
HYBRID LEARNING ALGORITHM FOR INTELLIGENT SHORT-TERM 
LOAD FORECASTING 

 
 
 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
THE MIDDLE EAST TECHNICAL UNIVERSITY 

 
 

BY 
 
 

AYÇA KUMLUCA TOPALLI 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF 
DOCTOR OF PHILOSOPHY 

IN 
THE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING 

 
 
 
 
 
 

JUNE 2003 
 



 

 ii

 
Approval of the Graduate School of Natural and Applied Sciences 
 
 
 
 
 
 Prof. Dr. Tayfur Öztürk 

Director 
 
 
I certify that this thesis satisfies all the requirements as a thesis for the degree of 
Doctor of Philosophy. 
 
 
 
 
 
 Prof. Dr. Mübeccel Demirekler 

Head of Department 
 
 
This is to certify that we have read this thesis and that in our opinion it is fully 
adequate, in scope and quality, as a thesis for the degree of Doctor of Philosophy. 
 
 
 
 
 
 Assoc. Prof. İsmet Erkmen 

Supervisor 
 
 

 
 
Examining Committee Members 
  
Prof. Dr. Kemal Leblebicioğlu (Chairman)  
  
Prof. Dr. Tuna Balkan  
  
Prof. Dr. Sezai Dinçer  
  
Assoc. Prof. Aydan M. Erkmen  
  
Assoc. Prof. İsmet Erkmen  

 



 

 iii

ABSTRACT 

HYBRID LEARNING ALGORITHM FOR INTELLIGENT 
SHORT-TERM LOAD FORECASTING 

Kumluca Topallı, Ayça 

Ph.D., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. İsmet Erkmen 

 

June 2003, 104 pages 

Short-term load forecasting (STLF) is an important part of the power generation 

process. For years, it has been achieved by traditional approaches stochastic like 

time series; but, new methods based on artificial intelligence emerged recently in 

literature and started to replace the old ones in the industry. In order to follow the 

latest developments and to have a modern system, it is aimed to make a research 

on STLF in Turkey, by neural networks. For this purpose, a method is proposed to 

forecast Turkey’s total electric load one day in advance. A hybrid learning scheme 

that combines off-line learning with real-time forecasting is developed to make 

use of the available past data for adapting the weights and to further adjust these 

connections according to the changing conditions. It is also suggested to tune the 

step size iteratively for better accuracy. Since a single neural network model 

cannot cover all load types, data are clustered due to the differences in their 

characteristics. Apart from this, special days are extracted from the normal 

training sets and handled separately. In this way, a solution is proposed for all 

load types, including working days, weekends and special holidays. For the 
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selection of input parameters, a technique based on principal component analysis 

is suggested. A traditional ARMA model is constructed for the same data as a 

benchmark and results are compared. Proposed method gives lower percent errors 

all the time, especially for holiday loads. The average error for year 2002 data is 

obtained as 1.60%. 

Keywords: Artificial Intelligence, Hybrid Learning, Neural Networks, STLF. 
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ÖZ 

AKILLI KISA DÖNEM YÜK ÖNGÖRÜMÜ İÇİN KARMA 
ÖĞRENİM ALGORİTMASI 

Kumluca Topallı, Ayça 

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. İsmet Erkmen 

 

Haziran 2003, 104 sayfa 

Kısa dönem yük öngörümü (KDYÖ), güç üretim sürecinin önemli bir kısmıdır. 

Yıllardır, olasılıksal zaman dizisi gibi geleneksel yaklaşımlarla elde edilmiştir; 

fakat son zamanlarda yazında, yapay zekaya dayalı yeni yöntemler ortaya çıkmış 

ve endüstride eskilerinin yerini almaya başlamıştır. Son gelişmeleri izlemek ve 

çağdaş bir sisteme sahip olmak için, sinirsel ağlarla Türkiye’de KDYÖ üzerine bir 

araştırma yapmak hedeflenmiştir. Bu amaçla, Türkiye’nin toplam elektrik yükünü 

bir gün önceden öngören bir yöntem düşünülmüştür. Var olan geçmiş verileri 

ağırlıkları uyarlamada kullanmak ve bu bağlantıları değişen şartlara göre daha 

fazla ayarlamak için, çevrim-dışı öğrenim ile gerçek zamanlı öngörümü birleştiren 

karma bir öğrenim planı geliştirilmiştir. Daha doğru öngörüm için, adım aralığını 

döngülü ayarlamak da ayrıca önerilmiştir. Bütün yük tiplerini tek bir sinirsel ağ 

modeli kapsayamayacağından dolayı, veriler karakter farklılıklarına göre 

kümelendirilmişlerdir. Bundan başka, özel günler normal egitim kümelerinden 

çıkarılmış ve ayrı olarak ele alınmışlardır. Böylece, çalışma günlerini, hafta 

sonlarını ve özel tatil günlerini içeren tüm yük tipleri için bir çözüm önerilmiştir. 
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Giriş değiştirgenlerinin seçimi için, ana bileşen çözümlemesine dayalı bir teknik 

önerilmiştir. Denektaşı olarak geleneksel bir ARMA modeli oluşturulmuş ve aynı 

veriler için sonuçlar karşılaştırılmıştır. Önerilen yöntem her zaman, özellikle de 

tatil yükleri için daha düşük hatalar vermiştir. 2002 yılı verileri için ortalama 

yanılgı %1.60 olarak elde edilmiştir. 

Anahtar Sözcükler: Yapay Zeka, Karma Öğrenim, Sinirsel Ağlar, KDYÖ. 
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CHAPTER 1 

INTRODUCTION 

The forecasting of electric loads with lead times from a few minutes to seven days 

is usually referred to as short-term load forecasting (STLF). STLF plays a key role 

for the economic and secure operation of power systems. Basic functions such as 

unit commitment, hydro-thermal coordination, interchange evaluation and 

security assessment require a reliable short-term load forecast [4]. 

Load forecasting is however a difficult task. First, because the load series is 

complex and exhibits several levels of seasonality: the load at a given hour is 

dependent not only on the load at the previous hour, but also on the loads at 

several past hours, even on the loads at past days. Secondly because, there are 

many important variables that must be considered, such as weather-related 

variables [27]. It is relatively easy to get forecasts with about 10% mean absolute 

percent error (MAPE); however the costs of the error are so high that any research 

reducing it in a few percent points would be amply justified. As an illustration of 

the importance of forecast accuracy, it was estimated that an increase of 1% in 

forecast error caused an increase of 10 million pounds in operating costs per year 

for one electric utility in the United Kingdom [6]. 

The traditional methods to STLF can be broadly classified as time series and 

causal models. In the first one, the load is modeled as a function of its past 

observed values, whose examples are multiplicative autoregressive models, 

dynamic linear models, and methods based on Kalman filtering. General problems 

with the time series approach include the inaccuracy of prediction and numerical 
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instability. One of the reasons this method often gives inaccurate results is that it 

does not make use of weather variables such as temperature, humidity, wind speed 

and cloud cover. The time series approach mostly utilizes computationally 

cumbersome matrix-oriented algorithms which, in certain cases, may be unstable 

[54].  

The second classical method models the load as a function of some exogenous 

factors, especially weather variables. Examples for this class are Box-Jenkins 

transfer functions, ARMAX models, non parametric regression and curve fitting 

procedures. These regression-based approaches use linear or piecewise-linear 

representations for the forecasting functions. The relationship between load and 

weather variables; however, is not stationary, but depends on spatio-temporal 

elements. Conventional regression approach does not have the versatility to 

address this temporal variation. It rather produces an averaged result [54]. 

Therefore, an adaptable technique is needed. 

Recently, with the developments of artificial intelligence, alternative solutions to 

the STLF problem have been proposed. Expert systems, fuzzy inference and 

fuzzy-neural models have been tried out; however, the greatest deal of attention 

has been undoubtedly denoted to the use of neural networks over the last decade 

[27]. The main reason why neural networks became so popular lies in their ability 

to learn complex relationships through a training process with historical data that 

are difficult to model with conventional techniques. This capability enables neural 

networks to model the strong but nontrivial and nonlinear relationships that exist 

between future load and factors affecting it. 

In the literature, several parameters are being used as the performance measures.  

MAPE is the most common one. Mean square error, root mean square error, mean 

square percentage error, histogram of the errors, etc. are also encountered. A 

comprehensive survey about the previous published works done on STLF by 

intelligent methods is given in the second chapter of this thesis. Best achievement 

among the most similar works to the research presented here can be given as [51]. 

Papadakis reported 1.67% error in this paper for year 1995 using fuzzy neural 

networks. Generally, it is expected to have forecast errors less than 2.00% to be 
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considered as being successful. This thesis prefers MAPE as the performance 

measure and has the best result as 1.60% for year 2002. 

Nevertheless, the performance of neural networks in forecasting has not entirely 

convinced the skeptical researchers in this area. Recent reviews and text books on 

forecasting argue that there is little systematic evidence that neural networks 

might outperform standard forecasting methods, concluding that much work still 

needs to be done before they are accepted as established forecasting techniques 

[21, 26, 71].  

It is hoped here that, this thesis would be a step in the way to the reconciliation of 

this skeptical attitude. 

1.1. Objectives 

The main objective of this thesis is to forecast Turkey’s total electric load one day 

in advance. The resulting model should make real-time predictions, so the 

structure should support this property. It is aimed that the proposed system is 

robust, intelligent, and generalizable for changing conditions. It should give 

reasonable forecasts not only for regular data but also for days that have 

abnormalities due to holidays or large temperature variations. It should be 

successful enough to replace the traditional methods and it should bring a novel 

understanding to the solution of the problem. It should reach a performance better 

than 2.00% hourly forecast error as stated in the literature. 

A model is to be proposed for satisfying all these requirements and hence for 

having a good place in literature. 

1.2. Motivation 

STLF is one of the most important problems in power industry. Many works have 

been reported all over the world on STLF application using neural networks. 

Beside this, classical STLF methods are being replaced with neural networks in 

electric generation facilities all over the world. It would be a success to show the 

possibility of doing a research on this subject in Turkey as good as the others.  
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Furthermore, as the neural network approach gives better results than the classical 

methods, it would decrease the redundant excessive generation and thus lower the 

cost. That would be advantageous to Turkey’s economy. 

Another motivation is to present a successful neural network model and 

application against the unacceptance of neural networks in some science 

communities. 

Almost all neural network researches on STLF utilize feedforward type 

configurations, there are very few work reported about STLF with recurrent type 

neural networks. However, dynamics of the process could be better modeled with 

feedbacks. 

Some of the works in the literature do not consider effects due to special days; 

they have excluded such conditions from their systems. On the other hand, in 

order to apply it to real life, it is important to propose a model that has a solution 

for all conditions. 

And also, to present a model that makes use of historical data but at the same time 

that adapts itself to new coming data and thus has the ability to perform real-time 

forecasts would be a complete work. 

1.3. Methodology 

In order to propose a solution to the STLF problem, artificial intelligence 

approach is chosen, as an alternative to the traditional regression-based 

approaches.  

Elman network, which is a subclass of recurrent neural networks is used as the 

structure. This kind of networks has not only feedforward but also feedback 

connections and this construction helps learning.  

A hybrid learning algorithm is proposed which combines off-line training with 

real-time learning to take the advantage of experience gained by past data and to 

make instantaneous forecasts. Since the process is real-time, the model should be 

dynamic. Therefore, step size is made adaptive rather than to be fixed.  
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Knowing that one neural network will not be capable of handling all load types, 

several data clusters are formed. As a resemblance measure, correlation analysis is 

selected. Thinking that the past loads, temperature and time (hour, day, season, 

etc.) play the greatest roles in next day's load, they are used as the input variables 

to the proposed model. 

1.4. Contributions 

The main contribution of this thesis is forming a recurrent neural network that 

runs and learns in real-time to forecast electric load one day in advance. To do so, 

available data is examined and the best connection weights, for starting to the 

real-time forecasts, are found through an off-line training phase. 

In order to determine about optimum size of the input vector, a preprocessing 

method, using the principal component analysis, is proposed. By this way, input 

selection is based on a systematic approach rather than ‘trial and error’ style. 

Step size variation method is adapted to Elman’s type neural networks. Thinking 

that the real-time process should be intelligent enough to give quick responses to 

changing conditions, step size, which is an important parameter in learning, is 

made adjustable at each iteration. 

Proposing a solution for all load profiles, including weekdays, weekends and 

holidays is another contribution. Neural network forecasts are sufficiently good 

for weekdays and weekends; but, they have to be revised and modified for 

holidays. Therefore, a new approach that combines all similar forecasts for past 

years and gives a correction term is suggested for such cases. 

Load characteristics follow local trends and hence national databases show 

differences and previous results do not help understanding the local behaviors. 

Therefore, data analysis and clustering should be done specifically. Here, daily 

correlations are taken as a resemblance measure and data is clustered accordingly. 

A similar work that makes use of such model configuration and proposes such 

methods has not been encountered in the literature. 
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1.5. Flow of the Thesis 

The chapters of this thesis are organized as follows: an introduction to the process, 

known researches in the literature, mathematical basics of the used methods, data 

analysis and grouping, proposed method, performed experiments and obtained 

results, comparison with the classical methods, conclusions and suggestions for 

future works. 

 “Chapter 1: Introduction” starts with the definition of the STLF and states its 

importance. It mentions about various techniques having been applied to the 

STLF process and discusses their advantages and drawbacks. Their successes are 

compared with the results obtained in this research. Objectives, motivation and 

methodology are also described in this chapter.  

“Chapter 2: Literature Survey” summarizes recent works on STLF and achieved 

results with basically neural network approach, all of which have been published 

in the international refereed journals. 

“Chapter 3: Theoretical Background” is devoted to the mathematical preliminaries 

of recurrent neural networks, training algorithm and step size adaptation. 

Necessary equations, formulas, etc. to build up the model are provided there. 

“Chapter 4: Data Analysis and Preprocessing” is about examining the electric load 

data and understanding their behavior before constructing the model. The daily 

and monthly profiles and daily correlations are investigated and a clustering 

approach is applied based on the information gained through this analysis. Neural 

networks are designed according to the clusters formed as explained in this 

chapter. 

