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ABSTRACT

BOSE-EINSTEIN CONDENSATION AT LOWER DIMENSIONS

Ozdemir, Sevilay
M.S., Department of Physics

Supervisor: Prof. Dr. Mehmet Tomak

January 2004, 53 pages

In this thesis, the properties of the Bose-Einstein condensation (BEC) in low
dimensions are reviewed. Three dimensional weakly interacting Bose systems are
examined by the variational method. The effects of both the attractive and the
repulsive interatomic forces are studied. Thomas-Fermi approximation is applied
to find the ground state energy and the chemical potential. The occurrence of
the BEC in low dimensional systems, is studied for ideal gases confined by both
harmonic and power-law potentials. The properties of BEC in highly anisotropic

trap are investigated and the conditions for reduced dimensionality are derived.

Keywords: Gross-Pitaevskii formalism, reduced dimensionality, weakly inter-
acting Bose gas, Thomas-Fermi approximation, variational method, nonlinear

Schrodinger equation, highly anisotropic trap.
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Oz

DUSUK BOYUTLARDA BOSE-EINSTEIN YOGUSMASI

Ozdemir, Sevilay
Yiiksek Lisans, Fizik Bolimiu
Tez Yoneticisi: Prof. Dr. Mehmet Tomak

Subat 2004, 53 sayfa

Bu tezde, diigiikk boyutlardaki Bose-Einstein yogugmasimin (BEY) 6zellikleri in-
celenmigtir. Zayif etkilesimli ii¢ boyutlu Bose sistemleri varyasyonel metodla
incelenmis ve atomlararasi kuvvetlerin itici ve ¢ekici oldugu durumlar analiz
edilmistir. Thomas-Fermi yaklagimi uygulanarak taban enerjisi ve kimyasal
potansiyel hesaplanmigtir. Diiglik boyutlu sistemlerde, oncelikle harmonik ve
iistel potansiyel altindaki ideal Bose gazlarinda Bose-Einstein yogusmasinin or-
taya ¢ikmasi aragtirilmig, yiiksek-derecede anizotropik tuzaklardaki BEY caligilmig

ve indirgenmis-boyutluluk icin gereken kogullar ortaya konmustur.

Anahtar Kelimeler: Gross-Pitaevskii formalizmi, indirgenmis boyutluluk, zayif
etkilesimli Bose gazi, Thomas-Fermi yaklagimi, varyasyon metodu, lineer ol-

mayan Schrodinger denklemi, yiiksek dereceli anizotropik tuzak.
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CHAPTER 1

INTRODUCTION

One of the long lasting problems in physics is the Bose-Einstein Condensation.
It was predicted in 1925 [1] by Einstein, on the basis of the statistical description
of the quanta of light by the Indian physicist S. N. Bose [2]. First experimental
realization of Bose-Einstein Condensation (BEC) was achieved in 1995 in atomic

gases [3], [4].

When a gas of bosonic atoms is cooled below a critical temperature 7., a large
fraction of the atoms condense to the state of lowest energy as a consequence of
quantum statistical effects. In other words, when atoms are cooled to the point
where the de Broglie wavelength, A\gg = (27h® /mkgT)"/?, is comparable to the
interatomic separation, the atomic wavepackets overlap and the gas starts to
become a ”quantum soap” of indistinguishable particles. There is a quantum
mechanical phase transition and it is called the Bose-Einstein Condensation

(BEC).

After the discovery of superfluidity in liquid Helium [6],[7], F. London [§]
considered that the superfluidity was a manifestation of BEC. Although there



HLA-Tune 1995

Figure 1.1: Three density distributions of the expanded clouds of the rubidium
atoms at three different temperatures. The appearance of the condensate is
apparent as the narrow feature in the middle image. On the far right, nearly all
the atoms in the sample are in the condensate. Colors represent the densities.
From Cornell [11].

were several discussions for decades [9],[10] it is now recognized that the prop-
erties of superconductivity and superfluidity in both *He and *He are related to

BEC [11].

The studies on the dilute atomic gases developed much later, starting from
the 1970s, by the help of the new techniques in atomic physics and advanced

cooling mechanisms.

In 1976 [12] spin-polarized Hydrogen was offered as a good candidate for
realizing Bose-Einstein condensation since it has no bound states and would

remain a gas down to zero temperature. This suggestion was followed by several



experiments [13],[14],[15]. In these experiments hydrogen atoms were first cooled
in a dilution refrigerator, then trapped by a magnetic field and further cooled

by evaporation. They were coming very close to BEC.

In the 1980s, laser cooling [16] and magneto-optical trapping [17] were devel-
oped to cool and trap atoms. Alkali atoms are well suited to laser-based methods
since the available lasers can excite their optical transitions. Alkali atoms can
be cooled to very low temperatures because of their favorable internal energy-
level structure. After trapping, their temperature can be lowered further by

evaporative cooling [18].

In these conditions, the equilibrium configuration of the system would be the
solid phase. So that one has to preserve the system in a metastable gas phase

for a sufficiently long time to observe BEC.

In the 1995, Cornell and Wieman at Boulder and Ketterle at MIT succeded in
reaching temperatures and densities required to observe Bose-Einstein Conden-
sation in vapors of 8Rb [3] and **Na [4] by combining the laser and evaporative
cooling for alkali atoms. They cooled the samples to a temperature of ~ 2uK.
Recently, MIT group reported that they lowered to temperature to the order of
500pK [19]. In the same year, first signatures of the occurance of BEC in vapors
of "Li were reported [20]. Bose-Einstein condensation was also achieved in other
atomic species, spin-polarized Hydrogen [21], metastable *He [22],[23] and 'K
[24]. At least thirty groups have now created condensates [5].

One of the most important features of these trapped Bose gases is that they
are inhomogeneous. This fact has several important consequences. First BEC
shows up not only in momentum space but also in coordinate space. This prop-
erty allows for the investigation of a series of quantities; like the temperature,

energy and density, and so on.

After the realization of BEC in 1995, this field has grown explosively and



physicists from different areas of physics (atomic physics, quantum optics, con-
densed matter physics, etc.) are now working together.

The experimental observation of BEC has opened a new variety of important
questions. At both experimental and theoretical level the possibility of inter-
esting implications are demonstrated. Over the last years various studies on
these systems are being performed such as collective excitations and rotational
properties of the condensates, soliton behavior, quantized vortices and vortex
lattices, interference and coherence phenomena, two component condensates,
BEC in optical lattices as well as the reduced dimensional properties [18].

The aim of this thesis is to investigate the Bose-Einstein Condensation in
lower dimensions. The study of the low dimensional systems is an important
area in condensed matter physics because the spatial degree of freedom affects
the properties of the phase transitions and collective oscillations. Hohenberg [26]
has shown that BEC cannot occur in an ”ideal” two dimensional system. Later
it was shown that if the gas is confined by a spatially varying potential, BEC
can occur. Recently, reduced dimensionality has been observed [25] in highly
anisotropic traps. The experimental and theoretical interest is growing in this
area.

In Chapter II, first the ideal Bose gas confined in a harmonic trap is stud-
ied and the results are compared to that of the ideal uniform gas. Important
predictions can be made from this study such as the critical temperature. The
formalism which is needed to describe the important features of these quantum
gases is given. Next the theory is expressed in terms of a non-linear Schrodinger
equation for the order parameter. The stationary and time dependent forms
of this non-linear Schrodinger equation , the Gross-Pitaevskii Equation, are de-
rived.

