A DECISION SUPPORT SYSTEM FOR COMBINING FORECASTING RESULTS

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

TUNÇ BİLKAY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INDUSTRIAL ENGINEERING

DECEMBER 2003

ABSTRACT

A DECISION SUPPORT SYSTEM FOR COMBINING FORECASTING RESULTS

BİLKAY, Tunç

M.S., Department of Industrial Engineering

Supervisor: Assoc. Prof. Dr. Tayyar ŞEN

December 2003, 78 Pages

The present study aims to develop an analysis package for combining forecasts that are obtained from different forecast methods. The package is composed of three modules, namely, the data input module, the data analysis module and the combination module. In data input module, the data is entered and saved as an Excel file with the given name.

In data analysis module, the program computes the forecasts of the selected methods and displays the forecast results, the mean absolute errors, the mean square errors and the mean absolute percentage errors of these methods.

In combination module, the forecast results, computed in the data analysis module, are combined according to the selected combination methods.

All the detailed calculations of the forecasts and the values assigned by the program to minimize the mean absolute deviations, the mean square errors and the mean absolute percentage errors are displayed under the columns of the related method on the Excel spreadsheet of the file.

Keywords: Decision Support Systems, Forecasting, Combining Forecasts

ÖΖ

TAHMİN SONUÇLARINI BİRLEŞTİRMEK İÇİN BİR KARAR DESTEK SİSTEMİ

BİLKAY, Tunç

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Tayyar ŞEN

Aralık 2003, 78 Sayfa

Bu çalışmada değişik tahmin yöntemlerinden elde edilen sonuçları birleştirmek için bir analiz paketi hazırlanmıştır. Geliştirilen paket, veri giriş modülü, veri analiz modülü ve birleştirme modülü olmak üzere toplam üç modülden oluşmaktadır. Veri giriş modülünde, veri girişi ve Excel dosyası olarak verilen isim ile kaydı yapılmaktadır.

Veri analiz modülünde, program seçilen yöntemlerle tahminleri heasaplayıp, bu sonuçlarla bu yöntemlerin ortalama mutlak hatalarını, ortalama hata karelerini ve ortalama mutlak hata yüzdelerini göstermektedir.

Birleştirme modülünde, veri analiz modülünde hesaplanan tahminler seçilen birleştirme yöntemleri ile birleştirilmektedir.

Tahminlerin bütün detaylı hesaplamaları ve programın ortalama mutlak hataları, ortalama hata kareleri ve ortalama mutlak hata yüzdeleri azaltmak için belirlediği sabit değerler dosyanın Excel sayfasında ilgili yöntem kolonunun altında gösterilmektedir.

Anahtar Kelimeler: Karar Destek Sistemi, Tahmin, Tahmin Birleştirme

To My Family

ACKNOWLEDGEMENTS

I would like to thank to Assoc. Prof. Dr. Tayyar ŞEN for his continuous supervision and guidance throughout the progress of my thesis.

Special thanks to my family and close friends for their support and help throughout my study.

TABLE OF CONTENTS

ABSTRACT	iii
ÖZ	v
DEDICATION	vii
ACKNOWLEDGEMENTS	viii
TABLE OF CONTENTS	ix
LIST OF TABLES	xi
LIST OF FIGURES	xii
CHAPTER	
1. INTRODUCTION	1
2. AN OVERVIEW OF DECISIONS AND DECISION	
SUPPORT SYSTEMS	5
2.1. Decisions and Decision Making	5
2.2. Decision Support Systems	9
2.2.1. Components of DSS	11
2.2.2. Benefits of DSS	13
2.2.3. Risks of DSS	14
3. FORECASTING AND COMBINING FORECASTS	17
3.1. Forecasting	17
3.2. Combining Forecast Results	22
3.3. Studies about Combining Forecasts in Literature	24
4. SOFTWARE PACKAGE DEVELOPED	29
4.1. Introduction	29
4.2. Program in General	30

4.3 Data Input Module	31
4.4. Data Analysis Module	32
4.5. Combination Module	37
5. SAMPLE RUNS	42
5.1. Sample Run 1	42
5.2. Sample Run 2	45
6. DISCUSSION AND CONCLUSION	49
REFERENCES	53
APPENDICES	
A: FORECASTING METHODS	58
A.1. Moving Averages	58
A.2. Simple Exponential Smoothing	59
A.3. Exponential Smoothing with Trend Adjustment	60
A.4. Exponential Smoothing with Seasonal Adjustment	62
A.5. ARIMA	65
B: DETAILED RESULTS OF SAMPLE RUNS	67

LIST OF TABLES

TABLES

1. FORECAST RESULTS (MAD) OF SAMPLE RUN 1	42
2. COMBINATION RESULTS (MAD) OF SAMPLE RUN 1	43
3. FORECAST RESULTS (MSE & MAPE) OF SAMPLE RUN 1	44
4. COMBINATION RESULTS (MSE & MAPE) OF SAMPLE RUN 1	44
5. FORECAST RESULTS (MAD) OF SAMPLE RUN 2	45
6. COMBINATION RESULTS (MAD) OF SAMPLE RUN 2	46
7. FORECAST RESULTS (MSE) OF SAMPLE RUN 2	46
8. COMBINATION RESULTS (MSE) OF SAMPLE RUN 2	47
9. FORECAST RESULTS (MAPE) OF SAMPLE RUN 2	47
10. COMBINATION RESULTS (MAPE) OF SAMPLE RUN 2	48

LIST OF FIGURES

FIGURES

1. MAIN MENU WINDOW	30
2. THE NUMBER OF PERIODS WINDOW	31
3. DATA ENTERING WINDOW	31
4. ENTERING THE FILE NAME WINDOW	32
5. FORECAST & ERROR CALCULATING METHODS WINDOW	33
6. FORECAST RESULTS WINDOW	35
7. EXCEL FILE SHOWING THE ITERATIONS	36
8. GRAPH WINDOW	37
9. COMBINING METHODS WINDOW	38
10. WEIGHTS OF THE METHODS WINDOW	41
11. COMBINED FORECAST RESULTS WINDOW	41
12. THE ITERATON RESULTS OF SAMPLE RUN 1 (MAD)	68
13. THE ITERATON RESULTS OF SAMPLE RUN 1 (MSE & MAPE)	70
14. THE ITERATON RESULTS OF SAMPLE RUN 2 (MAD)	73
15. THE ITERATON RESULTS OF SAMPLE RUN 2 (MSE)	75
16. THE ITERATON RESULTS OF SAMPLE RUN 2 (MAPE)	77

CHAPTER 1

INTRODUCTION

In management and administration, the need for planning and control is important because the lead time for managerial decision-making ranges from several years or more, as in the case of capital construction in the electric utility industry, to a few days or even hours, as in the example of meeting production or inventory levels. Information about the future events from forecasts are usually a critical input into a wide range of managerial and administrative decision-making, since today's plans are dependent on future expectations (Jarrett, 1987).

Forecasts are unavoidable in decision making. Every decision in inventory management and production planning requires an estimation of future demand. Forecasts are needed: to set up performance standards for customer service, to plan the allocation of total inventory investment, to place replenishment orders, to identify needs for additional production capacity and to choose between alternative operating strategies. Only one thing is certain after such decisions are made-*the forecasts will be in error*. What remains to be determined, is the exact

size of the resulting errors and whether any past decisions need to be altered in response. Forecasts are at best imprecise, at worst misleading (Peterson and Silver, 1979).

Many of the forecasting techniques used today were developed in the nineteenth century. However, with the development of more sophisticated forecasting techniques, along with the arise of computers, forecasting has received more and more attention during recent years. This development is especially true since the proliferation of the small, personal computer.

New techniques for forecasting continue to be developed as management concern with the forecasting process continues to grow. A particular focus of this attention is on the errors that are inherent part of any forecasting procedure. Predictions as to future outcomes rarely are precisely on the mark; the forecaster can only endeavor to make the inevitable errors as small as possible.

Hundreds of statistical and forecasting packages have been developed for both mainframes and microcomputers (PCs). Managers with PCs on their desks and a knowledge of forecasting techniques are no longer dependent on staff for their forecasts. Modern managers are taking advantage of the ease and availability of sophisticated forecasting methods afforded by personal computers. A developing branch of forecasting study involves the combination of two or more forecasting methods to produce the final forecasts. Research from over 200 studies demonstrates that combining forecasts produces consistent but modest gains in accuracy. However, this research does not define well the conditions under which combining is most effective or how methods should be combined in each situation (Hanke and Reitsch, 1995).

The primary conclusion of the paper written by Clemen (1990) is that forecast accuracy can be substantially improved through the combination of multiple individual forecasts and he stated that simple combination methods often work reasonably well relative to more complex combinations.

In their case study, Chan, Wong and Kingsman (1999) concluded that there appears to be no advantage in trying to find the best individual forecasting methods and the "Simple average" method (equal weights) is appropriate whenever combination of forecasts is not suggested by the method of optimal weights.

Due to the problems of selecting the methods or giving weights in combining forecast results that are obtained from different methods, suggested solution to the problem is an application of Decision Support System (DSS). In this thesis, a software is developed for combining forecast results, on a personal computer using Visual Basic 6.0 Enterprise Edition. The software is mainly composed of three modules, namely the data input module, the data analysis module and the combination module.

In data input module, the user enters the historical data to the programme and saves the file. In the data analysis, the results of the individual forecast methods, that are selected by the user, and their mean absolute deviations (MAD), mean square errors (MSE) and mean absolute percentage errors (MAPE) are displayed and in the combination module these results are combined according to certain combination methods or according to the weights that are input by the user.

CHAPTER 2

AN OVERVIEW OF DECISION AND DECISION SUPPORT SYSTEMS

2.1. Decisions and Decision Making

A decision is a reasoned choice among alternatives. Making decisions is part of the broader subject of problem solving. Problem solving is the overall process of closing the gap between reality and a more desired situation. Each decision is characterized by a decision statement, a set of alternatives and a set of decision-making criteria. Managers' and other knowledge workers' decisions have a great impact on corporate success (Mallach, 2000).

Making decisions consists of several different activities that take place at different times. The decision maker has to perceive and understand problems. Once perceived, solutions must be designed; once solutions are designed, choices have to be made about a particular solution; finally, the solution has to be implemented (Laudon and Laudon, 2000).

Simon (1960) described four different stages in decision making that are intelligence, design, choice and implementation. These stages are as follows:

The intelligence stage consists of identifying the problems occurring in the organization. Intelligence indicates why, where and with what effects a situation occurs. This broad set of information-gathering activities is required to inform managers how well the organization is performing and to let them know where problems exist.

The design stage is the second stage of decision making and during this stage, the individual designs possible solutions to the problems. This activity may require more intelligence so that the manager can decide if a particular solution is appropriate. Smaller DSS are ideal in this stage of decision making because they operate on simple models, can be developed quickly and can be operated with limited data.

The choice stage consists of choosing among alternatives. Here a manager can use information tools that can calculate and keep track of the consequences, costs and opportunities provided by each alternative designed in the second stage. The decision maker might need a larger DSS to develop more extensive data on a variety of alternatives and to use complex analytic models needed to account for all the consequences.

The implementation stage is the last stage in decision making. Here, managers can use a reporting system that delivers routine reports on the progress of a specific solution. The system will also report some of the difficulties that arise, will indicate resource constraints and will suggest possible ameliorative actions.

It is important for the prospective developer of a DSS to understand these stages, because computers can support each decision stage in different ways, and the ideal computer support for a decision process depends on the stages that are important for that process.

Decision making remains one of the more challenging roles of a manager. Information systems have helped managers communicate and distribute information; however, they have provided only limited assistance for management decision making (Laudon and Laudon, 2000).

According to Mallach (1994), decisions can be organized along two dimensions: the nature of the decision to be made and the scope of the decision itself. Those categories are as follows:

A *structured decision* is one for which a well-defined decision-making procedure exists. More precisely, a structured decision is one for which the inputs,

outputs and internal procedures of all decision phases can be specified. Each decision phase for which this is true is called a structured decision phase. Structured decisions can be left to a clerk or a computer.

An *unstructured decision* is one for which all three decision phases are unstructured. It is not known how to specify at least one aspect of each phase: its inputs, its outputs or its internal procedures. This may be because the decision is so new or so rare that it has not been studied carefully. Computers can still help the decision maker, but only with a lower level of support.

A *semistructured decision* has some structured aspects but cannot be completely structured. This usually means that some of its phases are structured but the other ones are not. Computers can provide a great deal of specific help with semistructured decisions. Conveniently, most organizational decisions are of this type.

The three levels of decision scope are as follows (Mallach, 1994):

A *strategic decision* is one that will affect the entire organization or a major part of it, for a long period of time. Strategic decisions affect organizational objectives and policies. Strategic decisions are generally, but not always, made at the upper levels of organizational management.

A *tactical decision*, also called a management control decision, will affect how a part of the organization does business for a limited time in the future. Tactical decisions are generally made by "middle managers"-those who are below the top executives who set strategic policies but are high enough to determine how an entire category of future actions will be taken.

An *operational decision* is one that affects activities taking place in the organization right now but either has little or no impact on the future or-if it doesis made within the confines of a controlling policy. Operational decisions relate to activities whose tasks, goals and resources have already been defined via prior strategic and tactical decisions. Operational decisions are generally made by lower level managers or by nonmanagerial personnel.

2.2. Decision Support Systems

Decision support systems (DSS) help managers make decisions that are semi-structured, unique or rapidly changing and not easily specified in advance. DSS have to be responsive enough to run several times a day in order to respond to changing conditions. DSS are designed so that users can work with them directly; these systems explicitly include user-friendly software. DSS are interactive; the user can change assumptions, ask new questions and include new data (Laudon and Laudon, 2000). Major functions of DSS applications, provided by Kroenke (1989), are:

- Becoming familiar with a problem domain.
- Determining sensitivity of results to changes in decision variables.
- Identifying patterns.
- Predicting decision outcomes.
- Developing models of business processes.
- Computing optimum mixes.
- Facilitating group communication.

