procedure:  

• Count is reset to ‘000000’. (Count_lo, Count_md and Count_hi registers) 

• Comparison index is reset. (Comp Index register) 

• Comparison value is reset. (Comp_lo, Comp_md and Comphi registers) 

• All relays are reset (Switch_hi and switch_lo registers) 

• The first comparison value is loaded (by calling load_comp_val procedure) 

N 

Y

N 

YOn index ? DO 
on_index 
procedure 

Relay 
handler 

Increment Timer 
if 8?

LCD 
handler 

clear 
TIMER 



 70

4.3.5 Load Compare Value Procedure 

In this device, all relay switching values are not compared every time. Only 

the operating time value of the relay which is coming after the last switched relay is 

compared. So the switching time values of the relays must be from smallest to largest 

for proper execution. Comp_index register is used to determine to know which relay 

will be switched next. 

 

This procedure loads the current comparison values to previous registers: 

COMP_XX                   PREV_XX 

Then new comparison values are loaded from EEPROM. 

 

Table 4.1  EEPROM Organization 

HI MD LO STATUS COMP INDEX 

0x00 0x01 0x02 0x03 0 

0x04 0x05 0x06 0x07 1 

0x08 0x09 0x0A 0x0B 2 

0x0C 0x0D 0x0E 0x0F 3 

0x10 0x11 0x12 0x13 4 

0x14 0x15 0x16 0x17 5 

0x18 0x19 0x1A 0x1B 6 

0x1C 0x1D 0x1E 0x1F 7 

0x20 0x21 0x22 0x23 8 

0x24 0x25 0x26 0x27 9 

 

 

In the Table 4.1, addresses of switching values of the relays and their status 

(continuous or temporary) data can be shown. 16 values are found in EEPROM but 

the first ten is directed to relays. 

 
 
 
 



 71

4.3.6 Relays Handler Procedure 

This procedure loads the status of the relays to hardware. 

 

- - - 9 8 7 6 5  - - - 4 3 2 1 0
bit7                                                   bit0                     bit7                                                  bit0               

       SWITCH_HI           SWITCH_LO 

4.3.7  LCD Handler Procedure 

LCD Handler work is divided into the sections. At each Timer0 interrupt, one 

of the sections is carried out. LHCOUNT register saves the number of the step of the 

routine. According to this variable, corresponding section is executed. 

 

 
 

Figure 4.3 Flow Chart of the LCD Handler 

Check LHCOUNT 
Go to the proper line

initialization section 

” 

” 

Write buffer to LCD 

Count refresh 

Clear LHCOUNT 

increment 
LHCOUNT



 72

Initialization sections are used to make LCD ready for data write. After 

initialization, the display data buffer DDxx registers are transferred. Then, the count 

is refreshed that means the actual count value is loaded to display data buffer and at 

last LHCOUNT is cleared, so the process starts from the first step. 

In the LCD handler routine, data or command is loaded to W register, then 

related subroutine is called: 

• bit_8_load → 8 bit command sending routine 

• bit_4_load → 4 bit command sending routine 

• disp_load → 4 bit data sending routine 

• refr_count → Transfers count value to DD01…DD06 

4.3.8 Clock Interrupt Service Routine 

This is the interrupt routine for the pin RB0. RB0 is the clock input of the 

controller. This routine checks if on index, else counts up or down according to 

direction. Then it compares the switching values of the relays. If the limit value is 

reached, it loads the new data to compare registers and relays. 

In the figure 4.4, the flowchart of the clock interrupt service routine is shown. 

• Check direction checks the direction input of the device which is RB1 pin. 

• Increase or decrease count modifies the COUNT_HI, COUNT_MD and 

  COUNT_LO registers 

 

      COUNT_HI       COUNT_MD        COUNT_LO 
upper 4  lower 4  upper 4  lower 4  upper 4  lower 4 

100 
thousands 

10 
thousands 

 thousands hundreds  tens ones 

 

• Compare is done between COUNT_xx and COMP_xx registers. 

• Setting of relays is performed according to COMP INDEX, reset is done according 

to COMP INDEX – 1 and PREV_ST registers. Modifications are done on 

SWITCH_HI and SWITCH_LO registers. Then ISR sends them to the hardware. 

• The loading new comparison values increases the COMP_INDEX that is the relay 

number to be compared and loads values to COMP_xx registers. The previous 

comparison values saved in PREV_xx registers. 



 73

• COMP_ST and PREV_ST registers hold the data that the relay is temporary or 

continuous. 

 

Figure 4.4 Flow Chart of the Clock Interrupt Service Routine 

 

equal

Not equal

do on index 
procedure 

check 
direction

on index? 

decrease 
count 

increase 
count 

compare 
if equal

set actual relay and disable 
previous relay if temporary

load new comparison 
values

Y

N

UP DOWN 



 74

4.3.9  Main Routine 

 
Figure 4.5 Flow Chart of the Main Routine 

Y

N

initialize registers 

initialize ports 

initialize interrupts 

next_rel 

if read mode?

msg_swnum 

get number 

get read val 

put read val 

delay 

to if edit mode to if edit mode 



 75

 
Figure 4.5 Flowchart of the Main Routine (continued) 

 

 

Y

if edit mode?

msg_swnum 

get relay number 

get limit and status 

if limit 
valid? 

msg limit err write limit 

msg write ok 

delay 

YN

to next relay 
N



 76

4.3.9.1 Read Mode 

If the key (*) is pressed by keypad, the device enters the read mode and wants 

from the user the relay number. Get number procedure takes this value to 

EDIT_NUM register. Then according to EDIT_NUM, data is loaded from the 

EEPROM and send to LCD buffer. 

4.3.9.2 Edit Mode 

If the (#) key is pressed, this is the edit mode for the controller. In this 

condition Zero bit of the STATUS register is set. The device waits till a number key 

is pressed, then return in W. The limit numbers are saved to TEDIT1…TEDIT6 and 

relay status is saved to TEDITST register, if the limit is valid. 

4.4 HARDWARE OF THE CONTROLLER UNIT 

The hardware of the unit is composed of the MCU Unit, Relay Board, Power 

Supply, LCD Display, Keyboard and Clock Generator.  

4.4.1 MCU Unit 

The MCU Board includes the controller PIC 16F877 and connections to all 

other hardware units. 

• The clock input of the device is RB0 pin on the PIC. This is logic ‘0’ as default, if it 

goes to ‘1’, interrupt service routine starts. 

• RB1 pin is the direction input. It is logic ‘1’ and counter increments. When it goes 

to ‘0’, counter decrements. 

• RB2 is the index (or external reset) input. It is ‘0’, otherwise reset occurs. 

• The Vss or Ground pins of the controller are 31 and 12. VDD or power inputs to 

controller are 11 and 32. 

• RD4 (Fourth pin of the Port D) is reserved for LCD command and RD6 is reserved 

for relay latch. 

• Master Clear (MCLR) is ‘1’ normally. This pin is an active low Reset to the device. 

If this reset occurs, the values in the registers return to default. Some of them take 

random values. 



 77

 
Figure 4.6 Circuit Diagram of the MCU 



 78

• Crystal is used to generate the clocks for the controller. Since this crystal produce 

clock of frequency 20 MHz, five million instructions are executed in one second. 

• C4 capacitor is connected to filter the noise. 

• D1 green led is for ON/OFF indicator. 

• Ports A, C and E is free. The Port A has the A/D converter.  

4.4.2 Relay Board 

The relay board has ten relays which are the outputs of the controller unit. To 

indicate the relay operation, ten leds are used. This board also includes two shift 

registers.  

 

 
Figure 4.7 Circuit Diagram of the Relay Board 

 



 79

• The power supplies of the shift registers are not shown in the circuit.  Pin 16 is +5V 

and pin 8 is Ground. 

• The values in the SWITCH_HI and SWITC_LO registers are loaded to shift 

registers firstly. Then by giving a latch input, datas are transferred to relays. 

• If the logic ‘1’ comes to the relay, transistor operates and contact is closed. 

4.4.3 LCD Display 

The LCD in this unit is 1x24 and HD44780U compatible. 

• LCD has 11 pins, 8 pins for data and 3 for control. 

• 6 pins of 11 are used in this unit.  

• Since the device only writes to LCD, do not read from, R/W pin is connected to 

   ground. 

• LCD Display can be loaded as 4bit plus 4bit in two times or 8bit in one time. In this 

device, it is loaded as 4bit-4bit to use less number of ports. 

• The R8 resistor is used for setting the contrast of the LCD. 

• To prevent the noise resistors are used. (R2…R7) 

• The capacitors C1 and C2 are the filter for supply. 

4.4.4 Keypad 

• One of the keyouts from the microcontroller is done logic ‘1’. The others are ‘0’. If 

a key is pressed, one of the RB4, RB5 and RB6 is activated. In other words, 

controller reads from keypad in row by row. 

• The reason of using the diodes is to prevent the short circuit in case pressing two 

keys in different rows at the same time. 

• R1, R2 and R3 resistors are used to accelerate the response. 



 80

 

Figure 4.8 Circuit Diagram of the LCD Module 

 



 81

 

Figure 4.9 Circuit Diagram of the Keyboard 

4.4.5 Power Supply and Clock Generator 

• The two 7805s are the voltage regulators. They are used to provide 5 V. 

• One of the regulators is free. If a battery is needed, this regulator can be used. In 

this case, relay board is connected to OUT port of it. So, the battery supplies only 

MCU. 