In Chapter III, three dimensional weakly interacting Bose gas confined in

both spherically symmetric and cylindrically symmetric traps is examined by



the variational method. We study the effects of both the attractive and the
repulsive interatomic forces. It is shown that the condensate will collapse if
the interatomic forces are attractive. Finally Thomas-Fermi approximation is
applied to the gas in cylindrically symmetric trap and the chemical potential
and the radius of the cloud are calculated.

The next chapter includes the study of the low dimensional systems. First,
we look for the occurrence of the Bose-Einstein Condensation in one and two
dimensional ideal gasses confined by both harmonic and power-law potentials.
The condensate fractions, critical temperatures and the energies per particle
are calculated. Next we study the properties of the BEC in a highly anisotropic
trap in effective 2D and 1D by the variational method. The total energy and the
chemical potential are calculated in cigar and pancake geometries. Finally, the
conditions for reduced dimensionality are derived and we compare the release
energy with the experimentally observed value. In Chapter V, a concluding

discussion is given.



CHAPTER 11

BASIC FORMALISM

In this chapter, the formalism which is required for the study of the BEC in
various dimensions is summarized. The ideal Bose gas confined by harmonic
potential is studied. We find the condensate fraction, total energy and the
specific heat for ideal uniform case. Then weakly interacting gases are examined.
Time-dependent and stationary Gross-Pitaevskii equations are derived. The
energy functional is obtained, the ground state properties and the interaction

effects are discussed.

II.1 The Ideal Bose Gas

1I.1.1 The Ideal Bose Gas In A Harmonic Trap

The confining potential for the ideal Bose gas in a harmonic trap can be written
in the quadratic form as

m
Veut(r) = E(wixz + Wiy 4 wiz?), (IL.1)

where w,, w, and w, are the oscillator frequencies. If we neglect the atom-

atom interactions then almost all predictions are analytical and relatively simple.



The many-body Hamiltonian is the sum of single-particle Hamiltonians whose

eigenvalues have the form,
1 1 1
€ngnyn. = (nx + 2) hw, + <ny + 2> hw, + (nz + 2) hw,, (IL.2)

where n,,n,,n, are nonnegative integers. By putting all the particles in the
lowest single particle state (n, = n, = n, = 0) we get the ground state wave

function as ¢(ry, ...,rx) = [Teo(r;), where po(r;) is given by

3/4
wo(r) = (m;;;w> exp {—;;(wzx? + wyy® + w2 |, (IL.3)

where the geometric average of the oscillator frequencies is wy, = (wxwywz)l/ 3,

The density distribution becomes p(r) = Nlpo(r)[?. The size of the cloud is
fixed by the harmonic oscillator length,

1/2
a;w:( n ) . (I1.4)

MmwWe

This is the first important length scale of the system. In the available exper-
iment, it is typically of the order of 1um [27]. At finite temperatures only a
fraction of the atoms occupy the lowest state. The others are thermally dis-
tributed in the excited states at higher energies. The radius of the thermal
cloud is larger than ay,.

Bose-Einstein Condensation in harmonic traps shows up with the appearance
of a sharp peak in the central region of the density distribution.

At temperature 7', the total number of particles is given, in the grand canon-

ical ensemble, by

N = , I1.5
while the total energy is
E- Y (IL6)

N My Nz eXp[ﬁ(enznynz - /’L)] - ]‘7



where y is the chemical potential and 3 = (kKT)~!. Below a given temperature
the population of the lowest state becomes macroscopic. This corresponds to
the realization of BEC.

Because of the fact that these systems have finite sizes and they are inhomo-
geneous, there are several problems. For instance, we cannot use the common
definition of the thermodynamic limit (increasing N and volume with the aver-
age density kept constant) for trapped gases.

We separate out the the lowest eigenvalue €pop from the sum (I1.5) and call
Ny the number of particles in this state. This number can be macroscopic when
the chemical potential becomes equal to the lowest energy, yu — p. = 3h/2
where arithmetic average of the oscillator frequencies is @ = (w, + wy, + w,)/3.

Substituting this into the sum, we can write

1

M= . I1.7
" nz,nglz;éo eXp[ﬁ(wxnx + Wy Ty + wznz)} -1 ( )
When N — 00,
AR o - (IL8)
exp[B(Wang + wyny + w.n,)] — 1

0
This assumption corresponds to a semiclassical description of the excited states.

For its validity, the excitation energies must be much larger than the level spacing
fixed by oscillator frequencies. If the number of trapped atoms is large and
kT < hwp, this semiclassical approximation is accurate.

By changing variables (Shw,n, = 1, etc.) and using the definition of Rie-
mann Zeta function(Appendix A), we get

N— Ny = ( il >3g(3), (1L.9)

hwho

where ((n) is the Riemann Zeta function.

By imposing that Ny — 0 at the transition we can find the temperature as

N 1/3
kT, = hwhe (c(3)> = 0.94 fiwpo N3, (I1.10)



For the temperatures above T the chemical potential is less than y. and becomes
N dependent and the population of the lowest state is of the order of 1. By letting
N — oo and wyp, — 0 while keeping the product Nwj  constant we can obtain
the proper thermodynamic limit for these systems. The transition temperature
(I1.10) is well defined in this thermodynamic limit. Inserting this expression into

equation (I1.9) we get the condensate fraction for T' < T,

N, T\3
1= . .11
v-1-(z) (.11

Substituting the density of states p(e) = (1/2)(hwp,) 3€¢* into the integral
E = [° dep(e)e/[exp(fe) — 1] we can find the energy as
(kT)*

E=3((4 I1.12
() o (1L.12)
and substitution of the transition temperature gives
E 4) TN\
) () . (I1.13)
NKT. ~ ((3) \T.
Starting from this energy we can calculate the specific heat
dE 12¢(4) <T >3
C,=—-— =Nk — . I1.14
- e \T (I114)

These results can be compared with that of uniform Bose gases. In this case,
the eigenstates of the Hamiltonian are plane waves with energy € = p?/2m. The
sum (IL5) yields No/N = 1 — (T/T.)*? and the energy is
E/(NkgT.) = 0.77(T/T,)** while the specific heat is given by
Cy = 1.93Nkg(T/T.)*?. In the Figures ( II.1, 1.2, I1.3) one can see the com-
parison of the condensate fractions, energies and the specific heats of uniform
and harmonically confined gases.

Density of the thermal particles pr(r) and the condensate density,
2

po(r) = Nolepo(r)|?, gives the total density p(r) = po(r) + pr(r). In the thermo-

dynamic limit and when T < T, the thermal density is given by

pr(r) = [ dp(2mh)~lexp(Be(p.r)) — 17, (11.15)
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Figure II.1: Condensate fraction as a function of T'/T,. Dashed line stands for
the Ideal uniform Bose Gas and solid line for Bose gas in a Harmonic trap.

Figure I1.2: Energy per particle as a function of T/T,. Dashed line shows the
ideal case, solid line stands for harmonic trapping.
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Figure I1.3: Heat capacity as a function of T'/T,. Dashed line:Ideal case. Solid
line: Harmonic potential case.

where €(p,r) = (p?/2m) + V. (r) is the semiclassical energy in phase space. By
changing variables (8p?/2m = x) we get

pr(r) = A gsa(e PV ), (11.16)

where Ay = (2wh*/mkT)Y/? is the thermal wavelength and the function gss(r)
belongs to Bose functions (Appendix A). By integrating pr(r) over space one
gets again the number of thermally depleted atoms N — Ny = N(T'/T.)3, consis-
tent with Equation (II.11). In a similar way the distribution of thermal particles

in momentum space can be obtained as

pr(p) = (Armwno) *gs/a(e/2™). (IL.17)

The above analysis shows that the existence of two relevant scales of energy for
the ideal gas. the transition temperature k7, and the average level spacing hiwp,.
It is clearly seen that k7T, can be much larger than hwy, from expression (I1.10).

