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ABSTRACT 
 

 

 

DISCRETE-TIME STOCHASTIC ANALYSIS OF  

LAND COMBAT  
 

Eliiyi, Uğur 

M.S., Department of Industrial Engineering 

Supervisor: Assoc. Prof. Dr. Nur Evin Özdemirel 

Co-Supervisor: Assoc. Prof. Dr. Levent Kandiller 

 

January 2004, 85 pages 

 

 

In this study, we present the implementation and experimental analysis of a 

modeling approach for analyzing tactical level land combat to generate 

information for weapon and ammunition planning. The discrete-time stochastic 

model (DSM), which can handle small and moderately large force levels, is based 

on single shot kill probabilities. Forces are assumed to be heterogeneous on both 

sides, and both directed and area fire types are modeled by means of combinatorial 

analysis. DSM considers overkills and can handle noncombat loss and engagement 

processes, discrete reinforcements, force combinations and divisions. In addition 

to experimenting with DSM, we estimate attrition rate coefficients used in 

Lanchester combat models, such that the two models will yield similar figures for 

force levels throughout the combat.  

 

Keywords: Discrete-Time Stochastic Model, Combat Modeling, Attrition Rate 

Estimation, Military Applications. 
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ÖZ 
 

 

 

KARA MUHAREBESİNİN KESİK-ZAMANLI STOKASTİK 

ANALİZİ 
 

Eliiyi, Uğur 

Yüksek Lisans Tezi, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Nur Evin Özdemirel 

Ortak Tez Yöneticisi: Doç. Dr. Levent Kandiller 

 

Ocak 2004, 85 sayfa 

 

 

Bu çalışmada silah ve mühimmat planlamasında kullanılabilecek taktik seviyede 

bir kara muharebesi modelinin uygulaması ve deneysel analizi amaçlanmıştır. 

Küçük ve orta büyüklükte kuvvet seviyelerinde kullanılması amaçlanan söz 

konusu kesik-zamanlı stokastik model (DSM) tek atışta vuruş olasılıklarına 

dayanmaktadır. Muharebenin her iki tarafı için de kuvvetler heterojen varsayılmış, 

direkt ve alan atış tipleri kombinatoryel analiz teknikleri ile modellenmiştir. DSM, 

muharebe dışı kayıp ve angajman süreçlerini, kesikli takviye, kuvvet birleştirme ve 

bölme etkilerini de dikkate almaktadır. Modelin deneysel analizine ek olarak, 

deterministik ve stokastik Lanchester modellerinde kullanılan zayiat katsayılarının 

tahmini yapılırken DSM ve Lanchester modellerinin küçük ölçekli muharebe 

benzetimlerinde benzer sonuçlar vermesi amaçlanmıştır.  

 

Anahtar Sözcükler: Kesik-Zamanlı Stokastik Model, Muharebe Modelleme, Zayiat 

Katsayı Tahmini, Askeri Uygulamalar.     
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CHAPTER 1 

 
 

INTRODUCTION 

 
 
 
 
The governments all around the world try to save from funds allocated to military 

budget. Nevertheless, defense expenditures still constitute a major percentage of 

the overall budget for most countries. Therefore, scientific effort towards cost-

efficient use of weapon systems and effective exploitation of ammunition on hand 

is exceptionally worthy, and this constitutes the major motivation of our study.   

 

Combat is the term used for circumstances during which at least one combatant (or 

weapon system) employs lethal means against at least one other. All other 

situations are preludes or postludes to combat, which either set the initial and 

boundary conditions for the next combat, or simply end the combat (Ancker, 

1995).  

 

Lanchester (1916) presented his theory of battle attrition by a system of 

differential equations, which we refer to as the Lanchester model (LM). 

Lanchester's square law for directed fire and linear law for area fire are the two 

fundamental attrition equations in LM, which will be explained in detail in Chapter 

2. LM makes use of attrition rate coefficients (ARC) for units, which is a measure 

of effectiveness and defines the rate at which a unit destroys the opposing unit. In 

other words, ARC is the number of targets killed by one combatant per unit time.  
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LM can be effective in representing combat dynamics when the number of 

combatants is sufficiently large. However, if the number of combatants is small 

(say less than 20), the randomness in engagement and killing should be taken into 

account in modeling the attrition process. In this respect, Snow (1948) studied 

stochastic Lanchester equations. Stochastic Lanchester model (SLM) is a general 

renewal model except that inter-fire times are negative exponentially distributed. 

However, later on, Gafarian and Ancker (1984) showed that neither the 

exponential model nor the deterministic LM is a satisfactory approximation of the 

stochastic combat model. Hence, there seems to be a need for further research on 

new combat models, especially those considering the random aspects.  

 

Land combat is our primary subject in this study. This combat environment is the 

most involved one, and the most complicated to deal with (Ancker, 1995). 

Conventionally, blue units refer to ally forces, and red units to enemy forces. We 

assume that both forces control a number of military units such as infantry, 

artillery and tank, implying heterogeneous combat. Each military unit is composed 

of a number of identical combatants. In homogeneous combat, on the other hand, 

each force consists of only one type of combatant, such as only infantry or only 

artillery. LM and SLM are originally proposed for homogeneous combat. 

 

The major distinguishing characteristic of a military unit is its single shot kill 

probability. Single shot kill probability (SSKP) is the probability that a combatant 

kills its target (an opposing combatant) at a single shot. SSKPs may be different 

for different military units, but remain constant throughout the battle.  

 

In this study, we focus on the implementation of and experimentation with a recent 

model developed by Kandiller et al. (2002). The model is a discrete-time 

stochastic model (DSM) based on SSKPs, which can handle small and moderately 

large force levels. Forces are assumed to be heterogeneous on both sides, division 

and combination of units are allowed, and both directed and area fire types are 

modeled by means of combinatorial analysis. Targets are selected at random in 
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each salvo, meaning there is no coordination between firers, and overkills are 

allowed.  

 

DSM treats combat as a stochastic process, which is composed of salvos. A salvo 

is a firing cycle of fixed duration, within which every military unit engages one or 

more opposing units, and fires simultaneously. In each salvo, a combatant may 

either utilize directed fire (or aimed fire) aiming at a particular opposing 

combatant, or area fire towards the opposing military unit. Attrition occurs only 

after all firing is over in a salvo; therefore, there is a possibility that a combatant 

can both kill and be killed in the same salvo. This, of course, may not be suitable 

for combats between certain types of weapon systems. It may be appropriate for 

artillery or missile exchanges, but not suitable for close-range directed fire 

engagements. The assumption of simultaneous salvos can be relaxed by means of 

the engagement process, which will be described in Chapter 3. 

 

A unit can distribute its force and fire at a number of opposing units. In addition, a 

number of units may be pooled against a single opposing unit. These allocations 

may be specified in the combat scenario, or they may emerge from an optimization 

model such as Özdemirel and Kandiller (2001) have employed.  

 

The major extensions of DSM are noncombat loss and stochastic engagement 

process, which handles different firing rates of military units. As for the minor 

extensions, discrete reinforcements and synergy effects due to force division and 

combination, which slightly modify SSKPs, are considered. Mean and variance of 

force levels can be estimated using respective survival state probabilities of the 

units, and risk analysis can be conducted based on these statistics. 

 

In addition to experimentation with DSM, we try to estimate ARCs used in LM 

and SLM, such that DSM and LM will yield similar figures for force levels 

throughout the combat. This is attempted through comparison of force levels at the 

end of each DSM salvo with the respective force levels obtained by SLM using 

estimated ARCs. 
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The rest of the thesis is organized as follows. In the next chapter, a review of 

relevant combat simulation models is provided. Problem definition, DSM 

approach in modeling of land combat, and DSM details are given in Chapter 3. In 

Chapter 4, we present implementation design stages, experimentation with DSM, 

and results as to comparison with the SLM. A method for estimating the ARCs 

used in LM is given in Chapter 5 with force level comparisons. Our major 

findings, conclusions and future work directions follow in Chapter 6.           
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CHAPTER 2 

 
 

A REVIEW OF COMBAT SIMULATION MODELS 

 
 
 
 
The employment of scientific methods in military problems originated in early 

twentieth century with the development of deterministic combat models by 

Lanchester (1916). He worked on air combat in World War I, by applying ordinary 

differential equations to populations of fighter planes. Since then, many 

researchers have elaborated on these models with some additional features. These 

models represent attrition of opposing sides under different types of engagement. 

Initial studies, which involved deterministic models, were followed by advances 

leading to stochastic models. 

 

A taxonomy of combat models available in recent literature is shown in Figure 2.1. 

Optimization models in the first branch are in general concerned with force 

allocation and deployment. Models in the third branch include game theoretic 

approaches, in which the combat is modeled as time sequential two-person zero-

sum games. This chapter presents the summary of reviewed literature on a subset 

of the second branch of combat modeling in the figure, i.e. simulation modeling, 

since it is within the scope of our study. In particular, we review analytical 

deterministic and stochastic models, leaving out the large subset of the discrete-

event simulation models. 
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Figure 2.1 Taxonomy of combat models  

 

 

Combat simulation models estimate attrition and number of survivors in an 

engagement. Therefore, these models provide predictions that will help in making 

decisions for upcoming stages of the combat. Analytical combat simulation models 

are classified as deterministic and stochastic models, which are reviewed in the 

following two sections. 
 

2.1 Deterministic Combat Simulation Models  
 
Lanchester (1916) proposed using systems of differential equations with static 

attrition rate coefficients to model combat. These models describe combat 

dynamics as change in force levels of opponents over time from a deterministic 

point of view. Lanchester models have been used for attaining information on the 

general behavior of units, and are applicable to aggregated units involving large 

numbers of combatants. In Lanchester model, combat is assumed to take place 

between two homogenous forces (each consisting of only one type of combatant or 

Combat Models 

Optimization Models Simulation Models 

Deterministic Models Stochastic Models 

Other Models 

Analytical Models Discrete-Event 
Simulation Models 
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weapon), and the attrition effects are reflected with constant attrition rate 

coefficients (ARCs). These fundamental models are represented as a couple of 

differential equations. In directed fire, where the firer acquires and fires at a single 

target, the attrition of a force is only dependent on the size of the opposing force.  

 

The directed fire model is as follows: 

 

(2.1) 

 

(2.2) 

 

In the above equations, B=B(t) and R=R(t) denote the number of combatants (or 

weapons) of blue and red forces at time t, whereas a and b are the ARCs 

symbolizing the effectiveness of one combatant of red and blue forces, 

respectively. As an example, a represents the number of blue combatants killed by 

one red combatant per unit time. The initial number of red and blue combatants, B0 

and R0, sets the initial conditions for these equations.  

 

In the system of differential equations for area fire, where the targets cannot be 

detected individually but the region they are located is known, the attrition of a 

force is dependent on both its own size and the size of the opposing force. 

 

(2.3) 

 

(2.4) 

 

These two models above represent Lanchester's square law for directed (or aimed) 

fire, and linear law for area fire, which are the two basic attrition equations in 

Lanchester modeling.  

 

The third fundamental model by Brackney (1959) is called the mixed fire, where 

the blue force is subject to directed fire and the red is subject to area fire. 

aR
dt
dB

−=

bB
dt
dR

−=

aBR
dt
dB

−=

bRB
dt
dR

−=
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(2.5) 

 

(2.6) 

 

It is easy to obtain closed form solutions for time-dependent force levels in 

directed and area fire models simply by solving the related differential equations 

with given initial conditions, when forces are homogenous and attrition rate 

coefficients are constant. Although it is not possible to attain closed form solutions 

for B and R separately in the mixed fire case, once a final value of either B or R is 

provided the force level of the other can easily be computed. 

 

The fourth model is called the logarithmic law, which formulates the noncombat 

loss process and is added to directed fire equations below.  

 

(2.7) 

 

(2.8) 

 

Here, α and β are noncombat loss rates of blue and red, respectively.  

 

The fifth and final model we review is proposed by Helmbold (1965). 

 

(2.9) 

 

(2.10) 

 

In these equations, ω∈(0,1) is the fraction of the blue force that can be used 

effectively against the red, when initial force ratio B0 / R0 is high. The motivation 

behind this model is that when the blue force has too many combatants, they 

cannot all be used against red simultaneously. θ is defined similarly for the red 

aR
dt
dB

−=

bRB
dt
dR

−=

βBaR
dt
dB

−−=

αRbB
dt
dR

−−=

R
R
Ba

dt
dB ω−

⎟
⎠
⎞

⎜
⎝
⎛−=

1

B
B
Rb

dt
dR θ−

⎟
⎠
⎞

⎜
⎝
⎛−=

1
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unit. A symmetrical power function of surviving force ratios is added in this 

model.   

 

Przemieniecki (1994) concentrated on determining ARCs, which are the basic 

components of Lanchester systems. The simplest relationship for ARC of a blue 

unit i when the target acquisition time is negligible can be expressed as 

 

(2.11) 

 

where firing rate depends not only on the weapon's technical capability but also on 

the skills of the weapon operator and combat conditions. Finding firing rate during 

active combat is difficult, hence estimating ARCs is also difficult in practice. 

However, most of the studies assume that ARCs are available. Dupuy (1979) 

measured the combat potential of opposing forces by quantifying their total 

weapons firepower by developing the Operational Lethality Index (OLI) concept. 

This index is a composite measure of a number of factors. The major components 

of OLI are mission factor, spatial effectiveness measure, and casualty effectiveness 

measure.     

 

SSKPs, on the other hand, can be obtained from technical and operational data of 

weapon systems, and from field exercises observing combatant skills. This is a 

major advantage of the models that use SSKPs instead of ARCs.  

 

There is a literature on extensions and modifications of the above basic Lanchester 

models for heterogeneous forces. However, most researchers have dealt with 

homogenous forces due to practical or computational reasons. 

 

Isbell and Marlow (1956) contributed to initial efforts by allowing heterogeneity of 

forces and investigated the distribution of fire over a number of targets. 

 

Howes and Thrall (1973) developed a procedure that employs Perron-Frobenius 

theory of eigenvalues and eigenvectors to compute the overall weight 

iii ratefiringSSKPb ×=
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(effectiveness) of a heterogeneous force. This overall weight is defined as the sum 

of weighted-averages of individual weapon effectiveness values, which are derived 

from inter-weapon effectiveness matrices. These matrices are assumed to be given 

in their study. 

 

Taylor (1974a) utilized Lanchester equations in combination with optimal control 

theory in order to find the optimal fire distribution policy. Range-dependent 

attrition coefficients are used with the assumption that all weapons of a force have 

the same range capability. Variable attrition rate coefficients are defined as 

   
(2.12) 

 
For blue weapon i, kbi is the constant portion and h(t) is the variable portion of the 

ARC. Values are assigned per unit of surviving forces, and a two-on-one combat is 

analyzed. The analyzed combat is heterogeneous in the sense that different 

survival values and ARCs are assigned for each type of weapon. Formulation for 

distribution of fire over n targets is presented in the study, and the approach is 

demonstrated for n=2.  

 

In another study, Taylor (1974b) reviewed common issues related to fire 

distribution. When the targets are subject to the square law (directed fire) process, 

the fire is concentrated on one target type, which is known as the 0-1 allocation 

rule. Besides, the allocation is not completely dependent upon force levels in this 

case. On the other hand, when the targets undergo the linear law (area fire) 

process, the fire may be divided between target types; hence, fractional policies 

other than the 0-1 allocation rule may be applied. The allocation is directly 

dependent upon force levels in area fire. Additional conclusions are also presented 

from a different perspective. When intelligence and command control systems are 

exceedingly efficient, the optimal tactic is to concentrate fire on a specific target 

type. However, the optimal tactic becomes proportional allocation of fire over 

target types, when capability for redirection of fire from destroyed targets is rather 

poor. 

