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ABSTRACT

FLAVOR CHANGING NEUTRAL CURRENT PROCESSES IN THE

FRAMEWORK OF THE TWO HIGGS DOUBLET MODEL

TURAN, İsmail

Ph.D., Department of Physics

Supervisor: Prof. Dr. Erhan Onur İltan

August 2003, 113 pages.

It is widely believed that the Standard Model (SM) can not be a fundamental

theory of the basic interactions. Originated from this fact, many new physics

models have been proposed. Among them, the two Higgs doublet model (2HDM),

the SM enlarged by adding one extra scalar doublet, is considered as the simplest

extension of the SM.

In this work, within the framework of the model III version of the 2HDM,

the exclusive decay B → K∗τ+τ− including the neutral Higgs boson effects is

investigated by focusing on the physical parameters, such as the CP violating

asymmetry, the forward–backward asymmetry of the lepton pair, and the CP

asymmetry in the forward–backward asymmetry. Furthermore, the dependencies

of these quantities on the parameters of the model considered are analyzed.

Next, in the same model context, lepton flavor violating Z decay, Z →
l−1 l

+
2 (l1, l2 = e, µ, τ), is studied. The motivation for this decay mode comes from

the fact that the predicted branching ratio in the SM, with even massive neutrinos

is very far from experimental verification. Thus this decay is a good candidate

for searching new physics effects. For this decay the branching ratio is calculated
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and discussed in various physical regions determined by model parameters. It is

observed that it is possible to reach present experimental upper limits in model

III.

Finally, the flavor changing top quark decay, t → cl−1 l
+
2 (l1, l2 = e, µ, τ), is

investigated in model III. The branching ratio is computed and the limits of the

branching ratio of each decay modes are separately discussed regarding sensitivity

of the model parameters.

Keywords: Two Higgs doublet model, Flavor Changing Neutral Current, Lepton

Flavor Violation, Decay Rate, CP Asymmetry, Dimensional Regularization.
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ÖZ

İKİ HİGGS DUBLET MODELİ ÇERÇEVESİNDE ÇEŞNİ DEĞİŞTİREN

NÖTR AKIM BOZUNMALARI

TURAN, İsmail

Doktora, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Erhan Onur İltan

Agustos 2003, 113 sayfa.

Standart Model’in (SM) basit etkileşimlerin temel teorisi olamayacağına yaygın

olarak inanılmaktadır. Bu gerçekten yola çıkarak, birçok yeni fizik modelleri

önerilegeldi. Bunlar arasında, SM’e yeni bir skaler dublet eklenmesiyle büyütülmüşü

olan iki Higgs dublet modeli (2HDM) SM’in genişletilmiş en basit şekli kabul

ediliyor.

Bu çalışmada, 2HDM’in model III versiyonu çerçevesinde, nötr Higgs bozon

etkilerini içeren B→K∗τ+τ− bozunumu, CP bozulum asimetrisi, lepton çiftinin

ileri-geri asimetrisi, ve ileri–geri asimetride CP bozulumu gibi fiziksel parame-

trelere odaklanarak araştırıldı. Ek olarak bu büyüklüklerin ele alınan modelin

parametrelerine bağımlılıkları incelendi.

Bundan sonra, aynı model çerçevesinde, lepton çeşni bozan Z bozunumu,

Z → l−1 l
+
2 (l1, l2 = e, µ, τ), çalışıldı. Bu bozunum modu için motivasyon, kütleli

nötrinoların olduğu SM’de bile, öngörülen dallanma oranının deneysel doğrulamadan

çok uzak olmasıdır. Dolayısıyla Z → l−1 l
+
2 yeni fizik etkilerini araştırmak için

uygun bir bozunumdur. Bu bozunum için dallanma oranı hesaplandı ve model

parametreleri tarafindan belirlenen fiziksel bölgede tartışıldı. Model III çerçevesinde
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günümüz deneysel limitlerine ulaşmanın mümkün olduğu gözlendi.

Son olarak, lepton çeşni bozan top kuvark bozunumu, t→c l−1 l
+
2 (l1, l2 = e, µ, τ)

model III çerçevesinde çalışıldı. Dallanma oranı heaplanarak, herbir bozunum

modunun dallanma oranı sınırlarının model parametrelerine hassasiyeti tartışıldı.

Anahtar Sözcükler: İki Higgs Dublet Modeli, Çeşni Değiştiren Nötr Akımlar,

Lepton Çeşni İhlali, Bozunum Genliği, CP Asimetrisi, Boyutsal Düzenleme.
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CHAPTER 1

INTRODUCTION

The Glashow–Weinberg–Salam [1]–[4] theory of electroweak interactions, com-

bined with the Quantum Chromodynamics (QCD) is called the Standard Model

(SM) in which all of the known non-gravitational interactions are fundamentally

described. So far it is universally accepted that the SM has been very successful

in explaining beautifully all the experimental data in the energy range available

at present1.

The SM is based on the gauge group SU(3)C ⊗ SU(2)L ⊗ U(1)Y . The gauge

sector of the SM is composed of eight gluons, Gi, which are the gauge bosons of

SU(3)C and mediating the strong interactions among quarks, and the photon, γ,

which is one of the four gauge bosons of SU(2)L⊗U(1)Y and responsible for the

electromagnetic interactions, and the remaining three weak bosons, W±, Z which

are the corresponding intermediate bosons of the weak interactions.

Although the SM is extraordinarily robust, there is a general consensus about

the fact that it can not be the final theory of elementary particles. Instead it could

be considered as an effective form of a more fundamental theory at low energies.

There are indeed strong conceptual indications and phenomenological hints which

motivates us to look physics beyond the SM. The hierarchy problem, existence of

many arbitrary fundamental parameters, and the mysterious pattern of fermion

masses are some examples for the conceptual problems of the SM. Measurements

1 there are strong indications in favor of both the atmospheric and solar neutrino oscillation
between different flavors. This implies nonzero neutrino masses which are not considered in the
SM. Another crucial test for the SM which worths mentioning is the most recent measurement
on the muon anomalous magnetic moment which shows a deviation as large as 3σ from the SM
predictions.
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of flavor changing neutral current (FCNC) processes, which are very suppressed

or zero, including lepton flavor violating (LFV) processes which differ from the

SM predictions can be taken as phenomenological hints from experiments for both

testing the quantum structure of the SM and for searching new physics beyond

the SM.

There are various alternative extended models proposed for solving the prob-

lems of the SM. Some of the more representative ones are the two Higgs doublet

models (2HDM), left–right (super)symmetric models, the minimal supersymmet-

ric model (MSSM), the Zee model, the see–saw model, the SM enlarged with

massive neutrinos, and universal top color assisted technicolor models. Among

them, the most conservative extensions of the SM are, apparently, the 2HDM.

Since it is just a mild extension of the SM with one additional scalar SU(2)L dou-

blet –an extension of the Higgs sector about which we have no direct experimental

information. Furthermore it adds the fewest new arbitrary parameters into the

play and such a Higgs structure is also required in low energy supersymmetric

models.

The 2HDM, obtained by introducing another doublet, would automatically

lead to FCNC problem in its Yukawa coupling sector –representing interactions

between the Higgs fields and fermions. FCNC problem simply means that the

additional doublet makes the FCNCs at tree level possible, in general. The FCNC

processes can be identified as rare decays. They are in fact rare in a sense that

they appear at least at one loop level in the SM, which leads to a high suppression.

Hence rare processes offer an ideal place both to test the quantum structure of

the SM and to search new physics effects beyond the SM. Therefore, any positive

observation of FCNC couplings deviated from that in SM would certainly signal

the presence of new physics.

In this thesis, we will first investigate within the framework of the general

2HDM the rare exclusive B → K∗τ+τ− decay including neutral Higgs boson

(NHB) effects [5]. After giving the expression for the matrix element for the de-

cay including NHB effects, the CP asymmetry (ACP ) and the forward–backward

2



asymmetry (AFB) of the lepton pair, and the CP asymmetry in AFB (ACP (AFB)),

dependencies of these physically observable quantities on various model parame-

ters such as the CP parameter sinθ, Yukawa coupling parameter ξ̄EN,ττ , and the

mass ratio of the neutral Higgs bosons, mh0/mA0 will be discussed in detail.

Next, in Chapter 4, LFV Z → l−1 l
+
2 decay [6] will be investigated in the same

framework of the 2HDM. This decay mode is important since even in the context

of the SM extended by allowing massive neutrinos the predicted branching ratio

(Br) is really very far from experimental verification. The limits of the Br ′s of the

decay modes will be discussed as regards to sensitivity of the model parameters.

In the final chapter of this thesis, we analyzed the flavor changing (FC) top

decay, t→ cl−1 l
+
2 , in the same model [7]. Since it can exist at tree level, the flavor

changing couplings both in the quark and the lepton sectors play the main role

in this decay.

Before presenting the investigations outlined above, we will pause and present

a brief review of the SM and then the 2HDM, pointing out the theoretical ground

which will be the basis for the calculations in the subsequent chapters.
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CHAPTER 2

THE GENERAL TWO HIGGS DOUBLET MODEL (2HDM)

In this chapter, as a preliminary basis to all subsequent chapters, I will provide an

overview of the notion of two Higgs doublet model (2HDM), in the framework of

which all our studies available in the thesis have been carried out. The model is

indeed the minimal extension of the Standard model (SM) and can be formulated

by modifying the experimentally less known part of the SM, the Higgs sector, by

adding an extra scalar doublet to the SM scalar sector. Therefore the customary

way of introducing 2HDM is to make available initially the basic ingredients over

which the SM is constructed and then 2HDM is to be considered basically as a

SM with two scalar doublets. Furthermore the consequences of this modification

can be obtained without much more effort. Along this line, having given a brief

introduction of the basic aspects of the SM, we mainly focus on 2HDM in the

rest of the chapter.

2.1 The Standard Model (SM)

The current view of elementary particle physics is based on a gauge theory of

quarks and leptons and three fundamental interactions of the nature are described

as a SU(3)C ⊗ SU(2)L ⊗ U(1)Y gauge theory in which the SM is based on as

a quantum field theory. In order to define the SM the following three basic

ingredients are needed:

1. The symmetries of the Lagrangian;

2. The representation of fermions and scalars;

4



3. The pattern of Spontaneous Symmetry Breaking (SSB).

The SM can be then defined as follows:

1. As is stated above, the gauge symmetry under which the Lagrangian is

invariant is

GSM ≡ SU(3)C ⊗ SU(2)L ⊗ U(1)Y . (2.1)

2. There are three fermion families, each consisting of five representations.

These can be expressed in a very compact way of the form

QLi(3,2)1/3 , URi(3,1)4/3 , DRi(3,1)−2/3 , `Li(1,2)−1 , ERi(1,1)−2 , (2.2)

where the left–handed (right–handed up (down)) quarks denoted as QL (URi

(DRi)). lLi (ERi) similarly represents left–handed (right–handed) lepton.

Our notation meant that, for example, QL(3,2)1/3 are in a triplet (3) of

the SU(3)C group, a doublet (2) of SU(2)L and carry hypercharge Y = 1/3,

obtained using the Gell–Mann–Nishijima relation [8] Q = T3 + Y/2. There

is merely a single scalar multiplet represented in our notation as Φ(1,2)+1 .

3. One of the crucial ingredients of the SM that is worth mentioning is the ex-

istence of SSB of gauge symmetries, giving rise to Goldstone excitations [9]

which in turn can be related to gauge boson mass terms [10]. In general, the

phenomenon of SSB is simply stated as follows. A system is said to possess

a symmetry that is spontaneously broken if the Lagrangian describing the

dynamics of the system is invariant under these symmetry transformations,

but the vacuum of the theory is not. Here the vacuum is the state in which

expectation value of the Hamiltonian of the system becomes minimum. The

discovery of the W± and Z gauge bosons at CERN in 1983 [11] may be con-

sidered as the first experimental evidence of the SSB phenomenon in weak

interactions. The physical implication of the SSB phenomenon is twofold.

One way is the realization of SSB for theories having global symmetries,
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the ones which imply space–time independent continuous parameters of the

symmetry transformation, and it is described by the Goldstone theorem

[9]. The second way is the case for the theories with spontaneously bro-

ken local (gauge) symmetries like the SM, the ones which imply space–time

dependent continuous parameters of the transformation. There is a mech-

anism, the so–called Higgs Mechanism [12] operating in the Electroweak

theory in order to generate a mass for the weak gauge bosons, W± and

Z, and to the fermions. The operation indeed leaves as a consequence the

prediction of a new particle, the Higgs particle, which has not been seen

in experiments so far [10]. The minimum formulation, the SM, requires a

single complex scalar field (Higgs field) denoted as Φ(1,2)+1. Additionally

the scalar should interact with the gauge sector in a GSM gauge invariant

manner and its self–interactions, being introduced ad hoc, must produce

the desired breaking,

GSM → SU(3)C ⊗ U(1)em , (2.3)

which is characterized by non zero vacuum expectation value (VEV) of the

scalar field Φ of the form

< Φ >=
1√
2







0

v





 . (2.4)

Let us say a few words about why that type of breaking occurs. The reason

for this is as follows. Having massive weak gauge bosons W±, Z indicates

that SU(2)L ⊗ U(1)Y is not a symmetry of the vacuum. In contrast the

photon being massless reflects that U(1)em, a subgroup of SU(2)L⊗U(1)Y ,

is a good symmetry of the vacuum. Thus, we should eventually get the

above SSB pattern.

Having discussed three ingredients giving the route for defining the SM, let us

turn our attention to the SM Lagrangian, LSM, the most general renormalizable

Lagrangian consistent with the gauge symmetry GSM in Eq. (2.1). It can be, in
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principle, divided into to five parts:

LSM = Lfkinetic + LΦ
kinetic + LGaugefieldskinetic + LSMHiggs + LSMY . (2.5)

As concerns the kinetic terms, to maintain gauge invariance, one has to replace

the derivative with a covariant derivative defined as

Dµ = ∂µ + ı̇gsG
µ
aLa + ı̇gW µ

b Tb + ı̇g′BµY , (2.6)

where Gµ
a are the gluon fields, W µ

b the three weak interaction bosons and Bµ

the single hypercharge boson and La are SU(3)C generators, the Tb’s are SU(2)

generators (the 2 × 2 Pauli matrices σb/2 for doublets, 0 for singlets), Y are the

U(1)Y charges. As an example, for the left–handed quarks QL we have

Lkinetic(QL) = ı̇Q̄Liγ
µDµQLi , (2.7)

with

DµQLi = (∂µ + ı̇gsG
µ
aLa + ı̇gW µ

b Tb + ı̇g′BµY )QLi , (2.8)

and the other kinetic terms for Higgs and Gauge fields are given

LΦ
kinetic = (DµΦ)†(DµΦ) ,

LGaugefieldskinetic = −1

4

3
∑

a=1

F a
µνF

aµν − 1

4
BµνB

µν , (2.9)

where F a
µν = ∂µW

a
ν − ∂νW

a
µ − g εabcW

b
µW

c
ν and Bµν = ∂µBν − ∂νBµ are the

gauge antisymmetric tensors with εabc as the group structure constant. After

diagonalizing the mass matrix of the gauge bosons the mass fields are

Aµ =
1

√

g2 + g′2
(g′W 3

µ + gBµ) ,

Zµ =
1

√

g2 + g′2
(gW 3

µ − g′Bµ) ,

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ) . (2.10)

Note that kinetic parts of the Lagrangian, Lf,Φ,Gf
kinetic , are further invariant under

CP transformation.
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The second part of LSM consists of the Higgs potential describing the scalar

self–interactions and is given by

LSMHiggs = µ2Φ†Φ − λ(Φ†Φ)2 . (2.11)

For µ2 > 0, the scalar field Φ develops a non zero VEV given in Eq. (2.4) where

the vacuum value is v = µ/
√

2λ (' 246GeV ) and the physical Higgs mass to be

yielded as a consequence of the Higgs mechanism is given by mH =
√

2λ v and

after the SSB, at the tree level, the masses of the weak gauge bosons can also be

given as mW = gv/2 and mZ =
√

g2 + g′2 v. This part of the Lagrangian is also

CP conserving for the scalar doublet Φ in the SM1.

The final piece of the Lagrangian, called Yukawa Lagrangian, describes the

interaction among the fermions and the Higgs field. The general form can be

expressed as follows

LSMY = ηDij Q̄iLΦDjR + ηUijQ̄iLΦ̃UjR + ηEij
¯̀
iLΦEjR + h.c. , (2.12)

where ηij’s are the complex Yukawa couplings.

As is pointed out earlier, the 2HDM is constructed by modifying the Higgs

sector of the SM, which is directly related to the modification of LSM
Y . That’s why

I want to say a few words about the behavior of the LSM
Y under CP transformation.

If one looks the structure of the Eq. (2.12) it is, in general, CP violating due

to complex Yukawa couplings. An intuitive explanation of why this is related

to the complex Yukawa couplings goes as follows. From the Hermiticity of the

Lagrangian one can write each term in LSMY as pairs of the form

ηij ψ̄iLΦψjR + η∗ij ψ̄iRΦ†ψjL . (2.13)

Under CP transformation there is an exchange of the operators in Eq. (2.13) of

the form

ψ̄iLΦψjR ↔ ψ̄iRΦ†ψjL , (2.14)

while leaving the Yukawa coefficients, ηij and η∗ij, unchanged. This, in fact, means

that CP is a symmetry of the Yukawa Lagrangian, LSM
Y , if ηij = η∗ij.

1 For extended scalar sector, such as that of 2HDM, LSM
Higgs can be CP conserving. Even

in this case, it may lead to spontaneous CP violation.
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2.2 Two Higgs Doublet Model (2HDM)

2.2.1 Motivation for Additional Scalars

We first present the motivation for examining alternatives to the usual Higgs

(scalar) sector in otherwise conventional gauge theories of weak and electromag-

netic interactions. Then 2HDM can be pinned down by just merely mentioning

what kinds of modifications result in the SM due to additional scalar doublet.

Although the experimental evidence in support of the gauge boson and of

the fermion sector of the SM is very strong, experimental information concerning

the scalar sector is very weak. The ρ–parameter, defined through the relation

Leffz = (4GF/
√

2) ρ Jµz Jzµ, where Leffz is the effective low–energy neutral current

Lagrangian and Jzµ is the standard weak neutral current, is determined by the

Higgs structure of the theory. Thus the most important piece of evidence pro-

viding information about this sector comes from that parameter. It is in fact a

measure of the ratio of the neutral current to charged current strength in effective

low energy lagrangian. In the SM, at tree level, ρ = m2
W/(m

2
Z cos2 θW ) is equal

to unity2. The general formula in the case of having N scalar multiplets, Φi, with

VEV vi, isospin Ti and hypercharge Yi is [14]

ρ =

∑N
i=1[Ti(Ti + 1) − 1

4
Y 2
i ]vi

∑N
i=1

1
2
Y 2
i vi

. (2.15)

The simplest method of satisfying the constraint, ρ = 1 at the tree level, is

to choose only representations such that T (T + 1) = 3Y 2/4, clear from Eq.

(2.15). There are in fact an infinite number of complicated Higgs representations

satisfying the constraint. The simplest choice among them are SU(2) doublets

with Y = ±1. Consequently the minimal extension of the scalar sector of the SM

is a model with two scalar doublet of Y = ±1.

We may state further motivations for extending the scalar sector to models

with at least two doublets as follows. The first motivation is supersymmetry.

Whereas, in the SM, only one Higgs doublet is required to give mass to the

2 Experimentally [13], the value of ρ is 0.992 ± 0.02.
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quarks and leptons, in the supersymmetric model, two Higgs doublets are needed

to give mass to both up–type and down–type quarks (and the corresponding lep-

tons) [15]. Another motivation arises in axion models [16]. The QCD violating

parameter θ̄. However, Peccei and Quinn [17] stated that θ̄ can be rotated away if

the Lagrangian contains a global U(1) symmetry whose implementation requires

two Higgs doublet. Yet another motivation for additional doublets stems from

models of CP violation. As already noted, the only source of CP violation in

the SM is the phase in the Cabbibo–Kobayashi–Maskawa matrix (CKM). If there

exist additional scalars and , in particular SU(2) doublets, then not only there

are new sources of CP violation, but also the Yukawa couplings in the mass basis

as well as the scalar self-interactions may violate CP. Therefore once enough in-

dependent observations of CP violating effects are made, we will find that there

is no single choice of CKM parameters that is consistent with all measurements.

Lee [18] showed that a model with two scalar doublets could spontaneously vio-

late CP. That is, the Lagrangian could be CP invariant, but the minimum could

occur for complex values of the scalar fields, thus violating CP. His model in fact

had FCNCs forcing a very large scalar mass of the value about 10TeV . Then

any ad hoc discrete symmetry which eliminates these currents also eliminates the

CP violation. Later Weinberg [19] showed that with three doublets, CP could

be violated spontaneously in the presence of a discrete symmetry eliminating

FCNC. Branco and Rebelo [20] showed that the discrete symmetry which elimi-

nates FCNC could be softly broken, giving CP violation in a 2HDM. As a final

motivation for additional doublets, grand unified theories can be considered. It

can be shown that models with only one SU(2) doublet do not generate sufficient

baryon number and at least two such doublets are needed [21]. Having stated the

motivations for additional scalar doublets, our next task is to analyze the points

differing from those of the minimal SM.
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2.2.2 The Yukawa Lagrangian and the Scalar Potential in 2HDM

The Yukawa Lagrangian involving two scalar fields is the first piece differen-

tiating that of the one Higgs doublet SM. The other is, naturally, Higgs (scalar)

potential describing interactions of scalar fields. Therefore discussing only the

Yukawa couplings and the scalar potential in the presence of two Higgs doublets

are enough to construct 2HDM over the SM.

As is stated in the previous subsection, a potential problem with 2HDM is the

possibility of FCNCs at the tree level. The reason for this is the fact that with

unrestricted Yukawa couplings diagonalization of the up–type and down–type

quarks do not diagonalize the Yukawa couplings with each single scalar doublet.

To avoid FCNC problem, one can impose an ad hoc discrete symmetry [22]and

then Yukawa couplings are restricted such a way that there is no FCNC at the

tree level. Let us first write the general form of the Yukawa Lagrangian in the

presence of two scalar doublets, denoted as L2HDM
Y , of the form

L2HDM
Y = ηUijQ̄iLΦ̃1UjR + ηDij Q̄iLΦ1DjR + ξU †

ij Q̄iLΦ̃2UjR + ξDij Q̄iLΦ2DjR

+ ηEkl l̄kLΦ1ElR + ξEkl l̄kLΦ2ElR + h.c. , (2.16)

where Φi, for i = 1, 2 are two scalar doublet of a 2HDM, while ηU,D,Eij and ξU,D,Eij

are the non–diagonal matrices of Yukawa couplings and l̄kL and ElR represent left–

handed SU(2) lepton doublet, right-handed SU(2) singlet, respectively. Then it

is possible that 2HDM can be categorized into three types by explicitly imposing

the following discrete symmetry sets,

(I) Φ1 → −Φ1 , Φ2 → Φ2 , Di → −Di , Ui → −Ui ,

(II) Φ1 → −Φ1 , Φ2 → Φ2 , Di → −Di , Ui → +Ui . (2.17)

Clearly imposing set (I) into the Yukawa Lagrangian L2HDM
Y forces all the quarks,

both the up–type and down–types, to couple only to Φ1 doublet, which is so called

model I and the set (II) apparently forces the quarks of different charges to couple

to the separate scalar doublets, namely the down–types are coupled to Φ1 and

the up–types are coupled to Φ2 only. This kind is so called model II version of
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2HDM. Finally, the third class which is formed by just relaxing these discrete

symmetry sets is the general 2HDM with FCNCs at tree level, which is so called

model III [23]. Indeed the form of the Yukawa Lagrangian given in Eq. (2.16)

describes the most general Yukawa couplings between the Higgs scalar fields and

fermions, i.e., those that are possible only in model III.