In the available traps, with /N ranging from a few thousands to several millions,

11



the transition temperature is 20 to 200 times larger than hwy,. This also means
that the semiclassical approximation is expected to work well in these systems
on a wide and useful range of temperatures. It is also seen that the chemical
potential is of the order of hwy, for the ideal gas. However, its value depends on
the atom-atom interaction and provide a third important scale of energy.

The noninteracting harmonic oscillator model has guided experimentalists to
the proper value of the critical temperature. Actually the measured transition
temperature was found to be very close to this value (I1.10) and below the critical
temperature the occupation of the condensate becomes macroscopically large as

calculated above [28].

11.2 Effects Of Interaction

Gross-Pitaevskii Equation

The many-body Hamiltonian describing the system consisting of N interacting

bosons with trapping potential V,,; is given, in second quantization, by [27]

+ ; / dr de'" U () U () (& — ) () (x), (IL18)

where U(r) and Uf(r) are the boson field operators that annihilate and create a
particle at the position r respectively and V (r —1’) is the two-body interatomic
potential. The thermodynamic properties of the system and its ground state
can be directly calculated from this Hamiltonian (II.18).

There are a number of approaches to work with the many-body Hamiltonian.
Schneider and Feder [29] has used numerical calculations based on a discrete
variable representation of the Hamiltonian. Other approaches like mean-field
theories are developed for interacting systems in order to overcome the problem

of solving the full many-body Schrodinger equation exactly. Making use of the

12



mean-field theories, one can avoid the heavy numerical work and the system can
be understood in terms of parameters having clear physical meanings.

The basic idea of a mean-field description for a dilute Bose gas was formulated
by Bogoluibov[30]. Separation of the condensate contribution from the bosonic
field operator is the key point of this formalism. In general, the field operator
can be written as U(r) = 3, Uu(r)aa, where ¥, (r) are single-particle wave
functions and a, are the corresponding annihilation operators. The bosonic

creation and annihilation operators al, and a, are defined as

al |ng,ni, oo Ny ) = VNg + Lng, g,y oy e + 1,0, (I1.19)
Ao|n0, M1y oy Ny o) = /M|, N1y ey g — 1,000, (I1.20)

where n, are the eigenvalues of the operator 7, = ala, giving the number of
atoms in the single-particle a—state. These operators obey the general commu-
tation rules:

[aa,aTB] = 0ap>  [Ga,a5] =0, [af aTB] =0. (I1.21)

a
Bose-Einstein condensation occurs when the number of atoms ng of a partic-
ular single-particle state becomes very large: ng = Ny > 1 and the ratio Ny/N
remains finite in the thermodynamic limit N — oo. In this limit states with Ny
and Ny £ 1 &~ Ny correspond to the same physical configuration. Consequently
the operators a[T) and ag can be treated like numbers: ag = a(T] = /Np.
Bose-Einstein condensation occurs in the single-particle state Uy = 1/v/V
having zero momentum for a uniform gas in volume V. Then, ¥(r) can be

decomposed in the form
U(r) =/No/V + V'(r). (I1.22)

In the case of nonuniform and time-dependent configuration the generalization

of the Bogoliubov formalism is given by

U(r,t) = B(r,t) + V'(r, 1), (11.23)

13



here ®(r,t) is a complex function and defined as the expectation value of the

field operator: ®(r,t) = (U(r,t)). Its modulus fixes the condensate density
polr, 1) = |B(x, ). (11.24)

The function ®(r,t) is a classical field having the meaning of order parameter.
It is often called the “wave function of the condensate”.

If ¥ is small, that is the depletion of the condensate is small, the decom-
position of field operator (II.23)becomes useful. The time evolution of the field
operator \f/(r, t) is written by using Heisenberg equations with the many-body

Hamiltonian (II.18) to derive the equation for ®(r,t);

ihgt‘if(r,t) = [¥, 4], (11.25)
V2 ) ) )
— _ INTAT o /
l =~ Ve [ OV =)D 1)| (1),

Then the operator T is replaced with the classical field ®.For the interaction
term in the integral this replacement is a poor approximation for the short
distances. However, in the case of dilute and cold gas only binary collisions at
low energy is relevant and these collisions characterized by a single parameter,
the s-wave scattering length. Then a proper expression can be obtained for the
interaction term independent of the two-body potential. Then V(r' —r) can be

replaced with an effective interaction
V(r'—r) =gd(r' —r), (I1.26)

where the coupling constant ¢ is related to the scattering length a through

4 2
g= mha (I1.27)
m

Using the effective potential (I1.26) in equation (I1.25) order parameter can be

written as

e, h? )
zhaé(r,t) =15, + Veue(r) + g|P(r, 1)|7 | D(r, ). (I1.28)

14



This equation is known as Gross-Pitaevskii (GP) equation, was derived inde-
pendently by Gross [31, 32] and Pitaevskii [33].

Validity of the GP equation is based on the condition that s-wave scattering
length be much smaller than the average distance between atoms and that the
number of atoms in the condensate be much larger than 1.

The GP equation is also obtained by a variational procedure
th—® = — (I1.29)
where the energy functional is given by
_ h? 2 2, 954
E[®] = [ dr %W@ + Vear (r) | @] JF§|(I)| : (11.30)

The first term in the integral is the kinetic energy of the condensate Ej;,, the
second is the harmonic oscillator energy FEj,, and the last one is the mean-field in-
teraction energy F;,;. The validity of the dilute gas approximation is controlled
by the dimensionless parameter. The number of particles in a “scattering vol-
ume” |a|®. This can be written as pla|®, where p is the average density of the
gas. When pla|® < 1 the system is dilute or weakly interacting.

However the smallness of the parameter pla|® does not always mean that the
interaction effects are small. These effects have to be compared with the kinetic
energy of the atoms in the trap. One can show the importance of the atom-
atom interaction on the ground state of the harmonic oscillator by calculating
the interaction energy, F;,;. This energy can be written as, g/Np, and the average
density is of the order of N/a}, where ay, = (Ih/mwp,)*/? is harmonic oscillator
length. Thus Ej,; o< N%|al/a3,. Kinetic energy is of the order of Nfwy,, thus
FEyin o< Na,?. Comparing these two energies one can find that

Eint N|CL|
. I1.31
Ekin > Aho ( )

This parameter can easily be larger than 1 even if plal®> < 1, so that very dilute

gases can also exhibit an important non-ideal behavior.

15



Because of the assumption U’ = 0, the above formalism is strictly valid only

in the limit of zero temperature, that is all the particles are in the condensate.

I1I.3 The Ground State Solution

The scattering length in the Gross-Pitaevskii equation can be positive or nega-
tive and its sign and magnitude depends on the atom-atom potential. Positive
and negative values of a correspond to an effective repulsion and attraction be-
tween the atoms, respectively. When Nla|/ap, > 1, in other words when the
interaction energy is much greater than the kinetic energy, the change can be
dramatic. The central density of the condensate is raised (lowered) by an at-
tractive (repulsive) interaction and as a result the radius of the cloud decreases
(increases). This effect of the interaction has important consequences not only
for the structure of the ground state but also for the thermodynamic properties

of the system.