 

)()( thktb bii =
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As another extension, Taylor (1975) handled the fire distribution problem 

including force-level constraints in time sequential allocation problems. He used 

measures of strategic value of firing at a target, indicating that optimal fire 

distribution policy depends on force levels but not on time. One major finding of 

this study is the motivation to value the targets directly proportional to their fire 

effectiveness.  

 

Afterwards, Taylor and Brown (1978) made another improvement on fire 

distribution problems, which was verified on a two-on-two heterogeneous combat. 

With this combat, the authors explored the optimal allocation of supporting fires 

through the tactic that involves attacking infantry to contact enemy defensive 

positions. 

 

Later on, Taylor (1983) characterized two types of target acquisition processes for 

Lanchester type combat models, namely serial and parallel acquisitions. In serial 

acquisition, a firer (or a weapon) cannot acquire targets while it is engaged to 

another target, while in parallel acquisition it can search targets uninterruptedly 

while engaging other targets. 

 

Enhancements to Lanchester models cause the problem to be intractable; hence 

obtaining a closed form solution analytically is either difficult or impossible. Thus, 

numerical methods for solving these problems are to be investigated. Taylor 

(1983) illustrated the formulation of Lanchester equations for heterogeneous 

forces, and suggested the use of simplest methods, such as Euler-Cauchy method, 

since they are shown to work efficiently due to well behavior of Lanchester 

equations. 

 

Protopopescu et al. (1989) later developed a combat model using partial 

differential equations featuring the effects of spatial dependence and nonlinearity, 

in an attempt to overcome some shortcomings of Lanchester equations. Their 

formulation introduces some realistic concepts that do not exist in classical 

Lanchester models. One of these, diffusion, is defined as the natural tendency of 
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any force to lose its original configuration as it moves, fights, or simply as time 

goes by, due to fatigue, loss of concentration, loss of motivation etc. Another 

notion is advection, which is defined as large-scale, ordered flow of troops in 

battlefield. In addition, they employ state dependent attrition of forces; ARCs 

change as forces close on one another. 

 

Hudges (1995) studied the measure of combat power's mental effect, which is the 

suppression of enemy actions. Based on the observation that the apparent effects of 

combat power are not only physical but also mental, he developed a quantitative 

approach using Lanchester square law to illustrate the suppression effect of enemy 

fire.  

 

Taking into account the solution of Lanchester equations for heterogeneous forces, 

Jaiswal (1997) described a method that depends on the use of eigenvalues and 

eigenvectors, where some conditions are necessary for implementation. Fowler 

(1999) established two techniques for aggregating heterogeneous quadratic 

Lanchester systems into a homogeneous one. Özdemirel and Kandiller (2001) 

estimated the attrition of a force by summing up attritions generated by 

heterogeneous opposing units, and employing division and combination effects. 

 

2.2 Stochastic Combat Simulation Models  
 
When detailed observation of the behavior of each combatant is necessary in 

engagements between small units (as, for example, in a two-on-three combat of 

tanks), stochastic models become inevitable. Rather than the force sizes, 

randomness in engagement, shooting and killing plays an important role. 

 

Snow (1948) was the first to contribute to the stochastic combat simulation 

literature by treating stochastic Lanchester equations thoroughly. Stochastic 

Lanchester model is a general renewal model except that inter-fire times are 

negative exponentially distributed. This assumption brings the memoryless 
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property, which greatly simplifies the analysis but does not make it trivial. 

Stochastic Lanchester model will be examined in detail in Chapter 3. 

 

Robertson (1956) modeled infantry fire as a sequence of simultaneous salvos 

forming a Markov chain, and applied this model for homogeneous units with a 

maximum size of 15. Helmbold (1968) built expressions for expected force levels 

in many-on-many duel using alternating volleys rather than simultaneous salvos. 

 

Taylor (1983), Gafarian and Ancker (1984), Kress (1987) and Gafarian and 

Manion (1989) are the major early studies on stochastic combat simulation 

modeling. They handle stochastic duels (or small firefights) involving small 

number of combatants. Since then, researchers have contributed by modeling and 

analyzing different stochastic combat characteristics. 

 

Taylor (1983) made use of classical continuous-time treatment, and utilized 

attrition rates to determine state probabilities. Since the attrition rates are taken 

from deterministic LM, his model is referred to as the stochastic Lanchester model 

(SLM), which will be explained in detail in Chapter 3.   

 

Gafarian and Ancker (1984) studied the general two-on-one stochastic duel as an 

extension of one-on-one stochastic duel by Ancker (1982). There are two 

combatants on side A and one on side B, force compositions are homogenous and 

engagement type is directed fire for both sides. They modeled two stochastic 

processes, one with negative exponential and the other with Erlang-2 interfiring 

time distributions. Their main contribution is the computation of state probabilities 

for the first time for two-on-one stochastic duel. Utilizing these probabilities, they 

also derived probability of win, and mean and variance of the number of survivors.    

 

Later on, Kress (1987) investigated the general many-on-one stochastic duel 

conditioned on the order in which the targets are attacked. He has utilized SLM 

with homogenous forces and directed fire. Other than exponentially distributed 

interfiring times for both sides, he also studied a special case where the 
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distribution is gamma for the blue force. As results of his study, state probabilities 

are derived for five different cases for the number of red units, and relative 

firepower effectiveness of both sides is examined utilizing kill rates or reciprocal 

of the mean killing times as measures.   

 

Gafarian and Manion (1989) considered two versions of two-on-two homogenous 

stochastic combat, with the motivation of developing more realistic firefight 

models. They utilized stochastic process with homogenous forces and directed fire. 

Interfiring times are assumed to follow a Gamma-2 distribution. Aiming 

configurations are defined, and states are decomposed with regard to initial aiming 

configurations. They computed state probabilities, derived probability of win, 

mean and variance of the number of survivors, and mean and variance of battle 

duration. They also compared their model with equivalent exponential and 

deterministic LM.     

 

Yang and Gafarian (1995) introduced an algorithm based on solving a set of exact 

Kolmogorov equations and approximating the kill rate of one combatant in 

homogenous stochastic combat models. The kill rate is conditioned on the state of 

the system. They studied discrete-time many-on-many homogenous systems with 

directed fire, where they utilized counting process and Kolmogorov equations. 

They derived exact Kolmogorov equations for states, probabilities for interior and 

boundary transient states and state-dependent kill rates. They argued that huge 

amount of computation is necessary for battles larger than four-on-four.  

 

Jaiswal et al. (1995) modeled the combat as a continuous-time discrete state space 

Markov process, and estimated some combat characteristics such as distribution, 

mean and variance of combat duration, probabilities of win, expected number of 

survivors at termination, etc. They also presented some numerical results for 

stochastic Lanchester equations of directed fire, area fire and warfare with smart 

weapons.  
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Speight (1995) employed a discrete-time Markov chain model as a stochastic 

correspondent of deterministic and continuous-time Lanchester formulation, and 

contrasted the results at the mini-battle level.  

 

Anderson (1995) expressed attrition formulas for large-scale combat under a 

variety of conditions. He dealt with heterogeneous many-on-many combats, and 

treated area and directed fires separately. In his study, it is assumed for the area 

fire that, targets are uniformly distributed in the area, fires of weapons may overlap 

in each salvo, and a target is killed with a kill probability if it is in the fatal area. 

He devised directed fire and area fire attrition equations for uncoordinated, 

partially coordinated and coordinated fire cases.   

 

Parkhideh and Gafarian (1996) studied development of general solutions to many-

on-many heterogeneous stochastic combat. They modeled the system as a 

continuous-time stochastic process, where the combat is modeled as a sequence of 

aiming and killing events. Engagement type is directed fire for both sides, and time 

between consecutive kills is randomly distributed. A firer-dependent time-to-next-

kill distribution, where target selection is random in aiming events is utilized. 

Combat ends when any side reaches its predetermined breakpoint. They computed 

state probabilities by enumerating all possible routes that the combat may go 

through via itemizing sequences of aiming and killing events, then finding 

probabilities of events that take the combat to a specific state. They assumed that 

heterogeneous combat involves only two opposing units, each consisting of 

different types of combatants utilizing directed fire.   

 

Jaiswal et al. (1997) modeled homogenous combat with reinforcements as a 

continuous-time discrete state space Markov process. He analyzed the effect of 

reinforcements made at prespecified force levels on various combat characteristics.  

 

McNaught (1999) investigated the effects of applying Exponential Stochastic 

Lanchester (ESL), which is the stochastic version of deterministic square law for 

directed fire, to battles that have been split into smaller engagements (mini-
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battles). He modeled the many-on-many combat as a Markov Chain where the 

forces are homogenous, and directed fire is employed for both sides. He computed 

probabilities of win and the expected number of survivors at each mini-battle. He 

also observed increase in the number of mini-battles in the first stage, change in 

the force ratio, and random (uneven) split of battles using Monte-Carlo simulation.  

 

McNaught (2001) later solved two variants of homogenous one-on-one duels with 

directed fire for both sides. He modeled the combat as two continuous time 

Markov chains, where the distribution of inter-firing times follow a 2-phase Erlang 

distribution in the first model, and exponential distribution in the second.  

 

Armstrong (2001) studied stochastic duel between two opposing units, in which 

both kills and suppression effects of firepower are possible, with the motivation of 

creating a more realistic model. He formulated the one-on-one homogenous 

combat with directed fire as a Markov Chain. Results are provided regarding 

probability of win, expected duration of the duel, expected proportion of time the 

red is suppressed, and expected number of rounds fired by red, which can be 

utilized in computation of expected consumption of ammunition and the effect of 

suppression.  

 

Salim and Hamid (2001) used a Bayesian stochastic model in formulating 

homogenous many-on-many stochastic combat with directed fire, where beta 

distribution is chosen as a prior distribution for survivor probability. They have 

estimated the distribution of the number of survivors, and expected value of the 

attrition rate coefficient using their model.  

 

Pettit et al. (2003) illustrated that Bayesian statistical methods may be used both to 

predict which side will win the combat and to choose between alternative 

stochastic fire type models, and utilized the results for comparing different weapon 

systems. 
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Very recently, Aygüneş (2003) has presented a modeling framework for combat 

with heterogeneous forces. He proposed an integrated system, consisting of three 

interacting models: An optimization model for force allocation, an attrition 

simulation model including a discrete-time stochastic model (DSM) that validates 

allocation results, and a weapon effectiveness index update model. DSM can 

handle heterogeneous forces of relatively larger size. Our study is mainly 

concerned with implementation of and experimentation with DSM. Therefore, an 

overview of DSM will be provided in Chapter 3.   

 

2.3 Discussion  
 
As it was stated previously, there are common critiques as to the deficiencies of 

Lanchester models in literature, such as difficulty in estimating ARCs, use of 

constant ARCs and homogenous forces only. Besides these, Protopopescu et al. 

(1989) indicated some additional shortcomings, such as ignoring movement of 

forces in battlefield, and not taking into account command and control 

mechanisms. Ancker (1995) reviewed combat theory and found some deficiencies. 

Based on two axioms and a theorem on combats, his study emphasizes the fact that 

analysis of combat as a hierarchical network of firefights is compulsory to better 

comprehend combat models, where a firefight is a terminating stochastic target 

attrition process on a discrete state space.  

 

Reviewed literature clarifies some deficiencies or shortcomings in combat models. 

Combat simulation models can be more efficiently used in force and ammunition 

planning, as they distinguish more accurately the critical aspects of the problem in 

hand. It is crucial that the dynamic nature of combat is increasingly taken into 

consideration by recent developments. However, use of advanced models and 

techniques are limited, as opposed to the classical Lanchester models, due to 

computational restrictions.  

 

Deterministic Lanchester models are usable basically for aggregate forces (size 

more than 20), and it has been revealed in many studies that their performance for 
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predicting smaller size combats is rather unsatisfactory. Furthermore, there is no 

possibility of a risk analysis in a deterministic model. Besides, successful 

convergence for more accurate results occurs for very large force sizes only, which 

has limited relevance to today’s war situations. Therefore, we need stochastic 

models for small forces that will allow us to conduct risk analysis. Although 

numeric solutions can be obtained by stochastic models available in the literature, 

most of which are continuous time, they require excessive computation time and 

can handle very small force sizes most of the time. 

 

A discrete-time stochastic model (DSM) has been developed by Kandiller et al. 

(2002) that can handle relatively larger force levels. In this study, our main 

contribution is the implementation of and experimentation with this model. In 

addition, we try to estimate ARCs for Lanchester model, such that the use of these 

models will yield similar figures for force levels. This is attempted through 

comparison of force levels at the end of each DSM salvo with the respective force 

levels obtained by stochastic Lanchester model using estimated ARCs.  
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CHAPTER 3 

 
 

DISCRETE-TIME STOCHASTIC MODEL 

 
 
 
 
Our contribution in this study is the implementation of and experimentation with 

DSM developed by Kandiller et al. (2002). Therefore, DSM is described for the 

sake of completeness. As we have stated previously, there are many critiques as to 

the deficiencies of Lanchester models in literature, such as difficulty in estimating 

ARCs, use of constant ARCs and homogenous forces only. Deterministic 

Lanchester models are usable basically for aggregate forces (size more than 20), 

and it has been revealed in many studies that their performance for predicting 

smaller size combats is rather unsatisfactory. Furthermore, there is no possibility 

of a risk analysis in a deterministic model. Therefore, we need stochastic models 

for small forces that will allow us to conduct risk analysis.  

 

DSM is based on SSKPs, which can handle relatively larger force levels, as 

compared to previous stochastic models in literature. Forces are assumed to be 

heterogeneous on both sides, division and combination of units are allowed, and 

both directed and area fire types are modeled by means of combinatorial analysis.  

 

The main features and assumptions for this combat model can be summarized as 

follows: 

• Time advancement is achieved by assuming the combat proceeds in salvos. 

Combatants of both forces fire simultaneously in a salvo.  
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• Both sides can consist of a number of units of different types (having different 

SSKPs), which implies heterogeneity of the forces.  

• Directed and area fire are modeled by concepts of combinatorial analysis. 

Target selection is a random process, accordingly, overkills of a target are 

allowed, as no coordination among firers exists.  

• Noncombat loss and stochastic engagement processes can be included as well as 

discrete reinforcements, division and combination effects. 

• The mean and variance of the remaining force level at the end of each salvo are 

found, allowing for risk analysis. 

 

In the following section, we will firstly describe SLM, which we implemented in 

our study for estimating ARCs and checking whether the use of these models 

yields similar figures for combat force levels. The subsequent two sections 

describe DSM for homogeneous and heterogeneous combat cases in sufficient 

detail. The last section is about the extensions of DSM, whose major processes are 

employed in our implementation. 

 

3.1 Stochastic Lanchester Model (SLM)  
 
The classical continuous-time treatment by Taylor (1983) makes use of attrition 

rates to determine the state probabilities. This model can be applied for 

homogeneous combat where only two opposing units are involved. Let the state 

definition be (t,i,j) where t indicates time, i = 0,1,…,m and j = 0,1,…,n are the 

number of combatants alive in blue and red units at time t. Let P(t,i,j) be the 

probability of having i blue and j red combatants at time t. The initial condition is 

P(0,m,n) = 1. There are three possible state transitions in this model. These are no 

loss, one blue casualty and one red casualty. Let A(t,i,j) be the attrition rate of the 

blue unit at time t when there are i blue and j red combatants. The attrition rate of 

the red unit is denoted by B(t,i,j). Since the attrition rates are borrowed from 

deterministic LM, this model is referred to as the stochastic Lanchester model 

(SLM). The attrition process is modeled as ( , , )dB A t i j
dt

= −  with B0=m and 
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( , , )dR B t i j
dt

= −  with R0=n. This is a Markov process since the probability of any 

particular future state is determined by the present state and not on how the state is 

reached. Assuming Poisson process for casualties, it follows that 

 

P(one blue casualty in time from t→ t+∆t) = A(t,i,j)∆t               (3.1) 

P(one red casualty in time from t→ t+∆t) = B(t,i,j)∆t           (3.2) 

P(more than one casualty in time from t→ t+∆t) = 0              (3.3) 

 

Hence, the conditional probability for state (t+∆t, i, j) is 

 

P(t+∆t, i, j) =  P(t,i,j) P(no casualties in ∆t) + P(t, i+1, j) P(one blue casualty in 

∆t) + P(t, i, j+1) P(one red casualty in ∆t). 

