PROPAGATION CHARACTERISTICS OF RCS, RC6 AND TWOFISH
CIPHERS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

SAVAS ARIKAN

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF
MASTER OF SCIENCE
IN

THE DEPARTMENT OF ELECTRICAL AND ELECTRONICS
ENGINEERING

DECEMBER 2003

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan OZGEN

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

Prof. Dr. Miibeccel DEMIREKLER

Head of Department
This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Melek D. YUCEL

Supervisor
Examining Committee Members

Prof. Dr. Yal¢in TANIK (Chairman)

Prof. Dr. Murat ASKAR

Prof. Dr. Kemal LEBLEBICIOGLU

Assoc. Prof. Dr. Melek D. YUCEL

MSc. Ozgiir INCE

ABSTRACT

PROPAGATION CHARACTERISTICS OF RC5, RC6 AND TWOFISH

CIPHERS

Arikan, Savas
M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Melek D. Yiicel

December 2003, 117 pages

In this thesis, two finalists of the AES (Advanced Encryption Standard)
contest, RC6 developed by Rivest et al, Twofish proposed by Schneier et al, and
preceding algorithm of RC6 cipher, RCS5, are studied. The strength of ciphers to
cryptanalytic attacks is measured according to different criteria. The studied

evaluation criteria are the avalanche criterion and its derivations. After the

il

implementation of the algorithms and the test procedures, they are compared with
each other.

Different test criteria, including avalanche criterion, avalanche weight
distribution (AWD) for randomness of RCS5, RC6 and Twofish algorithms are
applied; and the S-boxes of the Twofish algorithm are analyzed according to
nonlinearity criterion. The avalanche criteria results of RC6 and Twofish are
compared with NIST (National Institute of Standards and Technology) Statistical Test
Suite results.

Keywords: Block Ciphers, RC5, RC6, Twofish, Avalanche Criteria,

Nonlinearity Measure.

v

0z

RC5, RC6 VE TWOFISH SIFRELERININ YAYILIM OZELLIKLERI

Arikan, Savas
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Boliimii

Tez Yoneticisi: Dog. Dr. Melek D. Yiicel

Aralik 2003, 117 sayfa

Bu tezde, AES (Gelismis Sifreleme Standardi) yarigsmasmin finalistlerinden
ikisi, RC6 Rivest ve arkadaslarinin gelistirdigi sifre, Twofish Schneier ve
arkadaglarmin onerdigi sifre, ve ayrica RC6 sifresinin onciil algoritmasi olan RC5
sifresi calisildi. Bu sifrelerin kriptografik ataklara kars1 dayaniklilig farkl olgiitler ile
Olciildi. Calisilan olgiitler “Ci1g Kriteri” ve tiirevleridir. Algoritmalar ve test

prosediirleri gerceklendikten sonra, aralarinda karsilagtirildilar.

RC5, RC6, ve Twofish algoritmalarinin rastlantisalliklar1 igin farkli test
kriterleri; ¢1g kriteri, “Cig Agirhik Dagilimi” (CAD) uygulandi ve Twofish
algoritmasinin yerlesim kutular1 dogrusal olmama 6lgiitlerine gore analiz edildi. RC6
ve Twofish sifrelerinin ¢1g kriteri sonuglari ile NIST (Ulusal Standartlar ve Teknoloji
Enstitiisii) Istatiksel Test Siiit sonuglar1 ile karsilastirldi.

Anahtar Kelimeler: Blok Sifreler, RC5, RC6, Twofish, Cig Kriteri, Dogrusal

Olmama Oliitii.

vi

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor Assoc. Prof. Dr.
Melek D. YUCEL for her patient supervision, guidance and helpful suggestions.
I wish to thank ASELSAN Inc. for facilities provided for the completion of

this thesis.

I would like to thank my family and my friends who have put up with me

during these years for their continuous support and understanding.

Finally, I offer my special thanks to my fiancée, Menekse, for her unshakable

faith in me and her endurance with me of this long study.

vii

TABLE OF CONTENTS

N 5 2 1 iii
[0 /5P v
ACKNOWLEDGEMENTS ..iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiietietiatintottonssessssssstsnssnssssnssnns vii
TABLE OF CONTENTS ..uiitiitiiiiiiiiiiiiieiiieietietieesatsesatsesessssassssessssssssessssncs viil
LIST OF TABLESutiiiiiiiiiiiiiiiiiiiiiiiitiiietieeietiatiatsetctssssssstsssssssnsssssessansnns xi
LIST OF FIGUREScuiuiiuiiiiiiiiiiiiiiiieiiiitiiiieiietttetiatietatessatsesassssassasassssasssses xii
CHAPTER:
CHAPTER 1 1
1.1 BASICS OF CRYPTOGRAPHYc.ouiimiiiiinienieiientenieieenteireteeieeseeteeseetesueeuesuesnesaestessesuessensenuens 1
1.2 BLOCK CIPHERSc.utiutiiuietenitenttete sttt eteste et st e sat ettt saeeate bt et sene bt essesatesnesasenbeenesae 2
1.3 AIM AND OUTLINE OF THESIS ...c..cettiiiiniiiiiniteieneenit ettt ettt et esne e s ene e 7
CHAPTER 2 9
2.1 AES FINALIST ALGORITHMSeeitirutenienienieetenieenteetesseenuesieessesesessaensesssessesssessecsnesmeens 11

viil

2.1.1 Overview Of the FINQAIISTS.............cccccuevueiieieiieeieieseesee ettt 12

2.1.2 Evaluation Criteria and ReSUILScccccoveriroiriiniiniiiiiseseee e 15
22 RECS CIPHER ...ttt en e 17
2.2.1 Key EXpAnSiOn Of RCS.........cccoccvevieieiieieie ettt ans 19
2.2.2 ENcryption Of RCS....c..coeoiiiiiiiiieeeeetee ettt 22
2.2.3 Decryption Of RCS........ccoccocoiiiiiiiiiiiiiiieiie et 23
2.2.4 Overview of Cryptanalytic Results for RC5cccccocomiiininciiniiiiieieee, 23
2.3 RCO ALGORITHMuiuiiiiiiiiiiiiiiiiiitcieic et 25
2.3 1 K€Y SCREAUIEoceoeeeieiieieeee ettt ees 27
2.3.2 ENCrYPLON Of RCG.......c..ocouiiiiiiiiiiiietee ettt 29
2.3.3 Decryption Of RCO..............ccccociiiiiiiiiiiiiiniiieiieteeeeet e 32
2.3.4 StATUS OF RCO ..ottt ettt ettt sse e sae e ans 33
2.4 TWOFISH ALGORITHMooviuiiiniiiiniiiiiiicieic ettt 33
2.4.1 Main Functions of TWofish AIGOVItRM.................cccoevueveeceiieiiiieiieieeeeie e, 40
2.4.2 Sub-functions of Twofish AIGOTItIccccooeviiviiiiiiiiiitieeeee 46
2.4.3 Cryptanalysis Of TWOSISH..........cc.ccccceiiiiiiiiiiiiiiiiiiiii e 50
CHAPTER 3 52
3.1 CRYPTANALYSIS TECHNIQUES IN BRIEFc.ccociiiiiiiiiiiiiiiiiciccecececeee 52
3.2 STRENGTH AND CRYPTANALYSIS.....ccoiiiiiiiiniiiiiiiiiniiieeccienesec et 54
3.3 LINEAR CRYPTANALYSIS ..ottt ittt s 55
3.4 DIFFERENTIAL CRYPTANALYSIS ...ooiviiiiiiiiniiiiiiiiiiicintce et 56
CHAPTER 4 59
4.1 AVALANCHE CRITERIAcooviiiiiiiiiiiiiiiiiiec e 59
4.1.1 Avalanche Weight DiStFIDULIONc..ccoecueeuieresireieeiesie e eie e 60
4.1.2 Avalanche Criteria Analysis Procedurescccccoveeevinccuenciicoiinirenane, 63

X

4.2 NONLINEARITY MEASURE ...vvviiiiiiiitireeeeeeieiitreeeeeeeeiisereeeeeeeiesseseseeeessnseseseeessnsesesesessseses 66

4.2.1 Basic Definitions of Nonlinearity Criteria..........c..ccoevoevveveicieniaieieeieneeseeenenes 66

4.2.2 Nonlinearity Of S-DOXESccovueueciieieieeiesit ettt aes 71

4.2.3 NONIINEATTEY CFILETION.........cveeveeeeiieieeiieie ettt ettt sae e saeessesaeeve e 72
CHAPTER 5 74
5.1 AVALANCHE CHARACTERISTICS OF RCS5 CIPHERccocoiiiiiiiiiiiiiiicinecceececee s 74
5.1.1 Avalanche Curves of RC5 CiDREFcccoouiviiiiiiiiiiiiiiieteeseee e 74

5.1.2 Avalanche Wight Distribution (AWD) Curves of RC5 Cipherccccccovn.... 77

5.1.3 Resemblance Parameters for RCS5 CIpDREFcccceeveiceeiiiiiinieieeieseee e, 80

5.2 AVALANCHE CHARACTERISTICS OF RC6 CIPHERccccoiiiiiiiiiiiiiiiiiiccccceee 82
5.2.1 Avalanche Criterion for RC6 CIDREYcccovuiuieoiiiiiiiiiieeseee e, 82

5.2.2 Avalanche Wight Distribution (AWD) Curves of RC6 Cipherccccocuou.... 84

5.2.3 Resemblance Parameter for RC6 Cipherc.cccccocoviiininciiniiiiiicenane, 88

5.3 AVALANCHE CRITERIA AND DERIVATIONS APPLIED TO TWOFISH CIPHER 90
5.3.1 Avalanche Criterion for TWofish CIDREFcccccoeveecveviiiiiiieiieeeieeiesie e, 90

5.3.2 AWD Test for TWOSish CIDREEccoocvecuiiiiieiiesieeeieeeesie e 93

5.3.3 Resemblance Parameter Analysis Applied to Twofish Cipherc..cccou..... 96

5.4 NONLINEARITY MEASURE OF TWOFISH CIPHER.......c.cccoouiiiiiiiiiiiiiieieicceicceeceeiees 99
5.5 COMPARISON OF AVALANCHE CRITERIA WITH NIST STATISTICAL TEST SUITE........... 103
5.5.1 Description of the StatiStiCAl TESLScoccvecvieveriereeiesi et 104

5.5.2 Statistical Test Results and Comparison with Avalanche Criteria...................... 106
CHAPTER 6 110
REFERENCES.......citiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitiiieiiiiiiticetacatacntetetesscesscasones 113

LIST OF TABLES

TABLE:
2.1. AES Round 1 Candidate AIgOTIthmsooeviiiiiiiiiiii e, 9
2.2. Evaluation Results of AES Finalist Algorithmscccoiiiiiiiiiiiinin.. 15
5.1. Behavior of RC5 for different error vector bits (i)oevvivvirinieniniiineeinnnnn. 98
5.2. Behavior of RC6 for different error vector bits (i)c.ovevviriviiriiiirinieninnnn.. 99
5.3. Behavior of Twofish for different error vector bits (7)cooevviiiiiiiiiinnnnn 99

5.4 Breakdown of the 189 statistical tests applied during randomness test applied by J. Soto

Xi

LIST OF FIGURES

FIGURES:
2.1. One Round of RC6 Encryption Algorithmoeiiiiiiiiiiiiiiiiiiiiin 30
2.2, Feistel NetWOTK. ..ottt 35
2.3. Twofish Encryption Algorithm Blockccooiiiiiiiiiiiiie, 38
2.4. A view of a single round F function (128-bitkey)...........ccoviiiiiiiiiiinann.n. 43
2.5. 49 S-box formulation of Twofish algorithm.................c.oooiiii 46
4.1. Binomial Distribution Curve for n =128 bitscooeiiiiiiiiiiiiiie 61

5.1. Avalanche curves of RC5 for the first and second round (=1, =2) and chosen error bit
positions (7), which represents different casesocooviiiiiiiiiiiiiiii 76

5.2. Avalanche curves of RCS5 for the third round (»=3) and chosen error bit positions (i),
which represents different Casesooovuiiiiiiiiiiiiiii 77

5.3. Avalanche weight distribution curves of RC5 for the first and second round (=1, r=2)
and chosen error bit positions (7), which represents different cases 79

5.4. Avalanche weight distribution curves of RC5 for the third round (»=3) and chosen error
bit positions (i), which represents different casesccooeevvviiiiiiiiiniinnnnn. 80

5.5. Resemblance parameter curves of RCS for different rounds (7): a) =1 b) =2 ¢) »=3 d)

5.6. Avalanche curves of RC6 for the first and second round (r=1, 7=2) and chosen error bit

positions (£), which represents different casescoovviiiiiiiiiiiiiiiiii, 83

xii

5.7. Avalanche curves of RC6 for the third round (»=3) and chosen error bit positions (i),
which represents different Casesoovvivriiiiiiiiii e, 84

5.8. Avalanche weight distribution curves of RC6 for the first and second round (=1, r=2)
and chosen error bit positions (i), which represents different cases 86

5.9. Avalanche weight distribution curves of RC6 for the third round (»=3) and chosen error
bit positions (i), which represents different casesccoveviveiiiiiiiiiiiinn 87

5.10. Resemblance parameter curves of RC6 for different rounds (r): a) =1 b) =2 ¢) =3 d)

5.11. Avalanche curves of Twofish for the second (=2) and chosen error bit positions (i),
which represents different Casesovuieiiiiiiiii i 92
5.12. Avalanche curves of Twofish for the third round (+=3) and chosen error bit positions (i),
which represents different Casesc.o.viiuiiiiiiiin e 93

5.13. Avalanche weight distribution curves of Twofish for the second round (+=2) and chosen
error bit positions (7), which represents different cases.................cooeoeiinin 95

5.14. Avalanche weight distribution curves of Twofish for the third round (»=3) and chosen
error bit positions (7), which represents different cases.................cooeveveinin. 96

5.15. Resemblance parameter curves of Twofish for different rounds (7): a) =1 b) =2 ¢) =3

.. 101
5.17. Nonlinearity values of S-boxes of Twofish (Average: 81,215)cooenenene. 102
5.18. Nonlinearity values of S-boxes of Twofish (Average: 81,02625) 102
5.19. Nonlinearity values of S-boxes of Twofish (Average: 81, 0625) 103
5.20. Results of 189 statistical tests applied to Twofish...............cooooiiiiiiii 108
5.21. Results of 189 statistical tests applied to RC6............cooooiiiiiiiiiiiiiiinan 109

Xiii

CHAPTER 1

INTRODUCTION

1.1 Basics of Cryptography

Cryptography is Greek word for "hidden writing". It is the art and science of
transforming information into an intermediate form which secures that information
while in storage or in transit.

Cryptography includes; secrecy (confidentiality, or privacy, or information
security), message authentication (integrity), no repudiation (the inability to deny
sending a message), access control (user or source authentication), availability
(keeping security services available).

Modern cryptography generally depends upon translating a message into one
of an astronomical number of different intermediate representations, or ciphertexts, as
selected by a key. If all possible intermediate representations have similar

appearance, it may be necessary to try all possible keys to find the one which

deciphers the message. By creating mechanisms, cipher algorithms, with an
astronomical number of keys, this approach can be made impractical.

A cipher algorithm includes an encryption scheme, which has five ingredients:
plaintext and ciphertexts, encryption and decryption algorithms and secret keys. The
data that is encrypted is called the plaintext, or sometimes cleartext, and it is
encrypted to give the ciphertext. The key is some secret information chosen by those
wishing to communicate. For symmetric ciphers the key is same for both sender and
receiver. Anyone possessing the key can decrypt the encrypted messages and the fact
that both participants have to agree on a secret key before secure transmission can
take place introduces problems. These problems are addressed by the fields of key
management and key distribution.

An encryption scheme is said to be computationally secure if the cost of
breaking the cipher exceeds the value of the encrypted information and the time
required to break the cipher exceeds the useful life-time of the information. Also it
should be noted that security depends on the secrecy of the key, and not on the

secrecy of the algorithm.

1.2 Block Ciphers

Symmetric key algorithms use a single key for encryption and decryption,
which should be shared by two parties who want to communicate secretly. Symmetric
ciphers are divided into two main classes: block ciphers and stream ciphers. Block

ciphers process fixed segments of the input (called the plaintext), and generate output

(called the ciphertext) segments of the same size. The segment size is called the block
length of the cipher. Stream ciphers do not divide the plaintext into segments, they
rather process each input bit continuously. Although several modes of use of a block
cipher allow it to be used as a stream cipher the concise distinction may be indicated
as follows [33]:

Block ciphers operate with a fixed transformation on large blocks of plaintext
data; stream ciphers operate with a time-varying transformation on individual
plaintext digits.

Two important attributes of a block cipher are the size of the key and the size
of the block on which cipher operates, which are chosen at least as 128 bits in recent
algorithms. It should be noted that some modes of use of a block cipher require the
use of an initialization value, IV. The value of IV is often publicly known (since the
security of the cryptosystem does not depend on this value being kept secret) and it is
not considered to be part of the key.

A block cipher which operates on plaintext blocks of size n will be called n-bit
block cipher, and the encryption of plaintext m using the chosen cipher under key &
will be written as Ex(m). Similarly, decryption of the ciphertext ¢ will be denoted by
Di(c). The decryption function D; should be chosen as the inverse of the encryption
function Ej ; hence, Dy(Ex(m))=m.

In an iterated block cipher, a complex (but perhaps weak) round function is
used repeatedly, each time taking as input the output from the previous round. The

most familiar example of such a cipher is Data Encryption Standard [23] in 1977, and

the iterated structure in DES has its origins in the Feistel Cipher [8]. Lucifer is
designed by Feistel in early 1970s but firstly implemented and documented by Sorkin
[35]. Lucifer is often mentioned as the starting point for the development of DES.

Some noteworthy block ciphers are given below in brief:

FEAL: The Fast Data Encryption Algorithm (FEAL) was proposed by
Shimizu and Miyaguchi at Eurocrypt *87 [32]. It was intended to be very efficient
when implemented in software, and was claimed to offer at least as much security as
DES. Unfortunately, the security was soon found to be lacking.

LOKI: LOKI [5] was initially proposed in 1989 by Lawrie Brown, Josef
Pieprzyk, Jennifer Seberry and is a DES-like iterative cipher that operates on 64-bit
blocks and uses a 64-bit key. Its security is based on the use of a large S-box, taking
12 bits and outputting eight, which in turn is based in the use of irreducible
polynomials. Also, developed version, LOKI97 was submitted in AES contest.

