

A COMPARISION OF

OBJECT ORIENTED SIZE EVALUATION TECHNIQUES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS INSTITUTE

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

HATİCE SİNEM SIRAKAYA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

JANUARY 2003

Approval of the Graduate School of Informatics Institute.

Prof.Dr. Neşe YALABIK

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

Prof.Dr. Semih BİLGEN

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Onur DEMİRÖRS

Supervisor

Examining Committee Members

Prof.Dr. Semih BİLGEN ____________________

Assoc.Prof.Dr. Onur DEMİRÖRS ____________________

Assist..Prof.Dr. Ali DOĞRU ____________________

Assist.Prof.Dr. Erkan MUMCUOĞLU ____________________

Dr. Altan KOÇYİĞİT

 ii

ABSTRACT

A COMPARISION OF

 OBJECT ORIENTED SIZE EVALUATION TECHNIQUES

Sırakaya, Hatice Sinem

M.Sc., Department of Information Systems

Supervisor: Assoc. Prof. Dr. Onur DEMİRÖRS

January 2003, 126 pages

 Popular Object Oriented size metrics and estimation methods are examined.

A case study is conducted. Five of the methods (“LOC”, “OOPS”, “Use Case

Points Method”, “J.Kammelar’s Sizing Approach” and “Mark II FP”) are applied

to a project whose requirements are defined by means of use cases. Size and effort

estimations are made and compared with the actual results of the project.

Keywords: Object Oriented Project Size Estimation, Use Case, LOC, Point Value,

Use Case Points, Component Object Points (COPs), MK II FP.

 iii

ÖZ

NESNE TABANLI YAZILIM BOYUTU DEĞERLENDİRME

TEKNİKLERİNİN KARŞILAŞTIRILMASI

Sırakaya, Hatice Sinem

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Doç.Dr. Onur DEMİRÖRS

Ocak 2003, 126 sayfa

 Yaygın nesne tabanlı yazılım boyutu değerlendirme tekniklerinden bir kısmı

incelenmiştir. Bir alan çalışması yapılmıştır. Tekniklerden beş tanesi (“LOC”,

“OOPS”, “Use Case Points Methodu”, “J.Kammelar’ın Boyut Değerlendirme

Yaklaşımı” ve “Mark II FP”) gereksinimleri use case’lerle tanımlanmış bir

projeye uygulanmıştır. Boyut ve efor değerlendirmeleri yapılmış ve projenin

gerçek sonuçlarıyla karşılaştırılmıştır.

Anahtar Kelimeler: Nesne Tabanlı Proje Boyutu Değerlendirmesi, Use Case,

LOC, Point Value, Use Case Points, Component Object Points (COPs), MK II FP.

 iv

ACKNOWLEDGEMENTS

 I would like to thank my advisor Assoc. Prof. Onur DEMİRÖRS for his

support, guidance and insight throughout the development of this thesis. I also

thank Alpay KARAGÖZ for his help in providing the project information. I want

to thank my mother for her support all the way. Finally, I gratefully thank to my

husband for his support and encouragement in completing this thesis.

 v

TABLE OF CONTENTS

ABSTRACT ..iii

ÖZ..iv

ACKNOWLEDGEMENTS ...v

LIST OF TABLES ..ix

LIST OF FIGURES...xi

CHAPTER

1. INTRODUCTION... 1

1.1 Scope and Outline of the Thesis.. 3

2. SOFTWARE SIZE ESTIMATION..5

2.1 Software Size Measurement .. 5

2.1.1 Software Size.. 5

2.2 OO Size Metrics and Methods and Related Work .. 8

2.2.1 Expert Estimations ... 8

2.2.2 Lines of Code ... 12

2.2.3 Software Science .. 16

2.2.4 Function Point Analysis ... 19

2.2.4.1 Feature Points: ... 26

2.2.4.2 Mark II Function Points: ... 27

 vi

2.2.4.3 3-D Function Points: ... 32

2.2.4.4 FP by Matson, Barret and Mellichamp: .. 34

2.2.4.5 Full Function Points: ... 35

2.2.4.6 COSMIC FFP:... 37

2.2.5 Statistical Object Model ... 39

2.2.6 Object Oriented Project Size Estimation.. 41

2.2.7 Distance-Based Approach .. 42

2.2.8 Vector-Based Approach ... 43

2.2.9 Object Points .. 45

2.2.10 Predictive Object Points ... 47

2.2.11 M.Shepperd and M.Cartwright Size Prediction System..................... 50

2.2.12 Use Case Points Method... 51

2.2.13 J.Kammelar’s Sizing Approach.. 57

3. CASE STUDY ...63

3.1 Definition of Work .. 63

3.2 Data Collection.. 64

3.3 Application of Metrics and Methods... 67

3.3.1 Lines of Code ... 67

3.3.2 Mark II Function Points: .. 68

3.3.3 Object Oriented Project Size Estimation.. 72

3.3.4 Use Case Points Method: ... 72

 vii

4.3.5 J.Kammelar’s Sizing Approach.. 77

3.4 Evaluating the Results ... 79

4. CONCLUSIONS AND FUTURE WORK...85

4.1 Conclusions ... 85

4.2 Future Work .. 87

REFERENCES...88

APPENDICES

A. ANNOTATED BIBLIOGRAPHY..98

B. OO SIZE METRICS AND METHODS..109

C. SAMPLE CLASS DIAGRAM AND OBJECT DEFINITION...........................110

D. A SAMPLE USE CASE DESCRIPTION...112

E. MARK II FUNCTION POINTS..113

F. OBJECT ORIENTED PROJECT SIZE ESTIMATION115

G. USE CASE POINTS METHOD ...117

H. J.KAMMELAR’S SIZING APPROACH ...119

 viii

LIST OF TABLES

Table 2.1 Effort per Use Case …………………………………………………….. 15

Table 2.2 Weight Factors for FPA ………………………………………………... 20

Table 2.3 Technical Complexity Factors for FPA ………………………………… 22

Table 2.4 Complexity Rates for FPA ……………………………………………… 22

Table 2.5 Weight Factors for Feature Points ……………………………………… 26

Table 2.6 Weights for 3-D FP ……………………………………………………... 33

Table 2.7 Object Point Complexity Values in COCOMO 2.0 ……………………. 47

Table 2.8 Object Point Weights in COCOMO 2.0 ………………………………... 47

Table 2.9 Method Weightings by Type and Complexity …………………………. 49

Table 2.10 Complexity Assignments ……………………………………………… 50

Table 2.11 Actor Categories and Corresponding Weight Factors ………………… 51

Table 2.12 Use Case Categories and Corresponding Weight Factors …………….. 52

Table 2.13 Technical Complexity Factors for Use Case Points Method …………. 53

Table 2.14 Environmental Factors for Use Case Point Method …………………....53

Table 2.15 Service Valuation Matrix ……………………………………………… 59

Table 2.16 Class Attribute Valuation Matrix ……………………………………… 60

Table 2.17 Structure Determination ……………………………………………….. 60

 ix

Table 2.18 Generalization Counting ………………………………………………. 60

Table 2.19 Object Structure Valuation Matrix ……………………………………. 61

Table 2.20 Operation/Transformation Valuation Matrix …………………………..62

Table 3.1 General Characteristics of the Project ………………………………….. 66

Table 3.2 Actors and Weight Factors ……………………………………………... 73

Table 3.3 Unadjusted Use Case Weights (UUCW) ……………………………….. 73

Table 3.4 TFactor Calculation …………………………………………………….. 75

Table 3.5 EFactor Calculation …………………………………………………….. 76

Table 3.6 Method Comparison ……………………………………………………. 80

Table B.1 Sizing Methods and Related Metrics …………………………………. 109

Table E.1 MARK II FP Count …………………………………………………… 113

Table F.1 OOPS Count ………………….……………………………………….. 115

Table G.1 Use Cases and Corresponding Categories ……………………………. 117

Table H.1 Use Cases and Corresponding Number of Services ………………….. 119

Table H.2 Use Cases and Corresponding Service-Class Relationships ………….. 121

Table H.3 Use Cases and Corresponding Number of Transformations ………….. 123

Table H.4 Classes and Corresponding Number of Attributes ………………….… 125

Table H.5 Object Structure Valuation Matrix for the Project ……………………. 126

 x

LIST OF FIGURES

Figure 2.1 Size Estimation Accuracy by Using Object Decomposition …………. 41

Figure C.1 Reporting Class Diagram …………………………………………… 110

Figure D.1 Rapor Yazdırma Use Case Description …………………………….. 112

 xi

LIST OF ABBREVIATIONS

3D Three Dimensional

ADTs Abstract Data Types

AI Artificial Intelligence

ANGEL Analogy Software Tool

ASL Algebraic Specification Language

AVC Average Number of LOC

CAD Computer Aided Design

CASE Computer Aided Software Engineering

CLOC Commented Lines of Code

COCOMO Constructive Cost Model

COPs Component Object Points

COSMIC Common Software Measurement International Consortium

DET Data Element Type

DIT Average Depth of Inheritance Tree

DSI Delivered Source Instructions

EI External Inputs

EIF External Interface Files

ES Executable Statements

 xii

ECE External Control Entry

ECX External Control Exit

EO External Outputs

EQ External Inquiries

FFP Full Function Points

FP Function Point

FPA Function Point Analysis

FPI Function Point Index

FUR Functional User Requirements

GUI Graphical User Interface

IFPUG International Function Point Users Group

ICASE Integrated Computer-aided Software Engineering

ICR Internal Control Read

ICW Internal Control Write

ILF Internal Logical Files

ISO International Organization for Standardization

LOC Lines of Code

MIS Management Information Systems

MK II FPA Mark II Function Point Analysis

NCLOC Non-commented Lines of Code

NOC Average Number of Children per Base Class

 xiii

OO Object Oriented

OOPS Object-Oriented Project Size Estimation

POPs Predictive Object Points

RCG Read-Only Control Group

SELAM Software Engineering Laboratory in Applied Metrics

SOM Statistical Object Model

SPR Software Productivity Research

SSM Software Sizing Model

TCA Technical Complexity Adjustment

TCFs Technical Complexity Factors

TDI Total Degrees of Influence

TLC Number of Top-Level Classes

UAW Unadjusted Actor Weight

UFP Unadjusted Function Points

UCG Update Control Group

UCP Adjusted Use Case Points

UUCW Unadjusted Use Case Weights

UUPC Unadjusted Use Case Points

VPM Vector Prediction Model

VSM Vector Size Measure

WMC Weighted Methods per Class

 xiv

CHAPTER 1

1. INTRODUCTION

 In recent years, software has become the dominant component in systems and,

its size and complexity has increased. With this increasing size and complexity,

management has become a difficult issue: increasing cost overruns, schedule delays

and poor-quality projects have resulted in a software crisis [25]. To solve these

problems, software developers and managers have started to look for new software

development techniques to understand and control their projects better.

 By the mid 80’s, object oriented (OO) software development has come-out to

become one of the solutions to this crisis [8], [13], [20], [45], [77]. This was a new

development technique in which the real world was represented by objects. In some

respects, this technique was similar to the traditional procedural programming e.g.

usage of abstract data types (called classes in OO software development) and

procedures (called methods in OO software development). On the other hand, many

new concepts such as classes, methods, message passing, inheritance, polymorphism,

and encapsulation have appeared with OO software development [4], [8], [12], [13],

[19], [76]. However, it was not enough to find out such a new technique. The need to

successfully manage such OO systems has resulted in many new metrics suitable for

OO structure or the application of traditional ones to these systems.

1

 In fact, metric usage is very important in OO software development to better

control its complex structure [13] and to meet its promise to solve the crisis [19].

Today there are many metrics being used in the project management and control of

OO systems. “Size” metric is one of the most important of them. All other metrics

(Cost, effort, complexity, productivity, quality etc.), which are used for management

activities, project control and resource allocation during the development process, are

based on size.

 There are two approaches for the measurement of OO software: Whereas some

practitioners say that traditional metrics are not suitable for OO software and new

ones are needed [13], the others believe that traditional metrics can be applied to OO

software, may be with some modifications and additions [45], [66], [76].

 Whatever the approach is, today’s all existing metrics have their criticisms, in

part because of the general difficulty of the estimation process [27], [72], [29] and

the immaturity of the measurement science for the software engineering [38], [40],

[72]. First of all, good theories are necessary for correct measurements. However,

most metrics lack this theoretical basis or depend on unclear ones [19], [20], [28],

[43], [45], [72], [78]. In fact, the mappings from the real world domain to the metric

models are usually not well defined, there is a lack of good empirical relational

systems and there is a general misunderstanding of software attributes and scientific

measurement in software engineering [28], [37], [29]. Secondly, there are no global

standards on procedures and methods for metric definitions and usage [8], [40]. This

results in metrics having various definitions. For example, today there are many

different counting rules for LOC and FP. Thirdly; many metrics are never validated

or validated in different ways [38], [40], [29]. Because of all these reasons, most

existing metrics lack necessary measurement properties and the rigor, which is

available in other engineering disciplines [19], [20], [43], [79], [29]. Also because

2

most OO metrics are composite ones and/or using weights for adjustment, they are

difficult to calculate on interval ratio scales and they lack sensitivity [13].

 Besides these general problems, there are also problems on the application of

traditional metrics to OO software. With OO software development, many new

concepts such as classes, methods, massage passing, inheritance, polymorphism and

encapsulation have appeared. On the other hand, traditional metrics were designed in

a way suitable for the structured programming in which none of the above concepts

exists [4], [8], [13], [19], [20], [38], [66], [68], [76] and most of these metrics accept

code consisting of only text, so it is not clear how to apply them to OO structure [29].

Also, as mentioned earlier, most traditional metrics lack theoretical basis. So, it is

difficult to understand and apply them to OO software [13]. Finally, there is one

criticism specific to OO size metrics: Some practitioners say that OO size has more

than one dimension i.e. functionality, length, reuse and complexity. However,

traditional metrics measure only the functionality dimension of OO software size

[57], [77].

 So far many size estimation researches have been done on OO software. Some

of these are based on applying the existing traditional size metrics to OO software

whereas others are new ones just designed for OO software. However, still there is

no completely rational and satisfactory model to measure the size of OO software.

1.1 Scope and Outline of the Thesis

 This thesis takes into account the previous attempts and studies made in the

field of OO size estimation and by a case study try to find the answers to the

questions of “What are the current state of available OO size metrics?” and “If the

requirements of a project are defined in terms of a use case model, which OO size

metrics can better estimate the project size?”

3

 A completed industrial project is considered as a case study for the size

estimations. From the size metrics and methods mentioned in this thesis, five of them

are chosen to estimate the project size. These are “Lines of Code”, “Object Oriented

Project Size Estimation”, “Use Case Points Method”, “J.Kammelar’s Sizing

Approach” and “Mark II Function Points”. The calculations are made manually by

applying guidelines defined in Section 2.2 of the related sizing methods. Then effort

estimations are made and compared with the actual results of the project.

 In the scope of this thesis, the projects, whose requirements are defined in

terms of a use case model, are taken into consideration. Thus the comparison results

of this thesis can be applicable only to the projects defined by such models.

 In Chapter 2, a survey on related subjects i.e. OO size metrics and methods is

presented. Discussions on the related work are given.

 In Chapter 3, application of the selected size metrics and methods to a project

are given. Also, results are evaluated and compared with each other.

 In Chapter 4, general discussions and concluding comments are presented.

Also, some future work is suggested.

4

CHAPTER 2

2. SOFTWARE SIZE ESTIMATION

 This chapter is a survey on software size measurement: Software Size and OO

Size Metrics and Methods.

2.1 Software Size Measurement

 Size is one of the most important measures for early project estimation and

better project control. Following gives a brief overview on software size

measurement concepts.

2.1.1 Software Size

 Project estimations begin with estimating the size of software to be produced.

It is critical to accurately estimate the size early in a project in order to get accurate

effort, schedule and cost estimations for monitoring and improving the project

progress, productivity and quality. We also need to know the size of software to

predict future maintenance requirements. Besides these, software size estimation has

an important role in the normalization of other metrics such as measuring the defect

density in terms of defects per LOC [4], [29].

5

 Software size measures are divided into two types [51]:

- Technical measures: size software products from the developer’s point of view

and they are used for efficiency analysis. Lines of Code (LOC) is an example

of such a measure.

- Functional measures: size software products from the user’s point of view and

they are used for productivity analysis and building estimation models. Also,

as being technology and implementation independent, they can be used in

productivity comparisons for different techniques and technologies [54].

Function Point Analysis (FPA) is an example of such a measure.

 Software size estimation is especially important for Project Planning. In fact,

project planning begins with software size estimation. Many methods, usually LOC

and FPA, are used for this purpose.

 Once the software size is estimated, it is possible to derive the necessary cost

for the project. The project costs are divided into three main categories [63]:

- Hardware costs,

- Travel and training costs

- Effort costs.

 Since effort costs form the largest part of the total project cost, usually “cost

estimation” means “effort estimation” [65], [29]. Effort estimations are used to

determine the amount of work necessary for a project measured in labor hours. In

most cost estimation models size is taken as the main input parameter and some other

cost drivers are used to calculate the final effort and cost.

6

 The general formula for effort is:

 Effort = A + B*SizeC

where A, B and C are environmental depended constants.

 This effort estimation is used to determine the project schedule. For example,

the Basic Model of COCOMO estimates the required effort (measured in Staff-

Months SM) based on size (measured in thousands of Delivered Source Instructions

KDSI) as [26]:

 SM = a * (KDSI)b

 Then the development schedule (Time of Develop TDEV) of the project in

months is calculated as:

 TDEV= c * (SM)d

 Usually Gantt or PERT charts are used to report such scheduling activities.

 When the effort and cost are estimated, the productivity can be measured.

Generally productivity estimations base on models that divide size by effort (for

example productivity measured in KLOC / person-month). Input to these models also

includes other factors such as expertise of the development organization, complexity

of the problem, analysis and design techniques, programming language, reliability of

the computer system, and availability of hardware and software tools [17].

 Another use of size is in quality estimations. Software quality is related with

correctness, maintainability, integrity and usability of software [17]. To measure

these dimensions of quality, some predictors such as size and complexity are

combined with some outcomes such as defects. The most common quality metric is

defects per size. Size is also related with quality by means of productivity. In fact,

some productivity models are used with quality models. Advanced COCOMO is

such an example [29].

7

2.2 OO Size Metrics and Methods and Related Work

 With today’s new development techniques, understanding of software size has

become a four dimensional concept: functionality, length, reuse and complexity [57],

[77]. With this changing concept, software size estimation process has involved a

wide range of metrics and methods from the traditional to the new ones. Following

gives a brief overview on some of these software size metrics and methods in the

context of OO (see Appendix B for a summary table).

2.2.1 Expert Estimations

 Expert estimations are the subjective methods to estimate the size of a software

project. In spite of their subjectivity, these methods are still the most widely used

ones then the more objective methods because of [53]:

- The lack of necessary information at the beginning of the project,

- The specificity of the domain addressed,

- The effort and time required,

- The need to introduce a vocabulary foreign to stakeholders without a software

background.

 The most known of these methods is the “expert judgment” method in which

experts make predictions on the size of a project based on their past experiences from

local or industry-wide observations [27], [29].