Sprague (1980) made a serious attempt to define DSS from a theoretical point of view and in terms of what it means in practice. His compromise, based on observations of many DSS of that era, includes these four characteristics:

- 1. They tend to be aimed at the less well structured, underspecified problems that upper level managers typically face.
- 2. They attempt to combine the use of models or analytic techniques with traditional data access and retrieval functions.
- 3. They specifically focus on features that make them easy to use by noncomputer people in an interactive mode.
- 4. They emphasize flexibility and adaptability to accommodate changes in the environment and the decision-making approach of the user.

2.2.1 Components of DSS

DSS is composed of four components (Sprague, 1980):

1. Data Management

The data management subsystem of a DSS relies, in general, on a variety of internal and external databases. It stores and manipulates the DSS database, as directed by either the model management or dialogue management components. Also it maintains an interface with external data sources such as TPS (Transaction Processing Systems) databases, data utilities and other DSS systems. Either the model management component or the dialogue management component can issue requests for data service. These requests are interpreted by the query processor, which may consult its own data directory; then the requests are executed by a DBMS (Database Management System) or by a program that is functionally equivalent to a DBMS.

2. Model Management

The power of DSS rests on the user's ability to apply quantitative, mathematical models to data. Models have different areas of application and come from a variety of sources. Software packages for developing DSS (so-called DSS generators) contain libraries of statistical models. These models include tools for the exploratory analysis of data-tools designed to obtain summarized measures such as mean and median values, variances, scatter plots and so forth. Other statistical models help analyze series of data and forecast future outcomes by approximating a set of data with a mathematical equation, by extending the trend of a curve by extrapolation techniques or by providing for seasonal adjustment.

3. Dialog Management

The notable feature of the dialog management subsystem is support of multiple forms of input and output. By combining various input and output capabilities of a DSS, users can engage in the individual dialog styles that best support their decision-making styles. The field of artificial intelligence has made some notable contributions to dialog management, such as the ability to specify what is wanted in a subset of natural language or to activate the system by voice. The window capability enables the user to maintain several activities at the same time, with the results displayed in screen windows.

4. User

For a successful DSS, the judgement and cognitive style of the user is very important. Each of the other three components of DSS interacts with each other and the user to support decision making. The user has a key role in the DSS, because of its support nature. So the user should be involved in the DSS building process.

2.2.2. Benefits of DSS

Measuring the benefits of decision support systems is difficult because of many of these benefits are qualitative. Some of these benefits, provided by Schultheis and Sumner (1998), are as follows:

- *The ability to examine more alternatives*. Spreadsheet tools make it possible to analyze alternative ways of allocating resources in a business and to visualize the impact of these options on cash flow.
- *The ability to achieve a better understanding of the business.* A decison support system can help managers analyze the long-range impact of a new marketing venture or a potential acquisition decision in a reasonable time, making it possible to foresee possible pitfalls and to avoid future problems.
- *The ability to respond quickly to unexpected situations.* With decision support systems, businesses can construct new models and quickly adapt them to changes in business policy and market share.

- *The ability to carry out ad hoc types of reporting and analysis.* Many managers want to ask questions of existing databases and to pull out data relevant to current business operations.
- *The ability to provide timely information for control of ongoing operations.* Information from a decision support system, for example, can provide a better picture of detailed expenses by company, by division and by department.
- *The ability to save time and costs.* A decision support system can handle an analysis much more quick than a calculator. Also the ability to perform what-if analyses improves the quality of a budget forecast or any other analysis.
- *The ability to make better decisions.* Decision support systems allow managers to consider issues and alternatives that they may not have explored before. Increased depth and sophistication of analysis are possible. Decision support systems help managers explore complex issues using relevant data analysis.

2.2.3. Risks of DSS

One of the major benefits of decision support systems is that users can analyze their own requirements, rather than rely on a systems analyst to understand and to specify these requirements for them. However, user development has risks. The following issues occur when users try to develop their own information systems (Schultheis and Sumner, 1998).

Lack of quality assurance. Quality assurance refers to procedures for data validation and testing, documentation and backup and recovery that are integral part of a good system. Without adequate validation of input data, output printed on reports may not be correct. When the developer suddenly left the firm, the application was lost because no documentation existed. Lack of backup and recovery may result in loss of critical data and time consuming manual rebuilding of these files.

Lack of data security. Password security for microcomputer based data management systems may be inadequate or nonexistent, leaving many users to resort to such procedures as key access to hardware or physically locking up diskettes.

Failure to specify correct requirements. Users can visualize their immediate, short term needs but find it more difficult to understand ongoing or long term requirements. In the design of decision support systems, outputs are constantly modified and the logic used in data analysis often changes. These changes introduce the chance of error, especially if the logic being used is not continually reviewed and documented.

Failure to understand design alternatives. One of the common problems in user development is a mismatch between software and design requirements. If a systems analyst had assessed the short and long term needs of the users in advance, the feasibility of various design options, including microcomputer, minicomputer and mainframe approaches, could have been considered.

CHAPTER 3

FORECASTING AND COMBINING FORECASTS

3.1. Forecasting

Forecasting is a systematic process of decisions and actions performed in an effort to predict the future by an analysis of the past. More precisely, forecasting attempts to predict change. If future events represented only a readily quantifiable change from historical events, future events or conditions could be predicted through quantitative projections of historical trends into the future. Methodologies that are used to describe historical events with mathematical equations (or a model) for the purpose of predicting future events are classified as quantitative projection techniques. However, there is much more to forecasting than projecting past trends.

Experience and intuitive reasoning quickly reveal that future events or conditions are not solely a function of historical trends. Even familiar abstractions such as trend, cycle and seasonality, while extremely useful to business forecasters, cannot be completely relied upon when it comes to predicting future events.

A forecast is not an end product but rather an input to the decision-making process. A forecast is a prediction of what will happen under an assumed set of circumstances. Forecasts are also required for a variety of "what if" situations and for the formulation of business plans to alter base case projections that have proved unsatisfactory (Levenbach and Cleary, 1984).

According to McLeod (1998), there are three basic facts about forecasting that should be kept in mind as follows:

- 1. *All forecasts are projections of the past.* The best basis for predicting what will happen in the future is to look at the past. All types of forecasting follow this approach. This is the reason why accounting data is so important in forecasting; it provides historical base.
- 2. *All forecasts consist of semistructured decisions*. The decisions are based on some variables that can be easily measured and some that cannot.
- 3. *No forecasting technique is perfect.* Not even the most sophisticated mainframe forecasting package can be expected to predict the future with 100 percent accuracy.

Levenbach and Cleary (1982) described a forecasting process in terms of three phases:

- Design phase: the premodeling activities associated with some problem and the evaluating of cost-benefit tradeoffs that must be considered when building statistical models. They recommend a five-stage procedure for the design phase of a forecasting process, with each stage consisting of a series of activities, actions and judgments as follows:
 - Defining the problem.
 - Listing alternative forecasting techniques.
 - Selecting among the alternatives for study.
 - Evaluating the alternatives.
 - Recommending the most appropriate technique(s).
- 2. Specification phase: the model-building activities. The specification phase deals with activities in the forecasting process that are necessary for:
 - Developing a theory of demand.
 - Dealing with data.
 - Selecting the appropriate forecasting techniques.

3. Evaluation phase: the forecasting and tracking activities that follow development of a model. The evaluation phase consists of the preparation, presentation and important tracking functions that must accompany a forecasting effort.

According to Sullivan and Claycombe (1977), the basic characteristics of forecasts are:

- Forecasts are usually incorrect.
- Forecasts should be two numbers (to indicate a range).
- Forecasts are more accurate for families of items (e.g. total annual sales of a company) than for individual items (e.g. annual sales of a product).
- Forecasts are less accurate far in the future.

Form the point of view of inventory management and production planning an ideal forecast defined by Peterson and Silver (1979) should:

- Estimate expected demand in physical units.
- Estimate probable range of actual demand around the expected value point (i.e., forecast error).
- Be timely-available sufficiently in advance of any decision that must be made.

- Be updated periodically so that revisions to decisions taken can be made promptly.
- Allow human judgment to override mechanical forecasts (whose primary advantage is the handling of massive amounts of historical data).

Since prediction of future sales is so closely linked with the judgment of forecasters, *an ideal forecaster* according to Peterson and Silver (1979) should:

- Be familiar with the economic, industry and product-specific contexts of his projections.
- Know the true value of his forecasting techniques.
- Be able to state clearly his objectives and assumptions.
- Be able to gather pertinent data and be able to validly expunge it of extraordinary observations.

Finally Peterson and Silver (1979) described an appropriate forecasting strategy for any organization that depends on:

- The availability of computer-based data processing facilities.
- The timing and accuracy of forecasts required.
- The availability and extent of historical and current data.

3.2. Combining Forecast Results

When building a forecasting model of the real world, one ought to use all the available data; one way of doing this would be to build a number of smaller models rather than one all-inclusive large model. The implication is that some method of combining the forecasts from the separate small models will result in a better forecast than any one large all-inclusive model by itself.

The idea of combining business forecasting models was originally proposed by Bates and Granger (1969). Since the publication of their article, this strategy has received immense support in almost every empirical test of combined forecasts versus individual uncombined forecasts (Barry and Keating, 1990).

Instead of choosing the best model from among two or more alternatives, Barry and Keating combined the forecasts from these different models to obtain forecast improvement. It may actually be unwise to attempt to determine which of a number of forecasting methods yields the most accurate predictions. A more reasonable approach, according to the emprical evidence, is to combine the forecasts already made in order to obtain a combined forecast that is more accurate than any of the seperate predictions. Any time that a particular forecast is ignored because it is not the "best" forecast produced, it is likely that valuable independent information contained in the discarded forecast has been lost. The information lost may be of two types:

- Some variables included in the discarded forecast may not be included in the "best" forecast.
- The discarded forecast may take use of a type of relationship ignored by the "best" forecast.

In the first case above, it is quite possible for several forecasts to be based upon different information; thus, ignoring any one of these forecasts would necessarily exclude the explanatory power unique to the information included in the discarded model. In the second situation, it is often the case that different assumptions are made in different models about the form of the relationship between the variables.

To be useful, forecasts that are combined must be unbiased. That is, each of the forecasts cannot consistently overestimate or underestimate the actual value. Combining forecasts is not a method for eliminating bias in a forecast.

It is expected that combinations of forecasts that use very different models are likely to be effective in reducing forecast error.

3.3. Studies about Combining Forecasts in Literature

This study is related with a decision support system for combining forecast results that are obtained from different forecasting methods so as to improve the forecast performance. The related studies in the literature are given to extend the scope of this study.

Ringuest and Tang (1987) presented a paper about simple rules for combining forecasts. This study is an empirical comparison of three rules for aggregating forecasts. The three combined forecasts evaluated are a simple average forecast, a median forecast and a focus forecast (an approach that develops forecasts by various techniques, then picks the forecast that was produced by the "best" of these techniques, where "best" is determined by some measure of forecast error). The results indicate that an average forecast will not perform as well as previous studies indicate if all or most of the individual forecasts tend to over- or under-predict simultaneously. The median forecast also seems to be suspect in this case. Focus forecasting, however, is found to perform well for all variables. The evidence indicates that focus forecasting is a reasonable alternative to simple averaging.

Holmen (1987) presented a paper that conducts an empirical analysis of the approaches to obtain linear combinations of forecasts. Simulated quarterly earnings were modeled using three ARIMA models. One-quarter ahead forecasts were then developed. These forecasts were combined using alternative approaches. The most accurate forecasts were obtained by adding a constant term and not constraining the weights to add up to one. The differences in the accuracy rankings were found to be statistically significant.

Reeves, Lawrence, Lawrence and Guerard (1988) made a study about combining earnings forecasts using multiple objective linear programming. In this study, exponential smoothing, univariate time series and (transfer function) bivariate time series models are combined to forecast annual corporate earnings for six major corporations. Consideration is given to combine forecasts generated by the same technique at different points in time as well as those generated by different techniques. Results indicate that combined forecasts outperform individual forecasts, that all three major categories of forecasting techniques are utilized in the construction of the efficient combined forecasts, that the techniques included in the combined forecasts and their relative weights can change over time and that the most recent forecasts do not always receive the most weight when combined with older forecasts.

Clemen (1990) presented a paper about the review and annotated bibliography of combining forecasts. He claimed that considerable literature has accumulated over the years regarding the combination of forecasts. The primary
conclusion of this line of research is that forecast accuracy can be substantially improved through the combination of multiple individual forecasts. Furthermore, simple combination methods often work reasonably well relative to more complex combinations.

This paper provides a review and annotated bibliography of that literature, including contributions from the forecasting, psychology, statistics, and management science literatures. Finally, he concluded that combining forecasts should become part of the mainstream of forecasting practice.

Lobo (1991) presented a study that provides empirical evidence on the accuracy of alternative methods of combining security analysts' and statistical forecasts of annual corporate earnings. Linear cross-sectional least squares regression models with and without constant terms, and constrained and unconstrained forecast weights, are used to form combination forecasts in addition to equally weighted combinations. The empirical analysis indicates that combination forecasts formed using a linear model with no constant term and no constraints on the forecast weights are superior to forecasts generated using the other combination methods.

Arinze, Kim and Anandarajan (1997) proposed a paper about combining and selecting forecasting models using rule based induction. The purpose of this paper is to describe a machine learning approach and associated Expert System directed at improving forecasting accuracy by selecting the most appropriate single or hybrid forecasting method for any unique time series. By using training sets of time series (and their features), induced rules were created to predict the most appropriate forecasting method or combination of methods for new time series. Potential benefits include dramatic reductions in the effort and cost of forecasting; the provision of an expert 'assistant' for specialist forecasters and increases in forecasting accuracy.

Fischer and Harvey (1999) took action about what information do judges need to outperform the simple average in combining forecasts. They claimed that previous work has shown that combinations of seperate forecasts produced by judgment are inferior to those produced by simple averaging because judges were not informed of outcomes after producing each combined forecast. Results showed that when they are given this information and the information about errors made by the individual forecasters, judges combine their forecasts in a way that outperforms the simple average.

