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ABSTRACT

BOSE-EINSTEIN CONDENSATION AT LOWER DIMENSIONS

Özdemı̇r, Sevı̇lay

M.S., Department of Physics

Supervisor: Prof. Dr. Mehmet Tomak

January 2004, 53 pages

In this thesis, the properties of the Bose-Einstein condensation (BEC) in low

dimensions are reviewed. Three dimensional weakly interacting Bose systems are

examined by the variational method. The effects of both the attractive and the

repulsive interatomic forces are studied. Thomas-Fermi approximation is applied

to find the ground state energy and the chemical potential. The occurrence of

the BEC in low dimensional systems, is studied for ideal gases confined by both

harmonic and power-law potentials. The properties of BEC in highly anisotropic

trap are investigated and the conditions for reduced dimensionality are derived.

Keywords: Gross-Pitaevskii formalism, reduced dimensionality, weakly inter-

acting Bose gas, Thomas-Fermi approximation, variational method, nonlinear

Schrödinger equation, highly anisotropic trap.
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ÖZ

DÜŞÜK BOYUTLARDA BOSE-EINSTEIN YOĞUŞMASI

Özdemı̇r, Sevı̇lay

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Mehmet Tomak

Şubat 2004, 53 sayfa

Bu tezde, düşük boyutlardaki Bose-Einstein yoğuşmasının (BEY) özellikleri in-

celenmiştir. Zayıf etkileşimli üç boyutlu Bose sistemleri varyasyonel metodla

incelenmiş ve atomlararası kuvvetlerin itici ve çekici olduğu durumlar analiz

edilmiştir. Thomas-Fermi yaklaşımı uygulanarak taban enerjisi ve kimyasal

potansiyel hesaplanmıştır. Düşük boyutlu sistemlerde, öncelikle harmonik ve

üstel potansiyel altındaki ideal Bose gazlarında Bose-Einstein yoğuşmasının or-

taya çıkması araştırılmış, yüksek-derecede anizotropik tuzaklardaki BEY çalışılmış

ve indirgenmiş-boyutluluk için gereken koşullar ortaya konmuştur.

Anahtar Kelimeler: Gross-Pitaevskii formalizmi, indirgenmiş boyutluluk, zayıf

etkileşimli Bose gazı, Thomas-Fermi yaklaşımı, varyasyon metodu, lineer ol-

mayan Schrödinger denklemi, yüksek dereceli anizotropik tuzak.
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CHAPTER I

INTRODUCTION

One of the long lasting problems in physics is the Bose-Einstein Condensation.

It was predicted in 1925 [1] by Einstein, on the basis of the statistical description

of the quanta of light by the Indian physicist S. N. Bose [2]. First experimental

realization of Bose-Einstein Condensation (BEC) was achieved in 1995 in atomic

gases [3], [4].

When a gas of bosonic atoms is cooled below a critical temperature Tc, a large

fraction of the atoms condense to the state of lowest energy as a consequence of

quantum statistical effects. In other words, when atoms are cooled to the point

where the de Broglie wavelength, λdB = (2πh̄2/mkBT )1/2, is comparable to the

interatomic separation, the atomic wavepackets overlap and the gas starts to

become a ”quantum soap” of indistinguishable particles. There is a quantum

mechanical phase transition and it is called the Bose-Einstein Condensation

(BEC).

After the discovery of superfluidity in liquid Helium [6],[7], F. London [8]

considered that the superfluidity was a manifestation of BEC. Although there
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Figure I.1: Three density distributions of the expanded clouds of the rubidium
atoms at three different temperatures. The appearance of the condensate is
apparent as the narrow feature in the middle image. On the far right, nearly all
the atoms in the sample are in the condensate. Colors represent the densities.
From Cornell [11].

were several discussions for decades [9],[10] it is now recognized that the prop-

erties of superconductivity and superfluidity in both 3He and 4He are related to

BEC [11].

The studies on the dilute atomic gases developed much later, starting from

the 1970s, by the help of the new techniques in atomic physics and advanced

cooling mechanisms.

In 1976 [12] spin-polarized Hydrogen was offered as a good candidate for

realizing Bose-Einstein condensation since it has no bound states and would

remain a gas down to zero temperature. This suggestion was followed by several
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experiments [13],[14],[15]. In these experiments hydrogen atoms were first cooled

in a dilution refrigerator, then trapped by a magnetic field and further cooled

by evaporation. They were coming very close to BEC.

In the 1980s, laser cooling [16] and magneto-optical trapping [17] were devel-

oped to cool and trap atoms. Alkali atoms are well suited to laser-based methods

since the available lasers can excite their optical transitions. Alkali atoms can

be cooled to very low temperatures because of their favorable internal energy-

level structure. After trapping, their temperature can be lowered further by

evaporative cooling [18].

In these conditions, the equilibrium configuration of the system would be the

solid phase. So that one has to preserve the system in a metastable gas phase

for a sufficiently long time to observe BEC.

In the 1995, Cornell and Wieman at Boulder and Ketterle at MIT succeded in

reaching temperatures and densities required to observe Bose-Einstein Conden-

sation in vapors of 87Rb [3] and 23Na [4] by combining the laser and evaporative

cooling for alkali atoms. They cooled the samples to a temperature of ∼ 2µK.

Recently, MIT group reported that they lowered to temperature to the order of

500pK [19]. In the same year, first signatures of the occurance of BEC in vapors

of 7Li were reported [20]. Bose-Einstein condensation was also achieved in other

atomic species, spin-polarized Hydrogen [21], metastable 4He [22],[23] and 41K

[24]. At least thirty groups have now created condensates [5].

One of the most important features of these trapped Bose gases is that they

are inhomogeneous. This fact has several important consequences. First BEC

shows up not only in momentum space but also in coordinate space. This prop-

erty allows for the investigation of a series of quantities; like the temperature,

energy and density, and so on.

After the realization of BEC in 1995, this field has grown explosively and
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physicists from different areas of physics (atomic physics, quantum optics, con-

densed matter physics, etc.) are now working together.

The experimental observation of BEC has opened a new variety of important

questions. At both experimental and theoretical level the possibility of inter-

esting implications are demonstrated. Over the last years various studies on

these systems are being performed such as collective excitations and rotational

properties of the condensates, soliton behavior, quantized vortices and vortex

lattices, interference and coherence phenomena, two component condensates,

BEC in optical lattices as well as the reduced dimensional properties [18].

The aim of this thesis is to investigate the Bose-Einstein Condensation in

lower dimensions. The study of the low dimensional systems is an important

area in condensed matter physics because the spatial degree of freedom affects

the properties of the phase transitions and collective oscillations. Hohenberg [26]

has shown that BEC cannot occur in an ”ideal” two dimensional system. Later

it was shown that if the gas is confined by a spatially varying potential, BEC

can occur. Recently, reduced dimensionality has been observed [25] in highly

anisotropic traps. The experimental and theoretical interest is growing in this

area.

In Chapter II, first the ideal Bose gas confined in a harmonic trap is stud-

ied and the results are compared to that of the ideal uniform gas. Important

predictions can be made from this study such as the critical temperature. The

formalism which is needed to describe the important features of these quantum

gases is given. Next the theory is expressed in terms of a non-linear Schrödinger

equation for the order parameter. The stationary and time dependent forms

of this non-linear Schrödinger equation , the Gross-Pitaevskii Equation, are de-

rived.

In Chapter III, three dimensional weakly interacting Bose gas confined in

both spherically symmetric and cylindrically symmetric traps is examined by

4



the variational method. We study the effects of both the attractive and the

repulsive interatomic forces. It is shown that the condensate will collapse if

the interatomic forces are attractive. Finally Thomas-Fermi approximation is

applied to the gas in cylindrically symmetric trap and the chemical potential

and the radius of the cloud are calculated.

The next chapter includes the study of the low dimensional systems. First,

we look for the occurrence of the Bose-Einstein Condensation in one and two

dimensional ideal gasses confined by both harmonic and power-law potentials.

The condensate fractions, critical temperatures and the energies per particle

are calculated. Next we study the properties of the BEC in a highly anisotropic

trap in effective 2D and 1D by the variational method. The total energy and the

chemical potential are calculated in cigar and pancake geometries. Finally, the

conditions for reduced dimensionality are derived and we compare the release

energy with the experimentally observed value. In Chapter V, a concluding

discussion is given.
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CHAPTER II

BASIC FORMALISM

In this chapter, the formalism which is required for the study of the BEC in

various dimensions is summarized. The ideal Bose gas confined by harmonic

potential is studied. We find the condensate fraction, total energy and the

specific heat for ideal uniform case. Then weakly interacting gases are examined.