CAST: Designed by Adams and Tavares in 1990, CAST [1] is a 64-bit Feistel
cipher. Instead of employing eight fixed S-boxes which map six bits to four, as it is
found in DES, CAST uses four S-boxes map eight bits to 32, and the output of all
four S-boxes is XORed together to produce the output from the round function.

IDEA: The International Data Encryption Algorithm (IDEA) first appeared as
the Proposed Encryption Standard and was designed by Lai and Massey in 1992 [18].
It is an iterative cipher that operates on 64-bit blocks and uses a 128-bit key. The aim
was to design a block cipher that could be efficiently implemented in both hardware

and software, unlike DES which is primarily suitable for hardware encryption. The

operations used in IDEA are bitwise XOR, addition modulo 2'® and multiplication
modulo 2'°+1, with the value 0 corresponding to 2'°.

RC2: RC2 [26] was designed by Rivest for RSA Data Security, Inc in March
of 1992. It is a confidential and proprietary cipher and so there are few details that
can be readily disclosed. Like DES it is a 64-bit block cipher but it has a variable key
size. One advantage is that the process of granting export approval for RC2 is greatly
simplified if the key length is restricted to 40 bits, or 56 bits.

SAFER K-64: SAFER K-64 (Secure and Fast Encryption Routine with a Key
of length 64 bits) was first proposed at Cambridge Algorithms Workshop in
December of 1993 [19], by Massey. It is a byte-oriented iterated block cipher
designed for efficient implementation in both software and hardware. It was initially
proposed that six rounds can be used for greater security. Each round consists of a set
of non-linear operations, including two different S-box permutations, which operate
in parallel on each digit of the eight bytes in a block. Two different subkeys of 64 bits
are used in each round. They are derived using the key schedule and introduced
during this non-linear stage. The second part of each round is a series of linear mixing
operations which is termed as Pseudo-Hadamard Transform. At the end of the last
round, the final iteration of the linear transformation is followed by one further partial
round of non-linear transformation using key material.

Skipjack: The first mention of Skipjack [34] came in April of 1994 when the
White House announced a cryptographic initiative. Despite the fact that Skipjack is a

classified algorithm and full details of the algorithm remain secret, the few details that

have been emerged suggest that Skipjack is an iterative block cipher, using 32 rounds
and a key of length 80 bits.

RCS5: RCS is a block cipher designed by Rivest for RSA Data Security, Inc.
Presented at the Leuven Algorithms Workshop in December of 1994 [27]. The cipher
is fully parameterized in that the block size, the key size and the number of rounds
can all vary. A likely version of RCS is perhaps RC5-32/16/10 where the block size is
64 bits, there are 16 rounds and the key length is 10 bytes. The algorithm begins by
expanding a variable-length key into a set of look-up tables. Then two very simple
operations are used repeatedly to mix in the key and transform data which is called as
data-dependent rotation.

In 1997, National Institute of Standards and Technology (NIST) announced a
contest to an Advanced Encryption Standard (AES) to replace Data Encryption
Standard (DES). 15 algorithms were submitted and within these 15 algorithms, five
finalist algorithms were selected as AES candidates. And finally, Rijndael algorithm
was selected as the new encryption standard October 2, 2000. RC6 and Twofish
ciphers were among the finalist algorithms and these algorithms are analyzed
according to different criteria in this thesis. Besides, RC5 cipher is implemented
because it is the former algorithm of the AES contest finalist, RC6 cipher. The
algorithms of studied ciphers and cryptanalysis of them are given in the following

chapters.

1.3 Aim and Outline of Thesis

In this thesis the main point is to investigate the avalanche characteristics of
Twofish and RC6 ciphers, which are AES contest finalists. To do so, the ciphers are
implemented and then analyzed according to avalanche criterion and avalanche
weight distribution criterion. The results of the analysis are compared with NIST’s
results. Besides, S-boxes of the Twofish cipher are tested according to nonlinearity
criterion.

This thesis is organized as follows. Chapter 2 gives the encryption and
decryption algorithms of the studied block ciphers RCS5, RC6, and Twofish. In
Chapter 3, the most known cryptanalysis techniques, linear cryptanalysis [17, 11] and
differential cryptanalysis [4, 11], that have been applied to block ciphers are briefly
reviewed. In Chapter 4, description and methodology of some test criteria that are
used to measure the strength of the ciphers against cryptanalytic attacks are given.
The studied test criteria are avalanche [12], nonlinearity measure [30] and their
derivations.

In Chapter 5 we give the results of avalanche criterion and its derivative,
avalanche weight distribution (AWD) analysis. The resemblance of AWD curves to
ideal binomial distribution is measured by the resemblance parameter, for RC5, RC6
and Twofish ciphers. The comparison of three ciphers is made according to avalanche
criteria. Also in Chapter 5, the nonlinearity of the S-boxes of the Twofish cipher and
the effects of keywords on the nonlinearity measure are investigated. Avalanche

criteria results of RC6 and Twofish algorithms are compared with NIST Statistical

Test Suite in this chapter. Finally, Chapter 6 summarizes the work of the thesis,

giving directions for future research.

CHAPTER 2

MODERN BLOCK CIPHERS

On January 2, 1997, the US National Institute for Security Technologies
(NIST) announced a contest to an Advanced Encryption Standard (AES) to replace
the previous Data Encryption Standard (DES). NIST called for public submissions for
new block ciphers as candidates of the AES algorithm. NIST intended that AES
would be an unclassified, publicly disclosed encryption algorithm, available royalty-
free, worldwide. At a minimum, the algorithm would have to implement symmetric
key cryptography as a block cipher and support a block size of 128 bits and key sizes
of 128, 192, and 256 bits. 15 algorithms were submitted for consideration by August
1998. After expert analysis of the candidates, five finalist algorithms were selected in
1999. The selected algorithms were MARS, RC6, Rijndael, Serpent and Twofish. In
Table 2.1 the semi-finalist 15 algorithms, their submitters, type and cryptanalysis

results of some eliminated ciphers are given.

Table 2.1: AES Round 1 Candidate Algorithms

Country of Candidate Submitter(s) Type Cyrptanalysis
Origin Algorithm
Australia LOKI97 Lawrie Brown, Josef Feistel — Rijmen and Knudsen
Pieprzyk, Jennifer Network — Differential: 2°° chosen
Seberry plaintexts
— Linear: 2°° known
plaintexts
Belgium RIJNDAEL Joan Daemen, Substitution-
Vincent Rijmen Permutation
Network
Canada CAST-256 Entrust Technologies, Modified
Inc. Feistel
Network
Canada DEAL Outerbridge, Feistel — 270 chosen ciphertexts,
Knudsen Network 2'?! steps, (Lucks, 128)
- 270, chosen plaintexts,
2'?! steps, (Knudsen,
192)
— 2°%chosen ciphertexts,
2" steps, (Lucks, 192)
— Meet in middle, 2°*
steps, (Knudsen, 256)
Costa Rica FROG TecApro — Wagner, Ferguson, and
Internacional S.A. Schneier
— Differential: 2** chosen
plaintext
— Linear: 2° known
plaintexts
France DFC Centre National pour Feistel — Weak keys, reduce to 6
la Recherche Network round cipher,
Scientifique prob. 2°*, (Coppersmith)
(CNRS) — Weak keys, pt=ct,
prob. 2%,
(Coppersmith)
Germany MAGENTA Deutsche Telekom Feistel — Biham, Biryukov,
AG Network Ferguson, Knudsen,
Schneier,
Shamir
— 2% chosen plaintexts,
2% steps
— 2% known plaintexts,
2”7 steps
Japan E2 Nippon Telegraph Feistel
and Telephone Network
Corporation

10

Table 2.1 (cont’d) AES Round 1 Candidate Algorithms

Country of Candidate Submitter(s) Type Cyrptanalysis
Origin Algorithm
USA HPC Rich Schroeppel
USA MARS IBM Modified Feistel
Network
USA RC6 RSA Laboratories | Modified Feistel
Network
USA SAFER+ Cylink Substitution- — 2 known
Corporation Permutation plaintexts, 2°’
Network memory, 2**!
steps,
(2%, Kelsey)
— 2% chosen
plaintext
encrypted with 2
keys,
22 steps, (256,
Kelsey)
USA TWOFISH Bruce Schneier, Feistel Network
John Kelsey,
Doug
Whiting, David
Wagner, Chris
Hall, Niels
Ferguson
UK, Israel, SERPENT Ross Anderson, Substitution-
Norway Eli Biham, Lars Permutation
Knudsen Network

2.1 AES Finalist Algorithms

As mentioned, MARS, RC6, Rijndael, Serpent and Twofish algorithms were
selected as finalists of the contest to AES. In the following section the algorithms are

described briefly and the evaluation criteria and results are given.

11

2.1.1 Overview of the Finalists

The five finalists shared a number of features. All are iterated block ciphers:
they specify a transformation that is repeated ("iterated") a number of times on the
data block to be encrypted or decrypted. Each iteration is called a round, and the
transformation is called the round function. Each finalist also specifies a method for
generating a series of working keys, also known as subkeys, from the original user
key. The round functions take distinct subkeys as input along with the data block.

For each finalist, the very first and last cryptographic operations mix subkeys
with the data block to prevent an adversary who does not know the keys from even
beginning to encrypt the plaintext or decrypt the ciphertext. Whenever this subkey
mixing does not naturally occur as the initial step of the first round or the final step of
the last round, the finalists specify the subkey mixing as an extra step called pre- or
post-whitening.

Four of the finalists (Rijndael, Serpent, MARS, Twofish) specify substitution
tables, called S-boxes: and three of the finalists (MARS, RC6, Twofish) specify
variations on the Feistel structure. In the classic Feistel structure, half of the data
block is used to modify the other half of the data block, and then the halves are
swapped.

The two finalists that do not use a Feistel structure (Rijndael, Serpent) process

the entire data block in parallel during each round using substitutions and linear

12

transformations; thus, these two finalists are examples of substitution-linear
transformation networks.

MARS [6] has several layers: key addition as pre-whitening, 8 rounds of un-
keyed forward mixing, eight rounds of keyed forward transformation, 8 rounds of
keyed backward transformation, eight rounds of un-keyed backward mixing, and key
subtraction as post whitening. The 16 keyed transformations are called the
cryptographic core. The un-keyed rounds use two 8x32 bit S-boxes, addition, and the
XOR (exclusive-or) operation. In addition to those elements, the keyed rounds use
32-bit key multiplication, data-dependent rotations, and key addition. Both the mixing
and the core rounds are modified Feistel rounds in which one quarter of the data
block is used to alter the other three quarters. MARS was submitted by IBM.

RC6 [28] is a parameterized family of encryption ciphers that essentially use
the Feistel structure; 20 rounds were specified for the AES submission. The round
function of RC6 uses variable rotations that are regulated by a quadratic function of
the data. Each round also includes 32-bit modular multiplication, addition, XOR, and
key addition. Key addition is also used for pre- and post-whitening. RC6 was
submitted to the AES development effort by RSA Laboratories.

Rijndael [7] is a substitution-linear transformation network with 10, 12 or 14
rounds, depending on the key size. A data block to be encrypted by Rijndael is split
into an array of bytes, and each encryption operation is byte-oriented. Rijndael's
round function consists of four layers. In the first layer, an 8x8 S-box is applied to

each byte. The second and third layers are linear mixing layers, in which the rows of

13

the array are shifted, and the columns are mixed. In the fourth layer, subkey bytes are
XORed into each byte of the array. In the last round, the column mixing is omitted.
Rijndael was submitted by Joan Daemen (Proton World International) and Vincent
Rijmen (Katholieke Universiteit Leuven).

Serpent [2] is a substitution-linear transformation network consisting of 32
rounds. Serpent also specifies non-cryptographic initial and final permutations that
facilitate an alternative mode of implementation called the bit slice mode. The round
function consists of three layers: the key XOR operation, 32 parallel applications of
one of the eight specified 4x4 S-boxes, and a linear transformation. In the last round,
a second layer of key XOR replaces the linear transformation. Serpent was submitted
by Ross Anderson (University of Cambridge), Eli Biham (Technion), and Lars
Knudsen (University of California San Diego).

Twofish [29] is a Feistel network with 16 rounds. The Feistel structure is
slightly modified using 1-bit rotations. The round function acts on 32-bit words with
four key-dependent 8x8 S-boxes, followed by a fixed 4x4 maximum distance
separable matrix over GF(28), a pseudo-Hadamard transform, and key addition.
Twofish was submitted by Bruce Schneier, John Kelsey, and Niels Ferguson
(Counterpane Internet Security, Inc.), Doug Whiting (Hi/fn, Inc.), David Wagner
(University of California Berkeley), and Chris Hall (Princeton University).

After the finalists were announced, NIST sought further public review and
comment on the algorithms. The comment period ended on May 15, 2000, and NIST

conducted its final review of comments and analyses.

14

2.1.2 Evaluation Criteria and Results

Evaluation criteria for the new AES algorithm were declared when NIST first
called for submissions in September 1997. The evaluation criteria were divided into
three major categories: security, cost, and algorithm and implementation
characteristics.

Security was the most important factor in the evaluation and encompassed
features such as resistance of the algorithm to cryptanalysis, soundness of its
mathematical basis, randomness of the algorithm output, and relative security
compared with other candidates.

Cost was a second important area of evaluation that encompassed licensing
requirements, computational speed and efficiency on various platforms, and memory
requirements. One of NIST’s goals was for the AES algorithm to be available
worldwide on a royalty-free basis, so public comments were specifically sought on
intellectual property claims and any potential conflicts. The speed of the algorithm on
a variety of platforms needed to be considered, and assessments were made of speed
based on 128, 192 and 256 bit keys. Memory requirements and software
implementations were also important.

The third area of evaluation was algorithm and implementation characteristics
such as flexibility, suitability to hardware and software, and the simplicity (or
complexity) of the algorithm. Flexibility includes the ability of an algorithm to handle

key and block sizes beyond the minimum that must be supported, to be implemented

15

securely and efficiently in many different types of environments, to be implemented
as a stream cipher or hashing algorithm, and to provide additional cryptographic
services. It must be feasible to implement an algorithm in both hardware and
software, and efficient firmware implementations were an evaluation advantage.

Because analysis and discussion often involved issues in more than one of the
three main criteria, NIST gave most importance to security, and cost and algorithm
characteristics were considered together as secondary criteria.

In October 2000, NIST released its report on the development of an Advanced
Encryption Standard which compared the five Round 2 algorithms in a number of
categories. The table below summarizes the relative scores of the five candidates

(1=low, 3=high):

Table 2.2 Evaluation Results of AES Finalist Algorithms

MARS RCé6 Rijndael | Serpent Twofish
General security 3 2 2 3 3
Implementation of security 1 1 3 3 2
Software performance 2 2 3 1 1
Smart card performance 1 1 3 3 2
[Hardware performance 1 2 3 3 2
IDesign features 2 1 2 1 3

16

NIST recommended adoption of the Rijndael algorithm, and released a draft
Federal Information Processing Standard (FIPS) AES Specification for public review
and comment in February 2000. Final selection of Rijndael was announced in
October 2, 2000. And finally in November 26, 2001 NIST published FIPS 197 as the
announcement of AES. The main reason for this selection can be summarized as
follows [9].

“When considered together, Rijndael’s combination of security, performance,
efficiency, implementability, and flexibility make it an appropriate selection for the
AES.”

In the following part of this chapter detailed descriptions of the algorithms

RCS5, RC6 and Twofish are given.

2.2 RCS5 Cipher

RC5 [27] is designed by Ronald Rivest for RSA Data Security (now RSA
Security) in December of 1994. It is a parameterized algorithm with a variable block
size, a variable key size, and a variable number of rounds. Allowable choices for the
block size are 32 bits (for experimentation and evaluation purposes only), 64 bits (for
use a drop-in replacement for DES), and 128 bits. The number of rounds can range
from 0 to 255, while the key can range from 0 bits to 2048 bits in size. Such built-in
variability provides flexibility at all levels of security and efficiency.

The heavy use of data-dependent rotations and the mixture of different

operations provide the security of RC5. Two of the most distinguished features of

17

RCS5 are the heavy use of data-dependent rotations and the exceptionally simple
encryption routine. The former feature has been shown to be useful in preventing
certain advanced types of attack, while the latter feature makes RC5 both easy to
implement, and very importantly, more amenable to analysis than many other block
ciphers. In particular, the use of data-dependent rotations helps defeat differential and
linear cryptanalysis.

There are three routines in RCS5: key expansion, encryption, and decryption. In
the key-expansion routine, the user-provided secret key is expanded to fill a key table
whose size depends on the number of rounds. The key table is then used in both
encryption and decryption.

RCS5 has three important parameters: w (the word size), » (the number of
rounds), b (number of bytes in secret key K). In the encryption algorithm of RC5 the
2w plaintext is divided to two w-bit register using standard little-endian convention:
the first byte occupies the low-order bit positions of register 4, and so on, so that the
fourth byte occupies the high-order bit positions of register 4, the fifth byte occupies
the low-order bit positions in B, and the eighth (last) byte occupies the high-order bit
positions in B. Then these registers are cyclic-shifted and XOR-ed by them then with
other registers. The key-bits are mixed by cyclic-shifting and XOR processes by the
expanded key array S, which is simply constituted by the magic numbers provided by
Rivest and cyclic-shifting process of the keyword. Within these operations the
registers are always updated according to input data so that the idea of data dependent

cryptography is achieved.

18

The key expansion, encryption, and decryption routines of RCS5 use the
following three primitive operations (and their inverses).

e Addition of words modulo 2", denoted by “+”.

e Bit-wise XOR of words, denoted by & .

e Rotation: the rotation of x to the left by y bits is denoted by x <<<y
Note that only the logy(w) low-order bits of y affect this rotation. The

algorithm explained above can be simply modeled as below steps.

2.2.1 Key Expansion of RC5

The key-expansion routine expands the user’s secret key K to fill the expanded
key array S, so that S resembles an array of # = 2 x (r+1) random binary words
determined by K. The key expansion algorithm uses two “magic constants”, and

consists of three simple algorithmic parts.

a Definition of the Magic Constants:

The key-expansion algorithm uses two word-sized binary constants P, and
Q.. They are defined for arbitrary w as follows:

P, = 0dd ((e-2)2")

0, = 0dd ((9-2)2")
where

e=2,718281828459... (base of natural algorithms)

0 =1,618033988749... (golden ratio),

19

And where Odd(x) is the odd integer nearest to x (rounded up if x is an even
integer, although this won’t happen here). For w = 16, 32 these constants are given
below in binary and in hexadecimal.

