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ABSTRACT

SCALAR MESON EFFECTS IN RADIATIVE DECAYS OF VECTOR

MESONS

Kerman Solmaz, Saime

Ph.D., Department of Physics

Supervisor: Prof. Dr. Ahmet Gökalp

October 2003, 98 pages.

The role of scalar mesons in radiative vector meson decays is investigated. The

effects of scalar-isoscalar f0(980) and scalar-isovector a0(980) mesons are studied

in the mechanism of the radiative φ → π+π−γ and φ → π0ηγ decays, respec-

tively. A phenomenological approach is used to study the radiative φ → π+π−γ

decay by considering the contributions of σ-meson, ρ-meson and f0-meson. The

interference effects between different contributions are analyzed and the branch-

ing ratio for this decay is calculated. The radiative φ → π0ηγ decay is studied

within the framework of a phenomenological approach in which the contribu-

tions of ρ-meson, chiral loop and a0-meson are considered. The interference

effects between different contributions are examined and the coupling constants

gφa0γ and ga0K+K− are estimated using the experimental branching ratio for the

φ → π0ηγ decay. Furthermore, the radiative ρ0 → π+π−γ and ρ0 → π0π0γ de-

cays are studied to investigate the role of scalar-isoscalar σ-meson. The branch-

ing ratios of the ρ0 → π+π−γ and ρ0 → π0π0γ decays are calculated using a

phenomenological approach by adding to the amplitude calculated within the
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framework of chiral perturbation theory and vector meson dominance the ampli-

tude of σ-meson intermediate state. In all the decays studied the scalar meson

intermediate states make important contributions to the overall amplitude.

Keywords: Vector Meson Decay, Scalar-Isoscalar Meson, Scalar-Isovector Me-

son, Vector Meson Dominance, Chiral Perturbation Theory, Coupling Constant,

Radiative Decay
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ÖZ

VEKTÖR MEZONLARIN IŞINSAL BOZUNMALARINDA SKALER

MEZON ETKİLERİ

Kerman Solmaz, Saime

Doktora , Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Ahmet Gökalp

Ekim 2003, 98 sayfa.

Işınsal vektör mezon bozunmalarında skaler mezonların rolü araştırıldı. Skaler-

izoskaler f0(980) ve skaler-izovektör a0(980) mezonlarının etkileri sırasıyla φ →
π+π−γ ve φ → π0ηγ ışınsal bozunma mekanizmalarında çalışıldı. Işınsal φ →
π+π−γ bozunmasının incelenmesinde σ-mezon, ρ-mezon ve f0-mezon katkılarının

düşünüldüğü fenomenolojik bir yaklaşım kullanıldı. Farklı katkılar arasındaki

girişim etkileri analiz edildi ve bu bozunma için dallanma oranı hesaplandı.

ρ-mezon, chiral halkası ve a0-mezon katkıları göz önüne alınarak fenomenolo-

jik bir yaklaşım çerçevesinde ışınsal φ → π0ηγ bozunması çalışıldı. Farklı

katkılar arasındaki girişim etkileri incelendi ve φ → π0ηγ bozunmasının deney-

sel dallanma oranı kullanılarak gφa0γ ve ga0K+K− çiftlenim sabitleri hesap edildi.

Ayrıca, skaler-izoskaler σ-mezonunun rolünü araştırmak için ışınsal ρ0 → π+π−γ

ve ρ0 → π0π0γ bozunmaları çalışıldı. Chiral tedirgeme kuramı ve vektör mezon

dominans çerçevesinde hesap edilen genliklere σ-mezon ara durum genliği ek-

lenerek fenomenolojik bir yaklaşımla ρ0 → π+π−γ ve ρ0 → π0π0γ bozun-

malarının dallanma oranı hesaplandı. Bütün bu bozunmalarda, skaler mezon

ara durumlarının toplam genliğe önemli katkılar sağladığı bulundu.
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guidance, encouragement, invaluable comments, patience and friendly attitude

during this work. He gave me valuable insights and moral support when I was

lost. Thank you sincerely.

I would like to express my sincere gratitude to Prof. Dr. Osman Yılmaz

for his valuable suggestions, friendly attitude and guidance especially about the

problems related to the Pascal program.

There are no words to describe the appreciation and gratitude I feel for my

parents. Their wonderful example of dedication and commitment has provided

me with a lifetime of inspiration. I thank them for their optimism, beautiful

spirits and belief in me. I also wish to express my appreciation to my sister

Naime. She patiently and lovingly encouraged me to do my best.

I am also grateful to my best friend Ayşe who contributed greatly throughout

this study. And Levent, special thanks are for you, I could not have completed

this thesis without you.

Thank you all very much indeed.

viii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
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CHAPTER 1

INTRODUCTION

Radiative decays of vector mesons offer the possibility of investigating new

physics features about the interesting mechanism involved in these decays. One

particular mechanism involves the exchange of scalar mesons. The scalar mesons,

isoscalar σ and f0(980) and isovector a0(980), with vacuum quantum numbers

JPC = 0++ are known to be crucial for a full understanding of the low energy

QCD phenomenology and the symmetry breaking mechanisms in QCD. The ex-

istence of the σ-meson as a broad ππ resonance has been the subject of a long

standing controversy although the f0(980) and the a0(980) mesonic states are

well established experimentally. Recently, on the other hand, new theoretical

and experimental studies find a σ-pole position near (500 − i250) MeV [1, 2].

An experimental evidence for a light and broad scalar σ resonance, of mass

Mσ = 478 MeV and width Γσ = 324 MeV , was found by the Fermilab E791

collaboration in D+ → π−π+π+ decay [3]. From the other side there is some

debate about the nature and the quark substructure of these scalar mesons.

Several proposals have been made about the nature of these states: qq̄ states
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[4], ππ̄ in case of σ [5] and KK̄ molecules in case of f0 and a0 [6] or multi-

quark q2q̄2 states [7, 8]. The scalar mesons have been a persistent problem in

hadron spectroscopy. In addition to the identification of their nature, the role

of scalar mesons in hadronic processes is of extreme importance and the study

of radiative decays of vector mesons may provide insights about their role. The

radiative decay processes of the type V → PPγ where V and P stand for the

lowest multiplets of vector (V) and pseudoscalar (P) mesons have been studied

extensively. The studies of such decays may serve as tests for the theoretical

ideas about the nature of the intermediate states and the interesting mechanisms

of these decays and they may thus provide information about the complicated

dynamics of meson physics in the low energy region.

In particular, radiative φ meson decays, φ → ππγ and φ → π0ηγ, can play a

crucial role in the clarification of the structure and properties of scalar f0(980)

and a0(980) mesons since these decays primarily proceed through processes in-

volving scalar resonances such as φ → f0(980)γ and φ → a0(980)γ, with the sub-

sequent decays into ππγ and π0ηγ [9, 10]. Achasov and Ivanchenko [9] showed

that if the f0(980) and a0(980) resonances are four-quark (q2q̄2) states the pro-

cesses φ → f0(980)γ and φ → a0(980)γ are dominant and enhance the decays

φ → ππγ and φ → π0ηγ by at least an order of magnitude over the results

predicted by the Wess-Zumino terms. Then Close et al. [10] noted that the

study of the scalar states in φ → Sγ, where S = f0 or a0, may offer unique in-

sights into the nature of the scalar mesons. They have shown that although the
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transition rates Γ(φ → f0γ) and Γ(φ → a0γ) depend on the unknown dynamics,

the ratio of the decay rates Γ(φ → a0γ)/Γ(φ → f0γ) provides an experimen-

tal test which distinguishes between alternative explanations of their structure.

On the experimental side, the Novosibirsk CMD-2 [11, 12] and SND [13] col-

laborations give the following branching ratios for φ → π+π−γ and φ → π0ηγ

decays: BR(φ → π+π−γ) = (0.41 ± 0.12 ± 0.04) × 10−4 [11], BR(φ → π0ηγ) =

(0.90±0.24±0.10)×10−4 [12], BR(φ → π0ηγ) = (0.88±0.14±0.09)×10−4 [13],

where the first error is statistical and the second one is systematic. Theoretically,

the role of f0(980)-meson in the radiative decay processes φ → ππγ was also in-

vestigated by Achasov et al. [14]. They calculated the branching ratio for this

decay by considering only f0(980)-meson contribution. In their study, they used

two different models of f0(980)-meson: the four-quark model and KK̄ molecu-

lar model. In the four-quark model they obtained the value for the branching

ratio as BR(φ → f0γ → ππγ) = 2.3 × 10−4 and in case of the KK̄ molecular

model, the branching ratio was BR(φ → f0γ → ππγ) = 1.7 × 10−5. Marco et

al., later considered the radiative φ meson decays [15] as well as other radiative

vector meson decays within the framework of chiral unitary theory developed

earlier by Oller [16]. Using a chiral unitary approach, they included the final

state interactions of the two pions by summing the pion-loops through Bethe-

Salpeter equation and they obtained the result BR(φ → π+π−γ) = 1.6 × 10−4

for the branching ratio of the φ → π+π−γ decay. In their calculation they em-

phasized that the branching ratio for φ → π+π−γ decay is twice the one for
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φ → π0π0γ decay. Recently, the radiative φ → π0π0γ decay, where the scalar

f0(980)-meson plays an important role was studied by Gökalp and Yılmaz [17]

within the framework of a phenomenological approach in which the contribu-

tions of σ-meson, ρ-meson and f0-meson are considered. They analyzed the

interference effects between different contributions. By employing the exper-

imental branching ratio for this decay, they calculated the coupling constant

gφσγ. Their analysis showed that f0(980)-meson amplitude makes a substantial

contribution to the branching ratio of this decay.

On the other hand, Fajfer and Oakes [18] studied the radiative decay pro-

cesses of the type V 0 → P 0P 0γ by a low energy effective Lagrangian with the

gauged Wess-Zumino terms. Using such an effective Lagrangian they calculated

the branching ratios for these decays in which scalar meson contributions were

neglected and the branching ratio for the radiative φ → π0ηγ decay was found as

BR(φ → π0ηγ) = 5.18× 10−5. The contributions of intermediate vector mesons

to the decays V 0 → P 0P 0γ were later considered by Bramon et al. [19] using

standard Lagrangians obeying SU(3) symmetry, and they obtained the result

BR(φ → π0ηγ) = 5.4 × 10−6 for the branching ratio of the φ → π0ηγ decay.

This result was not in agreement with the numerical prediction quoted in Ref.

[18] even if the initial expressions for the Lagrangians were the same. Later,

Bramon et al. [20] studied these decays within the framework of chiral effective

Lagrangians enlarged to include on-shell vector mesons using chiral perturbation

theory, and they calculated the branching ratio for φ → π0ηγ decay as well as
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other radiative vector meson decays of the type V 0 → P 0P 0γ at the one-loop

level. They showed that the one-loop contributions are finite and to this order

no counterterms are required. In this approach, the decay φ → π0ηγ proceeds

through the charged kaon-loops and they obtained the contribution of charged

kaon-loops to this decay rate as Γ(φ → π0ηγ)K = 131 eV . They noted that the

intermediate vector meson state (VMD) contribution is much smaller than the

contribution of charged kaon-loops due to the OZI rule. Adding VMD contribu-

tion to the contribution of charged kaon-loops they obtained for the decay rate

the value Γ(φ → π0ηγ) = 157.5 eV and their result for the branching ratio was

BR(φ → π0ηγ) = 36× 10−6. Moreover they stated that OZI allowed kaon-loops

are seen to dominate both photonic spectrum and decay rate. As we mentioned

before, φ meson decays into π+π−γ, π0π0γ and π0ηγ was also investigated by

Marco et al. [15] using a chiral unitary approach. The branching ratio, they

obtained for the case φ → π0ηγ, was BR(φ → π0ηγ) = 0.87×10−4 in agreement

with the SND data. They also noted that the branching ratio is dominated by

the a0 contribution. Bramon et al., later discussed the radiative φ → π0ηγ decay

emphasizing the effects of the a0(980) scalar resonance [21]. In their previous

approaches [19, 20] the scalar resonance effects were not contemplated. They

noted that the observed invariant mass distribution shows a significant enhance-

ment at large π0η invariant mass according to Refs. [12, 13] so this could be

interpreted as a manifestation of a sizeable contribution of a0(980) intermediate

state. In order to take explicitly into account scalar resonances and their pole

5



effects, they proposed to use the linear sigma model (LσM) because of the fact

that chiral perturbation theory is not reliable at energies of a typical vector me-

son mass and scalar resonance poles are not explicitly included. Moreover they

stated that in the case of φ → π0ηγ decay, the dominant contributions arise

exclusively from loops of charged kaons since contributions from charged pion

loops are highly suppressed due to the isospin violation and OZI rule forbid-

den φππ coupling. Indeed they noted that the LσM amplitude is obtained by

adding the contribution of a0(980)-meson, generated through a loop of charged

kaons, to the one coming from chiral loop amplitudes. They predicted a value

of branching ratio to be in the range BR(φ → π0ηγ) = (0.75 − 0.95) × 10−4,

compatible with the experimental data. They also showed that a0(980) scalar

resonance dominates the high values of the π0η invariant mass spectrum. Re-

cently, the radiative φ → π0ηγ decay in addition to the radiative φ → π0π0γ

decay has been considered by Achasov and Gubin [22] taking into account the

contributions of ρ-meson and a0-meson. They analyzed the interference effects

between φ → a0γ → π0ηγ and φ → ρπ0 → π0ηγ processes and obtained the

branching ratio for this decay as BR(φ → π0ηγ) = (0.79 ± 0.2) × 10−4. Their

analysis showed that a0-meson amplitude makes a substantial contribution to

the branching ratio of this decay.

The radiative decays of ρ0 meson into π+π−γ and π0π0γ have been stud-

ied extensively up to now. The Novosibirsk SND collaboration have reported

very recently the branching ratio for the ρ0 → π0π0γ decay the value BR(ρ0 →
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π0π0γ) = (4.1+1.0
−0.9 ± 0.3) × 10−5 [23], thus their preliminary study [24] includ-

ing the measurement of BR(ρ0 → π0π0γ) = (4.8+3.4
−1.8 ± 0.2) × 10−5, has been

improved. On the other hand, the branching ratio for the ρ0 → π+π−γ decay,

obtained from Novosibirsk group, was BR(ρ0 → π+π−γ) = (9.9 ± 1.6) × 10−3

[25, 26]. Moreover it was concluded that the ρ0 → π+π−γ decay is dominated

by the pion bremsstrahlung mechanism and the contribution of the structural

radiation, proceeding trough the intermediate scalar resonance, to the branching

ratio of this decay is one order of magnitude lower than the total branching ra-

tio [25]. The theoretical study of ρ meson decays was begun by Singer [27] who

considered only the bremsstrahlung contribution for the radiative ρ0 → π+π−γ

decay, and he suggested that the ρ0 → π0π0γ decay proceeds via ωπ0 interme-

diate state. Later, Renard [28] studied radiative decays V → PP ′γ in a gauge

invariant way with current algebra, hard-pion and Ward identities techniques.