Having presented the form of the Yukawa couplings within three versions of

2HDM, there remains to explore the allowed scalar self–interactions named scalar

potential. The most general SU(2)L ⊗ U(1)Y gauge–invariant, renormalizable

scalar potential3 for two SU(2) doublets of hypercharge Y = +1 can be written

as [24]

V (Φ1,Φ2) = µ2
1Φ

†
1Φ1 + µ2

2Φ
†
2Φ2 + µ12Φ

†
1Φ2 + µ∗

12Φ
†
2Φ1 + λ1(Φ

†
1Φ1)

2

+ λ2(Φ
†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+
1

2
λ5[(Φ

†
1Φ2)

2 + (Φ†
2Φ1)

2] , (2.18)

where all coupling constants are taken real by Hermiticity requirement of the

potential V (without restricting µ12). The details about the scalar potential are

discussed in appendix A. Implementation of discrete symmetry of Eq. (2.17)

corresponds to taking µ12 = µ∗
12 = 0. For computational simplicity, I will as-

sume here that the potential doesn’t include the µ12 and µ∗
12 terms, which indeed

represent the soft breaking terms. If this assumption is relaxed, analysis of the

potential is straightforward. We observed that its qualitative features are un-

changed.

In the following we summarize the results obtained in appendix A for the case

that scalar potential does not include the soft breaking part, i.e., µ12 = µ∗
12 = 0.

In order to break the original SU(2)L ⊗ U(1)Y gauge symmetry down to U(1)em

3 Even though the discrete symmetry given in Eq. (2.17) is violated only softly by mass-
dimension-two-terms, this breaking would not affect the Yukawa couplings.
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the vacuum expectation values of the scalar fields must have the form4

< Φ1 >=
1√
2







0

v1





 ; < Φ2 >=
1√
2







0

v2





 . (2.19)

The minima conditions for the potential, in fact, lead to two linearly independent

solutions for v2
1 and v2

2 (see appendix A). For the Case a) we have assumed that

both VEVs are non–zero. For the Case b) v2 is assumed to be zero.

The mass squared matrix described explicitly in appendix A is properly di-

agonalized, since the mass squared matrix for the physical Higgs fields decouples

in a direct product of 2 × 2 sub–matrices. As a consequence we get the Higgs

masses and eigenstates (see appendix A for details). We recall here a summary

of the results for the potential without soft breaking term:

For the Case a) where v2
1 and v2

2 are given in terms of the coupling constants

in the potential, Eq. (A.5).

• From the part of the mass squared matrix spanned by the gauge fields

{φ1, φ2, φ5, φ6} the charged components of Φ1 and Φ2 mix to give a charged

Goldstone boson χ± and a physical charged Higgs H± with masses

{mχ± ,mH±} = {0 ,−(v2
1 + v2

2)λ45} . (2.20)

with mass eigenstates in terms of gauge eigenstates






χ+(−)

H+(−)





 =







cos β sin β

− sin β cos β













φ1(2)

φ5(6)





 , (2.21)

where λ45 = 2(λ4 + λ5) and the mixing angle is defined as tan β = v2/v1

(0 ≤ β ≤ π/2).

• The imaginary parts of the neutral components, {φ4, φ8}, mix to give a

neutral Goldstone boson χ0 and a neutral pseudoscalar (CP-odd) A0 with

masses

{mχ0 ,m2
A0} = {0 ,−(v2

1 + v2
2)λ5}, (2.22)

4 The unobservable phase difference between these two expectation values will be nonzero,
which indeed leads to spontaneous CP violation, unless soft breaking terms included are real
and non–zero ( and λ4 = λ5). In this case, the phase can be rotated away by a redefinition of
one of the fields, leaving other terms in the potential unchanged.
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with the mass eigenstates






χ0

A0





 =







cos β sin β

− sin β cos β













φ4

φ8





 . (2.23)

• The real parts, {φ3, φ7}, mix to give two neutral scalars (CP-even) H0, h0

with masses

m2
H0,h0 = A+B ±

√

(A−B)2 + C2 . (2.24)

with the mass eigenstates






H0

h0





 =







cosα sinα

− sinα cosα













φ3

φ7





 , (2.25)

where

A = v2
1λ1 , B = v2

2λ2 , C = 2 v1v2λ345 , (2.26)

and subindexes (H0, h0) refer respectively to (+,−), λ345 ≡ 2 (λ3 +λ4 +λ5)

and the mixing angle is tan 2α = C/(A−B) (0 ≤ α ≤ π/2) . As is obvious

from the condition mH0 ≥ mh0 and from m2
h0 ≥ 0 that the constraint

|C| ≤ 2
√
AB ( |λ345| ≤

√
λ1λ2 ) is induced.

For the Case b) where v2 vanishes, the Higgs masses and eigenstates are given as

follows:

• The charged sector has four fields with masses

{mχ± ,mH±} = {0 , µ2
2 +

λ3

2
v2

1}, (2.27)

and the eigenstates are identical to the gauge eigenstates such that (from

Eq. (A.32) ) χ± = φ1 ± iφ2 and H± = φ5 ± iφ6 .

• The imaginary parts of the neutral components are now identical to a neu-

tral Goldstone boson χ0 and a neutral pseudoscalar Higgs boson A0 with

masses

{mχ0 ,mA0} = {0 , µ2
2 + (λ345 − λ5)v

2
1}, (2.28)

and the mass eigenstates are identical to the gauge eigenstates, χ0 =

φ4, A
0 = φ8 .
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• The real parts of the neutral components are the same as the neutral Higgs

bosons (H0 , h0) with masses

{mH0 ,mh0} = {2λ1v
2
1 , µ

2
2 + λ345 v

2
1}, (2.29)

and again there is no mixing, i.e., H0 = φ3, h
0 = φ7 .

To aid the interpretation of the fields present, it is instructive to introduce a

new basis due to Georgi [24] related to the original ones as (see appendix B for

details)

Φ
′

1 ≡ Φ1 cos β + Φ2 sin β ,

Φ
′

2 ≡ −Φ1 sin β + Φ2 cos β . (2.30)

Then we get

Φ
′

1 ≡
1√
2













0

v + H̄0





 +







√
2χ+

iχ0











 ; Φ
′

2 ≡
1√
2







√
2H+

H1 + iH2





 . (2.31)

where v2 = v2
1 + v2

2 and the weak eigenstates in terms of mass eigenstates are of

the form

H̄0 ≡ H0 cos(β − α) + h0 sin(β − α) ,

H1 ≡ −H0 sin(β − α) + h0 cos(β − α) ,

H2 ≡ A0 . (2.32)

Therefore Φ
′

1 can be identified with the scalar doublet of the SM and the mass

of the W and Z bosons are given at the tree level by mW = mZ cos θW = gv/
√

2,

where g is the SU(2) coupling constant and then all the new scalar fields belong

to the Φ
′

2.

Final remark before finishing the chapter is about our choices of the VEVs

of the Φ1 and Φ2 doublets in subsequent chapters. For convenience, in all our

calculations, we choose for Φ1 and Φ2 a suitable basis such that merely ηU,D,Eij

Yukawa couplings generate the fermion masses. This in fact means v2 = 0. Then

from Eq. (2.26) and the relations tan β = v2/v1 and tan 2α = C/(A − B), the

mixing angles simply become α = β = 0. As a consequence from Eq. (2.32),

(H̄0, H1, H2) coincide with the mass eigenstates (H0, h0, A0).
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CHAPTER 3

B → K∗τ+τ− DECAY IN THE GENERAL TWO HIGGS

DOUBLET MODEL INCLUDING THE NEUTRAL HIGGS

BOSON EFFECTS

The rare dileptonic decays of B mesons have been the subject of much recent

interest. This is since the operators responsible for these rare decays are absent in

the SM, and only appear at the one–loop level. Therefore the study of these rare B

meson decays can provide sensitive tests of many issues, both within and beyond

the SM, such as the 2HDM, the MSSM [25], etc. The mass of the Higgs boson,

the existence or non existence of other Higgs multiplets, extracting the values

of the CKM matrix elements are just some of the issues to which these decays

are sensitive. The experimental work for rare B meson decays continue at SLAC

(BaBar), KEK (BELLE), B–Factories, DESY (HERA–B) and this stimulates the

theoretical effort on them.

Currently, the main interest on rare B meson decays is focused on decays

having “large” SM predicted Br,s which have the potential to be measured in the

near future. The rare exclusive B → K∗l+l− decay process is one of such decays.

The experimental situation for this decay is very promising [26], with e+e− and

hadron colliders focusing merely on the observation of exclusive channels with

l = e, µ and τ final states, respectively.

The inclusive decay inducing B → K∗l+l− process is b → s l+l− transition

occurring at quark level and it is extensively studied in the literature in the

framework of the SM, the 2HDM and the MSSM [27]–[40]. In these references
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b→ sl+l− process is studied for light lepton pairs, namely l = e, µ. This is because

the NHB effects can be negligible due to having contributions proportional to the

light lepton masses or corresponding Yukawa couplings. Having a heavier lepton

pair final state however changes the situation and the NHB effects give sizable

contributions. In [41]–[42] the inclusive decay B → Xsτ
+τ− decay was studied in

the framework of model I and model II versions of the 2HDM. It was there shown

that the contributions of the NB are significant when tanβ is large. Furthermore

the inclusive decay b → s l+l− was studied in the model II version of the 2HDM

[43] and it was concluded that the NHB effects can give considerable contributions

when the Yukawa interaction between τ lepton and neutral Higgs bosons is large.

There are some advantages and disadvantages of analyzing the exclusive de-

cays differing from inclusive ones. From the theoretical point of view, in cal-

culating the Br,s and other observables at hadron level, i.e., for B → K∗l+l−

decay, we have the problem of computing the matrix element of the effective weak

Hamiltonian Heff between the states B and K∗. The matrix elements are de-

scribed in terms of a number of a priori unknown, incalculable, non–perturbative

form factors. The dependence of these form factors on the appropriate kinemat-

ical variable may be modelled and this brings some model dependencies in the

extraction of information from the measured quantities. These hadronic form

factors also bring substantial uncertainty in the calculations. These matrix ele-

ments have been investigated in the framework of different approaches such as

relativistic quark model by light–front formalism [40], chiral theory [44], three

point QCD sum rules method [45], effective heavy quark theory [46] and light

cone QCD sum rules [47, 48].

From the experimental point of view, however, it is well known that the exper-

imental investigation of exclusive decays is much more easier compared to those

of inclusive ones. This is one of the motivations for studying exclusive decays

such as B → K∗l+l−. Additionally, with the measured upper limit 5.2 × 10−6

(4.0 × 10−6) for the Br of the decay B+ → K+µ+µ− (B0 → K0∗µ+µ−) [49],

the decay B → K∗l+l− has received great interest. There are extensive studies
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on these decays in the SM, the SM with fourth generation, multi Higgs doublet

models, the MSSM, and in a model independent way in the literature [27]–[40]

and [44]–[60].

CP violation plays also a privileged role in our quest for new physics be-

yond the SM and generally represents a major constraint on any attempt at

model building beyond the SM. The CP violation for B → K∗l+l− decay almost

vanishes in the SM. This is because for b → s l+l− induced process the matrix

element contains a term proportional to Vtb V
∗
ts, Vcb V

∗
cs and Vub V

∗
us coming from tt̄,

cc̄ and uū quark loops, respectively. The unitarity of the CKM matrix elements,
∑

i Vib V
∗
is = 0 (i = u, c, t), causes this term to be proportional merely to Vtb V

∗
ts

since Vub V
∗
us is smaller compared to Vtb V

∗
ts. This leads eventually to the suppres-

sion of CP violating effects in the SM. Therefore it is clear that by searching the

CP violating effects we may have a good chance to manifest some departure from

the SM in particularly challenging class of rare phenomena. Moreover, experi-

ments have just begun to have sensitivity to CP asymmetries at a nontrivial level.

Like most extensions of the SM, there is a new source for CP violation, namely

complex Yukawa couplings, in the model III version of the 2HDM. In [51]–[52],

CP violating effects due to new phases in the model III and three Higgs doublet

model, 3HDM(O2), were studied and it was observed that a considerable CP

asymmetry was obtained.

In this chapter we study the exclusive B → K∗τ+τ− decay in model III by

including the NHB effects. To get the matrix element for B → K∗τ+τ− decay

the quark level effective weak Hamiltonian calculated in [43] is used and we will

investigate ACP and AFB of the lepton pair for the process under consideration.

We further calculate ACP (AFB) and observed that it is possible to be measured

in the forthcoming experiments.

The rest of this work is organized as follows. In the next section we discuss the

leading order (LO) QCD corrected effective Hamiltonian and the corresponding

matrix element for the inclusive decay including the NHB effects. We also give

the explicit forms of the operators appearing in the effective Hamiltonian, the
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corresponding Wilson coefficients and the form factors existing in the hadronic

matrix elements. Further we present the matrix element for the exclusive B →
K∗τ+τ− decay and the explicit expressions for ACP , AFB and ACP (AFB). The

analysis of the dependencies of ACP , AFB and ACP (AFB) on the CP parameter

sin θ, Yukawa coupling ξ̄EN,ττ and the mass ratio mh0/mA0 and the discussion of

our results are presented in the last section of this chapter.

3.1 Rare B → K∗τ+τ− Decay Including the NHB Effects

As we have discussed in the previous chapter, in the model III, FCNCs at tree

level are permitted and various new parameters, such as Yukawa couplings, masses

of new Higgs bosons exist. Our starting point is the inclusive b → sτ+τ− decay

process inducing exclusive B → K∗τ+τ− decay and the corresponding Yukawa

Lagrangian, responsible for interactions between fermions and Higgs fields, is

given in Eq. (2.17). As already presented in Chapter 2, FC part of the Yukawa

Lagrangian at tree level is

LIIIY,FC = ξDij Q̄iLΦ2DjR + ξU †
ij Q̄iLΦ̃2UjR + ξEkl l̄kLΦ2ElR + h.c. , (3.1)

The neutral FC couplings ξU,D,ENeutral
1 are (see appendix B for details)

ξ
U(D)
N =

(

V
U(D)
R(L)

)−1
ξU(D) V

U(D)
L(R) , ξ

E
N = (V E

L )−1ξE V E
R . (3.2)

On the other hand for the charged FC couplings we have

ξUCh = ξUN VCKM ,

ξDCh = VCKM ξDN . (3.3)

The charged couplings appear as a linear combination of neutral FC couplings

multiplied by some CKM matrix elements which is indeed a particular form pe-

culiar to model III (see [61] for details).

It is now better to summarize the basic steps for the calculation of the matrix

element for the inclusive b→ s τ+τ− decay process in the following steps:

1 In the rest of all discussions we denote ξU,D,E
Neutral as ξU,D,E

N .
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• The calculation of the full theory including the NHB effects which comes

from the interactions of neutral Higgs bosons H0, h0 and A0 with τ lepton.

• Overcoming the logarithmic divergences by using the on-shell renormaliza-

tion scheme. The renormalized vertex function is taken as

ΓRN(p2) = Γ0
N(p2) + ΓCN , (3.4)

with the renormalization condition

ΓRN(p2 = m2
N) = 0, (3.5)

and from Eq. (3.4) and Eq. (3.5) we get the counter terms. Here the

suffix N denotes the neutral Higgs bosons, H0, h0 and A0 and p is the

momentum transfer. Note that the self energy diagrams do not contribute

in this scheme.

• Integrating out the heavy degrees of freedom, namely in this case t quark,

W±, H±, H0, h0, and A0 bosons and getting the effective theory.

• Performing the QCD corrections through matching the full theory with the

effective low energy one at the high scale µ = mW and by evaluating the

Wilson coefficients from mW down to the lower scale µ ∼ O(mb)
2.

• Obtaining the effective Hamiltonian relevant for the considered process b→
s τ+τ− given by

Heff = −4
GF√

2
VtbV

∗
ts

{

∑

i

Ci(µ)Oi(µ) +
∑

i

CQi
(µ)Qi(µ)

}

, (3.6)

where Oi are current–current (i = 1, 2), penguin (i = 3, ..., 6), magnetic

penguin (i = 7, 8) and semileptonic (i = 9, 10) operators. Here Ci(µ) are

the Wilson coefficients renormalized at the scale µ. The additional operators

Qi (i = 1, ..., 10) are due to the NHB exchange diagrams and CQi
(µ) are

their Wilson coefficients.

2 We choose the higher scale as µ = mW since the evaluation from the scale µ = mH± to
µ = mW give negligible contribution to the Wilson coefficients (∼ 5%).
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The explicit form of the operator basis in the 2HDM (model III) for the process

is [41, 62, 63]

O1 = (s̄LαγµcLβ)(c̄Lβγ
µbLα),

O2 = (s̄LαγµcLα)(c̄Lβγ
µbLβ),

O3 = (s̄LαγµbLα)
∑

q=u,d,s,c,b

(q̄Lβγ
µqLβ),

O4 = (s̄LαγµbLβ)
∑

q=u,d,s,c,b

(q̄Lβγ
µqLα),

O5 = (s̄LαγµbLα)
∑

q=u,d,s,c,b

(q̄Rβγ
µqRβ),

O6 = (s̄LαγµbLβ)
∑

q=u,d,s,c,b

(q̄Rβγ
µqRα),

O7 =
e

16π2
s̄ασµν(mbR +msL)bαFµν ,

O8 =
g

16π2
s̄αT

a
αβσµν(mbR +msL)bβGaµν ,

O9 =
e

16π2
(s̄LαγµbLα)(τ̄ γ

µτ),

O10 =
e

16π2
(s̄LαγµbLα)(τ̄ γ

µγ5τ),

Q1 =
e2

16π2
(s̄αL b

α
R) (τ̄ τ),

Q2 =
e2

16π2
(s̄αL b

α
R) (τ̄ γ5τ),

Q3 =
g2

16π2
(s̄αL b

α
R)

∑

q=u,d,s,c,b

(q̄βL q
β
R),

Q4 =
g2

16π2
(s̄αL b

α
R)

∑

q=u,d,s,c,b

(q̄βR q
β
L),

Q5 =
g2

16π2
(s̄αL b

β
R)

∑

q=u,d,s,c,b

(q̄βL q
α
R),

Q6 =
g2

16π2
(s̄αL b

β
R)

∑

q=u,d,s,c,b

(q̄βR q
α
L),

Q7 =
g2

16π2
(s̄αL σ

µν bαR)
∑

q=u,d,s,c,b

(q̄βL σµνq
β
R),

Q8 =
g2

16π2
(s̄αL σ

µν bαR)
∑

q=u,d,s,c,b

(q̄βR σµνq
β
L),

Q9 =
g2

16π2
(s̄αL σ

µν bβR)
∑

q=u,d,s,c,b

(q̄βL σµνq
α
R),
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Q10 =
g2

16π2
(s̄αL σ

µν bβR)
∑

q=u,d,s,c,b

(q̄βR σµνq
α
L), (3.7)

where α and β are SU(3) color indices and Fµν and Gµν are the field strength

tensors of the electromagnetic and strong interactions, respectively. Note that

there are also flipped chirality partners of these operators, which can be obtained

by interchanging L and R in the basis given above in model III. However, we do

not present them here since the corresponding Wilson coefficients are negligible.