• Timer 555 is a clock generator. It produces clocks in two different frequencies. If 

the switch is closed, capacitance increases. Increasing capacitance results in low 

frequency. 

 



 82

 
Figure 4.10 Circuit Diagram of the Power Supply 



 83

 

 

CHAPTER 5  

 

APPLICATIONS OF THE CONTROL UNIT: 

POWER CABLE ACCESSORIES TESTS AND 
ELECTRO DISCHARGE MACHINING 

 

 
The two applications of the control unit implemented in this study are the 

automation of the power cable accessories tests and electro erosion machining. In 

these processes, switching of some devices is required. Ten output relays are 

employed in the unit for this operation. Clock signals are prodeced by internal Timer 

555. Microcontroller counts these signals and activates the outputs in order.  

For some applications, the periodic operation is needed. This is done easily 

by using this controller. To achieve it, one of the outputs is used to reset the 

microcontroller. The others are set to proper operating times.  

The power cable accessories tests which are described herewith are Thermal 

Cycling Test and Screen Fault Current Initiation Test. Methods for these tests are 

specified for accessories for extruded insulation cables. 

5.1 Thermal Cycling Test 

5.1.1 Installation 

The arrangement for test in air shall be as shown in the figure. For the thermal 

cycling in water, terminations or separable connectors must be installed in a 

container to have a water level 1 m above the all accessories. 



 84

 
Figure 5.1 Terminations tested in air  

 

 

 
Figure 5.2 Joints tested in air  

5.1.2 Method of the Test 

Each thermal cycle in air or in water shall be of 8 hours duration with at least 

2 hours at a steady temperature: 

• 5 K to 10 K above the maximum cable conductor temperature in normal operation 

for extruded insulation cables. 

• 0 K to 5 K above the maximum cable conductor temperature in normal operation 

for paper insulated cables 

0,5  m0,5  m 
Thermocouple Thermocouple 

0,5  m 0,5  m 
Thermocouple Thermocouple 



 85

followed by at least 3 hours of natural cooling to within 10 K of ambient 

temperature. 

The test assemble shall be subjected to the required number of thermal cycles, 

energized at the voltage given in the relevant standard. 

 
Figure 5.3 Thermal Cycle  

5.1.3 Immersion test for outdoor terminations 

This test shall replace the last ten cycles of the thermal cycling test in air, 

thereby keeping the total number of cycles the same for all accessories. 

5.1.3.1 Installation 

Two terminations of a test loop shall be immersed in water at ambient 

temperature with a height of water of 0,03 m above every part of the termination. 

The test loop shall be installed upside down in a water tank, at ambient temperatures, 

in such a way that the terminations are fully immersed in water, including the end of 

the sealing element. 

 

 

 

N
 

Beginning 2 hours min. 3 hours min.

8 hours total 

Ambient 

Specified 
Temp. 

Heating Period Cooling period
Temperature 

Time 



 86

5.1.3.2 Method 

The test loop shall be subjected to ten cycles under the thermal conditions of 

sub-title 5.1.2 of this chapter.  The test loop shall not be energized. 

5.1.4 Automation method with the control unit  

In the thermal cycling test, we need four relays for automation. Two of them 

are connected to contactors which control the devices used for heating. The first and 

second relays open or close the contactors. The loaded values and the statuses which 

determine the operating time of the relays are as follows: 

 

- First relay  : operates at   81120 signals and the status is continuous. 

- Second relay : operates at   81121 signals and the status is temporary. 

- Third relay : operates at 101400 signals and the status does not matter. 

- Fourth relay : operates at 162240 signals and the status does not matter. 

 

The Timer 555 in the control unit can produce clock signals in two different 

frequencies. The slower one is used in this application. 338 signals are sent to 

microcontroller in one minute.  

The first two relays are set to 81120 and 81121, so 81120 : 338 = 240 minutes 

= 4  hours. After this period, two devices connected to these relays operate for 

heating. (Beginning period in Figure 5.3 starts). One hour later third relay operates 

and second one is deactivated due to its temporary status. So, one heating device left 

for keeping temperature constant. (The second part of the Figure 5.3 starts). After 

three hours the fourth relay is activated and the cooling period starts. The fourth relay 

is connected to external reset input of the unit. This resets the unit and operation goes 

on periodically. 

5.2 Screen Fault Current Initiation Test 

The purpose of this test is; 

a) In the case of a solidly earthed system, to demonstrate the ability of the separable 

connector screen to initiate a fault to earth which produces sufficient current to 

operate the circuit protection, should the insulation fail. 



 87

b) In the case of an unearthed or impedance earthed system, to demonstrate that a 

separable connector, which has failed, can be clearly recognized as being faulty. 

 

The test is applicable only to screened separable connectors and shall be 

carried out with the connectors installed as in service. 

The test for screened separable connectors with a metal housing is under 

consideration. 

5.2.1 Installation 

A separable connector shall be assembled on a cable in accordance with the 

manufacturer’s instructions. All parts of the separable connector which are normally 

earthed shall be connected to the cable screen, including the bushing screen. 

For testing separable connectors used in solidly earthed systems, the faulting 

rod shall be of erosion resistant metal, approximately 10mm in diameter, threaded at 

one end to engage the accessory metal connector through a drilled hole. The rod shall 

be in contact with the inner and outer screens and shall not protrude beyond the outer 

screen surface. 

Test arrangement for screen fault current initiation test for separable 

connectors used in unearthed systems or impedance earthed systems, the faulting rod 

shall be replaced by a copper wire of approximately 0.2 mm diameter. The wire shall 

be in contact with the inner and outer screens and shall not protrude beyond the outer 

screen surface. 

5.2.2 Method 

5.2.2.1 Solidly Earthed System 

The test shall be carried out at ambient temperature. The circuit shall be 

adjusted to impose the separable connector phase to earth voltage Uo on the test 

specimen and a short circuit current of 10 kA r.m.s. The test specimen shall be 

subjected to two tests that cause initiation of a fault current arc to earth, each 

operation having a minimum current flow duration of 0,2s. Between the two tests, 

the test sample shall be allowed to cool to a temperature less than 10 K above its 

temperature prior to the first test. 



 88

5.2.2.2 Unearthed or Impedance Earthed System 

The test shall be carried out at ambient temperature. The circuit shall be 

adjusted to impose the separable connector phase to earth voltage Uo on the test 

specimen and a short circuit current of at least 10 A. 

The current for the short-circuit test is to be determined taking into account 

the actual short-circuit conditions of the network. 

The test voltage and current shall be recorded continuously during the entire 

period. The sequence of the test shall be as follows: 

1. Voltage switched on for 1 s 

2. Voltage switched off for 2 min 

3. Voltage switched on for 2 min 

4. Voltage switched off for 2 min 

5. Voltage switched on for 1 min 

6. Voltage switched off 

5.2.3 Automation method with the control unit 

To carry out this test for unearthed or impedance earthed system, the 

operating times and statuses of relays are as follows: 

 
- First relay  : operates at     1 signal and the status is temporary. 

- Second relay : operates at     7 signals and the status is temporary. 

- Third relay : operates at 683 signals and the status is temporary. 

- Fourth relay : operates at 1359 signals and the status is temporary. 

- Fifth relay : operates at 2035 signals and the status is temporary. 

- Sixth relay : operates at 2373 signals and the status is temporary. 

 

The relays are connected in parallel to control the contactor. With the first, 

third and fifth relays the voltage switched on and other relays are for switching off. 

Six signals come from Timer 555 in one second. So the sequence of test mentioned 

in previous pages is achieved. 

 

 



 89

5.3 Electro Erosion Machining 

5.3.1 Introduction 

Electric Discharge Machining (EDM) is a metal removal process where two 

electrodes are used to produce a spark in a dielectric liquid medium. The cathode 

(negative electrode) is the workpiece itself and the anode (positive electrode) is the 

tool, shaped with the inverse of the detail required. The two electrodes never actually 

come in contact and a small gap is maintained between them at all times by servo 

control. The two electrodes are submerged in a dielectric fluid, which allows a path 

for the electric discharge to be made, cools the tool and workpiece and removes the 

waste products. The resistance of the dielectric fluid is important in producing a 

stable operating mode since it affects the sparking conditions. 

The discharges are produced by a D.C. power supply, which is connected to 

the two electrodes. Thermal energy is produced in the form of localised heat and the 

temperature reaches approximately 12000°C, which is sufficient to melt and vaporise 

almost all metals and alloys. Thousands of discharges occur each second, each 

removing a small particle from the workpiece, and hence the area under the tool is 

gradually eroded. Of course, the tool is also eroded like the workpiece as tool 

material is also subjected to the intense heating. However this is minimized by 

selecting a proper tool material and also the correct polarity and duration of spark 

voltage. Tool wear is measured as the percent ratio of tool material removed to 

workpiece material removed and this can vary greatly depending on tool and 

workpiece materials used - from about 1 to 1/1000.  

Below is a simplified diagram of the basic EDM process 

 

Figure 5.4 Diagram of the EDM process 



 90

 

Common materials used for the electrodes are graphite, copper and copper 

tungsten as these are good conductors with high melting point. Example of dielectric 

fluid is hydrocarbon oils. 

Wire EDM is another type of electric discharge machining. Rather than using 

a large electrode, wire EDM used a long thin electrode (usually brass wire) which is 

constantly being renewed to produce the sparks. This avoids the effects of the wear 

in the tool as it is used. Otherwise this process is exactly the same as EDM. It can 

machine to an accuracy of ±0.002 inches. Figure 5.5 shows a simplified diagram of 

the wire EDM process. 