Pi1s=1011011111100001 =b7el

QO16=1001111000110111 = 9e37

P3;=10110111111000010101000101100011 =b7e15163

03,=10011110001101110111100110111001 = 9e3779b9

b Converting the Secret Key from Bytes to Words:

The first algorithmic step of key expansion is to copy the b-byte secret key
K[0..6—1] into an array L[0..c—1] of ¢ = [b/u] words, where u = w/8 is the number of
bytes/word. This operation is done in natural manner, using u consecutive key bytes
of K to fill up each successive word in L, low order byte to high order byte. Any
unfilled byte positions of L are zeroed. In the case that b=c =0, cis setto 1 and L[0]
is set to zero. In the following code sample the procedure is given.

¢ = [max (b, 1)/u]

for i =b— 1 downto 0 do

L [i/u] = (L [i/lu] <<<8) + K[i];

c Initializing the Array S:

The second algorithmic step of key expansion is to initialize array S to a

particular fixed (key-independent) pseudo-random bit pattern, using an arithmetic

20

progression modulo 2" determined by the “magic constants” P, and Q,. Since Q,, is
odd, the arithmetic progression has period 2". In the following code sample, array S is
initialized by P,, and then all of the entries of the array are found by adding Q,, to the
previous entry. Since ¢ = 2x(r+1) binary words are required for » rounds of the
encryption algorithm S is initialized as follows.

S[0] = P,

fori=1toz-1do

S[i] = S [i-1] + Ow,

d Mixing in the Secret Key

The third algorithmic step of the key expansion is to mix in the user’s secret
key in three passes over the arrays S (of length ¢ words) and L (of length ¢ words).
More precisely, due to the potentially different sizes of S and L, the larger array will
be processed three times, and the other may be handled more times than three. In the
following code sample temporary registers regl contains previous value of S[i] and
reg2 contains previous value of L[j] the values of regl, reg2 and S[i] are added by
modulo 2" and rotated to left three and then this value is assigned to regl. Later L[j]
is updated by adding regl, reg2 and L[j] and rotated to left by the value of regl plus
reg2. Then the value of L[] is assigned to reg2. And this operation is repeated three
times maximum of ¢ or c¢ is reached. The initial values of regl and reg2 are S[0] and

L[0] respectively.

21

i=j=0;
do 3*max (¢, ¢) times:
S[i] = (S[i] + regl + reg2) <<<3;
regl = S[il;
L[j] = (L[j] + regl + reg2) <<<(regl + reg2);
reg2 = L[j];
i=(i+1)mod ¢

j=(G+1)modc,

2.2.2 Encryption of RC5

Firstly the input block is divided into two w-bit registers 4 and B and S[0] and
S[1] are added respectively to 4 and B. The registers 4 and B are XORed and rotated
to left by the value if B and summed with the even entries of S[i] and this value is
assigned to 4. Later, the XORed value of B and A4 is rotated to left by 4 and then
summed by odd entries of S[i]. And this value is assigned to B. This routine is
repeated for » rounds. The following code sample gives the explained procedure.

A =4+ S[0];

B =B+ S[1];

fori=1tordo

A =((4 & B) <<<B) + S[2%];

B=((B®A) <<<A)+S[2% +1];

The output is in the registers 4 and B.

22

2.2.3 Decryption of RC5

The decryption routine is easily derived from the encryption routine. In this
routine the inverse formulation of encryption routine is processed.

for i = r downto 1 do
B=((B-S2*%+1]1>>>4) & 4;
A=((A4-S[2%]>>>B)® B;
B=B-S[l];

A=A4-SI[0];

2.2.4 Overview of Cryptanalytic Results for RC5

Several techniques [14] have been developed for analyzing the security of
block ciphers, including exhaustive key search attack, statistical tests, differential
cryptanalysis and linear cryptanalysis. The last two types of attack, both considered
substantial advances in recent years, are more sophisticated techniques for block
cipher analysis. For differential cryptanalysis which is explained in Chapter 3, the
basic idea is to choose two plaintexts with a certain difference between them so that
the resulting ciphertexts have a difference with a specific value with a probability that
is better than we might expect. Such a pair of differences (which lead to the concept
of a “characteristic”) is useful in deriving certain bits of the key. For linear
cryptanalysis which is also explained in Chapter 3, the basic idea is to find a linear

relation among bits of plaintext, ciphertext, and key which hold with a probability

23

that is not equal to 1/2. Such a “linear approximation” can potentially be used to
obtain information about the key.

The first cryptanalytic results on RC5 were given by Kaliski and Yin [13] at
Crypto’95. By analyzing the basic structure of the encryption routine as well as the
properties of data-dependent rotations, it is possible to construct differential
characteristics and linear approximations of RCS5 that are useful for mounting
differential and linear attacks. Both attacks are quite effective on RC5 with a very
small number of rounds, but the plaintext requirements increase quickly as the
number of rounds grows. The use of data-dependent rotations and the incompatibility
between the different arithmetic operations used in encryption help prevent both
differential and linear cryptanalysis.

At Crypto’96, Knudsen and Meier [16] presented nice improvements over
Kaliski and Yin’s differential attack by a careful analysis of the relations between
input, output, and the sub-keys used in the first two rounds of encryption. They were
able to improve the plaintext requirements by a factor of up to 512 by exploiting the
characteristics in an innovative and sophisticated way. They also considered the
existence of certain weaker keys for RC5 with respect to which their attack can be
further enhanced.

Moriai, Aoki, and Ohta [22] have investigated the strength of RC5 against
linear cryptanalysis by focusing on the bias of linear approximations for fixed keys,
rather than the average bias over all possible keys which is the customary model for

linear cryptanalysis. They also considered a mini-version of RC5 with much reduced

24

word size and computed the percentage of keys that yield ciphers less resistant to
linear cryptanalysis than the average case analysis.

In late 1995, Kocher [17] developed what are called timing attacks that are
generally applicable to many cryptosystems. In such an attack, an opponent tries to
obtain information about the secret key (or private key) by recording and analyzing
the time used for cryptographic operations that involve the key. Kocher observed that
RC5 may be subject to timing attacks if RCS5 is implemented on platforms for which
the time for computing a single rotation is proportional to the rotation amount.

With regards to the less sophisticated brute-force attack of trying each key in
turn, the security of RCS5 is obviously dependent on the length of the encryption key
that is used (as is the case with all ciphers). RCS has the attractive feature that the
length of the key can be varied (unlike the situation with DES for instance) and so the
level of security against these attacks can be tuned to suit the application. It is hoped
that the resistance of ciphers to exhaustive key search attacks can be more accurately
gauged in the future. Some of the posted challenges, such as RC5 encryption with a
40- and 48-bit key were solved very quickly, as was expected. But some of the longer
key lengths are likely to remain an unsolved challenge for some considerable time to

come.

2.3 RC6 Algorithm

RC6 is a block-cipher submitted to NIST for consideration as the new

Advanced Encryption Standard (AES). The design of RC6 began with a consideration

25

of RCS5, and modifications were then made to meet the AES requirements, to increase
security, and to improve performance. The inner loop, however, is based around the
same “half-round” found in RC5. The algorithm can be seen as two Feistel-networks
which are combined through data-dependent rotations over the blocks together with a
32-bit multiplication function.

RCS5 is improved to obtain RC6 for the following considerations:

- The requirements of AES are the 128 bit input/output blocks. To do so RC5
has two 64 bit blocks but this can not be implemented by the very well known
compilers and RC6 solves this problem by having 4 blocks so that to have a 128 bit
plaintext there are four 32-bit blocks in RC6.

- In the encryption section in RC6 there are two rotations per round where in
RCS5 there is one rotation per round. This improves the immunity to differential and
linear cryptanalysis attacks.

- In RC6 integer multiplication is involved. This improves the diffusion
property and rotation amounts are dependent on all bits of another register where RC5
has just low order bits’ contribution.

Like RC5, RC6 is a fully parameterized family of encryption algorithms. A
version of RC6 is more accurately specified as RC6-w/7/b where the word size is w
bits, encryption consists of non-negative number of rounds 7, and b denotes the length
of encryption key in bytes. RC6-w/r/b operates on units of four 2-bit words using the
following six basic operations.

- a + b integer addition modulo 2"

26

- a — b integer subtraction modulo 2"

- a @ b bitwise XOR of w-bit words

- a X b integer multiplication modulo 2"

- a <<< b rotate the w-bit word a to the left by the amount given by the least
significant log, w bits of b.

- a >>> b rotate the w-bit word a to the right by the amount given by the least

significant log, w bits of b.

2.3.1 Key Schedule

The key schedule of RC6-w/7/b is practically identical to the key schedule of
RC5-w/r/b. Indeed, the only difference is that for RC6-w/#/b, more words are derived
from the user-supplied key for use during encryption and decryption. Sufficient zero
bytes are appended to give a key length equal to a non-zero integral number of words;
these key bytes are then loaded in little-endian fashion into an array of ¢ w-bit words
L[0],...,.L[c-1]. Thus the first byte of key is stored as the low-order byte of L[0], etc.,
and L[c-1] is padded with high-order zero bytes if necessary. (Note that if » = 0 then
c=1and L[0] = 0.) The number of w-bit words that will be generated for the additive
round keys is 2r + 4 and these are stored in the array S[0,...,2r + 3].

The constants Ps; = B7E15163 and O3, = 9E3779B9 (hexadecimal) are the
same "magic constants" as used in the RCS5 key schedule. The value of P3; is derived

from the binary expansion of e-2, where e is the base of the natural logarithm

27

function. The value of O3, is derived from the binary expansion of & -1, where & is
the Golden Ratio. Similar definitions from RC35 for Pg4 etc. can be used for versions
of RC6 with other word sizes. These values are somewhat arbitrary, and other values
could be chosen to give "custom" or proprietary versions of RC6.

The user supplies a key of b bytes, where 0 < b < 255. From this key, 2r + 4
words (w-bits each) are derived and stored in the array S[O0,..., 2r + 3]. This array is
used in both encryption and decryption the key schedule for RC6-w/r/b is as follows:
array S is initialized by P,, and then all of the entries of the array are found by adding
0, to the previous entry. After finding array S, this array will be mixed with the key
register L[j]; temporary registers regl contains previous value of S[i] and reg2
contains previous value of L[;] the values of regl, reg2 and S[i] are added by modulo
2" and rotated left by three and then this value is assigned to regl. Later L[j] is
updated by adding regl, reg2 and L[j] and rotated to left by the value of regl plus
reg2. Then the value of L[] is assigned to reg2. And this operation is continued until
three times maximum of ¢ or ¢ is reached. The procedure is given in the following
code sample.

Input: User supplied b byte key preloaded into c-word array L[O,...,c-1]
Number 7 of rounds

Output: w-bit round keys S[0,...,2r + 3]

Procedure:

S[0] = Pw

fori=17to2r + 3do

28

S[i]=S8[i-1]+ Ow

regl =reg2 =i=j=10

v =3 xmax {c, 2r+4}

do 3*max (¢, c) times:
regl = S[i] = (S[i] + regl + reg2) <<<3
reg2 = L[j] = (L[] + regl + reg2) <<< (regl + reg2)
i=(+1)mod(2r+ 4)

j=(+1)modc

2.3.2 Encryption of RC6

RC6 works with four w-bit registers 4,B,C,D which contain the initial input
plaintext as well as the output ciphertext at the end of encryption. Register B is
initialized with S[0] and register D is initialized with S[1]. After initialization t = B x
2B + 1) and u = D x (2D + 1) values are found and rotated left by log, w. The
registers 4 and ¢ are XORed and rotated to left by the value of u and summed with the
even entries of S[i] and this value is assigned to 4. Later the XORed value of C and u
is rotated to left by ¢ and then summed by odd entries of S[i]. This value is assigned to
C. The first byte of plaintext or ciphertext is placed in the least-significant byte of A,
the last byte of plaintext or ciphertext is placed into the most-significant byte of D.
(4,B,C,D) = (B,C,D,A) is used to mean the parallel assignment of values on the right

to registers on the left. And this routine is repeated for » rounds. Then, finally S[27+2]

29

and S[2r+3] are added to 4 and C respectively. The sample code of this procedure is
as follows.

Input: Plaintext stored in four w-bit input registers 4, B, C, D Number r of
rounds w-bit round keys S[0,...,2r + 3]

Output: Ciphertext stored in 4, B, C, D

Procedure:
B =B + §[0]
D =D + S[1]

fori=1tordo

{
t=Bx2B+1))<<<logyw
u=([Dx2D + 1)) <<<log,w
A=((4 1) <<<u)+S[2i]
C=(Chu)<<<pt)+S8[2i+1]
(4, B, C,D)=(B, C,D, A)

}

A=A+ S[2r+2]
C=C+S[2r+3]

The block diagram of encryption procedure for one round is given in Fig. 2.1.

30

S[2i 4 1]

| st

| |
| |
| |
| |
B - T T T T
—|— S[2r + 2] -IV —|— S[2r +3]
! !
1 C

Figure 2.1 One Round of RC6 Encryption Algorithm

31

|

S[1]

Tepeat
for »

2.3.3 Decryption of RC6

The decryption routine is easily derived from the encryption routine. In this
routine the inverse formulation of encryption routine is processed.

Input: Ciphertext stored in four w-bit input registers 4, B, C, D Number r of
rounds w-bit round keys S[0,...,2r + 3]

Output: Plaintext stored in 4, B, C, D

Procedure:

C=C-S[2r+3]
A=A4-82r+2]

for i = » downto 1 do

{
(4, B, C,D)=(D, A, B, C)
u=([Dx2D + 1)) <<<log,w
t=(Bx@2B+1))<<<logaw
C=((C-S[2i+1])>>>HDu
A=(A-S2i)>>>u) Dt

}

D =D-3[1]

B =B - S[0]

32

2.3.4 Status of RC6

Most existing cryptanalytic results on RC5 [13,16,17,22] depend on slow
avalanche of change between rounds. The integer addition helps to provide a
reasonable amount of change due to the effect of carry, but the most dramatic changes
take place when two different rotation amounts are used at a similar point during the

encryption of two related plaintexts. The incremental changes in arriving at RC6 from

RCS5: Two significant changes are the introduction of the quadratic function B x (2B

+1) and the fixed rotation by five bits.

The quadratic function is aimed at providing a faster rate of diffusion thereby
improving the chances that simple differentials will spoil rotation amounts much
sooner than is accomplished with RC5. The quadratically transformed values of B and
D are used in place of B and D to modify the registers 4 and C, increasing the
nonlinearity of the scheme while not losing any entropy (since the transformation is a
permutation). The fixed rotation by five bits plays a simple yet important role in

complicating both Linear and Differential cryptanalysis.

2.4 Twofish Algorithm

Twofish is one of the submissions to the AES selection process. It meets all
the required NIST criteria; 128- bit block; 128-, 192-, and 256-bit key lengths;
efficient on various platforms, etc. Twofish can be seen as two parallel Feistel-

networks, where the outputs of each round function are combined. In each round, half

33

the block is input to the confusion stage, and the S-boxes are 8-bit S-boxes. Twofish
was designed to meet NIST’s design criteria for AES.

Twofish algorithm has been implemented by using six blocks. Below these
blocks and brief explanation are given:

Feistel Network: A Feistel network is a general method of transforming any
function (usually called the F function) into a permutation. The fundamental building
block of a Feistel network is the F' function: a key-dependent mapping of an input
string onto an output string. An F function is always non-linear and possibly non-

surjective (in which not all outputs in the output space can occur):

F: f{0,1}"*x £{0,1}" -{0,1}"?

where 7 is the block size of the Feistel Network, and F is a function taking n/2 bits of
the block and N bits of a key as input, and producing an output of length n/2 bits. In
each round, the “source block" is the input to F, and the output of F' is XORed with
the “target block," after which these two blocks swap places for the next round. The
idea here is to take an F function, which may be a weak encryption algorithm when
taken by itself, and repeatedly iterate it to create a strong encryption algorithm. Two
rounds of a Feistel network is called a “cycle". In one cycle, every bit of the text
block has been modified once. Twofish is a 16-round Feistel network with a bijective

F function. Fig 2.2. shows block diagram of Feistel Network.

34

Plaintext (2w bits)

Ly o bits ¥ whits Ry
Round 1 — |
K,
Round §
K;
Round n
K

(1

L.u+] Rn +1

Ciphertext (2w bits)

Figure 2.2 Feistel Network

35

S-boxes: An S-box is a non-linear substitution operation used in most block
ciphers. S-boxes vary in both input size and output size, and can be created either
randomly or algorithmically. Twofish uses four different, bijective, key-dependent, 8-
by-8- bit S-boxes. These S-boxes are built using two fixed 8-by-8-bit permutations
and key material.

MDS Matrices: A maximum distance separable (MDS) code over a field is a
linear mapping from a field elements to b field elements, producing a composite
vector of a+b elements, with the property that the minimum number of non-zero
elements in any non-zero vector is at least b+1. MDS mappings can be represented by
an MDS matrix consisting of @ x b elements. Reed-Solomon (RS) error-correcting
codes are known to be MDS. A necessary and sufficient condition for an a x b matrix
to be MDS is that all possible square submatrices, obtained by discarding rows or
columns, are non-singular. Twofish uses a single 4-by-4 MDS matrix over GF (2°).

Pseudo-Hadamard Transforms: A Pseudo-Hadamard transform (PHT) is a
simple mixing operation that runs quickly in software. Given two inputs, @ and b, the
32-bit PHT is defined as:

a’=a+ bmod 2%

b’=a +2bmod 2%

Whitening: Whitening, the technique of XORing key material before the first
round and after the last round, difficulty of key-search attacks against the remainder
of the cipher. Whitening substantially increased the difficulty of attacking the cipher,

by hiding from an attacker the specific inputs to the first and last rounds' F functions.

36

Twofish XORs 128 bits of subkey before the first Feistel round and another 128 bits
after the last Feistel round. These subkeys are calculated in the same manner as the
round subkeys, but are not used anywhere else in the cipher.

Key Schedule: The key schedule is the means by which the key bits are
turned into round keys that the cipher can use. Twofish needs a lot of key material,
and has a complicated key schedule. To facilitate analysis, the key schedule uses the
same primitives as the round function.

Fig. 2.3 shows an overview of the Twofish block cipher. Twofish uses a 16-
round Feistel-like structure with additional whitening of the input and output. The
only non-Feistel elements are the 1-bit rotates. The plaintext is split into four 32-bit
words. In the input whitening step, these are XORed with four key words. This is
followed by sixteen rounds. In each round, the two words on the left are input to the g
functions. (One of them is rotated by 8 bits first.) The g function consists of four byte-
wide key-dependent S-boxes, followed by a linear mixing step based on an MDS
matrix. The results of the two g functions are combined using a Pseudo- Hadamard
Transform (PHT), and two keywords are added. These two results (called the outputs
of the F' function) are then XORed into the words on the right (one of which is rotated
left by 1 bit first, the other is rotated right afterwards). The left and right halves are
then swapped for the next round. After all the rounds, the swap of the last round is
reversed, and the four words are XORed with four more key words to produce the

ciphertext. So, the key schedule preparesa total of fourty 32-bit subkeys.

