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ABSTRACT

DISCRETE-TIME STOCHASTIC ANALYSIS OF
LAND COMBAT

Eliiyi, Ugur
M.S., Department of Industrial Engineering
Supervisor: Assoc. Prof. Dr. Nur Evin Ozdemirel

Co-Supervisor: Assoc. Prof. Dr. Levent Kandiller

January 2004, 85 pages

In this study, we present the implementation and experimental analysis of a
modeling approach for analyzing tactical level land combat to generate
information for weapon and ammunition planning. The discrete-time stochastic
model (DSM), which can handle small and moderately large force levels, is based
on single shot kill probabilities. Forces are assumed to be heterogeneous on both
sides, and both directed and area fire types are modeled by means of combinatorial
analysis. DSM considers overkills and can handle noncombat loss and engagement
processes, discrete reinforcements, force combinations and divisions. In addition
to experimenting with DSM, we estimate attrition rate coefficients used in
Lanchester combat models, such that the two models will yield similar figures for

force levels throughout the combat.

Keywords: Discrete-Time Stochastic Model, Combat Modeling, Attrition Rate
Estimation, Military Applications.
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KARA MUHAREBESININ KESIK-ZAMANLI STOKASTIK
ANALIZI

Eliiyi, Ugur
Yiiksek Lisans Tezi, Endiistri Mithendisligi Boliimii
Tez Yéneticisi: Dog. Dr. Nur Evin Ozdemirel

Ortak Tez Yoneticisi: Dog. Dr. Levent Kandiller

Ocak 2004, 85 sayfa

Bu calismada silah ve mithimmat planlamasinda kullanilabilecek taktik seviyede
bir kara muharebesi modelinin uygulamasit ve deneysel analizi amaglanmistir.
Kiiciik ve orta biyiiklilkte kuvvet seviyelerinde kullanilmasi amaglanan s6z
konusu kesik-zamanli stokastik model (DSM) tek atista vurus olasiliklarina
dayanmaktadir. Muharebenin her iki tarafi i¢in de kuvvetler heterojen varsayilmas,
direkt ve alan atis tipleri kombinatoryel analiz teknikleri ile modellenmistir. DSM,
muharebe dis1 kayip ve angajman siireglerini, kesikli takviye, kuvvet birlestirme ve
bolme etkilerini de dikkate almaktadir. Modelin deneysel analizine ek olarak,
deterministik ve stokastik Lanchester modellerinde kullanilan zayiat katsayilarinin
tahmini yapilirken DSM ve Lanchester modellerinin kiiciik 6l¢ekli muharebe

benzetimlerinde benzer sonuglar vermesi amaglanmustir.

Anahtar Sozciikler: Kesik-Zamanli Stokastik Model, Muharebe Modelleme, Zayiat
Katsay1 Tahmini, Askeri Uygulamalar.
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CHAPTER 1

INTRODUCTION

The governments all around the world try to save from funds allocated to military
budget. Nevertheless, defense expenditures still constitute a major percentage of
the overall budget for most countries. Therefore, scientific effort towards cost-
efficient use of weapon systems and effective exploitation of ammunition on hand

is exceptionally worthy, and this constitutes the major motivation of our study.

Combat is the term used for circumstances during which at least one combatant (or
weapon system) employs lethal means against at least one other. All other
situations are preludes or postludes to combat, which either set the initial and
boundary conditions for the next combat, or simply end the combat (Ancker,

1995).

Lanchester (1916) presented his theory of battle attrition by a system of
differential equations, which we refer to as the Lanchester model (LM).
Lanchester's square law for directed fire and linear law for area fire are the two
fundamental attrition equations in LM, which will be explained in detail in Chapter
2. LM makes use of attrition rate coefficients (ARC) for units, which is a measure
of effectiveness and defines the rate at which a unit destroys the opposing unit. In

other words, ARC is the number of targets killed by one combatant per unit time.



LM can be effective in representing combat dynamics when the number of
combatants is sufficiently large. However, if the number of combatants is small
(say less than 20), the randomness in engagement and killing should be taken into
account in modeling the attrition process. In this respect, Snow (1948) studied
stochastic Lanchester equations. Stochastic Lanchester model (SLM) is a general
renewal model except that inter-fire times are negative exponentially distributed.
However, later on, Gafarian and Ancker (1984) showed that neither the
exponential model nor the deterministic LM is a satisfactory approximation of the
stochastic combat model. Hence, there seems to be a need for further research on

new combat models, especially those considering the random aspects.

Land combat is our primary subject in this study. This combat environment is the
most involved one, and the most complicated to deal with (Ancker, 1995).
Conventionally, blue units refer to ally forces, and red units to enemy forces. We
assume that both forces control a number of military units such as infantry,
artillery and tank, implying heterogeneous combat. Each military unit is composed
of a number of identical combatants. In homogeneous combat, on the other hand,
each force consists of only one type of combatant, such as only infantry or only

artillery. LM and SLM are originally proposed for homogeneous combat.

The major distinguishing characteristic of a military unit is its single shot kill
probability. Single shot kill probability (SSKP) is the probability that a combatant
kills its target (an opposing combatant) at a single shot. SSKPs may be different

for different military units, but remain constant throughout the battle.

In this study, we focus on the implementation of and experimentation with a recent
model developed by Kandiller et al. (2002). The model is a discrete-time
stochastic model (DSM) based on SSKPs, which can handle small and moderately
large force levels. Forces are assumed to be heterogeneous on both sides, division
and combination of units are allowed, and both directed and area fire types are

modeled by means of combinatorial analysis. Targets are selected at random in



each salvo, meaning there is no coordination between firers, and overkills are

allowed.

DSM treats combat as a stochastic process, which is composed of salvos. A salvo
is a firing cycle of fixed duration, within which every military unit engages one or
more opposing units, and fires simultaneously. In each salvo, a combatant may
either utilize directed fire (or aimed fire) aiming at a particular opposing
combatant, or area fire towards the opposing military unit. Attrition occurs only
after all firing is over in a salvo; therefore, there is a possibility that a combatant
can both kill and be killed in the same salvo. This, of course, may not be suitable
for combats between certain types of weapon systems. It may be appropriate for
artillery or missile exchanges, but not suitable for close-range directed fire
engagements. The assumption of simultaneous salvos can be relaxed by means of

the engagement process, which will be described in Chapter 3.

A unit can distribute its force and fire at a number of opposing units. In addition, a
number of units may be pooled against a single opposing unit. These allocations
may be specified in the combat scenario, or they may emerge from an optimization

model such as Ozdemirel and Kandiller (2001) have employed.

The major extensions of DSM are noncombat loss and stochastic engagement
process, which handles different firing rates of military units. As for the minor
extensions, discrete reinforcements and synergy effects due to force division and
combination, which slightly modify SSKPs, are considered. Mean and variance of
force levels can be estimated using respective survival state probabilities of the

units, and risk analysis can be conducted based on these statistics.

In addition to experimentation with DSM, we try to estimate ARCs used in LM
and SLM, such that DSM and LM will yield similar figures for force levels
throughout the combat. This is attempted through comparison of force levels at the
end of each DSM salvo with the respective force levels obtained by SLM using
estimated ARCs.



The rest of the thesis is organized as follows. In the next chapter, a review of
relevant combat simulation models is provided. Problem definition, DSM
approach in modeling of land combat, and DSM details are given in Chapter 3. In
Chapter 4, we present implementation design stages, experimentation with DSM,
and results as to comparison with the SLM. A method for estimating the ARCs
used in LM is given in Chapter 5 with force level comparisons. Our major

findings, conclusions and future work directions follow in Chapter 6.



CHAPTER 2

A REVIEW OF COMBAT SIMULATION MODELS

The employment of scientific methods in military problems originated in early
twentieth century with the development of deterministic combat models by
Lanchester (1916). He worked on air combat in World War I, by applying ordinary
differential equations to populations of fighter planes. Since then, many
researchers have elaborated on these models with some additional features. These
models represent attrition of opposing sides under different types of engagement.
Initial studies, which involved deterministic models, were followed by advances

leading to stochastic models.

A taxonomy of combat models available in recent literature is shown in Figure 2.1.
Optimization models in the first branch are in general concerned with force
allocation and deployment. Models in the third branch include game theoretic
approaches, in which the combat is modeled as time sequential two-person zero-
sum games. This chapter presents the summary of reviewed literature on a subset
of the second branch of combat modeling in the figure, i.e. simulation modeling,
since it is within the scope of our study. In particular, we review analytical
deterministic and stochastic models, leaving out the large subset of the discrete-

event simulation models.



[ Combat Models ’

[ Optimization Models ] [ Simulation Models ] [ Other Models ]

[Deterministic Models i [ Stochastic Models ]
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Simulation Models

Figure 2.1 Taxonomy of combat models

Combat simulation models estimate attrition and number of survivors in an
engagement. Therefore, these models provide predictions that will help in making
decisions for upcoming stages of the combat. Analytical combat simulation models
are classified as deterministic and stochastic models, which are reviewed in the

following two sections.

2.1 Deterministic Combat Simulation Models

Lanchester (1916) proposed using systems of differential equations with static
attrition rate coefficients to model combat. These models describe combat
dynamics as change in force levels of opponents over time from a deterministic
point of view. Lanchester models have been used for attaining information on the
general behavior of units, and are applicable to aggregated units involving large
numbers of combatants. In Lanchester model, combat is assumed to take place

between two homogenous forces (each consisting of only one type of combatant or



weapon), and the attrition effects are reflected with constant attrition rate
coefficients (ARCs). These fundamental models are represented as a couple of
differential equations. In directed fire, where the firer acquires and fires at a single

target, the attrition of a force is only dependent on the size of the opposing force.

The directed fire model is as follows:

B

—=-aR (2.1)
dt
dr
—=-hB 2.2
pm (2.2)

In the above equations, B=B(t) and R=R(t) denote the number of combatants (or
weapons) of blue and red forces at time t, whereas a and b are the ARCs
symbolizing the effectiveness of one combatant of red and blue forces,
respectively. As an example, a represents the number of blue combatants killed by
one red combatant per unit time. The initial number of red and blue combatants, By

and Ry, sets the initial conditions for these equations.

In the system of differential equations for area fire, where the targets cannot be
detected individually but the region they are located is known, the attrition of a

force is dependent on both its own size and the size of the opposing force.

9B _ _.mR (2.3)
dt
aR_ _rB (2.4)
dt

These two models above represent Lanchester's square law for directed (or aimed)
fire, and linear law for area fire, which are the two basic attrition equations in

Lanchester modeling.

The third fundamental model by Brackney (1959) is called the mixed fire, where

the blue force is subject to directed fire and the red is subject to area fire.



B

—=-aR (2.5)
dt
dr
——=-bRB 2.6
pm (2.6)

It is easy to obtain closed form solutions for time-dependent force levels in
directed and area fire models simply by solving the related differential equations
with given initial conditions, when forces are homogenous and attrition rate
coefficients are constant. Although it is not possible to attain closed form solutions
for B and R separately in the mixed fire case, once a final value of either B or R is

provided the force level of the other can easily be computed.

The fourth model is called the logarithmic law, which formulates the noncombat

loss process and is added to directed fire equations below.

dB

—=-aR-B (2.7)
dt p

R _ B _Ra (2.8)
dt

Here, o and £ are noncombat loss rates of blue and red, respectively.

The fifth and final model we review is proposed by Helmbold (1965).

1-0
dB _ _a(gj R (2.9)
dt R

1-6
dR _ _b(Ej B (2.10)
dt B

In these equations, we(0,1) is the fraction of the blue force that can be used
effectively against the red, when initial force ratio By / Rg is high. The motivation
behind this model is that when the blue force has too many combatants, they

cannot all be used against red simultaneously. & is defined similarly for the red



unit. A symmetrical power function of surviving force ratios is added in this

model.

Przemieniecki (1994) concentrated on determining ARCs, which are the basic
components of Lanchester systems. The simplest relationship for ARC of a blue

unit | when the target acquisition time is negligible can be expressed as

b, = SSKP. x firing rate, (2.11)

where firing rate depends not only on the weapon's technical capability but also on
the skills of the weapon operator and combat conditions. Finding firing rate during
active combat is difficult, hence estimating ARCs is also difficult in practice.
However, most of the studies assume that ARCs are available. Dupuy (1979)
measured the combat potential of opposing forces by quantifying their total
weapons firepower by developing the Operational Lethality Index (OLI) concept.
This index is a composite measure of a number of factors. The major components
of OLI are mission factor, spatial effectiveness measure, and casualty effectiveness

measure.

SSKPs, on the other hand, can be obtained from technical and operational data of
weapon systems, and from field exercises observing combatant skills. This is a

major advantage of the models that use SSKPs instead of ARCs.

There is a literature on extensions and modifications of the above basic Lanchester
models for heterogeneous forces. However, most researchers have dealt with

homogenous forces due to practical or computational reasons.

Isbell and Marlow (1956) contributed to initial efforts by allowing heterogeneity of

forces and investigated the distribution of fire over a number of targets.

Howes and Thrall (1973) developed a procedure that employs Perron-Frobenius

theory of eigenvalues and eigenvectors to compute the overall weight



(effectiveness) of a heterogeneous force. This overall weight is defined as the sum
of weighted-averages of individual weapon effectiveness values, which are derived
from inter-weapon effectiveness matrices. These matrices are assumed to be given

in their study.

Taylor (1974a) utilized Lanchester equations in combination with optimal control
theory in order to find the optimal fire distribution policy. Range-dependent
attrition coefficients are used with the assumption that all weapons of a force have

the same range capability. Variable attrition rate coefficients are defined as

b; (t) =k, h(t) (2.12)

For blue weapon i, Ky is the constant portion and h(t) is the variable portion of the
ARC. Values are assigned per unit of surviving forces, and a two-on-one combat is
analyzed. The analyzed combat is heterogeneous in the sense that different
survival values and ARCs are assigned for each type of weapon. Formulation for
distribution of fire over n targets is presented in the study, and the approach is

demonstrated for n=2.

In another study, Taylor (1974b) reviewed common issues related to fire
distribution. When the targets are subject to the square law (directed fire) process,
the fire is concentrated on one target type, which is known as the 0-1 allocation
rule. Besides, the allocation is not completely dependent upon force levels in this
case. On the other hand, when the targets undergo the linear law (area fire)
process, the fire may be divided between target types; hence, fractional policies
other than the 0-1 allocation rule may be applied. The allocation is directly
dependent upon force levels in area fire. Additional conclusions are also presented
from a different perspective. When intelligence and command control systems are
exceedingly efficient, the optimal tactic is to concentrate fire on a specific target
type. However, the optimal tactic becomes proportional allocation of fire over
target types, when capability for redirection of fire from destroyed targets is rather

poor.

10



As another extension, Taylor (1975) handled the fire distribution problem
including force-level constraints in time sequential allocation problems. He used
measures of strategic value of firing at a target, indicating that optimal fire
distribution policy depends on force levels but not on time. One major finding of
this study is the motivation to value the targets directly proportional to their fire

effectiveness.

Afterwards, Taylor and Brown (1978) made another improvement on fire
distribution problems, which was verified on a two-on-two heterogeneous combat.
With this combat, the authors explored the optimal allocation of supporting fires
through the tactic that involves attacking infantry to contact enemy defensive

positions.

Later on, Taylor (1983) characterized two types of target acquisition processes for
Lanchester type combat models, namely serial and parallel acquisitions. In serial
acquisition, a firer (or a weapon) cannot acquire targets while it is engaged to
another target, while in parallel acquisition it can search targets uninterruptedly

while engaging other targets.

Enhancements to Lanchester models cause the problem to be intractable; hence
obtaining a closed form solution analytically is either difficult or impossible. Thus,
numerical methods for solving these problems are to be investigated. Taylor
(1983) illustrated the formulation of Lanchester equations for heterogeneous
forces, and suggested the use of simplest methods, such as Euler-Cauchy method,
since they are shown to work efficiently due to well behavior of Lanchester

equations.