Additionally the initial values of the Wilson coefficients for the relevant process

in the SM are [62]

CSM
1,3,...6(mW ) = 0 ,

CSM
2 (mW ) = 1 ,

CSM
7 (mW ) =

3x3
t − 2x2

t

4(xt − 1)4
lnxt +

−8x3
t − 5x2

t + 7xt
24(xt − 1)3

,

CSM
8 (mW ) = − 3x2

t

4(xt − 1)4
lnxt +

−x3
t + 5x2

t + 2xt
8(xt − 1)3

,

CSM
9 (mW ) = − 1

sin2θW
B(xt) +

1 − 4 sin2 θW
sin2 θW

C(xt) −D(xt) +
4

9
,

CSM
10 (mW ) =

1

sin2 θW
(B(xt) − C(xt)) ,

CSM
Qi

(mW ) = 0 i = 1, .., 10 , (3.8)

where xt = m2
t/m

2
W and the implicit functions B(xt), C(xt) and D(xt) are

B(xt) =
xt

4(xt − 1)
− xt lnxt

4(xt − 1)2
,

C(xt) =
−xt(xt − 6)

8(xt − 1)
− xt(3xt + 2)

8(xt − 1)2
lnxt ,

D(xt) =
19x3

t − 25x2
t

36(xt − 1)3
+

6x4
t − 60x3

t + 108x2
t − 64xt + 16

36(xt − 1)4
lnxt , (3.9)

and for the additional part due to charged Higgs bosons are

CH
1,...,6(mW ) = 0 ,

CH
7 (mW ) = Y 2 F1(yt) + XY F2(yt) ,

CH
8 (mW ) = Y 2G1(yt) + XY G2(yt) ,

CH
9 (mW ) = Y 2H1(yt) ,

CH
10(mW ) = Y 2 L1(yt) , (3.10)
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where

X =
1

mb

(

ξ̄DN,bb + ξ̄DN,sb
Vts
Vtb

)

,

Y =
1

mt

(

ξ̄UN,tt + ξ̄UN,tc
V ∗
cs

V ∗
ts

)

. (3.11)

The inclusion of the NHB effects brings new operators as stated before and the

corresponding Wilson coefficients read as

CA0

Q2
((ξ̄UN,tt)

3) =
ξ̄DN,ττ (ξ̄

U
N,tt)

3mb yt(Θ5(yt)zA − Θ1(zA, yt))

32π2m2
A0 mt Θ1(zA, yt) Θ5(yt)

,

CA0

Q2
((ξ̄UN,tt)

2) =
ξ̄DN,ττ (ξ̄

U
N,tt)

2 ξ̄DN,bb
32π2m2

A0 Θ1(zA, yt) Θ5(yt)

(

yt(Θ1(zA, yt) − Θ5(yt)(xy + zA))

− 2Θ1(zA, yt)Θ5(yt) ln

[

zAΘ5(yt)

Θ1(zA, yt)

])

,

CA0

Q2
(ξ̄UN,tt) =

g2ξ̄DN,ττ ξ̄
U
N,ttmb xt

64π2m2
A0 mt

(

2

Θ5(xt)
− xyxt + 2zA

Θ1(zA, xt)
− 2 ln[

zAΘ5(xt)

Θ1(zA, xt)
]

− x y xt yt(
(x− 1)xt(yt/zA − 1) − (1 + x)yt

(Θ6 − (x− y)(xt − yt))(Θ3(zA) + (x− y)(xt − yt)zA)

− x(yt + xt(1 − yt/zA)) − 2yt
Θ6Θ3(zA)

)

)

,

CA0

Q2
(ξ̄DN,bb) =

g2 ξ̄DN,ττ ξ̄
D
N,bb

64π2m2
A0

(

1 − x2
tyt + 2y(x− 1)xtyt − zA(x2

t + Θ6)

Θ3(zA)

+
x2
t (1 − yt/zA)

Θ6

+ 2 ln[
zAΘ6

Θ2(zA, x)
]

)

,

CH0

Q1
((ξ̄UN,tt)

2) =
g2(ξ̄UN,tt)

2mbmτ

64π2m2
H0m2

t

(

xt(1 − 2y)yt
Θ5(yt)

+
(−1 + 2 cos2 θW )(−1 + x+ y)yt

cos2 θWΘ4(yt)
+

zHΘ1(zH , yt)xyt
cos2 θWΘ1(zH , yt)Θ7

+
zH cos2 θW (−2x2(−1 + xt)yy

2
t + xxtyy

2
t − Θ8zH))

cos2 θWΘ1(zH , yt)Θ7

)

,

CH0

Q1
(ξ̄UN,tt) =

g2ξ̄UN,ttξ̄
D
N,bbmτ

64π2m2
H0mt

(

(−1 + 2 cos2 θW ) yt
cos2 θW Θ4(yt)

− xtyt
Θ5(yt)

+
xtyt(xy − zH)

Θ1(zH , yt)

+
(−1 + 2 cos2 θW )ytzH

cos2 θWΘ7

− 2xt ln

[

Θ5(yt)zH
Θ1(zH , yt)

])

,

CH0

Q1
(g4) = − g4mbmτxt

128π2m2
H0m2

t

(

− 1 +
(−1 + 2x)xt

Θ5(xt) + y(1 − xt)
+

2xt(−1 + (2 + xt)y)

Θ5(xt)
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−4 cos2 θW (−1 + x+ y) + xt(x+ y)

cos2 θWΘ4(xt)
+
xt(x(xt(y − 2zH) − 4zH) + 2zH)

Θ1(zH , xt)

+
yt((−1 + x)xtzH + cos2 θW ((3x− y)zH + xt(2y(x− 1) − zH(2 − 3x− y))))

cos2 θW (Θ3(zH) + x(xt − yt)zH)

+2 (xt ln

[

Θ5(xt)zH
Θ1(zH , xt)

]

+ ln

[

x(yt − xt)zH − Θ3(zH)

(Θ5(xt) + y(1 − xt))ytzH

]

)

)

, (3.12)

Ch0
Q1

((ξ̄UN,tt)
3) = − ξ̄

D
N,ττ (ξ̄

U
N,tt)

3mbyt (Θ1(zh, yt)(2y − 1) + Θ5(yt)(2x− 1)zh)

32π2m2
h0mtΘ1(zh, yt)Θ5(yt)

Ch0
Q1

((ξ̄UN,tt)
2) =

ξ̄DN,ττ (ξ̄
U
N,tt)

2

32π2m2
h0

(

Θ5(yt)zh(yt − 1)(x+ y − 1)

Θ1(zh)Θ5(yt)

− Θ1(zh, yt)(Θ5(yt) + yt)

Θ1(zh)Θ5(yt)
− 2 ln

[

zhΘ5(yt)

Θ1(zh)

])

Ch0

Q1
(ξ̄UN,tt) = −g

2ξ̄DN,ττ ξ̄
U
N,ttmbxt

64π2m2
h0mt

(

2(−1 + (2 + xt)y)

Θ5(xt)
− xt(x− 1)(yt − zh)

Θ′
2(zh)

+ 2 ln

[

zhΘ5(xt)

Θ1(zh, xt)

]

+
x(xt(y − 2zh) − 4zh) + 2zh

Θ1(zh, xt)

− (1 + x)ytzh
xyxtyt + zh((x− y)(xt − yt) − Θ6)

+
Θ9 + ytzh((x− y)(xt − yt) − Θ6)(2x− 1)

zhΘ6(Θ6 − (x− y)(xt − yt))

+
x(ytzh + xt(zh − yt)) − 2ytzh

Θ2(zh)

)

,

Ch0

Q1
(ξ̄DN,bb) = −g

2ξ̄DN,ττ ξ̄
D
N,bb

64π2m2
h0

(

yxtyt(xx
2
t (yt − zh) + Θ6zh(x− 2))

zhΘ2(zh)Θ6

+ 2 ln

[

Θ6

xtyt

]

+ 2 ln

[

xtytzh
Θ2(zh)

])

,

where

Θ1(ω, λ) = −(−1 + y − yλ)ω − x(yλ+ ω − ωλ) ,

Θ2(ω) = (xt + y(1 − xt))ytω − xxt(yyt + (yt − 1)ω) ,

Θ′
2(ω) = Θ2(ω, xt ↔ yt) ,

Θ3(ω) = (xt(−1 + y) − y)ytω + xxt(yyt + ω(−1 + yt)) ,

Θ4(ω) = 1 − x+ xω ,
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Θ5(λ) = x+ λ(1 − x) ,

Θ6 = (xt + y(1 − xt))yt + xxt(1 − yt) ,

Θ7 = (y(yt − 1) − yt)zH + x(yyt + (yt − 1)zH) , (3.13)

Θ8 = yt(2x
2(1 + xt)(yt − 1) + xt(y(1 − yt) + yt) + x(2(1 − y + yt)

+ xt(1 − 2y(1 − yt) − 3yt))) ,

Θ9 = −x2
t (−1 + x+ y)(−yt + x(2yt − 1))(yt − zh) ,

− xtytzh(x(1 + 2x) − 2y) + y2
t (xt(x

2 − y(1 − x)) + (1 + x)(x− y)zh) ,

and

xt =
m2
t

m2
W

, yt =
m2
t

mH±

, zH =
m2
t

m2
H0

, zh =
m2
t

m2
h0

, zA =
m2
t

m2
A0

.

The explicit forms of the functions F1(2)(yt), G1(2)(yt), H1(yt) and L1(yt) appeared

in Eq. (3.10) are given as

F1(yt) =
yt(7 − 5yt − 8y2

t )

72(yt − 1)3
+
y2
t (3yt − 2)

12(yt − 1)4
ln yt ,

F2(yt) =
yt(5yt − 3)

12(yt − 1)2
+
yt(−3yt + 2)

6(yt − 1)3
ln yt ,

G1(yt) =
yt(−y2

t + 5yt + 2)

24(yt − 1)3
+

−y2
t

4(yt − 1)4
ln yt ,

G2(yt) =
yt(yt − 3)

4(yt − 1)2
+

yt
2(yt − 1)3

ln yt ,

H1(yt) =
1 − 4sin2θW
sin2θW

xyt
8

[

1

yt − 1
− 1

(yt − 1)2
ln yt

]

− yt

[

47y2
t − 79yt + 38

108(yt − 1)3
− 3y3

t − 6yt + 4

18(yt − 1)4
ln yt

]

,

L1(yt) =
1

sin2θW

xyt
8

[

− 1

yt − 1
+

1

(yt − 1)2
ln yt

]

. (3.14)

Finally, the initial values of the coefficients in the model III are

C2HDM
i (mW ) = CSM

i (mW ) + CH
i (mW ),

C2HDM
Q1

(mW ) =
∫ 1

0
dx
∫ 1−x

0
dy (CH0

Q1
((ξ̄UN,tt)

2) + CH0

Q1
(ξ̄UN,tt) + CH0

Q1
(g4)

+ Ch0

Q1
((ξ̄UN,tt)

3) + Ch0

Q1
((ξ̄UN,tt)

2) + Ch0

Q1
(ξ̄UN,tt) + Ch0

Q1
(ξ̄DN,bb)),

C2HDM
Q2

(mW ) =
∫ 1

0
dx
∫ 1−x

0
dy (CA0

Q2
((ξ̄UN,tt)

3) + CA0

Q2
((ξ̄UN,tt)

2)
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+ CA0

Q2
(ξ̄UN,tt) + CA0

Q2
(ξ̄DN,bb)) ,

C2HDM
Q3

(mW ) =
mb

mτ sin2 θW
(C2HDM

Q1
(mW ) + C2HDM

Q2
(mW )) ,

C2HDM
Q4

(mW ) =
mb

mτ sin2 θW
(C2HDM

Q1
(mW ) − C2HDM

Q2
(mW )) ,

C2HDM
Qi

(mW ) = 0 , i = 5, ..., 10. (3.15)

Here we present CQ1 and CQ2 in terms of the Feynman parameters x and y since

the integrated results are extremely large and are not suitable to be explicitly

included. Using these initial values, we can calculate the coefficients C2HDM
i (µ)

and C2HDM
Qi

(µ) at any lower scale in the effective theory with five quarks, namely

u, c, d, s, b and use the renormalization group to sum the large logarithms and

their evaluations are similar to the SM case [38, 58, 63, 64].

The Wilson coefficients playing the essential role in this process are C2HDM
7 (µ),

C2HDM
9 (µ), C2HDM

10 (µ), C2HDM
Q1

(µ) and C2HDM
Q2

(µ) and the others merely enter

into expressions due to operator mixing. The operators O5, O6 give a contribution

to the leading order matrix element of b → sγ and the magnetic moment type

coefficient Ceff
7 (µ) is redefined in the naive dimensional reduction (NDR) scheme

as [65]

Ceff
7 (µ) = C2HDM

7 (µ) +Qd (C2HDM
5 (µ) +NcC

2HDM
6 (µ)) ,

where Nc is the number of colors and Qd is the charge for down-type quarks.

Furthermore the next to leading order (NLO) corrected coefficient C2HDM
7 (µ) is

expressed as

C2HDM
7 (µ) = CLO,2HDM

7 (µ) +
αs(µ)

4π
C

(1),2HDM
7 (µ) ,

where the leading order (LO) QCD corrected Wilson coefficient CLO,2HDM
7 (µ) is

CLO,2HDM
7 (µ) = η16/23C2HDM

7 (mW ) + (8/3)(η14/23 − η16/23)C2HDM
8 (mW )

+ C2HDM
2 (mW )

8
∑

i=1

hiη
ai , (3.16)

and η = αs(mW )/αs(µ), hi and ai are the numbers which appear during the

evaluation [38] and C
(1),2HDM
7 (µ) is the αs correction to the LO result, the explicit

form of which can be found in [66, 67].
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Since O2 = (s̄LαγµcLα)(c̄Lβγ
µbLβ) produce dilepton via virtual photon, the cor-

responding Wilson coefficient C2(µ) and the Wilson coefficients C1(µ), C3(µ),...,

C6(µ) induced by the operator mixing give contributions to the Wilson coefficient

Ceff
9 . The perturbative part of Ceff

9 (µ) is defined as

Cpert
9 (µ) = C2HDM

9 (µ)

+ h(z, s) (3C1(µ) + C2(µ) + 3C3(µ) + C4(µ) + 3C5(µ) + C6(µ))

− 1

2
h(1, s) (4C3(µ) + 4C4(µ) + 3C5(µ) + C6(µ))

− 1

2
h(0, s) (C3(µ) + 3C4(µ)) +

2

9

(

3C3(µ) (3.17)

+ C4(µ) + 3C5(µ) + C6(µ)
)

,

where z = mc/mb, s = q2/m2
b , and the function h(z, s) arises from the one loop

contribution of the four quark operators O1,...,O6 and can be given by

h(u, s) = −8

9
ln
mb

µ
− 8

9
ln u+

8

27
+

4

9
x (3.18)

−2

9
(2 + x)|1 − x|1/2











(

ln
∣

∣

∣

√
1−x+1√
1−x−1

∣

∣

∣− iπ
)

, for x ≡ 4u2

s
< 1

2 arctan 1√
x−1

, for x ≡ 4u2

s
> 1,

h(0, s) =
8

27
− 8

9
ln
mb

µ
− 4

9
ln s+

4

9
iπ , (3.19)

with u = mc/mb. In addition to the short distance part there also exist long

distance (LD) effects due to the real c̄c in the intermediate states, i.e. the cascade

process B → K∗ψi → K∗τ+τ− where i = 1, ..., 6. AMM approach [68] is one of

the way of taking these intermediate states into account. In this method the

resonance c̄c contribution is parameterized using a Breit–Wigner form of the

resonance propagator and this contribution is added to the perturbative one to

form LO QCD corrected Ceff
9 (µ) as

Ceff
9 (µ) = Cpert

9 (µ) + Yreson(s) , (3.20)

where Yreson(µ, s) contains both real and imaginary parts3 and is of the form in

the NDR scheme

Yreson(µ, s) = − 3

α2
em

κ
∑

Vi=ψi

πΓ(Vi → τ+τ−)mVi

q2 −m2
Vi

+ imVi
ΓVi

(

3C1(µ) + C2(µ)

3 The imaginary part arises when the c-quark in the loop is on the mass shell.
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+ 3C3(µ) + C4(µ) + 3C5(µ) + C6(µ)
)

, (3.21)

where the phenomenological parameter κ = 2.3 is chosen to be able to reproduce

the correct value of the branching ratio Br(B → J/ψX → Xll̄ ) =Br(B →
J/ψX) Br(J/ψ → ll̄ )[35]. Finally the Wilson coefficients CQi

(µ) at any scale

can be related to the ones at the scale µ = mW as [41]

CQi
(µ) = η−12/23 CQi

(mW ) , i = 1, 2 . (3.22)

The relevant one–loop diagrams contributing to this decay in the SM are given

in Fig. (3.1) and additional contributions from 2HDM are shown in Fig. (3.2).

Finally if we take into account the contributions coming from NHB we get the

diagrams depicted in Fig. (3.3).

b s

γ Z

τ− τ−

b ui

W, φ(a)

b s

γ Z

τ− τ−

sui

W, φ(b)

b s

γ Z

τ− τ−

ui
W, φ W, φ

(c)

b s

γ Z

τ− τ−

ui ui

W, φ(d)

Figure 3.1: The one-loop Feynman diagrams contributing the decay b → sτ+τ−

in the SM.

We now turn our attention back to the decay amplitude of the decay b →
sτ+τ−. Neglecting the strange quark mass the effective Hamiltonian Eq. (3.6)
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γ Z

τ− τ−
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H+(a)

b s

γ Z

τ− τ−

sui

H+(b)

b s

γ Z

τ− τ−

ui
H+ H+

(c)

b s

γ Z

τ− τ−

ui ui

H+(d)

Figure 3.2: The additional one-loop diagrams contributing the process b→ sτ+τ−

obtained within the framework of model III without NHB contributions.

leads to the following QCD corrected amplitude for the inclusive b → sτ+τ−

decay in the model III

M =
αemGF√

2 π
VtbV

∗
ts

{

Ceff
9 (s̄γµPLb) τ̄ γµτ + C10(s̄γµPLb) τ̄ γµγ5τ

−2Ceff
7

mb

q2
(s̄iσµνqνPRb)τ̄ γµτ + CQ1(s̄PRb)τ̄ τ + CQ2(s̄PRb)τ̄ γ5τ

}

.(3.23)

Now our aim is to look at the decay in the hadronic level. To calculate the

decay width, branching ratio, and some more physical quantities for the exclu-

sive B → K∗τ+τ− decay, we need the matrix element of the decay which can

be obtained by inserting the inclusive level effective Hamiltonian in Eq. (3.6)

between initial, B, and final, K∗, hadronic states. The needed matrix element

structures are of the form 〈K∗ |s̄γµ(1 ± γ5)b|B〉, 〈K∗ |s̄iσµνqν(1 + γ5)b|B〉, and
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Figure 3.3: The one-loop diagrams contributing the process b → sτ+τ− within
the framework of model III by including NHB contributions

〈K∗ |s̄(1 ± γ5)b|B〉. These are calculated by using some non-perturbative meth-

ods such as QCD sum rules, light-cone QCD sum rules, etc., These matrix ele-

ments can be parameterized in terms of the form factors as follows (see [45])

〈K∗(pK∗ , ε∗) |s̄γµ(1 − γ5)q|B(pB)〉 = −εµνρσ ε∗νpρqσ
2V (q2)

mB +mK∗

−iε∗µ (mB +mK∗)A1(q
2) + i(ε∗ ·q)(pB + pK∗)µ

A2(q
2)

mB +mK∗

+i (ε∗ ·q) 2mK∗

q2

[

A3(q
2) − A0(q

2)
]

qµ, (3.24)

〈K∗(pK∗ , ε∗) |s̄iσµνqν(1 + γ5)b|B(pB)〉 = 4 εµνρσ ε
∗νpρK∗qσ T1(q

2)

+ 2 i
[

ε∗µ((pB + pK∗) · q) − (ε∗ ·q)(pB + pK∗)µ
]

T2(q
2)

+ 2 i (ε∗ ·q)
[

qµ −
q2

pBq + pK∗q
(pB + pK∗)µ

]

T3(q
2), (3.25)

〈K∗(pK∗ , ε∗) |s̄(1 ± γ5)b|B(pB)〉 = ∓i2mK∗

mb

A0(q
2)(ε∗ ·q) , (3.26)
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where ε∗µ is the polarization vector of K∗, pB and pK∗ are four momentum of B

and K∗ mesons, respectively. V , Ai and Ti (i = 1, 2, 3) are the relevant form

factors and q = pB − pK∗ . The form factor A3(q
2) can in fact be written as a

linear combination of the form factors A1 and A2 of the form (see [47])

A3(q
2) =

mB +mK∗

2mK∗

A1(q
2) − mB −mK∗

2mK∗

A2(q
2) , (3.27)

with the condition A3(0) = A0(0). Therefore, the matrix element of the B →
K∗τ+τ− decay can be written in a compact form as

M = −Gαem
2
√

2π
VtbV

∗
ts

{

τ̄ γµτ
[

2Aεµνρσε
∗νpρK∗qσ + iB1ε

∗
µ − iB2(ε

∗ ·q)(pB + pK∗)µ

−iB3(ε
∗ ·q)qµ

]

+ τ̄ γµγ5τ
[

2Cεµνρσε
∗νpρK∗qσ + iD1ε

∗
µ − iD2(ε

∗ ·q)(pB + pK∗)µ

−iD3(ε
∗ ·q)qµ

]

+ i τ̄ τ F (ε∗ ·q) + i τ̄γ5τ G(ε∗ ·q)
}

, (3.28)

where A, C, F and G, Bi and Di, i = 1, 2, 3 are functions of Wilson coefficients

and form factors of the relevant process. Their explicit forms are

A = −Ceff
9

V

mB +mK∗

− 4Ceff
7

mb

q2
T1,

B1 = −Ceff
9 (mB +mK∗)A1 − 4Ceff

7

mb

q2
(m2

B −m2
K∗)T2 ,

B2 = −Ceff
9

A2

mB +mK∗

− 4Ceff
7

mb

q2

(

T2 +
q2

m2
B −m2

K∗

T3

)

,

B3 = −Ceff
9

2mK∗

q2
(A3 − A0) + 4Ceff

7

mb

q2
T3 ,

C = −C10
V

mB +mK∗

,

D1 = −C10(mB +mK∗)A1 ,

D2 = −C10
A2

mB +mK∗

,

D3 = −C10
2mK∗

q2
(A3 − A0) ,

F = CQ1

2mK∗

mb

A0 ,

G = CQ2

2mK∗

mb

A0 , (3.29)

We use the following q2 dependent parametrization which is calculated in the

framework of light–cone QCD sum rules in [48] to calculate the hadronic form
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factors V, A1, A2, A0, T1, T2 and T3:

F (q2) =
F (0)

1 − aF
q2

m2
B

+ bF (
q2

m2
B

)2

, (3.30)

where the values of parameters F (0), aF and bF are listed in Table (3.1).

Table 3.1: The values of parameters existing in Eq. (3.30) for the various form
factors appearing in the B → K∗ matrix elements.

F (0) aF bF

A1 0.34 ± 0.05 0.60 −0.023
A2 0.28 ± 0.04 1.18 0.281
V 0.46 ± 0.07 1.55 0.575
T1 0.19 ± 0.03 1.59 0.615
T2 0.19 ± 0.03 0.49 −0.241
T3 0.13 ± 0.02 1.20 0.098

After getting the matrix element of the relevant decay process we are ready to

calculate the forward–backward asymmetry of the lepton pair and CP violating

asymmetry in forward–backward asymmetry for B → K∗τ+τ− decay.

The forward–backward asymmetry AFB of the lepton pair is a measurable

physical quantity providing important clues to test the theoretical models used.

The differential AFB is defined as:

AFB =

∫ 1

0
dz
dΓ

dz
−
∫ 0

−1
dz
dΓ

dz
∫ 1

0
dz
dΓ

dz
+
∫ 0

−1
dz
dΓ

dz

, (3.31)

with z = cos θ, where θ is the angle between the momentum of B meson and that

of τ− in the center of mass frame of the dileptons τ+τ−. With the help of the

well-known equation for the differential decay width

dΓ =
(2π)4

2M
|M|2 δ4(P −

n
∑

i=1

pi)
n
∏

i=1

d3pi
(2π)3 2Ei

, (3.32)

where M is the mass of the decaying particle, P is its momentum, and pi and

Ei are the momenta and the energies of the final particles, and by using the
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matrix element in Eq. (3.28) together with Eqs. (3.31) and (3.32) we can get the

differential AFB as of the form

AFB =

∫

dsE(s)
∫

dsD(s)
, (3.33)

where

E(s) = 6mB λ v
2

{

1

mb r (r − 1)

(

4mBmτ Re(C
eff∗
7 CQ1)

(

mb(
√
r − 1)A2 (q2)

+ mb(
√
r + 1)A1 (q2) − 2mB s T3 (q2)

)(

(r − 1) (3 r − s+ 1)T2 (q2)

+ (r2 + (s− 1)2 − 2 r (s+ 1))T3 (q2)
)

)

− 1

m2
b r (1 +

√
r)

(

m2
Bmτ Re(C

eff∗
9 CQ1)

(

mb(
√
r − 1)A2 (q2)

+ mb(
√
r + 1)A1 (q2) − 2mB s T3 (q2)

)(

(1 +
√
r)2 (r + s− 1)A1 (q2)

+ λA2 (q2)
)

)

+ 8C10

(

− 2mBmb (
√
r − 1)Re (Ceff

7 )T2 (q2)V (q2)

+ A1 (q2)
(

2mbmB(
√
r + 1)Re (Ceff

7 )T1 (q2)

+ m2
B sRe(C

eff
9 )V (q2)

)

)}

, (3.34)

D(s) =
√
λ v

{

32

mB s2
m2
b |C7|2 (2m2

τ +m2
Bs
s)

(

2 s

r (r − 1)
(1 + 3 r − s)(T2(q

2)

T3(q
2)λ) + 8T 2

1 (q2)λ+
T 2

3 (q2) s λ2

r (r − 1)2
+

1

r
T 2

2 (q2)
(

12 (r − 1)2 r

− (4 r − s)λ
)

)

+
2

(1 +
√
r)2 r s

mB|Ceff
9 |2(2m2

τ +m2
Bs
s)

(

2A1(q
2)A2(q

2) (1 +
√
r)2 (r + s− 1)λ+ A2

1(q
2) (1 +

√
r)4

(12 r s+ λ) + λ (8 r s V 2(q2) + A2
2(q

2)λ)

)

+ 2C2
10mB

(

1

r s

(

2A1(q
2)

A2(q
2)(2m2

τ (r − 2 s− 1) +m2
Bs
s (r + s− 1))λ

)

− 1

mb r

(

24mBm
2
τ (A2(q

2) (−1 +
√
r) + A1(q

2) (1 +
√
r))T3(q

2)λ
)

+
24

m2
b r

m2
Bs
m2
τ λ s T3(q

2) +
8

(1 +
√
r)2

(m2
Bs
s− 4m2

τ )V
2(q2)λ)

+
λ

(1 +
√
r)2 r s

A2
2(q

2)
(

m2
Bs
s λ+ 2m2

τ (6 s (1 + r) − 3 s2 + λ))
)
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+
1

r s

(

(1 +
√
r)2A2

1(q
2)(m2

Bs
s(12 r s+ λ) +m2

τ (−48 r s+ 2λ))
)

)

+
3m3

B λ

m4
b r

|CQ1 |2
(

m2
Bs
s− 4m2

τ

)(

A2(q
2)mb (

√
r − 1)

+ A1(q
2)mb (

√
r + 1) − 2T3(q

2)mB s
)2

+
3m5

B λ

m2
b r

|CQ2|2 s
(

A2(q
2) (

√
r − 1) + A1(q

2) (
√
r + 1)

− 2T3(q
2)m2

Bs

√
r s
)2

+
1

(1 +
√
r)2 s

Re(Ceff∗
7 Ceff

9 )16mb (2m
2
τ +m2

Bs
s)

(

8(1 +
√
r)T1(q

2)V (q2)λ− 1

(−1 +
√
r) r

(

A2(q
2) (λ(r − 1)(1 + 3 r − s)

T2(q
2) + λT3(q

2)) + A1(q
2) (1 +

√
r)2((r − 1)T2(q

2) (12(r − 1) r − λ)

+ (r + s− 1)T3(q
2)λ)

)

)

− 12

m2
b r

C10Re(CQ2)m
3
Bs
mτ

(

mb ((−1 +
√
r)

A2(q
2) + (1 +

√
r)A1(q

2)) − 2mB T3(q
2)
)(

A2(q
2)(1 −

√
r)

− A1(q
2) (1 +

√
r) + 2m2

Bs

√
r s T3(q

2)
)

λ

}

, (3.35)

where λ(1, r, s) = 1 + r2 + s2 − 2r − 2s − 2rs, r = m2
K∗/m2

B and s = q2/m2
B.