Time-dependent and stationary Gross-Pitaevskii equations are derived. The

energy functional is obtained, the ground state properties and the interaction

effects are discussed.

II.1 The Ideal Bose Gas

II.1.1 The Ideal Bose Gas In A Harmonic Trap

The confining potential for the ideal Bose gas in a harmonic trap can be written

in the quadratic form as

Vext(r) =
m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (II.1)

where ωx, ωy and ωz are the oscillator frequencies. If we neglect the atom-

atom interactions then almost all predictions are analytical and relatively simple.
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The many-body Hamiltonian is the sum of single-particle Hamiltonians whose

eigenvalues have the form,

εnxnynz =
(
nx +

1

2

)
h̄ωx +

(
ny +

1

2

)
h̄ωy +

(
nz +

1

2

)
h̄ωz, (II.2)

where nx, ny, nz are nonnegative integers. By putting all the particles in the

lowest single particle state (nx = ny = nz = 0) we get the ground state wave

function as ϕ(r1, ..., rN) =
∏
i

ϕ0(ri), where ϕ0(ri) is given by

ϕ0(r) =
(

mωho

πh̄

)3/4

exp
[
−m

2h̄
(ωxx

2 + ωyy
2 + ωzz

2)
]
, (II.3)

where the geometric average of the oscillator frequencies is ωho = (ωxωyωz)
1/3.

The density distribution becomes ρ(r) = N |ϕ0(r)|2. The size of the cloud is

fixed by the harmonic oscillator length,

aho =

(
h̄

mωho

)1/2

. (II.4)

This is the first important length scale of the system. In the available exper-

iment, it is typically of the order of 1µm [27]. At finite temperatures only a

fraction of the atoms occupy the lowest state. The others are thermally dis-

tributed in the excited states at higher energies. The radius of the thermal

cloud is larger than aho.

Bose-Einstein Condensation in harmonic traps shows up with the appearance

of a sharp peak in the central region of the density distribution.

At temperature T , the total number of particles is given, in the grand canon-

ical ensemble, by

N =
∑

nx,ny,nz

1

exp[β(εnxnynz − µ)]− 1
, (II.5)

while the total energy is

E =
∑

nx,ny ,nz

εnxnynz

exp[β(εnxnynz − µ)]− 1
, (II.6)
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where µ is the chemical potential and β = (kT )−1. Below a given temperature

the population of the lowest state becomes macroscopic. This corresponds to

the realization of BEC.

Because of the fact that these systems have finite sizes and they are inhomo-

geneous, there are several problems. For instance, we cannot use the common

definition of the thermodynamic limit (increasing N and volume with the aver-

age density kept constant) for trapped gases.

We separate out the the lowest eigenvalue ε000 from the sum (II.5) and call

N0 the number of particles in this state. This number can be macroscopic when

the chemical potential becomes equal to the lowest energy, µ → µc = 3h̄ω/2

where arithmetic average of the oscillator frequencies is ω = (ωx + ωy + ωz)/3.

Substituting this into the sum, we can write

N −N0 =
∑

nx,ny,nz 6=0

1

exp[β(ωxnx + ωyny + ωznz)]− 1
. (II.7)

When N →∞,

N −N0 =

∞∫

0

dnx dny dnz

exp[β(ωxnx + ωyny + ωznz)]− 1
. (II.8)

This assumption corresponds to a semiclassical description of the excited states.

For its validity, the excitation energies must be much larger than the level spacing

fixed by oscillator frequencies. If the number of trapped atoms is large and

kT ¿ h̄ωho this semiclassical approximation is accurate.

By changing variables (βh̄ωxnx = ñx, etc.) and using the definition of Rie-

mann Zeta function(Appendix A), we get

N −N0 =

(
kT

h̄ωho

)3

ζ(3), (II.9)

where ζ(n) is the Riemann Zeta function.

By imposing that N0 → 0 at the transition we can find the temperature as

kTc = h̄ωho

(
N

ζ(3)

)1/3

= 0.94 h̄ωhoN
1/3. (II.10)
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For the temperatures above Tc the chemical potential is less than µc and becomes

N dependent and the population of the lowest state is of the order of 1. By letting

N → ∞ and ωho → 0 while keeping the product Nω3
ho constant we can obtain

the proper thermodynamic limit for these systems. The transition temperature

(II.10) is well defined in this thermodynamic limit. Inserting this expression into

equation (II.9) we get the condensate fraction for T < Tc,

N0

N
= 1−

(
T

Tc

)3

. (II.11)

Substituting the density of states ρ(ε) = (1/2)(h̄ωho)
−3ε2 into the integral

E =
∫∞
0 dε ρ(ε)ε/[exp(βε)− 1] we can find the energy as

E = 3ζ(4)
(kT )4

(h̄ωho)3
, (II.12)

and substitution of the transition temperature gives

E

NkTc

=
3ζ(4)

ζ(3)

(
T

Tc

)4

. (II.13)

Starting from this energy we can calculate the specific heat

Cv =
dE

dT
= Nk

12ζ(4)

ζ(3)

(
T

Tc

)3

. (II.14)

These results can be compared with that of uniform Bose gases. In this case,

the eigenstates of the Hamiltonian are plane waves with energy ε = p2/2m. The

sum (II.5) yields N0/N = 1 − (T/Tc)
3/2 and the energy is

E/(NkBTc) = 0.77(T/Tc)
5/2 while the specific heat is given by

CV = 1.93NkB(T/Tc)
3/2. In the Figures ( II.1, II.2, II.3) one can see the com-

parison of the condensate fractions, energies and the specific heats of uniform

and harmonically confined gases.

Density of the thermal particles ρT (r) and the condensate density,

ρ0(r) = N0|ϕ0(r)|2, gives the total density ρ(r) = ρ0(r) + ρT (r). In the thermo-

dynamic limit and when T < Tc the thermal density is given by

ρT (r) =
∫

dp(2πh̄)−3[exp(βε(p, r))− 1]−1, (II.15)

9
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Figure II.1: Condensate fraction as a function of T/Tc. Dashed line stands for
the Ideal uniform Bose Gas and solid line for Bose gas in a Harmonic trap.
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Figure II.3: Heat capacity as a function of T/Tc. Dashed line:Ideal case. Solid
line: Harmonic potential case.

where ε(p, r) = (p2/2m) + Vext(r) is the semiclassical energy in phase space. By

changing variables (βp2/2m = x) we get

ρT (r) = λ−3
T g3/2(e

−βVext(r)), (II.16)

where λT = (2πh̄2/mkT )1/2 is the thermal wavelength and the function g3/2(r)

belongs to Bose functions (Appendix A). By integrating ρT (r) over space one

gets again the number of thermally depleted atoms N −N0 = N(T/Tc)
3, consis-

tent with Equation (II.11). In a similar way the distribution of thermal particles

in momentum space can be obtained as

ρT (p) = (λTmωho)
−3g3/2(e

−βp2/2m). (II.17)

The above analysis shows that the existence of two relevant scales of energy for

the ideal gas. the transition temperature kTc and the average level spacing h̄ωho.

It is clearly seen that kTc can be much larger than h̄ωho from expression (II.10).

In the available traps, with N ranging from a few thousands to several millions,

11



the transition temperature is 20 to 200 times larger than h̄ωho. This also means

that the semiclassical approximation is expected to work well in these systems

on a wide and useful range of temperatures. It is also seen that the chemical

potential is of the order of h̄ωho for the ideal gas. However, its value depends on

the atom-atom interaction and provide a third important scale of energy.

The noninteracting harmonic oscillator model has guided experimentalists to

the proper value of the critical temperature. Actually the measured transition

temperature was found to be very close to this value (II.10) and below the critical

temperature the occupation of the condensate becomes macroscopically large as

calculated above [28].