 Although it is so common, expert judgment have serious problems. The

estimates are based on the quality and experience of the experts [29]. The

psychological and personal factors and the level of necessary system information of

the experts can affect the judgments [46]. Using out-of-date data or wrong memories

from the past projects can result in inaccurate estimates [72]. Also, because estimates

8

are implicit, they cannot be repeated [65]. And finally, all these inaccurate size

estimations inevitably cause doubtful schedules and budgets [53].

 A more formal form of expert judgment is the “estimation by analogy” In this

method, first the important characteristics of the project is defined. Then by using

these characteristics, the project is compared with one or more past projects of

known sizes. The similarities and differences are found and some adjustments are

made to estimate the current project size [65], [29]. In the comparisons, the

similarities are determined by the closeness of the characteristics that is calculated as

distance in n-dimensional space [18]. Estimation by analogy can also be used to

estimate cost, effort and schedule.

 The method has some advantages. First of all, it is very easy to understand. It

can be used even when no statistical relationship exists. No calibration for the new

development area is needed. It can be automated (e.g. ANGEL tool) [65]. Also, the

comparison analyses are usually documented so they can be used in later estimates

and reviews [29]. However, the method has also some problems. Since it is difficult

to find the analogies and determine the similarities, application of the method needs a

large amount of time. In addition, there are some unclear subjects about the method

such as using old data points and effect of different variables on different data sets

[65].

 To say, although estimation by analogy is a better method then expert

judgment, still more study is needed in this area.

 In addition to the above methods, there are also some statistical sizing methods

for the subjective judgments. “PERT” is the most popular one. For PERT estimation,

first during the planning and requirements phase, the project is divided into its major

functions. Secondly, the size of each function is estimated. Finally, these size

estimations are summed to get the total project size [46].

9

 Since the estimates are based on expert judgment or analogies, PERT is a

subjective method [46]. To decrease its subjectivity, Putman and Fizsimmons [58]

defined an adaptation of PERT. In their adopted method, the size is estimated not as

a single point value, but as a statistical distribution [27]. Here, for each function, the

smallest, the most likely and the largest sizes are estimated and by the below

formula, the total project size is found [46], [58]:

 Sizei = (si + 4mi + li) / 6

 Sizes = ∑ Sizei

 The deviations for each function and for the total project are calculated as [1],

[58]:

 Di = (si – li) / 6

 Ds = (∑ Di
2)1/2

 This statistical distribution can also be used for effort and schedule estimates

[27]. On the other hand, since the estimates are based on expert judgment or

analogies, the previously mentioned problems of expert estimates also exist for this

method.

 Another statistical sizing method is the “software sizing model (SSM)”. SSM

was developed in 1980. It is a method based on expert judgment. SSM is an

automated method and since 1985, it is being automated by the cost estimation tool

PRICE [15]. First the user(s) decompose the system into modules. Then, the user(s)

provides the module and project data to SSM. From this information, SSM generates

customized input screens for the project. After that, by using the screens, the user(s)

provides the required input data sets (i.e. pairwise rankings, PERT estimation for

each module, sorting and relative size ranking data). At least one reference module of

known size must be available for the ranked modules. To calculate other modules’

10

 sizes, these reference values are used [15], [27]. The inconsistencies between the

input data sets are resolved by statistical relations [27]. The execution of SSM results

in size estimates and standard deviations for each module and for the total project.

Also, for the total project size, confidence intervals are provided [15], [27].

 There are some pluses of SSM. First of all, SSM is an automated, interactive,

self-documented method. It is not database dependent. In any development phase in

which modularization is possible, the method can be used. SSM’s final size

estimation can be in any form independent of how the reference modules sizes’ are

defined. When compared with PERT, SSM performs better results [15]. However,

since it is an expert judgment based method, rankings and selection of reference

modules and as a result the accuracy of the final estimation can be affected by the

quality of the estimators’ judgments.

 A later study similar to the concepts of SSM is the “paired comparison”

method for software sizing. This is a method used when a measurement instrument

or an acceptable measurement scale does not exist [52], [53]. In paired comparison,

one or more experts estimate the relative largeness of n entities (requirements, use

cases, modules, objects etc.) with respect to each other. First the entities are arranged

from largest to smallest. Then a judgment matrix is established in which relative

sizes of each entity are defined. From these a ratio scale is derived. By using this

ratio scale and at least one reference value (i.e. the size of an entity which is

available from the past projects), the absolute values of the entities are calculated

[52], [53].

 Paired comparison is a method, which can be used at the early stages of a

project where little information is available. In addition, since each entity is

compared with others, the errors and inconsistencies can be easily determined.

11

Automation is also possible (e.g.. MinimumTime from Ericsson) [52]. On the other

hand, some care must be taken when using paired comparison:

- The functional and technical aspects of the system must be understood very

well to make judgments more accurate [52], [53],

- For large number of entities, work must be divided into smaller judges to

increase the accuracy [52],

- In choosing a reference value, care must be taken. Too large or too small

values can result in under or overestimation [52],

- Establishing a verbal scale can be practical in calculations [53].

 Like many other methods, for paired comparison, more study is needed to

validate the method’s usefulness.

2.2.2 Lines of Code

 “Lines of Code (LOC)” is the oldest and most widely used traditional size

metric. Since it is objective, easy to understand and measure, LOC has been used for

measuring length, normalization of other metrics and as an input to cost/effort,

productivity and quality estimations [30], [50], [29].

 Today there are many definitions of LOC being used for different purposes

[29]. One of them is “noncommented lines of code (NCLOC)”. In NCLOC, the blank

lines and comments are not counted. Therefore, this method is not suitable for

purposes such as determining the computer storage requirements.

 Another method is to count not only NCLOC but also the “comment lines

(CLOC)”. The total size is calculated as:

 LOC = NCLOC + CLOC

12

 Counting number of “executable statements (ES)” is also possible. In this

method, each statement on the same physical line is counted distinctly. Comment

lines, data declarations and headings are ignored.

 To measure the amount of delivered code rather than the written code,

“delivered source instructions (DSI)” can be used. DSI counts each statement on the

same physical line distinctly. It excludes comment lines and includes data

declarations and headings.

 Rather than using LOC, length of a program can be measured by using the

“bytes of computer storage required for the text”, or by using the “number of

characters in the program text”. Both of these methods are easy to understand and

collect. Also, since LOC, bytes of computer storage required for the text and number

of characters in the program text are on the ratio scale, they can be easily converted

to each other.

 With so many definitions, LOC has some problems:

- Since length is an important input for many estimation methods, it must be

obtained accurately at the early stages of a project. However, accurate

measurement of LOC is possible only at the later stages of a project when the

code is written [30], [44], [50], [76].

- There is no standard definition of what a LOC is [40], [50], [76], [29] and

existing ones are conflicting with each other. Therefore, it is difficult to

compare such measures and confusion can appear in other estimates using

LOC as an input.

- LOC depends on the programming language. Therefore, programs written in

different languages cannot be directly compared [30], [44], [50], [29].

13

Especially in effort, functionality and complexity comparisons using LOC, some

conversion factors must be used [29].

- When using LOC, two programs of the same size are always accepted to be

equally complex [76].

- LOC does not count the different levels of complexity of different lines [76].

- Estimation of software size in LOC in the early phases of a project when no

code is available can only be done by expert estimation. Such a LOC can

differ from expert to expert.

 The application of LOC to OO systems has not only the above problems, but

also many other ambiguities. Since LOC is a size measure introduced for the

structured programming, it does not take into account the OO concepts such as reuse,

inheritance, polymorphism and usage of class libraries. Therefore, it is not clear how

to count LOC when considering such concepts [40], [76].

 One application of LOC to OO systems is based on use cases. J. Smith [67] in

his article defines a framework to estimate the system size (in terms of LOC) and

corresponding effort depending on the number of use cases for that system. The steps

are as follows:

 1. The structural hierarchy of the whole system is defined. 5 levels are

proposed:

 Level 4 – System of Systems

 Level 3 – System

 Level 2 – Subsystem Group

 Level 1- Subsystem

14

 Level 0 – Class

 where Class and Subsystem are defined in UML.

2. For each level, the number of use cases is determined.

 3. The total system size is roughly calculated by using the following formula:

 Total Size = [(N1/10)*7+(N2/10)*56+(N3/10)*448+(N4/10)*3584] ksloc

where N1, N2, N3 and N4 are the number of use cases of the corresponding levels.

 4. Table 2.1 is used to determine effort per use case for the corresponding

level. This table was formed by using the Estimate ProfessionalTM toll based on

COCOMO 2.0 and Putnam’s SLIM models where C++ was taken as the base

language.

Table 2.1 Efforts per Use Case

Size (slocs) Effort hrs/use
case

Simple business
system

Effort hrs/use
case

Scientific system

Effort hrs/use
case

Complex
command and
control system

7000 (Level 1) 55 (range 40-75) 120 (range 90-
160)

260 (range 190-
350)

56000 (Level 2) 820 (range 710-
950)

1700 (range 1500-
2000)

3300 (range 2900-
3900)

448000 (Level 3) 12000 21000 38000
3584000 (Level 4) 148000 252000 432000

15

 By using the size to effort relationship defined in COCOMO 2.0 i.e. Effort =

A*(Size)1.11, and the above Total Size formula, for each level the effort multipliers

are calculated as:

 For Level 1, EN1= (0.1*N1+0.8*N2+6.4*N3+51.2*N4)0.11

 For Level 2, EN2 = (0.0125*N1+0.1*N2+0.8*N3+6.4*N4)0.11

 For Level 3, EN3 = (0.00156*N1+0.0125*N2+0.1*N3+0.8*N4)0.11

 For Level 4, EN4 = (0.00002*N1+0.00156*N2+0.0125*N3+0.1*N4)0.11

 5. For each level the effort per use case is calculated by multiplying ENi by the

corresponding effort/use case value defined in Table 2.2.2.1. For example, for a

simple business system consisting of only Level 1 use cases with an effort multiplier

of 1.2, the effort per use case for this level is 1.2*55=66 hrs/use case.

 6. Finally, the total effort for each level is calculated as:

 Total Effort = Effort per Use Case for Level i*Ni hrs

 This method makes the size and effort estimations possible for any level of use

cases [67]. It is an easily understandable method. Some automated tools can be used

for calculations. However, it is limited to C++ and equivalent level of languages.

And like many other methods, more testing and reestimation of parameters are

necessary.

2.2.3 Software Science

 “Software Science” is a scientific model developed by Maurice H. Halstead

[34] during 1970s to measure software size and complexity.

16

 In Software Science, a program is defined as a collection of tokens known as

operators and operands [64], [29]. Operators are the symbols or keywords that show

the algorithmic actions, and operands are the symbols used in data representations.

 The basic metrics used are:

 µ1 = number of unique operators.

 µ2 = number of unique operands.

 N1 = total occurrences of operators.

 N2 = total occurrences of operands.

 The program length is calculated as:

 N = N1 + N2

 And the program vocabulary is calculated as:

 µ = µ1 + µ2

 From these metrics, other additional measures are calculated. These are:

- Volume of a program (V) = N * log2µ

- Program level (L) = V* / V

 where V* is the potential volume i.e. minimal size of the program.

- Difficulty of a program (D) = 1 / L

- Effort (E) = V / L = D * V

- Time for effort (T) = E / 18

 For Software Science, all the four internal attributes (µ1, µ2, N1, N2) are on an

absolute scale. Also, the three views of size i.e. length, vocabulary and volume are

valid measures from the measurement theory perspective [28], [29].

17

 Although Halstead’s model seems to base on valid scientific theories, and got

great interest from the software community, it has also some serious problems:

- Since there is no detailed design in the early phases of a project, it is difficult to

calculate the Halstead length [72].

- In fact, software science metrics are defined to count the operators and

operands of algorithms rather than programs, and are based on studies written

in Fortran and Algol. Therefore, it is difficult to determine how to count and

even discriminate between the operators and operands of programs written in

other languages. However, this problem can be solved by using automated

tools [22], [64].

- There are criticisms on the validity of the experimental data such as using too

small sample sizes and single subjects in the experiments [64].

- The program level depends on not only the program language but also the

experience and style of the programmer. So, it is difficult to test the validity

of this formula [64].

- In the derivation of some formulas, there is a lack of theoretical justification

[64]. Especially the effort and time metrics are crude prediction systems [29].

 The application of Software Science metrics to OO systems is also possible.

However, such an application has its own difficulties because of the different

structure of such systems [76]. The most important difficulty is to count the operators

and operands, and to find a reference for each use of a method. In OO approaches,

methods are accepted as operators and variables as operands. From these definitions,

it is unclear if an object is an operator or an operand. Also subjects specific to OO

systems such as inheritance, polymorphism and existence of some dynamic values

make the above problems more difficult to solve.

18

 Because of its limitations, today this model is not being widely used. However,

it has some good ideas about size measurement that can be used in future studies.

2.2.4 Function Point Analysis

 “Function Point Analysis (FPA)” is developed by Allan J.Albrecht in 1979

while in IBM to size business information systems [5]. It is based on the idea of

measuring the amount of functionality delivered to the user in terms of “function

points (FPs)”.

 In FP calculation, the system components are classified from the end-users

view as external inputs, external outputs, external inquiries, external interface files

and logical internal files and they are counted. Then weights are assigned for each of

these counts. Finally, some complexity factors are used for adjustment to get the final

FP.

 The detailed steps for these calculations are [6], [73], [29]:

 1. The system components are classified as:

 External Inputs (EI): items provided by the user that describe distinct

application-oriented data.

 External Outputs (EO): items provided to the user that generate distinct

application-oriented data.

 External Inquiries (EQ): each unique input/output combination, where an

input causes and generates an immediate output.

 External Interface Files (EIF): files passed or shared between applications.

 Internal Logical Files (ILF): each major logical group of user data or control

information in the application.

19

 2. The system components are also classified as “simple”, “average” and

“complex” depending on the number of data elements and records they contain and

their some other properties. For each component, a weight is assigned and

Unadjusted Function Point (UFP) is calculated by using Table 2.2.

Table 2.2 Weight Factors for FPA

Component
Description

Simple

Average

Complex

Total

External Inputs …* 3 …* 4 …* 6 ……….
External Outputs …* 4 …* 5 …* 7 ……….
External Inquiries …* 3 …* 4 …* 6 ……….
External Interface
Files

…* 7 …* 10 …* 15 ……….

Logical Internal Files …* 5 …* 7 …* 10 ……….
 UFP ……….

 3. 14 Technical Complexity Factors (TCFs) (Table 2.3) are rated from 0 to 5

based on their degree of influence to the system based on Table 2.4 and summed to

get Total Degrees of Influence (TDI).

 Then TCF is calculated as:

 TCF = 0.65 + 0.01*TDI

 4. The final FP is:

 FP = UFC * TCF

 where FP is a dimensionless number on an arbitrary scale [73].

20

 Although FPA aims to solve the problems associated with LOC, it has also

many criticisms. Here is a list of its advantages and criticisms on it:

- Unlike LOC, FPA is independent of languages, tools and methodologies for

implementation [4], [6], [39], [40], [50], [70].

- Early size estimation is easier with FPA, because the necessary FPA

information can be obtained from user requirements, design specifications,

source listings, initial proposals or even from live systems regardless of the

level of detail available [6], [32], [39], [40], [44], [49], [71], [73]. Such

requirements also provide an early validation for the method [6].

- Since FPA depends on user requirements, it can be easily understood and

accepted by non-technical users [44], [71], [73].

- As the requirements change, reestimation is possible, however, there is a 400%

to 2000% increase between the early estimates and later ones [50], [29].

- FPA has the largest statistical support [32].

- Today there are many cost estimation tools using FPA in their calculations

[40].

21

Table 2.3 Technical Complexity Factors for FPA

Description
Reliable back-up and recovery
Distributed functions
Heavily used configuration
Operational ease
Complex interface
Reusability
Multiple sites
Data communications
Performance
Online data entry
Online update
Complex processing
Installation ease
Facilitate change

Table 2.4 Complexity Rates for FPA

Description Complexity
Rate

Description Complexity
Rate

Not present or no
influence if present

0 Average
influence

3

Insignificant influence

1 Significant
influence

4

Moderate influence 2 Strong influence,
throughout

5

- FPA can also be used with LOC to estimate system size [49], [70]. For

example, for a particular language, the average number of LOC (AVC) to

22

implement a FP can be found by using historical data. Then the size of the new

system being developed in this language can be calculated as:

 Size = AVC * number of FPs

 On the other hand,

- FPA was designed to size business information systems, not to cope with

complex mathematical algorithms [73]. Therefore, it is not suitable for real

time, scientific and embedded systems [1], [29].

- There are difficulties when FPA concepts are applied to database oriented,

transaction-processing systems [27].

- For large systems, application of FPA requires much time and effort [27].

- FPA underweights large and complex systems but have better results in small

ones [73].

- Training and experience is needed for reliable FP counting [40], [49].

- Although Albrecht claims that FPA is technology independent [6], it is not

[73]. All the counting rules are based on the documents of structured design

techniques [31].

- The component classification of simple, average and complex is oversimplified

[73].

- The choice of weights was determined by debate and trail [44] and technical

complexity factor rating is a subjective process [29].

- There is a low interrater reliability in the counts [44], [70]. Different

interpretations of the system by different analysts would result in different FP

counts for the same system.

23

- There is a lack of intermethod reliability. Although there is a consensus on the

basic components, there are many variations in the way of FP counting [44],

[47], [49].

- The 14 technical complexity factors may not be necessary or satisfactory all the

time and contributes little to the performance [39], [73].

- The counts of technical complexity factors do not satisfy the measurement

theory because the factors are rated on an ordinal scale, but they are used as if

they were on a ratio scale [29].

- It is possible to double count the internal complexity while in the UFP count

and in the TCF count [73].

- Because of the subjectivity of the method, there is no fully automated FP

counting tool [44].

 With the increasing use of OO systems, the software practitioners have started

to look for ways to apply FPA to size such systems. So far, many studies have been

conducted in this context. Some practitioners, who believe that the functionality

provided by FPA to both the OO and traditional procedural systems are the same,

have found out some new measures similar to FPA such as [42] and Karner (See also

Sections 2.2.9, 2.2.12, 2.2.13). The others have tried to map OO concepts into the

FPA model such as [31]. However, the efficiency of such applications is still being

discussed and more studies are needed in this field.

 For example, in their study, T.Fetcke, A.Abran and T.Nguyen defined some

mapping rules between the use case driven OO-Jacobson approach and Function

Point model [31]. This mapping was aimed to estimate size and effort from the use

case model. Since Function Point method is a widely known one, this mapping

supplies an easily understandable and applicable estimation process. Also,

24

measurement results can be compared between different development methods [31].

On the other hand, the most important drawback of the method is its limitation to the

OO-Jacobson approach.

 One way of defining the functional requirements of a system is in terms of use

case models. Such modeling is especially suitable for OO systems. D.Longstreet

[48] defines a natural relationship between FPA and use cases: “Function Pints is a

method to size software from a requirements perspective and Use Cases is a method

to develop requirements”. He defines many similarities between the concepts of FPA

and use cases such as boundary and user (actor in use cases) definitions. He also

explains how function points can be counted from use case descriptions. For

Longstreet, such an application is very easy. Moreover, he says that this adaptation

of use cases and FPA results in better use case descriptions, and estimates.