“Chapter 5: Proposed Model and Obtained Results for Regular Days” describes 

the developed hybrid learning algorithm in detail and explains all the models 

created for each cluster. Performed experiments are presented and results are 

discussed. Then the overall results are given in a section to see the big picture.  

“Chapter 6: Handling the Special Days” shows the differences between regular 

and special holiday loads and proposes a correction method for special days to 
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adjust the neural network forecasts. Results for each special days types are 

presented, as well as the best and the worst output graphs. 

“Chapter 7: Other Models for Comparison” gives the alternative models slightly 

different than the proposed one and their result in order to make comparisons and 

see the necessity of applied methods. This chapter also aims to give a similar 

STLF work done by statistical methods for benchmarking purposes. Since these 

traditional methods have proved their applicability in this area, it is necessary to 

compare the results achieved with the proposed new approach and with the 

classical ones. This chapter covers such comparisons together with brief 

theoretical information about the statistical approaches. 

“Chapter 8: Principal Component Analysis for Feature Extraction” describes a 

preprocessing method to find the optimum input vector size of the neural 

networks, based on the idea of disposal of the component slowing the 

convergence.  

“Chapter 9: Conclusions” provides the consequents of the thesis work, discussions 

of the obtained results, and suggestions for future researches. 
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CHAPTER 2 

LITERATURE SURVEY

Plenty of works can be found in literature on STLF. Early researches use classical 

methods such as Box-Jenkins, ARMA, ARIMAX, SARIMAX, etc. [8, 20, 22, 23, 

45, 46, 47, 50, 51, 56, 66, 69]. The first attention to artificial intelligence 

approaches in this field was paid in late 1980’s and since then many works have 

been reported both from academy and industry utilizing neural networks or other 

artificial intelligence methods to solve the STLF problem. Today, a great number 

of facilities in the world (mainly in the USA) have replaced their old systems with 

these intelligent ones. It seems that this interest will growingly continue in the 

future. 

Some of these works are mentioned here briefly. Only papers that have been 

published recently in the refereed journals are considered and the ones whose 

main interests are STLF by neural networks are taken into account in order not to 

lose focus. 

Abraham and Nath’s work [1] evaluates the use of two popular soft computing 

techniques and conventional statistical approach based on Box-Jenkins 

autoregressive integrated moving average (ARIMA) model to predict electricity 

demand in the State of Victoria, Australia. The soft computing methods 

considered are an evolving fuzzy neural network and an artificial neural network 

trained using scaled conjugate gradient algorithm (SCGA) and backpropagation. 

The forecast accuracy is compared with the forecasts used by Victorian Power 

Exchange (VPX) and the actual energy demand. To evaluate, they consider load 



 

 9

demand patterns for 10 consecutive months taken every 30 minutes for training 

the different prediction models. They obtain root mean square error (RMSE) of 

0.0092 for the neuro-fuzzy system, 0.0323 for the SCGA, 0.118 for 

backpropagation, and 0.0423 for ARIMA. Their results show that the neuro-fuzzy 

system performed better than neural networks, ARIMA model and the VPX 

forecasts. 

AlFuhaid et al. [2] use a small neural network that pre-processes some of the data 

and produces estimates of peak load, valley load, and total load, which are fed, 

together with some other data, such as relative humidity or wind speed, saying 

that they have a strong effect on the human sensation of thermal discomfort, into a 

very large neural network that computes next day’s profile. They forecast loads at 

each half-hour and so their model needs 48 output neurons. 

The paper of Bakirtzis et al. [4] presents the development of a neural network 

based STLF model for the Energy Control Center of the Greek Public Power 

Corporation (PPC). The model forecasts daily load profiles with a lead time of 

one to seven days. Attention is paid for the accurate modeling of holidays. A fully 

connected three layer feedforward neural network is used in this development. 

The neural network has 63 input neurons; the first 48 represent historical hourly 

load data for two past days, 49-56 are maximum and minimum daily temperatures 

for the present day and the temperature forecasts for the forecast day at two 

weather stations, 57-63 represent the day of the week, bit encoded. The model has 

24 hidden neurons and 24 output neurons representing next day’s 24 hourly 

forecast loads. A single neural network is used for the load forecasting of all day 

types and the model parameters are updated on daily basis. For holiday 

forecasting, they make use of the method proposed by Papalexopoulos but they 

improve it especially for forecasting sequences of holidays. The average result for 

one-day ahead forecast of normal days is 2.24%, while it is 3.56% for the 

holidays. 

Charytoniuk and Chen [7] propose an approach to very short term load forecasting 

by neural networks. The developed forecasting system predicts eight values of 

load for the time leads from 20-90 minutes in 10-minute increments by separate 
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neural networks and they are retrained once a day. Time of day and relative 

increments in load from the recent past are used as input variables. For the 20-60 

minute forecasts, MAPE lies in a range of 0.4-1.1%. Average of these forecasts 

during a four-week summer period is 0.66%. 

Chen et al. [9] suggest a nonfully connected network, in order to reduce the 

number of weights. They try to adapt the Box-Jenkins methodology for fitting 

ARIMA models, and select the lags by the analysis of the autocorrelation 

functions and the partial autocorrelation functions. In doing so, however, they run 

the risk of discarding lagged variables that showed no significant linear 

correlation to the load, but which were strongly nonlinearly correlated to it.  

Choueiki et al. [10] investigate the ability to solve the STLF problem with neural 

networks by conducting a fractional factorial experiment. They analyze the results 

of the experiment and identify the factors, such as number of neurons and layers, 

activation functions, stopping criteria, etc., that affect forecasting performance. 

They derive rules to build a “quasioptimal” neural network. They come up with a 

rather unusual architecture with a recurrent neural network and sinusoidal 

activation functions in the hidden layers.  

The use of a weighted least squares procedure when training a neural network to 

solve the STLF problem is investigated in the work of Choueiki et al. [11]. 

Results indicate that during the on-peak periods (10:00-17:00), the neural network 

that implements the weighted least squares procedure (NNWLS) outperforms the 

neural network that implements the least squares procedure (NNLS) with MAPEs 

1.72% and 2.26%, respectively. During the off-peak period (01:00-09:00, 18:00-

00:00) however, NNLS model is superior with errors 2.63% and 3.22%, 

respectively. They suggest that the weighted least squares procedure be further 

studied by utilities which experience large variations in their marginal energy cost 

profiles and use neural networks in solving the STLF problem. 

Since the load series are often nonstationary, Chow and Leung [12] suggest that 

neural networks could be used to model the first differences of the series, as 

nonlinear extensions to the ARIMA models. They deal only with the week day 

profiles, discarding the weekends and holidays.  
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Daneshdoost et al. [13] classify the data into 48 fuzzy subsets according to 

temperature and humidity; each subset was modeled by a separate neural network. 

However, the data are subdivided into too many classes, and there are not enough 

profiles left in each class to permit network training. 

Dash et al. [15] use a functional-link network that has only one neuron. The inputs 

are a set of sinusoids, past forecasting errors, and temperatures. The neuron has a 

linear activation function, and so this network may be interpreted as a linear 

model that decomposed the load into a weather-independent component modeled 

by a Fourier series, a weather-dependent component modeled by polynomial 

functions and by “functional links”, and random noise. 

The two works of Drezga and Rahman [16, 18] use phase-space embedding, a 

technique that represents a system by one variable and its lagged versions, to help 

determining which lagged values of the load series should be used as inputs. This 

is done by forecasting one hourly load at a time and then aggregating this load to 

the series, so that the forecasts for the later hours will be based on the forecasts for 

the earlier ones. Average forecast errors for 24-hour lead time are 2.05% for 

weekdays and 2.47% for weekends. 

Erkmen and Topallı report four methods for STLF in their recent work [19]. 

These methods are generalized learning vector quantization for data clustering, 

genetic algorithms for optimum topology, neural networks and fuzzy logic for 

forecasting. The one giving the most successful forecasts is a hybrid neural 

network model which combines off-line and on-line learning and performs real-

time forecasts 24-hour in advance. Loads from all day types are predicted with 

1.73% average error for working days, 1.75% for Saturdays and 2.06% for 

Sundays. 

Hippert et al. [27] present a review which examines a collection of papers, 

published between 1991 and 1999, that report the application of neural networks 

to STLF. Their aim is to evaluate the ways in which the neural networks proposed 

in these papers are designed and tested. 
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Ho et al. [28, 29] use a neural network to forecast next day’s peak load, which is 

needed as an input to the expert system that forecasts next day’s profile.  

The paper of Khan et al. [32] presents a comparative study of six soft computing 

models namely multilayer perceptron networks, Elman recurrent neural network, 

radial basis function network, Hopfield model, fuzzy inference system and hybrid 

fuzzy neural network for the hourly electricity demand forecast of Czech 

Republic. The soft computing models were trained and tested using the actual 

hourly load data obtained from the Czech Electric Power Utility for seven years 

(January 1994 – December 2000). A comparison of the proposed techniques is 

presented for predicting 48 hourly demands for electricity. Simulation results 

indicate that hybrid fuzzy neural network and radial basis function networks are 

the best candidates for the analysis and forecasting of electricity demand for the 

experimented data, with the following MAPEs: For weekday forecast, 1.00% by 

radial basis function networks, 0.94% by fuzzy neural network; and for weekend 

forecast, 1.32% by radial basis function networks, 2.00% by fuzzy neural network 

Khotanzad et al. [33] presents lately an approach to short-term load forecasting in 

a deregulated and price-sensitive environment. A real-time pricing type scenario is 

envisioned where energy prices could change on an hourly basis with the 

consumer having the ability to react to the price signal through shifting his 

electricity usage from expensive hours to other times when possible. In this work, 

a price-sensitive load forecaster is developed. This forecaster consists of two 

stages; an artificial neural network based price-insensitive load forecaster 

followed by a fuzzy logic system that transforms the price-insensitive load 

forecasts of the first stage into price-sensitive forecasts. This forecaster is tested 

on three price-sensitive databases and it is shown that it produces superior results 

to the price-insensitive neural network forecasters. By this approach, they improve 

their forecasts according to the databases by 18.5% (error is reduced from 2.87% 

to 2.34%), 12.5% (from 4.37% to 3.83%) and 14.6% (from 4.79% to 4.09%). 

In [36], Khotanzad et al. propose a system in which the results of hourly, daily 

and weekly modules (38 neural networks in total) are linearly combined. This 

system is replaced in [35] by a smaller one, composed of 24 neural networks, one 
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for each hour of the day. Some of these authors propose a system with only two 

neural networks [34]. One of them is trained to produce a first forecast of 

tomorrow’s profile. The other one is trained to estimate tomorrow’s load changes 

with respect to today’s loads; these changes, added to today’s loads, make up a 

second forecast. The forecasts produced by both methods are linearly combined. It 

is argued that the second neural network allows the system to adapt more quickly 

to abrupt changes in temperature. They report that variations in the number of 

hidden neurons do not significantly affect forecasting accuracy. 

Kiartzis et al. [37] train a neural network with data from a small utility, and found 

it necessary to smooth their sample data by a manual pre-processing procedure. 

They devise heuristics to regularize their data. They use piecewise linear-

quadratic functions of the temperature as input variables. 

In the paper of Kim et al. [38], a model for STLF that integrates neural networks 

and fuzzy expert system is presented. The load forecast is obtained by passing 

through two steps. In the first procedure, the neural networks are trained with the 

load patterns corresponding to the forecasting hour, and the provisional load is 

forecast by the trained neural network. In the second phase, the fuzzy expert 

systems modify it considering the possibility of load variations due to the changes 

in temperature and the day type, regular or holiday. Proposed model is tested with 

the data from Korea Electric Power Corporation. Results show that specific rules 

are required to deal with the consecutive holidays that have inconsistent periods 

with the previous year. Moreover, several rules are added for special days that 

have elections, rainy season, typhoon or special television programs. The 

proposed model predicts the load of holidays with a similar forecasting accuracy 

of non-holidays where the conventional methods or neural networks provide poor 

forecasts. Non-holiday results are given for four months: 1.25% for January, 

1.16% for February, 1.30% for March, and 1.07% for April. The average error for 

holidays is 2.19%. 

The purpose of the paper [39] by Kim et al. is to propose a new STLF method for 

special days in anomalous load conditions. These days include public holidays, 

consecutive holidays, and days preceding and following holidays. The proposed 
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method uses a hybrid approach of artificial neural network based technique and 

fuzzy inference method to forecast the hourly loads of special days which are 

classified into five different day types. Five neural network models for each day 

type are used to forecast the scaled load curves of special days, and two fuzzy 

inference models are used to forecast maximum and the minimum loads of special 

days. Finally, the results of these two models are combined to forecast the 24 

hourly loads of special days. The proposed method is tested with actual load data 

of special days in Korea for the years of 1996 and 1997. The average percent error 

is 1.78% with a maximum value of 9.31%. 

Lamedica et al. [40] suggest a system of 12 neural networks, one for each month 

of the year. In order to improve the forecast for anomalous days, the daily load 

profiles themselves are classified by a 8x8 Kohonen self-organized map. The 

classes are then interpreted by the system operator, so that the class to which the 

target day belongs can be predicted. 

An approach based on combined fuzzy theory and artificial neural network is 

developed for STLF in Liang and Cheng’s work [42]. In the proposed approach, 

the Pearson analysis method is first applied to choose two load patterns of 

historical load records that are similar to the load pattern to be forecast. Then, 

these two load patterns and required weather parameters are fuzzified and input to 

a neural network for training or testing purposes. The proposed approach is 

demonstrated by the practical data from Taiwan Power Company. 

Lu et al. [43] experiment with three neural networks to model data from two 

utilities, and concluded that neural networks are system dependent, i.e., must be 

tailored for each specific utility. They ignore the weekend/weekdays distinction, 

but get poor results as a consequence on weekends and holidays.  

A fuzzy modeling method is developed in the paper of Mastorocostas et al. for 

STLF [44]. Identification of the premise part and consequent part is separately 

accomplished via the Orthogonal Least Squares (OLS) technique. Input selection 

is automatically performed, given an input candidate set of arbitrary size, 

formulated by an expert. The performance of the model is evaluated using the 
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load data from the Greek interconnected power system. The attained yearly 

average forecast error is 1.76% for year 1995. 