The NHB effects bring new contributions to AFB and those are examined in the

Numerical analysis and Discussion part.

Another measurable physical quantity to be extracted from the decay is the

CP violating asymmetry in the decay. The complex Yukawa couplings are a

possible source of CP violation in model III. In our theoretical calculations we

neglect all the Yukawa couplings except ξ̄UN,tt, ξ̄
D
N,bb and ξ̄DN,ττ and choose ξ̄DN,bb

complex, i.e., ξ̄DN,bb = |ξ̄DN,bb| eiθ (see Numerical Analysis and Discussion part).

Therefore the CP violation stems from the Wilson coefficients Ceff
7 , CQ1 , and

CQ2 . The CP violating asymmetry can be defined as

ACP =
Γ(B → K∗τ+τ−) − Γ(B̄ → K̄∗τ+τ−)

Γ(B → K∗τ+τ−) + Γ(B̄ → K̄∗τ+τ−)
. (3.36)

Total decay width can be computed for both B → K∗τ+τ− and its CP conjugate

decay mode and then we eventually get

ACP =

∫

dsΩ(s)
∫

dsΛ(s)
, (3.37)
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where

Ω(s) =
mb α

2
e G

2
F λ

2
t

384π5 s (1 +
√
r)2

v
√
λ Im(Ceff

7 ) Im(Ceff
9 ) (2m2

τ +m2
Bs
s)

{

8 (
√
r + 1)λT1(q

2)V (q2) − 1

r (
√
r − 1)

(

λA2(q
2)

(

(r − 1)(3 r − s+ 1)T2(q
2) + λT3(q

2)
)

+ (
√
r + 1)2A1(q

2)

(

(r − 1)T2(q
2)(12 (r − 1) r − λ) + (r + s− 1)λT3(q

2)
)

)}

, (3.38)

and

Λ(s) = D(s) +DCP (s) . (3.39)

Here DCP (s) is the CP conjugate of D(s) which is defined as

DCP (s) = D(s)(ξ̄DN,bb → ξ̄D∗
N,bb) . (3.40)

The last physical quantity which might be considered is the CP violating asym-

metry in AFB(ACP (AFB)) and this can also give strong clues for physics beyond

the SM. This is directly defined as

ACP (AFB) =
AFB − ĀFB
AFB + ĀFB

, (3.41)

where ĀFB is the CP conjugate of AFB and it is, under chosen conditions, given

as

ĀFB = AFB(ξ̄DN,bb → ξ̄D∗
N,bb) . (3.42)

Note that during the calculations of ACP , AFB and ACP (AFB) we take into

account merely the second resonance for the LD effects coming from the reaction

b → sψi → sτ+τ−, where i = 1, .., 6 and divide the integration region for s into

two parts : 4m2
τ/m

2
B ≤ s ≤ (mψ2 − 0.02)2/m2

B and (mψ2 + 0.02)2/m2
B ≤ s ≤ 1,

where mψ2 = 3.686GeV is the mass of the second resonance.

3.2 Numerical Analysis and Discussion

Unlike the cases in the SM and model I(II) version of the 2HDM there are more

free parameters in the general 2HDM. These are the masses of charged and neutral
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Higgs bosons and complex Yukawa couplings (ξU,D,Eij ). The restrictions coming

from the experimental measurements put some constraints on the arbitrariness

of the numerical values of those parameters. The physical regions for these have

become more controlled as time goes on. Let us first discuss the consequences

and conditions imposed on the Yukawa couplings by the CLEO measurement for

the decay B → Xsγ [69]

Br(B → Xsγ) = (3.15 ± 0.35 ± 0.32) × 10−4 , (3.43)

The contributions to Ceff
7 coming from the neutral Higgs bosons, namely scalar

h0 and pseudoscalar A0, can be calculated at mW level as [64]

Ch0

7 (mW ) = (VtbV
∗
ts)

−1
∑

i=d,s,b

ξ̄DN,bi ξ̄
D
N,is

Qi

8mimb

,

CA0

7 (mW ) = (VtbV
∗
ts)

−1
∑

i=d,s,b

ξ̄DN,bi ξ̄
D
N,is

Qi

8mimb

, (3.44)

where mi and Qi are the masses and charges of the down type quarks (i = d, s, b)

respectively and we used the redefinition

ξU,D,E =

√

4GF√
2
ξ̄U,D,E . (3.45)

The explicit expressions in Eq. (3.44) show that the neutral Higgs bosons can

give a large contribution to the coefficient Ceff
7 and this is in contradiction with

the CLEO measurement given in Eq. (5.11). To fit the theoretical result with

experiment we make the assumption that the couplings ξ̄DN,is (i = d, s, b) and

ξ̄DN,db are negligible which enable us to reach the conditions ξ̄DN,bb ξ̄
D
N,bs << 1 and

ξ̄DN,db ξ̄
D
N,ds << 1. By further using the constraints [61] coming from the ratio

Rexp
b = Γ(Z → bb̄)/Γ(Z → hadrons), namely ξ̄DN,bb>60mb/υ, the restrictions due

to the 4F = 2 mixing, the ρ parameter [23], and the CLEO measurement leads

also to following restrictions on the Yukawa couplings as ξ̄Ntc<< ξ̄
U
N,tt, ξ̄

D
N,bb and

ξ̄DN,ib ∼ 0, ξ̄DN,ij where the indices i,j denote d and s quarks. Thus we merely take

into account the Yukawa couplings of quarks ξ̄UN,tt and ξ̄DN,bb and keep the Yukawa

coupling ξ̄EN,ττ free and increase this parameter to enhance the effects of neutral

Higgs bosons.
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In this section, we indeed study the CP parameter sinθ, the Yukawa coupling

ξ̄EN,ττ and the mass ratio mh0/mA0 dependencies of the AFB, ACP and ACP (AFB)

of the exclusive decay B → K∗τ+τ−, restricting |Ceff
7 | in the region 0.257 ≤

|Ceff
7 | ≤ 0.439 due to the CLEO measurement, Eq. (5.11) (see [61] for details).

Our numerical analysis is based on this restriction. We also take |ξ̄UN,tt/ξ̄DN,bb|< 1

and choose the scale µ = mb to include the LD effects and use the input values

given in Table (4.1).

Table 3.2: The values of the input parameters used in the numerical analysis of
the exclusive decay B → K∗τ+τ−.

Parameter Value

mτ 1.78 (GeV)
mc 1.4 (GeV)
mb 4.8 (GeV)
ξ̄DN,bb 40mb

α−1
em 129
λt 0.04
mt 175 (GeV)
mW 80.26 (GeV)
mZ 91.19 (GeV)
mH0 150 (GeV)
mh0 70 (GeV)
mH± 400 (GeV)
ΛQCD 0.225 (GeV)
αs(mZ) 0.117
sinθW 0.2325

In Fig. (3.4) sinθ dependency of AFB without the NHB effects is presented

for mA0 = 80GeV . AFB lies here in the region bounded by solid (dashed) lines

for Ceff
7 > 0 (Ceff

7 < 0). There is a straight line indicating the SM contribution.

In the model III without the NHB effects, |AFB| is smaller compared to the

one in the SM (0.195) for the case Ceff
7 > 0, but there is a possibility to make

an enhancement in it, at the order of the magnitude 2%, by increasing sinθ.

For Ceff
7 < 0, AFB is not sensitive to sinθ and the restriction region is narrow.

However in this case |AFB| can have slightly greater values compared to the SM
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Figure 3.4: AFB as a function of sinθ for mA0 = 80GeV without NHB effects.
Here AFB is restricted in the region between solid (dashed) lines for Ceff

7 > 0
(Ceff

7 < 0). Straight line corresponds to the SM prediction.

one. Taking into account of the NHB effects (see Fig. (3.5)) reduces |AFB| for

Ceff
7 >0 almost 30% compared to the one without the NHB effects. For Ceff

7 <0,

the restriction region becomes narrow and AFB reaches the SM predicted value

for small sinθ.

Fig. (3.6) represents ξ̄EN,ττ dependence of AFB for sinθ = 0.5 and mA0 =

80GeV . |AFB| vanishes with increasing ξ̄EN,ττ for Ceff
7 > 0. But for Ceff

7 < 0,

|AFB| does not vanish in the given region of ξ̄EN,ττ and it stands less than the

SM result. Fig. (3.7) is devoted to the ratio mh0/mA0 dependence of AFB for

sinθ = 0.5 and ξ̄EN,ττ = 10mτ . Increasing values of the ratio causes to increase

|AFB| for both Ceff
7 > 0 and Ceff

7 < 0. If the masses of h0 and A0 are far from

the degeneracy, |AFB| becomes small especially for the case Ceff
7 > 0.

Figs. (3.8)–(3.9) represent ACP of the process B → K∗τ+τ−. In Fig. (3.8)

we present sinθ dependence of ACP without the NHB effects, for mA0 = 80GeV .

Here ACP lies in the region bounded by solid (dashed) lines for Ceff
7 >0 (Ceff

7 <0).

For Ceff
7 > 0, ACP is at the order of the magnitude of 1% for the intermediate

values of sinθ and its sign does not change in the restriction region. However

ACP can have both signs, even vanish for Ceff
7 < 0. With the addition of the
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Figure 3.5: AFB as a function of sinθ for ξ̄EN,ττ = 10mτ including the NHB effects.

Here AFB is restricted in the region between solid (dashed) lines for Ceff
7 > 0

(Ceff
7 < 0). Straight line corresponds to the SM prediction.

NHB effects (see Fig. (3.9)) ACP for Ceff
7 > 0 decreases to almost one half of

what we get in the case without the NHB effects. For Ceff
7 < 0 there is still a

decrease in ACP . This behavior can be seen from the expression Eq. (3.38) since

the numerator of the ACP ratio is free from the NHB effects and their additional

contributions enter into the expression in the denominator part. Further, the

restriction regions become narrow.

Fig. (3.10) represents ξ̄EN,ττ dependence of ACP for sinθ = 0.5 and mA0 =

80GeV . ACP is sensitive to the parameter ξ̄EN,ττ and it decreases with increasing

ξ̄EN,ττ for Ceff
7 >0. However, for Ceff

7 <0, the dependence of ACP to ξ̄EN,ττ is weak.

The ratio mh0/mA0 dependence of ACP for sinθ = 0.5 and ξ̄EN,ττ = 10mτ is

presented in Fig. (3.11). As seen from the figure the sensitivity ACP to the ratio

is small, especially for Ceff
7 <0.

Finally, we present the CP violating asymmetry in AFB in a series of figures

(Figs. (3.12)–(3.14)). Fig. (3.12) represent sinθ dependence of ACP (AFB) with

NHB effects, for mA0 = 80GeV and ξ̄EN,ττ = 10mτ . ACP (AFB) is at the order of

the magnitude of 1% for the intermediate values of sinθ for Ceff
7 > 0. Its sign

does not change in the restriction region similar to the ACP of the process under

consideration. However ACP (AFB) can have both signs, even vanish for Ceff
7 <0.
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Figure 3.6: AFB as a function of ξ̄EN,ττ for sinθ = 0.5 and mA0 = 80GeV . Here

AFB is restricted in the region between solid (dashed) lines for Ceff
7 > 0 (Ceff

7 <
0). Straight line corresponds to the SM prediction.

ACP (AFB) is sensitive to the parameter ξ̄EN,ττ especially for the large values of

ξ̄EN,ττ and Ceff
7 > 0 (see Fig. (3.13)). It can reach 10% for ξ̄EN,ττ =50GeV . In the

case Ceff
7 <0, ACP (AFB) is not sensitive to ξ̄EN,ττ and it almost vanishes.

Fig. (3.14) is devoted to the ratio mh0/mA0 dependence of ACP (AFB) for

sinθ = 0.5 and ξ̄EN,ττ =10mτ . Increasing values of the ratio causes to increase

|ACP (AFB)| for Ceff
7 >0. With the increasing mass ratio of h0 andA0, |ACP (AFB)|

can take large values. For Ceff
7 <0, ACP (AFB) is not sensitive to the mass ratio.

What follows from all these discussions can be briefly summarized as follows:

• |AFB| for the process under consideration is of the order of 10−2 and smaller

compared to the SM one, for Ceff
7 >0. It can exceed the SM value (0.195)

for Ceff
7 < 0. Addition of the NHB effects decreases its magnitude by

30% (slightly) for Ceff
7 > 0 (Ceff

7 < 0). AFB is sensitive to the parameters

sinθ, ξ̄EN,ττ and mh0/mA0 especially for Ceff
7 > 0. Its magnitude decreases

(increases) with increasing values of ξ̄EN,ττ (mh0/mA0).

• |ACP | is of the order of 10−2. Addition of the NHB effects decreases its

magnitude by 50% (slightly) for Ceff
7 > 0 (Ceff

7 <). It has the same sign

in the restriction region Ceff
7 > 0 and it can take both signs for Ceff

7 < 0.
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Figure 3.7: AFB as a function of mh0/mA0 for sinθ = 0.5 and ξ̄EN,ττ = 10mτ .

Here AFB is restricted in the region between solid (dashed) lines for Ceff
7 > 0

(Ceff
7 < 0). Straight line corresponds to the SM prediction.

ACP is sensitive to the parameters sinθ, ξ̄EN,ττ especially for Ceff
7 > 0. It

decreases with increasing values of ξ̄EN,ττ . The sensitivity of ACP to the ratio

mh0/mA0 is weak.

• ACP (AFB) is of the order of the magnitude of 1% for the intermediate values

of sinθ parameter for Ceff
7 >0. It has the same sign in the restriction region

Ceff
7 > 0 and it can take both signs for Ceff

7 < 0. ACP (AFB) is sensitive

to the parameters ξ̄EN,ττ and
m

h0

m
A0

for Ceff
7 > 0. It increases with increasing

values of ξ̄EN,ττ , even reach to 10%. Further increasing the values of the ratio

mh0/mA0 causes to increase |ACP (AFB)|.

Therefore, the experimental investigations of the physical quantities AFB and

ACP and ACP (AFB) ensure a crucial test for new physics effects beyond the SM

and also for the sign of Ceff
7 .
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Figure 3.9: ACP as a function of sinθ for ξ̄EN,ττ = 10mτ including the NHB effects.

Here AFB is restricted in the region between solid (dashed) lines for Ceff
7 > 0

(Ceff
7 < 0).
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Figure 3.10: ACP as a function of ξ̄EN,ττ for sinθ = 0.5 and mA0 = 80GeV .

Here AFB is restricted in the region between solid (dashed) lines for Ceff
7 > 0

(Ceff
7 < 0).
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Figure 3.11: ACP as a function of mh0/mA0 for sinθ = 0.5 and ξ̄EN,ττ = 10mτ .

Here AFB is restricted in the region between solid (dashed) lines for Ceff
7 > 0

(Ceff
7 < 0).
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Figure 3.13: ACP (AFB) as a function of ξ̄EN,ττ for sinθ = 0.5 and mA0 = 80GeV .

Here AFB is restricted in the region between solid (dashed) lines for Ceff
7 > 0

(Ceff
7 < 0).
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Figure 3.14: ACP (AFB) as a function of mh0/mA0 for sinθ=0.5 and ξ̄EN,ττ =10mτ .

Here AFB is restricted in the region between solid (dashed) lines for Ceff
7 > 0

(Ceff
7 <0).
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CHAPTER 4

LEPTON FLAVOR VIOLATING Z → l−1 l
+
2 DECAY

It is well known that processes involving FCNC, like the one described in the

previous chapter are severely suppressed by experimental data even though they

seem not to violate any known fundamental law of nature. On the other hand,

experimental constraints on FCNC are perfectly consistent with SM issues so far,

with the impressive exception of neutrino oscillations [70]. In the case of the

leptonic sector this can be achieved by the implementation of the lepton flavor

conservation (LFC), a new symmetry which protects the possible phenomenology

from these dangerous processes.

However, the high statistic results of the superkamiokande atmospheric neu-

trino experiment and the solar neutrino experiment [70] have made one to believe

that LFC is not exact and we than expect to find out LFV processes in near fu-

ture experiments. Since the predictions for these processes in the framework of

the SM are by far out of the scope of next generation colliders, any signal for this

kind of events would imply the existence of the physics beyond the SM. Among

these, LFV leptonic Z-decays, such as Z→eµ, Z→eτ and Z→µτ have recently

received great attention for the search of neutrinos, their mixing and possible

masses and the physics beyond the SM. This is because that the Giga–Z option

of the DESY TeV energy superconducting linear accelerator (TESLA) project will

work at the Z resonance and increase the production rate of Z boson at resonance

[71].

There are many theories which appear in the literature as an extension of the

SM to describe the LFV Z decays. Before discussing, on the theoretical side, the
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studies and their predictions for LFV Z decays in the literature, it is suitable to

present the current experimental upper bounds for decays under consideration.

The first best measurements of the Br,s for Z→eµ, Z→eτ and Z→µτ obtained

at the CERN e+e− collider LEP I [72] were1

Br(Z → e∓µ±) < 1.7 × 10−6 [73] ,

Br(Z → e∓τ±) < 9.8 × 10−6 [73, 74] ,

Br(Z → µ∓τ±) < 1.2 × 10−5 [73, 75] , (4.1)

and with the improved sensitivity at Giga-Z these numbers could be pulled down

to [76]

Br(Z → e∓µ±) < 2 × 10−9 ,

Br(Z → e∓τ±) < f × 6.5 × 10−8 ,

Br(Z → µ∓τ±) < f × 2.2 × 10−8 . (4.2)

On the theoretical side, one of the extended SM permitting lepton mixing

mechanism [77] is the so called νSM which consists of massive and mixing neu-

trinos. In this framework the structure in the lepton sector is similar to the one in

the quark sector and the first predictions for such Z decays were given in [78, 79].

In the context of the νSM with light neutrinos the predicted Br,s are indeed

extremely small [78, 80], i.e., Br(Z → e∓µ±) ∼ Br(Z → e∓τ±) ∼ 10−54 and

Br(Z → µ∓τ±) < 4 × 10−60. Another way of enhancing the Br,s of Z decays is

achieved by further extending the νSM with one heavy ordinary Dirac neutrino

[80]. String inspired models [81] and most grand unified theories [82] introduce

that kind of heavy neutrinos into picture. In this context the Br,s for Z decays

comparable with the current experimental limits can only be possible within a

mass range of several hundred GeV for neutrinos. A further variation of the νSM

is the one which is extended with two heavy right-handed Majorana neutrinos

[80]. Large neutrino mass region is again needed for reaching sizable Br,s for Z

1 The Br is taken, by summing the CP conjugated final states, of the form Br(Z → l∓1 l±2 ) =
Γ(Z → l̄1l2 + l1 l̄2)

ΓZ
.

47



decays. Recently the LFV Z decays are also studied in the context of the Zee

model [83]. In this framework, among the decay modes of Z considered here, the

Z → eτ decay channel receives the largest contribution, even being smaller than

the present limits. For the other two decay modes within this context they are

far from experimental verification in the next colliders.

Our task in this chapter is to work out the Br,s of LFV Z decay modes

Z → eµ, Z → eτ and Z → µτ in the model III version of 2HDM and to

analyze their dependencies on free parameters of the model. By assumption,

in the leptonic sector, no charged flavor changing interaction exists due to the

absence of a CKM type matrix. Thus the neutral Higgs bosons h0 and A0 with

tree level FCNC allowed Yukawa couplings are the only source for getting LFV Z

decays. From the computational point of view the Yukawa couplings appearing

in these decay modes as a free parameter can be constrained in the following

manner. Experimental upper limits for the electric dipole moments (EDMs) of

leptons put the Yukawa couplings into a restricted region. Theoretically we know

that non–zero EDMs are merely possible if the Yukawa couplings are chosen to be

complex. The Br of the LFV decay µ → eγ which also exists in this model can

further be used for predicting the upper bounds of the Yukawa couplings. These

are all discussed in the numerical analysis section. We carry out the calculations

at one loop level and find that in the context of model III it is possible to reach

the present experimental upper limits for the Br,s of the decays considered by

adjusting the free parameters of the model respecting the bounds coming from

experimental side.

The rest of the chapter is organized as follows. In Section 2, we present

the explicit expressions for the Branching ratios of Z → e−µ+, Z → e−τ+ and

Z → µ−τ+ in the framework of the model III. Section 3 is devoted to numerical

analysis and our conclusions.
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4.1 The One-Loop Calculation for Z → l−1 l
+
2

In this section, we outline the basic steps for calculating the one-loop LFV

amplitude M for Z → l−1 l
+
2 decay due to contributions coming from neutral

Higgs bosons h0 and A0 in model III. To this aim, let us first present part of

the Lagrangian responsible for this LFV decay. The flavor changing part of the

Yukawa Lagrangian in the leptonic sector can be read from Eq. (2.16) as

LY,FC = ξEij l̄iL Φ2EjR + h.c. . (4.3)

This is clear from the fact that by choosing the representation of Φ1 and Φ2 dou-

blets of the form in Eq. (2.31), we are able to collect all new particles appearing

beyond the SM in the Φ2 doublet. Therefore FCNCs at tree level can only be pro-

duced by the terms being Φ2 dependent in Eq. (2.31), which is the one depicted

above2.

