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abstract

THE THEORY OF GENERIC DIFFERENCE FIELDS

Yıldırım, İrem

M.Sc., Department of Mathematics

Supervisor: Assist. Prof. Dr. David Pierce

December 2003, 53 pages

A difference fieldM, is a field with a distinguished endomorphism, is called

a generic difference field if it is existentially closed among the models of the

theory of difference fields. In the language Ld = {+,−, ·, 0, 1, σ}, by a theorem

of Hrushovski, it is characterized by the following: M is an algebraically closed

field, σ is an automorphism of M , and if W and V are varieties defined over

M such that W ⊆ V × σ(V ) and the projection maps π1 : W → V and

π2 : W → σ(V ) are generically onto, then there is a tuple ā in M such that

(ā, σ(ā)) ∈ W . This thesis is a survey on the theory of generic difference

fields, called ACFA, which has been studied by Angus Macintyre, Van den

Dries, Carol Wood, Ehud Hrushovski and Zoé Chatzidakis. ACFA is the

model completion of the theory of algebraically closed difference fields. It

is very close to having full quantifier elimination, but it doesn’t. We can

eliminate quantifiers down to formulas with one quantifier and hence obtain

the completions of ACFA. This entails the decidability of the theory ACFA

as well as its extensions obtained by specifying the characteristic. The fixed

field of σ is a pseudo-finite field.

Keywords: Generic Difference Fields, Generic Automorphisms, ACFA.
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öz

JENERİK FARK CİSİMLERİNİN TEORİSİ

Yıldırım, İrem

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi: Yard. Doç. David Pierce

Aralık 2003, 53 pages

Fark cismi M ayırt edilmiş endomorfizması olan bir cisimdir. Bu cisme eğer

fark cisimleri teorisinin modelleri arasında varoluşsal olarak kapalıysa jenerik

fark cisimi denir. Ld = {+,−, ·, 0, 1, σ} dilinde Hrushovski’nin bir teoremi ile

şu şekilde karakterize edilir: M ; cebirsel olarak kapalı bir cisimdir, σ; M ’in bir

otomorfizmasıdır, ve eğer W ve V , M ’nin üzerinde tanımlanmış öyle değişken

kümelerdir ki W ⊆ V × σ(V ) ve projeksiyon haritaları π1 : W → V ve

π2 : W → σ(V ) jenerik olarak örtendir, o zaman M de öyle bir n-boyutlu

afin uzay noktası ā vardır ki (ā, σ(ā)) ∈ W . Bu tez ACFA denilen ve Angus

Macintyre, Van den Dries, Carol Wood, Ehud Hrushovski ve Zoé Chatzidakis

tarafından çalışılan jenerik fark cisimlerinin teorisi üzerine yapılmış bir in-

celemedir. ACFA cebirsel olarak kapalı fark cisimleri teorisinin model tamam-

layıcısıdır. Bu teori neredeyse tam niceleyici yokedilmesine sahiptir ama tama-

men yok edilemez. Bu teoride biz niceleyicileri ancak bir niceleyiciye kadar yok

edebilmekteyiz ve böylece ACFA’in tamamlayıcılarını da elde etmekteyiz. Bu

işlem, cismin karakteristiğini de belirleyerek sağlanan genişlemeleri ile birlikte

ACFA teorisinin de kararlılığını gerektirir. σ’nın sabit cismi bir sahte-sonlu

cisimdir.

Anahtar Kelimeler: Jenerik Fark Cismi, Jeneric Otomorfizmalar, ACFA.
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öz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CHAPTER

1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 basic model theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Languages and Structures . . . . . . . . . . . . . . . . . . . . . 5

2.2 L-Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Theories and Models . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Definable Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 algebraically closed fields . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Basic Algebraic Geometry . . . . . . . . . . . . . . . . . . . . . 33

3.2 The Model Theory of Algebraically Closed Fields . . . . . . . . 36

3.2.1 ACF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 generic difference fields . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Algebraic Background . . . . . . . . . . . . . . . . . . . . . . . 40

vii



4.2 Generic Automorphism of Fields . . . . . . . . . . . . . . . . . . 43

4.3 The Fixed Field of σ . . . . . . . . . . . . . . . . . . . . . . . . 50

references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

viii



chapter 1

introduction

Model theory is a branch of mathematics which classifies mathematical

structures by considering axioms satisfied by those structures. It uses first

order logic because it satisfies the Compactness Theorem and Löwenheim-

Skolem Theorem. In fact model theory is the analysis of the so-called definable

subsets of a mathematical structure.

The definable subsets of classical mathematical structures are very im-

portant in algebraic and geometric investigations, for example: they are the

constructible sets in algebraic geometry and the semi-algebraic sets in real

geometry.

The second chapter includes some basic techniques to find out the model

theory of a set of mathematical structures. It includes identifying elementary

classes, finding axioms for these classes, and determining definable sets of the

structures belonging to these classes. Quantifier elimination is an analysis

of definable sets by considering the complexity of their formulas. Sometimes

quantifier elimination fails in the natural language, but yet the definable sets

in a structure have useful form; model completeness is a good way of under-

standing these situations. A trick of model theory shows that if we enrich the

language of a structure sufficiently, structures can be made to have quantifier

elimination, but this shows nothing about their definable sets. We need to find
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an appropriate language in which a class of structures has quantifier elimina-

tion. Before giving these techniques I’ll give some basic definitions in model

theory and examples about them.

Chapter 3 starts with basic algebraic geometry which helps us to under-

stand definable sets of a field. The quantifier free definable subsets of a field

are the finite boolean combinations of Zariski closed sets called constructible

sets. The constructible sets have much stronger closure properties if the field

is algebraically closed.

So we’ll come to the model theory of algebraically closed fields. By applying

the techniques which I’ll show in the second chapter I’ll prove that the theory is

model complete and has quantifier elimination. This fact yields the following:

Let Q be the field of algebraic numbers over Q, then any finite system of

polynomial equations and inequations with coefficients in Q that has a solution

in some extension field of Q has one in Q. In other words if an algebraic set is

nonempty, then it has a point with coordinates in Q. This conclusion is closely

related to Hilbert’s Nullstellensatz.

I’ll give the Lefschetz Principle, which is a consequence of the completeness

and decidability of the theory of algebraically closed fields for a given charac-

teristic. At the end there is an application of model theory to the algebra of

fields which is due to Ax.

In the last chapter I’ll study the fields to which a distinguished endomor-

phism has been adjoined: the so called difference fields. Since the distin-

guished endomorphism of a difference field extends to an automorphism of a

larger field, I assume that all difference fields are inversive: in other words,

the endomorphism is an automorphism. The first section of this chapter gives

basic algebraic background about field automorphisms, difference fields and

difference systems.
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If we can understand the solvability of difference systems we can understand

the elementary theory of difference fields.

The theory of difference fields has a model companion, the so-called theory

of generic difference fields, which is called ACFA. That ACFA axiomatizes

the theory of generic difference fields was first proved by A. Macintyre in 1990

in a more complicated version and after that Hrushovski proved the isolated

one. So the theory is model complete, therefore very near to eliminating quan-

tifiers, but it doesn’t in the natural language of difference fields. By adjoining

predicates to the language which describe the isomorphism type of the prime

subfield, we get a reasonable elimination theory. Actually what we get is: the

theory of generic difference fields has elimination of quantifiers by adding extra

predicates to the language, but the definable sets of a model are not in useful

form.

The last section of this chapter deals with the fixed field of the automor-

phism. I’ll give some results of Ax about finite fields and describe the relation

between the finite fields and pseudo finite fields. We can conclude from the

theorem of Lang-Weil that the fixed field of the automorphism is pseudo-finite.

3



chapter 2

basic model theory

In this chapter I’ll give the basic definitions and primary results that play

an important role through other chapters. These definitions and results can

be found in [15]. For more details and historical background of model theory,

The Handbook of Mathematical Logic is a very good source to use.

The first section gives the definition of languages, structures and formulas

and some examples about them. The definition of a substructure and an

elementary substructure are given in terms of the notion of L-embedding.

Tarski’s Test, which can be used to show model completeness of a theory,

is given in Section 2. In Section 3 we define theories, connection between the

theories and structures, and some important properties which they may satisfy.

The definable sets of a structure are given by a recursive definition in Section

5 and the next section gives some basic techniques to find them.

First Order Logic

First order logic is the logic in which formulas are finite in length and

quantification is limited to individual elements of a structure. For example,

the formula
∨

n∈N xn = e, indexed by the natural numbers, which defines the

torsion elements of a group (G, ·, e), is not a first order formula since the

disjunction is infinite. The quantification over all ideals of a ring (R, +, ·, 0, 1)

4



is not permitted in the first order logic since ideals are not elements of the

ring. Throughout this paper every language and formula is first order.

2.1 Languages and Structures

This section gives the definition of languages, structures and formulas and

some specific examples about them.

Informally, a structure is a set with distinguished functions, distinguished

relations and distinguished elements. For example, the ordered additive group

of integers has underlying set Z, and we distinguish the binary functions +

and −, the binary relation < and the identity element 0. Precisely,

A structure M is given by the following:

• a non-empty set M called the universe, domain or underlying set

of M.

• A collection of functions {fi : i ∈ I0} where fi : Mni → M for some

ni ≥ 1.

• A collection of relations {ri : i ∈ I1} where ri ⊆ Mmi for some mi ≥ 1.

• A collection of distinguished elements {ci : i ∈ I2} ⊆ M .

I0, I1 and I2 may be empty, and ni and mj are referred to as the arity of

fi and rj.

