

PROPAGATION CHARACTERISTICS OF RC5, RC6 AND TWOFISH

CIPHERS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

SAVAŞ ARIKAN

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF ELECTRICAL AND ELECTRONICS

ENGINEERING

DECEMBER 2003

 ii

Approval of the Graduate School of Natural and Applied Sciences

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

Examining Committee Members

 Prof. Dr. Canan ÖZGEN

Director

 Prof. Dr. Mübeccel DEMİREKLER

Head of Department

Assoc. Prof. Dr. Melek D. YÜCEL

 Supervisor

Prof. Dr. Yalçın TANIK (Chairman)

Prof. Dr. Murat AŞKAR

Prof. Dr. Kemal LEBLEBİCİOĞLU

Assoc. Prof. Dr. Melek D. YÜCEL

MSc. Özgür İNCE

 iii

ABSTRACT

PROPAGATION CHARACTERISTICS OF RC5, RC6 AND TWOFISH

CIPHERS

Arıkan, Savaş

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Melek D. Yücel

December 2003, 117 pages

In this thesis, two finalists of the AES (Advanced Encryption Standard)

contest, RC6 developed by Rivest et al, Twofish proposed by Schneier et al, and

preceding algorithm of RC6 cipher, RC5, are studied. The strength of ciphers to

cryptanalytic attacks is measured according to different criteria. The studied

evaluation criteria are the avalanche criterion and its derivations. After the

 iv

implementation of the algorithms and the test procedures, they are compared with

each other.

Different test criteria, including avalanche criterion, avalanche weight

distribution (AWD) for randomness of RC5, RC6 and Twofish algorithms are

applied; and the S-boxes of the Twofish algorithm are analyzed according to

nonlinearity criterion. The avalanche criteria results of RC6 and Twofish are

compared with NIST (National Institute of Standards and Technology) Statistical Test

Suite results.

Keywords: Block Ciphers, RC5, RC6, Twofish, Avalanche Criteria,

Nonlinearity Measure.

 v

ÖZ

RC5, RC6 VE TWOFISH ŞİFRELERİNİN YAYILIM ÖZELLİKLERİ

Arıkan, Savaş

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Melek D. Yücel

Aralık 2003, 117 sayfa

Bu tezde, AES (Gelişmiş Şifreleme Standardı) yarışmasının finalistlerinden

ikisi, RC6 Rivest ve arkadaşlarının geliştirdiği şifre, Twofish Schneier ve

arkadaşlarının önerdiği şifre, ve ayrıca RC6 şifresinin öncül algoritması olan RC5

şifresi çalışıldı. Bu şifrelerin kriptografik ataklara karşı dayanıklılığı farklı ölçütler ile

ölçüldü. Çalışılan ölçütler “Çığ Kriteri” ve türevleridir. Algoritmalar ve test

prosedürleri gerçeklendikten sonra, aralarında karşılaştırıldılar.

 vi

RC5, RC6, ve Twofish algoritmalarının rastlantısallıkları için farklı test

kriterleri; çığ kriteri, “Çığ Ağırlık Dağılımı” (ÇAD) uygulandı ve Twofish

algoritmasının yerleşim kutuları doğrusal olmama ölçütlerine göre analiz edildi. RC6

ve Twofish şifrelerinin çığ kriteri sonuçları ile NIST (Ulusal Standartlar ve Teknoloji

Enstitüsü) İstatiksel Test Süit sonuçları ile karşılaştırldı.

Anahtar Kelimeler: Blok Şifreler, RC5, RC6, Twofish, Çığ Kriteri, Doğrusal

Olmama Ölçütü.

 vii

ACKNOWLEDGEMENTS

 I would like to express my sincere gratitude to my supervisor Assoc. Prof. Dr.

Melek D. YÜCEL for her patient supervision, guidance and helpful suggestions.

I wish to thank ASELSAN Inc. for facilities provided for the completion of

this thesis.

 I would like to thank my family and my friends who have put up with me

during these years for their continuous support and understanding.

 Finally, I offer my special thanks to my fiancée, Menekşe, for her unshakable

faith in me and her endurance with me of this long study.

 viii

TABLE OF CONTENTS

ABSTRACT …………………………………………………………………………………….. iii

ÖZ ………………………………………………………………………………………………... v

ACKNOWLEDGEMENTS …………………………………………………………………… vii

TABLE OF CONTENTS ……………………………………………………………………… viii

LIST OF TABLES …………...………………………………………………………………… xi

LIST OF FIGURES …………………………………………………………………………… xii

CHAPTER:

CHAPTER 1... 1

1.1 BASICS OF CRYPTOGRAPHY ... 1

1.2 BLOCK CIPHERS... 2

1.3 AIM AND OUTLINE OF THESIS .. 7

CHAPTER 2... 9

2.1 AES FINALIST ALGORITHMS ... 11

 ix

2.1.1 Overview of the Finalists... 12

2.1.2 Evaluation Criteria and Results .. 15

2.2 RC5 CIPHER... 17

2.2.1 Key Expansion of RC5... 19

2.2.2 Encryption of RC5... 22

2.2.3 Decryption of RC5... 23

2.2.4 Overview of Cryptanalytic Results for RC5 .. 23

2.3 RC6 ALGORITHM... 25

2.3.1 Key Schedule ... 27

2.3.2 Encryption of RC6... 29

2.3.3 Decryption of RC6... 32

2.3.4 Status of RC6... 33

2.4 TWOFISH ALGORITHM ... 33

2.4.1 Main Functions of Twofish Algorithm... 40

2.4.2 Sub-functions of Twofish Algorithm.. 46

2.4.3 Cryptanalysis of Twofish... 50

CHAPTER 3... 52

3.1 CRYPTANALYSIS TECHNIQUES IN BRIEF .. 52

3.2 STRENGTH AND CRYPTANALYSIS... 54

3.3 LINEAR CRYPTANALYSIS ... 55

3.4 DIFFERENTIAL CRYPTANALYSIS .. 56

CHAPTER 4... 59

4.1 AVALANCHE CRITERIA .. 59

4.1.1 Avalanche Weight Distribution ... 60

4.1.2 Avalanche Criteria Analysis Procedures .. 63

 x

4.2 NONLINEARITY MEASURE ... 66

4.2.1 Basic Definitions of Nonlinearity Criteria .. 66

4.2.2 Nonlinearity of S-boxes ... 71

4.2.3 Nonlinearity Criterion... 72

CHAPTER 5... 74

5.1 AVALANCHE CHARACTERISTICS OF RC5 CIPHER .. 74

5.1.1 Avalanche Curves of RC5 Cipher ... 74

5.1.2 Avalanche Wight Distribution (AWD) Curves of RC5 Cipher 77

5.1.3 Resemblance Parameters for RC5 Cipher .. 80

5.2 AVALANCHE CHARACTERISTICS OF RC6 CIPHER .. 82

5.2.1 Avalanche Criterion for RC6 Cipher .. 82

5.2.2 Avalanche Wight Distribution (AWD) Curves of RC6 Cipher 84

5.2.3 Resemblance Parameter for RC6 Cipher .. 88

5.3 AVALANCHE CRITERIA AND DERIVATIONS APPLIED TO TWOFISH CIPHER 90

5.3.1 Avalanche Criterion for Twofish Cipher... 90

5.3.2 AWD Test for Twofish Cipher ... 93

5.3.3 Resemblance Parameter Analysis Applied to Twofish Cipher 96

5.4 NONLINEARITY MEASURE OF TWOFISH CIPHER... 99

5.5 COMPARISON OF AVALANCHE CRITERIA WITH NIST STATISTICAL TEST SUITE 103

5.5.1 Description of the Statistical Tests .. 104

5.5.2 Statistical Test Results and Comparison with Avalanche Criteria...................... 106

CHAPTER 6... 110

REFERENCES…………………………………………………………………………..…113

 xi

LIST OF TABLES

TABLE:

2.1. AES Round 1 Candidate Algorithms ...………………………………………….….. 9

2.2. Evaluation Results of AES Finalist Algorithms ………………………………….…15

5.1. Behavior of RC5 for different error vector bits (i) ………………………………… 98

5.2. Behavior of RC6 for different error vector bits (i) ………………………………… 99

5.3. Behavior of Twofish for different error vector bits (i) …………………………….. 99

5.4 Breakdown of the 189 statistical tests applied during randomness test applied by J. Soto

[36]………………………………………………………………………….….… 106

 xii

LIST OF FIGURES

FIGURES:

2.1. One Round of RC6 Encryption Algorithm ……………………………..…………. 30

2.2. Feistel Network…………………………………………………………………….. 35

2.3. Twofish Encryption Algorithm Block ………………………………………..……. 38

2.4. A view of a single round F function (128-bit key)…………………………..………43

2.5. 49 S-box formulation of Twofish algorithm………………………………………... 46

4.1. Binomial Distribution Curve for n = 128 bits ……………………………….…….. 61

5.1. Avalanche curves of RC5 for the first and second round (r=1, r=2) and chosen error bit

positions (i), which represents different cases …………………………………….... 76

5.2. Avalanche curves of RC5 for the third round (r=3) and chosen error bit positions (i),

which represents different cases ………………………………………..………………. 77

5.3. Avalanche weight distribution curves of RC5 for the first and second round (r=1, r=2)

and chosen error bit positions (i), which represents different cases ………………. 79

5.4. Avalanche weight distribution curves of RC5 for the third round (r=3) and chosen error

bit positions (i), which represents different cases …………….………………..…. 80

5.5. Resemblance parameter curves of RC5 for different rounds (r): a) r=1 b) r=2 c) r=3 d)

r=4 ………………………………………………………………….……….……….. 81

5.6. Avalanche curves of RC6 for the first and second round (r=1, r=2) and chosen error bit

positions (i), which represents different cases …………………………………….... 83

 xiii

5.7. Avalanche curves of RC6 for the third round (r=3) and chosen error bit positions (i),

which represents different cases ………………………………………..……………..... 84

5.8. Avalanche weight distribution curves of RC6 for the first and second round (r=1, r=2)

and chosen error bit positions (i), which represents different cases ………………..86

5.9. Avalanche weight distribution curves of RC6 for the third round (r=3) and chosen error

bit positions (i), which represents different cases …………….…………………... 87

5.10. Resemblance parameter curves of RC6 for different rounds (r): a) r=1 b) r=2 c) r=3 d)

r=4 ………………………………………………………………….………….…….. 89

5.11. Avalanche curves of Twofish for the second (r=2) and chosen error bit positions (i),

which represents different cases …………...……………………………...…………..... 92

5.12. Avalanche curves of Twofish for the third round (r=3) and chosen error bit positions (i),

which represents different cases ……………………………..……………………... 93

5.13. Avalanche weight distribution curves of Twofish for the second round (r=2) and chosen

error bit positions (i), which represents different cases……….………………....95

5.14. Avalanche weight distribution curves of Twofish for the third round (r=3) and chosen

error bit positions (i), which represents different cases……….………………....96

5.15. Resemblance parameter curves of Twofish for different rounds (r): a) r=1 b) r=2 c) r=3

………………………………………………………………..……………………. 97

5.16. Nonlinearity of S-boxes of Twofish a) S-box0 b) S-box1 c) S-box2 d) S-box3

……….....…………………………………………......................…………………….. 101

5.17. Nonlinearity values of S-boxes of Twofish (Average: 81,215) ………………..... 102

5.18. Nonlinearity values of S-boxes of Twofish (Average: 81,02625) …….……….... 102

5.19. Nonlinearity values of S-boxes of Twofish (Average: 81, 0625) ……………...…103

5.20. Results of 189 statistical tests applied to Twofish……………………….…….... 108

5.21. Results of 189 statistical tests applied to RC6…………………….…………….. 109

 1

CHAPTER 1

INTRODUCTION

1.1 Basics of Cryptography

Cryptography is Greek word for "hidden writing". It is the art and science of

transforming information into an intermediate form which secures that information

while in storage or in transit.

Cryptography includes; secrecy (confidentiality, or privacy, or information

security), message authentication (integrity), no repudiation (the inability to deny

sending a message), access control (user or source authentication), availability

(keeping security services available).

Modern cryptography generally depends upon translating a message into one

of an astronomical number of different intermediate representations, or ciphertexts, as

selected by a key. If all possible intermediate representations have similar

appearance, it may be necessary to try all possible keys to find the one which

 2

deciphers the message. By creating mechanisms, cipher algorithms, with an

astronomical number of keys, this approach can be made impractical.

A cipher algorithm includes an encryption scheme, which has five ingredients:

plaintext and ciphertexts, encryption and decryption algorithms and secret keys. The

data that is encrypted is called the plaintext, or sometimes cleartext, and it is

encrypted to give the ciphertext. The key is some secret information chosen by those

wishing to communicate. For symmetric ciphers the key is same for both sender and

receiver. Anyone possessing the key can decrypt the encrypted messages and the fact

that both participants have to agree on a secret key before secure transmission can

take place introduces problems. These problems are addressed by the fields of key

management and key distribution.

An encryption scheme is said to be computationally secure if the cost of

breaking the cipher exceeds the value of the encrypted information and the time

required to break the cipher exceeds the useful life-time of the information. Also it

should be noted that security depends on the secrecy of the key, and not on the

secrecy of the algorithm.

1.2 Block Ciphers

Symmetric key algorithms use a single key for encryption and decryption,

which should be shared by two parties who want to communicate secretly. Symmetric

ciphers are divided into two main classes: block ciphers and stream ciphers. Block

ciphers process fixed segments of the input (called the plaintext), and generate output

 3

(called the ciphertext) segments of the same size. The segment size is called the block

length of the cipher. Stream ciphers do not divide the plaintext into segments, they

rather process each input bit continuously. Although several modes of use of a block

cipher allow it to be used as a stream cipher the concise distinction may be indicated

as follows [33]:

Block ciphers operate with a fixed transformation on large blocks of plaintext

data; stream ciphers operate with a time-varying transformation on individual

plaintext digits.

Two important attributes of a block cipher are the size of the key and the size

of the block on which cipher operates, which are chosen at least as 128 bits in recent

algorithms. It should be noted that some modes of use of a block cipher require the

use of an initialization value, IV. The value of IV is often publicly known (since the

security of the cryptosystem does not depend on this value being kept secret) and it is

not considered to be part of the key.

A block cipher which operates on plaintext blocks of size n will be called n-bit

block cipher, and the encryption of plaintext m using the chosen cipher under key k

will be written as Ek(m). Similarly, decryption of the ciphertext c will be denoted by

Dk(c). The decryption function Dk should be chosen as the inverse of the encryption

function Ek ; hence, Dk(Ek(m))=m.

In an iterated block cipher, a complex (but perhaps weak) round function is

used repeatedly, each time taking as input the output from the previous round. The

most familiar example of such a cipher is Data Encryption Standard [23] in 1977, and

 4

the iterated structure in DES has its origins in the Feistel Cipher [8]. Lucifer is

designed by Feistel in early 1970s but firstly implemented and documented by Sorkin

[35]. Lucifer is often mentioned as the starting point for the development of DES.

Some noteworthy block ciphers are given below in brief:

FEAL: The Fast Data Encryption Algorithm (FEAL) was proposed by

Shimizu and Miyaguchi at Eurocrypt ’87 [32]. It was intended to be very efficient

when implemented in software, and was claimed to offer at least as much security as

DES. Unfortunately, the security was soon found to be lacking.

LOKI: LOKI [5] was initially proposed in 1989 by Lawrie Brown, Josef

Pieprzyk, Jennifer Seberry and is a DES-like iterative cipher that operates on 64-bit

blocks and uses a 64-bit key. Its security is based on the use of a large S-box, taking

12 bits and outputting eight, which in turn is based in the use of irreducible

polynomials. Also, developed version, LOKI97 was submitted in AES contest.

CAST: Designed by Adams and Tavares in 1990, CAST [1] is a 64-bit Feistel

cipher. Instead of employing eight fixed S-boxes which map six bits to four, as it is

found in DES, CAST uses four S-boxes map eight bits to 32, and the output of all

four S-boxes is XORed together to produce the output from the round function.

 IDEA: The International Data Encryption Algorithm (IDEA) first appeared as

the Proposed Encryption Standard and was designed by Lai and Massey in 1992 [18].

It is an iterative cipher that operates on 64-bit blocks and uses a 128-bit key. The aim

was to design a block cipher that could be efficiently implemented in both hardware

and software, unlike DES which is primarily suitable for hardware encryption. The

 5

operations used in IDEA are bitwise XOR, addition modulo 216 and multiplication

modulo 216+1, with the value 0 corresponding to 216.