 

Figure 5.5 Diagram of the wire EDM process 

5.3.2 Advantages and Disadvantages of EDM 

Advantages 

- Accuracy - EDM of all types is very accurate compared to other types of 

machining processes. 

- Flexibility - EDM can create shapes and contours that other forms of machining 

are not capable of. 

- Functionality - EDM can be used on any conductive materials whether they are 

hard or soft including metals, alloys and carbides which are to hard to machine 

using traditional methods. 



 91

- Prototyping - EDM is often used in prototyping because of the speed in which the 

designs can be changed. 

- Delicate Machining - The tool never touches the workpiece so it cannot destroy 

it. 

- Finishes - EDM can produce very fine surface finishes eliminating the need for 

grinding. 

Disadvantages 

- Cost - The tool is subjected to wear and so it may need replacing if the same 

component is to be reproduced many times. 

- Material – Only conductive materials can be machined. 

5.3.3 Automation method with the control unit 

There are four inputs in the electro erosion process. They are : 

1. Electrode gap voltage (eg. 0 – 20 Volt) 

2. Electrode mean current (eg. 0- 50 Amper) 

3. Dielectric liquid conduction (eg. 0 – 50 mA at 24 Volts) 

4. Electrode position (eg. 0 – 100 mm in 0.01 mm steps) 

 

The controlled parameters in this process are : 

1. On time 

2. Off time 

3. Electrode position 

4. Magnitude of the current 

 

At least one of these parameters (generally all of them) is changed at each 

mode variation. Ton, Toff and electrode position determine the actual frequency. 

In fixed pulse width (Ratio of On Time to Off Time), the higher of current, 

the higher the metal removal rate. However if the current value per square cm is over 

25 A, difficulty in keeping the liquid in the spark gap clean will be experienced. This 

may lead to the loss of operation stability and increased electrode wear. So when in 

small hole or small area machining, low electrode currents should be used. 

In fine machining, the current intensity and the spark duration are decreased 

gradually. Hence weak but high frequency sparks are used. 



 92

In the electro erosion process, the modes of the machine and the electrode 

position can be like that: 

    Electrode position  

1. mode  (roughing)       0 -   9.50 mm 

2. mode  (finishing)  9.50 -   9.70 mm 

3. mode  (finishing)  9.70 -   9.85 mm 

4. mode  (finishing)  9.85 - 10.00 mm 

 

In the EDM system, to change the Ton and Toff, timer capacitances are added 

to the timer circuits. Magnitude of the current can be increased by adding parallel 

resistors. Peak value of the electrode current decreases for example from 20 Amper 

to 1 Amper with the changing mode from 1 to 4. At the same time, Ton changes from 

2000 µs to 20 µs and Toff chages from 500 µs to 10 µs. 

To automate the electro discharge machining process with the control unit, a 

linear decoder at z-axis can be used. The position of the electrode changes and the 

clock signals are sent to the controller. The unit counts these signals to know where 

the electrode is. The movement resolution which can be controlled is 0.01 mm.  

 

Table 5.1  Sample values of the parameters in EDM process 

Mode Ton (µs) Toff (µs) Servo (V) Gap (mm) Current Intensity (A) 

1 2000 500 1.35 0.100 20 

2 200 100 1.40 0.080 5 

3 50 20 1.45 0.070 2 

4 20 10 1.50 0.050 1 

 

The controller switches the electro erosion machine according to electrode 

position and the mode is changed from roughing to finishing. The change of the 

parameters may be as in the Table 5.1.  

 

 

 



 93

 
 

 

CHAPTER 6  

 

CONCLUSIONS 
 

 

In this thesis, a control unit is designed, implemented and programmed to 

automate the long term processes which involve cyclic adjustment of a number of 

parameters. In the present study, this unit was applied to control high voltage power 

cable accessory tests. 

To achieve this objective, alternatives for control systems are investigated. 

Using timing relays are higher in cost and size. They are not flexible for 

programming, variations and future developments. 

A microcontroller is used for this project. They are used to control almost all 

automated processes. A microcontroller can be used to perform almost any function. 

It is small, relatively cheap and reliable. More importantly replacing it with a similar 

system built from discrete components would involve a very difficult and complex 

design task; an enormously complex, very large and unreliable electronic system, and 

a lot of maintenance. 

All the systems that are built or investigated using discrete components have 

their function decided by the connections between the various components. They are 

hard wired; their function can be changed by rewiring them. 

As in this project, a programmable system such as a microcontroller however, 

can have its function changed without changing any of its connections. To 

communicate with the microcontroller, instructions must be given it so that it can 

function properly. 

Using PICs can make the products more flexible. Their features are 

programmed into the chip, not built into electronic hardware, so they can be 



 94

developed and changed quickly and easily. A simple change to the PIC program can 

achieve what is required without the need to alter any of the components on the 

board. 

The main disadvantage of PICs is that they have only a very low power 

output, of a few milliamps. They therefore require interfacing to drive higher current 

loads. 

The microcontroller employed in this device uses reprogrammable “flash 

memory” which can be written and rewritten to with ease. This is a very important 

feature. It has a maximum frequency of 20 MHz, causing execution time for one 

instruction is 200 ns and therefore it executes 5.000.000 instructions in a second. 

High operating speed is one of the main characteristic of the microcontroller which is 

an advantage while counting high frequency clock signals and refreshing LCD 

display. 

The control unit implemented in this study is designed by using as few pins as 

possible of the microcontroller for future developments. Therefore, addition of 

inputs, outputs and memory devices etc. is possible. 

It is a system suitable for future improvements. The number of outputs can 

easily be increased since sixteen memory locations are reserved in the EEPROM for 

the operating times and statuses of the relays. The six more relays can be connected 

to the unit if required.  

By using additional EEPROM and software modification, various programs 

including different operating times and statuses of the relays can be saved in the 

EEPROM memory. Therefore, user calls the any program from the memory and the 

relevant operating times and statuses for relays are loaded. The user must enter only 

the program number. 

With the features mentioned in this thesis report, the application field of the 

device is diversified; it can be also used widely in industrial applications. By using 

this device for automation, there will be considerable decrease in the dependency on 

the operator attention which shall be needed only when data is loaded or changed. 

 



 95

 

 

REFERENCES 

 
[1] John B. Peatman, “Design with PIC Microcontrollers”, Prentice Hall, 1997.  

[2] Myke Predko, “Programming and Customizing PICmicro Microcontrollers”, 
McGraw-Hill, 2000. 

[3]     David W. Smith “PIC in Practice”, Newnes, 2002 

[4]     David Benson “Easy PIC’n”, Square One Electronics, 1999 

[5]     “PICmicro Mid-Range MCU Family Reference Manual”, Microchip 
Technology Inc., 1997 

[6]     “PIC16F87X Data Sheet  28/40 Pin, 8-Bit CMOS  FLASH Microcontrollers”, 

Microchip Technology Inc., 2001 

[7]     “MPLAB IDE User’s Guide”, Microchip Technology Inc., 2000 

[8]     “MPASM User’s Guide with MPLINK and MPLIB”, Microchip Technology 
Inc., 1999 

[9]     “EEPROM Memory Programming Specification”, Microchip Technology 
Inc., 2002 

[10]     David Benson, “PIC’n up the Pace”, Square One Electronics, 1999 

[11]   Carl J. Bergquist “Guide to PICmicro Microcontrollers”, Delmar Learning, 
2000 

[12]    Sid Katzen “The Quintessential PIC Microcontroller”, Springer Verlag, 
2001 

[13]     “EEPROM Memory Programming Specification”, Microchip Technology 
Inc., 2002 

[14]    Martin Bates “Introduction to Microelectronic Systems: The PIC 16F84 
Microcontroller”, Butterworth – Heinemann, 2001 



 96

[15]    “Test Methods for accessories for power cables with rated voltage from 3,6/6 
kV (Um=7,2 kV) up to and including 20,8/36 kV (Um=42 kV)” CENELEC 
Standard No. HD 628 S1 (1996) + A1 (2001) 

[16]   E. P. De Garmo, J. T. Black and R. A. Kohser “Materials and Processes in 
Manufacturing”  8th edition, Prentice Hall, 1988 

[17]  S. Kalpakjian “Manufacturing Processes for Engineering Materials” 3rd 
edition, Addison Wesley, 1997 

[18]    M. Burns “Automated Fabrication: Improving productivity in manufacturing” 
Prentice Hall, 1993 

 

 

 



 97

 

 

 

APPENDIX A 

 

THE SOURCE CODE OF THE CONTROLLER 

 

list      p=16F877;f=inhx8m ;list directive to define processor 
#include <p16F877.inc>  ;processor specific variable definitions 
__CONFIG 0x3D71  ;pwrt, boden, ON remaining fuses OFF, XT 
  
;******************************************************************************* 
 
W_TEMP  equ 0x70   ;W, STATUS and PORTD  
STATUS_TEMP  equ 0x71   ;interrupt save registers 
PORTD_TEMP  equ 0x72 
 
DATA_EE  equ 0x74   ;eeprom variables 
ADDR_EE  equ 0x75 
 
LCD_DATA_P  equ PORTD   ;lcd port definitions 
lcd_e   equ 4 
lcd_rs   equ 5 
 
TIMER   equ 0x20   ;TIMER0 isr program variable 
 
IN_PORT  equ PORTB   ;clock input port definitions 
direction  equ 1 
index   equ 2 
 