The diagrams that modify (at one-loop) the Zlj l̄k coupling due to neutral

scalar exchanges are depicted in Fig. (4.1). There are four separate diagrams, first

two of which are called self–energy diagrams and the others are called triangular

vertex diagrams. From Fig. (4.1) it is evident that we have only three types of

interaction vertices to consider. These are defined as follows:

• Z − lj − l̄i interaction

Zµ

li

li

iγµ(aL(Zi)L+ aR(Zi)R) δij = V µ
ij(Z) (4.4)

2 As already noted that only neutral scalars contributes, we then replace ξE with ξE
N where

N denotes the word neutral and define ξ̄E
N which satisfies the equation ξE

N =
√

4GF /
√

2 ξ̄E
N .
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Figure 4.1: One loop diagrams contributing to Z → l−j l
+
k decay due to the neutral

Higgs bosons Sα = h0, A0 in the 2HDM. li represents the internal, lj (lk) outgoing
(incoming) lepton, wavy lines the vector field Z, and the dashed lines h0 and A0

fields.

where L(R) = (1− (+)γ5)/2. For the case of the SM couplings a vector field Z to

a pair of leptons, there are only flavor diagonal couplings and the explicit forms

of the coefficients are given as

aL,R(Zi) = −gW (T
3(i)
L,R − sin2 θW Qi) , (4.5)

where T
3(i)
L = −1

2
, T

3(i)
R = 0 and Qi is the charge of the lepton i (−1) and the

coupling constants are defined as gW = g/ cos θW , g = e/ sin θW .
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• Z − Sα − Sβ interaction

Zµ

Sα

Sβ

gW

2
(pβ − pα)

µ(1 − δαβ) = V µ
β (4.6)

where pα and pβ are the incoming 4-momenta of the neutral Higgs bosons

(Sα,β = h0, A0). In this case, scalar diagonal vertex vanishes which can be

justified from the kinetic term for the Higgs fields in the Lagrangian. Here

this is implemented with the factor (1 − δαβ).

• Sα − lj − l̄i interaction

Sα

li

lj

− i√
2
[ bijL(α)L+ bijL(α)R ] = V

(α)
ij (4.7)

where bijL,R(α) can be given in terms of the complex Yukawa couplings ξEN,ij

for each scalar field. For α = h0, we have

bijL(h0) = ξE∗
N,ji , bijR(h0) = ξEN,ij , (4.8)

and for α = A0 we have

bijL(A0) = −iξE∗
N,ji , bijR(A0) = iξEN,ij . (4.9)

In calculating the amplitude for the decay, we further need to set the propaga-

tors for lepton and massive scalar particles. The propagator for massive scalar
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particles Sα with momentum q is

D(α)(q) =
i

q2 −m2
α

, α = h0, A0, (4.10)

and the one for leptons with momentum q is

Dij(q) =
i(q/ +mi)

q2 −m2
i

δij , i, j = e, µ, τ. (4.11)

The one-loop amplitudes Mk (k = a, b, c, d corresponding to diagrams (a), (b), (c),

(d) in Fig. (4.1), respectively) can now be worked out. Let us start calculating

the self energy diagrams.

lk, p

Sα

q

li, p+ q lj, p

Figure 4.2: The leg including one loop of the self energy diagrams in Fig. (4.1).

To compute them the essential point is to calculate separately the upper leg

of the diagram where there is a loop of diagram (a) in Fig. (4.1), depicted in Fig.

(4.2). Then the amplitudes for the self energy diagrams can be readily calculated

together with the help of the vertex factors in Eqs. (4.1), (4.1), and (4.1). The

amplitude for the diagram in Fig. (4.2) is

Σ
(α)
jk (p, q) =

∑

i,m=e,µ,τ

V
(α)
ji

†
Dim(p+ q)V

(α)
mk D(α)(q). (4.12)

where Then we write the one–loop amplitude, Ma, for diagram (a) in Fig. (4.1)

for lj l̄k final leptons

M(α)
a,jk =

∫ d4q

(2π)4

∑

i,l=e,µ,τ

[

εµ(Q) ū(p1) Σ
(α)
ji (p1, q)Dil(p1)V

µ
lk(Z) u(p2)

]

, (4.13)

where εµ being the boson polarization vector and Q is the 4–momentum of the

on–shell Z boson. Similarly for diagram (b), we have

M(α)
b,jk =

∫ d4q

(2π)4

∑

i,l=e,µ,τ

[

εµ(Q) ū(p1)V
µ
ji(Z)Dil(p2) Σ

(α)
lk (p2, q)u(p2)

]

. (4.14)
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Total amplitude of the self energy diagrams for each scalar particles is then

M(α)
ab,jk = M(α)

a + M(α)
b

= εµ(Q) ū(p1)

[

∫ d4q

(2π)4

∑

i,l=e,µ,τ

[Σ
(α)
ji (p1, q)Dil(p1)V

µ
lk(Z)

+V µ
ji(Z)Dil(p2) Σ

(α)
lk (p2, q)]

]

u(p2) . (4.15)

Next we can write one–loop amplitude for diagram (c) depicted in Fig. (4.1)

M(α)
c,jk =

∫ d4q

(2π)4

∑

i,l,m,n=e,µ,τ

[

εµ(Q) ū(p1) (−V (α)
ji )Dil(p1 + q)V µ

lm(Z)

Dmn(p2 + q)V
(α)
nk D(α)(q)u(p2)

]

. (4.16)

Even though diagram (d) represents four separate contributions, only two of them

give non-zero contribution due to absence of Z−Sα−Sα type vertex. Then they

are expressed as

M(αβ)
d,jk =

∫ d4q

(2π)4

∑

i,l,m,n=e,µ,τ

[

εµ(Q) ū(p1) (−V (α)
ji )Dil(q)V

(β)
lk D(β)(p1 − q)

×V µ
αZβ D(α)(q − p2)u(p2)

]

, (4.17)

where α 6= β. Since for α = β, V µ
αZα=0 from Eq. (4.1) (M(αα)

d,jk = 0). Total

amplitude for the decay Z → lj l̄k becomes

Mjk =
∑

α,β,i

(M(α)
ab + M(α)

c + M(αβ)
d )

= εµ(Q) ū(p1) Γµ u(p2), (4.18)

where Γµ = Γµab + Γµcd is called the effective vertex function for the interaction of

on-shell Z bosons with a fermionic current3 and Γµab + Γµcd are given as

Γµab =
∫ d4q

(2π)4

∑

α

∑

i,l

[

Σ
(α)
ji (p1, q)Dil(p1)V

µ
lk(Z) + V µ

ji(Z)Dil(p2) Σ
(α)
lk (p2, q)]

]

,

Γµcd = −
∫ d4q

(2π)4

∑

α,β

∑

i,l,m,n

[

V
(α)
ji Dil(p1 + q)V µ

lm(Z)Dmn(p2 + q)V
(α)
nk D(α)(q)

+ V
(α)
ji Dil(q)V

(β)
lk D(β)(p1 − q)V µ

αZβ D(α)(q − p2)
]

. (4.19)

3 We suppressed the j, k external lepton indices in the vertex function.

53



Having expressed the implicit form of the vertex function, our next job is to

deal with the structures appearing in denominators coming from propagators.

With the help of Feynman parametrization they can be put into quadratic forms

in loop integral variable, which apparently simplifies the one–loop integrals. De-

tails of Feynman parametrization and of putting the denominators of the vertex

functions into quadratic form as an application are given in appendix C. Before

dealing with the Dirac structures in the numerator of the vertex function Γµ, let

us say a few words about the finiteness of the integral over internal momentum.

Although the sum of the four diagrams in Fig. (4.1) is finite, each single dia-

gram is divergent. To handle the divergent terms we will use a method known as

dimensional regularization4[85]. More about dimensional regularization can be

found in appendix D.

Let us turn our attention to structures in the numerators of Γµ. The possible

form can be in fact narrowed down by appealing to some physical requirements

such as Lorentz invariance, current conservation and any discrete symmetry if it

is not violated. From the Lorentz invariance, Γµ should transform as a vector,

which enables us to set the possible form a linear combination of the vectors

(axial–vectors), γµ(γµγ5) and pµ1(2)( p
µ
1(2)γ5). Therefore, using the combinations

pµ1 + pµ2 and pµ1 − pµ2 for convenience, we have

Γµ = γµ(A+ γ5A
′) + (pµ1 + pµ2 )(B + γ5B

′) + (pµ1 − pµ2 )(C − γ5C
′) , (4.20)

where the unknown coefficients involve Dirac matrices dotted with vectors like

p/1, p/2, Q/ and some Lorentz scalars p2
1, p

2
2, Q

2. Since Γµ is sandwiched between

ū(p1) and u(p2), we may use the following on mass shell conditions,

ū(p1) p/1 = m1 ū(p1) , p/2 u(p2) = m2 u(p2) , p/
2
1(2) = p2

1(2) = m2
1(2). (4.21)

After imposing the above conditions, the only non-trivial scalar variable avail-

able is Q2 on which the coefficients depend. A further constraint is the Ward

4 In dimensional regularization nothing has been violated except that space-time is not
four dimensional and thus all the physical requirements are preserved. The method leaves the
theory Lorentz and gauge invariant [84].
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identity, QµΓ
µ = 0. This tells us that both C and C ′ should be zero. No further

simplification can be done on general principles. It is conventional, however, to

write the vertex function by means of the Gordon identity

ū(p1)γ
µu(p2) = ū(p1)

[

pµ1 + pµ2
ml1 +ml2

+ i
σµν Qν

ml1 +ml2

]

u(p2), (4.22)

together with a similar relation for terms involving γ5

ū(p1)γ
µγ5u(p2) = ū(p1)

[

γ5
pµ1 + pµ2
ml1 −ml2

− iγ5
σµν Qν

ml1 −ml2

]

u(p2). (4.23)

These identities allow us to eliminate (γ5) (p1 +p2)
µ terms in favor of i(γ5)σ

µνQν .

By using these identities and the mass shell conditions, we eventually get the

general vertex for Z → lj l̄k of the form

Γµ = γµ (fV − γ5 fA) +
i

mW

(fM + γ5 fE)σµν Qν , (4.24)

where fV (fA) is the vector (axial–vector) coupling and fM (fE) is the magnetic

(electric) dipole transitions of unlike fermions.

In calculating the couplings in Γµ, the one–loop momentum integrals can

be calculated with the help of the d–dimensional integrals, which are given in

appendix D. Taking into account of all the masses of internal and external leptons

(anti–leptons) and following the procedure as stated, the explicit expressions,

after lengthy calculations, for fV , fA, fM and fE can be expressed as

fV =
g

64π2 cos θW

∫ 1

0
dx

1

m2
l+2
−m2

l−1

{

cV (ml+2
+ml−1

)

(

(−mi η
+
i +ml−1

(−1 + x) ηVi ) ln
Lself1, h0

µ2

+ (mi η
+
i −ml+2

(−1 + x) ηVi ) ln
Lself2, h0

µ2

+ (mi η
+
i +ml−1

(−1 + x) ηVi ) ln
Lself1, A0

µ2

− (mi η
+
i +ml+2

(−1 + x) ηVi ) ln
Lself2, A0

µ2

)

+ cA (ml+2
−ml−1

)

(

(−mi η
−
i +ml−1

(−1 + x) ηAi ) ln
Lself1, h0

µ2
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+ (mi η
−
i +ml+2

(−1 + x) ηAi ) ln
Lself2, h0

µ2

+ (mi η
−
i +ml−1

(−1 + x) ηAi ) ln
Lself1, A0

µ2

+ (−mi η
−
i +ml+2

(−1 + x) ηAi ) ln
Lself2, A0

µ2

)}

− g

64π2 cos θW

∫ 1

0
dx

∫ 1−x

0
dy

{

m2
i (cA η

A
i − cV η

V
i ) (

1

LverA0

+
1

Lverh0

)

− (1 − x− y)mi

(

cA (ml+2
−ml−1

) η−i (
1

Lverh0

− 1

LverA0

)

+ cV (ml+2
+ml−1

) η+
i (

1

Lverh0

+
1

LverA0

)

)

− (cA η
A
i + cV η

V
i )

(

−2 + (q2 x y +ml−1
ml+2

(−1 + x+ y)2) (
1

Lverh0

+
1

LverA0

) − ln
Lverh0

µ2

LverA0

µ2

)

− (ml+2
+ml−1

) (1 − x− y)

(

ηAi (xml−1
+ y ml+2

) +mi η
−
i

2LverA0 h0

+
ηAi (xml−1

+ y ml+2
) −mi η

−
i

2Lverh0 A0

)

+
1

2
ηAi ln

LverA0 h0

µ2

Lverh0 A0

µ2

}

,

fA =
−g

64π2 cos θW

∫ 1

0
dx

1

m2
l+2
−m2

l−1

{

cV (ml+2
−ml−1

)

(

(mi η
−
i +ml−1

(−1 + x) ηAi ) ln
Lself1, A0

µ2

+ (−mi η
−
i +ml+2

(−1 + x) ηAi ) ln
Lself2, A0

µ2

+ (−mi η
−
i +ml−1

(−1 + x) ηAi ) ln
Lself1, h0

µ2

+ (mi η
−
i +ml+2

(−1 + x) ηAi ) ln
Lself2, h0

µ2

)

+ cA (ml+2
+ml−1

)

(

(mi η
+
i +ml−1

(−1 + x) ηVi ) ln
Lself1, A0

µ2

− (mi η
+
i +ml+2

(−1 + x) ηVi ) ln
Lself2, A0

µ2

+ (−mi η
+
i +ml−1

(−1 + x) ηVi ) ln
Lself1, h0

µ2

+ (mi η
+
i −ml+2

(−1 + x) ηVi )
ln Lself2, h0

µ2

)}
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+
g

64π2 cos θW

∫ 1

0
dx

∫ 1−x

0
dy

{

m2
i (cV η

A
i − cA η

V
i ) (

1

LverA0

+
1

Lverh0

)

− mi (1 − x− y)

(

cV (ml+2
−ml−1

) η−i + cA (ml+2
+ml−1

) η+
i

)

(
1

Lverh0

− 1

LverA0

)

+ (cV η
A
i + cA η

V
i )

(

− 2 + (q2 x y −ml−1
ml+2

(−1 + x+ y)2)(
1

Lverh0

+
1

LverA0

)

− ln
Lverh0

µ2

LverA0

µ2

)

− (ml+2
−ml−1

) (1 − x− y)

(

ηVi (xml−1
− y ml+2

) +mi η
+
i

2LverA0 h0

+
ηVi (xml−1

− y ml+2
) −mi η

+
i

2Lverh0 A0

)

− 1

2
ηVi ln

LverA0 h0

µ2

Lverh0 A0

µ2

}

,

fM = − g mW

64π2 cos θW

∫ 1

0
dx

∫ 1−x

0
dy

{(

(1 − x− y) (cV η
V
i + cA η

A
i )

( xml−1
+ y ml+2

) + mi (cA (x− y) η−i + cV η
+
i (x+ y))

)

1

Lverh0

+

(

(1 − x− y) (cV η
V
i + cA η

A
i ) (xml−1

+ y ml+2
)

− mi (cA (x− y) η−i + cV η
+
i (x+ y))

)

1

LverA0

− (1 − x− y)

(

ηAi (xml−1
+ y ml+2

)

2

( 1

LverA0 h0

+
1

Lverh0 A0

)

+
mi η

−
i

2

( 1

Lverh0 A0

− 1

LverA0 h0

)

)}

,

fE = − g mW

64π2 cos θW

∫ 1

0
dx

∫ 1−x

0
dy

{(

(1 − x− y)
(

− (cV η
A
i + cA η

V
i )

( xml−1
− y ml+2

)
)

−mi (cA (x− y) η+
i + cV η

−
i (x+ y))

)

1

Lverh0

+

(

(1 − x− y)
(

− (cV η
A
i + cA η

V
i ) (xml−1

− y ml+2
)
)

+ mi (cA (x− y) η+
i + cV η

−
i (x+ y))

)

1

LverA0

+ (1 − x− y)

(

ηVi
2

(ml−1
x−ml+2

y)
( 1

LverA0 h0

+
1

Lverh0 A0

)

+
mi η

+
i

2

( 1

LverA0 h0

− 1

Lverh0 A0

)

)}

, (4.25)

where

Lself1, h0 = m2
h0 (1 − x) + (m2

i −m2
l−1

(1 − x))x ,

Lself1, A0 = Lself1, h0(mh0 → mA0) ,

57



Lself2, h0 = Lself1, h0(ml−1
→ ml+2

) ,

Lself2, A0 = Lself1, A0(ml−1
→ ml+2

) ,

Lverh0 = m2
h0 (1 − x− y) +m2

i (x+ y) − q2 x y ,

Lverh0 A0 = m2
A0 x+m2

i (1 − x− y) + (m2
h0 − q2 x) y ,

LverA0 = Lverh0 (mh0 → mA0) ,

LverA0 h0 = Lverh0 A0(mh0 → mA0) , (4.26)

and

ηVi = ξEN,l1iξ
E ∗
N,il2

+ ξE ∗
N,il1

ξEN,l2i ,

ηAi = ξEN,l1iξ
E ∗
N,il2

− ξE ∗
N,il1

ξEN,l2i ,

η+
i = ξE ∗

N,il1
ξE ∗
N,il2

+ ξEN,l1iξ
E
N,l2i

,

η−i = ξE ∗
N,il1

ξE ∗
N,il2

− ξEN,l1iξ
E
N,l2i

. (4.27)

The parameters cV and cA are cA = −1
4

and cV = 1
4
− sin2 θW . In Eq. (4.27)

the flavor changing couplings ξ̄DN,lji represent the effective interaction between the

internal lepton i, (i = e, µ, τ) and outgoing (incoming) j = 1 (j = 2) one. Here

we take ξ̄DN,lji complex in general and use the parametrization

ξEN,ilj = |ξEN,ilj | e
iθij , (4.28)

where i, lj denote the lepton flavors and θij are CP violating parameters which

are the sources of the lepton EDM.

The Br for the decay Z → l1l̄2 can be formulated in terms of the above

form factors. In calculating this we may use the partial width expression for this

decay5,

Γ(Z → l1l̄2) =
1

192π

1

mZ

|M(Z → l1l̄2)|2 . (4.29)

Then Br is simply Br(Z → l1l̄2) = Γ(Z → l1l̄2)/ΓZ , where ΓZ is the total width

for Z decay. By using the Eq. (4.18) together with Eq. (4.24) and neglecting the

5 In all our numerical analysis we will consider l1 l̄2 + l̄1l2 as the final state instead of just
taking l1 l̄2.
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mass of the final leptons, absolute square of the amplitude can be determined in

terms of form factors as

|M(Z → l1l̄2)|2 = 4m2
Z

(

|fV |2 + |fA|2 +
1

2 cos2 θW

(

|fM |2 + |fE|2
)

)

. (4.30)

Thus the Br becomes

Br(Z → l1l̄2) =
Γ(Z → l1l̄2)

ΓZ

=
1

48π

mZ

ΓZ

[

|fV |2 + |fA|2 +
1

2 cos2 θW

(

|fM |2 + |fE|2
)

]

. (4.31)

4.2 Numerical Analysis and Discussion

First of all we present the possible restrictions on the relevant free parameters

ξ̄EN,ij , i, j = e, µ, τ coming from present and forthcoming experiments. At the first

stage we can make two reasonable assumptions. The first is that ξ̄EN,ij, i, j = e, µ,

are small compared to ξ̄EN,τ i i = e, µ, τ since the strength of these couplings are

related with the masses of leptons denoted by the indices of them, similar to

the Cheng-Sher scenario [87]. Second is that ξ̄EN,ij is symmetric with respect to

interchange of the indices i and j.

Since we are dealing with the decay modes Z → e∓µ±, Z → e∓τ± and Z →
µ∓τ±, there are totaly nine number of free Yukawa couplings except the CP

violating phases. Imposing the first assumption this number reduces to five.

Further the second assumption makes this set smaller and leaves finally the set

as
(

ξ̄EN,eτ , ξ̄
E
N,µτ , ξ̄

E
N,ττ

)

. There is in fact no experimental measurement, to be used

for constraining the Yukawa coupling ξ̄EN,ττ .

Let us first consider possible constraints on ξ̄EN,µτ . This can be achieved by

using the experimental limits of µ lepton EDM [88],

0.3 × 10−19 e cm < dµ < 7.1 × 10−19 e cm . (4.32)

Following the [86], µ lepton EDM can be expressed in model III framework as

dµ = − iGF√
2

e

32π2

Qτ

mτ

[

(ξ̄E ∗
N,µτ )

2 − (ξ̄EN,µτ )
2

][

F (yh0) − F (yA0)

]

, (4.33)
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where yα = m2
τ/m

2
α for α = h0, A0 , Qµ is the charge of µ lepton and the function

F (yα) is

F (yα) =
yα(3 − 4yα + y2

α + 2 ln yα)

(−1 + yα)3
. (4.34)

Using the parametrization in Eq. (4.28), we may write, from Eq. (4.33), the

following restricted region for ξ̄EN,µτ

dminµ

C(θµτ , yh0 , yA0)
< |ξ̄EN,µτ |2 <

dmaxµ

C(θµτ , yh0 , yA0)
, (4.35)

where C(θµτ , yh0 , yA0) is

C(θµτ , yh0 , yA0) =
GF√

2

e

16π2

Qτ

mτ

sin 2θµτ [F (yh0) − F (yA0)] . (4.36)

From Eq. (4.35) a possible physical region for ξ̄EN,µτ is determined to be (102−103),

GeV by taking acceptable values for mh0 ,mA0 and sin θµ and using the input val-

ues depicted in Table (4.1). There is indeed another way for the restriction of the

coupling ξ̄DN,µτ , which involves the deviation of the anomalous magnetic moment

(AMM) of muon over its SM prediction [89] due to the recent experimental result

of muon AMM by g–2 Collaboration [90]. However, AMM of muon is possible in

the model III even for vanishing complex Yukawa couplings. In the LFV Z → l1l̄2

decay, the part which depends on the couplings ηAi and η−i (see Eq. (4.27) ) is

non-vanishing when the complex Yukawa couplings are permitted in the model.

Consequently, we choose EDM of muon since the restriction is also sensitive to

complex phases, existing also in the Z → l1l̄2 decay which is evident from Eq.

(4.33).

The coupling ξ̄DN,eτ is restricted using the experimental upper limit of the Br

of the process µ → eγ (1.2 × 10−11) and the above constraint for ξ̄DN,µτ . From

the discussion in [86] µ → eγ decay can be used to fix the Yukawa combination

ξ̄DN,µτ ξ̄
D
N,eτ of the form

|ξ̄EN,µτ |2 |ξ̄EN,eτ |2 =
1.2 × 10−11 Γµ
B(yh0 , yA0)

, (4.37)

where Γµ is the total width of the muon and the function B(yh0 , yA0) is

B(yh0 , yA0) =
G2
F αemm

3
µ

210 π4

Q2
τ

m2
τ

[F (yh0) − F (yA0)]2, (4.38)
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where αem is the electromagnetic fine structure constant. Eq. (4.37), together

with the use of limits for ξ̄EN,eτ , ensure us to determine the upper and lower limits

of the coupling ξ̄DN,eτ . The values are at the order of magnitude of (10−5 − 10−4).