II.2 Effects Of Interaction

Gross-Pitaevskii Equation

The many-body Hamiltonian describing the system consisting of N interacting

bosons with trapping potential Vext is given, in second quantization, by [27]

Ĥ =
∫

dr Ψ̂†(r)

[
− h̄2

2m
∇2 + Vext(r)

]
Ψ̂

+
1

2

∫
dr dr′Ψ̂†(r)Ψ̂†(r′)V (r− r′)Ψ̂(r′)Ψ̂(r), (II.18)

where Ψ̂(r) and Ψ̂†(r) are the boson field operators that annihilate and create a

particle at the position r respectively and V (r− r′) is the two-body interatomic

potential. The thermodynamic properties of the system and its ground state

can be directly calculated from this Hamiltonian (II.18).

There are a number of approaches to work with the many-body Hamiltonian.

Schneider and Feder [29] has used numerical calculations based on a discrete

variable representation of the Hamiltonian. Other approaches like mean-field

theories are developed for interacting systems in order to overcome the problem

of solving the full many-body Schrödinger equation exactly. Making use of the
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mean-field theories, one can avoid the heavy numerical work and the system can

be understood in terms of parameters having clear physical meanings.

The basic idea of a mean-field description for a dilute Bose gas was formulated

by Bogoluibov[30]. Separation of the condensate contribution from the bosonic

field operator is the key point of this formalism. In general, the field operator

can be written as Ψ̂(r) =
∑

α Ψα(r)aα, where Ψα(r) are single-particle wave

functions and aα are the corresponding annihilation operators. The bosonic

creation and annihilation operators a†α and aα are defined as

a†α|n0, n1, ..., nα, ...〉 =
√

nα + 1|n0, n1, ..., nα + 1, ...〉, (II.19)

aα|n0, n1, ..., nα, ...〉 =
√

nα|n0, n1, ..., nα − 1, ...〉, (II.20)

where nα are the eigenvalues of the operator n̂α = a†αaα giving the number of

atoms in the single-particle α−state. These operators obey the general commu-

tation rules:

[aα, a†β] = δαβ, [aα, aβ] = 0, [a†α, a†β] = 0. (II.21)

Bose-Einstein condensation occurs when the number of atoms n0 of a partic-

ular single-particle state becomes very large: n0 ≡ N0 À 1 and the ratio N0/N

remains finite in the thermodynamic limit N →∞. In this limit states with N0

and N0 ± 1 ≈ N0 correspond to the same physical configuration. Consequently

the operators a†0 and a0 can be treated like numbers: a0 = a†0 =
√

N0.

Bose-Einstein condensation occurs in the single-particle state Ψ0 = 1/
√

V

having zero momentum for a uniform gas in volume V . Then, Ψ(r) can be

decomposed in the form

Ψ(r) =
√

N0/V + Ψ′(r). (II.22)

In the case of nonuniform and time-dependent configuration the generalization

of the Bogoliubov formalism is given by

Ψ̂(r, t) = Φ(r, t) + Ψ′(r, t), (II.23)
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here Φ(r, t) is a complex function and defined as the expectation value of the

field operator: Φ(r, t) ≡ 〈Ψ̂(r, t)〉. Its modulus fixes the condensate density

ρ0(r, t) = |Φ(r, t)|2. (II.24)

The function Φ(r, t) is a classical field having the meaning of order parameter.

It is often called the “wave function of the condensate”.

If Ψ′ is small, that is the depletion of the condensate is small, the decom-

position of field operator (II.23)becomes useful. The time evolution of the field

operator Ψ̂(r, t) is written by using Heisenberg equations with the many-body

Hamiltonian (II.18) to derive the equation for Φ(r, t);

ih̄
∂

∂t
Ψ̂(r, t) = [Ψ̂, Ĥ], (II.25)

=

[
− h̄2∇2

2m
+ Vext +

∫
dr′Ψ̂†(r′, t)V (r′ − r)Ψ̂(r′, t)

]
Ψ̂(r, t).

Then the operator Ψ̂ is replaced with the classical field Φ.For the interaction

term in the integral this replacement is a poor approximation for the short

distances. However, in the case of dilute and cold gas only binary collisions at

low energy is relevant and these collisions characterized by a single parameter,

the s-wave scattering length. Then a proper expression can be obtained for the

interaction term independent of the two-body potential. Then V (r′ − r) can be

replaced with an effective interaction

V (r′ − r) = gδ(r′ − r), (II.26)

where the coupling constant g is related to the scattering length a through

g =
4πh̄2a

m
. (II.27)

Using the effective potential (II.26) in equation (II.25) order parameter can be

written as

ih̄
∂

∂t
Φ(r, t) =

[
− h̄2

2m
+ Vext(r) + g|Φ(r, t)|2

]
Φ(r, t). (II.28)

14



This equation is known as Gross-Pitaevskii (GP) equation, was derived inde-

pendently by Gross [31, 32] and Pitaevskii [33].

Validity of the GP equation is based on the condition that s-wave scattering

length be much smaller than the average distance between atoms and that the

number of atoms in the condensate be much larger than 1.

The GP equation is also obtained by a variational procedure

ih̄
∂

∂t
Φ =

δE

δΦ∗ , (II.29)

where the energy functional is given by

E[Φ] =
∫

dr

[
h̄2

2m
|∇Φ|2 + Vext(r)|Φ|2 +

g

2
|Φ|4

]
. (II.30)

The first term in the integral is the kinetic energy of the condensate Ekin, the

second is the harmonic oscillator energy Eho and the last one is the mean-field in-

teraction energy Eint. The validity of the dilute gas approximation is controlled

by the dimensionless parameter. The number of particles in a “scattering vol-

ume” |a|3. This can be written as ρ|a|3, where ρ is the average density of the

gas. When ρ|a|3 ¿ 1 the system is dilute or weakly interacting.

However the smallness of the parameter ρ|a|3 does not always mean that the

interaction effects are small. These effects have to be compared with the kinetic

energy of the atoms in the trap. One can show the importance of the atom-

atom interaction on the ground state of the harmonic oscillator by calculating

the interaction energy, Eint. This energy can be written as, gNρ, and the average

density is of the order of N/a3
ho where aho = (h̄/mωho)

1/2 is harmonic oscillator

length. Thus Eint ∝ N2|a|/a3
ho. Kinetic energy is of the order of Nh̄ωho, thus

Ekin ∝ Na−2
ho . Comparing these two energies one can find that

Eint

Ekin

∝ N |a|
aho

. (II.31)

This parameter can easily be larger than 1 even if ρ|a|3 ¿ 1, so that very dilute

gases can also exhibit an important non-ideal behavior.
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Because of the assumption Ψ̂′ = 0, the above formalism is strictly valid only

in the limit of zero temperature, that is all the particles are in the condensate.

II.3 The Ground State Solution

The scattering length in the Gross-Pitaevskii equation can be positive or nega-

tive and its sign and magnitude depends on the atom-atom potential. Positive

and negative values of a correspond to an effective repulsion and attraction be-

tween the atoms, respectively. When N |a|/aho À 1, in other words when the

interaction energy is much greater than the kinetic energy, the change can be

dramatic. The central density of the condensate is raised (lowered) by an at-

tractive (repulsive) interaction and as a result the radius of the cloud decreases

(increases). This effect of the interaction has important consequences not only

for the structure of the ground state but also for the thermodynamic properties

of the system.

By using the formalism of the mean-field theory the ground state can be

obtained. One can write the condensate wave function as Φ(r, t) = ϕ(r)e−iµt/h̄,

where µ is the chemical potential. ϕ is real and normalized to the total number

of particles,
∫

drϕ2(r) = N0 = N . Then the Gross-Pitaevskii equation (II.28)

becomes

(
− h̄2∇2

2m
+ Vext(r) + gϕ2(r)

)
ϕ(r) = µϕ(r). (II.32)

Nonlinearity is coming from the mean-field term proportional to the particle

density ρ(r) = ϕ2(r) and this equation has the form of a “nonlinear Schrödinger

equation”. When g = 0, i.e. when there is no interaction, this equation reduces

to the usual Schrödinger equation.
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For nonlinear partial differential equations, several approximation proce-

dures exist[34]. We used the variational method based on reducing the infinite-

dimensional problem of the partial differential equation to a second order ordi-

nary differential equation for the variational parameter that characterizes the

solution. This is done by taking an appropriate variational wave function with

a fixed shape but some free parameters. The validity of the variational results is

only qualitative, i.e. if the shape of the actual solution is close to the variational

wave function, the results obtained with variational method will be in agreement

with the real solution. One should also interested in the existence and and the

uniqueness of the minimum point. Here qualitative properties include continu-

ous dependence of the minimum point. Another important property consists of

the convergence of any minimizing sequence to a minimum point. For minimiza-

tion problems the functional to be minimized is larger than certain quantities,

which are necessarily bounded for any minimizing sequence. There are two fun-

damental techniques to prove the existence of a solution. The energy functional

(II.30) is convex then we used the direct method.