 Today FPs are not just used for size measurement but also for many other

purposes such as cost estimation [50], productivity measurement [10], [11],

productivity analysis in software maintenance [33], quality evaluation, effort

estimation [6], [29], and as a normalizing factor (e.g. defects per FP) [29].

 Although Albrecht’s FPA with its many applications, is the most widely used

metric in the industry, it has been loosing its popularity. Many variations of FPA

have appeared to overcome its weaknesses against the concepts of new software

technologies such as real-time and scientific software [75]. Original FPA method has

also changed since its introduction. In 1984, a modification is made to the method. In

the old version, for each component empirical weights were used whereas now each

component is classified and assigned complexity rates depending on some rules. In

the late eighties, the International Function Point Users Group (IFPUG) was founded

and has produced the new versions of FPA. Since 1984, the basic FPA standards

have not been changed and now the last version is known as IFPUG 4.1.

25

 Today there are many alternatives of the FPA method. Some of the most

popular ones are given in the following subsections.

2.2.4.1 Feature Points:

 “Feature Points” method is an adaptation of FPA introduced by Software

Productivity Research, Inc. (SPR) in 1996 [69].

 Besides FPA’s five component types, it has an additional sixth type called

algorithms with a default weight of 3. Here an algorithm is defined as the set of

rules, which must be completely expressed to solve a significant computational

problem [69]. Another difference of Feature Points method and FPA is that the

weights of external files are 7 instead of 10. Also in this method a single complexity

weight is used for each component type (Table 2.5).

Table 2.5 Weight Factors for Feature Points

Component Description Weight
Number of algorithms 3
Number of inputs 4
Number of outputs 5
Number of inquiries 4
Number of external files 7
Number of interfaces 7

 Since it takes the algorithmic complexity into account in the calculations, the

method can be applied to many kinds of systems such as real time systems,

embedded systems, CAD, AI and even MIS [69].

26

 When selecting between Feature Points and FPA, number and definition of

algorithms in the system should be considered. If algorithms are countable and

algorithmic factors are significant, Feature Points is a better solution, otherwise FPA

should be selected [69].

 Today Feature Points is one of the most tested and accepted alternatives of FPA

[35]. There are many automated tools that support the method (e.g. Checkpoint and

knowledgePLAR® from SPR). However, because of the difficulty of algorithmic

calculations for large and highly complex projects, the method has been loosing its

popularity [75].

2.2.4.2 Mark II Function Points:

 “Mark II Function Points” method was developed by Charles Symons [73] to

solve the problems of FPA especially about the calculation of internal processing

complexity. The method is published in 1991. Now the design authority of the

method is the Metrics Practices Committee (MPC) of the UK Software Metrics

Association. Since its introduction, Mark II FP has been increasingly used in many

places like UK, Hong Kong, India, Singapore and Canada [40], [55].

 Mark II FP aims to measure the information processing. This method views the

system as a set of logical transactions and calculates the Functional Size of software.

 Mark II FP is independent of the project management and the development

methods being used. On the other hand, it was deigned to measure the business

information systems. Therefore, application of the method to other domains such as

scientific and real-time software can be possible, but may require some modifications

of the method [81].

27

 The main differences between Mark II FP and the original FPA are:

- In Mark II FP, the concept of entities rather than logical files is used [73]. This

reduces the subjectivity of measurements that result from using files [32],

[72].

- Mark II FP is based on the effort required to produce the functionality, whereas

FPA aims to find the value of functionality delivered to the end-user.

Therefore, FPA is more difficult to verify or calibrate [73].

- Mark II FP is a continuous measure. On the other hand, FPA limits component

size once a threshold is reached [81].

- For Mark II FP, calibration and recalibration is easy [73]. However, when there

is little or no history, calibration to the new system may be difficult [35].

- In maintenance activities, FPA can show only the total size of the changed

components. On the other hand, it is possible to calculate the size of each

changed component in Mark II FP [73].

- Mark II FP requires more effort than FPA [73].

- Although it is said that Mark II FP is technology independent [81], it is also

technology dependent like FPA when Technical Complexity Adjustment is

added to the calculations [73].

- Both Mark II FP and FPA tends to give similar sizes up to software of 400

function points, but for larger software Mark II FP gives large size measures

than FPA [73], [81].

 For the Mark II FP calculations [81], first the viewpoint, purpose and count

type of the software are determined. There are three viewpoints: the Project

Viewpoint, the Application Manager Viewpoint and the Business Enterprise

Viewpoint. Then the application boundary is drawn.

28

As a third step, logical transactions are identified. In the Counting Practices

Manual [81], a logical transaction is defined as:

“Each logical transaction is triggered by a unique event of interest in the external

world, or a request for information and, when wholly complete, leaves the

application in a self consistent state in relation to the unique event.”

Logical transactions consist of logical inputs, processes and outputs. In the

Counting Practices Manual [81], functional sizes of these elements are defined as:

- The size of the input element is proportional to the number of uniquely

processed Data Element Types (DTE’s) composing the input side of the

transaction.

- The size of the processing element is proportional to the number of uniquely

processed Data Entity Types (entities) referenced during the course of the

logical transaction.

- The size of the output element is proportional to the number of uniquely

processed Data Element Types (DTE’s) composing the output side of the

transaction.

 For each logical transaction, Input Data Element Types, Data Entity Types

Referenced and Output Data Element Types are determined. Here entity type means

something in the real world about which the user wants to hold information. One

important point is that, only the primary entities not the non-primary ones should be

taken into account.

Depending on these Input Data Element Types, Data Entity Types Referenced

and Output Data Element Types, the Functional Size i.e. Function Point Index is

calculated as:

29

 FPI = WI * ΣNI + WE * ΣNE+ WO * ΣNO

 where

 NI = Input Data Element Types.

 WI = weight for Input Data Element Types.

 NE = Data Entity Types Referenced.

 WE = weight for Data Entity Types Referenced.

 NO = Output Data Element Types.

 WO = weight for Output Data Element Types.

 and NI, NE and NO are each summed over all Logical Transactions. Also the

accepted industry average weights are 0.58, 1.66 and 0.26 for WI, WE and WO

respectively.

 The Function Point Index defined above is based on the information processing

size. As being optional, size of non-functional requirements i.e. technical complexity

and certain quality requirements can be added to the above calculations. In fact, in

the previous releases of the Counting Practices Manual, Technical Complexity

Adjustment was a mandatory part of the method. However, because this part is not

suitable for new software and to comply with the current International Standard on

‘Functional Size Measurement’, this part became an optional part.

 For Mark II FP, there are additional six TCFs to the 14 general TCFs of the

original FPA. These factors are:

- Interfaces with other applications.

- Special security features.

- Direct use by third parties.

30

- Documentation requirements.

- Special user training facilities.

- User defined characteristics.

 In the sizing process, for each of the above factors a score of 0 to 5 is given.

Then all this values are summed to get the Total Degrees of Influence (TDI).

Technical Complexity Adjustment (TCA) is calculated as:

 TCA = (TDI * C) + 0.65

where 0.005 is the current industry average for C.

 Finally, the Adjusted Function Point Index (AFPI) is calculated:

 AFPI = FPI * TCA

 The productivity is defined as:

 Productivity = Output / Input

where output is the Function Point Index (FPI) and input is the related effort i.e.:

 Productivity = FPI / Effort

 Here it is recommended that the unit of effort be defined in terms of work-

hours. So, productivity is calculated in Function Points per work-hour.

 It is also possible to covert Mark II FP to FPA and vice versa [74]. Both Mark

II FP and FPA tends to give similar sizes for software of 200 to 400 FPA function

points. For larger systems up to 1500 FPA function points, Symons gives the

following conversion formula:

 M = 0.9 * I + 0.0005 * I2

where M = Mark II FP’s and I = FPA UFP’s.

31

 For software above 1500 FPA function points, other formulas are suggested

[74].

 The application of MARK II FP in OO systems can be done by means use

cases. For this purpose, P. G. Rule [61] recommends a model that combines Mark II

FP and use cases. In this model, use cases are described as measurable logical

transactions each having their input fields, response fields and referenced object

classes. Then this information is used to calculate the functional size. Also Rule says

that by this modeling the following problems related with use cases can be solved:

- Lack of rigor in the application of the technique. There are many

interpretations of understanding use cases.

- Lack of a consistent level of granularity.

- UML practitioners freely apply the concept of abstract use cases i.e. ‘uses/used

by’ and ‘extends’, that are more concerned with identifying opportunities for

reuse than with analyzing the problem and describing the requirements.

Too early ‘optimization’ of the solution and a tendency to jump into ‘the first

solution that is thought of’ rather than do a considered evaluation of a number of

solution options.

 In another work, Rule [60] gives some insight into the problems of use case

description level and discussion of ‘scenario’ term. In spite of these difficulties, he

says that logical transaction of Mark II FP is very similar to the detailed level use

case concept. Therefore, they can be used together and this makes Mark II FP an

easy and cheap method for OO software.

2.2.4.3 3-D Function Points:

 “3-D Function Points” was introduced by S.A.Whitmire [80] of Boeing in

1991. The method is similar to Albrecht’s FPA, however it has also control

32

components in addition to the functional and data components [32], [75]. The data

components are calculated like in FPA. For the functional components, number and

complexity of functions and the set of semantic statements, and for the control

components, system states and transitions are taken into account [32]. By this way,

the method brings two new concepts to FPA: transformations and transitions.

 For the application of 3-D FP to OO software Table 2.6 is used [18].

Table 2.6 Weights for 3-D FP

Component
Types

Low
Complexity

Average
Complexity

High
Complexity

Total

Internal Data ………* 7 ………* 10 ………* 15 ………
External Data ………* 5 ………* 7 ………* 10 ………

Inputs ………* 3 ………* 4 ………* 6 ………
Outputs ………* 4 ………* .5 ………-* 7 ………
Inquiries ………* 3 ……….* 4 ………* 6 ………

Transformations ………* 7 ………* 10 ………* 15 ………
Transactions N/A ………* 3 N/A ………
Total 3-D FP

Value
……… ……… ……… ………

 Also for the reuse concept of OO software, percentage of 3-D FPs for each

imported class can be used.

 3-D FP is a technology independent method especially suitable for real time

and scientific systems. However, 3-D FP counting is difficult in the early phases of a

project since it requires a detailed system knowledge [32]. Also its application to OO

33

software requires well documentation of imported software [18]. Since the method

has not been published outside Boeing, too little is known about its validity and

success.

2.2.4.4 FP by Matson, Barret and Mellichamp:

 The FP method suggested by Matson, Barret and Mellichamp [50] is an

alteration of Albrecht’s FPA.

 In this method, system components are classified as inputs, outputs, master

files and inquiries where interfaces are not counted separately, however, as part of

master files. Unlike FPA, only one complexity level is used and the adjustment

factors have a range of +-25% rather than +-35%.

 By taking the coefficients as the average complexity values, the FP for the kth

observation is calculated as:

 FPk = (4IN + 5OUT + 4INQ + 10FILE) * ck

where

 IN = inputs

 OUT = outputs

 INQ = inquiries

 FILE = master files

 ck = adjustment factor

 From this information, effort can be calculated by the formula:

 E = β0 + β1 * (ck * IN)2 + β2 * (ck * OUT)2 + β3 * (ck * INQ)2 + β4 * (ck * FILE)2

 + ε

34

 Although the method is based on a small set of data, it gives good results and

can be taken as a sample for future studies.

2.2.4.5 Full Function Points:

 In a 1997 research project by the University of Quebec in cooperation with the

Software Engineering Laboratory in Applied Metrics (SELAM), “Full Function

Points (FFP)” method was developed [51].

 The aim of FFP is to solve the problems associated with FPA when applied to

real-time and embedded systems. The method is an extension of FPA, but it also

takes into account the specific transactional and data characteristics [i.e. counting sub

processes and single-occurrence data) of real-time systems [51], [54]. Therefore, FFP

can be applicable to a large set of systems from real-time to MIS [56].

 FFP takes FPA method as a base where it uses the five components of FPA (i.e.

EI, EO, EQ, ILF and EIF) to measure the management function types and defines

additional six components to measure control function types specific to real-time

systems [1], [51]. These new components are classified as [56]:

- Data Function Types:

 Update Control Group (UCG): similar to ILF.

 Read-only control Group (RCG): similar to EIF.

- Transactional Function Types:

 External Control Entry (ECE): similar to a simpler subset of EI.

 External Control Exit (ECX): similar to a simpler subset of EO/EQ.

 Internal Control Read (ICR): similar to a simpler subset of EI/EO/EQ.

 Internal Control Write (ICW): similar to a simpler subset of EI.

35

 Also there are many other FFP concepts similar to FPA’s such as definition of

boundaries and users. But unlike FPA, FFP excludes technical and implementation

considerations in its calculations [56].

 In the FFP measurement process [51], [54], first the management function

types are identified and counted depending on the FPA rules. Then to measure the

control function types, the sub processes and their function types are determined and

assigned points according to the FFP counting rules. The unadjusted count can be

expresses as follows [1]:

 FFP = Management FP + Control FP

 = (FPA Count – Control information) + Control FP

 For FFP, so far many field tests have been conducted. The results from

different organizations are:

- FFP measures real-time systems more adequately than FPA [14], [51].

- The FFP concepts and rules are defined clearly so it is easy to understand and

there is no need for a FFP specialist [1]. Even inexperienced teams can make

estimations as successfully as the experienced ones [14].

- There are more function types that need to be counted in FFP than FPA,

however because of the method’s simplicity, the required effort is similar to

FPA [1], [51].

- The weights are empirically determined ones in FFP and they are chosen in a

way to supply the compatibility with FPA method. Therefore some

calibration may be needed for future applications [51].

- The difference between FFP and FPA results depends on the number of sub

processes in each process of the system. If there are only a few sub processes,

then FFP and FPA give close size results [54].

36

- The quality of functional requirements affects the FFP results. In fact, if these

requirements are well documented, FFP can give better size estimations in the

early phases of a project [1].

- For various design methods, the needed effort can be determined with FFP

[14].

 Although the method has been applied successfully in many organizations,

since 1999, COSMIC FFP has taken the place of FFP with many new improvements.

2.2.4.6 COSMIC FFP:

 The Common Software Measurement International Consortium (COSMIC)

developed a new functional size measure called “COSMIC FFP” in November 1999

[3].

 COSMIC FFP is a model that provides reliable size measures for real-time,

MIS and hybrid (containing both real-time and MIS properties) systems. However,

the model is not suitable for complex mathematical algorithms and process

continuous variables [23].

 COSMIC FFP takes User Functional Requirements as a base and does not

attempt to take into account the Technical and Quality Requirements [24], [75].

 To size the system functionality, first the Functional User Requirements are

mapped to a COSMIC FFP FUR (Functional User Requirements) model [23]. This

FUR model consists of two layers: Transaction Types (or Functional Processes) and

Data Movement Types (or Functional Sub Processes). There are four Data

Movement Types: entry, exit, read and write.

 The mapping process compose of the following steps:

- Identifying software layer and/or peer items.

37

- Identifying software boundaries.

- Identifying functional processes.

- Identifying data groups.

- Identifying data attributes.

 When the mapping process is finished, the measurement process begins with

identifying each sub processes and their types. Then for each of the sub processes, a

numerical size of 1 Cfsu (Cosmic Functional Size Unit) is given. Here 1 Cfsu is

equal to 1 Data Movement Type. Finally for each identified layer of sub processes,

size is calculated as:

 SizeCfsu(layeri) = Σsize(entriesi) + Σsize(exitsi) + Σsize(readsi)

 + Σsize(writesi)

 For each identified layer of changes to the requirements is calculates as:

 SizeCfsu(change(layeri)) = Σsize(added sub processes)

 +Σsize(modifies sub processes)

 + Σsize(deleted sub processes)

 These calculations can also be done by using the metric defined in [23].

 So, by adding sub processes, it is possible to measure the size of any higher-

level processes [3]. In fact, COSMIC FFP provides a size measurement in any layer

or peer-item [2], [3], [24].

 The most important pluses of the model are its theoretical base [3] and

compliance with ISO 14143-1 standard [23].

 Many field tests were done on COSMIC FFP and the following results are

obtained [3]:

38

- Experience on COSMIC FFP and the domain are necessary to get better

results.

- Specifying the measurement procedures of COSMIC FFP is necessary to meet

the organizational needs.

- It is an easily applicable model.

- The effort needed for the model is similar to the other FP methods.

 During the field tests, also the relation between size and effort was found for

different phases of a project (i.e. specify, build and test phases).

 Specify effort = 4.0342 * (size)0.9903

 Build effort = 12.313 * (size)1.015

 Test effort = 5.2124 * (size)1.024

 However, the formulas are based on small and non-homogeneous data from

various types of organizations. So, calibration may be needed when applied to other

organizations.

2.2.5 Statistical Object Model

 One study done to measure software size for OO systems is Laranjeira’s

“Statistical Object Model (SOM)” [46]. The model attempts to solve the following

software sizing problems:

- The need to have specific knowledge of a system in its early stages,

- The need to be able to relate, as accurately as possible, this knowledge to the

physical size of the program.

- The need to find a way to cope with the limited information about a system in

the early stages of its development.

39

 SOM is a statistical approach to estimate the size of software within a specified

confidence interval. Its logic comes from Boehm’s previous cost estimation studies.

Statistical object model is based on graphs called “learning curves” on which the

estimations converge to the actual size with the increasing details of object

decomposition as illustrated in Figure 2.1.

 Here, since functional specifications are represented by objects, the model is

especially suitable for OO systems.

 SOM is a model, which provides the estimators more accurate size estimates by

using statistical theory. Nonfunctional requirements and low biasing are taken into

consideration in the model. Also, results of SOM can be used as an input to the

available cost estimation models such as COCOMO. On the other hand, it is a

subjective model because; B is not a calculated value. It depends on the

organizational characteristics and experiences. However, some statistical techniques

can be used to increase the accuracy of B. In addition, SOM has some mathematical

errors related to statistics, exponential functions, and the nature of discrete vs.

continuous data [36].

 In spite of its problems, SOM is a promising method for OO size estimations.

40

2.2.6 Obje

 Trad

because th

So, differ

(OOPS)”[

 OOP

Nierstasz

the object

develop th

 1. T

number of

 2. F

the object’

added to th

Relative Size
 Level of D

n: level of d

of syste

A: actual

B: valu

xponential

and low

A / (1+exp(-Bn))

Figure 2.1 Size Estimation Accuracy

ct Oriented Project Size Estima

itional metrics are not adequate

ese systems have a different stru

ent techniques are needed. “Ob

16] is a technique that is suitable f

S is a statistical technique based

 [16]. Here, the main idea is to get

 components. Then, this value is

at object. The following steps are

he objects are defined in a clas

 each object’s attributes, methods

or each object, first the point valu

s name, attributes, methods and pa

is point value. The repeated token

41
 n

ecomposition

e

A* (1+exp(-Bn))
 by Using Object Decom

tion

 to measure the siz

cture from the proced

ject Oriented Projec

or measurement of suc

on the study of Dr. S.

 the object’s “point va

 used to determine th

used in the calculation

s model including th

and parameters to thos

e is set to 0. Then, ea

rameters to the metho

s are not counted.

ecomposition

m objects.

system size.

e for the

decay of upper

er curves.
2A
 A
0.5A
position

e of OO systems,

ural programming.

t Size Estimation

h OO systems.