 

Applying Equations (3.1), (3.2) and (3.3) to the first term of the above equation, 

we see that P(no casualties occur) = (1-A(t,i,j)∆t ) (1-B(t,i,j)∆t) = 1 - (A(t,i,j) + 

B(t,i,j))∆t. The term A(t,i,j)B(t,i,j)∆t2 = 0, since we cannot have more than one 

casualty at any given time. Another motivation in ignoring this term is that the 

infinitesimal duration ∆t is so small to define legitimate probabilities in (3.1), (3.2) 

and (3.3), yielding its square being close to zero. Substituting this into the equation 

above, with the suitable choice of infinitesimal time step ∆t, the state transition 

probabilities are found as: 

 

P(t + ∆t, i, j) = [1 - (A(t, i, j) + B(t, i, j)) ∆t] P(t, i, j) + 

       A(t, i+1, j) ∆t P(t, i+1, j) + B(t, i, j+1)) ∆t P(t, i, j+1).   (3.4) 

 

One can assume that ∆t is the salvo length and define the salvo sequence as 0, 

∆t, 2∆t, 3∆t, and so on. Equation (3.4) can then be treated as a difference equation 

and it can be used to calculate discrete-time state probabilities. Time-dependent 

expected values and variances of remaining force levels can also be calculated.  
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SLM models the combat as a non-homogeneous Poisson process where A(t,i,j)∆t is 

the expected number of blue casualties during ∆t. Therefore, ∆t should be 

determined such that the probability of one casualty (A(t,i,j)∆t for blue or B(t i,j)∆t 

for red), does not exceed one. If we employ ∆t as the salvo length in a discrete-

time approach, we would have to observe combat dynamics over a very large 

number of salvos, which will require significant computation time. In Chapter 4, 

we compare SLM and DSM by taking salvo length as an appropriate multiple of 

∆t. 

 

3.2 DSM for Homogeneous Combat 
 
The main features of DSM that distinguish it from SLM are advancing time in 

discrete steps as opposed to continuously, the manner in which SSKPs are used, 

and the relaxation of single casualty per salvo assumption. The discrete-time 

nature of the model requires focusing on binomial processes. 

 

In DSM, combat between two units each having a small number of combatants is 

modeled as a two-dimensional death process. Let the state definition be (t,i,j) 

where t = 0, 1,… is the discrete time counter denoting the salvo number, i = 0, 

1,…, m and j = 0, 1,…, n are the number of surviving combatants in blue and red 

units at the end of salvo t. Let P(t,i,j) be the probability of having i blue and j red 

combatants at the end of salvo t. The initial condition is P(0,m,n) = 1. 

 

3.2.1 Directed Fire in Homogeneous Combat 

 
Directed fire is the situation where a firer detects and aims at a single target and 

fires. Consider a combat situation in which there are i identical firers shooting 

independently at j = 3 identical targets. Let {A,B,C} be the pattern denoting the 

number of firers engaged with each target such that A + B + C = i. If, for example, 

i = 4, {3,1,0} means that three firers shoot at one target, and the remaining firer 

engages with one of the remaining targets. Note that overkills are possible with 

this pattern definition. When arrangement of targets is considered, the pattern 
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{A,B,C} would repeat as {A,B,C}, {A,C,B}, {B,A,C}, {B,C,A}, {C,A,B}, {C,B,A}. 

The number of arrangements, nT(A,B,C), is 
!1!1!1

!3  if A, B, C are all different, 
!1!2

!3  

if only two of them are the same, and 
!3
!3  if all three are the same. When we also 

consider arrangement of firers, there are additional repetitions. For example, with 

firers a, b, c, d and target arrangement (3,1,0), possible firer arrangements are 

(abc,d,-), (abd,c,-), (acd,b,-), (bcd,a,-). The number of these repetitions nF(A,B,C) 

is 
!!!

!
CBA

i for each target arrangement. Hence the total number of arrangements 

for pattern {A,B,C} is: 

n({A,B,C}) = nT(A,B,C) nF(A,B,C).   (3.5) 

 

Let pk be the SSKP of a single firer. Given a pattern {A,B,C}, the probability of 

having l = 0, 1, 2, 3 casualties is calculated considering whether or not the first 

target subject to A shots is killed and so on, i.e.: 

{ }( )

( ) ( )

( ) ( )

( ) ( )

1 1

2 2

1 2 3
1 2 3 3 3

1

1

, , ,:0 1
1

1 1 1

casualties | , , 1 1 1

1 1 1

l lA A
k k

l lB B
k k

l l l or
l l l l l lC C

k k

p p

P l A B C p p

p p

−

−

+ + = −

⎡ ⎤ ⎡ ⎤− − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤− − −⎣ ⎦ ⎣ ⎦

∑       (3.6) 

 
Hence, the probability of l casualties in the presence of i firers is calculated as:  

 

( ) ( ) { }( ) { }( ), ,
 casualties with  firers  casualties | , ,i i

A B C
A B C i

n A B C
P l P l i P l A B C

j≥ ≥
+ + =

= = ∑

 
               (3.7) 

 
where ji is the total number of arrangements over all patterns. 

 

An example with i =4 firers, j =3 targets, and pk = 0.2 is presented in Table 3.1. 
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RA

r

Non-fatal Area 

Fatal Area 

Table 3.1 Directed fire casualty probabilities for i=4, j=3, pk=0.2 

{A,B,C} nT(A,B,C) nF(A,B,C) n({A,B,C}) P4(0) P4(1) P4(2) P4(3) Total 

{4,0,0} 3 1 3 0.4096 0.5904 0.0000 0.0000 1.0000 

{3,1,0} 6 4 24 0.4096 0.4928 0.0976 0.0000 1.0000 

{2,2,0} 3 6 18 0.4096 0.4608 0.1296 0.0000 1.0000 

{2,1,1} 3 12 36 0.4096 0.4352 0.1408 0.0144 1.0000 

Total   81 0.4096 0.4637 0.1203 0.0064 1.0000 

 

 

3.2.2 Area Fire in Homogeneous Combat 

 
In area fire, a firer cannot identify targets individually, but it has information about 

the region in which the opposing unit is positioned. The targets are assumed 

uniformly distributed over an area of radius RA as in the study by Anderson (1995).  

An area shot divides this region into two, where the first division becomes the fatal 

area (FA) of radius r, and the second becomes the non-fatal area (NFA) as in 

Figure 3.1.   

 

 

 

 

 

 

 

 

Figure 3.1 Regions of fatality in area fire 

 

The SSKP in NFA is assumed to be zero, whereas it is pk in FA. Let 
2

2
A

r
R

ξ =  be 

the probability that a target is in the FA. In the presence of a single firer, the 

probability of l casualties out of j targets depends on the condition that there are 

( )jflf ≤≤ targets in FA and l of them are killed. Therefore, 
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( ) ( )1( ) (  casualties with 1 firer)  (1 )  (1 )
j

j f j f f l f l
f l k k

f l
P l P l p pξ ξ − −

=

= = − −∑        (3.8) 

 

Consider the case where there are i=3 firers. If the targets neutralized by each firer 

were mutually exclusive (i.e. there were no overkills), then the probability of 

having l casualties in a salvo would be calculated by the following 3-way 

convolution: 

 

( ) ( ) ( ) ( ) ( )
1 2 3
1 2 3

3 1 1 1 2 1 3
, , :

 casualties with 3 firers
l l l
l l l l

P l P l P l P l P l
+ + =

= = ∑                         (3.9) 

 
In the presence of overkills, let the pattern (l1, l2, l3| l12, l13, l23| l123) denote the 

number of casualties where l1 is the number of kills only by the first firer, l12 is the 

number of kills only by the first and the second firer, and so on. For example, the 

pattern (1,2,0|1,2,0|1) indicates that one target is overkilled by all three firers, 

another is overkilled by the first and the second together, two targets are overkilled 

by the first and the third together, one is killed only by the first firer, and two only 

by the second. If there are i firers, we have patterns of dimension 2i-1 in the form 

of ( ( )i
1 entries|…| ( )i

k entries | … | ( )i
i  entry). When we consider arrangement of 

targets, the number of repetitions for pattern (l1, l2, l3| l12, l13, l23| l123) is: 

 
( ) ( )( )( )( ) ( )

( )

123 123 12 1

123 12 13 1

1 2 3 12 13 23 123

1 2 3 12 13 23 123

, , , , , , ,
1 2 3 12 13 23 123

, , | , , |

!
( )! ! ! ! ! ! ! !

l l l l l lj l
j l l l l l

j
j l l l l l l l l

n l l l l l l l

j
j l l l l l l l l

− − −
−

−

=

= =
−

L
   (3.10) 

 
where l = l1+ l2+ l3+ l12+ l13+ l23+ l123 is the total number of casualties. 

 
Let lA, lB, lC denote the number of kills (including overkills) by the first, second 

and third firers, i.e., lA = l1+ l12+ l13 + l123, lB = l2+ l12+ l23 + l123, lC = l3+ l13+ l23 + 

l123. Given lA, lB, lC, we face some size restrictions. For instance the two-way 

overkill value l12 = max{0, lA + lB - j},…, min{lA, lB}. That is, if we have j=3 

targets, i=2 firers, lA=3 and lB=1, then we cannot have the pattern (1,0,0|2,0,0|0) 
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since the number of targets overkilled by the first two firers (l12=2) cannot exceed 

the overall number of casualties due to the second firer (lB=1). The pattern 

(2,1,0|1,0,0|0) is also impossible when lA=3, lB=2, and j=3 since there cannot be 

more than j casualties. So, l12 should be at least lA + lB – j = 2 in which case l12=2, 

l1=1 and l2=0 should be true. Let (*) denote such restrictions and n(lA,lB,lC) be the 

total number of pattern repetitions possible under these restrictions, i.e. 

 

( ) ( )∑
∈

=
3123231312321 ),,,,,,(

123231312321 |,,|,,,,
Slllllll

CBA lllllllnllln         (3.11) 

where  

S3 = {(l1, l2, l3, l12, l13, l23, l123) ∈ 7
+Z : (*) is satisfied},  

lA = l1+ l12+ l13 + l123, 

lB = l2+ l12+ l23 + l123,  

lC = l3+ l13+ l23 + l123. 

 

Hence, the probability of l casualties in the presence of 3 firers is calculated as 

 

1 2 3 12 13 23 123 3
1 2 3 12 13 23 123

3

1 2 3 12 13 23 123
1 1 1

( , , , , , , )

( ) (  casualties with 3 firers)
( , , | , , | ) ( ) ( ) ( )

( , , ) A B C
l l l l l l l S A B C

l l l l l l l l

P l P l
n l l l l l l l P l P l P l

n l l l∈
+ + + + + + =

=

= ∑          (3.12) 

 

An example with i=2 firers and j=3 targets is illustrated in Table 3.2. Suppose that 

P1(l) values are found by Equation (3.8) as 0.4096, 0.4944, 0.0931, 0.0029 for 

l=0,1,2,3, and they are the same for the two firers. Consider the rows where lA=2 

and lB=1, generating the patterns {1,0|1} and {2,1|0}. Using Equation (3.10), the 

number of repetitions is n(1,0|1)=6 for the first pattern and n(2,1|0)=3 for the 

second. Thus, n(2,1)=6+3=9. According to Equation (3.12), the joint probability 

P1(2)P1(1)=0.0460 is distributed between P2(2) and P2(3) with proportions 6/9 and 

3/9, resulting in the values 0.0307 and 0.0153, respectively. After processing all 

patterns in this manner, P2(2) and P2(3) are found as 0.3035 and 0.0422. Note that, 

lA=2, lB=1 and lA=1, lB=2 are treated separately to account for firer arrangements. 

 



 

  
 
 
 

 

Table 3.2 Area fire casualty probabilities for i=2, j=3 when FA locations are unknown 

(l1, l2 | l12) lA lB n(l1, l2 | l12) n(lA, lB) P1(lA)P1(lB) P2(0) P2(1) P2(2) P2(3) 
(0, 0 | 3) 3 3 1 1 0.0000    0.0000 
(1, 0 | 2) 3 2 3 3 0.0003    0.0003 
(2, 0 | 1) 3 1 3 3 0.0014    0.0014 
(3, 0 | 0) 3 0 1 1 0.0012    0.0012 
(0, 1 | 2) 2 3 3 3 0.0003    0.0003 
(0, 0 | 2) 2 2 3 9 0.0087   0.0029  
(1, 1 | 1) 2 2 6 9 0.0087    0.0058 
(1, 0 | 1) 2 1 6 9 0.0460   0.0307  
(2, 1 | 0) 2 1 3 9 0.0460    0.0153 
(2, 0 | 0) 2 0 3 3 0.0381   0.0381  
(0, 2 | 1) 1 3 3 3 0.0014    0.0014 
(0, 1 | 1) 1 2 6 9 0.0460   0.0307  
(1, 2 | 0) 1 2 3 9 0.0460    0.0153 
(0, 0 | 1) 1 1 3 9 0.0244  0.0815   
(1, 1 | 0) 1 1 6 9 0.0244   0.1630  
(1, 0 | 0) 1 0 3 3 0.2025  0.2025   
(0, 3 | 0) 0 3 1 1 0.0012    0.0012 
(0, 2 | 0) 0 2 3 3 0.0381   0.0381  
(0, 1 | 0) 0 1 3 3 0.2025  0.2025   
(0, 0 | 0) 0 0 1 1 0.1678 0.1678    

Total   64   0.1678 0.4865 0.3035 0.0422 

27



 

 28 
 
 
 

 

3.2.3 Salvo Treatment in Homogeneous Combat 

 

State transition probabilities in DSM are calculated based on the binomial 

processes discussed in the previous two subsections. DSM allows multiple 

casualties in a salvo in both forces. Possible states that can be reached from state 

(t,i,j) in the case of directed fire are as follows: 

 

(t,i,j)→ (t+1,i,j), (t+1,i-1,j), (t+1,i,j-1), (t+1,i-1,j-1), (t+1,i-2,j), (t+1,i,j-2), 

 (t+1,i-2,j-1), (t+1,i-1,j-2), (t+1,i-2,j-2),…, (t+1,max{i-j,0},max{j-i,0}) 

 

If area fire is involved, all the states down to (t+1,0,0) can also be reached. 

 

The state transition (t,i,j)→ (t+1,i-∆i,j-∆j) indicates that there are ∆i blue  

casualties with probability Pj
B(∆i), and ∆j red casualties with probability Pi

R(∆j) in 

a duel of i blue versus j red combatants. Regardless of the fire type, the 

corresponding state transition probability is found as 

 

P((t,i,j)→ (t+1,i-∆i,j-∆j))= Pj
B(∆i) Pi

R(∆j)                      (3.13)  

 

As an example, Figure 3.2 illustrates all possible state transitions from the state 

(t,4,3) under directed fire. Casualty probabilities for the red unit with pk:B,R=0.2 are 

taken from Table 3.1. Let casualty probabilities for the blue unit with pk:R,B=0.3 be 

0.3430, 0.4899, 0.1569, 0.0101, 0.0000 for 0,1,2,3 and 4 casualties, respectively. 