REL_PORT  equ PORTD   ;relay port definitions 
data_lo   equ 0 
data_hi   equ 1 
rel_clk   equ 2 
rel_latch   equ 6 
 
KEY_OUTPORT equ PORTD   ;keyboard port definitions 
KEY_INPORT  equ PORTB 
 
DELAY1  equ 0x21   ;delay routine variables 
DELAY2  equ 0x22 
DELAY3  equ 0x23 
LHCOUNT  equ 0x24   ;lcd handler routine counter 
 
DD01   equ 0x25   ;display data buffer 
DD02   equ 0x26   ;disp is refreshed by these 



 98

DD03   equ 0x27   ;registers by timer interrupt 
DD04   equ 0x28 
DD05   equ 0x29 
DD06   equ 0x2A 
DD07   equ 0x2B 
DD08   equ 0x2C 
DD09   equ 0x2D 
DD10   equ 0x2E 
DD11   equ 0x2F 
DD12   equ 0x30 
DD13   equ 0x31 
DD14   equ 0x32 
DD15   equ 0x33 
DD16   equ 0x34 
DD17   equ 0x35 
DD18   equ 0x36 
DD19   equ 0x37 
DD20   equ 0x38 
DD21   equ 0x39 
DD22   equ 0x3A 
DD23   equ 0x3B 
DD24   equ 0x3C 
 
SWITCH_HI  equ 0x3D   ;relays status buffers 
SWITCH_LO  equ 0x3E 
 
LD_TEMP  equ 0x3F   ;lcd data temp reg 
 
COUNT_LO  equ 0x40   ;main counter 
COUNT_MD  equ 0x41 
COUNT_HI  equ 0x42 
 
COMP_HI  equ 0x43   ;values to be compared 
COMP_MD  equ 0x44 
COMP_LO  equ 0x45 
COMP_ST  equ 0x46 
PREV_HI  equ 0x47   ;previous comparison values 
PREV_MD  equ 0x48 
PREV_LO  equ 0x49 
PREV_ST  equ 0x4A 
COMP_INDEX  equ 0x4B   ;index of relays 
TEMP_C_I  equ 0x4C   ;temp reg for index calculate 
 
LHCOUNT2  equ 0x4D   ;LCD init handler counter 
 
EDIT_NUM  equ 0x4E   ;data input variables 
TEDIT1   equ 0x4F   ;used for keyboard data input 
TEDIT2   equ 0x50 
TEDIT3   equ 0x51 
TEDIT4   equ 0x52 
TEDIT5   equ 0x53 
TEDIT6   equ 0x54 
TEDITST  equ 0x55 
 
UPPER_HI  equ 0x56   ;check limit variables 
UPPER_MD  equ 0x57 



 99

UPPER_LO  equ 0x58 
LOWER_HI  equ 0x59 
LOWER_MD  equ 0x5A 
LOWER_LO  equ 0x5B 
;******************************************************************************* 
  ORG     0x0000                ;processor reset vector 
  clrf STATUS   ;bank0 for ram 
  goto main 
;******************************************************************************* 
;interrupt service routine - saves registers and  
;restores the pre-interrupt status 
 
  ORG 0x0004 
isr  movwf W_TEMP   ;push W and STATUS and PORTD 
  swapf STATUS,W 
  clrf STATUS 
  movwf STATUS_TEMP 
  movf PORTD,W 
  movwf PORTD_TEMP   
 
  btfsc INTCON,INTF   ;check if clk 
  goto clock_int_isr 
 
  btfsc INTCON,T0IF   ;check if timer 
  goto t0_int_isr 
 
end_isr  movf PORTD_TEMP,W  ;pop pushed registers 
  iorwf PORTD,F   
  swapf STATUS_TEMP,W   
  movwf STATUS 
  swapf W_TEMP,F 
  swapf W_TEMP,W 
 
  retfie 
 
;******************************************************************************* 
;TIMER0 interrupt routine - checks if on_index then continues with 
;lcd refresh and relays status refresh 
 
t0_int_isr bcf INTCON,T0IF   ;clear interrupt flag 
 
  btfss IN_PORT,index   ;check if on index 
  goto lcd_relais 
 
  clrf COUNT_HI   ;clear count values  
  clrf COUNT_MD 
  clrf COUNT_LO 
  clrf COMP_INDEX 
  clrf COMP_HI 
  clrf COMP_MD 
  clrf COMP_LO 
  clrf COMP_ST 
  clrf SWITCH_HI   ;disable all relays 
  clrf SWITCH_LO 
 
  call load_comp_val   ;load start value of compare  



 100

 
  movlw a'-'    ;write '------' on the count 
  movwf DD01 
  movwf DD02 
  movwf DD03 
  movwf DD04 
  movwf DD05 
  movwf DD06 
   
lcd_relais incf TIMER,F   ;increase TIMER  
  btfss TIMER,3   ;till reaches 8 
  goto lcd_handler   ;if not reached do lcd work 
 
rel_handler bcf REL_PORT,rel_clk  ;load data to HC595s 
  bcf REL_PORT,data_lo  
  btfsc SWITCH_LO,4 
  bsf REL_PORT,data_lo 
  bcf REL_PORT,data_hi 
  btfsc SWITCH_HI,4 
  bsf REL_PORT,data_hi 
  bsf REL_PORT,rel_clk 
  bcf REL_PORT,rel_clk 
 
  bcf REL_PORT,data_lo 
  btfsc SWITCH_LO,3 
  bsf REL_PORT,data_lo 
  bcf REL_PORT,data_hi 
  btfsc SWITCH_HI,3 
  bsf REL_PORT,data_hi 
  bsf REL_PORT,rel_clk 
  bcf REL_PORT,rel_clk 
 
  bcf REL_PORT,data_lo 
  btfsc SWITCH_LO,2 
  bsf REL_PORT,data_lo 
  bcf REL_PORT,data_hi 
  btfsc SWITCH_HI,2 
  bsf REL_PORT,data_hi 
  bsf REL_PORT,rel_clk 
  bcf REL_PORT,rel_clk 
 
  bcf REL_PORT,data_lo 
  btfsc SWITCH_LO,1 
  bsf REL_PORT,data_lo 
  bcf REL_PORT,data_hi 
  btfsc SWITCH_HI,1 
  bsf REL_PORT,data_hi 
  bsf REL_PORT,rel_clk 
  bcf REL_PORT,rel_clk 
 
  bcf REL_PORT,data_lo 
  btfsc SWITCH_LO,0 
  bsf REL_PORT,data_lo 
  bcf REL_PORT,data_hi 
  btfsc SWITCH_HI,0 
  bsf REL_PORT,data_hi 



 101

  bsf REL_PORT,rel_clk 
  bcf REL_PORT,rel_clk 
 
  bsf REL_PORT,rel_latch  ;send loaded data to outputs 
  bcf REL_PORT,rel_latch 
 
  clrf TIMER    ;clr timer after 7 lcd cycles  
  goto end_isr    ;exec relays routine 
 
lcd_handler bcf STATUS,C   ;initializes and sends data  
  rlf LHCOUNT,W 
  addwf PCL,F 
  movlw b'00110000'   ;8 bit mode 
  goto bit_8_load 
  incf LHCOUNT,F 
  goto end_isr 
  incf LHCOUNT,F 
  goto end_isr 
  incf LHCOUNT,F 
  goto end_isr 
  incf LHCOUNT,F 
  goto end_isr 
  movlw b'00110000' 
  goto bit_8_load 
  incf LHCOUNT,F 
  goto end_isr 
  movlw b'00110000' 
  goto bit_8_load 
  movlw b'00100000'   ;4 bit mode 
  goto bit_8_load 
  movlw b'00100100'   ;func set 
  goto bit_4_load 
  movlw b'00100000'   ;func set 
  goto bit_4_load 
  movlw b'00000110'   ;entry mode 
  goto bit_4_load 
  movlw b'00001100'   ;display on 
  goto bit_4_load 
  movlw b'00010100'   ;cursor shift 
  goto bit_4_load 
  movlw b'00000010'   ;return home  
  goto bit_4_load  
  incf LHCOUNT,F 
  goto end_isr 
  movlw b'10000000'   ;set ddram address  
  goto bit_4_load 
  movf DD01,W   ;send buffer to lcd 
  goto disp_load 
  movf DD02,W 
  goto disp_load 
  movf DD03,W 
  goto disp_load 
  movf DD04,W 
  goto disp_load 
  movf DD05,W 
  goto disp_load 



 102

  movf DD06,W 
  goto disp_load 
  movf DD07,W 
  goto disp_load 
  movf DD08,W 
  goto disp_load 
  movf DD09,W 
  goto disp_load 
  movf DD10,W 
  goto disp_load 
  movf DD11,W 
  goto disp_load 
  movf DD12,W 
  goto disp_load 
  movf DD13,W 
  goto disp_load 
  movf DD14,W 
  goto disp_load 
  movf DD15,W 
  goto disp_load 
  movf DD16,W 
  goto disp_load 
  movf DD17,W 
  goto disp_load 
  movf DD18,W 
  goto disp_load 
  movf DD19,W 
  goto disp_load 
  movf DD20,W 
  goto disp_load 
  movf DD21,W 
  goto disp_load 
  movf DD22,W 
  goto disp_load 
  movf DD23,W 
  goto disp_load 
  movf DD24,W 
  goto disp_load 
  incf LHCOUNT,F   ;after write refresh count 
  goto refr_count 
 
  incf LHCOUNT2,F   ;init at every 32 lcd_rout 
  btfsc LHCOUNT2,5 
  goto $+4 
  movlw d'14'    ;data refresh start index 
  movwf LHCOUNT 
  goto end_isr 
  clrf LHCOUNT2 
  clrf LHCOUNT 
  goto end_isr 
 
bit_8_load bcf LCD_DATA_P,lcd_rs  ;8bit command routine for lcd 
  movwf LCD_DATA_P 
  bsf LCD_DATA_P,lcd_e 
  nop 
  nop 