 Moser and Dr. O.

lue” depending on

e days required to

s [16]:

e objects’ names,

e methods.

ch unique token in

ds are counted and

 3. The final point value is used to determine the days required to develop the

object. The formula is:

 Days Required to Develop= (B1*Points) + (B2*Points2)

where B1 is 0.367 and B2 is 0.0000696.

 The above values of B1 and B2 were obtained from the data of 36 OO systems.

So, they reflect industry averages. To increase the accuracy of the results, the

organization using OOPS should calibrate these parameter values with the data from

its past projects and by using some suggested equations [16]. Also, if some

organizational factors are changed, B1 and B2 should be recalibrated. The accuracy

of these new parameter values can be statistically checked by using RSQUARED

technique.

 Today OOPS is being used in two organization in Colorado. It has also an

automated tool to calculate the equations. However, little data is available about this

new technique’s usefulness and accuracy.

2.2.7 Distance-Based Approach

 “Distance-Based Approach” is a mathematical method in which definition of

distance is used to measure the size of OO specifications [57]. The method defines

size of an object as the distance between this object and a reference object. Size is

defined as:

 V x Є Xt: s(x) is the distance from x to rst

where t is the measurement object, s is the size sub-attribute; rst is the reference

object of type t with the lowest value of s and Xt is the set of measurement objects of

type t.

42

 Distance-Based Approach is a formal method in the sense that it satisfies the

necessary size measurement axioms [57]. Since binary concatenation operations are

not needed to justify the axioms, this method is especially suitable for OO

specifications and can even be used for object-based ones. The method is also

flexible because; different reference objects can be chosen for different measurement

objects and by choosing suitable reference objects, the method can be applied to any

size sub-attribute (i.e. length, functionality, complexity and reuse). Moreover,

calculations can be transferred to a metric space (Xt,δt) as:

 V x Є Xt: δt(xt,rst) measures s(x)

 However, Distance-Based Approach is subjective in the choice of reference

values. And like many other sizing methods, more research is needed in this area to

prove its success.

2.2.8 Vector-Based Approach

 The “Vector-Based Approach” introduced by Hastings and Sajeev [35], is

based on two concepts: “Vector Size Measure (VSM)” to size the system and

“Vector Prediction Model (VPM)” to estimate the corresponding effort.

 The approach attempts to measure the system size from the algebraic

specifications described in the Algebraic Specification Language (ASL). The

algebraic specifications are based on abstract data types (ADTs) and ASL provides a

mathematical description of the system. The approach accepts Fenton’s

multidimensional definition of size. Also similar to Halstead’s method, the ADT

properties are defined in terms of operators and operands.

 To measure VSM, first system functionality and complexity is calculated.

Then, system length is derived from these values.

43

 For an ADT, A, the functionality is calculated as:

 fa = Σ OPf

where OPs are the operators and operands in the syntactic section of the ADT, A.

 Similarly, the complexity of an ADT, A, is calculated as:

 ca = Σ OPc

where OPs are the operators and operands in the semantic section of the ADT, A.

 Finally, the length is derived from these values as:

 IA = Σ OPA = Σ OPf + Σ OPc = fa + ca

 The total system size SS with N ADT is calculated as:

 SS = Σ SN

where SA = (fa, ca) is the size of an ADT, A.

 The size can also be represented mathematically by a vector of functionality

and complexity. The magnitude and direction of this vector is defined as below:

 magnitude (m) =√ (f2 + c2)

 direction theta = tan –1 (c/f)

 The ratio between complexity and functionality is:

 gradient g = c/f

 In the above calculations, size and gradient are in the absolute scale.

Functionality, complexity and magnitude are in a discrete ratio scale. However, for

magnitude, the scale is mapped to real numbers and for size, it is also possible to

define it as scalar attributes and a vector combination.

44

 After measuring the size, VPM can be used to predict the corresponding effort.

VPM takes magnitude and gradient as inputs, uses a regression model and establishes

a relation between effort and these inputs [35].

 This approach is similar in concept to the “Distance-Based Approach” (see

section 2.5). Since the OO specifications can be easily transformed to algebraic ones,

this approach is very suitable for OO systems.

 There are some pluses of the approach. First, the methods used (VSM and

VPM) are theoretically and empirically validated ones based on mathematical

foundations. Second, the specifications written in ASL provide an early estimation

by VSM and VPM. Also, ASL specifications make it possible to automate VSM

calculations. On the other hand, the approach bases solely on ASL. This means

additional work to convert the existing specifications into ASL and a need for

expertise on this modeling language. Another problem with ASL is that not all

problem domains can be completely represented by this language, and this may result

in inaccurate estimations. Another limitation of the approach is its fixed definition of

the relationship between length, functionality and complexity. This makes the

approach inflexible and even such a size relationship may not be required or needed

in general [57].

2.2.9 Object Points

 “Object Points” is a size measurement method suitable for software systems

building from objects and modules. This method is developed for ICASE

environments with object-based repositories [42].

 Since object points can be easily derived from initial specifications, the

method is being used for the early effort and cost estimations in COCOMO 2.0 [29].

45

 The idea behind object points is very similar to FPA. However, it differs from

FPA in that it also takes into account reuse to find the total object points. To

calculate object points, first the driver objects of the system i.e. screens, reports and

components are identified. Secondly, based on their complexity levels, each object is

assigned a value as simple, medium or difficult. Table 2.7 illustrates these values for

COCOMO 2.0. Then, depending on the object types and complexity levels, objects

are weighted (Table 2.8). Finally, these weights are summed and multiplied by reuse

amount to get the total object points [42], [72], [29,]:

 Total Object Points = Object Points * (100 – reuse) /100

 Object Points method is an easily understandable one that can be obtained

accurately in the early phases of a project to be used as a size input to cost and effort

estimations. Also, automation is another advantage of the method. However, its

usage is restricted to object-based ICASE environments [2], [42]. In addition, for

each different ICASE environment, the components of the metric need to be

customized [42]. Another important disadvantage of the method is that it cannot be

directly comparable with FP [31].

46

Table 2.7 Object Point Complexity Values in COCOMO 2.0

For Screens

 Number and Source of Data Tables
Number of Views

Contained
Total <4

(<2 Server, <2
Client)

Total <8
(2-3 Server, 3-5

Client)

Total 8+
(>3 Server, >5

Client)
<3 Simple Simple Medium

3-7 Simple Medium Difficult
8+ Medium Difficult Difficult

For Reports
 Number and Source of Data Tables

Number of
Sections

Contained

Total <4
(<2 Server, <2

Client)

Total <8
(2-3 Server, 3-5

Client)

Total 8+
(>3 Server, >5

Client)
0 or 1 Simple Simple Medium
2 or 3 Simple Medium Difficult

4+ Medium Difficult Difficult

Table 2.8 Object Point Weights in COCOMO 2.0

Object Type Simple Medium Difficult
Screen 1 2 3
Report 2 5 8
3GL - - 10

Component

2.2.10 Predictive Object Points

 Some software practitioners who think that the idea behind traditional size

metrics are not suitable for OO systems, have found out a new set of metrics:

47

“Predictive Object Points (POPs)” [77]. In fact, these are a collection of existing

OO metrics in the literature. The idea behind POPs is similar to Chidamber and

Kemerer’s metrics for OO [19], [20].

 POPs metrics are based on the three dimensions of OO size i.e. functionality,

complexity and reuse. The main part of POPs is the weighted methods per class

(WMC). It is the average number of methods per class and used for calculating

functionality and complexity. The other POPs metrics are:

- Number of top-level classes (TLC): Number of root classes in the class

diagram. It is used for calculating the amount of reuse.

- Average depth of inheritance tree (DIT): Number of levels from the root to a

class. It is used for calculating the amount of reuse.

- Average number of children per base class (NOC): Number of descendents of a

class. It is used for calculating the amount of reuse.

 In POPs, first weights are assigned to the methods of each top-level class and

WMC is calculated. Table 2.9 and Table 2.10 are used in these calculations. Then the

results are combined with TLC, NOC and DIT values. The below formula is used to

find the final POPs value:

 POPs (WMC, NOC, DIT, TLC) = (WMC * f1(TLC, NOC, DIT)) / 7.8

*f2(NOC, DIT)

where

 f1 = overall system size.

 f2 = effect of reuse.

 The values of these parameters are not provided by the author in the article.

However, they are embedded in the Price Systems tool.

48

 It may be difficult to find some of the information for these calculations in the

early phases of a project. However, there are some techniques that use the available

project information to make the above calculations easier in the early phases [77].

Also, using use cases may be another solution for this problem.

 Although POPs seem to give promising results, it is based on a small set of

data. Therefore, data collection on different projects should continue, more study on

using POPs with use cases should be done and automation procedures should be

found to increase the usefulness of these metrics.

Table 2.9 Method Weightings by Type and Complexity

Method Type Method Complexity Weight
Destructors/Constructers Low 1

 Average 4
 High 7

Selectors Low 1
 Average 5
 High 10

Modifiers Low 12
 Average 16
 High 20

Iterators Low 3
 Average 9
 High 15

49

Table 2.10 Complexity Assignments

 Number of Properties
Message

Responses
0->1 2->6 7 or more

0->1 Low Low Avg
2->3 Avg Avg Avg

4 or more Avg High High

2.2.11 M.Shepperd and M.Cartwright Size Prediction System

 In one of their studies to determine the effectiveness and usability of

Chidamber and Kemerer metrics for OO systems, M.Shepperd and M.Cartwright

[66] found that some of these metrics were difficult to collect especially in the early

phases of a project. By using the data from a large real time C++ system, they found

that STATES (i.e. count of states per class in the state model) could be a good

predictor of size (LOC) [66].

 The size equation that was obtained by linear regression is:

 Size (LOC) = 1101.01 + 170.68 * (STATES)

 This is a simple and easily applicable prediction system. In contrast to

Chidamber and Kemerer metrics, STATES can be easily counted in the early

analysis and design phases. Also, CASE tools can be used to automate the STATES

counts. However, this study is based on the local data of only one project of an

organization. Therefore, this prediction system may not be directly applicable to

other systems. On the other hand, the ideas mentioned here could be a model for

others to find such simple and usable size equations.

50

2.2.12 Use Case Points Method

 The approach of modeling the functional requirements of a system based on use

cases has a great interest in the OO software engineering community. Most studies

have shown that such requirement specifications can be used successfully in size and

effort estimations [7], [9].

 Today there are many different methods available that base on use cases to

make estimations of size, effort and productivity. One such a method is the “Use

Case Points” method. This method was developed by Gustav Karner as a diploma

thesis at the University of Linköping in 1993. Now it is the copyright of Rational

Software. The idea behind use case points method is similar to the FPA method [7]:

 1. The actors of the use case model are categorized depending on their

properties and assigned weights (Table 2.11).

Table 2.11 Actor Categories and Corresponding Weight Factors

Actor Categories Properties Weight Factors
Simple Another system with a

defined API
1

Average Another system
interacting through a

protocol such as TCP/IP

2

Complex Such a person indicating
through a graphical user
interface or a web page.

3

51

 The number of actors in each category is counted. Each of these counts is

multiplied with the corresponding weight factors, and then summed to get the

unadjusted actor weight (UAW).

 2. Depending on the number of transactions included, the use cases are

categorized and assigned weights (Table 2.12). “A transaction is a set of activities,

which is either performed entirely, or not at all”. Here included and extending use

cases are omitted. To make these calculations accurately and easily, the use cases of

the system should be defined correctly with a suitable degree of detail.

Table 2.12 Use Case Categories and Corresponding Weight Factors

Use Case Categories Number of Transactions
Included

Weight Factors

Simple >=3 5
Average 4-7 10
Complex <7 15

 The number of use cases in each category is counted. Each of these counts is

multiplied with the corresponding weight factors, and then summed to get the

unadjusted use case weights (UUCW). From UAW and UUCW, the unadjusted use

case points (UUPC) is obtained:

 UUPC = UAW + UUCW

 3. By using technical complexity factors (Table 2.13) and environmental

factors (Table 2.14), use case points are adjusted.

52

Table 2.13 Technical Complexity Factors for Use Case Points Method

Description Weight
Distributed system 2
Response or throughput performance
objectives

2

End-user efficiency 1
Complex internal processing 1
Reusable code 1
Easy to install 0.5
Easy to use 0.5
Portable 2
Easy to change 1
Concurrent 1
Includes security features 1
Provides access for third parties 1
Special user training facilities are
required

1

Table 2.14 Environmental Factors for Use Case Point Method

Description Weight
Familiar with Rational Unified
Process

1.5

Application experience 0.5
OO experience 1
Lead analyst capability 0.5
Motivation 1
Stable requirements 2
Part-time workers -1
Difficult programming language -1

53

 First, a value between 0 and 5 is assigned to each factor in Table 2.13. These

values are determined depending on the rate of influence of each factor to the system.

Then, each of these values is multiplied with the corresponding weight factors, and

then summed to get the Tfactor. The below formula is use to calculate technical

complexity factors:

 TCF = 0.6 + (0.01*Tfactor)

 The same process is applied to Table 2.14 to get the Efactor and by the below

formula environmental factors are calculated:

 EF = 1.4 + (-0.03*Efactor)

 Finally, the adjusted use case points (UCP) are calculated by the following

formula:

 UCP = UUCP*TCF*EF

 4. A previously determined amount of man-hours per use case point is used to

find the total effort of the project. However, this determined amount seems to differ

from author to author [7]. For example, for Karner, this is 20 man-hours per use case

point. On the other hand, Schneider and Winters take into account the environmental

factors when determining the number of man- hours per use case point [62]. The

number of factors F1 through F6 that are below 3 are counted and added to the

number of factors in F7 through F8 that are above 3. If the total is 2 or less, 20 man-

hours per UCP; if the total is 3 or 4, 28 man-hours per UCP is recommended. If this

number is large than 4, changes in the project is recommended to adjust the number.

Increasing the number of man-hours to 36 per use case point is also possible.

Therefore, calibration of this value to the organization may be needed.

54

 There are some applications of use case points method to the industry. One

such study was done by B.Anda, H.Dreiem, D.I.K.Sjoberg and M.Jorgensen [7].

They applied the method to three projects of a software development company.

Based on their case studies, they got the following results:

- The estimates can be affected by the structure of the use case model being

used. Even for the same model, different estimators can interpret the actor

and use cases differently.

- In the assignment of technical and environmental factors, there is some

subjectivity. However, this subjectivity can be reduced by having more

experience with past projects and calibration of the method to the

organization.

- Use case points method should be used not in place of but with expert

estimations. So, misjudgments can be reduced.

- Time sheets of the organization and use cases should be designed in a

consistent manner to get better feedback.

- When compared with FP method, use case point method is based on structured

models. So, it needs less effort and automation is easier. On the other hand,

unlike FP, use case points method has no internationally accepted standards,

which may result in differences in counts by different estimators.

- Other project activities such as training should be added in some way to the use

case estimates to get a complete project estimate

 In another study conducted by M.Arnold and P.Pedross [9], use case points

method was applied to a major Swiss Banking Institute that uses OO methods in their

software development activities. Although the ideas behind Arnold and Pedross’

55

method are similar to Karner’s, it is a new method. In this method, first system

functionality is measured based on use cases and scenarios. Then, eight technical

factors are used for calibration. The results of this study are:

- Use cases and scenarios can be reliably used in size estimations.

- Technical factors are easy to calculate. However, requirements modeled differ

in their degree of details and this can affect the use case counts and as a result

the final system size.

- Free textual use case descriptions are insufficient to measure size.

- There is a lack of defined abstraction mechanism for use cases.

- The graphical notations for use cases and scenarios are insufficient.

- Simple tools can be used to simplify the calculations.

 Kirsten Ribu, in her Master of Science thesis at the University of Oslo [59],

conducted two case studies in a major software company and also examined some

student projects. She concluded that:

- The use case points method can be applied to many different kind of software.

- To get accurate results, the use cases should be written in a suitable level of

detail. However, most projects lack standardized use case descriptions.

- The use case points method can be easily learned and applied in a short time.

- The main idea of the method is based on FPA and Mark II FP, so it can be

easily accepted by the companies.

- Dropping the technical complexity factors can give better results.

56

- There are some ways of converting the use case points to man-hours. However,

the available ones sometimes give unreliable results. So, more study is

needed in this subject.

- More applications of the method, especially to the large, real-time and complex

algorithmic projects are needed.

 In her thesis, to solve some of the mentioned problems, Ribu also makes some

suggestions. For the use case standardization problem, she gives guidelines to write

use cases and if use case descriptions are not at a suitable level of detail, suggests

some alternative ways. Moreover, she purposed an extension of the use case points

method to solve the technical complexity factor problem.

 From all the above results, it can be seen that more research is needed to

increase the accuracy of the method. Especially the modeling processes should be

improved and standardized to get the correct level of detailing in use case definitions

and so to reduce the inconsistencies in size estimations.

2.2.13 J.Kammelar’s Sizing Approach

 This sizing approach [41] applies the idea behind FPA to the OO concepts with

new counting rules rather then mapping the OO concepts to FPA.

 Similar to FPA’s function points, here the functional size is defined in terms of

component object points (COPs). In the counting process, first the counting elements

are determined. There are two kinds of counting elements:

- User Domain Elements (FUR’s): include the use cases and business objects.

- System Domain Elements (BFC’S): include services, classes, operations and

transformations.

57

 Then three different estimations are conducted. These are domain model count,

analysis count and design count. Analysis and design counting is a nine step process:

 1. Count types are determined i.e. one of the domain model count, analysis

count or design count is selected.

 2. The counting boundary and granularity are determined. The actors of the

system are defined.

 3. Specifications are reviewed to see whether they fulfill the minimum

requirements for this counting technique. Also inconsistencies if exist, are

determined.

 4. All use case services are identified and valuated. For the analysis and design

counts, different steps are applied to find the service functionality:

 Analysis Count Rules:

- For each use case, related services are determined. Here, service definition is

equivalent of the FP transactions and have to comply with the elementary

process definition.

- Per service per use case is counted as 2 points.

 Design Count Rules:

- For each use case, related services are determined. Here, service definition is

accepted similar to the elementary process definition.

- The services per use case are counted based on the Service Valuation Matrix

defined in Table 2.15.

58

Table 2.15 Service Valuation Matrix

Number of Operations /
Transformations

1 2 - 3 > 3

COP’s 1 2 4

 5. Use case service/class relations are identified and valuated. This step is only

applicable to the analysis count:

 Counting Service/ Class Relations:

- For each use case, the relations between the services and all classes that

collaborate to provide (parts of) those services are found.

- For every unique service / class relation, 3 points is counted and accumulated

to the appropriate class.

 Counting Transformations:

- For each use case, transformations of the services are determined and 5 points

are given for each one.

- Transformation functionality is accumulated separately from the service

functionality.

 6. Classes and structures of the domain model are identified and valuated. In

this step, the class attributes and objects’ structures are counted.

 Counting Class Attributes:

- For each class, the number of attributes are counted and assigned points using

Table 2.16. Here, inherited attribute are not taken into account.