37

P (138 hits)

_]) LS _ 7 input
K™y 9% K o L~ ol Y L
| whitening
one
renmni
15
more
rends
—— T— unda
TTm— ==
e last
T =
e e swap
) 7 output
Ky R L
| whitening
C (128 hits)

Figure 2.3 Twofish Encryption Algorithm Block

38

More formally, the 16 bytes of plaintext p,.., p1s (po is the most significant
byte of the plaintext, and p;s is the least significant bit of the plaintext) are first split

into 4 words Py,..., P; of 32 bits each using the little-endian convention.
3 .
Pi=2 P2 i=0,..3 2.1)
=0

In the input whitening step, these words are XORed with 4 words of the

expanded key.

R(),l' = Pl' o) K,‘ = 0,.., 3 (22)

In each of the 16 rounds, the first two words are used as input to the function
F, which also takes the round number as input to select the appropriate subkeys. The
third word is XORed with the first output of F" and then rotated right by one bit. The
fourth word is rotated left by one bit and then XORed with the second output word of
F. Finally, the two halves are exchanged. Thus, outputs F.oand F,.; of the F function
and 4 input words R, of the successive round are found as:

(Fro Fr1) = F(R0,R:1, 1)

Rr+1,0 = ROR(Rr,Z S Fr,O: 1)

Rr+1,] = ROL(RVJ, 1) (&) Fr,l (23)
R12=Rpo
Ri13 =R

for r=0,...,15 and ROR and ROL are functions that rotate their first argument

(a 32-bit word) left or right by the number of bits indicated by their second argument.

39

The output whitening step undoes the “swap” of the last round, and XORs the data

words with 4 words of the expanded key. The output block is then
Ci = Rie,(i+2) mod4 ® Ki+a i=0,..3
The four words of ciphertext are then written as 16 bytes c,..., ¢;s using the

same little-endian conversion used for the plaintext. The output block is obtained as

C;j.

28(imod 4)

c[{ Clipa) J mod 2° i=0,...,15

2.4.1 Main Functions of Twofish Algorithm
a The Function g

The function g forms the heart of Twofish algorithm; it is the main component
of the F' function. It uses an 32-bit vectors X and an 64-bit vector L to produce the 32-
bit output Z=g(X,L). Its 32-bit input word X (X is either R, or ROL(R, ,8)) is split
into four bytes. Each byte x; is run through its own key-dependent S-box, s;. The four
S-box outputs y; are interpreted as a vector of length 4 over GF(2*), and multiplied by
the 4x4 MDS matrix (using the field GF(2%) for the computations). The resulting
vector Z is a 32-bit word.

xi=|_X/28iJ mod 2° i=0,..3

v, = silx] i=0,..3 (2.4)

40

) (01 EF 5B 5B (y,

o| | 5B EF EF 01| |y,
= . (2.5)
| |EF 5B 01 EF| |y,

) \EF 01 EF 5B) |y,

In (2.4) s; are the key-dependent S-boxes (S-box0 to S-box3) and the elements
of the second 64-bit input L=(loo lo1 lo2 lo3 lio li1 L2 §13) are used as the S-box
constants, which are indicated in (2.7). The vector L is obtained from the keys. For
MDS matrix multiplication (2.5) to be well-defined, the correspondence between byte
values and the field elements of GF(2®) are needed to be specified. GF(2%) is

represented as GF(2)[x]/v(x) where v(x) = x*x®+x+x’+1 is a primitive polynomial of

,
degree 8 over GF(2). The field element a = zai. x with a; € GF(2) is identified

i=0

7
with the byte value Zai.zi .Note that, addition in GF(28) corresponds to an XOR of

i=0

the bytes.
b The Function F

The function F mentioned in (2.3) is a key-dependent permutation on 64-bit
values. It takes three arguments, two input words R, oand R,.;, and the round number
used to select the appropriate subkeys. R, is passed through the g function, which
yields 7. R, is rotated left by 8 bits and then passed through the g function to yield

T,,. The 64-bit vector L which adjusts the S-box constants is prepared from the

41

original key as in (2.12), so, L=5=(S) So) The results 7, and 7, are then combined in
a pseudo hadamard transformer and two words of the expanded key are also added
modulo 2** which is different from the XOR operation. The following set of
equations describe the details of F function,

T.0= g(Rr0, S)

T,1=gROL(R,,, 8), S) (2.6)

Fr0=(Tpo+ Ty) + Kpmg) mod 2°7

F,1=(Tr0+ 2Ty0+ Kario) mod 2
where (F,o,F1) is the result of F. Fig. 2.4. shows the F function in detail, where (2.6)
can be observed in the lower part of the figure that uses g functions. The upper part of
the figure, which uses / functions, is related to the key schedule to be described by
(2.13). The round keys K43 and Kj,9 used in (2.6) are produced in the upper part of
Fig. 2.4., as explained in (2.13). The 4 function also has key dependent S-boxes,
where the S-box constants are prepared from the original key M, by dividing it into
32-bit pieces, My, M, M,, M3, and choosing either the even or the odd indexed

segments, so respectively, M.=(My M) and M,=(M, M5) as shown in (2.11)

42

h

}Fl
2 1

Figure 2.4 A view of a single round F function (128-bit key)

43

c The Function /4

The function A(X,L) is used to obtain expanded keywords of Twofish
algorithm. 4 function is very similar to the function g, therefore equations (2.4) and
(2.5) describe it completely. Its 32-bit input word X is split into four bytes. Each byte
is run through its own key-dependent S-box. The four results are interpreted as a
vector of length 4 over GF(2%), and multiplied by the 4x4 MDS matrix (using the field
GF(2%) for the computations). The resulting vector is a 32-bit word.

Note that the of 4 and g functions are exactly same as each other but their
inputs are different. X is obtained from R, or R, for the function g, whereas for the
function 4, it is chosen as the 32-bit vector p=(i i i i) where i is the 8-bit vector
corresponding to i=0,...,39. Also the S-box constant vector L is different for 4 and g
functions. In 4 function, L is either M, or M,, whereas in g function L=S. The method
of obtaining the vectors S, M., and M, from the original key is described in section

24.2.
d The Key-dependent S-boxes

Twofish algorithm uses a single 32x32 S-box which can be considered as four
8x8 S-boxes with different combinations of permutation boxes, go and ¢;, which are
explained in section 2.4.2. As can be seen from Fig. 2.4, the S-boxes are used both in
h and g functions. The combination of permutation boxes is the same for the S-boxes

of 4 and g functions, but their input parameters are different. For 4(X,L) function the

44

input parameters are p=X and L=M, or L=M,. For g(X,L) function the input
parameters are X=R, o or X=ROL(R,1,8) and S=L.

32x32 S-box takes two inputs a 32-bit word X and a list L = (Lo, ..., L.1) of 32-
bit words of length &, where £ is the number of 64-bit segments in the original key. In
this thesis Twofish algorithm is implemented for 128-bit keywords so ~=N/64=2. The

vectors X and L are split into bytes.
li;= |_Li/28jj mod 28
x;= _X/zgfj mod 2°

fori =0,..., k-1 andj = 0,...,3. Then the sequence of substitutions and XORs is

applied.
o= So[x0] = q1[qo[qo[x0] & 11.0] & o], (S-box0 formulation)
v1 = s1[x1] = qolqolq1[x1] @ 11.1] @ lo.1], (S-box1 formulation)
V2 = s2[x2] = q1lq1lqo[x2] @ 112] @ lo2], (S-box2 formulation)

3 = s3[x3] = qo[q1[q1[x3] ® [13] ® lo3], (S-box3 formulation) 2.7)
The output of the S-boxes is the 32-bit word Y in the form of y3y,y10. Fig. 2.5.

shows the S-box formulation of 128 bit Twofish cipher.

45

i1 A 41 L]

b1,
bt 4
4 q i i)
| | | |

e L
bt 4
o q] i
| | ! '

Figure 2.5 S-box formulation of Twofish algorithm

2.4.2 Sub-functions of Twofish Algorithm
a The Permutations ¢ and ¢q;

The permutations ¢go and ¢; are fixed permutations on 8-bit values. These
permutation functions are the main components of the S-boxes. They are constructed
from four different 4-bit permutations each. For the 8-bit input value x, the
corresponding output value y is found by the following steps:

a0=|_x/16j and bhy=xmod 16

46

i.e., the byte is first split into two 4-bit nibbles, a¢ and by
ar= aop @ b()

bi=ay® ROR(b(), 1) @ (8610 mod 16)

a; = tola1]
b= t1[b1]
asy=ap (‘Bbz

b3 =da; @ ROR(bz, 1) @ 8612 mod 16

as = tz[a3]
bs= t3]bs3]
y= 16 b4+ ay (28)

As in (2.8), these nibbles are combined in a bijective mixing step. Each nibble
is then passed through its own 4-bit table look-up. This is followed by another mixing
step and table lookup. Finally, the two nibbles are recombined into a byte.

The equation set (2.8) describes both of the permutations gy and ¢g;, but the
lookup tables f,...,t; are different for ¢¢ and ¢;.

For the permutation g, lookup tables are given by

t%h=[817D6F320B5S9ECA4] (2.9)

H=[ECB81235F4A6709D]

HL=[BASE6D90C8F32471]

5=[D7F4126E9B3085CA]

47

where each lookup table is represented by a list of the entries using hexadecimal
notation. (The entries for the inputs 0,1,...,15 are listed in order.) Similarly, for g, the
lookup tables are given by

Hh=[28BDF76E31940AC5]

tH=[1E2B4C376DASF908]

HL=[4C75169A0ED82B3F]

5=[B951C3DE647F208A] (2.10)
b The Key Schedule

The key schedule has to provide 40 words of the expanded key K, ...,K39, and
the constant vectors for the key-dependent S-boxes used in the g and / functions.
Twofish is defined for keys of length N = 128, N = 192, and N = 256. Keys of any
length shorter than 256 bits can be used by padding them with zeroes until the next
larger defined key length. The parameter £ is defined as k = N/64. The original key M
consists of 8k bytes my,...,mg;.;. To obtain the constant vectors for key dependent S-

boxes, the bytes are first converted into 2k words of 32 bits each
3 .
M,~=Zm(4f+j)-28] i=0,..2k1
j=0

and then into two word vectors of length .
M. = (Mo,Ma,..., M)

MOZ(Ml,M3,...,M2k_1) (211)

48

M, and M, are the constant vectors of the key dependent S-boxes employed in
the /4 function, to obtain the expanded keys K,...,K39. For the 128-bit key length is
used in this study, &=2, hence M .=(My M) and M,=(M, M>).

A third vector S of length £ 32-bit words is also derived from the key, as the
constant vector for the key dependent S-boxes of the function g. This is done by
taking the key bytes in groups of 8, interpreting them as a vector over GF(2*), and
multiplying them by a 4x8 matrix derived from an RS code. Each result S; of 4 bytes

is then interpreted as a 32-bit word.

msi
mgi+1
Sio0 01 A4 55 87 54 58 DB 9E) | msn»
; A4 56 82 F3 1E C6 68 E5 "
Si1 _ o msi+3 (2.12)

sia| |02 A1 FC Cl 47 AE 3D 19 | |mgw
sia) \44 55 85 54 58 DB 9E 03) | img.s

mgi+6

msi+7

3
Using §; = Zsi,j~28'/ for i = 0,...,k - 1, one obtains the third vector S = (S.1,

j=0
Sk2,..., So) Note that S lists the words in “reverse" order. For the RS matrix
multiplication in (2.12), GF(2®) is represented by GF(2)[x]/w(x), where w(x) = x°
+x%+x*+x*+1 is another primitive polynomial of degree 8 over GF(2).

For 128-bit keys, three vectors M,, M,, S are all 64-bit vectors, which forms
the S-box constants. M, and M, are used in /4 function which produces the expanded

key; whereas S is used in g function which encrypts the plaintext.

49

c The Expanded Key Words Kj

The words of the expanded key are defined using the 4 function. The input
vector X of the A(X,L) function is derived from the initial vector p = 2** +2'° + 2%+
2°. To evaluate 40 keywords, one computes for all values of i=0,...,19.

A; = h(2i p,M.,)

B; =ROL(A((2i + 1) p,M,), 8)

K> = (4; + Bi) mod 2*

Koi+1 = ROL((4; + 2B;) mod 2*%, 9) (2.13)

Notice that for producing A4; the first argument of / function has all byte values
equal to 27, and the second argument of 4 is M,. B;is computed similarly using 2i + 1
as the byte value and M, as the second argument, with an extra rotate over 8 bits. The
values 4;and B; are then combined in a PHT. One of the results is further rotated by 9

bits. The two results K»; and K>;+; form the two 32-bit words of the expanded key.
2.4.3 Cryptanalysis of Twofish

A summary of successful attacks performed by the designers of the cipher [29]
is as follows:

5-round Twofish (without the post-whitening) with 2*%°

chosen plaintext pairs
and 2°' computations of the function g. 10-round Twofish (without the pre- and post-

whitening) with a chosen-key attack, requiring 2°* chosen plaintexts and about 2''

adaptive chosen plaintexts, and about 2> work.

50

The fact that Twofish seems to resist related-key attacks well is arguably the
most interesting result, because related-key attacks give the attacker the most control
over the cipher's inputs. Based on analysis, it is conjectured that there exists no more
efficient attack on Twofish than brute force. The most efficient attack against
Twofish with a 128 bit key has a complexity of 2'*%, the most efficient attack against
Twofish with a 192-bit key has a complexity of 2% and the most efficient attack

against Twofish with a 256-bit key has a complexity of 2.

51

CHAPTER 3

CRYPTANALYSIS ATTACKS

3.1 Cryptanalysis Techniques in Brief

Cryptanalysis is the aspect of cryptology which concerns the strength analysis
of a cryptographic system, and the penetration or breaking of a cryptographic system.

The goal of an attack is to reveal some unknown plaintext, or the key, which
will reveal the plaintext. Some of well-known cryptanalysis techniques are explained
below.

Brute Force (also Exhaustive Key Search): Try to decipher ciphertext under
every possible key until readable messages are produced.

Codebook (the classic "code-breaking'" approach): Collect a codebook of
transformations between plaintext and ciphertext.

Differential Cryptanalysis: Find a statistical correlation between key values
and cipher transformations (typically the XOR of text pairs), then use sufficient

defined plaintext to develop the key.

52

Linear Cryptanalysis: Find a linear approximation to the keyed S-boxes in
cipher, and use that to reveal the key.

Meet-in-the-Middle: Given a two-level multiple encryption, search for the
key by collecting every possible result for enciphering a known plaintext under the
first cipher, and deciphering the known ciphertext under the second cipher; then find
the match.

Key Schedule: Choose keys which produce known effects in different rounds.

Birthday (usually a hash attack): Use the birthday paradox, the idea that it is
much easier to find two values which match than it is to find a match to some
particular value.

Formal Coding (also Algebraic): From the cipher design, develop equations
for the key in terms of known plaintext, then solve those equations.

Correlation: In a stream cipher, distinguish between data and confusion, or
between different confusion streams, from a statistical imbalance in a combiner.

Dictionary: Form a list of the most-likely keys, then try those keys one-by-
one (a way to improve brute force).

Replay: Record and save some ciphertext blocks or messages (especially if
the content is known), then re-send those blocks when useful.

Many attacks try to isolate unknown small components or aspects so they can

be solved separately, a process known as divide and conquer.

53

3.2 Strength and Cryptanalysis

Because there are no tools for the discussion of strength under all possible

n

attacks, cipher "strength" is normally discussed in the context of particular attacks.
Each known attack approach can be elaborated for a particular cipher, and a value
calculated for the effort required breaking the cipher in that way; this may set an
"upper bound" on the unknown strength of the cipher. And while this is certainly
better than not knowing the strength with respect to known attacks, such attacks may
not represent the actual threat to the cipher in the field. In general, "lower bound" or
"true" strength of a cipher is not known. So, unless a cipher is shown to be weaker
than can be accepted, cryptanalysis provides no useful information about cipher
strength.

Two most powerful cryptanalysis techniques applied to symmetric-key block
ciphers are the linear cryptanalysis and the differential cryptanalysis. Linear
cryptanalysis was introduced by Matsui [20] at EUROCRYPT 93 as a theoretical
attack on the Data Encryption Standard (DES) and later successfully used in the
practical cryptanalysis of DES; differential cryptanalysis was first presented by
Bilham and Shamir [4] at CRYPTO 90 to attack DES and eventually the details of
the attack were packaged as a book. Although the early target of both attacks was
DES, the wide applicability of these attacks to numerous other block ciphers has

solidified the pre-eminence of both cryptanalysis techniques in the consideration of

the security of all block ciphers.

54

3.3 Linear Cryptanalysis

Linear cryptanalysis tries to take advantage of high probability occurrences of
linear expressions involving plaintext bits, "ciphertext" bits (actually we shall use bits
from the 2™ last round output), and subkey bits. It is a known plaintext attack: that is,
it is premised on the attacker having information on a set of plaintexts and the
corresponding ciphertexts. However, the attacker has no way to select which
plaintexts (and corresponding ciphertexts) are available. In many applications and
scenarios it is reasonable to assume that the attacker has knowledge of a random set
of plaintexts and the corresponding ciphertexts. The basic idea is to approximate the

operation of a portion of the cipher with an expression that is linear where the

linearity refers to a mod-2 bit-wise operation (i.e., exclusive-OR denoted by "@®").

Such an expression is of the form:

1P x® .. @iy @@ ... y,=0 (3.1)

where Xi represents the i-th bit of the input X = [Xj, X5, ...] and ¥ represents
the j-th bit of the output Y = [Y}, Y, ...]. This equation is representing the exclusive-
OR "sum" of u input bits and v output bits. The approach in linear cryptanalysis is to
determine expressions of the form above which have a high or low probability of
occurrence. If a cipher displays a tendency for equation (3.1) to hold with high
probability or not hold with high probability, this is evidence of the cipher’s poor
randomization abilities. Consider that if values for # + v bits are randomly selected

and placed into the equation above, the probability that the expression would hold

55

would be exactly 1/2. It is the deviation or bias from the probability of 1/2 for an
expression to hold that is exploited in linear cryptanalysis: the further away that a
linear expression is from holding with a probability of 1/2, the better the cryptanalyst
is able to apply linear cryptanalysis. The amount by which the probability of a linear
expression holding deviates from 1/2 is referred as the linear probability bias. Hence,
if the expression above holds with probability p; for randomly chosen plaintexts and
the corresponding ciphertexts, then the probability bias is p; — 1/2. The higher the
magnitude of the probability bias, |[p;, — 1/2|, the better the applicability of linear

cryptanalysis with fewer known plaintexts required in the attack.