 103

  bcf LCD_DATA_P,lcd_e 
 
  incf LHCOUNT,F 
  goto end_isr 
 
bit_4_load bcf LCD_DATA_P,lcd_rs  ;4bit command routine for lcd 
  goto $+2 
 
disp_load bsf LCD_DATA_P,lcd_rs  ;4bit data routine for lcd 
   
  movwf LD_TEMP 
  movlw b'11110000' 
  andwf LCD_DATA_P,F 
  swapf LD_TEMP,W 
  andlw b'00001111' 
  iorwf LCD_DATA_P,F 
  bsf LCD_DATA_P,lcd_e 
  nop 
  nop 
  bcf LCD_DATA_P,lcd_e 
  movlw b'11110000' 
  andwf LCD_DATA_P,F 
  movf LD_TEMP,W 
  andlw b'00001111' 
  iorwf LCD_DATA_P,F 
  bsf LCD_DATA_P,lcd_e 
  nop 
  nop 
  bcf LCD_DATA_P,lcd_e 
 
  incf LHCOUNT,F 
  goto end_isr 
 
refr_count swapf COUNT_HI,W   ;refresh display count value 
  andlw b'00001111' 
  addlw d'48' 
  movwf DD01 
  movf COUNT_HI,W 
  andlw b'00001111' 
  addlw d'48' 
  movwf DD02 
   
  swapf COUNT_MD,W 
  andlw b'00001111' 
  addlw d'48' 
  movwf DD03 
  movf COUNT_MD,W 
  andlw b'00001111' 
  addlw d'48' 
  movwf DD04 
 
  swapf COUNT_LO,W 
  andlw b'00001111' 
  addlw d'48' 
  movwf DD05 
  movf COUNT_LO,W 



 104

  andlw b'00001111' 
  addlw d'48' 
  movwf DD06 
 
  goto end_isr 
 
;******************************************************************************* 
;interrupt routine for RB0 (clock input from the sensor) 
;checks if on index else counts up or down then compares switching values 
;if limit reached loads new data to comp registers and relays (switch_xx) 
 
clock_int_isr bcf INTCON,INTF   ;clear interrupt flag 
 
  btfss IN_PORT,index   ;check if on index 
  goto count_rout 
 
  clrf COUNT_HI 
  clrf COUNT_MD 
  clrf COUNT_LO 
  clrf COMP_INDEX 
  clrf COMP_HI 
  clrf COMP_MD 
  clrf COMP_LO 
  clrf COMP_ST 
  clrf SWITCH_HI 
  clrf SWITCH_LO 
 
  call load_comp_val 
 
  goto end_isr 
 
count_rout btfsc IN_PORT,direction  ;check the direction of count 
  goto inc_count 
 
dec_count movlw b'00001111'   ;decrease the count 
  andwf COUNT_LO,W 
  btfsc STATUS,Z 
  goto $+3 
  decf COUNT_LO,F 
  goto compare 
  movlw 0x09 
  iorwf COUNT_LO,F 
  movlw b'11110000' 
  andwf COUNT_LO,W 
  btfsc STATUS,Z 
  goto $+4 
  movlw 0x10   
  subwf COUNT_LO,F 
  goto compare 
  movlw 0x90 
  iorwf COUNT_LO,F 
 
  movlw b'00001111'   
  andwf COUNT_MD,W 
  btfsc STATUS,Z 
  goto $+3 



 105

  decf COUNT_MD,F 
  goto compare 
  movlw 0x09 
  iorwf COUNT_MD,F 
  movlw b'11110000' 
  andwf COUNT_MD,W 
  btfsc STATUS,Z 
  goto $+4 
  movlw 0x10   
  subwf COUNT_MD,F 
  goto compare 
  movlw 0x90 
  iorwf COUNT_MD,F 
 
  movlw b'00001111'   
  andwf COUNT_HI,W 
  btfsc STATUS,Z 
  goto $+3 
  decf COUNT_HI,F 
  goto compare 
  movlw 0x09 
  iorwf COUNT_HI,F 
  movlw b'11110000' 
  andwf COUNT_HI,W 
  btfsc STATUS,Z 
  goto $+4 
  movlw 0x10   
  subwf COUNT_HI,F 
  goto compare 
  movlw 0x90 
  iorwf COUNT_HI,F 
  goto compare 
 
inc_count movlw b'00001111'   ;increase the count 
  andwf COUNT_LO,W 
  sublw 0x09 
  btfsc STATUS,Z 
  goto $+3 
  incf COUNT_LO,F 
  goto compare 
  movlw b'11110000' 
  andwf COUNT_LO,F 
  movlw b'11110000' 
  andwf COUNT_LO,W 
  sublw 0x90 
  btfsc STATUS,Z 
  goto $+4 
  movlw 0x10   
  addwf COUNT_LO,F 
  goto compare 
  movlw b'00001111' 
  andwf COUNT_LO,F 
 
  movlw b'00001111'   
  andwf COUNT_MD,W 
  sublw 0x09 



 106

  btfsc STATUS,Z 
  goto $+3 
  incf COUNT_MD,F 
  goto compare 
  movlw b'11110000' 
  andwf COUNT_MD,F 
  movlw b'11110000' 
  andwf COUNT_MD,W 
  sublw 0x90 
  btfsc STATUS,Z 
  goto $+4 
  movlw 0x10   
  addwf COUNT_MD,F 
  goto compare 
  movlw b'00001111' 
  andwf COUNT_MD,F 
 
  movlw b'00001111'   
  andwf COUNT_HI,W 
  sublw 0x09 
  btfsc STATUS,Z 
  goto $+3 
  incf COUNT_HI,F 
  goto compare 
  movlw b'11110000' 
  andwf COUNT_HI,F 
  movlw b'11110000' 
  andwf COUNT_HI,W 
  sublw 0x90 
  btfsc STATUS,Z 
  goto $+4 
  movlw 0x10   
  addwf COUNT_HI,F 
  goto compare 
  movlw b'00001111' 
  andwf COUNT_HI,F 
 
compare  movf COMP_HI,W   ;comparison routine 
  subwf COUNT_HI,W 
  btfss STATUS,Z 
  goto not_equal 
  movf COMP_MD,W 
  subwf COUNT_MD,W 
  btfss STATUS,Z 
  goto not_equal 
  movf COMP_LO,W 
  subwf COUNT_LO,W 
  btfss STATUS,Z 
  goto not_equal 
       
  bcf STATUS,C   ;equal then set relays 
  bsf PCLATH,0 
  rlf COMP_INDEX,W 
  addwf PCL,F  
  bsf SWITCH_LO,0 
  goto end_sw 



 107

  bsf SWITCH_LO,1 
  goto end_sw 
  bsf SWITCH_LO,2 
  goto end_sw 
  bsf SWITCH_LO,3 
  goto end_sw 
  bsf SWITCH_LO,4 
  goto end_sw 
  bsf SWITCH_HI,0 
  goto end_sw 
  bsf SWITCH_HI,1 
  goto end_sw 
  bsf SWITCH_HI,2 
  goto end_sw 
  bsf SWITCH_HI,3 
  goto end_sw 
  bsf SWITCH_HI,4 
  goto end_sw 
  bsf SWITCH_LO,5 
  goto end_sw 
  bsf SWITCH_LO,6 
  goto end_sw 
  bsf SWITCH_LO,7 
  goto end_sw 
  bsf SWITCH_HI,5 
  goto end_sw 
  bsf SWITCH_HI,6 
  goto end_sw 
  bsf SWITCH_HI,7 
 
end_sw  btfss PREV_ST,0   ;disables relays if prev needs 
  goto  end_sw_off 
  decf COMP_INDEX,W 
  movwf TEMP_C_I 
  bcf STATUS,C   
  rlf TEMP_C_I,W 
  addwf PCL,F  
  bcf SWITCH_LO,0 
  goto end_sw_off 
  bcf SWITCH_LO,1 
  goto end_sw_off 
  bcf SWITCH_LO,2 
  goto end_sw_off 
  bcf SWITCH_LO,3 
  goto end_sw_off 
  bcf SWITCH_LO,4 
  goto end_sw_off 
  bcf SWITCH_HI,0 
  goto end_sw_off 
  bcf SWITCH_HI,1 
  goto end_sw_off 
  bcf SWITCH_HI,2 
  goto end_sw_off 
  bcf SWITCH_HI,3 
  goto end_sw_off 
  bcf SWITCH_HI,4 