Protopopescu et al. (1989) later developed a combat model using partial
differential equations featuring the effects of spatial dependence and nonlinearity,
in an attempt to overcome some shortcomings of Lanchester equations. Their
formulation introduces some realistic concepts that do not exist in classical

Lanchester models. One of these, diffusion, is defined as the natural tendency of

11



any force to lose its original configuration as it moves, fights, or simply as time
goes by, due to fatigue, loss of concentration, loss of motivation etc. Another
notion is advection, which is defined as large-scale, ordered flow of troops in
battlefield. In addition, they employ state dependent attrition of forces; ARCs

change as forces close on one another.

Hudges (1995) studied the measure of combat power's mental effect, which is the
suppression of enemy actions. Based on the observation that the apparent effects of
combat power are not only physical but also mental, he developed a quantitative
approach using Lanchester square law to illustrate the suppression effect of enemy

fire.

Taking into account the solution of Lanchester equations for heterogeneous forces,
Jaiswal (1997) described a method that depends on the use of eigenvalues and
eigenvectors, where some conditions are necessary for implementation. Fowler
(1999) established two techniques for aggregating heterogeneous quadratic
Lanchester systems into a homogeneous one. Ozdemirel and Kandiller (2001)
estimated the attrition of a force by summing up attritions generated by

heterogeneous opposing units, and employing division and combination effects.

2.2 Stochastic Combat Simulation Models

When detailed observation of the behavior of each combatant is necessary in
engagements between small units (as, for example, in a two-on-three combat of
tanks), stochastic models become inevitable. Rather than the force sizes,

randomness in engagement, shooting and killing plays an important role.

Snow (1948) was the first to contribute to the stochastic combat simulation
literature by treating stochastic Lanchester equations thoroughly. Stochastic
Lanchester model is a general renewal model except that inter-fire times are

negative exponentially distributed. This assumption brings the memoryless

12



property, which greatly simplifies the analysis but does not make it trivial.

Stochastic Lanchester model will be examined in detail in Chapter 3.

Robertson (1956) modeled infantry fire as a sequence of simultaneous salvos
forming a Markov chain, and applied this model for homogeneous units with a
maximum size of 15. Helmbold (1968) built expressions for expected force levels

in many-on-many duel using alternating volleys rather than simultaneous salvos.

Taylor (1983), Gafarian and Ancker (1984), Kress (1987) and Gafarian and
Manion (1989) are the major early studies on stochastic combat simulation
modeling. They handle stochastic duels (or small firefights) involving small
number of combatants. Since then, researchers have contributed by modeling and

analyzing different stochastic combat characteristics.

Taylor (1983) made use of classical continuous-time treatment, and utilized
attrition rates to determine state probabilities. Since the attrition rates are taken
from deterministic LM, his model is referred to as the stochastic Lanchester model

(SLM), which will be explained in detail in Chapter 3.

Gafarian and Ancker (1984) studied the general two-on-one stochastic duel as an
extension of one-on-one stochastic duel by Ancker (1982). There are two
combatants on side A and one on side B, force compositions are homogenous and
engagement type is directed fire for both sides. They modeled two stochastic
processes, one with negative exponential and the other with Erlang-2 interfiring
time distributions. Their main contribution is the computation of state probabilities
for the first time for two-on-one stochastic duel. Utilizing these probabilities, they

also derived probability of win, and mean and variance of the number of survivors.

Later on, Kress (1987) investigated the general many-on-one stochastic duel
conditioned on the order in which the targets are attacked. He has utilized SLM
with homogenous forces and directed fire. Other than exponentially distributed

interfiring times for both sides, he also studied a special case where the

13



distribution is gamma for the blue force. As results of his study, state probabilities
are derived for five different cases for the number of red units, and relative
firepower effectiveness of both sides is examined utilizing kill rates or reciprocal

of the mean killing times as measures.

Gafarian and Manion (1989) considered two versions of two-on-two homogenous
stochastic combat, with the motivation of developing more realistic firefight
models. They utilized stochastic process with homogenous forces and directed fire.
Interfiring times are assumed to follow a Gamma-2 distribution. Aiming
configurations are defined, and states are decomposed with regard to initial aiming
configurations. They computed state probabilities, derived probability of win,
mean and variance of the number of survivors, and mean and variance of battle
duration. They also compared their model with equivalent exponential and

deterministic LM.

Yang and Gafarian (1995) introduced an algorithm based on solving a set of exact
Kolmogorov equations and approximating the kill rate of one combatant in
homogenous stochastic combat models. The kill rate is conditioned on the state of
the system. They studied discrete-time many-on-many homogenous systems with
directed fire, where they utilized counting process and Kolmogorov equations.
They derived exact Kolmogorov equations for states, probabilities for interior and
boundary transient states and state-dependent kill rates. They argued that huge

amount of computation is necessary for battles larger than four-on-four.

Jaiswal et al. (1995) modeled the combat as a continuous-time discrete state space
Markov process, and estimated some combat characteristics such as distribution,
mean and variance of combat duration, probabilities of win, expected number of
survivors at termination, etc. They also presented some numerical results for
stochastic Lanchester equations of directed fire, area fire and warfare with smart

wceapons.
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Speight (1995) employed a discrete-time Markov chain model as a stochastic
correspondent of deterministic and continuous-time Lanchester formulation, and

contrasted the results at the mini-battle level.

Anderson (1995) expressed attrition formulas for large-scale combat under a
variety of conditions. He dealt with heterogeneous many-on-many combats, and
treated area and directed fires separately. In his study, it is assumed for the area
fire that, targets are uniformly distributed in the area, fires of weapons may overlap
in each salvo, and a target is killed with a kill probability if it is in the fatal area.
He devised directed fire and area fire attrition equations for uncoordinated,

partially coordinated and coordinated fire cases.

Parkhideh and Gafarian (1996) studied development of general solutions to many-
on-many heterogeneous stochastic combat. They modeled the system as a
continuous-time stochastic process, where the combat is modeled as a sequence of
aiming and killing events. Engagement type is directed fire for both sides, and time
between consecutive kills is randomly distributed. A firer-dependent time-to-next-
kill distribution, where target selection is random in aiming events is utilized.
Combat ends when any side reaches its predetermined breakpoint. They computed
state probabilities by enumerating all possible routes that the combat may go
through via itemizing sequences of aiming and killing events, then finding
probabilities of events that take the combat to a specific state. They assumed that
heterogeneous combat involves only two opposing units, each consisting of

different types of combatants utilizing directed fire.

Jaiswal et al. (1997) modeled homogenous combat with reinforcements as a
continuous-time discrete state space Markov process. He analyzed the effect of

reinforcements made at prespecified force levels on various combat characteristics.

McNaught (1999) investigated the effects of applying Exponential Stochastic
Lanchester (ESL), which is the stochastic version of deterministic square law for

directed fire, to battles that have been split into smaller engagements (mini-
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battles). He modeled the many-on-many combat as a Markov Chain where the
forces are homogenous, and directed fire is employed for both sides. He computed
probabilities of win and the expected number of survivors at each mini-battle. He
also observed increase in the number of mini-battles in the first stage, change in

the force ratio, and random (uneven) split of battles using Monte-Carlo simulation.

McNaught (2001) later solved two variants of homogenous one-on-one duels with
directed fire for both sides. He modeled the combat as two continuous time
Markov chains, where the distribution of inter-firing times follow a 2-phase Erlang

distribution in the first model, and exponential distribution in the second.

Armstrong (2001) studied stochastic duel between two opposing units, in which
both kills and suppression effects of firepower are possible, with the motivation of
creating a more realistic model. He formulated the one-on-one homogenous
combat with directed fire as a Markov Chain. Results are provided regarding
probability of win, expected duration of the duel, expected proportion of time the
red is suppressed, and expected number of rounds fired by red, which can be
utilized in computation of expected consumption of ammunition and the effect of

suppression.

Salim and Hamid (2001) used a Bayesian stochastic model in formulating
homogenous many-on-many stochastic combat with directed fire, where beta
distribution is chosen as a prior distribution for survivor probability. They have
estimated the distribution of the number of survivors, and expected value of the

attrition rate coefficient using their model.

Pettit et al. (2003) illustrated that Bayesian statistical methods may be used both to
predict which side will win the combat and to choose between alternative
stochastic fire type models, and utilized the results for comparing different weapon

systems.
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Very recently, Aygiines (2003) has presented a modeling framework for combat
with heterogeneous forces. He proposed an integrated system, consisting of three
interacting models: An optimization model for force allocation, an attrition
simulation model including a discrete-time stochastic model (DSM) that validates
allocation results, and a weapon effectiveness index update model. DSM can
handle heterogeneous forces of relatively larger size. Our study is mainly
concerned with implementation of and experimentation with DSM. Therefore, an

overview of DSM will be provided in Chapter 3.

2.3 Discussion

As it was stated previously, there are common critiques as to the deficiencies of
Lanchester models in literature, such as difficulty in estimating ARCs, use of
constant ARCs and homogenous forces only. Besides these, Protopopescu et al.
(1989) indicated some additional shortcomings, such as ignoring movement of
forces in battlefield, and not taking into account command and control
mechanisms. Ancker (1995) reviewed combat theory and found some deficiencies.
Based on two axioms and a theorem on combats, his study emphasizes the fact that
analysis of combat as a hierarchical network of firefights is compulsory to better
comprehend combat models, where a firefight is a terminating stochastic target

attrition process on a discrete state space.

Reviewed literature clarifies some deficiencies or shortcomings in combat models.
Combat simulation models can be more efficiently used in force and ammunition
planning, as they distinguish more accurately the critical aspects of the problem in
hand. It is crucial that the dynamic nature of combat is increasingly taken into
consideration by recent developments. However, use of advanced models and
techniques are limited, as opposed to the classical Lanchester models, due to

computational restrictions.

Deterministic Lanchester models are usable basically for aggregate forces (size

more than 20), and it has been revealed in many studies that their performance for
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predicting smaller size combats is rather unsatisfactory. Furthermore, there is no
possibility of a risk analysis in a deterministic model. Besides, successful
convergence for more accurate results occurs for very large force sizes only, which
has limited relevance to today’s war situations. Therefore, we need stochastic
models for small forces that will allow us to conduct risk analysis. Although
numeric solutions can be obtained by stochastic models available in the literature,
most of which are continuous time, they require excessive computation time and

can handle very small force sizes most of the time.

A discrete-time stochastic model (DSM) has been developed by Kandiller et al.
(2002) that can handle relatively larger force levels. In this study, our main
contribution is the implementation of and experimentation with this model. In
addition, we try to estimate ARCs for Lanchester model, such that the use of these
models will yield similar figures for force levels. This is attempted through
comparison of force levels at the end of each DSM salvo with the respective force

levels obtained by stochastic Lanchester model using estimated ARCs.
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CHAPTER 3

DISCRETE-TIME STOCHASTIC MODEL

Our contribution in this study is the implementation of and experimentation with
DSM developed by Kandiller et al. (2002). Therefore, DSM is described for the
sake of completeness. As we have stated previously, there are many critiques as to
the deficiencies of Lanchester models in literature, such as difficulty in estimating
ARCs, use of constant ARCs and homogenous forces only. Deterministic
Lanchester models are usable basically for aggregate forces (size more than 20),
and it has been revealed in many studies that their performance for predicting
smaller size combats is rather unsatisfactory. Furthermore, there is no possibility
of a risk analysis in a deterministic model. Therefore, we need stochastic models

for small forces that will allow us to conduct risk analysis.

DSM is based on SSKPs, which can handle relatively larger force levels, as
compared to previous stochastic models in literature. Forces are assumed to be
heterogeneous on both sides, division and combination of units are allowed, and

both directed and area fire types are modeled by means of combinatorial analysis.

The main features and assumptions for this combat model can be summarized as
follows:
e Time advancement is achieved by assuming the combat proceeds in salvos.

Combatants of both forces fire simultaneously in a salvo.
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e Both sides can consist of a number of units of different types (having different
SSKPs), which implies heterogeneity of the forces.

e Directed and area fire are modeled by concepts of combinatorial analysis.
Target selection is a random process, accordingly, overkills of a target are
allowed, as no coordination among firers exists.

e Noncombat loss and stochastic engagement processes can be included as well as
discrete reinforcements, division and combination effects.

e The mean and variance of the remaining force level at the end of each salvo are

found, allowing for risk analysis.

In the following section, we will firstly describe SLM, which we implemented in
our study for estimating ARCs and checking whether the use of these models
yields similar figures for combat force levels. The subsequent two sections
describe DSM for homogeneous and heterogeneous combat cases in sufficient
detail. The last section is about the extensions of DSM, whose major processes are

employed in our implementation.

3.1 Stochastic Lanchester Model (SL.M)

The classical continuous-time treatment by Taylor (1983) makes use of attrition
rates to determine the state probabilities. This model can be applied for
homogeneous combat where only two opposing units are involved. Let the state
definition be (t,i,j) where t indicates time, i = 0,1,...,m and j = 0,1,...,n are the
number of combatants alive in blue and red units at time t. Let P(t,i,j) be the
probability of having i blue and j red combatants at time t. The initial condition is
P(0,m,n) = 1. There are three possible state transitions in this model. These are no
loss, one blue casualty and one red casualty. Let A(t,i,j) be the attrition rate of the
blue unit at time t when there are i blue and j red combatants. The attrition rate of
the red unit is denoted by B(t,i,j). Since the attrition rates are borrowed from

deterministic LM, this model is referred to as the stochastic Lanchester model

(SLM). The attrition process is modeled as ((jj—?z—A(t,i,j) with By=m and

20



c(jj—lj =—B(t,i, j) with Ry=n. This is a Markov process since the probability of any

particular future state is determined by the present state and not on how the state is

reached. Assuming Poisson process for casualties, it follows that

P(one blue casualty in time from t— t+At) = A(t,i,j)At (3.1)
P(one red casualty in time from t— t+At) = B(t,i,j)At (3.2)
P(more than one casualty in time from t— t+At) =0 (3.3)

Hence, the conditional probability for state (t+At, i, j) is

P(t+At, 1, j) = P(t,i,j)) P(no casualties in At) + P(t, i+1, J) P(one blue casualty in
At) + P(t, i, j*1) P(one red casualty in At).

Applying Equations (3.1), (3.2) and (3.3) to the first term of the above equation,
we see that P(no casualties occur) = (1-A(t,i,j)At ) (1-B(t,i,j)At) = 1 - (A(t,i,j) +
B(t,i,j))At. The term A(t,i,j)B(t,i,j)At> = 0, since we cannot have more than one
casualty at any given time. Another motivation in ignoring this term is that the
infinitesimal duration At is so small to define legitimate probabilities in (3.1), (3.2)
and (3.3), yielding its square being close to zero. Substituting this into the equation
above, with the suitable choice of infinitesimal time step At, the state transition

probabilities are found as:

Pt+At,i,j)=[1- (At i, ) +B(t i, j)) At Pt i, j) +
A(t, i+1, j) At P(t, i+1, j) + B(t, i, j+1)) At P(t, i, j+1). (3.4)

One can assume that At is the salvo length and define the salvo sequence as O,
At, 2At, 3At, and so on. Equation (3.4) can then be treated as a difference equation
and it can be used to calculate discrete-time state probabilities. Time-dependent

expected values and variances of remaining force levels can also be calculated.
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SLM models the combat as a non-homogeneous Poisson process where A(t,i,j)At is
the expected number of blue casualties during At. Therefore, At should be
determined such that the probability of one casualty (A(t,i,j)At for blue or B(t i,j)At
for red), does not exceed one. If we employ At as the salvo length in a discrete-
time approach, we would have to observe combat dynamics over a very large
number of salvos, which will require significant computation time. In Chapter 4,
we compare SLM and DSM by taking salvo length as an appropriate multiple of
At.