The maximum value of the Br(Z → µ e) is calculated by taking the combination

ξ̄DN,µτ ξ̄
D
N,eτ , which respects the upper bound of µ → eγ decay. For the minimum

value of Br(Z → µ e), we use the combination ξ̄DN,µτ ξ̄
D
N,eτ if each coupling is at

its minimum value, even though this minimum value is artificial. Another way

of restricting ξ̄DN,eτ and getting the minimum value of Br(Z → µe) could be

achieved by using the experimental result of the EDM of electron [91]. However,

we expect that the experimental result of the EDM of electron is not more reliable

than the one of the process µ→ eγ. Let us finally emphasize that we take these

constrained parameters complex in order to be able to describe the EDM which

is possible in the case of CP violating interactions. Throughout our calculations

we use the input values given in Table (4.1).

Table 4.1: The values of the input parameters used in the numerical calculations
for the decay Z → l−1 l

+
2 , l1,2 = e, µ, τ .

Parameter Value

mµ 0.106 (GeV)
mτ 1.78 (GeV)
mW 80.26 (GeV)
mZ 91.19 (GeV)
GF 1.1663710−5(GeV −2)
ΓZ 2.490 (GeV )

sin θW
√

0.2325

Fig. (4.3) ((4.4)) represents sinθτe dependence of the maximum (minimum)

value of the Br (Z → µ± e±) for sin θτµ = 0.5, mh0 = 70GeV and mA0 =

80GeV . Here the maximum and minimum values are predicted by taking upper

and lower limits of µ lepton EDM into account. The maximum (minimum) value

of the Br is 7 × 10−11 (10−13) for small values of sinθτe and its sensitivity to

this parameter is weak. Br decreases at the order of the magnitude 15 % for
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Figure 4.3: The maximum value of Br (Z → µ± e±) as a function of sinθτe for
sinθτµ = 0.5, mh0 = 70GeV and mA0 = 80GeV .

sinθτe ≥ 0.5 and it becomes more sensitive to sinθτe. sinθτµ dependence of the

maximum (minimum) value of the Br (Z → µ± e±) for sinθτe = 0.5, mh0 =

70GeV and mA0 = 80GeV almost the same as sinθτe dependence of the Br

under consideration. In Fig. (4.5) we present mA0 dependence of the minimum

value of the Br (Z → µ± e±) for sinθτe = 0.5, sinθτµ = 0.5 and mh0 = 70GeV .

The Br is strongly sensitive to mA0 and decreases with increasing values of mA0 .

The same dependence appears for the maximum value of the Br. Fig. (4.6)

((4.7)) shows sinθτe and sinθτµ dependence of the maximum (minimum) value

of the Br (Z → τ± e±) for sinθτµ = 0.5 and sinθτe = 0.5 respectively. Here

the coupling ξ̄DN,ττ is taken as ξ̄DN,ττ = 103GeV . The maximum (minimum) value

of the Br for this process is at the order of the magnitude of 10−11 (10−12). Br

increases with increasing values sinθτµ, however this behavior appears in contrary

to sinθτe dependence. The sensitivity of Br (Z → τ± e±) to both CP violating

parameters, sinθτe and sinθτµ, is strong.

We present the coupling ξ̄DN,ττ dependence of Br (Z → τ± e±) in Figs. (4.8)

and (4.9). These figures shows that the Br enormously increases with increasing

values of the coupling ξ̄DN,ττ . Note that we take the coupling ξ̄DN,ττ real in our

calculations.
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Figure 4.4: The minimum value of Br (Z → µ± e±) as a function of sinθτe for
sinθτµ = 0.5, mh0 = 70GeV and mA0 = 80GeV .

To sum up, we study the Z → µ±τ± decay by taking τ lepton as an internal

one similar to previous analysis. Here the experimental upper limit for Br(Z →
µ±τ±) can be reached for the small values of ξ̄DN,ττ . Further, the theoretical

calculations are consistent with this upper limit for the case where the mass

differences of neutral Higgs bosons h0 and A0 are large, even for large values of

the coupling ξ̄DN,ττ .

As a summary, we study the Br,s of the decays Z → e±µ±, Z → e±τ±

and Z → µ±τ± and observe that it is possible to reach the present experimental

upper limits in the model III, playing with the model parameters in the restriction

region. This result is important since the theoretical work in the SM shows that

the branching rates are less than 10−54 and compared to this number large rates

are expected with massive and mixing neutrinos. In our analysis, we predict that

the Br for the Z → e±µ± decay can reach to the values at the order of the

magnitude 10−11. Br for the process Z → e±τ± depends strongly on the Yukawa

coupling ξ̄DN,ττ and for its large values such as 103 − 104GeV , it can be in the

range 10−10 − 10−9. The process Z → µ±τ± can have larger Br compared to the

previous ones, since the Yukawa couplings entering in the expressions are ξ̄DN,µτ

and ξ̄DN,ττ . Furthermore, Br,s of the processes under consideration are sensitive
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Figure 4.5: The minimum value of Br (Z → µ± e±) as a function of mA0 for
sinθτµ = 0.5, sinθτe = 0.5 and mh0 = 70GeV .

to the CP–violating parameters since the source of the parts which depend on

couplings ηAi and η−i are the non–vanishing complex Yukawa couplings, in the

model III.

In future, with the reliable experimental result of upper limits of the Br,s

of above processes it would be possible to test models beyond the SM and free

parameters of these models
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Figure 4.7: The minimum value of Br (Z → τ± e±) as a function of sinθ for
ξ̄DN,ττ = 103GeV , mh0 = 70GeV and mA0 = 80GeV . Here solid line represents
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for sinθτµ = 0.5.
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Figure 4.8: The maximum value of Br (Z → τ± e±) as a function of ξ̄DN,ττ for
sinθτµ = 0.5, sinθτe = 0.5, mh0 = 70GeV and mA0 = 80GeV .
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Figure 4.9: The minimum value of Br (Z → τ± e±) as a function of ξ̄DN,ττ for
sinθτµ = 0.5, sinθτe = 0.5, mh0 = 70GeV and mA0 = 80GeV .
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CHAPTER 5

THE FLAVOR CHANGING t→ c l−1 l
+
2 IN MODEL III

Rare decays of heavy quarks have long been a subject of intense theoretical and

experimental study. The main argument for this is the fact that loop processes

are an invaluable test for the short–distance structure of the theory. Furthermore,

many such decays are sensitive to parameters in the SM and are excellent probes

for getting some clues about the effects of new physics such as supersymmetry,

an extended Higgs sector and charged Higgs bosons and heavier fermion families.

There are special reasons for studying rare decays of t quark both in the SM

and beyond, as it is by far largest fermion mass and therefore physicists give a

special role to the top quark. As such, richness of the decay products stimulates

one to study its decays to be a useful quantitative reference point for comparing

the SM to experiment. The rare decay of top quark have been studied in the

literature in the framework of the SM and beyond [92]–[100]; the one–loop flavor

changing transitions, sensitive to possible effects from new physics, t→ c(γ, Z, g)

in [95, 97] and t→ cH0 in [93, 97, 98, 99, 100]. The reason for the special interest

in these decays is again that observation of a single event of this kind in near

future colliders would imply evidence of new physics which could be related with

the Higgs sector of the theory.

In the framework of the SM these processes are in general quite suppressed

due to the Glashow–Iliopoulos–Maiani (GIM) mechanism [2] controlled by the

light masses of the b, s, d quarks circulating in the loop. The corresponding Br,s

are additionally decreased by the large total decay width ΓT of the top quark.

Thus the Br,s of the rare decays of the top quark into gauge bosons (γ, Z, g)
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plus c-quark are too much small. With the current experimental value of the top

quark mass, the predicted values of the Br of the process t → cγ is of the order

of ∼ 5 × 10−13, for the Z boson ∼ 1 × 10−13, for the gluon ∼ 4 × 10−13 [93],

the Br for t → cH0 is at the order of the magnitude of 10−14 − 10−13, in the

SM [98]. Apparently these numbers are so tiny that it is not possible to measure

them even at the highest luminosity accelerators.

Some of this undesirable features can change with physics beyond the SM.

As has already been mentioned, for one or more additional scalar Higgs doublets

to the SM, the flavor changing neutral couplings could indeed be generated at

tree level unless ad hoc discrete symmetries imposed [22]. Then it is possible to

enhance the Br for the rare top quark decays in different kinds of models which

include new physics. As an example t → cH0 decay has been studied in one of

this kind of models, model III [100] and it has been found that the Br of this

process could reach to the values of the order 10−6, varying the free parameters

of the model III, respecting the existing experimental restrictions. The predicted

Br is in fact almost seven orders larger compared to the one in the SM, which is

indeed a strong enhancement.

In this chapter, we study the analysis of the flavor changing (FC) t→ c (l−1 l
+
2 +

l+1 l
−
2 ) decay in the framework of the general two Higgs doublet model (model III).

This decay occurs at tree level since the FC transitions in the quark and leptonic

sector are permitted in the model III. Here, the Yukawa couplings for t − c and

l−1 − l+2 transitions play the main role and they take place by means of the internal

neutral Higgs bosons, h0 and A0. In the process, it is possible to get h0 and A0

resonances since the kinematical region is large enough and this difficulty can be

solved by choosing the appropriate propagator for h0 and A0 bosons (see the next

section). We are able to get the Br of the t→ c (l−1 l
+
2 +l+1 l

−
2 ) for l1 = τ and l2 = µ

at the tree level at the order of magnitude 10−8 − 10−7, which is a measurable

quantity in the accelerators and we further calculate the one loop effects related

with the interactions due to the internal mediating charged Higgs boson (see Fig.

(5.1): (b), (c), (d)) and observe that their contribution to the Br of the decay
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t→ c l−1 l
+
2 are negligible. They are of the order of 10−11 − 10−10.

t c

h0 A0

l−2 l−1(a)

t c

h0 A0

l−2 l−1

ui dj(uk)

W, φ, H(h0, A0)
(b)

t c

h0 A0

l−2 l−1

uidj(uk)

W, φ, H(h0, A0)
(c)

t c

h0 A0

l−2 l−1

di(uj) dk(ul)

W, φ, H(h0, A0)
(d)

t c

h0 A0

l−2 l−1

di

H φ

(e)

t c

h0 A0

l−2 l−1

di
φ φ

(d)

Figure 5.1: Tree level and one loop level diagrams contributing to the decay t→
c l−1 l

+
2 . The dashed lines represent the Higgs bosons h0, A0. In Figs. (b), (c), (d)

the wavy lines represent both W±, φ±, H± and h0, A0 at the same time.

We will present, in the next section, the Br of the decay t → c (l−1 l
+
2 + l+1 l

−
2 )

in the framework of model III and the last section contains numerical analysis

and our conclusions.

5.1 t→ c (l−1 l
+
2 + l+1 l

−
2 ) in Model III

The flavor changing transition t→ c l−1 l
+
2 is forbidden in the SM. Such transi-

tions would be possible in the case that the Higgs sector of the model is extended

and FCNCs in the tree level are permitted unless the ad hoc discrete symmetries

are invoked, which is indeed related to the fact that no phenomenological need
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to do this as long as the couplings of the scalars to the light quarks are taken

to be small. This section contains the calculation of the Br of the decay under

consideration, in the model III. In this model, there are various new parameters,

such as complex Yukawa couplings, masses of new Higgs bosons, etc. and they

should of course be constrained by using the present experimental outputs.

The t → c l−1 l
+
2 process is controlled by the Yukawa interaction given by Eq.

(2.12). The part representing the FC interactions was readily be obtained in

chapter 3 (see Eq. (4.3)). Furthermore throughout our calculations we will use

the dimensional Yukawa couplings ξ̄U,D,EN instead of original ξU,D,E. As is obvious

from the construction of the model III the t → c l−1 l
+
2 decay process occurs at

the tree level, which gets occurred with the help of the neutral Higgs bosons h0

and A0 enabling non-zero t− c (l−1 − l+2 ) transition amplitude. For completeness,

we also take the one loop contributions into account (see Fig. (5.1)) and use the

on–shell renormalization scheme to get rid of the existing divergences from the

vertex function.

In getting renormalized t→ ch0 ∗(A0 ∗) transition vertex functions defined as

Γh
0∗

REN = Γh
0∗

0 + Γh
0

C ,

ΓA
0∗

REN = ΓA
0∗

0 + ΓA
0

C , (5.1)

our strategy is to use the following on-shell conditions

Γh
0

REN |onshell =
i

2
√

2

(

(ξUN,ct + ξU∗
N,tc) + (ξUN,ct − ξU∗

N,tc)γ5

)

,

ΓA
0

REN |onshell = − 1

2
√

2

(

(ξUN,ct − ξU∗
N,tc) + (ξUN,ct + ξU∗

N,tc)γ5), (5.2)

and to extract the counter term by evaluating vertex functions in Eq. (5.1) at

on-shell point as

Γh
0

C = Γh
0

REN |onshell − Γh
0

0 |onshell ,

ΓA
0

C = ΓA
0

REN |onshell − ΓA
0

0 |onshell . (5.3)

where Γh
0

0 denotes the bare vertex function. Depicted in Fig. (5.1) is the loop

diagrams including H± intermediate Higgs boson for FC interaction (Fig. (5.1);

70



b, c, d) at the quark level. As already stated ξDN,bb and ξUN,tt are dominant couplings

in the loop effects. Therefore, we neglect all the Yukawa couplings except ξDN,bb

and ξDN,tt in the loop contributions. Notice that the self energy diagrams do not

give any contribution in the on-shell renormalization scheme. As is obvious from

the chosen on-shell renormalization scheme that none of the self energy diagrams

give any nonzero contributions.

The renormalized vertex function is connected to the l−1 l
+
2 out going leptons

by intermediate neutral h0 and A0 bosons as shown in the Fig. (5.1) and for the

matrix element square of the process t→ c (l−1 l
+
2 + l+1 l

−
2 ) we eventually get

M|2 = 8m2
t (1 − s)

∑

S=h0,A0

|pS|2
(

|a(q)
S |2 + |a′ (q)S |2

)

(

(sm2
t − (ml−1

−ml+2
)2) |a(l)

S |2 + (sm2
t − (ml−1

+ml+2
)2) |a′ (l)S |2

)

+16m2
t (1 − s)

(

(sm2
t − (ml−1

−ml+2
)2)Re[ph0 p∗A0 a

(l)
h0 a

∗(l)
A0 (a

(q)
h0 a

∗(q)
A0

+a
′ (q)
h0 a

′ ∗(q)
A0 )] + (sm2

t − (ml−1
+ml+2

)2)Re[ph0 p∗A0 a
′ (l)
h0 a

′ ∗(l)
A0 (a

(q)
h0 a

∗(q)
A0

+a
′ (q)
h0 a

′ ∗(q)
A0 )]

)

, (5.4)

where pS is defined as

pS =
i

sm2
t −m2

S + imS ΓStot
, (5.5)

with the help of the Breit–Wigner prescription and ΓStot is the total decay width

of S boson, for S = h0 , A0. Here, the parameter s is s = q2/m2
t , and q2 is the

intermediate S boson momentum square. In Eq. (5.4) the functions a
(l)
h0,A0 , a

′ (l)
h0,A0

which includes merely Yukawa couplings for leptons have tree level contributions

and a
(q)
h0,A0 , a

′ (q)
h0,A0 including Yukawa couplings for quarks are the combinations of

tree level and one–loop level contributions and they can be nominated as,

a
(l)
h0,A0 = a

Tree (l)
h0,A0 ,

a
(q)
h0,A0 = a

Tree (q)
h0,A0 + a

Loop (q)
h0,A0 ,

a
′ (l)
h0,A0 = a

′Tree (l)
h0,A0 ,

a
′ (q)
h0,A0 = a

′Tree (q)
h0,A0 + a

′Loop (q)
h0,A0 , (5.6)
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and we give the explicit form of above terms as a long series of equations written

below

a
Tree (l)
h0 = − i

2
√

2
(ξDN,l1l2 + ξ∗DN,l2l1) ,

a
Tree (l)
A0 =

1

2
√

2
(ξDN,l1l2 − ξ∗DN,l2l1) ,

a
′Tree (l)
h0 = − i

2
√

2
(ξDN,l1l2 − ξ∗DN,l2l1) ,

a
′Tree (l)
A0 =

1

2
√

2
(ξDN,l1l2 + ξ∗DN,l2l1) ,

a
Tree (q)
h0 =

i

2
√

2
(ξUN,ct + ξ∗UN,tc) ,

a
Tree (q)
A0 = − 1

2
√

2
(ξUN,ct − ξ∗UN,tc) ,

a
′Tree (q)
h0 =

i

2
√

2
(ξDN,ct − ξ∗DN,tc) ,

a
′Tree (q)
A0 = − 1

2
√

2
(ξDN,ct + ξ∗DN,tc) ,

a
Loop (q)
h0 = − i

32
√

2 π2
Vcb V

∗
tbξ

D
N,bb

(

m2
b ξ

D
N,bb ξ

U∗
N,tt

∫ 1

0
dx
∫ 1−x

0
dy fh

0

1 (x, y)

+ mbmt (ξ
D∗
N,bb)

2
∫ 1

0
dx
∫ 1−x

0
dy
(

(1 − x− y) fh
0

1 (x, y)
)

− mbmt |ξDN,bb|2
∫ 1

0
dx
∫ 1−x

0
dy
(

(x+ y) fh
0

1 (x, y)
)

− ξD∗
N,bb ξ

U∗
N,tt

∫ 1

0
dx
∫ 1−x

0
dy fh

0

2 (x, y)

)

,

a
Loop (q)
A0 =

1

32
√

2 π2
Vcb V

∗
tb ξ

D
N,bb

(

m2
b ξ

D
N,bb ξ

U∗
N,tt

∫ 1

0
dx
∫ 1−x

0
dyfA

0

1 (x, y)

− mbmt (ξ
D∗
N,bb)

2
∫ 1

0
dx
∫ 1−x

0
dy
(

(1 − x− y) fA
0

1 (x, y)
)

− mbmt |ξDN,bb|2
∫ 1

0
dx
∫ 1−x

0
dy
(

(x+ y) fA
0

1 (x, y)
)

+ ξD∗
N,bb ξ

U∗
N,tt

∫ 1

0
dx
∫ 1−x

0
dy fA

0

2 (x, y)

)

,

a
′Loop (q)
h0 = a

Loop (q)
h0 ,

a
′Loop (q)
A0 = a

Loop (q)
A0 , (5.7)

where

fS1 =
1

LS(mS)
− 1

LS(s)
,
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fS2 = (1 − x− y) (
m2
t x+m2

S y)

LS(mS)
− m2

t (x+ s y)

LS(s)
) + 2 ln

LS(s)

LS(mS)
, (5.8)

with

LS(s) = m2
b (x− 1) +m2

H±x+m2
t (−1 + x+ y) (x+ s y) ,

LS(mS) = m2
b (x− 1) +m2

H±x+ (−1 + x+ y) (m2
t x+m2

S y) . (5.9)

In further studying, numerically, the differential decay width (dDw) dΓ
ds

(t →
c (l−1 l

+
2 + l+1 l

−
2 )), it gets reformulated in the rest frame of top quark here as

dΓ

ds
=

1

256Nc π3
λ |M|2 , (5.10)

where λ is defined as

λ =
1

2m2
t s

[

(m2
t (s− 1)2 − 4m2

c) (m4
c +m4

l1
+ (m2

l2
−m2

t s)
2

−2m2
c (m2

l1
+m2

l2
−m2

t s) − 2m2
l1

(m2
l2

+m2
t s))

]1/2
,

and boundary values for the variable s in physically allowed region can be deter-

mined by applying kinematical limits and we get

(ml1 +ml2)
2

m2
t

≤ s ≤ (mt −mc)
2

m2
t

.

5.2 Numerical Analysis and Discussion

From the experimental point of view, in order to make analysis of the differ-

ential Br (dBr), ACP (s), Br and ACP of the decay t→ c (l−1 l
+
2 + l+1 l

−
2 ) within the

framework of the model III, the Yukawa couplings ξUN,tc and ξEN,l1l2 play the crucial

role at tree level and if one goes to loop level new Yukawa couplings, particularly

ξ̄DN,bb and ξ̄UN,tt, appear and become significant. In analyzing above–mentioned

physical quantities of this decay we need to restrict these couplings with the help

of relevant experimental measurements since they are free parameters of the model

used. Therefore our next task is trying to restrict these parameters within current

experimental results. In numerical calculations the following parametrization of
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the Yukawa couplings appearing in the leptonic sector, ξEN,l1l2 = |ξEN,l1l2| eiθl1l2 , is

used.

Along this line, first note that, related to the quark sector, we use the con-

straint region by restricting the Wilson coefficient Ceff
7 , which is indeed the effec-

tive coefficient of the operator O7 = (e/16π2)s̄ασµν(mbR + msL)bαFµν (see [61]

and references therein), in the region 0.257 ≤ |Ceff
7 | ≤ 0.439. These were in fact

discussed in details in the last section of chapter 3 within the light of the CLEO

measurement [101]

BR(B → Xsγ) = (3.15 ± 0.35 ± 0.32) × 10−4, (5.11)

and all possible uncertainties in the calculation of Ceff
7 [61]. Second point is

that, related to the leptonic sector, we can use some experimental results such as

anomalous magnetic moment of muon, dipole moments of leptons, rare leptonic

decays to restrict the couplings ξEN,l1l2 .
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Figure 5.2: dBr (t → c (τ−µ+ + τ+µ−)) as a function of |ξ̄EN,τµ| for sin θτµ =

0.5, real ξ̄DN,tc and Γh
0

tot = ΓA
0

tot = 0.1GeV . The solid (dashed, dash-dotted) line
represents the case for s = (10/175)2((50/175)2, (150/175)2).

Let us turn our attention to the usage of the above experimental outputs. As

already noted in chapter 3 the upper and lower limits for the couplings ξDN,bb, ξ
U
N,tt

and also for ξUN,tc get determined by directly using the above restriction related to
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Figure 5.3: dBr (t → c (τ−µ+ + τ+µ−)) as a function of |ξ̄EN,τµ| for sin θτµ = 0.5,

real ξ̄DN,tc and Γh
0

tot = ΓA
0

tot = 0.1GeV . The solid (dashed) line represents the case
for s = (80/175)2((90/175)2).

the quark sector. In our numerical analysis we choose the upper limits for those

couplings and take ξUN,tc ∼ 0.01 ξUN,tt, respecting the constraints mentioned. For

the Yukawa couplings in the leptonic part, furthermore, the measured anomalous

magnetic moment of muon [102] enables us to choose the upper bound of ξEN,l1l2 for

l1 = τ and l2 =µ. For l1 =τ and l2 =e, we use the numerical result obtained for the

couplings ξEN,τe in [103], based on the experimental measurement of the leptonic

process µ→ eγ [104], of which is Br(µ→ eγ) = Γ(µ→ eγ)/Γ(µ→ eνν̄) < 1.2×
10−11. Although the total decay widths of h0 and A0 are unknown parameters,

we expect that they are of the same order of magnitude ΓH
0

tot ∼ (0.1 − 1.0)GeV ,

where H0 is the SM Higgs boson. Notice that, in further analysis, we take the

value of the total decay width ΓT ∼ Γ(t → bW ) as ΓT = 1.55GeV and choose

the numerical values mh0 = 80GeV and mA0 = 90GeV , for the calculation of

the Br.