The cardinality of M is the cardinality of the universe M , denoted by

|M |.
For another example the ordered field of real numbers as a structure has

domain R, binary functions +,− and ×, binary relation <, and distinguished

elements 0 and 1.
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In mathematical logic we study structures by examining the sentences of

first order logic true in those structures. To any structure we attach a language

L where we have an ni-ary function symbol f̂i for each fi, an mi-ary relation

symbol r̂i for each ri and constant symbols ĉi for each ci.

Conversely an L-structure is a structure M where we can interpret all of

the symbols of L.

Precisely, a language L can be defined as a disjoint union of F ,R, C,

where:

F = {a set of function symbols},

R = {a set of relation symbols},

C = {a set of constant symbols}.

Some examples are:

• Lr = {+̂, −̂, ·̂, 0̂, 1̂} is the language of rings, which has:

F = {+̂, −̂, ·̂} each f̂i ∈ F is binary,

R = ∅,

C = {0̂, 1̂}

• Lor = {+̂, −̂, ·̂, 0̂, 1̂, <̂} is the language of ordered rings, which has:

F = {+̂, −̂, ·̂} each f̂i ∈ F is binary,

R = {<̂} <̂ is binary,

C = {0̂, 1̂}

If R = ∅ in a language L then we say that L is a language of Algebras .

6



If M is an L-structure where L is a language of algebras, then M is called an

Algebra .

We call f̂i

M
(respectively for r̂j

M and ĉl
M) the interpretation in M of

the symbols f̂i (respectively for r̂j and ĉl) in L and the f̂i

M
(respectively r̂j

M

and ĉl
M) are the so called fundamental functions (respectively relations and

constants) on M.

As an example take the language Lor and let the universe be R, we have:

• the function symbols +̂, −̂, ·̂ in Lor become the functions as:

+̂
R

= ((a1, a2) 7→ a1 + a2 : R2 → R),

−̂R = ((a1, a2) 7→ a1 − a2 : R2 → R),

.̂R = ((a1, a2) 7→ a1 · a2 : R2 → R),

for a1, a2 ∈ R,

• the relation symbol <̂ ∈ Lor defines the set:

<̂
R

: {(a1, a2) ⊆ R2 : a1 < a2},

• the constant symbols 0̂, 1̂ in Lor define constants:

0̂R = 0 ∈ R, the identity element for addition,

1̂R = 1 ∈ R, the identity element for multiplication.

If no confusion arises from now on we’ll not use theˆon the symbols of L.

Simply, we’ll show the language of rings Lr = {+,−, ·, 0, 1}.
An L-term is built by function symbols and constant symbols of L, equal-

ity symbol = and the variables x1, x2, . . .. Precisely, the recursive definition

7



of the set of L-terms is the smallest set, say T (L), in the language L such

that:

• c ∈ T (L) for every c ∈ C ,

• each variable symbol x1, x2, . . . ∈ T (L) and

• if t1, . . . , tn ∈ T (L) and f ∈ F , then f(t1, . . . , tn) ∈ T (L) where f is

n-ary.

For example in Lr:

• 0,1 are constant terms,

• ·(+(1, 1), x1) is a term (in the usual notation (1 + 1) · x1),

• −(·(x1, x2), ·(+(+(1, 1), 1), x3) is a term. (in the usual notation x1 · x2−
((1 + 1) + 1) · x3).

Let M be an L-structure and s be a term built using variables x̄ =

(x1, . . . , xn). We interpret s is a function sM : Mn 7→ M . For s and

ā = (a1, . . . , an) ∈ M we recursively define sM(ā) as follows:

• If s is a constant symbol c, then sM(ā) = cM,

• If s is the variable xi, then sM(ā) = ai,

• if s = f(t1, . . . , tn) where t1, . . . , tn ∈ T (L) and f ∈ F then sM(ā) =

fM(tM1 (ā), . . . , tMn (ā)).

The function sM is defined by ā 7→ sM(ā).

In a language L, the formulas are built from terms, the logical connectives

∧, ∨, ¬, quantifiers ∃, ∀, parentheses and relation symbols of L. We interpret

∧ as “and”, ∨ as “or”, ¬ as “not”, quantifiers ∃ as “there exists” and ∀ as “for

all”.
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We call an L-formula ϕ atomic if it’s the combination of the terms and

the relation symbols of L or the equality symbol. Indeed, it’s one of the form:

• t = s where t and s are terms of L, or

• r(t1, . . . , tn) where ti’s are terms of L, and r is an n-ary relation symbol

of L.

The set of formulas in a language L is the smallest set say F (L) con-

taining all atomic L-formulas and satisfying the following:

• if ϕ ∈ F (L) then ¬ ϕ ∈ F (L),

• if ϕ ∈ F (L) then ∃xi ϕ and ∀xi ϕ are in F (L),

• if ϕ1, ϕ2 ∈ F (L) then ϕ1 ∧ ϕ2 and ϕ1 ∨ ϕ2 are in F (L).

In model theory we prove most of the results by induction on the complexity

of the formulas: first for the terms by induction on terms, then for the atomic

formulas by induction on atomic formulas, last for formulas by induction on

formulas.

A variable x occurs freely (or is a free variable) in a formula ϕ if it

isn’t inside the scope of a ∃x or ∀x quantifier, otherwise we say it is bound.

For example:

ϕ(a, b, c) := ∃x(ax2 + bx + c = 0),

ψ(x, a, b, c) := (ax2 + bx + c = 0).

In the first example the variables a, b and c are free variables but the variable

x is inside the quantifier ∃x so it is bound. In the second example none of the

variables are bound therefore all variables are free variables. Note that by

using the above examples we can say that ϕ(a, b, c) := ∃xψ(x, a, b, c).

9



We write ϕ(x̄) to show that the free variables of ϕ are among the variables

x̄ = x1, . . . , xn and say that ϕ is an n-ary formula. I’ll denote the set of all

n-ary L-formulas by Fn(L).

Let ϕ be a formula and fv(ϕ) be the set of indices of its free variables.

Then:

1. If ϕ is atomic, then fv(ϕ) be the set of all indices of variables in it.

2. fv(ϕ) = fv(¬ ϕ).

3. fv(ϕ1 ∧ ϕ2) = fv(ϕ1 ∨ ϕ2) = fv(ϕ1) ∪ fv(ϕ2).

4. fv(∃xiϕ) = fv(ϕ)− {i}

Precisely a quantifier free (or open) formula is defined by the follow-

ing:

1. Atomic formulas are quantifier free.

2. If ϕ is quantifier free, then so is ¬ ϕ.

3. If ϕ1 and ϕ2 are quantifier free, then so are ϕ1 ∧ ϕ2 and ϕ1 ∨ ϕ2.

An L-formula ϕ is called an L-sentence if fv(ϕ) = ∅, precisely all vari-

ables of an L-sentence are bound. Imprecisely all axioms are sentences.

For example in Lr:

• ∃x1 (x1 · x1 = x2) is not a sentence, since x2 is a free variable.

• ∀x1∃x2 (x1 · x2 = x2 · x1) is a sentence.

• ∀x1∀x2 (x1 · x2 = x2 · x1) is a universal sentence.

The universal closure of a formula ϕ(x1, . . . , xn) is ∀x1, . . . , ∀xnϕ(x1, . . . , xn)

[18]. For example: ∀x2∃x1 x1 · x1 = x2 is the universal closure of the formula

∃x1 x1 · x1 = x2.

10



Remark 2.1.1. If no confusion arises I would like to use x̄ for the n-tuple of

variables x1, . . . , xn and ā for the n-tuple of elements a1, . . . , an of a set.

If we think of ϕ(x̄) as a property of elements ā ∈ Mn where M is the

universe of an L-structure M, we need to define ϕ(x̄) holds for ā ∈ Mn. Let

t, s and ti’s be terms and ϕ, φ be formulas of the language L, if ϕ(x̄) holds for

ā ∈ Mn, we denote this by M |= ϕ(ā), and this means:

• if ϕ is t = s, then tM(ā) = sM(ā),

• if ϕ is r(t1, . . . , tn), then rM(tM1 (ā), . . . , tMn (ā)) ∈ rM,

• if ϕ is ¬ φ, then M 2 φ(ā),

• if ϕ is ϕ1 ∧ ϕ2, then M |= ϕ1(ā) and M |= ϕ2(ā),

• if ϕ is ϕ1 ∨ ϕ2, then M |= ϕ1(ā) or M |= ϕ2(ā),

• if ϕ is ∃y φ(x̄, y), then M |= φ(ā, b) for some b ∈ M ,

• if ϕ is ∀y φ(x̄, y), then M |= φ(ā, b) for all b ∈ M .

Then we say that M satisfies ϕ(ā) or ϕ(ā) is true in M or ϕ(x̄) holds

for ā ∈ Mn.

Note that we can use:

ϕ → φ for ¬ ϕ ∨ φ and

ϕ ↔ φ for (ϕ → φ) ∧ (φ → ϕ).

Since we can think of ϕ ∨ φ as ¬ (¬ ϕ ∧ ¬ φ) and ∀xϕ as ¬ (∃x¬ ϕ) we

can exclude their cases when proving theorems.

11



2.2 L-Embedding

By introducing the notion of L-embedding we define being a substructure

and an elementary substructure. These definitions will be used in the next

section and the other chapters frequently.

Let M and N be L-structures with underlying sets M and N respectively.

An L-embedding h : M → N is an injective map that preserves the inter-

pretation of all function symbols, relation symbols and constant symbols of L.

Precisely, for all ā ∈ Mn:

• h(fMi (ā)) = fNi (h(ā)) for all n-ary fi ∈ F ⊆ L.

• ā ∈ rMj ⇐⇒ h(ā) ∈ rNj for all n-ary rj ∈ R ⊆ L.