He concluded that the main contribution to the ρ0 → π+π−γ decay comes from

the pion bremsstrahlung term and the σ contribution modifies the shape of

the photon spectrum for high momenta differently depending on the mass of

the σ-meson. Moreover, he observed that for the radiative ρ0 → π0π0γ decay,

the intermediate σ and ω meson contributions are dominant and the ω peaks

the photon spectrum toward the high momenta. The radiative ρ0 → π0π0γ

decay was also considered by Fajfer and Oakes [18] using a low energy effec-

tive Lagrangian approach with gauged Wess-Zumino terms and they calculated

the branching ratio for this decay as BR(ρ0 → π0π0γ) = 2.89 × 10−5. The
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vector meson dominance (VMD) calculation of Bramon et al. [19] with ωπ in-

termediate state resulted in the branching ratio BR(ρ0 → π0π0γ) = 1.1 × 10−5

for ρ0 → π0π0γ decay. This result was not in agreement with the one ob-

tained by Fajfer and Oakes although the initial expressions for the Lagrangians

were the same. Bramon et al. [20] later considered the radiative vector me-

son decays within the framework of chiral effective Lagrangians and using chiral

perturbation theory they calculated the branching ratios for various decays at

the one-loop level, including both ππ and KK̄ intermediate loops. In this ap-

proach, the decay ρ0 → π0π0γ proceeds mainly through charged pion-loops,

contribution of kaon-loops being three orders of magnitude smaller, resulting

in the decay rate Γ(ρ0 → π0π0γ)χ = 1.42 keV which is of the same order

of magnitude as the VMD contribution. They noted that the interference be-

tween pion-loop contribution and the VMD amplitude is constructive and the

total branching ratio is BR(ρ0 → π0π0γ)V MD+χ = 2.6 × 10−5. Furthermore,

ρ meson decays were also considered by Marco et al. [15] in the framework

of unitarized chiral perturbation theory. They noted that the energies of two

pion system are too big to be treated with standard chiral perturbation the-

ory. They used the techniques of chiral unitary theory to include the final

state interactions of two pions by summing the pion loops through the Bethe-

Salpeter equation. The branching ratios for ρ0 → π+π−γ and ρ0 → π0π0γ,

they obtained, were BR(ρ0 → π+π−γ) = 1.18 × 10−2 for Eγ > 50 MeV and

BR(ρ0 → π0π0γ) = 1.4 × 10−5 respectively. They showed that the branching
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ratio for the radiative ρ0 → π+π−γ decay agrees well with the experimental

number BR(ρ0 → π+π−γ) = (0.99 ± 0.04 ± 0.15) × 10−2 for Eγ > 50 MeV

[25]. Indeed, they concluded that the obtained result for the branching ratio

of the ρ0 → π0π0γ decay could be interpreted as the result of the mechanism

ρ0 → (σ)γ → (π0π0)γ since π0π0 interaction is dominated by the σ-pole in the

relevant energy regime of this decay. The role of the σ meson in radiative decays

ρ0 → π+π−γ and ρ0 → π0π0γ was investigated in detail by Gökalp and Yılmaz

[29, 30]. They calculated the branching ratio for the radiative decay ρ0 → π+π−γ

by considering the bremsstrahlung amplitude and σ-pole amplitude [29]. Using

the experimental value for this branching ratio they estimated the coupling con-

stant gρσγ. Their analysis showed that, the contribution of the σ-term becomes

increasingly important in the region of high photon energies dominating the

contribution of the bremsstrahlung amplitude. Then, using this coupling con-

stant, they calculated the branching ratio for the ρ0 → π0π0γ decay [30]. In this

approach, the contributions of σ-meson, ω-meson intermediate states and of the

pion-loops are considered. They concluded that the σ-meson amplitude makes

a substantial contribution to the branching ratio and this contribution strongly

depends on the value of the coupling constant gρσγ. Moreover the branching ra-

tio BR(ρ0 → π0π0γ) obtained this way for Mσ = 478 MeV and Γσ = 324 MeV

was more than an order of magnitude larger than the experimental value. This

unrealistic value was the result of the constant ρ → σγ amplitude used and

consequently the large coupling constant gρσγ extracted from the experimental
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value of the branching ratio of the ρ0 → π+π−γ decay. Furthermore, they noted

that, the measurement of the ρ0 → π0π0γ decay rate may help to clarify the

mechanism of the ρ0 → π0π0γ decay and the role of the σ-meson in this pro-

cess. Additionally, in a very recent paper of Palomar et al. [31] the branching

ratios of the radiative ρ0 and ω meson decays into π0π0 and π0η are evaluated

using the sequential vector decay mechanisms in addition to chiral loops and

ρ − ω-mixing. They observed that for the ρ0 → π0π0γ decay ρ − ω mixing is

negligible but the branching ratio coming from the sum of the sequential and

loop mechanisms is almost three times larger than either mechanism alone. The

obtained value of this branching ratio was BR(ρ0 → π0π0γ) = 4.2 × 10−5 [31],

which agrees well with the experimental value [23]. Finally, a consistent descrip-

tion of σ(500) meson effects in ρ0 → π0π0γ and ρ0 → π+π−γ decays have been

proposed by Bramon and Escribano [32] in terms of reasonably simple ampli-

tudes which reproduce the expected chiral loop behaviour for large Mσ values.

They have shown that for the neutral case, in addition to the well known ω

exchange, there is an important contribution from the σ(500) meson and for

the charged case, where the dominant contribution comes from bremsstrahlung,

the effects of the σ(500) meson are relevant only at high values of the photon

energy. In order to include the σ-meson effects, they have multiplied the four

pseudoscalar amplitudes A(π+π− → π0π0)χ and A(π+π− → π+π−)χ with an

additional factor Fσ(s), where s denotes the invariant mass of the final dip-

ion system and they have considered two possible values for the free parameter
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k incorporated in the additional factor Fσ(s). In their study the first value

for the parameter k = 1 corresponds to LσM and the second one k � −2.5

represents the phenomenological σ amplitude. They have calculated the follow-

ing values: BR(ρ0 → π0π0γ)χ+ω = 2.95 × 10−5 from chiral loops and VMD

amplitudes, BR(ρ0 → π0π0γ)LσM+ω = 4.21 × 10−5 from LσM and VMD am-

plitudes and BR(ρ0 → π0π0γ)σ−phen+ω = 3.42 × 10−5 from phenomenological

σ-meson and VMD amplitudes. In the same way for the branching ratios for

different contributing reactions to the radiative decay ρ0 → π+π−γ the val-

ues BR(ρ0 → π+π−γ)χ+backg = 1.171 × 10−2, BR(ρ0 → π+π−γ)LσM+backg =

1.138 × 10−2 and BR(ρ0 → π+π−γ)σ−phen+backg = 1.136 × 10−2 are obtained

where backg denotes the contributions from the background amplitude [32].

Also they have noted that their results are quite compatible with the experi-

mental values. Furthermore, recently Escribano studied the scalar meson ex-

change in V → π0π0γ decays [33]. He discussed the scalar contributions to the

φ → π0π0γ, φ → π0ηγ and ρ0 → π0π0γ decays in the framework of the LσM .

He obtained the branching ratios for the decays φ → π0π0γ, φ → π0ηγ and

ρ0 → π0π0γ as BR(φ → π0π0γ) = 1.16 × 10−4, BR(φ → π0ηγ) = 8.3 × 10−5

and BR(ρ0 → π0π0γ) = 3.8 × 10−5 and noted that, the branching ratios for

φ → π0π0γ, φ → π0ηγ and ρ0 → π0π0γ decays are dominated by f0(980),

a0(980) and σ(500) exchanges respectively.

In this thesis, we study the radiative vector meson decays φ → π+π−γ,

φ → π0ηγ, ρ0 → π+π−γ and ρ0 → π0π0γ to investigate the role of the low mass

11



scalar mesons and to extract the relevant information on the properties of these

scalar mesons. We follow a phenomenological approach. In this approach we use

the effective Lagrangians to describe the vertices for the considered processes.

The invariant amplitudes resulting from these effective Lagrangians do not in-

clude any form factor as in point-like effective field theory calculations. Also,

we extract the relevant coupling constants from the experimentally measured

quantities. Theoretically, the radiative φ → π+π−γ decay has not been studied

extensively up to now. One of the rare studies of this decay was by Marco et

al. [15] who neglected the contributions coming from intermediate vector meson

states. Therefore, this decay should be reconsidered and the VMD amplitude

should be added to the f0-meson and σ-meson amplitudes. Firstly, we attempt

to explain the effect of the scalar f0-meson in the radiative φ → π+π−γ decay.

In our phenomenological approach for this decay we consider the contributions

of σ-meson, ρ-meson and f0-meson. We analyze the interference effects between

different contributions and calculate the branching ratio of this decay. Then

we study the role of the scalar a0-meson in the mechanism of the radiative

φ → π0ηγ decay employing a phenomenological framework in which the con-

tribution of the a0-meson in addition to the contributions of the ρ-meson and

chiral loops is considered. In our calculation we try to assess the roles of different

processes and the contributions to the decay rate coming from their amplitude

in the mechanism of this decay and utilizing the experimental branching ratio

for this decay we estimate the coupling constants gφa0γ and ga0K+K− . We try
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to estimate the branching ratio BR(φ → a0(980)γ) of the decay φ → a0(980)γ

from the experimental data of the radiative φ → π0ηγ decay. It is also useful to

state that in earlier calculations, the obtained values for the branching ratio of

the radiative ρ0 → π0π0γ decay are smaller than the latest experimental result

so the mechanism of the decay ρ0 → π0π0γ should be reexamined and additional

contributions should be investigated. Therefore, we study the contribution of

the σ-meson intermediate state amplitude to ρ0 → π+π−γ and ρ0 → π0π0γ de-

cays and calculate their branching ratios using a phenomenological approach by

adding to the amplitude, calculated within the framework of chiral perturbation

theory and vector meson dominance, the amplitude of σ-meson intermediate

states. In our calculations of the branching ratios, the coupling constants that

we use are determined from the relevant experimental quantities.
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CHAPTER 2

FORMALISM

In this chapter, we introduce the theoretical framework that we used to inves-

tigate the effects of scalar mesons in radiative vector meson decays. First of

all, we describe the theoretical details of our calculation about the role of the

scalar-isoscalar f0(980) meson in the mechanism of the radiative φ → π+π−γ de-

cay. Next we deal with the effect of scalar-isovector a0(980) meson in φ → π0ηγ

decay for which two different approaches are used. We then discuss the radiative

ρ0 → π+π−γ and ρ0 → π0π0γ decays to include the effect of the scalar-isoscalar

σ-meson.

2.1 Scalar f0(980) meson in φ → π+π−γ decay

We study the radiative decay φ → π+π−γ within the framework of a phe-

nomenological approach in which the contributions of σ-meson, ρ-meson and

f0-meson are considered and we do not make any assumption about the struc-

ture of the f0 meson. We note that φ and f0 mesons both couple strongly to the

K+K− system. In our phenomenological approach we describe the φKK-vertex

14
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Figure 2.1: Feynman diagrams for the decay φ → f0γ

by the effective Lagrangian

Leff.
φKK = −igφKKφµ

(
K+∂µK

− − K−∂µK
+
)

, (2.1)

which results from the standard chiral Lagrangians in the lowest order of the

chiral perturbation theory [34] and for the f0KK-vertex we use the phenomeno-

logical Lagrangian

Leff.
f0KK = gf0KKMf0K

+K−f0 . (2.2)

The effective Lagrangians for the φKK- and f0KK-vertices also serve to define

the coupling constants gφKK and gf0KK respectively. The decay width for the

φ → K+K− decay, whose derivation we present in Appendix A, is obtained from

the Lagrangian given in Eq. 2.1 and this decay width is

Γ(φ → K+K−) =
g2

φKK

48π
Mφ

⎡
⎣1 −

(
2MK

Mφ

)2
⎤
⎦

3/2

. (2.3)

The coupling constant gφKK is determined as gφKK = (4.59± 0.05) by using the

experimental value for the branching ratio BR(φ → K+K−) = (0.492 ± 0.007)
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for the decay φ → K+K− [26]. The amplitude of the radiative decay φ → f0γ

is obtained from the diagrams shown in Fig. 2.1 where the last diagram assures

gauge invariance [9, 35]. This amplitude is

M (φ → f0γ) = − 1

2π2M2
K

(gf0KKMf0) (egφKK) I(a, b) [ε · u k · p − ε · p k · u] (2.4)

where (u, p) and (ε, k) are the polarizations and four-momenta of the φ meson

and the photon respectively, and also a = M2
φ/M2

K , b = M2
f0

/M2
K . The I(a, b)

function has been calculated in different contexts [10, 16, 36] and is defined as

I(a, b) =
1

2(a − b)
− 2

(a − b)2

[
f(

1

b
) − f(

1

a
)
]

+
a

(a − b)2

[
g(

1

b
) − g(

1

a
)
]

, (2.5)

where

f(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
[
arcsin( 1

2
√

x
)
]2

, x > 1
4

1
4

[
ln( η+

η−
) − iπ

]2
, x < 1

4

g(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(4x − 1)
1
2 arcsin( 1

2
√

x
) , x > 1

4

1
2
(1 − 4x)

1
2

[
ln( η+

η−
) − iπ

]
, x < 1

4

η± =
1

2x

[
1 ± (1 − 4x)

1
2

]
. (2.6)

The decay rate for the φ → f0γ decay that is obtained from the amplitude

M(φ → f0γ) is

Γ(φ → f0γ) =
α

6(2π)4

M2
φ − M2

f0

M3
φ

g2
φKK (gf0KKMf0)

2 |(a − b)I(a, b)|2 . (2.7)

The derivation of Γ(φ → f0γ) given in Eq. 2.7 is presented in Appendix A.

Utilizing the experimental value for the branching ratio BR(φ → f0γ) = (3.4 ±
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Figure 2.2: Feynman diagrams for the decay φ → π+π−γ

0.4) × 10−4 for the decay φ → f0γ [26], we determine the coupling constant

gf0KK as gf0KK = (4.13±1.42). In our calculation, we assume that the radiative

decay φ → π+π−γ proceeds through the reactions φ → σγ → π+π−γ, φ →

ρ∓π± → π+π−γ and φ → f0γ → π+π−γ. Therefore, our calculation is based

on the Feynman diagrams shown in Fig. 2.2. For the φσγ-vertex, we use the

effective Lagrangian [37]

Leff.
φσγ =

e

Mφ

gφσγ[∂
αφβ∂αAβ − ∂αφβ∂βAα]σ , (2.8)

which also defines the coupling constant gφσγ. The coupling constant gφσγ is

determined by Gökalp and Yılmaz [17] as gφσγ = (0.025 ± 0.009) using the

experimental value of the branching ratio for the radiative decay φ → π0π0γ
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[38]. We describe the σππ-vertex by the effective Lagrangian [39]

Leff.
σππ =

1

2
gσππMσ�π · �πσ . (2.9)

The decay width of the σ-meson that results from this effective Lagrangian is

given as

Γσ ≡ Γ(σ → ππ) =
g2

σππ

4π

3Mσ

8

[
1 −

(
2Mπ

Mσ

)2
]1/2

. (2.10)

For given values of Mσ and Γσ, we use this expression to determine the coupling

constant gσππ. Therefore, using the experimental values for Mσ and Γσ [3],

given as Mσ = (478 ± 17) MeV and Γσ = (324 ± 21) MeV , we obtain the

coupling constant gσππ = (5.25 ± 0.32). The derivation of Γσ given in Eq. 2.10

is presented in Appendix A. The φρπ-vertex in Fig. 2.2(b) and in Fig. 2.2(c) is

conventionally described by the effective Lagrangian [40]

Leff.
φρπ =

gφρπ

Mφ

εµναβ∂µφν∂α �ρβ · �π . (2.11)

The coupling constant gφρπ is calculated as gφρπ = (0.811 ± 0.081) GeV −1 by

Achasov and Gubin [22] using the data on the decay φ → ρπ → π+π−π0 [26].

For the ρπγ-vertex the effective Lagrangian [41]

Leff.
ρπγ =

e

Mρ

gρπγε
µναβ∂µ �ρν · �π ∂αAβ , (2.12)

is used. At present there is a discrepancy between the experimental widths of

the ρ0 → π0γ and ρ+ → π+γ decays. We use the experimental rate for the decay

ρ0 → π0γ [26] to extract the coupling constant gρπγ as gρπγ = (0.69± 0.35) since
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the experimental value for the decay rate of φ → π0π0γ was used by Gökalp and

Yılmaz [17] to estimate the coupling constant gφσγ. Finally, the f0ππ-vertex is

described conventionally by the effective Lagrangian

Leff.
f0ππ =

1

2
gf0ππMf0�π · �πf0 . (2.13)

The decay width of the f0-meson that follows from this Lagrangian is given by

a similar expression as for Γσ and this expression can be used to obtain the

coupling constant gf0ππ for a given value of Γf0 . Furthermore, it is useful to

state that, in the calculation of invariant amplitudes we make the replacement

q2−M2 → q2−M2 + iMΓ, where q and M are four-momentum and mass of the

virtual particles respectively, in ρ-, σ- and f0- propagators in order to take into

account the finite widths of these unstable particles and use the experimental

values Γρ = (150.2±0.8) MeV [26] for ρ-meson and Γσ = (324±21) MeV [3] for

σ-meson. However, since the mass Mf0 = 980 MeV of f0-meson is very close to

the K+K− threshold this gives rise to a strong energy dependence on the width

of the f0-meson and to include this energy dependence different expressions for

Γf0 can be used. First option is to use an energy dependent width for f0

Γf0(q
2) = Γf0

ππ(q2) θ
(√

q2 − 2Mπ

)
+ Γf0

KK
(q2) θ

(√
q2 − 2MK

)
, (2.14)

where q2 is the four-momentum square of the virtual f0-meson and the width

Γf0
ππ(q2), derived in Appendix A, is given as

Γf0
ππ(q2) = Γf0

ππ

M2
f0

q2

√√√√ q2 − 4M2
π

M2
f0
− 4M2

π

. (2.15)
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We use the experimental value for Γf0
ππ as Γf0

ππ = 40− 100 MeV [26]. The width

Γf0

KK
(q2) which can be calculated from the effective Lagrangian given in Eq. 2.2

is given by a similar expression as for Γf0
ππ(q2). Another and widely accepted

option is the work of Flatté [42]. In his work, the expression for Γf0

KK
(q2) is ex-

tended below the KK threshold where
√

q2 − 4M2
K is replaced by i

√
4M2

K − q2

so Γf0

KK
(q2) becomes purely imaginary. However in our work, we take into ac-

count both options. The invariant amplitude M(Eγ, E1) which we present in

Appendix C is expressed as M(Eγ, E1) = Ma+Mb+Mc+Md where Ma, Mb,

Mc and Md are the invariant amplitudes resulting from the diagrams (a), (b),

(c) and (d) in Fig. 2.2 respectively. Therefore, the interference between different

reactions contributing to the decay φ → π+π−γ is taken into account. Then, in

terms of the invariant amplitude M(Eγ, E1) the differential decay probability of

φ → π+π−γ decay for an unpolarized φ-meson at rest is given as

dΓ

dEγdE1

=
1

(2π)3

1

8Mφ

| M |2 , (2.16)

where Eγ and E1 are the photon and pion energies respectively. An average over

the spin states of φ-meson and a sum over the polarization states of the photon

is performed. The decay width Γ(φ → π+π−γ) is then obtained by taking the

integral and this is given by

Γ =
∫ Eγ,max.

Eγ,min.

dEγ

∫ E1,max.

