
UNCERTAINTY MODELLING AND STABILITY ANALYSIS FOR 2-WAY

FUZZY ADAPTIVE SYSTEMS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

EVREN G�URKAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

THE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

JULY 2003



Approval of the Graduate School of Natural and Applied Sciences.

Prof. Dr. Tayfur �Ozt�urk
Director

I certify that this thesis satis�es all the requirements as a thesis for the degree
of Doctor of Philosophy.

Prof. Dr. M�ubeccel Demirekler
Head of Department

This is to certify that we have read this thesis and that in our opinion it is
fully adequate, in scope and quality, as a thesis for the degree of Doctor of
Philosophy.

Prof. Dr. Stephen P. Banks
Co-Supervisor

Assoc. Prof. Dr. Aydan M.
Erkmen

Supervisor

Examining Committee Members

Prof. Dr. Erol Kocao�glan

Prof. Dr. Stephen P. Banks

Prof. Dr. �Omer Morg�ul

Assoc. Prof. Dr. Aydan M. Erkmen

Assoc. Prof. Dr. _Ismet Erkmen



ABSTRACT

UNCERTAINTY MODELLING AND STABILITY ANALYSIS FOR 2-WAY

FUZZY ADAPTIVE SYSTEMS

G�urkan, Evren

Ph. D., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Aydan M. Erkmen

Co-Supervisor: Prof. Dr. Stephen P. Banks

July 2003, 123 pages

A novel fuzzy system named as 2-way fuzzy system is developed by combining

the intuitionistic fuzzy set theory with the fuzzy systems theory. The devel-

oped system is used in modelling and minimizing uncertainty and inconsis-

tency. Uncertainty is the width of the interval introduced by the independent

assignment of membership and nonmembership functions of the intuitionistic

fuzzy sets; and inconsistency is the violation of the consistency inequality in

this assignment. The uncertainty and inconsistency is reduced through a 2

phase training. An evaluation of the degree of reduction of inconsistency is

carried out at the end of the �rst phase of training by forming the shadowed

set patterns of the membership and nonmembership functions. The system is

further trained for a second phase in order to reduce uncertainty.

There are three di�erent methods developed for the stability analysis of

fuzzy systems. The �rst method is based on the approximating sequences

technique, and the design turns into an optimal control problem. In the sec-
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ond analysis, describing function of a 2-way fuzzy system is evaluated analyti-

cally, and a systematic design approach is developed using describing function

technique. The last analysis technique employs the Lie algebra theory in the

stability analysis of Takagi-Sugeno fuzzy systems. The theoretical results are

simulated on an application system, which is a 
exible-joint robot arm system.

Keywords: Inconsistency modelling and evaluation, uncertainty reduction, in-

tuitionistic fuzzy sets, shadowed sets, 2-way fuzzy systems, Takagi-Sugeno type

fuzzy systems, stability analysis, equivalent linearization, Lie algebra theory,

describing function analysis
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�OZ

BEL_IRS_IZL_IK MODELLEMES_I VE 2-Y�ONL�U BULANIK ADAPT_IF

S_ISTEMLER _IC� _IN KARARLILIK ANAL_IZ_I

G�urkan, Evren

Doktora, Elektrik ve Elektronik M�uhendisli�gi B�ol�um�u

Tez Y�oneticisi: Assoc. Prof. Dr. Aydan M. Erkmen

Ortak Tez Y�oneticisi: Prof. Dr. Stephen P. Banks

Temmuz 2003, 123 sayfa

Sezgisel bulan�k k�ume teorisi, bulan�k sistem teorisiyle birle�stirilerek, 2-y�onl�u

bulan�k sistem olarak adland�r�lan yeni bir sistem geli�stirilmi�stir. Geli�stirilen

bu sistem, belirsizlik ve tutars�zl�k modellenmesinde ve bunlar�n azalt�lmas�nda

kullan�lm��st�r. Belirsizlik, sezgisel bulan�k k�umelerin �uyelik ve �uyesizlik fonk-

siyonlar�n�n ba�g�ms�z olarak atanmas�yla ortaya �c�kan aral��g�n geni�sli�gidir. Tu-

tars�zl�k, bu atamadaki tutarl�l�k e�sitsizli�ginin sa�glanmamas�yla ortaya �c�kmak-

tad�r. Belirsizlik ve tutars�zl�k 2 fazl� e�gitme yoluyla azalt�lmaktad�r. Tu-

tars�zl�ktaki azalman�n derecesi, birinci faz�n sonunda �uyelik ve �uyesizlik fonk-

siyonlar�n�n g�olgelendirilmi�s k�umelerinin olu�sturulmas�yla de�gerlendirilmi�stir.

Sistem, belirsizli�gin azalt�lmas� i�cin bir defa daha e�gitilmi�stir.

Bulan�k sistemlerin kararl�l�k analizleri �u�c de�gi�sik metod kullan�larak geli�s-

tirilmi�stir. Bu metodlardan ilki, yakla�s�k seriler tekni�gine dayanmaktad�r

ve tasar�m bir optimal kontrol problemine d�on�u�sm�u�st�ur. _Ikinci analizde, 2-

y�onl�u bulan�k sistemlerin genelle�stirilmi�s aktar�m i�slevi analitik olarak hesa-

planm��st�r, ve genelle�stirilmi�s aktar�m i�slevi tekni�gine dayan�larak sistematik
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bir tasar�m yakla�s�m� geli�stirilmi�stir. Son analiz tekni�gi, Takagi-Sugeno tipi

bulan�k sistemlerin kararl�l�k analizinde Lie cebiri teorisini kullanmaktad�r.

Teorik sonu�clar, esnek eklemli robot kol �uzerine uygulanm��st�r.

Anahtar Kelimeler: Tutars�zl�k modellenmesi ve de�gerlendirilmesi, belirsizlik

azalt�lmas�, sezgisel bulan�k k�umeler, g�olgelendirilmi�s k�umeler, 2-y�onl�u bu-

lan�k sistemler, Takagi-Sugeno tipi bulan�k sistemler kararl�l�k analizi, e�sde�ger

do�grusallama, Lie cebir teorisi, genelle�stirilmi�s aktar�m i�slevi analizi
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CHAPTER 1

INTRODUCTION

1.1 Motivation, Objective and Goals

Engineering systems have grown in complexity becoming more biologically in-

spired, mostly mimicking human ways in their dynamics. Thus, modelling

of uncertainty has become an important issue in handling complexity of in-

creasingly natural engineering systems, rendering prediction of future states

more important but more diÆcult as well. More speci�cally, the problem of

adequacy of uncertainty models, tracking, modifying and/or adapting to the

varying levels of process uncertainty has become more pronounced ([1], [2]). In

recent literature, uncertainty has been treated in its frequential nature, where

statistics have been the abundantly used tool to model uncertainty. Vague-

ness and imprecision are the recently emphasized characteristics of uncertainty,

handled by the leading approaches based on extensions of probability theory,

which are evidential theory, possibility theory, fuzzy sets and fuzzy measures,

rough set theory and interval arithmetic.

Our objective in this thesis is to design a fuzzy control system that is ca-

pable of handling inconsistency and uncertainty. Towards this objective, the

necessary goal we had to undertake is to generate an adaptive system that

learns to minimize vagueness represented as an uncertainty interval with fuzzy

bounds. As a further extension to the existing work in the literature, incon-

sistency types have to be analyzed and modelled giving a second dimension

to the uncertainty interval. Our adaptive system has then to be capable of
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minimizing the inconsistent and uncertain 2D surface so as to project it opti-

mally to 1D, where an uncertainty interval solely exists with full consistency.

The system then minimizes this 1-dimensional uncertainty. The last step of

our work then covers the development of methodologies for a stability analysis,

suitable to the intelligent adaptive system dynamics, handling inconsistency

and uncertainty. This analysis should be able to dictate the design parameters

for a stable intelligent adaptive system that can therefore be used to control a

complex physical plant.

The balance of this thesis puts the major focus on an important gap of

the literature that is to model and handle inconsistency through a stable and

adaptive intelligent system. The major impact to the scienti�c �eld within the

existing literature is achieved by our objective, which is that of generating a

learning system that not only adapts to and modi�es the vagueness nature of

uncertainty, but also detects, typi�es and decreases any inconsistency content.

Its stability analysis is conducted by our new approaches developed to suit the

plant dynamics as well as the modi�cation of vagueness and inconsistencies. In

this thesis, we develop a novel approach to minimize uncertainty interval and

inconsistency through an adaptation by learning that combines intuitionistic

fuzzy set theory with Takagi-Sugeno fuzzy control, and we name our novel

fuzzy system based on this approach as a 2-way fuzzy adaptive control system.

Intuitionistic fuzzy sets are used to model an interval valued distribution of

information in the adaptive control architecture with Necessity at the lower

bound as the degree of membership functions and Possibility at the upper

bound as the complement of the degree of nonmembership functions. Uncer-

tainty is modelled as the width of this interval. A width of zero is at the basis

of a deterministic control free of uncertainty. Consistency is represented as

a complementarity constraint on the assignment of the membership and non-

membership functions, which is that the sum of the two functions should be

less than or equal to unity. However, in many control problems, this inequality

constraint is not satis�ed giving rise to inconsistency.
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Our system is capable of reducing uncertainty and inconsistency through

a two phase training. In the �rst phase, the aim is to reduce inconsistency,

thus diminishing as much as possible this second dimension to yield only the

dimension coming from the vagueness of uncertainty. The resultant system is

a 2-way fuzzy adaptive system with a minimum degree of inconsistency pro-

jected optimally within the dimension generated by the uncertainty width. The

purpose of the second phase of training is, on the other hand, to reduce this

uncertainty width introduced by the de�nition of the membership and non-

membership functions rendered fully consistent by the �rst phase of training.

The resultant system is thus a system without inconsistency and uncertainty,

which is the classical one-way fuzzy adaptive system known in the literature.

We further develop in our thesis work a novel method for typifying the in-

consistency handled in our system by a classi�cation based on shadowed set

theory, which is then applied after the �rst phase of training to our system.

Our aim is to use the developed 2-way fuzzy adaptive system as a con-

troller to nonlinear systems, so it becomes important to have a systematic

stability analysis for the design of such controllers. From the literature, it is

well known that fuzzy systems su�er from the lack of systematic methods for

stability analysis ([3],[4],[5][6],[7],[8]). The available approaches are based on

Lyapunov based methods ([3],[4],[5],[9],[10],[11],[12],[13]), design of adaptive

fuzzy controllers based on Lyapunov's method ([14],[8],[15],[16],[17],[18],[19]),

or the application of robust stability theory ([20],[7],[17],[21],[22]). Describing

function is also used to predict stable and unstable limit cycles ([23],[24],[25]).

Most of the stability analysis techniques in the literature consider systems

with predominantly second-order dynamics [5] without any consideration of

an uncertainty interval and especially without having at all the concerns of

inconsistencies.

Our 2-way fuzzy adaptive system is of Takagi-Sugeno (T-S) type, which

is generally analyzed together with the nonlinear plant that it is controlling,

represented as a set of linear subsystems ([9],[11],[26],[27],[12]). The stabil-
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ity analysis of such systems are mainly carried out using Lyapunov method,

and su�ers from the diÆcult of �nding the existence of a common positive-

de�nite matrix P for all the subsystems in the consequent parts of the rules.

Frequency domain based methods such as describing function analysis are re-

cently emerging, but works in that area still remain far from being systematic,

and are mainly experimental, and not analytical in nature [25].

This major short coming of the literature on stability analysis in provid-

ing systematic ways of designing stable T-S fuzzy controllers, and our need to

be systematic in the design of our 2-way fuzzy adaptive controller remaining

stable with analytical predictability from its design, despite the complexities

generated by uncertainty and inconsistencies led us to develop a systematic

way in designing stable fuzzy controllers. In this thesis work, we propose three

di�erent methods that apply to systems with orders higher than two, thus, not

presuming predominantly second-order dynamics. Our proposed methodolo-

gies are all analytical, which make the design process easier and more robust

than any experimental method. Each methodology is applicable to a par-

ticular representation of the plant to be controlled. The �rst method aims

at �nding an optimal controller based on approximating sequences technique.