By using the formalism of the mean-field theory the ground state can be
obtained. One can write the condensate wave function as ®(r,t) = ¢(r)e #*/I
where p is the chemical potential. ¢ is real and normalized to the total number
of particles, [drg®(r) = Ny = N. Then the Gross-Pitaevskii equation (I1.28)

becomes

(_ h’v?

o 1 Vent (1) + 9902(r)> p(r) = pep(r). (11.32)

Nonlinearity is coming from the mean-field term proportional to the particle
density p(r) = ¢?(r) and this equation has the form of a “nonlinear Schrédinger
equation”. When g = 0, i.e. when there is no interaction, this equation reduces

to the usual Schrodinger equation.
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For nonlinear partial differential equations, several approximation proce-
dures exist[34]. We used the variational method based on reducing the infinite-
dimensional problem of the partial differential equation to a second order ordi-
nary differential equation for the variational parameter that characterizes the
solution. This is done by taking an appropriate variational wave function with
a fixed shape but some free parameters. The validity of the variational results is
only qualitative, i.e. if the shape of the actual solution is close to the variational
wave function, the results obtained with variational method will be in agreement
with the real solution. One should also interested in the existence and and the
uniqueness of the minimum point. Here qualitative properties include continu-
ous dependence of the minimum point. Another important property consists of
the convergence of any minimizing sequence to a minimum point. For minimiza-
tion problems the functional to be minimized is larger than certain quantities,
which are necessarily bounded for any minimizing sequence. There are two fun-
damental techniques to prove the existence of a solution. The energy functional
(I1.30) is convex then we used the direct method.

The solution of the equation (II1.32) minimizes the energy functional (I1.30)
for a fixed number of particles. Since the ground state has no currents, energy
is a function of density only and can be written as

2

n’ q
Elp] = /dr [lev\/ﬁﬁ + Ve (r) + % : (11.33)

- Ekin + Eho + Eint‘

The first term in the integral represents the quantum kinetic energy and it is
usually called as “quantum pressure”. For uniform systems it vanishes.

We can find the expression for the chemical potential by direct integration
of the stationary GP equation (I1.32)

o Ekzn + Eho + 2szmf

i (I1.34)

L
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The balance between the quantum pressure and interaction energy of the
condensate fixes the healing length. This is the minimum distance over which
the order parameter can heal. It is also in a sense the length over which the gas
heals from internal collisions. If the density of the condensate grows from 0 to
p in a distance &, the quantum pressure in (I1.33) with p = //¢ is of the order
of h?/(2mé?) and the interaction energy in (I1.33) (Ej = gp) is of the order of

4rh*ap/m. By equating them one gets
€ = (8mpa) 2. (11.35)

This is the well known result for weakly interacting Bose gas. One can see
that under normal BEC conditions (pla]® < 1) £ is large compared to |a| (but

generally small compared to typical trap dimensions).
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CHAPTER III

THREE DIMENSIONAL WEAKLY
INTERACTING BOSE GAS

In this chapter, the three dimensional Bose gas which has an attractive inter-
action (a < 0) is studied in a spherically symmetric harmonic trap. Using the
variational method, energy per particle is calculated and it is shown that the
condensate will collapse if the interatomic forces are attractive. Second, the gas
with repulsive interatomic forces (a > 0) is examined in a cylindrically symmet-
ric trap using the same method.Energy per particle is calculated and plotted for
various values of the interaction parameter and Thomas-Fermi approximation is

applied to find the chemical potential and the radius of the cloud.

III.1 Spherically Symmetric Trap
One can determine the behavior of the gas which has a negative scattering length

(a < 0) in a spherical trap by means of the equation (I1.30) in Chapter II . This

can be done by means of Gaussian trial functions. We take a variational trial

19



wave function as [27]

N 1/2 7‘2
0= () o (wi) i

where w is a dimensionless variational parameter which fixes the width of the

condensate. Substituting this wave function into the energy functional (11.30)

h2 N 2 12 /w252 m 2 92 N 12 /w2a2
EMz:/“LQOpwfe/ ﬂ*zwﬂ Bt e
2%52|a| N2 212 /w2a2
—2r%/wag
a5 o | (I11.2)

The above integral can be treated as the sum of three integrals; I = I + I + I.
In the first one, we take the polar and azimuthal integrals and we make the

change of variables x = r? which gives us

NR? T
L=—> / 2320 dx, (IIL3)

Tl <1/2
mwa] m'/ )

where o = 1/w?a3,. Then recalling the definition of the Gamma function(A)

Joerte™dr = T'(n+ 1)/4"", we get

3 NB?
L =-—F—5. I11.4
YT dmwal, ( )
Applying the same procedure to Iy and I3, the energy is obtained as
3NR*  3Nmwi,w’al N2p?
E= . Tho'W Tho o — (IIL5)
dmuw3az, 4 (2m) 2mw3a;,
Thus the energy per particle in terms of hwy, is
L 3. 2 _1pNlal
== — (2n) VP ——w s, 111.6
i = ) - ) A= (L)

This energy is plotted in Figure (III.1) as a function of w for several values of
the parameter N|a|/ap,.
If the forces are attractive (a < 0), the gas tends to increase its density in

the center of the trap to lower the interaction energy. The kinetic energy resists
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Figure I11.1: Energy per particle, in units of Awy,, for atoms in a spherical trap
interacting with attractive forces as a function of the effective width w. Curves
are plotted for several values of the parameter N|a|/ap,-

this to stabilize the system. If the central density grows too much, the kinetic
energy can not avoid the collapse of the gas. The collapse is expected to occur
when the number of particles in the condensate exceeds a critical value N, of
the order of ay,/|al. To find N, we analyze the first and the second derivatives
of the energy (II1.6)and equate them to zero. Finally, we get w,., ~ 0.669 and
Nerla|/an, = 0.671.

From the Figure III.1, one can see that when N,.|a|/an, exceeds a critical
value, the local minimum disappears. Ruprecht et al. [35] found
N lal/ap, = 0.575 for a spherical trap by means of the GP equation. Above

N, the minimum no longer exists and the GP equation has no solution.

21



I1I.2 Cylindrically Symmetric Trap

Consider the gas which is trapped in an effective harmonic well cylindrically sym-
metric about the z-axis and has repulsive interatomic forces. The oscillators are

12 and a, = (h/mw?)/2, where m is the

characterized by lengths a; = (fi/mw?)
atomic mass, w{ and w? are the angular frequencies in the transverse xy-plane
and axial (z)direction,respectively. In the absence of interparticle interactions

the lowest single-particle state has the wave function [36]

1 0.2 0,2

—m(w ¥ 4wyz?)/2h
e~mird , (IIL.7)
7T3/4CLJ_(I;/2

Po(r) =
where 7 is the component of r in the xy-plane. The density distribution at zero
temperature po(r) = N¢o(r) is Gaussian. However, interatomic interactions
modify the particle structure in the well.