E1,min.

dE1
dΓ

dEγdE1

, (2.17)

where the minimum photon energy is Eγ,min. = 0 and the maximum photon

energy is given as Eγ,max. = (M2
φ − 4M2

π)/2Mφ = 471.8 MeV . The maximum
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and minimum values for the pion energy E1, derived in Appendix B, are given

by

1

2(2EγMφ − M2
φ)

[−2E2
γMφ + 3EγM

2
φ − M3

φ

±Eγ

√
(−2EγMφ + M2

φ)(−2EγMφ + M2
φ − 4M2

π) ] . (2.18)

2.2 Scalar a0(980) meson in φ → π0ηγ decay

In order to investigate the role of scalar-isovector a0 (980) meson in radiative

φ → π0ηγ decay, we consider two different approaches and in both approaches,

where the contributions of the ρ-meson, chiral loop and a0-meson are considered,

we do not make any assumption about the structure of scalar a0 meson. In our

first approach, called model I, the contribution of the a0-meson is considered

as resulting from an a0-pole intermediate state. In this approach, we assume

that the mechanism of the φ → π0ηγ decay consists of the reactions shown by

Feynman diagrams in Fig. 2.3. We describe the φρπ-vertex by the effective

Lagrangian given in Eq. 2.11 and as we mentioned before the coupling constant

gφρπ was determined by Achasov and Gubin as gφρπ = (0.811 ± 0.081) GeV −1

[22]. The ρηγ-vertex is described by the effective Lagrangian [43]

Leff.
ρηγ =

e

Mρ

gρηγε
µναβ∂µρν∂αAβη , (2.19)

which also defines the coupling constant gρηγ. Then, the coupling constant gρηγ is

obtained from the experimental partial width of the radiative decay ρ → ηγ [26]

as gρηγ = (1.14±0.18) . We describe the φKK-vertex by the effective Lagrangian
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Figure 2.3: Feynman diagrams for the decay φ → π0ηγ in model I

given in Eq. 2.1 and also the decay rate for the φK+K− decay resulting from this

Lagrangian is given in Eq. 2.3. For the four pseudoscalar KKπη amplitude, we

use the result obtained by Bramon et al. using the standard chiral perturbation

theory [21] which is

M
(
K+K− → π0η

)
=

√
3

4f 2
π

(
M2

π0η −
4

3
M2

K

)
, (2.20)
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where η−η′ mixing effects are neglected. Here, Mπ0η is the invariant mass of the

π0η system and fπ is the pion decay constant having the value fπ = 92.4 MeV .

Therefore, the amplitude of the radiative decay φ → π0ηγ obtained from the

diagram in Fig. 2.3(b) is

M =

(
iegφKK

2π2M2
K

)
M

(
K+K− → π0η

)
I(a, b) [ε · u k · p − ε · p k · u] , (2.21)

where (u, p) and (ε, k) are the polarizations and four-momenta of the φ meson

and the photon respectively, and also a = M2
φ/M2

K , b = M2
π0η/M

2
K . The invariant

mass of the final π0η system is given by M2
π0η = (q1+q2)

2 = (p−k)2 where q1 and

q2 are the four-momenta of the final pseudoscalar π0 and η mesons respectively.

Also the I(a, b) function is given in Eq. 2.5. For the φa0γ- and a0π
0η-vertices

we use the the effective Lagrangians [37]

Leff.
φa0γ =

e

Mφ

gφa0γ[∂
αφβ∂αAβ − ∂αφβ∂βAα]a0 , (2.22)

and

Leff.
a0πη = ga0πη�π · �a0η , (2.23)

respectively, which can be used to determine the coupling constants gφa0γ and

ga0πη. Since there are no direct experimental results relating to the φa0γ-vertex,

but only an upper limit for the branching ratio of the decay φ → a0γ is mentioned

in “ Review of Particle Properties ” as BR(φ → a0γ) < 5 × 10−3 [26] we

estimate the coupling constant gφa0γ in our calculation utilizing the experimental

branching ratio of the φ → π0ηγ decay. The decay rates for the φ → a0γ and
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a0 → π0η decays, given in detail in Appendix A, which follow from these effective

Lagrangians are given as

Γ(φ → a0γ) =
α

24

(M2
φ − M2

a0
)3

M5
φ

g2
φa0γ , (2.24)

and

Γ(a0 → π0η) =
g2

a0πη

16πMa0

√√√√[1 − (Mπ0 + Mη)2

M2
a0

] [
1 − (Mπ0 − Mη)2

M2
a0

]
, (2.25)

respectively. We obtain the coupling constant ga0πη as ga0πη = (2.34 ± 0.18) by

using the value Γa0 = (0.069 ± 0.011) GeV which was determined by the E852

collaboration at BNL [44]. Since the diagram in Fig. 2.3(c) implies a direct

quark transition and it has a very small contribution as a result of the OZI

suppression, we conclude that the introduction of the a0 amplitude as in Fig.

2.3(c) can not be very realistic. Therefore, we reconsider the approach which we

name model I. It has been shown that the scalar resonances f0 (980) and a0 (980)

can be excited from the chiral loops, with the loop iteration provided by the

Bethe-Salpeter equation using a kernel from the lowest order chiral Lagrangian

[15] and also the experimental data obtained in Novosibirsk give reasonable

arguments in favour of the one-loop mechanism for φ → K+K− → f0γ and

φ → K+K− → a0γ decays [45]. Then, we develop a second approach to study

the radiative φ → π0ηγ decay, called model II, in the light of the works of Marco

et al. and Achasov [15, 45]. In our second approach we assume that this decay

proceeds through the reactions φ → ρ0π0 → π0ηγ, φ → K+K−γ → π0ηγ and

φ → a0γ → π0ηγ where the last reaction proceeds by a two-step mechanism with
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Figure 2.4: Feynman diagrams for the decay φ → π0ηγ in model II

a0 coupling to φ with intermediate KK states. The processes contributing to the

φ → π0ηγ decay amplitude is shown diagrammatically in Fig. 2.4. We proceed

within a phenomenological framework and we do not make any assumption about

the structure of the a0-meson. We note that the φ and a0 mesons both couple

strongly to the K+K− system and therefore there is an amplitude for the decay

φ → γa0 to proceed through the charged kaon-loop independent of the nature

and the dynamical structure of the a0-meson. In our second approach, we need

also the effective Lagrangian which is used to describe the K+K−a0-vertex in
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addition to the other Lagrangians used in model I

Leff.
a0K+K− = ga0K+K−Ma0K

+K−a0 . (2.26)

The decay width of the a0-meson that follows from this effective Lagrangian is

given as

Γ(a0 → K+K−) =
g2

a0K+K−

16π
Ma0

⎡
⎣1 −

(
2Mk

Ma0

)2
⎤
⎦

1/2

. (2.27)

Derivation of Γ(a0 → K+K−) given in Eq. 2.27 is presented in Appendix A. This

expression is used to determine the coupling constant ga0K+K− . In model II, we

calculate the decay rate of the φ → π0ηγ decay using the diagrams shown in Fig.

2.4 and determine the coupling constant ga0K+K− by employing the experimental

branching ratio of this decay. Furthermore, in our calculation of the invariant

amplitudes for both models, we make the replacement q2−M2 → q2−M2+iMΓ

in a0- and ρ0- propagators in order to take into account the finite widths of these

unstable particles. We use the experimental value Γρ = (150.2 ± 0.8) MeV [26]

for ρ0-meson, because using a q2-dependent width did not influence our results

considerably. However, the mass Ma0 of a0-meson is very close to the K+K−

threshold and this induces a strong energy dependence on the width Γa0 of

a0-meson. In order to take that into account, we follow the widely accepted

option that was proposed by Flatté [42] based on a coupled channel (πη,KK)

description of the a0 resonance, and parametrize the a0 width as

Γa0(q
2) = Γa0

π0η(q
2) θ

(√
q2 − (Mπ0 + Mη)

)
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+igKK

√
M2

K − q2/4 θ
(
2MK −

√
q2

)

+gKK

√
q2/4 − M2

K θ
(√

q2 − 2MK

)
, (2.28)

where

Γa0

π0η(q
2) =

g2
a0πη

16π(q2)3/2

√
[q2 − (Mπ0 + Mη)2] [q2 − (Mπ0 − Mη)2] . (2.29)

We use the Flatté parameter gKK as gKK = (0.22 ± 0.04) which was deter-

mined by the E852 collaboration at BNL [44] by a fit to the data in their

experiment in which they determined the parameters of the a0-meson. In all

our calculations we use the experimental value Ma0 = (0.991 ± 0.0025) GeV

[44]. In model I, the invariant amplitude M(Eγ, E1), given in Appendix D.1,

for the decay φ → π0ηγ is expressed as M(Eγ, E1) = Ma + Mb + Mc where

Ma, Mb and Mc are the invariant amplitudes resulting from the diagrams

(a), (b) and (c) in Fig. 2.3 respectively. In model II, the invariant amplitude

M(Eγ, E1) which we present in Appendix D.2, for this decay is expressed as

M(Eγ, E1) = Ma
′ + Mb

′ + Mc
′ where Ma

′, Mb
′ and Mc

′ are the invariant

amplitudes corresponding to the diagrams (a), (b) and (c) in Fig. 2.4, respec-

tively. This way, the interference between different reactions contributing to the

decay φ → π0ηγ is taken into account. In terms of the invariant amplitude

M(Eγ, E1) the differential decay probability of φ → π0ηγ decay for an unpolar-

ized φ-meson at rest is given in Eq. 2.16 where Eγ and E1 are the photon and

pion energies respectively. Then we perform an average over the spin states of

φ-meson and a sum over the polarization states of the photon. The decay width
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Γ(φ → π0ηγ) is obtained by taking the integral and given in Eq. 2.17 where the

minimum photon energy is Eγ,min. = 0 and the maximum photon energy is given

as Eγ,max. =
[
M2

φ − (Mπ0 + Mη)
2
]
/2Mφ. The maximum and minimum values

for the pion energy E1 which are derived in Appendix B, are given by

1

2(2EγMφ − M2
φ)

{−2E2
γMφ − Mφ(M2

φ + M2
π0 − M2

η ) + Eγ(3M
2
φ + M2

π0 − M2
η )

±Eγ [ 4E2
γM

2
φ + M4

φ + (M2
π0 − M2

η )2 − 2M2
φ(M2

π0 + M2
η )

+4EγMφ(−M2
φ + M2

π0 + M2
η ) ]1/2 } . (2.30)

2.3 Scalar σ meson effects in radiative ρ0 meson decays

The effects of the scalar σ-meson are investigated in the radiative ρ0 →

π+π−γ and ρ0 → π0π0γ decays. In our approach we assume that the σ-meson

couples to the ρ0 meson through the pion-loop; in other words, we consider that

the amplitude ρ0 → σγ results from the sequential ρ0 → (π+π−)γ → σγ mech-

anism as suggested by the unitarized chiral perturbation theory in which the

σ-meson is generated dynamically by unitarizing the one-loop pion amplitudes

[15, 16]. In our analysis of the radiative ρ0 → π+π−γ and ρ0 → π0π0γ decays,

we proceed within a phenomenological framework and our calculation is based

on the Feynman diagrams shown in Fig. 2.5 for ρ0 → π+π−γ decay and in

Fig. 2.6 for ρ0 → π0π0γ decay. It is useful to state that, the last diagrams in

Figs. 2.5(d),(e) and in Figs. 2.6(c),(d) and also the diagram in Fig. 2.5(c) are

the direct terms which are required to establish the gauge invariance. For the
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Figure 2.5: Feynman diagrams for the decay ρ0 → π+π−γ

ρππ-vertex we use the effective Lagrangian [46]

Leff.
ρππ = gρππ�ρµ · (∂µ�π × �π) . (2.31)

As it is shown in Appendix A, the decay width of ρ-meson that follows from this

effective Lagrangian is

Γ(ρ → ππ) =
g2

ρππ

48π
Mρ

⎡
⎣1 −

(
2Mπ

Mρ

)2
⎤
⎦

3/2

. (2.32)
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Figure 2.6: Feynman diagrams for the decay ρ0 → π0π0γ

We obtain the coupling constant gρππ from the experimental decay width of

the decay ρ → ππ [26] as gρππ = (6.03 ± 0.02). We describe the σππ-vertex by

the effective Lagrangian given in Eq. 2.9. The decay width of the σ-meson that

results from this effective Lagrangian is given in Eq. 2.10. Note that our effective

Lagrangians Leff.
σππ and Leff.

ρππ result from an extension of the σ model to include

the isovector ρ through a Yang-Mills local gauge theory based on isospin with
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the vector meson mass generated through the Higgs mechanism [47]. Meson-

meson interactions were studied by Oller and Oset [5] using the standart chiral

Lagrangian in the lowest order of chiral perturbation theory which contains the

most general low energy interactions of the pseudoscalar meson octet in this

order. Therefore, we used their results for the four pseudoscalar amplitudes

π+π− → π+π− and π+π− → π0π0 that is needed in the loop diagrams in Fig.

2.5(d) and Fig. 2.6(c). As it is shown by Oller [16] due to gauge invariance the

off-shell parts of the amplitudes, which should be kept inside the loop integration,

do not contribute and as a result of this, the amplitudes Mχ(π+π− → π+π−)

and Mχ(π+π− → π0π0) factorize in the expressions for the loop diagrams. For

the loop integrals appearing in Fig. 2.5(d), in Fig. 2.5(e), in Fig. 2.6(c) and

in Fig. 2.6(d) we use the results of Lucio and Pestiau [36]. The contribution of

the pion-loop amplitude corresponding to the ρ0 → (π+π−)γ → π+π−γ reaction

can be written as

Mπ =
egρππMχ(π+π− → π+π−)

2π2M2
π

I(a, b) [ε · u k · p − ε · p k · u] , (2.33)

where a = M2
ρ/M2

π , b = (p − k)2/M2
π , (u, p) and (ε, k) are the polarizations

and four-momenta of the ρ0 meson and the photon, respectively. Also the four

pseudoscalar π+π−π+π−amplitude is given by

Mχ(π+π− → π+π−) = −2

3

1

f 2
π

(
s − 7

2
M2

π

)
, (2.34)

where s = M2
ππ, fπ = 92.4 MeV . The contribution of the pion-loop amplitude

corresponding to the ρ0 → (π+π−)γ → π0π0γ reaction is given by a similar
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expression as for the amplitude of the radiative ρ0 → (π+π−)γ → π+π−γ decay

and this is given by

Mπ =
egρππMχ(π+π− → π0π0)

2π2M2
π

I(a, b) [ε · u k · p − ε · p k · u] , (2.35)

where a = M2
ρ/M2

π , b = (p − k)2/M2
π , Mχ(π+π− → π0π0) = −(1/f 2

π) (s − M2
π),

s = M2
π0π0 , fπ = 92.4 MeV , (u, p) and (ε, k) are the polarizations and four-

momenta of the ρ0 meson and the photon respectively. The amplitudes resulting

from the diagrams in Fig. 2.5(e) and in Fig. 2.6(d) can be written in a similar

way. The I(a, b) function is given in Eq. 2.5. The ωρπ-vertex, in Fig. 2.6(a)

and in Fig. 2.6(b), is described by the effective Lagrangian [41]

Leff.
ωρπ =

gωρπ

Mω

εµναβ∂µων∂α �ρβ · �π , (2.36)

which also conventionally defines the coupling constant gωρπ. The coupling con-

stant gωρπ was determined by the Novosibirsk SND collaboration [48]. In their

work, they assumed that ω → 3π decay proceeds with the intermediate ρπ state

as ω → (ρ)π → πππ and using experimental value of the ω → 3π decay width

they obtained this coupling constant as gωρπ = (14.3±0.2) GeV −1. We describe

the ωπγ-vertex by the effective Lagrangian [41]

Leff.
ωπγ =

e

Mω

gωπγε
µναβ∂µων∂αAβπ , (2.37)

and the coupling constant gωπγ is obtained as gωπγ = (1.82± 0.05) by using the

experimental partial width [26] of the radiative decay ω → π0γ. In our calcu-

lation of the invariant amplitude, in the σ-meson propagator the replacement
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q2 − M2 → q2 − M2 + iMΓ is made to take into account the finite lifetime of

unstable σ-meson. The energy dependent width for the σ-meson, presented in

Appendix A, is given as

Γσ
ππ(q2) =

2

3
Γσ

ππ(q2 = M2
σ)

M2
σ

q2

√√√√ q2 − 4M2
π+

M2
σ − 4M2

π+

θ
(
q2 − 4M2

π+

)

+
1

3
Γσ

ππ(q2 = M2
σ)

M2
σ

q2

√√√√ q2 − 4M2
π0

M2
σ − 4M2

π0

θ
(
q2 − 4M2

π0

)
. (2.38)

The invariant amplitude M(Eγ, E1) which we present in Appendix E.1, for the

decay ρ0 → π+π−γ is expressed as M(Eγ, E1) = Ma + Mb + Mc + Md + Me

where Ma, Mb, Mc, Md and Me are the invariant amplitudes resulting from

the diagrams (a), (b), (c), (d) and (e) in Fig. 2.5 respectively. Also, the invariant

amplitude M(Eγ, E1), given in detail in Appendix E.2, for the decay ρ0 → π0π0γ

is expressed as M(Eγ, E1) = Ma
′ + Mb

′ + Mc
′ + Md

′ where Ma
′, Mb

′, Mc
′

and Md
′ are the invariant amplitudes corresponding to the diagrams (a), (b),

(c) and (d) in Fig. 2.6, respectively. Then in terms of the invariant amplitude

M(Eγ, E1) the differential decay probability for an unpolarized ρ0-meson at rest

is given as

dΓ

dEγdE1

=
1

(2π)3

1

8Mρ

| M |2 , (2.39)

where Eγ and E1 are the photon and pion energies respectively. An average over

the spin states of ρ0-meson and a sum over the polarization states of the photon

is performed and the decay width is then obtained by integration

Γ =
1

2

∫ Eγ,max.