The solution of the equation (II.32) minimizes the energy functional (II.30)

for a fixed number of particles. Since the ground state has no currents, energy

is a function of density only and can be written as

E[ρ] =
∫

dr

[
h̄2

2m
|∇√ρ|2 + ρVext(r) +

gρ2

2

]
, (II.33)

= Ekin + Eho + Eint.

The first term in the integral represents the quantum kinetic energy and it is

usually called as “quantum pressure”. For uniform systems it vanishes.

We can find the expression for the chemical potential by direct integration

of the stationary GP equation (II.32)

µ =
Ekin + Eho + 2Eint

N
. (II.34)
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The balance between the quantum pressure and interaction energy of the

condensate fixes the healing length. This is the minimum distance over which

the order parameter can heal. It is also in a sense the length over which the gas

heals from internal collisions. If the density of the condensate grows from 0 to

ρ in a distance ξ, the quantum pressure in (II.33) with p = h̄/ξ is of the order

of h̄2/(2mξ2) and the interaction energy in (II.33) (Eint = gρ) is of the order of

4πh̄2aρ/m. By equating them one gets

ξ = (8πρa)−1/2. (II.35)

This is the well known result for weakly interacting Bose gas. One can see

that under normal BEC conditions (ρ|a|3 ¿ 1) ξ is large compared to |a| (but

generally small compared to typical trap dimensions).
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CHAPTER III

THREE DIMENSIONAL WEAKLY

INTERACTING BOSE GAS

In this chapter, the three dimensional Bose gas which has an attractive inter-

action (a < 0) is studied in a spherically symmetric harmonic trap. Using the

variational method, energy per particle is calculated and it is shown that the

condensate will collapse if the interatomic forces are attractive. Second, the gas

with repulsive interatomic forces (a > 0) is examined in a cylindrically symmet-

ric trap using the same method.Energy per particle is calculated and plotted for

various values of the interaction parameter and Thomas-Fermi approximation is

applied to find the chemical potential and the radius of the cloud.

III.1 Spherically Symmetric Trap

One can determine the behavior of the gas which has a negative scattering length

(a < 0) in a spherical trap by means of the equation (II.30) in Chapter II . This

can be done by means of Gaussian trial functions. We take a variational trial
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wave function as [27]

ϕ(r) =

(
N

w3a3
hoπ

3/2

)1/2

exp

(
− r2

2w2a2
ho

)
, (III.1)

where w is a dimensionless variational parameter which fixes the width of the

condensate. Substituting this wave function into the energy functional (II.30)

E[ϕ] =
∫

dr

[
h̄2

2m

(
N

w7a7
hoπ

3/2
r2e−r2/w2a2

ho

)
+

m

2
ω2

hor
2

(
N

w3a3
hoπ

3/2
e−r2/w2a2

ho

)

+
2πh̄2|a|

m

N2

w6a6
hoπ

3
e−2r2/w2a2

ho

]
. (III.2)

The above integral can be treated as the sum of three integrals; I = I1 + I2 + I3.

In the first one, we take the polar and azimuthal integrals and we make the

change of variables x = r2 which gives us

I1 =
Nh̄2

mw7a7
hoπ

1/2

∞∫

0

x3/2e−αxdx, (III.3)

where α = 1/w2a2
ho. Then recalling the definition of the Gamma function(A)

∫∞
0 rne−γrdr = Γ(n + 1)/γn+1, we get

I1 =
3

4

Nh̄2

mw2a2
ho

. (III.4)

Applying the same procedure to I2 and I3, the energy is obtained as

E =
3Nh̄2

4mw2a2
ho

+
3Nmω2

how
2a2

ho

4
+

N2h̄2|a|
(2π)1/2mw3a3

ho

. (III.5)

Thus the energy per particle in terms of h̄ωho is

E

Nh̄ωho

=
3

4
(w−2 + w2)− (2π)−1/2N |a|

aho

w−3. (III.6)

This energy is plotted in Figure (III.1) as a function of w for several values of

the parameter N |a|/aho.

If the forces are attractive (a < 0), the gas tends to increase its density in

the center of the trap to lower the interaction energy. The kinetic energy resists
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Figure III.1: Energy per particle, in units of h̄ωho, for atoms in a spherical trap
interacting with attractive forces as a function of the effective width w. Curves
are plotted for several values of the parameter N |a|/aho.

this to stabilize the system. If the central density grows too much, the kinetic

energy can not avoid the collapse of the gas. The collapse is expected to occur

when the number of particles in the condensate exceeds a critical value Ncr of

the order of aho/|a|. To find Ncr we analyze the first and the second derivatives

of the energy (III.6)and equate them to zero. Finally, we get wcr ≈ 0.669 and

Ncr|a|/aho ≈ 0.671.

From the Figure III.1, one can see that when Ncr|a|/aho exceeds a critical

value, the local minimum disappears. Ruprecht et al. [35] found

Ncr|a|/aho = 0.575 for a spherical trap by means of the GP equation. Above

Ncr the minimum no longer exists and the GP equation has no solution.
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III.2 Cylindrically Symmetric Trap

Consider the gas which is trapped in an effective harmonic well cylindrically sym-

metric about the z-axis and has repulsive interatomic forces. The oscillators are

characterized by lengths a⊥ = (h̄/mω0
⊥)1/2 and az = (h̄/mω0

z)
1/2, where m is the

atomic mass, ω0
⊥ and ω0

z are the angular frequencies in the transverse xy-plane

and axial (z)direction,respectively. In the absence of interparticle interactions

the lowest single-particle state has the wave function [36]

φ0(r) =
1

π3/4a⊥a
1/2
z

e−m(ω0
⊥r2⊥+ω0

z z2)/2h̄, (III.7)

where r⊥ is the component of r in the xy-plane. The density distribution at zero

temperature ρ0(r) = Nφ0(r) is Gaussian. However, interatomic interactions

modify the particle structure in the well.

The density is reduced because of the repulsive interactions. The cloud of

particles expands in the transverse direction as the number of particles increases.

Because there are weak restoring forces with further increase in the number,

the cloud expands in z-direction. The balance between the harmonic oscillator

and the interaction energies determines the size of the cloud. Neglecting the

anisotropy of the oscillator potential one can see the physics of this balance.

Assuming the cloud occupies a region of radius ≈ R, then ρ ≈ N/R3, we found

the scale of harmonic oscillator energy per particle ≈ (4πh̄2a/m)N/R3. If we

equate them, the characteristic length scale is ≈ a⊥ς, where the dimensionless

parameter characterizing the system is

ς ≡ (8πNa/a⊥)1/5 (III.8)

under the conditions of the trap with large N , ς À 1.

To see the interaction effects we examine the ground state of the system in

terms of its order parameter ϕ(r). For a solution we take ϕ in the form of the
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ground state wave function (III.7)

ϕ(r) = N1/2ω
1/2
⊥ ω1/4

z

(
m

πh̄

)3/4

e−m(ω⊥r2⊥+ωzz2)/2h̄ (III.9)

with effective frequencies ω⊥ and ωz that are treated as variational parameters.

Substitution of this ϕ into energy functional (II.30)and use of g = 4πh̄2a/m

yields

E(ϕ) =
∫

d3r

[
Nω⊥ω1/2

z m

2

(
m

πh̄

)3/2

(ω2
⊥r2

⊥ + ω2
zz

2)e−m(ω⊥r2⊥+ωzz2)/h̄

+
Nω⊥ω1/2

z m

2

(
m

πh̄

)3/2

[(ω0
⊥)2r2

⊥ + (ω0
z)

2z2]e−m(ω⊥r2⊥+ωzz2)/h̄

+
2πh̄2aN2ω2

⊥ωz

m

(
m

πh̄

)3

e−2m(ω⊥r2⊥+ωzz2)/h̄

]
. (III.10)

By using the similar methods which are used in the previous section we can

solve this integral. We treated this integral as a sum of five different integrals.