In the work of Mohammed et al. [48] the hourly loads are classified according to 

the season (seven classes), to the day of the week (three classes) and to the period 

of the day (five classes), and each of these classes was modeled by one of the 

independent neural networks that made up a very large system. They report their 

results in mean absolute errors stating that the utilities would rather evaluate 

forecasting systems by that kind of errors produced. They include a histogram of 

the errors. 

A modeling technique based on the fuzzy curve notion is proposed in Papadakis’ 

paper [51] to generate fuzzy models for STLF. Different forecast models are 

developed for each day type in every season. The model is considered as a fuzzy 

neural network described in terms of a parameter vector and is trained using a 

genetic algorithm with enhanced learning and accuracy attributes. The 

performances of the developed fuzzy models are tested using load data of the 

Greek interconnected power system. They achieve a MAPE of 1.67% with the 

data from year 1995. 

The paper of Papalexopoulos [53] presents the development and implementation 

of an artificial neural network based STLF model for the Energy Control Center 

of the Pacific Gas & Electric Company (PG&E), California, USA. Three types of 

variables are used as inputs to the neural network: historical loads, seasonal 

related and weather related information to forecast the peak and hourly loads. 

They cluster the data according to the day types, yielding seven separate neural 

networks. They use data from 1986 up to 1990 to make forecasts for 1991 and 

they compare the results with the regression based model existing at that time in 

PG&E’s Energy Control Center. They suggest a procedure to improve the 

forecasting on holidays by modifying the basic forecast considering the holiday 

data of several past years. For hourly forecast, they report the error as 1.96%. 

Park et al. [54] use three small sized neural networks to forecast hourly loads, 

total loads and peak loads, dealing only with the weekday profiles, discarding the 

weekends and holidays. Hourly temperature and load data for Seattle/Tacoma area 
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in the interval of 1 November 1988 – 30 January 1989 are collected by the Puget 

Sound Power and Light Company. MAPEs for the hourly, total and peak load 

forecasts are 2.04%, 1.68%, and 1.40%, respectively. The neural network 

typically shows higher error in the days when there are specific start-up activities 

such as Mondays with for example 4.19% error when the weekly average is 

1.73%.. 

Peng et al. [55] propose two neural networks, one of which includes a linear 

neuron among the sigmoidal ones in the hidden layer. They design special classes 

for Mondays, Fridays and even for Thursdays thinking that weekend profile 

disturbs those days. They train their MLPs on small subsets that have data from 

only a few past days selected through statistical measures of similarity. That 

results in samples that are very homogeneous, but also very small.  

In Saini and Soni’s work [58] the daily electrical peak load forecasting is done 

using the feedforward neural network based upon the conjugate gradient 

backpropagation methods, by incorporating the effect of 11 weather parameters, 

the previous day peak load information, and the type of day. To avoid the trapping 

of the network into a state of local minima, the learning rate and error goal 

optimizations are performed. For redundancy removal in the input variables, 

reduction of the number of input variables is done by the principal component 

analysis method. The resultant data set is used for the training of a three-layered 

neural network. To increase the learning speed, the weights and biases are 

initialized according to the Nguyen and Widrow method. To avoid over fitting, an 

early stopping of training is done at the minimum validation error. The daily 

weather and electrical peak load data of four years of Haryana Vidyut Prasaran 

Nigam Ltd., India is taken for this study. Data from 1997 to 1999 are used for 

neural network training. Data of the year 2000 are used to test the trained neural 

network. Among the experimented conjugate gradient algorithms, the Powell-

Beale method has given the best performance with 2.31% MAPE. 

Senjyu et al. [59] suggest one-hour ahead load forecasting against rapid changes 

in temperature and load consumption in the forecast day. Their model is a three-

layer feedforward neural network, with 20 units in the hidden layer and past 
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electric and temperature differences are given as input variables. However, they 

do not forecast the load itself but their model outputs a correction term. By adding 

this term to the past similar day data, they obtain a forecast, which is especially 

successful for special days. They use Euclidian norm to evaluate the similarity 

between a forecast day and a previous day. Their approach is illustrated through 

an application to the actual load data of Okinawa Electric Power Company in 

Japan, having a MAPE of 1.18%. 

In the paper of Silva and Moulin [60], three techniques for the computation of 

confidence intervals for the neural network based short-term load forecasting are 

presented: error output, resampling and multilinear regression adapted to neural 

networks. A comparison of the three techniques is performed through simulations 

of on-line forecasting. It is shown that the performances of the confidence interval 

estimation methods strongly rely on the similarity between the past data and the 

current data.  

Self-organizing neural networks are used in the work of Srinivasan et al. [61]. 

They train Kohonen networks to find typical profiles for each day of the week, 

and then use a fuzzy engine to compute corrections to those profiles, based on the 

weather variables and on the day types. Training of the FNN load forecasting 

model is carried out based on two years of scaled load data and weather forecast 

data, from 1 January 1993 to 31 December 1994, obtained from Singapore Power 

and the Meteorological Station of Singapore. Each Kohonen’s network is trained 

to make forecast for one month. The average forecasting errors are 0.83% for 

weekdays including Saturdays, 0.75% for Sundays, and 0.84% for public 

holidays. 

Taylor and Buizza [62] investigates the use of weather ensemble predictions, 

rather than traditionally used single weather point forecasts, in the application of 

neural networks to load forecasting for lead times from one to ten days ahead. The 

results show that using weather ensemble predictions leeds to improvements in 

accuracy for all ten lead times. These improvements brought the errors noticeably 

closer to those of the method using actual observed weather, substituted for the 
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weather variables in the neural network load model, which is an unattainable 

benchmark.  

Topallı and Erkmen suggest hybrid learning for STLF in [64], whose details are to 

be described in detail in the forthcoming chapters. Clustering in this work is done 

on hourly basis, i.e., there are 24 data sets and hence 24 neural networks. Average 

error for year 2000 with this model is 2.45%, with the best daily error of 0.70%. 

The aim of Tzafestas’ paper [65] is to provide a collective unified survey study on 

the application of computational intelligence model-free techniques to STLF of 

electric power plants. Four classes of methodologies, namely neural networks, 

fuzzy logic, genetic algorithms and chaos are addressed. The paper covers eight 

representative case studies, which show the relative merits and performance that 

can be achieved by the various forecasting methods under a large repertory of 

geographic, weather and other peculiar conditions.  

In the paper of Vermaak and Botha [68], it is postulated that the load can be 

modeled as the output of some dynamic system, influenced by a number of 

weather, time and other environmental variables. Recurrent neural networks are 

used to construct empirical models for this dynamic system. Because of the 

nonlinear dynamic nature of these models, the behavior of the load prediction 

system is captured in a compact and robust representation. This is illustrated by 

the performance of recurrent models on the STLF of the nation-wide load for the 

South African utility, ESKOM. A comparison with feedforward neural networks 

is also given. They obtain 2.57% error with feedworward neural networks, while 

it is reduced to 2.02% with recurrent ones. 

Yoo and Pimmel [70] develop a self-supervised adaptive neural network to 

perform STLF for a large power system covering a wide service area with several 

heavy load centers. They propose a self-organizing neural network model, in 

which the neurons were split into two clusters; one of them received past load 

data, the other received temperature data. In using data from year 1993 as a test 

case, they find 1.92% error for day-ahead forecasting. 
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CHAPTER 3 

THEORETICAL BACKGROUND

3.1. Recurrent Neural Networks 

Recurrent neural networks are neural networks with one or more feedback loops. 

Given a multi layer perceptron (MLP) as the basic building block, the application 

of feedback can take a variety of forms. Feedback may be from the output neurons 

to the input layer. Yet another possible form is from the hidden neurons to the 

input layer. When the MLP has two or more hidden layers, the possible forms of 

feedback expand even further. 

In this thesis, Elman’s recurrent neural network is chosen as the model structure 

which has been shown to perform well in comparison to other recurrent 

architectures [3]. Elman’s network contains recurrent connections from the hidden 

neurons to a layer of context units consisting of unit delays. These context units 

store the outputs of the hidden neurons for one time step, and then feed them back 

to the input layer, as shown in Figure 3.1. 

The hidden neurons in Figure 3.1 have some record of their prior activation, 

which enables the network to perform learning tasks that extend over time. The 

hidden neurons also feed the output neurons that report the response of the 

network to the externally applied stimulus. Due to the nature of feedback around 

the hidden neurons, these neurons may continue to recycle information through 

the network over multiple time steps, and thereby discover abstract 

representations of time. 
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Figure 3.1. Elman’s Recurrent Neural Network. 

3.1.1. Why Recurrent Neural Networks are Chosen? 

Neural networks are powerful tools that can capture the structure in data by 

learning. Often the batch learning paradigm is assumed, where the learner is given 

all training examples simultaneously and allowed to use them as often as desired. 

In large practical applications batch learning is experienced to be rather infeasible 

and instead on-line learning is employed.  

In the on-line learning scenario, only one example is given at a time. So it is less 

memory consuming and at the same time it fits well into more natural learning. 

Apart from easier feasibility and data handling, the most important advantage of 

on-line learning is its ability to adapt to changing environments. If the learning 

machine does not detect and follow the change, it is impossible to learn the data 

properly and large generalization errors will result. With batch learning, changes 
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go undetected, whereas on-line learning will track the changes and yield good 

approximation results [49]. 

On-line learning is a stochastic process. The intrinsic noise due to the random 

pattern presentation enables transitions between different minima. This inherent 

noise of on-line learning makes it possible to escape from undesired local minima 

of the error potential on which the learning rule performs stochastic gradient 

descent [25].  

Due to these reasons and thinking that forecasting the electric demand is a real-

time process, on-line learning is taken into account in this work. Since ‘feedback’ 

is a valuable information in on-line learning to adapt the weights instantly, 

recurrent type neural networks which have not only feedforward connections, but 

also feedback associations are used. 

The feedback enables recurrent neural networks to acquire state representations, 

which make them suitable devices for diverse applications such as nonlinear 

prediction and modeling. The use of feedback has the potential of reducing the 

memory requirement significantly [67]. 

3.1.2. Learning Algorithm for Elman’s MLP Structure 

Standard backpropagation is simply an efficient and exact method for calculating 

all the derivatives of a single target quantity, such as classification error with 

respect to a large set of input quantities. Recurrent learning extends 

backpropagation so that it applies to dynamic systems. This allows one to 

calculate the derivatives needed when optimizing an iterative analysis procedure, 

a neural network with memory, or a control system which maximizes performance 

over time [57]. 

The variables in Figure 3.1 can be expressed mathematically as: 

 

)()()1()()( nunwnxnwnz T
bj

T
ajj +−=  

( ))()( nznx jj Ψ=    ,   j = 1,...,q 



 

 22

)()()( ' nxnwns T
b=  

( ))()( nsny Ψ=  

 

Since there is no feedback at the output layer of Elman’s network, the weight 

update for this layer is done by standard error backpropagation.  

Error is defined as: 
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where d(n) is the desired output for the nth training sample. 

The instantaneous sum of squared errors at time n is defined in terms of )(ne  by  
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The objective of the learning process is to minimize E(n). The adjustment applied 

to synaptic weight vector )(nwb′  is therefore determined by  
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It can be shown that  
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where η is the step size parameter. 

For the hidden layer, weights between xi(n – 1) and zj(n) are labeled as )(, nw jai  

while the weights between ui(n) and zj(n) are called as )(, nw jbi . 
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Let’s define )(, nk
jaiΛ  as the partial derivative of the state variable )(nxk  with 

respect to the weight )(, nw jai . Hence,  
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This partial derivative can be extended as follows: 
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Since the input signal does not depend on the weights,  
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where kjδ  is the Kronecker delta,  
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and  
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These recursive equations describe the nonlinear state dynamics of the learning 

process. Initial conditions are specified as  
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which implies that initially the recurrent network resides in a constant state. 

3.2. Adapting the Step Size with Stochastic Optimization 

It is known that the learning of neural networks is effective if the step size is 

appropriately chosen. A too small η makes learning impractically slow and is 

therefore not useful and a too large η spoils the convergence of learning. So the 

best thing to do could be using a variable learning rate. An adaptation method, 

proposed in [3] is used here. 

Most probably, the simplest minimization technique is gradient descent: 
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Such techniques are devised only for deterministic optimization. In many 

situations, however, one has to use stochastic optimization, the gradient of E 

being corrupted with noise: 
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[ ])()()()1( nrnEnwnw w +∇η−=+  

 

where )(nr  is a zero-mean random vector. For example, in many real-life 

situations it is desired to follow an optimum that is changing slowly with time, 

and a stream of values of )(nEw∇  with corrupting noise is available. In the neural 

networks field, real-time, in other words, stochastic training might be wanted 

because of trying to model a slowly time varying system [3]. 

Step size adaptation methods for deterministic gradient optimization were 

proposed in the works of Kesten [31] and Jacobs [30]. The central idea behind 

these methods is that if successive updates of wi are made in the same direction, 

then the movement along that component should be made faster. On the other 

hand, if successive updates are made in opposite directions, then the movement 

along that component should be made slower. 

The method uses an independent, adaptive learning rate parameter iη  for each 

component wi. The components are thus updated according to 
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where typical values for a and b are 1.1 and 0.9. 
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This step size adaptation method has shown to be very effective in increasing the 

learning speed of MLPs trained by backpropagation. 

This method, however, is not directly applicable to stochastic gradient 

optimization, since the partial derivatives are not available in such a case. 

3.2.1. The Stochastic Adaptation Method 

We consider iterative minimization algorithms of the form 

 

( ))(),(),()1( nrnnwfnw η=+  

 

We shall assume that we can obtain a noisy estimate of the gradient of the 

function to be minimized, 

 

)()()( nsnEng w +∇=  

 

where )(ns  is a random vector with zero mean.  

The expected value of E after the next iteration will be 

 

( ) ( )[ ])(),(),()1( nrnnwfEnwE η=+  

 

and a reasonable criterion for the choice of )(nη  would be to choose the one that 

would minimize this expected value. 

Calculation yields, 
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where •  represents the inner product. In several situations it is reasonable to 

assume that the random vectors )(nr  and )1( +ns  are independent from one 

other, since they are obtained in different iterations of the minimization 

procedure. For example, in stochastic backpropagation the random term obtained 

at each iteration depends on the pattern presented to the network at that iteration. 