Eγ,min.

dEγ

∫ E1,max.

E1,min.

dE1
dΓ

dEγdE1

, (2.40)
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where the factor (1
2
) is included for the calculation of the decay rate for ρ0 →

π0π0γ because of the identity of π0 mesons in the final state. The minimum

photon energy for the decay ρ0 → π0π0γ is Eγ,min. = 0 and the maximum photon

energy is given as Eγ,max. = (M2
ρ −4M2

π0)/2Mρ = 338 MeV . On the other hand,

the minimum photon energy for the decay ρ0 → π+π−γ is Eγ,min. = 50 MeV

since the experimental value of the branching ratio is determined for this range

of photon energies [25] and the maximum value of the photon energy is given as

Eγ,max. = (M2
ρ − 4M2

π+)/2Mρ = 334 MeV . Finally the maximum and minimum

values for the pion energy E1 of the ρ0 → π+π−γ and ρ0 → π0π0γ decays,

derived in Appendix B, are given by

1

2(2EγMρ − M2
ρ )

[−2E2
γMρ + 3EγM

2
ρ − M3

ρ

±Eγ

√
(−2EγMρ + M2

ρ )(−2EγMρ + M2
ρ − 4M2

π) ] . (2.41)
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CHAPTER 3

RESULTS AND DISCUSSION

In this chapter we first give the parameters that are needed in our calculation of

the branching ratio and discuss the invariant mass distribution for the reaction

φ → π+π−γ. Later, we indicate that the spectrum for this decay is dominated

by the f0-amplitude. We then present our calculation for the branching ratio of

the φ → π+π−γ decay and compare it with the previous calculations. Then for

the radiative φ → π0ηγ decay we give the details of our calculations about the

coupling constants gφa0γ in model I and ga0K+K− in model II. Afterwards, we

indicate the invariant mass distributions of the radiative decay φ → π0ηγ using

the values of the coupling constants gφa0γ for model I and ga0K+K− for model II.

We then compare our results with the experimental invariant mass spectrum for

the decay φ → π0ηγ. Finally, we present our results for the decay mechanism of

ρ0-meson radiative decays including the contribution coming from the σ-meson

intermediate state as well as VMD- and chiral pion-loop contributions. Our

results for the branching ratios are compared with the experimental values.
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3.1 Radiative φ → π+π−γ decay

In order to determine the coupling constant gf0ππ, we choose for the f0-meson

parameters the values Mf0 = 980 MeV and Γf0 = (70 ± 30) MeV . Therefore,

through the decay rate that results from the effective Lagrangian given in Eq.

2.13 we obtain the coupling constant gf0ππ as gf0ππ = (1.58 ± 0.30). If we

use the form for Γf0

KK̄
(q2), proposed by Flatté [42], the desired enhancement

in the invariant mass spectrum appears in its central part rather than around

the f0 pole. Bramon et al. [21] also encountered a similar problem in their

study of the effects of the a0(980) meson in the φ → π0ηγ decay. Therefore,

in the analysis which we present below for Γf0(q
2) we use the form given in

Eq. 2.14. The invariant mass distribution dB/dMππ = (Mππ/Mφ)dB/dEγ for

the radiative decay φ → π+π−γ is plotted in Fig. 3.1 as a function of the

invariant mass Mππ of π+π− system. In this figure we indicate the contributions

coming from different reactions φ → σγ → π+π−γ, φ → ρ∓π± → π+π−γ and

φ → f0γ → π+π−γ as well as the contribution of the total amplitude which

includes the interference terms as well. It is clearly seen from Fig. 3.1 that

the spectrum for the decay φ → π+π−γ is dominated by the f0-amplitude. On

the other hand the contribution coming from σ-amplitude can only be noticed

in the region Mππ < 0.7 GeV through interference effects. Likewise ρ-meson

contribution can be seen in the region Mππ < 0.8 GeV so we can say that

the contribution of the f0-term is much larger than the contributions of the
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Figure 3.1: The ππ invariant mass spectrum for the decay φ → π+π−γ. The
contributions of different terms are indicated.

σ-term and ρ-term as well as the contribution of the total interference term

having opposite sign. The dominant f0-term characterizes the invariant mass

distribution in the region where Mππ > 0.7 GeV . In our study contributions of

different amplitudes to the branching ratio of the decay φ → π+π−γ are BR(φ →

f0γ → π+π−γ) = 2.54 × 10−4, BR(φ → σγ → π+π−γ) = 0.07 × 10−4, BR(φ →

ρ∓π± → π+π−γ) = 0.26×10−4, BR(φ → (f0γ+π±ρ∓) → π+π−γ) = 2.74×10−4,

BR(φ → (f0γ+σγ) → π+π−γ) = 2.29×10−4 and for the total interference term

BR(interference) = −0.29 × 10−4. We then calculate the total branching ratio

as BR(φ → π+π−γ) = 2.57 × 10−4. Our result is twice the theoretical result
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for φ → π0π0γ decay, obtained by Gökalp and Yılmaz [17], as it should be.

They obtained the following values: BR(φ → f0γ → π0π0γ) = 1.29 × 10−4,

BR(φ → σγ → π0π0γ) = 0.04 × 10−4, BR(φ → ρ0π0 → π0π0γ) = 0.14 × 10−4,

BR(φ → (f0γ+π0ρ0) → π0π0γ) = 1.34×10−4, BR(φ → (f0γ+σγ) → π0π0γ) =

1.16×10−4 and BR(interference) = −0.25×10−4. Moreover, our calculation for

the branching ratio of the radiative decay φ → π+π−γ is nearly twice the value

for the branching ratio of the radiative decay φ → π0π0γ that was obtained by

Achasov and Gubin [22]. Besides, φ → π+π−γ decay was considered by Marco et

al. [15] in the framework of unitarized chiral perturbation theory. The branching

ratio for φ → π+π−γ, they obtained, was BR(φ → π+π−γ) = 1.6 × 10−4 and

for φ → π0π0γ was BR(φ → π0π0γ) = 0.8 × 10−4. As we mentioned above,

they noted that the branching ratio for φ → π0π0γ is one half of φ → π+π−γ.

Therefore our calculation for the branching ratio of φ → π+π−γ decay is in

accordance with the theoretical expectations. A similar relation can be seen

between the decay rates of ω → π+π−γ and ω → π0π0γ [27]. It was noticed

that Γ(ω → π0π0γ) = 1/2Γ(ω → π+π−γ) and the factor 1/2 is a result of charge

conjugation invariance to order α which imposes pion pairs of even angular

momentum. The experimental value of the branching ratio for φ → π+π−γ,

measured by Akhmetshin et al., is BR(φ → π+π−γ) = (0.41±0.12±0.04)×10−4

[11]. So the value of the branching ratio that we obtained is approximately six

times larger than the value of the measured branching ratio. As it was stated by

Marco et al. [15], we should not compare our calculation for the branching ratio
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of the radiative decay φ → π+π−γ directly with experiment since the experiment

is done using the reaction e+e− → φ → π+π−γ, which interferes with the off-

shell ρ dominated amplitude coming from the reaction e+e− → ρ → π+π−γ [49].

Also the result in [11] is based on model dependent assumptions.

3.2 Radiative φ → π0ηγ decay and the coupling constants gφa0γ, ga0K+K−

In order to determine the coupling constants gφa0γ in model I and ga0K+K− in

model II, we use the experimental value of the branching ratio for the radiative

decay φ → π0ηγ [26] in our calculation of this decay rate. As a result of this

we arrive at a quadric equation for the coupling constant gφa0γ in model I and

another quadric equation for the coupling constant ga0K+K− in model II. In

the first quadric equation for the coupling constant gφa0γ the coefficient of the

quadric term results from a0-meson contribution of Fig. 2.3(c) and the coefficient

of the linear term from the interference of the a0-meson with the vector meson

dominance term of Fig. 2.3(a) and the kaon-loop terms of Fig. 2.3(b). In

the other quadric equation for the coupling constant ga0K+K− , the coefficient

of the quadric term results from the a0-meson amplitude contribution shown

in Fig. 2.4(c) and the coefficient of the linear term from the interference of

the a0-meson amplitude with the vector meson dominance and the kaon-loop

amplitudes shown in Figs. 2.4(a) and 2.4(b) respectively. Therefore, our analysis

results in two values for each of the coupling constants stated above. In model

I, we obtain for the coupling constant gφa0γ the values gφa0γ = (0.24 ± 0.06)
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Figure 3.2: The π0η invariant mass spectrum for the decay φ → π0ηγ for gφa0γ =
0.24 in model I. The contributions of different terms are indicated.

and gφa0γ = (−1.3 ± 0.3) [50]. We then study the invariant mass distribution

dB/dMπ0η = (Mπ0η/Mφ)dB/dEγ for the reaction φ → π0ηγ in model I. In Fig.

3.2 we plot the invariant mass spectrum for the radiative decay φ → π0ηγ in our

phenomenological approach choosing the coupling constant gφa0γ = (0.24±0.06).

In this figure we indicate the contributions coming from different reactions φ →

ρ0π0 → π0ηγ, φ → K+K−γ → π0ηγ and φ → a0γ → π0ηγ as well as the

contribution of the total amplitude which includes the interference terms as

well. Our results are in accordance with the experimental values [13] only in

lower part of the invariant mass. It is expected that, the spectrum for the decay
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φ → π0ηγ is dominated by the a0-amplitude but the expected enhancement due

to the contribution of the a0 resonance in the higher part of the invariant mass

is not produced. Since the distribution dB/dMπ0η we obtain for the other root,

that is for gφa0γ = (−1.3± 0.3), is worse than the distribution shown in Fig. 3.2

we do not show this in any figure. So model I does not produce a satisfactory

description of the experimental invariant Mπ0η mass spectrum for the decay

φ → π0ηγ and as a result of this the value of the coupling constant gφa0γ =

(0.24 ± 0.06) can not be considered seriously [50]. Indeed, Gökalp et al. [51],

used the same model in their study of scalar meson effects in radiative φ → π0ηγ

decay, noted that this approach does not give a reasonable a0 contribution since

the expected enhancement in the higher part of the invariant mass spectrum

due to the contribution of a0 resonance is not produced. On the other hand the

value of the coupling constant gφa0γ has been calculated by Gökalp and Yılmaz

[52] in their study of the φa0γ and φσγ vertices in the light cone QCD. Utilizing

ωφ-mixing, they estimated the coupling constant gφa0γ as gφa0γ = (0.11 ± 0.03).

Moreover, the ρ0-meson photoproduction cross-section on proton targets near

threshold is given mainly by σ-exchange [41]. Friman and Soyeur calculated

ρσγ-vertex assuming vector meson dominance of the electromagnetic current and

obtained the value of the coupling constant gρσγ as gρσγ ≈ 2.71. Later, Titov et

al. [37] in their study of the structure of the φ-meson photoproduction amplitude

based on one-meson exchange and Pomeron exchange mechanism used this value

of the coupling constant gρσγ to calculate the coupling constant gφa0γ. Their
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Figure 3.3: The π0η invariant mass spectrum for the decay φ → π0ηγ for
ga0K+K− = −1.5 in model II. The contributions of different terms are indicated.

result for this coupling constant was |gφa0γ| = 0.16. Our results for the coupling

constant gφa0γ are different than the values used in literature. Consequently,

the contribution of the a0-meson to the decay mechanism of φ → π0ηγ decay

should not be considered as resulting from a0-pole intermediate state [50, 51].

Therefore, another model, called model II, is developed to obtain a reasonable

a0 contribution to the decay mechanism of this decay. The same procedure is

followed in model II and utilizing the experimental value of the φ → π0ηγ decay

rate, the values for the coupling constant ga0K+K− are obtained as ga0K+K− =

(−1.5±0.3) and ga0K+K− = (3.0±0.4) [50]. We plot the distribution dB/dMπ0η
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Figure 3.4: The π0η invariant mass spectrum for the decay φ → π0ηγ for
ga0K+K− = 3.0 in model II. The contributions of different terms are indicated.

for the radiative decay φ → π0ηγ choosing coupling constants ga0K+K− = −1.5 in

Fig. 3.3 and ga0K+K− = 3.0 in Fig. 3.4 as a function of the invariant mass Mπ0η

of the π0η system. In these figures we indicate the contributions coming from

different reactions shown diagrammatically in Fig. 2.4 as well as the contribution

of the total amplitude which includes the interference term as well. On the

same figures we also show the experimental data points taken from Ref. [13].

As it can be seen in Fig. 3.3 the shape of the invariant mass distribution is

reproduced well. As expected the enhancement caused by the contribution of

the a0 resonance is well produced on this figure. On the other hand, π0η invariant
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mass spectrum for ga0K+K− = 3.0 is not in good agreement with the experimental

result. Therefore from the analysis of the spectrum obtained with the coupling

constants ga0K+K− = −1.5 and ga0K+K− = 3.0 in Figs. 3.3 and 3.4 respectively,

we may decide in favour of the value ga0K+K− = −1.5. Furthermore, we note

that model II provides a better way, as compared to model I, in order to include

the a0-meson into the mechanism of the φ → π0ηγ decay and thus our result

supports the approach in which the a0-meson state arises as a dynamical state.

Consequently, a0-meson should be considered to couple to the φ meson through

a kaon-loop. Moreover it is possible to estimate the decay rate Γ(φ → a0γ)

of the decay φ → a0(980)γ. Using the coupling constant ga0K+K− = −1.5 we

obtain the decay rate Γ(φ → a0γ), the expression of which is given in detail

in Appendix A, as Γ(φ → a0γ) = (0.51 ± 0.09) keV , so the branching ratio

is BR(φ → a0γ) = (1.1 ± 0.2) × 10−4. If we compare our result with the

experimental value BR(φ → a0γ) = (0.88 ± 0.17) × 10−4 [13], we observe that

our result does not contradict the experimental one.

3.3 Radiative ρ0 → π+π−γ and ρ0 → π0π0γ decays

The photon spectra for the branching ratio of the decay ρ0 → π+π−γ is

plotted in Fig. 3.5 as a function of photon energy Eγ. In this figure, the con-

tributions from the pion-bremsstrahlung, pion-loop and σ-meson intermediate

state amplitudes as well as the contribution of the interference term are indi-

cated as a function of the photon energy. We take the minimum photon energy
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Figure 3.5: The photon spectra for the branching ratio of ρ0 → π+π−γ decay.
The contributions of different terms are indicated. The experimental data taken
from Ref. [25] are normalized to our results.

as Eγ,min = 50 MeV since the experimental value of the branching ratio is de-

termined for this range of photon energies [25]. We show also the experimental

data points [25] on this figure. As shown in Fig. 3.5 the shape of the photon

energy distribution is in good agreement with the experimental spectrum. In

our calculation we observe that the contribution of the pion-bremsstrahlung am-

plitude to the branching ratio is much larger than the contributions of the rest.

It is clearly seen that contributions of the pion-loop and σ-meson intermediate

states can be noticed only in the region of high photon energies. It is useful to

state that, if a σ-meson pole model is used as in Ref. [29], the contribution of
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the sigma term becomes larger at high photon energies and this enhancement,

dominating the contribution of the bremsstrahlung amplitude, conflicts with the

experimental spectrum. The contributions of bremsstrahlung amplitude, pion-

loop amplitude and σ-meson intermediate state amplitude to the branching ratio

of the decay are BR(ρ0 → π+π−γ)γ = (1.14±0.01)×10−2, BR(ρ0 → π+π−γ)π =

(0.45±0.08)×10−5 and BR(ρ0 → π+π−γ)σ = (0.83±0.16)×10−4, respectively.

If the interference term is considered between the pion-loop and σ-meson ampli-

tudes, then the contribution coming from the structural radiation which includes

the pion-loop and σ-meson intermediate state amplitudes as well as their inter-

ference is obtained as BR(ρ0 → π+π−γ) = (0.83±0.14)×10−4. As a consequence

this result agrees well with the experimental limit BR(ρ0 → π+π−γ) < 5× 10−3

[25] for the structural radiation. Also our result for the contribution of the

σ-meson intermediate state BR(ρ0 → π+π−γ)σ = (0.83 ± 0.16) × 10−4 is in ac-

cordance with the experimental limit BR(ρ0 → ε(700)γ → π+π−γ) < 4 × 10−4

where the transition proceeds through the intermediate scalar resonance [25].

For the total branching ratio, including the interference terms, we obtain the re-

sult BR(ρ0 → π+π−γ) = (1.22± 0.02)× 10−2 for Eγ > 50 MeV [53]. Therefore,

our result for the decay ρ0 → π+π−γ is in good agreement with the experimental

number BR(ρ0 → π+π−γ) = (0.99 ± 0.16) × 10−2 [25].

The photon spectra for the branching ratio of the decay ρ0 → π0π0γ is

shown in Fig. 3.6. In this figure the contributions of VMD amplitude, the

pion-loop amplitude and σ-meson intermediate state amplitude as well as the

46



�����

�����	����
�
��
��
���� ����
���

������ �

��
��
�
�

��
��

�
�
��
��
�

�
�

���������������������

��

��

�

�

��

���

Figure 3.6: The photon spectra for the branching ratio of ρ0 → π0π0γ decay.
The contributions of different terms are indicated.

contributions of the interference terms are indicated. As it can be seen in Fig.