By making use of the definition of the Gamma function and making change of

variables one can find the ground state energy as

E(ω⊥, ωz) = Nh̄

(
ω⊥
2

+
ωz

4
+

(ω0
⊥)2

2ω⊥
+

(ω0
z)

2

4ωz

+
Nam1/2

(2πh̄)1/2
ω⊥ω1/2

z

)
. (III.11)

Minimizing the energy with respect to ω⊥ one gets,

Nh̄

(
1

2
− (ω0

⊥)2

2ω2
⊥

+
Nam1/2

(2πh̄)1/2
ω1/2

z

)
= 0, (III.12)

we find the variational parameter

ω⊥ =
ω0
⊥(

1 + 2Nam1/2

(2πh̄)1/2 ω
1/2
z

)1/2
=

ω0
⊥

∆
, (III.13)

where

∆ =


1 +

ς5

(32π3)3/2

(
ωz

ω0
⊥

)1/2



1/2

. (III.14)

Interactions spread out the distribution in the transverse direction by a factor

∆1/2 by reducing the effective transverse oscillator frequency by ∆.
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Figure III.2: Energy per particle as a function of ωz. Curves are plotted for
different values of the parameter N |a|/a⊥. Solid line stands for the largest value
of the interaction strength.

Spreading in the z-direction begins to become significant when the interac-

tion energy per particle becomes comparable with h̄ω0
z . Substituting equation

(III.13) into equation (III.11) we get

E[ωz] = Nh̄

(
ω0
⊥∆ +

ωz

4
+

(ω0
z)

2

4ωz

)
. (III.15)

We employ the Binomial expansion to the ∆ and neglect the second and

higher order terms. Equating the first derivative of E(ωz) to zero one finds

ω2
z = (ω0

z)
2. Using this result in the second derivative of E(ωz) we get the

condition Na/a⊥ ≥ (ω0
z/ω

0
⊥)1/2. From Figure III.2, one can see that as the

interaction strength increases the minimum of the energy lowered.

III.2.1 Thomas-Fermi Approximation

The limit of large N is particularly interesting since this condition is well satisfied

in most of the current experiments. Moreover, in this limit mean-field theory
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takes a rather simple analytic form.

As N increases, the atoms are pushed outwards, the central density becomes

flat and the radius grows. As a result, the kinetic energy term in the stationary

GP equation (II.32) takes a significant contribution only near the boundary

and becomes less important than the interaction energy. Neglecting the kinetic

energy in equation (II.32) completely, we get the density profile in the form

ρ(r) = ϕ2(r) = g−1[µ− Vext(r)] (III.16)

in the region where µ > Vext(r) and ρ = 0 outside. This is referred to Thomas-

Fermi (TF) approximation. This form is acceptable except where the density is

small, in which case the contribution of the kinetic energy is important.

If we impose the normalization condition on ρ(r) and substitute

Vext(r) = m[(ω0
⊥)2r2

⊥ + (ω0
z)

2z2]/2 into this we obtain

N =
∫

g−1
[
µ− m

2
[(ω0

⊥)2r2
⊥ + (ω0

z)
2z2]

]
θ

[
µ− m

2
[(ω0

⊥)2r2
⊥ + (ω0

z)
2z2]

]
d3r,

(III.17)

where θ is the unit step function. Employing change of variables α = ω0
⊥r⊥,

β = ω0
zz and α2 + β2 = r2 the Equation (III.17) takes the form,

N =
2π

g(ω0
⊥)2ω0

z

∞∫

0

(
µ− m

2
r2

)
θ

[
µ− m

2
r2

]
r2dr. (III.18)

Taking this integral and making some simplification we get the relation between

the chemical potential and the number of particles as

µ =
h̄ω0

⊥
2

(
15λNa

a⊥

)2/5

, (III.19)

where λ = ω0
z/ω

0
⊥.

Since µ = dE/dN ,

E =
∫ h̄ω0

⊥
2

(
15λa

a⊥

)2/5

N2/5dN (III.20)
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⊥, as a function of interaction

strength (x = Na/a⊥).Curves are plotted for several values of λ. Solid line
shows the largest value, λ = 1.

and the energy per particle turns out to be

E

N
=

5

7
Nµ. (III.21)

This energy is the sum of the interaction and oscillator energies, since the kinetic

energy has no contribution for large N . One can see from the Figure III.3 that

when the trap is spherically symmetric i.e. λ = 1 the chemical potential has the

minimum value.

The density profile (III.16) has a form of inverted parabola which vanishes

at the classical turning point (R, Z). The widths in the radial and axial direc-

tions are fixed by the conditions µ = m(ω0
⊥)2R2/2 = m(ω0

z)
2Z2/2. Then the

transverse radius of the cloud is

R

a⊥
=

(
15λNa

a⊥

)2/5

(III.22)

and the half height in Z−direction is Z = R/λ. Te value of the density (III.16)
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at the center of the trap is ρTF (0) = µ/g,

ρTF (0) =
1

8πa2
⊥a

(
15λNa

a⊥

)2/5

=

(
15λ

8π

)
N

a3
⊥ς3

. (III.23)

This density is much lower than the one for the noninteracting particles. Using

the equation (III.7) we get ρho = N/π3/2a2
⊥az. The ratio between the central

densities is
ρTF (0)

ρho(0)
=

π1/2152/5λ1/2

8

(
Nλa

a⊥

)−3/5

(III.24)

and decreases with N . Inclusion of kinetic energy corrections spreads the distri-

bution and decreases the density.

If R is much larger than the healing length, the quantum pressure term

becomes negligible. If we substitute the central density into the healing length

(II.35) we get

ξ

R
=

(
a⊥
R

)2

=

(
15λNa

a⊥

)−2/5

. (III.25)

The above equation shows that the healing length decreases with N . Therefore

Thomas-Fermi approximation is valid for the large N limit.
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CHAPTER IV

LOW DIMENSIONAL BOSE GAS

In this chapter, two and one-dimensional Bose gases are studied. We show

that there are no Bose-Einstein condensation in a 2D and 1D uniform Bose

gases in Section IV.1. The ideal Bose gases confined in harmonic and power-law

potentials are examined. The condensate fractions, critical temperatures and

the energies per particle are calculated. Finally we studied the properties of

BEC in highly anisotropic trap in effective 2D and 1D. The total energy and the

chemical potential are calculated by using a variational approach in cigar and

pancake geometries. The conditions for lower dimensionality are derived and

theoretical and experimental values of the release energies are compared.

IV.1 Ideal Bose gas in Two- And One-Dimensions

In a uniform gas Bose-Einstein condensation cannot occur in one and two-

dimensions because thermal fluctuations destabilize the system. In the presence

of BEC, the chemical potential equals to zero for an ideal gas and the momentum

distribution is

n(p) ∝ [exp(βp2/2m)− 1]−1. (IV.1)
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It can be seen that in the thermodynamic limit this violates the normalization

condition, i.e.
∫

n(p)dp diverges. Then Bose-Einstein condensation is impossible

in 2D and 1D in uniform systems. But it should occur in atom traps since the

confining potential modifies the density of states.

IV.2 Harmonic Potential

IV.2.1 Two-Dimensional Bose Gas

The confining potential can be written as

Vext(r) =
1

2
mω2r2, (IV.2)

where r2 = x2 + y2 and ω = (ωxωy)
1/2.

By neglecting atom-atom interactions we can write the eigenvalues of the

many-body Hamiltonian as

εnxny = (nx + ny + 1)h̄ω. (IV.3)

At temperature T , the total number of particles is given in grand-canonical

ensemble

N =
∑

nx,ny

1

exp[β(εnxny − µ)]− 1
(IV.4)

and the total energy is

E =
∑

nx,ny

εnxny

exp[β(εnxny − µ)]− 1
. (IV.5)

Similar to 3-dimensional case we separate out the lowest eigenvalue ε00 from

the sum and call N0 as the number of particle in this state. When the chemical

potential equals to the ε00 i.e. µ → µc = h̄ω, this number can be macroscopic.