 108

  goto end_sw_off 
  bcf SWITCH_LO,5 
  goto end_sw_off 
  bcf SWITCH_LO,6 
  goto end_sw_off 
  bcf SWITCH_LO,7 
  goto end_sw_off 
  bcf SWITCH_HI,5 
  goto end_sw_off 
  bcf SWITCH_HI,6 
  goto end_sw_off 
  bcf SWITCH_HI,7 
 
end_sw_off bcf PCLATH,0   ;for computed goto, set before 
 
  incf COMP_INDEX,F  ;new comparison values 
  call load_comp_val 
 
not_equal goto end_isr 
 
;******************************************************************************* 
;main routine, first makes the initializations then runs the prog section 
 
main  call delay00    ;wait for power on delays 
   
  clrf PORTA    
  
  movlw a' '    ;nothing but ' ' in display 
  movwf DD07 
 
  clrf LHCOUNT   ;init lcd rout variable 
 
  clrf SWITCH_LO   ;disable all relays 
  clrf SWITCH_HI 
   
  clrf COUNT_HI   ;reset count value 
  clrf COUNT_MD 
  clrf COUNT_LO 
 
  clrf COMP_INDEX   ;set actual and previous  
  clrf COMP_HI   ;comparison values 
  clrf COMP_MD 
  clrf COMP_LO 
  clrf COMP_ST 
  call load_comp_val 
 
init_ports bsf STATUS,RP0   ;set PORTA as digital inputs 
  movlw 0x06    
  movwf ADCON1 
  movlw b'00111100'   ;1 - input and 0 - output 
  movwf TRISA 
 
  movlw b'11111111'   ;set PORTB inputs and outputs 
  movwf TRISB 
 
  movlw b'11111111'   ;set PORTC inputs and outputs 



 109

  movwf TRISC 
 
  movlw b'10000000'   ;set PORTD inputs and outputs 
  movwf TRISD 
 
  movlw b'00000111'   ;set PORTE inputs and outputs 
  movwf TRISE 
  bcf STATUS,RP0  
   
init_int clrf TMR0     ;assign prescaler to TMR0 
  clrwdt     ;prescaler ratio 1/32 
  bsf STATUS,RP0   
  movlw b'11000100' 
  movwf OPTION_REG 
  bcf STATUS,RP0 
 
  movlw b'10110000'   ;enable (RB0) and TMR0 int 
  movwf INTCON 
   
prog_begin call next_rel    ;display the next rel value  
 
  call ifreadmode   ;if readmode entered then 
  btfss STATUS,Z   ;get rel # and show its limit 
  goto edit_mode 
 
  call msg_swnum 
  call getnumber 
  movwf EDIT_NUM 
   
  call getreadval 
  call putreadval 
 
  call view_delay000 
 
edit_mode call ifeditmode   ;if editmode entered 
  btfss STATUS,Z 
  goto prog_begin 
 
  call msg_swnum   ;get the rel # 
  call getnumber 
  movwf EDIT_NUM 
 
  call msg_getlimit   ;get limit and status 
  call getnumber 
  movwf TEDIT1 
  addlw d'48' 
  movwf DD17 
  call getnumber 
  movwf TEDIT2 
  addlw d'48' 
  movwf DD18 
  call getnumber 
  movwf TEDIT3 
  addlw d'48' 
  movwf DD19 
  call getnumber 



 110

  movwf TEDIT4 
  addlw d'48' 
  movwf DD20 
  call getnumber 
  movwf TEDIT5 
  addlw d'48' 
  movwf DD21 
  call getnumber 
  movwf TEDIT6 
  addlw d'48' 
  movwf DD22 
  call  getnumber 
  movwf TEDITST 
  btfss TEDITST,0 
  goto $+4 
  movlw a't' 
  movwf DD24 
  goto $+3 
  movlw a'c' 
  movwf DD24 
 
  call iflimitvalid   ;if a valid value then set  
  btfss STATUS,Z 
  goto limiterr 
  bcf INTCON,GIE 
  call write_limit 
  bsf INTCON,GIE 
  call msg_wrt_ok 
  call view_delay000 
 
  goto prog_begin 
 
limiterr call msg_limiterr 
  call view_delay000 
 
  goto prog_begin 
 
;******************************************************************************* 
 
view_delay000 movlw d'60'    ;delay about 2.4 sec 
  movwf DELAY3   ;@ 20 Mhz 
 
delay000 decfsz DELAY1,F   ;about 10 sec 
  goto $-1 
  decfsz DELAY2,F 
  goto $-3 
  decfsz DELAY3,F 
  goto $-5 
 
  return 
 
;******************************************************************************* 
 
m_delay00 movlw d'100'    ;about 16 ms 
  movwf DELAY2 
 



 111

delay00  decfsz DELAY1,F   ;about 40 ms 
  goto $-1 
  decfsz DELAY2,F 
  goto $-3 
 
  return 
 
;******************************************************************************* 
 
key_delay0 movlw d'10'    ;about 6 us 
  movwf DELAY1 
 
delay0  decfsz DELAY1,F   ;about 154 us  
  goto $-1 
   
  return 
 
;******************************************************************************* 
;reads comparison values according to COMP_INDEX from EEPROM 
 
load_comp_val movf COMP_HI,W   ;make current values previous 
  movwf PREV_HI 
  movf COMP_MD,W 
  movwf PREV_MD 
  movf COMP_LO,W 
  movwf PREV_LO 
  movf COMP_ST,W 
  movwf PREV_ST 
 
  bcf STATUS,C   ;load current comparison  
  rlf COMP_INDEX,W  ;values from EEPROM 
  bsf STATUS,RP1 
  movwf EEADR 
  bcf STATUS,C 
  rlf EEADR,F 
  bsf STATUS,RP0 
  bcf EECON1,EEPGD 
  bsf EECON1,RD 
  bcf STATUS,RP0 
  movf EEDATA,W 
  bcf STATUS,RP1 
  movwf COMP_HI 
 
  bsf STATUS,RP1 
  bsf EEADR,0 
  bsf STATUS,RP0 
  bsf EECON1,RD 
  bcf STATUS,RP0 
  movf EEDATA,W 
  bcf STATUS,RP1 
  movwf COMP_MD 
 
  bsf STATUS,RP1 
  bcf EEADR,0 
  bsf EEADR,1 
  bsf STATUS,RP0 



 112

  bsf EECON1,RD 
  bcf STATUS,RP0 
  movf EEDATA,W 
  bcf STATUS,RP1 
  movwf COMP_LO 
 
  bsf STATUS,RP1 
  bsf EEADR,0 
  bsf STATUS,RP0 
  bsf EECON1,RD 
  bcf STATUS,RP0 
  movf EEDATA,W 
  bcf STATUS,RP1 
  movwf COMP_ST 
 
  return 
 
;******************************************************************************* 
;look if '#' pressed 
 
ifeditmode clrf KEY_OUTPORT 
 
  bsf KEY_OUTPORT,0 
  call  key_delay0 
   
  bcf STATUS,Z 
  btfsc KEY_INPORT,6 
  bsf STATUS,Z 
 
  return 
 
;******************************************************************************* 
; look if '*' pressed 
 
ifreadmode clrf KEY_OUTPORT 
 
  bsf KEY_OUTPORT,0 
  call  key_delay0 
   
  bcf STATUS,Z 
  btfsc KEY_INPORT,4 
  bsf STATUS,Z 
 
  return 
 
;******************************************************************************* 
;read the key pressed and return the value 
 
getnumber movlw b'00001111' 
  iorwf KEY_OUTPORT,F 
  movf KEY_INPORT,W 
  andlw b'01110000' 
  btfss STATUS,Z 
  goto getnumber 
  call delay00 
 



 113

  clrf KEY_OUTPORT 
 
  bsf KEY_OUTPORT,3 
  call  key_delay0 
  btfsc KEY_INPORT,4 
  retlw 1 
  btfsc KEY_INPORT,5 
  retlw 2 
  btfsc KEY_INPORT,6 
  retlw 3 
  bcf KEY_OUTPORT,3 
 
  bsf KEY_OUTPORT,2 
  call  key_delay0 
  btfsc KEY_INPORT,4 
  retlw 4 
  btfsc KEY_INPORT,5 
  retlw 5 
  btfsc KEY_INPORT,6 
  retlw 6 
  bcf KEY_OUTPORT,2 
 
  bsf KEY_OUTPORT,1 
  call  key_delay0 
  btfsc KEY_INPORT,4 
  retlw 7 
  btfsc KEY_INPORT,5 
  retlw 8 
  btfsc KEY_INPORT,6 
  retlw 9 
  bcf KEY_OUTPORT,1 
 
  bsf KEY_OUTPORT,0 
  call  key_delay0 
  btfsc KEY_INPORT,5 
  retlw 0 
  bcf KEY_OUTPORT,0 
 
  goto getnumber   
 
;******************************************************************************* 
 
msg_limiterr movlw a'd' 
  movwf DD08 
  movlw a'a' 
  movwf DD09 
  movlw a't' 
  movwf DD10 
  movlw a'a' 
  movwf DD11 
  movlw a'_' 
  movwf DD12 
  movlw a'e' 
  movwf DD13 
  movlw a'r' 
  movwf DD14 