3.6 σ-meson amplitude contribution to the overall branching ratio for this de-

cay is quite significant. This figure clearly shows the importance of the σ-

meson amplitude term. We see that the dominant σ- term characterizes the

photon spectrum which peaks at high photon energies and the contributions

of vector meson intermediate state and pion-loop amplitudes are only notice-

able in the region of high photon energies. Also it is clearly seen from this

figure that total interference term is destructive for this decay. For the contri-

bution of different amplitudes to the branching ratio the following results are
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obtained; BR(ρ0 → π0π0γ)V MD = (1.03 ± 0.02) × 10−5 from the VMD ampli-

tude, BR(ρ0 → π0π0γ)π = (1.07 ± 0.02) × 10−5 from the pion-loop amplitude

and BR(ρ0 → π0π0γ)σ = (4.96 ± 0.18) × 10−5 from the σ-meson intermedi-

ate state amplitude [53]. In our calculation we observe that the contribution

of the σ-meson intermediate state amplitude is much larger than the contri-

butions of VMD and pion-loop amplitudes. We also notice that the values for

BR(ρ0 → π0π0γ)V MD and for BR(ρ0 → π0π0γ)π are in agreement well with pre-

vious calculations [19, 20]. Further the value, we obtain for the total branching

ratio BR(ρ0 → π0π0γ) = (4.95±0.82)×10−5, agrees well with the experimental

result BR(ρ0 → π0π0γ) = (4.1+1.0
−0.9 ± 0.3) × 10−5 [23] and the theoretical result

BR(ρ0 → π0π0γ) = 4.2 × 10−5 [31]. Indeed, the total branching ratios that we

obtained for ρ0 → π+π−γ and ρ0 → π0π0γ decays are quite compatible with

the results obtained by Bramon and Escribano [32] in their study of ρ0 → ππγ

decays including σ(500) meson effects. However, in the limit of high Mσ their

results for the branching ratios of the radiative ρ0-meson decays are in conflict

with our results as well as with the conclusions of Marco et al. [15] and Palomar

et al. [31]. In our calculations of the branching ratios, the coupling constants

are determined from the relevant experimental quantities. Our results for the

branching ratios are in accordance with the experimental values. Therefore, we

propose that the contribution coming from σ-meson intermediate state ampli-

tude should be included in the analysis of radiative ρ0-meson decays and also

σ-meson should be considered to couple to the ρ0-meson through a pion-loop. In
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addition to the radiative ρ0-meson decays, the effect of σ-meson in the radiative

ω → π+π−γ decay has been studied by Gökalp et al. [54] and it is noted that

the σ-meson intermediate state amplitude makes a substantial contribution to

the branching ratio of this decay.
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CHAPTER 4

CONCLUSIONS

In our work we obtain the following conclusions:

• It is shown that for the radiative φ → π+π−γ decay, the dominant f0-

meson amplitude term characterizes the invariant mass distribution in the region

where Mππ > 0.7 GeV and the contributions coming from σ-meson and ρ-meson

amplitudes are much smaller than the f0-meson contribution.

• It is observed that there is a discrepancy between the experimental and the

theoretical results for the branching ratio of the radiative φ → π+π−γ decay.

However, the theoretical result for the branching ratio of this decay should not

be compared directly with the experimental one because of the fact that this

experiment is done using the reaction e+e− → φ → π+π−γ, which interferes

with the off-shell ρ dominated amplitude coming from the reaction e+e− → ρ →

π+π−γ.

• Two different values, one being positive and the other one negative, have

been obtained for the coupling constant gφa0γ for the decay φ → π0ηγ in model

I.

• It is shown that for the positive value of the coupling constant gφa0γ, the
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π0η invariant mass spectrum is dominated by the a0-meson amplitude but the

expected enhancement due to the a0-meson contribution in the higher part of the

invariant mass is not produced. Also the distribution dB/dMπ0η for the negative

value of the coupling constant gφa0γ is worse than the one for the positive value.

This can be interpreted as that the obtained values for the coupling constant

gφa0γ should not be considered too seriously and the contribution of the a0-

meson to the decay mechanism of the φ → π0ηγ decay can not be considered as

resulting from a0-pole intermediate state.

• For the coupling constant ga0K+K− in model II where a0-meson state arises

as a dynamical state, two different values having positive and negative signs

have been obtained. It is demonstrated that for the negative value of the cou-

pling constant ga0K+K− , our prediction for the invariant mass spectrum is in

accordance with the experimental result and both the overall shape and the ex-

pected enhancement due to the contribution of the a0 resonance has been well

produced.

• From the analysis of the invariant mass spectrum, plotted for both values

of the coupling constant ga0K+K− , the negative value of the coupling constant

ga0K+K− is suggested.

• It is concluded that a0-meson should be considered to couple to the φ meson

through the charged kaon-loops in radiative φ → π0ηγ decay.

• It is observed that for the radiative ρ0 → π+π−γ decay the main con-

tribution comes from pion-bremsstrahlung term and the contributions of the
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pion-loop and the σ-meson intermediate state amplitudes can only be noticed

in the region of high photon energies. This agrees well with the experimental

result.

• It is demonstrated that for the radiative ρ0 → π0π0γ decay the dominant

σ term characterizes the photon spectrum which peaks at high photon ener-

gies. The contributions coming from vector meson intermediate (VMD) state

and pion-loop amplitudes are much smaller than the one coming from σ-meson

amplitude.

• It is shown that the values for the branching ratios of the radiative ρ0 →

π+π−γ and ρ0 → π0π0γ decays are in good agreement with the experimental

values.

• It is concluded that the σ-meson should be considered to couple to the ρ0-

meson through the charged pion-loops in radiative ρ0 → π+π−γ and ρ0 → π0π0γ

decays.

• In the future further experiments such as the measurements of the invariant

mass distributions will enable us to understand the mechanism of the ρ0 →

π0π0γ decay and to obtain insight into the nature and the properties of the

σ-meson, and the role it plays in the dynamics of low energy meson physics.

• The radiative decays of light vector mesons into a photon and two pseu-

doscalar mesons, V → PP ′γ, are becoming an area of active experimental re-

search in laboratories such as Novosibirsk and Frascati to investigate the nature

and extract the properties of light scalar meson resonances. These decays will
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provide valuable information on the properties of the f0(980), a0(980) and σ(500)

scalar mesons.
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[53] A. Gökalp, S. Solmaz, and O. Yılmaz, Phys. Rev. D67, 073007 (2003).
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APPENDIX A

TWO BODY DECAY RATES

If an initial state, defined by the state vector | i >, undergoes to a final state

| f > then the transition probability is given by |Sfi|2 =|< f |S | i > |2. The

corresponding probability amplitude is

< f |S | i >= Sfi . (A.1)

The S-matrix element is defined as

< f |S | i >= δfi+(2π)4δ(4)
(∑

p′f −
∑

pi

)
Mfi

∏
i

(
1

2V Ei

)1/2∏
f

(
1

2V E ′
f

)1/2

,

(A.2)

where Mfi is the invariant matrix element pi = (Ei, �pi) and p′f = (E ′
f ,

�p′f )

are the four momenta of the initial and final particles respectively. In this case

transition probability per unit time becomes

Γ = V (2π)4δ(4)
(∑

p′f −
∑

pi

)
|Mfi|2

∏
i

(
1

2V Ei

)∏
f

(
1

2V E ′
f

)
. (A.3)

This is the transition rate to one definite final state. To obtain the transition

rate to a group of final states with momenta in the intervals (�p′f , �p′f + d �p′f ),

f = 1, ....., N we must multiply Γ by the number of these states which is

∏
f

(
V d3p′f
(2π)3

)
, (A.4)
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therefore, the differential decay rate becomes

dΓ = V (2π)4δ(4)
(∑

p′f −
∑

pi

)
|Mfi|2

∏
i

(
1

2V Ei

)∏
f

(
d3p′f

(2π)32E ′
f

)
. (A.5)

For the decay of particle of mass M and energy E into any number of particles

1,2,...,N the differential decay rate is

dΓ = (2π)4δ(4)
(∑

pf −
∑

pi

)
|Mfi|2 1

2E

∏
f

(
d3pf

(2π)32Ef

)
. (A.6)

If we consider the two body decay in which the decay produces two particles,

then in the rest frame of decaying particle �p1 = −�p2 ≡ �p, E1 + E2 = M , the

differential decay rate is given by

dΓ =
1

(2π)2
|Mfi|2 1

2M

1

4E1E2

δ(3)(�p1 + �p2)δ(E1 + E2 − M)d3p1d
3p2 . (A.7)

Integration over d3p2, eliminates the first delta function and the differential d3p1

is written as

d3p = p2d|�p|dΩ = |�p|dΩ
E1E2d(E1 + E2)

E1 + E2

, (A.8)

since E2
1 − M2

1 = E2
2 − M2

2 = �p2. The second delta function is eliminated by

integration over (E1 + E2), and this gives

dΓ =
1

32π2M2
|Mfi|2|�p|dΩ . (A.9)

Therefore, the decay rate is obtained as

Γ =
1

8πM2
|Mfi|2|�p| . (A.10)

In the rest frame of decaying particle, |�p| is given as

|�p| =
1

2M

√
[M2 − (M1 + M2)2][M2 − (M1 − M2)2] . (A.11)
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For the decay M → M1 + M2 where M1 = M2

|�p| =
1

2
M

√
1 −

(
2M1

M

)2

, (A.12)

and for the decay M → M1 + γ

|�p| =
1

2
M

[
1 −

(
M1

M

)2
]

. (A.13)

For the decay φ → K+K−, the invariant matrix element that follows from the

effective Lagrangian

Leff.
φK+K− = −igφK+K−φµ(K+∂µK

− − K−∂µK
+) , (A.14)

is given by M(φ → K+K−) = −igφK+K−(2q1 − p)µu
µ, where q1 is the four-

momentum of the kaon having plus sign and p(u) is the four-momentum (polar-

ization) of the decaying φ-meson. Therefore,

Γ(φ → K+K−) =
g2

φK+K−

48π
Mφ

⎡
⎣1 −

(
2MK

Mφ

)2
⎤
⎦

3/2

. (A.15)

For the decay φ → Sγ (where S = f0 or a0), in which the φ and the S each

couple strongly to KK̄, with the couplings gφK+K− and gSK+K− for φK+K−

and SK+K−, the invariant amplitude is obtained as

M(φ → Sγ) = uµεν(kµpν − gµνk · p)
egφK+K−(gSK+K−MS)

2π2M2
K

I(a, b) , (A.16)

where (u, p) and (ε, k) are the polarizations and four-momenta of the decaying

vector meson and the photon respectively and a = M2
φ/M2

K , b = M2
S/M2

K . Then,

Γ(φ → Sγ) =
α

6(2π)4

M2
φ − M2

S

M3
φ

g2
φK+K−(gSK+K−MS)2|(a − b)I(a, b)|2 .(A.17)
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For the decay S → ϕϕ, the invariant matrix element that follows from the

effective Lagrangian

Leff.
Sϕϕ =

1

2
gSϕϕMS �ϕ · �ϕS , (A.18)

is given by M(S → ϕϕ) = igSϕϕMS, where S and ϕ denote scalar σ or f0 meson

and pseudoscalar π meson respectively. Therefore

Γ(S → ϕϕ) =
g2

Sϕϕ

4π

3MS

8

[
1 −

(
2Mϕ

MS

)2
]1/2

. (A.19)

The radiative decay V → ϕγ is described by the effective Lagrangian

Leff.
V ϕγ =

e

MV

gV ϕγε
µναβ∂µVν∂αAβϕ , (A.20)

where V denotes the decaying vector meson and ϕ denotes the pseudoscalar

meson. The invariant amplitude is obtained as

M(V → ϕγ) = i
e

MV

gV ϕγε
µναβpµuνkαεβ , (A.21)

where (u, p) and (ε, k) are the polarizations and four-momenta of the decaying

vector meson and the photon respectively. Then, the decay rate is

Γ(V → ϕγ) =
α

24

(M2
V − M2

ϕ)3

M5
V

g2
V ϕγ . (A.22)

For the decay φ → a0γ, the invariant matrix element that is obtained by using

the effective Lagrangian

Leff.
φa0γ =

e

Mφ

gφa0γ[∂
αφβ∂αAβ − ∂αφβ∂βAα]a0 , (A.23)
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is given by M(φ → a0γ) = i e
Mφ

gφa0γp
αuβ(kαεβ − kβεα), where (u, p) and (ε, k)

are the polarizations and four-momenta of the φ meson and the photon respec-

tively. Therefore, the decay rate for the φ → a0γ decay is

Γ(φ → a0γ) =
α

24

(M2
φ − M2

a0
)3

M5
φ

g2
φa0γ . (A.24)

The decay rate for a0 → π0η decay resulting from the effective Lagrangian

Leff.
a0πη = ga0πη�π · �a0η , (A.25)

is

Γ(a0 → π0η) =
g2

a0πη

16πMa0

√√√√[1 − (Mπ0 + Mη)2

M2
a0

] [
1 − (Mπ0 − Mη)2

M2
a0

]
. (A.26)

For the decay a0 → K+K−, described by the effective Lagrangian,

Leff.
a0K+K− = ga0K+K−Ma0K

+K−a0 , (A.27)

the invariant matrix element is M(a0 → K+K−) = iga0K+K−Ma0 , therefore the

decay rate is given by

Γ(a0 → K+K−) =
g2

a0K+K−

16π
Ma0

⎡
⎣1 −

(
2MK

Ma0

)2
⎤
⎦

1/2

. (A.28)

For the decay ρ0 → ππ which is described by the effective Lagrangian

Leff.
ρππ = gρππ�ρµ · (∂µ�π × �π) , (A.29)

the invariant matrix element is M(ρ → ππ) = igρππ(2q1 −p)µu
µ, where q1 is the

four momentum of one of the pions and p(u) is the four momentum (polarization)

of the decaying ρ-meson. Then, the decay rate is obtained as

Γ(ρ → ππ) =
g2

ρππ

48π
Mρ

⎡
⎣1 −

(
2Mπ

Mρ

)2
⎤
⎦

3/2

. (A.30)
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If the particle is off-shell, then two body decay rate becomes

Γ =
1

8πq2
|Mfi|2|�p| , (A.31)

where q2 is the four-momentum square of the off-shell particle. In the rest frame

of decaying off-shell particle �p1 = −�p2 ≡ �p, E1 + E2 =
√

q2, and |�p| is given as

|�p| =
1

2
√

q2

{[
q2 − (M1 + M2)

2
] [

q2 − (M1 − M2)
2
]}1/2

. (A.32)

For the decay
√

q2 → M1 + M2 where M1 = M2

|�p| =
1

2

√
q2

⎡
⎣1 −

(
2M1√

q2

)2
⎤
⎦

1/2

. (A.33)

So, for the σ → ππ decay where σ meson is an off-shell particle the matrix

element is igσππMσ that follows from the effective Lagrangian

Leff.
σππ =

1

2
gσππMσ�π · �πσ . (A.34)

The energy dependent Γσ
ππ(q2) decay width is given by

Γσ
ππ(q2) = Γσ

π+π−(q2) + Γσ
π0π0(q2)

= Γσ
π+π−(q2 = M2

σ)
M2

σ

q2

√√√√ q2 − 4M2
π+

M2
σ − 4M2

π+

+Γσ
π0π0(q2 = M2

σ)
M2

σ

q2

√√√√ q2 − 4M2
π0

M2
σ − 4M2

π0

, (A.35)

or

Γσ
ππ(q2) =

2

3
Γσ

ππ(q2 = M2
σ)

M2
σ

q2

√√√√ q2 − 4M2
π+

M2
σ − 4M2

π+

θ
(
q2 − 4M2

π+

)

+
1

3
Γσ

ππ(q2 = M2
σ)

M2
σ

q2

√√√√ q2 − 4M2
π0

M2
σ − 4M2

π0

θ
(
q2 − 4M2

π0

)
. (A.36)
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For ρ → ππ decay where ρ meson is an off-shell particle, the absolute square of

the matrix element is

|M(ρ → ππ)|2 =
1

3
g2

ρππ(q2 − 4M2
π) , (A.37)

this results from the effective Lagrangian Leff.
ρππ = gρππ�ρµ · (∂µ�π × �π) so the

energy dependent Γρ
ππ(q2) decay width is

Γρ
ππ(q2) =

1

48πq2
g2

ρππ(q2 − 4M2
π)3/2

= Γρ
ππ(q2 = M2

ρ )
M2

ρ

q2

(
q2 − 4M2

π

M2
ρ − 4M2

π

)3/2

. (A.38)

For a0 → πη decay where a0 meson is an off-shell particle the absolute square

of the matrix element is

|M(a0 → πη)|2 = g2
a0πη , (A.39)

which follows from the effective Lagrangian Leff.
a0πη = ga0πη�π · �a0η , then the

energy dependent Γa0
πη(q

2) decay width is given by

Γa0
πη(q

2) =
g2

a0πη

16π(q2)3/2

√
[q2 − (Mπ0 + Mη)2] [q2 − (Mπ0 − Mη)2] .(A.40)

For f0 → ππ decay where f0 meson is an off-shell particle the matrix element

that follows from the effective Lagrangian

Leff.
f0ππ =

1

2
gf0ππMf0�π · �πf0 , (A.41)

is igf0ππMf0 and the energy dependent Γf0
ππ(q2) decay width is given by

Γf0
ππ(q2) = Γf0

π+π−(q2) +
1

2
Γf0

π0π0(q
2)
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=
1

16πq2
g2

f0ππM2
f0

[q2 − 4M2
π ]1/2

(
1 +

1

2

)

=
3

32πq2
g2

f0ππM2
f0

[q2 − 4M2
π ]1/2

= Γf0
ππ(q2 = M2

f0
)
M2

f0

q2

[
q2 − 4M2

π

M2
f0
− 4M2

π

]1/2

. (A.42)

A similar expression is used for Γf0

KK
(q2)

Γf0

KK
(q2) = Γf0

KK
(q2 = M2

f0
)
M2

f0

q2

[
q2 − 4M2

K

M2
f0
− 4M2

K

]1/2

. (A.43)

Utilizing the experimental values of different two body decay rates, the var-

ious coupling constants are determined. The calculated coupling constants are

given in Table 1.