Chan, Wong and Kingsman (1999) presented a case study about the value of combining forecasts in inventory management in banking. The paper demonstrated that combining different forecasts could achieve significant improvements in demand forecasting performance and about 10% savings in the safety stocks to be maintained by the bank. They used four alternative weighting methods and concluded that i- there appears to be no advantage in trying to find the best individual forecasting methods for each item, ii- updating the weights every month is not useful and iii- whenever combination of forecasts is not suggested by the method of optimal weights, the "Simple average" method (equal weights) is appropriate.

Menezes, Bunn and Taylor (2000) proposed a paper about the review of guidelines for the use of combined forecasts. In this paper, they review evidence on the performance of different combining methods with the aim of providing practical guidelines based on three properties of the forecast errors: variance, asymmetry and serial correlation. The evidence indicates that using different criteria leads to distinct preferences and that the properties of the individual forecast errors can strongly influence the characteristics of the combination's errors. They showed that a practical approach to combining also requires a degree of judgement on the attributes of error specification.

CHAPTER 4

SOFTWARE PACKAGE DEVELOPED

4.1. Introduction

The software package which has been developed in this study aims to help the user in combining the forecast results that are obtained from different forecasting methods. When combining forecasts, the forecaster should enter the past data, select the forecast methods that would be used, and select a combining method or give weights to the selected forecast methods to obtain a combined result. This package helps the user in making all these selections.

The package has three main modules. These are namely:

- 1. Data Input Module
- 2. Data Analysis Module
- 3. Combination Module

4.2. Program in General

This program requires Microsoft Windows as the operating system as it is developed in Microsoft Visual Basic programming language. The program also uses Microsoft Excel for storing the input data and the iteration results of the forecasting methods and MINITAB Release 13.20 for computing ARIMA.

When the program is executed it asks the user to select whether to input data or analyze data that is input and saved before. The main menu window is shown in Figure 4.1.

Figure 4.1 Main Menu Window

4.3. Data Input Module

When the user clicks the "Data Input" button, a new window is opened and asks the user the number of periods of data that is wanted to be input as shown in Figure 4.2.

Figure 4.2 The number of Periods Window

After entering the number of periods, the program asks the numerical data of all the periods one by one as shown in Figure 4.3.

×
OK
Cancel

Figure 4.3 Data Entering Window

After entering the data of the last period, the name of the file is asked to save the data as a Microsoft Excel file as shown in Figure 4.4.

Save File	×
Enter the name of the file	OK
	Cancel
<u>[</u>	

Figure 4.4 Entering the File Name Window

By saving the data with the given name as an Excel file, the data input module ends and the main menu window becomes active. By this window the user can enter another data, analyze the data that is saved or exit to the Windows.

The user can also prepare his database by entering the data to an Excel spreadsheet, but he should convert all the spreadsheet to "Number" category from the "Format Cells" menu of the Excel for the program to open the file.

4.4. Data Analysis Module

When the user clicks the "Data Analysis" button on the main menu window, the forecast and the error calculating methods window is opened and on this window the user can select the forecast methods and the error calculation method that he wants to use as shown in Figure 4.5.

Selecting the forecast & the error calculating methods	_ 🗆 ×
Please select the forecasting methods	
N Paried Maxima Average	
· · · · · · · · · · F N-Period Moving Average	
😳 😳 😳 👘 Simple Exponential Smoothing	
😳 😳 😳 👘 Exponential Smoothing with Trend Adjustment	
· · · · · · · · · · · · · · · · · · ·	
🗆 ARIMA	
Please select the method for calculating the errors to optimize the	ne constants
C MAD C MAD C MSE C MAPE	
OK Cancel	

Figure 4.5 Forecast & Error Calculating Methods Window

There are some constants needed while making iterations of the methods shown in Figure 4.5, like N in the N-Period Moving Average Method or α , β and γ in the Exponential Smoothing Methods. In the program, these constants are calculated by incrementing them in their range (i.e. from 1 to the total number of periods for N by step size 1.0 and from 0.1 to 0.9 for α , β and γ by step size 0.1) and the values that minimize the value of the selected error calculation method are selected. But in the Exponential Smoothing with Seasonal Adjustment the cycle length, L and in ARIMA the order of the autoregressive (AR) component, the number of differences used to discount trends over time and the order of the moving average (MA) component are entered by the user. The error calculating methods are given as follows : (Hanke and Reitsch, 1995):

Mean Absolute Deviation:

$$MAD = \sum_{i=1}^{n} |A_t - F_t| / n$$
(4.1)

where:

 A_t = Actual observed value for period t

- F_t = Forecasted value for period t
- n = Number of forecasted periods

Mean Square Error:

MSE =
$$\sum_{i=1}^{n} (A_t - F_t)^2 / n$$
 (4.2)

Mean Absolute Percentage Error:

MAPE =
$$\sum_{i=1}^{n} [|A_t - F_t| / A_t] / n$$
 (4.3)

After selecting the forecast methods and the error calculating method, the program asks the user to enter the name of the file that is wanted to be opened and calculates the forecasts of the selected methods and displays the forecast results, the mean absolute deviations (MAD), the mean square errors (MSE) and the mean absolute percentage errors (MAPE) of the selected methods in a new window as shown in Figure 4.6.

Figure 4.6 Forecast Results Window

The program also asks the user whether he wants to save the iterations of the forecast methods on the Excel spreadsheet or not. The user can open the file of the input data in Windows Excel and look at the iterations of the methods as shown in Figure 4.7.

9	<u>File Edit Viev</u>	v <u>I</u> nsert	Format <u>T</u>	ools <u>D</u> ata	<u>W</u> indow <u>H</u> el	P										<u>_</u> 12
3	🖻 🖬 🔒	<i>8</i>	*** ¥	🖻 🛍 💅	N • C4	- 🍓 Σ	f≈ A Z A	l 🛍 🚯	96% •	2.						4
ria	al	- 1	• B	I <u>U</u> ≣		∰ § 9	6 , ¹ .00 ;	% € ≡ €	- 🖳 🕶 👌	• - <u>A</u>						
	A	В	C	D	E	F	G	Н	1	J	K	L	M	N	0	P
	# of perioc		MA	MA	MA										Ex.Sm.(S	
	Period A		MA	F(t)	[A(t)-F(t)]		F(t)	[A(t)-F(t)]		T(t)	F(t)	[A(t)-F(t)]	S(t)	l(t)	F(t)	[A(t)-F(t)
	1	1651				1651			1651	0				0,837		
	2	1305				1339,6	1651	346	1339,6	-280,26	1651	346		0,662		
	3	1617				1589,26	1340	277	1561,23	171,44	1059	558		0,82		
	4	1721				1707,83	1589	132	1722,17	161,99	1733	12		0,873		
	5	2015				1984,28	1708	307	2001,92	267,97	1884	131		1,022		
	6	2297				2265,73	1984	313	2294,29	289,93	2270	27		1,165		
	7	2606				2571,97	2266	340	2603,82	307,57	2584	22		1,322		
	8	2687				2675,5	2572	115	2709,44	125,81	2911	224		1,363		
	9	2292				2330,35	2676	384	2346,33	-314,22	2835	543		1,162		
	10	1981				2015,94	2330	349	1986,11	-355,62	2032	51		1,005		
	11	1696				1727,99	2016	320	1689,45	-302,56	1630	66		0,86		
	12	1794				1787.4	1728	66	1753.29	27.2	1387	407	1794	0.91		
	13	1806				1804,14	1787	19	1803.45	47,86	1780	26	1903,11	0,848		
	14	1731				1738.31	1804	73	1743.03	-49,59	1851	120	2116,62	0.678	1260	47
	15	1733				1733,53	1738	5	1729,04	-17,55	1693	40	2115,66	0.82	1736	
	16	1904				1886.95	1734	170	1884.75	138.38	1711	193	2135.26	0.875	1847	5
	17	2036				2021.1	1887	149	2034,71	148.8	2023	13	2092,33	1.017	2182	14
	18	2560				2506.11	2021	539	2522,35	453.76	2184	376	2123.86	1.169	2438	12
	19	2679				2661,71	2506	173	2708,71	213,1	2976	297	2094,64	1,318		12
	20	2821				2805.07	2662	159	2831.08	131.44	2922	101	2087.16	1,362		3
	21	2359				2403,61	2805	446	2419.35	-357,41	2963	604	2070.05	1.16		6
	22	2000				2184,36	2404	244	2150.19	-277,98	2062		2093.81	1.008		8
	23	1802				1840.24	2184	382	1809.02	-334,85	1872	70	2094,27	0.86		
	23	1853			201	1851.72		13	1815,12	-334,03	1474	379	2076,87	0,908		5
	24	1033	2003,5	2054		1031,72	1852	15	1013,12	-20	1787	3/3	2010,01	0,000	1761	J
	20			N :	23		alfa :	0,9			alfa :	0,9			alfa :	0.
				MAD :	201		MAD :	231,3			beta :	0,9			gama :	0.
				MAD . MSE :	40401		MAD . MSE :	74696.4			MAD :	204,5			yama . MAD :	105,
				MAPE :	0.108		MAPE :	0,114			MAD : MSE :	204,5			MAD . MSE :	26605,
				MAPE:	0,100		MAPE:	0,114			MAPE :	0,103			MAPE :	26605,
											IVIACE .	0,103			IMAPE .	0,05
5																
ò																
7																
																- I
	▶ ▶ Sheet	1 / Shee	tz / Sheet	3/						•						
a	adv														NUM	

Figure 4.7 Excel file showing the iterations

As it is shown in Figure 4.7, addition to the iteration results, the value of N in N-Period Moving Average Method, the value of α in Simple Exponential Smoothing, the values of α and β in Exponential Smoothing with Trend Adjustment and the values of α and γ in Exponential Smoothing with Seasonal

Adjustment that are found by the program are displayed below the columns of the related method.

The program also draws the graph of the actual and forecasted values of the forecast method when the "graph" buttons near the forecast methods on the "Forecast Results Window" are clicked as it is shown in Figure 4.8.

Figure 4.8 Graph Window

4.5. Combination Module

If the user clicks the "Combine the forecast results" button on the "Forecast Results Window" that is shown in Figure 4.6, a new window is opened to select the method for combining the forecast results as shown in Figure 4.9.

-
🖹 Combining Methods 📃 🗆 🗙
Which one(s) of the combining methods do you want to use ?
· · · · · · · · · · · · · · · · · · ·
I Weighting according to MSE
Weighting according to MAPE
Customize the weights by yourself
Combine Combine Cancel

Figure 4.9 Combining Methods Window

While combining the forecast results the user can select five methods as shown in Figure 4.9. In simple average method (as it is mentioned on the window), the program directly takes the average of the results of the selected forecast methods.

In the second combining method, the program combines the forecast results according to their mean absolute deviations (MAD), by giving the highest weight to the method that has the lowest MAD. The weights of the methods are calculated by equation (4.4).

$$\mathbf{w}_{j} = \sum_{i=1}^{n} \left[MAD_{i} \right] / MAD_{j}$$
(4.4)

where:

 w_i = The weight of the method j

n = The number of selected methods

 MAD_i = The mean absolute deviation of the method i

In the third combining method, the program combines the forecast results according to their mean square errors (MSE), by giving the highest weight to the method that has the lowest MSE. The weights of the methods are calculated by the equation (4.4).

$$w_j = \sum_{i=1}^n [MSE_i] / MSE_j$$
(4.4)

where:

 w_j = The weight of the method j

n = The number of selected methods

 MSE_i = The mean square error of the method i

In the fourth combining method, the program combines the forecast results according to their mean absolute percentage error (MAPE), by giving the highest weight to the method that has the lowest MAPE. The weights of the methods are calculated by the equation (4.4).

$$w_j = \sum_{i=1}^{n} [MAPE_i] / MAPE_j$$
(4.4)

where:

 w_i = The weight of the method j

n = The number of selected methods

 $MAPE_i$ = The mean absolute percentage error of the method i

The user has also an alternative to give weights to the methods by himself. By this alternative the user can use his judgement for combining the forecast results. If the "Customize the weights by yourself" option is checked, the program asks the weight of the selected forecast methods one by one as shown in Figure 4.10 and calculates the combined result according to these weights.

In all the combination methods by giving weights, the equation is divided by the sum of the weights after multiplying the weights with the forecast results to make the sum of the weights equal to one.

Figure 4.10 Weights of the Methods Window

When the user clicks the combine button on the "Combining Methods Window", the program combines the forecast results by the selected combining methods and displays another window that shows the results of the combinations and the MAD, MSE and MAPE of the combinations as shown in Figure 4.11.

S. Combined Forecast Results				
Combined	Forecast Results	MAD	MSE	MAPE
Simple Average (Equal weights)	70	0,8	1,1	0,012
Weighting according to MAD	69	1.4	2,4	0,019
Weighting according to MSE	67	1,9	4,5	0,026
Weighting according to MAPE	68	1,4	2,4	0,02
Customize the weights by yourself	70	1,1	1,6	0,016
		ок		

Figure 4.11 Combined Forecast Results Window

CHAPTER 5

SAMPLE RUNS

5.1. Sample Run 1

In this run the monthly price indices of Turkey for years 2001 and 2002 that are obtained from www.die.gov.tr are used and the price index of January 2003 (its actual value is 7662) is forecasted. The results obtained from the individual forecast methods are given at the table below (the constants are calculated to minimize MAD):

Forecast Method	Forecast	MAD	MSE	MAPE
Moving Average	7469	172.5	38063.6	0.032
Simple Exponential Smoothing	7454	191	45687.3	0.036
Exponential Smoothing with Trend Adjustment	7641	88.8	11696.9	0.017
Exponential Smoothing with Seasonal Adjustment	4560	208.9	61323.9	0.032
ARIMA	7571	59.9	5454	0.011

Table 5.1 Forecast Results (MAD) of Sample Run 1

After the results shown at Table 5.1 are combined, the results of the combination are given at Table 5.2:

Combination Method	Combined Forecast	MAD	MSE	MAPE
Simple Average	6939	55.3	3962.2	0.008
Weighting according to MAD	7232	54.5	3595.3	0.008
Weighting according to MSE	7427	55.9	4023.4	0.008
Weighting according to MAPE	7174	54.6	3591.1	0.008
Customized Weights	7104	53.9	3609.1	0.008

Table 5.2 Combination Results (MAD) of Sample Run 1

The results obtained from the individual forecast methods are given at Table 5.3 (the constants are calculated to minimize MSE & MAPE) (In this run all the constants are the same that minimize MSE and MAPE):

Forecast Method	Forecast	MAD	MSE	MAPE
Moving Average	7469	172.5	38063.6	0.032
Simple Exponential Smoothing	7454	191	45687.3	0.036
Exponential Smoothing with Trend Adjustment	7615	88.9	10606.7	0.017
Exponential Smoothing with Seasonal Adjustment	4560	208.9	61323.9	0.032
ARIMA	7571	59.9	5454	0.011

Table 5.3 Forecast Results (MSE & MAPE) of Sample Run 1

After the results shown at Table 5.3 are combined, the results of the combination are given at Table 5.4:

Combination Method	Combined Forecast	MAD	MSE	MAPE
Simple Average	6934	51.8	3474.6	0.008
Weighting according to MAD	7225	50.7	3103.6	0.008
Weighting according to MSE	7425	52.2	3633.5	0.008
Weighting according to MAPE	7168	51	3113.2	0.008
Customized Weights	7098	50.2	3080.2	0.008

Table 5.4 Combination Results (MSE & MAPE) of Sample Run 1

The customized weights of the methods are 0.15, 0.15, 0.25, 0.15 and 0.30 respectively and ARIMA (2, 2, 2) is used since it gives the smallest error.