 114

  movlw a'r' 
  movwf DD15 
 
  return 
 
;******************************************************************************* 
 
msg_swnum movlw a'e' 
  movwf DD08 
  movlw a'n' 
  movwf DD09 
  movlw a't' 
  movwf DD10 
  movlw a'e' 
  movwf DD11 
  movlw a'r' 
  movwf DD12 
  movlw a' ' 
  movwf DD13 
  movlw a'r' 
  movwf DD14 
  movlw a'e' 
  movwf DD15 
  movlw a'l' 
  movwf DD16 
  movlw a'a' 
  movwf DD17 
  movlw a'i' 
  movwf DD18 
  movlw a's' 
  movwf DD19 
  movlw a' ' 
  movwf DD20 
  movlw a'n' 
  movwf DD21 
  movlw a'u' 
  movwf DD22 
  movlw a'm' 
  movwf DD23 
  movlw a' ' 
  movwf DD24 
 
  return 
 
;******************************************************************************* 
;reads limit values according to EDIT_NUM for displaying 
 
getreadval movf EDIT_NUM,W 
  movwf ADDR_EE 
  bcf STATUS,C 
  rlf ADDR_EE,F 
  rlf ADDR_EE,F 
  call read_eeprom 
  movwf TEDIT1 
  incf ADDR_EE,F 
  call read_eeprom 



 115

  movwf TEDIT3 
  incf ADDR_EE,F 
  call read_eeprom 
  movwf TEDIT5 
  incf ADDR_EE,F 
  call read_eeprom 
  movwf TEDITST 
 
  return 
 
;******************************************************************************* 
;eeprom reading by ADRESS and return in W 
 
read_eeprom bsf STATUS,RP1 
  movf ADDR_EE,W 
  movwf EEADR 
  bsf STATUS,RP0 
  bcf EECON1,EEPGD 
  bsf EECON1,RD 
  bcf STATUS,RP0 
  movf EEDATA,W 
  bcf STATUS,RP1 
 
  return 
 
;******************************************************************************* 
;display the value of limit of the selected relay @ readmode 
 
putreadval movlw a'r' 
  movwf DD08 
  movlw a'e' 
  movwf DD09 
  movlw a'a' 
  movwf DD10 
  movlw a'd' 
  movwf DD11 
  movlw a'm' 
  movwf DD12 
  movlw a'o' 
  movwf DD13 
  movlw a'd' 
  movwf DD14 
  movlw a'e' 
  movwf DD15 
  movlw a' ' 
  movwf DD16 
 
  movf EDIT_NUM,W   ;add 65 to convert to chr 
  addlw d'65' 
  movwf DD17 
 
  swapf TEDIT1,W   ;add 48 for decimal ascii 
  andlw b'00001111' 
  addlw d'48'   
  movwf DD18 
  movf TEDIT1,W 



 116

  andlw b'00001111' 
  addlw d'48'   
  movwf DD19 
 
  swapf TEDIT3,W 
  andlw b'00001111' 
  addlw d'48'   
  movwf DD20 
  movf TEDIT3,W 
  andlw b'00001111' 
  addlw d'48'   
  movwf DD21 
 
  swapf TEDIT5,W 
  andlw b'00001111' 
  addlw d'48'   
  movwf DD22 
  movf TEDIT5,W 
  andlw b'00001111' 
  addlw d'48'   
  movwf DD23 
 
  btfss TEDITST,0   ;print status of relays 
  goto $+4    ;0 continuous, 1 temporary 
 
  movlw a't' 
  movwf DD24 
  return 
 
  movlw a'c' 
  movwf DD24 
  return 
 
;******************************************************************************* 
;display the value of limit of the next relay  
 
next_rel movlw a'n' 
  movwf DD08 
  movlw a'e' 
  movwf DD09 
  movlw a'x' 
  movwf DD10 
  movlw a't' 
  movwf DD11 
  movlw a'_' 
  movwf DD12 
  movlw a'r' 
  movwf DD13 
  movlw a'e' 
  movwf DD14 
  movlw a'l' 
  movwf DD15 
  movlw a' ' 
  movwf DD16 
 
  movf COMP_INDEX,W 



 117

  addlw d'65' 
  movwf DD17 
 
  swapf COMP_HI,W 
  andlw b'00001111' 
  addlw d'48'   
  movwf DD18 
  movf COMP_HI,W 
  andlw b'00001111' 
  addlw d'48'   
  movwf DD19 
 
  swapf COMP_MD,W 
  andlw b'00001111' 
  addlw d'48'   
  movwf DD20 
  movf COMP_MD,W 
  andlw b'00001111' 
  addlw d'48'   
  movwf DD21 
 
  swapf COMP_LO,W 
  andlw b'00001111' 
  addlw d'48'   
  movwf DD22 
  movf COMP_LO,W 
  andlw b'00001111' 
  addlw d'48'   
  movwf DD23 
 
  btfss COMP_ST,0 
  goto $+4 
 
  movlw a't' 
  movwf DD24 
  return 
 
  movlw a'c' 
  movwf DD24 
  return 
 
;******************************************************************************* 
;print display 'XXXXXX sw_lim_X ______@_' 
 
msg_getlimit movlw a's' 
  movwf DD08 
  movlw a'w' 
  movwf DD09 
  movlw a'_' 
  movwf DD10 
  movlw a'l' 
  movwf DD11 
  movlw a'i' 
  movwf DD12 
  movlw a'm' 
  movwf DD13 



 118

  movlw a'_' 
  movwf DD14 
  movf EDIT_NUM,W 
  addlw d'65' 
  movwf DD15 
  movlw a' ' 
  movwf DD16 
  movlw a'_' 
  movwf DD17 
  movlw a'_' 
  movwf DD18 
  movlw a'_' 
  movwf DD19 
  movlw a'_' 
  movwf DD20 
  movlw a'_' 
  movwf DD21 
  movlw a'_' 
  movwf DD22 
  movlw a'@' 
  movwf DD23 
  movlw a'_' 
  movwf DD24 
 
  return 
 
;******************************************************************************* 
;print display 'XXXXXX Write_OK XXXXXXXX' 
 
msg_wrt_ok movlw a'W' 
  movwf DD08 
  movlw a'r' 
  movwf DD09 
  movlw a'i' 
  movwf DD10 
  movlw a't' 
  movwf DD11 
  movlw a'e' 
  movwf DD12 
  movlw a'_' 
  movwf DD13 
  movlw a'O' 
  movwf DD14 
  movlw a'K' 
  movwf DD15 
  movlw a' ' 
  movwf DD16 
   
  movf EDIT_NUM,W 
  addlw d'65' 
  movwf DD17 
 
  swapf TEDIT1,W 
  andlw b'00001111' 
  addlw d'48' 
  movwf DD18 



 119

  movf TEDIT1,W 
  andlw b'00001111' 
  addlw d'48' 
  movwf DD19 
 
  swapf TEDIT3,W 
  andlw b'00001111' 
  addlw d'48' 
  movwf DD20 
  movf TEDIT3,W 
  andlw b'00001111' 
  addlw d'48' 
  movwf DD21 
 
  swapf TEDIT5,W 
  andlw b'00001111' 
  addlw d'48' 
  movwf DD22 
  movf TEDIT5,W 
  andlw b'00001111' 
  addlw d'48' 
  movwf DD23 
 
  btfss TEDITST,0 
  goto $+4 
 
  movlw a't' 
  movwf DD24 
  return 
 
  movlw a'c' 
  movwf DD24 
  return 
 
;******************************************************************************* 
;arrange the key input to TEDIT 1-3-5 HI-MD-LO 
;then load upper and lower boundaries, compare and return if valid 
 
iflimitvalid swapf TEDIT1,F 
  movf TEDIT2,W 
  addwf TEDIT1,F 
   
  swapf TEDIT3,F 
  movf TEDIT4,W 
  addwf TEDIT3,F 
 
  swapf TEDIT5,F 
  movf TEDIT6,W 
  addwf TEDIT5,F 
 
  movf EDIT_NUM,W 
  btfss STATUS,Z 
  goto $+7 
  clrf LOWER_HI 
  clrf LOWER_MD 
  clrf LOWER_LO 



 120

  movlw 1 
  call upperlimit 
  goto comp_valid 
   
  movf EDIT_NUM,W 
  sublw d'15' 
  btfss STATUS,Z 
  goto $+8 
  movlw d'14' 
  call lowerlimit 
  movlw 0x99 
  movwf UPPER_HI 
  movwf UPPER_MD 
  movwf UPPER_LO 
  goto comp_valid 
 
  decf EDIT_NUM,W 
  call lowerlimit 
  incf EDIT_NUM,W 
  call upperlimit 
 
comp_valid movf TEDIT1,W 
  subwf LOWER_HI,W 
  btfss STATUS,C 
  goto valid_lo 
  btfsc STATUS,Z 
  goto $+2 
  goto invalid 
 
  movf TEDIT3,W 
  subwf LOWER_MD,W 
  btfss STATUS,C 
  goto valid_lo 
  btfsc STATUS,Z 
  goto $+2 
  goto invalid 
 
  movf TEDIT5,W 
  subwf LOWER_LO,W 
  btfss STATUS,C 
  goto valid_lo 
  goto invalid 
valid_lo 
  movf UPPER_HI,W 
  subwf TEDIT1,W 
  btfss STATUS,C 
  goto valid_hi 
  btfsc STATUS,Z 
  goto $+2 
  goto invalid 
   
  movf UPPER_MD,W 
  subwf TEDIT3,W 
  btfss STATUS,C 
  goto valid_hi 
  btfsc STATUS,Z 