The density is reduced because of the repulsive interactions. The cloud of
particles expands in the transverse direction as the number of particles increases.
Because there are weak restoring forces with further increase in the number,
the cloud expands in z-direction. The balance between the harmonic oscillator
and the interaction energies determines the size of the cloud. Neglecting the
anisotropy of the oscillator potential one can see the physics of this balance.
Assuming the cloud occupies a region of radius ~ R, then p ~ N/R3, we found
the scale of harmonic oscillator energy per particle ~ (47h%a/m)N/R®. If we
equate them, the characteristic length scale is ~ a, ¢, where the dimensionless

parameter characterizing the system is
s = (87Najay)'® (I11.8)

under the conditions of the trap with large N, ¢ > 1.
To see the interaction effects we examine the ground state of the system in

terms of its order parameter ¢(r). For a solution we take ¢ in the form of the

22



ground state wave function (II1.7)

3/4
o(r) = Nl/Qwi/zw;/‘l <7”';L> / o1 w,2?) /20 (I1L.9)
T

with effective frequencies w; and w, that are treated as variational parameters.
Substitution of this ¢ into energy functional (I1.30)and use of g = 47h%a/m
yields

N 1/2 3/2
Ploi= [ o [P () it sty

N 1/2 3/2
Nyl (VY2 (o2 (2ot o
2nh?aN?w? w, (m

mh

3 2 2
> e—2m(erJ_+sz )/ (IIIlO)
m

By using the similar methods which are used in the previous section we can
solve this integral. We treated this integral as a sum of five different integrals.
By making use of the definition of the Gamma function and making change of

variables one can find the ground state energy as

_ wi ow. (W) (W) Nam'?
E(QJJ_,Q)Z) = Nh (2 + Z + 2wJ_ -+ 4wz (QWh)l/QCUJ_UJZ . (11111)

Minimizing the energy with respect to w,; one gets,

1 0)2 N 1/2
Nh ( _ W7, Nam w1/2> =0, (111.12)

2 2w’ T (2rh)2:

we find the variational parameter

0 0
_ Wi Wy
e 1 4 2Nam'/2 1/2 72 7 A (IT1.13)
( T ann)iz Wz )

where

g5 w 1/2 1/2

Interactions spread out the distribution in the transverse direction by a factor

A2 by reducing the effective transverse oscillator frequency by A.
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107

Figure I11.2: Energy per particle as a function of w,. Curves are plotted for
different values of the parameter Nla|/a . Solid line stands for the largest value
of the interaction strength.

Spreading in the z-direction begins to become significant when the interac-
tion energy per particle becomes comparable with Aiw?. Substituting equation

(II1.13) into equation (I11.11) we get

0\2
Elw.] = Nh <w3A + % + ﬁ‘j) . (IIL.15)

We employ the Binomial expansion to the A and neglect the second and
higher order terms. Equating the first derivative of F(w,) to zero one finds
2

w? = (w

- 2.

) Using this result in the second derivative of F(w,) we get the

condition Na/a; > (w?/w))¥2. From Figure II1.2, one can see that as the
interaction strength increases the minimum of the energy lowered.

I111.2.1 Thomas-Fermi Approximation

The limit of large N is particularly interesting since this condition is well satisfied

in most of the current experiments. Moreover, in this limit mean-field theory
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takes a rather simple analytic form.

As N increases, the atoms are pushed outwards, the central density becomes
flat and the radius grows. As a result, the kinetic energy term in the stationary
GP equation (I1.32) takes a significant contribution only near the boundary
and becomes less important than the interaction energy. Neglecting the kinetic

energy in equation (I1.32) completely, we get the density profile in the form

p(r) = @*(r) = g~ '[1 = Vewr(r)] (IIL.16)

in the region where p > V.4(r) and p = 0 outside. This is referred to Thomas-
Fermi (TF) approximation. This form is acceptable except where the density is
small, in which case the contribution of the kinetic energy is important.

If we impose the normalization condition on p(r) and substitute

Vewr(r) = m[(w])?r? + (w?)%2?]/2 into this we obtain
N = /gf1

where 6 is the unit step function. Employing change of variables a = wqr,

= S Pt @D222] 0 [ = D@ + W02 dor
(111.17)

B =wl2 and o? + 32 = r? the Equation (II1.17) takes the form,

27 7 m m
V= o ] (=57 oG e iy
1

Taking this integral and making some simplification we get the relation between

the chemical potential and the number of particles as

hw? (15 Na\>”
==L I11.19
o Tk (1A (11L.19)
where A\ = w? /w9 .
Since u = dE/dN,
ht (15xa)>”
E= /ﬂ <a> N3N (I11.20)
2 a|
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Figure I11.3: TF chemical potential,in units of AiwY , as a function of interaction
strength (z = Na/a,).Curves are plotted for several values of . Solid line
shows the largest value, A = 1.

and the energy per particle turns out to be
— =-Npu. (IT1.21)

This energy is the sum of the interaction and oscillator energies, since the kinetic
energy has no contribution for large N. One can see from the Figure II1.3 that
when the trap is spherically symmetric i.e. A = 1 the chemical potential has the
minimum value.

The density profile (II1.16) has a form of inverted parabola which vanishes
at the classical turning point (R, 7). The widths in the radial and axial direc-
tions are fixed by the conditions g = m(w9)?R?/2 = m(w?)?Z%/2. Then the
transverse radius of the cloud is

R <15)\Na>2/5

al

(I11.22)

al

and the half height in Z—direction is Z = R/A. Te value of the density (II1.16)
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at the center of the trap is prp(0) = /g,

e (0) 1 <15)\Na>2/5:<15)\> N (111.23)

8rala \ a, 8t ) ad¢?

This density is much lower than the one for the noninteracting particles. Using
the equation (II1.7) we get pp, = N/7*2a%a,. The ratio between the central

densities is

pre(0)  T215/NV2 (N Y
) g (111.24)

and decreases with N. Inclusion of kinetic energy corrections spreads the distri-

aj

bution and decreases the density.
If R is much larger than the healing length, the quantum pressure term

becomes negligible. If we substitute the central density into the healing length

(I1.35) we get
2 [15ANa\ */°
é: (‘%) — ( - “) . (I11.25)

The above equation shows that the healing length decreases with N. Therefore

Thomas-Fermi approximation is valid for the large N limit.
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CHAPTER IV

LOW DIMENSIONAL BOSE GAS

In this chapter, two and one-dimensional Bose gases are studied. We show
that there are no Bose-Einstein condensation in a 2D and 1D uniform Bose
gases in Section [V.1. The ideal Bose gases confined in harmonic and power-law
potentials are examined. The condensate fractions, critical temperatures and
the energies per particle are calculated. Finally we studied the properties of
BEC in highly anisotropic trap in effective 2D and 1D. The total energy and the
chemical potential are calculated by using a variational approach in cigar and
pancake geometries. The conditions for lower dimensionality are derived and

theoretical and experimental values of the release energies are compared.

IV.1 1Ideal Bose gas in Two- And One-Dimensions

In a uniform gas Bose-Einstein condensation cannot occur in one and two-
dimensions because thermal fluctuations destabilize the system. In the presence
of BEC, the chemical potential equals to zero for an ideal gas and the momentum

distribution is

n(p) o [exp(Bp*/2m) — 1] (IV.1)
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It can be seen that in the thermodynamic limit this violates the normalization
condition, i.e. [n(p)dp diverges. Then Bose-Einstein condensation is impossible
in 2D and 1D in uniform systems. But it should occur in atom traps since the

confining potential modifies the density of states.

IV.2 Harmonic Potential

IV.2.1 Two-Dimensional Bose Gas

The confining potential can be written as

Vert(r) = ;muﬂrz, (IV.2)

where 72 = 2% + 92 and w = (w,w, )2

By neglecting atom-atom interactions we can write the eigenvalues of the

many-body Hamiltonian as
€ngny, = (Na + 1y + 1)hw. (IV.3)

At temperature T, the total number of particles is given in grand-canonical

ensemble
1
N = IvV.4
2 o enn, — 1]~ 1 (v
and the total energy is
E=Y Enany . (IV.5)

Nz, Ny eXp[/B(Enxny - M)] - ]'

Similar to 3-dimensional case we separate out the lowest eigenvalue €y from
the sum and call Ny as the number of particle in this state. When the chemical

potential equals to the €y i.e. u — . = hw, this number can be macroscopic.

