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ABSTRACT 

 

PROPAGATION CHARACTERISTICS OF RC5, RC6 AND TWOFISH 

CIPHERS 

 

 

Arıkan, Savaş 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Melek D. Yücel 

 

December 2003, 117 pages 

 

 

In this thesis, two finalists of the AES (Advanced Encryption Standard) 

contest, RC6 developed by Rivest et al, Twofish proposed by Schneier et al, and 

preceding algorithm of RC6 cipher, RC5, are studied. The strength of ciphers to 

cryptanalytic attacks is measured according to different criteria. The studied 

evaluation criteria are the avalanche criterion and its derivations. After the 



 iv

implementation of the algorithms and the test procedures, they are compared with 

each other.  

Different test criteria, including avalanche criterion, avalanche weight 

distribution (AWD) for randomness of RC5, RC6 and Twofish algorithms are 

applied; and the S-boxes of the Twofish algorithm are analyzed according to 

nonlinearity criterion. The avalanche criteria results of RC6 and Twofish are 

compared with NIST (National Institute of Standards and Technology) Statistical Test 

Suite results. 

Keywords: Block Ciphers, RC5, RC6, Twofish, Avalanche Criteria, 

Nonlinearity Measure. 
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ÖZ 

 

RC5, RC6 VE TWOFISH ŞİFRELERİNİN YAYILIM ÖZELLİKLERİ 

 

 

Arıkan, Savaş 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Melek D. Yücel 

 

Aralık 2003, 117 sayfa 

 

 

Bu tezde, AES (Gelişmiş Şifreleme Standardı) yarışmasının finalistlerinden 

ikisi, RC6 Rivest ve arkadaşlarının geliştirdiği şifre, Twofish Schneier ve 

arkadaşlarının önerdiği şifre, ve ayrıca RC6 şifresinin öncül algoritması olan RC5 

şifresi çalışıldı. Bu şifrelerin kriptografik ataklara karşı dayanıklılığı farklı ölçütler ile 

ölçüldü. Çalışılan  ölçütler “Çığ Kriteri” ve türevleridir. Algoritmalar ve test 

prosedürleri gerçeklendikten  sonra, aralarında karşılaştırıldılar.  
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RC5, RC6, ve Twofish algoritmalarının rastlantısallıkları için farklı test 

kriterleri; çığ kriteri, “Çığ Ağırlık Dağılımı” (ÇAD) uygulandı ve Twofish 

algoritmasının yerleşim kutuları doğrusal olmama ölçütlerine göre analiz edildi. RC6 

ve Twofish şifrelerinin çığ kriteri sonuçları ile NIST (Ulusal Standartlar ve Teknoloji 

Enstitüsü) İstatiksel Test Süit sonuçları ile karşılaştırldı. 

Anahtar Kelimeler: Blok Şifreler, RC5, RC6, Twofish, Çığ Kriteri, Doğrusal 

Olmama Ölçütü. 
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CHAPTER 1  

INTRODUCTION 

1.1 Basics of Cryptography 

Cryptography is Greek word for "hidden writing". It is the art and science of 

transforming information into an intermediate form which secures that information 

while in storage or in transit. 

Cryptography includes; secrecy (confidentiality, or privacy, or information 

security), message authentication (integrity), no repudiation (the inability to deny 

sending a message), access control (user or source authentication), availability 

(keeping security services available). 

Modern cryptography generally depends upon translating a message into one 

of an astronomical number of different intermediate representations, or ciphertexts, as 

selected by a key. If all possible intermediate representations have similar 

appearance, it may be necessary to try all possible keys to find the one which 
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deciphers the message. By creating mechanisms, cipher algorithms, with an 

astronomical number of keys, this approach can be made impractical.  

A cipher algorithm includes an encryption scheme, which has five ingredients: 

plaintext and ciphertexts, encryption and decryption algorithms and secret keys. The 

data that is encrypted is called the plaintext, or sometimes cleartext, and it is 

encrypted to give the ciphertext. The key is some secret information chosen by those 

wishing to communicate. For symmetric ciphers the key is same for both sender and 

receiver. Anyone possessing the key can decrypt the encrypted messages and the fact 

that both participants have to agree on a secret key before secure transmission can 

take place introduces problems. These problems are addressed by the fields of key 

management and key distribution.  

An encryption scheme is said to be computationally secure if the cost of 

breaking the cipher exceeds the value of the encrypted information and the time 

required to break the cipher exceeds the useful life-time of the information. Also it 

should be noted that security depends on the secrecy of the key, and not on the 

secrecy of the algorithm.  

1.2 Block Ciphers 

Symmetric key algorithms use a single key for encryption and decryption, 

which should be shared by two parties who want to communicate secretly. Symmetric 

ciphers are divided into two main classes: block ciphers and stream ciphers. Block 

ciphers process fixed segments of the input (called the plaintext), and generate output 
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(called the ciphertext) segments of the same size. The segment size is called the block 

length of the cipher. Stream ciphers do not divide the plaintext into segments, they 

rather process each input bit continuously. Although several modes of use of a block 

cipher allow it to be used as a stream cipher the concise distinction may be indicated 

as follows [33]: 

Block ciphers operate with a fixed transformation on large blocks of plaintext 

data; stream ciphers operate with a time-varying transformation on individual 

plaintext digits. 

Two important attributes of a block cipher are the size of the key and the size 

of the block on which cipher operates, which are chosen at least as 128 bits in recent 

algorithms.  It should be noted that some modes of use of a block cipher require the 

use of an initialization value, IV. The value of IV is often publicly known (since the 

security of the cryptosystem does not depend on this value being kept secret) and it is 

not considered to be part of the key.  

A block cipher which operates on plaintext blocks of size n will be called n-bit 

block cipher, and the encryption of plaintext m using the chosen cipher under key k 

will be written as Ek(m). Similarly, decryption of the ciphertext c will be denoted by 

Dk(c). The decryption function Dk should be chosen as the inverse of the encryption 

function Ek ; hence, Dk(Ek(m))=m. 

In an iterated block cipher, a complex (but perhaps weak) round function is 

used repeatedly, each time taking as input the output from the previous round. The 

most familiar example of such a cipher is Data Encryption Standard [23] in 1977, and 
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the iterated structure in DES has its origins in the Feistel Cipher [8]. Lucifer is 

designed by Feistel in early 1970s but firstly implemented and documented by Sorkin 

[35]. Lucifer is often mentioned as the starting point for the development of DES.  

Some noteworthy block ciphers are given below in brief: 

FEAL: The Fast Data Encryption Algorithm (FEAL) was proposed by 

Shimizu and Miyaguchi at Eurocrypt ’87 [32]. It was intended to be very efficient 

when implemented in software, and was claimed to offer at least as much security as 

DES. Unfortunately, the security was soon found to be lacking. 

LOKI: LOKI [5] was initially proposed in 1989 by Lawrie Brown, Josef 

Pieprzyk, Jennifer Seberry and is a DES-like iterative cipher that operates on 64-bit 

blocks and uses a 64-bit key. Its security is based on the use of a large S-box, taking 

12 bits and outputting eight, which in turn is based in the use of irreducible 

polynomials. Also, developed version, LOKI97 was submitted in AES contest. 

CAST: Designed by Adams and Tavares in 1990, CAST [1] is a 64-bit Feistel 

cipher. Instead of employing eight fixed S-boxes which map six bits to four, as it is 

found in DES, CAST uses four S-boxes map eight bits to 32, and the output of all 

four S-boxes is XORed together to produce the output from the round function. 

 IDEA: The International Data Encryption Algorithm (IDEA) first appeared as 

the Proposed Encryption Standard and was designed by Lai and Massey in 1992 [18]. 

It is an iterative cipher that operates on 64-bit blocks and uses a 128-bit key. The aim 

was to design a block cipher that could be efficiently implemented in both hardware 

and software, unlike DES which is primarily suitable for hardware encryption. The 
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operations used in IDEA are bitwise XOR, addition modulo 216 and multiplication 

modulo 216+1, with the value 0 corresponding to 216.  

RC2: RC2 [26] was designed by Rivest for RSA Data Security, Inc in March 

of 1992. It is a confidential and proprietary cipher and so there are few details that 

can be readily disclosed. Like DES it is a 64-bit block cipher but it has a variable key 

size. One advantage is that the process of granting export approval for RC2 is greatly 

simplified if the key length is restricted to 40 bits, or 56 bits. 

SAFER K-64: SAFER K-64 (Secure and Fast Encryption Routine with a Key 

of length 64 bits) was first proposed at Cambridge Algorithms Workshop in 

December of 1993 [19], by Massey. It is a byte-oriented iterated block cipher 

designed for efficient implementation in both software and hardware. It was initially 

proposed that six rounds can be used for greater security. Each round consists of a set 

of non-linear operations, including two different S-box permutations, which operate 

in parallel on each digit of the eight bytes in a block. Two different subkeys of 64 bits 

are used in each round. They are derived using the key schedule and introduced 

during this non-linear stage. The second part of each round is a series of linear mixing 

operations which is termed as Pseudo-Hadamard Transform. At the end of the last 

round, the final iteration of the linear transformation is followed by one further partial 

round of non-linear transformation using key material. 

Skipjack: The first mention of Skipjack [34] came in April of 1994 when the 

White House announced a cryptographic initiative. Despite the fact that Skipjack is a 

classified algorithm and full details of the algorithm remain secret, the few details that 
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have been emerged suggest that Skipjack is an iterative block cipher, using 32 rounds 

and a key of length 80 bits.  

RC5: RC5 is a block cipher designed by Rivest for RSA Data Security, Inc. 

Presented at the Leuven Algorithms Workshop in December of 1994 [27]. The cipher 

is fully parameterized in that the block size, the key size and the number of rounds 

can all vary. A likely version of RC5 is perhaps RC5-32/16/10 where the block size is 

64 bits, there are 16 rounds and the key length is 10 bytes. The algorithm begins by 

expanding a variable-length key into a set of look-up tables. Then two very simple 

operations are used repeatedly to mix in the key and transform data which is called as 

data-dependent rotation.  

In 1997, National Institute of Standards and Technology (NIST) announced a 

contest to an Advanced Encryption Standard (AES) to replace Data Encryption 

Standard (DES). 15 algorithms were submitted and within these 15 algorithms, five 

finalist algorithms were selected as AES candidates. And finally, Rijndael algorithm 

was selected as the new encryption standard October 2, 2000. RC6 and Twofish 

ciphers were among the finalist algorithms and these algorithms are analyzed 

according to different criteria in this thesis. Besides, RC5 cipher is implemented 

because it is the former algorithm of the AES contest finalist, RC6 cipher. The 

algorithms of studied ciphers and cryptanalysis of them are given in the following 

chapters. 
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1.3 Aim and Outline of Thesis 

In this thesis the main point is to investigate the avalanche characteristics of 

Twofish and RC6 ciphers, which are AES contest finalists. To do so, the ciphers are 

implemented and then analyzed according to avalanche criterion and avalanche 

weight distribution criterion. The results of the analysis are compared with NIST’s 

results. Besides, S-boxes of the Twofish cipher are tested according to nonlinearity 

criterion. 

This thesis is organized as follows. Chapter 2 gives the encryption and 

decryption algorithms of the studied block ciphers RC5, RC6, and Twofish. In 

Chapter 3, the most known cryptanalysis techniques, linear cryptanalysis [17, 11] and 

differential cryptanalysis [4, 11], that have been applied to block ciphers are briefly 

reviewed. In Chapter 4, description and methodology of some test criteria that are 

used to measure the strength of the ciphers against cryptanalytic attacks are given. 

The studied test criteria are avalanche [12], nonlinearity measure [30] and their 

derivations. 

In Chapter 5 we give the results of avalanche criterion and its derivative, 

avalanche weight distribution (AWD) analysis. The resemblance of AWD curves to 

ideal binomial distribution is measured by the resemblance parameter, for RC5, RC6 

and Twofish ciphers. The comparison of three ciphers is made according to avalanche 

criteria. Also in Chapter 5, the nonlinearity of the S-boxes of the Twofish cipher and 

the effects of keywords on the nonlinearity measure are investigated. Avalanche 

criteria results of RC6 and Twofish algorithms are compared with NIST Statistical 
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Test Suite in this chapter. Finally, Chapter 6 summarizes the work of the thesis, 

giving directions for future research. 
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CHAPTER 2  

MODERN BLOCK CIPHERS 

On January 2, 1997, the US National Institute for Security Technologies 

(NIST) announced a contest to an Advanced Encryption Standard (AES) to replace 

the previous Data Encryption Standard (DES). NIST called for public submissions for 

new block ciphers as candidates of the AES algorithm. NIST intended that AES 

would be an unclassified, publicly disclosed encryption algorithm, available royalty-

free, worldwide. At a minimum, the algorithm would have to implement symmetric 

key cryptography as a block cipher and support a block size of 128 bits and key sizes 

of 128, 192, and 256 bits. 15 algorithms were submitted for consideration by August 

1998. After expert analysis of the candidates, five finalist algorithms were selected in 

1999. The selected algorithms were MARS, RC6, Rijndael, Serpent and Twofish. In 

Table 2.1 the semi-finalist 15 algorithms, their submitters, type and cryptanalysis 

results of some eliminated ciphers are given. 
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Table 2.1: AES Round 1 Candidate Algorithms 

 

Country of 
Origin 

Candidate 
Algorithm 

Submitter(s) Type Cyrptanalysis 

Australia LOKI97 
 

Lawrie Brown, Josef 
Pieprzyk, Jennifer 

Seberry 

Feistel 
Network 

 

– Rijmen and Knudsen 
– Differential: 256 chosen 
plaintexts 
– Linear: 256 known 
plaintexts 

Belgium 
 

RIJNDAEL 
 

Joan Daemen, 
Vincent Rijmen 

 

Substitution-
Permutation 

Network 
 

 

Canada 
 

CAST-256 
 

Entrust Technologies, 
Inc. 

 

Modified 
Feistel 

Network 
 

 

Canada 
 

DEAL 
 

Outerbridge, 
Knudsen 

 

Feistel 
Network 

 

– 270 chosen ciphertexts, 
2121 steps, (Lucks, 128) 
– 270, chosen plaintexts, 
2121 steps, (Knudsen, 
192) 
– 256 chosen ciphertexts, 
2145 steps, (Lucks, 192) 
– Meet in middle, 2224 
steps, (Knudsen, 256) 

Costa Rica 
 

FROG 
 

TecApro 
Internacional S.A. 