The probability of staying in the same state is the probability of no blue or red 

casualties, 0.3430 (0.4096) = 0.1405. The probability of transition to state (t+1,2,2) 

is the probability of having two blue casualties and one red casualty, which is 

0.1569 (0.4637) = 0.0728. Since we have only 3 red combatants, more than 3 

casualties in blue are impossible as shown in the last row of Figure 3.2. Transitions 

from a lower state such as (t,2,1) to an upper state such as (t,3,2) would also be 

impossible. 
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    Red  

   P(0 cas.) P(1 cas.) P(2 cas.) P(3 cas.) 

   0.4096 0.4637 0.1203 0.0064 

Blue  j=3 j=2 j=1 j=0 

P(0 cas.) 0.3430 i=4 0.140493 0.159050 0.041262 0.002195 

P(1 cas.) 0.4899 i=3 0.200678 0.227186 0.058938 0.003136 

P(2 cas.) 0.1569 i=2 0.064282 0.072773 0.018879 0.001004 

P(3 cas.) 0.0101 i=1 0.004147 0.004695 0.001218 0.000065 

P(4 cas.) 0.0000 i=0 0.000000 0.000000 0.000000 0.000000 

 

Figure 3.2 State transition probabilities from the state (t,4,3) 

 
Given the initial condition P(0,m,n) = 1, the state probabilities for subsequent 

salvos when both blue and red units are subject to directed fire are calculated as 
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The state probabilities under area fire are: 
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Because of the initial condition P(0,m,n) = 1, the state probabilities P(1,i,j), 

i=0,1,…, m=4, j=0,1,…, n=3 at the end of the first salvo are the same as the 

transition probabilities from the state (0,4,3) given in Figure 3.2. Marginal 

probabilities of having 4,3,2,1 blue combatants alive at the end of the first salvo 

are 0.343000, 0.489938, 0.156938, and 0.010125. Therefore, expected value and 

variance of the number of surviving blue combatants are found as 3.165813 and 

0.512944. The same values for the red unit are 2.276504 and 0.4790442, 

respectively. 

 

State probabilities P(2,i,j) for the second salvo are given in Figure 3.3. The 

probability of transition from state (1,4,3) to (2,3,2) is 0.227186 in Figure 3.2. The 

contribution of this transition to P(2,3,2) is 0.227186 P(1,4,3) = 0.031918, as 

P(1,4,3) = 0.140493. Similarly, contributions of transitions to state (2,3,2) from 
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states (1,4,2), (1,3,3) and (1,3,2) are found as 0.028828, 0.028696, and 0.056996. 

In Figure 3.3, P(2,3,2) = 0.146438 is found by adding up all four contributions. 
 

 
  Red  

  j=3 j=2 j=1 j=0 

i=4 0.019738 0.054267 0.056049 0.027147 

i=3 0.063436 0.146438 0.122257 0.044006 

i=2 0.075235 0.139552 0.089591 0.021992 

i=1 0.038825 0.055087 0.025292 0.003748 

Blue 

i=0 0.007517 0.007517 0.002165 0.000141 

 

Figure 3.3 State probabilities at the end of the second salvo 

 
Expected number of blue and red combatants for the first ten salvos and respective 

variances are given in Table 3.3. As the salvo number increases, the rate of change 

in the expected number of combatants decreases indicating the convergence. The 

variance increases as the diffusion from the initial state takes effect. It would start 

to decrease eventually as the absorbing states start getting higher probabilities. It is 

also possible to find the confidence intervals around the expected values for a 

given confidence level.  

 
Table 3.3 Results for the first ten salvos 

 Blue Red 

Salvo Expected Variance Expected Variance 

0 4.000000 0.000000 3.000000 0.000000 

1 3.165813 0.512944 2.276504 0.479042 

2 2.532910 0.913262 1.715330 0.807202 

3 2.072989 1.254982 1.317807 0.958030 

4 1.768699 1.497381 1.067736 0.997139 

5 1.583666 1.651056 0.921509 1.004077 

6 1.476729 1.746568 0.839240 1.007064 

7 1.416499 1.805713 0.793784 1.010683 

8 1.382942 1.842004 0.768834 1.014282 

9 1.364299 1.863985 0.755151 1.017173 

10 1.353935 1.877126 0.747631 1.019214 
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3.3 DSM for Heterogeneous Combat 
 
Combat between more than two units each having a small number of combatants is 

modeled as a multi-dimensional death process. Let the state definition be (t, i1,…, 

iI, j1,…, jJ) where t = 0,1,… is the discrete time counter denoting the salvo number, 

i1=0,1,…,m1,…, iI = 0,1,…,mI and j1=0,1,…,n1,…, jJ = 0,1,…,nJ be the number of 

combatants remaining in blue and red units at the end of salvo t, respectively. Let 

P(t, i1,…, iI, j1,…, jJ) be the probability of having i1,…, iI blue and j1,…, jJ red 

combatants at the end of salvo t. The initial condition is P(0,m1,…,mI,n1,…, nJ)=1. 

 

3.3.1 Directed Fire in Heterogeneous Combat 

 
If there are I blue units with i1, i2,…, iI firers shooting at j targets in a certain red 

unit, the number of different arrangements is 1 2 Ii i ij j jL . 

 

In particular, consider a combat situation where there are i1 and i2 firers in two 

different units shooting independently at j=3 identical targets with SSKP values pk1 

and pk2. Let {A1A2|B1B2|C1C2} be the pattern denoting the number of firers engaged 

with each of the j=3 targets such that A1+ B1+ C1=i1 and A2+ B2+ C2=i2. For i1=4 

and i2=3, an example pattern is {12|21|10}. The total number of repetitions for a 

pattern n({A1A2|B1B2|C1C2}) is found as in Section 3.2.1 for the homogeneous 

combat case by considering both target and firer engagements. Given a pattern 

{A1A2|B1B2|C1C2}, the probability of having l = 0,1,2,3 casualties depends on 

whether or not the first target subject to A1 shots from the first unit and A2 shots 

from the second unit is killed, and so on. Then, simplifying pk1 and pk2 as p1 and p2, 
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Hence, the probability of l casualties under fire from two units is  

 

{ }( ) { }( )
1 2 1 2

1 1 1 1
2 2 2 2

1 2 1 2 1 2
, 1 2 1 2 1 2

| |
( ) . | | |i i i i

A B C i
A B C i

n A A B B C C
P l P l cas A A B B C C

j j+ + =
+ + =

= ∑   (3.17) 

 

An example where i1=4, i2=3 and j=3 with p1=0.2 and p2=0.3 is illustrated in Table 

3.4. The probability of two casualties for the pattern {21|11|11} is calculated as 

P(2 cas.|{21|11|11})=2[1-0.82(0.7)][1-0.8(0.7)][0.8(0.7)]+[0.82(0.7)][1-0.8(0.7)][1-

0.8(0.7)]=0.358758. This pattern contributes to the overall 2 red casualties with 

0.358758 (216/2187) = 0.035433. 

 

The analysis so far in this subsection is carried out from the viewpoint of firers. 

The same phenomenon could also be analyzed from the viewpoint of targets. 

When we consider the above example from the targets’ perspective, there are two 

enemy units creating casualties (casualty probabilities for the first blue unit are 

given in Table 3.1).  The overall attrition process of targets is simply the 

convolution of the two attrition processes due to different firing units. This 

approach is similar to the one we use for the area fire. If we apply the same 

analysis presented in Section 3.2.2 and summarized by Equation (3.12), we obtain 

the results given in Table 3.5. The overall casualty probabilities calculated in 

Tables 3.4 and 3.5 are exactly the same. This means that we can use either 

viewpoint in combining multiple units. 
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Table 3.4 Casualty probabilities for j=3 when i1=4, i2=3, p1=0.2, p2=0.3 
 

{A1A2|B1B2|C1C} n({A1A2|B1B2|C1C2}) P4,3(0) P4,3(1) P4,3(2) P4,3(3) 

{43|00|00} 3 0.1405 0.8595 0.0000 0.0000 

{40|03|00} 6 0.1405 0.4716 0.3879 0.0000 

{42|01|00} 18 0.1405 0.6197 0.2398 0.0000 

{41|02|00} 18 0.1405 0.4957 0.3638 0.0000 

{40|02|01} 18 0.1405 0.4089 0.3602 0.0903 

{41|01|01} 18 0.1405 0.4699 0.3254 0.0642 

{33|10|00} 24 0.1405 0.6946 0.1649 0.0000 

{30|13|00} 24 0.1405 0.5054 0.3541 0.0000 

{30|10|03} 24 0.1405 0.4381 0.3572 0.0641 

{32|11|00} 72 0.1405 0.5299 0.3296 0.0000 

{32|10|01} 72 0.1405 0.5148 0.2997 0.0449 

{31|12|00} 72 0.1405 0.4694 0.3901 0.0000 

{31|10|02} 72 0.1405 0.4329 0.3612 0.0654 

{30|12|01} 72 0.1405 0.4120 0.3585 0.0890 

{30|11|02} 72 0.1405 0.3905 0.3595 0.1095 

{31|11|01} 144 0.1405 0.4221 0.3527 0.0847 

{23|20|00} 36 0.1405 0.5785 0.2810 0.0000 

{20|20|03} 18 0.1405 0.4272 0.3472 0.0851 

{22|21|00} 108 0.1405 0.4806 0.3789 0.0000 

{22|20|01} 108 0.1405 0.4467 0.3386 0.0741 

{21|20|02} 108 0.1405 0.3984 0.3598 0.1013 

{21|21|01} 108 0.1405 0.4064 0.3617 0.0914 

{23|10|10} 36 0.1405 0.5698 0.2585 0.0312 

{20|13|10} 72 0.1405 0.4857 0.3216 0.0522 

{22|11|10} 216 0.1405 0.4530 0.3461 0.0604 

{20|12|11} 216 0.1405 0.4073 0.3559 0.0963 

{21|12|10} 216 0.1405 0.4261 0.3662 0.0671 

{21|11|11} 216 0.1405 0.3939 0.3588 0.1069 

Total 2187 0.1405 0.4451 0.3479 0.0665 

 



 

  
 
 
 

 

Table 3.5 Casualty probabilities for j=3 when i1=4, i2=3, p1=0.2, p2=0.3 using area fire approach (target viewpoint) 
 

(l1, l2| l12) lA lB P4(lA)P3(lB) n(l1, l2| l12) n(lA, lB) P4,3(0) P4,3(1) P4,3(2) P4,3(3) 
(0,0|3) 3 3 0.0000 1 1    0.0000 
(1,0|2) 3 2 0.0009 3 3    0.0009 
(2,0|1) 3 1 0.0032 3 3    0.0032 
(3,0|0) 3 0 0.0022 1 1    0.0022 
(0,1|2) 2 3 0.0007 3 3    0.0007 
(0,0|2) 2 2 0.0173 3 9   0.0058  
(1,1|1) 2 2 0.0173 6 9    0.0115 
(1,0|1) 2 1 0.0610 6 9   0.0407  
(2,1|0) 2 1 0.0610 3 9    0.0203 
(2,0|0) 2 0 0.0413 3 3    0.0413 
(0,2|1) 1 3 0.0028 3 3    0.0028 
(0,1|1) 1 2 0.0668 6 9   0.0445  
(1,2|0) 1 2 0.0668 3 9    0.0223 
(0,0|1) 1 1 0.2351 3 9  0.0784   
(1,1|0) 1 1 0.2351 6 9   0.01567  
(1,0|0) 1 0 0.1591 3 3  0.1591   
(0,3|0) 0 3 0.0025 1 1    0.0025 
(0,2|0) 0 2 0.0590 3 3   0.0590  
(0,1|0) 0 1 0.2077 3 3  0.2077   
(0,0|0) 0 0 0.1405 1 1 0.1405    
Total    64  0.1405 0.4451 0.3479 0.0665 

34
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3.3.2 Area Fire in Heterogeneous Combat 

 
Consider the case where there are two different area firing blue units with i1, i2 

firers, and there are j red targets. Suppose Pk(l) = P(l casualties with k firers) have 

already been calculated independently for k = i1,i2 using Equation (3.12). When 

two units are combined, the pattern (l1, l2| l12) represents the number of casualties 

where l1 is the number of kills only by the first unit, l12 denotes the number of 

overkills by the first and second units. Let n(l1, l2| l12) denote the number of 

casualty arrangements and n(lA, lB) be the total number of repetitions as defined in 

Section 3.2.2. With the same definition of S2, the probability of l casualties under 

the simultaneous fire of two units is calculated as 
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Note that here the area fire computations are carried out twice in a hierarchical 

manner. First, Equation (3.12) is used to find Pi1(lA) by combining firers of the first 

unit, and this is repeated independently for the second unit. Then, the two units are 

combined to find overall casualty probabilities Pi1,i2(l). An example is given in 

Table 3.5 as already mentioned in Section 3.3.1. 

 

3.3.3 Mixed Fire in Heterogeneous Combat 

 
Suppose that, of the blue units combined against a red unit, some employ directed 

fire and others area fire. The approach proposed in Section 3.3.2 for combining 

multiple area firing units can also be used for combining these mixed units. We 

owe this to the equivalence of the combined casualty probabilities under the two 

viewpoints, as explained at the end of Section 3.3.1. For example, if the first unit 

employs directed fire, then Pi1(lA) = P(lA casualties with i1 firers) must be 

calculated by Equation (3.7), otherwise by Equation (3.12). In other words, the fire 

type affects only the individual probabilities in the convolution Pi1(lA) Pi2(lB) but, 

given these, the combined casualty probabilities Pi1,i2(l) are the same. 
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3.3.4 Salvo Treatment in Heterogeneous Combat 

 
Let us assume that there are I blue units B1,…, BI with m1,…, mI combatants each, 

and J red units R1,…, RJ with n1,…, nJ combatants each. The state space is then 

denoted by (t,i1,…, iI, j1,…, jJ) resulting in (m1+1)⋅⋅⋅(mI+1)(n1+1)⋅⋅⋅(nJ+1) many 

states. The initial condition is P(0, m1,…, mI, n1,…, nJ) = 1. 

 

It is possible for a blue unit to divide its force among multiple red units. Let 

xB1,R1,…,xB1,RJ denote the allocation fractions for the first blue unit. These fractions 

might be specified as part of the scenario. We know that xB1,R1+…+ xB1,RJ ≤ 1 

meaning that B1 can reserve a certain fraction of its force. 

 
 

 

 

 

 

 

Figure 3.4 Example heterogeneous combat situation 

 

An example heterogeneous combat situation is illustrated in Figure 3.4. There are 

two blue units, B1 with 3 combatants and B2 with 2 combatants, firing at a red unit 

R with 3 combatants. B2 employs area fire, and all remaining fires are directed. R 

divides its force evenly between B1 and B2. The state space notation is (t,i1, i2, j) 

and we have 48 states in each salvo. The allocations are xB1,R = 1.0, xB2,R = 1.0, 

xR,B1=0.5, and xR,B2=0.5. 