• h(cMl ) = cNl for all cl ∈ C ⊆ L.

A bijective L-embedding is called an L-isomorphism .

We say either M is a substructure of N or N is an extension of M and

write M⊆ N if M ⊆ N and the inclusion map of M in N is an L-embedding.

That is, for all ā ∈ Mn:

• for all n-ary fi ∈ F ⊆ L,

fMi = fNi |Mn ,

• for all n-ary rj ∈ R ⊆ L

rMj = rNj ∩Mn,

• for all cl ∈ C ⊆ L

cMl = cNl .

12



Lemma 2.2.1. Let M and N be L-structures. If M⊆ N , ā in M and ϕ(x̄)

is a quantifier free formula, then

M |= ϕ(ā) if and only if N |= ϕ(ā).

Proof. Suppose M ⊆ N , our aim is to show that the lemma is true for all

quantifier free formula. Since the quantifier free formulas are defined recur-

sively as on p.10, we need to check the lemma for atomic formulas. Atomic

formulas are of the form t = s where t and s are terms of L, or r(t1, . . . , tn)

where ti’s are terms of L, so we need to check the validity of the lemma for

terms. This is last because the lemma is true for all elements of the language

by definition of a substructure.

Claim: If t(x̄) is a term in L and b̄ in M , then tM(b̄) = tN (b̄). This by

induction on complexity of terms.

• If t is a constant symbol c then cM = cN .

• If t is the variable symbol xi, then tM(b̄) = bi = tN (b̄).

• Suppose t = f(t1, . . . , tn) where f is an n-ary function symbol, t1, . . . , tn

are terms and tMi (b̄) = tNi (b̄) for i = 1, . . . , n. Since M⊆ N , fM = fN |
Mn. Thus,

tM(b̄) = fM(tM1 (b̄), . . . , tMn (b̄))

= fN (tM1 (b̄), . . . , tMn (b̄))

= fN (tN1 (b̄), . . . , tNn (b̄))

= tN (b̄).

Since the claim is true,

13



• If ϕ is t1 = t2, then

M |= ϕ(ā) ⇐⇒ tM1 (ā) = tM2 (ā)

⇐⇒ tN1 (ā) = tN2 (ā)

⇐⇒ N |= ϕ(ā)

• If ϕ is r(t1, . . . , tn), where r is an n-ary relation symbol, then

M |= ϕ(ā) ⇐⇒ (tM1 (ā), . . . , tMn (ā)) ∈ rM

⇐⇒ (tM1 (ā), . . . , tMn (ā)) ∈ rN

⇐⇒ (tN1 (ā), . . . , tNn (ā)) ∈ rN

⇐⇒ N |= ϕ(ā).

Thus, the lemma is true for all atomic formulas.

Suppose that the lemma is true for ψ and ϕ is ¬ψ. Then,

M |= ϕ(ā) ⇐⇒ M |= ¬ ψ(ā)

⇐⇒ M 2 ψ(ā)

⇐⇒ N 2 ψ(ā)

⇐⇒ N |= ¬ ψ(ā)

⇐⇒ N |= ϕ(ā).

At last suppose that the lemma is true for ϕ1(x̄) and ϕ2(x̄), and ϕ(x̄) =

ϕ1(x̄) ∧ ϕ2(x̄), then:
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M |= ψ(ā) ⇐⇒ M |= ϕ1(ā) ∧ ϕ2(ā)

⇐⇒ M |= ϕ1(ā) and M |= ϕ2(ā)

⇐⇒ N |= ϕ1(ā) and N |= ϕ2(ā)

⇐⇒ N |= ϕ1(ā) ∧ ϕ2(ā)

⇐⇒ N |= (ϕ1 ∧ ϕ2)(ā)

⇐⇒ N |= ψ(ā).

Let M and N be L-structures with underlying sets M and N respectively,

then an L-embedding h : M → N is called an elementary embedding if

it preserves the interpretation of all formulas of L. Precisely for all n-ary

L-formula ϕ(x̄) and ā ∈ Mn:

M |= ϕM(ā) ⇐⇒ N |= ϕN (h(ā)).

We say either M is an elementary substructure of N or N is an ele-

mentary extension of M and write M 4 N if M ⊆ N and the inclusion

map i : M ↪→ N is an elementary embedding. Indeed M 4 N if and only if

for all n-ary L-formulas ϕ(x̄) and ā ∈ Mn,

M |= ϕ(ā) ⇐⇒ N |= ϕ(ā).

2.3 Theories and Models

In the first section we took a set say M and choose a suitable language to

work on it and obtained the structure M. Now assume that we have a set Σ
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of sentences and we want to find the structures which all the sentences in Σ

holds.

Let Σ be a set of L-sentences. A model of Σ is an L-structure M such

that M |= ϕ for all ϕ ∈ Σ; In this case we write M |= Σ.

An L-sentence ϕ is a logical consequence of Σ and written Σ |= ϕ if

M |= ϕ for all M |= Σ.

An L-theory T is a set of L-sentences that contains all of its logical con-

sequences.

If T is a theory and Σ ⊆ T , we say Σ is a set of axioms for T if

T = Th(Σ). If there exists a finite set of axioms for T , we say that T is

finitely axiomatizable.

A classK of L-structures is said to be an elementary class ifK is the class

of all models of the same L-theory T . In this case we said that T axiomatizes

K. For example the class of algebraically closed fields is an elementary class,

but the class of finite fields is not, since not every model of the theory of finite

fields is a finite field. There are infinite fields which satisfy every sentence true

for finite fields. We will explain this situation for finite fields more clearly at

the end of the last chapter.

Some examples of the theories in the language Lr:

• the class of fields is axiomatized by:

– ∀x1∀x2 x1 + x2 = x2 + x1,

– ∀x1∀x2∀x3 x1 + (x2 + x3) ⇐⇒ (x1 + x2) + x3,

– ∀x x + (−x) = 0,

– ∀x1∀x2∀x3 x1 · (x2 · x3) = (x1 · x2) · x3,

– ∀x1∀x2∀x3 x1 · (x2 + x3) = (x1 · x2) + (x1 · x3),

– ∀x x + 0 = 0,
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– ∀x x.1 = x,

– ∀x1∀x2 x1 · x2 = x2 · x1,

– ∀x x 6= 0 → ∃y x · y = 1,

– 0 6= 1

(Note that if we weaken the last axiom to ∀x∀y (x 6= 0∧y 6= 0 → x·y 6= 0)

we get the axioms for the theory of integral domains.)

• by adding the following set of sentences to the theory of fields:

∀a0 . . . ∀an−1∃x xn +
∑n−1

i=0 aix
i = 0

for n = 1, 2 . . . we get the axiomatization for the theory of algebraically

closed fields which we’ll denote by ACF . Indeed these axioms are:

∀a0∃x x + a0 = 0

∀a0∀a1∃x x2 + a1x + a0 = 0

by continuing this way we get an infinite set of conditions which tell us

that every monic polynomial for each degree has a root.

• to show the characteristic we add:

ϕp : 1 + . . . + 1︸ ︷︷ ︸
p−times

= 0

to ACF , p prime, then,

for p > 0 : ACFp = ACF ∪ {ϕp} and

for p = 0 : ACF0 = ACF ∪ {¬ ϕp : p > 0}

where ACFp (respectively ACF0) is the axiomatization for the theory

algebraically closed fields of characteristic p (respectively characteristic

0).
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2.4 Definable Sets

By describing the simple sets on a structure we can construct more com-

plicated ones. The first of these simple sets are the ones defined by atomic

formulas.

A set X ⊆ Mn is definable in the L-structure M if there are formulas

ϕ(x1, . . . , xn+m) and elements b̄ ∈ Mm such that:

X = {ā ∈ Mn : M |= ϕ(ā, b̄)}

We say that X is A-definable or definable over A, where A ⊆ M , if we

can choose that b1, . . . , bm ∈ A. If m = 0 we say X is ∅-definable.

For example:

• In Lor {x : x > π} is definable over R but not ∅-definable, while

{x : x >
√

2} is ∅-definable by the Lor formula x · x > 1 + 1 ∧ x > 0.

• Let F be a field and M = (F [X], +,−, ·, 0, 1) be the ring of polynomials

over F . Then F is definable by the formula x = 0 ∨ ∃y(x · y = 1) in M.

Now I’ll give a characterization of the definable sets.

Proposition 2.4.1. Suppose Dn is the smallest collection of subsets of Mn

for all n ≥ 1 such that D = (Dn : n ≥ 1) is the smallest collection satisfying

the following conditions hold:

• Mn ∈ Dn.

• For all n-ary functions f of M, the graph of f is in Dn+1.

• For all n-ary relations r of M, r ∈ Dn.

• For all i, j ≤ n, {x̄ ∈ Mn : xi = xj} ∈ Dn.
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• Each Dn is closed under complement, union and intersection.

• If X ∈ Dm and π : Mn → Mm is a projection map (x1, . . . , xn) 7→
(xi1 , . . . , xim), then π−1(X) ∈ Dn.

• If X ∈ Dn and π is as above, then π(X) ∈ Dm.

• If X ∈ Dn+m and b̄ ∈ Mm, then {ā ∈ Mn : (ā, b̄) ∈ X} ∈ Dn.

Then X ⊆ Mn is definable if and only if X ∈ Dn.

Proof. See [15], Proposition 1.3.4.

Diagel(M) and Diag(M)

For an L-structure M let LM be the language obtaining by adding new

constants symbols for each element of the universe M of M.

Diag(M) = {ϕ : ϕ an open LM -sentence and M |= ϕ} and

Diagel(M) = {ϕ : ϕ an LM -sentence and M |= ϕ}.
Note that M expands naturally to an LM structure M′

, by interpreting

the constant symbol corresponding to m ∈ M by the element m itself.