If the patterns are drawn independently, from the training set, at every iteration, 

the assumption seems reasonable. Then, 
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Let us then see how to indirectly make the derivatives approach zero. It is often 

the case that the optimal parameters )(nη  change slowly with n. For example, in a 

stochastic gradient procedure, when approaching a quadratic minimum, the 

optimal parameters change asymptotically with 1/n, and thus change very slowly 

in the asymptotic regime. Let us consider using a stochastic gradient adaptation of 

the parameter vector, aimed at driving the right hand side of the above equation to 

zero: 
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This expression uses )1( +ng , which is not available at the n-th iteration. But 

given the assumption that )(nη  changes slowly with n, one can use the values 

from the previous iteration, 
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which are all available at the n-th iteration.  

Plain gradient descent corresponds to the update function 

 

[ ])()()()( nrnEnnwf w +∇η−=  

 

where )(nη  is a scalar step size parameter. The expression in square brackets is a 

noisy estimate of the gradient. We can use the same estimate that was assumed 

available above, resulting in  

 

)()()( ngnnwf ⋅η−=  

 

Applying the adaptation rule, it is obtained 
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which is the step size adaptation method for the basic gradient algorithm. 

This basic algorithm is usually not efficient. It is preferable, in almost every case, 

to use the multiple step sizes variant, instead of the basic one.  

Therefore a more general gradient based optimization algorithm is used. 

Assuming the update equation of the form 

 

)()(N)( ngnnwf ⋅−=  
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where the step size parameter has been replaced by a matrix N. The use of a 

matrix will allow us to use variants of the gradient procedure which move along a 

direction that does not necessarily coincide with that of the gradient, to accelerate 

the optimization.  

The special case where N is restricted to be diagonal is taken, which corresponds 

to using an independent step size parameter for each of the components of w . If 

iη  designates the i-th diagonal element of N, the parameter adaptation equation 

becomes 

 

)()1()()1()( ngngnKnn iiiii ⋅−⋅+−η=η  

 

It is convenient to adapt step sizes in a geometric way. This makes the adaptation 

method insensitive to the order of magnitude of the optimal step size parameters, 

and allows the adaptation to reach very large, as well as very small parameter 

values quickly. The geometric adaptation can be achieved by choosing  

 

)1()( −η= nknK ii  

 

yielding the update equation 

 

[ ])()1(1)1()( ngngknn iiii ⋅−⋅+−η=η  

 

The adaptation procedure should be insensitive to the specific function that is 

being minimized, so that the same value of the parameter k can be used for almost 

any E. However, here the adaptation speed depends heavily on the values of the 

partial derivatives of E. If E is multiplied by a constant p, k should be multiplied 
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by 1/p2, in order not to change the adaptation speed. To eliminate that 

dependency, the choice of )(nKi  is modified to  
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where )(niν  is an exponential average of the square of gi(n), obtained through 
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The parameter update equation then becomes 
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It is found that the value k = 0.01 to be appropriate for most situations. This value 

yields a parameter adaptation speed of about 1% per iteration. γ  = 0.9 seems 

appropriate for most situations.  

3.2.2. Recurrent MLP Case 

The proposed variable step size method should be adapted for the recurrent MLP 

structure. Recalling the weight adaptation formula for the output layer, 

 

)()](1)[()()()( nxnsnsnennw iiib −η=∆ ′  

 

yields 
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)()](1)[()()(' nxnsnsneng iib −−=  

 

Then the update sequence looks like: 
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Similarly, the update sequence can be written for the hidden layer as: 
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with initializations: 0=Λ )0(k , 0=)0(g , 0=ν )0( , 0.5N =)0( . 
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CHAPTER 4 

DATA ANALYSIS AND PREPROCESSING 

The available data for this research are Turkey’s total hourly actual loads for the 

years 1999, 2000 (except January), 2001 (except 13 – 31 December) and 2002 

(except 24 – 31 December), obtained through Turkish Electricity Authority; and, 

the hourly temperature measurements taken at Istanbul for the same years, 

obtained through Turkish General Directorate of Meteorology. In order to use 

these data in a meaningful and logical manner, first of all they should be closely 

analyzed and their dynamics should be clearly understood. Then they can be 

clustered into smaller sets according to some common characteristics and separate 

models can be built for each cluster. This is necessary because it has always been 

emphasized in the literature that it is impossible to reflect every different type of 

load behavior with a single model.  

Statistical methods are widely used to analyze data. Here, correlation is 

considered as the major tool for getting an idea about the data. Detailed 

information is given in the following sections of this chapter. 

4.1. Turkey’s Electric Load Profile 

The load profile is dynamic in nature. A broad spectrum of factors such as 

temporal, seasonal and annual variations affects the load level. In addition, total 

system load is subjected to random disturbances caused by sudden increase of 

large loads or outages. Figure 4.1 shows hourly load averages for each day of the 

week from years 1999 to 2002.  
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Figure 4.1. Hourly load averages for each day of the week (1999 – 2002). 

The first observation is that, in years, related with the developing technology, 

industrialization, increasing number of electric household equipment etc., demand 

is getting higher.  

As shown in Figure 4.1, apart from the absolute values, hourly averaged daily 

load shapes are almost identical for each year. Besides this graph gives an idea 

about how the electric load varies from hour to hour and day to day. It is seen that 

four working days (Tuesday to Friday) have very similar patterns. Monday 

demand is lower from the beginning of the day till the morning; but it catches the 

working-day trend for the rest of the day. Saturdays and Sundays are different 

than the other days. 

Figure 4.2 represents the monthly averages of the load for the same years, 1999 – 

2002. 
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Figure 4.2. Monthly averages of the load (1999 – 2002). 

Seasonal variations can be seen easily in Figure 4.2. Winter demand is the 

greatest. Not as high as winter months, summer load is still large. Spring, 

especially May has the lowest demand. Autumn time is on average, neither too 

big, nor too small. Climate effects or moving religious holidays might change 

these loads a little bit but the general trend remains almost the same. 

4.2. Correlation Analysis 

If the training set of a neural network contains patterns that have characteristics 

close to each other and if the output carries the same kind of information as the 

inputs then this model gives successful results. In order to perform a preliminary 

work for this hypothesis, a measure of the resemblance between the daily load 

sequences is thought to be established. In this respect, the correlation function is 

taken into consideration. 

Cross correlation coefficients are computed for each data pair as follows: 
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where x and y represent the data pairs, x  and y  are the mean values calculated 

over the samples and n is the number of samples. 

Table 4.1 summarizes the daily correlations for electric load consumptions in year 

2002. 

Table 4.1. Daily load correlations in year 2002. 

 Mon Tue Wed Thu Fri Sat Sun 

Mon 1.0000 0.9879 0.9770 0.9753 0.9691 0.9409 0.7667 

Tue  1.0000 0.9886 0.9851 0.9793 0.9561 0.8016 

Wed   1.0000 0.9906 0.9850 0.9657 0.8177 

Thu    1.0000 0.9913 0.9716 0.8251 

Fri     1.0000 0.9793 0.8288 

Sat      1.0000 0.8776 

Sun       1.0000 

As seen from Table 4.1, weekdays are highly correlated with each other; but, 

Saturday and Sunday have lower correlations with each other and with weekdays. 

Since correlation depends on covariance which is an unbiased variable, lower 
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demand effect for Monday morning cannot be seen here; but apart from this, 

Monday is the day which has the lowest correlations with the other weekdays, 

these numbers support the comments made on daily load profile graph given in 

Section 4.1. 

Table 4.2 presents the correlations of the daily data with the days from the 

previous week. Note that, Table 4.1 is the correlations of the daily data with the 

other days in the same week. 

Table 4.2. Correlations of weekly separated data in year 2002. 

 Mon(w) Tue(w) Wed(w) Thu(w) Fri(w) Sat(w) Sun(w) 

Mon(w-1) 0.9714       

Tue(w-1) 0.9659 0.9638      

Wed(w-1) 0.9729 0.9701 0.9615     

Thu(w-1) 0.9759 0.9773 0.9653 0.9651    

Fri(w-1) 0.9739 0.9775 0.9679 0.9653 0.9643   

Sat(w-1) 0.9592 0.9679 0.9610 0.9597 0.9550 0.9789  

Sun(w-1) 0.7923 0.8158 0.8155 0.8127 0.8028 0.8280 0.8819 

For weekdays, it can be said that the same week data are more meaningful and 

valuable since correlations are reduced when the data are separated in time. For 

weekends, their data show different characteristics than the weekdays and it is 

seen that Saturday – Saturday or Sunday – Sunday data are more correlated than 

Saturday – weekday or Sunday – weekday data. 

4.3. Data Clustering 

Under the light of Turkey's electric load profile given above and correlation 

analysis performed on the available data, an efficient clustering can be done. First 

of all, special days should be excluded from the regular day data and handled 

separately since their characteristics are completely different. Then, four 
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weekdays (Tuesday-Friday) can be examined in the same cluster. It does not seem 

necessary to create a distinct cluster for each of these weekdays as they are highly 

correlated. Moreover, a cluster should be formed for the first hours of Monday, 

because they come just after the weekend and do not resemble the other 

weekdays. The remaining hours of Monday can be evaluated in the working days 

cluster. For weekends, two clusters should be formed as Saturdays and Sundays 

since they have unique characteristics. One exception can be done here, the single 

day national holidays that come across to Sundays are not too much different than 

the regular Sundays, so they can be put together in the same cluster. In summary, 

by looking at the trends and the statistics, one can cluster the data as follows:  

1. Early Monday, hours between 00:00 – 08:00 

2. Weekdays, from Monday 09:00 – Friday 23:00 

3. Saturday 

4. Sunday 

5. Special Day 
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CHAPTER 5 

PROPOSED MODEL AND OBTAINED RESULTS FOR 
REGULAR DAYS 

A model is proposed here to forecast Turkey's total electric load one day in 

advance by the artificial intelligence approach. This model uses Elman type 

recurrent neural networks and provides a hybrid learning, which combines both 

off-line and real-time trainings. The aim is to prepare the model for real-time 

forecasts by training it with the available past data. Therefore, the hourly load data 

of a year (1999, 2000 or 2001) are used in off-line learning to adjust randomly 

initialized synaptic weights, and then the model undergoes real-time learning with 

the data of the next year (2000, 2001 or 2002, respectively). The next year's data 

are used as if they were real-time data by feeding them to the network in time 

order and only once. Errors are calculated as the actual data become available and 

weights are further updated in this phase. 

Joining these two types of learning has an advantage of starting real-time 

application with the weights that are already brought near to optimal values. 

Step size is adjusted in each real-time iteration by looking at the error gradient for 

improving the adaptation of the network. 

In order to prevent model from over-fitting and memorizing the data in the off-

line learning, the data are divided into training and validation sets. After 

randomizing the weights, input/output pairs from the training set are randomly 

presented for a predetermined number of cycles, which is taken as 1,000,000 here. 

Error is backpropagated and weights are adjusted in each cycle. At the end of each 
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100,000 cycle, weights are stored and the model is tested with the validation set, 

formed by 10% of the off-line data, chosen randomly and never given to the 

neural network during the off-line training. In this way, there are ten validation 

errors and corresponding ten weight sets when the off-line learning is finished. 

Weights giving the minimum validation error are considered as the final off-line 

weights. 

Proposed hybrid learning algorithm can be summarized in the following steps: 

A. Off-line phase: 

1. Randomize weights 

2. For 1,000,000 iterations 

i. Choose a random input/output pair from the training set, give 

to the network. 

ii. Find the neural network output by feedforward calculations. 

iii. Find the error, backpropagate it and update the weights. 

iv. At the end of each 100,000 cycle, give the validation data, find 

the average error. Save this error and the weights. 

3. Take the weights which cause the lowest validation error. 

B. Real-time forecast phase: 

1. Present the next year’s data in time order. Start with the weights found 

in the off-line phase. For each input, 

i. Calculate the output. 

ii. Find the percent error. 

iii. Update the weights and the step size. 

2. Take the average of the percent errors. 

As the detailed analysis is given in Chapter 4, data are clustered into four pieces: 

Early Monday (hours between 00:00 and 08:00), Weekdays (Monday 09:00 – 

23:00, Tuesday, Wednesday, Thursday, and Friday), Saturday, and Sunday. 



 

 41

Separate neural networks are formed for each cluster and different input variables 

are used. But, the neural network configuration is always the same. An Elman 

network with one hidden layer having ten neurons, and sigmoid nonlinearity is the 

fixed model structure. 

Loads that are used as inputs to the neural networks are normalized according to 

the yearly minimum and maximum values. There is no problem for off-line data 

since they are available for the whole year. However, real-time data for a 

complete year will not be at hand at the time of forecast, and thus the lowest and 

the greatest loads cannot be determined. So, real-time data should be normalized 

using the off-line data range. Knowing that the electric consumption is increasing 

every year, minimum value is taken as the minimum of the off-line data and 

maximum value is taken as 10% more of the off-line maximum. Consequently, 

both off-line and real-time data sets are normalized with these new minimum and 

maximum values in order to synchronize them.  

There are two input parameters that are common to all neural networks: hour and 

season. To present the cyclic continuity, hour is given as a half sinusoid 

 

)24/sin( hhC π=  

 

where Ch  is the cyclical hour and h  is the actual hour. 

Season input is determined by looking at the monthly averaged loads, which are 

described in Chapter 4, in detail. To reflect these variations, season input is given 

as in Table 5.1. 

Apart from these four clusters, special days are gathered together and considered 

in a separate chapter. A “special” forecast approach is proposed for them. The 

details of the proposed model for all regular data types, performed experiments, 

obtained results and discussions can be found below. 
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Table 5.1. Neural network input representing the season. 

Months Season Input

April, May 0.1 

June, September, October 0.3 

March, July, August, November 0.6 

January, February, December 0.9 

5.1. Early Monday Model 

Electric load data analysis explained in Chapter 4 shows that the first hours of 

Monday have different characteristics than the other weekdays. Yet, they do not 

follow the weekend trend. They are like a transition phase between weekend and 

weekday behaviors. Therefore, they are taken into account in a separate cluster. 

A data set is formed containing only Monday loads between hours zero and eight. 