59

Table 2.16 Class Attribute Valuation Matrix

Attribute
Part

Number of
Attributes

< 3 3 – 6 > 6

 COP’s 2 5 7

 Counting Object Structures:

 Objects structures, i.e. generalization/specialization and

aggregation/composition structures are counted. Depending on Table 2.17 and 2.18,

the below counting rules are applied.

Table 2.17 Structure Determination

Q1 Is the class is a generalization? Y Go to A1 in Table 2.18
 N
Q2 Is the class an elementary

specialization?
Y Apply counting rule for

gen./spec. structure.
 N
Q3 Is the class an

aggregation/composition?
Y Apply counting rule for

aggr./comp. structure.
 N

Table 2.18 Generalization Counting

A1 Has the structure from which
the actual class is part of
already been counted?

Y No action.

 N Apply couting rule gen./spec.
Return to Q3 in Table 2.17

60

- For the generalization/specialization structures, all structure levels, including

the highest super-class are counted and 3 points are given for each structure

level.

- For the aggregation/composition structures, all component sub-classes of the

structure are counted 2 points are given for each sub-class.

 Finally, Object Structure Valuation Matrix defined in Table 2.19 is used.

Table 2.19 Object Structure Valuation Matrix

Structure
Part

AssociationType Gen./Spec. Aggr. /Comp.

 COP’s Number of Number of
Levels*3 Sub-classes*2

 Total Class Valuation = Total COPsattribute Part + Total COPsStructure Part

 7. For the design count, operations and transformations are identified and

valuated.

 Counting Operations:

- For each service, the relation between the service and the first responsible class

is determined.

- The Operation/Transformation Valuation Matrix defined in Table 2.20 is

applied to the operation.

- Number of points is added to the class.

61

 Counting Transformations:

- For each use case, transformations are determined.

- The Operation/Transformation Valuation Matrix defined in Table 2.20 is used

to find the points of the related transformations.

Table 2.20 Operation/Transformation Valuation Matrix

Collaborating Classes

 Operation Type

N Y

Query 2 3
Modify 3 4
Transformation 4 5

 8. For the design count, reusable elements are determined. However, this step

is still being developed.

 9. The service functionality is added to the class functionality to determine the

total size.

 Kammelar’s size measure is very suitable for OO or object-based components

and does not face with the problems when FPA is applied to such systems. It also

takes into account reusability and takes use cases as a base in its calculations.

Especially the analysis count gives very accurate and promising results. However, for

each count type a minimal set of specifications is required [41]. In addition, like

FPA, the weights being used in calculations were determined by trial. In spite of its

limitations, this approach can be a base for component-based estimations.

62

63

CHAPTER 3

 CASE STUDY

 A case study on the related subject is presented in this chapter. Five of the size

metrics and methods defined in Chapter 2 are selected and applied to an OO project

whose requirements are defined in a use case model.

3.1 Definition of Work

 The case study is composed of 3 headings. These are:

 1. Data Collection: To better understand the application of metrics and

methods and comparison results, some characteristics of the related project is given.

 2. Application of Metrics and Methods: From the size metrics and methods

mentioned in Chapter 2, five of them are chosen to estimate the project size. These

are “Line of Codes”, “Mark II Function Points”, “Object-Oriented Project Size

Estimation”, “Use Case Points Method”, and “J.Kammelar’s Sizing Approach”. Then

size and effort estimations are made for each of these metrics and methods.

 3. Results Evaluation: The results of size and effort estimations for the selected

metrics and methods are compared with the actual results.

63

3.2 Data Collection

 The case study reported in this thesis was carried out in a software

development company located in Ankara. To better compare the study results, one of

the completed projects of this company was chosen for the size estimations. This was

an industrial project on civil engineering. The aim of the project was to automate the

business functions (Hakediş Applications and Reporting) of the company.

 The project data was collected from a brief software requirements specification

document and a use case model defined in Rational Rose. The model consisted of use

case diagrams with brief textual descriptions for each use case, sequence diagrams,

class diagrams and logical and component view definitions. Also, general project

information such as actual project size, effort, and software architecture were

collected by e-mail communication with one of the project members.

 It was the second version (V.2) of the project used in this thesis. The actual

size and effort values of the first version (V.1) were given as 21.790 KLOC and 239

man-days respectively by the project team. Accepting a month as 20 days:

 Actual Effort (V.1) = 239 / 20 = 11.9 man-months

 The second version (V.2) contains some additions and changes to the first one

and its actual effort value was given as 630 man-hours. Accepting a working day as 8

hours, a month as 20 days and with 3 developers, the actual effort for V.2 is:

 Actual Effort (V.2) = 630 / (8 * 3) = 26.2 man-days

 = 26.2 / 20 = 1.3 man-months

64

 From the above information, actual project effort can be calculated as:

 Actual Project Effort = Actual Effort (V.1) + Actual Effort (V.2)

 = 11.9 + 1.3 = 13.2 man-months

 Here, because only small changes were made in V.2, the effort of this version

was accepted as only the effort for new additions. The effort for changes was not

taken into account.

 On the other hand, there was no size info for V.2. However, we know that only

small changes and additions were made in this version. This means a small increase

in V.1 size when calculated in terms of SLOC. And assuming this increase would

cause a slight change in the actual project effort, the actual project size was accepted

as the size of V.1 in this thesis.

 For this project, 48 use cases and 48 classes were defined in Rational Rose.

However, only 27 sequence diagrams were available. There were some problems

about the project information. The use case definitions were too much detailed. On

the other hand, the level of details for the sequence diagrams were lacking. There

were three entity classes referenced in the sequence diagrams, but these classes were

not defined in the class model. Also there were control classes being used in the

sequence diagrams with no related entity classes. Moreover, some input/output

information had either general definitions or no definitions.

 The general characteristics of the project are given in Table 3.1i. Since this is

an industrial project, the detailed use case and class definitions cannot be given in

this thesis. This information is kept private and only the results are presented and

evaluated. For each use case and class, instead of their names, ids were used to

i The structure of Table 3.1 is taken from [57].

65

distinguish them. However, to give an idea about the project, a sample class diagram,

an object definition and a use case diagram are included in Appendix C and

Appendix D. Moreover, some of use case and class properties can be obtained from

Table E.1, Table F.1, Table G.1, Table H.1, Table H.2, Table H.3, Table H.4 and

Table H.5 in Appendices.

Table 3.1 General Characteristics of the Project

General Characteristics Project Info

Size/Effort ≈ 21.790 KLOC and 13,2 man-months

Software Architecture Following another finished project, so
known architecture

Programming Environment Visual Age for Java

Project Members 3 developers with 2-3 years
programming experience and 1-2 years
Java experience and 1 reviewer.

Application Domain Civil Engineering (Hakediş Applications
and Reporting)

Number of Use Cases 48

Number of Classes 48

66

3.3 Application of Metrics and Methods

 Knowing that for each method the best results can be obtained only when the

requirements of these methods are hold, and finding that the available use case

modeling and the project data could better meet the requirements of five of the

methods (“LOC”, “OOPS”, “Use Case Points Method”, “J.Kammelar’s Sizing

Approach” and “Mark II FP”) defined in the previous chapter, these five methods

were chosen and applied in this case study. Also in this method selection, both the

traditional and the new OO methods were chosen to compare these different

approaches (See also CHAPTER 1).

 Sample use case diagrams, class diagrams and object definitions used in the

below estimations can be found in Appendix C and Appendix D.

3.3.1 Lines of Code

 Here, J.Smith’s method [67] whose steps are defined in Section 2.2.2 was used

to find the system size in terms of LOC:

 1. The structural hierarchy consists of one subsystem and its classes.

 2. For Level 1, there are 48 use cases.

 3. Total Size = [(48/10)*7+(0/10)*56+(0/10)*448+(0/10)*3584] KSLOC

 = 33.6 KSLOC = 33600 SLOC

 4. For Level 1, EN1= (0.1*48+0.8*0+6.4*0+51.2*0)0.11 = 1.19

 Since we have a simple business system consisting of only Level 1 use cases

with an effort multiplier of 1.19, the effort per use case for this level is 1.19*55= 66

hrs/use case.

67

 5. For Level 1, the total effort is:

 Total Effort = 66*48 = 3168 hours

 Assuming that the staff is working 8 hours a day and 20 days in a month,

3168hrs is equal to 19.8 months. Since we have 3 staff for coding activities, the total

effort will be 19.8/3 = 6.6 man-months.

3.3.2 Mark II Function Points:

 The steps explained in Section 2.2.4.2 were used to make the calculations

under this heading:

 For this project, the viewpoint was chosen as the Project Viewpoint because

the aim of this thesis is to determine the size of the functionality delivered by the

software and then to use this size information to estimate the project effort.

 Then the boundary of the application was determined. Since use case

descriptions are accepted as logical transactions and they also contain system actors,

the boundary of the use cases were used to specify the boundary of the application.

For this system, there are no automated users but only business users, which are

Kullanici, Yetkili and UstYetkili. Also the application has no interfaces with other

applications.

 Definition of logical transactions is identical to the definition of use cases.

Therefore, for this thesis use cases were used to define the logical transactions of

MARK II FP. However, the project use cases were too much detailed. So, to better

calculate the size, each use case was divided into measurable logical transactions

each having their input fields, response fields and referenced object classes [61]. For

these determinations, Use Case Diagrams defined in Rational Rose were used.

68

 After this, for each logical transaction, Input Data Element Types, Data Entity

Types Referenced and Output Data Element Types were determined and counted.

Entity classes used or referenced in a use case were accepted as Data Entity Types

Referenced. For this counting, Use Case Diagrams, Sequence Diagrams and Class

Diagrams defined in Rational Rose were used.

 The project use cases and their corresponding number of Logical Transactions,

Input DET’s, Output DET’s and referenced Entities can be found in Appendix E,

Table E.1.

 NI = 159

 NE = 236

 NO = 196

 From the above information, the Functional Size i.e. Function Point Index was

calculated as:

 FPI = WI * ΣNI + WE * ΣNE+ WO * ΣNO

 = 0.58 * 159 + 1.66 * 236+ 0.26 * 196

 = 535 MARK II FP (V1.3.1)

 In the actual Project Plan document, effort was calculated by converting FP

values into SLOC values by multiplying 30, which is a company specific value.

However, this constant value is 65 in more likely for the Java applications. To better

compare the actual results by the estimated ones and to see how such a difference in

the selection of constants affects the final results, in this thesis the estimations were

made for each of these constants.

 For the constant 30:

 Size = 535 * 30 = 16050 SLOC = 16.050 KLOC

69

 For the constant 65:

 Size = 535 * 65 = 34775 SLOC = 34.775 KLOC

 Effort corresponding to transactions was calculated by taking productivity as

1.25 man-months for the project team based on average personal data. Total project

effort was found as:

 For the constant 30:

 Effort = KLOC / Productivity = 16.050 KLOC / 1.25 man-months

 = 12.8 man-months

 For the constant 65:

 Effort = KLOC / Productivity = 34.775 KLOC / 1.25 man-months

 = 27.8 man-months

 By taking a month as 20 days:

 For the constant 30:

 Effort = 12.8 man-months * 20 days/month = 256 man-day.

 For the constant 65:

 Effort = 27.8 man-months * 20 days/month = 556 man-day.

 Since in the Counting Practices Manual, Technical Complexity Adjustment is

an optional part, in the above calculations, it was not used. On the other hand, the

Technical Complexity Adjustment (TCA) value was given as 0.765 by the project

team. When this adjustment value was taken into account, the fallowing result were

obtained:

70

 Adjusted FPI = 535 * 0.765 = 409 MK II FP (V1.3.1)

 For the constant 30:

 Size = 409 * 30 = 12270 SLOC = 12.270 KLOC

 For the constant 65:

 Size = 409 * 65 = 26585 SLOC = 26.585 KLOC

 For the constant 30:

 Effort = KLOC / Productivity

 = 12.270 KLOC / 1.25 man-months

 = 9.8 man-months

 For the constant 65:

 Effort = KLOC / Productivity

 = 26.585 KLOC / 1.25 man-months

 = 21.2 man-months

 By taking a month as 20 days:

 For the constant 30:

 Effort = 9.8 man-months * 20 days/month

 = 196 man-day.

 For the constant 65:

 Effort = 21.2 man-months * 20 days/month

 = 424 man-day.

71

3.3.3 Object Oriented Project Size Estimation

 The calculations made under this heading are based on the method defined in

Section 2.2.6:

 1. The class model defined in Rational Rose was used for the objects’

information. All the classes not only entity classes were taken. An example class

model is in Appendix C.

 2. For each object tokens and points were counted. These counting results can

be found in Appendix F, Table F.1.

 3. For each object Days Required to Develop values were calculated. These

values can be found in Appendix F, Table F.1.

 From the information in Appendix F, Table F.1, the Total Size and the Total

Days Required to Develop the System is calculated as:

 Total Size = 744 Points

 Total Days Required to Develop the System = 247.4 days

 Accepting 1 month as 20 days, the total project lasts in:

 247.4 / 20 = 12.3 months

3.3.4 Use Case Points Method:

 The Use Case Points Method was applied as the steps defined in Section

2.2.12:

 1. The actors of the use case model are Yetkili, Ust Yetkili and Kullanıcı. Both

of them are persons communicating with the system through a graphical user

interface. So their categories were accepted as complex. (Table 2.11). These actors

and their corresponding weights are given in Table 3.2.

72

Table 3.2 Actors and Weight Factors

Actors Actor Categories Weight Factors
Yetkili Complex 3

Ust Yetkili Complex 3
Kullanici Complex 3

 Since there are three actors with actor category of complex, Unadjusted Actor

Weight was calculated as:

 Unadjusted Actor Weight (UAW) = 3 * 3 = 9

 2. Depending on the number of transactions included, the use cases were

categorized by using Table 2.12. Here, use case steps were counted to get the

corresponding number of transaction counts. As defined in the method, included and

extending use cases were omitted. The system use cases and their corresponding

categories can be found in Appendix G, Table G.1.

 The number of use cases in each category was counted. Each of these counts

was multiplied with the corresponding weight factors as defined in Table 2.12, and

then summed to get the unadjusted use case weights (UUCW). Table 3.3 gives these

calculations:

Table 3.3 Unadjusted Use Case Weights (UUCW)

Use Case Categories Number of
UseCases

Weight
Factors

Total
Weight

Simple 4 * 5 = 20
Average 25 * 10 = 250
Complex 19 * 15 = 285

UnadjustedUse CaseWeights (UUCW) = 555

73

 The unadjusted use case points (UUCP) was obtained as:

 UUPC = UAW + UUCW = 9 + 555 = 564

 3. For technical complexity factors (Table 2.13) and environmental factors

(Table 2.14), values were determined by one of the project members depending on

their rate of influence the system. Each of these values was multiplied with the

corresponding weight factors given in Table 2.13 and 2.14. Then the multiplied

values in the Table 3.4 were summed to get the Tfactor and the multiplied values in

the Table 3.5 were summed to get the Efactor.

74

Table 3.4 TFactor Calculation

Description Value Weight
Distributed system 0 * 2 = 0
Response or
throughput

objectives

4 * 2 = 8

End-user
efficiency

5 * 1 =5

Complex internal
processing

2 * 1 = 2

Reusable code 3 * 1 = 3
Easy to install 5 * 0.5 = 2.5
Easy to use 5 * 0.5 = 2.5
Portable 1 * 2 = 2
Easy to change 3 * 1 = 3
Concurrent 0 * 1 = 0
Includes security
features

3 * 1 = 3

Provides access
for third parties

0 * 1 = 0

Special user
training facilities
are required

3 * 1 = 3

TFactor 34

performance

75

Table 3.5 EFactor Calculation

Description Value Weight
Familiar with
Rational Unified
Process

2 * 1.5 = 3

Application
experience

4 * 0.5 = 2

OO experience 4 * 1 = 4
Lead analyst
capability

3 * 0.5 = 1.5

Motivation 4 * 1 = 4
Stable requirements 3 * 2 = 6
Part-time workers 3 * (-1) = -3
Difficult
programming
language

3 * (-1) = -3

EFactor = 14.5

 Technical complexity factors were calculated as:

 TCF = 0.6 + (0.01*Tfactor) = 0.6 + (0.01*34) =0.94

 Environmental factors were calculated as:

 EF = 1.4 + (-0.03*Efactor) = 1.4 + (-0.03*14.5) = 0.97

 Finally, the adjusted use case points (UCP) were calculated by the following

formula:

 UCP = UUCP*TCF*EF = 564*0.94*0.97 = 514

 4. By Karner’s recomended value [7] i.e. 20 man-hours per use case point, the

project effort was estimated as:

 Effort = 514*20 = 10280 man-hours

76

 Assuming 3 developers each working 8 hours a day (3 * 8 = 24 hours a day):

 Effort = 10280 / 24 = 428.3 man-days

 And assuming a month as 20 days:

 Effort = 428.3 / 20 = 21.4 man-months

4.3.5 J.Kammelar’s Sizing Approach

 In this approach, system size was calculated in terms of component object

points (COPs) depending on the criteria motioned in Section 2.2.13:

 1. Since it is better to estimate the size as early as possible and the available

project specifications met the required analysis count specifications list defined in

[41], analysis count type was selected.

 2. The actors of the system were defined as Yetkili, UstYetkili and Kullanici.

 3. Specifications i.e. use case descriptions and class diagrams were reviewed to

see whether they fulfill the minimum requirements for this counting technique. Some

inconsistencies were found in object naming. However, these inconsistencies were

not so serious to affect the calculations.

 4. For each use case, related services were determined. The logical transactions

defined in Section 3.3.2 for MARK II FP were accepted as the related services for

this method. Since this is an analysis count, for each service, 2 points were given

(Appendix H, Table H.1).

 Service Functionality (COPs) = 210

 5. Counting Service/ Class Relations:

- For each use case, the relations between the services and all classes that

collaborate to provide (parts of) those services were found and for every

77

unique service / class relation, 3 points was counted (Appendix H, Table H.2).

Here the significant classes were accepted same as the entity classes used in

previous methods.

 Total COPsClass Part = 696

 Counting Transformations:

- For each use case, transformations of the services were determined and 5

points were given for each one (Appendix H, Table H.3).

 Total COPsTransformation Part = 25

 6. Counting Class Attributes:

- For each significant class, the number of attributes were counted and assigned

points using Table 2.16. Inherited attributes were not taken into account

(Appendix H, Table H.4).

 Total COPsattribute Part = 72

 Counting Object Structures:

 Generalization/specialization and aggregation/composition structures were

counted depending on Table 2.17 and 2.18. Then, Object Structure Valuation Matrix

defined in Table 2.19 was used to calculate the COPs (Appendix H, Table H.5).

 Total COPsStructure Part = 36

 Total Class Valuation = Total COPsattribute Part + Total COPsStructure Part

 = 72 + 36 = 108 COPs

 Class Functionality = Total COPsClass Part + Total COPsTransformation Part

 + Total Class Valuation = 696 + 25 + 108 = 829 COPs

 7. This step is only applicable to the design count.

78

 8. This step is only applicable to the design count.

 9. Total Size = Service Functionality + Class Functionality

 = 210+ 829 = 1039 COPs

3.4 Evaluating the Results

 Table 3.6 gives the summary of the estimation results found in Sections 3.3.1,

3.3.2, 3.3.3, 3.3.4, 3.3.5 and 3.3.6. Since each estimation method uses different size

metrics, to get a common point for comparisons, effort values were calculated for

each method and then these values were compared with each other.