3.4 Differential Cryptanalysis

Differential cryptanalysis exploits the high probability of certain occurrences
of plaintext differences and differences into the last round of the cipher. For example,

consider a system with input X = [X; X; ... X,,] and output Y = [Y¥; Y3 ... V,]. Let two

inputs to the system be X' and X" with the corresponding outputs Y and Y”,

respectively. The input difference is given by AX = X' & X" where "®" represents a
bit-wise exclusive-OR of the n-bit vectors and, hence,

AX=[AX1,AX>2 ...AX,]
where AX = X/ & X" with X/ and X" representing the i-th bit of X' and X",

respectively. Similarly, AY=Y @ Y" is the output difference and

AY=[AY,AY> ..,AY,]

56

where AY=Y;/ @ Y, .

In an ideally randomizing cipher, the probability that a particular output

difference AY occurs given a particular input difference AX is 1/2" where n is the

number of bits of X. Differential cryptanalysis seeks to exploit a scenario where a

particular AY occurs given a particular input difference AX with a very high

probability pp (i.e., much greater than 1/2"). The pair (AX, AY) is referred to as a

differential.
Differential cryptanalysis is a chosen plaintext attack, meaning that the

attacker is able to select inputs and examine outputs in an attempt to derive the key.

For differential cryptanalysis, the attacker will select pairs of inputs, X' and X", to

satisfy a particular AX, knowing that for that AX value, a particular AY value occurs

with high probability. As with linear cryptanalysis, to construct highly likely
differential characteristics, the properties of individual S-boxes are examined and
these properties are used to determine the complete differential characteristic.
Specifically, the input and output differences of the S-boxes are considered in order to
determine a high probability difference pair. Combining S-box difference pairs from
round to round so that the nonzero output difference bits from one round correspond
to the non-zero input difference bits of the next round, enables finding a high

probability differential, consisting of the plaintext difference and the difference of the

57

input to the last round. The subkey bits of the cipher end up disappearing from the
difference expression because they are involved in both data sets and, hence,
considering their influence on the difference involves XORing subkey bits with

themselves, the result of which is zero.

58

CHAPTER 4

TEST CRITERIA FOR BLOCK CIPHERS

4.1 Avalanche Criteria

The idea of avalanche [12] was introduced by Feistel. For a given
transformation to exhibit the avalanche effect, an average of one half of the output
bits should change whenever a single input bit is complemented. In order to
determine whether a given nxn function f satisfies this requirement, the 2" plaintext

pairs, P and P;. Such that P and P; differ only in bit i are used to calculate the 2"

difference vectors, AC = f{P) @ f(P;) = e;. These XOR sums are referred as avalanche

vectors, each of which contains 7 bits, called avalanche variables. If this procedure is

repeated for all i such that 1 < i < n, and one half of the avalanche variables are equal

to 1 for each i, then the function f has good avalanche effect. Avalanche properties
and avalanche weight distribution characteristics of block ciphers help us analyze

diffusion and confusion properties of block ciphers.

59

The principle of diffusion and confusion was introduced by Shannon [31] in
1949 and simply can be stated as:

Diffusion: Diffusion tries to distribute the redundancy of the plaintext over
the cipher text. Every bit of the ciphertext should depend on every bit of the plaintext.
Good diffusion spreads the influence of individual plaintext characters over as much
of the ciphertext as possible, thereby hiding the statistical features of the plaintext.

Confusion: Confusion is described as being “the use of -ciphering
transformations that complicate the determination of how the statistics of the
ciphertext depend on the statistics of the plaintext” [33] or, more briefly, to make the
relation between the key and the ciphertext as complex as possible. The objective is
to hide redundancies in plaintext. Every bit of the ciphertext should depend on every
bit of the key.

Completeness: Completeness is the result of diffusion and was introduced by
Kam and Davida [15]. If a cryptographic transformation is complete, then each
ciphertext bit must depend on all plaintext bits. Thus, if it were possible to find the
simplest boolean expression for each ciphertext bit in terms of plaintext bits, each of
those expressions would have to contain all of the plaintext bits if the function was

complete.

4.1.1 Avalanche Weight Distribution

Avalanche weight distribution (AWD) [3] criterion can be stated as follows:

Even for quite similar plaintext pairs (P;, P>), i.e., when the hamming weight of the

60

differences of plaintext pairs (P;, P») is small, the distribution of the hamming weight
of the differences of corresponding ciphertext pairs (C;, C;) should be close to a
binomial distribution around n/2 for a good block cipher with a block length of .
This criterion reveals the diffusion property of block ciphers.

It should be noted that the AWD of an ideal algorithm satisfying the diffusion
property, the probability of finding any particular number of i ciphertext bit changes
in a ciphertext of » bits is:

!
BU)%730SiSn (4.1)

which is the binomial expression. Also notice that

iB@zl (4.2)

In Fig. 4.1, ideal binomial distribution curve is sketched for 128 bits

e)
800

700 1 /\
600

= 500 - / \
4]

= 400

=

S 300 -

200 -
100

1 9 17 25 33 41 49 57 65 73 81 89 97 105113 121

i

Figure 4.1: Binomial Distribution Curve for n = 128 bits

61

The distortion measure D, which gives the distortion between the actual AWD

of the cipher and the ideal distribution B(j) is calculated using N pairs of plaintexts (P,

P®AP) with a fixed difference AP, and corresponding ciphertexts (C, CBAC). AC of

weight j increments the array element AWD(j) by 1. Then, deviation of the cipher
from the ideal binomial distribution is found for a specific plaintext difference AP of

hamming weight 1 as
P R : .
D'= —>"|4WD(j) - NB(})| (4.3)
2N ‘S

where i corresponds to the index of “1” in the plaintext difference (AP) vector.

Corresponding resemblance parameter R to a binomial distribution is then
given by

R'=1-D (4.4)

While defining the distortion by (4.3) the magnitude of [AWD(j) - NB(j)] is
used in order not to make a distinction between positive or negative errors. The
normalization coefficient of 1/2N is added to restrict the worst case value of R to 0.
(Notice that the worst case occurs when non-zero values of AWD(j) correspond to
zero values of B(j) and vice versa)

If R = 1 then the actual AWD is exactly the same as the ideal binomial
distribution. In the worst case R’ = 0, and the AWD of the corresponding block cipher

shows no resemblance to the ideal binomial distribution.

62

4.1.2 Avalanche Criteria Analysis Procedures

In this section, the test procedures of avalanche criterion, AWD and
resemblance parameter analysis are given. These procedures are applied to the studied

cipher in Chapter 5.

a Avalanche Criterion

The following steps are used in this avalanche criterion test procedure:
1. A key is chosen randomly.

2. A plaintext P is chosen at random and the pair of that plaintext P; is

calculated so that the difference between P and P;is, i.e. P,= P @ e; and P and P;

differ only in bit i, where e; is a n-bit unit vector with a position i, and i € {1, 2,..., n},
3. P and P; are submitted to r-rounds of cipher for encryption under the key

chosen in step 1,

4. From the resultant ciphertexts C and C;, the avalanche vector AC=C & C;

is calculated,

5. The avalanche vector is summed up to an avalanche sum array,

6. The above steps 2-5 are repeated N (typically 10000) times and the values
in the avalanche sum array are sketched versus its index.

It is expected due to the avalanche criterion that an average of one half of the

output bits should change whenever a single input bit is changed, so if we use 10000

63

sample plaintexts all » entries in the avalanche sum array should be around 5000. So

we expect a straight line around 5000 as the result of avalanche criterion.

b Avalanche Weight Distribution

To determine the diffusion properties of ciphers a derivative of avalanche
criterion, avalanche weight distribution (AWD) curves are helpful. The criterion can
be stated as: even for small hamming weight differences at the input (plaintext or
keybits), the distribution of the hamming weight of the ciphertext differences
(avalanche vectors) should be close to a binomial distribution around »/2 for a good
block cipher with a block length of n.

To investigate the diffusion properties of cipher the following test procedure is
used for the criterion of avalanche weight distribution (AWD).

1. A key is chosen randomly,

2. A plaintext P is chosen at random and the pair of that plaintext P; is

calculated so that the difference between P and P; is, i.e. P;,= P @ e; and P and P;

differ only in bit i, where e; is a n-bit unit vector with a position 7, and i € {1, 2,..., n},
3. P and P; are submitted to r-round of cipher for encryption under the key
chosen at step 1,

4. From the resultant ciphertexts C and C;, the hamming weight of the

avalanche vector wt(AC) = wt(C & C;) =] is calculated, where j € {1, 2,..., n},

64

5. The value of the ;™ element of an AWD array with a size of n is
incremented by 1, i.e. AWD[j] =AWD[j] + 1,

6. The steps 2-5 are repeated N (typically 10000) times and the values in the
AWD array are sketched versus its index, as the AWD curve corresponding to the

input difference AP = e;.
c Resemblance Parameter Analysis

After the AWD array is found distortion measure (D’) and resemblance
parameter (R’) can be found with the following procedure:

1. Obtain the AWD curve corresponding to AP = e;,

2. Calculate the binomial distribution function B(j) where j € {1, 2,..., n},

3. Find the sum of absolute difference of AWD[j] and B(j) for each j where j €

4. Calculate D' and R’ using equations (4.3) and (4.4) respectively.

In Chapter 5, avalanche and AWD curves to investigate diffusion properties of
RCS5, RC6 and Twofish ciphers with random plaintext or keyword and differences at
different positions i are presented. The results of avalanche criteria and NIST’ s
statistical test results are compared in this chapter. The nonlinearity of the S-boxes of

Twofish cipher is also evaluated in Chapter 5.

65

4.2 Nonlinearity Measure

Encryption mappings are often designed to satisfy a set of chosen criteria
which have been established either formally or empirically as essential to the security
of the cipher. Two basic criteria due to Shannon suggest that a cipher should be
constructed using the notions of diffusion and confusion. As described in the
preceding sections, diffusion refers to the dissipation of the statistical properties of
the plaintext, while confusion refers to the internal operations of the cipher that
produce complex relations between the plaintext, key and ciphertext.

If a ciphertext bit ¢; is described by the boolean function f; then it is generally
accepted that each f; should possess a combination of the properties such as balance,
nonlinearity, completeness, correlation immunity, the strict avalanche criterion, or be
bent.

The nonlinearity of many block ciphers depend directly on the selection of the
S-boxes since, typically, the S-boxes are the only non-affine component of the cipher.
So one can state that, if the S-boxes are affine then the entire mapping is affine [10].

In the following section, basic definitions of the nonlinearity criteria are given.

4.2.1 Basic Definitions of Nonlinearity Criteria

Affine Function: A boolean function f(x) is called a affine function of

f X)=ax®a,x,®....0a,x, Bc=wxDc (4.5)

66

where a,,qa,......,q,,c belongto Z, , w=(a,,.,a,) €Z; ,and w.x denotes the

inner product of vectors w and x.

In the boolean field, the coefficients a, simply enable or disable the associated
variable x,. If ¢ = 0, affine function is also linear.

Truth Table: The truth table f, of the boolean function f(x) is found by
evaluating f(x) for all possible values of x=a,; where @, is the n-bit vector

corresponding to binary representation of the integer i =0,...,2" —1. So:

Jo =1 (0, f@))} (4.6)

Notice that the truth table of the boolean function f:Z; — Z, is a binary

sequence of length 2",

Sequence of a Boolean Function: The sequence of a boolean function

f:Z) > Z, is defined as:

)

Si= (=D (1)@ (=1 Oy 4.7)

where @; is the n-bit vector corresponding to binary representation of the integer
i=0,..,2"—-1.So, 0’s and 1’s of the truth table f, given by simply turn into +1’s

and —1’s in the sequence f; given by (4.7). The sequence of a linear (affine) function

is called a linear (affine) sequence.

67

Hamming Distance: Hamming distance between two functions
f:Z) > Z,and g:Z; — Z, is defined as the hamming weight of the truth table of

the difference function f(x)® g(x).

dy(f,8)=wy(f(x)®g(x)), (4.8)

where d,, (f,g) is the hamming distance and w, (f(x)® g(x)), is the hamming
weight of the truth table corresponding to the function f(x)® g(x). Notice that the
distance between boolean functions f and g is also equal to the hamming distance

between their 2"-bit truth tables f; and g; ; and the hamming distance between their 2"-

bit sequences fs and g,. Hence:
dy(f.8)=d,(f,8) =d,(f;,8,) (4.9)

Hadamard Matrix: A Hadamard matrix H is an nxn matrix with entries +1

or -1, such that all rows and all columns are orthogonal, i.e., HH" = nl , Where H Tis
the transpose of the Hadamard matrix and /, is the identity matrix of order n. A

special kind of Hadamard matrix, called the Sylvester-Hadamard matrix of order 2"

denoted by H, is generated by the following recursive relation:

Hn—l Hn—l
H — 1’ Hn =
0 . H (4.10)

68

+1 +1 +1 +1
+1 +1 +1 -1 +1 -1

So; H, =
+1 -1 +1 +1 -1 -1

+1 -1 -1 +1
and 2’ x2° Sylvester-Hadamard matrix /, can be obtained as follows:

[+1 +1 +1 +1 +1 +1 +1 +1]
+1 -1 +1 -1 +1 -1 +1 -1
+1 +1 -1 -1 +1 +1 -1 -1
+1 -1 -1 +1 +1 -1 -1 +1
+1 +1 +1 +1 -1 -1 -1 -1
+1 -1 +1 -1 -1 +1 -1 +1
+1 +1 -1 -1 -1 -1 +1 +1
+1 -1 -1 +1 -1 +1 +1 -1}

It can be shown that each row (or column) of H, is a linear sequence of length
2n, i.e., it corresponds to the sequence of a linear function. There is a one to one
mapping between each row (or column) /; ofa (2" x 2") Sylvester-Hadamard matrix
H, , and the sequence of a linear function /:Z) — Z, defined by /; (x)= w.x, where

the subscript i takes 2" different values corresponding to 2" possible weighting

vectors w.
Non-linearity: The non-linearity of a boolean function is formulated with
equation (4.11)

Nf :minW C#{erg | f (X)) =w.x®c}, (@11

b

69

which can be stated as the minimum hamming distance of this function from an
affine function. One can find this minimum distance by comparing the truth table of
the boolean function to all rows of the Hadamard matrix. This definition of

nonlinearity shown [38] to be equivalent to equation (4.12)

N,=2"" —% max ﬂfv o(wex),|} (4.12)

w=0,1,...,2""!)

Walsh Transform: The walsh transform of a function f(x) is defined as

[21]:
F(w)= erzg (=)™ (=™ (4.13)

Notice that for 2" different values of the n bit vector w, one obtains 2"

different linear functions
[, (x)=w-Xx (4.14)

and the walsh transform defined in (4.13) is nothing but the inner product of the

sequences of f(x) and /,(x):

Fw)=fs.lys= fo. (W.X)s (4.15)

The walsh transform given by (4.13) takes integer values in the interval [-2",

Bent Function: A function f:Z) — Z, is called a bent function [37] if,

70

2 S (NB(W-xX)
272 (-1 =1 , forall weZz!. (4.16)

Notice that the walsh transform defined by (4.13) can also be written as:

S (XS(W-X)

FOW) =2y CD'YED™ = 30 ()
Hence, one can express (4.16) in the form: 272 F(w)=+l1
So, the magnitude of the walsh transform for bent functions is found as:
|F(w)|=2""2, for all w. 4.17)
Bent functions only exist for even values of n.
4.2.2 Nonlinearity of S-boxes

Nonlinearity of the S-box can be defined in terms of nonlinearities of the
individual components f; which are the output bit functions of the S-boxes. The worst

case nonlinearity over all output bit positions and their linear combinations; where the

nonlinearity factor for each function f,:Z; — Z, is defined by

PR o1
ij=2 1_Emaxi:L_..,z”|fj,s'lia5|=2 1—5 max | F(w)| (4.18)

It was shown by Rothaus [25] that the class of perfectly nonlinear functions

coincides with the class of bent functions. Using (4.17) and (4.18),

— 2n—1 _ 2(1‘1/2)—1

Bent

1
N, <2 —E|F(W) , for n even (4.19)

71

Rothaus [25] also showed that for odd values of n, there are no perfect

. n-1 (n+1)/2
nonlinear functions, and maximum nonlinearity is equal to 2 — 2 .

b

n-1 (n+1)/2
Ny <2 =2 , for n odd (4.20)

4.2.3 Nonlinearity Criterion

To calculate the nonlinearity of nxn S-boxes we have first found the truth
tables of permutation boxes of the S-boxes. Each output bit has a truth table of 2"
bits. After obtaining n truth tables for n output bits, we find all 2" truth tables
corresponding to all 2" linear combinations of the output bits. Each row of the truth
table matrix is then compared to all rows of 2"x2" Sylvester-Hadamard matrix, to find
the minimum distance. Nonlinearity values are obtained for each of the 2" boolean
functions. The smallest of all is the nonlinearity parameter of nxn S-boxes.

We find the 2"x2" truth table matrix with the following algorithm:

1. Define a boolean vector of F' = {f}, f2,..., fo} Where f, are the result bits of
the S-boxes while x = {xy, x2,..., x,}is the input vector, 0< x <2"-1

2. Define the boolean function to be f (f;) = aiefi Parefy © ... Dugef,
where a = {ay, as,..., a,} 0 <a<2"-1

3. Use all available input x values to the permutation where the boolean vector
is found and then by using this vector, the boolean functions truth table is found by

using all available coefficient vectors, a.

72

Notice that, in the first row of the truth table, the coefficient vector a is equal
to all zero which results to an all zero row. And in the first column the input vector x
is equal to all zero.

In Chapter 5 the nonlinearity values for the S-boxes of Twofish are given after

presentation of avalanche and AWD curves for RC5, RC6 and Twofish.

73

CHAPTER 5

EVALUATION RESULTS

In this chapter we give the evaluation results of the studied ciphers, RCS,
RC6, and Twofish. The avalanche curves and avalanche weight distribution (AWD)
curves are sketched and analyzed according to the steps given in Chapter 4. Together
with resemblance parameter analysis, the nonlinearity of Twofish S-boxes is

investigated.