This is used as the desired set for calculation of the error at the neural network 

output. As inputs, together with the time and weather information, loads from the 

past three weekdays are taken. Input and output variables can be shown as: 

 Output: ),( hwLMon  

 Inputs:  Ch , s,  

   ),1( hwLFri − , ),1( hwLThu − , ),1( hwLWed − , 

   ),1( hwTFri − , ),1( hwTThu − , ),1( hwTWed −  

where L represents the load; subscript of L is the day; w is the week of the year; h 

is the hour of the day, between zero and eight; Ch  is the cyclical hour input, s is 

the season input, varying according to the month under consideration; and T is the 

temperature. The neural network is trained as described in the previous section. 

Mondays which are national or religious holidays are not considered as desired 

outputs in the training set, instead they are handled separately.  Furthermore, 

special days cannot be used as inputs since they have lower loads than a regular 
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Monday and mislead the weight updates. Therefore some of the Mondays cannot 

be used as desired outputs although they are regular days because of their special 

day type inputs. Such cases are listed in Table 5.2. 

An experiment is performed with regular Mondays that can be both inputs and 

desired outputs. MAPEs for real-time forecasts are given in Table 5.3. 

Table 5.2. Mondays that cannot be the desired outputs due to special day inputs. 

1999 2000 2001 2002 

25 Jan 22 May 03 Sep 02 Sep

05 Apr 04 Sep   

26 Apr    

24 May    

01 Nov    

Table 5.3. Real-time forecast results for Early Monday model. 

 1999 2000 2001 2002

MAPE 19.38 2.32 1.89 1.95

One may notice that year 1999 error is quite high as compared to the other years. 

This is because there is no 1998 data to train the network off-line as the hybrid 

method proposes. Hence, real-time forecasts start with random weights and give 

unsuccessful results. Therefore, this is a good example to show that the hybrid 

learning is worthwhile. For years 2000, 2001 and 2002, results are acceptable. In 

2002, 30 September is the best Monday with the lowest error (0.41%), and 15 

April is the worst one as having the greatest error (4.67%). Real and neural 

network forecast values (NN) in this cluster of these two Mondays and 

corresponding percent errors are shown in the following figures (5.1 – 5.4).  
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Figure 5.1. Actual and forecast values for the best Monday, 30 Sep 2002. 
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Figure 5.2. Percent errors for the best Monday. 
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Figure 5.3. Actual and forecast values for the worst Monday, 15 Apr 2002. 
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Figure 5.4. Percent errors for the worst Monday. 

A solution is also needed for the Mondays that cannot be the desired outputs, as 

given in Table 5.2. Since they should not use special days as input, first, special 

days can be forecast as if they were regular days, then these regular data can be 

considered as inputs to be used in forecasting the days in Table 5.2. A second 

method might be making use of the load of just one previous day in the same 

cluster. In this case, data can be directly copied without involving the forecasting 

process. However, the cluster consists of Mondays, hence data are separated in 

one week time, or even more if there is a special day in between. Taking the 

previous data may not be enough since this interval is rather long. For example, 

temperature might change considerably in a week and this affects the load 

consumption. Therefore, together with the past Monday data, two previous 

Sundays can be used to express weekly variations. Copying the past Monday load 

after multiplying it by the ratio of Sunday loads would be a good approach. 

Results for these three approaches are represented in Table 5.4 for comparison. 

It is understood from Table 5.4 that the third method is better than the others. The 

first one uses hypothetical values as inputs and this expands the error further. 

Introducing the correction term in the last one improves the results considerably. 

Following the weekly trend through the loads of two past Sundays and using the 

amount of change in copying the previous Monday load yield good results for the 

data that cannot be used in the neural network model. 

 



 

 46

Table 5.4. Average percent errors of two approaches for Mondays in Table 5.2. 

Day 
MAPE (Replacing special 
day inputs with their 
regular forecasts) 

MAPE (Copying 
the previous 

Monday) 

MAPE (Using the 
ratio of past 
two Sundays) 

22 May 2000 11.47 1.10 2.37 

04 Sep 2000 8.07 0.84 0.98 

03 Sep 2001 5.40 2.58 1.76 

02 Sep 2002 3.93 4.77 2.99 

AVERAGE 7.21 2.32 2.03 

5.2. Weekday Model 

All working days from Monday to Friday, except the first nine hours of Monday, 

are gathered in a set and used for training the corresponding neural network. Data 

analysis given in Chapter 4 shows that, weekdays are highly correlated to each 

other; so for a weekday output, again weekday inputs should be used. Therefore, 

inputs and the output are organized as follows: 

 Output: ),( hdL  

 Inputs:  Ch , d , s ,  

   ),1( hdL − , ),2( hdL − , ),3( hdL − , 

   ),1( hdT − , ),2( hdT − , ),3( hdT −  

where h, s, L and T are as defined before; and d represents the day of the week, a 

number between one and five to discriminate between weekdays. One can notice 

that, for the outputs from Monday, Tuesday and Wednesday, some inputs are 

coming from the working days of the previous week. Yearly averaged percent 

errors for real-time forecasts are presented in Table 5.5. 

These results given in Table 5.5 are quite successful, except for the year 1999 as 

explained before, and have a meaning that to put the weekday data in the same set 

and to forecast the load with the correlated data are the right things to do. A 

question may arise what would happen if separate neural networks were used for 
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each weekday instead of using a single neural network for all of them. It is for 

sure that this will increase the learning time (unless parallel processing is 

possible) and make it hard to save and maintain the parameters but it might be 

worth trying it if it reduces the error. 

Table 5.5. Percent errors for Weekday model. 

 1999 2000 2001 2002

MAPE 10.66 1.52 1.37 1.30

Hence, five new neural networks are constructed each for a different weekday (for 

the last 15 hours of Monday and for the entire hours of the others). The resulting 

errors can be seen in Table 5.6. 

Table 5.6. MAPEs for separate daily neural networks. 

Day 2000 2001 2002 

Mon (9-23) 2.13% 1.82% 1.81%

Tue 1.44% 1.43% 1.25%

Wed 1.44% 1.26% 1.26%

Thu 1.48% 1.29% 1.21%

Fri 2.14% 1.52% 1.22%

AVERAGE 1.72% 1.46% 1.35%

The results for the single model which are given in Table 5.5 are overall results. 

However, comparing them with the daily neural network results in Table 5.6 does 

not mean much. They can be compared with the averaged errors in Table 5.6 and 
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it is seen that single neural network results are better; or, it is possible to find the 

daily distributions of these overall errors and make daily comparisons afterwards. 

Instead of averaging all the data, errors are averaged accordingly to the belonging 

days and they are shown in Table 5.7. 

Table 5.7. Daily distributions of the errors in Table 5.5. 

Day 2000 2001 2002 

Mon (9-23) 2.07% 1.80% 1.95%

Tue 1.49% 1.34% 1.22%

Wed 1.41% 1.23% 1.22%

Thu 1.37% 1.21% 1.26%

Fri 1.47% 1.41% 1.09%

AVERAGE 1.52% 1.37% 1.30%

Now, the daily results presented in Table 5.6 and 5.7 can be compared. Separate 

neural network approach show better performances only in three cases: Tuesday 

2000, Monday 2002 and Thursday 2002. But even these improvements are not so 

big. Correlation analysis has already showed that weekdays are carrying very 

much similarities. Therefore, there is no need to keep separate daily models and it 

is appropriate to use the single neural network. 

To show the best and the worst daily performances in year 2002, Figures 5.5 to 

5.8 are given. 22 August 2002 has the lowest forecast error with 0.48%, whereas 6 

November 2002 has the greatest error with 3.62%. 
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Figure 5.5. Actual and forecast values for the best weekday, 22 Aug 2002, Thu. 
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Figure 5.6. Percent errors for the best weekday. 
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Figure 5.7. Actual and forecast values for the worst weekday, 6 Nov 2002, Wed. 
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Figure 5.8. Percent errors for the worst weekday. 

As in the Early Monday model, several days cannot be the desired outputs whose 

inputs coincide a special day. They are handled with two methods mentioned in 

the previous section and results are summarized in Table 5.8. 

The third column in Table 5.8 shows that copying the previous data is slightly 

better than the first method. Since the resemblance between weekdays is high, 

there is no surprise to obtain such results. The data in this case are close to each 

other; therefore, no ratio term is needed. 
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Table 5.8. Weekdays whose inputs have special day(s) and their forecast errors. 

Day MAPE (Replacing Special day inputs 
with their regular forecasts) 

MAPE (Copying the 
previous Weekday) 

21 Mar 00 Tue 2.84 1.83 

22 Mar 00 Wed 2.92 0.83 

23 Mar 00 Thu 2.17 1.01 

22 May 00 Mon 1.28 1.13 

23 May 00 Tue 1.84 1.85 

24 May 00 Wed 0.86 0.94 

31 Aug 00 Thu 3.18 1.91 

01 Sep 00 Fri 1.23 2.57 

04 Sep 00 Mon 4.58 2.76 

13 Mar 01 Tue 2.46 4.32 

14 Mar 01 Wed 1.34 1.10 

15 Mar 01 Thu 1.79 0.90 

24 Apr 01 Tue 6.36 4.34 

25 Apr 01 Wed 1.63 2.97 

26 Apr 01 Thu 1.06 1.00 

31 Aug 01 Fri 5.91 5.36 

03 Sep 01 Mon 3.21 2.58 

04 Sep 01 Tue 1.03 3.42 

30 Oct 01 Tue 4.84 4.12 

31 Oct 01 Wed 1.68 3.48 

01 Nov 01 Thu 2.66 2.33 

26 Feb 02 Tue 6.78 5.78 

27 Feb 02 Wed 2.63 2.62 

28 Feb 02 Thu 1.37 0.57 

24 Apr 02 Wed 3.39 3.11 

25 Apr 02 Thu 2.51 3.58 

26 Apr 02 Fri 2.45 2.05 

02 Sep 02 Mon 1.27 2.43 

03 Sep 02 Tue 1.49 2.67 

04 Sep 02 Wed 1.00 0.84 

30 Oct 02 Wed 4.16 3.72 

31 Oct 02 Thu 2.97 2.44 

01 Nov 02 Fri 1.74 1.26 

10 Dec 02 Tue 3.47 4.92 

11 Dec 02 Wed 3.67 2.62 

12 Dec 02 Thu 3.57 1.72 

AVERAGE 2.70 2.53 
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5.3. Saturday Model 

Looking at the correlation results given previously, it is thought that Saturday load 

is represented best by the past Saturday data. Hence, input/output configuration 

becomes as follows: 

 Output: ),( hwLSat  

 Inputs:  Ch , s ,  

   ),1( hwLSat − , ),2( hwLSat − , ),1(),( hwLhwL FriFri −− , 

   ),1( hwTSat − , ),2( hwTSat − , ),1(),( hwThwT FriFri −−  

Here apart from the past Saturday data, Friday differences are taken to indicate the 

load tendency of the current week with respect to the last week. Table 5.9 lists the 

results. 

Table 5.9. Yearly averaged percent errors for Saturday model. 

 1999 2000 2001 2002

MAPE 17.35 2.02 1.70 1.45

The proposed algorithm suggests quite successful forecasts since they match to 

the actual values with very low errors. For the year 1999, the hybrid learning is 

not applicable and hence the resulting error is so high. In order to see the 

performance limits, the best and the worst cases are given for year 2002. 12 

October has the most successful result with 0.85% error; and 26 January fails with 

2.18% error. Figures 5.9 – 5.12 show the hourly loads and errors for these two 

Saturdays. 
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Figure 5.9. Actual and forecast values for the best Saturday, 12 Oct 2002. 
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Figure 5.10. Percent errors for the best Saturday. 
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Figure 5.11. Actual and forecast values for the worst Saturday, 26 Jan 2002. 
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Figure 5.12. Percent errors for the worst Saturday. 

As explained before, due to the structure of the model, some past data are used as 

inputs and these inputs might be from special days. In this case, learning would be 

deviated from the regular trend. So, the days having such inputs should not be put 

into the training set, instead they should be considered separately. Replacing 

special days with their regular forecasts and then using them as inputs is one way 

to solve this problem; but it does not give satisfactory results for the previous 

models, so there is no need to repeat it here. Another way is to apply the previous 

Saturday data from the same cluster, corrected by the ratio of two past Friday 

loads, as in the Early Monday model which has satisfactory results. Table 5.10 

shows the results of this last alternative to such Saturdays. 

Results in Table 5.10 are quite successful. By giving this solution to such 

Saturdays, the model for Saturday cluster becomes complete, covering all the 

relevant data. 

 

 

 



 

 55

Table 5.10. Results for Saturdays whose inputs coincide special days. 

Day MAPE (Using the ratio of 
past two Fridays) 

25 Mar 2000 2.69 

01 Apr 2000 0.92 

17 Mar 2001 1.27 

24 Mar 2001 1.94 

26 May 2001 1.48 

02 Jun 2001 1.38 

02 Mar 2002 1.27 

09 Mar 2002 1.32 

14 Dec 2002 1.85 

21 Dec 2002 2.10 

AVERAGE 1.62 

5.4. Sunday Model 

As in the case of Saturday, Sunday data is mostly correlated with itself; therefore 

the model is constructed accordingly: a neural network to forecast only Sunday 

load, using past Sunday loads. Again, in order to emphasize weekly difference, 

past two Saturday loads and temperatures are also given as inputs. Expressions for 

input and output variables can be written as: 

 Output: ),( hwLsun  

 Inputs:  Ch , s , 

   ),1( hwLSun − , ),2( hwLSun − , ),1(),( hwLhwL SatSat −− , 

   ),1( hwTSun − , ),2( hwTSun − , ),1(),( hwThwT SatSat −−  

where all the variables are as defined earlier. Yearly averaged errors for the 

experiments performed for this cluster are given in Table 5.11. 
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Table 5.11. Yearly averaged percent errors for Sunday model. 

 1999 2000 2001 2002

MAPE 19.93 1.85 1.77 1.94

As the error figures in Table 5.11 state, the neural network forecasts by the hybrid 

learning are very close to the real load values. This fact is visualized in the figures 

below, from 5.13 to 5.16. The former two figures belong to 12 May 2002, which 

has the lowest error (0.82%) and the latter two are of 31 March 2002, the worst 

Sunday in 2002 with 7.66% error.  