2.5 Techniques

Recursively Axiomatizable Theories

A language L is recursive if there is an algorithm that decides whether

a sequence of symbols is an L-formula [11, p.50].

An L-theory T is recursively axiomatizable if L is recursive and T has

a recursive set of axioms (i. e. there is an algorithm that decides whether an

L-sentence ϕ is in that set of axioms).
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If a theory in a recursive language is axiomatized by a finite set of sentences,

then it is clearly recursively axiomatizable. The theory of integral domains

and the theory of fields of characteristic p (p 6= 0) are some examples of these

theories. But there are recursive theories which are not equivalent to a finite

set of sentences: for example, the theory of fields of characteristic zero and the

theory of algebraically closed fields.

A proof of ϕ using assumptions from a set Σ of L-sentences is a finite

sequence of L-formulas ψ1, . . . ψn such that:

• ψn = ϕ and,

• – ψi ∈ Σ or,

– ψi follows from ψ1, . . . ψi−1 by a simple logical rules [2].

If there exists a proof of ϕ from Σ then we write Σ ` ϕ.

Gödel’s Completeness Theorem says that if these logical rules are chosen

properly then

Σ ` ϕ ⇐⇒ Σ |= ϕ.

Consistent Theories

We say that an L-theory T is satisfiable if it has a model. We say

that T is consistent if and only if we can’t formally derive a contradiction

(T ` ϕ ∧ ¬ ϕ) from T ; otherwise, we say that T is inconsistent . The

following theorem is a reformulation of the above Gödel’s Theorem:

Theorem 2.5.1. (Completeness) An L-theory T is satisfiable if and only if

T is consistent.

Proof. Suppose that T is not satisfiable then T has no models, so ϕ ∧ ¬ ϕ is

a logical consequence of T . Thus T |= ϕ ∧ ¬ ϕ so T ` ϕ ∧ ¬ ϕ therefore T is

inconsistent. Conversely, an inconsistent theory has no models.
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The completeness theorem has a simple consequence Compactness:

Theorem 2.5.2. (Compactness) An L-theory T has a model if and only if

every finite subset of T has a model.

Proof. If T has a model then clearly every finite subset of T has a model.

Assume T has no models; then every model of T is a model of ϕ∧¬ ϕ. Since

proofs are finite (by the properties of the proof systems that we use), we can

get ϕ ∧ ¬ ϕ by using finitely many assumptions from T ; therefore T has a

finite subset which is inconsistent.

Complete Theories

An L-theory T is complete if for any L-sentence ϕ either T |= ϕ or

T |= ¬ ϕ.

LetM and N be L-structures. We say that they are elementarily equiv-

alent if

M |= ϕ ⇐⇒ N |= ϕ

for all L-sentences ϕ; we denote this by M≡ N . Elementarily equivalence in

the language LA is denoted by ≡A or is called elementarily equivalent over A.

The full theory of an L- structureM is Th(M) = {ϕ : ϕ is an L-sentence

and M |= ϕ}, which is complete. It is easy to see that M≡ N if and only if

Th(M) = Th(N ).

The following theorem shows that Th(M) is an isomorphism invariant of

M.

Theorem 2.5.3. Suppose that j : M→N is an isomorphism of L-structures;

M and N . Then, M≡ N .

Proof. By induction on formulas. See [15] Theorem 1.1.10.
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Proposition 2.5.4. (Tarski’s Test) Let M⊆ N be L-structures then M 4 N
if and only if for every L-formula ϕ(x̄, y) and ā ∈ Mn the following holds:

if N |= ∃y ϕ(ā, y) then there is b ∈ M such that N |= ϕ(ā, b)

Proof. (⇒) Clear by the definition of elementary substructure.

(⇐) We will prove that for each L-formula ψ(x̄) and all ā ∈ Mn we will

have

M |= ψ(ā) ⇐⇒ N |= ψ(ā)

by induction on the complexity of ψ.

• It is clear by Lemma 2.2.1 that if ψ(x̄) is atomic since M⊆ N .

• For negation, suppose let ψ(x̄) = ¬ϕ(x̄) and we have it for ϕ, then,

M |= ψ(ā) ⇐⇒ M |= ¬ϕ(ā)

⇐⇒ M 2 ϕ(ā)

⇐⇒ N 2 ϕ(ā)

⇐⇒ N |= ¬ϕ(ā)

⇐⇒ N |= ψ(ā).

• The ∧ case can be proved similarly.

• For the case ∃, we will consider ψ(x̄) = ∃y ϕ(ā, y).

IfM |= ∃y ϕ(ā, y) then ∃b ∈ M and M |= ϕ(ā, b) by inductive hypothesis

N |= ∃y ϕ(ā, y) which implies that N |= ∃y ϕ(ā, y). It remains to show

that if N |= ∃y ϕ(ā, y) then M |= ∃y ϕ(ā, y).
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Assume N |= ∃y ϕ(ā, y); by the assumption there is some b in M such

that:

N |= ϕ(ā, b).

By the inductive hypothesis on ϕ,

M |= ϕ(ā, b)

finally which implies that

M |= ∃y ϕ(ā, y).

Theorem 2.5.5. (Löwenheim-Skolem Theorem) Let T be an L-theory, and

assume that T has an infinite model, then T has models of every infinite

cardinal κ greater than or equal to the cardinal of T .

See [11, p.63] for a proof.

Note that in the Löwenheim-Skolem Theorems κ denotes an infinite cardi-

nal greater than or equal to the number of symbols in the language L (denoted

by |L|).
The Downward Löwenheim-Skolem Theorem gives us a method for building

small elementary submodels and The Upward Löwenheim-Skolem Theorem is

useful for the Completeness Test of Vaught and also helps getting big elemen-

tary extensions of a model of the theory T .

Theorem 2.5.6. (Downward Löwenheim-Skolem Theorem) Suppose X ⊆ N

and |X| ≤ κ ≤ |N |. Then N has an elementary submodel M 4 N of cardi-

nality κ such that X ⊆ M .
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Theorem 2.5.7. (Upward Löwenheim-Skolem Theorem) Let M be an infinite

structure for L. For every cardinal κ greater than or equal to the cardinality

of M and the cardinality of L, M has an elementary extension of cardinal κ.

Proof. See [11] §4 for proofs of both Löwenheim-Skolem Theorems.

κ categorical

Let κ be an infinite cardinal and let T be an L-theory which has models

of size κ, then we say that T is κ-categorical if any two models M and N
of T satisfying |M | = |N | = κ are isomorphic.

Proposition 2.5.8. For each p (prime or zero), the theory ACFp is κ-categorical

for each uncountable κ.

Proof. Algebraically closed fields are described up to isomorphism by the char-

acteristic and the transcendence degree. Also any algebraically closed field with

transcendence degree λ has cardinality λ + ℵ0. If κ > ℵ0, any algebraically

closed field of cardinality κ has transcendence degree κ. Hence any two al-

gebraically closed fields of the same characteristic and the same uncountable

cardinality are isomorphic.

Theorem 2.5.9. (Vaught’s Test) If all models of an L-theory T are infinite

and T is κ-categorical for some infinite cardinal κ ≥ |L|, then T is complete.

Proof. Let M,N |= T with |M | = λ1 and |M | = λ2.

If λ1 < κ then by using Upward Löwenheim-Skolem Theorem we get a

model M′
of T such that M 4 M′

with |M ′| = κ. If λ1 > κ then by using

Downward Löwenheim-Skolem Theorem we get again a model M′
of T such

that M′ 4 M with |M ′ | = κ. So we get M′ ≡ M. Then by doing the same

process for N we get a new model N ′
of T such that N ′ ≡ N with |N ′| = κ.

Since T is κ-categorical M≡ N .
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The theory of algebraically closed fields is not complete since it doesn’t

decide the characteristic; however, the theory of algebraically closed fields with

the fixed characteristic p (p prime or zero) is complete and will be proved in

next chapter.

Decidability

An Σ of L-sentences is decidable if there is an algorithm that decides for

a given sentence ϕ whether Σ |= ϕ.

Proposition 2.5.10. Let T be a complete recursively axiomatizable satisfiable

theory in a recursive language L. Then T is decidable.

Proof. See [15] Lemma 2.2.8.

Model Complete Theories

An L-theory T is model-complete if whenever M,N |= T and M⊆ N
then M 4 N .

Informally suppose K is an elementary class of L-structures with the the-

ory T , then T is model-complete if and only if each embedding in K is an

elementary embedding.

Lemma 2.5.11. An L-theory T is model-complete if and only if T ∪Diag(M)

is complete whenever M |= T .

Proof. (⇐) Assume T ∪Diag(M) is not complete for some M |= T then there

is an L-sentence ϕ and there are models N ,N ′
of T ∪Diag(M) such that:

N |= ϕ, but M |= ¬ϕ.

Since N ,N ′ |= Diag(M) we may assume that M ⊆ N ,N ′
. Assume that

M |= ϕ then M 4 N ′
.
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(⇒) Assume that T is not model-complete then M⊆ N but M � N for

some M,N |= T ∪Diag(M). So there is an LM -sentence ϕ such that

N |= ¬ϕ but M |= ϕ.

Since N ,M |= T ∪Diag(M) we conclude that T ∪Diag(M) is not complete.