The figure that shows the iteration results of the sample run is given in Appendix B.

5.2. Sample Run 2

In this run the data of foreigners arriving by month of arrival for years 1996 and 1997 that are obtained from www.die.gov.tr are used and the number of foreigners arrived in January 1998 (its actual value is 348164) is forecasted. The results obtained from the individual forecast methods are given at Table 5.5 (the constants are calculated to minimize MAD):

In the Sample Run 2 the ARIMA method can not estimate the model for the data (that is because the data is not stationary), so the combinations of the forecasts does not include ARIMA method.

Forecast Method	Forecast	MAD	MSE	MAPE
Moving Average	419054	167672	4.5E+8	0.248
Simple Exponential Smoothing	435619	180717	5.0E+8	0.271
Exponential Smoothing with Trend Adjustment	262905	169537	5.1E+8	0.254
Exponential Smoothing with Seasonal Adjustment	309928	47656	3.2E+8	0.063

Table 5.5 Forecast Results (MAD) of Sample Run 2

After the results shown at Table 5.5 are combined, the results of the combination are given at Table 5.6:

Combination Method	Combined Forecast	MAD	MSE	MAPE
Simple Average	356876	157815	3.5E10	0.211
Weighting according to MAD	337781	108805	1.6E10	0.142
Weighting according to MSE	320722	61825	5.5E9	0.075
Weighting according to MAPE	336032	103891	1.4E10	0.135
Customized Weights	338097	108362	1.6E10	0.141

Table 5.6 Combination Results (MAD) of Sample Run 2

The results obtained from the individual forecast methods are given at Table 5.7 (the constants are calculated to minimize MSE):

Table 5.7 Forecast Results (MSE) of Sample Run 2

Forecast Method	Forecast	MAD	MSE	MAPE
Moving Average	419054	167672	4.5E+8	0.248
Simple Exponential Smoothing	435619	180717	5.0E+8	0.271
Exponential Smoothing with Trend Adjustment	182363	176610	4.1E+8	0.282
Exponential Smoothing with Seasonal Adjustment	309928	47656	3.2E+8	0.063

After the results shown at Table 5.7 are combined, the results of the combination are given at Table 5.8:

Combined Forecast	MAD	MSE	MAPE
336741	134854	2.7E10	0.171
326289	93386	1.3E10	0.116
314786	56489	5 1E9	0.066
511700	50105	5.1L)	0.000
326562	88959	1.1E10	0.11
22(01(02252	1.2010	0.115
326016	93353	1.3E10	0.115
	336741 326289 314786	336741 134854 326289 93386 314786 56489 326562 88959	336741 134854 2.7E10 326289 93386 1.3E10 314786 56489 5.1E9 326562 88959 1.1E10

Table 5.8 Combination Results (MSE) of Sample Run 2

The results obtained from the individual forecast methods are given at Table 5.9 (the constants are calculated to minimize MAPE):

Forecast Method	Forecast	MAD	MSE	MAPE
Moving Average	419054	167672	4.53E+8	0.248
Simple Exponential Smoothing	435619	180717	5.03E+8	0.271
Exponential Smoothing with Trend Adjustment	262905	169537	5.14E+8	0.254
Exponential Smoothing with Seasonal Adjustment	314209	48770	3.33E+8	0.063

Table 5.9 Forecast Results (MAPE) of Sample Run 2

After the results shown at Table 5.9 are combined, the results of the combination are given at Table 5.10:

Combination Method	Combined Forecast	MAD	MSE	MAPE
Simple Average	357947	158907	3.5E10	0.213
Weighting according to MAD	340449	112112	1.7E10	0.147
Weighting according to MSE	324542	65815	6.0E9	0.082
Weighting according to MAPE	338500	106410	1.5E10	0.139
Customized Weights	340452	110765	1.6E10	0.145

Table 5.10 Combination Results (MAPE) of Sample Run 2

The customized weights of the methods are 0.15, 0.15, 0.15 and 0.55 respectively.

The figure that shows the iteration results of the sample run is given in Appendix B.

CHAPTER 6

DISCUSSION AND CONCLUSION

In this thesis, a specific decision support system is developed for combining forecasts to help the user in making decisions.

The program can compute the constant values of the methods (except ARIMA) to minimize the value of the error calculation method that is selected by the user (MAD, MSE or MAPE). But in the first sample run, the results of the methods do not change a lot with the error calculation method. Furthermore, the results computed according to MSE and MAPE are the same.

In the first sample run, the forecast computed by Exponential Smoothing with Trend Adjustment method is very near to the actual value of the index of January 2003 and its MAD, MSE and MAPE seems to be very small when they are compared with the other methods except ARIMA. The MAD, MSE and MAPE of ARIMA are the lowest but its forecast do not approach to the actual value as Exp. Sm. with Trend Adjustment. The forecasts of Moving Averages and Simple Exponential Smoothing methods are acceptable but, the forecast of Exponential Smoothing with Seasonal Adjustment is very far from the actual value. However, the combination results show that combining forecasts takes the forecast results closer to the actual value. The combined forecast that is computed according to MSE gives a better result than the other combination methods, since the MSE method is more sensitive than the others.

In the first sample run Minitab can not estimate the model without differencing the data since the data is nonstationary. In the sample sample run ARIMA (2, 2, 2) is used, because its errors increase below and above these levels.

In the second sample run, Minitab can not estimate a model by differencing the data, but it is a good example showing the capability of combining forecasts. None of the forecast methods computes a forecast value that is close to the actual value by neither of the error calculation method (optimizing the constants to minimize MAD, MSE or MAPE). However, after combining the results, it is seen that the results of all combination methods are very close to the actual value. Also in this sample run combination of results according to MSE has the lowest error as it can be seen from Tables 5.6, 5.7 and 5.8, but its final result is not better than the other combination methods.

As it is seen at the sample runs, for every different data samples the method that gives the best forecast result differs according to the property of the data. If the mean of the data does not change a lot in time Moving Average, Simple Exponential Smoothing and ARIMA methods are expected to give more accurate results than the other methods. But if there is a trend in the data, Exponential Smoothing with Trend Adjustment method is expected to give the most reliable result since it is designed for the data that has a trend. And it is also true for Exponential Smoothing with Seasonal Adjustment method when there is seasonality in the data.

It is not easy for some data to find out whether it has a trend, seasonality or it follows a constant mean or not. So sometimes it is not very easy to select the forecasting method that would give the best result for the data.

Combining forecasts can be a solution for these problems. By combining forecasts, the errors of the unsuitable methods for that data can be pulled to an acceptable level. In some cases, combining forecasts could give worse results than the individual methods like in the first sample run, but in most of the cases the results of the combined forecasts are not out of the acceptable level.

In both of the sample runs it is also seen that the combined forecasts with customized weights could give better results than other combination methods. But the power of combining forecasts depends on the experience of the user, so it can be said that combining forecasts with customized weights is a combination of statistical methods with judgment.

For the future work on the same subject the following modifications can be made on the models and the program:

1. The optimal levels of the *p*, *d* and *q* values in ARIMA method can be computed by the program that would minimize the MAD, MSE or MAPE values.

2. The step size of the constants can be decreased to minimize the errors by using more powerful computers (In this program the step sizes are 0.1).

REFERENCES

- Arinze Bay, Kim Seung-Lae and Anandarajan Murugan. "Combining and Selecting Forecasting Models Using Rule Based Induction." Computers Ops Res, Vol. 24, No. 5, pp. 423-433, (1997).
- Barry J. Holton and Keating Wilson. "Business Forecasting." Richard D. Irwin, (1990).
- Chan Kin Chi, Wong H. and Kingsman G. Brian. "The value of combining forecasts in inventory management: A case study in banking." European Journal of Operational Research, pp. 117:199-210, (1999).
- Cleary P. James and Levenbach Hans. "The Professional Forecaster: The Forecasting Process Through Data Analysis." Lifetime Learning Publications, (1984).
- Clemen T. Robert. "Combining forecasts: A review and annotated bibliography." International Journal of Forecasting, Vol. 5, Issue 4, pp. 559-583, (1990).

- Fisher Ilan and Harvey Nigel. "Combining forecasts: What information do judges need to outperform the simple average?" International Journal of Forecasting, Vol. 15, pp. 227-246, (1999)
- Fitzsimmons A. James and Fitzsimmons J. Mona. "Service Management: Operations, Strategy and Information Tehnology." McGraw-Hill, (2001)
- 8. Hanke E. John and Reitsch G. Arthur. "Business Forecasting." Prentice Hall, (1995).
- Hanke E. John and Reitsch G. Arthur. "Business Forecasting." Prentice Hall, (1998).
- Holmen S. Jay. "A note on the value of combining short-term earnings forecasts." International Journal of Forecasting, Vol. 3, Issue 2, pp. 239-243, (1987).
- 11. Jarrett Jeffrey. "Business Forecasting Methods." Basil Blackwell, (1987).
- 12. Jarrett Jeffrey. "Business Forecasting Methods." Basil Blackwell, (1991).

- Kroenke David. "Management Information Systems." McGraw-Hill Book Co., (1989).
- Laudon C. Kenneth and Laudon P. Jane. "Management Information Systems: Organization and Technology In The Networked Enterprise." Prentice Hall, (2000).
- 15. Levenbach Hans and Cleary P. James. "The Modern Forecaster: The Forecasting Process Through Data Analysis." Van Nostrand Reinhold Co., (1984).
- 16. Lobo J. Gerald. "Alternative methods of combining secrity analysts' and statistical forecasts of annual corporate earnings." International Journal of Forecasting, Vol. 7, Issue 1, pp. 57-63, (1991).
- Makridakis Spyros and Wheelwright C. Steven. "Forecasting Methods for Management." John Wiley & Sons, (1989).
- Makridakis Spyros, Wheelwright C. Steven and McGee E. Victor.
 "Forecasting: Methods and Applications." John Wiley & Sons, (1983).

- Mallach G. Efrem. "Understanding Decision Support Systems and Expert Systems." McGraw-Hill Companies, (1994).
- Mallach G. Efrem. "Decision Support and Data Warehouse Systems." McGraw-Hill Companies, (2000).
- McLeod Raymond, Jr. "Management Information Systems." Prentice Hall, (1998).
- 22. Menezes de M. Lilian, Bunn W. Derek and Taylor W. James. "Review of guidelines for the use of combined forecasts." European Journal of Operational Research, Vol. 120, pp. 190-204, (2000).
- 23. Peterson Rein and Silver A. Edward. "Decision Systems for Inventory Management and Production Planning." John Wiley & Sons, (1979).
- 24. Reeves R. Gary, Lawrence D. Kenneth, Lawrence M. Sheila and Guerard Jr. B. John. "Combining earnings forecasts using multiple objective linear programming." Computers & Operations Research, Vol. 15, Issue 6, pp. 551-559, (1988).

- 25. Ringuest L. Jeffrey and Tang Kwei. "Simple rules for combining forecasts: Some empirical results." Socio-Economic Planning Sciences, Vol. 21, Issue 4, pp. 239-243, (1987).
- 26. Schultheis Robert and Sumner Mary. "Management Information Systems: The Manager's View." McGraw-Hill Companies, (1998).
- 27. Sullivan G. William and Claycombe Wayne W. "Fundamentals of Forecasting." Reston Publishing Company, (1977).
- Zwass Vladimir. "Management Information Systems." Wm. C. Brown Publishers, (1992).

APPENDIX A

FORECASTING METHODS

A.1. Moving Averages

The *N*-period moving-average method may be used to smooth out random variations and produce a reliable estimate of the underlying average occupancy. The method calculates a moving average MA_t for period *t* on the basis of selecting *N* of the most recent actual observations A_t , as shown in the following equation (Fitzsimmons and Fitzsimmons, 2001):

$$MA_{t} = (A_{t} + A_{t-1} + A_{t-2} + ... + A_{t-N+1}) / N$$
(A.1)

N-period moving average deals only with the latest T periods of known data and the number of data points in each average does not change as time goes on. However, this method is slow to react because old data are given the same weight as new data in calculating the averages (Makridakis, Wheelwright and McGee, 1983).

A.2. Simple Exponential Smoothing

Simple exponential smoothing is the time series method most frequently used for demand forecasting. Simple exponential smoothing also "smooths out" blips in the data, but its power over the N-period moving average is threefold: (1) old data are never dropped or lost, (2) older data are given progressively less weight, and (3) the calculation is simple and requires only the most recent data (Fitzsimmons and Fitzsimmons, 2001).