 When the estimations made in thesis were compared with the actual one, the

fallowing results were obtained:

 Lines of Code (Smith): When Smith’s [67] method was applied to the project,

the estimated size was found as 33.600 KLOC and effort as 6.6 man-moths. This size

differs from the actual one nearly 11.000 KLOC more and the effort from the actual

one as 6.6 months less (%50 underestimation).

 Smith’s method is assumed to applicable to C++ or equivalent level languages

and takes C++ as the base language in its calculations. On the other hand, the project

used in this thesis was written in Visual Age for Java. Therefore, reestimation of the

method parameters by taking Java as the base language may be necessary to get

better results. However, such a reestimation is out of the scope of this thesis.

 Mark II Function Points: For Mark II FP method, when the company specific

constant 30 was used, the results were found to be 535 MARK II FP (16.050 KLOC)

for size and 12.8 man-months for effort. These results are very close to the actual

ones. However, when the industrial constant 65 was used, the results were found to

be 535 MARK II FP (34.775 KLOC) for size and 27.8 man-months for effort. These

values are nearly twice as much as the actual ones.

79

Table 3.6 Method Comparison

Estimation Method Size Effort

Lines of Code (Smith) 33.600 KLOC 6.6 man-
months

535 MARK II FP or

16.050 KLOC (For const. 30)

12.8 man-
months

MARK II FP

535 MARK II FP or

34.775 KLOC (For const. 65)

27.8 man-
months

409 MARK II FP or

12.270 KLOC (For const. 30)

9.8 man-
months

MARK II FP (Adjusted)

409 MARK II FP or

26.585 KLOC (For const. 65)

21.2 man-
months

OOPS 744 Points 12.3 man-
moths

Use Case Points Method 514 UCP 21.4 man-
months

J.Kammelar’s Sizing Approach 1039 COPs

Actual Project ≈ 21.790 KLOC 13.2 man-
months

 On the other hand, when adjustment was made, for both of the constants, fewer

size and effort values (9.8 man-months for const. 30 and 21.2 man-months for const.

65) then the unadjusted MARK II FP were obtained. This was because of the

80

Technical Complexity Adjustment (TCA) value being given by the project team.

This value is based on expert estimation and so open to biasing. Therefore,

inaccurate estimation of this value may have caused such an underestimation when

compared with the unadjusted MARK II FP. Even there was an underestimation,

constant 30 still gave better results then the constant 65.

 I also faced with some difficulties when calculating the Mark II FP. The

fallowing findings affected my estimations:

- The project use cases were too much detailed. To better estimate the size, I

divided them into logical transactions combining some use case steps. By

doing so, I may have made a major assumption that might lead to significant

size differences.

- Some input/output DETs had some general definitions in the Use Case and

Sequence Diagrams. For example, in one of the use cases, the general

definition “musavir kaydi” was shown as an input. In fact, “musavir kaydi”

should contain more than 1 input field. But there were no more explanation in

either Use Case or Sequence Diagrams. In such cases, I counted only 1

DET. This caused underestimations.

- Even some input/output information was absent. I tried to guess them form

other project information. This may have caused underestimations in my

calculations.

- For referenced entity information and some input/output DETs, I used

sequence diagrams. However, there were only 27 of them. So only half of the

use cases had their sequence diagrams. This made my calculations very

difficult. I had to guess much information that I could easily obtain from the

Sequence Diagrams. I used available diagrams to draw the absent ones.

Therefore, there is some biasing in the referenced entity values.

81

- The level details of the Sequence Diagrams were lacking. In some diagrams,

there were control classes but no related entity classes. In such cases, I had to

count only this control classes.

 Object Oriented Project Size Estimation (OOPS): This method differs from

the others in that not the use cases but the objects (classes) are taken as the base.

Since in most analysis phases not only the use cases but also the related classes

(usually the entity classes) are determined, using of this method did not contradict

the assumptions of this thesis. For this thesis, the class definitions in Rational Rose

were used to calculate the point values and the effort.

 The obtained results were 744 points for size and 12.3 man-months for the

effort. So, nearly 1-month difference occurred with the actual effort.

 In these calculations, I took all the classes defined in the class model. These

included not only the entity classes but also others such as control and GUI classes.

 One important problem was that there were three entity classes referenced in

the sequence diagrams but having any definitions in the class model. Since no

information was available about these classes, I did not add them to my OOPS

calculations. This may have caused an underestimation.

 Also, the constants of the formula reflect the industry averages. The calibration

of these values using organizational data would increase the accuracy of the results.

However, this is out of the scope of this thesis.

 Use Case Points Method: For this method, size was found as 514 UCP and

the effort as 21.4 man-months. A %55 difference was found between the actual and

the estimated effort.

 The following reasons may explain this overestimation:

82

- Most of the project use cases were written in too much detail. There were many

use cases with more than 10 transactions. A. Cockburn [21] says that use

cases with more than 10 steps are usually the ones whose definitions are at a

too low level. So, I tried to remove the unnecessary steps from each use case.

This caused many use cases to change their categories from “complex” to

”average”. But even with this simplification, the final effort resulted %55

more than the actual one.

- Some use case descriptions were nearly the same even their names were

different. I took them as different use cases. This may lead to an

overestimation.

- Assigning values to technical complexity and environmental factors may have

affected the final results. I wanted the project team to assign these values.

They tried to guess these values by expert judgment. However, since meaning

of these factors differs from people to people and since it is difficult to be

objective when people valuate their works, there may be some inaccuracy in

calculating the technical and environmental factors. To overcome such

subjectivity, these factors can be assigned values by using organizational past

project data. Such a calibration may give better results.

- The most important factor affecting the final effort is the determination of the

rate of man-hours per use case point. There are many recommendations for

this value. However, these recommended values can cause big differences

even for small changes in the point values. Therefore, this value should be

calibrated for the organization. But such a calibration is out of the scope of

this thesis. So, since Karner’s recommended value is 20 man-hours and when

I applied Schneider and Winters’ method I again obtained 20 man-hours, I

used this value in my calculations.

83

 J.Kammelar’s Sizing Approach: When I applied this method, it gave a size of

1039 COPs. However, there was no explanation anywhere on how this value can be

used to get a corresponding effort value. I contacted with Kammelar and learned that

he has left the company and this study stopped at this point without any definition of

a size/effort relationship. Therefore, in this case study I could only estimate the size

but no corresponding effort.

 In this method, I used the logical transaction of MARK II FP in Section 4.3.2.

I accepted the entity classes of previous methods as the significant classes of this

method. By doing so, I again faced with the problems I mentioned before i.e. some

existing entity classes referenced in the sequence diagrams but having any definitions

in the class model and sequence diagrams having control classes but no related entity

classes. For the first case, I had to guess the generalization/specialization and

aggregation/composition relations of such classes by taking the similar available

classes defined in the class model. For the second case, instead of entity classes I had

to count only the related control classes.

84

CHAPTER 4

CONCLUSIONS AND FUTURE WORK

4.1 Conclusions

 In this study, five sizing methods were chosen and applied to an OO project,

whose requirements were defined in terms of a use case model. From the methods,

OOPS and MARK II FP with constant 30 gave the best results. On the other hand,

LOC (Smith) and adjusted MARK II FP with constant 30 underestimated the project

whereas MARK II FP and adjusted MARK II FP with constant 65 and Use Case

Points Method resulted in overestimation.

 The case study has shown that for the use case based estimations; the most

important factor is the structure of the use case modeling being used. To get accurate

estimates, use cases should be defined in a suitable level of detail where each

transaction can be easily identified and counted. However, in the software

community, there is no such standardization in use case descriptions. This lack of

standardization also became a big problem in this case study. Most of the project use

cases were written in too much detail causing overestimations. So, I tried to remove

the unnecessary parts from each use case. This correction resulted in better estimates,

but there were still overestimations in some methods.

85

 Another problem was about the sequence diagrams and the class model. In

some of the estimations they were needed, but nearly half of the sequence diagrams

were not defined and many of the available ones had little detail. Moreover, there

were classes being referenced in the sequence diagrams but absent in the class

model. Such inconsistencies have made the estimates difficult and open to bias.

 Although all the methods being used in this case study are objective ones, the

lack of standardization in the use case descriptions and the lack of some necessary

project data in the sequence diagrams and the class model made my estimation

results subjective. I had to simplify many use cases and try to guess the unavailable

data from other similar project information, which caused overestimations and

underestimations for the different methods. Therefore, knowing that experience and

personal perception differences can affect the assumptions, when another person will

conduct the same case study, the results will be different.

 Calibration of the methods was also an important point. The method

parameters being used in this case study were the ones reflecting the industrial

averages. Since there was only one project available for this case study, no

calibration could be done. However, if possible, such a calibration could give better

results and reduce the subjectivity.

 Also the selection of the constant for the MARK II FP calculations had a

great impact on the final results. When the company specific value was used, better

results were obtained. However, the usage of the industrial average 65 caused and

overestimation. Therefore care should be taken when choosing such a constant to

convert the MARK II FP values.

 Besides these general problems, each of the five methods had some

requirements specific to them:

- For LOC (Smith), the method is based on C++.

86

- For MARK II FP, use cases should be defined in a way where each logical

transaction can be easily identified. Also, entity class definitions are needed.

For OOPS, a detailed class model including objects’ names, attributes, methods

and parameters is a necessity.

-

- For Use Case Points Method, the transactions should be defined at a suitable

level of detail.

- For J. Kammelar’s Approach, use case services, class/service relations, class

definitions and class hierarchy should be available.

 With all the above reasons, organizations that want to do use case based size

estimations should define their standards on use case modeling to get better results.

Moreover, knowing that there are many different methods with different

requirements, and knowing that each method gives the most accurate results when

these requirements are hold, organizations should prefer the ones that best suit their

needs and the use case modeling they used. Finally, calibration of the methods to the

organizational data should be done to obtain the most benefit form these methods.

4.2 Future Work

 This study is an application of five chosen methods to an average size business

project. To better compare the applicability of these methods, they should be applied

to other projects of different sizes and structures whose requirements are defined in a

use case model.

 Other OO sizing methods different from these five should also be studied to see

whether there are better ones.

 Finally, when possible, calibration of the methods to the organizations using

past data should be done to get more accurate results.

87

REFERENCES

[1] A. Abran, D. St-Pierre, M. Maya, and J. M. Desharnais, “Full Function Points
for Embedded and Real-Time Software”, UKSMA Fall Conference, London
(UK), October 30-31, 1998.

[2] A. Abran, “COSMIC FFP 2,0: An Implementation of COSMIC Functional Size
Measurement Concepts”, FESMA’99, Amsterdam, October 7, 1999.

[3] A. Abran, C. Symons, and S. Oligny, “An Overview of COSMIC-FFP Field
Trial Results”, ESCOM 2001, London, England, April 2-4, 2001.

[4] F. B. Abreu, and R. Carapuça, “Candidate Metrics for Object Oriented Software
with a Taxonomy Framework”, Proceedings of AQUIS’93 Conference, Venice,
Italy, October 1993.

[5] A. J. Albrecht, “Measuring Application Development Productivity”, in Proc. ,
IBM Applications Develop. Symp., Monterey, CA, October 14-17, 1979;
GUIDE Int. and SHARE, INC., IBM Corp., pp. 83.

[6] A. J. Albrecht, and J. E. Gaffney, “Software Function, Source Lines of Code,
and Development Effort Prediction: A Software Science Validation”, IEEE
Transactions on Software Engineering, vol. SE-9, no. 6, November 1983.

88

[7] B. Anda, H. Dreiem, D. I. K. Sjoberg, and M. Jorgensen, ”Estimating Software
Development Effort based on Use Cases-Experiences from Industry", 4th
International Conference on the Unified Modeling Language (UML2001),
Gogolla, M. and Kobryn, C. (editors), Toronto, Canada, October 1-5, 2001, pp.
487-502, LNCS 2185, Springer-Verlag, 2001.

[8] C. Archer, and S. Michael “Object Oriented Software Measures”, Technical
Report, CMU/SEI-95-TR-002, ESC-TR-95-002, April 1995.

[9] M. Arnold, and P. Pedross, “Software Size Measurement and Productivity
Rating in a Large- Scale Software Development Department”, Proc,
Proceedings of the 1998 International Conference on Software Engineering.
IEEE Comput. Soc., Los Alamitos, CA, USA, 1998.

[10] R. D. Banker, and C. F. Kemerer, “Scale Economies in New Software
Development”, IEEE Transactions on Software Engineering, vol. 15, no. 10,
October 1989.

[11] C. A. Behrens, “Measuring the Productivity of Computer Systems Development
Activities with Function Points”, IEEE Transactions on Software Engineering,
vol. SE-9, no. 6, November 1983.

[12] V. E. Berard, “Metrics for Object Oriented Software Engineering”,
http://www.ipipan.gda.pl/~marek/objects/TOA/moose.html

[13] J. M. Bieman, “Metric Development for Object Oriented Software”, Software
Measurement, pp. 75-92, 1996.

[14] F. Bootsma, “Applying Full Function Points to Drive Strategic Business
Improvement Within the Real-Time Software Environment”, Annual IFPUG
Conference, New Orleans, October 18-22, 1999.

89

http://www.ipipan.gda.pl/~marek/objects/TOA/moose.html

[15] G. J. Bozoki, “An Expert Judgment Based Software Sizing Model”, Lockheed
Missiles & Space Company and Target Software.

[16] D. Bradine, “Oops, There It Is”, Enterprise Systems Journal, March 2000.

[17] Calvert, “Software Metrics”, July 1996,

 http://hebb.cis.uoguelph.ca/~dave/27320/new/metrics.html

[18] D. N. Card, K. El Emam, and B. Scalzo, “Measurement of Object Oriented
Software Development Projects”, Technical Report, Software Productivity
Consortium, January 2001.

[19] S. R. Chidamber, and C. F. Kemerer, “Towards a Metric Suite for Object
Oriented Design”, pp. 197-211. Procedings: OOPSLA’91. Phoneix, Arizona,
October 6-11, 1991. New York, New York: ACM SIGPLAN Notices, 1991.

[20] S. R.Chidamber, and C. F. Kemerer, “A Metrics Suit for Object Oriented
Design”, IEEE Transactions on Software Engineering, vol. 20, no. 6, pp. 476-
493, June 1994.

[21] A. Cockburn, Writing Effective Use Cases, Addison-Wesley, 2000.

[22] C. J. Coppick, and T. J. Cheatham, “Software Metrics for Object Oriented
Systems”, pp. 317-322, Proceedings: ACM CSC’92 Conference. Kansas City,
Missouri, March 3-5, 1992. New York, New York: ACM Press, 1992.

[23] COSMIC-FFP Measurement Manual V2.1, 2001.

90

http://hebb.cis.uoguelph.ca/~dave/27320/new/metrics.html

[24] COSMIC Team, “COSMIC FFP-the New Software Functional Sizing Method”,
September 1999.

[25] B. J. Cox, “Planning the Software Industrial Revolution”, IEEE, pp. 25-33,
November 1990.

[26] F. Faghih, “Software Effort and Schedule Estimation”, 1997,

http://www.enel.ucalgary.ca/People/Smith/619.94/prev689/1997.94/reports/fars
had.htm

[27] R. E. Fairley, “Recent Advances in Software Estimation Techniques”,
Proceedings of the 14th International Conference on Software Engineering, pp.
382-391, May 11-15, 1992, Melbourne, Australia.

[28] N. Fenton, “Software Measurement: A Necessary Scientific Basis”, IEEE
Transactions on Software Engineering, vol. 20, no. 3, March 1994.

[29] N. E. Fenton, and S. L. Pfleeger, Software Metrics: A Rigorous and Practical
Approach, Second Edition, International Thomson Computer Press, 1996.

[30] N. E. Fenton, and M. Neil, “Software Metrics: Successes, Failures and New
Directions”, The Journal of Systems and Software 47 pp. 149-157, 1999.

[31] T. Fetcke, A. Abran, and T. H. Nguyen, “Mapping the OO-Jacobson Approach
into Function Point Analysis”, Proceedings of TOOLS-23’97, 28 July – 1
August 1997, Santa Barbara, CA.

[32] D. Garmus, and D. Herron, “Estimating Software Earlier and More
Accurately”, CrossTalk, The Journal of Defense Software Engineering, June
2002.

91

http://www.enel.ucalgary.ca/People/Smith/619.94/prev689/1997.94/reports/farshad.htm
http://www.enel.ucalgary.ca/People/Smith/619.94/prev689/1997.94/reports/farshad.htm

[33] J. W. E. Greene, “Measures for Excellence”, Quantitative Software
Management Ltd.

[34] M. H. Halstead, Elements of Software Science, New York, Elsevier, North-
Holland, 1977.

[35] T. E. Hastings, and A. S. M. Sajeev, “A Vector-Based Approach to Software
Size Measurement and Effort Estimation”, IEEE Transactions on Software
Engineering, vol. 27, no. 4, April 2001.

[36] B. Henderson-Sellers, “Corrigenda: Software Size Estimation of Object
Oriented Systems”, IEEE Transactions on Software Engineering, vol. 23, no. 4,
April 1997.

[37] M. Hitz, and B. Montazeri, “ Chidamber & Kemerer’s Metrics Suit: A
Measurement Theory Perspective”, IEEE Transactions on Software
Engineering, vol. 22, no. 4, April 1996.

[38] A. Hoekstra, “Metrics for Object Oriented Design”, 2001,

 http://www.cs.vu.nl/~ahoekst/metrics.html

[39] D. R. Jeffery, G.C. Low, and M. Barnes, “A Comparison of Function Point
Counting Techniques”, IEEE Transactions on Software Engineering, vol. 19,
no. 5, May 1993.

[40] C. Jones, “Strengths and Weaknesses of Software Metrics”, Technical Report,
Software Productivity Research, Inc., 1997,

 http://dec.bournemouth.ac.uk/ESERG/downloads/Capers-strength.rtf

92

http://www.cs.vu.nl/~ahoekst/metrics.html
http://dec.bournemouth.ac.uk/ESERG/downloads/Capers-strength.rtf

[41] J. Kammelar, “A Sizing Approach for OO-environments”, ECOOP, June 2000,

 www.iro.umontreal.ca/~sahraouh/qaoose/papers/Kammelar.pdf

[42] R. Kauffman, and R. Kumar, “Investigating Object-Based Metrics for
Representing Software Output Size”, January 2002,

 http://academic.alliant.edu/rkumar/research/research2.htm

[43] J. K. Kearney, R. L. Sedlmeyer, W. B. Thompson, M. A. Gray, and M. A.
Adler, “Software Complexity Measurement”, Communications of ACM, vol.
29, no. 11, pp. 1044-1050, November 1986.

[44] C. F. Kemerer, “Reliability of Function Points Measurement”, Communications
of the ACM, vol. 36, no. 2, February 1993.

[45] A. Lake, “Factor Analysis of Metrics”, 2001,

 http://prg.cpe.ku.ac.th/pipermail/prg/2001-July/000920.html

[46] L. A. Laranjeira, “Software Size Estimation of Object Oriented Systems”, IEEE
Transactions on Software Engineering, vol. 16, no. 5, May 1990.