We present our results for the dBr and Br of the decay t → c (l−1 l
+
2 + l+1 l

−
2 )

for l1 = τ and l2 = µ in a series of figures, from Fig. (5.2) to Fig. (5.5).

Depicted in Fig. (5.2) is the plot of the dBr for the t → c (τ−µ+ + τ+µ−)
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Figure 5.4: dBr (t → c (τ−µ+ + τ+µ−)) as a function of s for |ξ̄EN,τµ| = 10GeV ,

sin θτµ = 0.5, real ξ̄DN,tc and Γh
0

tot = ΓA
0

tot = 0.1GeV .

decay with respect to |ξ̄EN,τµ| for sin θτµ = 0.5, at different s values1, namely

(10/175)2, (50/175)2, and (150/175)2. In plotting these, we choose ξ̄UN,tc real and

set Γh
0

tot = ΓA
0

tot = 0.1GeV . The solid (dashed, dash-dotted) line represents the

case for s = (10/175)2((50/175)2, (150/175)2). As is obvious from the figure dBr

is of the order of the magnitude 10−8 for s = (50/175)2 and |ξ̄EN,τµ| ∼ 5GeV .

However, dBr is less than 10−8 for s = (10/175)2 and s = (150/175)2 and it,

in fact, reaches extremely small values for |ξ̄EN,τµ| ≤ 1GeV . Increasing |ξ̄EN,τµ|
causes to enhance the dBr of the decay, as expected. Fig. (5.3) is devoted to the

same dependence for s = (80/175)2 (solid line), (90/175)2 (dashed line), where

the values of s are taken at the h0 and A0 resonances. The dBr is of the order

of the magnitude 10−6 for the small values of the coupling |ξ̄EN,τµ| and increases

extremely with the increasing values of this coupling.

In Fig. (5.4), what we present is the dBr as a function of the parameter s,

for |ξ̄EN,τµ| = 10GeV , sin θτµ = 0.5 and Γh
0

tot = ΓA
0

tot = 0.1GeV . It is observed that

dBr has a strong s dependence and there appear two sharp peaks for s values of

corresponding h0 and A0 resonances.

Finally, in Fig. (5.5) the Br for the process t→ c (τ−µ++τ+µ−) as a function

1 We in fact choose these s values which are away from the resonances.
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Figure 5.5: BR (t → c (τ−µ+ + τ+µ−)) as a function of |ξ̄EN,τµ| for sin θτµ = 0.5,

real ξ̄DN,tc and Γh
0

tot = ΓA
0

tot = 0.1GeV .

of |ξ̄EN,τµ| at sin θτµ = 0.5 and Γh
0

tot = ΓA
0

tot = 0.1GeV is depicted. The Br is of

the order of the magnitude 10−8 for |ξ̄EN,τµ| ∼ 2GeV and increases to the values

10−7 with increasing |ξ̄EN,τµ|. Notice that the one loop effects are of the order of

the magnitude 0.1 % of the tree level result and therefore their contribution can

be neglected.

In the case of outgoing τ and e leptons, the Br is predicted of the order of the

magnitude 10−14−10−15, respecting the numerical values of the coupling |ξ̄EN,τµ| =

(10−4 − 10−3)GeV , obtained in [103], based on the experimental measurement of

the leptonic process µ → eγ. For the case of the outgoing µ and e leptons, we

believe that the Br is indeed extremely small, too difficult to be measured.

To sum up, our results can be briefly summarized as follows. The Br of

the flavor changing process t → c (l−1 l
+
2 + l+1 l

−
2 ) is forbidden in the SM and in

the framework of the SM with the extended Higgs sector it is possible to bring

considerable contribution at tree level, of the order of the magnitude 10−8−10−7,

for l1 = τ and l1 = µ. This physical parameter can be measured in the future

experiments and it gives a strong clue about the new physics beyond the SM.

Furthermore, the Br is sensitive to Yukawa coupling ξEN,l1l2 and this results in
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smaller Br,s of t → c (l−1 l
+
2 + l+1 l

−
2 ), for l1 = τ, l2 = e and l1 = µ, l2 = e. Notice

that the loop effects are negligibly small. Before finalizing the chapter let us say a

few words about the experimental feasibility of this decay mode. Due to efficiency

problems in measuring the τ final lepton and in identifying the c-quark jet, there

is a difficulty in the Br measurement of the decay. Then kinematical cuts are

needed in order to isolate the signal from a possibly large background. These cuts

further make the signal demoted. On the other hand, the possible enhancement

of the Br of the decay considered in model III, at least, motivates us to search

new models to get a measurable Br on theoretical side. Thus, both experimental

and theoretical investigations of the decay t → c(l−1 l
+
2 + l+1 l

−
2 ), especially for

l1 = τ, l2 = µ, would play an important role for the determination of the physics

beyond the SM.
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CHAPTER 6

CONCLUSION

We have examined within the framework of model III version of the 2HDM,

the rare B → K∗τ+τ− decay including neutral Higgs Boson effects, the lepton

flavor violation through the leptonic Z decay modes Z → l±1 l
∓
2 and the rare top

decay t → c l±1 l
∓
2 . These decays have a common feature in a sense that they

are basically related to the flavor part of the SM, which is known as “flavor

physics”. Even though flavor physics can be regarded as the least tested part of

the SM, experimental situation concerning it is drastically changing. Since the

decay modes considered are forbidden at the tree level and usually suppressed in

the loop level in the framework of the SM, they are good candidates to search

the physics beyond the SM. For this purpose we considered the possibility of

the existence of a non-minimal Higgs sector and take the next to minimal Higgs

sector consisting of two Higgs doublets. Motivation for exploring those scenarios,

especially for the one with two Higgs doublets, are summarized as follows:

• So far, the Higgs sector of the SM is totally unknown and the simplest way

to fulfill the requirement that the ρ–parameter at the tree level should be

unity is to have two SU(2) Higgs doublets.

• Some models with larger symmetries, as in the case of supersymmetric ones,

end up at low energies in a non–minimal scalar sector.

• There is a possibility of generating additional sources for either spontaneous

or explicit CP violation in an extended SM through its scalar sector.
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• They enable us to generate flavor changing neutral currents, inspired by

the increasing evidence on neutrino oscillations, and lepton flavor violation

supported by the atmospheric and the solar neutrino experiments.

The 2HDM predicts the existence of five Higgs particles, two CP–even Higgs

bosons h0 and H0, one CP–odd one A0, and two charged Higgs particles H±.

The charged and CP–odd Higgs particles are peculiar to the 2HDM and the

experimental discoveries would become a clear signature for the presence of a

non–minimal Higgs sector and the physics beyond the SM. In our calculations,

we used one of the suitable parametrization of the 2HDM type III in a sense that

only one of the doublets acquires nonzero VEV.

Within the context of the model III we have analyzed the processes with

FCNCs and dealt with them both in the quark and the lepton sectors. Since

there are several B physics experiments running at the moment and being started

operating in the upcoming years, these will undoubtedly prove the flavor sector

of the SM with precision and may reveal new physics effects. Therefore we first

concentrate on the exclusive B → K∗τ+τ− decay including the NHB effects.

Based on the constraints coming from the experimental measurements, the

physical parameters of the decay B → K∗τ+τ− such as the forward–backward

asymmetry of the dilepton (AFB), CP violating asymmetry (ACP ), and the CP

asymmetry in the forward–backward asymmetry (ACP (AFB)), are found to be of

the order of 10−2 in the restricted region. For the parameters AFB and ACP , the

NHB effects decreases their magnitude by 30% and 50% for Ceff
7 > 0, respectively.

The sensitivity of AFB on the parameters sin θ, ξ̄DN,ττ and
m

h0

m
A0

is strong especially

for the case Ceff
7 > 0 . ACP has similar behavior with respect to those parameters

except the mass ratio mh0/mA0 whose effect is weak. Only the parameters ξ̄DN,ττ

and mh0/mA0 the sensitivity of ACP (AFB) is strong for positive Ceff
7 values.

Undoubtedly the experimental investigation of these physical parameters provides

us not only a crucial test for new physics effects beyond the SM but also a criteria

for the sign of Ceff
7 which is still unknown.
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We next worked out the Br,s of the lepton flavor violating Z decays, Z →
e±µ∓, Z → e±τ∓, and Z → µ±τ∓. Their importance in fact lies in the huge

discrepancies between the SM prediction for the Br,s (10−60 − 10−54) and the

sensitive measurements (10−9 − 10−8). In our analysis we predicted in the model

III that the Br for the Z → e±µ∓ decay can reach the values of the order

of 10−11 in the restricted region. For another decay mode Z → e±τ∓ the Br

depends strongly on the Yukawa coupling ξ̄DN,ττ and takes the values of the order

of 10−10 − 10−9 for ξ̄DN,ττ values in the range 103 − 104 GeV. The third and last

decay mode Z → µ±τ∓ has the largest Br among them due to contributions

from both ξ̄DN,µτ and ξ̄DN,ττ . We also found that the Br,s calculated are sensitive

to the CP violating parameters stemming from complex Yukawa couplings. It is

worth mentioning that results of future experiments concerning the Br,s of these

processes constrain the couplings.

In addition to these the rare top decay t → c l±1 l
∓
2 involving flavor changing

vertices both in the quark and the lepton sector were discussed in the context of

the model III. We reported that the Br of the decay which is forbidden in the SM

and, in model III, it takes values of the order of 10−8 − 10−7 for l1,2 = τ, µ at tree

level. It was observed that loop effects are negligibly small. For the lepton pairs

l1,2 = τ, e and l1,2 = µ, e the Br,s for the corresponding decays are smaller and

too difficult to be observed in near future. There are indeed two additional free

parameters which are the total decay widths of the Higgs bosons, Γh
0

tot and ΓA
0

tot

entering into the expressions because of the fact that there is enough kinematical

region which permits to get h0 and A0 resonances. What comes out from all these

discussions that especially for the lepton pair l1,2 = τ, µ the future experimental

search for the rare decay process t → c l±1 l
∓
2 will play an effective role in the

determination of the physics beyond the SM.
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APPENDIX A

MINIMA CONDITIONS OF THE POTENTIAL AND THE

PHYSICAL EIGENSTATES

The purpose of this appendix is to drive the minima conditions of the potential

and is to get the physical eigenstates in terms of gauge eigenstates. Subject to

a Z2 symmetry given in the Eq. (2.17) which is implemented to avoid FCNC at

three level, the most general gauge invariant potential can be written as

V (Φ1,Φ2) = µ2
1Φ

†
1Φ1 + µ2

2Φ
†
2Φ2 + λ1(Φ

†
1Φ1)

2 + λ2(Φ
†
2Φ2)

2

+ λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+
1

2
[λ5(Φ

†
1Φ2)

2 + h.c.] . (A.1)

From hermicity requirement all the coupling constants are taken to be real with

the exception of λ5. However, there is still a freedom, the phase of Φ2, which can

be chosen such a way that the last term in (A.1) becomes 1
2
λ5[(Φ

†
1Φ2)

2 +h.c.]. In

all our calculations throughout the thesis in order to concentrate on the effects

of the flavor changing Yukawa couplings we assume that the scalar potential is

CP conserved. In fact, the Higgs potential in 2HDM which is not enforced to

satisfy any discrete symmetry may be in general CP conserved or CP violated

[24], [105]. Within this assumption the new source of CP violation is merely from

the Yukawa couplings.

Let us now study the physical particle (mass eigenvalues and eigenstates)

contents of the scalar doublets using (A.1) The method of analysis is somehow

similar to that found in [106].
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For convenience let us use the following parametrization for the doublets

Φ1 =







φ1 + iφ2

φ3 + iφ4





 ; Φ2 =







φ5 + iφ6

φ7 + iφ8





 . (A.2)

Along our strategy in computing minimum conditions of the potential in (A.1),

we consider the potential to be a function of the variables {φ1, φ2, ..., φ8} with

coefficients depending on the parameters µ2
1, µ

2
2, λi, i = 1, 2, .., 5. The minimum

conditions are

Ti =
∂V

∂φi

∣

∣

∣

∣

∣

min

= 0 , (A.3)

where i = 1, 2, .., 8 and “min” means 〈φ3〉 = v1/
√

2 ; 〈φ7〉 = v2/
√

2 and 〈φj〉 = 0

for j = 1, 2, 4, 5, 6, 8. From (A.3) we get the following nonzero conditions

T3 = v1(µ
2
1 + λ1v1 + λ345v

2
2) = 0 ,

T7 = v2(µ
2
1 + λ1v1 + λ345v

2
1) = 0 , (A.4)

where λ345 ≡ 2(λ3 + λ4 + λ5). There are two independent set of solutions

• Case a) v2
1 = v2

2 6= 0

The solutions for v2
1 and v2

2 of (A.4) are

v2
1 =

λ345µ
2
2 − λ2µ

2
1

λ1λ2 − λ2
345

, v2
2 =

λµ2
1 − λ1µ

2
2

λ1λ2 − λ2
345

. (A.5)

• Case b) v2
2 = 0 , v2

1 6= 0

v1 = −µ
2
1

λ1

. (A.6)

After constructing the mass squared matrix and getting the physical spectrum

of the charged and the neutral sectors, two linearly independent solutions of the

Eq. (A.4) are discussed separately. Therefore, the next task is to evaluate the

second derivative of the potential (getting quadratic terms in (A.1)) about its

minimum and to get the mass squared matrix defined as

M2
ij =

1

2

∂2V

∂φi∂φj

∣

∣

∣

∣

∣

φ3=v1/
√

2, φ7=v2/
√

2

. (A.7)
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Using (A.1), (A.4), and (A.7) the 8 × 8 mass squared matrix becomes



















































M2
11 0 0 0 M2

15 0 0 0

0 M2
22 0 0 0 M2

26 0 0

0 0 M2
33 0 0 0 M2

37 0

0 0 0 M2
44 0 0 0 M2

48

M2
15 0 0 0 M2

55 0 0 0

0 M2
26 0 0 0 M2

66 0 0

0 0 M2
37 0 0 0 M2

77 0

0 0 0 M2
48 0 0 0 M2
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

















































, (A.8)

where the mass squared elements are given as

M2
11 = −v2

2λ45 = M2
22 ,

M2
15 = λ45v1v2 = M2

26 ,

M2
33 = 2λ1v

2
1 ,

M2
37 = 2λ345v1v2 ,

M2
44 = −λ5v

2
2 ,

M2
48 = λ5v1v2 ,

M2
55 = −λ45v

2
1 = M2

66 ,

M2
77 = 2λ2v

2
2 ,

M2
88 = −λ5v

2
1 , (A.9)

where λ345 ≡ 2 (λ3 + λ4 + λ5) and λ45 ≡ 2 (λ4 + λ5).

From the computational point of view one can put the above 8×8 symmetric

matrix into block diagonal form, which allows us to diagonalize each of these

sub–matrices separately. This is since that one can simply relabel the scalar fields

without any effect on the physical spectra of the mass squared matrix. So recalling

the positions of the fields as 1 → 1, 2 → 3, 3 → 5, 4 → 7, 5 → 2, 6 → 4, 7 → 6 and
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8 → 8, the mass squared matrix turns into



















































M2
11 M2

15 0 0 0 0 0 0

M2
15 M2

55 0 0 0 0 0 0

0 0 M2
22 M2

26 0 0 0 0

0 0 M2
26 M2

66 0 0 0 0

0 0 0 0 M 2
33 M2

37 0 0

0 0 0 0 M 2
37 M2

77 0 0

0 0 0 0 0 0 M 2
44 M2

48

0 0 0 0 0 0 M 2
48 M2

88



















































, (A.10)

where the first two sub-matrices of the part formed by the components {φ1, φ2, φ5, φ6}
are indeed identical (M 2

11 = M2
22,M

2
15 = M26,M

2
55 = M2

66). After performing diag-

onalization procedure these correspond to the masses of the four charged scalars

(2 charged Goldstone bosons and 2 charged physical Higgs). The rest in the

{φ3, φ4, φ7, φ8} space corresponds to the neutral scalars (one neutral Goldstone

boson, 2 neutral scalars and one neutral pseudoscalar). In diagonalizing the mass

squared matrix (A.10), the following further decomposition is useful





















M2
11 M2

15 0 0

M2
15 M2

55 0 0

0 0 M2
22 M2

26

0 0 M2
26 M2

66





















⊕







M2
33 M2

37

M2
37 M2

77





⊕







M2
44 M2

48

M2
48 M2

88





 , (A.11)

where M 2
11 = M2

22,M
2
15 = M2

26,M
2
55 = M2

66. Having decomposed the mass squared

matrix into the above form, we may analyze the charged and the neutral sectors

separately.

A.1 The Charged Scalar Sector

Let us concentrate on the part in (A.11) spanned by the {φ1, φ2, φ5, φ6} ele-

ments. Since the upper 2× 2 sub–matrix is identical to lower 2× 2 part, it can

be further decomposed and this results in decoupling the positive and negative
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states. The identical mass squared matrices is of the form







−λ45v
2
2 λ45v1v2

λ45v1v2 −λ45v
2
2





 , (A.12)

whose diagonalization is straightforward. The eigenvalues corresponding to the

masses of the four charged states (denoted as χ± and H±) are obtained

{mχ± ,mH±} = {0,−(v2
1 + v2

2)λ45}. (A.13)

Then the associated normalized charged eigenstates in the matrix form can be

parametrized as

u(mχ±) =







cos β

sin β





 , u(mH±) =







− sin β

cos β





 . (A.14)

From the above eigenstates a unitary matrix P is formed as

P =







uT (χ±)

uT (H±)





 =







cos β sin β

− sin β cos β





 . (A.15)

The physical eigenstates are related to the initially defined fields as from (|)mass =

P (|)gauge






χ+

H+





 =







cos β sin β

− sin β cos β













φ1

φ5





 ,







χ−

H−





 =







cos β sin β

− sin β cos β













φ2

φ6





 , (A.16)

with masses given in (A.13).

A.2 The Neutral Scalar Sector

We now first focus on the part in (A.11) spanned by {φ4, φ8}. The eigenvalues

can easily read from (A.13) by replacing λ45 with λ5, which is obvious from (A.9)

that M 2
44 = M2

88 = M2
11(λ45 → λ5) and M 2

48 = M2
15(λ45 → λ5). Consequently the
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eigenvalues (the mass squared of one neutral Goldstone boson denoted as χ0 and

that of one neutral pseudoscalar Higgs boson denoted as A0) are

{mχ0 ,mA0} = {0,−(v2
1 + v2

2)λ5} . (A.17)

The eigenvectors (and the corresponding unitary matrix P) for the eigenstates χ0

and A0 are the same as those in the charged sector ((A.14) and (A.15)). Thus

they read







χ0

A0





 =







cos β sin β

− sin β cos β













φ4

φ8





 . (A.18)

The only remaining part is the sub–matrix in {φ3, φ7} space which is responsi-

ble for the CP–even neutral Higgs sector. From (A.9) and (A.11) the sub–matrix

is






2λ1v
2
1 2λ345v1v2

2λ345v1v2 2λ2v
2
2





 . (A.19)

Following the same procedure the eigenvalues corresponding to the masses squared

of the CP -even neutral scalars denoted as H0 and h0 are obtained

m2
H0,h0 = A+B ±

√

(A−B)2 + C2 , (A.20)

where

A ≡ λ1v
2
1 , B ≡ λ2v

2
2 , C ≡ 2λ345v1v2 , (A.21)

and the sub-indices (H0, h0) refer respectively to (+,−) (mH0 ≥ mh0). The

corresponding eigenvectors are given from (A.19) and (A.20)

u(mH0) =







cosα

sinα





 , u(mh0) =







− sinα

cosα





 , (A.22)

where

tan 2α =
C

(A−B)
=

2λ345v1v2

λ1v2
1 − λ2v2

2

. (A.23)
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Constructing the matrix P from (A.22) the physical eigenstates are







H0

h0





 =







cosα sinα

− sinα cosα













√
2φ3 − v1

√
2φ7 − v2





 . (A.24)

The constraints on the parameters of the scalar potential can be determined

from the argument that all masses are positive. The conditions are from (A.13),

(A.17), and (A.20)

λ5 < 0 , λ45 < 0 , and |C| ≤ 2
√
AB . (A.25)

A.3 For Case a) Set of Solutions

For Case a) in which both doublets have nonzero VEVs, the eigenvalues and

the eigenvectors can be rewritten from (A.4), (A.16), (A.17), (A.20) and (A.23)

{mχ± ,mH±} = {0,−(v2
1 + v2

2)λ45} ,







χ+(−)

H+(−)





 =







cos β sin β

− sin β cos β













φ1(2)

φ5(6)





 ,

{mχ0 ,mA0} = {0,−(v2
1 + v2

2)λ5} ,







χ0

A0





 =







cos β sin β

− sin β cos β













φ4

φ8





 ,

m2
H0,h0 = λ1v

2
1 + λ2

2 ±
√

(λ1v2
1 − λ2v2

2)
2 + 4v2

1v
2
2λ

2
345 ,







H0

h0





 =







cosα sinα

− sinα cosα













√
2φ3 − v1

√
2φ7 − v2





 , (A.26)

where tan 2α = 2v1v2λ345/(λ1v
2
1 − λ2v

2
2) and tan β = v2/v1.
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A.4 For Case b) Set of Solutions

For Case b) where only one of the scalar doublets has nonzero VEV. We indeed

use this second set of solutions in all our calculations, because the interpretation

of the fields can easily be done. A more general case will be discussed in Appendix

B without assuming that v2 vanishes. The crucial difference between them is that

in the latter case there is an additional mixing in the CP–even neutral sector.

Since the Case b) is relevant to all our calculations, let us discuss it separately.

So, the rest of this appendix is devoted to the case in which v2 vanishes. The

mass squared matrix from (A.3), (A.7), and (A.6) is



















































0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 M2
33 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 M 2
55 0 0 0

0 0 0 0 0 M 2
66 0 0

0 0 0 0 0 0 M 2
77 0

0 0 0 0 0 0 0 M 2
88



















































, (A.27)

where the nonzero entries are

M2
33 = 2λ1v

2
1 ,

M2
55 = µ2

2 +
λ3

2
v2

1 = M2
66 ,

M2
77 = µ2

2 + λ345v
2
1 ,

M2
88 = µ2

2 + (λ345 − λ5)v
2
1 . (A.28)

We clearly see that the mass squared matrix is already diagonal and it is

expected that all fields defined originally coincide with the physical (mass) eigen-

states. Therefore no mixing angle appears (α = 0 , β = 0).