3.2 DSM for Homogeneous Combat

The main features of DSM that distinguish it from SLM are advancing time in
discrete steps as opposed to continuously, the manner in which SSKPs are used,
and the relaxation of single casualty per salvo assumption. The discrete-time

nature of the model requires focusing on binomial processes.

In DSM, combat between two units each having a small number of combatants is
modeled as a two-dimensional death process. Let the state definition be (t,i,))
where t = 0, 1,... is the discrete time counter denoting the salvo number, i = 0,
I,...,mand j =0, 1,..., n are the number of surviving combatants in blue and red
units at the end of salvo t. Let P(t,i,j) be the probability of having i blue and j red

combatants at the end of salvo t. The initial condition is P(0,m,n) = 1.

3.2.1 Directed Fire in Homogeneous Combat

Directed fire is the situation where a firer detects and aims at a single target and
fires. Consider a combat situation in which there are i identical firers shooting
independently at j = 3 identical targets. Let {A,B,C} be the pattern denoting the
number of firers engaged with each target such that A + B + C = i. If, for example,
i =4, {3,1,0} means that three firers shoot at one target, and the remaining firer
engages with one of the remaining targets. Note that overkills are possible with

this pattern definition. When arrangement of targets is considered, the pattern
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{AB,C} would repeat as {A,B,C}, {A.C,B}, {BAC!, {B,CA}, {CAB}, {CBA].

The number of arrangements, nt(A,B,C), is 3! if A, B, C are all different, 2'!1'
1 !

if only two of them are the same, and 3_: if all three are the same. When we also
3!

consider arrangement of firers, there are additional repetitions. For example, with
firers @, b, ¢, d and target arrangement (3,1,0), possible firer arrangements are
(abc,d,-), (abd,c,-), (acd,b,-), (bcd,a,-). The number of these repetitions ng(A,B,C)
s ﬁ'vc' for each target arrangement. Hence the total number of arrangements
for pattern {A,B,C} is:

n({A,B,C}) = nx(A,B,C) n¢(AB,C). (3.5)

Let px be the SSKP of a single firer. Given a pattern {A,B,C}, the probability of
having | = 0, 1, 2, 3 casualties is calculated considering whether or not the first

target subject to A shots is killed and so on, i.e.:

1-(-n,)" | [0-p,)

P(I casualties| {AB.C})= ¥ [1-(1-p )] [(1—pk)BT2 (3.6)

I, 5,:00r 1+ -

[ -1_(1_ 0, )C—|3 [(1_ 0, )C T—I3

Hence, the probability of | casualties in the presence of i firers is calculated as:

A B,C
P (I ) = P(I casualties with i ﬁrers) = Z M P(I casualties | {A, B,C})
A>B>C
A+B+C=i

(3.7)

where ji is the total number of arrangements over all patterns.

An example with i =4 firers, j =3 targets, and px= 0.2 is presented in Table 3.1.
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Table 3.1 Directed fire casualty probabilities for i=4, =3, p,=0.2

{ABCI m(ABC) neABC) N({ABC}) P«0) Pil) Ps2) Ps3) Total
{4,0,0} 3 1 3 04096 0.5904 0.0000 0.0000 1.0000
(3,1,0} 6 4 24 0.4096 0.4928 0.0976 0.0000 1.0000
{2,2,0} 3 6 18 0.4096 0.4608 0.1296 0.0000 1.0000
2,1,1} 3 12 36 04096 0.4352 0.1408 0.0144 1.0000
Total 81 04096 04637 0.1203 0.0064 1.0000

3.2.2 Area Fire in Homogeneous Combat

In area fire, a firer cannot identify targets individually, but it has information about
the region in which the opposing unit is positioned. The targets are assumed
uniformly distributed over an area of radius Ra as in the study by Anderson (1995).
An area shot divides this region into two, where the first division becomes the fatal
area (FA) of radius r, and the second becomes the non-fatal area (NFA) as in

Figure 3.1.

Non-fatal Area

Fatal Area

Figure 3.1 Regions of fatality in area fire

2

The SSKP in NFA is assumed to be zero, whereas it is px in FA. Let & =|;— be

2
A

the probability that a target is in the FA. In the presence of a single firer, the
probability of | casualties out of | targets depends on the condition that there are

f(1 < f < j)targets in FA and | of them are killed. Therefore,
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P(=P( casualtieswithlﬁrer):Zj:(J;) Ea-o"" (Npa-p)"" (33

f=I

Consider the case where there are i=3 firers. If the targets neutralized by each firer
were mutually exclusive (i.e. there were no overkills), then the probability of
having | casualties in a salvo would be calculated by the following 3-way

convolution:

P,(1)=P(I casualties with 3 firers)= > P/(1,)R(I,)R(l;) (3.9)

R
In the presence of overkills, let the pattern (l;, I, Is] l12, 113, |23 l123) denote the
number of casualties where |; is the number of kills only by the first firer, |, is the
number of kills only by the first and the second firer, and so on. For example, the
pattern (1,2,0|1,2,0|1) indicates that one target is overkilled by all three firers,
another is overkilled by the first and the second together, two targets are overkilled
by the first and the third together, one is killed only by the first firer, and two only

by the second. If there are i firers, we have patterns of dimension 2'-1 in the form
of ((i)entries|...|(:<)entries | ... |(:) entry). When we consider arrangement of

targets, the number of repetitions for pattern (l;, |, 15| I12, |13, l23| 1123) is:

n(|1’|2’|3 | |12’I13’I23 | |123) = ( j—jl )(I1I23 )(I_llllz23 )(I_qul;lu )L (::)

_ (3.10)
CRTRRW A =D !

where | = |;+ I+ I3+ 15+ 113+ |3+ 1123 is the total number of casualties.

Let la, Ig, Ic denote the number of kills (including overkills) by the first, second
and third ﬁrers, i.e., IA: |1+ |12+ |13 + |123, IB: |2+ |12+ |23 + |123, |C: |3+ |13+ |23 +
l123. Given la, Ig, lc, we face some size restrictions. For instance the two-way
overkill value |, = max{0, In + lg - j},..., min{la, Ig}. That is, if we have j=3

targets, i=2 firers, 15=3 and lg=1, then we cannot have the pattern (1,0,0[2,0,0/0)
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since the number of targets overkilled by the first two firers (I;,=2) cannot exceed
the overall number of casualties due to the second firer (Ig=1). The pattern
(2,1,0/1,0,0]0) is also impossible when 15=3, 1g=2, and j=3 since there cannot be
more than j casualties. So, 1, should be at least Ip+ Ig — j = 2 in which case 1,,=2,
l1=1 and |,=0 should be true. Let (*) denote such restrictions and n(la,lg,Ic) be the

total number of pattern repetitions possible under these restrictions, i.e.

n(IA,IBalc)Z Zn(ll,lz,l3|I12,I13,I23|I123) (3.11)

(I a5 b ol s s S,
where

33 = {(ll, |2, |3, |12, |13, |23, |123) € ZZ . (*) 1S satisﬁed},
Ia= i+ liot iz + lios,

lg= b+ liot |z + 1123,

lc=l3+ list I3 + |y2s.

Hence, the probability of | casualties in the presence of 3 firers is calculated as

P,(I) = P(I casualties with 3 firers)

_ Z Ny, L, b Ty, L by [5) P(,)P()P(.) (3.12)

(bl 05 003,03 153)€85 n(IA’IB’IC)
L+l i+l s+ +1 s =]

An example with i=2 firers and j=3 targets is illustrated in Table 3.2. Suppose that
Py(l) values are found by Equation (3.8) as 0.4096, 0.4944, 0.0931, 0.0029 for
1=0,1,2,3, and they are the same for the two firers. Consider the rows where 15=2
and lg=1, generating the patterns {1,0|/1} and {2,1|0}. Using Equation (3.10), the
number of repetitions is N(1,0/1)=6 for the first pattern and n(2,1/0)=3 for the
second. Thus, n(2,1)=6+3=9. According to Equation (3.12), the joint probability
P1(2)P;(1)=0.0460 is distributed between P,(2) and P,(3) with proportions 6/9 and
3/9, resulting in the values 0.0307 and 0.0153, respectively. After processing all
patterns in this manner, P»(2) and P»(3) are found as 0.3035 and 0.0422. Note that,

1a=2, =1 and Ix=1, Iz=2 are treated separately to account for firer arrangements.
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Table 3.2 Area fire casualty probabilities for i=2, =3 when FA locations are unknown

(I, I 12) Ia le n(ly, L] o) N(la, ) P1(1a)P1(ls) P(0) Py(1) P»(2) P2(3)
0,013) 3 3 1 1 0.0000 0.0000
(1,01]2) 3 2 3 3 0.0003 0.0003
2,011 3 1 3 3 0.0014 0.0014
(3,0]0) 3 0 1 1 0.0012 0.0012
0,11]2) 2 3 3 3 0.0003 0.0003
0,01]2) 2 2 3 9 0.0087 0.0029
1, 1]1) 2 2 6 9 0.0087 0.0058
(1,0]1) 2 1 6 9 0.0460 0.0307
(2,1]0) 2 1 3 9 0.0460 0.0153
(2,0]0) 2 0 3 3 0.0381 0.0381
0,2]1) 1 3 3 3 0.0014 0.0014
O, 1]1) 1 2 6 9 0.0460 0.0307
(1,21]0) 1 2 3 9 0.0460 0.0153
0,0]1) 1 1 3 9 0.0244 0.0815
(1,1]0) 1 1 6 9 0.0244 0.1630
(1,01]0) 1 0 3 3 0.2025 0.2025
0,3]0) 0 3 1 1 0.0012 0.0012
(0,21]0) 0 2 3 3 0.0381 0.0381
0,11]0) 0 1 3 3 0.2025 0.2025
(0,01]0) 0 0 1 1 0.1678 0.1678

Total 64 0.1678 0.4865 0.3035 0.0422




3.2.3 Salvo Treatment in Homogeneous Combat

State transition probabilities in DSM are calculated based on the binomial
processes discussed in the previous two subsections. DSM allows multiple
casualties in a salvo in both forces. Possible states that can be reached from state

(t,i,)) in the case of directed fire are as follows:

(Li,))— (tH1,1,)), (tH1,i-1,)), (t+1,1,j-1), (t+1,i-1,J-1), (t+1,i-2,)), (t+1,1,j-2),
(t+1,i-2,j-1), (t+1,i-1,j-2), (t+1,i-2,j-2),..., (t+1,max {i-j,0} ,max {j-1,0})

If area fire is involved, all the states down to (t+1,0,0) can also be reached.

The state transition (t,i,j)— (t+1,i-Ai,j-Aj) indicates that there are Ai blue
casualties with probability P;®(Ai), and Aj red casualties with probability P;%(Aj) in
a duel of i blue versus j red combatants. Regardless of the fire type, the

corresponding state transition probability is found as
P((tij)— (t+1,i-ALj-A))= PP(A) Pi(A)) (3.13)

As an example, Figure 3.2 illustrates all possible state transitions from the state
(t,4,3) under directed fire. Casualty probabilities for the red unit with py.pr=0.2 are
taken from Table 3.1. Let casualty probabilities for the blue unit with py.rs=0.3 be
0.3430, 0.4899, 0.1569, 0.0101, 0.0000 for 0,1,2,3 and 4 casualties, respectively.
The probability of staying in the same state is the probability of no blue or red
casualties, 0.3430 (0.4096) = 0.1405. The probability of transition to state (t+1,2,2)
is the probability of having two blue casualties and one red casualty, which is
0.1569 (0.4637) = 0.0728. Since we have only 3 red combatants, more than 3
casualties in blue are impossible as shown in the last row of Figure 3.2. Transitions
from a lower state such as (t,2,1) to an upper state such as (t,3,2) would also be

impossible.
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Red

P(0 cas.) P(1 cas.) P(2 cas.) P(3 cas.)
0.4096 0.4637 0.1203 0.0064
Blue =3 =2 =1 j=0

P(0 cas.) 0.3430 i=4 0.140493 0.159050 0.041262 0.002195
P(1 cas.) 0.4899 i= 0.200678 0.227186 0.058938 0.003136
P(2 cas.) 0.1569 i=2 0.064282 0.072773 0.018879 0.001004
P(3 cas.) 0.0101 i=1 0.004147 0.004695 0.001218 0.000065
P(4 cas.) 0.0000 i=0 0.000000 0.000000 0.000000 0.000000

Figure 3.2 State transition probabilities from the state (1,4,3)

Given the initial condition P(0,m,n) = 1, the state probabilities for subsequent

salvos when both blue and red units are subject to directed fire are calculated as

min{m-i,n} min{n—j,m}
PE+Li, )= > > [PEADPR@A)Pi+AL j+A)) (3.14)

Ai=0 Aj=0

The state probabilities under area fire are:

m-i n-—j

P+Li,j)=> 3 [PP(ADRF(A)P(ti+Ai, j+Aj) (3.15)
AI=0 Aj=0
Because of the initial condition P(0,m,n) = 1, the state probabilities P(L,L.j),
i=0,1,..., m=4, j=0,1,..., n=3 at the end of the first salvo are the same as the
transition probabilities from the state (0,4,3) given in Figure 3.2. Marginal
probabilities of having 4,3,2,1 blue combatants alive at the end of the first salvo
are 0.343000, 0.489938, 0.156938, and 0.010125. Therefore, expected value and
variance of the number of surviving blue combatants are found as 3.165813 and
0.512944. The same values for the red unit are 2.276504 and 0.4790442,

respectively.

State probabilities P(2,i,j) for the second salvo are given in Figure 3.3. The
probability of transition from state (1,4,3) to (2,3,2) is 0.227186 in Figure 3.2. The
contribution of this transition to P(2,3,2) is 0.227186 P(1,4,3) = 0.031918, as
P(1,4,3) = 0.140493. Similarly, contributions of transitions to state (2,3,2) from
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states (1,4,2), (1,3,3) and (1,3,2) are found as 0.028828, 0.028696, and 0.056996.
In Figure 3.3, P(2,3,2) = 0.146438 is found by adding up all four contributions.

Red

=3 =2 =1 =0

i 0.019738 | 0.054267 | 0.056049 | 0.027147
i=3 | 0.063436 | 0.146438 | 0.122257 | 0.044006
Blue i 0.075235 | 0.139552 | 0.089591 | 0.021992
i=1 | 0.038825 | 0.055087 | 0.025292 | 0.003748
i=0 | 0.007517 | 0.007517 | 0.002165 | 0.000141

Figure 3.3 State probabilities at the end of the second salvo

Expected number of blue and red combatants for the first ten salvos and respective
variances are given in Table 3.3. As the salvo number increases, the rate of change
in the expected number of combatants decreases indicating the convergence. The
variance increases as the diffusion from the initial state takes effect. It would start
to decrease eventually as the absorbing states start getting higher probabilities. It is
also possible to find the confidence intervals around the expected values for a

given confidence level.

Table 3.3 Results for the first ten salvos

Blue Red
Salvo Expected Variance Expected Variance
0 4.000000 0.000000 3.000000 0.000000
1 3.165813 0.512944 2.276504 0.479042
2 2.532910 0.913262 1.715330 0.807202
3 2.072989 1.254982 1.317807 0.958030
4 1.768699 1.497381 1.067736 0.997139
5 1.583666 1.651056 0.921509 1.004077
6 1.476729 1.746568 0.839240 1.007064
7 1.416499 1.805713 0.793784 1.010683
8 1.382942 1.842004 0.768834 1.014282
9 1.364299 1.863985 0.755151 1.017173
10 1.353935 1.877126 0.747631 1.019214
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3.3 DSM for Heterogeneous Combat

Combat between more than two units each having a small number of combatants is
modeled as a multi-dimensional death process. Let the state definition be (t, iy,...,
i, J1,..., Js) where t=0,1,... is the discrete time counter denoting the salvo number,
L=0,1,....my,..., iy = 0,1,...,m; and };=0,1,...,ny,..., jy= 0,1,...,n; be the number of
combatants remaining in blue and red units at the end of salvo t, respectively. Let
P, ii,..., i, j1»..., Js) be the probability of having iy,..., i blue and ji,..., j; red

combatants at the end of salvo t. The initial condition is P(0,my,...,m,n,..., nj)=1.