The method assumes that the system can be represented in a pseudo-linear

form. The second analysis applies to systems with periodic inputs and out-

puts. Revolute actuators such as robot manipulators are good examples for

such oscillatory behaviors. For such systems, we develop a systematic proce-

dure for the design of a stable 2-way fuzzy controller using describing function

method, where we use the additivity property of the fuzzy systems. The third

methodology uses Lie algebra theory for the stability analysis of fuzzy systems

that can be represented as a T-S fuzzy system. The describing function based

analysis can be carried out when the input to the system is periodic, where as

the application of the third method requires the system to be modelled as a

T-S fuzzy system. In case where these conditions are not satis�ed, the design

based on approximating sequences technique should be used. We carry out
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demonstrations of all our contributions on the control of a 
exible robot, a

nonlinear plant which provides enough complexity incorporating uncertainty

and inconsistency that would normally render the design of a classical con-

troller infeasible.

1.2 Contributions

The major contributions of this thesis can be summarized as follows:

� A novel 2-way fuzzy adaptive system is developed and used in the mod-

elling of uncertainty and inconsistency.

� Inconsistency handled by the 2-way fuzzy adaptive system is classi�ed

according to a novel evaluation approach based on shadowed sets.

� A stable optimal fuzzy controller design is achieved using approximating

sequences technique.

� A systematic design procedure for a stable 2-way fuzzy control system

is developed for periodically activated uncertain systems, based on de-

scribing function analysis.

� Stability theory is developed for Takagi-Sugeno type fuzzy systems using

Lie algebra theory.

1.3 Outline of the Thesis

Chapter 2 gives a detailed survey on works related to the objective of this

thesis together with that on the application �eld of our results, that is: un-

certainty modelling, stability of fuzzy systems and 
exible robot systems. We

then present an overview of the necessary mathematical background with the

structure of fuzzy systems, Lie algebra theory, describing function and ap-

proximating sequences techniques. We present our novel 2-way fuzzy adaptive

system in Chapter 3. We also discuss the training procedure and the shadowed

5



set based typi�cation of inconsistencies handled in the 2-way fuzzy adaptive

system. The three novel stability analysis methods are developed in Chapter

4. Chapter 5, gives application examples illustrating the application of the

theoretical results obtained in Chapter 3 and 4 to a 
exible-joint robot arm.

Chapter 6 concludes the thesis, providing also notes on future works.
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CHAPTER 2

SURVEY AND MATHEMATICAL

BACKGROUND

In this chapter, a literature survey on fuzzy systems stability analysis is given

as well as a survey on 
exible robot systems, since in the application chapter

(Chapter 5) the example system is chosen as a 
exible-joint robot arm sys-

tem. This thesis emphasis that complex uncertain systems such as 
exible

robot manipulators can only be systematically controlled if the inherent un-

certainty dynamics are suitable modelled. We thus �nd it necessary to give

in this chapter a detailed survey on modelling uncertainty. The mathematical

background necessary for the development of the di�erent methodologies intro-

duced in this thesis is reviewed here for the technical support in understanding

our contributions.

2.1 Fuzzy Systems and Stability

Fuzzy systems have been used as controllers in many applications due to their

ability to use all sources of information from human experts, either numerical

or linguistic. The most important issue in using fuzzy systems as controllers

is the stability of these systems; thus �nding systematic ways for this stability

analysis has been a major �eld of interest. Sugeno [3] and Kandel [28] review

the existing stability analysis techniques in their papers. The methods can

be grouped as Lyapunov methods, robust stability analysis, adaptive fuzzy

controller design, and frequency domain methods.
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In [3], fuzzy systems are grouped into three according to the structure of

the consequent parts of the rules in the rule base. Type I systems are fuzzy

systems where the consequent linguistic variable is represented by a fuzzy

set, type II systems have singleton consequent parts and type III systems

are Takagi-Sugeno type fuzzy systems where the consequents are linearized

subsystems of the original nonlinear system. It is indicated that type II systems

are special cases of both type I and type III systems. The stability analysis in

this reference is applied to type II systems, and the system is found to be a

piecewise polytopic aÆne system. The asymptotic stability is analyzed using

Lyapunov approach. Kandel et al [28] apply Popov's technique to a single-

input single-output system for stability analysis. They also classify important

papers on fuzzy control stability and present a comparison table for di�erent

stability analysis techniques.

The method proposed in Yi et al [4] is based on variable structure system

theory, and the stability condition is derived using Lyapunov theorem. In [5],

the asymptotic stability is also analyzed with Lyapunov theorem. The system

analyzed is a decoupled fuzzy controller with single input, where the decoupling

is achieved using signed distance method. Kolodziej et al [6] introduce the

concept of bounded linguistic variable augmenting the universe of discourse by

de�ning stable and unstable regions. The stability analysis is performed by the

modi�ed de�nitions of the energetic and equilibrium point stability criteria.

Robust stability analysis is carried out in [20], [17], [7], [12], [21] and [22].

Apart from the �rst two papers in the above reference list, the fuzzy system

generally analyzed is T-S type fuzzy system, while reference [17] considers an

adaptive fuzzy system. Fuh et al [20] transform the fuzzy control system into a

Lur'e system with uncertainties or nonlinearities. Lyapunov's direct method is

used to guarantee the stability of the perturbed Lur'e system, and the bounds

on allowable uncertainties or nonlinearities are given by a robustness measure.

Describing function method is used in [23], [24] and [25]. Kim et al [23]

derive analytical expressions for the describing functions of a fuzzy system
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with single input, and a fuzzy system with two inputs, where the second input

is the derivative of the �rst. The existence of the limit-cycle of the fuzzy

control system is predicted using the describing function analysis. In [25],

the describing function method is used to analyze the behavior of PD and PI

fuzzy logic controllers. The existence of stable and unstable limit cycles are

predicted. Describing function analysis of a T-S fuzzy system is done in [24],

where the describing function is evaluated experimentally. The existence of

multiple equilibria and of limits cycles are examined. A semiglobal stabilization

of nonlinear systems in the presence of internal dynamics is presented in [29].

The system is decomposed into two subsystems with fast and slow dynamics

using a composite model-based control scheme based on fuzzy control. The

suÆcient stability conditions for the design of fuzzy controllers are derived

using singular perturbation methods.

The major work on the design and stability analysis of 1-way fuzzy adaptive

controllers is developed by Wang [14], where the controllers are examined under

two categories: direct adaptive fuzzy controllers and indirect adaptive fuzzy

controllers. The de�nitions are given as: If an adaptive fuzzy controller uses

fuzzy logic systems as controllers, it is called a direct adaptive fuzzy controller

and it can incorporate fuzzy control rules directly into itself. If an adaptive

fuzzy controller uses fuzzy logic systems as a model of the plant, it is called

an indirect adaptive fuzzy controller and it can incorporate fuzzy descriptions

of the plant directly into itself. There is also a further classi�cation of the

fuzzy adaptive systems according to the systems being linear or nonlinear in

their adjustable parameters. First-type adaptive fuzzy controller is an adaptive

fuzzy controller, which is linear in its adjustable parameters whereas second-

type is nonlinear in its adjustable parameters. The stability analysis of these

controllers are based on Lyapunov's theorem.

Tang et al [18] develop a 1-way fuzzy adaptive controller based on the work

of Wang [14], where the adaptivity law is obtained by Lyapunov synthesis

approach. They modify the method such that it does not require speci�c
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assignment of membership functions. In [8], tracking control of an unknown

nonlinear dynamical system is performed using discrete-time adaptive fuzzy

control. The design algorithm and the stability proof is based on the basis

vectors of the fuzzy system instead of the ones for the plant, and "-modi�cation

is used for the adaptation of the parameters of the fuzzy system. A stable 1-way

fuzzy adaptive controller is designed for a single-input single-output unknown

nonlinear system in [15]. Some of the states of the system are not available,

so a high gain observer is used. The fuzzy controller design is based on the

approach in [14] and there is an additional robust compensator to deal with

fuzzy approximation error. For tracking performance, H1 analysis is carried

out, and for parameter adaptation, Lyapunov approach is employed. The

boundedness of parameters are guaranteed by de�ning a projection operator.

A model identi�cation by a 1-way fuzzy adaptive controller is designed in

[16], where the scaling factors are adjusted on line. The system has three

components: a fuzzy logic based controller, a system identi�cation unit, and

a controller synthesis unit. The identi�cation unit uses recursive least squares

algorithm for parameter estimation, and the scalar factors of the fuzzy con-

troller are determined in the controller synthesis unit by pole placement. The

aim is to place the scaling factors of the fuzzy controller such that a desired

closed loop performance is obtained. The fuzzy system in [17] is expressed

as a series of radial basis function expansion. The parameters to be adjusted

are de�ned as connection weights, variances and centers, and concave/convex

optimization technique is used for tuning of these parameters. Global stability

analysis is performed using Lyapunov theorem. Chai et al . [19] design a

stable fuzzy direct adaptive control scheme in their work. First, they design

an optimal controller for a system with known mathematical model, then they

approximate this optimal controller with a fuzzy logic system. A fuzzy sliding

controller is added to the fuzzy controller to compensate for uncertainties. The

global asymptotic stability is again achieved in Lyapunov sense.

The stability analysis of T-S type fuzzy systems is also mainly achieved
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using Lyapunov's direct method. Tanaka and Sugeno [9] have used a Takagi-

Sugeno (T-S) fuzzy model, where the consequent parts of the rules form a set of

linear models, and have examined the stability of such systems in terms of Lya-

punov's direct method generating a suÆcient condition for stability in terms of

the existence of a common positive-de�nite matrix P for all the subsystems in

the consequent parts of the rules. Cao et al [10] have used the same model as

in [9] together with a feedback control law for each linear subsystem, and using

uncertain linear system theory, have determined a condition to guarantee the

global stability of the closed-loop system. This global stability analysis is also

based on the Lyapunov's method, but is less conservative than in the analysis

of [9] since they have relaxed the condition on �nding a common P matrix.

Wang et al [11] have modelled a nonlinear plant using T-S fuzzy model

and designed a controller using parallel distributed compensation scheme. The

stability analysis in their work is based on the Lyapunov theorem; and they

have turned the problem of �nding the common P matrix into a linear matrix

inequality (LMI) problem and used convex programming techniques for the

solution. Park et al [13] have developed a variety of LMI-based controller

design methods, where the stability analysis depends on �nding a common P

matrix as in [11].

In [12], stability analysis is carried out for a robust fuzzy feedback lineariza-

tion regulator using T-S fuzzy model. It is assumed that the uncertainties are

structured with known bounds, and the analysis is also based on LMI the-

ory. The system is transformed into a Lur'e system and the stability analysis

done by using Lyapunov theorem. Liao et al [30] implement the T-S fuzzy

controller by a parallel distributed structure. A minimum transition matrix

set is de�ned such that it contains the transition matrices of the closed-loop

system. l1 Lyapunov function method is de�ned over the transition matrix

set for stability analysis.

Zak [26] has proposed a Lyapunov based method for the design of state

feedback controllers that guarantee global stability for the systems modelled
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by T-S fuzzy systems. Thathachar et al [27] have shown the equivalence of

stability properties of the fuzzy systems and linear time invariant switching

systems, and carried out the stability analysis based on Lyapunov method.

Leung et al [7] design a fuzzy controller for uncertain nonlinear systems that

are modelled as T-S fuzzy systems. The stability of the system is guaranteed

by �nding the areas where the system is robust. Robust stability analysis is

used in [21] and [22] to overcome the diÆculty of �nding the common positive-

de�nite matrix solution of Lyapunov equations.