Simple exponential smoothing is based on the concept of feeding back the forecast error to correct the previous smoothed value.

$$S_t = S_{t-1} + \alpha(A_t - S_{t-1})$$
 (A.2)

or

$$S_t = \alpha(A_t) + (1 - \alpha)S_{t-1} \tag{A.3}$$

where:

 S_t = Smoothed value for period t

 A_t = Actual observed value for period t

 α = Smoothing constant (usually assigned a value between 0.1 and 0.9)

The term $(A_t - S_{t-1})$ represents the forecast error because it is the difference between the actual observation and the smoothed value that was calculated in the prior period. A fraction α of this forecast error is added to the previous smoothed value to obtain the new smoothed value S_t .

Simple exponential smoothing assumes that the pattern of data is distributed about a constant mean. Thus, the smoothed value calculated in period t is used as the forecast for period (t+1) rounded to an integer, as shown below:

$$\mathbf{F}_{t+1} = \mathbf{S}_t \tag{A.4}$$

Note that older observations never disappear entirely from the calculation of S_t as they would when the *N*-period moving average is used, but they do assume progressively decreasing importance.

A.3. Exponential Smoothing with Trend Adjustment

The trend in a set of data is the average rate at which the observed values change from one period to the next over time. The changes created by the trend can be treated using an extension of simple exponential smoothing (Fitzsimmons and Fitzsimmons, 2001). The smoothed value is calculated using the following equation, which is equation (A.2) modified by the addition of a trend value to the previous smoothed value to account the rate of increase.

$$S_{t} = \alpha(A_{t}) + (1 - \alpha)(S_{t-1} + T_{t-1})$$
(A.5)

where:

 S_t = Smoothed value for period t

 A_t = Actual observed value for period t

 α = Smoothing constant (usually assigned a value between 0.1 and 0.9)

 T_{t-1} = Trend value for period (t - 1)

To incorporate a trend adjustment in the calculation, β is used as a smoothing constant. This constant usually is assigned a value between 0.1 and 0.9 and may be the same as or different from α . The trend for a given period t is defined by the rate of change in the smoothed value from one period to the next. The smoothed trend is calculated at period t using the equation below, which is a modification of the basic exponential smoothing equation [Equation (A.3)]:

$$T_{t} = \beta(S_{t} - S_{t-1}) + (1 - \beta)T_{t-1}$$
(A.6)
where:

Tt = The smoothed trend for period t

 S_t = Smoothed value for period t

 β = Smoothing constant for trend (usually assigned a value

between 0.1 and 0.9)

Then the forecast for the next period is:

$$F_{t+1} = S_t + T_t \tag{A.7}$$

A.4. Exponential Smoothing with Seasonal Adjustment

To account for seasonal effects on a set of data, another extension of simple exponential smoothing can be used. First, the seasonality is removed from the data and then those data is smoothed; finally the seasonality is put back in to determine a forecast (Fitzsimmons and Fitzsimmons, 2001).

Note that there should be actual data for at least one full season before the smoothing and forecasting calculations begin.

A seasonality index is used to deseasonalize the data in a given cycle. It is calculated by the following equation:

$$\mathbf{I}_{t} = \mathbf{A}_{t} / \overline{\mathbf{A}} \tag{A.8}$$

where:

$$\overline{A} = (A_1 + A_2 + ... + A_L) / L$$

- I_t = Seasonality index for period t
- L = Cycle length
- A_t = Actual observed value for period t
- \overline{A} = Average of actual observed values in cycle L

Then the data is deseasonalized by using the seasonality indices according to the equation below, which is a minor modification of the basic exponential smoothing equation [Equation (A.3)]:

$$S_{t} = \alpha (A_{t} / I_{t-L}) + (1 - \alpha) S_{t-1}$$
(A.9)

The forecast for the period (t + 1) then is made by seasonalizing the smoothed value for the period t according to the following formula:

$$F_{t+1} = (S_t)(I_{t-L+1})$$
(A.10)

If the seasonality indices are stable, forecasts that are based on only one cycle, L, will be reliable. If, however, the indices are not stable, they can be adjusted, or smoothed, as new data become available. To apply the concept of exponential smoothing to the index, a new constant γ is used. The smoothed estimate of the seasonality index then is calculated from the following formula:

$$I_{t} = \gamma(A_{t} / S_{t}) + (1 - \gamma)I_{t-L}$$
(A.11)

where:

 I_t = The smoothed estimate of the seasonality index for period t

 γ = Smoothing constant for season (usually assigned a value between 0.1 and 0.9)

 A_t = Actual observed value for period t

 S_t = Smoothed value for period t

A.5. ARIMA

The abbreviation ARIMA is for "autoregressive integrated moving average" model. Integrated (I) refers to "differencing" of the data series. The autoregression (AR), differencing (I) and moving-average (MA) portion make up the three numbers following ARIMA.

ARIMA time series models are designed for stationary time series. A stationary time series is one whose basic statistical properties such as the mean or variance remain constant over time. Most time series encountered in some forecasting applications are not stationary series. If a nonstationary time series can be made stationary by taking *d* differences (usually d = 1 or 2), the result is a model for the *differenced* series.

For an ARIMA model, the order is given by the three letters p, d and q. The order of the autoregressive component is p, the order of differencing needed to achieve stationarity is d and the order of the moving-average part is q (Jarrett, 1991). ARIMA (p, d, q) models use combinations of past values and past errors. The ARIMA model takes the form (Hanke and Reitsch, 1998):

$$Y_{t} = \phi_{0} + \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \dots + \phi_{p}Y_{t-p} + \varepsilon_{t} - w_{1}\varepsilon_{t-1} - w_{2}\varepsilon_{t-2} - \dots - w_{q}\varepsilon_{t-q}$$

where

According to Levenbach and Cleary (1984), the ARIMA models have proved to be excellent short-term forecasting models for a wide variety of time series. A significant advantage of ARIMA is that, forecasts can be developed in a very short time. More time is spent obtaining and validating the data than in building the models. Therefore, a practitioner can often deliver significant results early in a project for which an ARIMA model is used.

APPENDIX B

DETAILED RESULTS OF SAMPLE RUNS

Sample Run 1

The results obtained from the individual forecast methods are given at Figure B.1 and Figure B.2 in which the constants are calculated to minimize MAD and MSE - MAPE respectively (In this sample run the results of MSE and MAPE are same).

Figure B.1. The Iteration Results of Sample Run 1 (MAD)