N −N0 =
∑

nx,ny 6=0

1

exp[βh̄ω(nx + ny)]− 1
. (IV.6)
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This summation can be replaced by an integral as N →∞,

N −N0 =

∞∫

0

dnxdny

exp[βh̄ω(nx + ny)]− 1
. (IV.7)

By making change of variables ñ = βh̄ωnx etc. and using the definition of

Riemann Zeta function (Appendix A), this integral yields

N −N0 =

(
kBT

h̄ω

)2

ζ(2). (IV.8)

At the transition N0 → 0 then the critical temperature is,

kBT 2D
c = h̄ω

(
N

ζ(2)

)1/2

. (IV.9)

For T < Tc, the condensate fraction can be calculated by substituting the critical

temperature into equation(IV.8)

N0

N
= 1−

(
T

T 2D
c

)2

. (IV.10)

It can be obtained also by using the density of states ρ(ε) = ε/(h̄ω)2. The

total energy is also calculated with this density of states as,

E =

∞∫

0

ρ(ε)εdε

eβε − 1
. (IV.11)

By changing of variables and substituting the critical temperature we find the

total energy as

E

NkBT 2D
c

=
2ζ(3)

ζ(2)

(
T

T 2D
c

)3

. (IV.12)

From this energy the specific heat is obtained as,

CV = NkB
6ζ(3)

ζ(2)

(
T

T 2D
c

)2

. (IV.13)

In the Figure IV.1 the condensate fractions of ideal Bose gas confined in har-

monic trap in 3D and 2D is shown.
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Figure IV.1: Condensate fractions as a function of T/Tc for 3- and 2-dimensional
ideal Bose gas trapped in harmonic potential.

IV.2.2 One-Dimensional Bose Gas

In Section IV.1 we said that Bose-Einstein condensation can occur in atom traps

but in one-dimension BEC cannot occur in a harmonic trap. One can see this

by calculating the condensate fraction. Similar to the two-dimensional case one

can find that

N −N0 =
kBT

h̄ω
ζ(1). (IV.14)

Recalling the properties of the Riemann Zeta function (A), ζ(s) diverges for

s ≤ 1. The Equation (IV.14) diverges. This means that in the thermodynamic

limit the critical temperature for one-dimensional Bose gas tends to zero.Despite

the fact that there is no BEC in thermodynamic limit there can be observed two-

step BEC for finite values of N .
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IV.3 Power-Law Potential

IV.3.1 Two-Dimensional Bose Gas

In this part, we examine the 2D Bose gas confined in power-law potentials be-

cause these potentials lead to analytical solutions and most of the traps display

power-law behavior close to their minimum. The most general potential is given

in the form [37]

Vext(x, y) = V1

(
x

b

)m

+ V2

(
y

c

)n

. (IV.15)

For simplicity we assume that the potential is isotropic,

Vext(r) = V0

(
r

a

)η

. (IV.16)

By using the definition

ρ(ε) =
(

m

2πh̄2

)
1

Γ(1)

∫
[ε− Vext(r)]dr, (IV.17)

for the density of states we get

ρ(ε) =
2πm

h2

r∗∫

0

2πrdr, (IV.18)

where r∗ = a(ε/V0)
1/η. The density of states is obtained as,

ρ(ε) =
2π2ma2

h2

(
ε

V0

)2/η

. (IV.19)

By using this result one can calculate the total number of particles as

N = N0 +
2π2ma2

h2V
2/η
0

∞∫

0

ε2/ηdε

e(ε−µ)/kBT − 1
. (IV.20)

Using y = ε/kBT , we obtain,

N = N0 +
2π2ma2

h2V
2/η
0

(kBT )
2
η
+1g2(η, µ/kBT ), (IV.21)
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where the 2D Bose function is

g2(η, x) =

∞∫

0

y2/ηdy

ey−x − 1
. (IV.22)

For µ = 0 i.e. at Tc,

g2(η, 0) = Γ

(
2 + η

η

)
ζ

(
2 + η

η

)
. (IV.23)

g2(η, 0) remains finite for all positive values of η. So that Bose-Einstein

condensation can always occur in an ideal two-dimensional gas confined by a

power-law trap. The limit η →∞ corresponds to a rigid box. g2(∞, 0) diverges

and BEC does not occur.

At transition N0 = 0, then the critical temperature is

kBT 2D
c =


 Nh2V

2/η
0

2π2ma2g2(η, 0)




η/2+η

. (IV.24)

The total energy is found as

E

NkBT 2D
c

=
Γ

(
2+2η

η

)
ζ

(
2+2η

η

)

Γ
(

2+η
η

)
ζ

(
2+η

η

)
(

T

T 2D
c

) 2+2η
η

, (IV.25)

and the specific heat is given by

CV = NkB

(
2 + 2η

η

)
Γ

(
2+2η

η

)
ζ

(
2+2η

η

)

Γ
(

2+η
η

)
ζ

(
2+η

η

)
(

T

T 2D
c

) 2+η
η

. (IV.26)

One can see that when η = 2 i.e. harmonic trap, results are the same with

that of the previous calculations for the harmonic trap.

IV.3.2 One-Dimensional Bose Gas

We consider an one-dimensional gas confined by a power-law potential

Vext(x) = V0

( |x|
L

)η

. (IV.27)
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The density of states can be calculated from the definition [37]

ρ(ε) =

√
2m

h

l(ε)∫

−l(ε)

dx√
ε− Vext(x)

, (IV.28)

where 2l(ε) is the available length for particles with energy ε, l(ε) = L(ε/V0)
1/η.

Using y = V0|x|η/εLη, we get

ρ(ε) =
2
√

2m

ηh

ε1/η−1/2

V
1/η
0

F (η), (IV.29)

where

F (η) =
∫ y(1−η)/η dy√

1− y
. (IV.30)

By using the result for density of states the total number of particles can be

written as

N = N0 +
2L
√

2m

ηh

F (η)

V
1/η
0

∞∫

0

ε1/η−1/2

e(ε−µ)/kBT − 1
dε. (IV.31)

We get the result

N = N0 +
2L
√

2m

ηh

F (η)

V
1/η
0

(kBT )1/η+1/2g1(η, µ/kBT ), (IV.32)

where

g1(η, x) =

∞∫

0

y1/η−1/2 dy

ey−x − 1
, (IV.33)

is the one-dimensional Bose function.

As T increases N0 ∼ 0. As T decreases the chemical potential increases and

reaches 0 at some Tc. For T < Tc, µ remains zero and N0 increase.

The function g1(η, 0) can be written in Gamma and Riemann zeta functions

g1(η, 0) = Γ

(
1

η
+

1

2

)
ζ

(
1

η
+

1

2

)
. (IV.34)

One can see that g1(η, 0) remains finite only if η < 2 from the properties

of Riemann zeta function. The 1D ideal Bose gas will display BEC only if the
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potential power is less than 2, i.e. only if the external potential is more confining

than a parabolic potential.

By setting the number of particles in the ground state zero the critical tem-

perature is obtained as

kBT 1D
c =


 Nηh

2L
√

2m

V
1/η
0

F (η)

1

Γ
(

1
η

+ 1
2

)
ζ

(
1
η

+ 1
2

)



2η/(2+η)

. (IV.35)

The value of the factor (η/2)2η/(2+η) is always less than 1 when 0 < η < 2.

Therefore, the critical temperature will be suppressed by such a factor.
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Figure IV.2: Evolution of the critical temperature with the potential parameter
η for one- and two-dimensional traps. Solid line stands for 2D and dashed line
for 1D.

The total energy is then found as

E

NkBT 1D
c

=
Γ

(
1
η

+ 3
2

)
ζ

(
1
η

+ 3
2

)

Γ
(

1
η

+ 1
2

)
ζ

(
1
η

+ 1
2

)
(

T

T 1D
c

)1/η+3/2

, (IV.36)

35



and the specific heat

CV = NkB

(
1

η
+

3

2

)
Γ

(
1
η

+ 3
2

)
ζ

(
1
η

+ 3
2

)

Γ
(

1
η

+ 1
2

)
ζ

(
1
η

+ 1
2

)
(

T

T 1D
c

)1/η+1/2

. (IV.37)

In the Figure IV.2 evolution of the critical temperature with the potential

power η for 1D and 2D traps is shown. It can be seen that Tc shows a peak

between η = 0 and 2.

IV.4 Effective Lower Dimensions

After the experimental realization of crossover into two-dimensional and one-

dimensional condensates [25] there has been a growing interest in Bose-Einstein

condensation in effective lower dimensions. Effective lower dimensionality means

that excitations along the tightly confined dimension(s) are energetically not

allowed for confined gases. This is done by a change in aspect ratio and by the

release energy converging to a nonzero value when the number of trapped atoms

was reduced.

For condensates in 3D an effective and simple analytic description was achieved

through the Thomas-Fermi approximation. It is justified for the large number

of atoms with aspect ratios of the order of 1. As the aspect ratio is far from

unity, the kinetic energy in the constricted direction becomes more important

and TF approximation is not valid.