 

In salvo t, red unit R with j combatants is subject to attrition due to blue units 

allocated to R with fractions xB1,R,…, xBI,R. We have shown in the previous sections 

how to find the probabilities of ∆j casualties in R under the fire of [xB1,R ⋅ i1] firers 

B1 

B2 

R

i1=3 

i2=2 

j=3 

Directed, SSKP=0.2 

Directed, SSKP=0.3, 50% allocated

Directed, SSKP=0.05, 50% allocated 

Area, SSKP=0.1, ξ=0.16
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of B1 and [xB2,R ⋅ i2] firers of B2. However, the number of allocated firers given in 

brackets should be integers. Without loss of generality, let us assume that [xB1,R ⋅ i1] 

is not an integer. Let 1i
(

= ⎣ xB1,R ⋅ i1⎦ and 1i
)

= ⎡ xB1,R ⋅ i1⎤. Let 1iw) = xB1,R ⋅ i1. 1i
(

, and 

1iw(  = 1i
)

.xB1,R ⋅ i1 be the interpolation weights. Then, the probability of R1 having ∆j 

casualties under attack by B1 is calculated as 

 

PR
i1

 ( ∆j | [xB1,R ⋅ i1] ) = 1iw(
1 ( )R

iP j∆(  + 1iw)
1 ( )R

iP j∆)            (3.19) 

 

Generalizing the above equation, we have 

 

PR
i1,…,iI

 (∆j) =  PR
i1,…,iI

 ( ∆j | [xB1,R ⋅ i1],…, [xBI,R ⋅ iI] ) = 

1iw( ⋅⋅⋅ i lw(
1,..., ( )R

i i lP j∆( ( + ⋅⋅⋅ + 1iw) ⋅⋅⋅ i lw)
1,..., ( )R

i i lP j∆) )         (3.20) 

 

In the example of Figure 3.4, R divides its j=3 firers evenly between B1 and B2. Let 

us consider the attrition in B1. We have j
(

 = ⎣0.5(3)⎦ =1 and j
)

 = ⎡0.5(3)⎤ =2, and 

jw( = 0.5 = jw) . Since the probability of one casualty in B1 is 0.450000 when j=2, 

and 0.300000 when j=1, PB1
3(1)=(0.5)0.450000 + (0.5)0.300000 = 0.375000. 

Similarly, PB2
3(1)=(0.5)0.096250 + (0.5)0.050000 = 0.073125. 

 

The state transition (t, i1,…, iI, j1,…, jJ)→ (t+1, i1-∆i1,…, iI -∆iI, j1-∆j1,…,jJ -∆jJ) 

indicates that there are ∆i1 casualties in B1, ∆i2 casualties in B2, and so on. The 

corresponding state transition probability is 
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In our example, suppose an area firing combatant of B2 has an effective radius of 

r=40, and the region containing j=3 red targets has radius R=100. The casualty 

probabilities for unit R are found by Equation (3.8) as PR
1(0)=0.952764, 
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PR
1(1)=0.046476, PR

1(2)=0.000756, PR
1(3)=0.000004. When we combine two 

such firers, the effect of B2 alone yields PR
2(0)=0.907759, PR

2(1)=0.089282, 

PR
2(2)=0.002927, PR

2(3)=0.000032 according to Equation (3.12). The effect of B1 

individually with 3 firers is calculated by Equation (3.7) as PR
3(0)=0.512000, 

PR
3(1)=0.416889, PR

3(2)=0.069333, PR
3(3)=0.001778. If we combine the effects of 

B1 and B2 by Equation (3.18), the red casualty probabilities are PR
3,2(0)=0.464773, 

PR
3,2(1)=0.436554, PR

3,2(2)=0.094258, PR
3,2(3)=0.004415. 

 

Let us now consider the state transition (t,3,2,3)→ (t+1,2,1,1), meaning that one B1 

casualty, one B2 casualty and two R casualties occur in salvo t. Recall that, 

PB1
3(1)=0.375000, PB2

3(1)=0.073125, and PR
3,2(2)=0.094258. Hence, 

 
P((t,3,2,3)→ (t+1,2,1,1)) = PB1

3(1) PB2
3(1) PR

3,2(2) = 0.002585. 

 
The state probabilities for the first salvo, which can be seen in Figure 3.5, are the 

same as the transition probabilities from the initial state due to the initial condition 

P(0, m1,…, mI, n1,…, nJ) = 1. State probabilities for subsequent salvos are 

determined as 
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Let us consider calculation of the state probability P(2,2,1,1) in our example. The 

transition probabilities to this state are multiplied with respective state 

probabilities of the first salvo to determine individual contributions. For example, 

contribution of (1,3,2,3) to (2,2,1,1) is P(1,3,2,3) P((1,3,2,3)→ (2,2,1,1)) = 

0.256145(0.002585) = 0.000662. When all such contributions are added, the state 

probability P(2,2,1,1) = 0.012824 is found as shown in Figure 3.6. Expected 

number and respective variances of number of survivors in blue units and red unit 

for the first ten salvos are given in Table 3.6. 
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Blue 1:  i1=3  Red  

  j=3 j=2 j=1 j=0 

 i2=2 0.256145 0.240593 0.051948 0.002433 

Blue 2 i2=1 0.020222 0.018994 0.004101 0.000192 

 i2=0 0.000173 0.000162 0.000035 0.000002 

      

Blue 1:  i1=2  Red  

  j=3 j=2 j=1 j=0 

 i2=2 0.161436 0.151634 0.032740 0.001534 

Blue 2 i2=1 0.012745 0.011971 0.002585 0.000121 

 i2=0 0.000109 0.000102 0.000022 0.000001 

      

Blue 1:  i1=1  Red  

  j=3 j=2 j=1 j=0 

 i2=2 0.012915 0.012131 0.002619 0.000123 

Blue 2 i2=1 0.001020 0.000958 0.000207 0.000010 

 i2=0 0.000009 0.000008 0.000002 0.000000 

      

 Blue 1:  i1=0  Red  

  j=3 j=2 j=1 j=0 

 i2=2 0.000000 0.000000 0.000000 0.000000 

Blue 2 i2=1 0.000000 0.000000 0.000000 0.000000 

 i2=0 0.000000 0.000000 0.000000 0.000000 

 

Figure 3.5 State probabilities at the end of the first salvo 
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Blue 1:  i1=3  Red  

  j=3 j=2 j=1 j=0 

 i2=2 0.065610 0.138426 0.106918 0.035692 

Blue 2 i2=1 0.010616 0.019933 0.013622 0.003864 

 i2=0 0.000530 0.000852 0.000492 0.000109 

      

Blue 1:  i1=2  Red  

  j=3 j=2 j=1 j=0 

 i2=2 0.093040 0.165145 0.101389 0.024036 

Blue 2 i2=1 0.015055 0.023675 0.012824 0.002586 

 i2=0 0.000751 0.001005 0.000459 0.000073 

      

Blue 1:  i1=1  Red  

  j=3 j=2 j=1 j=0 

 i2=2 0.041705 0.058073 0.026066 0.003951 

Blue 2 i2=1 0.006748 0.008312 0.003282 0.000421 

 i2=0 0.000337 0.000352 0.000117 0.000012 

      

 Blue 1:  i1=0  Red  

  j=3 j=2 j=1 j=0 

 i2=2 0.005473 0.005091 0.001369 0.000116 

Blue 2 i2=1 0.000886 0.000727 0.000167 0.000011 

 i2=0 0.000044 0.000031 0.000006 0.000000 

 

Figure 3.6 State probabilities at the end of the second salvo 
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Table 3.6 Results for the first ten salvos 

 Blue 1 Blue 2 Red 

Salvo Expected Variance Expected Variance Expected Variance 

0 3.000000 0.000000 2.000000 0.000000 3.000000 0.000000 

1 2.565000 0.305775 1.925625 0.070093 2.361684 0.445876 

2 2.219444 0.553571 1.866931 0.125699 1.832337 0.762890 

3 1.955257 0.763204 1.821557 0.168868 1.416341 0.924106 

4 1.765855 0.922107 1.786745 0.202334 1.114085 0.954461 

5 1.636314 1.037463 1.759650 0.228842 0.904862 0.923533 

6 1.550316 1.120050 1.737932 0.250571 0.763215 0.876079 

7 1.494209 1.178646 1.719898 0.269064 0.667601 0.830500 

8 1.457937 1.219800 1.704404 0.285351 0.602324 0.791651 

9 1.434574 1.248394 1.690701 0.300097 0.556753 0.759398 

10 1.419532 1.268066 1.678305 0.313723 0.523950 0.732382 

 
 

 

3.4 Extensions of DSM 
 
Two major and two minor extensions are presented in this section. Major 

extensions are concerned with noncombat loss and the engagement process for 

handling units’ different rates of fire. They involve additional multiple single-

dimensional discrete-time processes linked to DSM. Minor extensions are small 

changes in SSKPs to treat synergy effects, and shifts in states of military units that 

are subject to reinforcements. 

 

3.4.1 Noncombat Loss 

 
There are two sources of attrition in combat, combat loss and noncombat loss. The 

former is due to the opposing force’s fire; it is the result of the interaction between 

two sides. The latter does not involve such an interaction. Noncombat loss occurs 

due to reasons such as illness, accidents and desertions. Such factors cause an 

additional decrease in the force level of each side. This decrease, however, 

depends only on own force levels. 
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Noncombat loss can also be handled in DSM by means of the binomial process. 

We assume that noncombat loss probabilities (or rates), qB1,…, qRJ are specified 

for all military units and kept constant for all salvos. If a military unit is not subject 

to noncombat loss, its noncombat loss probability is zero. Single-dimensional 

noncombat loss transition probabilities for blue unit B1 are calculated as 
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The marginal probability distribution of B1 after combat loss, PB1(t,i1), i1=1,…, m1, 

can be determined from the joint state probabilities P(t, i1,…, iI, j1,…, jJ). If there 

is noncombat loss, the single-dimensional state probabilities for B1 can be updated 

as 
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Let Q(t, i1,…, iI, j1,…, jJ) be the joint state probabilities after noncombat loss at the 

end of salvo t. Then, 

 
        ( ) ( ) ( ) ( ) ( )JRRIBBJI jtQjtQitQitQjjiitQ

JI
,,,,,,,,,, 1111 11

ΛΛΚΚ =     (3.25) 

 
In order to incorporate noncombat loss in DSM, in the combat loss state 

probability calculation given by Equation (3.22), the state probabilities of the 

previous salvo, P(t, i1 + ∆i1,…, jJ + ∆jJ), should be replaced with the probabilities 

after noncombat loss, Q(t, i1 + ∆i1,…, jJ  + ∆jJ), except for the first salvo. 

 

3.4.2 Engagement Process 

 
An assumption of DSM so far is that all combatants of a military unit fire in every 

salvo. Target detection time, weapon preparation time and rate of fire vary for 

different weapon systems, making perfect synchronization impossible. If we 

determine the salvo duration in terms of the most frequently firing weapon system, 

we can define an engagement probability for slower systems. For example, 

engagement probability would be 0.25 for a system that can fire once in every four 
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salvos. Furthermore, command control problems and fatigue in weapon systems 

may give rise to stochastic engagement even if technical capabilities permit to fire 

in each salvo. 

 

Engagement process can also be used to model combat in alternating volleys as 

suggested by Helmbold (1968) rather than simultaneous salvos. This can be 

achieved by setting one side’s engagement probability to zero, while setting the 

other's to one. Other variations are also possible since engagement probabilities 

can be different for different units. 

 

Let eB1,…, eRJ be engagement probabilities of military units. If all combatants of a 

military unit fire in every salvo, its engagement probability is one. Engagement 

probabilities induce independent single-dimensional binomial processes as in 

noncombat loss. However, combatants that do not fire stay in combat and are 

subject to attrition. Hence, the engagement process affects all the targets although 

the number of firers may decrease. 

 

In plain DSM, R1 with j1 combatants is subject to attrition due to blue units 

allocated to R1 with the fractions xB1,R,…, xBI,R. Let us consider the interaction of 

B1 and R1. In plain DSM, only 1i
(

= ⎣ xB1,R ⋅ i1⎦ and 1i
)

= ⎡ xB1,R ⋅ i1⎤ blue combatants 

are considered in calculating the combat loss of R1. With the engagement process, 

one has to consider 1 1 1, , 1,...,1,0i i i −
) ( (

 with respective probabilities calculated from 

the binomial engagement distribution. 

 

The effect of the engagement process in our salvo calculations can be reflected in 

Equation (3.20), which is modified as 
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The state probabilities for the first salvo are calculated using the combat loss 

probabilities after engagement. As the battle moves on to the second salvo, 

noncombat loss can also be applied. The reader may refer to the technical report by 

Kandiller et al. (2002) for an example where both engagement process and 

noncombat loss are considered. 

 

3.4.3 Reinforcements 

 
Jaiswal et al. (1997) modeled combat between two units under various rates of 

continuous reinforcement. We consider discrete reinforcements that simply extend 

dimension of the state space and incur a shift in the state probabilities. In our 

example, suppose R, initially having j=3 combatants, is reinforced by two new 

combatants at the end of salvo t. Then, 

 

n ← 3 + 2 = 5, P(t, i1, i2, j+2) ← P(t, i1, i2, j), and P(t, i1, i2, 1) = P(t, i1, i2, 0) = 0 

 

3.4.4 Division and Combination Effects 

 
Force division may yield a reduction in the attrition potentials whereas force 

combination may result in an increase in the potential due to synergy. Let λR 

denote the fractional loss in attrition power of R when it divides its force between 

two blue units as in our example. The SSKPs of R, pk:R,B1 and pk:R,B2, can be 

decreased by λR if the force division effect is to be observed. Let FD
BRkp

1,:  and 

FD
BRkp

2,: be the SSKPs after force division. Then, 

 

    ( )
11 ,:,: λ1 BRkR

FD
BRk pp −= and ( )

22 ,:,: λ1 BRkR
FD

BRk pp −=      (3.27) 

 

Let φB1 denote the fractional gain in attrition power of B1 combatants when B1 and 

B2 are combined against R. The SSKPs after force combination are 

 

( )( )RBkB
FC

RBk pp ,:,: 111
111 −−−= φ  and ( )( )RBkB

FC
RBk pp ,:,: 222

111 −−−= φ .   (3.28) 
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CHAPTER 4 

 
 

DSM IMPLEMENTATION AND EXPERIMENTATION 

 
 
 
 
Even though numeric solutions can be obtained by continuous time stochastic 

models available in the literature, they require excessive computation time and can 

handle very small force sizes most of the time. While we focus on the 

implementation of the model developed by Kandiller et al. (2002), we intend to 

handle larger force levels and a variety of weapon systems in combat simulation. 

Significant features of the DSM, namely heterogeneity of forces, application of 

directed, area and mixed fire, force allocation, noncombat loss and engagement 

process are all included in our implementation. 

 

The DSM code is written in C++, using MS Visual C++ 6.0 integrated 

development environment. Data structures of the model are based on the dynamic 

arrays, created by utilizing the pointer abilities provided by the C++ programming 

language. The executable is a Windows application, however, with appropriate 

modifications to the source code, it can be made operating system-independent. 

Standard input, namely a simple DOS console entry through keyboard is employed 

in the executable of the model. The salvo statistics, including mean and variance of 

force levels, survival probabilities at the end of each salvo, and the computation 

time statistics for the combat model are stored in output files. These statistics are 

output to two separate files, one for force level statistics for each salvo, and the 
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other for final force levels and CPU time results. The results are easily interpreted 

by means of Excel sheets. 

 

Recall that we also intend to estimate ARCs for Lanchester model, such that the 

two models will yield similar figures for force levels. Therefore we also 

implemented a code for SLM, which is more straightforward. The input, output 

methods and executable format are the same as those used for DSM. 

 

In the following sections, DSM and SLM implementation stages are described, 

followed by the results of experimentation with these models. 