RC2: RC2 [26] was designed by Rivest for RSA Data Security, Inc in March

of 1992. It is a confidential and proprietary cipher and so there are few details that

can be readily disclosed. Like DES it is a 64-bit block cipher but it has a variable key

size. One advantage is that the process of granting export approval for RC2 is greatly

simplified if the key length is restricted to 40 bits, or 56 bits.

SAFER K-64: SAFER K-64 (Secure and Fast Encryption Routine with a Key

of length 64 bits) was first proposed at Cambridge Algorithms Workshop in

December of 1993 [19], by Massey. It is a byte-oriented iterated block cipher

designed for efficient implementation in both software and hardware. It was initially

proposed that six rounds can be used for greater security. Each round consists of a set

of non-linear operations, including two different S-box permutations, which operate

in parallel on each digit of the eight bytes in a block. Two different subkeys of 64 bits

are used in each round. They are derived using the key schedule and introduced

during this non-linear stage. The second part of each round is a series of linear mixing

operations which is termed as Pseudo-Hadamard Transform. At the end of the last

round, the final iteration of the linear transformation is followed by one further partial

round of non-linear transformation using key material.

Skipjack: The first mention of Skipjack [34] came in April of 1994 when the

White House announced a cryptographic initiative. Despite the fact that Skipjack is a

classified algorithm and full details of the algorithm remain secret, the few details that

 6

have been emerged suggest that Skipjack is an iterative block cipher, using 32 rounds

and a key of length 80 bits.

RC5: RC5 is a block cipher designed by Rivest for RSA Data Security, Inc.

Presented at the Leuven Algorithms Workshop in December of 1994 [27]. The cipher

is fully parameterized in that the block size, the key size and the number of rounds

can all vary. A likely version of RC5 is perhaps RC5-32/16/10 where the block size is

64 bits, there are 16 rounds and the key length is 10 bytes. The algorithm begins by

expanding a variable-length key into a set of look-up tables. Then two very simple

operations are used repeatedly to mix in the key and transform data which is called as

data-dependent rotation.

In 1997, National Institute of Standards and Technology (NIST) announced a

contest to an Advanced Encryption Standard (AES) to replace Data Encryption

Standard (DES). 15 algorithms were submitted and within these 15 algorithms, five

finalist algorithms were selected as AES candidates. And finally, Rijndael algorithm

was selected as the new encryption standard October 2, 2000. RC6 and Twofish

ciphers were among the finalist algorithms and these algorithms are analyzed

according to different criteria in this thesis. Besides, RC5 cipher is implemented

because it is the former algorithm of the AES contest finalist, RC6 cipher. The

algorithms of studied ciphers and cryptanalysis of them are given in the following

chapters.

 7

1.3 Aim and Outline of Thesis

In this thesis the main point is to investigate the avalanche characteristics of

Twofish and RC6 ciphers, which are AES contest finalists. To do so, the ciphers are

implemented and then analyzed according to avalanche criterion and avalanche

weight distribution criterion. The results of the analysis are compared with NIST’s

results. Besides, S-boxes of the Twofish cipher are tested according to nonlinearity

criterion.

This thesis is organized as follows. Chapter 2 gives the encryption and

decryption algorithms of the studied block ciphers RC5, RC6, and Twofish. In

Chapter 3, the most known cryptanalysis techniques, linear cryptanalysis [17, 11] and

differential cryptanalysis [4, 11], that have been applied to block ciphers are briefly

reviewed. In Chapter 4, description and methodology of some test criteria that are

used to measure the strength of the ciphers against cryptanalytic attacks are given.

The studied test criteria are avalanche [12], nonlinearity measure [30] and their

derivations.

In Chapter 5 we give the results of avalanche criterion and its derivative,

avalanche weight distribution (AWD) analysis. The resemblance of AWD curves to

ideal binomial distribution is measured by the resemblance parameter, for RC5, RC6

and Twofish ciphers. The comparison of three ciphers is made according to avalanche

criteria. Also in Chapter 5, the nonlinearity of the S-boxes of the Twofish cipher and

the effects of keywords on the nonlinearity measure are investigated. Avalanche

criteria results of RC6 and Twofish algorithms are compared with NIST Statistical

 8

Test Suite in this chapter. Finally, Chapter 6 summarizes the work of the thesis,

giving directions for future research.

 9

CHAPTER 2

MODERN BLOCK CIPHERS

On January 2, 1997, the US National Institute for Security Technologies

(NIST) announced a contest to an Advanced Encryption Standard (AES) to replace

the previous Data Encryption Standard (DES). NIST called for public submissions for

new block ciphers as candidates of the AES algorithm. NIST intended that AES

would be an unclassified, publicly disclosed encryption algorithm, available royalty-

free, worldwide. At a minimum, the algorithm would have to implement symmetric

key cryptography as a block cipher and support a block size of 128 bits and key sizes

of 128, 192, and 256 bits. 15 algorithms were submitted for consideration by August

1998. After expert analysis of the candidates, five finalist algorithms were selected in

1999. The selected algorithms were MARS, RC6, Rijndael, Serpent and Twofish. In

Table 2.1 the semi-finalist 15 algorithms, their submitters, type and cryptanalysis

results of some eliminated ciphers are given.

 10

Table 2.1: AES Round 1 Candidate Algorithms

Country of
Origin

Candidate
Algorithm

Submitter(s) Type Cyrptanalysis

Australia LOKI97

Lawrie Brown, Josef
Pieprzyk, Jennifer

Seberry

Feistel
Network

– Rijmen and Knudsen
– Differential: 256 chosen
plaintexts
– Linear: 256 known
plaintexts

Belgium

RIJNDAEL

Joan Daemen,
Vincent Rijmen

Substitution-
Permutation

Network

Canada

CAST-256

Entrust Technologies,
Inc.

Modified
Feistel

Network

Canada

DEAL

Outerbridge,
Knudsen

Feistel
Network

– 270 chosen ciphertexts,
2121 steps, (Lucks, 128)
– 270, chosen plaintexts,
2121 steps, (Knudsen,
192)
– 256 chosen ciphertexts,
2145 steps, (Lucks, 192)
– Meet in middle, 2224
steps, (Knudsen, 256)

Costa Rica

FROG

TecApro
Internacional S.A.

– Wagner, Ferguson, and
Schneier
– Differential: 258 chosen
plaintext
– Linear: 256 known
plaintexts

France

DFC

Centre National pour
la Recherche
Scientifique

(CNRS)

Feistel
Network

– Weak keys, reduce to 6
round cipher,
prob. 2-64, (Coppersmith)
– Weak keys, pt=ct,
prob. 2-128,
(Coppersmith)

Germany

MAGENTA

Deutsche Telekom
AG

Feistel
Network

– Biham, Biryukov,
Ferguson, Knudsen,
Schneier,
Shamir
– 264 chosen plaintexts,
264 steps
– 233 known plaintexts,
297 steps

Japan

E2

Nippon Telegraph
and Telephone

Corporation

Feistel
Network

 11

 Table 2.1 (cont’d) AES Round 1 Candidate Algorithms

Country of
Origin

Candidate
Algorithm

Submitter(s) Type Cyrptanalysis

USA

HPC

Rich Schroeppel

USA

MARS

IBM

Modified Feistel
Network

USA

RC6

RSA Laboratories

Modified Feistel
Network

USA

SAFER+

Cylink
Corporation

Substitution-
Permutation

Network

– 2 known
plaintexts, 237
memory, 2241
steps,
(256, Kelsey)
– 256 chosen
plaintext
encrypted with 2
keys,
2216 steps, (256,
Kelsey)

USA

TWOFISH

Bruce Schneier,
John Kelsey,

Doug
Whiting, David
Wagner, Chris

Hall, Niels
Ferguson

Feistel Network

UK, Israel,
Norway

SERPENT

Ross Anderson,
Eli Biham, Lars

Knudsen

Substitution-
Permutation

Network

2.1 AES Finalist Algorithms

As mentioned, MARS, RC6, Rijndael, Serpent and Twofish algorithms were

selected as finalists of the contest to AES. In the following section the algorithms are

described briefly and the evaluation criteria and results are given.

 12

2.1.1 Overview of the Finalists

The five finalists shared a number of features. All are iterated block ciphers:

they specify a transformation that is repeated ("iterated") a number of times on the

data block to be encrypted or decrypted. Each iteration is called a round, and the

transformation is called the round function. Each finalist also specifies a method for

generating a series of working keys, also known as subkeys, from the original user

key. The round functions take distinct subkeys as input along with the data block.

For each finalist, the very first and last cryptographic operations mix subkeys

with the data block to prevent an adversary who does not know the keys from even

beginning to encrypt the plaintext or decrypt the ciphertext. Whenever this subkey

mixing does not naturally occur as the initial step of the first round or the final step of

the last round, the finalists specify the subkey mixing as an extra step called pre- or

post-whitening.

Four of the finalists (Rijndael, Serpent, MARS, Twofish) specify substitution

tables, called S-boxes: and three of the finalists (MARS, RC6, Twofish) specify

variations on the Feistel structure. In the classic Feistel structure, half of the data

block is used to modify the other half of the data block, and then the halves are

swapped.

The two finalists that do not use a Feistel structure (Rijndael, Serpent) process

the entire data block in parallel during each round using substitutions and linear

 13

transformations; thus, these two finalists are examples of substitution-linear

transformation networks.

MARS [6] has several layers: key addition as pre-whitening, 8 rounds of un-

keyed forward mixing, eight rounds of keyed forward transformation, 8 rounds of

keyed backward transformation, eight rounds of un-keyed backward mixing, and key

subtraction as post whitening. The 16 keyed transformations are called the

cryptographic core. The un-keyed rounds use two 8x32 bit S-boxes, addition, and the

XOR (exclusive-or) operation. In addition to those elements, the keyed rounds use

32-bit key multiplication, data-dependent rotations, and key addition. Both the mixing

and the core rounds are modified Feistel rounds in which one quarter of the data

block is used to alter the other three quarters. MARS was submitted by IBM.

RC6 [28] is a parameterized family of encryption ciphers that essentially use

the Feistel structure; 20 rounds were specified for the AES submission. The round

function of RC6 uses variable rotations that are regulated by a quadratic function of

the data. Each round also includes 32-bit modular multiplication, addition, XOR, and

key addition. Key addition is also used for pre- and post-whitening. RC6 was

submitted to the AES development effort by RSA Laboratories.

Rijndael [7] is a substitution-linear transformation network with 10, 12 or 14

rounds, depending on the key size. A data block to be encrypted by Rijndael is split

into an array of bytes, and each encryption operation is byte-oriented. Rijndael's

round function consists of four layers. In the first layer, an 8x8 S-box is applied to

each byte. The second and third layers are linear mixing layers, in which the rows of

 14

the array are shifted, and the columns are mixed. In the fourth layer, subkey bytes are

XORed into each byte of the array. In the last round, the column mixing is omitted.

Rijndael was submitted by Joan Daemen (Proton World International) and Vincent

Rijmen (Katholieke Universiteit Leuven).

Serpent [2] is a substitution-linear transformation network consisting of 32

rounds. Serpent also specifies non-cryptographic initial and final permutations that

facilitate an alternative mode of implementation called the bit slice mode. The round

function consists of three layers: the key XOR operation, 32 parallel applications of

one of the eight specified 4x4 S-boxes, and a linear transformation. In the last round,

a second layer of key XOR replaces the linear transformation. Serpent was submitted

by Ross Anderson (University of Cambridge), Eli Biham (Technion), and Lars

Knudsen (University of California San Diego).

Twofish [29] is a Feistel network with 16 rounds. The Feistel structure is

slightly modified using 1-bit rotations. The round function acts on 32-bit words with

four key-dependent 8x8 S-boxes, followed by a fixed 4x4 maximum distance

separable matrix over GF(28), a pseudo-Hadamard transform, and key addition.

Twofish was submitted by Bruce Schneier, John Kelsey, and Niels Ferguson

(Counterpane Internet Security, Inc.), Doug Whiting (Hi/fn, Inc.), David Wagner

(University of California Berkeley), and Chris Hall (Princeton University).

After the finalists were announced, NIST sought further public review and

comment on the algorithms. The comment period ended on May 15, 2000, and NIST

conducted its final review of comments and analyses.

 15

2.1.2 Evaluation Criteria and Results

Evaluation criteria for the new AES algorithm were declared when NIST first

called for submissions in September 1997. The evaluation criteria were divided into

three major categories: security, cost, and algorithm and implementation

characteristics.

Security was the most important factor in the evaluation and encompassed

features such as resistance of the algorithm to cryptanalysis, soundness of its

mathematical basis, randomness of the algorithm output, and relative security

compared with other candidates.

Cost was a second important area of evaluation that encompassed licensing

requirements, computational speed and efficiency on various platforms, and memory

requirements. One of NIST’s goals was for the AES algorithm to be available

worldwide on a royalty-free basis, so public comments were specifically sought on

intellectual property claims and any potential conflicts. The speed of the algorithm on

a variety of platforms needed to be considered, and assessments were made of speed

based on 128, 192 and 256 bit keys. Memory requirements and software

implementations were also important.

The third area of evaluation was algorithm and implementation characteristics

such as flexibility, suitability to hardware and software, and the simplicity (or

complexity) of the algorithm. Flexibility includes the ability of an algorithm to handle

key and block sizes beyond the minimum that must be supported, to be implemented

 16

securely and efficiently in many different types of environments, to be implemented

as a stream cipher or hashing algorithm, and to provide additional cryptographic

services. It must be feasible to implement an algorithm in both hardware and

software, and efficient firmware implementations were an evaluation advantage.

Because analysis and discussion often involved issues in more than one of the

three main criteria, NIST gave most importance to security, and cost and algorithm

characteristics were considered together as secondary criteria.

In October 2000, NIST released its report on the development of an Advanced

Encryption Standard which compared the five Round 2 algorithms in a number of

categories. The table below summarizes the relative scores of the five candidates

(1=low, 3=high):

Table 2.2 Evaluation Results of AES Finalist Algorithms

 MARS RC6 Rijndael Serpent Twofish

General security 3 2 2 3 3

Implementation of security 1 1 3 3 2

Software performance 2 2 3 1 1

Smart card performance 1 1 3 3 2

Hardware performance 1 2 3 3 2

Design features 2 1 2 1 3

 17

NIST recommended adoption of the Rijndael algorithm, and released a draft

Federal Information Processing Standard (FIPS) AES Specification for public review

and comment in February 2000. Final selection of Rijndael was announced in

October 2, 2000. And finally in November 26, 2001 NIST published FIPS 197 as the

announcement of AES. The main reason for this selection can be summarized as

follows [9].

“When considered together, Rijndael’s combination of security, performance,

efficiency, implementability, and flexibility make it an appropriate selection for the

AES.”

In the following part of this chapter detailed descriptions of the algorithms

RC5, RC6 and Twofish are given.

2.2 RC5 Cipher

RC5 [27] is designed by Ronald Rivest for RSA Data Security (now RSA

Security) in December of 1994. It is a parameterized algorithm with a variable block

size, a variable key size, and a variable number of rounds. Allowable choices for the

block size are 32 bits (for experimentation and evaluation purposes only), 64 bits (for

use a drop-in replacement for DES), and 128 bits. The number of rounds can range

from 0 to 255, while the key can range from 0 bits to 2048 bits in size. Such built-in

variability provides flexibility at all levels of security and efficiency.

The heavy use of data-dependent rotations and the mixture of different

operations provide the security of RC5. Two of the most distinguished features of

 18

RC5 are the heavy use of data-dependent rotations and the exceptionally simple

encryption routine. The former feature has been shown to be useful in preventing

certain advanced types of attack, while the latter feature makes RC5 both easy to

implement, and very importantly, more amenable to analysis than many other block

ciphers. In particular, the use of data-dependent rotations helps defeat differential and

linear cryptanalysis.

There are three routines in RC5: key expansion, encryption, and decryption. In

the key-expansion routine, the user-provided secret key is expanded to fill a key table

whose size depends on the number of rounds. The key table is then used in both

encryption and decryption.