3.3.1 Directed Fire in Heterogeneous Combat

If there are | blue units with iy, iy,..., Ij firers shooting at j targets in a certain red

unit, the number of different arrangements is j* j*L j".

In particular, consider a combat situation where there are i; and i, firers in two
different units shooting independently at j=3 identical targets with SSKP values py;
and pw. Let {AjA,|B1B,|C;C,} be the pattern denoting the number of firers engaged
with each of the j=3 targets such that A;+ B+ C,=i; and Ay+ B,+ Cy=i,. For i,=4
and =3, an example pattern is {12]21]/10}. The total number of repetitions for a
pattern n({A;A;|B1B,|C,C,}) is found as in Section 3.2.1 for the homogeneous
combat case by considering both target and firer engagements. Given a pattern
{A1A;|B1B,|C,C,}, the probability of having | = 0,1,2,3 casualties depends on
whether or not the first target subject to A; shots from the first unit and A, shots

from the second unit is killed, and so on. Then, simplifying py; and px, as p; and pa,

P(I casualties|{AA, |BB,|CC,})= Y [1—(1—91)“(1—DZ)AZT

Inlg.lc:0 or 1
Ip+lg+lc =1

[(l_ p)A(1-p,)» }HA [1—(1_ p)® (1- p2)82:|

[-a-pyea-p)e ] [a-pa-p)o]"

I

[a-py2a-py>]"

(3.16)
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Hence, the probability of | casualties under fire from two units is

3 n({AA BB, CC,})

i iy
A+B, 1C =i 1]
A, +B,+C, =i,

P, ()= P(I cas.|[{AA|BB,|CC,}) (3.17)

An example where i;=4, i,=3 and j=3 with p;=0.2 and p,=0.3 is illustrated in Table
3.4. The probability of two casualties for the pattern {21|11|11} is calculated as
P(2 cas.|{21|11]11})=2[1-0.8%(0.7)][1-0.8(0.7)][0.8(0.7)]+[0.8°(0.7)][1-0.8(0.7)][1-
0.8(0.7)]=0.358758. This pattern contributes to the overall 2 red casualties with
0.358758 (216/2187) = 0.035433.

The analysis so far in this subsection is carried out from the viewpoint of firers.
The same phenomenon could also be analyzed from the viewpoint of targets.
When we consider the above example from the targets’ perspective, there are two
enemy units creating casualties (casualty probabilities for the first blue unit are
given in Table 3.1). The overall attrition process of targets is simply the
convolution of the two attrition processes due to different firing units. This
approach is similar to the one we use for the area fire. If we apply the same
analysis presented in Section 3.2.2 and summarized by Equation (3.12), we obtain
the results given in Table 3.5. The overall casualty probabilities calculated in
Tables 3.4 and 3.5 are exactly the same. This means that we can use either

viewpoint in combining multiple units.
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Table 3.4 Casualty probabilities for j=3 when i;=4, i,=3, p;=0.2, p,=0.3

{A1A1|BIBICiC}  n({AIABIBICICy})  Pus(0) P4s(1) P4s(2) P.3(3)
{43]00]00} 3 0.1405 0.8595 0.0000 0.0000
{40]03|00} 6 0.1405 0.4716 0.3879 0.0000
{42/01]00} 18 0.1405 0.6197 0.2398 0.0000
{41]02]00} 18 0.1405 0.4957 0.3638 0.0000
{40]02|01} 18 0.1405 0.4089 0.3602 0.0903
{41]01]01} 18 0.1405 0.4699 0.3254 0.0642
{33]|10/00} 24 0.1405 0.6946 0.1649 0.0000
{30/13]00} 24 0.1405 0.5054 0.3541 0.0000
£30/10/03} 2 0.1405 04381 03572 0.0641
{32|11|00} 72 0.1405 0.5299 0.3296 0.0000
{32|10/01} 72 0.1405 0.5148 0.2997 0.0449
{31]12|00} 72 0.1405 0.4694 0.3901 0.0000
{31]10]02} 72 0.1405 0.4329 0.3612 0.0654
{30]12]01} 72 0.1405 0.4120 0.3585 0.0890
{30|11|02} 72 0.1405 0.3905 0.3595 0.1095
{31]11]01} 144 0.1405 0.4221 0.3527 0.0847
{23]20|00} 36 0.1405 0.5785 0.2810 0.0000
{20]20|03} 18 0.1405 0.4272 0.3472 0.0851
{22]21]00} 108 0.1405 0.4806 0.3789 0.0000
{22]20|01} 108 0.1405 0.4467 0.3386 0.0741
{21]20]02} 108 0.1405 0.3984 0.3598 0.1013
{21]21]01} 108 0.1405 0.4064 0.3617 0.0914
{23|10|10} 36 0.1405 0.5698 0.2585 0.0312
{20]13]10} 72 0.1405 0.4857 0.3216 0.0522
{22|]11|10} 216 0.1405 0.4530 0.3461 0.0604
{20|112|]11} 216 0.1405 0.4073 0.3559 0.0963
{21]12]10} 216 0.1405 0.4261 0.3662 0.0671
QU111 216 0.1405 03939 03588  0.1069

Total 2187 0.1405 0.4451 0.3479 0.0665
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Table 3.5 Casualty probabilities for j=3 when i;=4, i,=3, p;=0.2, p,=0.3 using area fire approach (target viewpoint)

(I, Ll 1) Ia lg P4(1a)Ps(ls) n(l, 1) 12) n(lp, 1s) P.5(0) P.s(1) P43(2) P.5(3)
(0,013) 3 3 0.0000 1 1 0.0000
(1,012) 3 2 0.0009 3 3 0.0009
(2,0|1) 3 1 0.0032 3 3 0.0032
(3,010) 3 0 0.0022 1 1 0.0022
(0,112) 2 3 0.0007 3 3 0.0007
(0,012) 2 2 0.0173 3 9 0.0058
1,11 2 2 0.0173 6 9 0.0115
(1,0|1) 2 1 0.0610 6 9 0.0407
(2,110) 2 1 0.0610 3 9 0.0203
(2,010) 2 0 0.0413 3 3 0.0413
0,2|1) 1 3 0.0028 3 3 0.0028
0,11) 1 2 0.0668 6 9 0.0445
(1,2]0) 1 2 0.0668 3 9 0.0223
(0,0]1) 1 1 0.2351 3 9 0.0784
(1,110) 1 1 0.2351 6 9 0.01567
(1,00) 1 0 0.1591 3 3 0.1591
(0,310) 0 3 0.0025 1 1 0.0025
(0,2]0) 0 2 0.0590 3 3 0.0590
(0,1]0) 0 1 0.2077 3 3 0.2077
(0,00) 0 0 0.1405 1 1 0.1405
Total 64 0.1405 0.4451 0.3479 0.0665




3.3.2 Area Fire in Heterogeneous Combat

Consider the case where there are two different area firing blue units with iy, I,
firers, and there are j red targets. Suppose Pi(l) = P(l casualties with k firers) have
already been calculated independently for k = iy,i, using Equation (3.12). When
two units are combined, the pattern (I, I;| l12) represents the number of casualties
where |; is the number of kills only by the first unit, l;, denotes the number of
overkills by the first and second units. Let n(l;, I, l;2) denote the number of
casualty arrangements and Nn(la, Ig) be the total number of repetitions as defined in
Section 3.2.2. With the same definition of S,, the probability of | casualties under

the simultaneous fire of two units is calculated as

P )= 3 Mubll)p o (3.18)
I(I:IIZ;IIIE)EISZ n(lA’ IB)

Note that here the area fire computations are carried out twice in a hierarchical
manner. First, Equation (3.12) is used to find Pj;(Ia) by combining firers of the first
unit, and this is repeated independently for the second unit. Then, the two units are
combined to find overall casualty probabilities Pj;jx(l). An example is given in

Table 3.5 as already mentioned in Section 3.3.1.

3.3.3 Mixed Fire in Heterogeneous Combat

Suppose that, of the blue units combined against a red unit, some employ directed
fire and others area fire. The approach proposed in Section 3.3.2 for combining
multiple area firing units can also be used for combining these mixed units. We
owe this to the equivalence of the combined casualty probabilities under the two
viewpoints, as explained at the end of Section 3.3.1. For example, if the first unit
employs directed fire, then Pj(la) = P(la casualties with i; firers) must be
calculated by Equation (3.7), otherwise by Equation (3.12). In other words, the fire
type affects only the individual probabilities in the convolution Pj;(la) Pix(Ig) but,

given these, the combined casualty probabilities Pj; j>(l) are the same.
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3.3.4 Salvo Treatment in Heterogeneous Combat

Let us assume that there are | blue units By,..., B, with my,..., m; combatants each,
and J red units Ry,..., R; with ny,..., n; combatants each. The state space is then
denoted by (t,iy,..., i1, Ji,..., jg) resulting in (M;+1)--(m;+1)(n;+1)---(ng+1) many

states. The initial condition is P(0, my,..., my, ny,..., Ny) = 1.

It is possible for a blue unit to divide its force among multiple red units. Let
XB1.R1,---,XB1,R) denote the allocation fractions for the first blue unit. These fractions
might be specified as part of the scenario. We know that Xg;gi+...+ Xgiry < 1

meaning that B, can reserve a certain fraction of its force.

Directed, SSKP=0.2

Area, SSKP=0.1, £&=0.16

Figure 3.4 Example heterogeneous combat situation

An example heterogeneous combat situation is illustrated in Figure 3.4. There are
two blue units, B; with 3 combatants and B, with 2 combatants, firing at a red unit
R with 3 combatants. B, employs area fire, and all remaining fires are directed. R
divides its force evenly between B; and B,. The state space notation is (t,ij, I, J)
and we have 48 states in each salvo. The allocations are Xg;r = 1.0, Xgor = 1.0,

XR’|31=0.5, and XR,BZZO.S.
In salvo t, red unit R with j combatants is subject to attrition due to blue units

allocated to R with fractions Xgj g,..., Xai,r- We have shown in the previous sections

how to find the probabilities of Aj casualties in R under the fire of [Xg g - I1] firers
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of By and [Xgyr - I2] firers of B,. However, the number of allocated firers given in
brackets should be integers. Without loss of generality, let us assume that [Xg; g - 1]
is not an integer. Let h= L XBIR * i;]and i'1= [ XBIR * i | Let W), = Xg1R - 1. h, and
W, = i’1 Xg1Rr - 11 be the interpolation weights. Then, the probability of R; having Aj
casualties under attack by B, is calculated as

PR (Aj| [Xerr - 11]) = Wi, RY(A)) + wy, PR(4)) (3.19)

1

Generalizing the above equation, we have

Pt it (A1) = PRt it (A [Xe1R - i1l,..., [Xeig - 01] ) =

W W R G A+ w e wy B (A]) (3.20)
In the example of Figure 3.4, R divides its j=3 firers evenly between B; and B,. Let
us consider the attrition in B;. We have } =10.5(3)] =1 and j =[0.5(3)1=2, and
w(= 0.5 = w). Since the probability of one casualty in B, is 0.450000 when =2,

and 0.300000 when j=1, P®'3(1)=(0.5)0.450000 + (0.5)0.300000 = 0.375000.
Similarly, P®%5(1)=(0.5)0.096250 + (0.5)0.050000 = 0.073125.

The state transition (t, iy,..., Iy, i,..., jo)— (t+1, i1-Ady,..., iy -Aly, Ji1-Aj1,....J3 -Ajy)
indicates that there are Ai, casualties in B;, Ai, casualties in B, and so on. The

corresponding state transition probability is

P((ti.K iy, K, Jy ) = (t+Li — ALK i = Al §—Aj LK §y = Afy ) =
P2 i, (AL PP (AR (AL R, (A))

B KLy

(3.21)

In our example, suppose an area firing combatant of B, has an effective radius of
r=40, and the region containing j=3 red targets has radius R=100. The casualty
probabilities for unit R are found by Equation (3.8) as P%(0)=0.952764,
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PR1(1)=0.046476, P®(2)=0.000756, P%,(3)=0.000004. When we combine two
such firers, the effect of B, alone yields PR2(0)=0.907759, PR2(1)=O.089282,
PR,(2)=0.002927, P?,(3)=0.000032 according to Equation (3.12). The effect of B,
individually with 3 firers is calculated by Equation (3.7) as PR3(0)=0.512000,
PR3(1)=0.416889, PR3(2)=0.069333, P?3(3)=0.001778. If we combine the effects of
B, and B, by Equation (3.18), the red casualty probabilities are PR3,2(0)=0.464773,
PR;.2(1)=0.436554, P*35(2)=0.094258, PR3 5(3)=0.004415.

Let us now consider the state transition (t,3,2,3)— (t+1,2,1,1), meaning that one B,

casualty, one B, casualty and two R casualties occur in salvo t. Recall that,

PB3(1)=0.375000, P®%(1)=0.073125, and P®;,(2)=0.094258. Hence,
P((t,3,2,3)— (t+1,2,1,1)) = PP5(1) P®%(1) PR;55(2) = 0.002585.