Kiriakidis et al [31] have analyzed the T-S system with o�set terms as

a perturbed linear system, and derived a suÆcient condition on the robust

stability of the system against nonlinear perturbations to guarantee quadratic

stability. The structures of T-S fuzzy PI and PD controllers are examined

in [32]. Small gain theorem is used to �nd a suÆcient global BIBO stability

criterion for nonlinear systems controlled by these fuzzy controllers. The local

stability is also examined. Wong et al [33] develop a T-S fuzzy system with

each rule having two consequent parts: a numerator and a denominator. The

overall closed-loop system is designed like a linear system, so the diÆculty in

�nding the common positive-de�nite matrix is eliminated.

2.2 Flexible Robots

Robotic systems are nonlinear in nature and contain parametric uncertainties

in their dynamics, their sensing and control mechanisms when operating in

unstructured environments. Due to the need of having faster, lighter and

more precise robots handling heavy payloads, 
exible robots [34], [35], [36]

have drawn increasing attention in recent years. The 
exibility is introduced

by the use of lighter links, under dynamic loading, which can no longer be

ignored in the modelling and control of such systems.

Nicosia and Tomei [37] have developed a dynamic output feedback tracking

controller for 
exible-joint robots. The controller requires only the measure-

ments of position and speed of each link. Tracking of any bounded reference
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is guaranteed in this work. The dynamic part of the controller consists of a

reduced-order observer, which is estimating the position and velocity of each

motor rotors and guarantees the tracking of any bounded reference.

Ge [38] has applied an adaptive controller that is based on singular pertur-

bation theory. The method uses only the position and velocity feedback. Motor

tracking error is modelled as a fast variable instead of joint elastic forces with

an assumption of weak elasticity. The adaptive controller has been extended to

an in�nite time interval control. Spong [39] has discussed an adaptive control

scheme based on singular perturbation methods. The control uses a composite

strategy with a fast feedback control for stabilizing a boundary layer system

together with a slow control, which is based on a quasi-steady-state system.

In case of insuÆcient knowledge or unknown parameters, iterative learn-

ing schemes and fuzzy controllers are applied to 
exible robot systems [40],

[41], [34]. An iterative learning scheme developed to overcome the problem of

insuÆcient knowledge about robot dynamics and joint 
exibility [41] guaran-

tees bounded convergence and the computations are done o�-line using link

position, velocity and acceleration tracking errors.

Another iterative scheme uses contraction mapping theorem for the set-

point regulation problem of a 
exible-joint robot arm with unknown param-

eters [40]. The method guarantees the convergence to an arbitrarily small

neighborhood of the equilibrium point. The developed controller is based only

on position measurements. It is used for 
exible robots with uncertain param-

eters and only a set of possible values of these uncertainties is known.

Choi et al [42] have made an extension to this control scheme proposed by

Ailon such that it applies to a full model of a robot manipulator. In order to

handle the uncertainties in system parameters, a modi�ed fuzzy PI controller

is designed with position and velocity in the feedback loop [34], capable of

handling nonlinearity and uncertainty in the 
exible-joint robot arm system.
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2.3 Modelling Uncertainty

Engineering has to handle di�erent types and degrees of uncertainty when

dealing with all systems from design to implementation. Thus, modelling un-

certainty has become an important issue in engineering systems. Sources of

uncertainty are generally classi�ed in two levels: the empirical level where

uncertainty arises due to measurement errors and due to limits of the mea-

surement devices; and the cognitive level where uncertainty results from the

vagueness and ambiguity present in natural language [43].

Two tendencies exist in modelling uncertainty: explicit or implicit. If the

tendency is implicit, the engineering models opt for approximating uncertain

phenomenon in a deterministic manner by including suÆcient amount of slack

in the model or by waiting to see whether the uncertainty disappears in time

[44]. Whatever the sources, avoiding uncertainty or ignoring it results in heavy

and possibly critical loss of information and inevitable loss of richness of in-

formation since the uncertain part of the system may contain useful data that

enrich knowledge for better performance of a system in terms of sensing, per-

ception, action or control. Consequently, an important aspect of engineering

is to develop ways of modelling uncertainty, explicitly.

Uncertainty representations show a wide spectrum of variety according to

the developed tools. Statistics has been the most frequently used tool to model

uncertainty. However in many cases, statistical approaches have revealed to

be insuÆcient since they require the frequential aspect of uncertainty which

seldomly appears in engineering systems, and, thus, di�erent number of other

methodologies needed to be developed to overcome this insuÆciency. Among

the various modelling methods suggested in the literature, the leading ap-

proaches are based on extensions of probability theory, which are evidential

theory, possibility theory, fuzzy set theory and fuzzy measures and rough set

theory.

In this section, the focus is on the facets of uncertainty (Section 2.3.1) and

the developed modelling tools encountered in the literature (Section 2.3.2)
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together with their di�erent applications that are mainly based on reducing

uncertainty (Section 2.3.3).

2.3.1 Facets of Uncertainty

In order to discuss di�erent aspects of uncertainty, its de�nition should �rst

be expressed universally. However this task of generating a proper and general

de�nition of uncertainty proved to be rather diÆcult. The de�nition chosen

by Zimmermann [44] is the one that can be termed as the most universally

accepted: "Uncertainty implies that in a certain situation a person does not

dispose about information which quantitatively and qualitatively is appropri-

ate to describe, prescribe or predict deterministically and numerically a system,

its behavior or other characteristics."

Causes of uncertainty have also helped to di�erentiate the di�erent facets of

uncertainty. Among these causes are the lack of information or its incomplete-

ness, the redundancy of information, con
icting data or evidence, ambiguity

and imprecision in data boundaries [44]. These causes are explained brie
y in

what follows:

Klir and Folger [1] have identi�ed two categories of uncertainty, namely

vagueness and ambiguity, based on di�erent de�nitions. Vagueness arises when

it is not possible to have sharp boundaries in the domain of interest. On the

other hand, in the case of one-to-many relations, uncertainty is named as am-

biguity due to the increased span of alternatives. There is also a more speci�c

classi�cation where vagueness is called fuzziness due to the gradual changes in

the boundary elements of a set or a proposition and ambiguity is further subdi-

vided into: nonspeci�city or imprecision, and discord or strife. Nonspeci�city

or imprecision is related with the sizes of the sets of alternatives of the studied

problem. As the sizes of the sets become larger, the characterization becomes

less speci�c. Discord or strife corresponds to the con
icts among the various

sets of alternatives. Moreover, many authors have introduced variants to these

basic concepts speci�cally geared towards their own application problems. In
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Section 2.3.2 the basic formalisms in uncertainty modelling are discussed while

related variants will be exposed in Section 2.3.3.

Lack of information occur where there is insuÆcient or incomplete infor-

mation in order to be able to describe the problem deterministically. Mea-

surement errors and the limited capacity of measurement devices are other

causes of lack of information or imprecision. Belief is subjective in nature and

represents experts opinion, so it can be considered as one of the causes due to

the imprecision in natural language.

On one hand, redundancy of information may have elements supporting

each other as in associative reasoning such as Dempster-Shafer theory reviewed

in Section 2.3.2.1. On the other hand, many redundant elements can introduce

con
icting information which is a di�erent aspect of uncertainty. Con
ict has

been analyzed as a nonassociative measure in belief functions or a measure

of their dissonance [45]. Con
icting knowledge in intuition is proposed as a

violation of an inequality constraint de�ning intuitionistic fuzzy sets (Section

2.3.2.1). This violation has to be subsequently restored in order to handle any

engineering approaches based on conventionally de�ned intuitionistic fuzzy

sets. Restoring the violation, which means eliminating con
ict, is another

challenge in fuzzy control [46, 47]. One major approach is to maintain rule

bases by compensating for rule interactions. Rule base maintenance generally

does not provide a synthesis method for eliminating detected interactions but

is only an analysis approach.

2.3.2 Uncertainty Modelling Tools

Statistics and probability theory have been the only tools to model uncertainty

until the 60's since the primary aspect of uncertainty was considered as its

frequential nature within a large sized sample set. However with pressing needs

towards the engineering of intelligent systems, more anthropomorphic types of

uncertainty models necessitated their inclusion in system models. The di�erent

facets of uncertainty as introduced in Section 2.3.1 motivated the emergence
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of further theories: possibility theory, with more emphasis on fuzzy set theory,

intuitionistic set theory, rough set theory and evidence theory. It is important

to choose a proper tool satisfying modelling purposes. The choice depends on

the cause of uncertainty, quantity and quality of available information and the

needs of the �nal observer of the system. It should be emphasized that there

is no single tool that �ts every problem.

The theories mentioned above are classi�ed as uncertainty formalizations

(Section 2.3.2.1). Within each formalization, measures of uncertainty (Section

2.3.2.2) are developed: such as for nonspeci�city, fuzziness and discord.

2.3.2.1 Theories Related to Formalization of Uncertainty Types

Probability Theory

Reasoning is a major part of an engineering act. Within this act, knowledge is

processed in order to support reasoning, making room for assumption and sim-

pli�cations leaving many facts unknown, undetermined or crudely summarized.

Frequential nature of uncertainty is modelled using tools of probability theory

where all propositions in the universe do not contain doubtful descriptions and

are completely de�ned leaving room only for doubt in their occurrences, so that

each proposition is assigned a numerical measure of uncertainty as a function

of probabilities and these measures are combined according to uniform syntac-

tic principles, the way truth values are combined in logic [48]. In the excellent

introduction [48] the various approaches to the management of uncertainty are

classi�ed into two major categories: extensional and intensional.

Extensional systems are known as production systems, or rule-based sys-

tems. As in classical logic, uncertainty is treated as a generalized truth value

attached to formula and computed as a function of the uncertainties of its

subformula. They su�er from three main limitations: i) improper treatment

of correlated sources of evidence (due to their inability to recognize the com-

mon origin of information), ii) improper handling of bidirectional inferences

(to avoid reasoning cycles), and iii) diÆculties in retracting conclusions (due to
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principle of modularity). Pearl captures the limitations of extensional systems

by referring to a "basic struggle between procedural modularity and semantic

coherence". Such systems lend themselves readily to computations but lack

the robustness of measure-based approaches.

Intensional systems are also known as declarative or model-based. Uncer-

tainty is attached to subsets of "possible worlds". While extensional systems

are "computationally convenient but semantically sloppy", intentional systems

are "semantically clear but computationally clumsy". In intensional systems,

rules denote elastic constraints about the world. In the Bayesian formalism,

the rule A =)m B is interpreted as a conditional probability P (BjA) = m

stating that among all propositions satisfying A, those that also satisfy B arem

percent in majority. It is also assumed that all other elements in the knowledge

base are irrelevant to B and can therefore be ignored. In the Dempster-Shafer

formalism, A =)m B asserts that the set of worlds in which A and :B (com-

plement of B) hold simultaneously has low likelihood and should be eliminated

with probability m.

Evidential Theory or Dempster-Shafer Theory of Evidence

Bayesian methods begin drawing inferences when the underlying probabilistic

model is complete. In causal modelling, the conditional probabilities of the

values of each variable, given the factors perceived as causes of those values,

must be determined. Rather than completing the model, the Dempster-Shafer

(DS) theory [45] computes probability or plausibility indices. Partially speci-

�ed models can be used to represent qualitative relationships of compatibility

among the propositions involved. These qualitative relationships are then used

as a logic for assembling proofs that lead from evidence to conclusions. The

stronger the evidence, the more likely it is that a complete proof will be assem-

bled. The theory estimates how close the evidence is to forcing the truth of the

hypothesis, instead of estimating how close the hypothesis is to being true. As

such, it restrains itself to only providing partial answers rather than full an-
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swers to probabilistic queries. If a large body of knowledge has been acquired

but a few parameters are missing, Bayesian methods presume some reason-

able values for the missing parameters. DS theory does not. Thus although

Bayesian methods have the capability to tolerate total ignorance, they lack

the 
exibility to accommodate partial information. The DS theory computes

logical entailment rather than conditional probabilities. As such, it is con-

ceptually related to logical inference, deductive databases, logic programming,

truth maintenance systems, and incidence calculus.