 

4.1 DSM Implementation  
 
DSM implementation is based on the following proposed design. Initially, SSKPs 

are updated considering the force division and combination effects. Then, 

engagement probabilities for synchronization of different weapon systems are 

determined according to their firing rates. Salvo length and the desired combat 

duration are needed to determine the total number of salvos. In every salvo, the 

engagement process, the combat loss process, and the noncombat loss process are 

applied in this respective order. If a unit is reinforced at the end of a salvo, a state 

shift is made accordingly at the beginning of the next salvo. The salvo sequence is 

terminated when either the total number of salvos is reached or the expected 

number of survivors in any unit falls below a specified threshold value. 

 

Our implementation is consistent with the above design, except for the 

reinforcement state shift and threshold specification steps. These are excluded for 

the sake of simplicity in input entry and output analysis, though they could easily 

be incorporated in the code. Also, the total number of salvos is a direct input. 

Following is a brief statement of the DSM algorithm. 

 

S-0. Data input for the combat and the forces. These are:  

• The number of different military units (I, J),  
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• Total number of salvos,  

• The initial number of combatants in each military unit (mi, i=1,…,I, 

nj, j=1,…,J),  

• The fire type of each unit (directed or area),  

• The SSKPs of units (pk:Bi,Rj,…, pk:Rj,Bi),  

• Fatal area radius / total area radius (r/R) for units employing area 

fire, 

• Engagement probabilities of units (eB1,…, eRJ),  

• Noncombat loss probabilities of units (qB1,…, qRJ), and  

• Allocation fractions of units (xBi,Rj, xRj,Bi).  

A screenshot of input entry is given in Figure 4.1. 

S-1. Preparation (Prep.) for the salvo sequence. This involves: 

• Computation of the casualty probabilities for every possible state, 

• Application of the engagement process, attained by adjusting the 

casualty probabilities according to the engagement probabilities of 

units, 

• Creation of the matrix of transition probabilities from the initial 

state, 

• Creation of the matrix of noncombat loss probabilities. 

S-2. Salvo sequence, which continues until the total number of salvos is 

reached. Each salvo includes: 

• Application of the combat loss processes using the matrix of 

transition probabilities formed in S-1, 

• Application of the noncombat loss processes using the matrix of 

noncombat loss probabilities formed in S-1, 

• File output of the salvo statistics, namely the survival probabilities, 

expected number and variance of number of survivors for each 

military unit. 

S-3. File output for final force levels and computation time statistics. 

End {DSM}.       
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Stage S-0 is straightforward, only appropriate data entry by keyboard input is 

required. In stage S-1, the crucial calculations for combat salvo simulation are 

completed. The casualty probability computations are made using Equations (3.7), 

(3.12), (3.17) and (3.18), based on the fire types of military units in combat. Force 

allocation effects on these probabilities are reflected through Equation (3.20). 

Engagement process is applied utilizing Equation (3.26). The combat loss 

transition probability and noncombat loss probability matrices are created via 

Equations (3.21) and (3.23), respectively. S-2 is the salvo simulation stage. 

Combat loss and noncombat loss processes are applied through Equations (3.22) 

and (3.25). Marginal probabilities of surviving combatants for each military unit 

are listed, as well as the expected value and variance of the number of surviving 

combatants in the output file "salvos.txt". Stage S-3 ends the simulation by writing 

the final force level, namely the last salvo statistics and CPU time statistics in file 

"stats.txt". CPU time statistics include the time used in stage S-1 and individual 

salvo play times elapsed in stage S-2. Sample file output for the input in Figure 4.1 

are presented in Appendix A. 

 

 
Figure 4.1 An example of data input for DSM executable 

 

 



 

 49 
 
 
 

 

4.2 SLM Implementation  
 
In addition to experimentation with DSM, we try to estimate ARCs used in SLM, 

such that DSM for homogeneous combat and SLM will yield similar figures for 

force levels throughout the combat. This is attempted through comparison of 

expected force levels at the end of each DSM salvo with the respective force levels 

obtained by SLM using estimated ARCs. 

 

The comparison of these models is based on the following equivalence, where we 

describe the case when the red unit employs directed fire against the blue unit. Let 

X be a Bernoulli random variable indicating whether or not a single blue target is 

killed by a single firer in a DSM salvo, i.e. 

 
( ) ( )1,if killed in one salvo, , ;

0,otherwise;
DSM DSMX Ber p E X p

X
⎧ =

= ⎨
⎩

:
 

 
where pDSM is the SSKP of the red firer, namely  pk:R,B. Suppose we divide a DSM 

salvo into 1/∆t subintervals, each of length ∆t. Let Yi be a Bernoulli random 

variable indicating whether or not a blue target is killed by a red firer in 

subinterval i, that is ( )i SLMY Ber p: . Here, pSLM corresponds to the ARC of the red 

unit in subinterval i, which is taken constant throughout the combat. Then, 
1/

1

t

i
i

Y Y
∆

=

= ∑  has binomial distribution with parameters 1/∆t and pSLM. For small pSLM 

and ∆t, this distribution is approximated by Poisson distribution with parameter 

SLMp
t

λ =
∆

. Hence ( ) SLMpE Y
t

=
∆

. To make SLM and DSM comparable, we should 

have E(Y)=E(X), therefore pSLM=∆t pDSM. In implementing SLM, ∆t is taken as 

1/100 of the unit DSM salvo length. We have also tried the ratios 1/10, 1/1000 and 

1/10000 for several pk:R,B and pk:B,R combinations and concluded that SLM results 

are fairly robust to the choice of ∆t, as seen in an example presented in Table 4.1. 

Therefore, the SLM force levels at the end of the 100th, 200th, … subintervals are 

compared to the DSM salvo force levels utilizing the ratio 1/100.  
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In the case where red unit employs area fire, the probabilities pDSM and pSLM are 

multiplied by ξ, the probability of the blue target being positioned in the fatal area. 

Then, having E(X)=ξ pDSM and ( ) SLMpE Y
t

ξ
=

∆
, the equality pSLM=∆t pDSM is valid 

again. 

 

Table 4.1 SLM results for the first ten salvos with different ∆t / Salvo length 
ratios 

 
Expected force levels for blue unit, 

m = 5, pk:B,R = 0.1 

Expected force levels for red unit, 

n = 4, pk:R,B = 0.3 

 ∆t / Salvo length  

Salvo 0.1 0.01 0.001 0.0001 0.1 0.01 0.001 0.0001 

1 3.863682 3.870002 3.870659 3.870724 3.552329 3.557223 3.557710 3.557758 

2 2.873896 2.892712 2.894602 2.894791 3.213783 3.222476 3.223332 3.223417 

3 2.089412 2.120963 2.124037 2.124344 2.971899 2.982299 2.983319 2.983420 

4 1.537657 1.572401 1.575782 1.576120 2.807584 2.817591 2.818575 2.818673 

5 1.180506 1.210738 1.213711 1.214007 2.699380 2.707863 2.708703 2.708787 

6 0.958918 0.982060 0.984365 0.984595 2.629150 2.635836 2.636503 2.636570 

7 0.823323 0.839890 0.841559 0.841726 2.583754 2.588809 2.589316 2.589367 

8 0.740099 0.751590 0.752758 0.752875 2.554372 2.558103 2.558479 2.558517 

9 0.688432 0.696310 0.697117 0.697197 2.535281 2.537997 2.538272 2.538300 

10 0.655882 0.661280 0.661835 0.661891 2.522819 2.524778 2.524977 2.524997 

 

 

The implementation of SLM is straightforward compared to that of DSM. There is 

not any preparation stage as in DSM, which simplifies the code and decreases the 

computation time. The dimension of the state transition probability matrix is 

dramatically smaller due to force homogeneity. Moreover, only the combat loss 

process is implemented according to the model, which does not involve any 

extensions such as noncombat loss or engagement processes of DSM. 

 

For each subinterval of length ∆t, the state transition probabilities P(t + ∆t, i, j) are 

calculated using Equation (3.4), and the probabilities of possible states at the end 

of each subinterval are summed up to get the marginal probabilities of surviving 
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combatants for both military units. The expected value and variance of the number 

of surviving combatants are evaluated at the end of every 100 subintervals, which 

correspond to a DSM salvo. 

 

A screenshot of input entry for the example in Table 4.1 is given in Figure 4.2. The 

format of the salvo statistics file, "salvos.txt" is the same as of DSM output, the 

final statistics output file, "stats.txt" differs slightly from the one for DSM, which 

is presented in Appendix B. 

 

 
Figure 4.2 An example of data input for SLM executable 

 

 

4.3 Experimentation 
 
The DSM simulation runs for the purpose of comparison with SLM are based on 

homogeneous combats of length ten salvos. Both blue and red units employ 

directed fire or area fire against each other in the experimental runs. The 

experimental conditions are summarized in Table 4.2. In directed fire runs, for 

equal initial force levels m = n = 5, 10, 20, three SSKP combinations, namely pk:B,R 

= pk:R,B = 0.1; pk:B,R = pk:R,B = 0.3; and pk:B,R = 0.1, pk:R,B = 0.3, are used. In different 

initial force level cases, which are m = 5, n = 10, and m = 10, n = 20, SSKP values 

are pk:B,R = pk:R,B = 0.1; pk:B,R = pk:R,B = 0.3; pk:B,R = 0.1, pk:R,B = 0.3; and pk:B,R = 0.3, 

pk:R,B = 0.1. In addition, runs are made for the cases where there are two or three 

military units on both sides for computation time comparisons. 
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In area fire runs, the same force size and SSKP combinations are tried as in 

directed fire. These runs are made with three ξ values: 0.09, 0.25, 0.49, 

respectively corresponding to fatal area radius percentages (r/RA) of 30%, 50% and 

70%. The same ξ values are used for both sides. 

 

Table 4.2 Experimental Conditions for DSM Runs 

Homogeneous Heterogeneous 

Blue Red Blue Red 

m pk:B,R n pk:R,B m1 m2 m3 n1 n2 n3 
5 0.1 5 0.1 5 5  5 5  
5 0.1 5 0.3 10 10  10 10  
5 0.3 5 0.3 3 3 3 3 3 3 

10 0.1 10 0.1 4 4 4 4 4 4 
10 0.1 10 0.3 5 5 5 5 5 5 
10 0.3 10 0.3       
20 0.1 20 0.1       
20 0.1 20 0.3       
20 0.3 20 0.3       
5 0.1 10 0.1       
5 0.1 10 0.3       
5 0.3 10 0.1       
5 0.3 10 0.3       

10 0.1 20 0.1       
10 0.1 20 0.3       
10 0.3 20 0.1       
10 0.3 20 0.3       

 
 

Implementations of both model designs are tested on a Pentium III 1GHz PC with 

256MB RAM. Tables 4.3 and 4.4 list the CPU times in seconds, respectively for 

directed and area fire. The upper halves of the tables compare SLM and DSM for 

homogeneous combat. DSM is executed with and without major extensions 

(engagement + noncombat loss) for both heterogeneous and homogeneous combat 

cases. As it was hinted previously, the “Prep.” columns give the time spent for 

preparation stage S-1 of DSM implementation. The “Salvo” column gives the 

average time per salvo spent in stage S-2 of DSM execution. 
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In homogeneous combat, CPU times become significant for initial force levels m, 

n > 10, reaching about 30 minutes for m=n=20, for directed fire. This duration is 

essentially spent for preparation stage S-1, using the CPU resource heavily. The 

preparation time differences between directed and area fire cases are significant for 

larger force sizes in homogeneous combat. This is due to different computations 

for individual fire effects. In the heterogeneous combat, however, since the same 

fire combination method is used, the computation times are similar. In this 

occasion, the time consuming task is finding the state probabilities for each salvo, 

namely stage S-2. As the state space dimension increases (see for example the last 

rows of Tables 4.3 and 4.4), time per salvo reaches a maximum of about 80 

minutes. Salvo cycle consumes mostly the RAM of the computer rather than the 

CPU, as a result of memory allocation for the state probability matrices. In the 

case represented by the last row of Table 4.3, the execution of the program 

consumes almost all of the 256 MB memory. Homogeneous combat times are in 

favor of SLM, as clearly seen in the last columns of Tables 4.3 and 4.4, which are 

significantly shorter than DSM times especially for large force level cases. 
 

Table 4.3 CPU Time statistics for DSM and SLM for Directed Fire 

      Size DSM CPU times (seconds) SLM 
 Scenario   of the    CPU 

 Blue   Red  State Combat Loss 

Engagement+ 

Combat+ 

Noncombat 

Loss 

Times 

m1 m2 m3 n1 n2 n3 Space Prep. Salvo Prep. Salvo (seconds) 

5   5   36 0.0 0.0 0.0 0.0 0.0 
5   10   66 0.0 0.0 0.0 0.0 0.0 
10   10   121 0.6 0.0 0.6 0.0 0.1 
10   20   231 40.3 0.0 41.6 0.0 0.2 
20   20   441 2001.6 0.0 2077.7 0.0 0.6 
5 5  5 5  1296 0.6 0.1 0.9 0.2 - 
10 10  10 10  14641 15.0 12.6 30.5 793.3 - 
3 3 3 3 3 3 4096 1.8 0.9 2.6 1.8 - 
4 4 4 4 4 4 15625 17.4 13.6 22.2 32.7 - 
5 5 5 5 5 5 46656 194.2 2378.3 295.0 5067.8 - 
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Table 4.4 CPU Time statistics for DSM and SLM for Area Fire 

      Size DSM CPU times (seconds) SLM 
 Scenario   of the    CPU 

 Blue   Red  State Combat Loss 

Engagement+ 
Combat+ 

Noncombat 
Loss 

Times 

m1 m2 m3 n1 n2 n3 Space Prep. Salvo Prep. Salvo (seconds) 
5   5   36 0.0 0.0 0.0 0.0 0.0 
5   10   66 0.0 0.0 0.0 0.0 0.0 
10   10   121 0.6 0.0 0.6 0.0 0.1 
10   20   231 1.1 0.0 1.1 0.0 0.1 
20   20   441 4.4 0.0 4.5 0.0 0.4 
5 5  5 5  1296 0.7 0.1 0.7 0.2 - 
10 10  10 10  14641 14.9 12.8 29.8 634.3 - 
3 3 3 3 3 3 4096 1.8 0.8 2.3 1.7 - 
4 4 4 4 4 4 15625 16.4 13.8 20.4 30.8 - 
5 5 5 5 5 5 46656 198.6 2394.7 319.1 5044.6 - 

 

 

Expected force levels found by DSM and SLM, where both sides use directed fire, 

are plotted in Figure 4.3 for four representative scenarios. When both initial force 

levels and SSKPs are the same for two sides and SSKPs are small as in Figure 4.3 

(a), then DSM and SLM produce very close results. This is expected since Poisson 

is the limiting distribution of binomial distribution when probability of success 

(SSKP) in a single trial (salvo) is small. However, when SSKPs are larger as in 

Figure 4.3 (b), DSM reaches steady state later than SLM, resulting in lower 

expected force levels. When one side (red) is stronger than the other (blue), either 

because the red unit’s SSKP or its initial force level is higher than that of the blue 

unit as in Figure 4.3 (c) or 4.3 (d), then red kills blue targets faster with SLM than 

with DSM. Overall, DSM results in “closer combat”, that is to say the difference 

between expected force levels of the two sides is smaller in DSM compared to that 

in SLM. 

 



 

  
 
 
 

 

    
           (a)                   (b) 
 

     
           (c)                    (d) 

Figure 4.3 Expected force levels with DSM and SLM when directed fire is employed 

(a) m=n=10, pk:B,R= pk:R,B=0.1, (b) m=n=10, pk:B,R= pk:R,B=0.3, (c) m=n=20, pk:B,R=0.1, pk:R,B=0.3, (d) m=10, n=20, pk:B,R= pk:R,B=0.3.