Table A.1: The experimental decay widths of various two body decays and the
calculated coupling constants.

Meson Mass (MeV) Γ (MeV) Decay Mode BR Coupling Constant
φ 1020 4.46 K+K− 4.9 × 10−1 gφK+K−= 4.59

f0γ 3.4 × 10−4 gf0K+K−= 4.13
σ 478 324 ππ dominant gσππ=5.25
f0 980 70 ππ dominant gf0ππ= 1.58
ρ0 770 150.2 π0γ 6.8 × 10−4 gρπγ= 0.69

ηγ 2.4 × 10−4 gρηγ= 1.14
ππ ∼ 100 % gρππ= 6.03

a0 980 69 ηπ0 dominant ga0πη= 2.34
ω 782 8.44 π0γ 8.5 × 10−2 gωπγ= 1.82
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APPENDIX B

THREE BODY DECAY AND THE BOUNDARY OF DALITZ

PLOT

The differential decay rate for the decay of a particle P with four momentum

p = (Ep, �p) into N particles with four-momenta p′f = (E ′
f , �p′f ) is given by

dΓ = (2π)4δ(4)
(∑

p′f − p
) 1

2Ep

∏
f

d3�p′f
(2π)3(2E ′

f )
|Mfi|2 . (B.1)

The differential decay rate for the three particle decay M(p) → M1(q1)+M2(q2)+

γ(k) becomes

dΓ = (2π)4δ(4)(q1 + q2 + k − p)
1

2Ep

d3q1

(2π)3(2E1)

d3q2

(2π)3(2E2)

d3k

(2π)3(2Eγ)
|Mfi|2 ,

(B.2)

where |Mfi|2 is the average over spin states of the absolute square of the decay

invariant matrix element. In the rest frame of decaying particle the δ(4) function

can be written as δ(4)(q1 + q2 + k − p) = δ(E1 + E2 + Eγ − M)δ(3)(�q1 + �q2 + �k)

and to eliminate the δ(4) function first integrate over the (three-) momentum of

the final-state particle with momentum q2. Using

d3q1

2E1

=
|�q1|2dq1dΩ1

2E1

=
1

2
|�q1|dE1dΩ1 , (B.3)
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and

d3k

2Eγ

=
|�k|2dkdΩγ

2Eγ

=
1

2
EγdEγdΩγ , (B.4)

we obtain

dΓ

dEγdE1

=
|�q1|Eγ|Mfi|2
16M(2π)5

∫
dΩγdΩ1

δ(Eγ + E1 − M +
√

(�k + �q1)2 + M2
2 )√

(�k + �q1)2 + M2
2

.

(B.5)

If the integral I is defined by

I = |�q1|Eγ

∫
dΩγdΩ1

δ(Eγ + E1 − M +
√

(�k + �q1)2 + M2
2 )√

(�k + �q1)2 + M2
2

, (B.6)

and the angular integrals are performed then we obtain

I = 8π2
∫ 1

−1
d(cos θ)|�q1|Eγ

δ(Eγ + E1 − M +
√

E2
γ + E2

1 − M2
1 + 2Eγ|�q1| cos θ + M2

2 )√
E2

γ + E2
1 − M2

1 + 2Eγ|�q1| cos θ + M2
2

,

(B.7)

where θ is defined by �k · �q1 = |�k||�q1| cos θ. Change of variable

ξ =
√

E2
γ + E2

1 − M2
1 + 2Eγ|�q1| cos θ + M2

2 , (B.8)

gives

I = 8π2
∫

dξδ(Eγ + E1 − M + ξ) = 8π2 , (B.9)

with the condition Eγ +E1−M + ξ = 0. Therefore the double differential decay

rate is obtained as

dΓ

dEγdE1

=
1

(2π)3

1

8M
|Mfi|2 . (B.10)

The limits of integral are defined by the condition

M − Eγ − E1 =
√

E2
γ + E2

1 − M2
1 + 2Eγ|�q1| cos θ + M2

2 , (B.11)
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or

−1 ≤ (M − Eγ − E1)
2 − (E2

γ + E2
1 − M2

1 + M2
2 )

2Eγ

√
E2

1 − M2
1

≤ 1 . (B.12)

67



APPENDIX C

INVARIANT AMPLITUDE OF THE RADIATIVE φ → π+π−γ

DECAY

For the radiative decay φ(p) → π+(q1)π
−(q2)γ(k), the invariant amplitude

M(Eγ, E1) is expressed as

M = Ma + Mb + Mc + Md , (C.1)

where Ma, Mb, Mc and Md are the invariant amplitudes resulting from the

diagrams (a), (b), (c) and (d) in Fig. 2.2 respectively,

Ma = −
(

e

Mφ

gφσγ

)
(gσππMσ) pαuβ(kαεβ − kβεα)

×
{
i[(p − k)2 − M2

σ ] + ΓσMσ

}
∆0

σ(p − k) , (C.2)

Mb = −
(

gφρπ

Mφ

)(
e

Mρ

gρπγ

)
εµναβpµuν(p − q1)αεµ′ν′α′β′

(p − q1)µ′kα′εβ′

×
{
i[(p − q1)

2 − M2
ρ ] + ΓρMρ

}
Rρ

βν′(p − q1) , (C.3)

Mc = −
(

gφρπ

Mφ

)(
e

Mρ

gρπγ

)
εµναβpµuν(p − q2)αεµ′ν′α′β′

(p − q2)µ′kα′εβ′

×
{
i[(p − q2)

2 − M2
ρ ] + ΓρMρ

}
Rρ

βν′(p − q2) , (C.4)
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Md = − (egφKK) (gf0ππMf0) (gf0KKMf0)

×
{
[(p − k)2 − M2

f0
] − iΓf0Mf0

}
∆0

f0
(p − k)

× 2uµεν
∫ d4q

(2π)4

{ −4qµqν + gµν(q
2 − M2

K)

(q2 − M2
K)[(q − k)2 − M2

K ][(p − q)2 − M2
K ]

}

=
(egφKK)(gf0ππMf0)(gf0KKMf0)

2π2M2
K

{
[(p − k)2 − M2

f0
] − iΓf0Mf0

}

× ∆0
f0

(p − k) I(a, b) [(ε · u)(k · p) − (ε · p)(k · u)] , (C.5)

∆0
σ(q) =

1

(q2 − M2
σ)2 + (ΓσMσ)2

, (C.6)

∆0
f0

(q) =
1

(q2 − M2
f0

)2 + (Γf0Mf0)
2

, (C.7)

Rρ
µν(q) =

1

(q2 − M2
ρ )2 + (ΓρMρ)2

[
−gµν +

qµqν

M2
ρ

]

= R0
ρ(q)

[
−gµν +

qµqν

M2
ρ

]
. (C.8)

The complex amplitudes are parametrized with Mi = M ′′
i +iM ′

i and the absolute

value of the square of the invariant amplitude is obtained as

| M |2 = M ′
1
2
+ M ′

2
2
+ M ′

3
2
+ M ′

4
2
+ M ′′

1
2
+ M ′′

2
2
+ M ′′

3
2
+ M ′′

4
2

+ 2(M ′
12

2
+ M ′

13
2
+ M ′

14
2
+ M ′

23
2
+ M ′

24
2
+ M ′

34
2

+ M ′′
12

2
+ M ′′

13
2
+ M ′′

14
2
+ M ′′

23
2
+ M ′′

24
2
+ M ′′

34
2
) , (C.9)

where

69



M ′
1
2

=

(
e

Mφ

gφσγ

)2

(gσππMσ)2
{
[(p − k)2 − M2

σ ]∆0
σ(p − k)

}2

× 2

3
(k · p)2 , (C.10)

M ′′
1

2
=

(
e

Mφ

gφσγ

)2

(gσππMσ)2
{
(ΓσMσ)∆0

σ(p − k)
}2

× 2

3
(k · p)2 , (C.11)

M ′
2
2

=

(
e

Mρ

gρπγ

)2 (
gφρπ

Mφ

)2 {
[(p − q1)

2 − M2
ρ ]R0

ρ(p − q1)
}2

× 1

3
{−2k · p k · q1[p

2(p · q1 − 2q2
1) + p · q1 q2

1]

+ (k · p)2[2(p · q1)
2 − p2q2

1 − 2p · q1 q2
1 + q4

1]

+ (k · q1)
2[p4 + 2(p · q1)

2 − p2(2p · q1 + q2
1)]} , (C.12)

M ′′
2

2
=

(
e

Mρ

gρπγ

)2 (
gφρπ

Mφ

)2 {
(ΓρMρ)R

0
ρ(p − q1)

}2

× 1

3
{−2k · p k · q1[p

2(p · q1 − 2q2
1) + p · q1 q2

1]

+ (k · p)2[2(p · q1)
2 − p2q2

1 − 2p · q1 q2
1 + q4

1]

+ (k · q1)
2[p4 + 2(p · q1)

2 − p2(2p · q1 + q2
1)]} , (C.13)

M ′
3
2

=

(
e

Mρ

gρπγ

)2 (
gφρπ

Mφ

)2 {
[(p − q2)

2 − M2
ρ ]R0

ρ(p − q2)
}2

× 1

3
{−2k · p k · q2[p

2(p · q2 − 2q2
2) + p · q2 q2

2]

+ (k · p)2[2(p · q2)
2 − p2q2

2 − 2p · q2 q2
2 + q4

2]
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+ (k · q2)
2[p4 + 2(p · q2)

2 − p2(2p · q2 + q2
2)]} , (C.14)

M ′′
3

2
=

(
e

Mρ

gρπγ

)2 (
gφρπ

Mφ

)2 {
(ΓρMρ)R

0
ρ(p − q2)

}2

× 1

3
{−2k · p k · q2[p

2(p · q2 − 2q2
2) + p · q2 q2

2]

+ (k · p)2[2(p · q2)
2 − p2q2

2 − 2p · q2 q2
2 + q4

2]

+ (k · q2)
2[p4 + 2(p · q2)

2 − p2(2p · q2 + q2
2)]} , (C.15)

M ′
4
2

=

(
(egφKK)(gf0ππMf0)(gf0KKMf0)

2π2M2
K

)2

×
{
[(p − k)2 − M2

f0
]ImI − (Γf0Mf0)ReI

}2 {
∆0

f0
(p − k)

}2

× 2

3
(k · p)2 , (C.16)

M ′′
4

2
=

(
(egφKK)(gf0ππMf0)(gf0KKMf0)

2π2M2
K

)2

×
{
[(p − k)2 − M2

f0
]ReI + (Γf0Mf0)ImI

}2 {
∆0

f0
(p − k)

}2

× 2

3
(k · p)2 , (C.17)

M ′
12

2
=

(
e

Mφ

gφσγ

)
(gσππMσ)

(
e

Mρ

gρπγ

)(
gφρπ

Mφ

)

×
{
[(p − k)2 − M2

σ ]∆0
σ(p − k)

}{
[(p − q1)

2 − M2
ρ ]R0

ρ(p − q1)
}

× 1

3
{2k · p k · q1 p2 − (k · q1)

2 p2 + (k · p)2(−2p · q1 + q2
1)} , (C.18)
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M ′′
12

2
=

(
e

Mφ

gφσγ

)
(gσππMσ)

(
e

Mρ

gρπγ

)(
gφρπ

Mφ

)

×
{
(ΓσMσ)∆0

σ(p − k)
}{

(ΓρMρ)R
0
ρ(p − q1)

}

× 1

3
{2k · p k · q1 p2 − (k · q1)

2 p2 + (k · p)2(−2p · q1 + q2
1)} , (C.19)

M ′
13

2
=

(
e

Mφ

gφσγ

)
(gσππMσ)

(
e

Mρ

gρπγ

)(
gφρπ

Mφ

)

×
{
[(p − k)2 − M2

σ ]∆0
σ(p − k)

}{
[(p − q2)

2 − M2
ρ ]R0

ρ(p − q2)
}

× 1

3
{2k · p k · q2 p2 − (k · q2)

2 p2 + (k · p)2(−2p · q2 + q2
2)} , (C.20)

M ′′
13

2
=

(
e

Mφ

gφσγ

)
(gσππMσ)

(
e

Mρ

gρπγ

)(
gφρπ

Mφ

)

×
{
(ΓσMσ)∆0

σ(p − k)
}{

(ΓρMρ)R
0
ρ(p − q2)

}

× 1

3
{2k · p k · q2 p2 − (k · q2)

2 p2 + (k · p)2(−2p · q2 + q2
2)} , (C.21)

M ′
14

2
= −

(
e

Mφ

gφσγ

)
(gσππMσ)

(
(egφKK)(gf0ππMf0)(gf0KKMf0)

2π2M2
K

)

×
{
[(p − k)2 − M2

σ ]∆0
σ(p − k)

}{
[(p − k)2 − M2

f0
]ImI − (Γf0Mf0)ReI

}

×
{
∆0

f0
(p − k)

} 2

3
(k · p)2 , (C.22)

M ′′
14

2
= −

(
e

Mφ

gφσγ

)
(gσππMσ)

(
(egφKK)(gf0ππMf0)(gf0KKMf0)

2π2M2
K

)

×
{
(ΓσMσ)∆0

σ(p − k)
}{

[(p − k)2 − M2
f0

]ReI + (Γf0Mf0)ImI
}

×
{
∆0

f0
(p − k)

} 2

3
(k · p)2 , (C.23)
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M ′
23

2
=

(
e

Mρ

gρπγ

)2 (
gφρπ

Mφ

)2

×
{
[(p − q1)

2 − M2
ρ ]R0

ρ(p − q1)
}{

[(p − q2)
2 − M2

ρ ]R0
ρ(p − q2)

}

× 1

3
{(k · q2)

2[(p · q1)
2 − p2 q2

1] + k · p k · q2[p · q2 q2
1 − 2p · q1 q1 · q2

+ p2(−p · q1 + q2
1 + q1 · q2)] + (k · p)2[−p · q2 q2

1 + q1 · q2(−p2 + q1 · q2)

+ p · q1(2p · q2 − q2
2)] + (k · q1)

2[(p · q2)
2 − p2 q2

2]

+ k · q1[k · q2 p2(p2 − p · q1 − p · q2 + q1 · q2)

+ k · p(−2p · q2 q1 · q2 + p · q1 q2
2 + p2(−p · q2 + q1 · q2 + q2

2))]} , (C.24)

M ′′
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2
=

(
e

Mρ

gρπγ

)2 (
gφρπ

Mφ

)2

×
{
(ΓρMρ)R

0
ρ(p − q1)

}{
(ΓρMρ)R

0
ρ(p − q2)

}

× 1

3
{(k · q2)

2[(p · q1)
2 − p2 q2

1] + k · p k · q2[p · q2 q2
1 − 2p · q1 q1 · q2

+ p2(−p · q1 + q2
1 + q1 · q2)] + (k · p)2[−p · q2 q2

1 + q1 · q2(−p2 + q1 · q2)

+ p · q1(2p · q2 − q2
2)] + (k · q1)

2[(p · q2)
2 − p2 q2

2]

+ k · q1[k · q2 p2(p2 − p · q1 − p · q2 + q1 · q2)

+ k · p(−2p · q2 q1 · q2 + p · q1 q2
2 + p2(−p · q2 + q1 · q2 + q2

2))]} , (C.25)

M ′
24

2
= −

(
e

Mρ

gρπγ

)(
gφρπ

Mφ

)(
(egφKK)(gf0ππMf0)(gf0KKMf0)

2π2M2
K

)

×
{
[(p − q1)

2 − M2
ρ ]R0

ρ(p − q1)
}

×
{
[(p − k)2 − M2

f0
]ImI − (Γf0Mf0)ReI

}{
∆0

f0
(p − k)

}
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× 1

3
{2k · q1 k · p p2 − p2(k · q1)

2 + (k · p)2(−2p · q1 + q2
1)} , (C.26)

M ′′
24

2
= −

(
e

Mρ

gρπγ

)(
gφρπ

Mφ

)(
(egφKK)(gf0ππMf0)(gf0KKMf0)

2π2M2
K

)

×
{
(ΓρMρ)R

0
ρ(p − q1)

}

×
{
[(p − k)2 − M2

f0
]ReI + (Γf0Mf0)ImI

}{
∆0

f0
(p − k)

}

× 1

3
{2k · q1 k · p p2 − p2(k · q1)

2 + (k · p)2(−2p · q1 + q2
1)} , (C.27)

M ′
34

2
= −

(
e

Mρ

gρπγ

)(
gφρπ

Mφ

)(
(egφKK)(gf0ππMf0)(gf0KKMf0)

2π2M2
K

)

×
{
[(p − q2)

2 − M2
ρ ]R0

ρ(p − q2)
}

×
{
[(p − k)2 − M2

f0
]ImI − (Γf0Mf0)ReI

}{
∆0

f0
(p − k)

}

× 1

3
{2k · q2 k · p p2 − p2(k · q2)

2 + (k · p)2(−2p · q2 + q2
2)} , (C.28)

M ′′
34

2
= −

(
e

Mρ

gρπγ

)(
gφρπ

Mφ

)(
(egφKK)(gf0ππMf0)(gf0KKMf0)

2π2M2
K

)

×
{
(ΓρMρ)R

0
ρ(p − q2)

}

×
{
[(p − k)2 − M2

f0
]ReI + (Γf0Mf0)ImI

}{
∆0

f0
(p − k)

}

× 1

3
{2k · q2 k · p p2 − p2(k · q2)

2 + (k · p)2(−2p · q2 + q2
2)} , (C.29)

where ImI and ReI are given in the text in Eq. 2.5 and in Eq. 2.6, respectively.