Here, the basic concepts and de�nitions from the theory of belief functions

([49],[50] are brie
y reviewed.

Frame of discernment: Let a frame of discernment F be the set of all

possible values of some numerical or symbolic variable x. Let b(q) denote the

degree of belief that the true value of x is in the subset q of F , and in no

smaller subset of q. It is convenient to visualize x as a mass of weight b(q)

which is con�ned to q, but can move anywhere inside q.

Basic Probability Assignments: A function b : 2F ! [0; 1] is called a basic

probability assignment (bpa) if: b(�) = 0, 0 < b(qi) � 1,
X
i

b(qi) = 1 where �

is the empty set, qi (i = 1; : : : ; n) are subsets of F , and 2F denotes the set of

all subsets of F . b(qi) is a measure of the belief committed exactly to qi and

to no proper subset of qi.

Focal Elements: The subsets q1; : : : ; qn are called focal elements. The set

Q = fq1; : : : ; qng of all the focal elements is called the core. A subset of F

is a focal element if it is non-empty and if the bpa assigned to it is non-zero.

There are no other restrictions on Q. In particular, one of the focal elements

can be the entire frame of discernment. Also, the focal elements need not be

disjoint, and their union need not cover the entire frame of discernment.

Belief Functions: A belief function X = [fQg; fbg] consists of a core, and

a set of bpa's assigned to its focal elements. The de�nition of a belief func-

tion establishes a one-to-one correspondence between subsets of F and logical

propositions. Thus the notions of conjunction, disjunction, implication, and
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negation are equivalent to the set-theoretic notions of intersection, union, in-

clusion, and complementation. A belief function corresponds to the intuitive

idea that a portion of one's belief can be committed to set unions but need

not be fully committed to any one set or its complement.

Special Cases:

(i) A simple support function consists of a core Q = fq; Fg where q is any

proper non-empty subset of F , and a bpa such that b(q) + b(F ) = 1.

(ii) A vacuous belief function given by b(F ) = 1 and b(qi) = 0 for all qi

other than F . This function describes total ignorance, since no portion of one's

belief is committed to any proper subset of F . Thus, the true value of x can

be anywhere inside F .

(iii) When the core consists of all the singletons in F , the belief function is

equivalent to a Bayesian probability density function.

An important aspect of the Dempster-Shafer theory is its ability to di�er-

entiate between the dual concepts of total belief and plausibility on one hand,

and disbelief and lack of belief on the other hand. These four concepts are

de�ned below:

(i) Total Belief: The total belief B(qi) =
X
i

b(qi) is the sum of the bpa's

of all proper subsets qj of qi. It corresponds to the sum of all the masses that

are con�ned to propositions qi, and re
ects the weight of evidence con�rming

the truth of proposition qi.

(ii) Plausibility: The total belief is generally smaller than the plausibility

P (qi) = 1� B(F � qi) where F � qi is the complement of qi. The plausibility

corresponds to the sum of all masses that may enter qi and re
ects the absence

of evidence discon�rming proposition qi. One's beliefs about a proposition qi

are not fully described by one's degree of total belief B(qi), since B(qi) does

not reveal to what extent one doubts qi. A degree of doubt on qi is to what

extent one belief in its complement :qi: Dou(qi) = B(:qi) = B(F � qi). The

expression of the amount one fails to doubt qi, that is to say that the extent

to which one �nd A credible or plausible is more attractive from the point of
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view of uncertainty measures and forms an upper bound for total beliefs.

(iii) Disbelief: Similarly, the disbelief D(qi) = B(F � qi) is the total belief

in the complement of qi, i.e. the sum of all masses that cannot enter qi. It

re
ects the weight of the evidence discon�rming qi.

(iv) Lack of Belief: The disbelief is generally smaller than the lack of belief

L(qi) = 1�B(qi) which is the sum of all masses that cannot be con�ned in qi,

and re
ects the absence of evidence con�rming qi.

Dempster-Shafer Rule of Combination: Dempster-Shafer rule [45] is the

basic mechanism for the combination of several belief functions. It can be

interpreted as the generation of a consensus, and has been shown [51] to reduce

the entropy (de�ned in 2.3.2.2) of a belief system. Consider two belief functions

X = [fQg; fAg] and Y = [fRg; fBg] based on independent bodies of evidence.

Their orthogonal sum Z = [fSg; fCg] is obtained by applying Dempster's rule

of combination as follows: Z = [fSg; fCg] = [fQg; fAg]� [fRg; fBg] where

c(sk) =

X
sk=qi\rj

X
a(qi)b(rj)

1�
X

qi\rj=;

X
a(qi)b(rj)

(2.1)

This rule, which is associative and commutative, allows the sequential com-

bination of multiple bodies of evidence. In the denominator of c(sk), the

amount K =
X

qi\rj=;

X
a(qi)b(rj) is of particular importance since in this ex-

pression, a(qi)b(rj) commits probability to disjoint (contradictory) subsets qi

and rj. The greater the number of such instances and the greater the degree

of probability (belief) that are con
ictingly committed in each instance, the

greater the total probability K that has to be eliminated or reduced. Since

the renormalizing constant in c(sk): N = 1=(1 � K) is increasing with K, it

naturally serve as a measure of the extent of the con
ict.

Actually, the most useful measure of con
ict between a(qi) and b(rj) is the

quantity logN = log(1=(1 � K)) = � log(1 � K), which is called the weight

of con
ict between the two belief functions and is denoted by Con(a(q); b(r));

N � 1 so 0 � logN � 1. If a(q) and b(r) do not con
ict at all then K = 0
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and Con(a(q); b(r)) = 0. If a(q) and b(r) 
atly contradict each other so that

their orthogonal sum do not exist, then K = 1 and Con(a(q); b(r)) = 1.

Unlike Bayesian theory, the theory of belief functions distinguishes between

the notions of belief and plausibility, as well as those of disbelief and lack of

belief. This is due to the property that, in general, B(qi) +B(F � qi) > 1.

The Shafer-Dempster theory is particularly well suited for applications

where uncertainty is due to the incomplete but not necessarily random nature

of the evidence. Since it deals with set functions rather than point functions,

it also allows the representation of uncertain knowledge at multiple levels of

granularity (coarsening or re�ning), thus facilitating reasoning with a hierar-

chy of hypotheses. An obvious hierarchy of hypotheses occurs with consonant

belief functions at the basis of possibility de�nitions.

Possibility Measures

Possibilistic measure is a special focus of evidence theory that increases the

resemblances to fuzzy set theory and where the focal elements of the body of

evidence are nested. The associated belief and plausibility functions are called

consonant. They have the following property: B(Y \ Z) = min[B(Y ); B(Z)]

8Y; Z and P (Y [Z) = max[P (Y ); P (Z)] 8Y; Z, where we �nd the similarity to

norm and co-norm operations of AND and OR operations (intersection, union)

with fuzzy sets.

The consonant belief and plausibility measures are the primary elements

of possibilistic measures and are named as necessity and possibility measures

respectively. Necessity and possibility measures are denoted as � and � re-

spectively and have the following relationship: �(A) = 1 � �( �A) [1]. These

measures are used to model nonspeci�city and con
ict.

Fuzzy Set Theory

Fuzzy sets are generalizations of crisp sets. The membership of a data element

to a fuzzy set is gradual rather than abrupt as it is in crisp sets. This gradual
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change is expressed by a membership function. The value of the function

for an element represents the degree of membership of the element to the

given set. The membership function �A by which a fuzzy set A is de�ned

has the form: �A : X ! [0; 1] where X is the universal set. The standard

operations of fuzzy set theory are [52]: Complement: � �A(x) = 1��A(x), Union:

�A[B(x) = max[�A(x); �B(x)], Intersection: �A\B(x) = min[�A(x); �B(x)].

The gradual characteristics of the membership function forms imprecise

boundaries for fuzzy sets. Due to this fact, fuzzy sets are used to model

vagueness. In fact, as stated before, fuzziness and vagueness are used to de�ne

the same concept. Besides vagueness, fuzzy set theory is also used to model

imprecision. Fuzzy sets imbedded in a system generates a fuzzy system in

which the state variables are processed based on fuzzy operations. The power of

fuzzy systems lies in their ability to represent expressions in natural language.

They are able to use experts' linguistic information in the form of IF-THEN

rules.

Intuitionistic Fuzzy Set Theory

Human judgement generally is based on an opinion in favor of a possibility

for some condition of existence as well as on an opinion of disbelief in other

conditions strongly supporting nonexistence. Such a human based intuitive

judgement and not a statistical judgement can naturally be represented as an

uncertainty interval between two distributions: that of membership and that

of nonmembership.

An intuitionistic fuzzy set A [53], for a given underlying set E is gener-

ated for expressing such an uncertainty interval and is represented by a pair

f�A; �Ag of functions mapping E ! [0; 1]. For x 2 E where �A(x) gives the

degree of membership to A, �A(x) gives the degree of nonmembership with

the restriction: �A(x) + �A(x) � 1 stressing consistency in intuition. Thus,

degrees generated by these two functions are nonantagonistic. Ordinary fuzzy

sets are special cases of intuitionistic fuzzy sets with �A(x) = 1��A(x), where
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this equation formalizes an antagonistic behavior.

Intuitionistic knowledge of a human expert that executes a control action

through an engineered system is, in a vast majority, interval valued with a

degree of necessity (or "belief") in a certain control as a lower bound together

with a degree of possibility (or "doubt in disbelief": f1�disbeliefg) in the same

parameter as an upper bound. Thus, expert knowledge representation becomes

interval valued with an amount of uncertainty that is measured by the interval

width. Interval valued fuzzy sets have been introduced as the mathematical

formalism of intuitionistic fuzzy sets that model such an uncertainty interval

as a degree of membership at the lower bound and as the complement of

a degree of nonmembership at the upper bound subject to the consistency

inequality stated above. Inconsistency or con
ict may frequently occur in

human judgement and appears in this formation as a violation of the inequality.

In this thesis, we explore the adaptation capability and learning ability of

fuzzy control system in restoring the inconsistency and reducing the interval

valued intuitive uncertainty so that at the end of such a process classical fuzzy

adaptive systems may be used [46].

Rough Set Theory

The main concern in the development of rough set theory is to be able to ana-

lyze imprecise, uncertain or incomplete information expressed in terms of data

gathered by experience. Rough set theory is a mathematical approach to model

vagueness. The main representation of rough sets consists of an approximation

space, and lower and upper approximations of a set. The approximation space

is a classi�cation of the domain of interest into disjoint categories. When ob-

jects of the same categories are considered, their memberships to an arbitrary

subset of the domain may not be de�nable. This introduces the terms lower

and upper approximations. The objects, which are known with certainty to

belong to the subset of interest form the lower approximation, and the objects,

which possibly belong to the subset, describe the upper approximation. The
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elements in the di�erence of these two approximations form the boundary re-

gion, which is the uncertainty region of a rough set [54]. The formal de�nitions

of these concepts are given as follows:

The lower approximation of a set X is described by the domain U objects

x, which are known "with certainty" to belong to the subset of interest with

respect to the attribute B. B(X) = fx 2 U : B(x) � Xg

The upper approximation of a set X containing objects x which "possibly"

belong to the subset of interest with respect to the attribute B. �B(X) = fx 2

U : B(x) \X 6= ;g

The boundary region of a rough set is a region of uncertainty where the set

of elements of that region are not known to be inside or outside the set "with

certainty" with respect to the attribute B. BNB(X) = �B(X)� B(X)

Kayg�s�z and Erkmen have developed a new approach using rough set mod-

elling to the domains of attraction of nonlinear systems obtained by cell map-

ping. The stability domain is represented as a rough set where fully stable cells

determine the lower approximation of the domain, and possibly stable cells its

rough boundary. The totality of these cells forms an upper approximation to

the rough stability domain. The boundary of this domain is smoothed, min-

imizing the inherent stability uncertainty of the region using a reinforcement

learning technique [55].