RC5 has three important parameters: w (the word size), r (the number of

rounds), b (number of bytes in secret key K). In the encryption algorithm of RC5 the

2w plaintext is divided to two w-bit register using standard little-endian convention:

the first byte occupies the low-order bit positions of register A, and so on, so that the

fourth byte occupies the high-order bit positions of register A, the fifth byte occupies

the low-order bit positions in B, and the eighth (last) byte occupies the high-order bit

positions in B. Then these registers are cyclic-shifted and XOR-ed by them then with

other registers. The key-bits are mixed by cyclic-shifting and XOR processes by the

expanded key array S, which is simply constituted by the magic numbers provided by

Rivest and cyclic-shifting process of the keyword. Within these operations the

registers are always updated according to input data so that the idea of data dependent

cryptography is achieved.

 19

The key expansion, encryption, and decryption routines of RC5 use the

following three primitive operations (and their inverses).

• Addition of words modulo 2w, denoted by “+”.

• Bit-wise XOR of words, denoted by ⊕ .

• Rotation: the rotation of x to the left by y bits is denoted by x <<< y

Note that only the log2(w) low-order bits of y affect this rotation. The

algorithm explained above can be simply modeled as below steps.

2.2.1 Key Expansion of RC5

The key-expansion routine expands the user’s secret key K to fill the expanded

key array S, so that S resembles an array of t = 2 x (r+1) random binary words

determined by K. The key expansion algorithm uses two “magic constants”, and

consists of three simple algorithmic parts.

a Definition of the Magic Constants:

The key-expansion algorithm uses two word-sized binary constants Pw and

Qw. They are defined for arbitrary w as follows:

Pw = Odd ((e–2)2w)

Qw = Odd ((Ø–2)2w)

where

e = 2,718281828459… (base of natural algorithms)

Ø = 1,618033988749… (golden ratio),

 20

And where Odd(x) is the odd integer nearest to x (rounded up if x is an even

integer, although this won’t happen here). For w = 16, 32 these constants are given

below in binary and in hexadecimal.

P16 = 1011011111100001 = b7e1

Q16 = 1001111000110111 = 9e37

P32 = 10110111111000010101000101100011 = b7e15163

Q32 = 10011110001101110111100110111001 = 9e3779b9

b Converting the Secret Key from Bytes to Words:

The first algorithmic step of key expansion is to copy the b-byte secret key

K[0..b–1] into an array L[0..c–1] of c = [b/u] words, where u = w/8 is the number of

bytes/word. This operation is done in natural manner, using u consecutive key bytes

of K to fill up each successive word in L, low order byte to high order byte. Any

unfilled byte positions of L are zeroed. In the case that b = c = 0, c is set to 1 and L[0]

is set to zero. In the following code sample the procedure is given.

c = [max (b, 1)/u]

for i = b – 1 downto 0 do

L [i/u] = (L [i/u] <<< 8) + K[i];

c Initializing the Array S:

The second algorithmic step of key expansion is to initialize array S to a

particular fixed (key-independent) pseudo-random bit pattern, using an arithmetic

 21

progression modulo 2w
 determined by the “magic constants” Pw and Qw. Since Qw is

odd, the arithmetic progression has period 2w. In the following code sample, array S is

initialized by Pw and then all of the entries of the array are found by adding Qw to the

previous entry. Since t = 2x(r+1) binary words are required for r rounds of the

encryption algorithm S is initialized as follows.

S [0] = Pw;

for i = 1 to t –1 do

S[i] = S [i–1] + Qw;

d Mixing in the Secret Key

The third algorithmic step of the key expansion is to mix in the user’s secret

key in three passes over the arrays S (of length t words) and L (of length c words).

More precisely, due to the potentially different sizes of S and L, the larger array will

be processed three times, and the other may be handled more times than three. In the

following code sample temporary registers reg1 contains previous value of S[i] and

reg2 contains previous value of L[j] the values of reg1, reg2 and S[i] are added by

modulo 2w and rotated to left three and then this value is assigned to reg1. Later L[j]

is updated by adding reg1, reg2 and L[j] and rotated to left by the value of reg1 plus

reg2. Then the value of L[j] is assigned to reg2. And this operation is repeated three

times maximum of t or c is reached. The initial values of reg1 and reg2 are S[0] and

L[0] respectively.

 22

i = j = 0;

do 3*max (t, c) times:

S[i] = (S[i] + reg1 + reg2) <<<3;

reg1 = S[i];

L[j] = (L[j] + reg1 + reg2) <<< (reg1 + reg2);

reg2 = L[j];

i = (i +1) mod t;

j = (j + 1) mod c;

2.2.2 Encryption of RC5

Firstly the input block is divided into two w-bit registers A and B and S[0] and

S[1] are added respectively to A and B. The registers A and B are XORed and rotated

to left by the value if B and summed with the even entries of S[i] and this value is

assigned to A. Later, the XORed value of B and A is rotated to left by A and then

summed by odd entries of S[i]. And this value is assigned to B. This routine is

repeated for r rounds. The following code sample gives the explained procedure.

A = A + S[0];

B = B + S[1];

for i = 1 to r do

A = ((A ⊕ B) <<<B) + S[2*i];

B = ((B ⊕ A) <<< A) + S[2*i + 1];

The output is in the registers A and B.

 23

2.2.3 Decryption of RC5

The decryption routine is easily derived from the encryption routine. In this

routine the inverse formulation of encryption routine is processed.

for i = r downto 1 do

B = ((B– S [2*i + 1] >>> A) ⊕ A;

A = ((A– S [2*i] >>> B) ⊕ B;

B = B – S [1];

A = A – S [0];

2.2.4 Overview of Cryptanalytic Results for RC5

Several techniques [14] have been developed for analyzing the security of

block ciphers, including exhaustive key search attack, statistical tests, differential

cryptanalysis and linear cryptanalysis. The last two types of attack, both considered

substantial advances in recent years, are more sophisticated techniques for block

cipher analysis. For differential cryptanalysis which is explained in Chapter 3, the

basic idea is to choose two plaintexts with a certain difference between them so that

the resulting ciphertexts have a difference with a specific value with a probability that

is better than we might expect. Such a pair of differences (which lead to the concept

of a “characteristic”) is useful in deriving certain bits of the key. For linear

cryptanalysis which is also explained in Chapter 3, the basic idea is to find a linear

relation among bits of plaintext, ciphertext, and key which hold with a probability

 24

that is not equal to 1/2. Such a “linear approximation” can potentially be used to

obtain information about the key.

The first cryptanalytic results on RC5 were given by Kaliski and Yin [13] at

Crypto’95. By analyzing the basic structure of the encryption routine as well as the

properties of data-dependent rotations, it is possible to construct differential

characteristics and linear approximations of RC5 that are useful for mounting

differential and linear attacks. Both attacks are quite effective on RC5 with a very

small number of rounds, but the plaintext requirements increase quickly as the

number of rounds grows. The use of data-dependent rotations and the incompatibility

between the different arithmetic operations used in encryption help prevent both

differential and linear cryptanalysis.

At Crypto’96, Knudsen and Meier [16] presented nice improvements over

Kaliski and Yin’s differential attack by a careful analysis of the relations between

input, output, and the sub-keys used in the first two rounds of encryption. They were

able to improve the plaintext requirements by a factor of up to 512 by exploiting the

characteristics in an innovative and sophisticated way. They also considered the

existence of certain weaker keys for RC5 with respect to which their attack can be

further enhanced.

Moriai, Aoki, and Ohta [22] have investigated the strength of RC5 against

linear cryptanalysis by focusing on the bias of linear approximations for fixed keys,

rather than the average bias over all possible keys which is the customary model for

linear cryptanalysis. They also considered a mini-version of RC5 with much reduced

 25

word size and computed the percentage of keys that yield ciphers less resistant to

linear cryptanalysis than the average case analysis.

In late 1995, Kocher [17] developed what are called timing attacks that are

generally applicable to many cryptosystems. In such an attack, an opponent tries to

obtain information about the secret key (or private key) by recording and analyzing

the time used for cryptographic operations that involve the key. Kocher observed that

RC5 may be subject to timing attacks if RC5 is implemented on platforms for which

the time for computing a single rotation is proportional to the rotation amount.

With regards to the less sophisticated brute-force attack of trying each key in

turn, the security of RC5 is obviously dependent on the length of the encryption key

that is used (as is the case with all ciphers). RC5 has the attractive feature that the

length of the key can be varied (unlike the situation with DES for instance) and so the

level of security against these attacks can be tuned to suit the application. It is hoped

that the resistance of ciphers to exhaustive key search attacks can be more accurately

gauged in the future. Some of the posted challenges, such as RC5 encryption with a

40- and 48-bit key were solved very quickly, as was expected. But some of the longer

key lengths are likely to remain an unsolved challenge for some considerable time to

come.

2.3 RC6 Algorithm

RC6 is a block-cipher submitted to NIST for consideration as the new

Advanced Encryption Standard (AES). The design of RC6 began with a consideration

 26

of RC5, and modifications were then made to meet the AES requirements, to increase

security, and to improve performance. The inner loop, however, is based around the

same “half-round” found in RC5. The algorithm can be seen as two Feistel-networks

which are combined through data-dependent rotations over the blocks together with a

32-bit multiplication function.

RC5 is improved to obtain RC6 for the following considerations:

- The requirements of AES are the 128 bit input/output blocks. To do so RC5

has two 64 bit blocks but this can not be implemented by the very well known

compilers and RC6 solves this problem by having 4 blocks so that to have a 128 bit

plaintext there are four 32-bit blocks in RC6.

- In the encryption section in RC6 there are two rotations per round where in

RC5 there is one rotation per round. This improves the immunity to differential and

linear cryptanalysis attacks.

- In RC6 integer multiplication is involved. This improves the diffusion

property and rotation amounts are dependent on all bits of another register where RC5

has just low order bits’ contribution.

Like RC5, RC6 is a fully parameterized family of encryption algorithms. A

version of RC6 is more accurately specified as RC6-w/r/b where the word size is w

bits, encryption consists of non-negative number of rounds r, and b denotes the length

of encryption key in bytes. RC6-w/r/b operates on units of four 2-bit words using the

following six basic operations.

- a + b integer addition modulo 2w

 27

- a – b integer subtraction modulo 2w

- a ⊕ b bitwise XOR of w-bit words

- a x b integer multiplication modulo 2w

- a <<< b rotate the w-bit word a to the left by the amount given by the least

significant log2 w bits of b.

- a >>> b rotate the w-bit word a to the right by the amount given by the least

significant log2 w bits of b.

2.3.1 Key Schedule

The key schedule of RC6-w/r/b is practically identical to the key schedule of

RC5-w/r/b. Indeed, the only difference is that for RC6-w/r/b, more words are derived

from the user-supplied key for use during encryption and decryption. Sufficient zero

bytes are appended to give a key length equal to a non-zero integral number of words;

these key bytes are then loaded in little-endian fashion into an array of c w-bit words

L[0],...,L[c-1]. Thus the first byte of key is stored as the low-order byte of L[0], etc.,

and L[c-1] is padded with high-order zero bytes if necessary. (Note that if b = 0 then

c = 1 and L[0] = 0.) The number of w-bit words that will be generated for the additive

round keys is 2r + 4 and these are stored in the array S[0,...,2r + 3].

The constants P32 = B7E15163 and Q32 = 9E3779B9 (hexadecimal) are the

same "magic constants" as used in the RC5 key schedule. The value of P32 is derived

from the binary expansion of e-2, where e is the base of the natural logarithm

 28

function. The value of Q32 is derived from the binary expansion of Ø -1, where Ø is

the Golden Ratio. Similar definitions from RC5 for P64 etc. can be used for versions

of RC6 with other word sizes. These values are somewhat arbitrary, and other values

could be chosen to give "custom" or proprietary versions of RC6.

The user supplies a key of b bytes, where 0 < b < 255. From this key, 2r + 4

words (w-bits each) are derived and stored in the array S[0,..., 2r + 3]. This array is

used in both encryption and decryption the key schedule for RC6-w/r/b is as follows:

array S is initialized by Pw and then all of the entries of the array are found by adding

Qw to the previous entry. After finding array S, this array will be mixed with the key

register L[j]; temporary registers reg1 contains previous value of S[i] and reg2

contains previous value of L[j] the values of reg1, reg2 and S[i] are added by modulo

2w and rotated left by three and then this value is assigned to reg1. Later L[j] is

updated by adding reg1, reg2 and L[j] and rotated to left by the value of reg1 plus

reg2. Then the value of L[j] is assigned to reg2. And this operation is continued until

three times maximum of t or c is reached. The procedure is given in the following

code sample.

Input: User supplied b byte key preloaded into c-word array L[0,…,c-1]

Number r of rounds

Output: w-bit round keys S[0,…,2r + 3]

Procedure:

S[0] = Pw

for i = 1 to 2r + 3 do

 29

S[i] = S[i - 1] + Qw

reg1 = reg2 = i = j = 0

v = 3 x max {c, 2r+4}

do 3*max (t, c) times:

reg1 = S[i] = (S[i] + reg1 + reg2) <<< 3

reg2 = L[j] = (L[j] + reg1 + reg2) <<< (reg1 + reg2)

i = (i + 1) mod (2r + 4)

j = (j + 1) mod c

2.3.2 Encryption of RC6

RC6 works with four w-bit registers A,B,C,D which contain the initial input

plaintext as well as the output ciphertext at the end of encryption. Register B is

initialized with S[0] and register D is initialized with S[1]. After initialization t = B x

(2B + 1) and u = D x (2D + 1) values are found and rotated left by log2 w. The

registers A and t are XORed and rotated to left by the value of u and summed with the

even entries of S[i] and this value is assigned to A. Later the XORed value of C and u

is rotated to left by t and then summed by odd entries of S[i]. This value is assigned to

C. The first byte of plaintext or ciphertext is placed in the least-significant byte of A;

the last byte of plaintext or ciphertext is placed into the most-significant byte of D.

(A,B,C,D) = (B,C,D,A) is used to mean the parallel assignment of values on the right

to registers on the left. And this routine is repeated for r rounds. Then, finally S[2r+2]

 30

and S[2r+3] are added to A and C respectively. The sample code of this procedure is

as follows.

Input: Plaintext stored in four w-bit input registers A, B, C, D Number r of

rounds w-bit round keys S[0,…,2r + 3]

Output: Ciphertext stored in A, B, C, D

Procedure:

B = B + S[0]

D = D + S[1]

for i = 1 to r do

{

t = (B x (2B + 1)) <<< log2 w

u = (D x (2D + 1)) <<< log2 w

A = ((A ⊕ t) <<< u) + S[2i]

C = ((C ⊕ u) <<< t) + S[2i + 1]

(A, B, C, D) = (B, C, D, A)

}

A = A + S[2r + 2]

C = C + S[2r + 3]

The block diagram of encryption procedure for one round is given in Fig. 2.1.

 31

Figure 2.1 One Round of RC6 Encryption Algorithm

 32

2.3.3 Decryption of RC6

The decryption routine is easily derived from the encryption routine. In this

routine the inverse formulation of encryption routine is processed.

Input: Ciphertext stored in four w-bit input registers A, B, C, D Number r of

rounds w-bit round keys S[0,…,2r + 3]

Output: Plaintext stored in A, B, C, D

Procedure:

 C = C – S[2r + 3]

A = A – S[2r + 2]

for i = r downto 1 do

{

(A, B, C, D) = (D, A, B, C)

u = (D x (2D + 1)) <<< log2 w

t = (B x (2B + 1)) <<< log2 w

C = ((C – S[2i + 1]) >>> t) ⊕ u

A = ((A – S[2i]) >>> u) ⊕ t

}

D = D – S[1]

B = B – S[0]

 33

2.3.4 Status of RC6

Most existing cryptanalytic results on RC5 [13,16,17,22] depend on slow

avalanche of change between rounds. The integer addition helps to provide a

reasonable amount of change due to the effect of carry, but the most dramatic changes

take place when two different rotation amounts are used at a similar point during the

encryption of two related plaintexts. The incremental changes in arriving at RC6 from

RC5: Two significant changes are the introduction of the quadratic function B × (2B

+1) and the fixed rotation by five bits.

The quadratic function is aimed at providing a faster rate of diffusion thereby

improving the chances that simple differentials will spoil rotation amounts much

sooner than is accomplished with RC5. The quadratically transformed values of B and

D are used in place of B and D to modify the registers A and C, increasing the

nonlinearity of the scheme while not losing any entropy (since the transformation is a

permutation). The fixed rotation by five bits plays a simple yet important role in

complicating both Linear and Differential cryptanalysis.