♥ ▲ ● ● I U ∨ ₩ ▲ ● ● ↓ ● ● ↓ ↓ ● ● ↓ ↓ ● ● ↓ ↓ ● ● ↓ ↓ ● ● ↓ ↓ ● ● ↓ ↓ ● ● ↓ ↓ ● ● ↓ ↓ ● ● ↓ ↓ ● ● ● ● ● ↓ ↓ ↓ ●	ាំា	, second	4		0		Ş		(
I I		* *	6 27		B	∱* Z↓	3		, 3						
T U V W X Y Z AA AB AC AO AC AO AC AO AC AO AC		•	ΠI		B	°,0	. µ .	•	<						
ARIMA C.S. Av <thc.s. av<="" th=""> <thc.s. av<="" th=""> <thc.s< th=""><th></th><th></th><th></th><th></th><th>></th><th>W</th><th>×</th><th></th><th></th><th>AA</th><th></th><th>AC</th><th>AD</th><th>AE</th><th></th></thc.s<></thc.s.></thc.s.>					>	W	×			AA		AC	AD	AE	
000 001 001 001 001 001 001 0112 0112 011 011 011 011 011 011 0112 0112 011 <		+	2		C. S. Av. FM	C. S. Av. [Aft]-F(ft)]				_	1APE	C. MAPE	C. Cust.M F(h)	C. Cust.W. [Afth-Ffth]	
-012 -012 <th< td=""><td></td><td></td><td></td><td>-0.07</td><td>0</td><td>[0] LOC</td><td>0</td><td></td><td>0</td><td></td><td>0</td><td>[M - AC]</td><td></td><td></td><td></td></th<>				-0.07	0	[0] LOC	0		0		0	[M - AC]			
2016.35 0.24 4401.06 4400.06 440.05 4		*	*	-0,12											
455.07 477.01 472.07 472.07 455.00 475.07 455.00 475.07 477.15 475.07 475.07 477.15 477.15 477.15 477.15 477.15 477.15 477.15 477.17		75,15	3705,35												
4460,08 337 137 1 <td< td=""><td></td><td>110,64</td><td>4060,56</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		110,64	4060,56												
425.07/ 4771/07 445.07 45.500 466.62 46.613 20 24.508 4771/07 4771/07 44.500 19.842 62.02.050 51.802 62.17.218 48.5176 61.93.209 24.508 4771/07 56.02.031 50.80.231 50.105.528 61.03,528 62.17.218 48.5176 61.93.209 24.508 5508.31 5508.144 66.139 60.139 60.0231 30.131 62.69.04 43.773 62.0736 62.773 62.7509 5508.15 56.8617 56.901 64.93.994 66.193 94.4431 64.7703 66.146 44.431 64.7703 5508.15 56.817 56.901 64.93.943 64.93.943 64.93.943 64.93.943 64.93.943 64.93.943 64.93.943 64.96.977 66.96.96 64.93.944 64.96.977 66.96.96 64.93.946 67.762 66.96.96 64.93.944 67.762 66.96.96 64.93.946 67.96.96 64.97.762 66.96.96 64.97.762 66.96.97.714 64.97.762 66.96.97.714 66.96.97.714 67.762 66.96.97.714 67.767 67.77.72 67.72.96 <td></td> <td>-68 -68</td> <td>4450,69</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-68 -68	4450,69												
4772107 4772107 4772107 477211 475211 455212 455139 5200,508 51,8082 52712,228 4103,526 51,3011 5200,414 47,5011 47,5011 45,5713 45,5713 45,5713 45,5713 45,5713 45,5713 45,5713 45,5713 45,5713 45,5713 45,5713 45,5713 45,5713 45,5713 45,5713 45,5713 45,5713 51,0154 54,4131 65,0168 53,3713 45,5713 56,5713 45,5713 51,0254 56,5103 44,4131 45,9133 45,9213 56,9132 50,9124 45,5713 56,5168 77,8213 56,5108 77,8213 56,5108 77,8213 56,5108 77,8213 56,5108 77,8213 56,5108 77,8213 56,5108 77,8213 56,5108 77,8213 56,5108 77,8213 56,5108 77,8213 56,5108 77,8214 <td></td> <td>-5,77</td> <td>4525,07</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-5,77	4525,07												
477.139 477.139 477.139 477.139 477.139 495.175 495.175 6193.209 24.5008 5593.31 559.33 51.85 51.86 51.8062 527.228 51.95.16 51.93.209 24.5008 559.31 55.205.608 51.8062 52.12 51.31 51.95.04 435.17.51 4.46.517 45.5709 534.15 61.48 506 19.8942 62.20.508 51.812 61.990.74 27.5208 61.43.571 528.617 45.5709 533.61 44.16 71.2010 62.55.25 56.13.05 64.19.66 64.17 64.17 64.17 64.17 64.17 64.17 64.16 64.16 64.16 64.16 64.16 64.16 64.16 64.16 64.16 64.16 64.16 64.16 64.16 64.16 64.16 64.16 64.16 64.16<		-99,57	4727,07												
466.62 50331 50331 50331 50331 50331 50331 50331 50331 503522 503131 503131 503132 503131 503132 503131 503132 503131 503134 503123 503123 503123 503124 503124 503144 5177 5577 545 545 503 503124 503144 5177 55777 545 545 503144 545 503 52177 55777 55777 545 545 545 545 545		-7,69	4771,19												
55331 55331 556 51,002 627,228 -103,528 6217,218 -46,5176 6193,209 -24,508 5641,5 71,2001 445,5176 6193,020 -24,508 55,502 -67,501 -65,502 -55,502 -55,502 -67,501 -65,502 -56,502 -56,502 -56,502 -67,501 -55,502 -56,502 -67,501 -56,508 -67,501 -65,502 -67,501 -65,502 -67,501 -66,508 -67,501 -66,508 -67,501 -66,508 -67,501 -66,508 -67,501 -66,508 -67,501 -66,508 -67,501 -66,508 -67,501 -67,501 -66,508 -67,501 -66,508 -67,501 -67,501 -67,501 -67,501 -67,501 -67,501 -66,508 -67,502 -67,501		78,38	4965,62												
5568.23 51,805 51,802 527,228 103,528 6217,216 46,5176 6193,209 24,508 5578.100 6148,806 19,8942 6225,622 55,162 51,8015 5287,571 46,5709 6334.100 6341,6 71,2001 6235,622 55,165 6419,19 55,7324 64,7501 6347.10 6441,6 7,12001 6492,141 56,165 6492,143 54,4431 6437,732 61,5002 7,827 6516 6491,422 46,7741 56,165 6492,141 54,4431 6491,425 56,262 56,1666 6494,461 6492,664 6492,664 6494,461 6496,478 56,0203 67,7001 6491,426 76,771 64,4501 56,9206 6494,461 64,577 56,9205 66,6196 65,9204 6494,461 64,577 56,9206 6494,461 64,577 56,9206 6494,461 64,577 56,9206 6494,461 61,7601 66,5932 64,619 66,5774 54,6520 6494,461 61,6193 65,777 56,777 56,9206 6494,461 7227 56,5774 56,5774 56,577		56,99	5293,31												
5762,00 518,005 518,005 518,005 518,005 518,005 517,218 46,5176 6193,209 24,5088 5231,517 6286,714 46,6139 6220,2213 38,1311 6289,714 27,5039 6287,671 45,5709 5231,717 6441,6 71,2001 6425,562 55,162 419,5712 64,7501 45,5709 5616,113 65286,714 46,6139 6229,724 56,1606 6439,506 644,16 77,12001 445,176 619,013 67,703 64,7501 5616,113 6549,106 623,339 620,6414 46,5706 644,67 45,5709 64,450 745,571 64,5509 64,5509 64,560 64,560 64,560 782,714 64,5509 64,560 782,714 64,560 782,714 64,560 787,714 64,550 782,714 64,560 782,714 64,560 782,761 66,500 783,561 64,560 782,714 64,650 782,614 64,763 782,714 64,650 782,714 64,650 782,714 64,650 782,714 64,650 782,714 64,650 782,714		8,17	5568,23												
5341,56 6148,806 19,8942 6220,508 -61,8005 6273,228 -103,528 517,218 -48,517,9 6193,209 -24,5008 6336,03 6148,806 19,8942 6220,522 -55,162 63,103 -24,503 53,173 517,519 -47,570 -24,508 6441,6 -71,2001 6226,622 -55,162 6419,904 -25,603 53,441 45,733 587,671 -45,570 6504,11 6491,427 45,7001 6236,502 6491,904 -55,644 6497,733 50,0028 6447,733 50,0028 644,743 50,0028 644,743 50,0028 6644,743 64,7570 43,5714 54,5709 56,744 64,732 56,504 56,004 64,9733 50,0028 660,944 103,2542 56,001 54,697,73 50,0028 660,944 103,2542 57,714 56,552,774 54,6529 56,562 53,91 164,0539 56,914,14 17,8139 56,562 53,91 56,562 53,91 56,562 53,91 56,562 53,91 56,562 53,91 56,562 53,91 56,562 53,91 56,562 </td <td></td> <td>-5.89 </td> <td>5762,09</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-5.89 	5762,09												
8336.03 6148.906 19,8942 6220.508 51,8082 6272,228 103,528 6217,218 48,5176 6193,209 24,508 823157 6288,714 46,5139 6280,231 -38,1311 6289,704 6437,729 67,324 6436,15 64,7501 6506,79 6439,396 68,5822 649159 -84,6896 642,904 456,5041 64397,75 67,324 6436,15 64,7501 6506,79 6439,396 68,582 6497,99 -84,6896 6429,044 55,041 64397,75 67,324 6436,175 547,500 6616,101 6516,506 21,7941 6526,419 11,18133 6537,777 0,1766 16439,115 644,783 50,028 6616,106 621,8941 105,8939 6809,387 103,314 6813,813 6829,709 7,891153 6622,709 14,8911 6616,506 12,7941 6526,419 11,18133 6537,777 0,1786 6539,709 7,891153 6622,709 14,8911 6616,506 12,7941 6526,419 11,18133 6537,777 6,1776 65,774 54,525 6616,106 62,7838 7883 788,146 4,0538 7393,246 65,9567 7,866,5774 54,525 6618,016 14 14,5352 6602,841 105,8939 6809,387 103,314 6813,813 68126774 54,525 6618,016 14 14,5352 6602,841 105,8939 6809,387 103,314 6813,813 682,774 54,525 7221,366 76,4338 7283,746 64,0539 7291,248 65,1662 7022,809 57,09123 7075,711 64,1891 7221,366 76,4338 7283,746 64,0539 7291,248 65,1662 7022,809 57,09123 7075,711 64,1891 7221,366 76,4338 7283,746 64,0539 7291,248 65,1662 7022,809 57,09123 7075,711 64,1891 7220,38 7721,366 76,4338 7283,746 64,0539 7291,248 65,1662 7022,809 57,09123 7075,711 64,1891 7221,366 76,4338 7283,746 64,0539 7291,248 65,1662 7022,809 57,09123 7075,711 64,1891 7221,366 76,438 788 748 56,544 777 26,577 7466,414 -17,9139 7221,367 746 54,1673 782,538 748 56,544 777 26,577 7466,414 -17,9139 7489,577 466,744 70,090 MAPE: 0,000 MAPE:		120.84	5941,56												
6236/71 46,6139 6230/231 38,1311 6239/704 -27,603 6236/767 45,5709 6447 64416 -71,2001 6425,652 55,162 6439,315 6437,729 6439,515 647,501 6506,73 6431,420 16,0208 649,431 6496,655 64,556 643,501 647,501 6616,906 21,7941 6526,419 11,18133 6537,777 -0,17661 6529,709 7,891153 652,774 54,550 6616,906 21,7941 6526,419 11,18133 6537,777 -0,17661 6523,703 74,8911 6673,038 6616,906 21,7941 6526,734 66,529 64,1491 66,1690 6616,906 621,7941 6526,419 11,18133 6537,777 -0,17661 6522,744 54,529 6616,906 621,7941 6526,419 11,616,539 7291,286,947 64,556 644,7501 64,757 6616,906 623,425 64,1105 623,827 64,117 26,977 748,414 14,9911 6616,906 749,647 709,2307 54,6677 748,414		-167,33			6148.806			-51,8082	6272.228	-103.528	6217.218	-48.5176	6193.209	-24.5088	
6441,0 6441,6 71,2001 642,562 55,162 65,104 6437,729 67,3294 643,515 64,501 6506,79 64939,568 66,6607 649,504 6437,729 67,3294 6437,611 50,0028 6506,71 64049 642,601 66,501 66,5016 53,956 6494,763 50,0028 6616,806 71,7241 652,614 56,5016 73,9516 65,9017 64,9139 56,501 49,9014 6619,016 62,3733 641,110 6333,633 717 0,17661 6539,709 7891736 54,1201 6619,016 62,3839 6629,714 50,67545 66,14007 7083,713 60,9446 103,2442 6619,016 62,3839 6629,714 50,67545 66,1507 70913 709123 65,5774 54,6259 6618,016 62,3837 64,3387 7035,711 60,9746 103,242 65,5774 54,555 7008,87 749,5164 24,0404 7508,243 65,6774 54,555 705,711 66,674 66,666 7008,87 749,517 26		10.53			6288.714			-38,1311		-27,6039	6284,467	-42,3673	6287,671	-45,5709	
6606.79 6433.968 66682 6491.99 84,699 6491.43 641.891 6619.0028 640.44 6619.016 621.3939 6625.714 641.891 6619.016 621.3939 6625.714 540.0238 6601.44 641.891 6619.016 721.43 641.891 6619.016 721.44 641.891 6619.61 741.41 671.62 661.694.73 50.0238 660.946 103.2542 6720.387 6619.016 7232.438 7436.177 50.01328 660.946 103.2542 7287.714 64.6553 7287.714 64.6553 7287.714 64.6553 7287.714 64.6553 7287.714 64.6553 7287.714 64.6553 7287.714 64.6553 7287.714 64.6553 7287.714 64.6553 7287.714 64.6553 7287.714 64.6553 7287.714 64.6553		-76.60			6441.6			-55,162		-49.5044	6437.729	-67,3294	6435.15	-64.7501	
6516,11 6491,422 -46,7218 6494,741 -50,0408 6499,143 -54,4431 6494,763 -50,0628 6494,763 -50,0628 650,028 650,023 705,017 705,017 640,023 705,017 706,017 703,023 705,017 64,053 65,650 702,023 705,017 703,024 65,650 703,026 65,650 702,026 64,053 702,014 700,016 703,043 705,017 706,017 703,016 703,016 703,016 703,016 </td <td></td> <td>-99.49</td> <td></td> <td></td> <td>6493.958</td> <td></td> <td></td> <td></td> <td>6492,804</td> <td>-85,5041</td> <td>6498,315</td> <td>-91,0154</td> <td>6495,087</td> <td>-87.7872</td> <td></td>		-99.49			6493.958				6492,804	-85,5041	6498,315	-91,0154	6495,087	-87.7872	
6673,03 6615,806 21,7941 6526,419 11,18133 6537,777 0,17661 6529,709 7,891153 6522,709 14,8911 66618,016 22,3839 6529,724 50,67345 6641,986 33,41417 6633,427 46,97275 6625,774 54,6529 7088,77 7088,974 710,5259 7075,0341 105,6381 39,8877 369,313 98,8873 61,56377 369,746 103,2542 7088,77 7088,775 710,5259 7075,0341 105,6381 708,509 57,002,309 57,0012 7057,146 103,2542 7088,771 366 76,4338 7283,746 64,05396 7291,284 66,51682 7287,713 60,08647 7282,149 66,6608 7220,387 7271,366 76,4338 7283,745 64,05396 7291,284 66,51682 7287,713 60,08647 7282,149 66,6608 7520,387 7469,676 -1,0759 7492,641 -24,0404 7508,025 -39,426 7456,777 7466,414 -17,9139 7520,387 7469,676 -1,0759 7492,641 -24,0404 7508,025 -39,4246 7456,777 7466,414 -17,9139 7520,387 7469,676 -1,0759 7492,641 -24,0404 700,026 MAPE: 0,008		-71,41			6491,422		~		6499,143	-54,4431	6498,666	-53,9656	6494,783	-50,0828	
6618,016 62,3839 6629,724 50,57545 6641,966 33,41417 6633,427 46,97275 6625,774 54,6259 66332,822 7066,783 105,8939 6809,387 103,3134 6813,813 98,80728 6609,446 103,2542 10887 71,5229 7075,785 64,01305 824,01309 57,009137 7075,711 64,188 7292,833 7469,676 -1,0759 7492,641 -24,0404 7508,025 -39,4246 65,1662 7287,713 60,0694 76 103,2542 7202,83 7469,676 -1,0759 7492,641 -24,0404 7508,025 -39,4246 7456,177 -26,5777 7486,414 -17,8139 7520,38 MaD: 55,5 MaD: 55,5 MaD: 55,5 MaD: 726,149 65,6608 7520,38 MaD: 55,3 MaD: 55,5 MaD: 726,7149 65,6608 7520,38 MaD: 55,3 MaD: 55,5 MaD: 55,5 MaD: 55,577 7486,414 -17,8139 MaD: 55,3 MaD: 55,3 MaD: 55,5 MaD: 55,5 MaD: 55,577 7486,414 -17,8139 7520,38 MaD: 95,5 MaD: 55,5 MaD: 55,5 MaD: 55,577 7486,414 -17,8139 7520,38 MaD: 55,3 MaD: 55,5 MaD: 55,5 MaD: 55,577 7486,414 -17,8139 7520,38 MaD: 55,3 MaD: 55,5 MaD: 55,5 MaD: 55,577 7486,414 -17,8139 7520,38 MaDE: 3952,2 MSE: 3595,3 MSE: 3595,1 MSE: 3591,1 MSE: 3603,1 MADE: 0,008 MAPE: 0,008		-35,43			6515,806				6637,777	-0,17661		7,891153	6622,709	14,8911	
8632,82 6600,164 104,5362 6600,541 105,8593 6600,387 103,3134 6813,813 98,88728 6609,446 103,2542 7108,877 715 60,6547 785,719 60,6567 7866,414 -17,819 65,6569 7200,837 771 75 60,6577 7486,414 -17,819 65,6569 7520,387 7495,676 71,0759 7282,645 64,0600 72 34,6577 7486,414 -17,8139 7495,676 71,529 7292,641 -24,0404 7508,022 34,5677 7486,414 -17,8139 MAD : 55,3 MAD : 54,5 MAD : 55,3 MAD : 554,6 MAD : 554,6 MAD : 53,9 MAD : 3952,2 MSE : 3955,3 MAD : 55,3 MAD : 554,6 MAD : 53,9 MAPE : 3962,2 MSE : 3595,3 MSE : 4023,4 MSE : 3591,1 MSE : 3609,1 MAPE : 0,008 MAPE : 0,008 MAPE : 0,008 MAPE : 0,008 MAPE : 0,008 APE : 0,008 MAPE : 10,008 MAPE : 0,008 MAPE : 0,008 MAPE : 0,008		1,32			6618,016				6641,986	38,41417		46,97275	6625,774	54,6259	
7108 87 7068 374 71,5239 7075,733 64,11705 7083,743 66,15662 7022,809 57,09123 7075,711 64,1899 7292,833 7281,786 745 7282,149 65,6508 7520,338 7281,786 743 7282,149 65,6508 7520,338 7489,676 -1,0759 7492,641 -24,044 7508,025 -39,426 7587,713 50,06647 7282,149 65,6508 7520,38 MaD : 55,3 MaD : 55,3 MaD : 54,5 MaD : 56,577 7486,414 -17,8139 MaE : 3692,14 MaE : 3691,1 MSE : 3609,1 mSE : 3622,2 MSE : 3695,3 MSE : 4023,4 MSE : 3691,1 MSE : 3609,1 mSE : 3609,1 mSE : 3692,2 MSE : 3692,2 MSE : 3695,3 MSE : 4023,4 MSE : 3691,1 MSE : 3609,1 m		79,88	6832,82		6808,164	•			6809,387	103,3134	6813,813	98,88728	6809,446	103,2542	
7220,383 7271,366 76,4338 7283,446 64,05396 7291,284 66,51662 7287,713 60,08647 7282,149 66,6608 7520,38 7489,576 -1,0759 7492,641 -24,0404 7508,025 -39,4246 7495,177 -26,577 7486,414 -17,8139 MAD: 555,3 MAD: 54,5 MAD: 26,9 MAD: 26,9 MAD: 55,677 7486,414 -17,8139 MSE: 3962,2 MSE: 3565,3 MSE: 4023,4 MSE: 3691,1 MSE: 3609,1 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE:		31,03	7108,87		7068,374				7083,743	56,15662	7082,809	57,09123	7075,711	64,1889	
7520,38 7489,676 -1,0759 7492,641 -24,0404 7508,025 -39,4246 7495,177 -26,577 7486,414 -17,8139 MAD: 55,3 MAD: 54,5 MAD: 54,5 MAD: 55,9 MAD: 55,9 MAD: 53,9 MSE: 3952,2 MSE: 3595,3 MSE: 369,1, MSE: 369,1, MSE: 360,1 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008		54,97	7292,83		7271,366				7291,284	56,51582	7287,713	60,08647		65,6508	
MAD: 55,3 MAD: 54,5 MAD: 55,3 MAD: 53,9 MSE: 399,2 MSE: 3595,3 MSE: 3591,1 MSE: 3691,1 MSE: 3609,1 MSE: 395,2 MSE: 3595,3 MSE: 3595,3 MSE: 3595,3 MSE: 3609,1 53,9 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MI MI MI MI MI		-51,78	7520,38		7469,676			-24,0404		-39,4246	7495,177	-26,577		-17,8139	
MAPE: 392.2 MSE: 3695,3 MSE: 403.4 MSE: 3691,1 MSE: 360,1 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008 MAPE: 0,008			0		MAD .	77 7	MAD -	515	MAD -	57.0	MAD -	545	MAD -	53.0	
			10		. н См М	306.0	. HSM	3595.3	. HSM	4073.4	. HCM	3591.1	. HCM	3609.1	
			10		MAPE -	4'7000	MAPE -	0.008	MADE -	t'n70#	MADE -	0008	MAPE -	- 200 0	
			10			000		000		2		2		000	
			2.5												
	- 14		1-												
	-		_												
		Sheet2 🗸 Shee	et3 /						•						1
														MUM	