2.3.2.2 Uncertainty Measures

The �rst measures of uncertainty have been de�ned during the development

of the propositional usage of set theory and during the increasing trend in

probabilistic approaches such as in information theory. These measures are

namely Hartley's measure and Shannon's entropy. Hartley's measure is in the

form: H(A) = logA] where ] denotes the cardinality of set A. Shannon's

entropy is given by: S(p(x)jx 2 X) = �
X
x2X

p(x) log p(x) where (p(x)jx 2 X)

is a probability distribution on a �nite set X.

Hartley's measure is based on classical set theory and it is a measure for
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nonspeci�city. This measure is derived from the following fact that if there is an

alternative of interests known to belong to a particular set of alternatives, then

the question is to identify them within the given set. This situation results

in the need of a measure representing the amount of information needed to

remove the uncertainty associated with a set of alternatives. This was the

motivation behind the derivation of Hartley's measure. When it is generalized

using fuzzy set theory and possibility theory, the measure takes the name of

U-uncertainty, which is again a measure of nonspeci�city and expressed as:

U(F ) =
R 1
0 log(

�F )]d� where (�F )] denotes the cardinality of the �-cut of F .

Some existing uncertainty measures are given in what follows.

Entropy in Information Theory

The essential mathematical and statistical nature of information theory has

been emphasized by Fisher, Shannon and Wiener [56]. Information theory has

its mathematical roots in the concept of disorder or entropy in thermodynamics

and statistical mechanics [57]. It brings a measure-based approach into the

evaluation of cost. The information cost measured by the entropy formalism

has been developed by analogy to the concept of energy. For information

sources with di�erent cost scales, Katona and Tusnady [58], and, Csiszar et al.

[59] have introduced the concept of entropy rate with respect to a stochastic

cost scale, and established the "Principle of Conversion of Entropy" for a wide

class of encoding procedures. Aczel and Daroczy [56] provide an excellent in-

depth analysis of the properties carried by entropic measures of information.

Cross-entropy

Kullback [57] introduces a new measure of information for a set of continuum

cardinality for which Shannon's entropy is a limiting case. The concept of

relative measure is developed into a cross-entropy formulation as follows: The

logarithm of the likelihood ratio log[f1(x)=f2(x)], where fi(x) is the generalized

probability density unique to set probability measure �i for hypothesis Hi,
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is de�ned as the information in a variable x for discrimination in favor of

hypothesis 1 against hypothesis 2. Good [60] describes it as the weight of

evidence for hypothesis 1 given x.

A measure of divergence between hypotheses 1 and 2, based on the notion of

cross-entropy has been investigated within the following formulation [57],[61]:

JD(1; 2) =
R
(f1(x)�f2(x)) log(

f1(x)
f2(x)

)d�(x) = I(1 : 2)+I(2 : 1) where I(i : j) =R
fi(x) log(

fi(x)
fj(x)

)d�i(x), JD(1; 2) is a measure of the diÆculty of discriminating

between propositions 1 and 2.

The divergence JD(1; 2) has all the properties of a distance metric as de-

�ned in the topology except the triangle inequality property, and is therefore

not called distance. The information measures I(1 : 2) and I(2 : 1) represent

directed-divergences, measuring preference in I(i : j) for proposition i over j.

For pattern classi�cation, the notion of "closest" hypothesis suggests the

minimization of divergence. Directed divergences have also been called relative

entropy or cross-entropy. The principle of minimum cross-entropy has been

investigated in Shore and Johnson [62], and, Shore [63] and has been previously

applied to clustering [64].

Since divergence is a metric, it incorporates the property of a dissimilar-

ity measure. Other dissimilarity measures have been developed, especially for

assessing the diversity within populations. They include diversity coeÆcients

and dissimilarity coeÆcients [65]. The latter is based on the Jensen Di�er-

ence: Jij = Hij �
1
2
(Hi +Hj) where Hij measures the di�erence between two

hypotheses such that: Hij =
R
d(X1; X2)pi(dX1)pj(dX2) where X1 and X2 are

two individuals, d is a non-negative, symmetric di�erence function and pi, pj

are probability density functions.

A uni�ed approach for constructing cross-entropy and dissimilarity mea-

sure between probability distributions is investigated in Rao and Kayak [66].

There, the formalism of quadratic entropy is introduced as a new metric and

its properties are discussed around the concept of the Jensen Di�erence.
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Evidential Entropy Measures

The concept of entropy has been extended to the framework of the DS theory

of evidence as a measure of uncertainty [67]. Various aspects of uncertainty

within the framework of belief and plausibility measures have been analyzed

by Klir and Folger [1]. They include the following:

(i) Dissonance: Con
ict or dissonance in evidence is encountered whenever

nonzero degrees of evidence are allocated to disjoint subsets of the frame of

discernment. Dissonance is derived as: E(b) = �
X
i

b(qi) logP (qi) where qi is

a focal element and P (qi) is the plausibility of qi.

(ii) Con
ict: Since plausibility and belief measures are duals, i.e.: P (qi) =

1 � B(F � qi) a measure of confusion may be derived from dissonance by

replacing the plausibility by its dual: C(b) = �
X
i

b(qi) log(B(qi)) where B(qi)

is the total belief. Since B(qi) � b(qi), an upper bound for confusion is:

C(b) � �
X
i

b(qi) log(b(qi)).

The term on the right hand side is the belief entropy in the fractal model

of uncertainty derived by Erkmen in [50]. When b(:) represents a probability

measure, then b(qi) = P (qi) = B(qi) for all focal elements. Consequently, the

confusion measure and the dissonance measure becomes Shannon's entropy.

(iii) Non-speci�city: Yager [67] has introduced a measure of speci�city asso-

ciated with a possibility distribution. Klir and Folger [1] have analyzed several

properties of a measure of non-speci�city de�ned by: V (b) =
X
i

b(qi) log(qi)
]

where ] denotes the cardinality of the set qi.

Measures (i) and (ii) are generalizations of Shannon's entropy in the frame-

work of the theory of evidence. The measure of non-speci�city is a generaliza-

tion of the Hartley measure: HI(qi) = log(qi)
].

Measure of fuzziness on the other hand is a function assigning a nonnegative

real number that expresses the degree of vagueness existing for the member-

ship knowledge of elements of a set lying near or on the boundary of a set.

There are two ways in de�ning uncertainty in terms of its vagueness expressed

by measures of fuzziness. In the �rst one, the metric distance between the
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membership grade functions of the fuzzy set and its nearest crisp set is used.

The second and more practical method is to look at the distinction between

the fuzzy set and its complement. When the di�erence is less, then the set is

considered fuzzier [43].

2.3.3 Tendency-Based Variants in Uncertainty Models

Many variants have been developed around the di�erent facets of uncertainty

based on many problem oriented methods.

Tzouvaras [68] models vague predicates and vague partitions using non-

standard set of integers where the main purpose of the developed model is to

capture all basic features of the notion of vagueness. It is stated that the use

of generalized (nonstandard) integers is successful as a modelling tool but not

feasible when applied to concrete vague situations. The de�nition of vagueness

used in the referred paper is: " Vagueness is de�ciency of meaning. As such,

it is to be distinguished from generality, undecidability and ambiguity". The

outcome of this de�ciency is seen as truth-value gaps. The paper attempts

to describe a kind of structure for vagueness. An example of a vague predi-

cate is given as: "n is small". Then de�nitions of a measurable predicate and

a measurable vague predicate are given. The examples for measurable and

nonmeasurable vague predicates are: for the former case, tall, far, heavy, etc.,

and for the latter, nice, ugly, happy and etc. The de�nitions of measurable

equivalence and vague measurable equivalence are also given in the paper.

Raha and Ray [69] present an approach for default reasoning that is based

on fuzzy logic. Possibility theory is used as a framework for modelling vague

default rules. Vague default is represented by a vague statement augmented

with partial truth. It is stated that a signi�cant part of the belief about the

world is uncertain and incomplete, so defaults are needed to �ll the gaps due

to the uncertainty in the knowledge base. Human have the ability to reason

with good results even in the case of incomplete knowledge. In order to have

such an ability, reasoning systems should be modi�ed to include facilities for
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handling such imprecision. In this referred work, it is suggested to use fuzzy

set theory. Their understanding of imprecision is in terms of vague statements,

which are due to de�ciency of meaning. Fuzzy sets are used for a semantic

representation of a vague expression and fuzzy operators for the manipulation

of such expressions. They also propose an approach based on the theory of

possibility for the representation and manipulation of uncertain and imprecise

default knowledge.

The work by Den�ux [70] presents an approach for representation and ma-

nipulation of imprecise degrees of belief in the framework of evidence theory.

Interval-valued and fuzzy-valued belief structures are introduced. The applica-

tion of the approach to decision making under uncertainty and classi�cation of

fuzzy data are discussed. The reason for probability theory not being a univer-

sal model of uncertainty is given as its unreasonable requirement for modelling

precision for example in the structuring of the universe of hypotheses. In the

paper of the above reference, imprecise belief masses are assigned to impre-

cise propositions and an extension of the transferable belief model allowing

imprecision in the speci�cation of degrees of belief is presented.

Pedrycz [71] has developed the theory of shadowed sets that are induced

by fuzzy sets. It is again a potential tool for modelling vagueness. It has

been shown that shadowed sets reveal conceptual and algorithmic relationships

between rough sets and fuzzy sets. The dilemma of excessive precision in

describing imprecise phenomenon is mentioned for the case of fuzzy sets. It

is stated that, although fuzzy sets are regarded as formal devices to capture,

represent and process vagueness, they su�er from the mentioned dilemma. The

problem arises due to the fact that once the membership functions are de�ned,

the concept is de�ned very precisely. In this referred work, shadowed sets are

proposed for modelling vagueness, since they do not have precise numerical

membership values but rely on basic concepts of truth values and an entire unit

interval perceived as a zone of uncertainty. Such a zone is also constructed by

introducing a fuzzy distance between object pairs for robot motion planning
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[72].

Ch�avez [73] adopts a standard approach to model vagueness, which is to

use second order probability on a �rst-order one and analyzes the value of

reducing vagueness. His aim is to measure the e�ects of vagueness in decision

making where probability and utility assessment are central issues in model

construction. Probabilities being generally subjective, uncertainty about prob-

ability, is stated as: when humans are asked to express their beliefs about a

probability assessment, there happens to be further uncertainty introduced to

the system.

Probability distributions in the representation of uncertainty about proba-

bilities have been the focus of diverse technical discussions among theoreticians

[74]. There are two di�erent opinions exist on this matter. One group claims

that to be uncertain about a probability violates the subjectivists' assumption

that is individuals can develop unique and precise probability judgements.

The other opinion supports possibility of uncertainty about probabilities and

many authors �nd this concept potentially useful [73],[74],[75],[76]. While, if

uncertainty is due to cognitive imprecision, this type is not consistent with the

axioms of subjective probability.

Propagation of imprecise probabilities in a Bayesian network is the ba-

sic architecture for reducing imprecision iteratively [75]. Here, imprecision is

handled through the use of second order probability distributions. Dirichlet

distributions are used to express uncertainty about probabilities. The use of

these distributions transforms the problem of how to propagate point proba-

bilities in a Bayesian network into how to propagate Dirichlet distributions.

Belief networks are another iterative process for reasoning under uncertainty.

The sensitivity of belief networks on diagnostic performance under imprecision

in the representation of numerical or point probabilities is the focus of [76].

Truth-quali�ed fuzzy propositions can also represent imprecise and uncer-

tain information. Fuzzy sets can be used to express imprecise information and

fuzzy truth values to represent uncertainty since they are capable of express-
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ing the possibility of the degree of truth of a fuzzy proposition. An inference

mechanism for fuzzy propositions with fuzzy truth values is developed in [77]

resulting in a hybrid approach that brings possibilistic reasoning and fuzzy rea-

soning together to reason under uncertainty and imprecision. Fuzzy rules and

facts having fuzzy truth values are transformed into a set of uncertain classical

propositions with necessity and possibility measures on which a possibilistic

reasoning is performed. Probabilistic uncertainty may also be included in

fuzzy systems modelling and [78] incorporates it with a technique based on

Demspter-Shafer theory of evidence.