2.4 Twofish Algorithm

Twofish is one of the submissions to the AES selection process. It meets all

the required NIST criteria; 128- bit block; 128-, 192-, and 256-bit key lengths;

efficient on various platforms, etc. Twofish can be seen as two parallel Feistel-

networks, where the outputs of each round function are combined. In each round, half

 34

the block is input to the confusion stage, and the S-boxes are 8-bit S-boxes. Twofish

was designed to meet NIST’s design criteria for AES.

Twofish algorithm has been implemented by using six blocks. Below these

blocks and brief explanation are given:

Feistel Network: A Feistel network is a general method of transforming any

function (usually called the F function) into a permutation. The fundamental building

block of a Feistel network is the F function: a key-dependent mapping of an input

string onto an output string. An F function is always non-linear and possibly non-

surjective (in which not all outputs in the output space can occur):

F : f{0,1}n/2
 x f{0,1}N

 →{0,1}n/2

where n is the block size of the Feistel Network, and F is a function taking n/2 bits of

the block and N bits of a key as input, and producing an output of length n/2 bits. In

each round, the “source block" is the input to F, and the output of F is XORed with

the “target block," after which these two blocks swap places for the next round. The

idea here is to take an F function, which may be a weak encryption algorithm when

taken by itself, and repeatedly iterate it to create a strong encryption algorithm. Two

rounds of a Feistel network is called a “cycle". In one cycle, every bit of the text

block has been modified once. Twofish is a 16-round Feistel network with a bijective

F function. Fig 2.2. shows block diagram of Feistel Network.

 35

 Figure 2.2 Feistel Network

 36

S-boxes: An S-box is a non-linear substitution operation used in most block

ciphers. S-boxes vary in both input size and output size, and can be created either

randomly or algorithmically. Twofish uses four different, bijective, key-dependent, 8-

by-8- bit S-boxes. These S-boxes are built using two fixed 8-by-8-bit permutations

and key material.

MDS Matrices: A maximum distance separable (MDS) code over a field is a

linear mapping from a field elements to b field elements, producing a composite

vector of a+b elements, with the property that the minimum number of non-zero

elements in any non-zero vector is at least b+1. MDS mappings can be represented by

an MDS matrix consisting of a x b elements. Reed-Solomon (RS) error-correcting

codes are known to be MDS. A necessary and sufficient condition for an a x b matrix

to be MDS is that all possible square submatrices, obtained by discarding rows or

columns, are non-singular. Twofish uses a single 4-by-4 MDS matrix over GF (28).

Pseudo-Hadamard Transforms: A Pseudo-Hadamard transform (PHT) is a

simple mixing operation that runs quickly in software. Given two inputs, a and b, the

32-bit PHT is defined as:

a’ = a + b mod 232

b’ = a + 2b mod 232

Whitening: Whitening, the technique of XORing key material before the first

round and after the last round, difficulty of key-search attacks against the remainder

of the cipher. Whitening substantially increased the difficulty of attacking the cipher,

by hiding from an attacker the specific inputs to the first and last rounds' F functions.

 37

Twofish XORs 128 bits of subkey before the first Feistel round and another 128 bits

after the last Feistel round. These subkeys are calculated in the same manner as the

round subkeys, but are not used anywhere else in the cipher.

Key Schedule: The key schedule is the means by which the key bits are

turned into round keys that the cipher can use. Twofish needs a lot of key material,

and has a complicated key schedule. To facilitate analysis, the key schedule uses the

same primitives as the round function.

Fig. 2.3 shows an overview of the Twofish block cipher. Twofish uses a 16-

round Feistel-like structure with additional whitening of the input and output. The

only non-Feistel elements are the 1-bit rotates. The plaintext is split into four 32-bit

words. In the input whitening step, these are XORed with four key words. This is

followed by sixteen rounds. In each round, the two words on the left are input to the g

functions. (One of them is rotated by 8 bits first.) The g function consists of four byte-

wide key-dependent S-boxes, followed by a linear mixing step based on an MDS

matrix. The results of the two g functions are combined using a Pseudo- Hadamard

Transform (PHT), and two keywords are added. These two results (called the outputs

of the F function) are then XORed into the words on the right (one of which is rotated

left by 1 bit first, the other is rotated right afterwards). The left and right halves are

then swapped for the next round. After all the rounds, the swap of the last round is

reversed, and the four words are XORed with four more key words to produce the

ciphertext. So, the key schedule preparesa total of fourty 32-bit subkeys.

 38

Figure 2.3 Twofish Encryption Algorithm Block

 39

More formally, the 16 bytes of plaintext p0,.., p15 (p0 is the most significant

byte of the plaintext, and p15 is the least significant bit of the plaintext) are first split

into 4 words P0,…, P3 of 32 bits each using the little-endian convention.

∑
=

+=
3

0

8
)4(2.

j

j
jii pP i = 0,…,3 (2.1)

In the input whitening step, these words are XORed with 4 words of the

expanded key.

R0,i = Pi ⊕ Ki i = 0,.., 3 (2.2)

In each of the 16 rounds, the first two words are used as input to the function

F, which also takes the round number as input to select the appropriate subkeys. The

third word is XORed with the first output of F and then rotated right by one bit. The

fourth word is rotated left by one bit and then XORed with the second output word of

F. Finally, the two halves are exchanged. Thus, outputs Fr,0 and Fr,1 of the F function

and 4 input words Rr+1 of the successive round are found as:

(Fr,0, Fr,1) = F(Rr,0,Rr,1, r)

Rr+1,0 = ROR(Rr,2 ⊕ Fr,0, 1)

Rr+1,1 = ROL(Rr,3, 1) ⊕ Fr,1 (2.3)

Rr+1,2 = Rr,0

Rr+1,3 = Rr,1

for r = 0,…,15 and ROR and ROL are functions that rotate their first argument

(a 32-bit word) left or right by the number of bits indicated by their second argument.

 40

The output whitening step undoes the “swap” of the last round, and XORs the data

words with 4 words of the expanded key. The output block is then

Ci = R16,(i+2) mod 4 ⊕ Ki+4 i = 0,…,3

The four words of ciphertext are then written as 16 bytes c0,…, c15 using the

same little-endian conversion used for the plaintext. The output block is obtained as

ci.

 








=

2)4mod(8
4

i
i

i
C

c mod 28 i= 0,…,15

2.4.1 Main Functions of Twofish Algorithm

a The Function g

The function g forms the heart of Twofish algorithm; it is the main component

of the F function. It uses an 32-bit vectors X and an 64-bit vector L to produce the 32-

bit output Z=g(X,L). Its 32-bit input word X (X is either Rr,0 or ROL(Rr,1,8)) is split

into four bytes. Each byte xi is run through its own key-dependent S-box, si. The four

S-box outputs yi are interpreted as a vector of length 4 over GF(28), and multiplied by

the 4x4 MDS matrix (using the field GF(28) for the computations). The resulting

vector Z is a 32-bit word.

 28i
i Xx = mod 28 i = 0,…,3

[]xsy iii = i = 0,…,3 (2.4)

 41



















•



















=



















y
y
y
y

BEFEF
EFBEF

EFEFB
BBEF

z
z
z
z

3

2

1

0

3

2

1

0

501
015

015
5501

 (2.5)

2. 8
3

0

i

i
izZ ∑

=

=

In (2.4) si are the key-dependent S-boxes (S-box0 to S-box3) and the elements

of the second 64-bit input L=(l0,0 l0,1 l0,2 l0,3 l1,0 l1,1 l1,2 l1,3) are used as the S-box

constants, which are indicated in (2.7). The vector L is obtained from the keys. For

MDS matrix multiplication (2.5) to be well-defined, the correspondence between byte

values and the field elements of GF(28) are needed to be specified. GF(28) is

represented as GF(2)[x]/v(x) where v(x) = x8+x6+x5+x3+1 is a primitive polynomial of

degree 8 over GF(2). The field element a = ∑
=

7

0
.

i

i
i xa with ai ∈ GF(2) is identified

with the byte value ∑
=

7

0
2.

i

i
ia . Note that, addition in GF(28) corresponds to an XOR of

the bytes.

b The Function F

The function F mentioned in (2.3) is a key-dependent permutation on 64-bit

values. It takes three arguments, two input words Rr,0 and Rr,1, and the round number r

used to select the appropriate subkeys. Rr,0 is passed through the g function, which

yields Tr,0. Rr,1 is rotated left by 8 bits and then passed through the g function to yield

Tr,1. The 64-bit vector L which adjusts the S-box constants is prepared from the

 42

original key as in (2.12), so, L=S=(S1 S0) The results Tr,0 and Tr,1 are then combined in

a pseudo hadamard transformer and two words of the expanded key are also added

modulo 232 which is different from the XOR operation. The following set of

equations describe the details of F function,

Tr,0 = g(Rr,0, S)

Tr,1 = g(ROL(Rr,1, 8), S) (2.6)

Fr,0 = (Tr,0 + Tr,1 + K2r+8) mod 232

Fr,1 = (Tr,0 + 2Tr,0 + K2r+9) mod 232

where (Fr,0,Fr,1) is the result of F. Fig. 2.4. shows the F function in detail, where (2.6)

can be observed in the lower part of the figure that uses g functions. The upper part of

the figure, which uses h functions, is related to the key schedule to be described by

(2.13). The round keys K2r+8 and K2r+9 used in (2.6) are produced in the upper part of

Fig. 2.4., as explained in (2.13). The h function also has key dependent S-boxes,

where the S-box constants are prepared from the original key M, by dividing it into

32-bit pieces, M0, M1, M2, M3, and choosing either the even or the odd indexed

segments, so respectively, Me=(M0 M2) and Mo=(M1 M3) as shown in (2.11)

 43

Figure 2.4 A view of a single round F function (128-bit key)

 44

c The Function h

The function h(X,L) is used to obtain expanded keywords of Twofish

algorithm. h function is very similar to the function g, therefore equations (2.4) and

(2.5) describe it completely. Its 32-bit input word X is split into four bytes. Each byte

is run through its own key-dependent S-box. The four results are interpreted as a

vector of length 4 over GF(28), and multiplied by the 4x4 MDS matrix (using the field

GF(28) for the computations). The resulting vector is a 32-bit word.

Note that the of h and g functions are exactly same as each other but their

inputs are different. X is obtained from Rr,0 or Rr,1 for the function g, whereas for the

function h, it is chosen as the 32-bit vector ρ=(i i i i) where i is the 8-bit vector

corresponding to i=0,…,39. Also the S-box constant vector L is different for h and g

functions. In h function, L is either Me or Mo, whereas in g function L=S. The method

of obtaining the vectors S, Me, and Mo from the original key is described in section

2.4.2.

d The Key-dependent S-boxes

Twofish algorithm uses a single 32x32 S-box which can be considered as four

8x8 S-boxes with different combinations of permutation boxes, q0 and q1, which are

explained in section 2.4.2. As can be seen from Fig. 2.4, the S-boxes are used both in

h and g functions. The combination of permutation boxes is the same for the S-boxes

of h and g functions, but their input parameters are different. For h(X,L) function the

 45

input parameters are ρ=X and L=Me or L=Mo. For g(X,L) function the input

parameters are X=Rr,0 or X=ROL(Rr,1,8) and S=L.

32x32 S-box takes two inputs a 32-bit word X and a list L = (L0,…,Lk-1) of 32-

bit words of length k, where k is the number of 64-bit segments in the original key. In

this thesis Twofish algorithm is implemented for 128-bit keywords so k=N/64=2. The

vectors X and L are split into bytes.

 28
,

j
iji Ll = mod 28

 28 j
j Xx = mod 28

for i = 0,…, k - 1 and j = 0,…,3. Then the sequence of substitutions and XORs is

applied.

y0 = s0[x0] = q1[q0[q0[x0] ⊕ l1,0] ⊕ l0,0], (S-box0 formulation)

 y1 = s1[x1] = q0[q0[q1[x1] ⊕ l1,1] ⊕ l0,1], (S-box1 formulation)

y2 = s2[x2] = q1[q1[q0[x2] ⊕ l1,2] ⊕ l0,2], (S-box2 formulation)

y3 = s3[x3] = q0[q1[q1[x3] ⊕ l1,3] ⊕ l0,3], (S-box3 formulation) (2.7)

The output of the S-boxes is the 32-bit word Y in the form of y3y2y1y0. Fig. 2.5.

shows the S-box formulation of 128 bit Twofish cipher.

 46

 Figure 2.5 S-box formulation of Twofish algorithm

2.4.2 Sub-functions of Twofish Algorithm

a The Permutations q0 and q1

The permutations q0 and q1 are fixed permutations on 8-bit values. These

permutation functions are the main components of the S-boxes. They are constructed

from four different 4-bit permutations each. For the 8-bit input value x, the

corresponding output value y is found by the following steps:

a0 =  16x and b0 = x mod 16

 47

i.e., the byte is first split into two 4-bit nibbles, a0 and b0

 a1 = a0 ⊕ b0

b1 = a0 ⊕ ROR(b0, 1) ⊕ (8a0 mod 16)

a2 = t0[a1]

b2 = t1[b1]

a3 = a2 ⊕ b2

b3 = a2 ⊕ ROR(b2, 1) ⊕ 8a2 mod 16

a4 = t2[a3]

b4 = t3[b3]

y = 16 b4 + a4 (2.8)

As in (2.8), these nibbles are combined in a bijective mixing step. Each nibble

is then passed through its own 4-bit table look-up. This is followed by another mixing

step and table lookup. Finally, the two nibbles are recombined into a byte.

The equation set (2.8) describes both of the permutations q0 and q1, but the

lookup tables t0,…,t3 are different for q0 and q1.

For the permutation q0, lookup tables are given by

t0 = [8 1 7 D 6 F 3 2 0 B 5 9 E C A 4] (2.9)

t1 = [E C B 8 1 2 3 5 F 4 A 6 7 0 9 D]

t2 = [B A 5 E 6 D 9 0 C 8 F 3 2 4 7 1]

t3 = [D 7 F 4 1 2 6 E 9 B 3 0 8 5 C A]

 48

where each lookup table is represented by a list of the entries using hexadecimal

notation. (The entries for the inputs 0,1,…,15 are listed in order.) Similarly, for q1 the

lookup tables are given by

t0 = [2 8 B D F 7 6 E 3 1 9 4 0 A C 5]

t1 = [1 E 2 B 4 C 3 7 6 D A 5 F 9 0 8]

t2 = [4 C 7 5 1 6 9 A 0 E D 8 2 B 3 F]

t3 = [B 9 5 1 C 3 D E 6 4 7 F 2 0 8 A] (2.10)

b The Key Schedule

The key schedule has to provide 40 words of the expanded key K0,…,K39, and

the constant vectors for the key-dependent S-boxes used in the g and h functions.

Twofish is defined for keys of length N = 128, N = 192, and N = 256. Keys of any

length shorter than 256 bits can be used by padding them with zeroes until the next

larger defined key length. The parameter k is defined as k = N/64. The original key M

consists of 8k bytes m0,…,m8k-1. To obtain the constant vectors for key dependent S-

boxes, the bytes are first converted into 2k words of 32 bits each

∑
=

+=
3

0

8
)4(2.

j

j
jii mM i = 0,…,2k-1

and then into two word vectors of length k.

Me = (M0,M2,…,M2k-2)

Mo = (M1,M3,…,M2k-1) (2.11)

 49

Me and Mo are the constant vectors of the key dependent S-boxes employed in

the h function, to obtain the expanded keys K0,…,K39. For the 128-bit key length is

used in this study, k=2, hence Me=(M0 M2) and Mo=(M1 M3).

A third vector S of length k 32-bit words is also derived from the key, as the

constant vector for the key dependent S-boxes of the function g. This is done by

taking the key bytes in groups of 8, interpreting them as a vector over GF(28), and

multiplying them by a 4x8 matrix derived from an RS code. Each result Si of 4 bytes

is then interpreted as a 32-bit word.

































•



















=



















+

+

+

+

+

+

+

m
m
m
m
m
m
m
m

EDBAA
DAECFCA

ECEFA
EDBAA

s
s
s
s

i

i

i

i

i

i

i

i

i

i

i

i

78

68

58

48

38

28

18

8

3,

2,

1,

0,

03958585554
193471102

56861382564
95858755401

 (2.12)

Using ∑
=

=
3

0

8
, 2.

j

j
jii sS for i = 0,…,k - 1, one obtains the third vector S = (Sk-1,

Sk-2,…, S0) Note that S lists the words in “reverse" order. For the RS matrix

multiplication in (2.12), GF(28) is represented by GF(2)[x]/w(x), where w(x) = x8

+x6+x3+x2+1 is another primitive polynomial of degree 8 over GF(2).