For the Sundays having inputs from special days, the solution proposed for the 

Saturday model is tested and daily averaged results are presented in Table 5.12. 
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Figure 5.13. Actual and forecast values for the best Sunday, 12 May 2002. 
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Figure 5.14. Percent errors for the best Sunday. 
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Figure 5.15. Actual and forecast values for the worst Sunday, 31 March 2002. 
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Figure 5.16. Percent errors for the worst Sunday. 
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Table 5.12. Results for Sundays whose inputs coincide special days. 

Day MAPE (Using the ratio of 
past two Saturdays) 

26 Mar 2000 4.08 

02 Apr 2000 3.38 

05 Nov 2000 3.31 

12 Nov 2000 2.77 

18 Mar 2001 1.49 

25 Mar 2001 4.03 

20 May 2001 2.33 

27 May 2001 2.87 

03 Mar 2002 4.17 

10 Mar 2002 2.98 

15 Dec 2002 1.36 

22 Dec 2002 1.47 

AVERAGE 2.85 

These error figures in Table 5.12 are not as good as Saturday model, but still not 

very high. 

5.5. Overall Results 

The STLF method proposed in this thesis clusters the data into four pieces and 

also handles special days separately. Because of these special days, some regular 

data in the clusters cannot be the outputs, but used only as inputs. If they were 

forecast by neural networks, they would need inputs from special days, which 

would misdirect the learning. Therefore, their forecasts are achieved by another 

method, as to be described. 

In the previous sections, neural network results for regular data and the forecasts 

for such days were given separately; but here, they are presented together in order 

to give an idea about the overall yearly results, except the forecasts of special 

days, of course. Table 5.13 summarizes the percent errors according to the 

clusters. 
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Table 5.13. Summary of the forecast errors by the proposed model. 

Years 
Cluster 

2000 2001 2002

Early Monday 2.29 1.89 1.97

Weekday 1.52 1.45 1.39

Saturday 2.01 1.68 1.47

Sunday 2.02 1.85 1.99

WEIGHTED AVERAGE 1.69 1.56 1.51

Table 5.13, especially the last row, emphasizes the general performance of the 

proposed method. It gives reasonable forecasts, with Weekday cluster being the 

most successful one. It is generally difficult to have a good estimate for Sunday 

data. Indeed, the error figures here are higher than the other clusters, but still in 

the acceptable ranges. Similarly, Monday morning shows unique characteristics, 

hard to capture. But the model performs well also for it. Saturday cluster has 

lower errors like Weekday set. These experiments are repeated for three yearly 

data pairs as seen in Table 5.13 and all results are consistently close to each other. 

This proves the generality of the proposed model and applicability to the data of 

new coming years. 
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CHAPTER 6 

HANDLING THE SPECIAL DAYS 

6.1. Holidays in Turkey 

It is a known fact that electric consumption decreases on holidays and shows 

different trend than the regular days. Therefore, they should be analyzed 

separately. In Turkey, there are two kinds of holidays, national and religious. 

National holidays are fixed in time, but religious holidays are moving each year. 

Table 6.1 shows these holidays in years 1999 to 2002. 

Some notes should be added to Table 6.1. For the religious holidays, there is a 

half-day holiday for preparation which is not shown in Table 6.1. For the 

Republic Day, 28 October is half working day for public offices. Furthermore, if a 

holiday covers three weekdays, the rest of the week could be announced as 

holiday by the government; or if a single day holiday comes across a Tuesday or 

Thursday, adjacent Monday or Friday could be declared as holiday, as well. 

Moreover, after the long holidays, Mondays, as the first working day, show 

different characteristics; hence they should be in the special day cluster. For these 

reasons, Table 6.1 is extended and the final form is given in Appendix. Here, 

Table 6.2 is taken to show the distribution of the existing data. 
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Table 6.1. National and religious holidays in years 1999 to 2002. 

 Name Date 1999 2000 2001 2002 

National 
Sovereignty 
and World 
Children's 

Day 

23 Apr Fri Sun Mon Tue 

Ataturk 
Remembrance 
- Youth and 
Sports Day 

19 May Wed Fri Sat Sun 

Victory Day 30 Aug Mon Wed Thu Fri 

N
a
t
i
o
n
a
l
 

Republic Day 29 Oct Fri Sun Mon Tue 

Ramadan 
Feast Moves 

19-21 Jan 

Tue-Thu 

8-10 Jan 

Sat-Mon 

27-29 Dec 

Wed-Fri 

16-18 
Dec  

Sun-Tue 

5-7 Dec 

Thu-Sat 

R
e
l
i
g
i
o
u
s
 

Sacrifice 
Feast Moves 

28-31 Mar 

Sun-Wed 

16-19 Mar 

Thu-Sun 

5-8 Mar  

Mon-Thu 

22-25 Feb 

Fri-Mon 

Table 6.2. Number of regular vs. special days in the available data. 

 1999 2000 2001 2002 

 N % n % n % n % 

Regular 
Weekday 247 67.67 224 66.87 237 68.50 244 68.35 

Special 
Weekday 14 3.84 15 4.48 11 3.18 11 3.08 

Regular 
Weekend 98 26.85 84 25.07 91 26.30 97 27.17 

Special 
Weekend 6 1.64 12 3.58 7 2.02 5 1.40 

TOTAL 365 100 335 100 346 100 357 100 

To see the difference between holidays and regular days, the following figures  

(6.3 – 6.13) are drawn. 
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Figure 6.3. Load differences between 23 Apr 2002 Tue and neighboring days. 
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Figure 6.4. Load differences between 19 May 2001 Sat and neighboring Saturdays. 
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Figure 6.5. Load differences between 19 May 2002 Sun and neighboring Sundays. 
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Figure 6.6. Load differences between 4 Dec 2002 Wed and neighboring days. 
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Figure 6.7. Load differences between 22 Feb 2002 Fri and neighboring days. 
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Figure 6.8. Load differences between 23 Feb 2002 Sat and neighboring Saturdays. 
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Figure 6.9. Load differences between 6 Dec 2002 Fri and neighboring days. 
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Figure 6.10. Load differences between 7 Dec 2002 Sat and neighboring Saturdays. 
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Figure 6.11. Load differences between 8 Dec 2002 Sun and neighboring Sundays. 
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Figure 6.12. Load differences between 9 Dec 2002 Mon and neighboring Mondays. 
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Figure 6.13. Load differences between 28 Oct 2002 Mon and neighboring days. 

It is understood from the above figures that the holidays show several different 

behaviors: 

• If it is a single-day holiday and if it is a weekday (Figure 6.3), then the 

first six-eight hours are as if regular hours; there is an evident decrease in 

working hours; evening load is still below the regular load but it seems 

trying to catch it. 

• If it is a single-day holiday and if it is a Saturday (Figure 6.4), then the 

load is under the average for all hours. 
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• If it is a single-day holiday and if it is a Sunday (Figure 6.5), then there is 

no difference than an ordinary Sunday. 

• If it is the preparation day for a religious holiday (Figure 6.6), it has 

regular loads till the morning but then, it decreases. The following feast 

days have lesser loads. 

• If it is the first day of a religious holiday (Figure 6.7), then the 

consumption is less than the previous preparation day; and, quite below 

the other days in the same week. 

• If it is midday of a religious holiday, regardless of the day type (Figures 

6.8-6.10), the load is below the average for all hours.  

• If it is the last day of a religious holiday (Figure 6.11), then the first hours 

have small loads, the rest is like a normal day. 

• If it is a Monday as the first working day after a long holiday (Figure 

6.12), then the first quarter of the day has lower electric loads. 

• If it is a 28 October that coincides a weekday (Figure 6.13), then it shows 

different characteristics than the other weekdays.  

These points should be taken into consideration when forming the neural network 

model and handling the special day data. 

6.2. Proposed Model for Special Days 

In the previous section, a comprehensive analysis on special days was given. 

Since determining the special days and extracting the differences among 

themselves are of important parts of the forecasting process, they are examined 

carefully. 

The neural networks designed for regular load forecasting cannot be directly used 

for special day load forecasting; because, holiday loads are lower than the regular 

loads. Therefore, large errors are observed [4]. 

Actually, the regular neural networks can be employed if their outputs are 

adjusted to remove the gap between holiday and regular data. To remove this gap, 
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holiday data from previous years are observed and a correction term is calculated. 

This correction term is then used to subtract an amount from the neural network 

output, found as if it were a normal day load. It can be shown mathematically as: 

 

( ) ),(),(1

),(),(),(),(

hdyhdC

hdyhdChdyhdL

NN

NNNNSpecial

−=

−=
 

 

where ),( hdLSpecial  is the special day load to be forecast for day d and hour h; 

),( hdy NN  is the neural network output which is the regular day forecast for the 

same day and hour; and ),( hdC  is the correction term in percentage, changing 

according to day and hour, introduced for holiday adjustment. 

The regular forecast component ),( hdy NN  is obtained via the neural network 

which is trained for the same day type with the special day under consideration, 

but without including the special days in training. Therefore, it is expertized in 

forecasting the normal loads and output becomes larger than the load of the 

holiday. That is why a correction term is needed. 

The correction term in the equation above is the average of the percent deviations 

of the regular neural network forecasts from the actual loads of the special days in 

previous years. This can be expressed as: 

 

∑
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where ),( hiyNN  is the regular neural network output for the ith special day from 

the previous years; ),( hiL  is the actual load, and n is the number of the special 

days. A similar approach was tried in the work of Bakirtzis et al. [4], but they 

have chosen to use an absolute value in MWs as the correction term, not the 
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percent of the forecast value. They have obtained that correction term from the 

absolute differences of the previous years’ predictions. This approach is not 

followed here but modified as taking the percent variations; thinking that 

percentage is more informative than absolute values since yearly load 

consumptions do not remain the same. 

It should also be noticed that, the electric load differs in holiday type. Therefore, 

special days should be clustered among themselves and the same type of data 

should be used in calculating the correction term. Taking into consideration the 

analysis given above, the following clustering can be done for the holidays in 

Turkey: 

a. Single-day special day, coincides to weekday, 

b. Single-day special day, coincides to weekend, 

c. Preparation day to a religious holiday, 

d. The first day of a religious holiday, 

e. The midday of a religious holiday, 

f. The last day of a religious holiday, 

g. Mondays after religious holidays, 

h. 28 October. 

These days have their unique load characteristics and should be considered 

separately. One exception can be done to single-day holidays that coincide to 

Sundays. They are not so much different than the regular Sunday data; therefore, 

there is no need to form a cluster for this kind of data; instead, they can be put into 

the Sunday training set.  

Another point is that, this method depends on the loads of previous years; hence, 

it should use as many years as possible in order to give reliable and stable results. 

This means that, only the special days of year 2002 can be forecast with the 

available data. 
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6.3. Experiments on Special Days 

Special day load forecasting is the most difficult part of this work. Since the 

behavior of such days does not follow the regular trend of normal days, they 

should be handled discretely. A method is proposed for this purpose, as described 

in the previous section. 

According to the proposed method, in order to forecast a special day load, it is 

necessary to use past years’ data. Therefore, special days from year 2002 undergo 

to the experiment. First, a special day from year 2002 is taken and the cluster 

containing that special day is found. As the holidays have different load 

consumptions in a year, they are clustered according to their load profiles, as 

given before. After that, each special day in the cluster is forecast by the 

corresponding neural network as if it were a regular day. Since the actual loads for 

the past special days are available, correction term is calculated and the regular 

forecast for the special day under consideration is adjusted. 

Table 6.3 lists the special days of year 2002, states their clusters, gives the actual, 

base forecast and corrected forecast loads and shows two corresponding errors. 

As seen from Table 6.3 that all the resultant errors are below 7% and half of them 

are below 5%. These numbers cannot generally be reached for special days. 

Actually, if they were predicted by a neural network only and no corrective action 

were taken then the forecasts would not be so successful, as shown in the Regular 

Error column in the table. On the average, correction term makes the percent error 

reduce from 19.86% to 4.10%, which proves its validity and necessity. 

In Appendix, one can find the complete list of special days and see that three of 

them are not placed in Table 6.3: 21 February 2002 Thursday (preparation day to 

the religious holiday), 24 February 2002 Sunday (midday of the religious holiday) 

and 25 February 2002 Monday (last day of the religious holiday). They cannot be 

forecast by this method; because, there are no data available from the previous 

years in the same cluster with these days. For example, 7 January 2000 Friday is 

in the same cluster with 21 February 2002 Thursday but it is missing in the 
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database at hand. Therefore, there can be no correction term for 21 February. 

However, in case of having a complete database, such problems do not exist. 

Table 6.3. Year 2002 special days and their corrected forecasts. 

Special 
Day Cluster 

Actual 
Load 
(MW) 

Regular 
Forecast 
(MW) 

Corrected 
Forecast 
(MW) 

Regular 
Error 
(%) 

Corrected 
Error  
(%) 

22 Feb 
02 Fri 

1st day of 
rel. hol. 11028 15868 10471 44.76 5.73 

23 Feb 
02 Sat 

Midday of 
rel. hol. 12691 14950 11977 19.35 5.47 

23 Apr 
02 Tue 

Single-day, 
Weekday 13646 14622 13596 7.17 1.32 

19 May 
02 Sun 

Single-day, 
Weekend 12092 12277 12277 1.53 1.53 

30 Aug 
02 Fri 

Single-day, 
Weekday 14605 15769 14670 7.86 1.13 

28 Oct 
02 Mon 28 October 13445 14176 12760 5.96 4.81 

29 Oct 
02 Tue 

Single-day, 
Weekday 13184 14158 13495 10.34 4.08 

04 Dec 
02 Wed 

Preparation 
Day 14106 16256 14051 15.38 2.05 

05 Dec 
02 Thu 

1st day of 
rel. hol. 11262 16195 11633 44.32 3.80 

06 Dec 
02 Fri 

Midday of 
rel. hol. 11007 16153 11634 47.65 5.85 

07 Dec 
02 Sat 

Midday of 
rel. hol. 11776 15539 12191 33.47 5.68 

08 Dec 
02 Sun 

Last day of 
rel. hol. 13179 14630 12674 12.60 5.15 

09 Dec 
02 Mon 

Mon after 
rel. hol. 15959 17205 17022 7.81 6.66 

AVERAGE 12922 15215 12958 19.86 4.10 

In the Figures 6.14 – 6.17 given below, the best and the worst results for the 

above special days are presented. The effect of correction term is clearly seen in 

these figures. 
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Figure 6.14. Actual, forecast and corrected values for the best special day, 30 Aug 

2002, Fri. 
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Figure 6.15. Percent forecast and corrected errors for the best special day. 
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Figure 6.16. Actual, forecast and corrected values for the worst special day, 9 Dec 

2002, Mon. 
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Figure 6.17. Percent forecast and corrected errors for the worst special day. 
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In literature, it is suggested to include the special days into the Sunday cluster, 

thinking that both have lower loads. This experiment is performed here in order to 

compare results with the proposed special day model. 