N-No= ¥ !

. IV.6
no o0 €XP[Bhw(ng + ny)] — 1 (1v.6)
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This summation can be replaced by an integral as N — oo,

7 dngdn,

N=No= o/ exp[fhw(ng +ny)] —1°

(IV.7)

By making change of variables n = [hwn, etc. and using the definition of

Riemann Zeta function (Appendix A), this integral yields

N — Ny = (k;jf>2 (2). (IV.8)

At the transition Ny — 0 then the critical temperature is,

1/2
kgT?P = hw (C](V?)> . (IV.9)

For T' < T,, the condensate fraction can be calculated by substituting the critical

temperature into equation(IV.8)

N, T\’
~ =1 <T2D> . (IV.10)

It can be obtained also by using the density of states p(e) = €¢/(fiw)?. The

total energy is also calculated with this density of states as,

7 ple)ed
g [P (v.11)
0

By changing of variables and substituting the critical temperature we find the

E x@ [T\
NkpT2P — ((2) <T3D> ' V-12)

total energy as

From this energy the specific heat is obtained as,

o 6B (T
Cy = Nkg ) <T3D> . (IV.13)

In the Figure IV.1 the condensate fractions of ideal Bose gas confined in har-

monic trap in 3D and 2D is shown.
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Figure IV.1: Condensate fractions as a function of 7'/T.. for 3- and 2-dimensional
ideal Bose gas trapped in harmonic potential.

IV.2.2 One-Dimensional Bose Gas

In Section IV.1 we said that Bose-Einstein condensation can occur in atom traps
but in one-dimension BEC cannot occur in a harmonic trap. One can see this
by calculating the condensate fraction. Similar to the two-dimensional case one
can find that

 kpT

N —No=5¢(1). (IV.14)

Recalling the properties of the Riemann Zeta function (A), ((s) diverges for
s < 1. The Equation (IV.14) diverges. This means that in the thermodynamic
limit the critical temperature for one-dimensional Bose gas tends to zero.Despite
the fact that there is no BEC in thermodynamic limit there can be observed two-

step BEC for finite values of N.
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IV.3 Power-Law Potential

IV.3.1 Two-Dimensional Bose Gas

In this part, we examine the 2D Bose gas confined in power-law potentials be-
cause these potentials lead to analytical solutions and most of the traps display
power-law behavior close to their minimum. The most general potential is given

in the form [37]

Vauloo) =i (5) +v2 (4)". (IV.15)

For simplicity we assume that the potential is isotropic,
r\"
Veat(1) = Vo <> : (IV.16)
a

By using the definition

ple) = (m) r(11) / e = Veau(r)]dr, (IV.17)

onh?

for the density of states we get

9 T
ple) = Z;n /27Trd7‘, (IV.18)
0

where 7% = a(e/V)"/". The density of states is obtained as,

2m2ma® [ e \2/"
= — : V.19
o0 = "0 () (1v.19)
By using this result one can calculate the total number of particles as
om2ma® | €2/ de
N =N+ ST O/ T (IV.20)
Using y = €¢/kgT, we obtain,
2m*ma? 249
N =Ny + W(kBT)n 92(n, u/kpT), (Iv.21)
0
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where the 2D Bose function is

o0

92(n, x) :/

y2/ dy

evy—x —1°

(IV.22)

For =0 i.e. at T,

0(n,0) =T (ﬁ”) ¢ (2;"> . (IV.23)

g2(n,0) remains finite for all positive values of 1. So that Bose-Einstein
condensation can always occur in an ideal two-dimensional gas confined by a
power-law trap. The limit 7 — oo corresponds to a rigid box. gs(00,0) diverges
and BEC does not occur.

At transition Ny = 0, then the critical temperature is

/2+n
Nh2v2/77 K
kTP = | ———— (IV.24)
2m?ma?gs(n, 0)
The total energy is found as
2420 - (2420 L
2D 2 2+ 2D ’ .
NEsTE? T (52) ¢ (52) \T:
and the specific heat is given by
. <2+2n> L) () ( T ) v
v B 241 - (240 \ 72D ' ‘
g 3 ( nn> S ( nn) ¢

One can see that when = 2 i.e. harmonic trap, results are the same with

that of the previous calculations for the harmonic trap.

IV.3.2 One-Dimensional Bose Gas

We consider an one-dimensional gas confined by a power-law potential

Viurl) = Vi ('L') | (1v.27)
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The density of states can be calculated from the definition [37]

, (IV.28)

where 2I(€) is the available length for particles with energy e, I(e) = L(e/Vp)'/".
Using y = Vp|z|"/eL", we get

2v/2m et/n-1/2

— F 1V.29
P(G) 77h ‘/01/7, (77)7 ( )
where
(I=m/n q
Y Y
F(n :/7. I1V.30
=" = (1V.30)

By using the result for density of states the total number of particles can be

written as
ZL\/_ F(p) 7 /12
N = Ny + 1/71 /eﬁ T de (IV.31)
0
We get the result
2L\2m F(n
N = Ny ZE T s, ), (1v.32)
where
Ooyl/nfl/Zdy
gi(n,x) = (Iv.33)

ey x — 17
is the one-dimensional Bose function.

As T increases Ny ~ 0. As T decreases the chemical potential increases and
reaches 0 at some T,. For T' < T,, u remains zero and N; increase.

The function g;(n,0) can be written in Gamma and Riemann zeta functions

91(n,0) =T <717 + ;) ¢ (717 + ;) : (IV.34)

One can see that g;(n,0) remains finite only if n < 2 from the properties

of Riemann zeta function. The 1D ideal Bose gas will display BEC only if the
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potential power is less than 2, i.e. only if the external potential is more confining
than a parabolic potential.
By setting the number of particles in the ground state zero the critical tem-

perature is obtained as

2n/(2+n)
k0 — | Nl W ! (IV.35)
2V T T (D)< )

The value of the factor (1/2)*/(2+" is always less than 1 when 0 < 7 < 2.

Therefore, the critical temperature will be suppressed by such a factor.

200
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ch
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Figure IV.2: Evolution of the critical temperature with the potential parameter
7n for one- and two-dimensional traps. Solid line stands for 2D and dashed line
for 1D.

The total energy is then found as

E F<717+3)C(7117 ( T )”’7*3/27 (1V.36)
7

T
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and the specific heat

o (L TGS
CV_NkB(ﬂ_'_Q)F(}?—i—;)C(}]—i—é)

In the Figure IV.2 evolution of the critical temperature with the potential

T 1/n+1/2
<T1D> . (IV.37)

power n for 1D and 2D traps is shown. It can be seen that 7. shows a peak

between 1 = 0 and 2.

IV.4 Effective Lower Dimensions

After the experimental realization of crossover into two-dimensional and one-
dimensional condensates [25] there has been a growing interest in Bose-Einstein
condensation in effective lower dimensions. Effective lower dimensionality means
that excitations along the tightly confined dimension(s) are energetically not
allowed for confined gases. This is done by a change in aspect ratio and by the
release energy converging to a nonzero value when the number of trapped atoms
was reduced.

For condensates in 3D an effective and simple analytic description was achieved
through the Thomas-Fermi approximation. It is justified for the large number
of atoms with aspect ratios of the order of 1. As the aspect ratio is far from
unity, the kinetic energy in the constricted direction becomes more important
and TF approximation is not valid.