For 128-bit keys, three vectors Me, Mo, S are all 64-bit vectors, which forms

the S-box constants. Me and Mo are used in h function which produces the expanded

key; whereas S is used in g function which encrypts the plaintext.

 50

c The Expanded Key Words Kj

The words of the expanded key are defined using the h function. The input

vector X of the h(X,L) function is derived from the initial vector ρ = 224 + 216 + 28 +

20. To evaluate 40 keywords, one computes for all values of i=0,…,19.

Ai = h(2i ρ,Me)

Bi = ROL(h((2i + 1) ρ,Mo), 8)

K2i = (Ai + Bi) mod 232

K2i+1 = ROL((Ai + 2Bi) mod 232, 9) (2.13)

Notice that for producing Ai the first argument of h function has all byte values

equal to 2i, and the second argument of h is Me. Bi is computed similarly using 2i + 1

as the byte value and Mo as the second argument, with an extra rotate over 8 bits. The

values Ai and Bi are then combined in a PHT. One of the results is further rotated by 9

bits. The two results K2i and K2i+1 form the two 32-bit words of the expanded key.

2.4.3 Cryptanalysis of Twofish

A summary of successful attacks performed by the designers of the cipher [29]

is as follows:

5-round Twofish (without the post-whitening) with 2225
 chosen plaintext pairs

and 251 computations of the function g. 10-round Twofish (without the pre- and post-

whitening) with a chosen-key attack, requiring 232
 chosen plaintexts and about 211

adaptive chosen plaintexts, and about 232
 work.

 51

The fact that Twofish seems to resist related-key attacks well is arguably the

most interesting result, because related-key attacks give the attacker the most control

over the cipher's inputs. Based on analysis, it is conjectured that there exists no more

efficient attack on Twofish than brute force. The most efficient attack against

Twofish with a 128 bit key has a complexity of 2128, the most efficient attack against

Twofish with a 192-bit key has a complexity of 2192, and the most efficient attack

against Twofish with a 256-bit key has a complexity of 2256.

 52

CHAPTER 3

CRYPTANALYSIS ATTACKS

3.1 Cryptanalysis Techniques in Brief

Cryptanalysis is the aspect of cryptology which concerns the strength analysis

of a cryptographic system, and the penetration or breaking of a cryptographic system.

The goal of an attack is to reveal some unknown plaintext, or the key, which

will reveal the plaintext. Some of well-known cryptanalysis techniques are explained

below.

Brute Force (also Exhaustive Key Search): Try to decipher ciphertext under

every possible key until readable messages are produced.

Codebook (the classic "code-breaking" approach): Collect a codebook of

transformations between plaintext and ciphertext.

Differential Cryptanalysis: Find a statistical correlation between key values

and cipher transformations (typically the XOR of text pairs), then use sufficient

defined plaintext to develop the key.

 53

Linear Cryptanalysis: Find a linear approximation to the keyed S-boxes in

cipher, and use that to reveal the key.

Meet-in-the-Middle: Given a two-level multiple encryption, search for the

key by collecting every possible result for enciphering a known plaintext under the

first cipher, and deciphering the known ciphertext under the second cipher; then find

the match.

Key Schedule: Choose keys which produce known effects in different rounds.

Birthday (usually a hash attack): Use the birthday paradox, the idea that it is

much easier to find two values which match than it is to find a match to some

particular value.

Formal Coding (also Algebraic): From the cipher design, develop equations

for the key in terms of known plaintext, then solve those equations.

Correlation: In a stream cipher, distinguish between data and confusion, or

between different confusion streams, from a statistical imbalance in a combiner.

Dictionary: Form a list of the most-likely keys, then try those keys one-by-

one (a way to improve brute force).

Replay: Record and save some ciphertext blocks or messages (especially if

the content is known), then re-send those blocks when useful.

Many attacks try to isolate unknown small components or aspects so they can

be solved separately, a process known as divide and conquer.

 54

3.2 Strength and Cryptanalysis

Because there are no tools for the discussion of strength under all possible

attacks, cipher "strength" is normally discussed in the context of particular attacks.

Each known attack approach can be elaborated for a particular cipher, and a value

calculated for the effort required breaking the cipher in that way; this may set an

"upper bound" on the unknown strength of the cipher. And while this is certainly

better than not knowing the strength with respect to known attacks, such attacks may

not represent the actual threat to the cipher in the field. In general, "lower bound" or

"true" strength of a cipher is not known. So, unless a cipher is shown to be weaker

than can be accepted, cryptanalysis provides no useful information about cipher

strength.

Two most powerful cryptanalysis techniques applied to symmetric-key block

ciphers are the linear cryptanalysis and the differential cryptanalysis. Linear

cryptanalysis was introduced by Matsui [20] at EUROCRYPT ’93 as a theoretical

attack on the Data Encryption Standard (DES) and later successfully used in the

practical cryptanalysis of DES; differential cryptanalysis was first presented by

Bilham and Shamir [4] at CRYPTO ’90 to attack DES and eventually the details of

the attack were packaged as a book. Although the early target of both attacks was

DES, the wide applicability of these attacks to numerous other block ciphers has

solidified the pre-eminence of both cryptanalysis techniques in the consideration of

the security of all block ciphers.

 55

3.3 Linear Cryptanalysis

Linear cryptanalysis tries to take advantage of high probability occurrences of

linear expressions involving plaintext bits, "ciphertext" bits (actually we shall use bits

from the 2nd last round output), and subkey bits. It is a known plaintext attack: that is,

it is premised on the attacker having information on a set of plaintexts and the

corresponding ciphertexts. However, the attacker has no way to select which

plaintexts (and corresponding ciphertexts) are available. In many applications and

scenarios it is reasonable to assume that the attacker has knowledge of a random set

of plaintexts and the corresponding ciphertexts. The basic idea is to approximate the

operation of a portion of the cipher with an expression that is linear where the

linearity refers to a mod-2 bit-wise operation (i.e., exclusive-OR denoted by "⊕").

Such an expression is of the form:

Xi1⊕ Xi2⊕ …⊕ Xiu⊕ Yi1 ⊕ Yi2 ⊕ … ⊕ Yiv = 0 (3.1)

where Xi represents the i-th bit of the input X = [X1, X2, ...] and Yj represents

the j-th bit of the output Y = [Y1, Y2, ...]. This equation is representing the exclusive-

OR "sum" of u input bits and v output bits. The approach in linear cryptanalysis is to

determine expressions of the form above which have a high or low probability of

occurrence. If a cipher displays a tendency for equation (3.1) to hold with high

probability or not hold with high probability, this is evidence of the cipher’s poor

randomization abilities. Consider that if values for u + v bits are randomly selected

and placed into the equation above, the probability that the expression would hold

 56

would be exactly 1/2. It is the deviation or bias from the probability of 1/2 for an

expression to hold that is exploited in linear cryptanalysis: the further away that a

linear expression is from holding with a probability of 1/2, the better the cryptanalyst

is able to apply linear cryptanalysis. The amount by which the probability of a linear

expression holding deviates from 1/2 is referred as the linear probability bias. Hence,

if the expression above holds with probability pL for randomly chosen plaintexts and

the corresponding ciphertexts, then the probability bias is pL – 1/2. The higher the

magnitude of the probability bias, |pL – 1/2|, the better the applicability of linear

cryptanalysis with fewer known plaintexts required in the attack.

3.4 Differential Cryptanalysis

Differential cryptanalysis exploits the high probability of certain occurrences

of plaintext differences and differences into the last round of the cipher. For example,

consider a system with input X = [X1 X2 ... Xn] and output Y = [Y1 Y2 ... Yn]. Let two

inputs to the system be X′ and X″ with the corresponding outputs Y′ and Y″,

respectively. The input difference is given by ΔX = X′ ⊕ X″ where "⊕" represents a

bit-wise exclusive-OR of the n-bit vectors and, hence,

∆ X =[∆ X 1, ∆ X 2, ..., ∆ X n]

where ΔX = Xi′ ⊕ Xi″ with Xi′ and Xi″ representing the i-th bit of X′ and X″,

respectively. Similarly, ΔY = Y′ ⊕ Y″ is the output difference and

∆ Y =[∆ Y 1, ∆ Y 2, ..., ∆ Y n]

 57

where ΔY = Yi′ ⊕ Yi″ .

In an ideally randomizing cipher, the probability that a particular output

difference ΔY occurs given a particular input difference ΔX is 1/2n
 where n is the

number of bits of X. Differential cryptanalysis seeks to exploit a scenario where a

particular ΔY occurs given a particular input difference ΔX with a very high

probability pD (i.e., much greater than 1/2n). The pair (ΔX, ΔY) is referred to as a

differential.

Differential cryptanalysis is a chosen plaintext attack, meaning that the

attacker is able to select inputs and examine outputs in an attempt to derive the key.

For differential cryptanalysis, the attacker will select pairs of inputs, X′ and X″, to

satisfy a particular ΔX, knowing that for that ΔX value, a particular ΔY value occurs

with high probability. As with linear cryptanalysis, to construct highly likely

differential characteristics, the properties of individual S-boxes are examined and

these properties are used to determine the complete differential characteristic.

Specifically, the input and output differences of the S-boxes are considered in order to

determine a high probability difference pair. Combining S-box difference pairs from

round to round so that the nonzero output difference bits from one round correspond

to the non-zero input difference bits of the next round, enables finding a high

probability differential, consisting of the plaintext difference and the difference of the

 58

input to the last round. The subkey bits of the cipher end up disappearing from the

difference expression because they are involved in both data sets and, hence,

considering their influence on the difference involves XORing subkey bits with

themselves, the result of which is zero.

 59

CHAPTER 4

TEST CRITERIA FOR BLOCK CIPHERS

4.1 Avalanche Criteria

The idea of avalanche [12] was introduced by Feistel. For a given

transformation to exhibit the avalanche effect, an average of one half of the output

bits should change whenever a single input bit is complemented. In order to

determine whether a given nxn function f satisfies this requirement, the 2n
 plaintext

pairs, P and Pi. Such that P and Pi differ only in bit i are used to calculate the 2n

difference vectors, ∆C = f(P) ⊕ f(Pi) = ei. These XOR sums are referred as avalanche

vectors, each of which contains n bits, called avalanche variables. If this procedure is

repeated for all i such that 1 ≤ i ≤ n, and one half of the avalanche variables are equal

to 1 for each i, then the function f has good avalanche effect. Avalanche properties

and avalanche weight distribution characteristics of block ciphers help us analyze

diffusion and confusion properties of block ciphers.

 60

The principle of diffusion and confusion was introduced by Shannon [31] in

1949 and simply can be stated as:

Diffusion: Diffusion tries to distribute the redundancy of the plaintext over

the cipher text. Every bit of the ciphertext should depend on every bit of the plaintext.

Good diffusion spreads the influence of individual plaintext characters over as much

of the ciphertext as possible, thereby hiding the statistical features of the plaintext.

Confusion: Confusion is described as being “the use of ciphering

transformations that complicate the determination of how the statistics of the

ciphertext depend on the statistics of the plaintext” [33] or, more briefly, to make the

relation between the key and the ciphertext as complex as possible. The objective is

to hide redundancies in plaintext. Every bit of the ciphertext should depend on every

bit of the key.

Completeness: Completeness is the result of diffusion and was introduced by

Kam and Davida [15]. If a cryptographic transformation is complete, then each

ciphertext bit must depend on all plaintext bits. Thus, if it were possible to find the

simplest boolean expression for each ciphertext bit in terms of plaintext bits, each of

those expressions would have to contain all of the plaintext bits if the function was

complete.

4.1.1 Avalanche Weight Distribution

Avalanche weight distribution (AWD) [3] criterion can be stated as follows:

Even for quite similar plaintext pairs (P1, P2), i.e., when the hamming weight of the

 61

differences of plaintext pairs (P1, P2) is small, the distribution of the hamming weight

of the differences of corresponding ciphertext pairs (C1, C2) should be close to a

binomial distribution around n/2 for a good block cipher with a block length of n.

This criterion reveals the diffusion property of block ciphers.

It should be noted that the AWD of an ideal algorithm satisfying the diffusion

property, the probability of finding any particular number of i ciphertext bit changes

in a ciphertext of n bits is:

B (i) = n

i
n

2










, ni ≤≤0 (4.1)

which is the binomial expression. Also notice that

∑
=

=
n

i
iB

0
1)((4.2)

In Fig. 4.1, ideal binomial distribution curve is sketched for 128 bits

0

100

200

300

400

500

600

700

800

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121

i

10
00

0
B

(i
)

Figure 4.1: Binomial Distribution Curve for n = 128 bits

 62

The distortion measure D, which gives the distortion between the actual AWD

of the cipher and the ideal distribution B(j) is calculated using N pairs of plaintexts (P,

P⊕∆P) with a fixed difference ∆P, and corresponding ciphertexts (C, C⊕∆C). ∆C of

weight j increments the array element AWD(j) by 1. Then, deviation of the cipher

from the ideal binomial distribution is found for a specific plaintext difference ∆P of

hamming weight 1 as

Di = ∑
=

−
n

j

jNBjAWD
N 0

)()(
2
1 (4.3)

where i corresponds to the index of “1” in the plaintext difference (∆P) vector.

Corresponding resemblance parameter R to a binomial distribution is then

given by

Ri = 1 – Di (4.4)

While defining the distortion by (4.3) the magnitude of [AWD(j) - NB(j)] is

used in order not to make a distinction between positive or negative errors. The

normalization coefficient of 1/2N is added to restrict the worst case value of R to 0.

(Notice that the worst case occurs when non-zero values of AWD(j) correspond to

zero values of B(j) and vice versa)

If Ri = 1 then the actual AWD is exactly the same as the ideal binomial

distribution. In the worst case Ri = 0, and the AWD of the corresponding block cipher

shows no resemblance to the ideal binomial distribution.

 63

4.1.2 Avalanche Criteria Analysis Procedures

In this section, the test procedures of avalanche criterion, AWD and

resemblance parameter analysis are given. These procedures are applied to the studied

cipher in Chapter 5.

a Avalanche Criterion

The following steps are used in this avalanche criterion test procedure:

1. A key is chosen randomly.

2. A plaintext P is chosen at random and the pair of that plaintext Pi is

calculated so that the difference between P and Pi is, i.e. Pi = P ⊕ ei and P and Pi

differ only in bit i, where ei is a n-bit unit vector with a position i, and i Є {1, 2,…, n},

3. P and Pi are submitted to r-rounds of cipher for encryption under the key

chosen in step 1,

4. From the resultant ciphertexts C and Ci, the avalanche vector ∆C = C ⊕ Ci

is calculated,

5. The avalanche vector is summed up to an avalanche sum array,

6. The above steps 2-5 are repeated N (typically 10000) times and the values

in the avalanche sum array are sketched versus its index.

It is expected due to the avalanche criterion that an average of one half of the

output bits should change whenever a single input bit is changed, so if we use 10000

 64

sample plaintexts all n entries in the avalanche sum array should be around 5000. So

we expect a straight line around 5000 as the result of avalanche criterion.

b Avalanche Weight Distribution

To determine the diffusion properties of ciphers a derivative of avalanche

criterion, avalanche weight distribution (AWD) curves are helpful. The criterion can

be stated as: even for small hamming weight differences at the input (plaintext or

keybits), the distribution of the hamming weight of the ciphertext differences

(avalanche vectors) should be close to a binomial distribution around n/2 for a good

block cipher with a block length of n.

To investigate the diffusion properties of cipher the following test procedure is

used for the criterion of avalanche weight distribution (AWD).

1. A key is chosen randomly,

2. A plaintext P is chosen at random and the pair of that plaintext Pi is

calculated so that the difference between P and Pi is, i.e. Pi = P ⊕ ei and P and Pi

differ only in bit i, where ei is a n-bit unit vector with a position i, and i Є {1, 2,…, n},

3. P and Pi are submitted to r-round of cipher for encryption under the key

chosen at step 1,

4. From the resultant ciphertexts C and Ci, the hamming weight of the

avalanche vector wt(∆C) = wt(C ⊕ Ci) = j is calculated, where j Є {1, 2,…, n},

 65

5. The value of the jth
 element of an AWD array with a size of n is

incremented by 1, i.e. AWD[j] = AWD[j] + 1,

6. The steps 2-5 are repeated N (typically 10000) times and the values in the

AWD array are sketched versus its index, as the AWD curve corresponding to the

input difference ∆P = ei.

c Resemblance Parameter Analysis

After the AWD array is found distortion measure (Di) and resemblance

parameter (Ri) can be found with the following procedure:

1. Obtain the AWD curve corresponding to ∆P = ei,

2. Calculate the binomial distribution function B(j) where j Є {1, 2,…, n},

3. Find the sum of absolute difference of AWD[j] and B(j) for each j where j Є

{1, 2,…, n},

4. Calculate Di and Ri using equations (4.3) and (4.4) respectively.

In Chapter 5, avalanche and AWD curves to investigate diffusion properties of

RC5, RC6 and Twofish ciphers with random plaintext or keyword and differences at

different positions i are presented. The results of avalanche criteria and NIST’ s

statistical test results are compared in this chapter. The nonlinearity of the S-boxes of

Twofish cipher is also evaluated in Chapter 5.