The state probabilities for the first salvo, which can be seen in Figure 3.5, are the
same as the transition probabilities from the initial state due to the initial condition
PO, my,..., m, nq,..., ny) = 1. State probabilities for subsequent salvos are

determined as

m—ip Ny —j;
P(t+1i,.K,j,)= >A ZP(t,il + ALK +AjJ)Pj?gK,jJ (AiDA PR . (Aly)

Aij=0  Aj;=0

(3.22)

Let us consider calculation of the state probability P(2,2,1,1) in our example. The
transition probabilities to this state are multiplied with respective state
probabilities of the first salvo to determine individual contributions. For example,
contribution of (1,3,2,3) to (2,2,1,1) is P(1,3,2,3) P((1,3,2,3)—> (2,2,1,1)) =
0.256145(0.002585) = 0.000662. When all such contributions are added, the state
probability P(2,2,1,1) = 0.012824 is found as shown in Figure 3.6. Expected
number and respective variances of number of survivors in blue units and red unit

for the first ten salvos are given in Table 3.6.
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Blue 1: i1=3

Blue 2

Blue 1: i,=2

Blue 2

Blue 1: i,=1

Blue 2

Blue 1: i,=0

Blue 2

Red
=3 =2 =1 =0
=2 0.256145 0.240593 0.051948 0.002433
i=1 0.020222 0.018994 0.004101 0.000192
i,=0 0.000173 0.000162 0.000035 0.000002
Red
=3 =2 =1 =0
i=2 0.161436 0.151634 0.032740 0.001534
i=1 0.012745 0.011971 0.002585 0.000121
i»=0 0.000109 0.000102 0.000022 0.000001
Red
=3 =2 =1 =0
=2 0.012915 0.012131 0.002619 0.000123
i=1 0.001020 0.000958 0.000207 0.000010
i,=0 0.000009 0.000008 0.000002 0.000000
Red
=3 =2 =1 =0
i=2 0.000000 0.000000 0.000000 0.000000
i=1 0.000000 0.000000 0.000000 0.000000
i»=0 0.000000 0.000000 0.000000 0.000000

Figure 3.5 State probabilities at the end of the first salvo
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Blue 1: i1=3

Blue 2

Blue 1: i,=2

Blue 2

Blue 1: i,=1

Blue 2

Blue 1: i,=0

Blue 2

Red
=3 =2 =1 =0
=2 0.065610 0.138426 0.106918 0.035692
i=1 0.010616 0.019933 0.013622 0.003864
i,=0 0.000530 0.000852 0.000492 0.000109
Red
=3 =2 =1 =0
i=2 0.093040 0.165145 0.101389 0.024036
i=1 0.015055 0.023675 0.012824 0.002586
i»=0 0.000751 0.001005 0.000459 0.000073
Red
=3 =2 =1 =0
=2 0.041705 0.058073 0.026066 0.003951
i=1 0.006748 0.008312 0.003282 0.000421
i,=0 0.000337 0.000352 0.000117 0.000012
Red
=3 =2 =1 =0
i=2 0.005473 0.005091 0.001369 0.000116
i=1 0.000886 0.000727 0.000167 0.000011
i»=0 0.000044 0.000031 0.000006 0.000000

Figure 3.6 State probabilities at the end of the second salvo
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Table 3.6 Results for the first ten salvos

Blue 1 Blue 2 Red
Salvo Expected Variance Expected Variance Expected Variance
0 3.000000 0.000000 2.000000 0.000000 3.000000 0.000000
1 2.565000 0.305775 1.925625 0.070093 2.361684 0.445876
2 2219444 0.553571 1.866931 0.125699 1.832337 0.762890
3 1.955257 0.763204 1.821557 0.168868 1.416341 0.924106
4 1.765855 0.922107 1.786745 0.202334 1.114085 0.954461
5 1.636314 1.037463 1.759650 0.228842 0.904862 0.923533
6 1.550316 1.120050 1.737932 0.250571 0.763215 0.876079
7 1.494209 1.178646 1.719898 0.269064 0.667601 0.830500
8 1.457937 1.219800 1.704404 0.285351 0.602324 0.791651
9 1.434574 1.248394 1.690701 0.300097 0.556753 0.759398
10 1.419532 1.268066 1.678305 0.313723 0.523950 0.732382

3.4 Extensions of DSM

Two major and two minor extensions are presented in this section. Major
extensions are concerned with noncombat loss and the engagement process for
handling units’ different rates of fire. They involve additional multiple single-
dimensional discrete-time processes linked to DSM. Minor extensions are small
changes in SSKPs to treat synergy effects, and shifts in states of military units that

are subject to reinforcements.

3.4.1 Noncombat Loss

There are two sources of attrition in combat, combat loss and noncombat loss. The
former is due to the opposing force’s fire; it is the result of the interaction between
two sides. The latter does not involve such an interaction. Noncombat loss occurs
due to reasons such as illness, accidents and desertions. Such factors cause an
additional decrease in the force level of each side. This decrease, however,

depends only on own force levels.
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Noncombat loss can also be handled in DSM by means of the binomial process.
We assume that noncombat loss probabilities (or rates), Qgi,..., Jry are specified
for all military units and kept constant for all salvos. If a military unit is not subject
to noncombat loss, its noncombat loss probability is zero. Single-dimensional

noncombat loss transition probabilities for blue unit B, are calculated as

I, + Al _ _
QBI((t,il+Ai1)+(t,il))=( _ Jqél"(l—qs,)" (3.23)

Al

The marginal probability distribution of B, after combat loss, Pg;(t,i;), i;=1,..., my,
can be determined from the joint state probabilities P(t, iy,..., iy, ji,..., Js). If there
is noncombat loss, the single-dimensional state probabilities for B; can be updated
as

Qs (Liy) = mill Py, (L.i +Ai1)(il ZiAilJ O’ (I_QBI )i] (3.24)

Ai;=0

Let Q(t, iy,..., iy, J1,..., js) be the joint state probabilities after noncombat loss at the

end of salvo t. Then,
Q(tain 9i| > jl’K > j.] )= QB, (tail)A QB, (t’il )QR1 (t’ jl)A QRJ ('[, jJ ) (3.25)

In order to incorporate noncombat loss in DSM, in the combat loss state
probability calculation given by Equation (3.22), the state probabilities of the
previous salvo, P(t, i} + Aiy,..., j; + Aj;), should be replaced with the probabilities

after noncombat loss, Q(t, i; + Aiy,..., j; + Aj;), except for the first salvo.

3.4.2 Engagement Process

An assumption of DSM so far is that all combatants of a military unit fire in every
salvo. Target detection time, weapon preparation time and rate of fire vary for
different weapon systems, making perfect synchronization impossible. If we
determine the salvo duration in terms of the most frequently firing weapon system,
we can define an engagement probability for slower systems. For example,

engagement probability would be 0.25 for a system that can fire once in every four
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salvos. Furthermore, command control problems and fatigue in weapon systems
may give rise to stochastic engagement even if technical capabilities permit to fire

in each salvo.

Engagement process can also be used to model combat in alternating volleys as
suggested by Helmbold (1968) rather than simultaneous salvos. This can be
achieved by setting one side’s engagement probability to zero, while setting the
other's to one. Other variations are also possible since engagement probabilities

can be different for different units.

Let egy,..., €ry be engagement probabilities of military units. If all combatants of a
military unit fire in every salvo, its engagement probability is one. Engagement
probabilities induce independent single-dimensional binomial processes as in
noncombat loss. However, combatants that do not fire stay in combat and are
subject to attrition. Hence, the engagement process affects all the targets although

the number of firers may decrease.

In plain DSM, R; with J; combatants is subject to attrition due to blue units

allocated to R; with the fractions XgiR,..., Xgir. Let us consider the interaction of
B; and R;. In plain DSM, only t= | XBIR * i;|and i’1= [ XBIR * i | blue combatants

are considered in calculating the combat loss of R;. With the engagement process,

one has to consider i’l,lxl,ll1 —1,...,1,0 with respective probabilities calculated from

the binomial engagement distribution.

The effect of the engagement process in our salvo calculations can be reflected in

Equation (3.20), which is modified as

[ I

Pifll(,i, (Aj1 ||:XBI,R1 ’i1]>K ’[XBI,RI -, ]) = ZL Z Pi]F,{f(,i,( Aj, ||:XBI,R1 (il - Vi, )],K )
Viz0  Vi=0
H H I i i,-Vi i i i, -Vi
|:XBI,R1(II —VII)] )(VIIIJ e;l(l—esl)l Vi, (VlllJ e;'(l_es,)' Vi

(3.26)
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The state probabilities for the first salvo are calculated using the combat loss
probabilities after engagement. As the battle moves on to the second salvo,
noncombat loss can also be applied. The reader may refer to the technical report by
Kandiller et al. (2002) for an example where both engagement process and

noncombat loss are considered.

3.4.3 Reinforcements

Jaiswal et al. (1997) modeled combat between two units under various rates of
continuous reinforcement. We consider discrete reinforcements that simply extend
dimension of the state space and incur a shift in the state probabilities. In our
example, suppose R, initially having j=3 combatants, is reinforced by two new

combatants at the end of salvo t. Then,

N« 3+2=5P( iy j+2) < P(t, i1, 02, j), and P(t, iy, iz, 1) = P(t, i1, i, 0) =0

3.4.4 Division and Combination Effects

Force division may yield a reduction in the attrition potentials whereas force
combination may result in an increase in the potential due to synergy. Let Ag
denote the fractional loss in attrition power of R when it divides its force between

two blue units as in our example. The SSKPs of R, pxrei and pxrp2, can be

decreased by Ar if the force division effect is to be observed. Let ka:g!Bl and
ka:g,Bz be the SSKPs after force division. Then,
ka;?,B, = (1 — g )pk:R,B, and PE?,Bz = (1 — g )pk:R,Bz (3.27)

Let ¢g; denote the fractional gain in attrition power of B; combatants when B; and

B, are combined against R. The SSKPs after force combination are
ka;gl,R =1- (1 - ¢B1 )(1 — Pys, r ) and ka;gz,R =1- (1 - ¢Bz )(1 — Pys, R ) (3.28)
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CHAPTER 4

DSM IMPLEMENTATION AND EXPERIMENTATION

Even though numeric solutions can be obtained by continuous time stochastic
models available in the literature, they require excessive computation time and can
handle very small force sizes most of the time. While we focus on the
implementation of the model developed by Kandiller et al. (2002), we intend to
handle larger force levels and a variety of weapon systems in combat simulation.
Significant features of the DSM, namely heterogeneity of forces, application of
directed, area and mixed fire, force allocation, noncombat loss and engagement

process are all included in our implementation.

The DSM code is written in C++, using MS Visual C++ 6.0 integrated
development environment. Data structures of the model are based on the dynamic
arrays, created by utilizing the pointer abilities provided by the C++ programming
language. The executable is a Windows application, however, with appropriate
modifications to the source code, it can be made operating system-independent.
Standard input, namely a simple DOS console entry through keyboard is employed
in the executable of the model. The salvo statistics, including mean and variance of
force levels, survival probabilities at the end of each salvo, and the computation
time statistics for the combat model are stored in output files. These statistics are

output to two separate files, one for force level statistics for each salvo, and the
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other for final force levels and CPU time results. The results are easily interpreted

by means of Excel sheets.

Recall that we also intend to estimate ARCs for Lanchester model, such that the
two models will yield similar figures for force levels. Therefore we also
implemented a code for SLM, which is more straightforward. The input, output

methods and executable format are the same as those used for DSM.

In the following sections, DSM and SLM implementation stages are described,

followed by the results of experimentation with these models.

4.1 DSM Implementation

DSM implementation is based on the following proposed design. Initially, SSKPs
are updated considering the force division and combination effects. Then,
engagement probabilities for synchronization of different weapon systems are
determined according to their firing rates. Salvo length and the desired combat
duration are needed to determine the total number of salvos. In every salvo, the
engagement process, the combat loss process, and the noncombat loss process are
applied in this respective order. If a unit is reinforced at the end of a salvo, a state
shift is made accordingly at the beginning of the next salvo. The salvo sequence is
terminated when either the total number of salvos is reached or the expected

number of survivors in any unit falls below a specified threshold value.

Our implementation is consistent with the above design, except for the
reinforcement state shift and threshold specification steps. These are excluded for
the sake of simplicity in input entry and output analysis, though they could easily
be incorporated in the code. Also, the total number of salvos is a direct input.

Following is a brief statement of the DSM algorithm.

S-0. Data input for the combat and the forces. These are:

e The number of different military units (I, J),
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Total number of salvos,

The initial number of combatants in each military unit (m;, i=1,...,1,
nj, j=1,....J),

The fire type of each unit (directed or area),

The SSKPs of units (P.giRj>-- -» PkRj,Bi)

Fatal area radius / total area radius (I/R) for units employing area
fire,

Engagement probabilities of units (eg,,..., €r;),

Noncombat loss probabilities of units (0g;,..., qrs), and

Allocation fractions of units (XgiRrj, XrjBi)-

A screenshot of input entry is given in Figure 4.1.

S-1.  Preparation (Prep.) for the salvo sequence. This involves:

S-2.  Salvo

Computation of the casualty probabilities for every possible state,
Application of the engagement process, attained by adjusting the
casualty probabilities according to the engagement probabilities of
units,

Creation of the matrix of transition probabilities from the initial
state,

Creation of the matrix of noncombat loss probabilities.

sequence, which continues until the total number of salvos is

reached. Each salvo includes:

Application of the combat loss processes using the matrix of
transition probabilities formed in S-1,

Application of the noncombat loss processes using the matrix of
noncombat loss probabilities formed in S-1,

File output of the salvo statistics, namely the survival probabilities,
expected number and variance of number of survivors for each

military unit.

S-3.  File output for final force levels and computation time statistics.

End {DSM}.
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Stage S-0 is straightforward, only appropriate data entry by keyboard input is
required. In stage S-1, the crucial calculations for combat salvo simulation are
completed. The casualty probability computations are made using Equations (3.7),
(3.12), (3.17) and (3.18), based on the fire types of military units in combat. Force
allocation effects on these probabilities are reflected through Equation (3.20).
Engagement process is applied utilizing Equation (3.26). The combat loss
transition probability and noncombat loss probability matrices are created via
Equations (3.21) and (3.23), respectively. S-2 is the salvo simulation stage.
Combat loss and noncombat loss processes are applied through Equations (3.22)
and (3.25). Marginal probabilities of surviving combatants for each military unit
are listed, as well as the expected value and variance of the number of surviving
combatants in the output file "salvos.txt". Stage S-3 ends the simulation by writing
the final force level, namely the last salvo statistics and CPU time statistics in file
"stats.txt". CPU time statistics include the time used in stage S-1 and individual
salvo play times elapsed in stage S-2. Sample file output for the input in Figure 4.1
are presented in Appendix A.

umber of units in blue force:2

umber of units in red force:l

Initial number of elements in unit blue 1

oncombat loss probability of uwnit blue 1

ngagement probability of unit bhlue 1:1

ire type of wunit blue 1 (1: arealexact p

Initial numbher of elements in unit bhlue %
9
P

5
a.681

laces unknown?, 2: directed :2
=4
oncombat loss probability of unit blue 2:8
ngagement probability of wnit hlue 2Z:8.
ire type of unit bhlue 2 {1: areatexact
Initial number of elements in unit red 1:
oncombat loss probability of wnit red 1:8
ngagement probability of wnit red 1:1
ire type of unit red 1 (1: arealexact places unknown?, 2: directed :2
rom blue 1 to red 1:.1
rom blue 2 to red 1:.15
rom blue 2 to red 1 fatal area radius <{in percentagelr:48
rom red 1 to blue 1:.15
rom red 1 to blue 2:.1
rom red 1 to blue 1 fire power allocation:.bh
rom red 1 to blue 2 fire power allocation:.bh
um of fire power allocations <(must be 1> =1
umber of salvos to be calculated:18

%aces unknown?>, 2: directed =1

Figure 4.1 An example of data input for DSM executable
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4.2 SLM Implementation

In addition to experimentation with DSM, we try to estimate ARCs used in SLM,
such that DSM for homogeneous combat and SLM will yield similar figures for
force levels throughout the combat. This is attempted through comparison of
expected force levels at the end of each DSM salvo with the respective force levels

obtained by SLM using estimated ARCs.

The comparison of these models is based on the following equivalence, where we
describe the case when the red unit employs directed fire against the blue unit. Let
X be a Bernoulli random variable indicating whether or not a single blue target is

killed by a single firer in a DSM salvo, i.e.

{l,ifkilled in one salvo, X Ber(Ppsy )»E(X) = Posu s

0, otherwise;

where ppsu is the SSKP of the red firer, namely pxrg. Suppose we divide a DSM
salvo into 1/At subintervals, each of length At. Let Y; be a Bernoulli random
variable indicating whether or not a blue target is killed by a red firer in

subinterval i, that is Y, : Ber(pg,, ). Here, psum corresponds to the ARC of the red

unit in subinterval i, which is taken constant throughout the combat. Then,

1/At
Y = ZYi has binomial distribution with parameters 1/At and ps.m. For small psim

and At, this distribution is approximated by Poisson distribution with parameter

A :pZ—LtM' Hence E(Y) :pZ—LtM' To make SLM and DSM comparable, we should

have E(Y)=E(X), therefore psy=At ppsmw. In implementing SLM, At is taken as
1/100 of the unit DSM salvo length. We have also tried the ratios 1/10, 1/1000 and
1/10000 for several px.rpg and px.sr combinations and concluded that SLM results
are fairly robust to the choice of At, as seen in an example presented in Table 4.1.
Therefore, the SLM force levels at the end of the lOOth, 200th, ... subintervals are

compared to the DSM salvo force levels utilizing the ratio 1/100.
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In the case where red unit employs area fire, the probabilities Ppsw and ps.m are

multiplied by &, the probability of the blue target being positioned in the fatal area.