Figure B.1. (continued)

			T	•	2	5												0	22	5	5 8	18	88	. 5	- 86	. 10	. 2	8	12	0	.1.	0 0	<u>n</u> 6	3			
4				Ň	LAM-FMI																		84.39	60,6001								20	61323,9	5			L
			0	00	E(f)	2													6004	6624	0317	6644	6677	6741	7079	7351	7462	7595	Sea. Lenot	alfa :	gama :	MAD :	MSE: M≜DE:	J <u>Č</u>			MUN
			z	× Sm (S F		0 763	222.0	VC8 0	470'0	0,000	0.985	1 009	1,039	1,1	1,167	917' I	1,255	99/'n	////0	0,824	000,0	1001	1 009	1,039	1.1	1,167	1,216	1,255	0		8	2	22	2			
			Σ	× Sm (S F													5756,2	GG'9777	/91/,8/	/609,61	C1 000 /2	6563 07	6487 66	6435,45	6299,39	6136,29	6051,97	5961,17									
				s Sm Tr F	AM-FMI S	- 122 - 122	63 1001	171 5	218 2002	13.4	133.7002	545	25,5	157	69,2998 35,2998	1000,67	74,7998	112,3999	160,2998	90,8999	44 (JUUU	200 / CD	55,6001	68,3999				96,3999	60	60	6.88	10606,7	0,017				
			×	≡× Sm Œ	S(h) F(h) [A(h)-F(h)] S(h) T(h) F(h) [A(h)-F(h)] S(h)	2	3501				4653	4682	4738	4887	5281	7995					0700						7372	7565	alfa :	beta :	MAD :	MSE :	MAPE :				
	•	• <u>A</u> • .	-,	Ex Sm Cr	E Contraction		5103	100 B	366.40	258 U.)	149.39	105,16	125,72	253,15	308,94	24/,42	186,5	QE' / /7	147,89	/4,61	110,11	80	20.05	135,35	219,42	234,13	214,36	136,6				_	_			•	
	• %96	\$ 	-	=× Sm ∏r		3501 1	3557.8	3763 33	01/00/12	7476414	4532.71	4632,96	4760,96	5028,27	5343,41	5563,99	5763,72	81,18Ud	6184,68	6251,15 6267,04	10000004	6447 11 6447 11	6537 06	6673,56	6902,32	7138,08	7350,24	7478,2									
	€ 1		I	Ex Sm	Ath-Fill		63 1001	1001'00	CUUC 214	752	162.2998	124,5	148,5	295	336,2998	259,3999	206,2002	32b,3999	138,/002	8/,1001	20, 10000		97 6001	152,3999	247,7002	251,8999	232,7998	144,6001	6.0	191	45687,3	0,036					
	<i>f</i> ∗ ≜↓ <mark>Z</mark> ↓	°,0 •	U	л С Ш Х Ц	E(f)		3501			4130	4357	4503	4615	4749	5014	/150	5550	90/90	6030	6155	2220	5407	6440	6528	6665	6889	7115		alfa :	MAD :	MSE :	MAPE :					
	 ✓ ✓ 	% § 100	Ŀ	ы Ш К С		3501 1	3557.8	3768 73	0 0011	4123,3	4503.05	4615,06	4748,66	5014,47	5316,72	5550,43	5735,62	2//6709	6154,8	15,553,37	/ 0000	6440 A5	6527.89	6665,15	6887,95	7114,7	7324,49	7454,19									
1	5 2 • 5	 	ш		-FMI		63 1001	216.6	391 2002	2002, 1 CU	137.2998	108,5	135,5	280	306,2998	220,3999	180,2002	300,3999	106,7002	/3,1001	00000 20	0002' /C	97 FUN1	142,3999	232,7002	226,8999	207,7998	120,6001	~	172,5	38063,6	0,032					
	ð 	Z Ū ≣			Ē		3501	SEGA	3780	A171	4382	4519	4628	4764	5044	0929	5576	5/50 0000	6062	6169	7470	5407	6445	6538	6680	6913	7140	7348		MAD :	MSE :	MAPE :					
1	₩ \$	8 →				501 1	3564.1	3780 £	0,00,0 171.0	7'1 /1 #	4519.3	4627,5	4763,5	5044	5350,3	4,0/00	5756,2	6162,4	6168.7	6242,1	4) U / CO	C, 1040	6537.6	6680,4	6912,7	7139,9	7347,8	7468,6				_				2 \ Sheet3	
	é 1	+ 10			A(h) MA	350	356.4.1	3780.6	4171.0	41714	4519.3	4627,5	4763,5	5044	5350,3	55/b,4	5756,2	6U62,4	6168./	6242,1	4'0/CQ	5 AAA 7	6537.6	6680,4	6912,7	7139,9	7347,8	7468,6								3/ A A b M Sheet1 Sheet2 Sheet3	
	() () () ()		∢	t of perior	Period 4		- 0	4 (*		t 10	9 (9	~	ω	6	₽;	Ξ	12	2:	4	τ τ	₽ Ç	2 9	5 Q	2	21	22	53	24 X	3							I Shee	٨
j		Aria		++		1 (**		t 11	ם ת	2		ŋ	1	;-	99	<u>n</u>	4	<u>ם</u>	<u>ب</u>	29	<u> </u>	2 6	3 5	5	33	24	25	35	; 8	3	R	ñ	88	348	ទីនេ	ò▼ ▼	Ready

Figure B.2. The Iteration Results of Sample Run 1 (MSE & MAPE)

12			aloi	4		đ								
	P	2	C		∱* Z		%96 😽	• •	_					
B Z	Þ	hhh		% §	°.0 •	₩ ₩ 00.	• 		•					
S		-	5	>	M	×	>	7	Å		AC	AD	AE	AF
ARIMA ARIMA	- Č		ARIMA C	C. S. Av.		C. S. Av. C. MAD	C. MAD	C. MSE	C. MSE C. N		C. MAPE C. (C. Cust.V	C. MAPE C. MAPE C. Cust. M.C. Cust. W. E.M. I. A.M. E.M. E.M. I. A.M. E.M.	
		3 4		3	[(i) 1-(i)]	8	(i) 1-(i)~]	- F		0		8	[(i) 1-(i)~]	
*		Ģ	12											
75,15 3705,35		35 0,24	4											
			ي											
		937	37											
-5,77 4525,07		2												
		21												
	<u> </u>	5												
	i Di													
	έΩl	-												
	ÈN.	m												
	Ð	л												
	ŭ	(0												
	8		U U	B152.206	16.4942	2 6224,851		8 6278,119	-109.419	6221,336		8 6197,459	9 -28.7588	
6231,57	6		U.	5282,514		_		2 6263,494		6276,959		6 6279,921		
	В	_		6433	-62,6001			7 6406,952		6427,314		9 6424,4	1 -54,0001	
	ĸ	~	Ŀ	6492,158								۵		
	÷		U.	6487,622	<u> </u>			ω						
	8	~	L.	6512,406										
	8		U.	6619,616		ω.								
	8	~ .	L.	6813,164					97,04196	ω	0,			
31,03 7108,87	6	F	~	7076,574					44,92881					
	8		~	7276,366							40			
-51,78 7520,38	8		~	7470,476	-1,8759	9 7493,649	9 -25,0486	6 7510,512	-41,9122	2496,146	-27,5459	9 7487,414	1 -18,8139	
C			2	MAD -	ų 0	NAD -	G	7 MAD -	5	MAD -	ŭ	MAD -	07	
4 C			= 2	. Ц У Ц	2474.6	SAZA 6 MSF -	9.6	3103.6 MSE	7 70 Y	- 10 M 2 10 2	2412 C			
4 C			= 2	MADE -			200							
100			=										000	
0.00														
0404														
5														
<pre>Id Sheet1</pre>								•				_	_	1
													MUM	

Figure B.2. (continued)

Sample Run 2

The results obtained from the individual forecast methods are given at Figure B.3 Figure B.4 and Figure B.5 in which the constants are calculated to minimize MAD, MSE and MAPE respectively

			∙	Sm.(S	[A(t)-F(t)] .														11649	33107	70000	3763	16943	36926	49645	78838	14725	62455	46166		1	6	-1	47656	3,24E+09	0'063	F	•	
			0	Sm.(S															327394	524041	572080	999603	1030625			_	<u>, </u>		465220	309928	Sea.Lengt					MAPE :			MUM
			Z	Ex.Sm.(SEx.	F(t)	0,404	0,459	0.759	0.784	1 234	1 268	1.421	1,625	1,573	1,281	0,637	0,555	0,406		0,759 5				-			<u> </u>	0,638		m	Š	alfa :	gama	MAD	MSE	ΨW			
			W	Sm.(S Ex.													394972	713276,4	690435,5	729693,4	810051	812795,5	824821,5	848208,6	875704,3	830596,8	749994,1	838234,7	763370,5										
					[A(t)-F(t)] S(t)		39309	206568	27622	258660	78840	6485	38295	149077	298676	482604					108834								7295 76		6 0	т <u></u> О	169537,1	5,15E+10	0,254				
			×	Ex. Sm. (Tr E	F(t) [4		287178	333170	585468	619537	981098	1017622	1117515	1268049	1209698	936065	366594	264669	181410	221318	533246	670262	1099060	1167818	1331099	1570674	1404779	950764	426349	262905	alfa :				MAPE :				
6	•	• <u>A</u> • •	- -	Ex.Sm.(Tr	T(t)	0	10613,43	66386.92	58928.96	128767 1	107480.3	105729.3	116069	75818,05	-4824,41	-135128	-127465	-117264	-80993,4	9680,65	39065,92	129003,9	115101,2	126219,4	152378,5	78930,67	-44056,6	-154909	-156878			٩	2	~	2			-	
200	• %96	\$	_	Ex. Sm. (Tr	S(t)	287178	322556,1	519081.2		852331	910142	1011786	1151980	1133880			392134,2	298673,7	302311,5	523565	631196,6	970055,7	1052717	1204879	1418295	1325848	994820,9	581257,3	419783,5										
ę	¥		н	S. Ex. Sr	[A(t)-F(t)] S(t)		39309	217182	39826	324334	56494	114528	156126	21225	210073	478568	106346	103155	2978	241701	109102	372196	81422	169571	235944	105745	359949	445064	165653		6 0	180717	5,03E+10	0,271					
4	∱* <mark>2</mark> †	• •	9	S. Ex. Srr	F(t)		287178	322556	518020	553863	845764	896609	999684	1140197	<u> </u>									`	`	·	<u> </u>		584707	435619	alfa :		MSE :						
	∑ •	% 5	ш		õ	287178	322556,1							1121095				312767,5	315447,3				·		-	<u> </u>			435619,3										
	5		ш	MA	[A(t)-F(t)]		33309			e.		-	144673			٩						0						1	121147		-	167671,8	4,53E+10	0,248					
	> 1	I U		MA	F(t)	~	7 287178			-			0 1011137	2 1155810	-								-	-			~			419054	 Z	MAD :	MSE :	MAPE :				3 /	
	*	10 V B	0	24 MA	Σ	8 287178	7 326487		_	-		-	0 1155810	2 1118972								`	`	-	~	-			4 419054									Sheet1 < Sheet2 < Sheet3	
	9 1) 1)	Þ	8		7	1 287178	2 326487	3 539738	4 557846	5 878197	6 902258	7 1011137	8 1155810	9 1118972	0 911022	1 453461	2 394972	3 302452	4 315745		6 642080	`	<u> </u>	`	-	-			4 419054	LC LC								heet1 (She	
		Arial	∢	# of perioc	Period				-	~					Ţ	-		15 10	-	Ť	1	-	~	~	50	ĊV.	67	ί Λ	24		58	23	8		32	33		1 1 2	Ready

Figure B.3. The Iteration Results of Sample Run 2 (MAD)

		AE AF AF C. Cust W. (A(1)-F(1)) (A(1)-F(1)-F(1)) (A(1)-F(1)) (A(1)-F(1)) (A(1)-F(1)) (A(1)-F(1)) (A(1)-F(1)) (A(1)-F(1)) (A(1)-F(1)) (A(1)-F(1)) (A(1)-F(1)) (A(1)-F(1)) (A(1)-F(1)) (A(1)-F(1)) (A(1)-F(1)) (A(1)-F(1)-F(1)) (A(1)-F(1)-F(1)) (A(1)-F(1)-F(1)) (A(1)-F(1)-F(1)-F(1)) (A(1)-F(1)-F(1)-F(1)) (A(1)-F(1)-F(1)-F(1)-F(1)-F(1)-F(1)-F(1)-F	-155354 -69505,6 -108352,2 1,56E+10 0,141
		AD (0) [0] [0] [0] [0] [0] [0] [0] [0] [0] [0]	9.0
		AC AC AC AC AC AC AC AC AC AC AC AC AC A	
			-17811 682463,4 -55017,3 486657,3 61824,6 MAD : 5,51E+09 MSE : 0,075 MAPE :
	•	00000000000000000000000000000000000000	20
96% + 💈 +	🗌 • 🔷 • 🔼	0 L 0 L 0 L 0 L 0 L 1 L 1 L 1 L 1 L 1 L	-156687 558012 -69071,2 474071,3 -108804,5 MAD : 1,58E+10 MSE : 0,142 MAPE :
\$ 3	.00 ****	X C MAD F(0) F(0) 1132946 11122946 11122946 11122946 11122946 11122946 11122946 11122946 11122946	
	, ⁰⁰		
<u></u>		đ	840761,3 504119,3 MAD : MAPE :
2	 ≣ ≣ ī	MA ARIMA Coeff Coeff	
	• B Z	S ARIMA (0)-F(1)] F(1)	X Sheet3 /
1 1 1 1 1 1	 ↓ 	ARIMA A Forecast //	26 28 29 30 31 33 33 33 34 37 5heet1 A Sheet2 A Sheet3
1 1 1 1 1	Arial	Q A A A A A A A A A A A A A	256 228 233 333 333 333 333 33 33 4 1 1 1 5 1 5