In the rest frame of the decaying φ-meson

k · p = MφEγ ,
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k · q1 =
1

2
(M2

φ − 2MφE2) ,

k · q2 =
1

2
(M2

φ − 2MφE1) ,

p · p = p2 = M2
φ ,

p · q1 = MφE1 ,

p · q2 = MφE2 ,

q1 · q1 = q2
1 = M2

π ,

q2 · q2 = q2
2 = M2

π ,

q1 · q2 =
1

2
(M2

φ − 2MφEγ − 2M2
π) . (C.30)
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APPENDIX D

INVARIANT AMPLITUDE OF THE RADIATIVE φ → π0ηγ

DECAY

D.1 Invariant Amplitude for the Decay φ → π0ηγ in Model I

For the radiative decay φ(p) → π0(q1)η(q2)γ(k), the invariant amplitude

M(Eγ, E1) is expressed as

M = Ma + Mb + Mc , (D.1)

where Ma, Mb and Mc are the invariant amplitudes resulting from the diagrams

(a), (b) and (c) in Fig. 2.3 respectively,

Ma = −
(

e

Mρ

gρηγ

)(
gφρπ

Mφ

)
εµναβpµuν(p − q1)αεµ′ν′α′β′

(p − q1)µ′kα′εβ′

×
{
i[(p − q1)

2 − M2
ρ ] + ΓρMρ

}
Rρ

βν′(p − q1) , (D.2)

Mb = −(iegφKK)M(K+K− → π0η)2uµεν

×
∫ d4q

(2π)4

{ −4qµqν + gµν(q
2 − M2

K)

(q2 − M2
K)[(q − k)2 − M2

K ][(p − q)2 − M2
K ]

}

=

(
iegφKK

2π2M2
K

)
M(K+K− → π0η)I(a, b)

× [(ε · u)(k · p) − (ε · p)(k · u)] , (D.3)
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Mc = −
(

e

Mφ

gφa0γ

)
(ga0πη) pαuβ(kαεβ − kβεα)

×
{
i[(p − k)2 − M2

a0
] + Γa0Ma0

}
∆0

a0
(p − k) , (D.4)

Rρ
µν(q) =

1

(q2 − M2
ρ )2 + (ΓρMρ)2

[
−gµν +

qµqν

M2
ρ

]

= R0
ρ(q)

[
−gµν +

qµqν

M2
ρ

]
, (D.5)

M(K+K− → π0η) =

√
3

4f 2
π

(
Mπ0η

2 − 4

3
M2

K

)
, (D.6)

∆0
a0

(q) =
1

(q2 − M2
a0

)2 + (Γa0Ma0)
2

. (D.7)

The complex amplitudes are parametrized with Mi = M ′′
i +iM ′

i and the absolute

value of the square of the invariant amplitude is obtained as

| M |2 = M ′
1
2
+ M ′

2
2
+ M ′

3
2
+ M ′′

1
2
+ M ′′

2
2
+ M ′′

3
2

+ 2(M ′
12

2
+ M ′

13
2
+ M ′

23
2
+ M ′′

12
2
+ M ′′

13
2
+ M ′′

23
2
) , (D.8)

where

M ′
1
2

=

(
e

Mρ

gρηγ

)2 (
gφρπ

Mφ

)2 {
[(p − q1)

2 − M2
ρ ]R0

ρ(p − q1)
}2

× 1

3
{−2k · p k · q1[p

2(p · q1 − 2q2
1) + p · q1 q2

1]

+ (k · p)2[2(p · q1)
2 − p2q2

1 − 2p · q1 q2
1 + q4

1]
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+ (k · q1)
2[p4 + 2(p · q1)

2 − p2(2p · q1 + q2
1)]} , (D.9)

M ′′
1

2
=

(
e

Mρ

gρηγ

)2 (
gφρπ

Mφ

)2 {
(ΓρMρ)R

0
ρ(p − q1)

}2

× 1

3
{−2k · p k · q1[p

2(p · q1 − 2q2
1) + p · q1 q2

1]

+ (k · p)2[2(p · q1)
2 − p2q2

1 − 2p · q1 q2
1 + q4

1]

+ (k · q1)
2[p4 + 2(p · q1)

2 − p2(2p · q1 + q2
1)]} , (D.10)

M ′
2
2

=

(
egφKK

2π2M2
K

)2 {
M(K+K− → π0η)

}2
(ReI)2 2

3
(k · p)2 , (D.11)

M ′′
2

2
=

(
egφKK

2π2M2
K

)2 {
M(K+K− → π0η)

}2
(ImI)2 2

3
(k · p)2 , (D.12)

M ′
3
2

=

(
e

Mφ

gφa0γ

)2

(ga0πη)
2
{
[(p − k)2 − M2

a0
]∆0

a0
(p − k)

}2

× 2

3
(k · p)2 , (D.13)

M ′′
3

2
=

(
e

Mφ

gφa0γ

)2

(ga0πη)
2
{
(Γa0Ma0)∆

0
a0

(p − k)
}2

× 2

3
(k · p)2 , (D.14)

M ′
12

2
= −

(
e

Mρ

gρηγ

)(
gφρπ

Mφ

)(
egφKK

2π2M2
K

){
M(K+K− → π0η)

}

×
{
[(p − q1)

2 − M2
ρ ]R0

ρ(p − q1)
}

(ReI)

× 1

3
{2k · p k · q1 p2 − (k · q1)

2 p2
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+ (k · p)2(−2p · q1 + q2
1)} , (D.15)

M ′′
12

2
=

(
e

Mρ

gρηγ

)(
gφρπ

Mφ

)(
egφKK

2π2M2
K

){
M(K+K− → π0η)

}

×
{
(ΓρMρ)R

0
ρ(p − q1)

}
(ImI)

× 1

3
{2k · p k · q1 p2 − (k · q1)

2 p2

+ (k · p)2(−2p · q1 + q2
1)} , (D.16)

M ′
13

2
=

(
e

Mρ

gρηγ

)(
gφρπ

Mφ

)(
e

Mφ

gφa0γ

)
(ga0πη)

×
{
[(p − q1)

2 − M2
ρ ]R0

ρ(p − q1)
}{

[(p − k)2 − M2
a0

]∆0
a0

(p − k)
}

× 1

3
{2k · p k · q1 p2 − (k · q1)

2 p2

+ (k · p)2(−2p · q1 + q2
1)} , (D.17)

M ′′
13

2
=

(
e

Mρ

gρηγ

)(
gφρπ

Mφ

)(
e

Mφ

gφa0γ

)
(ga0πη)

×
{
(ΓρMρ)R

0
ρ(p − q1)

}{
(Γa0Ma0)∆

0
a0

(p − k)
}

× 1

3
{2k · p k · q1 p2 − (k · q1)

2 p2

+ (k · p)2(−2p · q1 + q2
1)} , (D.18)

M ′
23

2
= −

(
e

Mφ

gφa0γ

)
(ga0πη)

(
egφKK

2π2M2
K

){
M(K+K− → π0η)

}

× (ReI)
{
[(p − k)2 − M2

a0
]∆0

a0
(p − k)

} 2

3
(k · p)2 , (D.19)
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M ′′
23

2
=

(
e

Mφ

gφa0γ

)
(ga0πη)

(
egφKK

2π2M2
K

){
M(K+K− → π0η)

}

× (ImI)
{
(Γa0Ma0)∆

0
a0

(p − k)
} 2

3
(k · p)2 . (D.20)

D.2 Invariant Amplitude for the Decay φ → π0ηγ in Model II

For the radiative decay φ(p) → π0(q1)η(q2)γ(k), the invariant amplitude

M(Eγ, E1) is expressed as

M = Ma
′ + Mb

′ + Mc
′ , (D.21)

where Ma
′, Mb

′ and Mc
′ are the invariant amplitudes resulting from the dia-

grams (a), (b) and (c) in Fig. 2.4 respectively,

Ma
′ = −

(
e

Mρ

gρηγ

)(
gφρπ

Mφ

)
εµναβpµuν(p − q1)αεµ′ν′α′β′

(p − q1)µ′kα′εβ′

×
{
i[(p − q1)

2 − M2
ρ ] + ΓρMρ

}
Rρ

βν′(p − q1) , (D.22)

Mb
′ = −(iegφKK)M(K+K− → π0η)2uµεν

×
∫ d4q

(2π)4

{ −4qµqν + gµν(q
2 − M2

K)

(q2 − M2
K)[(q − k)2 − M2

K ][(p − q)2 − M2
K ]

}

=

(
iegφKK

2π2M2
K

)
M(K+K− → π0η)I(a, b)

× [(ε · u)(k · p) − (ε · p)(k · u)] , (D.23)

Mc
′ = −(egφKK)(ga0K+K−Ma0)(ga0πη)

×
{
[(p − k)2 − M2

a0
] − iΓa0Ma0

}
∆0

a0
(p − k)2uµεν
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×
∫ d4q

(2π)4

{ −4qµqν + gµν(q
2 − M2

K)

(q2 − M2
K)[(q − k)2 − M2

K ][(p − q)2 − M2
K ]

}

=

(
egφKK(ga0K+K−Ma0)(ga0πη)

2π2M2
K

){
[(p − k)2 − M2

a0
] − iΓa0Ma0

}

× ∆0
a0

(p − k)

× I(a, b) [(ε · u)(k · p) − (ε · p)(k · u)] . (D.24)

The complex amplitudes are parametrized with Mi = M ′′
i +iM ′

i and the absolute

value of the square of the invariant amplitude is obtained as

| M |2 = M ′
1
2
+ M ′

2
2
+ M ′

3
2
+ M ′′

1
2
+ M ′′

2
2
+ M ′′

3
2

+ 2(M ′
12

2
+ M ′

13
2
+ M ′

23
2
+ M ′′

12
2
+ M ′′

13
2
+ M ′′

23
2
) , (D.25)

where

M ′
1
2

=

(
e

Mρ

gρηγ

)2 (
gφρπ

Mφ

)2 {
[(p − q1)

2 − M2
ρ ]R0

ρ(p − q1)
}2

× 1

3
{−2k · p k · q1[p

2(p · q1 − 2q2
1) + p · q1 q2

1]

+ (k · p)2[2(p · q1)
2 − p2q2

1 − 2p · q1 q2
1 + q4

1]

+ (k · q1)
2[p4 + 2(p · q1)

2 − p2(2p · q1 + q2
1)]} , (D.26)

M ′′
1

2
=

(
e

Mρ

gρηγ

)2 (
gφρπ

Mφ

)2 {
(ΓρMρ)R

0
ρ(p − q1)

}2

× 1

3
{−2k · p k · q1[p

2(p · q1 − 2q2
1) + p · q1 q2

1]

+ (k · p)2[2(p · q1)
2 − p2q2

1 − 2p · q1 q2
1 + q4

1]

+ (k · q1)
2[p4 + 2(p · q1)

2 − p2(2p · q1 + q2
1)]} , (D.27)
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M ′
2
2

=

(
egφKK

2π2M2
K

)2 {
M(K+K− → π0η)

}2
(ReI)2 2

3
(k · p)2 , (D.28)

M ′′
2

2
=

(
egφKK

2π2M2
K

)2 {
M(K+K− → π0η)

}2
(ImI)2 2

3
(k · p)2 , (D.29)

M ′
3
2

=

(
(egφKK)(ga0K+K−Ma0)(ga0πη)

2π2M2
K

)2

×
{
[(p − k)2 − M2

a0
]ImI − (Γa0Ma0)ReI

}2

×
{
∆0

a0
(p − k)

}2 2

3
(k · p)2 , (D.30)

M ′′
3

2
=

(
(egφKK)(ga0K+K−Ma0)(ga0πη)

2π2M2
K

)2

×
{
[(p − k)2 − M2

a0
]ReI + (Γa0Ma0)ImI

}2

×
{
∆0

a0
(p − k)

}2 2

3
(k · p)2 , (D.31)

M ′
12

2
= −

(
e

Mρ

gρηγ

)(
gφρπ

Mφ

)(
egφKK

2π2M2
K

){
M(K+K− → π0η)

}

×
{
[(p − q1)

2 − M2
ρ ]R0

ρ(p − q1)
}

(ReI)

× 1

3
{2k · p k · q1 p2 − (k · q1)

2 p2

+ (k · p)2(−2p · q1 + q2
1)} , (D.32)

M ′′
12

2
=

(
e

Mρ

gρηγ

)(
gφρπ

Mφ

)(
egφKK

2π2M2
K

){
M(K+K− → π0η)

}

×
{
(ΓρMρ)R

0
ρ(p − q1)

}
(ImI)
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× 1

3
{2k · p k · q1 p2 − (k · q1)

2 p2

+ (k · p)2(−2p · q1 + q2
1)} , (D.33)

M ′
13

2
= −

(
e

Mρ

gρηγ

)(
gφρπ

Mφ

)(
(egφKK)(ga0K+K−Ma0)(ga0πη)

2π2M2
K

)

×
{
[(p − q1)

2 − M2
ρ ]R0

ρ(p − q1)
}

×
{
[(p − k)2 − M2

a0
]ImI − (Γa0Ma0)ReI

}{
∆0

a0
(p − k)

}

× 1

3
{2k · p k · q1 p2 − (k · q1)

2 p2

+ (k · p)2(−2p · q1 + q2
1)} , (D.34)

M ′′
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2
= −

(
e

Mρ

gρηγ

)(
gφρπ

Mφ

)(
(egφKK)(ga0K+K−Ma0)(ga0πη)

2π2M2
K

)

×
{
(ΓρMρ)R

0
ρ(p − q1)

}

×
{
[(p − k)2 − M2

a0
]ReI + (Γa0Ma0)ImI

}{
∆0

a0
(p − k)

}

× 1

3
{2k · p k · q1 p2 − (k · q1)

2 p2

+ (k · p)2(−2p · q1 + q2
1)} , (D.35)

M ′
23

2
=

(
egφKK

2π2M2
K

)2

{(ga0K+K−Ma0)(ga0πη)}
{
M(K+K− → π0η)

}

× (ReI)
{
[(p − k)2 − M2

a0
]ImI − (Γa0Ma0)ReI

}

×
{
∆0

a0
(p − k)

} 2

3
(k · p)2 , (D.36)
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M ′′
23

2
= −

(
egφKK

2π2M2
K

)2

{(ga0K+K−Ma0)(ga0πη)}
{
M(K+K− → π0η)

}

× (ImI)
{
[(p − k)2 − M2

a0
]ReI + (Γa0Ma0)ImI

}

×
{
∆0

a0
(p − k)

} 2

3
(k · p)2 , (D.37)

where ImI and ReI are given in the text in Eq. 2.5 and in Eq. 2.6, respectively.