5.1 Avalanche Characteristics of RCS Cipher

5.1.1 Avalanche Curves of RC5 Cipher

The avalanche curves of RC5 are obtained by counting the number of changes
at each position of the round output vector, when a specific plaintext bit at position i
is complemented for a set of N = 10000 different plaintexts. The keyword is usually
chosen as all-zero keyword, unless it is specified as something else. Other parameters,

such as magic words, are also not changed and the same as the original code. For RC5

74

algorithm three intervals can be identified for the position of the complemented input
bit, i.e. error bit where the avalanche behavior is similar. These intervals are found as
i €[1..35], [36..40], [41..63].

In Fig. 5.1 (a) and Fig. 5.1 (b), avalanche curves of 1-round RCS5 are given for
different error bit positions at the input vector, i.e. the plaintext. For the first round in
the interval of i = 36,...,40 the average number of changes in avalanche variable is
more than 4970 (which is expected to be 5000 ideally) and this can be said to be a
very good diffusion value, because it is in the 0.6% vicinity of the ideal value and
maximum change is within 7%. On the other hand, in the other two regions, the
average number of changes in avalanche variable is within 1100 and 1600, which is
much more less than the desired value.

In Fig. 5.1 (c) and Fig. 5.1 (d), avalanche curves of 2-round RCS5 are given for
different error bit positions i. For the second round, the average number of changes in
avalanche variable differs only 0.2% from the ideal value of 5000 in the interval of i
€ [36..40]. Also in the other intervals the average avalanche value is improved to the

range 3400-4200.

75

G000 G000
o o
B i
Q 5000 T— ==t e S e e e] [&000
§ 4000 §4nnn
3000 5 3000
: b
5
EEDDD 5 zoo0
- -]
g 1000 _E 1000
)o’v-\’f/m\:?%‘ﬂ%a f’“‘hvf‘“"-'—\/-’“u’“'“-_.nl
2 2
0 T T T T T T T T T T T T T T T T T T (U L e R AR R R LR
14 7 A01316 1922 25 28 31 34 37 40 43 46 49 52 55 55 61 64 1 4 7 1013 16 19 22 25 I8 3134 37 4043 46 40 52 55 5861 64
Awalanche Variable Bualanche Wariable
\ — =1 — =35 =36] oL — = — =41 =63 y
(a) (b)
6000 5000
o o
B B
Q 5000 4 — - — = s — e e — = — fp 5000
_g /W-——V\ i}
e
o <000 W E4DDD V
T 5000 3000
b b
EEDDD EZDDD
k]]
In
1000 1000
i 8
=] 3
= =
0 T T T T T T T T T T T I T T T T T T T o T T T T T T T T T T T
14 7 1013 1619 22 25 28 31 34 37 40 43 46 40 52 55 55 61 64 1 4 7 101216 10 22 25 28 3134 37 4042 46 40 52 55 5261 64
Avalanche Variable Avalanche Variable
L — =1 — =35 i=36 y L — =4 — =41 =63 y
() (d)

Figure 5.1 Avalanche curves of RCS5 for the first and second round (=1, =2)

and chosen error bit positions (i), which represents different cases

The avalanche curves for 3-rounds of RC5 are sketched in Fig. 5.2 (a) and
Fig. 5.2 (b). As can be observed from the figures for all intervals the characteristics
are improved and in the worst case, i.e. i € {(1..35), (41..63)}, the number of change

of avalanche variable is more than 4400.

76

5200 5200
3 3
5100
= £000 e
¥ o ~aduel]|| | ¥ oA _VAVAU. M__Nan)
PV L gl
'E%DD \/\J’\/_/ 7 T AR ﬁ@ﬂﬂ \\i I \ﬁf\\i f\\’_\ﬁ\l\(n/“- "W
-g E A a T Ly
4600 4300 -
v NN % VST W
£ aa00 ! u. %4?00
4500
Emn +
s T 4500
124000 4400
=)
=
2800 A T T T T T 4300 T e
14 7 1012 1619 22 25 28 31 34 27 40 42 46 40 52 55 586164 14 71013 1619 22 2528 31 34 37 40 43 46 40 52 55 §5 61 64
BAvalanche Varable Byalanche Variable
— izl — =35 i=36 —i=d) — =41 =63
L " e A
(a) (b)

Figure 5.2 Avalanche curves of RCS5 for the third round (»=3) and chosen

error bit positions (7), which represents different cases

5.1.2 Avalanche Wight Distribution (AWD) Curves of RCS Cipher

The AWD curves of RC5 are obtained by calculating the hamming weight of
the round output vector, when a specific plaintext bit at position i if complemented
for a set of N = 10000 different plaintexts. The keyword is usually chosen as all-zero
keyword, unless it is specified as something else. Other parameters, such as magic
words, are also not changed and same as the original code. The intervals explained in
section 5.1.1 are used for the analysis.

In Fig. 5.3 (a) and Fig. 5.3 (b), AWD curves of 1-round RC5 are given for
different error bit positions at the input vector, i.e. the plaintext. For the first round in
the intervals i € {(1..31), (41..63)} the resemblance parameter (R') is below 0.045 and

if a single bit of the plaintext is changed, first round of RC5 changes less than 31 bits

71

of the ciphertext and the change is mostly around 5 bits. Notice that the resemblance
parameter R’ defined by (4.4) measures how close the avalanche weight distributions
are to the ideal binomial curve, i.e., how random the avalanche variables are. For the
first round in the interval i € [36..40] the resemblance parameter (R') is higher than
0.950 and if a single bit of the plaintext is changed, first round of RC5 changes less
than 46 bits of the ciphertext and more importantly the change is mostly around 32
bits.

Notice that in the interval i € [36..40], the AWD curves are very close to the
ideal curve given in Fig. 4.1. One can argue that bits in that region are not suitable for
differential cryptanalysis based attacks.

In Fig. 5.3 (¢) and Fig. 5.3 (d), AWD curves of 2-rounds of RC5 are given for
different error bit positions i at the input vector, i.e., the plaintext. For the first round
in the intervals i € {(1..31), (41..63)} the resemblance parameter (R’) is below 0.680
and if a single bit of the plaintext is changed, first round of RC5 changes less than 46
bits of the ciphertext and the change is mostly around 25 bits. Besides, for the first
round in the interval i € [36..40] the resemblance parameter (R') is higher than 0.980
and if a single bit of the plaintext is changed, first round of RC5 changes less than 48

bits of the ciphertext and more importantly the change is mostly around 32 bits.

78

100
-]Tk o, T 'ﬁ
oy ° E\
3 v 100
ooy = L 7
: LT A
] F A BT 7\
o S— S e v
14 7T 101316 B I225 38 3 3 F W B W RS S 6 0|17|0|3|sBm:s:saalsaa?watswa:sssslsl
Harmaning Weight j) of the avalanche vecotor Hamming Weight (§) of the avalanche veclor
L |—-—1=1 L=l —B—r=l =35 —k— =1 ,is38 J L |—-—1=1 =40 —B—r=1 i=4] —k—r=1,i=63 | y
(@) ®)
. N7 ™y
1 1200
o 1000 - - 1000 B
- 3 ; fy
3 $oam
: [1 E A
E ; EM } 1 fw 4
L] L-]
N \ N LV
0| b7 101316 19 22 25 28 31 3F F M0 45 4G 48 T T 38 61 6k DI.35?9|||3I5ITBQIZBZS:'.‘E3I33:63?:QH1315&‘195I5.355526IE\3
Hamawing Weight (i) of the avalanche vector Hamuming Weight (j) of the avalanche vector
L |—-—1=2 LSl —B—1=) =35 —k—r=2 =36 | JRS |—-—1=2 L[S0 —B— =1 imd] —k—1=3 =63 | y
(€) (d)

Figure 5.3 Avalanche weight distribution curves of RC5 for the first and
second round (=1, »=2) and chosen error bit positions (i), which represents different

cases

In Fig. 5.4 (a) and Fig. 5.4 (b) AWD curves of 3-rounds RC5 are given for
different error bit positions i at the input vector. In either interval resemblance
parameter (R’) is higher than 0.850 but on the other hand the difference of the
histograms sketched in the predefined intervals can be observed clearly. With the start

of third round the AWD curves become more similar to the ideal curve in all intervals

79

and it is clear that cryptanalysts need much more given plaintexts in known-plaintext

based attacks.

-,
-
™y
.

B
B

¥
2

)

;
w:__ﬁg N, ___a; 11

T4 7T 101316 1922 25 28 31 30 31 W0 B 15 1852 5 5 616l T35 T o BB RASEIRIDTNIHEERRIASTIIEE
Harming Weight (j) of the avalanche veoto Hamming Weight () of the avalanche vector

Number of oo ences of j
B

Number of oo endes of j
g5 B

8

o

|—-—z=3 LiFl —B—1=3 =35 —&— =3 ,i=36 | |—¢—1=3 =40 —B— =3 =41 —k—1=3 ,i=63 |

7
(a) (b)

»

Figure 5.4 Avalanche weight distribution curves of RC5 for the third round

(r=3) and chosen error bit positions (i), which represents different cases

5.1.3 Resemblance Parameters for RC5 Cipher

Resemblance parameters (R') of RC5 are obtained by finding the absolute
difference between the AWD curves of RC5 and the binomial distribution. Indeed
resemblance parameter variations according to different bit positions i reveals the
intervals that have same avalanche characteristics. The histograms are sketched for
first, second and third round of RC5 Cipher. As can be seen from the figures below:
the characteristics of RC5 Cipher gives better results within the interval i € 36,...,40.
The curves are sketched according to the steps given in Chapter 4. All of the curves
are sketched with the parameters N = 10000 (number of sample plaintexts), all-zero

keyword, 64 bits of plaintext and 64 bits of keyword.

80

Notice that the interval on Y-axis of the Fig. 5.5 (¢) and Fig. 5.5 (d) are

different from the others to focus on the characteristic detailed.

¢ ™y ™y
12 1.2
1 1
Fﬂl |
%D.E éo,a 1 PRI T S
= W e At el T
0.4 ’ ‘| 0.4 g
0z 0,2
ugmmmm 0 T T T T T e
145 9 13 17 21 25 29 33 37 4 45 49 53 57 61 1 5 9 1317 21 25 20 33 37 4 45 49 53 57 61
Eoxor Index §) BExoxr Index (i)
. —4—r=1 J L —4—r=2 J
(a) (b)
¢ Ty ™y
1 029
e . 0985 I —F 2
i Sl S AP T VN T D
oA
POAAR I FAT AN, :
fow VA, U W
087 43
0z 0055
075 e T T T T T T 085 T T T T T T T T T T T
1 8 9 13 17 21 25 20 33 37 41 45 48 53 57 61 1 5 9 43 17 21 25 20 33 37 4 45 49 53 57 61
Bror Index i) Bror Index (i)
'\ = J J
(c) ()

Figure 5.5 Resemblance parameter curves of RC5 for different rounds (7): a)

r=1b)r=2c)r=3d)r=4

As can be seen from the above figures after 4 rounds RC5 algorithm becomes

invulnerable to the 1-bit changes in the plaintext values, i.e. R’ value is lower than

0.02 . But there is an important issue to be noted when the figures are investigated

81

detailed, there appears an extreme point that when the bit positions i=36, 37, 38, 39,
40 without looking at the round number, R’ value is near to one. But nevertheless we
can conclude that RC5 Cipher achieves acceptable and desired diffusion after the

fourth round.

5.2 Avalanche Characteristics of RC6 Cipher

5.2.1 Avalanche Criterion for RC6 Cipher

The avalanche curves of RC6 are obtained by counting the number of changes
at each position of the round output vector, when a specific plaintext bit at position i
if complemented for a set of N = 10000 different plaintexts. The keyword is manually
chosen as all-zero keyword, unless it is specified as something else. Other parameters,
such as magic words, are also not changed and the same as the original code. For RC6
algorithm four intervals can be identified for the position of the complemented input
bit, i.e. error bit where the avalanche behavior is similar. These are intervals are found
asi € [1..31], [32..63], [64..95], [96..127].

In Fig. 5.6 (a) and Fig. 5.6 (b), the avalanche curves of 1-round RC6 are given
for error bit positions 7 at the input vector, i.e., the plaintext. For the first round in the
intervals i € {(32..63), (96..127)} the avalanche curves are better than the other
intervals which will be the starting point of selecting these intervals. The average
change in avalanche vectors in these regions are more than 10 times better than the

values in the interval i € {(1..31), (64..95)}.

82

In Fig. 5.6 (c) and Fig. 5.6 (d), the avalanche curves of RC6 for second round
with different error bit positions i at the input vector are given. In the intervals i €
{(32..63), (96..127)} RC6 has better avalanche characteristics than the other regions
as expected from the first round. In these regions the average of change of avalanche

variables is 4100 and 4700 respectively.

12000 12000
] o
3 ¥
¥ 10000 T 10000
o i
E 2000 E 2000
B 6000 B ROO0
%)
4000 4000
2 2
e} el
% 2000 g 2000
=) Tt e Vo =]
= = T S TP |
1] Tr——— T 1] r - r
1 10 19 23 37 46 &5 64 73 82 91 100 109 118 137 1 10 19 & 37 46 55 64 73 82 91 100 109 118 127
Bualanche Variable Avalanche Variable
. — =1 — =} F3z i=63 y L — j=fi4 — =08 =06 i=127 y
(a) (b)
G000 go00
L] o
B 3
B 8000 e B 5000 SRR T
B I
4000 4000
2000 T 000 !
1 W "1 @ ! [V
g 2000 | E 2000
: | | : | |
1000 1000
2
UL L s L s 0 e Nl b s e
10 7 25 33 4 40 57 B5 TR 81 80 97 108 112141 19 17 25 33 41 40 57 65 73 81 80 97 WsE N3
Aealanche Variable Buzlanche Varisble
— =1 — =21 =37 =63 — i=fi4 — =495 =96 =127 |
. A = >
(c) (d}

Figure 5.6 Avalanche curves of RC6 for the first and second round (=1, =2)

and chosen error bit positions (), which represents different cases

&3

In Fig. 5.7 (a) and 5.7 (b), avalanche curves for 3-rounds of RC6 cipher for
different error bit positions i at the input vector are sketched. The number of change
of avalanche variables is improved by increasing the number of rounds and the
average number of change of avalanche variable is more than 4450 for all intervals.
Additionally in the intervals i € {(32..63), (96..127)} the average number of change

of avalanche variable is varying between 4960 and 5000.

@
=
=
=
@
=
=
=

T St e e D e e e

o
=
=
=

s
=
=
=

=
=
=
=

1000

=
=
=

Murber of changes of snalanche wErizble
=
2
4
1
Hurrber of changes of awdanche warizhle
2
=
=

L L L L T 0 =
19 17 35 33 41 40 &7 85 T3 81 80 07 105 11N 1 9 17 25 33 41 48 57 65 73 81 89 97 105 113131

Bwalanche Variable Ayalanche Varisble

—i=1 — =31 F3l i=fi3 — i=fid — =05 =06 =127

(a) (b)
Figure 5.7 Avalanche curves of RC6 for the third round (»=3) and chosen

error bit positions (), which represents different cases

5.2.2 Avalanche Wight Distribution (AWD) Curves of RC6 Cipher

The AWD curves of RC6 are obtained by calculating the hamming weight of
the round output vector, when a specific plaintext bit at position i if complemented

for a set of N = 10000 different plaintexts. The keyword is manually chosen as all-

84

zero keyword, unless it is specified as something else. Other parameters, such as
magic words, are also not changed and same as the original code. The intervals
explained in section 5.2.1 are used for the analysis.

In Fig. 5.8 (a) and Fig. 5.8 (b), AWD curves of 1-round RC6 are given for
different error bit positions i at the input vector. For the first round in the intervals of i
€ {(1..31), (64..95)} the resemblance parameter (R’) is below 0.001 and if a single bit
of the plaintext is changed, first round of RC6 changes less than 10 bits of the
ciphertext but the change is mostly around 3 bits. Besides, for the first round in the
intervals of i € {(32..63), (96..127)} the resemblance parameter (R’) is less than
0.004 and if a single bit of the plaintext is changed, first round of RC6 changes less
than 48 bits of the ciphertext and more importantly the change is varies around 25 to
32 bits.

In Fig. 5.8 (c) and Fig. 5.8 (d) AWD curves of 2-rounds of RC6 are given for
different error bit positions 7 at the input vector. For the second round in the intervals
of i € {(1..31), (64..95)} the Resemblance Parameter (R’) is below 0.0015 and if a
single bit of the plaintext is changed, first round of RC6 changes less than 50 bits of
the ciphertext and the change is mostly around 28 bits. Besides, for the first round in
the intervals of i € {(32..63), (96..127)} the resemblance parameter (R’) varies from
0.280 to 0.980 and if a single bit of the plaintext is changed, 2-rounds of RC6 changes
less than 82 bits of the ciphertext and more importantly the change is varies around
55 to 63 bits. There is significant performance improvements in the histograms but

the difference between the intervals can be observed clearly. Notice that between the

85

intervals i € {(32..63), (96..127)} AWD curves

curve given in Fig. 4.1.

become very similar to the desired

2

1 1l 21 31 41 51 &1 71 81 @®1 101 111 121
Hamming weight (§) of the avalanche vecbor

L |—¢—1=1 =1 —B—r=] =3l —k— =1 ,im32 —w—r=1 163 | y

N
7000
o 6000 h
L]
s
$ 5000
E 4000
2 =000
s
_E 2000
2 1000
o M
1 11 21 31 41 51 61 71 &1 91 101 111 121
Harmming weight (j) of the avalandhe vector
L |+r=1 it —B—r1=] E95 —&—r=1 i=96 —m—1=1,i=127 | y

(a) (b)
e Ty ™y
0o onn
~ 700 ﬁ-l, - 800
= " 700
g 600 h H An
B 500 } * 1‘ Ll
: i R PO .
0N I S S ol —F % [£
2 z00 g 300 H [41 %
P I A W R 5 ¢y rra
§ 4 i! E 1% g :E
2 100 & 100 F 4 T
o 0
1 11 21 31 41 51 61 71 81 1 101 111 121 1 11 21 31 41 51 61 71 21 o1 101 111 121
Hammiing weight (j) of the aralanche veotor Hamming weight (§) ofthe avalandhe vector
L |—4—1=2 =] —B—r=) =31 —& r=1 i=31 —=—r=2 i=63 | FRS |—¢—I=g i64 W=7 | E05 & 11 =96 —=— =3 =127 | y

(c)

(d)

Figure 5.8 Avalanche weight distribution curves of RC6 for the first and

second round (»=1, »=2) and chosen error bit positions (i), which represents different

cases

In Fig. 5.9 (a) and Fig. 5.9 (b) AWD curves of 3-rounds of RC6 are given for

different error bit positions i at the input vector. For the third round in the intervals of

86

i € {(1.31), (64..95)} the resemblance parameter (R) is below 0.600 and if a single
bit of the plaintext is changed, third round of RC6 changes less than 85 bits of the
ciphertext but the change is mostly around 58 bits. Besides, for the third round in the
intervals of i € {(32..63), (96..127)} the resemblance parameter (R’) is higher than
0.004 and if a single bit of the plaintext is changed, 3-rounds of RC6 changes less
than 88 bits of the ciphertext and more importantly the change is varies around 64
bits.