We say that two n-ary L-formulas ϕ(x̄) and ψ(x̄) are equivalent in an

L-theory T if T |= ∀x̄(ϕ(x̄) ⇐⇒ ψ(x̄)). In fact we may use Tarski’s Test

to prove a theory is model complete, but we use another lemma which is more

convenient for the class of algebraically closed fields and the class of generic

difference fields that we’ll study in next chapters. First some definitions:

The universal part of an L-theory T is denoted by T∀ and is the set of

all universal consequences of T . So T∀ is the set which is generated by all of

the universal sentences in T by logical rules.

For example the theory of integral domains is the universal part of the

theory of algebraically closed fields.

Lemma 2.5.12. Let A be an L-structure and T be an L-theory. Then A |= T∀
if and only if A extends to a model of T .

Proof. (⇒) Assume T ∪ Diag(A) is inconsistent. Then for some ϕ(ā) in

Diag(A);

T |= ¬ϕ(ā)

T |= ∀x̄¬ϕ(x̄)

which is a contradiction since ∀x̄¬ϕ(x̄) is in T∀.
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(⇐) Assume that A is not a model of T∀. Then for some ϕ =: ∀x̄ψ(x̄) in

T where ψ is quantifier free;

A |= ¬ϕ

A |= ∃x̄¬ψ(x̄)

A |= ¬ψ(ā)

for some ā in A. Then ¬ψ(ā)∪∀x̄ψ(x̄) is inconsistent since ¬ψ(ā) ∈ Diag(A).

Therefore T ∪Diag(A) is inconsistent so there is no M |= T such that A ⊆
M.

Let M and N be L-structures and M ⊆ N . M is existentially closed

in N if every existential sentence ∃x̄ϕ(x̄, ā) which holds in N where ā ∈ Mn

holds in M. (Note that we mean ∃x1, . . . , ∃xm by ∃x̄.)

A modelM of an L-theory T is existentially closed among the models

of T if every existential LM -sentence which is satisfied in some model N of T
extending M is already satisfied in M (indeed for each finite system of atomic

formulas and negated atomic formulas with parameters ā ∈ M if we can solve

this system in an extension N of M then we can solve it in M).

Proposition 2.5.13. Let K be an elementary class of L-structures with the

theory T then T is model complete if and only if every model of T is existen-

tially closed.

Proof. By [13] Theorem 5 and by [11] Proposition 2.16.
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Quantifier Elimination

Let T and T ∗ be two L-theories. We say that T ∗ is the model companion

of T if the following holds:

• every model of T embeds in a model of T ∗,

• every model of T ∗ embeds in a model of T .

• T ∗ is model complete.

If we have, in addition to the above properties, for any A |= T , T ∗ ∪
Diag(A) is complete (or if A |= T , M,N |= T ∗, A ⊆ M and A ⊆ N then

M≡A N ) then we say that T ∗ is the model completion of T .

For example, the theory of algebraically closed fields is the model comple-

tion of the theory of integral domains.

Theorem 2.5.14. Let T0, T1 be model companions of T . Then T0 = T1.

Proof. Given A |= T0, we shall show that A |= T1. We use an elementary

chain argument. Let A = A0 |= T0. By the definition of model completion,

we can find A1 |= T1, A0 ⊆ A1. By generalizing this, given A2n |= T0 let

A2n ⊆ A2n+1 |= T1 and A2n+1 ⊆ A2n+2 |= T0. Put A′
=

⋃
n∈ω An. Since T0

is model complete, we have A2n 4 A2n+2 so by the elementary chain principle

[11], A = A0 4 A′
. But since T1 is model complete, we also have A2n+1 4

A2n+3 so A′ |= T1. Hence A |= T1.

So we can conclude from the above theorem that if the model companion

of a theory T is exists then it is unique.

As a general definition an L-theory T has quantifier elimination if for

every formula ϕ(x̄) ∈ Fn(L) there is a quantifier free formula ψ(x̄) ∈ Fn(L)

such that ϕ(x̄) and ψ(x̄) are equivalent in T . Precisely:
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T |= ∀x̄ (ϕ(x̄) ⇐⇒ ψ(x̄))

where ∀x̄ = ∀x1 · · · ∀xn and x̄, ϕ(x̄), ψ(x̄) are as before.

Theorem 2.5.15. Let L be a language containing at least one constant symbol

c. Let T be an L- theory and let ϕ(x̄) be an n-ary L- formula with free variables

x̄ (the case n = 0 allowed). Then the following are equivalent.

1. There is a quantifier free L-formula ψ(x̄) such that:

T |= ∀(x̄)(ϕ(x̄) ⇐⇒ ψ(x̄))

2. If M,N are models of T , A is an L-structure, A ⊆ M and A ⊆ N ,

then M |= ϕ(ā) if and only if N |= ϕ(ā) for all ā ∈ A.

Proof. See Theorem 3.1.4 of [15].

Lemma 2.5.16. Let T be an L-theory. Suppose that for every quantifier free

L formula θ(x̄, w), there is a quantifier free ψ(x̄) such that,

T |= ∀(x̄) (∃w θ(x̄, w) ⇐⇒ ψ(x̄)).

Then every L-formula ϕ(x̄) is equivalent to a quantifier free L-formula.

Proof. We prove this by induction on the complexity of ϕ.

This is clear if ϕ(x̄) is quantifier free.

For i = 0, 1 suppose that T |= ∀(x̄) (θi(x̄) ⇐⇒ ψi(x̄)) where ψi(x̄) is

quantifier free.

If ϕ(x̄) = ¬ θ0(x̄), then T |= ∀(x̄) (ϕ(x̄) ⇐⇒ ¬ ψ0(x̄))

If ϕ(x̄) = θ0(x̄) ∧ θ0(x̄), then T |= ∀(x̄) (ϕ(x̄) ⇐⇒ ψ0(x̄) ∧ ψ1(x̄))

In either case ϕ is equivalent to a quantifier free formula in T .

Suppose that T |= ∀(x̄)∀w (θ(x̄, w) ⇐⇒ ψ0(x̄, w)) where ψ0 is quantifier

free. Suppose ϕ(x̄) = ∃w θ(x̄, w). Then T |= ∀(x̄) (ϕ(x̄) ⇐⇒ ∃w ψ0(x̄, w)).
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But then by our assumptions there is a quantifier free ψ(x̄) such that T |=
∀(x̄)(ϕ(x̄) ⇐⇒ ψ(x̄)).

Thus to show that T has quantifier elimination we need only verify that

condition (2) of Theorem 2.5.15 holds for every formula ϕ(x̄) of the form

∃w θ(x̄, w) where θ(x̄, w) is quantifier free. Precisely:

Corollary 2.5.17. Let T be an L-theory (in a language with at least one

constant-symbol) has quantifier elimination if and only if T ∪Diag(A) is com-

plete whenever A |= T∀. In particular, a theory with quantifier elimination is

model-complete.

Proof. By Theorem 2.5.15 and Lemma 2.5.16.

Now we have a very useful proposition for quantifier elimination. Indeed

we use this in the following chapters to prove the theory of algebraically closed

fields admits elimination of quantifiers and the theory of generic difference

fields is the model completion of the theory algebraically closed difference

fields.

Proposition 2.5.18. An L-theory T has quantifier elimination if and only if

T is the model completion of a universal theory.

Proof. (⇒) If T has quantifier elimination, then T ∪ Diag(A) is complete

whenever A |= T∀ by Corollary 2.5.17, so T is the model completion of T∀ by

definition.

(⇐) If T ∗ is the model-companion of U , then T∀ = U∀, if also U is a

universal theory then T∀ = U ; if T is the model-completion of U , then by

Corollary 2.5.17.
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Important Theorems and Some Remarks

In the following let T and T ∗ be the L-theories of the classes K and K∗ of

L-structures respectively.

Theorem 2.5.19. T is model complete implies T has quantifier elimination

down to existential formulas.

Proof. Let θ(x̄) be an L-formula.

Define the set of ∃- formulas Γ = {ϕ an ∃-formula : T |= ϕ(x̄) ⇒ θ(x̄)}.
Suppose M |= T ∪ {θ(ā)} for some ā ∈ Mn. Then T ∪Diag(M) |= θ(ā).

By compactness T ∪ {ψ(ā, b̄)} |= θ(ā) for some ψ(ā, b̄) ∈ Diag(M), and then

T |= ∃ȳ ψ(x̄, ȳ) ⇒ θ(x̄).

Let ∃ȳ ψ(x̄, ȳ) be ϕ(x̄); then ϕ(x̄) ∈ Γ andM |= ϕ(ā). So T |= θ(x̄) ⇒ ∨
Γ.

Therefore by compactness,

T |= ϕ1(x̄) ∧ · · · ∧ ϕn(x̄) ⇐⇒ θ(x̄) for some ϕi ∈ Γ.

Remarks

Let T ⊆ T ∗ and they have the same universal consequences. Then:

• If T ∗ ∪Diag(M) is complete whenever M |= T ∗, then T ∗ is the model

companion of T and T ∗ has quantifier elimination down to existential

formulas.

• If T ∗ is the model companion of T and T ∗ ∪ Diag(M) is complete

whenever M |= T then T ∗ is the model completion of T .

• If T = T ∗∀ and T ∗ is the model completion of T then T ∗ has full

quantifier elimination.
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We will give examples in the next chapters.
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chapter 3

algebraically closed fields

3.1 Basic Algebraic Geometry

Varieties

Let M be an algebraically closed field. Affine n-space over M is the set

of all n-tuples of elements of M , denoted by An(M) or simply Mn. A subset

X of Mn is an algebraic set defined over K where K is a subfield of M if

there exists a subset S of the polynomial ring K[X̄] such that

X = V (S) = {ā ∈ Mn : f(ā) = 0 for all f ∈ S}

where ā = (a1, . . . , an), ai ∈ M and X̄ = X1, . . . , Xn.