 

 
 

– Wagner, Ferguson, and 
Schneier 
– Differential: 258 chosen 
plaintext 
– Linear: 256 known 
plaintexts 

France 
 

DFC 
 

Centre National pour 
la Recherche 
Scientifique 

(CNRS) 
 

Feistel 
Network 

– Weak keys, reduce to 6 
round cipher, 
prob. 2-64, (Coppersmith) 
– Weak keys, pt=ct, 
prob. 2-128, 
(Coppersmith) 

Germany 
 

MAGENTA 
 

Deutsche Telekom 
AG 

 

Feistel 
Network 

 

– Biham, Biryukov, 
Ferguson, Knudsen, 
Schneier, 
Shamir 
– 264 chosen plaintexts, 
264 steps 
– 233 known plaintexts, 
297 steps 

Japan 
 

E2 
 

Nippon Telegraph 
and Telephone 

Corporation 

Feistel 
Network 
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 Table 2.1 (cont’d) AES Round 1 Candidate Algorithms 

 

Country of 
Origin 

Candidate 
Algorithm 

Submitter(s) Type Cyrptanalysis 

USA 
 

HPC 
 

Rich Schroeppel 
 

  

USA 
 

MARS 
 

IBM 
 

Modified Feistel 
Network 

 

USA 
 

RC6 
 

RSA Laboratories 
 

Modified Feistel 
Network 

 

 

USA 
 

SAFER+ 
 

Cylink 
Corporation 

 

Substitution-
Permutation 

Network 
 

– 2 known 
plaintexts, 237 
memory, 2241 
steps, 
(256, Kelsey) 
– 256 chosen 
plaintext 
encrypted with 2 
keys, 
2216 steps, (256, 
Kelsey) 

USA 
 

TWOFISH 
 

Bruce Schneier, 
John Kelsey, 

Doug 
Whiting, David 
Wagner, Chris 

Hall, Niels 
Ferguson 

Feistel Network 
 

 

UK, Israel, 
Norway 

 

SERPENT 
 

Ross Anderson, 
Eli Biham, Lars 

Knudsen 
 

Substitution-
Permutation 

Network 
 

 

 

 

2.1 AES Finalist Algorithms 

As mentioned, MARS, RC6, Rijndael, Serpent and Twofish algorithms were 

selected as finalists of the contest to AES. In the following section the algorithms are 

described briefly and the evaluation criteria and results are given. 
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2.1.1 Overview of the Finalists 

The five finalists shared a number of features. All are iterated block ciphers: 

they specify a transformation that is repeated ("iterated") a number of times on the 

data block to be encrypted or decrypted. Each iteration is called a round, and the 

transformation is called the round function. Each finalist also specifies a method for 

generating a series of working keys, also known as subkeys, from the original user 

key. The round functions take distinct subkeys as input along with the data block. 

For each finalist, the very first and last cryptographic operations mix subkeys 

with the data block to prevent an adversary who does not know the keys from even 

beginning to encrypt the plaintext or decrypt the ciphertext. Whenever this subkey 

mixing does not naturally occur as the initial step of the first round or the final step of 

the last round, the finalists specify the subkey mixing as an extra step called pre- or 

post-whitening. 

Four of the finalists (Rijndael, Serpent, MARS, Twofish) specify substitution 

tables, called S-boxes: and three of the finalists (MARS, RC6, Twofish) specify 

variations on the Feistel structure. In the classic Feistel structure, half of the data 

block is used to modify the other half of the data block, and then the halves are 

swapped. 

The two finalists that do not use a Feistel structure (Rijndael, Serpent) process 

the entire data block in parallel during each round using substitutions and linear 
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transformations; thus, these two finalists are examples of substitution-linear 

transformation networks. 

MARS [6] has several layers: key addition as pre-whitening, 8 rounds of un-

keyed forward mixing, eight rounds of keyed forward transformation, 8 rounds of 

keyed backward transformation, eight rounds of un-keyed backward mixing, and key 

subtraction as post whitening. The 16 keyed transformations are called the 

cryptographic core. The un-keyed rounds use two 8x32 bit S-boxes, addition, and the 

XOR (exclusive-or) operation. In addition to those elements, the keyed rounds use 

32-bit key multiplication, data-dependent rotations, and key addition. Both the mixing 

and the core rounds are modified Feistel rounds in which one quarter of the data 

block is used to alter the other three quarters. MARS was submitted by IBM. 

RC6 [28] is a parameterized family of encryption ciphers that essentially use 

the Feistel structure; 20 rounds were specified for the AES submission. The round 

function of RC6 uses variable rotations that are regulated by a quadratic function of 

the data. Each round also includes 32-bit modular multiplication, addition, XOR, and 

key addition. Key addition is also used for pre- and post-whitening. RC6 was 

submitted to the AES development effort by RSA Laboratories. 

Rijndael [7] is a substitution-linear transformation network with 10, 12 or 14 

rounds, depending on the key size. A data block to be encrypted by Rijndael is split 

into an array of bytes, and each encryption operation is byte-oriented. Rijndael's 

round function consists of four layers. In the first layer, an 8x8 S-box is applied to 

each byte. The second and third layers are linear mixing layers, in which the rows of 
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the array are shifted, and the columns are mixed. In the fourth layer, subkey bytes are 

XORed into each byte of the array. In the last round, the column mixing is omitted. 

Rijndael was submitted by Joan Daemen (Proton World International) and Vincent 

Rijmen (Katholieke Universiteit Leuven). 

Serpent [2] is a substitution-linear transformation network consisting of 32 

rounds. Serpent also specifies non-cryptographic initial and final permutations that 

facilitate an alternative mode of implementation called the bit slice mode. The round 

function consists of three layers: the key XOR operation, 32 parallel applications of 

one of the eight specified 4x4 S-boxes, and a linear transformation. In the last round, 

a second layer of key XOR replaces the linear transformation. Serpent was submitted 

by Ross Anderson (University of Cambridge), Eli Biham (Technion), and Lars 

Knudsen (University of California San Diego). 

Twofish [29] is a Feistel network with 16 rounds. The Feistel structure is 

slightly modified using 1-bit rotations. The round function acts on 32-bit words with 

four key-dependent 8x8 S-boxes, followed by a fixed 4x4 maximum distance 

separable matrix over GF(28), a pseudo-Hadamard transform, and key addition. 

Twofish was submitted by Bruce Schneier, John Kelsey, and Niels Ferguson 

(Counterpane Internet Security, Inc.), Doug Whiting (Hi/fn, Inc.), David Wagner 

(University of California Berkeley), and Chris Hall (Princeton University). 

After the finalists were announced, NIST sought further public review and 

comment on the algorithms. The comment period ended on May 15, 2000, and NIST 

conducted its final review of comments and analyses. 
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2.1.2 Evaluation Criteria and Results 

Evaluation criteria for the new AES algorithm were declared when NIST first 

called for submissions in September 1997. The evaluation criteria were divided into 

three major categories: security, cost, and algorithm and implementation 

characteristics. 

Security was the most important factor in the evaluation and encompassed 

features such as resistance of the algorithm to cryptanalysis, soundness of its 

mathematical basis, randomness of the algorithm output, and relative security 

compared with other candidates.  

Cost was a second important area of evaluation that encompassed licensing 

requirements, computational speed and efficiency on various platforms, and memory 

requirements. One of NIST’s goals was for the AES algorithm to be available 

worldwide on a royalty-free basis, so public comments were specifically sought on 

intellectual property claims and any potential conflicts. The speed of the algorithm on 

a variety of platforms needed to be considered, and assessments were made of speed 

based on 128, 192 and 256 bit keys. Memory requirements and software 

implementations were also important. 

The third area of evaluation was algorithm and implementation characteristics 

such as flexibility, suitability to hardware and software, and the simplicity (or 

complexity) of the algorithm. Flexibility includes the ability of an algorithm to handle 

key and block sizes beyond the minimum that must be supported, to be implemented 
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securely and efficiently in many different types of environments, to be implemented 

as a stream cipher or hashing algorithm, and to provide additional cryptographic 

services. It must be feasible to implement an algorithm in both hardware and 

software, and efficient firmware implementations were an evaluation advantage. 

Because analysis and discussion often involved issues in more than one of the 

three main criteria, NIST gave most importance to security, and cost and algorithm 

characteristics were considered together as secondary criteria. 

In October 2000, NIST released its report on the development of an Advanced 

Encryption Standard which compared the five Round 2 algorithms in a number of 

categories. The table below summarizes the relative scores of the five candidates 

(1=low, 3=high): 

 

Table 2.2 Evaluation Results of AES Finalist Algorithms 

 

 MARS RC6 Rijndael Serpent Twofish 

General security 3 2 2 3 3 

Implementation of security 1 1 3 3 2 

Software performance 2 2 3 1 1 

Smart card performance 1 1 3 3 2 

Hardware performance 1 2 3 3 2 

Design features 2 1 2 1 3 
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NIST recommended adoption of the Rijndael algorithm, and released a draft 

Federal Information Processing Standard (FIPS) AES Specification for public review 

and comment in February 2000. Final selection of Rijndael was announced in 

October 2, 2000. And finally in November 26, 2001 NIST published FIPS 197 as the 

announcement of AES. The main reason for this selection can be summarized as 

follows [9]. 

“When considered together, Rijndael’s combination of security, performance, 

efficiency, implementability, and flexibility make it an appropriate selection for the 

AES.” 

In the following part of this chapter detailed descriptions of the algorithms 

RC5, RC6 and Twofish are given. 

2.2 RC5 Cipher 

RC5 [27] is designed by Ronald Rivest for RSA Data Security (now RSA 

Security) in December of 1994. It is a parameterized algorithm with a variable block 

size, a variable key size, and a variable number of rounds. Allowable choices for the 

block size are 32 bits (for experimentation and evaluation purposes only), 64 bits (for 

use a drop-in replacement for DES), and 128 bits. The number of rounds can range 

from 0 to 255, while the key can range from 0 bits to 2048 bits in size. Such built-in 

variability provides flexibility at all levels of security and efficiency. 

The heavy use of data-dependent rotations and the mixture of different 

operations provide the security of RC5. Two of the most distinguished features of 
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RC5 are the heavy use of data-dependent rotations and the exceptionally simple 

encryption routine. The former feature has been shown to be useful in preventing 

certain advanced types of attack, while the latter feature makes RC5 both easy to 

implement, and very importantly, more amenable to analysis than many other block 

ciphers. In particular, the use of data-dependent rotations helps defeat differential and 

linear cryptanalysis. 

There are three routines in RC5: key expansion, encryption, and decryption. In 

the key-expansion routine, the user-provided secret key is expanded to fill a key table 

whose size depends on the number of rounds. The key table is then used in both 

encryption and decryption.  

RC5 has three important parameters: w (the word size), r (the number of 

rounds), b (number of bytes in secret key K). In the encryption algorithm of RC5 the 

2w plaintext is divided to two w-bit register using standard little-endian convention: 

the first byte occupies the low-order bit positions of register A, and so on, so that the 

fourth byte occupies the high-order bit positions of register A, the fifth byte occupies 

the low-order bit positions in B, and the eighth (last) byte occupies the high-order bit 

positions in B. Then these registers are cyclic-shifted and XOR-ed by them then with 

other registers. The key-bits are mixed by cyclic-shifting and XOR processes by the 

expanded key array S, which is simply constituted by the magic numbers provided by 

Rivest and cyclic-shifting process of the keyword. Within these operations the 

registers are always updated according to input data so that the idea of data dependent 

cryptography is achieved. 
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The key expansion, encryption, and decryption routines of RC5 use the 

following three primitive operations (and their inverses). 

• Addition of words modulo 2w, denoted by “+”. 

• Bit-wise XOR of words, denoted by ⊕ . 

• Rotation: the rotation of x to the left by y bits is denoted by x <<< y 

Note that only the log2(w) low-order bits of y affect this rotation. The 

algorithm explained above can be simply modeled as below steps. 

2.2.1 Key Expansion of RC5 

The key-expansion routine expands the user’s secret key K to fill the expanded 

key array S, so that S resembles an array of t = 2 x (r+1) random binary words 

determined by K. The key expansion algorithm uses two “magic constants”, and 

consists of three simple algorithmic parts. 

a Definition of the Magic Constants: 

The key-expansion algorithm uses two word-sized binary constants Pw and 

Qw. They are defined for arbitrary w as follows: 

Pw = Odd ((e–2)2w) 

Qw = Odd ((Ø–2)2w) 

where 

e = 2,718281828459… (base of natural algorithms) 

Ø = 1,618033988749… (golden ratio), 
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And where Odd(x) is the odd integer nearest to x (rounded up if x is an even 

integer, although this won’t happen here). For w = 16, 32 these constants are given 

below in binary and in hexadecimal. 

P16 = 1011011111100001 = b7e1 

Q16 = 1001111000110111 = 9e37 

P32 = 10110111111000010101000101100011 = b7e15163 

Q32 = 10011110001101110111100110111001 = 9e3779b9 

b Converting the Secret Key from Bytes to Words: 

The first algorithmic step of key expansion is to copy the b-byte secret key 

K[0..b–1] into an array L[0..c–1] of c = [b/u] words, where u = w/8 is the number of 

bytes/word. This operation is done in natural manner, using u consecutive key bytes 

of K to fill up each successive word in L, low order byte to high order byte. Any 

unfilled byte positions of L are zeroed. In the case that b = c = 0, c is set to 1 and L[0] 

is set to zero. In the following code sample the procedure is given. 

c = [max (b, 1)/u] 

for i = b – 1 downto 0 do 

L [i/u] = (L [i/u] <<< 8) + K[i]; 

c Initializing the Array S: 

The second algorithmic step of key expansion is to initialize array S to a 

particular fixed (key-independent) pseudo-random bit pattern, using an arithmetic 
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progression modulo 2w
 determined by the “magic constants” Pw and Qw. Since Qw is 

odd, the arithmetic progression has period 2w. In the following code sample, array S is 

initialized by Pw and then all of the entries of the array are found by adding Qw to the 

previous entry. Since t = 2x(r+1) binary words are required for r rounds of the 

encryption algorithm S is initialized as follows. 

S [0] = Pw; 

for i = 1 to t –1 do 

S[i] = S [i–1] + Qw; 

d Mixing in the Secret Key 

The third algorithmic step of the key expansion is to mix in the user’s secret 

key in three passes over the arrays S (of length t words) and L (of length c words). 

More precisely, due to the potentially different sizes of S and L, the larger array will 

be processed three times, and the other may be handled more times than three. In the 

following code sample temporary registers reg1 contains previous value of S[i] and 

reg2 contains previous value of L[j] the values of reg1, reg2 and S[i] are added by 

modulo 2w and rotated to left three and then this value is assigned to reg1. Later L[j] 

is updated by adding reg1, reg2 and L[j] and rotated to left by the value of reg1 plus 

reg2. Then the value of L[j] is assigned to reg2. And this operation is repeated three 

times maximum of t or c is reached. The initial values of reg1 and reg2 are S[0] and 

L[0] respectively. 
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i = j = 0; 

do 3*max (t, c) times: 

S[i] = (S[i] + reg1 + reg2) <<<3; 

reg1 = S[i]; 

L[j] = (L[j] + reg1 + reg2) <<< (reg1 + reg2); 

reg2 = L[j]; 

i = (i +1) mod t; 

j = (j + 1) mod c; 

2.2.2 Encryption of RC5 

Firstly the input block is divided into two w-bit registers A and B and S[0] and 

S[1] are added respectively to A and B. The registers A and B are XORed and rotated 

to left by the value if B and summed with the even entries of S[i] and this value is 

assigned to A. Later, the XORed value of B and A is rotated to left by A and then 

summed by odd entries of S[i]. And this value is assigned to B. This routine is 

repeated for r rounds. The following code sample gives the explained procedure. 