 66

4.2 Nonlinearity Measure

 Encryption mappings are often designed to satisfy a set of chosen criteria

which have been established either formally or empirically as essential to the security

of the cipher. Two basic criteria due to Shannon suggest that a cipher should be

constructed using the notions of diffusion and confusion. As described in the

preceding sections, diffusion refers to the dissipation of the statistical properties of

the plaintext, while confusion refers to the internal operations of the cipher that

produce complex relations between the plaintext, key and ciphertext.

 If a ciphertext bit ci is described by the boolean function fi then it is generally

accepted that each fi should possess a combination of the properties such as balance,

nonlinearity, completeness, correlation immunity, the strict avalanche criterion, or be

bent.

The nonlinearity of many block ciphers depend directly on the selection of the

S-boxes since, typically, the S-boxes are the only non-affine component of the cipher.

So one can state that, if the S-boxes are affine then the entire mapping is affine [10].

In the following section, basic definitions of the nonlinearity criteria are given.

4.2.1 Basic Definitions of Nonlinearity Criteria

Affine Function: A boolean function)(xf is called a affine function of

)........(1 nxx=x Zn
2∈ , if it is in the form

cw.x x ⊕=⊕⊕⊕⊕= )(2211 cxaxaxaf nn (4.5)

 67

where ,......,, 21 caaa n belong to 2Z , w),...,(1 naa= Zn
2∈ , and w.x denotes the

inner product of vectors w and x.

In the boolean field, the coefficients ia simply enable or disable the associated

variable ix . If c = 0, affine function is also linear.

Truth Table: The truth table tf of the boolean function)(xf is found by

evaluating)(xf for all possible values of x = iα ; where iα is the n-bit vector

corresponding to binary representation of the integer 12 ..., ,0 −= ni . So:

)}(),......,({ 120t nαα
−

= fff (4.6)

Notice that the truth table of the boolean function 22: ZZf n → is a binary

sequence of length n2 .

Sequence of a Boolean Function: The sequence of a boolean function

22: ZZf n → is defined as:

fs })1(,...,)1(,)1{()()()(1210 −−−−= nfff ααα (4.7)

where αi is the n-bit vector corresponding to binary representation of the integer

12 ..., ,0 −= ni . So, 0’s and 1’s of the truth table tf given by simply turn into +1’s

and –1’s in the sequence fs given by (4.7). The sequence of a linear (affine) function

is called a linear (affine) sequence.

 68

Hamming Distance: Hamming distance between two functions

22: ZZf n → and 22: ZZg n → is defined as the hamming weight of the truth table of

the difference function)()(xx gf ⊕ .

tHH gfwgfd))()((),(xx ⊕= (4.8)

where g)fd H ,(is the hamming distance and tH gfw))()((xx ⊕ is the hamming

weight of the truth table corresponding to the function)()(xx gf ⊕ . Notice that the

distance between boolean functions f and g is also equal to the hamming distance

between their 2n-bit truth tables ft and gt ; and the hamming distance between their 2n-

bit sequences fs and gs. Hence:

=),(gfd H)(tt g ,fHd =)(ss g ,fHd (4.9)

Hadamard Matrix: A Hadamard matrix H is an nn × matrix with entries +1

or -1, such that all rows and all columns are orthogonal, i.e., n
T nIHH = where TH is

the transpose of the Hadamard matrix and nI is the identity matrix of order n . A

special kind of Hadamard matrix, called the Sylvester-Hadamard matrix of order 2n

denoted by Hn is generated by the following recursive relation:

-

 ,1
11

1 1
0












==

−−

−−

nn

nn
n HH

HH
HH (4.10)

 69

 So;
11
11

1 







−+
++

=H



















+−−+
−−++
−+−+
++++

=

1111
1111
1111
1111

2H

and 23 x 23 Sylvester-Hadamard matrix H3 can be obtained as follows:

































−++−+−−+
++−−−−++
+−+−−+−+
−−−−++++
+−−++−−+
−−++−−++
−+−+−+−+
++++++++

=

11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111

3H

 It can be shown that each row (or column) of Hn is a linear sequence of length

2
n
, i.e., it corresponds to the sequence of a linear function. There is a one to one

mapping between each row (or column) li of a (2n x 2n) Sylvester-Hadamard matrix

Hn , and the sequence of a linear function 22: ZZl n → defined by li (x)= w.x, where

the subscript i takes 2n different values corresponding to 2n possible weighting

vectors w.

Non-linearity: The non-linearity of a boolean function is formulated with

equation (4.11)

}cfnZ
cfN ⊕≠∈= x . wxx

w
)(|2 #

,
min { , (4.11)

 70

which can be stated as the minimum hamming distance of this function from an

affine function. One can find this minimum distance by comparing the truth table of

the boolean function to all rows of the Hadamard matrix. This definition of

nonlinearity shown [38] to be equivalent to equation (4.12)

(){ }ss
w

n
f xwfN

n
••−=

−=

− max
2
1

2
2,...,1,0

1
1

 (4.12)

Walsh Transform: The walsh transform of a function)(xf is defined as

[21]:

∑ ∈
−−= nZ

fF
2

.)1()1()()(
x

w.xxw (4.13)

Notice that for 2n different values of the n bit vector w, one obtains 2n

different linear functions

xwx ⋅=)(wl (4.14)

and the walsh transform defined in (4.13) is nothing but the inner product of the

sequences of f(x) and lw(x):

F(w) = fs . lws = fs . (w.x)s (4.15)

The walsh transform given by (4.13) takes integer values in the interval [-2n ,

2n].

Bent Function: A function 22: ZZf n → is called a bent function [37] if,

 71

1)1(2)()(
2 ±=−

⋅⊕− ∑ xx wf
n

, for all nZ 2∈w . (4.16)

Notice that the walsh transform defined by (4.13) can also be written as:

∑ ∈
−−= nZ

fF
2

)()1()1()(x
w.xxw =)()(

2
)1(xw

x
⋅⊕

∈∑ −
xf

nZ

Hence, one can express (4.16) in the form: 1)(2 2/ ±=− wFn

So, the magnitude of the walsh transform for bent functions is found as:

2/2)(nF =w , for all w. (4.17)

Bent functions only exist for even values of n.

4.2.2 Nonlinearity of S-boxes

Nonlinearity of the S-box can be defined in terms of nonlinearities of the

individual components fi which are the output bit functions of the S-boxes. The worst

case nonlinearity over all output bit positions and their linear combinations; where the

nonlinearity factor for each function jf : 22 ZZ n → is defined by

Nf j = 2
12 1 −−n max i =1,…,2

n | f j,s . l i,s | =
2
12 1 −−n max | Fj(w) | (4.18)

It was shown by Rothaus [25] that the class of perfectly nonlinear functions

coincides with the class of bent functions. Using (4.17) and (4.18),

1)2/(11 22)(
2
12 −−− −=−≤ nn

Bent
n

f FN w , for n even (4.19)

 72

Rothaus [25] also showed that for odd values of n, there are no perfect

nonlinear functions, and maximum nonlinearity is equal to 2
n-1

 − 2
(n+1)/2

. So,

Nf ≤ 2
n-1

 − 2
(n+1)/2

, for n odd (4.20)

4.2.3 Nonlinearity Criterion

To calculate the nonlinearity of nxn S-boxes we have first found the truth

tables of permutation boxes of the S-boxes. Each output bit has a truth table of 2n

bits. After obtaining n truth tables for n output bits, we find all 2n truth tables

corresponding to all 2n linear combinations of the output bits. Each row of the truth

table matrix is then compared to all rows of 2nx2n Sylvester-Hadamard matrix, to find

the minimum distance. Nonlinearity values are obtained for each of the 2n boolean

functions. The smallest of all is the nonlinearity parameter of nxn S-boxes.

We find the 2nx2n truth table matrix with the following algorithm:

1. Define a boolean vector of F = {f1, f2,…, fn}where fx are the result bits of

the S-boxes while x = {x1, x2,…, xn}is the input vector, 0< x < 2n-1

2. Define the boolean function to be f (fx) = a1●f1 ⊕ a2●f2 ⊕ … ⊕ a8●f8,

where a = {a1, a2,…, an} 0 < a < 2n-1

3. Use all available input x values to the permutation where the boolean vector

is found and then by using this vector, the boolean functions truth table is found by

using all available coefficient vectors, a.

 73

Notice that, in the first row of the truth table, the coefficient vector a is equal

to all zero which results to an all zero row. And in the first column the input vector x

is equal to all zero.

In Chapter 5 the nonlinearity values for the S-boxes of Twofish are given after

presentation of avalanche and AWD curves for RC5, RC6 and Twofish.

 74

CHAPTER 5

EVALUATION RESULTS

In this chapter we give the evaluation results of the studied ciphers, RC5,

RC6, and Twofish. The avalanche curves and avalanche weight distribution (AWD)

curves are sketched and analyzed according to the steps given in Chapter 4. Together

with resemblance parameter analysis, the nonlinearity of Twofish S-boxes is

investigated.

5.1 Avalanche Characteristics of RC5 Cipher

5.1.1 Avalanche Curves of RC5 Cipher

The avalanche curves of RC5 are obtained by counting the number of changes

at each position of the round output vector, when a specific plaintext bit at position i

is complemented for a set of N = 10000 different plaintexts. The keyword is usually

chosen as all-zero keyword, unless it is specified as something else. Other parameters,

such as magic words, are also not changed and the same as the original code. For RC5

 75

algorithm three intervals can be identified for the position of the complemented input

bit, i.e. error bit where the avalanche behavior is similar. These intervals are found as

i Є [1..35], [36..40], [41..63].

In Fig. 5.1 (a) and Fig. 5.1 (b), avalanche curves of 1-round RC5 are given for

different error bit positions at the input vector, i.e. the plaintext. For the first round in

the interval of i = 36,...,40 the average number of changes in avalanche variable is

more than 4970 (which is expected to be 5000 ideally) and this can be said to be a

very good diffusion value, because it is in the 0.6% vicinity of the ideal value and

maximum change is within 7%. On the other hand, in the other two regions, the

average number of changes in avalanche variable is within 1100 and 1600, which is

much more less than the desired value.

In Fig. 5.1 (c) and Fig. 5.1 (d), avalanche curves of 2-round RC5 are given for

different error bit positions i. For the second round, the average number of changes in

avalanche variable differs only 0.2% from the ideal value of 5000 in the interval of i

Є [36..40]. Also in the other intervals the average avalanche value is improved to the

range 3400-4200.

 76

Figure 5.1 Avalanche curves of RC5 for the first and second round (r=1, r=2)

and chosen error bit positions (i), which represents different cases

 The avalanche curves for 3-rounds of RC5 are sketched in Fig. 5.2 (a) and

Fig. 5.2 (b). As can be observed from the figures for all intervals the characteristics

are improved and in the worst case, i.e. i Є {(1..35), (41..63)}, the number of change

of avalanche variable is more than 4400.

 77

 Figure 5.2 Avalanche curves of RC5 for the third round (r=3) and chosen

error bit positions (i), which represents different cases

5.1.2 Avalanche Wight Distribution (AWD) Curves of RC5 Cipher

The AWD curves of RC5 are obtained by calculating the hamming weight of

the round output vector, when a specific plaintext bit at position i if complemented

for a set of N = 10000 different plaintexts. The keyword is usually chosen as all-zero

keyword, unless it is specified as something else. Other parameters, such as magic

words, are also not changed and same as the original code. The intervals explained in

section 5.1.1 are used for the analysis.

In Fig. 5.3 (a) and Fig. 5.3 (b), AWD curves of 1-round RC5 are given for

different error bit positions at the input vector, i.e. the plaintext. For the first round in

the intervals i Є {(1..31), (41..63)} the resemblance parameter (Ri) is below 0.045 and

if a single bit of the plaintext is changed, first round of RC5 changes less than 31 bits

 78

of the ciphertext and the change is mostly around 5 bits. Notice that the resemblance

parameter Ri defined by (4.4) measures how close the avalanche weight distributions

are to the ideal binomial curve, i.e., how random the avalanche variables are. For the

first round in the interval i Є [36..40] the resemblance parameter (Ri) is higher than

0.950 and if a single bit of the plaintext is changed, first round of RC5 changes less

than 46 bits of the ciphertext and more importantly the change is mostly around 32

bits.

Notice that in the interval i Є [36..40], the AWD curves are very close to the

ideal curve given in Fig. 4.1. One can argue that bits in that region are not suitable for

differential cryptanalysis based attacks.

In Fig. 5.3 (c) and Fig. 5.3 (d), AWD curves of 2-rounds of RC5 are given for

different error bit positions i at the input vector, i.e., the plaintext. For the first round

in the intervals i Є {(1..31), (41..63)} the resemblance parameter (Ri) is below 0.680

and if a single bit of the plaintext is changed, first round of RC5 changes less than 46

bits of the ciphertext and the change is mostly around 25 bits. Besides, for the first

round in the interval i Є [36..40] the resemblance parameter (Ri) is higher than 0.980

and if a single bit of the plaintext is changed, first round of RC5 changes less than 48

bits of the ciphertext and more importantly the change is mostly around 32 bits.

 79

Figure 5.3 Avalanche weight distribution curves of RC5 for the first and

second round (r=1, r=2) and chosen error bit positions (i), which represents different

cases

In Fig. 5.4 (a) and Fig. 5.4 (b) AWD curves of 3-rounds RC5 are given for

different error bit positions i at the input vector. In either interval resemblance

parameter (Ri) is higher than 0.850 but on the other hand the difference of the

histograms sketched in the predefined intervals can be observed clearly. With the start

of third round the AWD curves become more similar to the ideal curve in all intervals

 80

and it is clear that cryptanalysts need much more given plaintexts in known-plaintext

based attacks.

Figure 5.4 Avalanche weight distribution curves of RC5 for the third round

(r=3) and chosen error bit positions (i), which represents different cases

5.1.3 Resemblance Parameters for RC5 Cipher

Resemblance parameters (Ri) of RC5 are obtained by finding the absolute

difference between the AWD curves of RC5 and the binomial distribution. Indeed

resemblance parameter variations according to different bit positions i reveals the

intervals that have same avalanche characteristics. The histograms are sketched for

first, second and third round of RC5 Cipher. As can be seen from the figures below:

the characteristics of RC5 Cipher gives better results within the interval i Є 36,...,40.

The curves are sketched according to the steps given in Chapter 4. All of the curves

are sketched with the parameters N = 10000 (number of sample plaintexts), all-zero

keyword, 64 bits of plaintext and 64 bits of keyword.

 81

Notice that the interval on Y-axis of the Fig. 5.5 (c) and Fig. 5.5 (d) are

different from the others to focus on the characteristic detailed.

Figure 5.5 Resemblance parameter curves of RC5 for different rounds (r): a)

r=1 b) r=2 c) r=3 d) r=4

As can be seen from the above figures after 4 rounds RC5 algorithm becomes

invulnerable to the 1-bit changes in the plaintext values, i.e. Ri value is lower than

0.02 . But there is an important issue to be noted when the figures are investigated

 82

detailed, there appears an extreme point that when the bit positions i=36, 37, 38, 39,

40 without looking at the round number, Ri value is near to one. But nevertheless we

can conclude that RC5 Cipher achieves acceptable and desired diffusion after the

fourth round.

5.2 Avalanche Characteristics of RC6 Cipher

5.2.1 Avalanche Criterion for RC6 Cipher

The avalanche curves of RC6 are obtained by counting the number of changes

at each position of the round output vector, when a specific plaintext bit at position i

if complemented for a set of N = 10000 different plaintexts. The keyword is manually

chosen as all-zero keyword, unless it is specified as something else. Other parameters,

such as magic words, are also not changed and the same as the original code. For RC6

algorithm four intervals can be identified for the position of the complemented input

bit, i.e. error bit where the avalanche behavior is similar. These are intervals are found

as i Є [1..31], [32..63], [64..95], [96..127].