Then, having E(X)=¢ ppsm and E(Y) =§Z%, the equality ps.v=At ppsu is valid

again.
Table 4.1 SLM results for the first ten salvos with different At/ Salvo length
ratios
Expected force levels for blue unit, Expected force levels for red unit,
m=35, per=0.1 n=4,pwre=0.3
At/ Salvo length
Salvo 0.1 0.01 0.001 0.0001 0.1 0.01 0.001 0.0001
1 3.863682 3.870002 3.870659 3.870724 | 3.552329  3.557223 3.557710 3.557758
2 2.873896  2.892712 2.894602 2.894791 | 3.213783  3.222476 3.223332 3.223417
3 2.089412  2.120963 2.124037 2.124344 | 2971899 2.982299 2.983319 2.983420
4 1.537657 1.572401 1.575782 1.576120 | 2.807584 2.817591 2.818575 2.818673
5 1.180506  1.210738 1.213711 1.214007 | 2.699380 2.707863 2.708703 2.708787
6 0.958918  0.982060 0.984365 0.984595 | 2.629150 2.635836 2.636503  2.636570
7 0.823323  0.839890 0.841559 0.841726 | 2.583754 2.588809 2.589316 2.589367
8 0.740099  0.751590 0.752758 0.752875 | 2.554372  2.558103 2.558479 2.558517
9 0.688432  0.696310 0.697117 0.697197 | 2.535281  2.537997 2.538272 2.538300
10 0.655882  0.661280 0.661835 0.661891 | 2.522819  2.524778 2.524977 2.524997

The implementation of SLM is straightforward compared to that of DSM. There is
not any preparation stage as in DSM, which simplifies the code and decreases the
computation time. The dimension of the state transition probability matrix is
dramatically smaller due to force homogeneity. Moreover, only the combat loss
process is implemented according to the model, which does not involve any

extensions such as noncombat loss or engagement processes of DSM.
For each subinterval of length At, the state transition probabilities P(t + At, i, ]) are

calculated using Equation (3.4), and the probabilities of possible states at the end

of each subinterval are summed up to get the marginal probabilities of surviving
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combatants for both military units. The expected value and variance of the number
of surviving combatants are evaluated at the end of every 100 subintervals, which

correspond to a DSM salvo.

A screenshot of input entry for the example in Table 4.1 is given in Figure 4.2. The
format of the salvo statistics file, "salvos.txt" is the same as of DSM output, the
final statistics output file, "stats.txt" differs slightly from the one for DSM, which
is presented in Appendix B.

Initial number of elements in blue wnit :5

ire type of hlue force (1: areadexact places unknown?, 2: directed> :2
Initial number of elements in red unit =4

ire type of red force <1: arealexact places wnknown?,. 2: directed> :2
SSKP of blue force against the red force <p_k_bl>:.1
SSKPF of ved force against the bhlue force (p_k_aX:.3
Mumber of salvo time to be evaluated (number d<t) time steps ~» 188> :1@

Figure 4.2 An example of data input for SLM executable

4.3 Experimentation

The DSM simulation runs for the purpose of comparison with SLM are based on
homogeneous combats of length ten salvos. Both blue and red units employ
directed fire or area fire against each other in the experimental runs. The
experimental conditions are summarized in Table 4.2. In directed fire runs, for
equal initial force levels m =n =5, 10, 20, three SSKP combinations, namely py.gr
=prB = 0.1; Ppker = Prpe = 0.3; and pr.er = 0.1, prg = 0.3, are used. In different
initial force level cases, which are m =5, n =10, and m = 10, h = 20, SSKP values
are PceRr = PcrB = 0.1; PR = PrBe = 0.3; Prar = 0.1, pkre = 0.3; and pxer = 0.3,
Prpg = 0.1. In addition, runs are made for the cases where there are two or three

military units on both sides for computation time comparisons.
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In area fire runs, the same force size and SSKP combinations are tried as in
directed fire. These runs are made with three & wvalues: 0.09, 0.25, 0.49,
respectively corresponding to fatal area radius percentages (I/Ra) of 30%, 50% and

70%. The same & values are used for both sides.

Table 4.2 Experimental Conditions for DSM Runs

Homogeneous Heterogeneous
Blue Red Blue Red
M Pwer N Perp | M m, ms N ) N3
5 0.1 5 0.1 5 5 5 5
5 0.1 5 0.3 10 10 10 10
5 0.3 5 0.3 3 3 3 3 3 3

10 0.1 10 0.1
10 0.1 10 0.3 5 5 5 5 5 5
10 0.3 10 0.3
20 0.1 20 0.1
20 0.1 20 0.3
20 0.3 20 0.3
5 0.1 10 0.1

0.1 10 0.3

0.3 10 0.1
5 0.3 10 0.3
10 0.1 20 0.1
10 0.1 20 0.3
10 0.3 20 0.1
10 0.3 20 0.3

Implementations of both model designs are tested on a Pentium III 1GHz PC with
256MB RAM. Tables 4.3 and 4.4 list the CPU times in seconds, respectively for
directed and area fire. The upper halves of the tables compare SLM and DSM for
homogeneous combat. DSM is executed with and without major extensions
(engagement + noncombat loss) for both heterogeneous and homogeneous combat
cases. As it was hinted previously, the “Prep.” columns give the time spent for
preparation stage S-1 of DSM implementation. The “Salvo” column gives the

average time per salvo spent in stage S-2 of DSM execution.
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In homogeneous combat, CPU times become significant for initial force levels m,
n > 10, reaching about 30 minutes for m=n=20, for directed fire. This duration is
essentially spent for preparation stage S-1, using the CPU resource heavily. The
preparation time differences between directed and area fire cases are significant for
larger force sizes in homogeneous combat. This is due to different computations
for individual fire effects. In the heterogeneous combat, however, since the same
fire combination method is used, the computation times are similar. In this
occasion, the time consuming task is finding the state probabilities for each salvo,
namely stage S-2. As the state space dimension increases (see for example the last
rows of Tables 4.3 and 4.4), time per salvo reaches a maximum of about 80
minutes. Salvo cycle consumes mostly the RAM of the computer rather than the
CPU, as a result of memory allocation for the state probability matrices. In the
case represented by the last row of Table 4.3, the execution of the program
consumes almost all of the 256 MB memory. Homogeneous combat times are in
favor of SLM, as clearly seen in the last columns of Tables 4.3 and 4.4, which are

significantly shorter than DSM times especially for large force level cases.

Table 4.3 CPU Time statistics for DSM and SLM for Directed Fire

Size DSM CPU times (seconds) SLM
Scenario of the Engagement+ CPU
Combat+
Blue Red State Combat Loss Noncombat Times
Loss

m  m m; M n, n; Space | Prep. Salvo | Prep. Salvo | (seconds)
5 36 0.0 0.0 0.0 0.0 0.0
10 66 0.0 0.0 0.0 0.0 0.0
10 10 121 0.6 0.0 0.6 0.0 0.1
10 20 231 40.3 0.0 41.6 0.0 0.2
20 20 441 | 2001.6 0.0 | 2077.7 0.0 0.6
5 5 5 5 1296 0.6 0.1 0.9 0.2 -
10 10 10 10 14641 15.0 12.6 30.5 7933 -
3 3 3 3 3 3 4096 1.8 0.9 2.6 1.8 -
4 4 4 4 4 4 15625 17.4 13.6 22.2 32.7 -
5 5 5 5 5 5 46656 | 194.2 23783 | 295.0 5067.8 -
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Table 4.4 CPU Time statistics for DSM and SLM for Area Fire

Size DSM CPU times (seconds) SLM
Scenario of the Engagement+ CPU
Combat+
Blue Red State Combat Loss Noncombat Times
Loss

m_ m m;  n n, n; Space | Prep. Salvo | Prep. Salvo | (seconds)
5 5 36 0.0 0.0 0.0 0.0 0.0
10 66 0.0 0.0 0.0 0.0 0.0
10 10 121 0.6 0.0 0.6 0.0 0.1
10 20 231 1.1 0.0 1.1 0.0 0.1
20 20 441 44 0.0 45 0.0 0.4
5 5 5 5 1296 0.7 0.1 0.7 0.2 -
10 10 10 10 14641 14.9 12.8 29.8 6343 -
3 3 3 3 3 3 4096 1.8 0.8 2.3 1.7 -
4 4 4 4 4 4 15625 16.4 13.8 20.4 30.8 -
5 5 5 5 5 5 46656 | 198.6 23947 | 319.1 5044.6 -

Expected force levels found by DSM and SLM, where both sides use directed fire,
are plotted in Figure 4.3 for four representative scenarios. When both initial force
levels and SSKPs are the same for two sides and SSKPs are small as in Figure 4.3
(a), then DSM and SLM produce very close results. This is expected since Poisson
is the limiting distribution of binomial distribution when probability of success
(SSKP) in a single trial (salvo) is small. However, when SSKPs are larger as in
Figure 4.3 (b), DSM reaches steady state later than SLM, resulting in lower
expected force levels. When one side (red) is stronger than the other (blue), either
because the red unit’s SSKP or its initial force level is higher than that of the blue
unit as in Figure 4.3 (c) or 4.3 (d), then red kills blue targets faster with SLM than
with DSM. Overall, DSM results in “closer combat”, that is to say the difference
between expected force levels of the two sides is smaller in DSM compared to that

in SLM.
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Figure 4.3 Expected force levels with DSM and SLM when directed fire is employed

(a) m=n=10, pPy.gr= Pk:r,c=0.1, (b) M=n=10, py.z r= Px:r,6=0.3, (¢) M=n=20, py.zr=0.1, px.r g=0.3, (d) M=10, N=20, Py.z g= Pk:r,c=0.3.



When both sides employ area fire, we observed the force levels for three different
& values (0.09, 0.25, and 0.49) as stated in experimental conditions. As a common
observation for all these area fire cases, DSM underestimates the force levels of
both sides, compared to SLM. Expected force levels found by DSM and SLM, for
two different scenarios, are plotted in Figure 4.4. The differences in force levels of
the two models increase, as the £ probabilities get larger. This situation is shown in
force level plots of Figure 4.4. When one side is stronger than the other, this
becomes very significant in the force level differences of the strong side (Figure
4.4 (d) and 4.4 (f)). The nature of DSM area fire allows a large attrition rate in the
first salvo for both sides. Besides, the assumption of SLM, which allows just one
casualty in a subinterval, apparently underestimates the casualty rate of the strong
side. Hence, the difference maintained in the first salvo by forcing the weaker side

to absorbing state does not diminish, preserving itself until the end of the combat.

In brief, DSM underestimates the force level of the stronger side and overestimates
that of the weaker side compared to SLM, in directed fire. It usually
underestimates each side’s force levels in area fire, even when all three
parameters, initial force level, SSKP, and & values of one side is larger than the
other’s. The execution time of SLM is significantly shorter due to the simplicity of
the model, therefore the use of SLM in homogeneous combats with relatively
larger initial force sizes, can be useful for risk analyses in operational applications.
DSM on the other hand, implemented with its extensions to simulate the combat
more precisely, handles satisfactorily larger levels compared to other stochastic
models in the literature. Execution times grow prominently as the force sizes and
weapon system types increase, but with the use of more optimized code and high
configuration hardware, the model can be embedded in tactical level military

planning applications.
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Figure 4.4 Expected force levels with DSM and SLM when area fire is employed

(a) m=n=10, Px.r= Px:r,e=0.1, (b) M=n=10, pPy.z = Px:r,c=0.3, (¢) Blue force levels for m=n=20, py.z g=0.1, P.r =0.3, (d) Red force levels for
the same conditions in (c).
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Figure 4.4 (continued) Expected force levels with DSM and SLM when area fire is employed

(e) Blue force levels for m=10, n=20, px.s k= Pk.r,5=0.3, (f) Red force levels for the same conditions in (e).



The plots for 95% confidence intervals around the DSM expected values at the end
of first 20 salvos, for initial conditions m = n = 10, pxgr = 0.1, pkre = 0.3 are
given in Figure 4.5. In Figures 4.5 (a) and (b) both sides employ directed fire, and
in (c) and (d) both sides employ area fire with &= 0.25. The negative values for the
lower bound of blue force levels are included for demonstrating the decrease in the
variance. These kinds of plots allow conducting risk analyses for various combat
scenarios. As the salvo number increases, the rate of change in the expected

number of combatants, and the variance decrease indicating convergence.
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Figure 4.5 Expected force levels and 95% confidence interval limits with DSM,

(a) and (b) Blue and red when directed fire is employed, m=n=10, py.z g=0.1,
Pk:r,6=0.3
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with DSM,

(c) and (d) Blue and red when area fire is employed with &= 0.25, m=n=10,
Pw:e,r=0.1, Pk:r,8=0.3

60



CHAPTER 5

AMETHOD FOR ESTIMATING ATTRITION RATE
COEFFICIENTS

In this chapter, we describe our methodology for estimating ARCs used in LM for
red and blue units, namely a and b, respectively. Our motivation is that, if we
succeed in finding good estimators by running DSM off-line, they can be used to
form a parameter look-up library to quickly simulate combat by LM’s difference
equations. Our method is based on least squares estimation using the data for DSM
force levels at the end of each salvo. Namely, we try to find estimators for the
ARC:s such that the mean squared errors (MSEs) in estimators of both sides are
minimized, which is equivalent to minimizing sum of squared errors (SSEs). The

method is characterized by the following equation.

SSE(a,b) = Z(E[B B) + i(E[Rt R) .

t=1

where E[B;] and E[R;] denote the expected force levels for blue and red forces at
the end of t" DSM salvo, and I§t , Iﬁt are the estimated force levels as a function of

a and b. We want to choose a and b such that force levels predicted by LM using

these coefficients will be as close to DSM expected values as possible.

Recall the systems of difference equations in LM for directed and area fire:
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Directed fire: Area fire:

blue >red R, =R -b blue >red R, =R -bBR

red > blue B, =B -aR, red > blue B, =B -aRB,

In the SSE formula, we use expected force levels from DSM in finding B, and R,

values since we want LM predictions to be close to DSM expectations. That is,

when both forces apply directed fire, the difference equation for estimated force
level, I.3>t = Iét+1 +a|'\3t, becomes I_5>t = E[Bt+1]+aE[Rt]. Our estimate for FAQt is

similarly found. Substituting these in the SSE formula yields:
T-1

SSE(a.b) =Y | (E[B]-aE[R]-E[B.]) +(E[R]-bE[B]-E[R.]) |-
t=0

To minimize SSE(a, b), differentiation with respect to a and b yields:

S 25 EIR(E[B]-aE[R]-E[8,]). md
S efn)(e[R]-be[a]-E[R.)

The Hessian becomes:

V2SSE(a,b)=| *° ,

0 23 E[E]

t=0

which is positive semi-definite indicating convexity. Therefore, the least squares

estimators for a and b become:
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OSSE o

~ =0 =-22E[R](E[B]-aE[R]-E[B..])=0
E[Rt](E[Bt]_E[Bm])

4= — , and

E[R]

t=0

OSSE =

— =0 =-2>E[B](E[R]-bE[B]-E[R,,])=0
E[B](E[R]- E[Ra)
ZE[B]

When blue force uses directed fire and red force applies area fire, the SSE(a, b)

becomes

SSE(a,b)=§[(E[Bt]—aE[RT]E[Bt]—E[BM])Z+(E[Rt]—bE[Bt]—E[Rt+l])2} .