The Zariski topology on Mn is constructed by letting algebraic sets be

closed. [9]

K[X̄] is a Noetherian ring, therefore every ideal I has a finite set of gen-

erators (by Hilbert’s Basis Theorem). If I is the ideal generated by S, then

V (S) = V (I). So there exists a finite set of polynomials such that we can

express V (S) as the common zeros of them.

Let X be an algebraic set, we define

I(X) = {f ∈ K[X̄] : f(ā) = 0,∀ā ∈ X}.
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A Zariski closed subset X of Mn is irreducible if whenever X = X1 ∪X2

where X1, X2 are Zariski closed subsets of Mn, then X = X1 or X = X2.

A variety U of Mn is an irreducible Zariski closed set.

Remarks

Let U be a Zariski closed set of Mn. The Dimension of a variety U is the

transcendence degree over K of the function field K(U) = {f(u)/g(u) where

f, g ∈ K[X̄]} (or simply trdeg(K(U)/K)) which is denoted by dim(U).

A generic point ā of U over K ⊆ M is a point in Mn such that I(ā) =

I(U).

An algebraic curve over a field K is an equation f(X,Y ) = 0, where

f(X, Y ) is a polynomial in indeterminate X and Y with coefficients in K. A

solution of the equation f(X,Y ) = 0 is a simply a point on this curve. A

K-rational point of this curve is a solution (a, b) of this equation where

a, b ∈ K.

Let K ⊆ M1,M2 be fields. M1 and M2 are algebraically independent

over K, if for any n ∈ N, whenever a1, . . . , an ∈ M1 are algebraically indepen-

dent over K, they remain algebraically independent over M2.

Let K ⊆ M1,M2 be fields. M1 and M2 are linearly disjoint over K, if

for any n ∈ N, whenever a1, . . . , an ∈ M1 are linearly independent over K,

they remain linearly independent over M2.

Tensor Product

Let M1 and M2 be linearly disjoint over K. Define M1 ⊗K M2 as follows:

Let B1 and B2 be fixed bases of the K-vector spaces M1 and M2 respec-

tively. Then M1⊗K M2 has basis {a⊗ b : a ∈ B1, b ∈ B2} as a K-vector space.

Let c ∈ M1 and d ∈ M2 then we can write:
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c =
∑n

i=1 caa and d =
∑n

i=1 dbb

where ca’s and db’s are elements of K and all but finitely many of them are

zero. Then we write an element c⊗ d of M1 ⊗K M2 as:

∑
a∈B1,b∈B2

cadb(a⊗ b)

then since M1 and M2 are linearly disjoint over K, M1 ⊗K M2 is a domain.

Also note that if K is an algebraically closed field, then M1 and M2 are

algebraically independent over K if and only if they’re linearly disjoint

over K.

The prime subfield of a field M is the subfield of M generated by the

multiplicative identity 1M of M . It is isomorphic to either Q (if the character-

istic is zero) or finite field Fp = Z/pZ (if the characteristic is p).

If r is a root of the polynomial equation

p(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0 = 0

where the ai’s are integers and r satisfies no similar equation of degree < n,

then r is an algebraic number of degree n. If r is an algebraic number and

an = 1, then it is called an algebraic integer .

A separable polynomial with coefficients in K is a polynomial whose

factors have distinct roots in some extension M of K.

M is a separable extention of a field K if the minimal polynomial of

any element of M is a separable polynomial. In fact, in a field characteristic

zero, every extension is separable, as is any finite extension of a finite field. If

all algebraic extensions of a field K are separable, then K is called a perfect

field .

Note that the primitive element theorem says that a finite separable exten-

sion is generated by one element.
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Theorem 3.1.1. Let K have characteristic p > 0. Then K is perfect if and

only if:

Kp ≡ {xp : x ∈ K} = K

3.2 The Model Theory of Algebraically Closed

Fields

3.2.1 ACF

Any field M can be assumed as an Lr-structure M. In Chapter I we saw

that by adding the following infinite set of sentences into the theory of fields,

∀a0 . . . ∀an−1∃x xn +
∑n−1

i=0 aix
i = 0

for every positive integer n we get the first order axiomatization of the theory

of algebraically closed fields.

Quantifier Elimination

Lemma 3.2.1. ACF is the model completion of the theory of integral domains

which is a universal theory.

Proof. By definition of model completion we need to prove that ACF∪Diag(A)

is complete whenever A |= ACF∀.

First note that the axioms for integral domains are universal consequences

ACF∀ of ACF [15, p.85].

Let M |= ACF and D ⊆ M be an integral domain. Then D can be

embedded in its field of fractions by a → a/1 for a ∈ D. Since every field

can be embedded in an algebraically closed field every model of the theory of

integral domains can be embedded to a model of ACF .
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For let D be an integral domain, A be its field of fractions. Let M1 and

M2 be two algebraically closed fields extending A. Using Upward Löwenheim-

Skolem theorem there are models M∗
1 and M∗

2 of ACF with the same cardi-

nality κ and κ > max(ℵ0, |A|). By categoricity of ACF we have M∗
1
∼= M∗

2

and therefore M∗
1 ≡A M∗

2 .

Theorem 3.2.2. ACF has quantifier elimination.

Proof. By Proposition 2.5.18.

Definable Sets

• The Zariski closed sets are definable.

• The finite boolean combinations (closure under finite intersection, finite

union and complement) of the Zariski closed sets are definable. In fact

they are exactly the sets definable by quantifier free formulas of Lr. Such

sets are called constructible sets. By the property that ACF has quanti-

fier elimination, the projection of a constructible set is also constructible.

[15, p.88]

Completeness of ACF

Now we’ll prove the following as we claimed in Chapter 2.

Theorem 3.2.3. ACFp is a complete theory.

Proof. Since ACFp is κ categorical by applying Vaught’s test we need only to

show ACFp has only infinite models.

Fix p ∈ N and let M |= ACFp, assume n = |M | < w0 and let

p(x) = 1 +
∏

m∈M(x−m);
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then p(x) = 1 6= 0 for every m ∈ M , so M is not algebraically closed. So

ACFp has only infinite models.

Decidability of ACF

Theorem 3.2.4. Lefschetz Principle

• If M and N are algebraically closed fields with the same characteristic p,

then the Lr-structures M and N (with universes M and N) satisfy the

same first order sentences of Lr.

• Suppose ϕ is an Lr-sentence, then TFAE

1. C |= ϕ

2. ACF0 |= ϕ

3. ACFp |= ϕ for sufficiently large primes p

4. ACFp |= ϕ for arbitrarily large primes p

Proof. 1 and 2 are equivalent since ACF0 is complete.

(2 ⇒ 3) Let ACF0 |= ϕ, so ϕ is a logical consequences of the sentences in

ACF0. So only finitely many of the sentences ¬ϕp are used, that is ACFp |= ϕ

for sufficiently large primes p. (3 ⇒ 4) is obvious.(4 ⇒ 2) Suppose ACF0 2 ϕ.

Then since ACF0 is complete we have ACF0 |= ¬ϕ. So ACFp |= ¬ϕ for

sufficiently large primes p and (4) fails.

The Lefschetz Principle has the following consequence.

Theorem 3.2.5. (Ax) Let n ∈ N, and let F : Cn → Cn be an injective

polynomial map. Then F is surjective.

38



Proof. Let ϕn,d be the Lr-sentence which states that every injective polynomial

F = (f1, . . . , fn) map of n variables and degree at most d is surjective. It

suffices to show that C |= ϕn,d for all n, d.

Let M be a finite field: then M |= ϕn,d for all n, d. The algebraic closure M

of M is of the form M = M0∪M1∪M2∪· · · , where M0 ⊆ M1 ⊆ M2 ⊆ · · · are

finite fields. Thus if F : M
n → M

n
is an injective polynomial map a standard

chain theorem tells us that F must be surjective as well. So M |= ϕn,d for all

n, d. By completeness of ACFp, we get ACFp |= ϕn,d for all n, p, d. Then by

Theorem 2.2.6, we get C |= ϕn,d for all n, d.

By Proposition 2.5.10, any recursively axiomatized complete theory is de-

cidable, and since ACFp is a recursively axiomatized complete theory, therefore

it is decidable for p prime or 0. Indeed by the completeness of ACFp and the

completeness theorem either there is a proof of ϕ or a proof of ¬ϕ from ACFp.

We can then search in a systematic way all finite sequences of symbols and

test each one to see if it is a valid proof of either ϕ or ¬ϕ. At the end we’ll

get one of them.

Also ACF is decidable. Indeed, given a sentence ϕ, we can find N such

that either ϕ or ¬ϕ is a consequence of

ACF ∪ {ϕp : p < N}.

(By the Lefchetz Principle and completeness of ACF0, such N exists.)

Without loss of generality suppose that ACF ∪ {ϕp : p < N} |= σ. Then

ACF |= σ if and only if ACFp |= σ whenever p ≤ N ; and we can determine

whether the latter condition holds.

Since if we can’t find a proof of ϕ from ACF , we can find a proof of ¬ϕ

from ACFp for some p since for all p prime ACFp is decidable.
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chapter 4

generic difference fields

In this chapter I’ll study the theory of difference fields.

The first section deals with algebraic background which can be useful for

us to understand some basics about difference fields. The details and proofs

of this section can be found in [7].

Section 2 deals with the model companion of difference fields: the theory

of so called generic difference fields. I started studying this subject with the

paper of Angus Macintyre, Generic Automorphisms of Fields [12]. It has an

advanced level of presentation of ideas. I found the papers of Zoé Chatzidakis,

A survey on the model theory of difference fields [5] and The Model Theory Of

Difference Fields [4] more explicit for me to understand the concept of generic

difference fields. The paper of David Marker, ACFA Seminar [16] also helps.