In Fig. 5.6 (a) and Fig. 5.6 (b), the avalanche curves of 1-round RC6 are given

for error bit positions i at the input vector, i.e., the plaintext. For the first round in the

intervals i Є {(32..63), (96..127)} the avalanche curves are better than the other

intervals which will be the starting point of selecting these intervals. The average

change in avalanche vectors in these regions are more than 10 times better than the

values in the interval i Є {(1..31), (64..95)}.

 83

 In Fig. 5.6 (c) and Fig. 5.6 (d), the avalanche curves of RC6 for second round

with different error bit positions i at the input vector are given. In the intervals i Є

{(32..63), (96..127)} RC6 has better avalanche characteristics than the other regions

as expected from the first round. In these regions the average of change of avalanche

variables is 4100 and 4700 respectively.

 Figure 5.6 Avalanche curves of RC6 for the first and second round (r=1, r=2)

and chosen error bit positions (i), which represents different cases

 84

 In Fig. 5.7 (a) and 5.7 (b), avalanche curves for 3-rounds of RC6 cipher for

different error bit positions i at the input vector are sketched. The number of change

of avalanche variables is improved by increasing the number of rounds and the

average number of change of avalanche variable is more than 4450 for all intervals.

Additionally in the intervals i Є {(32..63), (96..127)} the average number of change

of avalanche variable is varying between 4960 and 5000.

 Figure 5.7 Avalanche curves of RC6 for the third round (r=3) and chosen

error bit positions (i), which represents different cases

5.2.2 Avalanche Wight Distribution (AWD) Curves of RC6 Cipher

The AWD curves of RC6 are obtained by calculating the hamming weight of

the round output vector, when a specific plaintext bit at position i if complemented

for a set of N = 10000 different plaintexts. The keyword is manually chosen as all-

 85

zero keyword, unless it is specified as something else. Other parameters, such as

magic words, are also not changed and same as the original code. The intervals

explained in section 5.2.1 are used for the analysis.

In Fig. 5.8 (a) and Fig. 5.8 (b), AWD curves of 1-round RC6 are given for

different error bit positions i at the input vector. For the first round in the intervals of i

Є {(1..31), (64..95)} the resemblance parameter (Ri) is below 0.001 and if a single bit

of the plaintext is changed, first round of RC6 changes less than 10 bits of the

ciphertext but the change is mostly around 3 bits. Besides, for the first round in the

intervals of i Є {(32..63), (96..127)} the resemblance parameter (Ri) is less than

0.004 and if a single bit of the plaintext is changed, first round of RC6 changes less

than 48 bits of the ciphertext and more importantly the change is varies around 25 to

32 bits.

In Fig. 5.8 (c) and Fig. 5.8 (d) AWD curves of 2-rounds of RC6 are given for

different error bit positions i at the input vector. For the second round in the intervals

of i Є {(1..31), (64..95)} the Resemblance Parameter (Ri) is below 0.0015 and if a

single bit of the plaintext is changed, first round of RC6 changes less than 50 bits of

the ciphertext and the change is mostly around 28 bits. Besides, for the first round in

the intervals of i Є {(32..63), (96..127)} the resemblance parameter (Ri) varies from

0.280 to 0.980 and if a single bit of the plaintext is changed, 2-rounds of RC6 changes

less than 82 bits of the ciphertext and more importantly the change is varies around

55 to 63 bits. There is significant performance improvements in the histograms but

the difference between the intervals can be observed clearly. Notice that between the

 86

intervals i Є {(32..63), (96..127)} AWD curves become very similar to the desired

curve given in Fig. 4.1.

Figure 5.8 Avalanche weight distribution curves of RC6 for the first and

second round (r=1, r=2) and chosen error bit positions (i), which represents different

cases

In Fig. 5.9 (a) and Fig. 5.9 (b) AWD curves of 3-rounds of RC6 are given for

different error bit positions i at the input vector. For the third round in the intervals of

 87

i Є {(1..31), (64..95)} the resemblance parameter (Ri) is below 0.600 and if a single

bit of the plaintext is changed, third round of RC6 changes less than 85 bits of the

ciphertext but the change is mostly around 58 bits. Besides, for the third round in the

intervals of i Є {(32..63), (96..127)} the resemblance parameter (Ri) is higher than

0.004 and if a single bit of the plaintext is changed, 3-rounds of RC6 changes less

than 88 bits of the ciphertext and more importantly the change is varies around 64

bits.

It can be observed that between the intervals i Є {(32..63), (96..127)} the

AWD curves of RC6 give the desired diffusion characteristics, on the other hand this

result can not be observed in the other intervals and if it is to be compared with RC5

it is clear that RC5 has better avalanche characteristics within the same round.

Figure 5.9 Avalanche weight distribution curves of RC6 for the third round

(r=3) and chosen error bit positions (i), which represents different cases

 88

5.2.3 Resemblance Parameter for RC6 Cipher

Resemblance parameters (Ri) described by (4.4) are obtained by finding the

absolute difference between the AWD curves of RC6 and the binomial distribution,

as shown in (4.3). Indeed resemblance parameter variations according to different bit

positions i reveals the intervals that have the same avalanche characteristics. The

histograms are sketched for the first, second, third and fourth rounds of RC6 Cipher.

As can be seen from the figures below: the characteristics of RC6 Cipher gives better

results within the interval i Є {(32..63), (96..127)}. The AWD curves are sketched

according to the steps given in Chapter 4. All of the curves are sketched with the

parameters N = 10000 (number of sample plaintexts), all-zero keyword, 128 bits of

plaintext and 128 bits of keyword.

Notice that the interval on Y-axis of Fig. 5.10 (a) and Fig. 5.10 (d) is different

from the others to focus on the characteristic detailed.

 89

Figure 5.10 Resemblance parameter curves of RC6 for different rounds (r): a)

r=1 b) r=2 c) r=3 d) r=4

As can be seen from the above figures after 4 rounds RC6 algorithm becomes

invulnerable to the 1-bit changes in the plaintext values, i.e. Ri value is nearly equal

to 1.

There is an important issue to be noted when the figures are investigated

detailed, for 2-rounds of RC6 the Ri curve is such stepped-saw tooth waveform

between the intervals i Є {(32..63), (96..127)} and for 3-rounds of RC6 in these

 90

intervals the Ri value is nearly equal to 1 where for the other intervals Ri value is

equal to nearly 0.55. This shows that the bits in the interval intervals i Є {(32..63),

(96..127)} are less vulnerable to diffusion based cryptanalytic attacks. Indeed this

result can also be revealed by examining the encryption algorithm of RC6.

It is clear that these bits correspond to the bits of A and C which are two of the

four w-bit registers. And also the B and D registers are not too much changed in the

encryption algorithm, only operation is the subtraction of secret key register’s 0th
 and

1st
 indexed values from these registers. Furthermore the operations, quadratic function

and data-dependent shifting, which increase the complexity of algorithm are not

applied to the registers B and D. On the other hand the registers A and C are exposed

to data-dependent shifting where the value of shift is found by quadratic function.

5.3 Avalanche Criteria and Derivations Applied to Twofish Cipher

5.3.1 Avalanche Criterion for Twofish Cipher

In this section, the avalanche characteristics of Twofish cipher are investigated

and avalanche curves are sketched according to the steps given in Chapter 4. The

avalanche curves of Twofish are obtained by counting the number of changes at each

position of the round output vector, when a specific plaintext bit at position i if

complemented for a set of N = 10000 different plaintexts. The keyword is manually

chosen as all-zero keyword, unless it is specified as something else. For Twofish

algorithm tow intervals can be identified for the position of the complemented input

 91

bit, i.e. error bit where the avalanche behavior is similar. These are intervals are found

as i Є [1..63], [64..127].

While sketching these curves it is observed that the number of average change

of avalanche variable of Twofish cipher is very near to zero so there is no need to

sketch the characteristics for the first round.

In Fig. 5.11 (a), Fig. 5.11 (b), Fig. 5.11 (c), Fig. 5.11 (d) the avalanche curves

of 2-round Twofish cipher are sketched for different error positions i at the input

vector. The average number of change of avalanche variable 2500 and 5000 in

intervals [1..63] and [64..127] respectively. This is said to be a better result from RC6

Cipher because almost 64 avalanche variables has number of changes near to ideal.

In Fig. 5.12 (a), Fig. 5.12 (b), Fig. 5.12 (c), Fig. 5.12 (d), the avalanche curves

for 3-round Twofish cipher are sketched. Its waveform is similar to 2-round Twofish.

 92

Figure 5.11 Avalanche curves of Twofish for the second round (r=2) and

chosen error bit positions (i), which represents different cases

 93

Figure 5.12 Avalanche curves of Twofish for the third round (r=3) and

chosen error bit positions (i), which represents different cases

5.3.2 AWD Test for Twofish Cipher

The AWD curves of Twofish are obtained by calculating the hamming weight

of the round output vector, when a specific plaintext bit at position i if complemented

for a set of N = 10000 different plaintexts. The keyword is manually chosen as all-

 94

zero keyword, unless it is specified as something else. The intervals explained in

section 5.2.1 are used for the analysis.

Differing from other studied cipher algorithms for the first round of Twofish

the AWD curves resemble to a line of origin 0 so there is no need to sketch the figure.

On the other hand, as shown in Fig. 5.13 (a), 2-rounds Twofish Cipher has better

performance than the others when observed in whole 128-bit wide.

In Fig. 5.13 (a) and Fig. 5.13 (b) AWD curves of 2-rounds and 3-rounds of

Twofish are given for different error bit positions i at the input vector. For the second

and third rounds in the interval of [1..63] the resemblance parameters (Ri) are below

0,0025 and if a single bit of the plaintext is changed, first round of Twofish changes

less than 51 bits of the ciphertext and the change is mostly around 34 bits. Besides,

for the second and third rounds in the interval of [64..127] the resemblance parameter

(Ri) is higher than 0.920 and if a single bit of the plaintext is changed, second and

third rounds of Twofish changes less than 88 bits of the ciphertext and more

importantly the change is varies around 64 bits.

 95

Figure 5.13 Avalanche weight distribution curves of Twofish for second

round (r=2) and chosen error bit positions (i), which represents different cases

 96

Figure 5.14 Avalanche weight distribution curves of Twofish for third round

(r=3) and chosen error bit positions (i), which represents different cases

5.3.3 Resemblance Parameter Analysis Applied to Twofish Cipher

An avalanche criteria derivative, resemblance parameters (Ri) of Twofish are

obtained by finding the absolute difference between the AWD curves of Twofish and

the binomial distribution. Indeed resemblance parameter variations according to

different bit positions i reveals the intervals that have same avalanche characteristics.

 97

The histograms are sketched for second, third and fourth rounds of Twofish Cipher.

As can be seen from the figures below: the characteristics of Twofish gives better

results within the interval i Є (64..127). The AWD curves are sketched according to

the steps given in Chapter 4. All of the curves are sketched with the parameters N =

10000 (number of sample plaintexts), all-zero keyword, 128 bits of plaintext and 128

bits of keyword.

As in RC5 Cipher these curves are the origin of the idea that we should

investigate the AWD curves for different regions.

Notice that the interval on Y-axis of Fig. 5.15 (c) is different from the others

to focus on the characteristic detailed.

Figure 5.15 Resemblance parameter curves of Twofish for different rounds

(r): a) r=2 b) r=3 c) r=4

 98

As can be seen from the above figures after 4 rounds Twofish algorithm

becomes invulnerable to the 1-bit changes in the plaintext values, i.e. Ri value is

nearly equal to 1.

But there is an important issue to be noted when the figures are investigated

detailed, for 2-rounds and 3-rounds the Ri values rises from around 0 to around 1 after

the index 63. This shows that these bits are less vulnerable to diffusion based

cryptanalytic attacks. Indeed this result can also be revealed by examining the

encryption algorithm of Twofish. In each round the value of the first 2 words are the

same with the previous last 2 words. This fact is clear from Fig. 2.3.

The resemblance parameter of the AWD curves of RC5, RC6 and Twofish to

ideal binomial curve are summarized in the following tables.

Table 5.1 Resemblance parameter (Ri) of RC5 for different error vector

bits (i)

Location of the

plaintext change, i

Range of Ri at

the 1st round

Range of Ri at

the 2nd round

Range of Ri at

the 3rd round

1-35 0,0220-0,0380 0,4450-0,5220 0,8550-0,9200

36-40 0,9820-09690 0,9780-0,9850 0,9860

41-64 0,029-0,0400 0,552-0,555 0,9200-0,9310

 99

Table 5.2 Resemblance parameter (Ri) of RC6 for different error vector

bits (i)

Location of the

plaintext change, i

Range of Ri at

the 1st round

Range of Ri at

the 2nd round

Range of Ri at

the 3rd round

1-35 0 0,0010-0,0020 0,5840-0,5990

36-63 0.0001-0,0030 0,309-0,815 0,9740-0,9770

64-95 0 0,0010-0,0020 0,571-0,574

96-128 0,0001-0,0030 0,182-0,682 0,9730-0,9780

Table 5.3 Resemblance parameter (Ri) of Twofish for different error

vector bits (i)

Location of the

plaintext change, i

Range of Ri at

the 1st round

Range of Ri at

the 2nd round

Range of Ri at

the 3rd round

1-63 0 0,0010-0,0025 0,0010-0,0025

64-127 0 0,9250-0,9450 0,8650-0,9280

5.4 Nonlinearity Measure of Twofish Cipher

Nonlinearity value of Twofish is found by finding the minimum distances

between all affine functions and 2n possible linear combinations of the output bits. In

this section the graphical results of nonlinearity criterion are given for the 8x8 S-

boxes of Twofish Cipher. Also the nonlinearity values of permutation boxes of

 100

Twofish are calculated because these permutation boxes form the “heart” of the S-

boxes (refer to Fig. 2.5). The two boxes q0 and q1 are simple 8 by 8 permutations.

Their algorithms are the same but only their look-up tables given by (2.9) and (2.10)

are different from each other. Although one may think that such small difference in

the lookup tables does not affect nonlinearity values much; this is not the case, and

the nonlinearity of q0 is found as 82, whereas the nonlinearity of q1 is 72. The S-boxes

of the Twofish algorithm which employ q0 and q1 have key-dependent coefficients as

indicated by the elements li,j in (2.7). So nonlinearity values of S-boxes are calculated

for 100 random keywords to examine the effect of the keywords. After evaluating the

nonlinearity values of the 8x8 S-boxes of Twofish, the distribution of the nonlinearity

values for 100 keywords corresponding to 100 random choices of the coefficients li,j

in (2.7) is sketched.

In Fig. 5.16 (a), Fig. 5.16 (b), Fig. 5.16 (c), Fig. 5.16 (d), the nonlinearity

distributions of S-boxes of Twofish are given. Although the number of occurrences of

nonlinearity values is different from each other the curves are similar to each other

and the average of non-linearity values is almost same for different keywords.

 101

Figure 5.16 Nonlinearity of S-boxes of Twofish: a) S-box0 b) S-box1 c) S-

box2 d) S-box3

After sketching the nonlinearity values of S-boxes of Twofish individually, the

distribution of total nonlinearity values of the four S-boxes is sketched over 400

random keywords. By that observation, the effect of a single keyword on all S-boxes

is investigated and the question whether or not the S-boxes compensate each others’

nonlinearity values is tried to be answered. In this experiment the total nonlinearity of

S-boxes of Twofish for the same keyword is found. The aim is to find weak keys that

cause the minimum nonlinearity value while the nonlinearity values of S-boxes of

 102

Twofish are summed for each keyword. In Fig.5.17 through Fig. 5.19 the non-

linearity distribution of four S-boxes is given for three set of 400 random keywords.

The total nonlinearity values of the S-boxes are divided by four to find the average to

observe the similarities between the nonlinearity values of individual S-boxes more

clearly.