Differentiation with respect to a and b yields:

asaiE=—2§E[RJE[Bt](E[Bt]—aE[RT]E[Bt]—E[Bm])’and
S ela)(E[R]-bE[R]-E[R..)

t=0
The Hessian is:

T-1

2 ( [R]E[ B]) 0
V?SSE(a,b)=| "
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which is again positive semi-definite. Therefore, the least squares estimators for a

and b are:
SE_o oS elRe[a] (e8] R]E[B]-E[5.) <0
A_fz‘;E[RT]E[BtKE[Bt]—E[BMD )
S(elRlels)
BE o ~aSels)(E[R]bE[a]-E[R.)-

E[BJ(E[R]- E[Rm])
ZE[B]

—b =120

Finally, when both forces use area fire, the Hessian is

2 ( [R]E] B]) 0
V2SSE(a,b)=| *°

T-1

0 2> (E[R]E[B))

t=0

which is clearly positive semi-definite. Least squares estimators for a and b

become:
~ SERIE[B(ER]-ER) dB_:;E[B]E[Rt](E[RI] “[R.))
2 (ERIE) > (E[BJER]

The results are summarized in Table 5.1. Note that, the estimator for the ARC of a
unit depends only on the fire type of that unit. Namely, the estimator for a does not

change with the fire type of the blue unit, but only with the fire type of red unit.
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Table 5.1 Least squares estimators for ARCs

Fire Type of Unit
Directed Area

ARC L SE[RI(E[BI-E[B.]) | XE[RIE[B(E[B]-E[B.])
of the | 4 =10 — 4 = =0 —

Red ERT (E[RIEB])

Unit = =0

ARC | S E[BJ(E[R]-E[R.]) | - SE[BIE[R](E[R]-E[R.])
of the | ph = 1=0 — = —

Blue > E[B] (E[BJE[R])

Unit 0 =0

For estimation of the LM attrition rate coefficients, both fire types are considered.

Homogeneous DSM combats of length ten salvos, where blue and red units

employ directed-directed, directed-area and area-area fire against each other, are

run with initial parameters that are summarized in Table 5.2.Directed-area

corresponds to the case where blue unit employs directed fire, and red unit area

fire against the other side. The probability & in all area fire cases is taken to be

0.25, corresponding to a fatal area radius percentage 50%. Using the Cartesian

product of the set of initial force levels {5, 10, 20} and the set of SSKPs {0.1,

0.3}, sufficient scenario data are produced for estimating the ARCs @, b in LM.

Table 5.2 Initial parameter sets for DSM runs used in LM ARC estimation

Blue

Red

m (Bo)

Pk:s.r

n

(Ro)

Pk:rB

(5, 10, 20} {0.1, 0.3}

(5, 10, 20}

{0.1,0.3}

65



We run LM using the estimated ARCs and compare DSM and LM force levels.
Since our method is based on minimizing the mean squared errors in estimating
the ARCs a and b, the performance measure for a successful estimation is
obtaining small MSE values. Looking at the results given in Figures 5.1 - 5.3, we
observe that the MSE values vary depending on the fire type. Area-area type
combats give the closest results, while directed-directed produce the worst results

on the average.

In area-area fire ARC estimations, the average MSE between DSM and LM force
level values is 0.0130, and the largest MSE is 0.1095 in 20-on-20 combat, where
both units have SSKPs equal to 0.3. In directed-area case, average MSE is 1.4276,
while 20-on-5 combat with blue and red units having 0.3 SSKPs produce a
maximum MSE of 28.9991. Directed-directed case gives an average of 4.1489 for
MSE, producing the largest difference, namely 28.4425, in the 10-on-20 or 20-on-
10 combats, where both units’ SSKP is 0.3.

A second observation concerning the MSE differences is the SSKP effect. When
both units employ the same type of fire, namely in directed-directed and area-area
cases, an increase in SSKP values boosts MSEs as well. The same applies for
directed-area combat, but due to the asymmetry in fire type, the SSKP matchings
0.1-0.3 and 0.3-0.1 differ. Explicitly, the stronger in SSKP value is the side
employing area fire, the closer the estimation results, and vice versa. As an
example for these remarks, recall that the worst MSE value of all experimental
runs is obtained in the case 20-on-5, directed-area combat with both SSKPs equal

to 0.3.

For each fire type combination, estimated LM force levels versus expected DSM
force levels for the blue unit are plotted in Figures 5.4 and 5.5. The almost perfect
fit in area-area case is mainly due to replacement of the terms B; and R; with the
product BR; in ARC formulas in the case of area fire. More knowledge of both
units’ DSM salvo force levels give better estimators for LM ARCs to be used in

the systems of difference equations.
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L9

directed - directed

a b MSE - Blue MISE - Red
0.1 =01
Ro Ro Ro Ro
By &5 10 20 By 5 10 20 By &5 10 20 By 5 10 20
5 0.0895|0.0572(0.0265 5 0.0895|0.0570(0.0984 5 0.0027| 05135 27958 5 0.0027] 0.1401( 0.8865
10 0.0970]0.0911(0.0584 10 0.0572|0.0811(0.0966 10 0.1401| 0.0012| 1.9366 10 0.5135| 0.0012( 0.5003
20 0.0954 | 0.0966(0.0912 20 0.0265] 0.05840.0912 20 0.8866| 0.5003] 0.0005 20 2.79558| 1.8366[ 0.0005
0.1=03
Ro Ro Ro Ro
By &5 10 20 By 5 10 20 By &5 10 20 By 5 10 20
5 0.1352| 0.0557 [ 0.0264 5 0.0944|0.0570(0.0983 5 1.2219) 3.8584| 52621 5 0.3475] 1.2399( 1.8199
10 0.2653|0.1371|0.0568 10 0.0730]0.09340.0964 10 0.1762| 4.6050(14.8139 10 0.0749] 1.2059( 4.6780
20 0.2860]0.2661{0.1375 20 0.0311]0.0757 | 0.0925 20 B.0816| 0.3734|17.7275 20 23057| 0.1834[ 4.4937
0.3 =01
Ro Ro Ro Ro
By &5 10 20 By 5 10 20 By &5 10 20 By 5 10 20
5 0.0944|0.0730{0.0311 5 0.1352|0.2853(0.2880 5 0.3475| 0.0749| 23087 5 1.2218] 01782 B.0916
10 0.0970|0.0934(0.0757 10 0.0567 | 0.1371|0.2661 10 1.2399) 1.2058| 01534 10 3.8584| 4.6050( 0.3734
20 0.0953| 0.0964 [ 0.0925 20 0.0264 | 0.05658(0.1375 20 1.6199) 46780] 4.45937 20 5.2621]14.8139[17.7278
03=03
Ro Ro Ro Ro
By &5 10 20 By 5 10 20 By &5 10 20 By 5 10 20
5 0.2146|0.0739(0.0294 5 0.2146|0.2734[0.2851 5 0.14458| 51649 51332 5 0.1448] 7.7844(14.7802
10 0.2734|0.2226(0.0740 10 0.0739]|0.2226(0.2694 10 7.7644| 0.Z24B9|12.04587 10 3.1649| 0.2459(28.4425
20 0.2851]0.26594 | 0.2264 20 0.0254|0.0740{0.2264 20 14.7002| 28.4425| 0.3766 20 5.1332|12.0457 | 0.3766

Figure 5.1 Estimated ARC and Corresponding MSE Values for Directed-Directed Combat
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directed - area

a b MSE - Biue HISE - Red
0.1 =041
Ry Ry Ry Ry
By 5 10 20 By 5 10 20 By 5 10 20 By 5 10 20
5 0.0235|0.0224|0.0199 5 0.0900|0.0972(0.0985 5 0.0011| 0.0001| 0.0000 5 0.0022| 0.0000|0.0000
10 0.0237|0.0:24|0.0199 10 [0.0663 | 0.0935) 0.05966 10 0.145958| 0.0011| 0.0002 10 0.1954| 0.0001|0.0001
20 0.0233]0.0225|0.0200 20 [0.0351)0.05814]0.0931 20 B.2787| 0.0507| 0.0031 20 1.8427] 0.03%0]0.0013
0.1 =03
Ro Ro Ro Ro
By &5 10 20 By 5 10 20 By &5 10 20 By 5 10 20
5 0.0545]0.0543|0.0355 5 0.05944|0.0959(0.0952 5 0.0023| 0.0000| 0.0000 5 0.0000| 0.0000|0.0000
10 0.0544]0.0544|0.0355 10 [0.0845|0.0933) 0.0%50 10 0.0354| 0.0007| 0.0002 10 0.0040| 0.0002|0.0000
20 0.0650]0.0545 | 0.0356 20 [0.0530)0.0867]0.0919 20 1.6260) 0.0125| 0.0032 20 0.2286| 0.0024|0.0001
0.3 =041
R Ra Ra R
By 5 10 20 By 5 10 20 By 5 10 20 By 5 10 20
5 0.0235] 0.0:23| 0.0200 5 0.1403|0.2669 | 0.2564 5 0.2474] 0.0032] 0.0001 & 1.0530] 0.0035|0.0005
10 0.0239]0.0225|0.0201 10 [0.0673|0.1575) 0.2705 10 3.0723| 0.3555| 0.0016 10 3.2808| 1.0200|0.0043
20 0.0239]0.0225|0.0201 20 [0.0326|0.0212]0.2391 20 19.6840) 13.5354| 0.0225 20 4.85400] §.2575|0.0305
0.3 =03
Ry Ry Ry Ry
By &5 10 20 By 5 10 20 By &5 10 20 By 5 10 20
5 0.0542|0.0545|0.0355 5 0.2129|0.2732| 0.25841 5 0.0701| 0.0005| 0.0001 5 0.0534| 0.0003|0.0000
10 0.0651]0.0547 | 0.0396 10 [01174|0.2447) 0.2665 10 24726 0.0111| 0.0017 10 1.1296| 0.0037|0.0005
20 0.0650]0.0547 | 0.0356 20 [0.0544)0.1862]0.2370 20 |28.9991 0.0931) 0.0229 20 3.0370] 0.43596(0.0074

Figure 5.2 Estimated ARC and Corresponding MSE Values for Directed-Area Combat




area - area

a b MSE - Blue MSE - Red
0.1 =01
Ry Ry Ry Ry
By o 10 20 By 5 10 20 By 5 10 20 By 5 1o 20

& 0.0236) 0.0224 | 0.0200 =) 0.0236] 0.0237 | 0.0239 5 0.0003] 0.0005) 0.0002 <) 0.0003) 0.0008| 0.0010

1 0.0237) 0.0225 [ 0.0201 10 [0.0224|0.0225) 0.0226 10 |0.0008)0.0017 | 0.0029 10 | 0.0005(0.0017]0.0035

20 0.0235) 0.0226 | 0.0202 20 |0.0200]0.0201]0.0202 20 |0.0010]0.00535) 0.0316 20 |0.0002)0.0029(0.0316

0.1x03

By o 10 20 By 5 10 20 By 5 10 20 By 5 1o 20

5 0.0645) 0.0545 [ 0.0396 o 0.0237) 0.0239 | 0.0235 5 0.0017) 0.0002 | 0.0003 o 0.0003) 0.0002[0.0002

10 0.0548) 0.0547 [ 0.0356 10 |0.0224|0.0225) 0.0224 10 |0.0132]0.0040)| 0.0047 10 |0.001&[{0.0010]0.0019

20 0.0645) 0.0545 | 0.0397 20 |0.0201]0.0201]0.0159 20 |0.0506]0.04590)0.0641 20 |0.00Z7)0.0085(0.0112
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0.3 =01

By = 10 20 By & 10 20 By & 10 20 By 5 10 20

& 0.02357)0.0224 [0.0201 = 0.0645) 0.0546 | 0.0549 5 0.0003) 0.0016 | 0.0027 = 0.0017)0.0132[0.0505

1 0.0235) 0.0:225 [ 0.0201 10 |0.0545|0.0547 | 0.0545 10 |0.0002)0.0010) 0.0065 10 | 0.0002[0.0040]0.0450

20 0.02358) 0.0224 [ 0.0199 20 |0.03%96|0.0395]0.0357 20 |0.0002|0.0019)0.0112 20 |0.0003) 0.0047 [ 0.0641

0.3 =03

R Ry Ro Ry

By o 10 20 By 5 10 20 By 5 10 20 By 5 1o 20

5 0.0643) 0.0546 [ 0.0397 o 0.0543) 0.0649 | 0.0647 5 0.0102) 0.0033 | 0.0023 o 0.0102)0.0113[0.0114

10 0.0543) 0.0546(0.0357 10 |0.0545|0.0546)| 0.0543 10 |0.0113]0.0196)| 0.0262 10 |0.0033[0.0196]0.0325

20 0.0647) 0.0543(0.0395 20 [0.0337|0.0397]0.0355 20 [0.0114]0.0325) 0.1095 20 |0.0023) 0.0262(0.1095

Figure 5.3 Estimated ARC and Corresponding MSE Values for Area-Area Combat
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Figure 5.4 Blue unit force levels with DSM and LM for directed-directed fire

(a) m=20, n=10, py.zr= Px.r,s=0.1; LM ARCs, a=0.0966, b=0.0584,

(b) Mm=20, N=10, s = Prre=0.3; LM ARCs, a=0.2694, b=0.0740.
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Figure 5.5 Blue unit force levels with DSM and LM for directed-area and area-area fires

(a) Directed-area fire with m=20, n=5, py.g g=0.1, px.rs=0.3; LM ARCs, a=0.0650, b=0.0590, (b) Directed-area fire with m=20, n=5, p.gr=
Pk:r.e=0.3; LM ARCs, a=0. 0650, b=0.0544, (c) Area-area fire with m=20, n=10, py.s = Px:rs=0.1, £= 0.25; LM ARCs, a=0.0226, b=0.0201,

(d) Area-area fire with m=20, n=10, py.s g= Px.r s=0.3, £= 0.25; LM ARCs, a=0. 0543, b=0.0397.



CHAPTER 6

CONCLUSION

In this thesis, we present the implementation and experimental analysis of a
methodology (DSM) developed for modeling and analyzing tactical level land
combat. DSM models heterogeneous land combat as a discrete-time stochastic
process based on SSKPs to generate information for weapon and ammunition
planning. Both directed fire and area fire are included in the model, and division
and combination of military units are allowed. DSM integrates stochastic
engagement, combat loss, and noncombat loss processes for calculating casualties
in each salvo. Discrete reinforcements and adjustment of SSKPs to reflect division

and combination effects are also possible.

DSM is implemented in C++, using MS Visual C++ 6.0 integrated development
environment, utilizing the pointer abilities provided by the C++ programming
language. The salvo statistics, including mean and variance of force levels,
survival probabilities at the end of each salvo, and the computation time statistics
for the combat model are stored in output files. In an attempt to estimate ARCs for
Lanchester model, a code for SLM, which is based on the Poisson process, is also
implemented. The input, output methods and executable format are the same as

those used for DSM.
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The simulation runs for the purpose of comparing DSM with SLM are based on
homogeneous combats of ten salvos. Compared to SLM, DSM underestimates the
force level of the stronger side, and overestimates the force level of the weaker
side, resulting in closer combat. The execution time of SLM is significantly shorter
due to the simplicity of the model, therefore the use of SLM in homogeneous
combats with relatively larger initial force sizes, can be useful for risk analyses in
operational applications. DSM on the other hand, implemented for heterogeneous
combat with its extensions to simulate the combat more precisely, handles
satisfactorily larger levels compared to other similar stochastic models in the
literature. Execution times grow prominently as the force sizes and weapon system
types increase, but with the use of more optimized code and state of the art
configuration hardware, the model can be embedded in tactical level military

planning applications.

In addition to experimentation with DSM, we estimate ARCs used in LM and
SLM, such that DSM and LM will yield similar figures for force levels throughout
the combat. This is attempted through comparison of force levels at the end of
each DSM salvo with the respective force levels obtained by LM using estimated
ARGC:s. The results for area fire are rather satisfactory in the sense that both models
produce similar curves. The differences in force levels grow larger as SSKP values
increase. This is expected since Poisson is the limiting distribution of binomial
distribution when probability of success, here SSKP, in a single salvo is small.
This is more apparent in area fire, where the attrition does not only depend on the
firer’s force level, but also on the target’s force level distributed uniformly over
the battlefield. The inclusion of fatal area probability values makes a slight
modification of the SSKPs. The large differences are mainly due to the nature of
DSM area fire and SLM area fire. The latter allows just one casualty in every

small subinterval as in SLM directed fire case.