For further reading I advise [4] since it can be considered as a complete

reference for all of the theory of difference fields.

4.1 Algebraic Background

Field Automorphism

A field automorphism fixes the prime field say K which is Q, the rational

numbers, in the case of field characteristic zero and is Fp in characteristic
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p > 0. The set of automorphisms of a field M which fix a subfield K of M

forms a group, by composition, called the Galois group, written Gal(M/K).

A difference field M is a field M with a distinguished automorphism σ.

Let X̄ = X1, . . . , Xn be an n-tuple of indeterminates; then M [X̄]σ is the

difference polynomial ring in indeterminates:

X1, . . . , Xn, σ(X1), . . . , σ(Xn), . . . , σm(X1), . . . , σ
m(Xn) . . ..

Let Ld = Lr ∪ {σ}, then M[X̄]σ can be considered as an Ld-structure. The

elements p(x̄) of the universe M [X̄]σ of M[X̄]σ are called difference polyno-

mials, and p(x̄) = 0 is called a σ-equation . The set {ā ∈ Mn : p(x̄) = 0}
is called a σ-closed set. The order of p(x̄) is the largest m such that some

σm(xj) appears in p(x̄).

Let M be an algebraically closed field, and let U be a variety over M defined

by polynomial equations:

p1(x̄) = · · · = pk(x̄) = 0.

Then σ(U) is also a variety of over M defined by equations:

σ(p1)(ȳ) = . . . = σ(pk)(ȳ) = 0

where σ(xi) = yi.

We can then form U × σ(U) as a variety over M by:

p1(x̄) = · · · = pk(x̄) = 0

σ(p1)(ȳ) = . . . = σ(pk)(ȳ) = 0.

Take a variety W ⊆ U × σ(U). The natural projection maps are:

π1 : U × σ(U) → U and π2 : U × σ(U) → σ(U).
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Let (ā, b̄) be any generic point of W . If ā is a generic point of U and b̄ is

a generic point of σ(U) then we say that W projects generically onto U

and σ(U).

Basic Systems

Example 4.1.1. Let (M, σ) be a difference field and let f(x̄) ∈ M [X̄]σ. As-

sume that the degree of f(x̄) is 2. Then

f(x̄) = f(x1, . . . , xn, σ(x1), . . . , σ(xn), σ2(x1), . . . , σ
2(xn)).

By letting σ(x1) = y1, . . . , σ(xn) = yn we can rewrite f(x̄) as

f(x1, . . . , xn, y1, . . . , yn, σ(y1), . . . , σ(yn)).

Therefore if one wants to know about solutions of the set of polynomial

equations and inequations in

x1, . . . , xn, σ(x1), . . . , σ(xn), σ2(x1), . . . , σ
2(xn), . . .,

the example shows that by adding extra variables this comes down to under-

standing polynomial systems which have polynomial equations and inequations

in

x1, . . . , xm, σ(x1), . . . , σ(xm).

We will consider just σ-equations since by the help of the field axiom

∀x x 6= 0 ⇐⇒ ∃y x · y = 1

we can replace inequations by equations in more variables.

We called these systems basic systems . Precisely, the order of each dif-

ference polynomial equation occurring in a basic system equals at most 1.
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Proposition 4.1.2. A difference field (M, σ) is existentially closed (e.c) if

whenever a basic system of (M, σ) is solvable in an extension (M
′
, σ

′
) of (M, σ)

then it is solvable in (M, σ).

Proof. Let Σ be basic system of (M, σ) which has a solution in (M
′
, σ

′
) ⊇

(M,σ) where (M, σ) is e.c..

Since Σ is a basic system then we can write it as
∧

ϕ ϕ(x̄) where ϕ are

atomic formulas over (M, σ). Since Σ has a solution in (M
′
, σ

′
) then (M

′
, σ

′
) |=

∃x̄ ∧
ϕ ϕ(x̄) so (M, σ) |= ∃x̄ ∧

ϕ ϕ(x̄) since (M,σ) is e.c..

For the other direction any ∃-formula can be written
∨

ψ ψ where ψ are

of the form ∃x̄ ∧
ϕ ϕ(x̄) and ϕ are atomic or negated atomic formulas. If

ϕ(x̄) : f(x̄) 6= g(x̄) by using ∃x̄ ∃y ∧
y · (f(x̄)− g(x̄)) = 1 and by adding extra

variables as in the Example 4.1.1 we get a basic system over (M, σ). Then by

assumption (M, σ) is e.c..

If no confusion arises throughout this chapter I’ll use:

x̄ = (x1, . . . , xn)

σn(x̄) = (σn(x1), . . . , σ
n(xn)).

4.2 Generic Automorphism of Fields

A difference field (M,σ) is called a generic difference field if (M, σ) is

existentially closed among the models of the theory of difference fields.

Lemma 4.2.1. There is a first order theory whose models (M,σ) are charac-

terized by the following:

1. M is an algebraically closed field.

2. σ is an automorphism of M .
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3. (By Hrushovski) If U and W are varieties defined over M , with W ⊆
U × σ(U) such that the projections W to U and to σ(U) are generically

onto, then there is a tuple ā in M such that (ā, σ(ā)) ∈ W .

Proof. Clearly 1 and 2 are first order. But it is hard to see this for 3. We

know that if U is a variety then I(U) is an ideal. Let I(U) = I which is in

M [X̄] and I(W ) = J which is in M [X̄, Ȳ ]. Then the dual of the projection

map gives a map M [X̄]/I → M [X̄, Ȳ ]/J , which is injective if and only if W

projects generically onto U . So we need to say J ∩M [X̄] = I in a first order

way [8].

So the third axiom is in fact the scheme of axioms: one for each triple

(n,m, d) where

• n is an upper bound on the number of variables of U ,

• m is an upper bound on the number of the polynomials used to define

U and W ,

• d is an upper bound on the degree of these polynomials.

The theory in Lemma 4.2.1 is called ACFA.

Theorem 4.2.2. The models of ACFA are exactly the generic difference

fields.

Proof. Let (M,σ) |= ACFA, and let f1(X̄) = 0, . . . , fm(X̄) = 0 be a basic

system of σ-equations over M . Let (a1, . . . , an, σ(a1), . . . , σ(an)) be a solution

of this system in an extension field (L, σ
′
) of (M,σ). Let U,W be varieties

over M with generic points (a1 . . . , an) of U and (a1, . . . , an, σ(a1), . . . , σ(an))

of W . Then (σ(a1), . . . , σ(an)) is a generic of σ(U). By 3 in Lemma 4.2.1 there

is (b1, . . . , bn, σ(b1), . . . , σ(bn)) ∈ W with bi ∈ M , i = 1, . . . , n. Then
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I(b1, . . . , bn, σ(b1), . . . , σ(bn)) ⊇ I(a1, . . . , an, σ(a1), . . . , σ(an))

over M and therefore (b1, . . . , bn, σ(b1), . . . , σ(bn)) is a solution of the system

in M .

Conversely, let (M,σ) be a difference field which is generic. Then we need

to show (M, σ) |= ACFA. Clearly M is algebraically closed. Let U and σ(U)

be varieties over M . Then W ⊆ U × σ(U) has a generic point (ᾱ, β̄) of W in

some extension M
′
of M . Assume that ᾱ is a generic point of U and β̄ is a

generic point of σ(U). Define,

σ1 : M(ᾱ) → M(β̄)

by σ1(αi) = βi and acts as σ over M . So we can extend σ1 to an automorphism

σ
′
of M

′
hence we get

(ᾱ, σ
′
(ᾱ)) ∈ W .

Since (M, σ) is generic, we get some (γ̄, σ(γ̄)) ∈ W where γ̄ in M .

As a result of this theorem and by Proposition 2.5.12 we conclude that

ACFA is model complete and hence the model companion of the theory of

difference fields. Therefore the following theorem holds immediately by the

first property of being the model companion of a theory.

Theorem 4.2.3. Every difference field embeds in a model of ACFA.

Proposition 4.2.4. Suppose (Mi, σi) (i = 1, 2) are extensions of an alge-

braically closed (K,σ). Then they can be jointly embedded in some (L, σ
′
).

Proof. Let h : M2 → M
′
2 be a K isomorphism, and let σ

′
2 = hσ2, h

−1 where

M
′
2 is free from M1 over K. Since K is algebraically closed, M

′
2 and M1 are

linearly disjoint over K. Since (M2, σ2) and (M
′
2, σ

′
2) are K-isomorphic under

h, they’re elementarily equivalent over K.
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Hence by replacing M2 by M
′
2, we may assume that M1 and M2 are linearly

disjoint over K. Then by algebraic properties M1 ⊗K M2 is a domain and we

can embed M1 and M2 in M1 ⊗K M2 by

a → a⊗ 1 and b → 1⊗ b.

Define a new σ(a⊗b) = σ1(a)⊗σ2(b) for a ∈ M1 and b ∈ M2. So σ extends

to an automorphism σ
′
of the quotient field L of M1⊗K M2, which agrees with

each σi on Mi.

Proposition 4.2.5. If (Mi, σi) (i = 1, 2) are generic and the σi’s agree on the

algebraic closure of the prime field then (M1, σ1) ≡ (M2, σ2).

Proof. By Proposition 4.2.4, the (Mi, σi) can be jointly embedded in some

(L, σ). But then by Theorem 4.2.3 (L, σ) can be embedded in an e.c. (L
′
, σ

′
).

By model completeness: (M1, σ1) 4 (L
′
, σ

′
) and (M2, σ2) 4 (L

′
, σ

′
) which

implies that (M1, σ1) ≡ (M2, σ2).