A = A + S[0]; 

B = B + S[1]; 

for i = 1 to r do 

A = ((A ⊕ B) <<<B) + S[2*i]; 

B = ((B ⊕ A) <<< A) + S[2*i + 1]; 

The output is in the registers A and B. 
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2.2.3 Decryption of RC5 

The decryption routine is easily derived from the encryption routine. In this 

routine the inverse formulation of encryption routine is processed. 

for i = r downto 1 do 

B = ((B– S [2*i + 1] >>> A) ⊕ A; 

A = ((A– S [2*i] >>> B) ⊕ B; 

B = B – S [1]; 

A = A – S [0]; 

2.2.4 Overview of Cryptanalytic Results for RC5 

Several techniques [14] have been developed for analyzing the security of 

block ciphers, including exhaustive key search attack, statistical tests, differential 

cryptanalysis and linear cryptanalysis. The last two types of attack, both considered 

substantial advances in recent years, are more sophisticated techniques for block 

cipher analysis. For differential cryptanalysis which is explained in Chapter 3, the 

basic idea is to choose two plaintexts with a certain difference between them so that 

the resulting ciphertexts have a difference with a specific value with a probability that 

is better than we might expect. Such a pair of differences (which lead to the concept 

of a “characteristic”) is useful in deriving certain bits of the key. For linear 

cryptanalysis which is also explained in Chapter 3, the basic idea is to find a linear 

relation among bits of plaintext, ciphertext, and key which hold with a probability 
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that is not equal to 1/2. Such a “linear approximation” can potentially be used to 

obtain information about the key. 

The first cryptanalytic results on RC5 were given by Kaliski and Yin [13] at 

Crypto’95. By analyzing the basic structure of the encryption routine as well as the 

properties of data-dependent rotations, it is possible to construct differential 

characteristics and linear approximations of RC5 that are useful for mounting 

differential and linear attacks. Both attacks are quite effective on RC5 with a very 

small number of rounds, but the plaintext requirements increase quickly as the 

number of rounds grows. The use of data-dependent rotations and the incompatibility 

between the different arithmetic operations used in encryption help prevent both 

differential and linear cryptanalysis. 

At Crypto’96, Knudsen and Meier [16] presented nice improvements over 

Kaliski and Yin’s differential attack by a careful analysis of the relations between 

input, output, and the sub-keys used in the first two rounds of encryption. They were 

able to improve the plaintext requirements by a factor of up to 512 by exploiting the 

characteristics in an innovative and sophisticated way. They also considered the 

existence of certain weaker keys for RC5 with respect to which their attack can be 

further enhanced. 

Moriai, Aoki, and Ohta [22] have investigated the strength of RC5 against 

linear cryptanalysis by focusing on the bias of linear approximations for fixed keys, 

rather than the average bias over all possible keys which is the customary model for 

linear cryptanalysis. They also considered a mini-version of RC5 with much reduced 
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word size and computed the percentage of keys that yield ciphers less resistant to 

linear cryptanalysis than the average case analysis. 

In late 1995, Kocher [17] developed what are called timing attacks that are 

generally applicable to many cryptosystems. In such an attack, an opponent tries to 

obtain information about the secret key (or private key) by recording and analyzing 

the time used for cryptographic operations that involve the key. Kocher observed that 

RC5 may be subject to timing attacks if RC5 is implemented on platforms for which 

the time for computing a single rotation is proportional to the rotation amount. 

With regards to the less sophisticated brute-force attack of trying each key in 

turn, the security of RC5 is obviously dependent on the length of the encryption key 

that is used (as is the case with all ciphers). RC5 has the attractive feature that the 

length of the key can be varied (unlike the situation with DES for instance) and so the 

level of security against these attacks can be tuned to suit the application. It is hoped 

that the resistance of ciphers to exhaustive key search attacks can be more accurately 

gauged in the future. Some of the posted challenges, such as RC5 encryption with a 

40- and 48-bit key were solved very quickly, as was expected. But some of the longer 

key lengths are likely to remain an unsolved challenge for some considerable time to 

come. 

2.3 RC6 Algorithm 

RC6 is a block-cipher submitted to NIST for consideration as the new 

Advanced Encryption Standard (AES). The design of RC6 began with a consideration 
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of RC5, and modifications were then made to meet the AES requirements, to increase 

security, and to improve performance. The inner loop, however, is based around the 

same “half-round” found in RC5. The algorithm can be seen as two Feistel-networks 

which are combined through data-dependent rotations over the blocks together with a 

32-bit multiplication function. 

RC5 is improved to obtain RC6 for the following considerations: 

- The requirements of AES are the 128 bit input/output blocks. To do so RC5 

has two 64 bit blocks but this can not be implemented by the very well known 

compilers and RC6 solves this problem by having 4 blocks so that to have a 128 bit 

plaintext there are four 32-bit blocks in RC6. 

- In the encryption section in RC6 there are two rotations per round where in 

RC5 there is one rotation per round. This improves the immunity to differential and 

linear cryptanalysis attacks. 

- In RC6 integer multiplication is involved. This improves the diffusion 

property and rotation amounts are dependent on all bits of another register where RC5 

has just low order bits’ contribution. 

Like RC5, RC6 is a fully parameterized family of encryption algorithms. A 

version of RC6 is more accurately specified as RC6-w/r/b where the word size is w 

bits, encryption consists of non-negative number of rounds r, and b denotes the length 

of encryption key in bytes. RC6-w/r/b operates on units of four 2-bit words using the 

following six basic operations.  

- a + b integer addition modulo 2w
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- a – b integer subtraction modulo 2w
 

- a ⊕ b bitwise XOR of w-bit words 

- a x b integer multiplication modulo 2w
 

- a <<< b rotate the w-bit word a to the left by the amount given by the least 

significant log2 w bits of b.  

- a >>> b rotate the w-bit word a to the right by the amount given by the least 

significant log2 w bits of b. 

2.3.1 Key Schedule 

The key schedule of RC6-w/r/b is practically identical to the key schedule of 

RC5-w/r/b. Indeed, the only difference is that for RC6-w/r/b, more words are derived 

from the user-supplied key for use during encryption and decryption. Sufficient zero 

bytes are appended to give a key length equal to a non-zero integral number of words; 

these key bytes are then loaded in little-endian fashion into an array of c w-bit words 

L[0],...,L[c-1]. Thus the first byte of key is stored as the low-order byte of L[0], etc., 

and L[c-1] is padded with high-order zero bytes if necessary. (Note that if b = 0 then 

c = 1 and L[0] = 0.) The number of w-bit words that will be generated for the additive 

round keys is 2r + 4 and these are stored in the array S[0,...,2r + 3].  

The constants P32 = B7E15163 and Q32 = 9E3779B9 (hexadecimal) are the 

same "magic constants" as used in the RC5 key schedule. The value of P32 is derived 

from the binary expansion of e-2, where e is the base of the natural logarithm 
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function. The value of Q32 is derived from the binary expansion of Ø -1, where Ø is 

the Golden Ratio. Similar definitions from RC5 for P64 etc. can be used for versions 

of RC6 with other word sizes. These values are somewhat arbitrary, and other values 

could be chosen to give "custom" or proprietary versions of RC6. 

The user supplies a key of b bytes, where 0 < b < 255. From this key, 2r + 4 

words (w-bits each) are derived and stored in the array S[0,..., 2r + 3]. This array is 

used in both encryption and decryption the key schedule for RC6-w/r/b is as follows: 

array S is initialized by Pw and then all of the entries of the array are found by adding 

Qw to the previous entry. After finding array S, this array will be mixed with the key 

register L[j]; temporary registers reg1 contains previous value of S[i] and reg2 

contains previous value of L[j] the values of reg1, reg2 and S[i] are added by modulo 

2w and rotated left by three and then this value is assigned to reg1. Later L[j] is 

updated by adding reg1, reg2 and L[j] and rotated to left by the value of reg1 plus 

reg2. Then the value of L[j] is assigned to reg2. And this operation is continued until 

three times maximum of t or c is reached. The procedure is given in the following 

code sample. 

Input: User supplied b byte key preloaded into c-word array L[0,…,c-1] 

Number r of rounds 

Output: w-bit round keys S[0,…,2r + 3] 

Procedure:  

S[0] = Pw 

for i = 1 to 2r + 3 do 
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S[i] = S[i - 1] + Qw 

reg1 = reg2 = i = j = 0 

v = 3 x max {c, 2r+4} 

do 3*max (t, c) times: 

reg1 = S[i] = (S[i] + reg1 + reg2) <<< 3 

reg2 = L[j] = (L[j] + reg1 + reg2) <<< (reg1 + reg2) 

i = (i + 1) mod (2r + 4) 

j = (j + 1) mod c 

2.3.2 Encryption of RC6 

RC6 works with four w-bit registers A,B,C,D which contain the initial input 

plaintext as well as the output ciphertext at the end of encryption. Register B is 

initialized with S[0] and register D is initialized with S[1]. After initialization t = B x 

(2B + 1) and u = D x (2D + 1) values are found and rotated left by log2 w. The 

registers A and t are XORed and rotated to left by the value of u and summed with the 

even entries of S[i] and this value is assigned to A. Later the XORed value of C and u 

is rotated to left by t and then summed by odd entries of S[i]. This value is assigned to 

C. The first byte of plaintext or ciphertext is placed in the least-significant byte of A; 

the last byte of plaintext or ciphertext is placed into the most-significant byte of D. 

(A,B,C,D) = (B,C,D,A) is used to mean the parallel assignment of values on the right 

to registers on the left. And this routine is repeated for r rounds. Then, finally S[2r+2] 
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and S[2r+3] are added to A and C respectively. The sample code of this procedure is 

as follows.  

Input: Plaintext stored in four w-bit input registers A, B, C, D Number r of 

rounds w-bit round keys S[0,…,2r + 3] 

Output: Ciphertext stored in A, B, C, D 

Procedure:  

B = B + S[0] 

D = D + S[1] 

for i = 1 to r do 

{ 

t = (B x (2B + 1)) <<< log2 w 

u = (D x (2D + 1)) <<< log2 w 

A = ((A ⊕ t) <<< u) + S[2i] 

C = ((C ⊕ u) <<< t) + S[2i + 1] 

(A, B, C, D) = (B, C, D, A) 

} 

A = A + S[2r + 2] 

C = C + S[2r + 3] 

The block diagram of encryption procedure for one round is given in Fig. 2.1. 
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Figure 2.1 One Round of RC6 Encryption Algorithm 
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2.3.3 Decryption of RC6 

The decryption routine is easily derived from the encryption routine. In this 

routine the inverse formulation of encryption routine is processed. 

Input: Ciphertext stored in four w-bit input registers A, B, C, D Number r of 

rounds w-bit round keys S[0,…,2r + 3] 

Output: Plaintext stored in A, B, C, D 

Procedure: 

 C = C – S[2r + 3] 

A = A – S[2r + 2] 

for i = r downto 1 do 

{ 

(A, B, C, D) = (D, A, B, C) 

u = (D x (2D + 1)) <<< log2 w 

t = (B x (2B + 1)) <<< log2 w 

C = ((C – S[2i + 1]) >>> t) ⊕ u 

A = ((A – S[2i]) >>> u) ⊕ t 

} 

D = D – S[1] 

B = B – S[0] 
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2.3.4 Status of RC6 

Most existing cryptanalytic results on RC5 [13,16,17,22] depend on slow 

avalanche of change between rounds. The integer addition helps to provide a 

reasonable amount of change due to the effect of carry, but the most dramatic changes 

take place when two different rotation amounts are used at a similar point during the 

encryption of two related plaintexts. The incremental changes in arriving at RC6 from 

RC5: Two significant changes are the introduction of the quadratic function B × (2B 

+1) and the fixed rotation by five bits. 

The quadratic function is aimed at providing a faster rate of diffusion thereby 

improving the chances that simple differentials will spoil rotation amounts much 

sooner than is accomplished with RC5. The quadratically transformed values of B and 

D are used in place of B and D to modify the registers A and C, increasing the 

nonlinearity of the scheme while not losing any entropy (since the transformation is a 

permutation). The fixed rotation by five bits plays a simple yet important role in 

complicating both Linear and Differential cryptanalysis. 

2.4 Twofish Algorithm 

Twofish is one of the submissions to the AES selection process. It meets all 

the required NIST criteria; 128- bit block; 128-, 192-, and 256-bit key lengths; 

efficient on various platforms, etc. Twofish can be seen as two parallel Feistel-

networks, where the outputs of each round function are combined. In each round, half 
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the block is input to the confusion stage, and the S-boxes are 8-bit S-boxes. Twofish 

was designed to meet NIST’s design criteria for AES.  

Twofish algorithm has been implemented by using six blocks. Below these 

blocks and brief explanation are given: 

Feistel Network: A Feistel network is a general method of transforming any 

function (usually called the F function) into a permutation. The fundamental building 

block of a Feistel network is the F function: a key-dependent mapping of an input 

string onto an output string. An F function is always non-linear and possibly non-

surjective (in which not all outputs in the output space can occur): 

F : f{0,1}n/2
 x f{0,1}N

 →{0,1}n/2
 

where n is the block size of the Feistel Network, and F is a function taking n/2 bits of 

the block and N bits of a key as input, and producing an output of length n/2 bits. In 

each round, the “source block" is the input to F, and the output of F is XORed with 

the “target block," after which these two blocks swap places for the next round. The 

idea here is to take an F function, which may be a weak encryption algorithm when 

taken by itself, and repeatedly iterate it to create a strong encryption algorithm. Two 

rounds of a Feistel network is called a “cycle". In one cycle, every bit of the text 

block has been modified once. Twofish is a 16-round Feistel network with a bijective 

F function. Fig 2.2. shows block diagram of Feistel Network. 
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 Figure 2.2 Feistel Network 
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S-boxes: An S-box is a non-linear substitution operation used in most block 

ciphers. S-boxes vary in both input size and output size, and can be created either 

randomly or algorithmically. Twofish uses four different, bijective, key-dependent, 8-

by-8- bit S-boxes. These S-boxes are built using two fixed 8-by-8-bit permutations 

and key material. 

MDS Matrices: A maximum distance separable (MDS) code over a field is a 

linear mapping from a field elements to b field elements, producing a composite 

vector of a+b elements, with the property that the minimum number of non-zero 

elements in any non-zero vector is at least b+1. MDS mappings can be represented by 

an MDS matrix consisting of a x b elements. Reed-Solomon (RS) error-correcting 

codes are known to be MDS. A necessary and sufficient condition for an a x b matrix 

to be MDS is that all possible square submatrices, obtained by discarding rows or 

columns, are non-singular. Twofish uses a single 4-by-4 MDS matrix over GF (28). 