Kunal Das [38] developed a theoretical model which successfully describes
condensates from the 3D regime with increasing degree of anisotropy all the way
to regimes of effective lower dimensionality.

At zero temperature in cylindrical coordinates we can write the energy func-

tional (I1.30) as
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)\1/3
Elp]= N hw/rdr/dz [2(\Vr90|2 +72|¢]?)
)\—2/3

T

N
(IV0® + 2%[0?) + aahp\‘*] : (IV.38)
ho

where the aspect ratio is A = w, /w, and w = (wiw,)?.

TF approximation gives a value for the chemical potential (II1.19) for the

condensate with all its spatial dimensions of comparable magnitudes. i.e. A =1,

(IV.39)

Urp = —(—

 hw (15Na>2/5
5 .

(ho

This expression does not depend on the aspect ratio, whereas we would
expect that the chemical potential should change as the aspect ratio changes.
We use a variational approach again to get the expression for p that has the

correct dependence on the aspect ratio.

IV.4.1 Cigar Geometry

We take the trial wave function [38]

1/2
34, J—
@cigar('ra Z) = (2§3> eiﬂrr2/2 d? —z2 9<d2 - Z2)7 (IV4O)
for the cigar geometry A > 1, where 3, and d are variational parameters and
0(z) is the unit step function.

In the axial direction the condensate size far exceeds the oscillator length
and the kinetic energy is negligible. We take only the kinetic energy in the

transverse direction and neglect that of in the axial direction in the energy

functional(IV.38). We obtain,

o0

E T 3/\1/3 2 2 —Bir? /32 2 2 2
th—ﬂ/ r dridzhd?, (2 + B, )r2e P (42 — 22)0(d? — 72)

N,
o3 ¢

gﬁfNa e_2ﬁrr2

2 .2 2 .2
(d* —2z7)0(d* — z )+4d6ah0

+
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(IV.41)

(42 — 22)20(d? — 22)| .
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Figure 1V.3: Comparison of chemical potential obtained from different ap-
proaches as a function of the dimensionless parameter Na/ap, with A = 100.

This integral can be written as the sum of three integrals.] = Iy + I + I3. After

calculations we get

(IV.42)

E[d,3.] A3 1 A3 3B.Na
. L d .
Niw 2 T ) T 0T Saan

We minimize E with respect to §, and d, finally we get the relations

1 6Na

e 1+ mxlﬂ”, (IV.43)
and
N
gt = 30N yys, (IV.44)
Qho

We can find the chemical potential corresponding the optimum parameters
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Figure 1V.4: Comparison of chemical potential obtained from different ap-

proaches as a function of the dimensionless parameter Na/ap, with A = 1000.

by taking the derivative of energy with respect to N and we obtain

A3 1\ 1/38.Na\"*
— hw | (=)= [
I w[ 5 (ﬁ +5T>+2<A1/3ah0>

= h;" (ﬁr + ;) - ;(35,Nawrwzh\/E)2/3. (IV.45)

2/3

/) vanishes in the limit w, — 0,

It is clearly seen that the last term (ox w
also in that limit 5, — 1 so that the chemical potential equals the transverse
ground state energy hw,.

In order to test the accuracy and validity of this approximation we compare

the analytic expressions for the chemical potential with accurate numerical so-

lution of the GP equation obtained by K. Das [38]. He used discrete variable
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representation (DVR) mesh in r (Laguerre DVR) and z (Hermite DVR). It is
seen that the variational chemical potential with optimized (3, closely follows
the numerically computed chemical potential over a large range of Na/ay,. For
low densities, the expression with 3, = 1 is sufficient but it fails as the den-
sity increases. However TF expression (IV.39) is accurate at high densities and
breaks down at low densities since it approaches zero while the correct chemical

potential approach the zero-point energy.

IV.4.2 Disk Geometry

For the disk geometry A < 1 and we take the trial wave function [3§]

o\

1/4
Opan (T, 2) = 2 (5Z> e P72 hT 12 9(b? — 1), (IV.46)

Similar to the cigar geometry, neglecting the transverse kinetic energy we

find,
E A3p2 )\ 2/3 1 8N 3

Nhw 6 4 5. 3b2an,

We then get the relations for the optimum parameters that minimize the

16Na |3 v
4 E
b= AMBap, \ 27 (IV.48)

1 16 Na)2/3

energy

and

— = _— V.49
B2 * 327 3. b%ay, ( )
The corresponding expression for the chemical potential is
A28 1 ABNa (85, )"
= hw B+ — |+ a (80 : (IV.50)
4 62 Gho m

If we compare the analytic expression for the chemical potential with numer-

ical result of K. Das [38], it is clear that variational expression from Equation
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Figure IV.5: The chemical potential for disk shaped traps as a function of the
dimensionless interaction strength Na/as,, obtained from various approaches,for
aspect ratio A = 0.01.

(IV.50) reproduces almost exactly the numerical solution of the GP equation
over the range of Na/ay, shown. The reason for the better agreement is the
larger relative importance of the kinetic energy in the tightly confined direction.

It is more clearly seen that TF expression (IV.39) fails as the density decreases.

IV.4.3 Crossover To Lower Dimensions

The variational parameters used to obtain the chemical potential also give a
measure of the effective dimensionality of the condensate. As discussed in Sec-

tion IV .4 if excitations in the tightly confined dimension are frozen a trapped
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Figure IV.6: The chemical potential for disk shaped traps as a function of the
dimensionless interaction strength Na/as,, obtained from various approaches,for
aspect ratio A = 0.001.

Bose gas is considered to be in effective lower dimension. For a weakly inter-
acting gas at low densities, the interaction energy can be assumed to be equal
to Thomas-Fermi chemical potential. The crossover to 1D and 2D is defined by
prF ~ hwy, i.e. when the interaction energy per particle is comparable to the
energy to excite in the tightly confined direction. Then the condition for lower

dimensionality is

~ 0.38)\%/6,
Aho
N.
208 0.38079/3, (IV.51)
Aho

In Figures IV.3, IV.4, IV.5, IV.6 the optimum values of 3, and [, is plotted
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along the right axis. The values corresponding to the crossover to one dimension
and to the two dimensions are indicated. One can see that this corresponds to
B, ~ 0.8 and 3, ~ 0.8. Thus, the values of 3, and 3, give a measure of the dimen-
sionality of the system. When 3, ~ 1 the system is effectively one-dimensional
since the transverse profile of the condensate coincides with that of the trans-
verse ground state and when 3, ~ 1 the system is effectively two-dimensional.
The system approaches three dimensionality when these parameters deviate from
unity.

In the experiment in [25], the crossover from a 3D to lower dimensionality
was deduced by observing a sudden change in the aspect ratio of the released
condensate when the number of atoms was lowered below a certain value, and
by observing a saturation of the release energy at the zero-point kinetic energy
in the tightly confined direction. One can estimate the release energy in this
variational model and compare it with the experimentally observed value due to
the conservation of energy.

The release energy is the energy of the system after the traps are switched off.
It is just the sum of the kinetic and the interaction energies of the condensate
before release. For the cigar geometry A > 1, the release energy per particle is

found by using the Equation (IV.42),

hw, B,  hw,d?
E'rel: L‘;ﬁ + w5 s (IV52)

where we use the optimized parameters 3, and d in Section IV.4.1.

The release energy in [25] is plotted as a function of the half length (Z) of
the condensate. The axial expansion in the 1D experiment was negligible within
the time of flight till measurement so that we need for comparison the initial
half length before release.