A neural network is constructed and trained off-line with the data from year 2001, 

covering Sundays and special days. An additional input is introduced to 

discriminate Sundays from special days as having two different values: 0.9 for 

Sundays and 0.1 for special days. Then, year 2002 data are presented in on-line 

learning again with Sundays and special days. One can recall that, the average 

percent error for Sunday cluster in 2002 was 1.94%, without the special days. 

Now in this case, error is increased to 3.65% whose distribution is 2.85% for 

Sunday part and 6.89% for special day part. Therefore, it can be said that this 

combination causes Sunday forecasts be worsened and also it does not give 

satisfactory results for special days. 

This means that, the proposed special day load forecasting model is better than 

putting the special days in Sunday cluster. The averaged percent error for them by 

the proposed model is 4.10%, which can be considered as a satisfactory result in 

the special day class. 

As an overall error figure, it can be given that the average of real-time forecast 

errors in year 2002, including working days, weekends and special holidays is 

1.60%, which should be considered as a successful result. 
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CHAPTER 7 

OTHER MODELS FOR COMPARISON 

As stated before, the proposed intelligent method consists of both off-line and 

real-time learning. The idea is to start real-time forecasting with a prepared model 

and to tune it further for changing conditions. In addition, step size is made 

adaptive, temperature measurements are used and data is clustered in a daily basis 

manner.  

In order to comment about the results and see the performance of this proposed 

method, it should be compared with some other models, designed for the other 

alternatives. For this purpose, the following models are constructed. 

7.1. No Off-line Learning 

Weights are started from random initial conditions for real-time forecasts, so it 

does not make use of off-line learning. By picking input/output samples in time 

order, weights are adjusted. For example, the real-time forecasts for year 1999 are 

done in this way since there are no year 1998 data available. Weekday model for 

this year gives 10.66% error, which is an unacceptable value and shows the 

impossibility of starting a real-time application with a non-trained neural network 

hence proves the necessity of hybrid learning. 

7.2. No Real-time Learning 

In this model, off-line learning is performed but training is stopped at this point. 

In other words, model does not contain any real-time learning and the application 
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is run with constant weights, i.e., weights are no more updated after off-line 

learning has been finished. So, this model is designed to see the importance of 

weight adaptation in real-time. 

Weekday model, which gave 1.30% error with year 2002 data by the proposed 

hybrid learning, presents 1.61% error when there is no real-time learning. It is 

obvious from this increase in the error that to continue learning in real-time 

improves the performance of the model. Real-time learning behaves like a fine 

tuning and if it is not applied, the neural network cannot adapt itself to changing 

conditions and it becomes difficult for it to give reasonable forecasts. 

7.2. No Step Size Adaptation 

Here, step size is taken as 0.5 and not updated during the learning. The MAPE for 

the weekday model with year 2002 data is increased from 1.30% to 1.47%. It is 

seen that making step size adaptive improves the model. Moreover, it is not a 

computationally complex algorithm and it has negligible effect on output 

calculations. Therefore, it is convenient to update the step size rather than fix it.  

7.3. No Temperature Input 

Temperature is one of the most important parameters in STLF. It is known that 

temperature variations directly affect the load consumption. In order to see this 

numerically, the weekday model is retrained without the temperature inputs. The 

resultant error, which rises to 2.05% (from 1.30%), shows this fact clearly. 

7.4. No Data Clustering 

In order to see what would happen if there were no clustering, a dummy model is 

configured. All data types from year 2001, except the special days, are given to a 

single neural network and it is trained off-line. Then all data from year 2002 

(again no special days) is put through the model and it gives 2.93% error. From 

this result, one can understand that to cover all data types with a single neural 

network is not possible. Therefore, it can be said that a powerful clustering is 

necessary for this kind of forecasting problems. 
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7.5. Hourly Based Clustering 

In this case, a separate neural network for each hour of the day is taken. 

Therefore, training sets are formed as having only one hour-type of the electric 

load. Two experiments are performed with this hourly based clustering: 

Weekends are separately handled; and considered with weekdays.  

7.5.1. Weekends – Separately Handled 

For working days there are 24 neural networks, representing the hours; and for 

weekends there are two neural networks, representing Saturdays and Sundays. 

Respective MAPEs for year 2002 are 1.73%, 1.75%, and 2.06%. Although these 

error figures are not high, the main drawback here is having 26 different models, 

all requiring separate training times. The proposed daily based clustering, which 

has four models, is more practical in this respect.  

7.5.2. Weekends – Considered with Weekdays 

In this model, there is no distinct neural network for weekends, 24 neural 

networks cover weekdays and weekends together. MAPEs when the special days 

of year 2002 are included and discarded are 2.45% and 2.10%, respectively. It is 

understood that considering weekends separately and discarding the special days 

are better ways to take. 

7.6. Traditional Stochastic Time Series Approach 

Traditional STLF models, such as regression or stochastic time series are widely 

used in electric generation units as they have proven their validity especially for 

weekday forecasts. 

Any new method having a different approach than these conventional ones should 

give better results in order to be accepted. Therefore, the model proposed in this 

thesis should also be compared with a classical model that does the same task. 

An introduction on the classical approaches, experiments performed and results 

obtained are given in this section. 
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Stochastic time series method appears to be the most popular approach that has 

been used and is still being applied to STLF in the electric power industry [47]. 

There are many names encountered in the literature for this approach, for example 

ARMA (autoregressive – moving average) models, ARIMA (integrated 

autoregressive – moving average) models, Box-Jenkins method, linear time series 

models, etc.  

As a brief review, the load series, y(t), is modeled as the output from a linear filter 

that has a random series input, a(t), usually called a white noise. This random 

input has a zero mean and unknown fixed variance, )(2 taσ . Depending on the 

characteristics of the linear filter, different models can be classified as given in the 

following sections. 

7.6.1. The Autoregressive (AR) Process 

In the autoregressive process, the current value of the time series y(t) is expressed 

linearly in terms of its previous values and a random noise a(t). For an 

autoregressive process of order p, i.e., AR(p), this model can be written as: 

 

)()()2()1()( 21 taptytytyty p +−φ++−φ+−φ= K  

 

By introducing the backshift operator B that defines )()1( tByty =− , and 

consequently )()( tyBmty m=− , the above equation can be written in the form: 

 

)()()( tatyB =φ  

 

where 

 

p
p BBBB φ−−φ−φ−=φ K2

211)( . 
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7.6.2. The Moving-Average (MA) Process 

In the moving-average process, the current value of the time series y(t) is 

expressed linearly in terms of current and previous values of a white noise series. 

For a moving average of order q, i.e., MA(q), this model can be written as  

 

)()2()1()()( 21 qtatatataty q −θ−−−θ−−θ−= K  

 

A similar application of the backshift operator on the white noise series would 

allow the above equation to be written as: 

 

)()()( taBty θ=  

 

where 

 

q
q BBBB θ−−θ−θ−=θ K2

211)(  

 

7.6.3. The Autoregressive Moving-Average (ARMA) Process 

In the autoregressive moving-average process, the current value of the time series 

y(t) is expressed linearly in terms of its values at previous periods and in terms of 

current and previous values of a white noise. For an autoregressive moving-

average process of order p and q, i.e., ARMA(p,q), the model is written as 

 

)()1()()()1()( 11 qtatataptytyty qp −θ−−−θ−+−φ++−φ= KK  
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By using the backshift operator defined earlier, the above equation can be written 

in the following form: 

)()()()( taBtyB θ=φ  

 

where )(Bφ  and )(Bθ  have been defined as above. 

7.6.4. Experiments and Results 

A stochastic time series model is constructed for STLF in order to be compared 

with the intelligent model, based on recurrent neural networks whose 

experimental results were presented previously. 

Here, data of years 2001 and 2002 undergo the tests and ARMA is taken as the 

model. Parameters, p and q that cause the lowest error in year 2001 are found and 

corresponding φ  and θ  values are applied to year 2002 for estimating the 24-hour 

ahead load. 

Regular data are again clustered into four sets as before and tests are repeated for 

each of them. Special days are grouped among themselves. Results are shown in 

Table 7.1, together with the errors obtained by the proposed recurrent neural 

network model. 

Table 7.1. ARMA and recurrent neural network results for STLF in year 2002. 

Cluster ARMA Error (%) RNN Error (%) 

Early Monday 3.50 1.97 

Remaining Weekdays 1.53 1.39 

Saturday 2.72 1.47 

Sunday 3.45 1.99 

Special Days 10.34 4.10 

WEIGHTED AVERAGE 2.33 1.60 
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It is obvious and easy to comment about Table 7.1. Classical method gives best 

forecasts for weekdays but not as successful as the recurrent neural network 

model. For weekends and Monday morning, it is quite worse and for special days, 

it is almost useless. These results show that, this traditional method – depending 

only on a time series and not making use of other parameters, such as temperature, 

hour of the day or day of the week, etc. – is weaker than the proposed adaptive, 

intelligent neural network based method. 
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CHAPTER 8 

PRINCIPAL COMPONENT ANALYSIS FOR FEATURE 
EXTRACTION 

In this work, the hourly data of Turkey’s power consumption for several past 

years are available and it is desired to forecast a near future demand using neural 

networks. The factors affecting usage of the power are neither precisely known 

nor can be mathematically expressed. Furthermore, feeding neural networks with 

many parameters would lead unreasonable training times and redundancy. In this 

circumstances, using the principal component analysis (PCA) to eliminate the 

redundant parameters and thus speed up the learning would be worth considering. 

Because, it is known that, many algorithms are exponential in the dimensionality 

of the input, thus even reduction by a single dimension may provide valuable 

computational savings [16]. 

PCA is a linear procedure to find the direction in input space where most of the 

energy of the input lies. The projections of these components correspond to the 

eigenvalues of the input autocorrelation matrix. In other words, the principal 

components are obtained by projecting the data onto the orthogonal space spanned 

by a subset of the eigenvectors of the estimated autocorrelation matrix associated 

with the largest eigenvalues [62].  

In the literature it is encountered with several applications at which neural 

networks and the PCA are considered together to extract the principal components 

of a data using a neural network.[5, 13, 40]. Using PCA to prepare the appropriate 
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inputs for the neural networks has not attracted much attention so far and this 

work can be considered as an original approach in this respect. 

8.1. Wiener’s Optimal Solution 

Assuming a neural network configuration as shown in Figure 8.1 below 

 
Figure 8.1. A linear neural network configuration. 

where )(nu  is the input vector, )(nd  is the desired output, )(ˆ nd  is the neural 

network output and w  is the weight vector, one can write 

 

)()(ˆ nuwnd
H
⋅=  

 

With the estimation error 

 

)(ˆ)()( ndndne −=  

 

the cost function to be minimized is  

 

{ }2)(),( neEnwJ =  
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{ } ( ) ( ){ }wnundnuwndEneneEnwJ
HH

⋅−⋅⋅−=⋅= )()()()()()(),( **  

{ } { } { } wRwnundEwwnundEndEnwJ u

HHH
⋅⋅+⋅⋅−⋅⋅−= )()()()()(),( *2  

 

where { })()( nunuER
H

u ⋅=  is the autocorrelation matrix. 

Since ),( nwJ  is quadratic, it has a global minimum which can be found by 

equating the derivative of J  with respect to w  to zero. 

If 

 

{ })()()( * ndnuEnp ⋅=
∆

 

 

is defined as the cross-correlation vector between the input and the desired 

response then, 

 

wRwnpwwnpnwJ u

HHH

d ⋅⋅+⋅−⋅−= )()(),( 2σ  

 

where 2
dσ  is the variation of d(n). 

It can be assumed that the global minimum of J is achieved when oww = . Then, 

 

0|2)(2),( =⋅+−=
= oww

u wRnpnwJ
wd

d  

 

The solution 
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)(npwR ou =⋅  

 

is called the Wiener-Hopf equations. 

So the optimal weights can be found by 

 

)(1 npRw uo ⋅= −  

 

8.2. Convergence of the Steepest Descent Algorithm 

Assuming a neural network configuration whose weights are adjusted and error is 

backpropagated using steepest descent method, weight update formula can be 

written as 

 

( ))(
2
1)()1( nJnwnw ∇−=+ η  

 

where η  is called as the learning rate. 

Remembering from the previous section that  

 

)(2)(2)( nwRnpnJ u ⋅+−=∇  

 

then 

 

( ))()()()1( nwRnpnwnw u ⋅−+=+ η  
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Since  

 

ou wRnp ⋅=)(  

( ) ( ) ouuou wRnwRnwwRnwnw ⋅⋅+⋅⋅−=−⋅⋅+=+ ηηη )(1)()()1(  

 

Defining the deviation vector )(nc  as 

 

ownwnc −=
∆

)()(  

 

Then, 

 

( ) ( ) ouuo wRnwRwnwnc ⋅⋅−−⋅⋅−=−+=+ ηη 1)(1)1()1(  

( ) )(1)1( ncRnc u ⋅⋅−=+ η  

 

Using the diagonalizability property of uR , one can write 

 

H
uu QQR Λ=  

 

where uΛ  is the diagonal matrix consisting of eigenvalues, kλ , of uR  and Q is the 

unitary modal matrix. 

So, 

 

( ) )(1)1( ncQQnc H
u ⋅Λ⋅−=+ η  
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Multiplying both sides from left by QH yields 

 

{ ( ) )()()1( ncQncQQQQncQ H
u

H
u

HHH ⋅Λ⋅−Ι=⋅









Λ⋅−=+⋅

Ι

ηη  

 

Defining )()( ncQnv H
∆

= converts above equation to 

 

( ) )(1)1( nvnv u ⋅Λ⋅−=+ η  

 

or 

 

( ) )(1)1( nvnv kkk ⋅⋅−=+ λη  

 

In terms of initial conditions 

 

( ) )0(1)( k
n

kk vnv ⋅⋅−= λη  

 

If η  is chosen such that 11 <⋅− kλη  is achieved then kv  approaches to zero as n 

increases. 