Pseudo-Hadamard Transforms: A Pseudo-Hadamard transform (PHT) is a 

simple mixing operation that runs quickly in software. Given two inputs, a and b, the 

32-bit PHT is defined as: 

a’ = a + b mod 232
 

b’ = a + 2b mod 232
 

Whitening: Whitening, the technique of XORing key material before the first 

round and after the last round, difficulty of key-search attacks against the remainder 

of the cipher. Whitening substantially increased the difficulty of attacking the cipher, 

by hiding from an attacker the specific inputs to the first and last rounds' F functions. 
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Twofish XORs 128 bits of subkey before the first Feistel round and another 128 bits 

after the last Feistel round. These subkeys are calculated in the same manner as the 

round subkeys, but are not used anywhere else in the cipher. 

Key Schedule: The key schedule is the means by which the key bits are 

turned into round keys that the cipher can use. Twofish needs a lot of key material, 

and has a complicated key schedule. To facilitate analysis, the key schedule uses the 

same primitives as the round function. 

Fig. 2.3 shows an overview of the Twofish block cipher. Twofish uses a 16-

round Feistel-like structure with additional whitening of the input and output. The 

only non-Feistel elements are the 1-bit rotates. The plaintext is split into four 32-bit 

words. In the input whitening step, these are XORed with four key words. This is 

followed by sixteen rounds. In each round, the two words on the left are input to the g 

functions. (One of them is rotated by 8 bits first.) The g function consists of four byte-

wide key-dependent S-boxes, followed by a linear mixing step based on an MDS 

matrix. The results of the two g functions are combined using a Pseudo- Hadamard 

Transform (PHT), and two keywords are added. These two results (called the outputs 

of the F function) are then XORed into the words on the right (one of which is rotated 

left by 1 bit first, the other is rotated right afterwards). The left and right halves are 

then swapped for the next round. After all the rounds, the swap of the last round is 

reversed, and the four words are XORed with four more key words to produce the 

ciphertext. So, the key schedule preparesa total of fourty 32-bit subkeys. 
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Figure 2.3 Twofish Encryption Algorithm Block 
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More formally, the 16 bytes of plaintext p0,.., p15 (p0 is the most significant 

byte of the plaintext, and p15 is the least significant bit of the plaintext) are first split 

into 4 words P0,…, P3 of 32 bits each using the little-endian convention. 

∑
=

+=
3

0

8
)4( 2.

j

j
jii pP     i = 0,…,3   (2.1) 

In the input whitening step, these words are XORed with 4 words of the 

expanded key. 

R0,i = Pi ⊕ Ki     i = 0,.., 3   (2.2) 

In each of the 16 rounds, the first two words are used as input to the function 

F, which also takes the round number as input to select the appropriate subkeys. The 

third word is XORed with the first output of F and then rotated right by one bit. The 

fourth word is rotated left by one bit and then XORed with the second output word of 

F. Finally, the two halves are exchanged. Thus, outputs Fr,0 and Fr,1 of the F function 

and 4 input words Rr+1 of the successive round are found as: 

(Fr,0, Fr,1) = F(Rr,0,Rr,1, r) 

Rr+1,0 = ROR(Rr,2 ⊕ Fr,0, 1) 

Rr+1,1 = ROL(Rr,3, 1) ⊕ Fr,1      (2.3) 

Rr+1,2 = Rr,0 

Rr+1,3 = Rr,1 

for r = 0,…,15 and ROR and ROL are functions that rotate their first argument 

(a 32-bit word) left or right by the number of bits indicated by their second argument. 
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The output whitening step undoes the “swap” of the last round, and XORs the data 

words with 4 words of the expanded key. The output block is then 

Ci = R16,(i+2) mod 4 ⊕ Ki+4   i = 0,…,3 

The four words of ciphertext are then written as 16 bytes c0,…, c15 using the 

same little-endian conversion used for the plaintext. The output block is obtained as 

ci. 

 
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c  mod 28    i= 0,…,15 

2.4.1 Main Functions of Twofish Algorithm 

a The Function g 

The function g forms the heart of Twofish algorithm; it is the main component 

of the F function. It uses an 32-bit vectors X and an 64-bit vector L to produce the 32-

bit output Z=g(X,L). Its 32-bit input word X (X is either Rr,0 or ROL(Rr,1,8)) is split 

into four bytes. Each byte xi is run through its own key-dependent S-box, si. The four 

S-box outputs yi are interpreted as a vector of length 4 over GF(28), and multiplied by 

the 4x4 MDS matrix (using the field GF(28) for the computations). The resulting 

vector Z is a 32-bit word. 

 28i
i Xx =  mod 28   i = 0,…,3 

[ ]xsy iii =     i = 0,…,3   (2.4) 
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In (2.4) si are the key-dependent S-boxes (S-box0 to S-box3) and the elements 

of the second 64-bit input L=(l0,0 l0,1 l0,2 l0,3 l1,0 l1,1 l1,2 l1,3) are used as the S-box 

constants, which are indicated in (2.7). The vector L is obtained from the keys. For 

MDS matrix multiplication (2.5) to be well-defined, the correspondence between byte 

values and the field elements of GF(28) are needed to be specified. GF(28) is 

represented as GF(2)[x]/v(x) where v(x) = x8+x6+x5+x3+1 is a primitive polynomial of 

degree 8 over GF(2). The field element a = ∑
=

7

0
.

i

i
i xa  with ai ∈  GF(2) is identified 

with the byte value ∑
=

7

0
2.

i

i
ia . Note that, addition in GF(28) corresponds to an XOR of 

the bytes.  

b The Function F 

The function F mentioned in (2.3) is a key-dependent permutation on 64-bit 

values. It takes three arguments, two input words Rr,0 and Rr,1, and the round number r 

used to select the appropriate subkeys. Rr,0 is passed through the g function, which 

yields Tr,0. Rr,1 is rotated left by 8 bits and then passed through the g function to yield 

Tr,1. The 64-bit vector L which adjusts the S-box constants is prepared from the 



 42

original key as in (2.12), so, L=S=(S1 S0) The results Tr,0 and Tr,1 are then combined in 

a pseudo hadamard transformer and two words of the expanded key are also added 

modulo 232 which is different from the XOR operation. The following set of 

equations describe the details of F function, 

Tr,0 = g(Rr,0, S) 

Tr,1 = g(ROL(Rr,1, 8), S)     (2.6) 

Fr,0 = (Tr,0 + Tr,1 + K2r+8) mod 232
 

Fr,1 = (Tr,0 + 2Tr,0 + K2r+9) mod 232
 

where (Fr,0,Fr,1) is the result of F. Fig. 2.4. shows the F function in detail, where (2.6) 

can be observed in the lower part of the figure that uses g functions. The upper part of 

the figure, which uses h functions, is related to the key schedule to be described by 

(2.13). The round keys K2r+8 and K2r+9 used in (2.6) are produced in the upper part of 

Fig. 2.4., as explained in (2.13). The h function also has key dependent S-boxes, 

where the S-box constants are prepared from the original key M, by dividing it into 

32-bit pieces, M0, M1, M2, M3, and choosing either the even or the odd indexed 

segments, so respectively, Me=( M0 M2) and Mo=( M1 M3) as shown in (2.11) 
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Figure 2.4 A view of a single round F function (128-bit key) 
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c The Function h 

The function h(X,L) is used to obtain expanded keywords of Twofish 

algorithm. h function is very similar to the function g, therefore equations (2.4) and 

(2.5) describe it completely. Its 32-bit input word X  is split into four bytes. Each byte 

is run through its own key-dependent S-box. The four results are interpreted as a 

vector of length 4 over GF(28), and multiplied by the 4x4 MDS matrix (using the field 

GF(28) for the computations). The resulting vector is a 32-bit word. 

Note that the of h and g functions are exactly same as each other but their 

inputs are different. X is obtained from Rr,0 or Rr,1 for the function g, whereas for the 

function h, it is chosen as the 32-bit vector ρ=(i i i i) where i is the 8-bit vector 

corresponding to i=0,…,39. Also the S-box constant vector L is different for h and g 

functions. In h function, L is either Me or Mo, whereas in g function L=S. The method 

of obtaining the vectors S, Me, and Mo from the original key is described in section 

2.4.2.  

d The Key-dependent S-boxes 

Twofish algorithm uses a single 32x32 S-box which can be considered as four 

8x8 S-boxes with different combinations of permutation boxes, q0 and q1, which are 

explained in section 2.4.2. As can be seen from Fig. 2.4, the S-boxes are used both in 

h and g functions. The combination of permutation boxes is the same for the S-boxes 

of h and g functions, but their input parameters are different. For h(X,L) function the 
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input parameters are ρ=X and L=Me or L=Mo.  For g(X,L) function the input 

parameters are X=Rr,0 or X=ROL(Rr,1,8)  and S=L.  

32x32 S-box takes two inputs a 32-bit word X and a list L = (L0,…,Lk-1) of 32-

bit words of length k, where k is the number of 64-bit segments in the original key. In 

this thesis Twofish algorithm is implemented for 128-bit keywords so k=N/64=2. The 

vectors X and L are split into bytes. 

 28
,

j
iji Ll =  mod 28 

 28 j
j Xx =  mod 28 

for i = 0,…, k - 1 and j = 0,…,3. Then the sequence of substitutions and XORs is 

applied. 

y0 = s0[x0] = q1[q0[q0[x0] ⊕ l1,0] ⊕ l0,0], (S-box0 formulation)  

 y1 = s1[x1] = q0[q0[q1[x1] ⊕ l1,1] ⊕ l0,1], (S-box1 formulation) 

y2 = s2[x2] = q1[q1[q0[x2] ⊕ l1,2] ⊕ l0,2], (S-box2 formulation) 

y3 = s3[x3] = q0[q1[q1[x3] ⊕ l1,3] ⊕ l0,3], (S-box3 formulation) (2.7) 

The output of the S-boxes is the 32-bit word Y in the form of y3y2y1y0. Fig. 2.5. 

shows the S-box formulation of 128 bit Twofish cipher. 
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 Figure 2.5 S-box formulation of Twofish algorithm 

 

2.4.2 Sub-functions of Twofish Algorithm  

a The Permutations q0 and q1 

The permutations q0 and q1 are fixed permutations on 8-bit values. These 

permutation functions are the main components of the S-boxes. They are constructed 

from four different 4-bit permutations each. For the 8-bit input value x, the 

corresponding output value y is found by the following steps: 

a0 =  16x  and  b0 = x mod 16 
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i.e., the byte is first split into two 4-bit nibbles, a0 and b0  

 a1 = a0 ⊕  b0 

b1 = a0 ⊕  ROR(b0, 1) ⊕  (8a0 mod 16) 

a2 = t0[a1]  

b2 =  t1[b1] 

a3 = a2 ⊕ b2 

b3 = a2 ⊕ ROR(b2, 1) ⊕ 8a2 mod 16 

a4 = t2[a3] 

b4 =  t3[b3] 

y = 16 b4 + a4       (2.8) 

As in (2.8), these nibbles are combined in a bijective mixing step. Each nibble 

is then passed through its own 4-bit table look-up. This is followed by another mixing 

step and table lookup. Finally, the two nibbles are recombined into a byte.  

The equation set (2.8) describes both of the permutations q0 and q1, but the 

lookup tables t0,…,t3 are different for q0 and q1. 

For the permutation q0, lookup tables are given by 

t0 = [ 8 1 7 D 6 F 3 2 0 B 5 9 E C A 4 ]    (2.9) 

t1 = [ E C B 8 1 2 3 5 F 4 A 6 7 0 9 D ] 

t2 = [ B A 5 E 6 D 9 0 C 8 F 3 2 4 7 1 ] 

t3 = [ D 7 F 4 1 2 6 E 9 B 3 0 8 5 C A ] 
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where each lookup table is represented by a list of the entries using hexadecimal 

notation. (The entries for the inputs 0,1,…,15 are listed in order.) Similarly, for q1 the 

lookup tables are given by 

t0 = [ 2 8 B D F 7 6 E 3 1 9 4 0 A C 5 ]     

t1 = [ 1 E 2 B 4 C 3 7 6 D A 5 F 9 0 8 ] 

t2 = [ 4 C 7 5 1 6 9 A 0 E D 8 2 B 3 F ] 

t3 = [ B 9 5 1 C 3 D E 6 4 7 F 2 0 8 A ]   (2.10) 

b The Key Schedule 

The key schedule has to provide 40 words of the expanded key K0,…,K39, and 

the constant vectors for the key-dependent S-boxes used in the g and h functions. 

Twofish is defined for keys of length N = 128, N = 192, and N = 256. Keys of any 

length shorter than 256 bits can be used by padding them with zeroes until the next 

larger defined key length. The parameter k is defined as k = N/64. The original key M 

consists of 8k bytes m0,…,m8k-1. To obtain the constant vectors for key dependent S-

boxes, the bytes are first converted into 2k words of 32 bits each 

∑
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and then into two word vectors of length k. 

Me = (M0,M2,…,M2k-2) 

Mo = (M1,M3,…,M2k-1)      (2.11) 
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Me and Mo are the constant vectors of the key dependent S-boxes employed in 

the h function, to obtain the expanded keys K0,…,K39. For the 128-bit key length is 

used in this study, k=2, hence Me=(M0 M2) and Mo=(M1 M3). 

A third vector S of length k 32-bit words is also derived from the key, as the 

constant vector for the key dependent S-boxes of the function g. This is done by 

taking the key bytes in groups of 8, interpreting them as a vector over GF(28), and 

multiplying them by a 4x8 matrix derived from an RS code. Each result Si of 4 bytes 

is then interpreted as a 32-bit word.  

































•



















=



















+

+

+

+

+

+

+

m
m
m
m
m
m
m
m

EDBAA
DAECFCA

ECEFA
EDBAA

s
s
s
s

i

i

i

i

i

i

i

i

i

i

i

i

78

68

58

48

38

28

18

8

3,

2,

1,

0,

03958585554
193471102

56861382564
95858755401

      (2.12) 
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jii sS  for i = 0,…,k - 1, one obtains the third vector S = (Sk-1, 

Sk-2,…, S0) Note that S lists the words in “reverse" order. For the RS matrix 

multiplication in (2.12), GF(28) is represented by GF(2)[x]/w(x), where w(x) = x8 

+x6+x3+x2+1 is another primitive polynomial of degree 8 over GF(2).  

For 128-bit keys, three vectors Me, Mo, S are all 64-bit vectors, which forms 

the S-box constants. Me and Mo are used in h function which produces the expanded 

key; whereas S is used in g function which encrypts the plaintext. 
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c The Expanded Key Words Kj 

The words of the expanded key are defined using the h function. The input 

vector X of the h(X,L) function is derived from the initial vector  ρ = 224 + 216 + 28 + 

20. To evaluate 40 keywords, one computes for all values of i=0,…,19. 

Ai = h(2i ρ,Me) 

Bi = ROL(h((2i + 1) ρ,Mo), 8) 

K2i = (Ai + Bi) mod 232 

K2i+1 = ROL((Ai + 2Bi) mod 232, 9)    (2.13) 

Notice that for producing Ai the first argument of h function has all byte values 

equal to 2i, and the second argument of h is Me. Bi is computed similarly using 2i + 1 

as the byte value and Mo as the second argument, with an extra rotate over 8 bits. The 

values Ai and Bi are then combined in a PHT. One of the results is further rotated by 9 

bits. The two results K2i and K2i+1 form the two 32-bit words of the expanded key. 