2.4 Mathematical Background

2.4.1 Fuzzy Systems

The well known architecture of a fuzzy system includes a fuzzi�er transforming

the numerically described world into semantics (Fig.2.1). Fuzzy systems are

in fact fuzzy expert systems drawing inference through an engine based on a

fuzzy rule base. Drawn conclusions are defuzzi�ed before being applied to the

numerically driven system.

Fuzzy Rule Base

Fuzzy Inference 
Engine

DefuzzifierFuzzifier
x in U

Fuzzy sets in U Fuzzy sets in V

y in V

Figure 2.1: Basic con�guration of fuzzy logic system with fuzzi�er and defuzzi-
�er

Di�erent choices of fuzzi�er, fuzzy inference engine and defuzzi�er result

in di�erent fuzzy logic systems with varying performances. Fuzzy Rule Base

consists of a collection of fuzzy IF-THEN rules that determine a mapping from

fuzzy sets in the input space U � Rn to that in the output space V � R based
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on fuzzy logic principles. These rules are generally represented as:

R(l) : IF x1 is F
l
1 and ... and xn is F l

n, THEN y is Gl. (2.2)

where F l
i and Gl are the respective antecedent and consequent fuzzy sets,

x = (x1; :::; xn)
T 2 U and y 2 V are respectively input and output linguistic

variables, l = 1; 2; :::;M represents the rule number and Rl : A! B refers to

the speci�c rule [14].

The fuzzi�er performs a mapping from a crisp point x = (x1; :::; xn)
T 2 U

into a fuzzy set A
0

in U . Two choices of this mapping are the singleton fuzzi�er

and the nonsingleton fuzzi�er. In our example, we apply the singleton fuzzi�er

which is de�ned as: A
0

is a fuzzy singleton with support x, that is, �A0 (x
0

) = 1

for x
0

= x and �A0 (x
0

) = 0 for all other x
0

2 U with x
0

6= x. The reason

is that the use of singleton fuzzi�er produces a simple fuzzy logic system,

and nonsingleton fuzzi�ers work better in a noisy environment. Since we do

not incorporate noise in our example systems, we are not using nonsingleton

fuzzi�ers [14].

The AND logic used to compare fuzzy memberships �Fi(xi) in the an-

tecedent A for a particular application is the product operation such that:

�F l
1
�:::�F l

n
(x) = �F l

1
(x1):::�F l

n
(xn) (2.3)

The AND operation can also be performed by using minimum operation in-

stead of product operation, and we are using the product operation in order

to be able to represent the system algebraically.

In classical fuzzy systems, the consequent of a rule undergoes a disam-

biguation, since plants in cascade with such systems can most generally use

only nonambiguous, one-valued parameters. The disambiguation value yl 2 R

can be taken as the maximum of membership distribution �G(x) of the conse-

quent. This value yl = max(�G(x)) is inserted in f(x) given as a closed form

in Equation 2.4. This is a defuzzi�er which performs a mapping from conse-

quent fuzzy sets Bi in V to a crisp point y 2 V . Three choices of this mapping
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exist which are the maximum defuzzi�er, the center average defuzzi�er and

the modi�ed center average defuzzi�er. We make use of the center average

defuzzi�er de�ned as:

y =

MX
l=1

yl(�Bl(yl))

MX
l=1

(�Bl(yl))

= f(x) (2.4)

The reason for the choice of center average defuzzi�er is that the center aver-

age defuzzi�er outperforms the maximum defuzzi�er, and it produces simpler

systems than the ones using modi�ed center average defuzzi�er resulting in

faster training [14].

This defuzzi�er is a weighted average of the y's and the weights �Bl(y)

determined by

�Bl(y) = supx2U [�F l
1
�:::�F l

n!Gl(x; y) � �A0 (x)] (2.5)

and do not take the shape of �Gl(y) into consideration.

A rule in a fuzzy system is represented as R : (�F l
1
�:::�F l

n
(x); yl) where �Gl

achieves its maximum at yl. We also consider the same structure of rule in our

2-way fuzzy adaptive methodology.

From the product-inference rule de�ned in Equation 2.3 and Equation 2.5,

�Bl(yl) is found to be:

�Bl(yl) = supx02U [
nY
i=1

�F l
i
(x

0

i)�Gl(yl)�A0 (x
0

)] (2.6)

Since singleton fuzzi�er is used, �A0 (x
0

) = 1 for x
0

= x and �A0 (x
0

) = 0 for

all other x
0

2 U , and the sup is achieved at x
0

= x. Thus, we can simplify

Equation 2.6 into:

�Bl(yl) =
nY
i=1

�F l
i
(xi) (2.7)

When Equation 2.7 is substituted into Equation 2.4, the form of a fuzzy

logic system with center average defuzzi�er, product-inference rule and single-
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ton fuzzi�er as given below is obtained:

f(x) =

MX
l=1

yl(
nY
i=1

�F l
i
(xi))

MX
l=1

(
nY
i=1

�F l
i
(xi))

=
a

b
(2.8)

where yl is the point at which �Gl achieves its maximum value, and is the

disambiguation value of memberships assigned to consequents of rules.

The closed form of the system given by Equation 2.8 can be represented as

a three-layer feedforward network (Fig.2.2), where the �rst layer generates zl =Qn
i=1 �F l

i
(xi). The second layer weighs zl by yl and generates the numerator a

and denominator b of the equation, separately. The third layer computes f(x)

as the ratio of a to b. This layered system is the classical adaptive system

introduced by Wang [14] that we call 1-way fuzzy adaptive since it applies

to memberships only and does not consider the membership/nonmembership

interval reasoning. This fuzzy system is called fuzzy adaptive system when

it is equipped with a training algorithm for adjusting the parameters of the

system.

y1 yM

f=a/b

f

a b

z1 zM

x1 xn

layer 1

layer 2

layer 3

Figure 2.2: Network representation of the fuzzy logic systems

2.4.2 Takagi-Sugeno (T-S) Fuzzy Systems

The Takagi-Sugeno (T-S) fuzzy system used to model a nonlinear system is

also a fuzzy rule based system with the following typical rule structure:
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R(l) : IF x1 is F
l
1 and ... and xn is F l

n, THEN _x(t) = Alx(t) +Blu(t); (2.9)

where F l
i (i=1,2,...,n) are the antecedent fuzzy sets, x(t) = [x1; x2; :::; xn]

T are

the state variables, and u(t) is the control input. Al and Bl are respectively

the state and control input matrices of the linearized subsystem around the

operation point of rule l.

The closed form of the output of the T-S fuzzy system with center average

defuzzi�er, product-inference rule and singleton fuzzi�er is:

_x(t) =

MX
l=1

(Alx(t) +Blu(t))(
nY
i=1

�F l
i
(xi))

MX
l=1

(
nY
i=1

�F l
i
(xi))

(2.10)

where �F l
i
(xi)'s are the membership functions assigned to the fuzzy sets in the

antecedent parts of the rules, and M is the rule number. Equation 2.10 can be

written in the following form as:

_x(t) = [

MX
l=1

(Alwl(x(t))

MX
l=1

wl(x(t))

]x(t) + [

MX
l=1

(Blwl(x(t))

MX
l=1

wl(x(t))

]u(t) (2.11)

Here, wl(x(t)) =
Qn

i=1 �F l
i
(xi(t)). For a simpler representation,  l(x) is de�ned

to be  l(x) =
wl(x(t))

MX
l=1

wl(x(t))

. Then, Equation 2.11 takes the form:

_x(t) = (
MX
l=1

 l(x(t))Al)x(t) + (
MX
l=1

 l(x(t))Bl)u(t) (2.12)

We are going to use the closed form in Equation 2.12 in the development

of the stability theory using the Lie algebras introduced in Chapter 4.

2.4.3 Lie Algebra

In this section, basic de�nitions and results from Lie algebra theory are intro-

duced without the proofs. The proofs can be found in [79]. We use Lie algebra
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theory in the stability analysis of T-S fuzzy systems, which is a novelty in the

literature.

De�nition 1: A Lie algebra g is a vector space which has a bilinear product

map [.,.]: g�g satisfying:

(i) [X; Y ] = �[Y;X] for all X; Y 2 g

(ii) [X; [Y; Z]] + [Y; [Z;X]] + [Z; [X; Y ]] = 0 for all X; Y; Z 2 g

If [X; Y ] = 0 for all X; Y 2 g, then g is called an Abelian Lie algebra. Two

elements X; Y satisfying [X; Y ] = 0 are said to be commuting.

De�nition 2: A subspace h of g is said to be a subspace if [h; h] � h, i.e.

X; Y 2 h implies that [X; Y ] 2 h.

De�nition 3: An ideal h in a Lie algebra g is a subspace such that [h; g] �

h, where [h; g] denotes the subspace spanned by the set of all elements of the

form [X; Y ]; X 2 h; Y 2 g. An ideal h in g is minimal if f0g is the only ideal

of g contained in h.

h1 + h2 denotes the subspace spanned by all elements of the form X + Y ,

X 2 h1, Y 2 h2, for any subsets h1; h2 � g. If h 2 g is an ideal, then g=h

denotes the quotient Lie algebra which is the quotient of the vector spaces g

and h with brackets [X; Y ] = [X; Y ]; X; Y 2 g, where X is the coset of X. The

projection map g! g=h is a homomorphism of Lie algebras with kernel h. A

homomorphism of Lie algebras is a homomorphism of the underlying vector

spaces which preserves the brackets.

De�nition 4: A Lie algebra g is said to be simple if g and f0g are the

only ideals of g.

De�nition 5: If g = g1 � g2 � : : : � gk (vector space direct sum) and

each gh is an ideal, then g is called the direct sum of g1; : : : ; gk. For i 6= j,

gi \ gj = [gi; gj] = f0g.

De�nition 6: The ideal Dg = [g; g] of a Lie algebra g is called the derived

algebra of g. The derived series of g is:

g � Dg � D2g � : : : � Dng � : : :,

where Dng = D(Dn�1g). Each term in the series is ideal.
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De�nition 7: If Dkg = f0g for some k > 0, then g is said to be a solvable

Lie algebra.

De�nition 8: If g does not contain any solvable ideal apart from f0g, then

g is said to be semisimple.

Theorem 1: Every semisimple Lie algebra is the direct sum of all its

minimal ideals.

Theorem 2: Every Lie algebra g has a unique maximal solvable ideal r

called the radical of g. Then g=r is semisimple.

Another important class of Lie algebras is the nilpotent class.

De�nition 9: If g is a Lie algebra, let C(0)g = g, C(1)g = [g;C(0)g]; : : : ;

C(n+1)g = [g;C(n)g]; : : :. Then, all C(n)g (n = 0; 1; 2; : : :) are ideals of g. The

descending central series is obtained as:

C(0)g � C(1)g � : : : � C(n)g � : : :

If C(k)g = 0 for some k > 0, then g is called nilpotent. It can be proved

that Dng � C(n)g for each n, so if g is nilpotent, then it is solvable. In fact, g

is solvable if and only if Dg is nilpotent.

The adjoint map "ad" is an important linear operator acting on any Lie

algebra g, and de�ned for each X 2 g as:

(adX)Y = [X; Y ].

Using this map, a geometric structure on a Lie algebra is de�ned in terms

of a symmetric bilinear form (:; :) called the Killing form. The Killing form is

de�ned to be:

(X; Y ) = Tr(adXadY )

Theorem 3: A Lie algebra g is solvable if and only if (X;X) = 0 for all

X 2 Dg.

Theorem 4: (Cartan's criterion) A Lie algebra g is semisimple if and only

if the Killing form of g is nondegenerate, i.e. (X; Y ) = 0 for all Y 2 g implies

that X = 0.