0

10

20

30

40

50

60

75,5 76 76,5 77 77,5 78 78,5 79 79,5 80 80,5 81 81,5 82 82,5 83 83,5 84 84,5 85 85,5

Nonlinearity value

N
um

be
r

of
 O

cc
ur

en
ce

s

Figure 5.17 Nonlinearity values of S-boxes of Twofish (Average: 81,215)

0

10

20

30

40

50

60

70

75,5 76 76,5 77 77,5 78 78,5 79 79,5 80 80,5 81 81,5 82 82,5 83 83,5 84 84,5 85 85,5

Nonlinearity value

N
um

be
r

of
 O

cc
ur

en
ce

s

Figure 5.18 Nonlinearity values of S-boxes of Twofish (Average: 81,02625)

 103

0

10

20

30

40

50

60

75,5 76 76,5 77 77,5 78 78,5 79 79,5 80 80,5 81 81,5 82 82,5 83 83,5 84 84,5 85 85,5

Nonlinearity value

N
um

be
r

of
 O

cc
ur

en
ce

s

Figure 5.19 Nonlinearity values of S-boxes of Twofish (Average: 81,0625)

As the above figures state, there may be weak and strong keywords but most

often the nonlinearity is around 81 for different keywords. From (4.19) it can be

calculated that for n=8 if S-boxes of Twofish were perfectly nonlinear, the

nonlinearity would be 120. The highest nonlinearity achieved for n=8 balanced

functions is 116, and 8x8 S-box of Rijndael has a nonlinearity of 112. For Twofish,

highest value is 88.

5.5 Comparison of Avalanche Criteria with NIST Statistical Test

Suite

Randomness testing of AES candidates was based on NIST Statistical Test

Suite [24] which consists of 16 core statistical tests. These tests are explained briefly

in the following section, to form a basis for comparison with our results.

 104

5.5.1 Description of the Statistical Tests

Frequency Test: The purpose of this test is to determine whether the number

of ones and zeros in a sequence are approximately the same as would be expected for

a truly random sequence.

Block Frequency Test: The purpose of this test is to determine whether the

frequency of m-bit blocks in a sequence appears as often as would be expected for a

truly random sequence.

Cumulative Sums Forward (Reverse) Test: The purpose of this test is to

determine whether the maximum of the cumulative sums in a sequence is too large or

too small; indicative of too many ones or zeroes in the early (late) stages.

Runs Test: The purpose of this test is to determine whether the number of

runs of ones and zeros of various lengths is as expected for a random sequence. In

particular, this test determines whether the oscillation between such substrings is too

fast or too slow.

Long Runs of Ones Test: The purpose of this test is to determine whether the

distribution of long runs of ones agrees with the theoretical probabilities.

Rank Test: The purpose of this test is to determine whether the distribution of

the rank of 32x32 bit matrices agrees with the theoretical probabilities.

Spectral (Discrete Fourier Transform) Test: The purpose of this test is to

determine whether the spectral frequency of the binary sequence agrees with what

would be expected for a truly random sequence.

 105

Non-periodic Templates Test: The purpose of this test is to determine

whether the number of occurrences for a specified nonperiodic template agrees with

the number expected for a truly random sequence.

Overlapping Template Test: The purpose of this test is to determine whether

the number of occurrences for a template of all ones agrees with what is expected for

a truly random sequence.

Universal Statistical Test: The purpose of this test is to determine whether a

binary sequence does not compress beyond what is expected of a truly random

sequence.

Approximate Entropy Test: The purpose of this test is to compare the

frequency of overlapping blocks of two consecutive/adjacent lengths (m and m+1)

against the expected result for a normally distributed sequence. In short, it determines

whether a sequence appears more regular than is expected from a truly random

sequence.

Random Excursion Test: The purpose of this test is to examine the number

of cycles within a sequence and determine whether the number of visits to a given

state, [-4, -1] and [1, 4], exceeds the expected for a truly random sequence.

Random Excursion Variant Test: The purpose of this test is to determine if

the total number of visits to states, between [-9, -1] and [1, 9] exceeds the expected

for a truly random sequence.

 106

Serial Test: The purpose of this test is to determine whether the number of

occurrences of m-bit overlapping patterns is approximately the same as would be

expected for a random sequence.

Lempel-Ziv Complexity Test: The purpose of this test is to determine

whether or not the sequence compresses no more than a truly random sequence.

Linear Complexity Test: The purpose of this test is to determine whether or

not the sequence is complex enough to be considered truly random.

5.5.2 Statistical Test Results and Comparison with Avalanche Criteria

These sixteen tests applied under different parameter inputs, can be viewed as

189 statistical tests [36], while some of the tests are repeated many times by changing

the parameters. Table 5.4 gives the indices of the applied 189 tests, and should be

used as reference for the horizontal axes of Fig. 5.20 and 5.21

Table 5.4 Breakdown of the 189 statistical tests applied during randomness

test applied by J. Soto [36]

Statistical Test No. of P-
values Test ID Statistical Test No. of P-

values Test ID

 Monobit 1 1 Periodic Template 1 157

 Block Frequency 1 2 Universal Statistical 1 158

 Cusum 2 3-4 Approximate Entropy 1 159

 Runs 1 5 Random Excursions 8 160-167

 Long Runs of Ones 1 6 Random Excursions Variant 18 168-185

 Rank 1 7 Serial 2 186-187

 107

Table 5.4 cont’d Breakdown of the 189 statistical tests applied during

randomness test applied by J. Soto [36]

Spectral DFT 1 8 Lempel-Ziv Compression 1 188

 Aperiodic Templates 148 9-156 Linear Complexity 1 189

Within these 16 core tests, Frequency (Monobit) Test, Frequency Test within

a Block, Runs Test, Test for the Longest Run of Ones in a Block are mostly related

with avalanche criteria studied in this thesis. In avalanche weight distribution

criterion, the effect of 1 bit changes in the plaintext on the ciphertext are investigated,

and the weight of avalanche vector, which is indeed the number of ones in the

sequence, is found. As described in the preceding section the indicated tests are also

investigating the number of ones in the sequence. As a result comparing the results of

these tests with AWD criterion results will be convenient.

 For Twofish, by the end of the second round, the output appears to be random

for these 4 tests, but according to the avalanche criterion and avalanche weight

distribution criterion, it is clear that Twofish meets the conditions within the fourth

round. So it seems that if the AWD test of this study was used as the 190th test,

Twofish would fail to pass it until the end of the fourth round.

 108

 Figure 5.20 Results of 189 statistical tests applied to Twofish, first result on

top-left refers to the end of the second round, and others refer to the outputs of the

fourth, sixth and eighth rounds, respectively.

 The statistical test results for RC6 seem to be more similar to the results

obtained from this study. As can be observed from Fig. 5.21. RC6 satisfies the

randomness at the end of fourth round. This result is also the same for AWD

criterion, where the AWD curves of RC6 are nearly identical to the ideal binomial

distribution function within the fourth round.

 109

 Figure 5.21 Results of 189 statistical tests applied to RC6, where the first

result on top-left refers to the end of the first round, and others refer to the outputs of

the second, third and fourth rounds, respectively.

 110

CHAPTER 6

CONCLUSION

In this thesis, two finalists of the AES (Advanced Encryption Standard)

contest, RC6 developed by Rivest et al, Twofish proposed by Schneier et al, and

preceding algorithm of RC6 cipher, RC5, are studied. The strength of ciphers to

cryptanalytic attacks is measured according to different criteria. The studied

evaluation criteria are the avalanche criterion and its derivations. After the

implementation of the algorithms and the test procedures, they are compared with

each other.

Firstly, RC5 algorithm is analyzed according to the avalanche criterion and

the avalanche weight distribution criterion. It is concluded that RC5 becomes random

at the end of the third round. Resemblance parameters in Fig. 5.5 show that RC5 is at

least 85% similar to the ideal case after the third round, and the similarity is more

than 97%, after the fourth round.

 111

Secondly, RC6 algorithm is analyzed and RC6 seems to be random after the

fourth round. Fig 5.10 shows that the resemblance of RC6 avalanche vectors to an

ideal random sequence may be as low as 60% at the end of the third round, but it

becomes more than 97% at the end of fourth round.

Thirdly, Twofish algorithm is analyzed and similar to RC6; Twofish seems to

be random at the fourth round according to avalanche criteria. Fig. 5.15 and Table 5.3

indicate that the resemblance of Twofish avalanche vectors to a true random sequence

is as low as 0.1% after fourth round, but it quickly increases to more than 97.3% at

the end of the fourth round.

Finally, the nonlinearities of the S-boxes of Twofish cipher are calculated. The

nonlinearity of the permutation boxes are found as 82 and 72 for the boxes q0 and q1

respectively. The nonlinearity distributions of four 8x8 S-boxes are computed over

many different sets of keys. Since these S-boxes have key dependent coefficients,

their nonlinearities change in the range [66, 88] for different keys, the average value

being around 80 or 82. Although such a nonlinearity parameter is much less than

nonlinearity of Rijndael S-box, which is 112, one can still argue that dynamic

behavior of key dependent S-boxes may increase the security of Twofish.

The most important conclusion of this thesis study is the fact that, although

NIST results given in Fig. 5.20 assume randomness of Twofish at the end of the

second round, the avalanche criteria that we use, indicate that second round outputs

are completely nonrandom, especially when a bit change is made in the first part of

the plaintext (for i=1,…,63) as observed form Fig. 5.15. Complete randomness

 112

according to our tests can be achieved at the end of the fourth round, where the

avalanche vectors of Twofish become similar to random vectors, with a resemblance

parameter greater than 97.3%. The difference between NIST results and ours, is most

probably coming from the difference between the preparation methods of the test

data. Among the data types of NIST [36], the “plaintext avalanche” type is the kind

which is the most similar one to our data type. However, there is still a large

difference: NIST data is prepared considering all input bit differences for i=1,…,128

for a single plaintext, followed by thousands of other plaintexts, whereas our data is

prepared considering a single input bit difference (say i=1) for thousands of

plaintexts. After the test is performed i is incremented by 1 and another set of data is

prepared using thousands of plaintexts. NIST test data of “plaintext avalanche” type

can be considered as an “average” over the data types used in this study; therefore it

looses some details related to specific values of i. Future work, we think that NIST

tests and our tests should be compared for exactly the same data types. We also

propose our data type as an additional data type for NIST Statistical Test Suite.

 113

REFERENCES

[1] C. M. Adams, “A Formal and Practical Design for Substitution-Permutation

Network Cryptosystems”, PhD Thesis, Queen’ s University, Kingston,

Canada, 1990.

[2] R. Anderson, E. Biham, and L. Knudsen, “Serpent: A Proposal for the

Advanced Encryption Standard”, AES algorithm submission, June 1998.

[3] E. Aras, “Analysis of Security Criteria for Block Ciphers”, M.S. Thesis,

Middle East Technical University, Turkey, September, 1999.

[4] E. Biham and A. Shamir. Differential Cryptanalysis of the Data Encryption

Standard. Springer-Verlag, 1993

[5] L. Brown, J. Pieprzyk and J. Seberry, “LOKI- A Cryptographic Primitive for

Authentication and Secrecy Applications”, Advances in Cryptology:

Proceedings of CRYPTO’98, Springler-Verlag, 1998, pp.229-236.

[6] C. Burwick, et al., “MARS – A Candidate Cipher for AES”, AES algorithm

submission, August 20, 1999.

 114

[7] J. Daemen, V. Rijmen, “AES Proposal: Rijndael”, AES Algorithm

Submission, September 3, 1999.

[8] H. Feistel, “Block Cipher Cryptographic System”, U.S. Patent No. 3,798,359,

1974.

[9] J. FOTI, Advanced Encryption Standard (AES): Selection and Plans October

16, 2000

[10] S. Hirose, K. Ikeda, “Nonlinearity Criteria for Boolean Functions”, July 14,

1994.

[11] M.H. Howard, “A Tutorial on Linear and Differential Cryptanalysis”.

[12] I. Vergili, M. D. Yücel, “Avalanche and Bit Independence Properties for the

Ensembles of Randomly Chosen nxn S-Boxes”, Turk J Elec Engin, Vol.9,

No.2, TÜBİTAK, 2001, pp. 137-145.

[13] B.S. Kaliski Jr. and Y.L. Yin, “On Differential and Linear Cryptanalysis of

the RC5 Encryption Algorithm”, In D. Coppersmith, editor, Advances in

Cryptology - Crypto '95, pp 171-183, Springer, 1995.

[14] B. S. Kaliski Jr., Y. L. Yin, “On the Security of the RC5 Encryption

Algorithm”, RSA Laboratories Technical Report TR-602, Version 1.0,

September, 1998.

[15] J. B. Kam, G. I. Davida, “Structured Design of Substitution-permutation

Encryption Networks”, IEEE Transactions on Computers, Vol. C-28, No. 10,

1979, pp. 747-753.

 115

[16] L.R. Knudsen and W. Meier, “Improved Differential Attacks on RC5”, In N.

Koblitz, editor, Advances in Cryptology - Crypto '96, pp. 216-228, Springer,

1996.

[17] P.C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA,

DSS, and Other Systems”, In N. Koblitz, editor, Advances in Cryptology -

Crypto '96, pp. 104-113, Springer, 1996.

[18] X. Lai, J. L. Massey, “A Proposal For A New Block Encryption Standard”, In

I.B. Damgärd, Editor, Advances in Cryptology – Eurocrypt’90, Volume 473

of “Lecture Notes in Computer Science”, pages 17-38, Springer-Verlag,

Berlin, 1992.

[19] J. L. Massey, “SAFER K-64: A Byte-Oriented Block-Ciphering Algorithm”,

Fast Software Encryption, Proc. Cambridge Security Workshop, Cambridge,

U.K., LNCS 09, Springler-Verlag, 1994, pp.1-17.

[20] M. Matsui, “Linear Cryptanalysis Method for DES Cipher”, Advances in

Cryptology, Proc. Eurocrypt’93, LNCS 765, Springer-Verlag, 1994, pp.386-

397.

[21] W. Meier, O. Staffelbach, “Nonlinearity Criteria for Cryptographic

Functions”, Advances in Cryptology: Proceedings of EUROCRYPT’89,

Springler-Verlag, pp.549-562, 1989.

[22] S. Moriai, K. Aoki, and K. Ohta, “Key-dependency of Linear Probability of

RC5”, March 1996.

 116

[23] National Institute of Standards and Technology (NIST), “FIPS Publication 46:

Announcing the Data Encryption Standard”, January 1977.

[24] National Institute of Standards and Technology (NIST), “Special Publication

800-22”, “A Statistical Test Suite for Random and Pseudorandom Number

Generators for Cryptographic Applications”, May 15, 2001

[25] K. Nyberg, “On the Construction of Highly Nonlinear Permutations”,

Advances in Cryptology: Proc.EUROCRYPT’92, pp.93-99, 1993.

[26] R. L. Rivest, “The RC2 Encryption Algorithm”, RSA Data Security Inc.,

March 12, 1992.

[27] R. L. Rivest, “The RC5 Algorithm”, Fast Encryption Algorithm, volume 1008

of Lecture Notes in Computer Science, Springer-Verlag, 1995, pp. 89-96.

[28] R. L. Rivest, M. J. B. Robshaw, R. Sidney, Y. L. Yin, “The RC6 Block

Cipher”, August 20, 1998.

[29] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, N. Ferguson,

“Twofish: A 128-Bit Block Cipher”, June 15, 1998.

[30] J. Seberry, X. Zhang, Y. Zheng, “Nonlinearity and Propagation

Characteristics of Boolean Functions”, November, 1993.

[31] C. E. Shannon, “Communication Theory of Secrecy Systems”, Bell Systems

Technical Journal, Vol.28, 1949, pp.656-715.

[32] A. Shimizu, S. Miyaguchi, “Fast Data Encipherment Algorithm FEAL” In D.

Chaum and W.L. Price, editors, Advances in Cryptology – Eurocypt’87,

 117

volume 304 of Lecture Notes in Computer Science, Springer-Verlag, Berlin,

1988, pp. 267-280.

[33] G.J. Simpsons, editor. Contemporary Cryptology, “The Science of

Information Integrity”, IEEE Press, New York, 1992.

[34] “SKIPJACK and KEA Algorithm Specifications”, May 29, 1998

[35] A. Sorkin, “Lucifer, A Cryptographic Algorithm”. Cryptologia, 8 (1):22-41

1984.

[36] J. Soto, L. Bassham “Randomness Testing of the Advanced Encryption

Standard Finalist Candidates”, Computer Security Division National Institute

of Standards and Technology, March 28, 2000.

[37] X. Zhang, “On the Difficulty of Constructing Cryptographically Strong

Substitution Boxes”, Journal of Universal Computer Science, vol.2, n.3,

pp.147-162, 1996.

[38] X. Zhang, Y. Zheng and H. Imai, “Relating Differential Distribution Tables to

Other Properties of Substitution Boxes”, Designs, Codes and Cryptography,

vol.19, pp.45-63, 1998.