Kunal Das [38] developed a theoretical model which successfully describes

condensates from the 3D regime with increasing degree of anisotropy all the way

to regimes of effective lower dimensionality.

At zero temperature in cylindrical coordinates we can write the energy func-

tional (II.30) as
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E[ϕ] = N h̄ω
∫

rdr
∫

dz

[
λ1/3

2
(|∇rϕ|2 + r2|ϕ|2)

+
λ−2/3

2
(|∇zϕ|2 + z2|ϕ|2) +

Na

aho

|ϕ|4
]
, (IV.38)

where the aspect ratio is λ = ωr/ωz and ω = (ω2
rωz)

1/3.

TF approximation gives a value for the chemical potential (III.19) for the

condensate with all its spatial dimensions of comparable magnitudes. i.e. λ = 1,

µTF =
h̄ω

2

(
15Na

aho

)2/5

. (IV.39)

This expression does not depend on the aspect ratio, whereas we would

expect that the chemical potential should change as the aspect ratio changes.

We use a variational approach again to get the expression for µ that has the

correct dependence on the aspect ratio.

IV.4.1 Cigar Geometry

We take the trial wave function [38]

ϕcigar(r, z) =

(
3βr

2d3

)1/2

e−βrr2/2
√

d2 − z2 θ(d2 − z2), (IV.40)

for the cigar geometry λ À 1, where βr and d are variational parameters and

θ(x) is the unit step function.

In the axial direction the condensate size far exceeds the oscillator length

and the kinetic energy is negligible. We take only the kinetic energy in the

transverse direction and neglect that of in the axial direction in the energy

functional(IV.38). We obtain,

E

Nh̄ω
=

∞∫

0

r dr

∞∫

∞
dz

[
3λ1/3

4d3
(β2

r + βr)r
2e−βrr2(d2 − z2)θ(d2 − z2) (IV.41)

+
3λ−2/3β2

r

2d3
z2e−βrr2(d2 − z2)θ(d2 − z2) +

9β2
r Na

4d6aho

e−2βrr2(d2 − z2)2θ(d2 − z2)

]
.
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Figure IV.3: Comparison of chemical potential obtained from different ap-
proaches as a function of the dimensionless parameter Na/aho with λ = 100.

This integral can be written as the sum of three integrals.I = I1 + I2 + I3. After

calculations we get

E[d, βr]

Nh̄ω
=

λ1/3

2

(
βr +

1

βr

)
+

λ−2/3

10
d2 +

3βrNa

5daho

. (IV.42)

We minimize E with respect to βr and d, finally we get the relations

1

β2
r

= 1 +
6Na

5daho

λ−1/3, (IV.43)

and

d3 =
3βrNa

aho

λ2/3. (IV.44)

We can find the chemical potential corresponding the optimum parameters

38



0 1 2 3 4
0

20

40

60

80

100

120

140

160

180

200

β
r

Log (Na/a
ho

)

µ 
/ h

 ω

Thomas−Fermi
β

r
=1

Optimum β
r

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

Ng=0.38 γ5/6 

Figure IV.4: Comparison of chemical potential obtained from different ap-
proaches as a function of the dimensionless parameter Na/aho with λ = 1000.

by taking the derivative of energy with respect to N and we obtain

µ = h̄ω


λ1/3

2

(
βr +

1

βr

)
+

1

2

(
3βrNa

λ1/3aho

)2/3



=
h̄ωr

2

(
βr +

1

βr

)
+

1

2
(3βrNaωrωzh̄

√
m)2/3. (IV.45)

It is clearly seen that the last term (∝ ω2/3
z ) vanishes in the limit ωz → 0,

also in that limit βr → 1 so that the chemical potential equals the transverse

ground state energy h̄ωr.

In order to test the accuracy and validity of this approximation we compare

the analytic expressions for the chemical potential with accurate numerical so-

lution of the GP equation obtained by K. Das [38]. He used discrete variable

39



representation (DVR) mesh in r (Laguerre DVR) and z (Hermite DVR). It is

seen that the variational chemical potential with optimized βr closely follows

the numerically computed chemical potential over a large range of Na/aho. For

low densities, the expression with βr = 1 is sufficient but it fails as the den-

sity increases. However TF expression (IV.39) is accurate at high densities and

breaks down at low densities since it approaches zero while the correct chemical

potential approach the zero-point energy.

IV.4.2 Disk Geometry

For the disk geometry λ ¿ 1 and we take the trial wave function [38]

ϕpan(r, z) =
2

b2

(
βz

π

)1/4

e−βzz2/2
√

b2 − r2 θ(b2 − r2). (IV.46)

Similar to the cigar geometry, neglecting the transverse kinetic energy we

find,

E

Nh̄ω
=

λ1/3b2

6
+

λ−2/3

4

(
βz +

1

βz

)
+

8Na

3b2aho

√
βz

2π
. (IV.47)

We then get the relations for the optimum parameters that minimize the

energy

b4 =
16Na

λ1/3aho

√
βz

2π
, (IV.48)

and
1

β2
z

= 1 +
16Naλ2/3

3
√

2πβzb2aho

. (IV.49)

The corresponding expression for the chemical potential is

µ = h̄ω


λ−2/3

4

(
βz +

1

βz

)
+

√
λ1/3Na

aho

(
8βz

π

)1/4

 . (IV.50)

If we compare the analytic expression for the chemical potential with numer-

ical result of K. Das [38], it is clear that variational expression from Equation
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Figure IV.5: The chemical potential for disk shaped traps as a function of the
dimensionless interaction strength Na/aho, obtained from various approaches,for
aspect ratio λ = 0.01.

(IV.50) reproduces almost exactly the numerical solution of the GP equation

over the range of Na/aho shown. The reason for the better agreement is the

larger relative importance of the kinetic energy in the tightly confined direction.

It is more clearly seen that TF expression (IV.39) fails as the density decreases.

IV.4.3 Crossover To Lower Dimensions

The variational parameters used to obtain the chemical potential also give a

measure of the effective dimensionality of the condensate. As discussed in Sec-

tion IV.4 if excitations in the tightly confined dimension are frozen a trapped
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Figure IV.6: The chemical potential for disk shaped traps as a function of the
dimensionless interaction strength Na/aho, obtained from various approaches,for
aspect ratio λ = 0.001.

Bose gas is considered to be in effective lower dimension. For a weakly inter-

acting gas at low densities, the interaction energy can be assumed to be equal

to Thomas-Fermi chemical potential. The crossover to 1D and 2D is defined by

µT F ∼ h̄ωt, i.e. when the interaction energy per particle is comparable to the

energy to excite in the tightly confined direction. Then the condition for lower

dimensionality is

N1Da

aho

∼ 0.38λ5/6,

N2Da

aho

∼ 0.38λ−5/3. (IV.51)

In Figures IV.3, IV.4, IV.5, IV.6 the optimum values of βr and βz is plotted
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along the right axis. The values corresponding to the crossover to one dimension

and to the two dimensions are indicated. One can see that this corresponds to

βr ∼ 0.8 and βz ∼ 0.8. Thus, the values of βr and βz give a measure of the dimen-

sionality of the system. When βr ∼ 1 the system is effectively one-dimensional

since the transverse profile of the condensate coincides with that of the trans-

verse ground state and when βz ∼ 1 the system is effectively two-dimensional.

The system approaches three dimensionality when these parameters deviate from

unity.

In the experiment in [25], the crossover from a 3D to lower dimensionality

was deduced by observing a sudden change in the aspect ratio of the released

condensate when the number of atoms was lowered below a certain value, and

by observing a saturation of the release energy at the zero-point kinetic energy

in the tightly confined direction. One can estimate the release energy in this

variational model and compare it with the experimentally observed value due to

the conservation of energy.

The release energy is the energy of the system after the traps are switched off.

It is just the sum of the kinetic and the interaction energies of the condensate

before release. For the cigar geometry λ À 1, the release energy per particle is

found by using the Equation (IV.42),

Erel =
h̄ωrβr

2
+

h̄ωzd
2

5
, (IV.52)

where we use the optimized parameters βr and d in Section IV.4.1.

The release energy in [25] is plotted as a function of the half length (Z) of

the condensate. The axial expansion in the 1D experiment was negligible within

the time of flight till measurement so that we need for comparison the initial

half length before release.