[47] C. Lokan, and A. Abran, “Multiple Viewpoints in Functional Size
Measurement”, 9th International Workshop on Software Measurement,
September 8-10, 1999.

[48] D. Longstreet, “Use Cases and Function Points”, November 2002,

 http://www.softwaremetrics.com/Articles/usecases.htm

93

http://www.iro.umontreal.ca/~sahraouh/qaoose/papers/Kammelar.pdf
http://academic.alliant.edu/rkumar/research/research2.htm
http://prg.cpe.ku.ac.th/pipermail/prg/2001-July/000920.html
http://www.softwaremetrics.com/Articles/usecases.htm

[49] G. C. Low, and R. D. Jeffery, “Function Points in the Estimation and
Evaluation of the Software Process”, IEEE Transactions on Software
Engineering, vol. 16, no. 1, January 1990.

[50] J. E. Matson, B. E. Barret, and J. M. Mellichamp, “Software Development
Cost Estimation Using Function Points”, IEEE Transactions on Software
Engineering, vol. 20, no. 4, April 1994.

[51] M. Maya et.al., “Measuring the Functional Size of Real-Time Software”, 1998,

 www.lrgl.uqam.ca/publications/pdf/330.pdf

[52] E. Miranda, “Establishing Software Size Using the Paired Comparisons
Method”, Ericsson Research, August 1999.

[53] E. Miranda, “Improving Subjective Estimates Using Paired Comparisions”,
IEEE Software, pp. 87-91, January/February 2001.

[54] S. Oligny, J. M. Desharnais, and A. Abran, “A Method for Measuring the
Functional Size of Embedded Software”, 3 International Conference on
Industrial Automation, June 7-9, 1999, Montreal, Canada,

th

 http://www.lrgl.uqam.ca/news/

[55] T. Ozdamar, “Automating Function Point Analysis in Object Oriented Analysis
and Design”, Master of Science Thesis, Informatics Institute, Middle East
Technical University, 2001.

[56] S. Oligny, and A. Abran, “On the Compatibility Between Full Function Points
and IFPUG Function Points”, Project Control for Software Quality, Shaker
Publishing, 1999. ISBN 90-423-0075-2.

94

http://www.lrgl.uqam.ca/news/

[57] G. Poel,, “Towards a Size Measurement Framework for Object Oriented
Specifications”, Proc. Of the FESMA’98, Antwerp, Belgium, May 6-8, 1998,
pp. 379-394.

[58] L. H. Putnam, and A. Fitzsimmons, “Estimating Software Costs”, Datamation,
pp. 189-198, September 1979, continued in Datamation, pp. 171-178, October
1979, pp. 137-140, November 1979.

[59] K. Ribu, “Estimating Object Oriented Software Projects with Use Cases”,
Master of Science Thesis, University of Oslo, November 2001.

[60] P. G. Rule, “Scenarios, Use Cases and Mark II FPA”, the Journal of The Guild
of Independent Function Point Analysts (GIFPA), Issue 2, Summer 1998.

[61] P. G. Rule, “Using Measures to Understand Requirements”, 1999,

 www.gifpa.co.uk/library/papers/Rule/20010404_escom_pgr/v1.a.html

[62] G. Schneider, and J. Winters, Applying Use Cases, Addison-Wesley, 1998.

[63] L. G. M. Shaw, “Practical Software Engineering”, January 1996,

 http://pages.cpsc.ucalgary.ca/~mildred/451/CostEffort.html

[64] V. Y. Shen, S. D. Conte, and H. E. Dunsmore, “Software Science Revisited: A
Critical Analysis of the Theory and Its Empirical Support”, IEEE Transactions
on Software Engineering, vol. SE-9, no. 2, March 1983.

[65] M. Shepperd, C. Schofield, and B. Kitchenham, “Effort Estimation Using
Analogy”, ICSE18, Berlin 1996.

95

http://www.gifpa.co.uk/library/papers/Rule/20010404_escom_pgr/v1.a.html
http://pages.cpsc.ucalgary.ca/~mildred/451/CostEffort.html

[66] M. Shepperd, and M. Cartwright, “An Empirical Investigation of Object
Oriented Software System”, Technical Report No. TR 97/01, Dept. of
Computing, Bournemouth University, UK, 1997.

[67] J. Smith, “The Estimation of Effort Based on Use Cases”, Rational Software,
2001,

 http://www.rational.com/products/whitepapers/finalTP171.jsp

[68] R. K. Smith, A.Parrish, and J. Hale, “Cost Estimation for Component Based
Software Development”, ACM, 1998.

[69] Software Productivity Research, “What are Feature Points?”, February 2002.

[70] I. Sommerville, Software Engineering, Sixth Edition, Addison-Wesley, 2001.

[71] K. Srinivasan, and D. Fisher, “Meachine Learning Approaches to Estimating
Software Development Effort”, IEEE Transactions on Software Engineering,
vol. 21, no. 2, February 1995.

[72] R. D. Stutzke, “ Software Estimating Technology: A Survey”, Science
Applications International Corporation, Software Engineering 5th edition, 1998,
pp.204-215.

[73] C. R. Symons, “Function Point Analysis: Difficulties and Improvements”, IEEE
Transactions on Software Engineering, vol. 14, no. 1, January 1988.

[74] C. Symons, “Conversion between IFPUG 4.0 and MkII Function Points”,
Version 3.0, August 1999.

96

http://www.rational.com/products/whitepapers/finalTP171.jsp

[75] C. Symons, “Come Back Function Point Analysis (Modernized) – All is
Forgiven!)”, 2001,

 http://www.software-measurement.com

[76] D. P. Tegarden, S.D. Sheetz, and D. E. Monarchi, “Effectiveness of Traditional
Metrics for Object Oriented Systems”, Proceedings 24th Hawaii International
Conference on System Sciences 4, Kauai, Hawaii, pp. 359-368, January 7-10,
1992. Los Alamitos, California: IEEE Computer Society Press, 1991.

[77] G. Teologlou, “Measuring Object Oriented Software with Predictive Object
Points”, Shaker Publishing, ISBN 90-423-0075-2, 1999.

[78] I. Vessey, and R. Weber, “Research on Structured Programming: An
Empiricist’s Evaluation”, IEEE Transactions on Software Engineering, vol. SE-
10, no. 4, pp. 394-407, July 1984.

[79] E. J. Weyuker, “Evaluating Software Complexity Measures”, IEEE
Transactions on Software Engineering, vol. 14, no. 9, pp.1357-1365, September
1988.

[80] S. A. Whitmire, “3D Function Points: Scientific and Real-Time Extensions to
Function Points”, Proc. Pacific Northwest Software Quality Conf., 1992.

[81] United Kingdom Software Metrics Association (UKSMA), “MK II Function
Point Analysis Counting Practices Manual Version 1.3.1”, 1998

97

http://www.software-measurement.com/

APPENDICES

APPENDIX A

ANNOTATED BIBLIOGRAPHY

Books

 Cockburn, Writing Effective Use Cases, Addison-Wesley, 2000.

 N. E. Fenton, and S. L. Pfleeger, Software Metrics: A Rigorous and Practical
Approach, Second Edition, International Thomson Computer Press, 1996.

 M. H. Halstead, Elements of Software Science, New York, Elsevier, North-
Holland, 1977.

 G. Schneider, and J. Winters, Applying Use Cases, Addison-Wesley, 1998.

 I. Sommerville, Software Engineering, Sixth Edition, Addison-Wesley, 2001.

www

V. E. Berard, “Metrics for Object Oriented Software Engineering”,
http://www.ipipan.gda.pl/~marek/objects/TOA/moose.html

98

http://www.ipipan.gda.pl/~marek/objects/TOA/moose.html

Calvert, “Software Metrics”, July 1996,

 http://hebb.cis.uoguelph.ca/~dave/27320/new/metrics.html

 F. Faghih, “Software Effort and Schedule Estimation”, 1997,

http://www.enel.ucalgary.ca/People/Smith/619.94/prev689/1997.94/reports/fars
had.htm

 A. Hoekstra, “Metrics for Object Oriented Design”, 2001,

 http://www.cs.vu.nl/~ahoekst/metrics.html

 C. Jones, “Strengths and Weaknesses of Software Metrics”, Technical Report,
Software Productivity Research, Inc., 1997,

 http://dec.bournemouth.ac.uk/ESERG/downloads/Capers-strength.rtf

 J. Kammelar, “A Sizing Approach for OO-environments”, ECOOP, June 2000,

 www.iro.umontreal.ca/~sahraouh/qaoose/papers/Kammelar.pdf

 R. Kauffman, and R. Kumar, “Investigating Object-Based Metrics for
Representing Software Output Size”, January 2002,

 http://academic.alliant.edu/rkumar/research/research2.htm

 A. Lake, “Factor Analysis of Metrics”, 2001,

 http://prg.cpe.ku.ac.th/pipermail/prg/2001-July/000920.html

 D. Longstreet, “Use Cases and Function Points”, November 2002,

 http://www.softwaremetrics.com/Articles/usecases.htm

99

http://hebb.cis.uoguelph.ca/~dave/27320/new/metrics.html
http://www.enel.ucalgary.ca/People/Smith/619.94/prev689/1997.94/reports/farshad.htm
http://www.enel.ucalgary.ca/People/Smith/619.94/prev689/1997.94/reports/farshad.htm
http://www.cs.vu.nl/~ahoekst/metrics.html
http://dec.bournemouth.ac.uk/ESERG/downloads/Capers-strength.rtf
http://www.iro.umontreal.ca/~sahraouh/qaoose/papers/Kammelar.pdf
http://academic.alliant.edu/rkumar/research/research2.htm
http://prg.cpe.ku.ac.th/pipermail/prg/2001-July/000920.html
http://www.softwaremetrics.com/Articles/usecases.htm

 M. Maya et.al., “Measuring the Functional Size of Real-Time Software”, 1998,

 www.lrgl.uqam.ca/publications/pdf/330.pdf

 S. Oligny, J. M. Desharnais, and A. Abran, “A Method for Measuring the
Functional Size of Embedded Software”, 3th International Conference on
Industrial Automation, June 7-9, 1999, Montreal, Canada,

 http://www.lrgl.uqam.ca/news/

 P. G. Rule, “Using Measures to Understand Requirements”, 1999,

 www.gifpa.co.uk/library/papers/Rule/20010404_escom_pgr/v1.a.html

 L. G. M. Shaw, “Practical Software Engineering”, January 1996,

 http://pages.cpsc.ucalgary.ca/~mildred/451/CostEffort.html

 J. Smith, “The Estimation of Effort Based on Use Cases”, Rational Software,
2001,

 http://www.rational.com/products/whitepapers/finalTP171.jsp

C. Symons, “Come Back Function Point Analysis (Modernized) – All is
Forgiven!)”, 2001,

 http://www.software-measurement.com

Journals, Periodicals and Articles
 A. J. Albrecht, and J. E. Gaffney, “Software Function, Source Lines of Code,

and Development Effort Prediction: A Software Science Validation”, IEEE
Transactions on Software Engineering, vol. SE-9, no. 6, November 1983.

100

http://www.lrgl.uqam.ca/publications/pdf/330.pdf
http://www.lrgl.uqam.ca/news/
http://www.gifpa.co.uk/library/papers/Rule/20010404_escom_pgr/v1.a.html
http://pages.cpsc.ucalgary.ca/~mildred/451/CostEffort.html
http://www.rational.com/products/whitepapers/finalTP171.jsp
http://www.software-measurement.com/

 R. D. Banker, and C. F. Kemerer, “Scale Economies in New Software
Development”, IEEE Transactions on Software Engineering, vol. 15, no. 10,
October 1989.

C. A. Behrens, “Measuring the Productivity of Computer Systems
Development Activities with Function Points”, IEEE Transactions on Software
Engineering, vol. SE-9, no. 6, November 1983.

 J. M. Bieman, “Metric Development for Object Oriented Software”, Software
Measurement, pp. 75-92, 1996.

G. J. Bozoki, “An Expert Judgment Based Software Sizing Model”, Lockheed
Missiles & Space Company and Target Software.

D. Bradine, “Oops, There It Is”, Enterprise Systems Journal, March 2000.

S. R.Chidamber, and C. F. Kemerer, “A Metrics Suit for Object Oriented
Design”, IEEE Transactions on Software Engineering, vol. 20, no. 6, pp. 476-
493, June 1994.

 COSMIC Team, “COSMIC FFP-the New Software Functional Sizing Method”,
September 1999.

 B. J. Cox, “Planning the Software Industrial Revolution”, IEEE, pp. 25-33,
November 1990.

 N. Fenton, “Software Measurement: A Necessary Scientific Basis”, IEEE
Transactions on Software Engineering, vol. 20, no. 3, March 1994.

101

 N. E. Fenton, and M. Neil, “Software Metrics: Successes, Failures and New
Directions”, The Journal of Systems and Software 47 pp. 149-157, 1999.

D. Garmus, and D. Herron, “Estimating Software Earlier and More
Accurately”, CrossTalk, The Journal of Defense Software Engineering, June
2002.

 J. W. E. Greene, “Measures for Excellence”, Quantitative Software
Management Ltd.

 T. E. Hastings, and A. S. M. Sajeev, “A Vector-Based Approach to Software
Size Measurement and Effort Estimation”, IEEE Transactions on Software
Engineering, vol. 27, no. 4, April 2001.

 B. Henderson-Sellers, “Corrigenda: Software Size Estimation of Object
Oriented Systems”, IEEE Transactions on Software Engineering, vol. 23, no. 4,
April 1997.

 M. Hitz, and B. Montazeri, “ Chidamber & Kemerer’s Metrics Suit: A
Measurement Theory Perspective”, IEEE Transactions on Software
Engineering, vol. 22, no. 4, April 1996.

 D. R. Jeffery, G.C. Low, and M. Barnes, “A Comparison of Function Point
Counting Techniques”, IEEE Transactions on Software Engineering, vol. 19,
no. 5, May 1993.

 J. K. Kearney, R. L. Sedlmeyer, W. B. Thompson, M. A. Gray, and M. A.
Adler, “Software Complexity Measurement”, Communications of ACM, vol.
29, no. 11, pp. 1044-1050, November 1986.

102

 C. F. Kemerer, “Reliability of Function Points Measurement”, Communications
of the ACM, vol. 36, no. 2, February 1993.

L. A. Laranjeira, “Software Size Estimation of Object Oriented Systems”, IEEE
Transactions on Software Engineering, vol. 16, no. 5, May 1990.

 G. C. Low, and R. D. Jeffery, “Function Points in the Estimation and
Evaluation of the Software Process”, IEEE Transactions on Software
Engineering, vol. 16, no. 1, January 1990.

 J. E. Matson, B. E. Barret, and J. M. Mellichamp, “Software Development Cost
Estimation Using Function Points”, IEEE Transactions on Software
Engineering, vol. 20, no. 4, April 1994.

 E. Miranda, “Establishing Software Size Using the Paired Comparisons
Method”, Ericsson Research, August 1999.

 E. Miranda, “Improving Subjective Estimates Using Paired Comparisions”,
IEEE Software, pp. 87-91, January/February 2001.

 T. Ozdamar, “Automating Function Point Analysis in Object Oriented Analysis
and Design”, Master of Science Thesis, Informatics Institute, Middle East
Technical University, 2001.

 S. Oligny, and A. Abran, “On the Compatibility Between Full Function Points
and IFPUG Function Points”, Project Control for Software Quality, Shaker
Publishing, 1999. ISBN 90-423-0075-2.

L. H. Putnam, and A. Fitzsimmons, “Estimating Software Costs”, Datamation,
pp. 189-198, September 1979, continued in Datamation, pp. 171-178, October
1979, pp. 137-140, November 1979.

103

 K. Ribu, “Estimating Object Oriented Software Projects with Use Cases”,
Master of Science Thesis, University of Oslo, November 2001.

 P. G. Rule, “Scenarios, Use Cases and Mark II FPA”, the Journal of The Guild
of Independent Function Point Analysts (GIFPA), Issue 2, Summer 1998.

 V. Y. Shen, S. D. Conte, and H. E. Dunsmore, “Software Science Revisited: A
Critical Analysis of the Theory and Its Empirical Support”, IEEE Transactions
on Software Engineering, vol. SE-9, no. 2, March 1983.

 R. K. Smith, A.Parrish, and J. Hale, “Cost Estimation for Component Based
Software Development”, ACM, 1998.

Software Productivity Research, “What are Feature Points?”, February 2002.

 K. Srinivasan, and D. Fisher, “Meachine Learning Approaches to Estimating
Software Development Effort”, IEEE Transactions on Software Engineering,
vol. 21, no. 2, February 1995.

R. D. Stutzke, “ Software Estimating Technology: A Survey”, Science
Applications International Corporation, Software Engineering 5th edition, 1998,
pp.204-215.

 C. R. Symons, “Function Point Analysis: Difficulties and Improvements”,
IEEE Transactions on Software Engineering, vol. 14, no. 1, January 1988.

 G. Teologlou, “Measuring Object Oriented Software with Predictive Object
Points”, Shaker Publishing, ISBN 90-423-0075-2, 1999.

104

I. Vessey, and R. Weber, “Research on Structured Programming: An
Empiricist’s Evaluation”, IEEE Transactions on Software Engineering, vol. SE-
10, no. 4, pp. 394-407, July 1984.

E. J. Weyuker, “Evaluating Software Complexity Measures”, IEEE
Transactions on Software Engineering, vol. 14, no. 9, pp.1357-1365, September
1988.

Conferences
 A. Abran, D. St-Pierre, M. Maya, and J. M. Desharnais, “Full Function Points

for Embedded and Real-Time Software”, UKSMA Fall Conference, London
(UK), October 30-31, 1998.

 A. Abran, “COSMIC FFP 2,0: An Implementation of COSMIC Functional Size
Measurement Concepts”, FESMA’99, Amsterdam, October 7, 1999.

 A. Abran, C. Symons, and S. Oligny, “An Overview of COSMIC-FFP Field
Trial Results”, ESCOM 2001, London, England, April 2-4, 2001.

 F. B. Abreu, and R. Carapuça, “Candidate Metrics for Object Oriented
Software with a Taxonomy Framework”, Proceedings of AQUIS’93
Conference, Venice, Italy, October 1993.

A. J. Albrecht, “Measuring Application Development Productivity”, in Proc. ,
IBM Applications Develop. Symp., Monterey, CA, October 14-17, 1979;
GUIDE Int. and SHARE, INC., IBM Corp., pp. 83.

105

 B. Anda, H. Dreiem, D. I. K. Sjoberg, and M. Jorgensen, ”Estimating Software
Development Effort based on Use Cases-Experiences from Industry", 4th
International Conference on the Unified Modeling Language (UML2001),
Gogolla, M. and Kobryn, C. (editors), Toronto, Canada, October 1-5, 2001, pp.
487-502, LNCS 2185, Springer-Verlag, 2001.

 M. Arnold, and P. Pedross, “Software Size Measurement and Productivity
Rating in a Large- Scale Software Development Department”, Proc,
Proceedings of the 1998 International Conference on Software Engineering.
IEEE Comput. Soc., Los Alamitos, CA, USA, 1998.