Similarly, by Proposition 4.2.4 we can conclude that the sentences satisfied

by a tuple 〈a1, . . . , an〉 in a generic (M, σ) are determined by the algebraic

closure of the smallest field which contains the tuple and closed under σ and

σ−1. Let A be a subset of the field M . We’ll denote the smallest subfield of

M containing A and closed under σ, σ−1 by 〈A〉σ.

Lemma 4.2.6. Let (M, σ) be a difference field, M0 be the prime field of M

and A ⊆ M . Then

〈A〉σ = M0(A, σ(A), σ−1(A), . . .)

Proof. Clear.

Lemma 4.2.7. Let B be the relative algebraic closure of 〈A〉σ in M . Then

〈B〉σ = B.
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Proof. Let b ∈ B. Then there exist an F in

Z[x̄0, x̄1, ȳ1, x̄2, . . . , ȳm, t]

such that:

F (a1, . . . , an, . . . , σm(a1), . . . , σ
−m(a1), . . . , σ

−m(an), b) = 0

where a1, . . . , an ∈ A; but then,

F (σ(a1), . . . , σ(an), . . . , σm+1(a1), . . . , σ
−m+1(a1), . . . , σ

−m+1(an), σ(b)) = 0

therefore σ(b) ∈ B.

Lemma 4.2.8. Let M be an algebraically closed difference field. Then ACFA∪
Diag(M) is complete.

Proof. Let K1, K2 |= ACFA ∪ Diag(M). Then K1, K2 |= Diag(M) implies

that K1, K2 contain substructures M1 and M2 respectively such that M1
∼= M

and M2
∼= M . So we may assume that both K1 and K2 contain M . Then the

proof of Proposition 4.2.5 can be adjusted to show that we will get K1 ≡ K2

over M .

Lemma 4.2.8 shows that ACFA is the model completion of the theory of

algebraically closed difference fields, which is not a universal theory. ACFA

doesn’t admit quantifier elimination in Ld. For an example see [6, pg.23].

Quantifier Elimination

Let T = Th{difference fields}, (N, σ) |= T and ā ∈ Nn. Let (K,σ) = 〈ā〉σ
and let the algebraic closure of K in N be M (K ⊆ M ⊆ N).

Let Γ = {θ(ā, b) ∈ Diag(M,σ)} (i.e. the formulas in Diag(M, σ) which

has just one constant from M \K and the others are from K).

Note that Γ contains the following information about (M,σ):
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1. that M is algebraically closed,

2. the characteristic of M ,

3. surjectivity of σ on M .

The paper [12] has more complicated version of Γ which we will use proving

the quantifier elimination in ACFA. In fact he gives more explicit definition

of the formulas in Γ and he uses them proving the decidability of ACFA.

Theorem 4.2.9. Every formula θ(x̄) in the language of difference fields is

equivalent to a disjunction of formulas of the form ∃y ϕ(x̄, y) in the theory of

generic difference fields.

Proof. Claim: T∀ ∪ Γ |= Diag(M,σ).

Let (N
′
, σ

′
) |= T∀ ∪Γ then there is an interpretation of elements of M into

N
′
. i.e. let b ∈ M then bN

′
= b

′
for some b

′ ∈ N
′
. Since Diag(K, σ) ⊆ Γ

we may assume that if b ∈ K, then bN
′

= b. Then if char K = 0 clearly

(K, σ) ∼= (K,σ
′
), but if char K = p go to Kp−∞ . We need to check that σ

extends uniquely to the perfect closure Kp−∞ =
⋃

n Kp−n
say L of K. Let σ

′

satisfy σ
′ |K= σ. If α ∈ L, then αpn ∈ K for some minimal n; say αpn

= β.

Then

σ(β) = σ(αpn
) = σ

′
(α)pn

,

so σ
′
(α) = σ(β)p−n

.

Thus σ
′
is unique if it exists. It also exists, since on Kp−n

the map

α 7→ σ(αpn
)p−n

is τ−1 ◦ σ ◦ τ , where τ is the Frobenius isomorphism

β 7→ βpn
: Kp−n → K.
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Since (N
′
, σ

′
) |= Γ, we have (N

′
, σ

′
) |= Diag(〈ā, b〉σ, σ) for every b ∈ M ;

hence there is a substructure (〈ā, b
′〉σ′ , σ

′
) of (N

′
, σ

′
) such that:

(〈ā, b〉σ, σ) ∼= 〈ā, b
′〉σ′ , σ

′
).

Let θ(c̄) ∈ Diag(M, σ). I need to show (N
′
, σ

′
) |= θ(c̄

′
). But it’s enough

to show there is b ∈ M such that 〈ā, c̄〉σ ⊆ 〈ā, b〉σ. In fact its the same as to

show K(c̄) ⊆ K(b). If char K = 0 then K is perfect and if char K = p then by

replacing K with its perfect closure we can use primitive element theorem to

conclude there is such b ∈ M that K(c̄) ⊆ K(b).

Then by the arguments on the proof of Theorem 2.5.19

ACFA |= ∀x̄(θ(x̄) ⇐⇒ ∨ ∃y ∧ϕ ϕ(x̄, y)).

Completeness of ACFA

ACFA is not a complete theory since it doesn’t decide the characteristic.

Proposition 4.2.10. Every completion of ACFA is of the form ACFA ∪ Σ

where Σ is {∃x θ(x) : θ(b) ∈ Γ for some b ∈ Falg} and F is the prime field.

Proof. Let (M, σ) |= ACFA with the prime subfield F of the field M . By

Lemma 4.2.8, ACFA ∪ Diag(Falg, σ) is a complete theory but also by the

proof of Theorem 4.2.9 ACFA ∪ Γ is also complete where Γ = {θ(b) ∈
Diag(Falg, σ)}.

So Th(M, σ) of (M, σ) is in fact ACFA ∪ {∃x θ(x) : θ(b) ∈ Γ for some

b ∈ Falg} hence ACFA ∪ Σ is complete.

Decidability

Let ACFAσ
0 = ACFA ∪ {∃x θ(x) : θ(b) ∈ Γ, b ∈ Qalg} where Γ = {θ(b) ∈

Diag(Qalg, σ)}, take an Ld-sentence ψ then by Theorem 4.2.9 it is equivalent
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to sentence ∃x∧ϕ ϕ(x) modulo ACFA where ϕ(x) are atomic and over Q. So

the decision problem reduces to looking at the sentences of the form ∃x ϕ(x).

One can show by using the same argument as proving Theorem 4.2.9 that

in fact ϕ(x) is a Boolean combination of sentences ∃t [fi(t) = 0∧σ(rt) = hi(t)]

[12]. Where f and h are polynomials over Z. Let L be the splitting field of

fi’s, then by primitive element theorem L = Q(β) for some β ∈ Qalg. The

action of σ on L is determined by choice of conjugate of β which is among

some F1(β), . . . , Fk(β). And since the roots of fi are among Hij(β) then we

can determine the action of σ on all roots of fi. By this way we can find the

automorphisms which satisfy ϕ.

4.3 The Fixed Field of σ

The fixed field is a particulary important definable subset of a model (M, σ)

of ACFA. I’ll show in this section that Fix(σ) = {x ∈ M : σ(x) = x} is a

pseudo-finite field , i.e. an infinite model of the theory of finite fields. The

model theory of finite fields is first studied by Ax, see for details [1].

We denote the theory of finite fields by Tf in the language Lr.

Let M be a field. M is pseudo-algebraically closed (PAC) if every variety

defined over M has an M -rational point.

Pseudo-finite fields

Let Psf be the theory [21] whose models are axiomatized by the following:

1. F is a perfect field.

2. F has exactly one algebraic extension of degree n, for each n ∈ N.

3. F is PAC.
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Then Psf is in fact Tf ∪ { models are infinite }.

Theorem 4.3.1. Let M be a model of ACFA and let F = Fix(σ). Then F

is a pseudo-finite field.

Proof. If F has characteristic p > 0 then a has a unique pth root a1/p in F .

Hence σ(a) = a implies σ(a1/p) = a1/p. Therefore Fix(σ) is closed under pth

roots thus perfect.

For item 3: Let U be a variety defined over F , and consider the diagonal

subvariety W ⊆ U × U . Then U = σ(U), and U,W satisfy the axiom 3 of

ACFA, so that there is ā ∈ M with (ā, σ(ā)) ∈ W (i.e. ā ∈ U and σ(ā) = ā

and hence ā ∈ F ). So Fix(σ) is PAC.

Assume that L and L
′
are two normal algebraic extensions of F of degree

n. Since F is perfect, actually L,L
′

are Galois extensions of F . By Galois

theory Gal(LL
′
/F ) has subgroups Gal(LL

′
/L) and Gal(LL

′
/L

′
) of order say

d = [LL
′

: F ]/n. But since F is fixed by the group generated by σ |LL′∈
Gal(LL

′
/F ) which is cyclic, it has only one subgroup of order d.

So in order to prove 2 it is enough to show that for each n, F has at least

one Galois extension of degree n and all extensions of degree n are normal.

Since every algebraic extension of degree n of F is contained in a finite Ga-

lois extension of F and all subgroups of a cyclic group is normal, all extensions

of degree n of F are normal.

Consider the difference field extension L = M(X1, . . . , Xn) of M with

σ(Xi) = Xi+1 for i = 1, . . . , n− 1, and σ(Xn) = X1. Then

L |= ∃x σn(x) = x ∧∧
1≤i<n σi(x) 6= x,

so that M satisfies the same sentence. Let a ∈ M be such that σn(a) = a,

σi(a) 6= a for 1 ≤ i < n. So F (a) is a Galois extension of F degree n over

F .
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