It can be observed that between the intervals i € {(32..63), (96..127)} the
AWD curves of RC6 give the desired diffusion characteristics, on the other hand this
result can not be observed in the other intervals and if it is to be compared with RC5

it is clear that RC5 has better avalanche characteristics within the same round.

. ™y Ty
200 200
i, A i A
E 500 } E 300 }
E 400 !' E 400 t
"3300 F‘!‘i "3300 ! f ‘
5 200 % ¥ 0o [S&L
i 4\ o A
0 -Mﬁmmhm i
1 11 21 31 41 51 61 71 81 %1 101 111 131 1 10 19 2% 37 46 55 64 T3 82 91 100 109 11% 127
Hamming weight (j)ofthe avalandhe veobor Hamming weight {j)of the avalanche vecotor
L |—¢—1=3 =1 —8—1=3 | E3] —k—r1=3 =32 —8—1=3 i3 | J L |+r=3 LEfit —B 1= E95 —&—1=3 ,i=96 —#—1=3 ,i=127 | y

(a) {b)

Figure 5.9 Avalanche weight distribution curves of RC6 for the third round

(=3) and chosen error bit positions (i), which represents different cases

87

5.2.3 Resemblance Parameter for RC6 Cipher

Resemblance parameters (R’) described by (4.4) are obtained by finding the
absolute difference between the AWD curves of RC6 and the binomial distribution,
as shown in (4.3). Indeed resemblance parameter variations according to different bit
positions i reveals the intervals that have the same avalanche characteristics. The
histograms are sketched for the first, second, third and fourth rounds of RC6 Cipher.
As can be seen from the figures below: the characteristics of RC6 Cipher gives better
results within the interval i € {(32..63), (96..127)}. The AWD curves are sketched
according to the steps given in Chapter 4. All of the curves are sketched with the
parameters N = 10000 (number of sample plaintexts), all-zero keyword, 128 bits of
plaintext and 128 bits of keyword.

Notice that the interval on Y-axis of Fig. 5.10 (a) and Fig. 5.10 (d) is different

from the others to focus on the characteristic detailed.

88

Sy ™
0pos 1,2
00045
0pog L m
00035 o
; N N
00025 K ? 06 % S
@ 000z I 7\
00015 o |1 0.4 X
0001 LT 4 a6 N[M
0.0005 ﬁ'@ || .3 ’ I -
0 M’ 04
141 21 31 # 51 61 71 81 91 401 411 421 141 21 3 41 81 81 F1 81 91 101 111 121
Error Index (i) Eooex Index (i)
—4—r=1 ——r=1
. P AN v
(a) (b)
s ™y R
1,2 089
L —M—Tm 0.5
0.8 }] 0gs
2 0.5 -ww-ii L 0975 ‘Y
o -
0.4 0a7
0.z 055
0 T T—————————— e 085 o .
110 19 28 I 46 55 B4 73 82 01 100 100 118 127 141 21 o3 M 51 81 7181 91 01 141 421
Emrox Inde x (i) Eroxr Index (i)
——r1=3 ——r=4
. J L E= J
(<) (0

Figure 5.10 Resemblance parameter curves of RC6 for different rounds (r): a)

r=1b)r=2c)r=3d)r=4

As can be seen from the above figures after 4 rounds RC6 algorithm becomes
invulnerable to the 1-bit changes in the plaintext values, i.e. R’ value is nearly equal
to 1.

There is an important issue to be noted when the figures are investigated
detailed, for 2-rounds of RC6 the R’ curve is such stepped-saw tooth waveform

between the intervals i € {(32..63), (96..127)} and for 3-rounds of RC6 in these

&9

intervals the R’ value is nearly equal to 1 where for the other intervals R’ value is
equal to nearly 0.55. This shows that the bits in the interval intervals i € {(32..63),
(96..127)} are less vulnerable to diffusion based cryptanalytic attacks. Indeed this
result can also be revealed by examining the encryption algorithm of RC6.

It is clear that these bits correspond to the bits of 4 and C which are two of the
four w-bit registers. And also the B and D registers are not too much changed in the
encryption algorithm, only operation is the subtraction of secret key register’s 0™ and
1*indexed values from these registers. Furthermore the operations, quadratic function
and data-dependent shifting, which increase the complexity of algorithm are not
applied to the registers B and D. On the other hand the registers 4 and C are exposed

to data-dependent shifting where the value of shift is found by quadratic function.

5.3 Avalanche Criteria and Derivations Applied to Twofish Cipher

5.3.1 Avalanche Criterion for Twofish Cipher

In this section, the avalanche characteristics of Twofish cipher are investigated
and avalanche curves are sketched according to the steps given in Chapter 4. The
avalanche curves of Twofish are obtained by counting the number of changes at each
position of the round output vector, when a specific plaintext bit at position i if
complemented for a set of N = 10000 different plaintexts. The keyword is manually
chosen as all-zero keyword, unless it is specified as something else. For Twofish

algorithm tow intervals can be identified for the position of the complemented input

90

bit, i.e. error bit where the avalanche behavior is similar. These are intervals are found
asi € [1..63], [64..127].

While sketching these curves it is observed that the number of average change
of avalanche variable of Twofish cipher is very near to zero so there is no need to
sketch the characteristics for the first round.

In Fig. 5.11 (a), Fig. 5.11 (b), Fig. 5.11 (c), Fig. 5.11 (d) the avalanche curves
of 2-round Twofish cipher are sketched for different error positions i at the input
vector. The average number of change of avalanche variable 2500 and 5000 in
intervals [1..63] and [64..127] respectively. This is said to be a better result from RC6
Cipher because almost 64 avalanche variables has number of changes near to ideal.

In Fig. 5.12 (a), Fig. 5.12 (b), Fig. 5.12 (c¢), Fig. 5.12 (d), the avalanche curves

for 3-round Twofish cipher are sketched. Its waveform is similar to 2-round Twofish.

91

¢ ™y ™y
12000 12000
Yy L0000 g g 10000
E'g 8000 E'g 8000
- -
“E I ‘E 3 o M
'E _§ 4000 J ‘E é 4000 [
2000 2000
5 =
0 i ol |
1 12 23 34 45 56 &7 78 £9 100 111 122 1 12 2% 34 45 5 &7 78 =9 100 111 122
Avalanche Variahle Avalanche Variahle
g | ——r2.+1] J RN y
(a) (b)
¢ ™y ¢ ™
000 &000
g g 5000 s g g 5000 %Wm
E- 4000 E 4000
- =
53 3000 S 4 3000
_E _E 2000 _E _g 2000
2 ® 1000 2 ¥ 1000
0 01 Hrarmr—————
1 12 23 34 45 56 &7 78 89 100 111 122 1 12 23 34 45 56 &7 78 £9 100 111 122
Avalanche Variable Avalanche Variahle
A v o v

(e} (d)

Figure 5.11 Avalanche curves of Twofish for the second round (»=2) and

chosen error bit positions (i), which represents different cases

92

™y ' ™y
12000 12000
% 4 10000 W g loooo
E'g 000 E'g F000
- B
g 4 000 g3 &000
_Eé 4000 [_g_g 4000 J]
2 2000 |” 2 2000 | ,
0 0

1 12 23 34 43 5 &7 78 85 100111 122 1 12 23 34 45 5 &7 78 29 100111 122

Avalanche Variahle Avalanche Variahle
M o p o
(a) {b)
™ ™
&000 &000
5000 - Pl

O terommrmmmm—————

1 12 23 34 45 58 &7 78 8% 100 111 122

1 12 23 34 45 5 &7 72 8% 100 111 122

Avalanche Variahle Avalanche Variahle
. = J L y
() (@

Figure 5.12 Avalanche curves of Twofish for the third round (»=3) and

chosen error bit positions (i), which represents different cases

5.3.2 AWD Test for Twofish Cipher

The AWD curves of Twofish are obtained by calculating the hamming weight
of the round output vector, when a specific plaintext bit at position i if complemented

for a set of N = 10000 different plaintexts. The keyword is manually chosen as all-

93

zero keyword, unless it is specified as something else. The intervals explained in
section 5.2.1 are used for the analysis.

Differing from other studied cipher algorithms for the first round of Twofish
the AWD curves resemble to a line of origin 0 so there is no need to sketch the figure.
On the other hand, as shown in Fig. 5.13 (a), 2-rounds Twofish Cipher has better
performance than the others when observed in whole 128-bit wide.

In Fig. 5.13 (a) and Fig. 5.13 (b) AWD curves of 2-rounds and 3-rounds of
Twofish are given for different error bit positions i at the input vector. For the second
and third rounds in the interval of [1..63] the resemblance parameters (R’) are below
0,0025 and if a single bit of the plaintext is changed, first round of Twofish changes
less than 51 bits of the ciphertext and the change is mostly around 34 bits. Besides,
for the second and third rounds in the interval of [64..127] the resemblance parameter
(R’) is higher than 0.920 and if a single bit of the plaintext is changed, second and
third rounds of Twofish changes less than 88 bits of the ciphertext and more

importantly the change is varies around 64 bits.

94

. " ™y
1000 {00
Ee] = 200 £
% # E
g 200 g 700 .rf%
&00
500 e [
g g s 4
S 4 8 400 I
< I k 8 300 T
_g 200 _Ezuu 1 5
1oo
= 0 —w 5 0 P}
1 11 21 31 41 51 &1 71 &1 %1 101 111 121 1 11 21 31 41 31 &1 71 81 21 101 111 121
Hamming weight {j} of the avalanche vector Hamming weight (j} of the avalanche vector
- k. v,
(a) (b)
g . ™
00 a0
g g o a0 A
§ 00 - fi
I3
Esun § : ¥
il 400
§ 400] I 1
. [AR S 300
w300 k- l *\
200 I 1 200 f %
i F Y 3o
= a l W L “”l%
1 11 21 31 41 51 &1 71 =21 21 101 111 121 1 11 21 31 41 51 &1 71 E81 %1 101 111 121
Hamming weight {j) of the avalanche vector Hamuming weight {j} of the avalanche vecior
. " o

(¢}

(d)

Figure 5.13 Avalanche weight distribution curves of Twofish for second

round (r=2) and chosen error bit positions (i), which represents different cases

95

Q00

200

700

&00

o
[
=11

300

200

—_
=
(=]

Nunher of occurenwes of j

o

1

11 21 31 41 51 &1 71 81 %1 101 111 121
Hamming weight (7} of the avalanche vecior

-

Numher of occurences of j

—
=]
[=]
(=]

=)
=]
(=1

[
=]
(=1

=
=]
(=1

%)
[
(=1

(=1

A
i

{3
RN

1

11 21 31 41 51 &1 71 81 91 101 111 121
Hamming weight {j} of the avalanche vector

A A >
(a) b)
¢ ' ™y
00 700
- ;
g 00 o go0 o
§ &00 § 1 %
500
Esou g I i
400
g 400 g F
H & 300
% 300] A
200 200 7 %
100 100
= o0 = 0 m(' \«
1 11 21 31 4 51 81 71 81 91 101 111 121 1 11 21 31 41 51 &1 71 81 91 101 111 121
Hamming weight () of the avalanche vecior Hamming weight (j} of the avalanche vector
i A o

()

(d)

Figure 5.14 Avalanche weight distribution curves of Twofish for third round

(=3) and chosen error bit positions (i), which represents different cases

5.3.3 Resemblance Parameter Analysis Applied to Twofish Cipher

An avalanche criteria derivative, resemblance parameters (R') of Twofish are

obtained by finding the absolute difference between the AWD curves of Twofish and

the binomial distribution. Indeed resemblance parameter variations according to

different bit positions i reveals the intervals that have same avalanche characteristics.

96

The histograms are sketched for second, third and fourth rounds of Twofish Cipher.
As can be seen from the figures below: the characteristics of Twofish gives better
results within the interval i € (64..127). The AWD curves are sketched according to
the steps given in Chapter 4. All of the curves are sketched with the parameters N =
10000 (number of sample plaintexts), all-zero keyword, 128 bits of plaintext and 128
bits of keyword.

As in RC5 Cipher these curves are the origin of the idea that we should
investigate the AWD curves for different regions.

Notice that the interval on Y-axis of Fig. 5.15 (c) is different from the others

to focus on the characteristic detailed.

12) 1,2)
1 1
s W 05 W
£ 3
&= 06 = 06
= =
04 04
02 032 |
a L B e T 0
1 10 19 28 37 4 55 64 T3 E2 91 100 109 11% 127 1 10 19 28 37 48 35 &4 T3 B2 91 100 109 112 127
Exror index iy Exrror index (i)
=2) — =3)
(a) (b)
" neos)
0,99 il
09Es
0.02 NI ﬂﬂ mlfuh’\nhll'lhflmll'd".ﬂl

N LA T YA A AN

0965

0,96 rrrmmmrmrmr LLE T
1 10 19 28 57 46 55 A4 73 22 91 100 109 118 127

Error index ()

=4

(<)
Figure 5.15 Resemblance parameter curves of Twofish for different rounds

(r):a)r=2b)r=3c¢)r=4

97

As can be seen from the above figures after 4 rounds Twofish algorithm
becomes invulnerable to the 1-bit changes in the plaintext values, i.e. R’ value is
nearly equal to 1.

But there is an important issue to be noted when the figures are investigated
detailed, for 2-rounds and 3-rounds the R’ values rises from around 0 to around 1 after
the index 63. This shows that these bits are less vulnerable to diffusion based
cryptanalytic attacks. Indeed this result can also be revealed by examining the
encryption algorithm of Twofish. In each round the value of the first 2 words are the
same with the previous last 2 words. This fact is clear from Fig. 2.3.

The resemblance parameter of the AWD curves of RC5, RC6 and Twofish to
ideal binomial curve are summarized in the following tables.

Table 5.1 Resemblance parameter (R’) of RC5 for different error vector

bits (i)

Location of the

plaintext change, i

Range of R’ at

the 1% round

Range of R’ at

the 2™ round

Range of R’ at

the 3" round

1-35 0,0220-0,0380 0,4450-0,5220 0,8550-0,9200
36-40 0,9820-09690 0,9780-0,9850 0,9860
41-64 0,029-0,0400 0,552-0,555 0,9200-0,9310

Table 5.2

bits (i)

Resemblance parameter (R’) of RC6 for different error vector

Location of the

plaintext change, i

Range of R’ at

the 1° round

Range of R’ at

the 2" round

Range of R’ at

the 3" round

1-35 0 0,0010-0,0020 0,5840-0,5990
36-63 0.0001-0,0030 0,309-0,815 0,9740-0,9770
64-95 0 0,0010-0,0020 0,571-0,574
96-128 0,0001-0,0030 0,182-0,682 0,9730-0,9780
Table 5.3 Resemblance parameter (R’) of Twofish for different error

vector bits (i)

Location of the

plaintext change, i

Range of R’ at

the 1° round

Range of R’ at

the 2™ round

Range of R’ at

the 3™ round

1-63

0

0,0010-0,0025

0,0010-0,0025

64-127

0

0,9250-0,9450

0,8650-0,9280

5.4 Nonlinearity Measure of Twofish Cipher

Nonlinearity value of Twofish is found by finding the minimum distances
between all affine functions and 2" possible linear combinations of the output bits. In
this section the graphical results of nonlinearity criterion are given for the 8x8 S-

boxes of Twofish Cipher. Also the nonlinearity values of permutation boxes of

99

Twofish are calculated because these permutation boxes form the “heart” of the S-
boxes (refer to Fig. 2.5). The two boxes qo and q; are simple 8 by 8 permutations.
Their algorithms are the same but only their look-up tables given by (2.9) and (2.10)
are different from each other. Although one may think that such small difference in
the lookup tables does not affect nonlinearity values much; this is not the case, and
the nonlinearity of qo is found as 82, whereas the nonlinearity of q; is 72. The S-boxes
of the Twofish algorithm which employ qo and q; have key-dependent coefficients as
indicated by the elements /;; in (2.7). So nonlinearity values of S-boxes are calculated
for 100 random keywords to examine the effect of the keywords. After evaluating the
nonlinearity values of the 8x8 S-boxes of Twofish, the distribution of the nonlinearity
values for 100 keywords corresponding to 100 random choices of the coefficients /;;
in (2.7) is sketched.

In Fig. 5.16 (a), Fig. 5.16 (b), Fig. 5.16 (c), Fig. 5.16 (d), the nonlinearity
distributions of S-boxes of Twofish are given. Although the number of occurrences of
nonlinearity values is different from each other the curves are similar to each other

and the average of non-linearity values is almost same for different keywords.

100

25 30
E 20 T [; 25 B
2 15 £ 0
z Z 15
e 10 b —|:
]] 10
g *H* £
2.l m m —’> A 2, e e -
B6 B8 70 72 74 76 73 B0 82 94 98 88 65 B2 70 T2 T4 76 T3 @ 82 84 =5 g3
Hom-line arity values of 5-Boxl Non-linearity values of 5-Boxl
e A o
(a) (b)
¢ Tw o Ty
35 35
3§ 30 3 30 —
525 g 25
g e 5 20
'E 15 "E 15
" E jp i | ﬁ 1
5 5
=9 '—"_‘||i—|— L T T g T — }‘ T L T T
B B3 70 72 74 T8 T8 0 92 84 98 88 65 B8 70 72 74 76 T8 0 92 84 86 88
Non-linearity values of §-Box} Non-linearity vabues of §5-Boxd
e o >
(c) (d)
Figure 5.16 Nonlinearity of S-boxes of Twofish: a) S-box0 b) S-box1 c) S-
box2 d) S-box3

After sketching the nonlinearity values of S-boxes of Twofish individually, the
distribution of total nonlinearity values of the four S-boxes is sketched over 400
random keywords. By that observation, the effect of a single keyword on all S-boxes
is investigated and the question whether or not the S-boxes compensate each others’
nonlinearity values is tried to be answered. In this experiment the total nonlinearity of
S-boxes of Twofish for the same keyword is found. The aim is to find weak keys that

cause the minimum nonlinearity value while the nonlinearity values of S-boxes of

101

Twofish are summed for each keyword. In Fig.5.17 through Fig. 5.19 the non-
linearity distribution of four S-boxes is given for three set of 400 random keywords.
The total nonlinearity values of the S-boxes are divided by four to find the average to
observe the similarities between the nonlinearity values of individual S-boxes more

clearly.