 F. Bootsma, “Applying Full Function Points to Drive Strategic Business
Improvement Within the Real-Time Software Environment”, Annual IFPUG
Conference, New Orleans, October 18-22, 1999.

S. R. Chidamber, and C. F. Kemerer, “Towards a Metric Suite for Object
Oriented Design”, pp. 197-211. Procedings: OOPSLA’91. Phoneix, Arizona,
October 6-11, 1991. New York, New York: ACM SIGPLAN Notices, 1991.

C. J. Coppick, and T. J. Cheatham, “Software Metrics for Object Oriented
Systems”, pp. 317-322, Proceedings: ACM CSC’92 Conference. Kansas City,
Missouri, March 3-5, 1992. New York, New York: ACM Press, 1992.

 R. E. Fairley, “Recent Advances in Software Estimation Techniques”,
Proceedings of the 14th International Conference on Software Engineering, pp.
382-391, May 11-15, 1992, Melbourne, Australia.

 T. Fetcke, A. Abran, and T. H. Nguyen, “Mapping the OO-Jacobson Approach
into Function Point Analysis”, Proceedings of TOOLS-23’97, 28 July – 1
August 1997, Santa Barbara, CA.

106

 C. Lokan, and A. Abran, “Multiple Viewpoints in Functional Size
Measurement”, 9th International Workshop on Software Measurement,
September 8-10, 1999.

 G. Poel,, “Towards a Size Measurement Framework for Object Oriented
Specifications”, Proc. Of the FESMA’98, Antwerp, Belgium, May 6-8, 1998,
pp. 379-394.

 M. Shepperd, C. Schofield, and B. Kitchenham, “Effort Estimation Using
Analogy”, ICSE18, Berlin 1996.

 D. P. Tegarden, S.D. Sheetz, and D. E. Monarchi, “Effectiveness of Traditional
Metrics for Object Oriented Systems”, Proceedings 24th Hawaii International
Conference on System Sciences 4, Kauai, Hawaii, pp. 359-368, January 7-10,
1992. Los Alamitos, California: IEEE Computer Society Press, 1991.

 S. A. Whitmire, “3D Function Points: Scientific and Real-Time Extensions to
Function Points”, Proc. Pacific Northwest Software Quality Conf., 1992.

Technical Reports and Manuals
 C. Archer, and S. Michael “Object Oriented Software Measures”, Technical

Report, CMU/SEI-95-TR-002, ESC-TR-95-002, April 1995.

 D. N. Card, K. El Emam, and B. Scalzo, “Measurement of Object Oriented
Software Development Projects”, Technical Report, Software Productivity
Consortium, January 2001.

 COSMIC-FFP Measurement Manual V2.1, 2001.

C. Symons, “Conversion between IFPUG 4.0 and MkII Function Points”,
Version 3.0, August 1999.

107

 M. Shepperd, and M. Cartwright, “An Empirical Investigation of Object
Oriented Software System”, Technical Report No. TR 97/01, Dept. of
Computing, Bournemouth University, UK, 1997.

 United Kingdom Software Metrics Association (UKSMA), “MK II Function
Point Analysis Counting Practices Manual Version 1.3.1”, 1998

108

APPENDIX B

OO SIZE METRICS AND METHODS

Table B.1 Sizing Methods and Related Metrics

Methods Related Metrics
Expert estimations No special metrics, usually LOC

Counting LOC NCLOC, CLOC, ES, DSI, bytes of

Software Science Operators and Operands
Function Point Analysis (FPA) and its

alternatives
Function Points

Statistical Object Model (SOM) Object Decomposition and Learning
Curves

Object-Oriented Project Size Systemmeter, Point Value

Distance-Based Approach Definition of distance
Vector-Based Approach Operator and Operands of ADTs

Object Points Object Points
Predictive Object Points (POPs) TLC, DIT, NOC, WMC

Use Case Points Method Use Case Points
J.Kammelar’s Sizing Approach Component Object Points

computer storage, number of characters

Estimation (OOPS)

109

APPENDIX C

SAMPLE CLASS DIAGRAM AND OBJECT DEFINITION

C.1 Sample Class Diagram

Metra jRapo

Yesil Defter
R

Hakedis
R

Ihzarat
R

Demir Metra j
R

Hakedis Dosya
R

Rapor
(from
com bg print)

<<uses>
>

<<uses>
>

<<uses>
>

<<uses>
>

<<uses>
>

<<uses>
>

Figure C.1 Reporting Class Diagram

110

C.2 Sample Object Definition

class KullaniciGirisArayuzu

{

boolean create ()

boolean b_Yeni ()

boolean b_Sil ()

boolean b_Kaydet ()

boolean displayKullaniciKaydi (Hashtable pFields)

boolean clearFormFields ()

boolean b_Ileri ()

boolean b_Geri ()

}

111

APPENDIX D

A SAMPLE USE CASE DESCRIPTION

Kullanıcı "yazdır"
düğmesine basar

Sistem "Rapor Sayfa Secimi"
arayüzünü görüntüler

Kullanıcı basılacak
sayfaları arayüzden seçer

Kullanıcı "tamam"
düğmesine basar

Sistem "yazıcı seçimi"
arayüzünü görüntüler

Kullanıcı baskı özelliklerini belirledikten
sonra "tamam/ok" düğmesine basar

Kullanıcı "çıkış"
düğmesine basar

Sistem "Proje işlemleri"
arayüzüne geri döner

Kullanıcı "iptal"
düğmesine basar

Sistem önizleme
ekranına geri döner

Kullanıcı "iptal/cancel"
butonuna basar

Sistem "Rapor Sayfa Secimi"
arayüzüne geri döner

Use Case Id:
Use Case Name: Rapor Yazdırma
Actor: Kullanıcı veya Yetkili
Pre-condition(s): Kullanıcı raporlama use-case
lerinden birisinde rapor yazdirma activitesindedir
Post-condition(s): Rapor yazicidan cikarilmis veya
rapor yazdirma işi iptal edilmiştir

1

2

3

4

5

6

A.1

...

A.4

...

A.6

...

Figure D.1 Rapor Yazdırma Use Case Description

112

APPENDIX E

MARK II FUNCTION POINTS

 Table E.1 MARK II FP Count

Use Case
Id

of Logical
Transactions

of Input
DET’s

of Ouput
DET’s

Entities
Referenced

1 2 2 3 11
2 3 11 9 9
3 2 11 - 7
4 2 2 11 5
5 2 2 4 4
6 2 2 3 4
7 2 2 9 4
8 2 1 - 4
9 2 1 1 6
10 3 9 8 8
11 2 1 2 6
12 2 6 4 5
13 2 2 7 5
14 2 4 4 5
15 3 2 3 6
16 2 1 1 5
17 2 5 7 5
18 2 2 2 3
19 3 11 12 11
20 5 12 10 15
21 2 4 13 5
22 2 3 3 5
23 2 3 3 5
24 2 3 5 5

113

Table E.1 MARK II FP Count (cont.)

25 4 12 11 7
26 2 1 1 5
27 2 2 2 5
28 2 3 4 5
29 1 - - -
30 2 1 2 8
31 1 - 9 2
32 2 7 7 5
33 1 - - -
34 2 3 4 5
35 3 2 1 1
36 2 3 3 5
37 2 1 2 5
38 2 1 - -
39 2 1 1 -
40 2 1 1 -
41 2 1 1 2
42 2 1 1 2
43 3 3 5 6
44 2 1 - 5
45 3 6 8 6
46 2 4 - 5
47 2 2 8 4
48 2 1 1 5

Total 159 196 236

114

 APPENDIX F

OBJECT ORIENTED PROJECT SIZE ESTIMATION

Table F.1 OOPS Count

Object
Name

of

for
Name

of

for
Attributes

of

for
Methods

of
Tokens for

Method
Parameters

Total
Points

Days
Required

to
Develop

1 4 0 1 0 5 1.83
2 4 0 11 10 24 8.84
3 1 0 0 9 10 3.67
4 2 0 0 0 2 0.73
5 1 0 0 0 1 0.36
6 2 1 6 2 11 4.04
7 0 0 0 9 9 3.3
8 1 0 0 11 12 4.41
9 1 0 0 9 10 3.67
10 0 0 0 9 9 3.30
11 0 0 4 0 4 1.46
12 1 6 30 37 74 27.53
13 0 14 5 15 34 12.55
14 0 0 0 14 14 5.15
15 0 0 0 14 14 5.15
16 0 1 0 13 14 5.15
17 0 0 0 14 14 5.15
18 0 0 0 14 14 5.15
19 1 0 0 12 13 4.78
20 1 0 2 3 6 2.20
21 0 0 1 26 27 9.95
22 0 0 1 2 3 1.10
23 1 0 4 1 6 2.20

Tokens Tokens Tokens

115

Table F.1 OOPS Count (cont.)

24 1 0 0 2 3 1.10
25 0 7 2 23 32 11.81
26 0 3 1 21 25 9.21
27 0 0 1 2 3 1.10
28 0 0 0 6 6 2.20
29 0 0 0 2 2 0.73
30 0 11 0 14 25 9.21
31 0 23 0 14 37 13.67
32 0 7 0 15 22 8.10
33 1 27 8 21 57 21.14
34 0 12 0 19 31 11.44
35 0 12 0 19 31 11.44
36 1 12 0 19 32 11.81
37 0 12 0 19 31 11.44
38 0 12 0 19 31 11.44
39 1 12 0 19 32 11.81
40 1 0 0 1 2 0.73
41 0 0 0 2 2 0.73
42 1 0 0 2 3 1.10
43 0 0 0 4 4 1.46
44 0 0 1 1 2 0.73
45 0 0 0 1 1 0.36

116

 APPENDIX G

USE CASE POINTS METHOD

Table G.1 Use Cases and Corresponding Categories

Use Case Id Number of
Transactions Included

Use Case Categories

1 7 Average
2 9 Complex
3 7 Average
4 3 Simple
5 11 Complex
6 13 Complex
7 5 Average
8 4 Average
9 4 Average
10 10 Complex
11 5 Average
12 6 Average
13 5 Average
14 8 Complex
15 7 Average
16 10 Complex
17 13 Complex
18 7 Average
19 9 Complex
20 14 Complex
21 5 Average
22 6 Average
23 7 Average

117

Table G.1 Use Cases and Corresponding Categories (cont.)

24 9 Complex
25 12 Complex
26 10 Complex
27 10 Complex
28 7 Average
29 2 Simple
30 5 Average
31 3 Simple
32 15 Complex
33 2 Simple
34 7 Average
35 11 Complex
36 10 Complex
37 7 Average
38 4 Average
39 4 Average
40 5 Average
41 5 Average
42 5 Average
43 17 Complex
44 7 Average
45 17 Complex
46 7 Average
47 5 Average
48 10 Complex

118

APPENDIX H

J.KAMMELAR’S SIZING APPROACH

Table H.1 Use Cases and Corresponding Number of Services

Use Case Id Number of Services
Included

COPs

1 2 *2 = 4
2 3 *2 = 6
3 2 *2 = 4
4 2 *2 = 4
5 2 *2 = 4
6 2 *2 = 4
7 2 *2 = 4
8 2 *2 = 4
9 2 *2 = 4
10 3 *2 = 6
11 2 *2 = 4
12 2 *2 = 4
13 2 *2 = 4
14 2 *2 = 4
15 3 *2 = 6
16 2 *2 = 4
17 2 *2 = 4
18 2 *2 = 4
19 3 *2 = 6
20 5 *2 = 10
21 2 *2 = 4
22 2 *2 = 4
23 2 *2 = 4

119

Table H.1 Use Cases and Corresponding Number of Services (cont.)

24 2 *2 = 4
25 4 *2 = 8
26 2 *2 = 4
27 2 *2 = 4
28 2 *2 = 4
29 1 *2 = 2
30 2 *2 = 4
31 1 *2 = 2
32 2 *2 = 4
33 1 *2 = 2
34 2 *2 = 4
35 3 *2 = 6
36 2 *2 = 4
37 2 *2 = 4
38 2 *2 = 4
39 2 *2 = 4
40 2 *2 = 4
41 2 *2 = 4
42 2 *2 = 4
43 3 *2 = 6
44 2 *2 = 4
45 3 *2 = 6
46 2 *2 = 4
47 2 *2 = 4
48 2 *2 = 4

Service Functionality (COPs) 210

120

Table H.2 Use Cases and Corresponding Service-Class Relationships

Use Case Id # of Services Related Classes COPs
1 2 11 *3= 33
2 3 9 *3= 27
3 2 7 *3= 21
4 2 5 *3 = 15
5 2 4 *3= 12
6 2 4 *3= 12
7 2 4 *3 = 12
8 2 4 *3= 12
9 2 6 *3= 18
10 3 8 *3 = 24
11 2 6 *3= 18
12 2 5 *3= 15
13 2 5 *3 = 15
14 2 5 *3= 15
15 3 6 *3= 18
16 2 5 *3 = 15
17 2 5 *3= 15
18 2 3 *3= 9
19 3 11 *3 = 33
20 5 15 *3= 45
21 2 5 *3= 15
22 2 5 *3 = 15
23 2 5 *3= 15
24 2 5 *3= 15
25 4 7 *3 = 21
26 2 5 *3= 15
27 2 5 *3= 15
28 2 5 *3 = 15
29 1 - *3= 0
30 2 8 *3= 24
31 1 2 *3 = 6
32 2 5 *3= 15
33 1 - *3= 0

121

Table H.2 Use Cases and Corresponding Service-Class Relationships (cont.)

34 2 5 *3 = 15
35 3 1 *3= 3
36 2 5 *3= 15
37 2 5 *3 = 15
38 2 - *3= 0
39 2 - *3= 0
40 2 - *3 = 0
41 2 2 *3= 6
42 2 2 *3= 6
43 3 6 *3 = 18
44 2 5 *3= 15
45 3 6 *3= 18
46 2 5 *3 = 15
47 2 5 *3= 15
48 2 5 *3 = 15

Total COPsClass Part 696

122

Table H.3 Use Cases and Corresponding Number of Transformations

Use Case Id Number of
Transformations

Included

COPs

1 0 *5 = 0
2 0 *5 = 0
3 0 *5 = 0
4 0 *5 = 0
5 0 *5 = 0
6 0 *5 = 0
7 0 *5 = 0
8 0 *5 = 0
9 1 *5 = 5
10 0 *5 = 0
11 1 *5 = 5
12 0 *5 = 0
13 0 *5 = 0
14 0 *5 = 0
15 0 *5 = 0
16 0 *5 = 0
17 0 *5 = 0
18 0 *5 = 0
19 0 *5 = 0
20 1 *5 = 5
21 0 *5 = 0
22 0 *5 = 0
23 0 *5 = 0
24 2 *5 = 10
25 0 *5 = 0
26 0 *5 = 0
27 0 *5 = 0
28 0 *5 = 0
29 0 *5 = 0
30 0 *5 = 0
31 0 *5 = 0

123

Table H.3 Use Cases and Corresponding Number of Transformations (cont.)

32 0 *5 = 0
33 0 *5 = 0
34 0 *5 = 0
35 0 *5 = 0
36 0 *5 = 0
37 0 *5 = 0
38 0 *5 = 0
39 0 *5 = 0
40 0 *5 = 0
41 0 *5 = 0
42 0 *5 = 0
43 0 *5 = 0
44 0 *5 = 0
45 0 *5 = 0
46 0 *5 = 0
47 0 *5 = 0
48 0 *5 = 0

Total COPsTransformation Part 25

124

Table H.4 Classes and Corresponding Number of Attributes

Class Id Number of Attributes Included COPs
6 1 2
12 2 2
21 0 2
13 9 7
14 0 2
15 0 2
16 1 2
17 0 2
18 0 2
25 3 5
26 3 5
30 6 5
32 5 5
31 14 7
39 12 7
46 Not identified 5
47 Not identified 5
48 Not identified 5

Total COPsattribute Part 72

125

126

Table H.5 Object Structure Valuation Matrix for the Project

Structure Part
(Classes)

Ass. Type Number
of Levels

Number of
Sub-Classes

COPs

6 - - - 0
12 - - - 0
21 - - - 0
13 Gen./Spec. 1 - 1*3 = 3
15 Gen./Spec. 1 - 1*3 = 3
16 Gen./Spec. 1 - 1*3 = 3
17 Gen./Spec. 1 - 1*3 = 3
18 Gen./Spec. 1 - 1*3 = 3
25 - - - 0
26 - - - 0
30 Gen./Spec. 1 - 1*3 = 3
31 Gen./Spec. 1 - 1*3 = 3
39 Gen./Spec. - - 0
46 Gen./Spec. 1 - 1*3 = 3
47 Gen./Spec. 1 - 1*3 = 3
48 Gen./Spec. 1 - 1*3 = 3
14 Gen./Spec. 1 - 1*3 = 3
32 Gen./Spec. 1 - 1*3 = 3

Total COPsStructure Part 36

	ABSTRACT
	ÖZ
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	1. INTRODUCTION
	Scope and Outline of the Thesis

	2. SOFTWARE SIZE ESTIMATION
	Software Size Measurement
	2.1.1 Software Size

	2.2 OO Size Metrics and Methods and Related Work
	2.2.1 Expert Estimations
	2.2.2 Lines of Code
	2.2.3 Software Science
	2.2.4 Function Point Analysis
	2.2.4.1 Feature Points:
	2.2.4.2 Mark II Function Points:
	2.2.4.3 3-D Function Points:
	2.2.4.4 FP by Matson, Barret and Mellichamp:
	2.2.4.5 Full Function Points:
	2.2.4.6 COSMIC FFP:

	2.2.5 Statistical Object Model
	2.2.6 Object Oriented Project Size Estimation
	2.2.7 Distance-Based Approach
	2.2.8 Vector-Based Approach
	2.2.9 Object Points
	2.2.10 Predictive Object Points
	2.2.11 M.Shepperd and M.Cartwright Size Prediction System
	2.2.12 Use Case Points Method
	2.2.13 J.Kammelar’s Sizing Approach

	CHAPTER 3
	CASE STUDY
	3.1 Definition of Work
	3.2 Data Collection
	3.3 Application of Metrics and Methods
	3.3.1 Lines of Code
	3.3.2 Mark II Function Points:
	3.3.3 Object Oriented Project Size Estimation
	3.3.4 Use Case Points Method:
	4.3.5 J.Kammelar’s Sizing Approach

	3.4 Evaluating the Results

	CHAPTER 4
	CONCLUSIONS AND FUTURE WORK
	4.1 Conclusions
	4.2 Future Work

	REFERENCES
	APPENDICES
	APPENDIX A
	ANNOTATED BIBLIOGRAPHY
	
	Journals, Periodicals and Articles

	APPENDIX B
	OO SIZE METRICS AND METHODS
	APPENDIX C
	SAMPLE CLASS DIAGRAM AND OBJECT DEFINITION
	APPENDIX D
	A SAMPLE USE CASE DESCRIPTION
	APPENDIX E
	MARK II FUNCTION POINTS
	
	Total

	APPENDIX F
	OBJECT ORIENTED PROJECT SIZE ESTIMATION
	APPENDIX G
	USE CASE POINTS METHOD
	APPENDIX H
	J.KAMMELAR’S SIZING APPROACH