Hence kv  can be re-written exponentially as 

 

)0()( k

n

k venv k ⋅=
−

τ  
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Therefore, 

 

k
ke λητ ⋅−=

−

1
1

 

k
k λη

τ
⋅−

−
=

1ln
1  

 

Recalling that 

 

( )o
HH wnwQncQnv −== )()()(  

 

If kv  approaches to zero then )(nw  approaches to ow  and convergence is 

accomplished. 

In terms of neural network weights, 

 

∑+=⋅+=
k

kkoo nvqwnvQwnw )()()(  

 

where kq ’s are the orthonormal eigenvectors. 

 

∑
=

−

⋅⋅+=
M

k
k

n

koi veqwnw k

ii
1

)0()( τ  

 

It is seen that weights contain M different time constants and the slowest time 

constant, i.e., the largest in magnitude determines the convergence time. Noticing 

that 
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k
k λη

τ
⋅−

−
=

1ln
1  

 

for a fixed learning rate, the slowest time constant is obtained because of the 

smallest eigenvalue. 

8.3. Proposed PCA Method 

The steepest descent algorithm states that, the slowest time constant of the 

weights determines the convergence time. This slowest time constant corresponds 

to the smallest eigenvalue of the autocorrelation matrix found for the input data.  

If this smallest eigenvalue, and therefore the input data causing it, is discarded, 

time constant decreases and training process speeds up. This can be achieved 

utilizing principal component analysis. The PCA projects the input data from their 

original n-dimensional space onto the m-dimensional output space ( nm < ) 

performing a dimensionality reduction which retains most of the intrinsic 

information in the input data vectors; and the transformation matrix consists of 

eigenvectors which correspond to the largest eigenvalues. 

Having an input vector of size N, the autocorrelation matrix is formed and 

eigenvalues are found. So, there are N eigenvalues and corresponding N 

eigenvectors which are orthonormalized. 

If the transformation matrix Q is constructed by the eigenvectors, related to the 

largest N-1 eigenvalues, then the input space dimension is reduced by one, the 

smallest eigenvalue is discarded and convergence time will be decreased. 

Similarly, the largest N-2 eigenvalues can be used for transformation and the 

speed of the learning process is further improved. It should be noticed at this point 

that, the number of input layer nodes in the neural network model, which were N 

initially, reduces with these transformations and the network architecture is 

changed, affecting the weight dimensions. 

But the question is how many eigenvalues to eliminate? Because, in each space 

reduction, the smallest eigenvalue is discarded; and at the same time, the 
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information content to be transferred is decreased, as well. So, after a time, 

although speed is improved, the learning ability of the network will be getting 

worse and it will be difficult to have outputs closer to the desired values. 

Therefore, this dimension reduction algorithm should stop at an optimum point. 

That is, at the optimum point, the neural network should learn the system 

dynamics fast enough and should give successful results, with an acceptable, 

predefined error. 

In order to determine the optimal neural network configuration, the following 

experiments have been performed. 

8.4. Experiments with the PCA Method 

Weekday model is taken into consideration to try and evaluate the PCA method, 

i.e., data from the weekday cluster are used to train the model. The output to be 

forecast and the initial input variables are as follows: 

 Output: ),( hdL  

 Inputs: Ch , d , s ,  

  ),1( hdL − ,…, )5,1( −− hdL , ),1( hdT − ,…, )5,1( −− hdT , 

  ),2( hdL − ,…, )5,2( −− hdL , ),2( hdT − ,…, )5,2( −− hdT , 

  ),3( hdL − ,…, )5,3( −− hdL , ),3( hdT − ,…, )5,3( −− hdT  

The inputs related with time (hour, day and season) are not put through the 

transformation since they are for sure very effective on load consumption. But 18 

past load values and 18 past temperatures may not be all crucial to forecast the 

output. At the same time, any of them cannot be directly discarded from the input 

vector since the least significant one is not known. Therefore, they are 

transformed into lesser dimensions by the proposed PCA method. 

Reducing the dimension one by one down to having one load and one temperature 

variables yields 18 transformed input vectors and hence 18 neural networks, each 
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having different input layers. So the weight dimensions are changed, as well as 

the convergence cycles. 

All these neural networks are trained upto 300,000 cycles and the percent erros in 

Figure 8.2 are obtained. 
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Figure 8.2. MAPEs of 18 different neural networks at 300,000 cycle. 

The horizontal axis in Figure 8.2 represents the reduced size of the transformed 

load (or temperature) input vector. As a general trend, error is decreasing with the 

increasing amount of information (from one input case to ten input case) or with 

the increasing convergence speed (from 18 input case to ten input case). 

Therefore, in success and speed point of view, the one with ten inputs becomes 

the optimum neural network. This means that one can go on with this 

configuration knowing that the best input features have been selected. 

To test this idea and finalize the model, a comparative experiment can be 

performed. Three models are taken into account: the neural network with the 
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optimum input topology, i.e., the one with ten transformed load and temperature 

inputs, the neural network with five transformed load and temperature inputs and 

the neural network with the untransformed inputs. These three models are trained 

until the output error reduces below 3.00% in order to get the convergence cycles. 

The results in Table 8.1 are obtained. 

Table 8.1. Convergence comparison of three models. 

Inputs Convergence Cycles

10 (Optimum) 720,000 

5 890,000 

Untransformed 1,110,000 

 

As stated before, the model with ten inputs is the optimum one. Although the 

neural network with five inputs has fewer variables, which speeds up the weight 

calculations, it is providing less information to the network; therefore, its learning 

capacity is worse than the optimum model, as seen in Table 8.1. The neural 

network with untransformed inputs gives full information, which is a valuable 

parameter in learning, but the large number of inputs affects the convergence 

negatively. Hence, it is slower than the optimum model. 

Consequently, it can be said that this kind of preprocessing and feature extraction 

effort, carried on before the designing phase, prevents the neural network model 

from time losses in real-time operation. 
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CHAPTER 9 

CONCLUSIONS   

9.1. Discussions of the Results 

As the highlights of this research, a hybrid learning for recurrent neural networks, 

which combines off-line and real-time trainings; data clustering considering the 

Turkey’s load consumption profile; proposing solutions for all day types, 

including special days; extracting the most informative input features by PCA;  

adjusting step size iteratively while making real-time forecasts can be given. 

Proposed hybrid learning prepares the model for real-time load forecasting by 

training it first with the available off-line data and getting the weights ready. 

During the real-time application, weights are undergone to a fine tuning operation 

in order to track the changing conditions. By merging these two phases, the neural 

network model gains experience from the past data; therefore, results become 

better than the standard learning methods. 

Clustering is performed after a detailed data analysis, based on correlation 

measures, daily and seasonal variations, holiday behaviors, etc. Then separate 

neural network models are constructed for each cluster. Forecast errors with the 

proposed models come out to be smaller than a single neural network case where 

the training data is not clustered.  

Special day forecast, which is the most difficult part of the STLF, is achieved by 

again the neural network method; but, the output is adjusted by a correction term, 

found through the difference between past years’ forecasts and actual special day 
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loads. With this correction approach, errors reduce considerably and results turn 

out to be quite successful.   

In order to suggest a solution for the neural network input selection problem, the 

principal component analysis is carried out to get the information content of the 

provided inputs as much as possible together with a fast learning. Results show 

that, input vector could be reduced to ten electric load and temperature elements 

from 18 initial components, which speeds up the process considerably. 

The neural network that uses constant step size in real-time learning gives worse 

results than the model which proposes iterative step size adjustment. 

Temperature is an important parameter on STLF. Models, that do not utilize 

temperature measurements in training, produce quite larger errors than the ones 

exploiting them as input parameters. 

Overall results, as in the form of percent errors averaged through a year, verify 

that all the building blocks of this thesis mentioned above contribute positively to 

the solution of the STLF problem. For instance, 1.60% forecast error for all 

clusters of year 2002 including the special days, is not a bad result, as compared 

to the other similar works, which for instance obtained 1.67% error in [51].  

Proposed neural network approach is compared with a traditional ARMA time 

series method and outperforms it in all day type results, especially for holidays. 

Therefore, the artificial neural network technology can be anticipated as a 

substitute of classical approaches for STLF. The advantages of neural networks 

include robustness to probability distribution assumptions, the ability to classify in 

the presence of nonlinear separation and their capability to perform reasonably 

well with incomplete data. This work proves the capability of artificial 

intelligence for STLF; therefore, it can be said that artificial intelligence methods 

are potential alternatives to other classical STLF methods. 

9.2. Suggestions for Future Works 

Both neural networks and STLF are wide areas to work on. Although a complete 

model is tried to be proposed in this thesis, some points are unavoidably left 
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inexperienced. Hoping to give an idea and perhaps a starting point for next 

researchers, the following suggestions on data clustering, input selection, training 

methods and modeling are given. 

9.2.1. Suggestions on Data Clustering 

Season information is given as an input variable in this work. Instead of this, 

separate neural networks can be formed having only the seasonal or monthly 

training data.  

A data clustering can be done considering both season and day information, like 

Summer-Monday, Winter-Wednesday, etc.  

Daily load profile has several characteristic regions, such as working hours, 

startup hours, evening, night, etc. data clustering can be performed according to 

this discrimination and separate neural networks can be formed.  

In this work, special days are chosen from known holidays. However, load can 

have abnormality because of large temperature changes. Therefore, temperature 

forecasts can be taken into consideration for determining the special days. 

In order to model special days, rough set approach can be utilized. Rough sets are 

efficient tools for classifying the data and differentiating the boundary classes. 

Special days can be thought as boundary classes and the main cluster to which 

they are close can be found by rough set analysis. 

9.2.2. Suggestions on Input Selection 

In this work, temperature and past load inputs are encoded continuously, hour is 

given as a sinusoidal component and day as a scalar. Since the importance of hour 

and day is not determined by their numeric value, they can be encoded binary.  

There can be several alternative approaches that use different temperature 

variables as inputs. Among them, the greatest and the lowest temperature values 

of past days, the greatest and the lowest temperature forecasts of forecast day, the 

average temperature forecast of the forecast day and the temperature forecast of 
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the forecast hour can be mentioned. The difficulty here is in obtaining such 

forecasts. 

9.2.3. Suggestions on Training Methods 

The proposed hybrid training uses off-line weights for starting to real-time 

forecast and during the real-time forecasting phase, weight update continues. 

After a year is passed, for the next year, off-line training should be repeated with 

the last year’s data. Instead of randomizing the initial weights in this off-line 

learning, the last weight values of the previous real-time training can be used. 

The hybrid Levenberg-Marquart / simulated annealing algorithm can be used for 

training. The Levenberg-Marquart method is a deterministic optimization method 

used to find a local minimum of the error function. After finding such a minimum, 

the simulated annealing algorithm performs a search for possible other minima 

around the found one. 

To avoid overtraining, regularization techniques can be used. This involves 

modifying the cost function to be minimized by adding a term that penalizes for 

the complexity of the model. This term might, for example, penalize for the 

excessive curvature in the model by considering the second derivatives of the 

output with respect to the inputs. Relatively simple and smooth models usually 

forecast better than complex ones. Overfitted neural networks may assume very 

complex forms, with pronounced curvature, since they attempt to track down 

every single data point in the training sets; their second derivatives are therefore 

very large and the regularization term grows with respect to the error term. 

Keeping the total error low, therefore, means keeping the model simple. 

9.2.4. Suggestions on Modeling 

Electric consumption profile is being changed due to different pricing intervals 

and due to new counters that can store such usage. Therefore, available past data 

will be no longer useful soon. A method could be proposed to correct deviations 

from the traditional load profile due to this fact. 



 

 96

A preliminary load forecast can be obtained by trained neural networks; then, a 

fuzzy expert system can modify this preliminary forecast considering the load 

variations due to changes in temperature or holiday profile. 

Radial basis functions can be tried as model structure. 
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APPENDIX 

COMPLETE LIST OF SPECIAL DAYS 

1999 2000 2001 2002 

16 Jan Saturday 7 Jan Friday 3 Mar Saturday 21 Feb Thursday 

17 Jan Sunday 8 Jan Saturday 4 Mar Sunday 22 Feb Friday 

18 Jan Monday 9 Jan Sunday 5 Mar Monday 23 Feb Saturday 

19 Jan Tuesday 10 Jan Monday 6 Mar Tuesday 24 Feb Sunday 

20 Jan Wednesday 11 Mar Saturday 7 Mar Wednesday 25 Feb Monday 

21 Jan Thursday 12 Mar Sunday 8 Mar Thursday 23 Apr Tuesday 

22 Jan Friday 13 Mar Monday 9 Mar Friday 19 May Sunday 

23 Jan Saturday 14 Mar Tuesday 10 Mar Saturday 30 Aug Friday 

24 Jan Sunday 15 Mar Wednesday 11 Mar Sunday 28 Oct Monday 

25 Jan Monday 16 Mar Thursday 12 Mar Monday 29 Oct Tuesday 

27 Mar Saturday 17 Mar Friday 23 Apr Monday 4 Dec Wednesday 

28 Mar Sunday 18 Mar Saturday 19 May Saturday 5 Dec Thursday 

29 Mar Monday 19 Mar Sunday 30 Aug Thursday 6 Dec Friday 

30 Mar Tuesday 20 Mar Monday 29 Oct Monday 7 Dec Saturday 

31 Mar Wednesday 23 Apr Sunday 15 Dec Saturday 8 Dec Sunday 

23 Apr Friday 19 May Friday 16 Dec Sunday 9 Dec Monday 

19 May Wednesday 30 Aug Wednesday 17 Dec Monday  

30 Aug Monday 29 Oct Sunday 18 Dec Tuesday  

28 Oct Thursday 23 Dec Saturday   

29 Oct Friday 24 Dec Sunday   

 25 Dec Monday   

 26 Dec Tuesday   

 27 Dec Wednesday   

 28 Dec Thursday   

 29 Dec Friday   

 30 Dec Saturday   

 31 Dec Sunday   
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