In the rest frame of the decaying φ-meson

k · p = MφEγ ,

k · q1 =
1

2
(M2

φ − 2MφE2 + M2
η − M2

π0) ,

k · q2 =
1

2
(M2

φ − 2MφE1 + M2
π0 − M2

η ) ,

p · p = p2 = M2
φ ,

p · q1 = MφE1 ,

p · q2 = MφE2 ,

q1 · q1 = q1
2 = M2

π0 ,

q2 · q2 = q2
2 = M2

η ,

q1 · q2 =
1

2
(M2

φ − 2MφEγ − M2
π0 − M2

η ) . (D.38)
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APPENDIX E

INVARIANT AMPLITUDE OF THE RADIATIVE ρ0 → π+π−γ

AND ρ0 → π0π0γ DECAYS

E.1 Invariant Amplitude for the Decay ρ0 → π+π−γ

For the radiative decay ρ0(p) → π+(q1)π
−(q2)γ(k), the invariant amplitude

M(Eγ, E1) is expressed as

M = Ma + Mb + Mc + Md + Me , (E.1)

where Ma, Mb, Mc, Md and Me are the invariant amplitudes resulting from

the diagrams (a), (b), (c), (d) and (e) in Fig. 2.5 respectively,

Ma = −i (4egρππ) uµq
µ
2 q1νε

νDπ
0(p − q2) , (E.2)

Mb = −i (4egρππ) uµq
µ
1 q2νε

νDπ
0(p − q1) , (E.3)

Mc = −i (2egρππ) uµε
µ , (E.4)

Md = −(eλ)(gρππ)2uµεν
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×
∫ d4q

(2π)4

{ −4qµqν + gµν(q
2 − M2

π)

(q2 − M2
π)[(q − k)2 − M2

π ][(p − q)2 − M2
π ]

}

=

(
egρππλ

2π2M2
π

)
I(a, b) [(ε · u)(k · p) − (ε · p)(k · u)] , (E.5)

Me = −(iegρππ)(gσππMσ)2
{
i[(p − k)2 − M2

σ ] + ΓσMσ

}

× ∆0
σ(p − k) 2uµεν

×
∫ d4q

(2π)4

{ −4qµqν + gµν(q
2 − M2

π)

(q2 − M2
π)[(q − k)2 − M2

π ][(p − q)2 − M2
π ]

}

= −
(

(egρππ)(gσππMσ)2

2π2M2
π

){
[(p − k)2 − M2

σ ] − iΓσMσ

}

× ∆0
σ(p − k) I(a, b) [(ε · u)(k · p) − (ε · p)(k · u)] , (E.6)

D0
π(q) =

1

q2 − M2
π

, (E.7)

∆0
σ(q) =

1

(q2 − M2
σ)2 + (ΓσMσ)2

, (E.8)

λ = Mχ(π+π− → π+π−) = −2

3

1

f 2
π

(
s − 7

2
M2

π

)
, (E.9)

s = (p − k)2 = M2
ππ . (E.10)

The complex amplitudes are parametrized with Mi = M ′′
i +iM ′

i and the absolute

value of the square of the invariant amplitude is obtained as

| M |2 = M ′
1
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+ M ′
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2
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2
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+ M ′
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+ 2(M ′
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13
2
+ M ′

14
2
+ M ′

15
2
+ M ′

23
2
+ M ′

24
2

+ M ′
25

2
+ M ′

34
2
+ M ′

35
2
+ M ′

45
2
+ M ′′

45
2
) , (E.11)

where

M ′
1
2

= (4egρππ)2
{
D0

π(p − q2)
}2 1

3

{
q2
1

[
q2
2 −

(p · q2)
2

M2
ρ

]}
, (E.12)

M ′
2
2

= (4egρππ)2
{
D0

π(p − q1)
}2 1

3

{
q2
2

[
q2
1 −

(p · q1)
2

M2
ρ

]}
, (E.13)

M ′
3
2

= (2egρππ)2 , (E.14)

M ′
4
2

=

(
gρππeλ

2π2M2
π

)2

(ImI)2 2

3
(k · p)2 , (E.15)

M ′′
4

2
=

(
gρππeλ

2π2M2
π

)2

(ReI)2 2

3
(k · p)2 , (E.16)

M ′
5
2

=

(
egρππ

2π2M2
π

)2

(gσππMσ)4

×
{
[(p − k)2 − M2

σ ]ImI − (ΓσMσ)ReI
}2

×
{
∆0

σ(p − k)
}2 2

3
(k · p)2 , (E.17)

M ′′
5

2
=

(
egρππ

2π2M2
π

)2

(gσππMσ)4

×
{
[(p − k)2 − M2

σ ]ReI + (ΓσMσ)ImI
}2
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×
{
∆0

σ(p − k)
}2 2

3
(k · p)2 , (E.18)

M ′
12

2
= (4egρππ)2

{
D0

π(p − q2)
}{

D0
π(p − q1)

}

× 1

3

{
q1 · q2

[
q1 · q2 − (p · q1)(p · q2)

M2
ρ

]}
, (E.19)

M ′
13

2
= 8 (egρππ)2

{
D0

π(p − q2)
}

× 1

3

{
q1 · q2 − (p · q1)(p · q2)

M2
ρ

}
, (E.20)

M ′
14

2
= −

(
4(egρππ)2λ

2π2M2
π

){
D0

π(p − q2)
}

ImI

× 1

3
{k · p q1 · q2 − p · q1 k · q2} , (E.21)

M ′
15

2
=

(
4(egρππ)2(gσππMσ)2

2π2M2
π

){
D0

π(p − q2)
}

×
{
[(p − k)2 − M2

σ ]ImI − (ΓσMσ)ReI
}{

D0
σ(p − k)

}

× 1

3
{k · p q1 · q2 − p · q1 k · q2} , (E.22)

M ′
23

2
= 8 (egρππ)2

{
D0

π(p − q1)
}

× 1

3

{
q1 · q2 − (p · q1)(p · q2)

M2
ρ

}
, (E.23)

M ′
24

2
= −

(
4(egρππ)2λ

2π2M2
π

){
D0

π(p − q1)
}

ImI
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× 1

3
{k · p q1 · q2 − p · q2 k · q1} , (E.24)

M ′
25

2
=

(
4(egρππ)2(gσππMσ)2

2π2M2
π

){
D0

π(p − q1)
}

×
{
[(p − k)2 − M2

σ ]ImI − (ΓσMσ)ReI
}{

D0
σ(p − k)

}

× 1

3
{k · p q1 · q2 − p · q2 k · q1} , (E.25)

M ′
34

2
= −

(
2(egρππ)2λ

2π2M2
π

)
ImI (k · p) , (E.26)

M ′
35

2
=

(
2(egρππ)2(gσππMσ)2

2π2M2
π

){
[(p − k)2 − M2

σ ]ImI − (ΓσMσ)ReI
}

×
{
∆0

σ(p − k)
}

(k · p) , (E.27)

M ′
45

2
= −

(
(egρππ)(gσππMσ)

2π2M2
π

)2

λ
{
[(p − k)2 − M2

σ ]ImI − (ΓσMσ)ReI
}

×
{
∆0

σ(p − k)
}

ImI
2

3
(k · p)2 , (E.28)

M ′′
45

2
= −

(
(egρππ)(gσππMσ)

2π2M2
π

)2

λ
{
[(p − k)2 − M2

σ ]ReI + (ΓσMσ)ImI
}

×
{
∆0

σ(p − k)
}

ReI
2

3
(k · p)2 , (E.29)

where ImI and ReI are given in the text in Eq. 2.5 and in Eq. 2.6, respectively.

In the rest frame of the decaying ρ0-meson

k · p = MρEγ ,
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k · q1 =
1

2
(M2

ρ − 2MρE2) ,

k · q2 =
1

2
(M2

ρ − 2MρE1) ,

p · p = p2 = M2
ρ ,

p · q1 = MρE1 ,

p · q2 = MρE2 ,

q1 · q1 = q1
2 = M2

π ,

q2 · q2 = q2
2 = M2

π ,

q1 · q2 =
1

2
(M2

ρ − 2MρEγ − 2M2
π) . (E.30)

E.2 Invariant Amplitude for the Decay ρ0 → π0π0γ

For the radiative decay ρ0(p) → π0(q1)π
0(q2)γ(k), the invariant amplitude

M(Eγ, E1) is expressed as

M = Ma
′ + Mb

′ + Mc
′ + Md

′ , (E.31)

where Ma
′, Mb

′, Mc
′ and Md

′ are the invariant amplitudes resulting from the

diagrams (a), (b), (c) and (d) in Fig. 2.6 respectively,

Ma
′ = −

(
e

Mω

gωπγ

)(
gωρπ

Mω

)
εµναβpµuν(p − q1)αεµ′ν′α′β′

(p − q1)µ′kα′εβ′

×
{
i[(p − q1)

2 − M2
ω] + ΓωMω

}
Rω

βν′(p − q1) , (E.32)

Mb
′ = −

(
e

Mω

gωπγ

)(
gωρπ

Mω

)
εµναβpµuν(p − q2)αεµ′ν′α′β′

(p − q2)µ′kα′εβ′
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×
{
i[(p − q2)

2 − M2
ω] + ΓωMω

}
Rω

βν′(p − q2) , (E.33)

Mc
′ = −(egρππλ)2uµεν

∫ d4q

(2π)4

{ −4qµqν + gµν(q
2 − M2

π)

(q2 − M2
π)[(q − k)2 − M2

π ][(p − q)2 − M2
π ]

}

=

(
egρππλ

2π2M2
π

)
I(a, b) [(ε · u)(k · p) − (ε · p)(k · u)] , (E.34)

Md
′ = (egρππ)(gσππMσ)2

{
[(p − k)2 − M2

σ ] − iΓσMσ

}
∆0

σ(p − k)

× 2uµεν
∫ d4q

(2π)4

{ −4qµqν + gµν(q
2 − M2

π)

(q2 − M2
π)[(q − k)2 − M2

π ][(p − q)2 − M2
π ]

}

= −
(

(egρππ)(gσππMσ)2

2π2M2
π

){
[(p − k)2 − M2

σ ] − iΓσMσ

}

× ∆0
σ(p − k) I(a, b) [(ε · u)(k · p) − (ε · p)(k · u)] , (E.35)

Rω
µν(q) =

1

(q2 − M2
ω)2 + (ΓωMω)2

[
−gµν +

qµqν

M2
ω

]

= R0
ω(q)

[
−gµν +

qµqν

M2
ω

]
, (E.36)

∆0
σ(q) =

1

(q2 − M2
σ)2 + (ΓσMσ)2

, (E.37)

λ = Mχ(π+π− → π0π0) = − 1

f 2
π

(
s − M2

π

)
, (E.38)

s = (p − k)2 = M2
π0π0 . (E.39)
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The complex amplitudes are parametrized with Mi = M ′′
i +iM ′

i and the absolute

value of the square of the invariant amplitude is obtained as

| M |2 = M ′
1
2
+ M ′

2
2
+ M ′

3
2
+ M ′

4
2
+ M ′′

1
2
+ M ′′

2
2
+ M ′′

3
2
+ M ′′

4
2

+ 2(M ′
12

2
+ M ′

13
2
+ M ′

14
2
+ M ′

23
2
+ M ′

24
2
+ M ′

34
2

+ M ′′
12

2
+ M ′′

13
2
+ M ′′

14
2
+ M ′′

23
2
+ M ′′

24
2
+ M ′′

34
2
) , (E.40)

where

M ′
1
2

=
(

e

Mω

gωπγ

)2 (gωρπ

Mω

)2 {
[(p − q1)

2 − M2
ω]R0

ω(p − q1)
}2

× 1

3
{−2k · p k · q1[p

2(p · q1 − 2q2
1) + p · q1 q2

1]

+ (k · p)2[2(p · q1)
2 − p2q2

1 − 2p · q1 q2
1 + q4

1]

+ (k · q1)
2[p4 + 2(p · q1)

2 − p2(2p · q1 + q2
1)]} , (E.41)

M ′′
1

2
=

(
e

Mω

gωπγ

)2 (gωρπ

Mω
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(ΓωMω)R0
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× 1
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M ′′
2

2
=

(
e

Mω

gωπγ

)2 (gωρπ

Mω

)2 {
(ΓωMω)R0

ω(p − q2)
}2

× 1

3
{−2k · p k · q2[p

2(p · q2 − 2q2
2) + p · q2 q2

2]

+ (k · p)2[2(p · q2)
2 − p2q2

2 − 2p · q2 q2
2 + q4

2]

+ (k · q2)
2[p4 + 2(p · q2)

2 − p2(2p · q2 + q2
2)]} , (E.44)

M ′
3
2

=

(
egρππλ

2π2M2
π

)2

(ImI)2 2

3
(k · p)2 , (E.45)

M ′′
3

2
=

(
egρππλ

2π2M2
π

)2

(ReI)2 2

3
(k · p)2 , (E.46)

M ′
4
2

=

(
egρππ

2π2M2
π

)2

(gσππMσ)4
{
[(p − k)2 − M2

σ ]ImI − (ΓσMσ)ReI
}2

×
{
∆0

σ(p − k)
}2 2

3
(k · p)2 , (E.47)

M ′′
4

2
=

(
egρππ

2π2M2
π

)2

(gσππMσ)4
{
[(p − k)2 − M2

σ ]ReI + (ΓσMσ)ImI
}2

×
{
∆0

σ(p − k)
}2 2

3
(k · p)2 , (E.48)

M ′
12

2
=

(
e

Mω

gωπγ

)2 (gωρπ

Mω

)2 {
[(p − q1)

2 − M2
ω]R0

ω(p − q1)
}

×
{
[(p − q2)

2 − M2
ω]R0

ω(p − q2)
}

× 1

3
{(k · q2)

2[(p · q1)
2 − p2 q2

1] + k · p k · q2[p · q2 q2
1 − 2p · q1 q1 · q2

93



+ p2(−p · q1 + q2
1 + q1 · q2)] + (k · p)2[−p · q2 q2

1 + q1 · q2(−p2 + q1 · q2)

+ p · q1(2p · q2 − q2
2)] + (k · q1)

2[(p · q2)
2 − p2 q2

2]

+ k · q1[k · q2 p2(p2 − p · q1 − p · q2 + q1 · q2)

+ k · p(−2p · q2 q1 · q2 + p · q1 q2
2

+ p2(−p · q2 + q1 · q2 + q2
2))]} , (E.49)

M ′′
12

2
=

(
e

Mω

gωπγ

)2 (gωρπ

Mω

)2 {
(ΓωMω)R0

ω(p − q1)
}{

(ΓωMω)R0
ω(p − q2)

}

× 1

3
{(k · q2)

2[(p · q1)
2 − p2 q2

1] + k · p k · q2[p · q2 q2
1 − 2p · q1 q1 · q2

+ p2(−p · q1 + q2
1 + q1 · q2)] + (k · p)2[−p · q2 q2

1 + q1 · q2(−p2 + q1 · q2)

+ p · q1(2p · q2 − q2
2)] + (k · q1)

2[(p · q2)
2 − p2 q2

2]

+ k · q1[k · q2 p2(p2 − p · q1 − p · q2 + q1 · q2)

+ k · p(−2p · q2 q1 · q2 + p · q1 q2
2

+ p2(−p · q2 + q1 · q2 + q2
2))]} , (E.50)

M ′
13

2
= −

(
e

Mω

gωπγ

)(
gωρπ

Mω

)(
egρππλ

2π2M2
π

){
[(p − q1)

2 − M2
ω]R0

ω(p − q1)
}

(ImI)

× 1

3
{2k · p k · q1 p2 − (k · q1)

2 p2 + (k · p)2(−2p · q1 + q2
1)} , (E.51)

M ′′
13

2
= −

(
e

Mω

gωπγ

)(
gωρπ

Mω

)(
egρππλ

2π2M2
π

){
(ΓωMω)R0

ω(p − q1)
}

(ReI)

× 1

3
{2k · p k · q1 p2 − (k · q1)

2 p2 + (k · p)2(−2p · q1 + q2
1)} , (E.52)

94



M ′
14

2
=

(
e

Mω

gωπγ

)(
gωρπ

Mω

)(
(egρππ)(gσππMσ)2

2π2M2
π

)

×
{
[(p − q1)

2 − M2
ω]R0

ω(p − q1)
}{

[(p − k)2 − M2
σ ]ImI − (ΓσMσ)ReI

}

×
{
∆0

σ(p − k)
}

× 1

3
{2k · p k · q1 p2 − (k · q1)

2 p2 + (k · p)2(−2p · q1 + q2
1)} , (E.53)

M ′′
14

2
=

(
e

Mω

gωπγ

)(
gωρπ

Mω

)(
(egρππ)(gσππMσ)2

2π2M2
π

)

×
{
(ΓωMω)R0

ω(p − q1)
}{

[(p − k)2 − M2
σ ]ReI + (ΓσMσ)ImI

}

×
{
∆0

σ(p − k)
}

× 1

3
{2k · p k · q1 p2 − (k · q1)

2 p2 + (k · p)2(−2p · q1 + q2
1)} , (E.54)

M ′
23

2
= −

(
e

Mω

gωπγ

)(
gωρπ

Mω

)(
egρππλ

2π2M2
π

){
[(p − q2)

2 − M2
ω]R0

ω(p − q2)
}

(ImI)

× 1

3
{2k · p k · q2 p2 − (k · q2)

2 p2 + (k · p)2(−2p · q2 + q2
2)} , (E.55)

M ′′
23

2
= −

(
e

Mω

gωπγ

)(
gωρπ

Mω

)(
egρππλ

2π2M2
π

){
(ΓωMω)R0

ω(p − q2)
}

(ReI)

× 1

3
{2k · p k · q2 p2 − (k · q2)

2 p2 + (k · p)2(−2p · q2 + q2
2)} , (E.56)

M ′
24

2
=

(
e

Mω

gωπγ

)(
gωρπ

Mω

)(
(egρππ)(gσππMσ)2

2π2M2
π

)

×
{
[(p − q2)

2 − M2
ω]R0

ω(p − q2)
}{

[(p − k)2 − M2
σ ]ImI − (ΓσMσ)ReI

}

×
{
∆0

σ(p − k)
}

95



× 1

3
{2k · p k · q2 p2 − (k · q2)

2 p2 + (k · p)2(−2p · q2 + q2
2)} , (E.57)

M ′′
24

2
=

(
e

Mω

gωπγ

)(
gωρπ

Mω

)(
(egρππ)(gσππMσ)2

2π2M2
π

)

×
{
(ΓωMω)R0

ω(p − q2)
}{

[(p − k)2 − M2
σ ]ReI + (ΓσMσ)ImI

}

×
{
∆0

σ(p − k)
}

× 1

3
{2k · p k · q2 p2 − (k · q2)

2 p2 + (k · p)2(−2p · q2 + q2
2)} , (E.58)

M ′
34

2
= −

(
(egρππ)(gσππMσ)

2π2M2
π

)2

λ
{
[(p − k)2 − M2

σ ]ImI − (ΓσMσ)ReI
}

×
{
∆0

σ(p − k)
}

(ImI)
2

3
(k · p)2 , (E.59)

M ′′
34

2
= −

(
(egρππ)(gσππMσ)

2π2M2
π

)2

λ
{
[(p − k)2 − M2

σ ]ReI + (ΓσMσ)ImI
}

×
{
∆0

σ(p − k)
}

(ReI)
2

3
(k · p)2 , (E.60)

where ImI and ReI are given in the text in Eq. 2.5 and in Eq. 2.6, respectively.

In the rest frame of the decaying ρ0-meson

k · p = MρEγ ,

k · q1 =
1

2
(M2

ρ − 2MρE2) ,

k · q2 =
1

2
(M2

ρ − 2MρE1) ,

p · p = p2 = M2
ρ ,

p · q1 = MρE1 ,

p · q2 = MρE2 ,
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q1 · q1 = q1
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q2 · q2 = q2
2 = M2

π0 ,

q1 · q2 =
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ρ − 2MρEγ − 2M2
π0) . (E.61)
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