Next, the decomposition of Lie algebras is introduced. As in the case of the

decomposition of a vector space into the generalized eigenspaces of any given
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linear operator, any nilpotent linear Lie algebra h acting on a vector space V

de�nes a decomposition of V in the following way.

For any given linear function � : h ! C de�ne the set V � = fv 2 V :

[H � �(H)I]kv = 0, for some k > 0 and all H 2 hg, that is V � is the

generalized eigenspace for all H 2 h with eigenvalue �(H). If V � 6= ;, it is

said that � is a weight or a root of h in V and V � is a weight (root) subspace

of V . Then,

V =
M
�2�

V � (2.13)

where � is the set of all weights of h in V .

If g is a Lie algebra and h is a nilpotent subalgebra, then adh = fadH :

H 2 hg is a nilpotent linear Lie algebra acting on g ; so if Equation 2.13 is

applied with V = g, and h replaced by adh, the following decomposition of g

is obtained:

g =
M
�2�

g� (2.14)

where

g� = fG 2 g : [adH � �(adH)I]kG = 0, for some k > 0 and all H 2 hg.

De�nition 10: If h = g0, then h is called a Cartan subalgebra of g.

It can be shown that every Lie algebra has a Cartan subalgebra and each

such subalgebra is a maximal nilpotent subalgebra. Any two Cartan subalge-

bras are conjugate under a certain group of automorphisms of the algebra.

In the case of a semisimple Lie algebra, the root space decomposition 2.14

takes the form:

g = h�
L

�2� g
�

where � is the set of non-zero roots of h in g, and the Cartan subalgebra h is

a maximal Abelian subalgebra of g. The Killing form (:; :) is nondegenerate on

h, each g� is one-dimensional for � 6= 0 and there are (dimh) (dim:dimension)

linearly independent roots.

Any Lie algebra g can be written in the form:
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g = r +m; r \m = ; (2.15)

where r is solvable and m is semisimple. This is called a Levi decomposition of

g. However, this decomposition is not a direct sum, so it is not unique. Each

Lie algebra has many Levi decompositions.

Two Levi subalgebras m1 and m2 are related by

R�1m1R = m2 (2.16)

where R = exp(adS); S 2 [r; g].

A Levi subalgebra m is semisimple, since m �= g=r and so m can be decom-

posed in terms of a Cartan subalgebra hm:

m = hm �
X
'2�

m' (2.17)

where � is the set of nonzero roots with respect to hm. Cartan subalgebras

are not unique, but any two Cartan subalgebras h1 and h2 of m are conjugate

under the group of automorphisms of m generated by exp(adX) where X 2 m

and adX is nilpotent. Thus,

h1 = ��1(X)h2�(X) (2.18)

for some X 2 m with adX nilpotent, where �(X) = exp(adX). Note that a

Cartan subalgebra is a maximal Abelian subalgebra of m. Combining 2.15 and

2.17, any Lie algebra g may be written in the form:

g = r +m = r+ (hm �
X
'2�

m') (2.19)

where hm is an Abelian Cartan subalgebra.

2.4.4 Describing Function

A stable controller design methodology with periodic input and output can be

developed based on describing functions. We expand this theory to a multi
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input 2-way fuzzy adaptive stable controller design in Chapter 4, so here we

review the describing function formulation of a single-input single-output 1-

way fuzzy system of [23]. The use of such an analysis technique introduces a

systematic way for designing a multi-input fuzzy controller. The fuzzy system

has the following rule structure:

R(i) : IF x is �i, THEN u is ui. (2.20)

where x and u are the input and output variables respectively, �i is the mem-

bership function corresponding to the ith rule, and ui is the output fuzzy set,

which is a singleton in this case.

The closed form of the fuzzy system with singleton fuzzi�er, product infer-

ence rule and center average defuzzi�er is:

u = f(x) =
X
i


i(x)ui (2.21)

where


i =
�i(x)X
r

�r(x)
(2.22)

There are certain assumptions on the structure of the fuzzy system such

that it is possible to �nd an analytical expression for the describing function.

These assumptions are summarized below [23]:

1. The antecedent membership functions are triangular functions dis-

tributed completely, consistently and symmetrically with respect to the origin.

The functions are of the form:

�i(x) =

8>>>>>><
>>>>>>:

x� �i�1
�i � �i�1

; �i�1 � x < �i

x� �i+1

�i � �i+1

; �i � x < �i+1

0 otherwise

(2.23)

where ��i = ��i.

2. Consequent parts have the odd symmetry condition:

u�i = �ui (2.24)
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which make them sign dependent. This assumption in control system makes

the control much more reactive to deviations from the desired values.

3. When �n � x < �n+1, only two rules are �red, and:

MX
k=1

�k(x) = �n(x) + �n+1(x) = 1 (2.25)

So:


i(x) =
�i(x)

MX
k=1

�k(x)

= �i(x) (2.26)

It is assumed that only two consecutive memberships overlap.

4. 
�i(�x) = 
i(x), since 
�i(�x) = ��i(�x)| {z }
�i(x)

= 
i(x) determining even-

ness of membership functions.

By assumption 2, it is guaranteed that the fuzzy system given by Equation

2.21 is odd in x, since 
i's are even in x as indicated by assumption 4. Before

the derivation of the describing function, the following lemmas are given in

[23] in order to simplify the proof of the theorem for the describing function.

Lemma 1: If the fuzzy system satis�es the above four assumptions, then it

is also odd in time when the input is x = A sinwt.

Proof: The fuzzy system is odd in x and x = A sinwt is also odd in time

t, then the output of the fuzzy system is odd in t.

Lemma 2: If the fuzzy system satis�es the above four assumptions, and

x = A sinwt, then u(t) = u((�=w)� t).

Proof: For 8t1 2 R, let x1 = A sinwt1. For t2 = (�=w � t1), x2 � x(t2) =

A sinwt2 = A sinw( �
w
� t1) = A sinwt1 = x1. So, u(t1) = u(t2) = u(�=w� t1).

Lemma 3: If the fuzzy system satis�es the above four assumptions, and

�k � x < �k+1, then the output u of the system is:

u =
X
i


i(x)ui =
�uk
��k

x+
1

��k
(�k+1uk � �kuk+1) (2.27)

where ��k � �k+1 � �k and �uk � uk+1 � uk.
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Proof: When �k � x < �k+1, only two rules are �red and

u =
X
i


i(x)ui = 
k(x) + 
k+1(x)uk+1

= (�
x

��k
+
�k+1

��k
)uk + (

x

��k
�

�k
��k

)uk+1

=
�uk
��k

x+
1

��k
(�k+1uk � �kuk+1)

(2.28)

The describing function of the fuzzy system satisfying the above assump-

tions and lemmas are given in the following theorem.

Theorem: The describing function of the fuzzy system given by the Equa-

tion 2.21 and satisfying the four assumptions is a real number that only de-

pends on the amplitude of the input sinusoid and is independent of the input

frequency w, and is of the form:

N(A;w) = N(A) =
b1
A

=
4

�A

dX
i=0

f
�uiA

2��i
((Æi+1 � sin Æi+1 cos Æi+1)

�(Æi � sin Æi cos Æi)) +
1

��i
(�iui+1 � �i+1ui)(cos Æi+1 � cos Æi)g

(2.29)

where d satis�es �d � A < �d+1, d > 0, and varies with A; fÆig are de�ned to

be the angles where the input sinusoid x = A sin Æ intersects the centers f�ig's

of membership functions. For fÆig's, we have:

Æ0 � 0

Æi � sin�1(
�i
A
); (i = 1; : : : ; d; 0 < Æi <

�

2
)

Æd+1 �
�

2

(2.30)

The de�nition of Æ is shown in Fig.2.3 schematically.

Proof: The describing function of u(t) � u(x = A sinwt) is calculated

as: N(A;w) = 1
A
(b1 + ja1), where a1 = 1

�

R �
�� u(t) cos(wt)dwt and b1 =

1
�

R �
�� u(t) sin(wt)dwt. For the fuzzy system:

a1 =
1
�

R �
�� u(t) cos(wt)dwt = 0 by Lemma 1

b1 =
1
�

R �
�� u(t) sin(wt)dwt

= 2
�

R �
0 u(t) sin(wt)dwt by Lemma 1

= 2
�
(
R �=2
0 u(t) sin(wt)dwt+

R �
�=2 u(t) sin(wt)dwt)

= 2
�
(
R �=2
0 u(t) sin(wt)dwt+

R 0
�=2 u(

�
w
� k) sin(� � wk)d(�wk))

= 4
�

R �=2
0 u(t) sin(wt)dwt by Lemma 2

(2.31)
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Figure 2.3: De�nition of Æ

Using the variables Æi's in b1, we have:

b1 =
4
�
(
R Æ1
Æ0
u(t) sin(wt)dwt+

R Æ2
Æ1
u(t) sin(wt)dwt+ : : :+

R Æd+1
Æd

u(t) sin(wt)dwt)

= 4
�

Pd
i=0

R Æi+1
Æi

u(t) sin(wt)dwt

= 4
�

Pd
i=0

R Æi+1
Æi

f�ui
��i

A sin(wt) + 1
��i

(�i+1ui � �iui+1)g sin(wt)dwt by Lemma 3

= 4
�

Pd
i=0f

�uiA
2��i

((Æi+1 � sin Æi+1 cos Æi+1)

�(Æi � sin Æi cos Æi)) +
1

��i
(�iui+1 � �i+1ui)(cos Æi+1 � cos Æi)g

(2.32)

This concludes the derivation of the describing function for a 1-way fuzzy

system.

2.4.5 Approximating Sequences

We are going to use the approximating sequences technique in the design of an

optimal fuzzy controller in Chapter 4, so in this section, this technique of [80]

is introduced. When the plant together with a fuzzy controller can be put in

the required form we can apply the approximating sequences technique, and

this is another novelty we have introduced to the literature.

The aim of the method is to solve the optimal control problem for "pseudo-

linear" systems of the form:

_x = A(x)x +B(x)u (2.33)
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together with a quadratic cost function:

J = xT (tf )F (tf) +
Z tf

0
(xTQx + uTRu)dt (2.34)

The proposed method introduces a sequence of time-varying linear-quadratic

approximations to the system de�ned by Equation 2.33. The basic assumption

in this method is the local Lipschitz continuity.

The sequence of approximations to the problem of minimizing the cost 2.34

subject to 2.33 is given as:

For k=0,

_x[0] = A(x0)x
[0] +B(x0)u

[0]; x[0](0) = x0

J [0] = x[0]T (tf)Fx
[0](tf ) +

R tf
0 (x[0]TQx[0] + u[0]TRu[0])dt

(2.35)

and for k � 1,

_x[k] = A(x[k�1](t))x[k] +B(x[k�1](t))u[k]; x[k](0) = x0

J [k] = x[k]T (tf )Fx
[k](tf ) +

R tf
0 (x[k]TQx[k] + u[k]TRu[k])dt

(2.36)

It is seen that the approximations are linear, time-varying and quadratic,

so the optimal control is of the form:

u[k] = �R�1BT (x[k�1](t))P [k]x[k](t) (2.37)

where P [k] is the solution to the Riccati equation:

_P [k](t) = �Q� P [k]A(x[k�1](t))� A(x[k�1](t))TP [k]

+P [k]B(x[k�1](t))R�1BT (x[k�1](t))P [k]

P [k](tf) = F

(2.38)

Then, the kth dynamical system is:

_x[k] = A(x[k�1](t))x[k] � B(x[k�1](t))R�1BT (x[k�1](t))P [k]x[k](t) (2.39)

The proof of convergence can be found in [80].
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CHAPTER 3

MODELLING INCONSISTENCY: 2-WAY

FUZZY SYSTEMS

In this chapter, we introduce our novel 2-way fuzzy adaptive system. We

describe the system architecture for the fuzzy system together with the train-

ing procedure, which is at the basis of the adaptivity. The methodology of

our proposed system models uncertainty and inconsistency using intuitionistic

fuzzy sets and generate the novel architecture 2-way fuzzy adaptive system.