2.4.3 Cryptanalysis of Twofish 

A summary of successful attacks performed by the designers of the cipher [29] 

is as follows:  

5-round Twofish (without the post-whitening) with 2225
 chosen plaintext pairs 

and 251 computations of the function g. 10-round Twofish (without the pre- and post-

whitening) with a chosen-key attack, requiring 232
 chosen plaintexts and about 211

 

adaptive chosen plaintexts, and about 232
 work. 
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The fact that Twofish seems to resist related-key attacks well is arguably the 

most interesting result, because related-key attacks give the attacker the most control 

over the cipher's inputs. Based on analysis, it is conjectured that there exists no more 

efficient attack on Twofish than brute force. The most efficient attack against 

Twofish with a 128 bit key has a complexity of 2128, the most efficient attack against 

Twofish with a 192-bit key has a complexity of 2192, and the most efficient attack 

against Twofish with a 256-bit key has a complexity of 2256. 
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CHAPTER 3  

CRYPTANALYSIS ATTACKS 

3.1 Cryptanalysis Techniques in Brief  

Cryptanalysis is the aspect of cryptology which concerns the strength analysis 

of a cryptographic system, and the penetration or breaking of a cryptographic system. 

The goal of an attack is to reveal some unknown plaintext, or the key, which 

will reveal the plaintext. Some of well-known cryptanalysis techniques are explained 

below.  

Brute Force (also Exhaustive Key Search): Try to decipher ciphertext under 

every possible key until readable messages are produced.  

Codebook (the classic "code-breaking" approach): Collect a codebook of 

transformations between plaintext and ciphertext. 

Differential Cryptanalysis: Find a statistical correlation between key values 

and cipher transformations (typically the XOR of text pairs), then use sufficient 

defined plaintext to develop the key. 
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Linear Cryptanalysis: Find a linear approximation to the keyed S-boxes in 

cipher, and use that to reveal the key. 

Meet-in-the-Middle: Given a two-level multiple encryption, search for the 

key by collecting every possible result for enciphering a known plaintext under the 

first cipher, and deciphering the known ciphertext under the second cipher; then find 

the match. 

Key Schedule: Choose keys which produce known effects in different rounds. 

Birthday (usually a hash attack): Use the birthday paradox, the idea that it is 

much easier to find two values which match than it is to find a match to some 

particular value. 

Formal Coding (also Algebraic): From the cipher design, develop equations 

for the key in terms of known plaintext, then solve those equations. 

Correlation: In a stream cipher, distinguish between data and confusion, or 

between different confusion streams, from a statistical imbalance in a combiner. 

Dictionary: Form a list of the most-likely keys, then try those keys one-by-

one (a way to improve brute force). 

Replay: Record and save some ciphertext blocks or messages (especially if 

the content is known), then re-send those blocks when useful. 

Many attacks try to isolate unknown small components or aspects so they can 

be solved separately, a process known as divide and conquer. 
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3.2 Strength and Cryptanalysis 

Because there are no tools for the discussion of strength under all possible 

attacks, cipher "strength" is normally discussed in the context of particular attacks. 

Each known attack approach can be elaborated for a particular cipher, and a value 

calculated for the effort required breaking the cipher in that way; this may set an 

"upper bound" on the unknown strength of the cipher. And while this is certainly 

better than not knowing the strength with respect to known attacks, such attacks may 

not represent the actual threat to the cipher in the field. In general, "lower bound" or 

"true" strength of a cipher is not known. So, unless a cipher is shown to be weaker 

than can be accepted, cryptanalysis provides no useful information about cipher 

strength. 

Two most powerful cryptanalysis techniques applied to symmetric-key block 

ciphers are the linear cryptanalysis and the differential cryptanalysis. Linear 

cryptanalysis was introduced by Matsui [20] at EUROCRYPT ’93 as a theoretical 

attack on the Data Encryption Standard (DES) and later successfully used in the 

practical cryptanalysis of DES; differential cryptanalysis was first presented by 

Bilham and Shamir [4] at CRYPTO ’90 to attack DES and eventually the details of 

the attack were packaged as a book. Although the early target of both attacks was 

DES, the wide applicability of these attacks to numerous other block ciphers has 

solidified the pre-eminence of both cryptanalysis techniques in the consideration of 

the security of all block ciphers. 
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3.3 Linear Cryptanalysis 

Linear cryptanalysis tries to take advantage of high probability occurrences of 

linear expressions involving plaintext bits, "ciphertext" bits (actually we shall use bits 

from the 2nd last round output), and subkey bits. It is a known plaintext attack: that is, 

it is premised on the attacker having information on a set of plaintexts and the 

corresponding ciphertexts. However, the attacker has no way to select which 

plaintexts (and corresponding ciphertexts) are available. In many applications and 

scenarios it is reasonable to assume that the attacker has knowledge of a random set 

of plaintexts and the corresponding ciphertexts. The basic idea is to approximate the 

operation of a portion of the cipher with an expression that is linear where the 

linearity refers to a mod-2 bit-wise operation (i.e., exclusive-OR denoted by "⊕"). 

Such an expression is of the form: 

Xi1⊕ Xi2⊕ …⊕ Xiu⊕ Yi1 ⊕ Yi2 ⊕ … ⊕   Yiv = 0           (3.1) 

where Xi represents the i-th bit of the input X = [X1, X2, ...] and Yj represents 

the j-th bit of the output Y = [Y1, Y2, ...]. This equation is representing the exclusive-

OR "sum" of u input bits and v output bits. The approach in linear cryptanalysis is to 

determine expressions of the form above which have a high or low probability of 

occurrence. If a cipher displays a tendency for equation (3.1) to hold with high 

probability or not hold with high probability, this is evidence of the cipher’s poor 

randomization abilities. Consider that if values for u + v bits are randomly selected 

and placed into the equation above, the probability that the expression would hold 
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would be exactly 1/2. It is the deviation or bias from the probability of 1/2 for an 

expression to hold that is exploited in linear cryptanalysis: the further away that a 

linear expression is from holding with a probability of 1/2, the better the cryptanalyst 

is able to apply linear cryptanalysis. The amount by which the probability of a linear 

expression holding deviates from 1/2 is referred as the linear probability bias. Hence, 

if the expression above holds with probability pL for randomly chosen plaintexts and 

the corresponding ciphertexts, then the probability bias is pL – 1/2. The higher the 

magnitude of the probability bias, |pL – 1/2|, the better the applicability of linear 

cryptanalysis with fewer known plaintexts required in the attack. 

3.4 Differential Cryptanalysis 

Differential cryptanalysis exploits the high probability of certain occurrences 

of plaintext differences and differences into the last round of the cipher. For example, 

consider a system with input X = [X1 X2 ... Xn] and output Y = [Y1 Y2 ... Yn]. Let two 

inputs to the system be X′ and X″ with the corresponding outputs Y′ and Y″, 

respectively. The input difference is given by ΔX = X′ ⊕ X″ where "⊕" represents a 

bit-wise exclusive-OR of the n-bit vectors and, hence, 

∆ X =[∆ X 1, ∆ X 2, ..., ∆ X n  ]  

where ΔX = Xi′ ⊕ Xi″ with Xi′ and Xi″ representing the i-th bit of X′ and X″, 

respectively. Similarly, ΔY = Y′ ⊕ Y″ is the output difference and 

∆ Y =[∆ Y 1, ∆ Y 2, ..., ∆ Y n  ] 
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where ΔY = Yi′ ⊕ Yi″ . 

In an ideally randomizing cipher, the probability that a particular output 

difference ΔY occurs given a particular input difference ΔX is 1/2n
 where n is the 

number of bits of X. Differential cryptanalysis seeks to exploit a scenario where a 

particular ΔY occurs given a particular input difference ΔX with a very high 

probability pD (i.e., much greater than 1/2n). The pair (ΔX, ΔY) is referred to as a 

differential. 

Differential cryptanalysis is a chosen plaintext attack, meaning that the 

attacker is able to select inputs and examine outputs in an attempt to derive the key. 

For differential cryptanalysis, the attacker will select pairs of inputs, X′ and X″, to 

satisfy a particular ΔX, knowing that for that ΔX value, a particular ΔY value occurs 

with high probability. As with linear cryptanalysis, to construct highly likely 

differential characteristics, the properties of individual S-boxes are examined and 

these properties are used to determine the complete differential characteristic. 

Specifically, the input and output differences of the S-boxes are considered in order to 

determine a high probability difference pair. Combining S-box difference pairs from 

round to round so that the nonzero output difference bits from one round correspond 

to the non-zero input difference bits of the next round, enables finding a high 

probability differential, consisting of the plaintext difference and the difference of the 
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input to the last round. The subkey bits of the cipher end up disappearing from the 

difference expression because they are involved in both data sets and, hence, 

considering their influence on the difference involves XORing subkey bits with 

themselves, the result of which is zero. 



 59

CHAPTER 4  

TEST CRITERIA FOR BLOCK CIPHERS 

4.1 Avalanche Criteria 

The idea of avalanche [12] was introduced by Feistel. For a given 

transformation to exhibit the avalanche effect, an average of one half of the output 

bits should change whenever a single input bit is complemented. In order to 

determine whether a given nxn function f satisfies this requirement, the 2n
 plaintext 

pairs, P and Pi. Such that P and Pi differ only in bit i are used to calculate the 2n
 

difference vectors, ∆C = f(P) ⊕ f(Pi) = ei. These XOR sums are referred as avalanche 

vectors, each of which contains n bits, called avalanche variables. If this procedure is 

repeated for all i such that 1 ≤ i ≤ n, and one half of the avalanche variables are equal 

to 1 for each i, then the function f has good avalanche effect. Avalanche properties 

and avalanche weight distribution characteristics of block ciphers help us analyze 

diffusion and confusion properties of block ciphers. 
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The principle of diffusion and confusion was introduced by Shannon [31] in 

1949 and simply can be stated as: 

Diffusion: Diffusion tries to distribute the redundancy of the plaintext over 

the cipher text. Every bit of the ciphertext should depend on every bit of the plaintext. 

Good diffusion spreads the influence of individual plaintext characters over as much 

of the ciphertext as possible, thereby hiding the statistical features of the plaintext. 

Confusion: Confusion is described as being “the use of ciphering 

transformations that complicate the determination of how the statistics of the 

ciphertext depend on the statistics of the plaintext” [33] or, more briefly, to make the 

relation between the key and the ciphertext as complex as possible. The objective is 

to hide redundancies in plaintext. Every bit of the ciphertext should depend on every 

bit of the key. 

Completeness: Completeness is the result of diffusion and was introduced by 

Kam and Davida [15]. If a cryptographic transformation is complete, then each 

ciphertext bit must depend on all plaintext bits. Thus, if it were possible to find the 

simplest boolean expression for each ciphertext bit in terms of plaintext bits, each of 

those expressions would have to contain all of the plaintext bits if the function was 

complete.  

4.1.1 Avalanche Weight Distribution 

Avalanche weight distribution (AWD) [3] criterion can be stated as follows: 

Even for quite similar plaintext pairs (P1, P2), i.e., when the hamming weight of the 
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differences of plaintext pairs (P1, P2) is small, the distribution of the hamming weight 

of the differences of corresponding ciphertext pairs (C1, C2) should be close to a 

binomial distribution around n/2 for a good block cipher with a block length of n. 

This criterion reveals the diffusion property of block ciphers. 

It should be noted that the AWD of an ideal algorithm satisfying the diffusion 

property, the probability of finding any particular number of i ciphertext bit changes 

in a ciphertext of n bits is: 

B (i) = n

i
n

2










, ni ≤≤0        (4.1) 

which is the binomial expression. Also notice that 

∑
=

=
n

i
iB

0
1)(         (4.2) 

In Fig. 4.1,  ideal binomial distribution curve is sketched for 128 bits 
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Figure 4.1: Binomial Distribution Curve for n = 128 bits 
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The distortion measure D, which gives the distortion between the actual AWD 

of the cipher and the ideal distribution B(j) is calculated using N pairs of plaintexts (P, 

P⊕∆P) with a fixed difference ∆P, and corresponding ciphertexts (C, C⊕∆C). ∆C of 

weight j increments the array element AWD(j) by 1. Then, deviation of the cipher 

from the ideal binomial distribution is found for a specific plaintext difference ∆P of 

hamming weight 1 as 

Di = ∑
=

−
n

j

jNBjAWD
N 0

)()(
2
1      (4.3) 

where i corresponds to the index of “1” in the plaintext difference (∆P) vector. 

Corresponding resemblance parameter R to a binomial distribution is then 

given by 

Ri = 1 – Di        (4.4) 

While defining the distortion by (4.3) the magnitude of [AWD(j) - NB(j)] is 

used in order not to make a distinction between positive or negative errors. The 

normalization coefficient of 1/2N is added to restrict the worst case value of R to 0. 

(Notice that the worst case occurs when non-zero values of AWD(j) correspond to 

zero values of B(j) and vice versa) 

If Ri = 1 then the actual AWD is exactly the same as the ideal binomial 

distribution. In the worst case Ri = 0, and the AWD of the corresponding block cipher 

shows no resemblance to the ideal binomial distribution. 
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4.1.2 Avalanche Criteria Analysis Procedures 

In this section, the test procedures of avalanche criterion, AWD and 

resemblance parameter analysis are given. These procedures are applied to the studied 

cipher in Chapter 5.  

a Avalanche Criterion  

The following steps are used in this avalanche criterion test procedure: 

1. A key is chosen randomly. 

2. A plaintext P is chosen at random and the pair of that plaintext Pi is 

calculated so that the difference between P and Pi is, i.e. Pi = P ⊕ ei and P and Pi 

differ only in bit i, where ei is a n-bit unit vector with a position i, and i Є {1, 2,…, n}, 

3. P and Pi are submitted to r-rounds of cipher for encryption under the key 

chosen in step 1, 

4. From the resultant ciphertexts C and Ci, the avalanche vector ∆C = C ⊕ Ci 

is calculated, 

5. The avalanche vector is summed up to an avalanche sum array, 

6. The above steps 2-5 are repeated N (typically 10000) times and the values 

in the avalanche sum array are sketched versus its index. 