DSM 
SLM

Red 

Blue 

Red 

Blue 
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When both sides employ area fire, we observed the force levels for three different 

ξ values (0.09, 0.25, and 0.49) as stated in experimental conditions. As a common 

observation for all these area fire cases, DSM underestimates the force levels of 

both sides, compared to SLM. Expected force levels found by DSM and SLM, for 

two different scenarios, are plotted in Figure 4.4. The differences in force levels of 

the two models increase, as the ξ probabilities get larger. This situation is shown in 

force level plots of Figure 4.4. When one side is stronger than the other, this 

becomes very significant in the force level differences of the strong side (Figure 

4.4 (d) and 4.4 (f)). The nature of DSM area fire allows a large attrition rate in the 

first salvo for both sides. Besides, the assumption of SLM, which allows just one 

casualty in a subinterval, apparently underestimates the casualty rate of the strong 

side. Hence, the difference maintained in the first salvo by forcing the weaker side 

to absorbing state does not diminish, preserving itself until the end of the combat. 

 

In brief, DSM underestimates the force level of the stronger side and overestimates 

that of the weaker side compared to SLM, in directed fire. It usually 

underestimates each side’s force levels in area fire, even when all three 

parameters, initial force level, SSKP, and ξ values of one side is larger than the 

other’s. The execution time of SLM is significantly shorter due to the simplicity of 

the model, therefore the use of SLM in homogeneous combats with relatively 

larger initial force sizes, can be useful for risk analyses in operational applications. 

DSM on the other hand, implemented with its extensions to simulate the combat 

more precisely, handles satisfactorily larger levels compared to other stochastic 

models in the literature. Execution times grow prominently as the force sizes and 

weapon system types increase, but with the use of more optimized code and high 

configuration hardware, the model can be embedded in tactical level military 

planning applications. 

 



 

  

    
         (a)         (b) 
 

    
         (c)           (d) 

Figure 4.4 Expected force levels with DSM and SLM when area fire is employed 

(a) m=n=10, pk:B,R= pk:R,B=0.1, (b) m=n=10, pk:B,R= pk:R,B=0.3, (c) Blue force levels for m=n=20, pk:B,R=0.1, pk:R,B=0.3, (d) Red force levels for 
the same conditions in (c). 
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     (e)           (f) 

Figure 4.4 (continued) Expected force levels with DSM and SLM when area fire is employed 

(e) Blue force levels for m=10, n=20, pk:B,R= pk:R,B=0.3, (f) Red force levels for the same conditions in (e). 
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The plots for 95% confidence intervals around the DSM expected values at the end 

of first 20 salvos, for initial conditions m = n = 10, pk:B,R = 0.1, pk:R,B = 0.3 are 

given in Figure 4.5. In Figures 4.5 (a) and (b) both sides employ directed fire, and 

in (c) and (d) both sides employ area fire with ξ = 0.25. The negative values for the 

lower bound of blue force levels are included for demonstrating the decrease in the 

variance. These kinds of plots allow conducting risk analyses for various combat 

scenarios. As the salvo number increases, the rate of change in the expected 

number of combatants, and the variance decrease indicating convergence. 

 

 
       (a) 

 

 
        (b) 

Figure 4.5 Expected force levels and 95% confidence interval limits with DSM, 

(a) and (b) Blue and red when directed fire is employed, m=n=10, pk:B,R=0.1, 
pk:R,B=0.3 

Blue

Red 
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       (c) 

 

 
        (d) 

Figure 4.5 (continued) Expected force levels and 95% confidence interval limits 
with DSM, 

(c) and (d) Blue and red when area fire is employed with ξ = 0.25, m=n=10, 
pk:B,R=0.1, pk:R,B=0.3 

Blue

Red 
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CHAPTER 5 

 
 

A METHOD FOR ESTIMATING ATTRITION RATE 

COEFFICIENTS 

 
 
 
In this chapter, we describe our methodology for estimating ARCs used in LM for 

red and blue units, namely a and b, respectively. Our motivation is that, if we 

succeed in finding good estimators by running DSM off-line, they can be used to 

form a parameter look-up library to quickly simulate combat by LM’s difference 

equations. Our method is based on least squares estimation using the data for DSM 

force levels at the end of each salvo. Namely, we try to find estimators for the 

ARCs such that the mean squared errors (MSEs) in estimators of both sides are 

minimized, which is equivalent to minimizing sum of squared errors (SSEs).   The 

method is characterized by the following equation. 

 

[ ]( ) [ ]( )2 2

1 1

ˆ ˆ( , )
T T

t t t t
t t

SSE a b E B B E R R
= =

= − + −∑ ∑ ,  

 

where E[Bt] and E[Rt] denote the expected force levels for blue and red forces at 

the end of tth DSM salvo, and ˆ
tB , ˆ

tR  are the estimated force levels as a function of 

a and b. We want to choose a and b such that force levels predicted by LM using 

these coefficients will be as close to DSM expected values as possible. 

 

Recall the systems of difference equations in LM for directed and area fire: 
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Directed fire: 

blue  red 1
ˆ ˆ ˆ

t t tR R bB+ = −  

red   blue  1
ˆ ˆ ˆ

t t tB B aR+ = −  

 

Area fire: 

blue  red 1
ˆ ˆ ˆ ˆ

t t t tR R bB R+ = −   

red   blue  1
ˆ ˆ ˆ ˆ

t t t tB B aR B+ = −  

 

In the SSE formula, we use expected force levels from DSM in finding ˆ
tB  and ˆ

tR  

values since we want LM predictions to be close to DSM expectations. That is, 

when both forces apply directed fire, the difference equation for estimated force 

level, 1
ˆ ˆ ˆ

t t tB B aR+= + , becomes [ ] [ ]1
ˆ

t t tB E B aE R+= + . Our estimate for ˆ
tR  is 

similarly found. Substituting these in the SSE formula yields: 
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1 1
0

( , )
T

t t t t t t
t
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−

+ +
=

⎡ ⎤= − − + − −⎢ ⎥⎣ ⎦∑  . 

 

To minimize SSE(a, b), differentiation with respect to a and b yields: 
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1
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The Hessian becomes: 
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which is positive semi-definite indicating convexity. Therefore, the least squares 

estimators for a and b become: 
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When blue force uses directed fire and red force applies area fire, the SSE(a, b) 

becomes 

[ ] [ ] [ ] [ ]( ) [ ] [ ] [ ]( )
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Differentiation with respect to a and b yields: 
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The Hessian is: 
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which is again positive semi-definite. Therefore, the least squares estimators for a 

and b are: 
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Finally, when both forces use area fire, the Hessian is  
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which is clearly positive semi-definite. Least squares estimators for a and b 

become: 
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The results are summarized in Table 5.1. Note that, the estimator for the ARC of a 

unit depends only on the fire type of that unit. Namely, the estimator for a does not 

change with the fire type of the blue unit, but only with the fire type of red unit. 
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Table 5.1 Least squares estimators for ARCs 
 

 Fire Type of Unit 

 Directed Area 
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For estimation of the LM attrition rate coefficients, both fire types are considered. 

Homogeneous DSM combats of length ten salvos, where blue and red units 

employ directed-directed, directed-area and area-area fire against each other, are 

run with initial parameters that are summarized in Table 5.2.Directed-area 

corresponds to the case where blue unit employs directed fire, and red unit area 

fire against the other side. The probability ξ in all area fire cases is taken to be 

0.25, corresponding to a fatal area radius percentage 50%. Using the Cartesian 

product of the set of initial force levels {5, 10, 20} and the set of SSKPs {0.1, 

0.3}, sufficient scenario data are produced for estimating the ARCs a, b in LM. 

 

Table 5.2 Initial parameter sets for DSM runs used in LM ARC estimation 

Blue Red 

m (B0) pk:B,R n (R0) pk:R,B 

{5, 10, 20} {0.1, 0.3} {5, 10, 20} {0.1, 0.3} 
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We run LM using the estimated ARCs and compare DSM and LM force levels. 

Since our method is based on minimizing the mean squared errors in estimating 

the ARCs a and b, the performance measure for a successful estimation is 

obtaining small MSE values. Looking at the results given in Figures 5.1 - 5.3, we 

observe that the MSE values vary depending on the fire type. Area-area type 

combats give the closest results, while directed-directed produce the worst results 

on the average.  

 

In area-area fire ARC estimations, the average MSE between DSM and LM force 

level values is 0.0130, and the largest MSE is 0.1095 in 20-on-20 combat, where 

both units have SSKPs equal to 0.3. In directed-area case, average MSE is 1.4276, 

while 20-on-5 combat with blue and red units having 0.3 SSKPs produce a 

maximum MSE of 28.9991. Directed-directed case gives an average of 4.1489 for 

MSE, producing the largest difference, namely 28.4425, in the 10-on-20 or 20-on-

10 combats, where both units’ SSKP is 0.3.  

 

A second observation concerning the MSE differences is the SSKP effect. When 

both units employ the same type of fire, namely in directed-directed and area-area 

cases, an increase in SSKP values boosts MSEs as well. The same applies for 

directed-area combat, but due to the asymmetry in fire type, the SSKP matchings 

0.1-0.3 and 0.3-0.1 differ. Explicitly, the stronger in SSKP value is the side 

employing area fire, the closer the estimation results, and vice versa. As an 

example for these remarks, recall that the worst MSE value of all experimental 

runs is obtained in the case 20-on-5, directed-area combat with both SSKPs equal 

to 0.3. 

 

For each fire type combination, estimated LM force levels versus expected DSM 

force levels for the blue unit are plotted in Figures 5.4 and 5.5. The almost perfect 

fit in area-area case is mainly due to replacement of the terms Bt and Rt with the 

product BtRt in ARC formulas in the case of area fire. More knowledge of both 

units’ DSM salvo force levels give better estimators for LM ARCs to be used in 

the systems of difference equations. 



 

 

 

Figure 5.1 Estimated ARC and Corresponding MSE Values for Directed-Directed Combat
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Figure 5.2 Estimated ARC and Corresponding MSE Values for Directed-Area Combat
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Figure 5.3 Estimated ARC and Corresponding MSE Values for Area-Area Combat
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        (a) 

 

 
        (b) 

Figure 5.4 Blue unit force levels with DSM and LM for directed-directed fire 

(a) m=20, n=10, pk:B,R= pk:R,B=0.1; LM ARCs, a=0.0966, b=0.0584, 

(b) m=20, n=10, pk:B,R= pk:R,B=0.3; LM ARCs, a=0.2694, b=0.0740.

DSM
       LM 



 

  

    
     (a)                 (b) 
 

    
     (c)                 (d) 

Figure 5.5 Blue unit force levels with DSM and LM for directed-area and area-area fires 

(a) Directed-area fire with m=20, n=5, pk:B,R=0.1, pk:R,B=0.3; LM ARCs, a=0.0650, b=0.0590, (b) Directed-area fire with m=20, n=5, pk:B,R= 
pk:R,B=0.3; LM ARCs, a=0. 0650, b=0.0544, (c) Area-area fire with m=20, n=10, pk:B,R= pk:R,B=0.1, ξ = 0.25; LM ARCs, a=0.0226, b=0.0201, 

(d) Area-area fire with m=20, n=10, pk:B,R= pk:R,B=0.3, ξ = 0.25; LM ARCs, a=0. 0543, b=0.0397. 

DSM
       LM
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CHAPTER 6 

 
 

CONCLUSION 

 
 
 
 
In this thesis, we present the implementation and experimental analysis of a 

methodology (DSM) developed for modeling and analyzing tactical level land 

combat. DSM models heterogeneous land combat as a discrete-time stochastic 

process based on SSKPs to generate information for weapon and ammunition 

planning. Both directed fire and area fire are included in the model, and division 

and combination of military units are allowed. DSM integrates stochastic 

engagement, combat loss, and noncombat loss processes for calculating casualties 

in each salvo. Discrete reinforcements and adjustment of SSKPs to reflect division 

and combination effects are also possible. 

 

DSM is implemented in C++, using MS Visual C++ 6.0 integrated development 

environment, utilizing the pointer abilities provided by the C++ programming 

language. The salvo statistics, including mean and variance of force levels, 

survival probabilities at the end of each salvo, and the computation time statistics 

for the combat model are stored in output files. In an attempt to estimate ARCs for 

Lanchester model, a code for SLM, which is based on the Poisson process, is also 

implemented. The input, output methods and executable format are the same as 

those used for DSM. 
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The simulation runs for the purpose of comparing DSM with SLM are based on 

homogeneous combats of ten salvos. Compared to SLM, DSM underestimates the 

force level of the stronger side, and overestimates the force level of the weaker 

side, resulting in closer combat. The execution time of SLM is significantly shorter 

due to the simplicity of the model, therefore the use of SLM in homogeneous 

combats with relatively larger initial force sizes, can be useful for risk analyses in 

operational applications. DSM on the other hand, implemented for heterogeneous 

combat with its extensions to simulate the combat more precisely, handles 

satisfactorily larger levels compared to other similar stochastic models in the 

literature. Execution times grow prominently as the force sizes and weapon system 

types increase, but with the use of more optimized code and state of the art 

configuration hardware, the model can be embedded in tactical level military 

planning applications. 

  

In addition to experimentation with DSM, we estimate ARCs used in LM and 

SLM, such that DSM and LM will yield similar figures for force levels throughout 

the combat. This is attempted through comparison of force levels at the end of 

each DSM salvo with the respective force levels obtained by LM using estimated 

ARCs. The results for area fire are rather satisfactory in the sense that both models 

produce similar curves. The differences in force levels grow larger as SSKP values 

increase. This is expected since Poisson is the limiting distribution of binomial 

distribution when probability of success, here SSKP, in a single salvo is small. 

This is more apparent in area fire, where the attrition does not only depend on the 

firer’s force level, but also on the target’s force level distributed uniformly over 

the battlefield. The inclusion of fatal area probability values makes a slight 

modification of the SSKPs. The large differences are mainly due to the nature of 

DSM area fire and SLM area fire. The latter allows just one casualty in every 

small subinterval as in SLM directed fire case. 

 

We identify the following possible further research directions. DSM should be 

applied for a real combat scenario to investigate the representation power of the 

model. Data gathered from military exercises or higher-resolution combat 
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simulations can be used to compare DSM, SLM and other models, and for 

validation purposes. 

 

As opposed to the assumptions of the model, SSKPs do not remain constant 

throughout the combat in real-life conditions. To reflect combatant skills, morale, 

or environmental conditions such as weather or terrain effects, time-varying and 

force-level dependent SSKPs may be considered. 

 

It may be possible to formulate DSM as a Markov chain, and calculate results for 

any salvo directly by applying matrix geometric analysis to the special structure of 

the transition matrix.  

 

Force aggregation methodologies in order to speed up DSM by reducing the 

dimensions could be developed. For instance, one side is kept heterogeneous and 

the other side is aggregated into a single homogeneous unit. Then, the salvo results 

are combined into heterogeneous combat state probability matrix. Another 

possible schema for approximated DSM is to discard the states having negligible 

marginal probabilities and consider mainly the states around the expected values 

by redistributing marginal probabilities of the discarded states. 

 

Another topic is to develop a methodology to integrate LM with DSM, to model 

combat situations involving both military units with small number of combatants 

like artillery or tank, and military units with large number of combatants like 

infantry. Attrition rate coefficients required for modeling large scale combat 

problems with LM can be estimated with the developed procedures from DSM 

results, and an approximate LM combat can be run. 