The parameter d can be assumed to be half length of the condensate by
investigating the form of trial function (IV.40). The half length in 1D limit is
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obtained by d(3, =1 — Zip). In 3D limit, we note that 1/1/3, is the width of
the transverse variational profile and in the expression (IV.43) for [, measures
the deviation from one-dimension. As the condensate moves away from the 1D
regime and approaches an ellipsoid shape, that deviation would be maximum at
the center and negligible at the end of the ellipsoid. Thus we take an average

value for the deviation and define the modified 3, as

1 3Nax='/3
In the 3D limit (3, < 1, we can write E2 o~ %. Then we get the correct
_ 1/5
limit  d(3) S Zap - (12802) ' Similaty

_ 53\ 1/3
for 1D d(6, = 1) — Zip = (M) / . Thus in the intermediate regime

Qho

we expect the half length to be given a good approximation by

Na—
7= Nagos (IV.54)

Aho

The release energy should be evaluated with the optimized variational param-
eters. The variational process optimizes energy and not condensate dimensions
hence there is no inconsistency.

In Figure IV.7 the release energy per particle is plotted as a function of the
half length from Equation (IV.54). The parameters are the same with those in
the experiment [25]; sodium atoms in a magnetic trap with w, = 27 x 360H z
and w, = 27 X 3.5H z so that the aspect ratio is A ~ 103. Comparison with the
experimental result shows that the expression (IV.52) for the release energy close
to their measured data; as the system approaches effective 1D the saturation of
the release energy at the radial zero-point energy is clear.

In the disk geometry the release energy per particle is founded similarly

hw.B,  hw,b?
Erel: w45 + w6 . (IV55)

We cannot compare the above expression with the experimental data. Since the

trap in 2D experiment had not strictly cylindrical geometry and unlike 1D case
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Figure IV.7: The release energy per particle E,..;/h as a function of the half
length of a cigar shaped condensate. The horizonal line represents the transverse
zero-point energy. The experimental data obtained by Gorlitz[25] is shown by
bubles.

there is significant expansion of the condensate in all directions till the time of

measurement which involves the dynamics of expansion.
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CHAPTER V

CONCLUSION

The study of the three-dimensional Bose gas confined by harmonic potential is
very important. Because the shape of the trapping potential is well approxi-
mated by a harmonic shape in many experiments. In studying weakly interact-
ing systems, the Gross-Pitaevskii equation, which is non-linear, is used. Since
it is non-linear, one can not solve it analytically but numerical and variational
approaches are available. We employed the variational approach which gives
an upper bound for the ground state energy. Comparing the numerical and
the variational results, it is seen that they are consistent for the systems under
consideration. We showed how a nonuniform confinement and two-body inter-
actions characterize the ground state properties of the system. It is shown that
if the interatomic forces are attractive (a < 0) the central density increases. If it
grows too much, the gas will collapse. We calculated the N, for the collapse by
means of variational approach. It is shown that above N, the local minimum

of the energy disappears and the Gross-Pitaevskii equation has no solution.

The repulsive interaction (a > 0) case is also examined. In this case an
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effective and simple analytic description was achieved through the Thomas-
Fermi approximation. It is shown that Thomas-Fermi approximation is valid
for large condensates with aspect ratios of the order of unity.

The study of one- and two-dimensional systems is very important because in
lower dimensions Bose-Einstein condensation shows new features which modify
the behavior of the system. It is shown that BEC is impossible in 1D and 2D in
a homogeneous system but occurs in atom traps. The critical temperatures and
the condensate fractions are calculated for the 1D and 2D nonuniform gases. It
is also shown that the one-dimensional Bose gas display BEC only if the external
potential is more confining than a parabolic potential.

A simple model is given to describe how a condensate changes as it becomes
more anisotropic and crosses over to effective lower dimensionality. Comparison
with the numerical solutions shows that this model is accurate and valid. By
using a variational approach we obtained analytic expressions for the chemical
potential which are valid for cylindrical condensates for all degrees of anisotropy
even where the Thomas-Fermi approximation is completely inadequate. It is also
shown that the variational parameters used to obtain the chemical potential give
a measure of the effective dimensionality of the condensate. The expressions for
the total energy and the release energy have been found and they are valid in
3D as well as in effective one- and two-dimensions. The release energy is shown
to agree well with experimentally measured values.

As it is mentioned in Section II.3 the variational method gives an upper
bound for the ground state energy. One should employ numerical methods to
obtain more accurate results for such nonlinear partial differential equations.
Besides the advantage of getting analytic expressions by variational approach, it
was also shown in relevant sections that results obtained numerically are closer to
those obtained experimentally. Future work should be focus on proper numerical

analysis of the problem.
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Lower dimensional condensates offer many opportunities for further studies.
The one-dimensional case is particularly interesting. Because, the gas becomes
an impenetrable Tonks-Girardeau gas at extremely low density and tight con-
finement. A gas of such impenetrable bosons behaves like a free Fermi gas.
However, our variational functions cannot be applied to the Tonks-Girardeau
regime, since the Thomas-Fermi profile in the axial direction has to be replaced
by a square root of a parabola and the axial energy is simply the Fermi energy
for N particles in 1D. The variational ansatz which is used in our calculations
should be useful in studying 2D lattices of effective one-dimensional condensates.

Recently, a different approach from variational/perturbative and numerical
methods appeared for studying effectively 1D Bose gases [42]. This method
is based on Lieb-Liniger solution for 1D delta-dunction Bose gas. Using this
model they investigate the five cases: ideal gas case, 1D Gross-Pitaevskii case,
1D Thomas-Fermi case, Lieb-Liniger case and Girardeau-Tonks case. It is also
presented a 1D energy functional, analogous to the Gross-Pitaevskii functional,
that correctly describes the energy and density in all of the five cases. Re-
searches are currently using this model to investigate various properties of 1D

Bose systems [43]. The future work would be done on this model.
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APPENDIX A

Bose Functions

The general form of the Bose functions is [39]

1 v tdx
g,(2) = /z—lex 7 0<z<1, vEeER (A.1)
where ['(v) is the Gamma function.

X

For small z, we can expand the integrand, ze™ < 1 in our case

exp[—f(e — p)] < 1t

1 B x 1
e 1 0 1 gex
= ze ¥ (ze7M)K,
k=0
= > e (A.2)
k=1

Using this result in the equation (A.1) we find

I &k 7 —1,-k
g,(2) = 2 /x” e dx. (A.3)
I'(v) = /
By changing variables, y = kx, we get
RN vl —y
9u(2) = T > p/y e Vdy. (A.4)
k=179



The last integral is the definition of Gamma function, then we obtain

00 k
:Z%, 0<z<1. (A.5)

For z = 1(p = 0), there is relationship to Riemann Zeta function
> 1
Z /7 v>1, (A.6)

where ((v) can be also written in the integral form [40]

1 Tavlde
C(v) = F(V>0/ . v> L (A7)

This series converges only for v > 1. This does not mean that the functions
g,(2) are defined only for v > 1, but that g,(2) — oo for » < 1 and z — 1.
g,(2) is finite for v > 1 for all 0 < z < 1.

Some special values of the often used (—functions are listed below:

C(1) » oo ((3/2)=2612 ((2)~1.645
C(5/2) = 1.341  ((3) =1.202 ((7/2) = 1.127

(A.8)
C(4) ~1.082  ((5)=1.037  ((6)~1.017
C(7) =1.008  ((8) ~ 1.004
A simple differentiation of g,(z) gives the recurrance relation [41]
0 9

This relation follows from the series expansion (A.6).
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