It is expected due to the avalanche criterion that an average of one half of the 

output bits should change whenever a single input bit is changed, so if we use 10000 
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sample plaintexts all n entries in the avalanche sum array should be around 5000. So 

we expect a straight line around 5000 as the result of avalanche criterion. 

b Avalanche Weight Distribution  

To determine the diffusion properties of ciphers a derivative of avalanche 

criterion, avalanche weight distribution (AWD) curves are helpful. The criterion can 

be stated as: even for small hamming weight differences at the input (plaintext or 

keybits), the distribution of the hamming weight of the ciphertext differences 

(avalanche vectors) should be close to a binomial distribution around n/2 for a good 

block cipher with a block length of n.  

To investigate the diffusion properties of cipher the following test procedure is 

used for the criterion of avalanche weight distribution (AWD). 

1. A key is chosen randomly, 

2. A plaintext P is chosen at random and the pair of that plaintext Pi is 

calculated so that the difference between P and Pi is, i.e. Pi = P ⊕ ei and P and Pi 

differ only in bit i, where ei is a n-bit unit vector with a position i, and i Є {1, 2,…, n}, 

3. P and Pi are submitted to r-round of cipher for encryption under the key 

chosen at step 1, 

4. From the resultant ciphertexts C and Ci, the hamming weight of the 

avalanche vector wt(∆C) = wt(C ⊕ Ci) = j is calculated, where j Є {1, 2,…, n}, 
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5. The value of the jth
 element of an AWD array with a size of n is 

incremented by 1, i.e. AWD[j] = AWD[j] + 1, 

6. The steps 2-5 are repeated N (typically 10000) times and the values in the 

AWD array are sketched versus its index, as the AWD curve corresponding to the 

input difference ∆P = ei. 

c  Resemblance Parameter Analysis 

After the AWD array is found distortion measure (Di) and resemblance 

parameter (Ri) can be found with the following procedure: 

1. Obtain the AWD curve corresponding to ∆P = ei, 

2. Calculate the binomial distribution function B(j) where j Є {1, 2,…, n}, 

3. Find the sum of absolute difference of AWD[j] and B(j) for each j where j Є 

{1, 2,…, n}, 

4. Calculate Di and Ri using equations (4.3) and (4.4) respectively. 

In Chapter 5, avalanche and AWD curves to investigate diffusion properties of 

RC5, RC6 and Twofish ciphers with random plaintext or keyword and differences at 

different positions i are presented. The results of avalanche criteria and NIST’ s 

statistical test results are compared in this chapter. The nonlinearity of the S-boxes of 

Twofish cipher is also evaluated in Chapter 5. 
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4.2  Nonlinearity Measure 

 Encryption mappings are often designed to satisfy a set of chosen criteria 

which have been established either formally or empirically as essential to the security 

of the cipher. Two basic criteria due to Shannon suggest that a cipher should be 

constructed using the notions of diffusion and confusion. As described in the 

preceding sections, diffusion refers to the dissipation of the statistical properties of 

the plaintext, while confusion refers to the internal operations of the cipher that 

produce complex relations between the plaintext, key and ciphertext. 

 If a ciphertext bit ci is described by the boolean function fi then it is generally 

accepted that each fi should possess a combination of the properties such as balance, 

nonlinearity, completeness, correlation immunity, the strict avalanche criterion, or be 

bent.  

The nonlinearity of many block ciphers depend directly on the selection of the 

S-boxes since, typically, the S-boxes are the only non-affine component of the cipher. 

So one can state that, if the S-boxes are affine then the entire mapping is affine [10]. 

In the following section, basic definitions of the nonlinearity criteria are given. 

4.2.1 Basic Definitions of Nonlinearity Criteria 

Affine Function: A boolean function )(  xf  is called a affine function of 

)........( 1 nxx=x   Zn
2∈ , if it is in the form   

cw.x x ⊕=⊕⊕⊕⊕=  ......)(  2211 cxaxaxaf nn    (4.5)      
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where   ,......,, 21 caaa n belong to  2Z ,  w ),...,( 1 naa=    Zn
2∈ , and  w.x denotes the 

inner product of vectors  w and x. 

In the boolean field, the coefficients ia  simply enable or disable the associated 

variable ix . If c = 0, affine function is also linear. 

Truth Table: The truth table tf  of the boolean function )(xf  is found by 

evaluating )(xf  for all possible values of x = iα ; where iα  is the n-bit vector 

corresponding to binary representation of the integer 12 ..., ,0 −= ni . So: 

)}(),......,({ 120t nαα
−

= fff      (4.6)   

Notice that the truth table of the boolean function 22: ZZf n →  is a binary 

sequence of length n2 . 

Sequence of a Boolean Function: The sequence of a boolean function 

22: ZZf n →  is defined as:  

fs })1(,...,)1(,)1{( )()()( 1210 −−−−= nfff ααα    (4.7)  

where αi is the n-bit vector corresponding to binary representation of the integer 

12 ..., ,0 −= ni . So, 0’s and 1’s of the truth table tf  given by  simply turn into +1’s 

and –1’s in the sequence  fs  given by (4.7). The sequence of a linear (affine) function 

is called a linear (affine) sequence. 
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Hamming Distance: Hamming distance between two functions 

22: ZZf n → and 22: ZZg n →  is defined as the hamming weight of the truth table of 

the difference function )()( xx gf ⊕ . 

tHH gfwgfd ))()((),( xx ⊕=     (4.8)  

   

where g)fd H ,(  is the hamming distance and tH gfw ))()(( xx ⊕  is the hamming 

weight of the truth table corresponding to the function )()( xx gf ⊕ . Notice that the 

distance between boolean functions f and g is also equal to the hamming distance 

between their 2n-bit truth tables ft and gt ; and the hamming distance between their 2n-

bit sequences  fs and  gs. Hence: 

=),( gfd H )( tt g ,fHd  = )( ss g ,fHd                   (4.9)                                

Hadamard Matrix: A Hadamard matrix H is an nn ×  matrix with entries +1 

or -1, such that all rows and all columns are orthogonal, i.e., n
T nIHH =  where TH is 

the transpose of the Hadamard matrix and nI  is the identity matrix of order n . A 

special kind of Hadamard matrix, called the Sylvester-Hadamard matrix of order 2n 

denoted by Hn  is generated by the following recursive relation:  

 
-     

                            ,1
11

1          1
0












==

−−

−−

nn

nn
n HH

HH
HH   (4.10)        
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 So;          
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and  23 x 23  Sylvester-Hadamard matrix H3 can be obtained as follows:   
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3H                          

 It can be shown that each row (or column) of Hn is a linear sequence of length 

2
n
, i.e., it corresponds to the sequence of a linear function. There is a one to one 

mapping between each row (or column)  li  of a  (2n x 2n) Sylvester-Hadamard matrix 

Hn , and the sequence of a linear function  22: ZZl n →  defined by   li (x)= w.x, where 

the subscript i takes  2n different values corresponding to 2n possible weighting 

vectors w. 

Non-linearity: The non-linearity of a boolean function is formulated with 

equation (4.11)  

}cfnZ
cfN ⊕≠∈= x . wxx

w
)(  |2 # 

,
min { ,  (4.11) 
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which can be stated as the minimum hamming distance of  this function from an 

affine function. One can find this minimum distance by comparing the truth table of 

the boolean function to all rows of the Hadamard matrix. This definition of 

nonlinearity shown [38] to be equivalent to equation (4.12) 

( ){ }ss
w

n
f xwfN

n
••−=

−=

− max
2
1

2
2,...,1,0

1
1

    (4.12) 

Walsh Transform: The walsh transform of a function )(xf  is defined as 

[21]: 

∑ ∈
−−= nZ

fF
2

. )1()1()( )(
x

w.xxw     (4.13) 

Notice that for 2n different values of the n bit vector w, one obtains 2n 

different linear functions 

xwx ⋅=)(wl        (4.14) 

and the walsh transform defined in (4.13) is nothing but the inner product of the 

sequences of  f(x) and lw(x): 

F(w) = fs . lws =  fs . ( w.x )s                           (4.15)     

The walsh transform given by (4.13) takes integer values in the interval [-2n , 

2n]. 

Bent Function: A function 22: ZZf n →  is called a bent function [37] if, 
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1)1(2 )()(
2 ±=−

⋅⊕− ∑ xx wf
n

            
,    for all nZ 2∈w .              (4.16) 

Notice that the walsh transform defined by (4.13) can also be written as: 

∑ ∈
−−= nZ

fF
2 

)(  )1()1()( x
w.xxw = )()(

2 
)1( xw

x
⋅⊕

∈∑ −
xf

nZ
  

Hence, one can express (4.16) in the form:          1)(2 2/ ±=− wFn   

So, the magnitude of the walsh transform for bent functions is found as:  

2/2)( nF =w ,          for all w.       (4.17) 

Bent functions only exist for even values of n. 

4.2.2 Nonlinearity of S-boxes 

Nonlinearity of the S-box can be defined in terms of nonlinearities of the 

individual components fi which are the output bit functions of the S-boxes. The worst 

case nonlinearity over all output bit positions and their linear combinations; where the 

nonlinearity factor for each function jf : 22 ZZ n →  is defined by 

Nf j = 2
12 1 −−n max i =1,…,2

n | f j,s . l i,s | = 
2
12 1 −−n  max | Fj(w) |  (4.18) 

It was shown by Rothaus [25] that the class of perfectly nonlinear functions 

coincides with the class of bent functions. Using (4.17) and (4.18), 

1)2/(11 22)(
2
12 −−− −=−≤ nn

Bent
n

f FN w    ,   for n  even    (4.19) 
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Rothaus [25] also showed that for odd values of n, there are no perfect 

nonlinear functions, and maximum nonlinearity is equal to 2
n-1

 − 2
(n+1)/2

.  So, 

Nf  ≤   2
n-1

 − 2
(n+1)/2

,    for n  odd            (4.20) 

4.2.3 Nonlinearity Criterion  

To calculate the nonlinearity of nxn S-boxes we have first found the truth 

tables of permutation boxes of the S-boxes.  Each output bit has a truth table of 2n 

bits. After obtaining n truth tables for n output bits, we find all 2n truth tables 

corresponding to all 2n linear combinations of the output bits. Each row of the truth 

table matrix is then compared to all rows of 2nx2n Sylvester-Hadamard matrix, to find 

the minimum distance. Nonlinearity values are obtained for each of the 2n boolean 

functions. The smallest of all is the nonlinearity parameter of nxn S-boxes. 

We find the 2nx2n truth table matrix with the following algorithm: 

1. Define a boolean vector of F = {f1, f2,…, fn}where fx are the result bits of 

the S-boxes while x = {x1, x2,…, xn}is the input vector, 0< x < 2n-1 

2. Define the boolean function to be f (fx) = a1●f1 ⊕ a2●f2 ⊕ … ⊕ a8●f8, 

where a = {a1, a2,…, an} 0 < a < 2n-1 

3. Use all available input x values to the permutation where the boolean vector 

is found and then by using this vector, the boolean functions truth table is found by 

using all available coefficient vectors, a. 
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Notice that, in the first row of the truth table, the coefficient vector a is equal 

to all zero which results to an all zero row. And in the first column the input vector x 

is equal to all zero. 

In Chapter 5 the nonlinearity values for the S-boxes of Twofish are given after 

presentation of avalanche and AWD curves for RC5, RC6 and Twofish. 

 



 74

CHAPTER 5  

EVALUATION RESULTS 

In this chapter we give the evaluation results of the studied ciphers, RC5, 

RC6, and Twofish. The avalanche curves and avalanche weight distribution (AWD) 

curves are sketched and analyzed according to the steps given in Chapter 4. Together 

with resemblance parameter analysis, the nonlinearity of Twofish S-boxes is 

investigated. 

5.1 Avalanche Characteristics of RC5 Cipher 

5.1.1 Avalanche Curves of RC5 Cipher 

The avalanche curves of RC5 are obtained by counting the number of changes 

at each position of the round output vector, when a specific plaintext bit at position i 

is complemented for a set of N = 10000 different plaintexts. The keyword is usually 

chosen as all-zero keyword, unless it is specified as something else. Other parameters, 

such as magic words, are also not changed and the same as the original code. For RC5 
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algorithm three intervals can be identified for the position of the complemented input 

bit, i.e. error bit where the avalanche behavior is similar. These intervals are found as 

i Є [1..35], [36..40], [41..63]. 

In Fig. 5.1 (a) and Fig. 5.1 (b), avalanche curves of 1-round RC5 are given for 

different error bit positions at the input vector, i.e. the plaintext. For the first round in 

the interval of i = 36,...,40 the average number of changes in avalanche variable is 

more than 4970 (which is expected to be 5000 ideally) and this can be said to be a 

very good diffusion value, because it is in the 0.6% vicinity of the ideal value and 

maximum change is within 7%. On the other hand, in the other two regions, the 

average number of changes in avalanche variable is within 1100 and 1600, which is 

much more less than the desired value. 

In Fig. 5.1 (c) and Fig. 5.1 (d), avalanche curves of 2-round RC5 are given for 

different error bit positions i. For the second round, the average number of changes in 

avalanche variable differs only 0.2% from the ideal value of 5000 in the interval of i 

Є [36..40]. Also in the other intervals the average avalanche value is improved to the 

range 3400-4200. 
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Figure 5.1 Avalanche curves of RC5 for the first and second round (r=1, r=2) 

and chosen error bit positions (i), which represents different cases 

 

 The avalanche curves for 3-rounds of RC5 are sketched in Fig. 5.2 (a) and 

Fig. 5.2 (b). As can be observed from the figures for all intervals the characteristics 

are improved and in the worst case, i.e. i Є {(1..35), (41..63)}, the number of change 

of avalanche variable is more than 4400. 
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 Figure 5.2 Avalanche curves of RC5 for the third round (r=3) and chosen 

error bit positions (i), which represents different cases 

 

5.1.2 Avalanche Wight Distribution (AWD) Curves of RC5 Cipher 

The AWD curves of RC5 are obtained by calculating the hamming weight of 

the round output vector, when a specific plaintext bit at position i if complemented 

for a set of N = 10000 different plaintexts. The keyword is usually chosen as all-zero 

keyword, unless it is specified as something else.  Other parameters, such as magic 

words, are also not changed and same as the original code. The intervals explained in 

section 5.1.1 are used for the analysis. 

In Fig. 5.3 (a) and Fig. 5.3 (b), AWD curves of 1-round RC5 are given for 

different error bit positions at the input vector, i.e. the plaintext. For the first round in 

the intervals i Є {(1..31), (41..63)} the resemblance parameter (Ri) is below 0.045 and 

if a single bit of the plaintext is changed, first round of RC5 changes less than 31 bits 
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of the ciphertext and the change is mostly around 5 bits. Notice that the resemblance 

parameter Ri defined by (4.4) measures how close the avalanche weight distributions 

are to the ideal binomial curve, i.e., how random the avalanche variables are. For the 

first round in the interval i Є [36..40] the resemblance parameter (Ri) is higher than 

0.950 and if a single bit of the plaintext is changed, first round of RC5 changes less 

than 46 bits of the ciphertext and more importantly the change is mostly around 32 

bits. 

Notice that in the interval i Є [36..40], the AWD curves are very close to the 

ideal curve given in Fig. 4.1. One can argue that bits in that region are not suitable for 

differential cryptanalysis based attacks. 