Figure B.3. (continued)

		- 0 - 1 - 0	ЕЖ.ОШ.(О ЕХ.ОШ.(О. ЕМ) [ΔМ.ЕМ]															394 11649	0							_	746 62455		978		0 0			3,24	0083		•	
			Π(Ο ΕΧ.ΟΠ Ε(θ)	001	0,404	0,459	759	0,784	234	268	421	625	573	281	637	555	406	459 327394	0,759 524041							-	0,638 477746		319928	Sea.Lengt	alfa :	gama :	MAD:	MSE :	MAPE			MIN
	M		011.(0 E.X. 011.(0 E	2		0	0	0	-		· •	~	~	~	0	394972 0					ю	-	-	-		-	- N	763370,5 0									_	
	-	U - U - U - U - U - U - U - U - U - U -	EX.OII.(11 EX.6 (A(1).F(1)1 S(1)			39309	188879	127300	234981	194267	12502	50470	161082	237370	323703													261805 763	0	6) 0	8 <u>,</u> 0	176610,2	4,13E+10	0,282				
	×	1 - E	EX.OTH.(TTEX.OTH.(TTEX.OTH.(TTEX.OTH.(DEX.OTH.(O SA) TA) FA) FA) FA)			287178	350859	685146	643216	1096525	1023639	1105340	1280054	1148392	777164			197252	295237	710874	779345	1272645	1199701			1298311	700782	157249	182363	alfa :				MAPE :				
, , , ,	-		T() (11	0				72639,86			0,		<u>`</u>				1.1			130385,5				~	1	-283392	-399010	-210511				~	~	~			•	
+ %96 💱	-	- 0 - 0 - 0	п сх.от.(т 1 SA)	707170			ЪĊ	6 570576	4 854698.9	-		`			8 485831.4	5 364991.8	5 291225.6			2 648959,4								3 392873,5		-	2	_	~					
	" • •		011 0. E.X. 011 E.X. [A(h)_F(h)] 2(h)					20 39826	53 324334		Ţ.								27									07 165653		ດ 0	180717	5,03E+10	0,271					
W %	•		0. EX. 011 0. EX. 011 0. EX. 011 0(1) E(1) [A(1)-E(1)]	0. 02				3,4 518020					-	-									~	-	`	-		m	435619	alfa :	MAD	MSE	MAPE:					
num Ieh ■ ■ ■	9 				- (39309 322556,1		18108 553863,4	320351 845763.6					g							07			· .	<u> </u>			121147 435619,		-	1.0	+10	248					
							326487 213	539738 18																		· /	`	`	419054			: 4,53E+10						
- The part Tyment Tyment Look part Mandow Tab 		5	€ E	7170			539738 32	557846 53	878197 55			~	-	-								-	-	-	`	<u> </u>		419054 54	4	z	MAD	MSE	MAPE				Sheet3 /	
			A(f) 24 MA	07170				557846 5	878197 8		~	ì	`							642080 6				·	-			419054 4									Sheet1 Sheet1 Sheet2 Sheet3	
i (1) i (1) i (1)			# ur period Pariod	č T	- (2	m	4	μŋ) (C	7	00	0	10	ţ.	12	ņ	14	15	16	-	-	· ·	-	-	8	33	24	97								I Sheet	Deady

Figure B.4. The Iteration Results of Sample Run 2 (MSE)

		C. MAPE C. Cust.W.C. Cust.W. [A(t)-F(t)] F(t) [A(t)-F(t)]		301937,4 1: 427186,9 1: 584794 857670,9 1-	105316/ -5699,3 1137643 7.1353,7 1319900 108004,1 1424892 -126247 1171124 -2211854 448194,6 -29140,6	MAD: 93353,1 MSE: 1,26E+10 MAPE: 0,115	
		C. MAPE C. MAPE C. C F(t) [A(t)-F(t)] F(t)		304696,5 - 434842,1 - 582679,3 867619,7 -	1049430 -1861,55 1139160 69846,7 1139161 604667,8 11393416 104667,8 1121824 -121179 1162809 -213539 455387,3 -33313,3 452367,3 -33313,3	MAD: 889568 MAD: MSE: 1,14E+10 MSE: MAPE: 0,11 MAPE:	
•		C. MSE C. MSE (1)-F(1) F(1)			1041230 6337 876 1159484 49513 31 1356286 71697 71 1397300 -98654,6 1105962 -156692 546864,5 -6653,54 456084,9 -37030,9	386.2 MAD : 56499 MAD : E=+10 MSE : 5,08E +09 MSE : 0,116 MAPE : 0,066 MAPE :	
• 👘 96% •	0 蓒 👘 •	C. MAD C. MAD [A(t)-F(t)]		13691,7 129901,4 57404,08 145809,6	1052936 - 5367 37 1137463 71534 45 1131994 108189 7 1424709 - 108189 7 1171042 - 221772 658207 4 - 118006 448561 4 - 29507 4	1,280	
🔔 Z f* 🖞 🕻	0;+ 00; f % 🚱	S. Av. C. S. Av. [A(t)-F(t)]		30778,75 30778,75 194530,5 48810 240316,5	1068196 - 2062/ 5 11146941 147043 5 14269941 147043 5 14265498 -157953 1242543 - 293733 778265 8 -238065 6 436844,3 -17790,3 -	MAD: 1348538 MAD: MSE: 2,71E+10 MSE: MAPE: 0,171 MAPE:	
- N + N + N + N + N + N + N + N + N + N		ARIMA Coeff		<u> </u>		$\Sigma \Sigma \Sigma$	
% ₽	↓ 10 ↓ B Z	MA ARIMA ARIMA scast [A(t)-F(t)] F(t)					Sheet2 (Sheet3 /
	Arial	ARIMA ARIMA A(t) Forecast	8 9 111 111 113 14 13				34 35 36 4 4 b bl Sheet1 (Sheet2 (Sheet3 Readv

Figure B.4. (continued)

× B -			•	۱. د	31.																Ц	3.8	3 3	5.2	λη.	6	<u>8</u> 2	5	8	1	4	14		12	0.8	-	2	ιg	3 62	{	Þ	•		
			۵.	Ex.Sm.	[A(t)-F(t																1021	1004		14131	16081	19861	39478	54452	73102	120211	56204	41814					48770 2	PUHALE E	0.063	5				
			0	Ex.Sm.(S Ex.Sm.(S)	F(t)																3111EU		020070	201040	987285	1027707	1169519	1373532	1371747	1069481	483997	460868	314209	Sea.Lengt	alfa :	dama :	MAD -	. HSW	MAPE -				MUN	
			z	Ex.Sm.(S	(£)	0 404	0.450	0.400	0,759	0,784	1 234	1 268	1004	- 74 4		n/a/-	1,281	763,0	0.555	0.408	0460		0/'0	00/n	1,234	1,268	1,422	1,626	1,571	1,278	0,638	0,554												
			Σ	Ex.Sm.(S	S(f)														394972	16			- I ~		810494,1				834879,4	759806,5	~	770120,3									-			
			_		[A(t)-F(t)]		ancac	20202	206568	27622	258660	78840			CC200	143077	298676	482604	28378	37783	12/225			100034	333104	51492	41179	96885	272029	455509	410563	7295		6'0	С.О	169537.1	5 15F+10	0.754						
	_		×	Ex. Sm. (Tr	F(t)		071700	0/1/07	333170	585468	619537	981098	1017600	101/022	010/111	1200049	1209698	936065	366594	264669	181410		010177	047556	670262	· ·	-	1331099	1570674	1404779	950764	426349	262905	alfa :	beta :	MAD :	. ESM	MAPE -						
			~	Ex. Sm. (Tr	T(t)	C	200555 1 10512 A2	10013,43	66386,92	58928,96					11000		11	-135128	-127465	-117264			- C		129003,9	115101,2	126219,4	152378,5	78930,67	-44056,6	-154909											•		
→ %96		•	_	Ex. Sm. (Tr	S(t)	287178					852331	910142	1011795	1471000	1101900										0,1	1052717	1204879		1325848	994820,9	581257,3	419783,5												
27 UU 12	<u>.</u>		т	S. Ex. Srr	[A(t)-F(t)]		aucac	20000	217182	39826	324334	56AGA	114530	14070	1001001	97717	210073	478568	106346	103155	001001	141701	400400	1091020	372196	81422	169571	235944	105745	359949	445064	165653		60	180717	5 03E+10	0 271	- 1						
f* 31	•	•	G	S. Ex. Srr	F(t)		071700	0/1/07	3225566	518020	553863	845764		00000	9339004		-	932029	501318	405607	210767	712/210	744010	0/67920	631170	966146	1039426	1192040	1404390	1309219	985265	584707	435619	alfa :	MAD :	MSE .	MAPE -							
Σ ()	8 3	% % ∰	ш	S. Ex. Srr	S(t)	7178	ò			553863,4	845763.6	BORENB 6			1140137	9601711		501317,8						0,001100	966146,4	1039426	1192040	1404390	1309219	985265	584707,4	435619,3												
kiudow ⊡elb	 1	W	ш		[A(t)-F(t)]		aucac	10000	213251	18108	320351	24061	100070	1 4 4070	00000	00000	207950	457561	58489	97520	12202	CON100	04040	004932	361286	44202	161429	218987	129339	349375	409069	121147		-	167671.8	4.53E+10	0.248	1						
mi to solo	; =	≝ ⊓ 7	0	MA	F(t)		071700	0/1/07	326487	539738	557846	878197	000050	202200	1011101		1118972	911022	453461							`	1047568	1208997	1427984	1298645	949270	540201	419054	 N	MAD :		÷					_		
	B P	n ,	0		MA	287178		104070	539738	557846	878197	GU7758	1011127	1011101	0100011	7/6011	911022	453461	394972	302452	2157AE	010110	041700	1000000	1003366	1047568	1208997	1427984	1298645	949270	540201	419054										Sheet1		
lew Insert		•		24	Ð	287178	200,407	104070	539738	557846	878197	GU7758	10111127	1011101	1100010	7/60111	911022	453461	394972	302452	316746	010/10/10	041/00	1000000	1003366	1047568	1208997	1427984	1298645	949270	540201	419054										et1 (Sheet		
			∢	# of perioc	Deriod	~	· C	V	m	4	LC.	2	10	- 0	0 0	n i	9	1	17	i ()	ţ	0 4	<u>0</u> !	17	9	19	2	21	22	23	24	25								[▶ ▶ She	Ready	

Figure B.5. The Iteration Results of Sample Run 2 (MAPE)

		AF		
		AB AC AD AE C. Cust.W.C. Cust.W. F(t) [A(t)-F(t)] F(t) [A(t)-F(t)]	142942,0 168202,25 168202,25 168202,25 168202,25 116223 112721 1110724 111272 1	MUM
		E (() F (() 200632.4	414203,4 655877,8 8555877,8 8555877,8 1131457 11190111 1190111 1190111 1190111 1190111 1190111 1190111 1190111 1190111 1190111 1190111 MAPE: 1 MAPE: 1	
		AB AC AC (1) AAPE C. MAPE (1) AAPE (1)	42.034,8 1 206345,2 4 14.202 5565717,7 85365,2 28 555877 1133980 7 21473,48 1 10355 1135003 108941,4 1 3155 11312003 108941,4 1 3155 1412804 -114169 1 4190 1183121 -233851 1 1901 183121 -233851 1 1901 183121 -233851 1 1901 183121 -233851 1 1901 183121 -233851 1 1901 144145,3 -55094,3 4851 484145,3 -55094,3 4851 484145,3 -55094,3 4851 484145,3 -55094,3 4851 484145,3 -55094,3 4851 484145,3 -55094,3 4851 484145,3 -55094,3 4851 4851 - 105409,7 MAD : MAPE : 105409,7 MAD : MAPE : 0,139 MAPE	
	Þ	L 0.5.	2 76467,8 77865,43 77865,43 77865,43 77869,54 778790,23 76790,23 176790,23 176790,23 176790,23 176790,23 176790,23 176790,23 176790,23 176790,23 176790,23 176791,11 5,956409 176591,11 5,956400 176591,11 5,9564000 176591,11 5,9564000 176591,11 5,9564000 176591,11 1765	
•	• ▼ •		2 4300501,2 2 653949,6 2 923494,6 2 93494,6 1 154808 1 154808 1 154808 1 154808 1 114749 5 470677,9 5 470677,9 0 MSE : 4 0 MSE : 4 0 MSE : 4	•
, %96 🚱	• 		8 13515, 2 40060 8 13515, 2 40060 8 21574,71 10266 7 7926,91 11548 9 113445, 4 13511 9 11345, 4 13511 9 11345, 11147 8 -162841 56518 8 -162841 56518 9 -162841 56518 112111,7 MAD : 1,66E+10 MSE : 1,66E+10 MSE : 0,147 MAPE	
¥ 12 12			2/2/36/1 4/182/8 2/2/0666/8 881631,4 2/2/0666/8 881631,4 10/2914,3 1131070 14506/1 11314539 14506/1 1192/27 -302123 703041,8 8/3977,3 480060,5 -3/213 MAPE : 3,51E+10 MSE : 3,51E+10 MSE :	
∑ ∱‰ <mark>2</mark> ↓	°₀; ; %	0.5. 0	21.367/1 22.20469.75 22.20409.75 22.70666.87 151567 151567 14.3021251 1.321261 1.321261 1.321261 1.321261 1.321261 3.51E+10 3.51E+10 0.213	
S		F(0) 276847,3		
a window Eleip		Coeff		
soo	I Ū	ARIMA F(1)		2
wew inserr romar joos vata window rep	10 V B	ARIMA ARIMA (D-F(0)		set2 🗸 Sheel
	•	ARIMA Forecast		(< ▶ ▶ Sheet1 (Sheet2 (Sheet3 Ready
ă ™ ≞ 1 0	Arial	1966433211099877665443214	<mark>☆8</mark> 833333333333333333333333333333333333	Ready

Figure B.5. (continued)