The parameter d can be assumed to be half length of the condensate by

investigating the form of trial function (IV.40). The half length in 1D limit is
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obtained by d(βr = 1 → Z1D). In 3D limit, we note that 1/
√

βr is the width of

the transverse variational profile and in the expression (IV.43) for βr measures

the deviation from one-dimension. As the condensate moves away from the 1D

regime and approaches an ellipsoid shape, that deviation would be maximum at

the center and negligible at the end of the ellipsoid. Thus we take an average

value for the deviation and define the modified βr as

1

βr
2 = 1 +

3Naλ−1/3

5ahod
. (IV.53)

In the 3D limit βr ¿ 1, we can write βr
2 ' 5ahodλ1/3

Na
. Then we get the correct

limit d(βr) → Z3D =
(

15Naλ5/3

aho

)1/5
.Similarly

for 1D d(βr = 1) → Z1D =
(

3Naλ2/3

aho

)1/3
. Thus in the intermediate regime

we expect the half length to be given a good approximation by

Z =
3Na

aho

βrλ
2/3. (IV.54)

The release energy should be evaluated with the optimized variational param-

eters. The variational process optimizes energy and not condensate dimensions

hence there is no inconsistency.

In Figure IV.7 the release energy per particle is plotted as a function of the

half length from Equation (IV.54). The parameters are the same with those in

the experiment [25]; sodium atoms in a magnetic trap with ωr = 2π × 360Hz

and ωz = 2π × 3.5Hz so that the aspect ratio is λ ' 103. Comparison with the

experimental result shows that the expression (IV.52) for the release energy close

to their measured data; as the system approaches effective 1D the saturation of

the release energy at the radial zero-point energy is clear.

In the disk geometry the release energy per particle is founded similarly

Erel =
h̄ωzβz

4
+

h̄ωrb
2

6
. (IV.55)

We cannot compare the above expression with the experimental data. Since the

trap in 2D experiment had not strictly cylindrical geometry and unlike 1D case
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Figure IV.7: The release energy per particle Erel/h̄ as a function of the half
length of a cigar shaped condensate. The horizonal line represents the transverse
zero-point energy.The experimental data obtained by Görlitz[25] is shown by
bubles.

there is significant expansion of the condensate in all directions till the time of

measurement which involves the dynamics of expansion.
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CHAPTER V

CONCLUSION

The study of the three-dimensional Bose gas confined by harmonic potential is

very important. Because the shape of the trapping potential is well approxi-

mated by a harmonic shape in many experiments. In studying weakly interact-

ing systems, the Gross-Pitaevskii equation, which is non-linear, is used. Since

it is non-linear, one can not solve it analytically but numerical and variational

approaches are available. We employed the variational approach which gives

an upper bound for the ground state energy. Comparing the numerical and

the variational results, it is seen that they are consistent for the systems under

consideration. We showed how a nonuniform confinement and two-body inter-

actions characterize the ground state properties of the system. It is shown that

if the interatomic forces are attractive (a < 0) the central density increases. If it

grows too much, the gas will collapse. We calculated the Ncr for the collapse by

means of variational approach. It is shown that above Ncr the local minimum

of the energy disappears and the Gross-Pitaevskii equation has no solution.

The repulsive interaction (a > 0) case is also examined. In this case an
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effective and simple analytic description was achieved through the Thomas-

Fermi approximation. It is shown that Thomas-Fermi approximation is valid

for large condensates with aspect ratios of the order of unity.

The study of one- and two-dimensional systems is very important because in

lower dimensions Bose-Einstein condensation shows new features which modify

the behavior of the system. It is shown that BEC is impossible in 1D and 2D in

a homogeneous system but occurs in atom traps. The critical temperatures and

the condensate fractions are calculated for the 1D and 2D nonuniform gases. It

is also shown that the one-dimensional Bose gas display BEC only if the external

potential is more confining than a parabolic potential.

A simple model is given to describe how a condensate changes as it becomes

more anisotropic and crosses over to effective lower dimensionality. Comparison

with the numerical solutions shows that this model is accurate and valid. By

using a variational approach we obtained analytic expressions for the chemical

potential which are valid for cylindrical condensates for all degrees of anisotropy

even where the Thomas-Fermi approximation is completely inadequate. It is also

shown that the variational parameters used to obtain the chemical potential give

a measure of the effective dimensionality of the condensate. The expressions for

the total energy and the release energy have been found and they are valid in

3D as well as in effective one- and two-dimensions. The release energy is shown

to agree well with experimentally measured values.

As it is mentioned in Section II.3 the variational method gives an upper

bound for the ground state energy. One should employ numerical methods to

obtain more accurate results for such nonlinear partial differential equations.

Besides the advantage of getting analytic expressions by variational approach, it

was also shown in relevant sections that results obtained numerically are closer to

those obtained experimentally. Future work should be focus on proper numerical

analysis of the problem.
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Lower dimensional condensates offer many opportunities for further studies.

The one-dimensional case is particularly interesting. Because, the gas becomes

an impenetrable Tonks-Girardeau gas at extremely low density and tight con-

finement. A gas of such impenetrable bosons behaves like a free Fermi gas.

However, our variational functions cannot be applied to the Tonks-Girardeau

regime, since the Thomas-Fermi profile in the axial direction has to be replaced

by a square root of a parabola and the axial energy is simply the Fermi energy

for N particles in 1D. The variational ansatz which is used in our calculations

should be useful in studying 2D lattices of effective one-dimensional condensates.

Recently, a different approach from variational/perturbative and numerical

methods appeared for studying effectively 1D Bose gases [42]. This method

is based on Lieb-Liniger solution for 1D delta-dunction Bose gas. Using this

model they investigate the five cases: ideal gas case, 1D Gross-Pitaevskii case,

1D Thomas-Fermi case, Lieb-Liniger case and Girardeau-Tonks case. It is also

presented a 1D energy functional, analogous to the Gross-Pitaevskii functional,

that correctly describes the energy and density in all of the five cases. Re-

searches are currently using this model to investigate various properties of 1D

Bose systems [43]. The future work would be done on this model.
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APPENDIX A

Bose Functions

The general form of the Bose functions is [39]

gν(z) =
1

Γ(ν)

∞∫

0

xν−1dx

z−1ex − 1
0 ≤ z ≤ 1, ν ∈ R (A.1)

where Γ(ν) is the Gamma function.

For small z, we can expand the integrand, ze−x ≤ 1 in our case

exp[−β(ε− µ)] ≤ 1:

1

z−1ex − 1
= z e−x 1

1− ze−x
,

= z e−x
∞∑

k=0

(ze−x)k,

=
∞∑

k=1

zke−kx. (A.2)

Using this result in the equation (A.1) we find

gν(z) =
1

Γ(ν)

∞∑

k=1

zk

∞∫

0

xν−1e−kxdx. (A.3)

By changing variables, y = kx, we get

gν(z) =
1

Γ(ν)

∞∑

k=1

zk

kν

∞∫

0

yν−1e−ydy. (A.4)
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The last integral is the definition of Gamma function, then we obtain

gν(z) =
∞∑

k=1

zk

kν
, 0 ≤ z ≤ 1. (A.5)

For z = 1(µ = 0), there is relationship to Riemann Zeta function

gν(1) =
∞∑

k=1

1

kν
= ζ(ν), ν > 1, (A.6)

where ζ(ν) can be also written in the integral form [40]

ζ(ν) =
1

Γ(ν)

∞∫

0

xν−1dx

ex − 1
, ν > 1. (A.7)

This series converges only for ν > 1. This does not mean that the functions

gν(z) are defined only for ν > 1, but that gν(z) → ∞ for ν ≤ 1 and z → 1.

gν(z) is finite for ν > 1 for all 0 ≤ z ≤ 1.

Some special values of the often used ζ−functions are listed below:

ζ(1) →∞ ζ(3/2) = 2.612 ζ(2) ≈ 1.645

ζ(5/2) = 1.341 ζ(3) = 1.202 ζ(7/2) = 1.127

ζ(4) ≈ 1.082 ζ(5) = 1.037 ζ(6) ≈ 1.017

ζ(7) = 1.008 ζ(8) ≈ 1.004

(A.8)

A simple differentiation of gν(z) gives the recurrance relation [41]

z
∂

∂z
[gν(z)] =

∂

∂(lnz)
gν(z) = gν−1(z). (A.9)

This relation follows from the series expansion (A.6).
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