In Fig. 5.3 (c) and Fig. 5.3 (d), AWD curves of 2-rounds of RC5 are given for 

different error bit positions i at the input vector, i.e., the plaintext. For the first round 

in the intervals i Є {(1..31), (41..63)} the resemblance parameter (Ri) is below 0.680 

and if a single bit of the plaintext is changed, first round of RC5 changes less than 46 

bits of the ciphertext and the change is mostly around 25 bits. Besides, for the first 

round in the interval i Є [36..40] the resemblance parameter (Ri) is higher than 0.980 

and if a single bit of the plaintext is changed, first round of RC5 changes less than 48 

bits of the ciphertext and more importantly the change is mostly around 32 bits. 
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Figure 5.3 Avalanche weight distribution curves of RC5 for the first and 

second round (r=1, r=2) and chosen error bit positions (i), which represents different 

cases 

 

In Fig. 5.4 (a) and Fig. 5.4 (b) AWD curves of 3-rounds RC5 are given for 

different error bit positions i at the input vector. In either interval resemblance 

parameter (Ri) is higher than 0.850 but on the other hand the difference of the 

histograms sketched in the predefined intervals can be observed clearly. With the start 

of third round the AWD curves become more similar to the ideal curve in all intervals 
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and it is clear that cryptanalysts need much more given plaintexts in known-plaintext 

based attacks. 

 

Figure 5.4 Avalanche weight distribution curves of RC5 for the third round 

(r=3) and chosen error bit positions (i), which represents different cases 

 

5.1.3 Resemblance Parameters for RC5 Cipher 

Resemblance parameters (Ri) of RC5 are obtained by finding the absolute 

difference between the AWD curves of RC5 and the binomial distribution. Indeed 

resemblance parameter variations according to different bit positions i reveals the 

intervals that have same avalanche characteristics. The histograms are sketched for 

first, second and third round of RC5 Cipher. As can be seen from the figures below: 

the characteristics of RC5 Cipher gives better results within the interval i Є 36,...,40. 

The curves are sketched according to the steps given in Chapter 4. All of the curves 

are sketched with the parameters N = 10000 (number of sample plaintexts), all-zero 

keyword, 64 bits of plaintext and 64 bits of keyword.  
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Notice that the interval on Y-axis of the Fig. 5.5 (c) and Fig. 5.5 (d) are 

different from the others to focus on the characteristic detailed. 

 

 

Figure 5.5 Resemblance parameter curves of RC5 for different rounds (r): a) 

r=1 b) r=2 c) r=3 d) r=4 

 

As can be seen from the above figures after 4 rounds RC5 algorithm becomes 

invulnerable to the 1-bit changes in the plaintext values, i.e. Ri value is lower than 

0.02 . But there is an important issue to be noted when the figures are investigated 
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detailed, there appears an extreme point that when the bit positions i=36, 37, 38, 39, 

40 without looking at the round number, Ri value is near to one. But nevertheless we 

can conclude that RC5 Cipher achieves acceptable and desired diffusion after the 

fourth round. 

5.2 Avalanche Characteristics of RC6 Cipher 

5.2.1 Avalanche Criterion for RC6 Cipher 

The avalanche curves of RC6 are obtained by counting the number of changes 

at each position of the round output vector, when a specific plaintext bit at position i 

if complemented for a set of N = 10000 different plaintexts. The keyword is manually 

chosen as all-zero keyword, unless it is specified as something else. Other parameters, 

such as magic words, are also not changed and the same as the original code. For RC6 

algorithm four intervals can be identified for the position of the complemented input 

bit, i.e. error bit where the avalanche behavior is similar. These are intervals are found 

as i Є [1..31], [32..63], [64..95], [96..127]. 

In Fig. 5.6 (a) and Fig. 5.6 (b), the avalanche curves of 1-round RC6 are given 

for error bit positions i at the input vector, i.e., the plaintext. For the first round in the 

intervals i Є {(32..63), (96..127)} the avalanche curves are better than the other 

intervals which will be the starting point of selecting these intervals. The average 

change in avalanche vectors in these regions are more than 10 times better than the 

values in the interval i Є {(1..31), (64..95)}. 
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 In Fig. 5.6 (c) and Fig. 5.6 (d), the avalanche curves of RC6 for second round 

with different error bit positions i at the input vector are given. In the intervals i Є 

{(32..63), (96..127)} RC6 has better avalanche characteristics than the other regions 

as expected from the first round. In these regions the average of change of avalanche 

variables is 4100 and 4700 respectively. 

 

 

 Figure 5.6 Avalanche curves of RC6 for the first and second round (r=1, r=2) 

and chosen error bit positions (i), which represents different cases 
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 In Fig. 5.7 (a) and 5.7 (b), avalanche curves for 3-rounds of RC6 cipher for 

different error bit positions i at the input vector are sketched. The number of change 

of avalanche variables is improved by increasing the number of rounds and the 

average number of change of avalanche variable is more than 4450 for all intervals. 

Additionally in the intervals i Є {(32..63), (96..127)} the average number of change 

of avalanche variable is varying between 4960 and 5000. 

 

 

 Figure 5.7 Avalanche curves of RC6 for the third round (r=3) and chosen 

error bit positions (i), which represents different cases 

 

5.2.2 Avalanche Wight Distribution (AWD) Curves of RC6 Cipher 

The AWD curves of RC6 are obtained by calculating the hamming weight of 

the round output vector, when a specific plaintext bit at position i if complemented 

for a set of N = 10000 different plaintexts. The keyword is manually chosen as all-
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zero keyword, unless it is specified as something else.  Other parameters, such as 

magic words, are also not changed and same as the original code. The intervals 

explained in section 5.2.1 are used for the analysis. 

In Fig. 5.8 (a) and Fig. 5.8 (b), AWD curves of 1-round RC6 are given for 

different error bit positions i at the input vector. For the first round in the intervals of i 

Є {(1..31), (64..95)} the resemblance parameter (Ri) is below 0.001 and if a single bit 

of the plaintext is changed, first round of RC6 changes less than 10 bits of the 

ciphertext but the change is mostly around 3 bits. Besides, for the first round in the 

intervals of  i Є {(32..63), (96..127)} the resemblance parameter (Ri) is less than 

0.004 and if a single bit of the plaintext is changed, first round of RC6 changes less 

than 48 bits of the ciphertext and more importantly the change is varies around 25 to 

32 bits. 

In Fig. 5.8 (c) and Fig. 5.8 (d) AWD curves of 2-rounds of RC6 are given for 

different error bit positions i at the input vector. For the second round in the intervals 

of i Є {(1..31), (64..95)} the Resemblance Parameter (Ri) is below 0.0015 and if a 

single bit of the plaintext is changed, first round of RC6 changes less than 50 bits of 

the ciphertext and the change is mostly around 28 bits. Besides, for the first round in 

the intervals of i Є {(32..63), (96..127)} the resemblance parameter (Ri) varies from 

0.280 to 0.980 and if a single bit of the plaintext is changed, 2-rounds of RC6 changes 

less than 82 bits of the ciphertext and more importantly the change is varies around 

55 to 63 bits. There is significant performance improvements in the histograms but 

the difference between the intervals can be observed clearly. Notice that between the 
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intervals i Є {(32..63), (96..127)} AWD curves become very similar to the desired 

curve given in Fig. 4.1. 

 

 

Figure 5.8 Avalanche weight distribution curves of RC6 for the first and 

second round (r=1, r=2) and chosen error bit positions (i), which represents different 

cases 

 

In Fig. 5.9 (a) and Fig. 5.9 (b) AWD curves of 3-rounds of RC6 are given for 

different error bit positions i at the input vector. For the third round in the intervals of 
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i Є {(1..31), (64..95)} the resemblance parameter (Ri) is below 0.600 and if a single 

bit of the plaintext is changed, third round of RC6 changes less than 85 bits of the 

ciphertext but the change is mostly around 58 bits. Besides, for the third round in the 

intervals of  i Є {(32..63), (96..127)} the resemblance parameter (Ri) is higher than 

0.004 and if a single bit of the plaintext is changed, 3-rounds of RC6 changes less 

than 88 bits of the ciphertext and more importantly the change is varies around 64 

bits. 

It can be observed that between the intervals i Є {( 32..63), (96..127)} the 

AWD curves of RC6 give the desired diffusion characteristics, on the other hand this 

result can not be observed in the other intervals and if it is to be compared with RC5 

it is clear that RC5 has better avalanche characteristics within the same round.  

 

 

Figure 5.9 Avalanche weight distribution curves of RC6 for the third round 

(r=3) and chosen error bit positions (i), which represents different cases 
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5.2.3 Resemblance Parameter for RC6 Cipher 

Resemblance parameters (Ri) described by (4.4) are obtained by finding the 

absolute difference between the AWD curves of RC6 and the binomial distribution, 

as shown in (4.3). Indeed resemblance parameter variations according to different bit 

positions i reveals the intervals that have the same avalanche characteristics. The 

histograms are sketched for the first, second, third and fourth rounds of RC6 Cipher. 

As can be seen from the figures below: the characteristics of RC6 Cipher gives better 

results within the interval i Є {(32..63), (96..127)}. The AWD curves are sketched 

according to the steps given in Chapter 4. All of the curves are sketched with the 

parameters N = 10000 (number of sample plaintexts), all-zero keyword, 128 bits of 

plaintext and 128 bits of keyword.  

Notice that the interval on Y-axis of Fig. 5.10 (a) and Fig. 5.10 (d) is different 

from the others to focus on the characteristic detailed. 
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Figure 5.10 Resemblance parameter curves of RC6 for different rounds (r): a) 

r=1 b) r=2 c) r=3 d) r=4 

 

As can be seen from the above figures after 4 rounds RC6 algorithm becomes 

invulnerable to the 1-bit changes in the plaintext values, i.e. Ri value is nearly equal 

to 1. 

There is an important issue to be noted when the figures are investigated 

detailed, for 2-rounds of RC6 the Ri curve is such stepped-saw tooth waveform 

between the intervals i Є {(32..63), (96..127)} and for 3-rounds of RC6 in these 
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intervals the Ri value is nearly equal to 1 where for the other intervals Ri value is 

equal to nearly 0.55. This shows that the bits in the interval intervals i Є {(32..63), 

(96..127)} are less vulnerable to diffusion based cryptanalytic attacks. Indeed this 

result can also be revealed by examining the encryption algorithm of RC6. 

It is clear that these bits correspond to the bits of A and C which are two of the 

four w-bit registers. And also the B and D registers are not too much changed in the 

encryption algorithm, only operation is the subtraction of secret key register’s 0th
 and 

1st
 indexed values from these registers. Furthermore the operations, quadratic function 

and data-dependent shifting, which increase the complexity of algorithm are not 

applied to the registers B and D. On the other hand the registers A and C are exposed 

to data-dependent shifting where the value of shift is found by quadratic function. 

5.3 Avalanche Criteria and Derivations Applied to Twofish Cipher 

5.3.1 Avalanche Criterion for Twofish Cipher 

In this section, the avalanche characteristics of Twofish cipher are investigated 

and avalanche curves are sketched according to the steps given in Chapter 4. The 

avalanche curves of Twofish are obtained by counting the number of changes at each 

position of the round output vector, when a specific plaintext bit at position i if 

complemented for a set of N = 10000 different plaintexts. The keyword is manually 

chosen as all-zero keyword, unless it is specified as something else. For Twofish 

algorithm tow intervals can be identified for the position of the complemented input 
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bit, i.e. error bit where the avalanche behavior is similar. These are intervals are found 

as i Є [1..63], [64..127]. 

While sketching these curves it is observed that the number of average change 

of avalanche variable of Twofish cipher is very near to zero so there is no need to 

sketch the characteristics for the first round.  

In Fig. 5.11 (a), Fig. 5.11 (b), Fig. 5.11 (c), Fig. 5.11 (d) the avalanche curves 

of 2-round Twofish cipher are sketched for different error positions i at the input 

vector. The average number of change of avalanche variable 2500 and 5000 in 

intervals [1..63] and [64..127] respectively. This is said to be a better result from RC6 

Cipher because almost 64 avalanche variables has number of changes near to ideal.  

In Fig. 5.12 (a), Fig. 5.12 (b), Fig. 5.12 (c), Fig. 5.12 (d), the avalanche curves 

for 3-round Twofish cipher are sketched. Its waveform is similar to 2-round Twofish. 
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Figure 5.11 Avalanche curves of Twofish for the second round (r=2) and 

chosen error bit positions (i), which represents different cases 
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Figure 5.12 Avalanche curves of Twofish for the third round (r=3) and 

chosen error bit positions (i), which represents different cases 

 

5.3.2 AWD Test for Twofish Cipher 

The AWD curves of Twofish are obtained by calculating the hamming weight 

of the round output vector, when a specific plaintext bit at position i if complemented 

for a set of N = 10000 different plaintexts. The keyword is manually chosen as all-
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zero keyword, unless it is specified as something else. The intervals explained in 

section 5.2.1 are used for the analysis. 

Differing from other studied cipher algorithms for the first round of Twofish 

the AWD curves resemble to a line of origin 0 so there is no need to sketch the figure. 

On the other hand, as shown in Fig. 5.13 (a), 2-rounds Twofish Cipher has better 

performance than the others when observed in whole 128-bit wide. 

In Fig. 5.13 (a) and Fig. 5.13 (b) AWD curves of 2-rounds and 3-rounds of 

Twofish are given for different error bit positions i at the input vector. For the second 

and third rounds in the interval of [1..63] the resemblance parameters (Ri) are below 

0,0025 and if a single bit of the plaintext is changed, first round of Twofish changes 

less than 51 bits of the ciphertext and the change is mostly around 34 bits. Besides, 

for the second and third rounds in the interval of [64..127] the resemblance parameter 

(Ri) is higher than 0.920 and if a single bit of the plaintext is changed, second and 

third rounds of Twofish changes less than 88 bits of the ciphertext and more 

importantly the change is varies around 64 bits. 
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Figure 5.13 Avalanche weight distribution curves of Twofish for second 

round (r=2) and chosen error bit positions (i), which represents different cases  
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Figure 5.14 Avalanche weight distribution curves of Twofish for third round 

(r=3) and chosen error bit positions (i), which represents different cases  

 

5.3.3 Resemblance Parameter Analysis Applied to Twofish Cipher 

An avalanche criteria derivative, resemblance parameters (Ri) of Twofish are 

obtained by finding the absolute difference between the AWD curves of Twofish and 

the binomial distribution. Indeed resemblance parameter variations according to 

different bit positions i reveals the intervals that have same avalanche characteristics. 
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The histograms are sketched for second, third and fourth rounds of Twofish Cipher. 

As can be seen from the figures below: the characteristics of Twofish gives better 

results within the interval i Є (64..127). The AWD curves are sketched according to 

the steps given in Chapter 4. All of the curves are sketched with the parameters N = 

10000 (number of sample plaintexts), all-zero keyword, 128 bits of plaintext and 128 

bits of keyword.  