60

50 A

40 | -

30 4

20 —

SN

755 76 765 77 77,5 78 785 79 795 80 805 81 815 82 825 83 835 84 845 85 855

Nonlinearity value

Number of Occurences

S

Figure 5.17 Nonlinearity values of S-boxes of Twofish (Average: 81,215)

70

50 A T

30 1

i ——

755 76 76,5 77 775 78 785 79 795 80 805 81 815 82 825 83 835 84 84,5 85 855

Nonlinearity value

Number of Occurences
N
o

S

Figure 5.18 Nonlinearity values of S-boxes of Twofish (Average: 81,02625)

102

60

50 A

40 -] —

30 —

20 1

0 = ‘I:I‘I:I‘D‘I:I‘ {I:II:I:.

755 76 76,5 77 77,5 78 785 79 79,5 80 805 81 815 82 825 83 835 84 845 85 855

Nonlinearity value
. S

Number of Occurences

Figure 5.19 Nonlinearity values of S-boxes of Twofish (Average: 81,0625)

As the above figures state, there may be weak and strong keywords but most
often the nonlinearity is around 81 for different keywords. From (4.19) it can be
calculated that for n=8 if S-boxes of Twofish were perfectly nonlinear, the
nonlinearity would be 120. The highest nonlinearity achieved for n=8 balanced
functions is 116, and 8x8 S-box of Rijndael has a nonlinearity of 112. For Twofish,

highest value is 88.

5.5 Comparison of Avalanche Criteria with NIST Statistical Test
Suite

Randomness testing of AES candidates was based on NIST Statistical Test
Suite [24] which consists of 16 core statistical tests. These tests are explained briefly

in the following section, to form a basis for comparison with our results.

103

5.5.1 Description of the Statistical Tests

Frequency Test: The purpose of this test is to determine whether the number
of ones and zeros in a sequence are approximately the same as would be expected for
a truly random sequence.

Block Frequency Test: The purpose of this test is to determine whether the
frequency of m-bit blocks in a sequence appears as often as would be expected for a
truly random sequence.

Cumulative Sums Forward (Reverse) Test: The purpose of this test is to
determine whether the maximum of the cumulative sums in a sequence is too large or
too small; indicative of too many ones or zeroes in the early (late) stages.

Runs Test: The purpose of this test is to determine whether the number of
runs of ones and zeros of various lengths is as expected for a random sequence. In
particular, this test determines whether the oscillation between such substrings is too
fast or too slow.

Long Runs of Ones Test: The purpose of this test is to determine whether the
distribution of long runs of ones agrees with the theoretical probabilities.

Rank Test: The purpose of this test is to determine whether the distribution of
the rank of 32x32 bit matrices agrees with the theoretical probabilities.

Spectral (Discrete Fourier Transform) Test: The purpose of this test is to
determine whether the spectral frequency of the binary sequence agrees with what

would be expected for a truly random sequence.

104

Non-periodic Templates Test: The purpose of this test is to determine
whether the number of occurrences for a specified nonperiodic template agrees with
the number expected for a truly random sequence.

Overlapping Template Test: The purpose of this test is to determine whether
the number of occurrences for a template of all ones agrees with what is expected for
a truly random sequence.

Universal Statistical Test: The purpose of this test is to determine whether a
binary sequence does not compress beyond what is expected of a truly random
sequence.

Approximate Entropy Test: The purpose of this test is to compare the
frequency of overlapping blocks of two consecutive/adjacent lengths (m and m+1)
against the expected result for a normally distributed sequence. In short, it determines
whether a sequence appears more regular than is expected from a truly random
sequence.

Random Excursion Test: The purpose of this test is to examine the number
of cycles within a sequence and determine whether the number of visits to a given
state, [-4, -1] and [1, 4], exceeds the expected for a truly random sequence.

Random Excursion Variant Test: The purpose of this test is to determine if
the total number of visits to states, between [-9, -1] and [1, 9] exceeds the expected

for a truly random sequence.

105

Serial Test: The purpose of this test is to determine whether the number of
occurrences of m-bit overlapping patterns is approximately the same as would be
expected for a random sequence.

Lempel-Ziv Complexity Test: The purpose of this test is to determine
whether or not the sequence compresses no more than a truly random sequence.

Linear Complexity Test: The purpose of this test is to determine whether or

not the sequence is complex enough to be considered truly random.

5.5.2 Statistical Test Results and Comparison with Avalanche Criteria

These sixteen tests applied under different parameter inputs, can be viewed as
189 statistical tests [36], while some of the tests are repeated many times by changing
the parameters. Table 5.4 gives the indices of the applied 189 tests, and should be

used as reference for the horizontal axes of Fig. 5.20 and 5.21

Table 5.4 Breakdown of the 189 statistical tests applied during randomness

test applied by J. Soto [36]

Statistical Test N‘(,;](:i f- Test ID Statistical Test N:,:;:i f- Test ID
Monobit 1 1 Periodic Template 1 157
Block Frequency 1 2 Universal Statistical 1 158
Cusum 2 3-4 Approximate Entropy 1 159
Runs 1 5 Random Excursions 8 160-167
Long Runs of Ones 1 6 Random Excursions Variant 18 168-185
Rank 1 7 Serial 2 186-187

106

Table 5.4 cont’d Breakdown of the 189 statistical tests applied during

randomness test applied by J. Soto [36]

Spectral DFT 1 8 Lempel-Ziv Compression 1 188

Aperiodic Templates 148 9-156 |Linear Complexity 1 189

Within these 16 core tests, Frequency (Monobit) Test, Frequency Test within
a Block, Runs Test, Test for the Longest Run of Ones in a Block are mostly related
with avalanche criteria studied in this thesis. In avalanche weight distribution
criterion, the effect of 1 bit changes in the plaintext on the ciphertext are investigated,
and the weight of avalanche vector, which is indeed the number of ones in the
sequence, is found. As described in the preceding section the indicated tests are also
investigating the number of ones in the sequence. As a result comparing the results of
these tests with AWD criterion results will be convenient.

For Twofish, by the end of the second round, the output appears to be random
for these 4 tests, but according to the avalanche criterion and avalanche weight
distribution criterion, it is clear that Twofish meets the conditions within the fourth
round. So it seems that if the AWD test of this study was used as the 190" test,

Twofish would fail to pass it until the end of the fourth round.

107

| PTLE-1i Fawrd & TWF EH PTLE-1 28 Praared 4 TWOFESH
u
] i
E £
& &
% ‘émoo @ o0 ¢m°¢9
B &
ﬁg £l
o 5
N e e e e e I e e
036 g # 06|
o8s 1 §: 1]
| ®m B B o118 IS 1 55 M 108 1% 6
Stk Tt SranEticed Tasl
. FTLE-11% Fourel B TWOF EH . r'T'_\[|-|:l]r‘amcl il T\.Uﬂfl:}ll
T 1 W W e
HO ROCH) Q00000 O g D GO g QEEEND O 0
0 0 DO 00 0 0 BEe GEY B0 (@ GEEOUr ECnas SR
1 07 -@E09-H00- 08 HREB-00 e 1 (EE-EE OO0 —~0- SO0 HN0-grgel
¥ SOE e & < g | R DO @O & 0O
7 00 QB 00 OO Wo ¢ L oL &)
o 098 08 -2 oQ m 0198 ®
I @ @ i W o0 Wwo [+]
[] 2] V] i
= 05 ERE
= =] 4 &
B e e g I i st ey
= 0 PN
Nz : osl— o
| 2 L) B [{1= = I | it L] i FS e 13 163
Smtistiesl Tern Srativice Tt

Figure 5.20 Results of 189 statistical tests applied to Twofish, first result on
top-left refers to the end of the second round, and others refer to the outputs of the

fourth, sixth and eighth rounds, respectively.

The statistical test results for RC6 seem to be more similar to the results
obtained from this study. As can be observed from Fig. 5.21. RC6 satisfies the
randomness at the end of fourth round. This result is also the same for AWD
criterion, where the AWD curves of RC6 are nearly identical to the ideal binomial

distribution function within the fourth round.

108

" e OF Jopogiae S o g
o= =R o=
= 5@ om e

= =
="

=
=]

FTLE-124 Foand 1 FCE

Slertistianl Test

FTLO-138 Found 3 FCE

ua

0k

rapted Spmrces

04
-

S0
12

¥

iy

053

Ui

[| e ——————

o

L5

i
B2 WS 1% (69
Stmlisticel Tes

T AgE O ACCEEIR0 S0 an (a5
] B 00T ~ gl =l = e =
P S T i

a

L =]

PTLL— 128 Rownd ZRC

°8'

28 % ®m WM 1% @
Sratistioal Tast

FTLLe- 125 Ay umd 4 FCH
an i

Seae OF Acoapied 3 poences

b I | =R T -
“Eativicl Taet

Figure 5.21 Results of 189 statistical tests applied to RC6, where the first

result on top-left refers to the end of the first round, and others refer to the outputs of

the second, third and fourth rounds, respectively.

109

CHAPTER 6

CONCLUSION

In this thesis, two finalists of the AES (Advanced Encryption Standard)
contest, RC6 developed by Rivest et al, Twofish proposed by Schneier et al, and
preceding algorithm of RC6 cipher, RCS, are studied. The strength of ciphers to
cryptanalytic attacks is measured according to different criteria. The studied
evaluation criteria are the avalanche criterion and its derivations. After the
implementation of the algorithms and the test procedures, they are compared with
each other.

Firstly, RC5 algorithm is analyzed according to the avalanche criterion and
the avalanche weight distribution criterion. It is concluded that RC5 becomes random
at the end of the third round. Resemblance parameters in Fig. 5.5 show that RCS5 is at
least 85% similar to the ideal case after the third round, and the similarity is more

than 97%, after the fourth round.

110

Secondly, RC6 algorithm is analyzed and RC6 seems to be random after the
fourth round. Fig 5.10 shows that the resemblance of RC6 avalanche vectors to an
ideal random sequence may be as low as 60% at the end of the third round, but it
becomes more than 97% at the end of fourth round.

Thirdly, Twofish algorithm is analyzed and similar to RC6; Twofish seems to
be random at the fourth round according to avalanche criteria. Fig. 5.15 and Table 5.3
indicate that the resemblance of Twofish avalanche vectors to a true random sequence
is as low as 0.1% after fourth round, but it quickly increases to more than 97.3% at
the end of the fourth round.

Finally, the nonlinearities of the S-boxes of Twofish cipher are calculated. The
nonlinearity of the permutation boxes are found as 82 and 72 for the boxes qo and q;
respectively. The nonlinearity distributions of four 8x8 S-boxes are computed over
many different sets of keys. Since these S-boxes have key dependent coefficients,
their nonlinearities change in the range [66, 88] for different keys, the average value
being around 80 or 82. Although such a nonlinearity parameter is much less than
nonlinearity of Rijndael S-box, which is 112, one can still argue that dynamic
behavior of key dependent S-boxes may increase the security of Twofish.

The most important conclusion of this thesis study is the fact that, although
NIST results given in Fig. 5.20 assume randomness of Twofish at the end of the
second round, the avalanche criteria that we use, indicate that second round outputs
are completely nonrandom, especially when a bit change is made in the first part of

the plaintext (for i=I,...,63) as observed form Fig. 5.15. Complete randomness

111

according to our tests can be achieved at the end of the fourth round, where the
avalanche vectors of Twofish become similar to random vectors, with a resemblance
parameter greater than 97.3%. The difference between NIST results and ours, is most
probably coming from the difference between the preparation methods of the test
data. Among the data types of NIST [36], the “plaintext avalanche” type is the kind
which is the most similar one to our data type. However, there is still a large
difference: NIST data is prepared considering all input bit differences for i=1,...,128
for a single plaintext, followed by thousands of other plaintexts, whereas our data is
prepared considering a single input bit difference (say i=1) for thousands of
plaintexts. After the test is performed i is incremented by 1 and another set of data is
prepared using thousands of plaintexts. NIST test data of “plaintext avalanche” type
can be considered as an “average” over the data types used in this study; therefore it
looses some details related to specific values of i. Future work, we think that NIST
tests and our tests should be compared for exactly the same data types. We also

propose our data type as an additional data type for NIST Statistical Test Suite.

112

REFERENCES

C. M. Adams, “A Formal and Practical Design for Substitution-Permutation
Network Cryptosystems”, PhD Thesis, Queen’ s University, Kingston,
Canada, 1990.

R. Anderson, E. Biham, and L. Knudsen, “Serpent: A Proposal for the
Advanced Encryption Standard”, AES algorithm submission, June 1998.

E. Aras, “Analysis of Security Criteria for Block Ciphers”, M.S. Thesis,
Middle East Technical University, Turkey, September, 1999.

E. Biham and A. Shamir. Differential Cryptanalysis of the Data Encryption
Standard. Springer-Verlag, 1993

L. Brown, J. Pieprzyk and J. Seberry, “LOKI- A Cryptographic Primitive for
Authentication and Secrecy Applications”, Advances in Cryptology:
Proceedings of CRYPTO’98, Springler-Verlag, 1998, pp.229-236.

C. Burwick, et al., “MARS — A Candidate Cipher for AES”, AES algorithm

submission, August 20, 1999.

113

[7]

[9]

[14]

J. Daemen, V. Rijmen, “AES Proposal: Rijndael”, AES Algorithm
Submission, September 3, 1999.

H. Feistel, “Block Cipher Cryptographic System”, U.S. Patent No. 3,798,359,
1974.

J. FOTI, Advanced Encryption Standard (AES): Selection and Plans October
16, 2000

S. Hirose, K. Ikeda, “Nonlinearity Criteria for Boolean Functions”, July 14,
1994.

M.H. Howard, “A Tutorial on Linear and Differential Cryptanalysis”.

I. Vergili, M. D. Yiicel, “Avalanche and Bit Independence Properties for the
Ensembles of Randomly Chosen nxn S-Boxes”, Turk J Elec Engin, Vol.9,
No.2, TUBITAK, 2001, pp. 137-145.

B.S. Kaliski Jr. and Y.L. Yin, “On Differential and Linear Cryptanalysis of
the RC5 Encryption Algorithm”, In D. Coppersmith, editor, Advances in
Cryptology - Crypto '95, pp 171-183, Springer, 1995.

B. S. Kaliski Jr., Y. L. Yin, “On the Security of the RC5 Encryption
Algorithm”, RSA Laboratories Technical Report TR-602, Version 1.0,
September, 1998.

J. B. Kam, G. I. Davida, “Structured Design of Substitution-permutation
Encryption Networks”, IEEE Transactions on Computers, Vol. C-28, No. 10,

1979, pp. 747-753.

114

[16]

[17]

[18]

[22]

L.R. Knudsen and W. Meier, “Improved Differential Attacks on RC5”, In N.
Koblitz, editor, Advances in Cryptology - Crypto '96, pp. 216-228, Springer,
1996.

P.C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems”, In N. Koblitz, editor, Advances in Cryptology -
Crypto '96, pp. 104-113, Springer, 1996.

X. Lai, J. L. Massey, “A Proposal For A New Block Encryption Standard”, In
I.B. Damgérd, Editor, Advances in Cryptology — Eurocrypt’90, Volume 473
of “Lecture Notes in Computer Science”, pages 17-38, Springer-Verlag,
Berlin, 1992.

J. L. Massey, “SAFER K-64: A Byte-Oriented Block-Ciphering Algorithm”,
Fast Software Encryption, Proc. Cambridge Security Workshop, Cambridge,
U.K., LNCS 09, Springler-Verlag, 1994, pp.1-17.

M. Matsui, “Linear Cryptanalysis Method for DES Cipher”, Advances in
Cryptology, Proc. Eurocrypt’93, LNCS 765, Springer-Verlag, 1994, pp.386-
397.

W. Meier, O. Staffelbach, “Nonlinearity Criteria for Cryptographic
Functions”, Advances in Cryptology: Proceedings of EUROCRYPT’89,
Springler-Verlag, pp.549-562, 1989.

S. Moriai, K. Aoki, and K. Ohta, “Key-dependency of Linear Probability of

RC5”, March 1996.

115

[30]

[32]

National Institute of Standards and Technology (NIST), “FIPS Publication 46:
Announcing the Data Encryption Standard”, January 1977.

National Institute of Standards and Technology (NIST), “Special Publication
800-22”, “A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications”, May 15, 2001

K. Nyberg, “On the Construction of Highly Nonlinear Permutations”,
Advances in Cryptology: Proc. EUROCRYPT 92, pp.93-99, 1993.

R. L. Rivest, “The RC2 Encryption Algorithm”, RSA Data Security Inc.,
March 12, 1992.

R. L. Rivest, “The RC5 Algorithm”, Fast Encryption Algorithm, volume 1008
of Lecture Notes in Computer Science, Springer-Verlag, 1995, pp. 89-96.

R. L. Rivest, M. J. B. Robshaw, R. Sidney, Y. L. Yin, “The RC6 Block
Cipher”, August 20, 1998.

B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, N. Ferguson,
“Twofish: A 128-Bit Block Cipher”, June 15, 1998.

J. Seberry, X. Zhang, Y. Zheng, “Nonlinearity and Propagation
Characteristics of Boolean Functions”, November, 1993.

C. E. Shannon, “Communication Theory of Secrecy Systems”, Bell Systems
Technical Journal, Vol.28, 1949, pp.656-715.

A. Shimizu, S. Miyaguchi, “Fast Data Encipherment Algorithm FEAL” In D.

Chaum and W.L. Price, editors, Advances in Cryptology — Eurocypt’87,

116

[38]

volume 304 of Lecture Notes in Computer Science, Springer-Verlag, Berlin,
1988, pp. 267-280.

G.J. Simpsons, editor. Contemporary Cryptology, “The Science of
Information Integrity”, IEEE Press, New York, 1992.

“SKIPJACK and KEA Algorithm Specifications”, May 29, 1998

A. Sorkin, “Lucifer, A Cryptographic Algorithm”. Cryptologia, 8 (1):22-41
1984.

J. Soto, L. Bassham “Randomness Testing of the Advanced Encryption
Standard Finalist Candidates”, Computer Security Division National Institute
of Standards and Technology, March 28, 2000.

X. Zhang, “On the Difficulty of Constructing Cryptographically Strong
Substitution Boxes”, Journal of Universal Computer Science, vol.2, n.3,
pp-147-162, 1996.

X. Zhang, Y. Zheng and H. Imai, “Relating Differential Distribution Tables to
Other Properties of Substitution Boxes”, Designs, Codes and Cryptography,

vol.19, pp.45-63, 1998.

117