 

Finally, DSM can be used for risk analysis and estimation of munition 

requirements if different weapon systems are to be synchronized by means of the 

engagement process, and munition-dependent SSKPs are utilized.     
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APPENDIX A1 

 
 

FILE OUTPUT EXAMPLE FOR DSM SALVO STATISTICS: 
"SALVOS.TXT" 

 
 
 
SALVO 1 
 
BLUE 1 
P (0 elements) = 0.0000009261 
P (1 elements) = 0.0001425110 
P (2 elements) = 0.0057831838 
P (3 elements) = 0.0782617719 
P (4 elements) = 0.3755868501 
P (5 elements) = 0.5402247571 
Sum  = 1.0000000000 
 
Expected = 4.4499653797 
Variance = 0.4404478397 
 
BLUE 2 
P (0 elements) = 0.0000046876 
P (1 elements) = 0.0008906250 
P (2 elements) = 0.0296601562 
P (3 elements) = 0.2768945312 
P (4 elements) = 0.6925500000 
Sum  = 1.0000000000 
 
Expected = 3.6610945312 
Variance = 0.2887688645 
 
RED 1 
P (0 elements) = 0.0000009041 
P (1 elements) = 0.0000427863 
P (2 elements) = 0.0008485032 
P (3 elements) = 0.0091150767 
P (4 elements) = 0.0570846703 
P (5 elements) = 0.2075260773 
P (6 elements) = 0.4034875638 
P (7 elements) = 0.3218944183 
Sum  = 1.0000000000 
 
Expected = 5.9692404014 
Variance = 0.8535269717 
SALVO 2 
 
BLUE 1 
P (0 elements) = 0.0003820268 
P (1 elements) = 0.0069025682 
P (2 elements) = 0.0535259927 

P (3 elements) = 0.2103248393 
P (4 elements) = 0.4111043546 
P (5 elements) = 0.3177602184 
Sum  = 1.0000000000 
 
Expected = 3.9781475822 
Variance = 0.8099470418 
 
BLUE 2 
P (0 elements) = 0.0007597823 
P (1 elements) = 0.0138186550 
P (2 elements) = 0.1054097232 
P (3 elements) = 0.3733430162 
P (4 elements) = 0.5066688233 
Sum  = 1.0000000000 
 
Expected = 3.3713424432 
Variance = 0.5362959972 
 
RED 1 
P (0 elements) = 0.0001945426 
P (1 elements) = 0.0026787721 
P (2 elements) = 0.0181805100 
P (3 elements) = 0.0742235299 
P (4 elements) = 0.1919412076 
P (5 elements) = 0.3099163566 
P (6 elements) = 0.2865861748 
P (7 elements) = 0.1162789064 
Sum  = 1.0000000000 
 
Expected = 5.1125263887 
Variance = 1.4392234491 
SALVO 3 
 
BLUE 1 
P (0 elements) = 0.0046176907 
P (1 elements) = 0.0307856742 
P (2 elements) = 0.1200774874 
P (3 elements) = 0.2793388001 
P (4 elements) = 0.3625381571 
P (5 elements) = 0.2026421905 
Sum  = 1.0000000000 
 
Expected = 3.5723206299 
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Variance = 1.1303354166 
 
BLUE 2 
P (0 elements) = 0.0054386953 
P (1 elements) = 0.0400551327 
P (2 elements) = 0.1702957496 
P (3 elements) = 0.3944668949 
P (4 elements) = 0.3897435275 
Sum  = 1.0000000000 
 
Expected = 3.1230214263 
Variance = 0.7540737949 
 
RED 1 
P (0 elements) = 0.0029058941 
P (1 elements) = 0.0180634804 
P (2 elements) = 0.0668517617 
P (3 elements) = 0.1614083601 
P (4 elements) = 0.2603753135 
P (5 elements) = 0.2730797744 
P (6 elements) = 0.1696511822 
P (7 elements) = 0.0476642336 
Sum  = 1.0000000000 
 
Expected = 4.3944489388 
Variance = 1.8629536762 
 
SALVO 4 
 
BLUE 1 
P (0 elements) = 0.0178078485 
P (1 elements) = 0.0656484727 
P (2 elements) = 0.1742318414 
P (3 elements) = 0.2990634625 
P (4 elements) = 0.3038506888 
P (5 elements) = 0.1393976861 
Sum  = 1.0000000000 
 
Expected = 3.2236937285 
Variance = 1.4084989181 
 
BLUE 2 
P (0 elements) = 0.0159985929 
P (1 elements) = 0.0703076391 
P (2 elements) = 0.2144799000 
P (3 elements) = 0.3855716703 
P (4 elements) = 0.3136421977 
Sum  = 1.0000000000 
 
Expected = 2.9105512407 
Variance = 0.9453389100 
 
RED 1 
P (0 elements) = 0.0143289579 
P (1 elements) = 0.0510936872 
P (2 elements) = 0.1274506019 
P (3 elements) = 0.2186337010 

P (4 elements) = 0.2597279424 
P (5 elements) = 0.2065017747 
P (6 elements) = 0.0998526260 
P (7 elements) = 0.0224107089 
Sum  = 1.0000000000 
 
Expected = 3.7893073551 
Variance = 2.1807598896 
 
SALVO 5 
 
BLUE 1 
P (0 elements) = 0.0412033895 
P (1 elements) = 0.1007302266 
P (2 elements) = 0.2082516573 
P (3 elements) = 0.2929609077 
P (4 elements) = 0.2539661753 
P (5 elements) = 0.1028876436 
Sum  = 1.0000000000 
 
Expected = 2.9264191836 
Variance = 1.6421056817 
 
BLUE 2 
P (0 elements) = 0.0318822136 
P (1 elements) = 0.0982654906 
P (2 elements) = 0.2408810337 
P (3 elements) = 0.3662050329 
P (4 elements) = 0.2627662292 
Sum  = 1.0000000000 
 
Expected = 2.7297075737 
Variance = 1.1105911515 
 
RED 1 
P (0 elements) = 0.0400926410 
P (1 elements) = 0.0935912461 
P (2 elements) = 0.1763782898 
P (3 elements) = 0.2375167807 
P (4 elements) = 0.2279960664 
P (5 elements) = 0.1503409041 
P (6 elements) = 0.0619083044 
P (7 elements) = 0.0121757675 
Sum  = 1.0000000000 
 
Expected = 3.2792671528 
Variance = 2.4149336024 
 
SALVO 6 
 
BLUE 1 
P (0 elements) = 0.0725228629 
P (1 elements) = 0.1296080883 
P (2 elements) = 0.2250805750 
P (3 elements) = 0.2761918538 
P (4 elements) = 0.2156639591 
P (5 elements) = 0.0809326609 
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Sum  = 1.0000000000 
 
Expected = 2.6756639407 
Variance = 1.8304194175 
 
BLUE 2 
P (0 elements) = 0.0514480778 
P (1 elements) = 0.1212112546 
P (2 elements) = 0.2545532186 
P (3 elements) = 0.3447283428 
P (4 elements) = 0.2280591062 
Sum  = 1.0000000000 
 
Expected = 2.5767391450 
Variance = 1.2513402918 
 
RED 1 
P (0 elements) = 0.0808633640 
P (1 elements) = 0.1337995037 
P (2 elements) = 0.2045841264 
P (3 elements) = 0.2306464143 
P (4 elements) = 0.1903266499 
P (5 elements) = 0.1107402725 
P (6 elements) = 0.0414056077 
P (7 elements) = 0.0076340615 
Sum  = 1.0000000000 
 
Expected = 2.8517870384 
Variance = 2.5736685287 
 
SALVO 7 
 
BLUE 1 
P (0 elements) = 0.1082959169 
P (1 elements) = 0.1502694395 
P (2 elements) = 0.2300412449 
P (3 elements) = 0.2567487368 
P (4 elements) = 0.1874157907 
P (5 elements) = 0.0672288712 
Sum  = 1.0000000000 
 
Expected = 2.4664056586 
Variance = 1.9773906091 
 
BLUE 2 
P (0 elements) = 0.0729716854 
P (1 elements) = 0.1386105828 
P (2 elements) = 0.2598512765 
P (3 elements) = 0.3245581490 
P (4 elements) = 0.2040083063 
Sum  = 1.0000000000 
 
Expected = 2.4480208078 
Variance = 1.3703660546 
 
RED 1 
P (0 elements) = 0.1328385924 

P (1 elements) = 0.1642627224 
P (2 elements) = 0.2141513523 
P (3 elements) = 0.2116696671 
P (4 elements) = 0.1571140914 
P (5 elements) = 0.0844506686 
P (6 elements) = 0.0300623790 
P (7 elements) = 0.0054505268 
Sum  = 1.0000000000 
 
Expected = 2.4968120984 
Variance = 2.6662381149 
 
SALVO 8 
 
BLUE 1 
P (0 elements) = 0.1453622825 
P (1 elements) = 0.1631990024 
P (2 elements) = 0.2278233483 
P (3 elements) = 0.2383743576 
P (4 elements) = 0.1669185142 
P (5 elements) = 0.0583224950 
Sum  = 1.0000000000 
 
Expected = 2.2932553039 
Variance = 2.0896003282 
 
BLUE 2 
P (0 elements) = 0.0950604263 
P (1 elements) = 0.1509665513 
P (2 elements) = 0.2599586684 
P (3 elements) = 0.3068966046 
P (4 elements) = 0.1871177494 
Sum  = 1.0000000000 
 
Expected = 2.3400446995 
Variance = 1.4709454612 
 
RED 1 
P (0 elements) = 0.1904918482 
P (1 elements) = 0.1829491418 
P (2 elements) = 0.2110674300 
P (3 elements) = 0.1894261302 
P (4 elements) = 0.1308988274 
P (5 elements) = 0.0672608131 
P (6 elements) = 0.0235759484 
P (7 elements) = 0.0043298609 
Sum  = 1.0000000000 
 
Expected = 2.2050264841 
Variance = 2.7067111286 
 
SALVO 9 
 
BLUE 1 
P (0 elements) = 0.1814081783 
P (1 elements) = 0.1698799690 
P (2 elements) = 0.2218329518 
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P (3 elements) = 0.2225534568 
P (4 elements) = 0.1520803218 
P (5 elements) = 0.0522451223 
Sum  = 1.0000000000 
 
Expected = 2.1507531415 
Variance = 2.1738670172 
 
BLUE 2 
P (0 elements) = 0.1167393457 
P (1 elements) = 0.1591553137 
P (2 elements) = 0.2570417527 
P (3 elements) = 0.2919605997 
P (4 elements) = 0.1751029882 
Sum  = 1.0000000000 
 
Expected = 2.2495325713 
Variance = 1.5562187444 
 
RED 1 
P (0 elements) = 0.2487815351 
P (1 elements) = 0.1912589599 
P (2 elements) = 0.2010332325 
P (3 elements) = 0.1683348168 
P (4 elements) = 0.1111532380 
P (5 elements) = 0.0559683093 
P (6 elements) = 0.0197438994 
P (7 elements) = 0.0037260090 
Sum  = 1.0000000000 
 
Expected = 1.9673298332 
Variance = 2.7110329285 
 
SALVO 10 
 
BLUE 1 
P (0 elements) = 0.2149837182 
P (1 elements) = 0.1719759688 
P (2 elements) = 0.2143159144 
P (3 elements) = 0.2096346686 
P (4 elements) = 0.1412382636 
P (5 elements) = 0.0478514664 
Sum  = 1.0000000000 
 
Expected = 2.0337221898 
Variance = 2.2360245758 
 
BLUE 2 
P (0 elements) = 0.1373997864 
P (1 elements) = 0.1640943683 
P (2 elements) = 0.2525109664 
P (3 elements) = 0.2795520246 
P (4 elements) = 0.1664428543 
Sum  = 1.0000000000 
 
Expected = 2.1735437921 
Variance = 1.6288995080 

 
RED 1 
P (0 elements) = 0.3041151740 
P (1 elements) = 0.1919051163 
P (2 elements) = 0.1881041025 
P (3 elements) = 0.1500743447 
P (4 elements) = 0.0965384228 
P (5 elements) = 0.0484558265 
P (6 elements) = 0.0174173775 
P (7 elements) = 0.0033896357 
Sum  = 1.0000000000 
 
Expected = 1.7750008943 
Variance = 2.6934906223
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APPENDIX A2 

 
 

FILE OUTPUT EXAMPLE FOR DSM FINAL STATISTICS: 
"STATS.TXT" 

 
 
 
Preparation part took 15.000 cpu clocks 
Salvo 1 took 0.000 cpu clocks 
Salvo 2 took 0.000 cpu clocks 
Salvo 3 took 0.000 cpu clocks 
Salvo 4 took 16.000 cpu clocks 
Salvo 5 took 0.000 cpu clocks 
Salvo 6 took 0.000 cpu clocks 
Salvo 7 took 16.000 cpu clocks 
Salvo 8 took 0.000 cpu clocks  
Salvo 9 took 0.000 cpu clocks 
Salvo 10 took 0.000 cpu clocks 
All salvos took 32.000 cpu clocks 
Average salvo time is 3.20000 cpu clocks 
1/CLOCKS_PER_SEC constant is 0.0010000000 seconds 
 
FINAL RESULTS FOR THE FORCES 
 
BLUE 1 
P (0 elements) = 0.2149837182 
P (1 elements) = 0.1719759688 
P (2 elements) = 0.2143159144 
P (3 elements) = 0.2096346686 
P (4 elements) = 0.1412382636 
P (5 elements) = 0.0478514664 
Sum                 = 1.0000000000 
Expected         = 2.0337221898 
Variance         = 2.2360245758 
 
BLUE 2 
P (0 elements) = 0.1373997864 
P (1 elements) = 0.1640943683 
P (2 elements) = 0.2525109664 
P (3 elements) = 0.2795520246 
P (4 elements) = 0.1664428543 

Sum                 = 1.0000000000 
Expected          = 2.1735437921 
Variance          = 1.6288995080 
 
RED 1 
P (0 elements) = 0.3041151740 
P (1 elements) = 0.1919051163 
P (2 elements) = 0.1881041025 
P (3 elements) = 0.1500743447 
P (4 elements) = 0.0965384228 
P (5 elements) = 0.0484558265 
P (6 elements) = 0.0174173775 
P (7 elements) = 0.0033896357 
Sum                 = 1.0000000000 
Expected          = 1.7750008943 
Variance          = 2.6934906223
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APPENDIX B 

 
 

FILE OUTPUT EXAMPLE FOR SLM FINAL STATISTICS: 
"STATS.TXT" 

 
 
 
BLUE Force Information 
5 combatants 
p_d            = 0.10 
p_s (b)       = 0.0010 
Fire Type   = Directed 
 
Red Force Information 
4 combatants 
p_d             = 0.30 
p_s (a)        = 0.0030 
Fire Type    = Directed 
 
d(t) = 0.0100 salvo length 
All combat took 31.000 cpu clocks 
Average d(t) simulation time is 0.03100 cpu clocks 
1/CLOCKS_PER_SEC constant is 0.0010000000 seconds 
 
FINAL RESULTS FOR THE FORCES 
 
BLUE FORCE 
P (0 elements) = 0.7673525686 
P (1 elements) = 0.0478343725 
P (2 elements) = 0.0507643713 
P (3 elements) = 0.0542154726 
P (4 elements) = 0.0498954649 
P (5 elements) = 0.0299377501 
Sum                 = 1.0000000000 
Expected          = 0.6612801430 
Variance          = 1.8483108743 
 
RED FORCE 
P (0 elements) = 0.1676889111 
P (1 elements) = 0.0786087435 
P (2 elements) = 0.1500758574 
P (3 elements) = 0.2684885303 
P (4 elements) = 0.3351379577 
Sum                 = 1.0000000000 
Expected          = 2.5247778798 
Variance          = 2.0830129261 

 