As in RC5 Cipher these curves are the origin of the idea that we should 

investigate the AWD curves for different regions.  

Notice that the interval on Y-axis of Fig. 5.15 (c) is different from the others 

to focus on the characteristic detailed. 

 

Figure 5.15 Resemblance parameter curves of Twofish for different rounds 

(r): a) r=2 b) r=3 c) r=4  
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As can be seen from the above figures after 4 rounds Twofish algorithm 

becomes invulnerable to the 1-bit changes in the plaintext values, i.e. Ri value is 

nearly equal to 1. 

But there is an important issue to be noted when the figures are investigated 

detailed, for 2-rounds and 3-rounds the Ri values rises from around 0 to around 1 after 

the index 63. This shows that these bits are less vulnerable to diffusion based 

cryptanalytic attacks. Indeed this result can also be revealed by examining the 

encryption algorithm of Twofish. In each round the value of the first 2 words are the 

same with the previous last 2 words. This fact is clear from Fig. 2.3. 

The resemblance parameter of the AWD curves of RC5, RC6 and Twofish to 

ideal binomial curve are summarized in the following tables. 

 

Table 5.1 Resemblance parameter (Ri) of RC5 for different error vector 

bits (i) 

Location of the 

plaintext change, i 

Range of Ri at 

the 1st round 

Range of Ri at 

the 2nd round 

Range of Ri at 

the 3rd round 

1-35 0,0220-0,0380 0,4450-0,5220 0,8550-0,9200 

36-40 0,9820-09690 0,9780-0,9850 0,9860 

41-64 0,029-0,0400 0,552-0,555 0,9200-0,9310 
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Table 5.2 Resemblance parameter (Ri) of RC6 for different error vector 

bits (i) 

Location of the 

plaintext change, i 

Range of Ri at 

the 1st round 

Range of Ri at 

the 2nd round 

Range of Ri at 

the 3rd round 

1-35 0 0,0010-0,0020 0,5840-0,5990 

36-63 0.0001-0,0030 0,309-0,815 0,9740-0,9770 

64-95 0 0,0010-0,0020 0,571-0,574 

96-128 0,0001-0,0030 0,182-0,682 0,9730-0,9780 

  

Table 5.3 Resemblance parameter (Ri) of Twofish for different error 

vector bits (i) 

Location of the 

plaintext change, i 

Range of Ri at 

the 1st round 

Range of Ri at 

the 2nd round 

Range of Ri at 

the 3rd round 

1-63 0 0,0010-0,0025 0,0010-0,0025 

64-127 0 0,9250-0,9450 0,8650-0,9280 

 

5.4 Nonlinearity Measure of Twofish Cipher 

Nonlinearity value of Twofish is found by finding the minimum distances 

between all affine functions and 2n possible linear combinations of the output bits. In 

this section the graphical results of nonlinearity criterion are given for the 8x8 S-

boxes of Twofish Cipher. Also the nonlinearity values of permutation boxes of 
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Twofish are calculated because these permutation boxes form the “heart” of the S-

boxes (refer to Fig. 2.5). The two boxes q0 and q1 are simple 8 by 8 permutations. 

Their algorithms are the same but only their look-up tables given by (2.9) and (2.10) 

are different from each other. Although one may think that such small difference in 

the lookup tables does not affect nonlinearity values much; this is not the case, and 

the nonlinearity of q0 is found as 82, whereas the nonlinearity of q1 is 72. The S-boxes 

of the Twofish algorithm which employ q0 and q1 have key-dependent coefficients as 

indicated by the elements li,j in (2.7). So nonlinearity values of S-boxes are calculated 

for 100 random keywords to examine the effect of the keywords. After evaluating the 

nonlinearity values of the 8x8 S-boxes of Twofish, the distribution of the nonlinearity 

values for 100 keywords corresponding to 100 random choices of the coefficients li,j 

in (2.7) is sketched.  

In Fig. 5.16 (a), Fig. 5.16 (b), Fig. 5.16 (c), Fig. 5.16 (d), the nonlinearity 

distributions of S-boxes of Twofish are given. Although the number of occurrences of 

nonlinearity values is different from each other the curves are similar to each other 

and the average of non-linearity values is almost same for different keywords. 
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Figure 5.16 Nonlinearity of S-boxes of Twofish: a) S-box0 b) S-box1 c) S-

box2 d) S-box3 

 

After sketching the nonlinearity values of S-boxes of Twofish individually, the 

distribution of total nonlinearity values of the four S-boxes is sketched over 400 

random keywords. By that observation, the effect of a single keyword on all S-boxes 

is investigated and the question whether or not the S-boxes compensate each others’ 

nonlinearity values is tried to be answered. In this experiment the total nonlinearity of 

S-boxes of Twofish for the same keyword is found. The aim is to find weak keys that 

cause the minimum nonlinearity value while the nonlinearity values of S-boxes of 
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Twofish are summed for each keyword. In Fig.5.17 through Fig. 5.19 the non-

linearity distribution of four S-boxes is given for three set of 400 random keywords. 

The total nonlinearity values of the S-boxes are divided by four to find the average to 

observe the similarities between the nonlinearity values of individual S-boxes more 

clearly. 
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Figure 5.17 Nonlinearity values of S-boxes of Twofish (Average: 81,215) 
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Figure 5.18 Nonlinearity values of S-boxes of Twofish (Average: 81,02625) 
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Figure 5.19 Nonlinearity values of S-boxes of Twofish (Average: 81,0625) 

 

As the above figures state, there may be weak and strong keywords but most 

often the nonlinearity is around 81 for different keywords. From (4.19) it can be 

calculated that for n=8 if S-boxes of Twofish were perfectly nonlinear, the 

nonlinearity would be 120. The highest nonlinearity achieved for n=8 balanced 

functions is 116, and 8x8 S-box of Rijndael has a nonlinearity of 112. For Twofish, 

highest value is 88.   

5.5 Comparison of Avalanche Criteria with NIST Statistical Test 

Suite 

Randomness testing of AES candidates was based on NIST Statistical Test 

Suite [24] which consists of 16 core statistical tests. These tests are explained briefly 

in the following section, to form a basis for comparison with our results. 
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5.5.1 Description of the Statistical Tests 

Frequency Test: The purpose of this test is to determine whether the number 

of ones and zeros in a sequence are approximately the same as would be expected for 

a truly random sequence. 

Block Frequency Test: The purpose of this test is to determine whether the 

frequency of m-bit blocks in a sequence appears as often as would be expected for a 

truly random sequence. 

Cumulative Sums Forward (Reverse) Test: The purpose of this test is to 

determine whether the maximum of the cumulative sums in a sequence is too large or 

too small; indicative of too many ones or zeroes in the early (late) stages. 

Runs Test: The purpose of this test is to determine whether the number of 

runs of ones and zeros of various lengths is as expected for a random sequence. In 

particular, this test determines whether the oscillation between such substrings is too 

fast or too slow. 

Long Runs of Ones Test: The purpose of this test is to determine whether the 

distribution of long runs of ones agrees with the theoretical probabilities. 

Rank Test: The purpose of this test is to determine whether the distribution of 

the rank of 32x32 bit matrices agrees with the theoretical probabilities. 

Spectral (Discrete Fourier Transform) Test: The purpose of this test is to 

determine whether the spectral frequency of the binary sequence agrees with what 

would be expected for a truly random sequence. 
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Non-periodic Templates Test: The purpose of this test is to determine 

whether the number of occurrences for a specified nonperiodic template agrees with 

the number expected for a truly random sequence. 

Overlapping Template Test: The purpose of this test is to determine whether 

the number of occurrences for a template of all ones agrees with what is expected for 

a truly random sequence. 

Universal Statistical Test: The purpose of this test is to determine whether a 

binary sequence does not compress beyond what is expected of a truly random 

sequence. 

Approximate Entropy Test: The purpose of this test is to compare the 

frequency of overlapping blocks of two consecutive/adjacent lengths (m and m+1) 

against the expected result for a normally distributed sequence. In short, it determines 

whether a sequence appears more regular than is expected from a truly random 

sequence. 

Random Excursion Test: The purpose of this test is to examine the number 

of cycles within a sequence and determine whether the number of visits to a given 

state, [-4, -1] and [1, 4], exceeds the expected for a truly random sequence. 

Random Excursion Variant Test: The purpose of this test is to determine if 

the total number of visits to states, between [-9, -1] and [1, 9] exceeds the expected 

for a truly random sequence.  
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Serial Test: The purpose of this test is to determine whether the number of 

occurrences of m-bit overlapping patterns is approximately the same as would be 

expected for a random sequence. 

Lempel-Ziv Complexity Test: The purpose of this test is to determine 

whether or not the sequence compresses no more than a truly random sequence. 

Linear Complexity Test: The purpose of this test is to determine whether or 

not the sequence is complex enough to be considered truly random. 

5.5.2 Statistical Test Results and Comparison with Avalanche Criteria 

These sixteen tests applied under different parameter inputs, can be viewed as 

189 statistical tests [36], while some of the tests are repeated many times by changing 

the parameters. Table 5.4 gives the indices of the applied 189 tests, and should be 

used as reference for the horizontal axes of Fig. 5.20 and 5.21  

 

Table 5.4 Breakdown of the 189 statistical tests applied during randomness 

test applied by J. Soto [36] 

Statistical Test No. of P-
values Test ID Statistical Test No. of P-

values Test ID 

 Monobit 1 1  Periodic Template 1 157 

 Block Frequency 1 2  Universal Statistical 1 158 

 Cusum 2 3-4  Approximate Entropy 1 159 

 Runs 1 5  Random Excursions 8 160-167 

 Long Runs of Ones 1 6  Random Excursions Variant 18 168-185 

 Rank 1 7  Serial 2 186-187 
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Table 5.4 cont’d Breakdown of the 189 statistical tests applied during 

randomness test applied by J. Soto [36] 

Spectral DFT 1 8  Lempel-Ziv Compression 1 188 

 Aperiodic Templates 148 9-156  Linear Complexity 1 189 

 

 

Within these 16 core tests, Frequency (Monobit) Test, Frequency Test within 

a Block, Runs Test, Test for the Longest Run of Ones in a Block are mostly related 

with avalanche criteria studied in this thesis. In avalanche weight distribution 

criterion, the effect of 1 bit changes in the plaintext on the ciphertext are investigated, 

and the weight of avalanche vector, which is indeed the number of ones in the 

sequence, is found. As described in the preceding section the indicated tests are also 

investigating the number of ones in the sequence. As a result comparing the results of 

these tests with AWD criterion results will be convenient. 

 For Twofish, by the end of the second round, the output appears to be random 

for these 4 tests, but according to the avalanche criterion and avalanche weight 

distribution criterion, it is clear that Twofish meets the conditions within the fourth 

round. So it seems that if the AWD test of this study was used as the 190th test, 

Twofish would fail to pass it until the end of the fourth round. 
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 Figure 5.20 Results of 189 statistical tests applied to Twofish, first result on 

top-left refers to the end of the second round, and others refer to the outputs of the 

fourth, sixth and eighth rounds, respectively. 

 

 The statistical test results for RC6 seem to be more similar to the results 

obtained from this study. As can be observed from Fig. 5.21. RC6 satisfies the 

randomness at the end of fourth round. This result is also the same for AWD 

criterion, where the AWD curves of RC6 are nearly identical to the ideal binomial 

distribution function within the fourth round. 
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 Figure 5.21 Results of 189 statistical tests applied to RC6, where the first 

result on top-left refers to the end of the first round, and others refer to the outputs of 

the second, third and fourth rounds, respectively. 
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CHAPTER 6  

CONCLUSION 

In this thesis, two finalists of the AES (Advanced Encryption Standard) 

contest, RC6 developed by Rivest et al, Twofish proposed by Schneier et al, and 

preceding algorithm of RC6 cipher, RC5, are studied. The strength of ciphers to 

cryptanalytic attacks is measured according to different criteria. The studied 

evaluation criteria are the avalanche criterion and its derivations. After the 

implementation of the algorithms and the test procedures, they are compared with 

each other. 

Firstly, RC5 algorithm is analyzed according to the avalanche criterion and 

the avalanche weight distribution criterion. It is concluded that RC5 becomes random 

at the end of the third round. Resemblance parameters in Fig. 5.5 show that RC5 is at 

least 85% similar to the ideal case after the third round, and the similarity is more 

than 97%, after the fourth round.  
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Secondly, RC6 algorithm is analyzed and RC6 seems to be random after the 

fourth round. Fig 5.10 shows that the resemblance of RC6 avalanche vectors to an 

ideal random sequence may be as low as 60% at the end of the third round, but it 

becomes more than 97% at the end of fourth round.  

Thirdly, Twofish algorithm is analyzed and similar to RC6; Twofish seems to 

be random at the fourth round according to avalanche criteria. Fig. 5.15 and Table 5.3 

indicate that the resemblance of Twofish avalanche vectors to a true random sequence 

is as low as 0.1% after fourth round, but it quickly increases to more than 97.3% at 

the end of the fourth round. 

Finally, the nonlinearities of the S-boxes of Twofish cipher are calculated. The 

nonlinearity of the permutation boxes are found as 82 and 72 for the boxes q0 and q1 

respectively. The nonlinearity distributions of four 8x8 S-boxes are computed over 

many different sets of keys. Since these S-boxes have key dependent coefficients, 

their nonlinearities change in the range [66, 88] for different keys, the average value 

being around 80 or 82. Although such a nonlinearity parameter is much less than 

nonlinearity of Rijndael S-box, which is 112, one can still argue that dynamic 

behavior of key dependent S-boxes may increase the security of Twofish. 

The most important conclusion of this thesis study is the fact that, although 

NIST results given in Fig. 5.20 assume randomness of Twofish at the end of the 

second round, the avalanche criteria that we use, indicate that second round outputs 

are completely nonrandom, especially when a bit change is made in the first part of 

the plaintext (for i=1,…,63) as observed form Fig. 5.15. Complete randomness 
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according to our tests can be achieved at the end of the fourth round, where the 

avalanche vectors of Twofish become similar to random vectors, with a resemblance 

parameter greater than 97.3%. The difference between NIST results and ours, is most 

probably coming from the difference between the preparation methods of the test 

data. Among the data types of NIST [36], the “plaintext avalanche” type is the kind 

which is the most similar one to our data type. However, there is still a large 

difference: NIST data is prepared considering all input bit differences for i=1,…,128 

for a single plaintext, followed by thousands of other plaintexts, whereas our data is 

prepared considering a single input bit difference (say i=1) for thousands of 

plaintexts. After the test is performed i is incremented by 1 and another set of data is 

prepared using thousands of plaintexts. NIST test data of “plaintext avalanche” type 

can be considered as an “average” over the data types used in this study; therefore it 

looses some details related to specific values of i. Future work, we think that NIST 

tests and our tests should be compared for exactly the same data types. We also 

propose our data type as an additional data type for NIST Statistical Test Suite. 
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