For the charged sector formed by the fields {φ1, φ2, φ5, φ6} the sub–diagonal
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4 × 4 mass matrix squared is





















0 0 0 0

0 0 0 0

0 0 µ2
2 + λ3

2
v2

1 0

0 0 0 µ2
2 + λ3

2
v2

1





















. (A.29)

The corresponding eigenvalues are

{mχ± ,mH±} = {0, µ2
2 +

λ3

2
v2

1} , (A.30)

and the eigenvectors are

u(χ±) = {(1, 0, 0, 0)T , (0, 1, 0, 0)T},

u(H±) = {(0, 0, 1, 0)T , (0, 0, 0, 1)T}. (A.31)

Thus the eigenstates are simply





















χ1

χ2

H1

H2





















=





















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









































φ1

φ2

φ3

φ4





















, (A.32)

such that χ± ≡ χ1 ± iχ2 = φ1 ± iφ2 and H± ≡ H1 ± iH2 = φ5 ± iφ6.

For the neutral sector the sub-matrix spanned by {φ4, φ8} is







0 0

0 µ2
2 + (λ345 − λ5)v

2
1





 . (A.33)

The eigenvalues corresponding to the masses of χ0 and A0 are simply

{mχ0 ,mA0} = {0, µ2
2 + (λ345 − λ5)v

2
1} , (A.34)

with mass eigenstates







χ0

A0





 =







1 0

0 1













φ4

φ8





 . (A.35)
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Finally for the part formed by {φ3, φ7}, the masses and mass eigenstates are

{mH0 ,mh0} = {2λ1v
2
1, µ

2
2 + λ345v

2
1} ,







H0

h0





 =







1 0

0 1













√
φ3 − v1

φ7





 . (A.36)

A few words about this particular choice of solution are in order. With this

choice all new particles are collected in the second doublet and then φ1 corre-

sponds to the scalar doublet of the SM. H0 corresponds to SM Higgs field and it

does not interact with h0 and A0, since no mixing exists between CP–even neutral

Higgs fields. Therefore new physics effects are more apparent in this framework.

As already noted this is a special case of the result derived in Appendix B where

v2 is assumed to be nonzero.
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APPENDIX B

AN EQUIVALENT NEW PARAMETRIZATION OF THE

DOUBLETS AND THE YUKAWA LAGRANGIAN IN THE

QUARK MASS BASIS

In this appendix we describe the transition from the representation of the scalar

doublets in which they both have non–zero VEVs to an equivalent one where

only one of them acquires a non–zero VEV. We will call the former one as Case

a) and the latter one as Case b). In the latter we express the Yukawa Lagrangian

in the quark mass basis in order to get the rotated Yukawa couplings in terms of

the original ones.

For the sake of simplicity, let us consider only the quark sector of the Yukawa

Lagrangian (lepton sector can also be included without much afford) for Case a)

from Eq. (2.16)

LY = ηa,Uij Q̄iLΦ̃a
1UjR + ηa,Dij Q̄iLΦa

1DjR + ξa,U †
ij Q̄iLΦ̃a

2UjR

+ ξa,Dij Q̄iLΦa
2DjR + h.c. (B.1)

where

Φa
1(2) =







φa+
1(2)

φa 0
1(2)





 ; 〈Φa
1(2)〉 = v1(2) , (B.2)

and the superscript “a” denotes Case a). Since we argue that these two rep-

resentations of the scalar doublets are physically equivalent, there must be an

orthogonal transformation which transforms one into other. Thus we have

Φb = Λθ Φa , (B.3)
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where

Φa(b) =







Φ
a(b)
1

Φ
a(b)
2





 , Λθ ≡







cos θ sin θ

− sin θ cos θ





 . (B.4)

For the sake of simplicity let us write (B.1) in the form

LY = Q̄iL

[

fa,U Tij Φ̃a
]

UjR + Q̄iL

[

fa,D T
ij Φa

]

DjR + h.c. , (B.5)

where

fa,U(D) ≡







η
a,U(D)
ij

ξ
a,U(D)
ij





 , (B.6)

and ”T” stands for transposition. From (B.4) we transform (B.5) into the form

in terms of the weak eigenstates for Case b)

LY = Q̄iL

[

fa,U Tij ΛT
θ Φ̃b

]

UjR + Q̄iL

[

fa,D T
ij ΛT

θ Φa
]

DjR + h.c.

≡ Q̄iL

[

f b,U T Φ̃b
]

UjR + Q̄iL

[

f b,D T
ij Φa

]

DjR + h.c. , (B.7)

where we have defined

f
b,U(D)
ij ≡ Λθf

a,U(D)
ij . (B.8)

Therefore both Lagrangians, (B.5) and(B.7), are “equivalent”, thus under the

transformations (B.3) and (B.8) physics becomes invariant. So there is a freedom

to use any of these bases which are related to each other with the parameter θ

which is completely arbitrary. One can then set θ = β and from (B.2) and (B.3)

the VEV of Φb takes the following form

〈Φb〉 = Λβ〈Φa〉,






〈Φb
1〉

〈Φb
2〉





 =







cos β sin β

− sin β cos β













〈Φa
1〉

〈Φa
2〉





 ,

=







cos β 〈Φa
1〉 + sin β 〈Φa

2〉
− sin β 〈Φa

1〉 + cos β 〈Φa
2〉





 ,

=







cos β v1 + sin β v2

− sin β v1 + cos β v2





 ,
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=







v

0





 , (B.9)

where v =
√

v2
1 + v2

2 and tan β = v2/v1 are used. Thus, having started with two

scalar doublets whose VEVs are non–zero and by means of a transformation we

reach a system in which only one of the transformed doublets acquires non–zero

VEV (〈Φb
1〉 = v).

Our next task is to express the gauge (weak) fields of the doublets Φb
1(2) in

terms of mass eigenstates. To achieve this, first it is more convenient to get the

relations between the gauge fields in Case b) and those in Case a). Then getting

the gauge fields of the doublets Φb
1(2) as a function of mass fields is straightforward.

The following parametrization of the doublets is more suitable

〈Φa
1(2)〉 =

1√
2







√
2φa+

1(2)

v1(2) + ya1(2) + iza1(2)





 ,

〈Φb
1(2)〉 =

1√
2







√
2φb+

1(2)

v(0) + yb1(2) + izb1(2)





 . (B.10)

Using the transformation (B.3) with θ = β and from (B.10) we have

Φb
1 = cos βΦa

1 + sin βΦa
2 ,

=
1√
2







√
2(cos βφa+

1 + sin βφa+
2 )

v + cos βya1 + sin βya2 + i(cos βza1 + sin βza2)





 , (B.11)

and

Φb
2 = − sin βΦa

1 + cos βΦa
2 ,

=
1√
2







√
2(− sin βφa+

1 + cos βφa+
2 )

− sin βya1 + cos βya2 + i(− sin βza1 + cos βza2)





 . (B.12)

From the comparison of (B.11) and (B.12) with (B.10) the following relations

read

φb+ = Λβ φ
a+ , yb = Λβ y

a , zb = Λβ z
a , (B.13)
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where φa(b) =







φ
a(b)+
1

φ
a(b)+
2





 and similar definitions for y and z.

Having obtained the relations among gauge eigenstates defined in both cases,

our next step is to express the gauge eigenstates {φb , yb , zb} in terms of the mass

eigenstates {χ± , H± , χ0 , A0 , H0 , h0} defined in appendix A. One can simply read

the relation between {φa , ya , za} and mass eigenstates from appendix A by just

making the replacements
√

2φ3 − v1 → ya1 ,
√

2φ7 − v2 → ya2 , φ4 → za1 , φ8 → za2

(see (A.16), (A.18), and (A.24)). We then have

φa+ = Λ−1
β







χ+

H+





 , ya = Λ−1
α







H0

h0





 , za = Λ−1
β







χ0

A0





 , (B.14)

where

Λ−1
β =







cos β − sin β

sin β cos β





 , Λ−1
α =







cosα − sinα

sinα cosα





 . (B.15)

Therefore from (B.13), (B.14), and (B.15) we get

φb+ = ΛβΛ
−1
β







χ+

H+





 =







χ+

H+





 ,

zb = ΛβΛ
−1
β







χ0

A0





 =







χ0

A0





 ,

yb = ΛβΛ
−1
α







H0

h0





 ,

=







cos β sin β

− sin β cos β













cosα − sinα

sinα cosα













χ0

A0





 ,

=







cos(α− β) − sin(α− β)

sin(α− β) cos(α− β)













χ0

A0





 . (B.16)

Forming the doublets Φb
1(2) from above relations they read

Φb
1 =

1√
2







√
2χ+

v + H̄0 + iχ0





 ,
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Φb
2 =

1√
2







√
2H+

H1 + iH2





 , (B.17)

where

H̄0 = cos(α− β)H0 − sin(α− β)h0 ,

H1 = sin(α− β)H0 + cos(α− β)h0 ,

H2 = A0 , (B.18)

and H0, h0, A0 are the mass eigenstates (there is a mixing between H0 and h0).

Since the scalar kinetic term is invariant under such rotation given in (B.3), we

may identify the doublet Φb
1 with the usual Higgs doublet of the SM. Then all

fermions acquire mass by the doublet Φb
1 trough the symmetry breaking. Further

the linear combination of the physical scalar fields (H0 , h0) represented as H̄0

is equivalent to the SM Higgs particle (its couplings to vector bosons are the

exact analogue of those of the SM’s one and it has always flavor diagonal Yukawa

couplings independent of the type of the model). As a consequence Φb
2 is irrelevant

for the symmetry breaking and responsible only for new interactions (all new

scalar fields belong to the Φb
2 doublet).

Note that the case v2 = 0 is a valid solution for the minima conditions of the

scalar potential and with this choice, the mixing angles vanish, β = 0 , α = 0.

Then from (B.18) H̄0 = H0 , H1 = h0 and from (B.17) we have

Φb
1 =

1√
2







√
2χ+

v +H0 + iχ0





 ,

Φb
2 =

1√
2







√
2H+

h0 + iA0





 , (B.19)

where the mixing between the CP -even neutral scalars H0 and h0 disappears.

Final part of this appendix is devoted to expressing the Yukawa couplings in

the quark mass basis in terms of those defined originally. Since, in this thesis,

the relevant parametrization are of the scalar doublets are those given in (B.19),
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let us consider the Yukawa Lagrangian for Case b) as our starting point with

additionally setting v2 = 01

LY = ηUijQ̄iLΦ̃1UjR + ηDij Q̄iLΦ1DjR + ξU †
ij Q̄iLΦ̃2UjR

+ ξDij Q̄iLΦ2DjR + h.c. (B.20)

With this choices of the doublets, as is stated earlier, Φb is responsible for generat-

ing the quark masses, thus the couplings ηU,Dij are only involved in this generation

process. Then in the quark mass basis only the rotated couplings, denoted as

η̂U,Dij , are diagonal, while the additional rotated couplings ξ̂U,Dij are in general not.

Transition to the quark mass basis is implemented by biunitary transforma-

tions involving unitary matrices V U
L,R and V U

L,R
2. The quark fields transform as

UL,R → ÛL,R = V U
L,R UL,R ,

DL,R → D̂L,R = V D
L,RDL,R . (B.21)

After the transformation defined in (B.21) FC part of the Lagrangian (B.20)

becomes (since Φ1 is identical to the SM doublet)

LFCY = ξU †
ij Q̄iLΦ̃2UjR + ξDij Q̄iLΦ2DjR + h.c. (B.22)

Expressing (B.22) in terms of quark mass fields from (B.21) we get

LFCY =
1√
2
ξU †

(

V U †
L ÛL V D †

L D̂L

)







h0 − iA0

√
2H−





 V U †
R ÛR

+
1√
2
ξD
(

V U †
L ÛL V D †

L D̂L

)







√
2H+

h0 + iA0





 V D †
R D̂R + h.c. ,

=
1√
2
{ÛL

[

V U
L ξU † V U †

R

]

ÛR (h0 − iA0)

+ D̂L

[

V D
L ξD V D †

R

]

D̂R (h0 + iA0) } + D̂L

[

V D
L ξU † V U †

R

]

ÛRH
−

+ ÛL
[

V U
L ξD V D †

R

]

D̂RH
+ + h.c. ,

≡ LFCY,Neutral + LFCY,Charged , (B.23)

1 Here we drop all the superscript ”b” in all terms for simplicity.
2 V U

L,R and V U
L,R are defined to be the rotation matrices acting on the up-type and down-type

quarks with left or right chirality respectively. They further satisfy V
U(D)
L,R V

U(D) †
L,R = I.
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where

LFCY,Neutral =
1√
2
{ÛL ξU †

Neutral ÛR (h0 − iA0)

+ D̂L ξ
D
Neutral D̂R (h0 + iA0) } + h.c. ,

LFCY,Chargedl = D̂L ξ
U †
Charged ÛRH

− + ÛL ξ
D
Charged D̂RH

+ + h.c. (B.24)

with

ξU †
Neutral = V U

L ξU † V U †
R , ξDNeutral = V D

L ξD V D †
R ,

ξU †
Charged = V D

L ξU † V U †
R , ξDCharged = V U

L ξD V D †
R . (B.25)

Then the charged couplings can also be express in terms of neutral ones of the

form

ξDCharged = V U
L ξD V D †

R ,

= V U
L

(

V D †
L V D

L

)

ξD V D †
R ,

=
(

V U
L V D †

L

)

V D
L ξD V D †

R ,

= VCKM
(

V D
L ξD V D †

R

)

,

= VCKM ξDNeutral ,
(

ξU †
Charged

)†
=

(

V D
L ξU † V U †

R

)†
,

ξUCharged = V U
R ξU V D †

L ,

= V U
R ξU

(

V U †
L V U

L

)

V D †
L ,

= V U
R ξU V U †

L

(

V U
L V

D †
L

)

,

=
(

V U
R ξU V U †

L

)

VCKM ,

= ξUNeutral VCKM , (B.26)

where VCKM ≡ V U
L V

D †
L is the CKM mixing matrix.

105



APPENDIX C

THE FEYNMAN PARAMETRIZATION

In calculating loop integrals the Feynman parametrization is usually very use-

ful. The idea is to put the denominator factors of a vertex function into a single

quadratic polynomial in loop integral variable by introducing some auxiliary pa-

rameters to be integrated over. Let us first present the most general form of the

Feynman parametrization,

n
∏

i=1

1

Aβi

i

=
Γ(β)

∏n
i=1 Γ(βi)

∫ 1

0
[
n
∏

i=1

dxi x
βi−1
i ]

δ(1 − x)

[
∑n
i=1 xiAi]

β , (C.1)

where Γ(βi) is the gamma function, βi, i = 1, 2, ..., n are arbitrary complex num-

bers, and β ≡ ∑n
i=1 βi and x ≡ ∑n

i=1 xi. It is now useful to give two simpler cases

of two and three factors in denominator of any vertex function appearing in all

loop calculations, since up to one loop level they are the only structures encoun-

tered in calculations. They read from (C.1) for n = 2 and n = 3 respectively

1

AB
=
∫ 1

0
dx

1

[xA+ (1 − x)B]2
,

1

ABC
= 2

∫ 1

0
dx
∫ 1−x

0
dy

1

[xA+ yB + (1 − x− y)C]3
. (C.2)

As an application some specific examples can be given here. To this aim, let

us apply the method to the calculation of the effective vertex function for the

decay Z → l−1 l
+
2 considered in chapter 4 (see Eq. (4.24)). If one looks the terms

in the denominator of Γµab, the form is

1

[(p1(2) + q)2 −m2
i ](q

2 −m2
α)
, (C.3)
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where i = e, µ, τ . For this piece the integral with only n = 2 case is relevant and

by setting A ≡ (p1(2) + q)2 −m2
i and B ≡ q2 −m2

α we have

1

[(p1(2) + q)2 −m2
i ](q

2 −m2
α)

=
∫ 1

0

dx

[x((p1(2) + q)2 −m2
i ) + (1 − x)(q2 −m2

α)]
2
.(C.4)

Then the common expression in the denominator of Γµab becomes

Dself
1(2) ≡ x(p2

1(2) + q2 − 2q ·p1(2) −m2
i ) + (1 − x)q2 −m2

α(1 − x)

= (q − xp1(2))
2 −m2

l1(2)
x2 + (m2

l1(2)
−m2

i )x−m2
α(1 − x), (C.5)

where the on–shell condition for external leptons, p2
1(2) = m2

l1(2)
, was used. Now

by shifting q to complete the square as k1(2) ≡ q − xp1(2) we get

Dself
1(2) = k2

1(2) − Lself1(2),α, (C.6)

with

Lself1(2),α ≡ m2
α(1 − x) + [m2

i −m2
l1(2)

(1 − x)]x. (C.7)

If one looks the structures in the denominator of Γµcd (see Eq. (4.24)), there

are three factors which can be again combined by using integral over Feynman

parameters (n = 3). For the term coming from triangular diagram (c) in Fig.

(4.1), with setting A ≡ (p1 + q)2 −m2
i , B ≡ (p2 + q)2 −m2

i and C ≡ q2 −m2
α ,

the denominator, called Dver
c(α) , can be formed as

Dver
c(α) = xA+ yB + (1 − x− y)C,

= x(q2 + 2q ·p1 +m2
l1
−m2

i ) + y(q2 + 2q ·p2 +m2
l2
−m2

i )

+ (1 − x− y)(q2 −m2
α),

= k2
c − Lverc(α), (C.8)

where we set kc ≡ q + xp1 + yp2 and Lverα ≡ m2
α(1 − x− y) +m2

i (x + y) −Q2xy

with the assumption that mass squares of the final leptons are negligible. Here

Q2 = (p1 − p2)
2 is the momentum transfer squared. Finally the denominator

belonging to diagram (d) in Fig. (4.1) is

Dver
(αβ) = k2

d − Lverd(αβ), (C.9)
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where in this case kd ≡ q−xp1−yp2 and Lverαβ ≡ m2
βx+m2

i (1−x−y)−(m2
α−Q2x)y.

Now all the bracket quantities in the denominators turn into a quadratic

function of the shifted integration variables as of the form (k2 − L)n , n = 2, 3.

Then it is much easier to evaluate the remaining spherically symmetric integral

without difficulty.
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APPENDIX D

DIMENSIONAL REGULARIZATION

In this appendix we present some basics of one of the regularization methods, so

called dimensional regularization due to ’t Hooft and Veltman [?]. Even though

one can make any physical quantity divergent free by means of any suitable

renormalization program, we still need to deal with some divergent integrals at

any intermediate state. Any mathematical prescription introduced in order to

render the divergent Feynman integrals finite is generically called regularization.

It is a purely mathematical tool and has no physical consequences. Thus any

physical result should be independent of the regularization scheme chosen.

Several schemes have been devised. Among them, one of the most conservative

ones is dimensional regularization1. The basic idea of dimensional regularization

is simply to state that we compute the Feynman diagram as an analytic function

of the dimensionality of space–time d lower than four and any loop-momentum

integral will converge for sufficiently small d. The final expression for any observ-

able should have a well defined limit as d → 4. In fact, to make the behavior of

the result of the loop integral evident, a new parameter ε = 4 − d is defined and

the expressions are expanded in ε, keeping only pole and finite parts separately.

Once adding all possible diagrams contributing to the observable quantity, the

ε-pole has to cancel. For a review see [107]. It is better to stress that some

care has to be given to the algebra in d–dimensions and let us note the following

1 What we mean by calling ‘conservative’ for a regularization scheme is that after applying
the regularization scheme the theory should preserve as many physical laws as possible. In
dimensional regularization none of the physical requirements has been violated except that
space-time has a dimension d lower than 4.

109



remarks. All the space–time index µ in this case runs from 0 to d − 1 so that

components of a momentum vector kµ are

kµ = (k0, k1, ..., kd−1), (D.1)

and the trace of the metric tensor is now

gµµ = gµνg
µν = d . (D.2)

The Dirac algebra in d-dimensions is unchanged except the modification in (D.2).

Thus we can simply write the followings

{γµ, γν} = 2gµν ,

γµγ
µ = d ,

γµγνγ
µ = (2 − d) γν . (D.3)

Since there are more than one way to generalize identities to d dimensional

space–time, we need to fix our convention. Throughout in all calculations the

following convention was used

• The metric in d-dimension is gµν = {+,−, ...,−} .

• The integral measure is chosen as
∫ dd k

(2π)d
.

• The trace of the γ matrices is normalized to Tr[γµγν ] = 4 gµν .

• γ5 is an object2 satisfying {γµ, γ5} = 0 , γ2
5 = 1 , γ†5 = γ5 .

Having expressed any vertex function including loop contributions, with the

help of the Feynman parametrization method discussed in appendix C, the factors

in denominator of the function will take a quadratic form in the integration

variable k′µ. This term can be a complete square by redefining the integral

variable and call kµ. The denominator eventually takes the form (k2−L)n where n

2 Since there is no mathematically consistent generalization of γ5 in arbitrary dimensions,
instead of trying to drive an explicit formula for γ5 we rather require the existence of such
quantity which satisfies the requirements given above.
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is an integer. Then from the fact that in dimensional regularization we break none

of the symmetries of space–time, any integral of an odd function in k vanishes,

∫

ddk kµ f(k2) = 0 , (D.4)

where f(k2) is an integrable function of k2. Further, unbroken symmetries allows

one to replace the following identities

kµkν → 1

d
k2gµν ,

kµkνkαkβ → 1

d(d+ 2)
(k2)2 [gµνgαβ + gµαgνβ + gµβgνα] . (D.5)

Then one–loop momentum integrals can easily be computed with the help of the

following d–dimensional integrals in Minkowski space, quoted from the reference

[108]:

∫ ddk

(2π)d
1

(k2 − L)n
=

(−1)ni

(4π)d/2
Γ(n− d

2
)

Γ(n)

(

1

L

)n− d
2

,

∫ ddk

(2π)d
k2

(k2 − L)n
=

(−1)n−1i

(4π)d/2
d

2

Γ(n− d
2
− 1)

Γ(n)

(

1

L

)n− d
2
−1

,

∫ ddk

(2π)d
kµkν

(k2 − L)n
=

(−1)n−1i

(4π)d/2
gµν

2

Γ(n− d
2
− 1)

Γ(n)

(

1

L

)n− d
2
−1

,

∫ ddk

(2π)d
(k2)2

(k2 − L)n
=

(−1)ni

(4π)d/2
d(d+ 2)

4

Γ(n− d
2
− 1)

Γ(n)

(

1

L

)n− d
2
−2

,

∫ ddk

(2π)d
kµkνkαkβ

(k2 − L)n
=

(−1)ni

(4π)d/2
Γ(n− d

2
− 2)

Γ(n)

(

1

L

)n− d
2
−2

,

× 1

4
(gµνgαβ + gµαgνβ + gµβgνα), (D.6)

where Γ(n) is the Gamma function. Since n = 2 and 3 cases have been encoun-

tered commonly, it is better to give expansion of the terms (D.6) as d→ 4. The

behavior near d=4 can be readily extracted by expanding the factors in the right

hand side of (D.6) as

(

1

L

)2− d
2

= 1 − ε

2
lnL+ ... ,

Γ
(

2 − d

2

)

=
2

ε
− γ + O(ε) , as ε→ 0 , (D.7)
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where ε ≡ 4−d and γ is the Euler–Mascheroni constant, γ = 0.5772. Then the

combination of these factors gives

Γ(2 − d
2
)

(4π)d/2

(

1

L

)2− d
2

=
2

ε
− (lnL+ γ − ln 4π) + O(ε) (D.8)

where it apparently reflects its singular nature as ε→0 (d→4). However addition

of all possible diagrams contributing the process considered make the coefficient

of 1/ε zero.
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