We identify the following possible further research directions. DSM should be
applied for a real combat scenario to investigate the representation power of the

model. Data gathered from military exercises or higher-resolution combat
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simulations can be used to compare DSM, SLM and other models, and for

validation purposes.

As opposed to the assumptions of the model, SSKPs do not remain constant
throughout the combat in real-life conditions. To reflect combatant skills, morale,
or environmental conditions such as weather or terrain effects, time-varying and

force-level dependent SSKPs may be considered.

It may be possible to formulate DSM as a Markov chain, and calculate results for
any salvo directly by applying matrix geometric analysis to the special structure of

the transition matrix.

Force aggregation methodologies in order to speed up DSM by reducing the
dimensions could be developed. For instance, one side is kept heterogeneous and
the other side is aggregated into a single homogeneous unit. Then, the salvo results
are combined into heterogeneous combat state probability matrix. Another
possible schema for approximated DSM is to discard the states having negligible
marginal probabilities and consider mainly the states around the expected values

by redistributing marginal probabilities of the discarded states.

Another topic is to develop a methodology to integrate LM with DSM, to model
combat situations involving both military units with small number of combatants
like artillery or tank, and military units with large number of combatants like
infantry. Attrition rate coefficients required for modeling large scale combat
problems with LM can be estimated with the developed procedures from DSM

results, and an approximate LM combat can be run.
Finally, DSM can be used for risk analysis and estimation of munition

requirements if different weapon systems are to be synchronized by means of the

engagement process, and munition-dependent SSKPs are utilized.
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FILE OUTPUT EXAMPLE FOR DSM SALVO STATISTICS:

SALVO 1

BLUE 1

P (0 elements)
P (1 elements)
P (2 elements)
P (3 elements)
P (4 elements)
P (5 elements)
Sum

Expected
Variance

BLUE 2

P (0 elements)
P (1 elements)
P (2 elements)
P (3 elements)
P (4 elements)
Sum

Expected
Variance

RED 1

P (0 elements)
P (1 elements)
P (2 elements)
P (3 elements)
P (4 elements)
P (5 elements)
P (6 elements)
P (7 elements)
Sum

Expected
Variance
SALVO 2

BLUE 1

P (0 elements)
P (1 elements)
P (2 elements)

=0.0000009261
=0.0001425110
=0.0057831838
=0.0782617719
=0.3755868501
=0.5402247571
=1.0000000000

=4.4499653797
=0.4404478397

=0.0000046876
=0.0008906250
=10.0296601562
=0.2768945312
=0.6925500000
=1.0000000000

=3.6610945312
=0.2887688645

=0.0000009041
=0.0000427863
=0.0008485032
=0.0091150767
=0.0570846703
=0.2075260773
=0.4034875638
=0.3218944183
=1.0000000000

=5.9692404014
=0.8535269717

=0.0003820268
=0.0069025682
=0.0535259927

APPENDIX A1

"SALVOS.TXT"
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P (3 elements)
P (4 elements)
P (5 elements)
Sum

Expected
Variance

BLUE 2

P (0 elements)
P (1 elements)
P (2 elements)
P (3 elements)
P (4 elements)
Sum

Expected
Variance

RED 1

P (0 elements)
P (1 elements)
P (2 elements)
P (3 elements)
P (4 elements)
P (5 elements)
P (6 elements)
P (7 elements)
Sum

Expected
Variance
SALVO 3

BLUE 1

P (0 elements)
P (1 elements)
P (2 elements)
P (3 elements)
P (4 elements)
P (5 elements)
Sum

Expected

=0.2103248393
=0.4111043546
=0.3177602184
=1.0000000000

=3.9781475822
=0.8099470418

=0.0007597823
=0.0138186550
=0.1054097232
=0.3733430162
=0.5066688233
=1.0000000000

=3.3713424432
=0.5362959972

=0.0001945426
=0.0026787721
=0.0181805100
=0.0742235299
=0.1919412076
=0.3099163566
=0.2865861748
=0.1162789064
=1.0000000000

=5.1125263887
=1.4392234491

=0.0046176907
=0.0307856742
=0.1200774874
=0.2793388001
=0.3625381571
=0.2026421905
=1.0000000000

=3.5723206299



Variance

BLUE 2

P (0 elements)
P (1 elements)
P (2 elements)
P (3 elements)
P (4 elements)
Sum

Expected
Variance

RED 1

P (0 elements)
P (1 elements)
P (2 elements)
P (3 elements)
P (4 elements)
P (5 elements)
P (6 elements)
P (7 elements)
Sum

Expected
Variance

SALVO 4

BLUE 1

P (0 elements)
P (1 elements)
P (2 elements)
P (3 elements)
P (4 elements)
P (5 elements)
Sum

Expected
Variance

BLUE 2

P (0 elements)
P (1 elements)
P (2 elements)
P (3 elements)
P (4 elements)
Sum

Expected
Variance

RED 1

P (0 elements)
P (1 elements)
P (2 elements)
P (3 elements)

=1.1303354166

=0.0054386953
=0.0400551327
=0.1702957496
=0.3944668949
=0.3897435275
=1.0000000000

=3.1230214263
=0.7540737949

=0.0029058941
=0.0180634804
=0.0668517617
=0.1614083601
=0.2603753135
=0.2730797744
=0.1696511822
=0.0476642336
=1.0000000000

=4.3944489388
=1.8629536762

=0.0178078485
=0.0656484727
=0.1742318414
=0.2990634625
=0.3038506888
=0.1393976861
=1.0000000000

=3.2236937285
=1.4084989181

=0.0159985929
=0.0703076391
=0.2144799000
=0.3855716703
=0.3136421977
=1.0000000000

=2.9105512407
0.9453389100

0.0143289579
=0.0510936872
=0.1274506019
=0.2186337010
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P (4 elements)
P (5 elements)
P (6 elements)
P (7 elements)
Sum

Expected
Variance

SALVO 5

BLUE 1

P (0 elements)
P (1 elements)
P (2 elements)
P (3 elements)
P (4 elements)
P (5 elements)
Sum

Expected
Variance

BLUE 2

P (0 elements)
P (1 elements)
P (2 elements)
P (3 elements)
P (4 elements)
Sum

Expected
Variance

RED 1

P (0 elements)
P (1 elements)
P (2 elements)
P (3 elements)
P (4 elements)
P (5 elements)
P (6 elements)
P (7 elements)
Sum

Expected
Variance

SALVO 6

BLUE 1

P (0 elements)
P (1 elements)
P (2 elements)
P (3 elements)
P (4 elements)
P (5 elements)

=0.2597279424
=0.2065017747
=0.0998526260
=0.0224107089
=1.0000000000

=3.7893073551
=2.1807598896

=0.0412033895
=0.1007302266
=0.2082516573
=0.2929609077
=0.2539661753
=0.1028876436
=1.0000000000

=2.9264191836
=1.6421056817

=0.0318822136
=0.0982654906
=0.2408810337
=0.3662050329
=0.2627662292
=1.0000000000

=2.7297075737
=1.1105911515

=0.0400926410
=0.0935912461
=0.1763782898
=0.2375167807
=0.2279960664
=0.1503409041
=0.0619083044
=0.0121757675
=1.0000000000

=3.2792671528
=2.4149336024

=0.0725228629
=0.1296080883
0.2250805750
=0.2761918538
=0.2156639591
=0.0809326609



Sum

Expected
Variance

BLUE 2

P (0 elements)
P (1 elements)
P (2 elements)
P (3 elements)
P (4 elements)
Sum

Expected
Variance

RED 1

P (0 elements)
P (1 elements)
P (2 elements)
P (3 elements)
P (4 elements)
P (5 elements)
P (6 elements)
P (7 elements)
Sum

Expected
Variance

SALVO 7

BLUE 1

P (0 elements)
P (1 elements)
P (2 elements)
P (3 elements)
P (4 elements)
P (5 elements)
Sum

Expected
Variance

BLUE 2

P (0 elements)
P (1 elements)
P (2 elements)
P (3 elements)
P (4 elements)
Sum

Expected
Variance

RED 1
P (0 elements)

=1.0000000000

=2.6756639407
=1.8304194175

=0.0514480778
=0.1212112546
=0.2545532186
=0.3447283428
=0.2280591062
=1.0000000000

=2.5767391450
=1.2513402918

=0.0808633640
=0.1337995037
=0.2045841264
=0.2306464143
=0.1903266499
=0.1107402725
=0.0414056077
=0.0076340615
=1.0000000000

=2.8517870384
=2.5736685287

=0.1082959169
=0.1502694395
=0.2300412449
=0.2567487368
=0.1874157907
=0.0672288712
=1.0000000000

=2.4664056586
=1.9773906091

=0.0729716854
=0.1386105828
=0.2598512765
=0.3245581490
=0.2040083063
=1.0000000000

=2.4480208078
=1.3703660546

=0.1328385924
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P (1 elements)
P (2 elements)
P (3 elements)
P (4 elements)
P (5 elements)
P (6 elements)
P (7 elements)
Sum

Expected
Variance

SALVO 8

BLUE 1

P (0 elements)
P (1 elements)
P (2 elements)
P (3 elements)
P (4 elements)
P (5 elements)
Sum

Expected
Variance

BLUE 2

P (0 elements)
P (1 elements)
P (2 elements)
P (3 elements)
P (4 elements)
Sum

Expected
Variance

RED 1

P (0 elements)
P (1 elements)
P (2 elements)
P (3 elements)
P (4 elements)
P (5 elements)
P (6 elements)
P (7 elements)
Sum

Expected
Variance

SALVO 9

BLUE 1

P (0 elements)
P (1 elements)
P (2 elements)

=0.1642627224
=0.2141513523
=0.2116696671
=0.1571140914
=0.0844506686
=0.0300623790
=0.0054505268
=1.0000000000

=2.4968120984
=2.6662381149

=0.1453622825
=0.1631990024
=0.2278233483
=0.2383743576
=0.1669185142
=0.0583224950
=1.0000000000

=2.2932553039
=2.0896003282

=0.0950604263
=0.1509665513
=0.2599586684
=0.3068966046
=0.1871177494
=1.0000000000

=2.3400446995
=1.4709454612

=0.1904918482
=0.1829491418
=0.2110674300
=0.1894261302
=0.1308988274
=0.0672608131
=0.0235759484
=0.0043298609
=1.0000000000

=2.2050264841
=2.7067111286

=0.1814081783
=0.1698799690
=0.2218329518



P (3 elements)
P (4 elements)
P (5 elements)
Sum

Expected
Variance

BLUE 2

P (0 elements)
P (1 elements)
P (2 elements)
P (3 elements)
P (4 elements)
Sum

Expected
Variance

RED 1

P (0 elements)
P (1 elements)
P (2 elements)
P (3 elements)
P (4 elements)
P (5 elements)
P (6 elements)
P (7 elements)
Sum

Expected
Variance

SALVO 10

BLUE 1

P (0 elements)
P (1 elements)
P (2 elements)
P (3 elements)
P (4 elements)
P (5 elements)
Sum

Expected
Variance

BLUE 2

P (0 elements)
P (1 elements)
P (2 elements)
P (3 elements)
P (4 elements)
Sum

Expected
Variance

=0.2225534568
=0.1520803218
=0.0522451223
=1.0000000000

=2.1507531415
=2.1738670172

=0.1167393457
=0.1591553137
=0.2570417527
=0.2919605997
=0.1751029882
=1.0000000000

=2.2495325713
=1.5562187444

=0.2487815351
=0.1912589599
=0.2010332325
=0.1683348168
=0.1111532380
=0.0559683093
=0.019743899%4
=0.0037260090
=1.0000000000

=1.9673298332
=2.7110329285

=0.2149837182
=0.1719759688
=0.2143159144
=0.2096346686
=0.1412382636
=0.0478514664
=1.0000000000

=2.0337221898
=2.2360245758

=0.1373997864
=0.1640943683
=0.2525109664
=0.2795520246
=0.1664428543
=1.0000000000

=2.1735437921
=1.6288995080
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RED 1

P (0 elements)
P (1 elements)
P (2 elements)
P (3 elements)
P (4 elements)
P (5 elements)
P (6 elements)
P (7 elements)
Sum

Expected
Variance

=0.3041151740
=0.1919051163
=0.1881041025
=0.1500743447
=0.0965384228
=0.0484558265
=0.0174173775
=0.0033896357
=1.0000000000

=1.7750008943
=2.6934906223



FILE OUTPUT EXAMPLE FOR DSM FINAL STATISTICS:

APPENDIX A2

"STATS.TXT"

Preparation part took 15.000 cpu clocks

Salvo 1 took 0.000 cpu clocks
Salvo 2 took 0.000 cpu clocks
Salvo 3 took 0.000 cpu clocks
Salvo 4 took 16.000 cpu clocks
Salvo 5 took 0.000 cpu clocks
Salvo 6 took 0.000 cpu clocks
Salvo 7 took 16.000 cpu clocks
Salvo 8 took 0.000 cpu clocks
Salvo 9 took 0.000 cpu clocks
Salvo 10 took 0.000 cpu clocks

All salvos took 32.000 cpu clocks

Average salvo time is 3.20000 cpu clocks
1/CLOCKS_PER_SEC constant is 0.0010000000 seconds

FINAL RESULTS FOR THE FORCES

BLUE 1

P (0 elements) = 0.2149837182
P (1 elements) = 0.1719759688
P (2 elements) = 0.2143159144
P (3 elements) = 0.2096346686
P (4 elements) = 0.1412382636
P (5 elements) = 0.0478514664

Sum =1.0000000000
Expected =2.0337221898
Variance =2.2360245758
BLUE 2

P (0 elements) = 0.1373997864
P (1 elements) = 0.1640943683
P (2 elements) = 0.2525109664
P (3 elements) = 0.2795520246
P (4 elements) = 0.1664428543
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Sum =1.0000000000
Expected =2.1735437921
Variance =1.6288995080
RED 1

P (0 elements) = 0.3041151740
P (1 elements) =0.1919051163
P (2 elements) = 0.1881041025
P (3 elements) = 0.1500743447
P (4 elements) = 0.0965384228
P (5 elements) = 0.0484558265
P (6 elements) = 0.0174173775
P (7 elements) = 0.0033896357

Sum =1.0000000000
Expected =1.7750008943
Variance =2.6934906223



APPENDIX B

FILE OUTPUT EXAMPLE FOR SLM FINAL STATISTICS:
"STATS.TXT"

BLUE Force Information
5 combatants

p.d =0.10

p_s(b) =0.0010

Fire Type = Directed

Red Force Information
4 combatants

p d =0.30
p_s(a) =0.0030
Fire Type = Directed

d(t) = 0.0100 salvo length

All combat took 31.000 cpu clocks

Average d(t) simulation time is 0.03100 cpu clocks
1/CLOCKS_PER_SEC constant is 0.0010000000 seconds

FINAL RESULTS FOR THE FORCES

BLUE FORCE

P (0 elements) = 0.7673525686
P (1 elements) = 0.0478343725
P (2 elements) = 0.0507643713
P (3 elements) = 0.0542154726
P (4 elements) = 0.0498954649
P (5 elements) = 0.0299377501

Sum =1.0000000000
Expected =0.6612801430
Variance =1.8483108743
RED FORCE

P (0 elements) = 0.1676889111
P (1 elements) = 0.0786087435
P (2 elements) = 0.1500758574
P (3 elements) = 0.2684885303
P (4 elements) = 0.3351379577

Sum =1.0000000000
Expected =2.5247778798
Variance =2.0830129261
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