 121

  goto $+2 
  goto invalid 
 
  movf UPPER_LO,W 
  subwf TEDIT5,W 
  btfss STATUS,C 
  goto valid_hi 
 
invalid  bcf STATUS,Z 
  return 
   
valid_hi bsf STATUS,Z 
  return 
 
;******************************************************************************* 
 
;read upperlimit from EEPROM to upper registers 
 
upperlimit movwf ADDR_EE 
  bcf STATUS,C 
  rlf ADDR_EE,F 
  rlf ADDR_EE,F 
  call read_eeprom 
  movwf UPPER_HI 
  incf ADDR_EE,F 
  call read_eeprom 
  movwf UPPER_MD 
  incf ADDR_EE,F 
  call read_eeprom 
  movwf UPPER_LO 
 
  return 
 
;******************************************************************************* 
;read lowerlimit from EEPROM to lower registers 
 
lowerlimit movwf ADDR_EE 
  bcf STATUS,C 
  rlf ADDR_EE,F 
  rlf ADDR_EE,F 
  call read_eeprom 
  movwf LOWER_HI 
  incf ADDR_EE,F 
  call read_eeprom 
  movwf LOWER_MD 
  incf ADDR_EE,F 
  call read_eeprom 
  movwf LOWER_LO 
 
  return 
 
;******************************************************************************* 
;writes data to EEPROM from arranged data of iflimitvalid 
 
write_limit movf EDIT_NUM,W 
  movwf ADDR_EE 



 122

  bcf STATUS,C 
  rlf ADDR_EE,F 
  rlf ADDR_EE,F 
  movf TEDIT1,W 
  call write_eeprom 
  incf ADDR_EE,F 
  movf TEDIT3,W 
  call write_eeprom 
  incf ADDR_EE,F 
  movf TEDIT5,W 
  call write_eeprom 
  incf ADDR_EE,F 
  movf TEDITST,W 
  call write_eeprom 
   
  return 
 
;******************************************************************************* 
;EEPROM write cycle 
 
write_eeprom movwf DATA_EE 
  bsf STATUS,RP0 
  bsf STATUS,RP1 
  btfsc EECON1,WR 
  goto $-1 
  bcf STATUS,RP0 
  movf ADDR_EE,W 
  movwf EEADR 
  movf DATA_EE,W 
  movwf EEDATA 
  bsf STATUS,RP0 
  bcf EECON1,EEPGD 
  bsf EECON1,WREN 
  movlw 0x55 
  movwf EECON2 
  movlw 0xAA   
  movwf EECON2 
  bsf EECON1,WR 
  bcf EECON1,WREN 
  bcf STATUS,RP0 
  bcf STATUS,RP1 
 
  return  
 
;******************************************************************************* 
 
 END    ;directive 'end of program' 
 
 

 

 



 123

 

 

 

APPENDIX B 

 

INSTRUCTION SET OF THE PIC 16F877 

 

1. addlw number 
adds a number with the number in the working register. 

 

2. addwf FileReg, f 

adds the number in the working register to the number in a file register (FileReg) and 

puts the result in the file register. 

 

addwf FileReg, w 

adds the number in the working register to the number in a file register (FileReg) and 

puts the result back into the working register, leaving the file register unchanged. 

 

3. andlw number 

ANDs a number with the number in the working register, leaving the result in the 

working reg. 

 

4. andwf FileReg, f 

ANDs the number in the working register with the number in a file register (FileReg) 

and puts the result in the file register 

 

5. bcf FileReg, bit 

clears a bit in a file register (FileReg), i.e. makes the bit 0 

 

6. bsf FileReg, bit 

sets a bit in a file register (FileReg), i.e. makes the bit 1 



 124

7. btfsc FileReg, bit 

tests a bit in a file register (FileReg) and skips the next instruction if the result is 

clear (i.e. if that bit is 0). 

 

8. btfss FileReg, bit 

tests a bit in a file register (FileReg) and skips the next instruction if the result is set 

(i.e. if that bit is 1). 

 

9. call AnySub 

makes the chip call a subroutine(AnySub), after which it will return to where it left 

off. 

 

10. clrf FileReg 

clears (makes 0) the number in a file register (FileReg). 

 

11. clrw 

clears the working register. 

 

12. clrwdt 

clears the watchdog timer. 

 

13. comf FileReg, f 

complements (inverts - ones become zeroes, zeroes become ones) the number in a 

file register (FileReg), leaving the result in the file register. 

 

14. decf FileReg, f 

decrements (subtracts one from) a file register (FileReg) and puts the result in the file 

register. 

 

15. decfsz FileReg, f 

decrements a file register (FileReg) and if the result is zero it skips the next 

instruction. The result is put in the file register. 



 125

16. goto Anywhere 

makes the chip go to somewhere in the program which have been labelled 

'Anywhere'. 

 

17. incf FileReg, f 

increments (adds one to) a file register (FileReg) and puts the result in the file 

register. 

 

18. incfsz FileReg, f 

increments a file register (FileReg) and if the result is zero it skips the next 

instruction. The result is put in the file register. 

 

19. iorlw number 

inclusive ORs a number with the number in the working register. 

 

20. iorwf FileReg, f 

inclusive ORs the number in the working register with the number in a file register 

(FileReg) and puts the result in the file register. 

 

21. movfw FileReg or movf FileReg, w 

moves (copies) the number in a file register (FileReg) in the working register 

 

22. movlw number 

moves (copies) a number into the working register. 

 

23. movwf FileReg 

moves (copies) the number in the working register into a file register (FileReg). 

 

24. nop 

this stands for : no operation, in other words - do nothing. 

 

 



 126

25. retfie 

returns from a subroutine and enables the Global Interrupt Enable bit. 

 

26. retlw number 

returns from a subroutine with a particular number (literal) in the working register. 

 

27. return 

returns from a subroutine. 

 

28. rlf FileReg, f 

rotates the bits in a file register (FileReg) to the left, putting the result in the file 

register. 

 

29. rrf FileReg, f 

rotates the bits in a file register (FileReg) to the right, putting the result in the file 

register. 

 

30. sleep 

sends the PIC to sleep, a lower power consumption mode. 

 

31. sublw number 

subtracts the number in the working register from a number. 

 

32. subwf FileReg, f 

subtracts the number in the working register from the number in a file register 

(FileReg) and puts the result in the file register. 

 

33. swapf FileReg, f 

swaps the two halves of the 8 bit binary number in a file register (FileReg), leaving 

the result in the file register. 

 

 



 127

34. xorlw number 

exclusive ORs a number with the number in the working register. 

 

35. xorwf FileReg, f 

exclusive ORs the number in the working register with the number in a file register 

(FileReg) and puts the result in the file register.  



 128

 

 

 

APPENDIX C 

 

MPASM DIRECTIVE SUMMARY 

 

1. _ _ BADRAM – Specify invalid RAM locations 

2. BANKISEL – Generate RAM bank selecting code for indirect addressing 

3. BANKSEL – Generate RAM bank selecting code 

4. CBLOCK – Define a Block of Constants 

5. CODE – Begins executable code section 

6. _ _ CONFIG – Specify configuration bits 

7. CONSTANT – Declare Symbol Constant 

8. DA – Store Strings in Program Memory 

9. DATA – Create Numeric and Text Data 

10. DB – Declare Data of One Byte 

11. DE – Define EEPROM Data 

12. #DEFINE – Define a Text Substitution Label 

13. DT – Define Table 

14. DW – Declare Data of One Word 

15. ELSE – Begin Alternative Assembly Block to IF 

16. END – End Program Block 

17. ENDC – End an Automatic Constant Block 

18. ENDIF – End conditional Assembly Block 

19. ENDM – End a Macro Definition 

20. ENDW – End a While Loop 

21. EQU – Define an Assembly Constant 

22. ERROR – Issue an Error Message 

23. ERRORLEVEL – Set Error Level 



 129

24. EXITM – Exit from a Macro 

25. EXPAND – Expand Macro Listing 

26. EXTERN – Declares an external label 

27. FILL – Fill Memory 

28. GLOBAL – Exports a defined label 

29. IDATA – Begin an Object File Initialized Data Section 

30. _ _IDLOCS – Set Processor ID Locations 

31. IF – Begin Conditionally Assembled Code Block 

32. IFDEF – Execute If Symbol has Been Defined 

33. IFNDEF – Execute If Symbol has not Been Defined 

34. INCLUDE – Include Additional Source File 

35. LIST – Listing Options 

36. LOCAL – Declare Local Macro Variable 

37. MACRO – Declare Macro Definition 

38. _ _MAXRAM – Define Maximum RAM Location 

39. MESSG – Create User Defined Message 

40. NOEXPAND – Turn off Macro Expansion 

41. NOLIST – Turn off Listing Output 

42. ORG – Set Program Origin 

43. PAGE – Insert Listing Page Eject 

44. PAGESEL – Generate Page Selecting Code 

45. PROCESSOR – Set Processor Type 

46. RADIX – Specify Default Radix 

47. RES – Reserve Memory 

48. SET – Define an Assembler Variable 

49. SPACE – Insert Blank Listing Lines 

50. SUBTITLE – Specify Program Subtitle 

51. TITLE – Specify Program Title 

52. UDATA – Begin an Object File Uninitialized Data Section 

53. UDATA_ACS – Begin an Object File Access Uninitialized Data Section 

54. UDATA_OVR – Begin an Object File Overlayed Uninitialized Data Section 

55. UDATA_SHR – Begin an Object File Shared Uninitialized Data Section 



 130

56. #UNDEFINE – Delete a Substitution Label 

57. VARIABLE – Declare Symbol Variable 

58. WHILE – Perform Loop While Condition is True 