The 2-way fuzzy adaptive system uses intuitionistic fuzzy sets that model in-

tuitive uncertainty in place of classical fuzzy sets. Generally, the design of a

controller involves 2 types of information: 1) absolutely necessary information

for the control action and 2) information on parameters possibly important for

control.

Necessity and possibility create an interval-valued representation of con-

trol information. It is such an interval valued distribution of information, that

intuitionistic fuzzy sets model in our proposed adaptive control architecture.

Necessity forms the lower bound, and possibility the upper bound of an inter-

val valued information representation with uncertainty modelled as the width

of this interval. Intuitionistic fuzzy sets bring 
exibility into the system since

it is possible to assign control upper bounds (nonmembership functions) inde-

pendent from control lower bounds (the membership functions). There is only

a consistency constraint on this assignment, which requires that the sum of the

two functions should be less than or equal to unity. However, this inequality
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is often violated during control activities rendering knowledge representation

inconsistent.

Beside the development of the novel 2-way fuzzy adaptive control architec-

ture, this chapter also investigates the e�ect of inconsistency and uncertainty

in the 2-way fuzzy adaptive system. Our system is subject to two phases of

training (2 pass learning). The �rst phase is found to be highly sensitive to

inconsistency and therefore it aims at reducing this inconsistency. The re-

sultant system is a 2-way fuzzy adaptive system with a minimum degree of

inconsistency. The main sensitivity of the second phase of training resides on

the width of the uncertainty interval. Therefore, this phase is found to reduce

the uncertainty width introduced by the de�nition of the membership and

nonmembership functions. The resultant system is a one-way fuzzy adaptive

system without uncertainty.

In this chapter, we also develop a method based on shadowed set theory

for the evaluation of the inconsistency handling of our 2-way fuzzy system.

The inconsistency is reduced by phase 1 of the training and we want to have a

measure based understanding of the "more or less consistency" obtained after

phase 1 based on shape characteristics of membership and nonmembership

functions involved. Therefore we have to track how initially fully inconsistent

membership and nonmembership changes after the inconsistency adjustment

of phase 1 of our 2-way fuzzy adaptive control system.

We classify this change into di�erent types of inconsistencies based on shad-

owed sets and generate a correlation between classes or types of inconsistency

with membership/nonmembership overlaps based on an index of fuzziness. A

global index is then assigned to the type of inconsistency by simply adding both

indexes of fuzziness for membership and nonmembership. Our evaluation is

based on this correlation mapping of the di�erent patterns (types) of inconsis-

tency to the di�erent global indices of fuzziness of the input membership and

nonmembership values.
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3.1 Our Proposed System Architecture

Our 2-way fuzzy adaptive controller is also a 3-layer feedforward network as

in Fig.2.2. However, it makes use of both the necessity representations and

the possibility representations of the aforementioned interval valued fuzzy sets

that are reviewed in Chapter 2 (Section 2.3.2.1). Thus, it takes into account

the membership/nonmembership interval reasoning. This structural di�erence

with the 1-way fuzzy adaptive controller necessitates a di�erent description

and implementation of the fuzzy rule base. Structuring the fuzzy rule is based

upon: 1) sources that generate rules and 2) de�nition of the support functions

for F l
i and G

l in Equation 2.2.

In the 1-way fuzzy adaptive controller of Wang [14], two solutions for these

problems are suggested: Concerning the �rst issue, the rules can be obtained

either by asking human experts, or using training algorithms based on mea-

sured data. Suggestions for de�ning support functions are to ask the experts

to specify the fuzzy membership functions, and tune them by using numerical

data. For this second issue, the functional forms of �F l
i
and �Gl should be

speci�ed �rst. Once the functional forms are �xed, the parameters of these

functions should be determined by using measured data, which is a tuning

done through the use of 1 level training algorithm. Our approach brings a

major modi�cation to this second issue.

The major structural di�erence in our approach arises from the de�nition

of support that uses necessity measures (membership functions) and possibility

measures, which are fuzzy complements of nonmembership functions. In one-

way fuzzy adaptive systems, it is enough to de�ne membership functions for F l
i

and Gl in Equation 2.2. In our 2-way fuzzy adaptive systems, the membership

and nonmembership functions �(x) and �(x) are de�ned independently with

or without complying with the inequality: �(x) + �(x) � 1 that determines

consistency. There a support to a proposition in a rule is de�ned as an interval

spanned by two distributions that may as well be inconsistent: membership

distribution at the lower bound and the complement of a nonmembership dis-
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tribution at the upper bound.

The process di�erence that our approach brings, is also due to the interval

valued support assigned to propositions of a rule as an expert knowledge rep-

resentation. Memberships are tuned in a �rst level training, where learning is

done in the same way as in a 1-way fuzzy adaptive controller. However, the

uncertainty measured as the width of the support interval requires a further

training (second level training) so as to adjust optimally the parameters of the

nonmembership functions. The optimality aim of this second level training is

to minimize the interval width which is the uncertainty so that �(x) + �(x)

tends towards unity making the resultant system one-way fuzzy (uncertainty

width is zero).

The novelty in the approach is also to use the designed adaptive fuzzy

system in order to model inconsistency. This is achieved through the as-

signment of inconsistent membership and nonmembership functions, that is

�(x) + �(x) � 1. The assignment of inconsistent membership and nonmem-

bership functions introduces another phase of training to the system.

As a result of the introduction of inconsistency, the control system becomes

primarily highly sensitive to this degree of inconsistency and bears a lesser but

still important sensitivity to uncertainty measured as the interval width. Con-

sequently, the system we developed becomes subject to two phases of training.

In the �rst phase, the aim is to reduce the inconsistency present in the system.

After this �rst phase of training, the system becomes a 2-way fuzzy adaptive

system with minimum inconsistency. The system is then subject to another

phase of training to reduce the uncertainty interval width as mentioned previ-

ously. In all the phases, there are two levels of training: for the adjustment of

the parameters of the membership and for the adjustment of the parameters

of the nonmembership functions. The training procedure is discussed in detail

in the following section.
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3.2 Training Procedure

The proposed system is subject to two phases of training as mentioned be-

fore and each phase has two levels of training. The back-propagation training

algorithm is used for all levels of training of the 2-way fuzzy adaptive con-

trol. The back propagation algorithm provides adaptation to memberships

and nonmemberships through the adjustment of their parameters using nu-

merical information given as input-output pair (x; d), x 2 U � Rn, d 2 V � R

(U : Input universe of discourse, V : Output universe of discourse). The pur-

pose of the training is to minimize the error of the form:

e =
1

2
[f(x)� d]2 (3.1)

where f(x) is de�ned in closed form in Equation 2.8, by adjusting member-

ship/nonmembership parameters.

Assume that the membership and nonmembership functions are assigned to

be Gaussian functions as given (�F l
i
(xi) = exp(�(xi�xil

�il
)2)). The parameters

to be adjusted are the parameters included in the formulation f(x) of the

adaptive fuzzy system. They are: the mean xil and the variance �il of the

membership/nonmembership distributions in antecedents of the rules and yl,

the maximum of membership/nonmembership distribution in the consequents

of the same rules.

The well known update equation for the back propagation training algo-

rithm [81] is the steepest descent:

p(k + 1) = p(k) + �p(k) = p(k)� 

@e

@p
jk (3.2)

where �p(k) is generally of the form:

�p(k) = �

@e

@p
+ ��p(k � 1) (3.3)

Here, p denotes the parameters to be trained, so p 2 fyl; xil; �ilg, l = 1; 2; : : : ;M

for our case, k = 0; 1; 2; : : :, i = 1; 2; : : : ; n and � is a positive constant called
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the momentum term which relates to the memory of the system from previous

learning states. Since our system is contaminated with uncertainty and incon-

sistency, and previous learning states have more degrees of uncertainty and

inconsistency, we opt not to remember the past states and set � = 0. Then,

our update equations turn out to be in the form of steepest descent equation:

p(k + 1) = p(k)� 

@e

@p
jk (3.4)

where 
 is a constant step size.

The training algorithm as described in this chapter is schematically detailed

in Fig.3.1. We see that, �rst f is computed forward along the network. Then,

the error e is back-propagated to train individually the parameters yl, xil, �il

of the system using the steepest descent Equation 3.4.

Figure 3.1: Training Algorithm

In all the levels, the above procedure is used. The �rst level is for the

adjustment of the parameters of the membership functions, whereas the second

level training is for the adjustment of the parameters of the nonmembership
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functions. The system to be trained is in the form of Equation 2.8. But in

the second level training, the membership functions which are necessity values

in Equation 2.8 are replaced by the complement of nonmemberships which

are possibility values, (1-nonmembership). The training architecture in this

second level taking into consideration possibility values, is again a three-layer

feedforward network to which error propagation is again applied as in the �rst

level. But here error undergoes a constrained minimization subject to the

constraint 1 � �A(x) ! �A(x) which has to be met, upon convergence of the

second level training iterations rendering the system as close to fully consistent

as possible. The closeness degree at convergence requires a classi�cation of

inconsistency based on their evaluation.

3.3 Shadowed Set Evaluation of Inconsistency

In our approach, shadowed sets are used as tools to evaluate inconsistency

in our system. Overlapping of shadowed sets obtained from membership and

nonmembership functions de�ne an indecisiveness region that we use to char-

acterize the type of inconsistency (Section 3.3.2). Section 3.3.1 presents a quick

preview of the theory underlying our approach.

3.3.1 Shadowed Sets

The theory of shadowed sets is developed by Pedrycz [71] in order to overcome

the problem of excessive precision in describing imprecise information. That is

to say, when vagueness is modelled using fuzzy sets, membership functions are

used, which are speci�c and exact functions in numerical form. This generates

a debate on representing imprecise knowledge with precise functions. However,

in the case of shadowed sets, there is not a precise numerical representation.

This property of shadowed sets allows a computationally simple representation

of vagueness within the assignment of fuzzy sets by a rough and less precise

construct based on �-cuts.
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Shadowed sets can be induced from fuzzy sets such that: the membership

values that are considered to be high enough (above a threshold �) are elevated

to 1 and those which are considered to be low (below a threshold 1 � �) are

reduced to zero, while the intermediate values (between � and 1��) are taken

as unde�ned and called a shadow. The formal de�nition of a shadowed set is

given as: Let A be a fuzzy set. Then S is called a shadowed set and is de�ned

as: S : A ! f0; 1; [0; 1]g. The values where S is 1 are called the core and

the values forming the region [0; 1] are called the shadow of S. An example of

forming a shadowed set from a fuzzy set is given in Fig.3.2.

A

S

a1 a2

α

1-α

Figure 3.2: Shadowed Set S induced from Fuzzy Set A

A numerical method is to be developed for the selection of the threshold

value, � as in Fig.3.2, in order to balance the vagueness since all the interme-

diate values are de�ned as inde�nite. This balance is needed to ensure that

the de�nite and inde�nite regions de�ned in a shadowed set are balanced prop-

erly. The suggested method in [71] is to balance the areas that are below the

membership function. The related formulation is:

H =
����
Z a1

�1
A(x)dx +

Z 1

a2
(1� A(x))dx�

Z a2

a1
A(x)dx

����
such that for � 2 [0; 0:5) H(�) = 0.

When the threshold value � is chosen using the above formulation, the

values of the fuzzy set that are reduced to zero in the shadowed set and that

are increased to one are balanced with values between 0 and 1 assigned as the

shadow.
The basic operations on shadowed sets [71] are summarized in Table 3.1.
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Table 3.1: Basic Operations on Shadowed Sets

Union Intersection Complement
0 1 [0,1]

0 0 1 [0,1]
1 1 1 1

[0,1] [0,1] 1 [0,1]

0 1 [0,1]
0 0 0 0
1 0 1 [0,1]

[0,1] 0 [0,1] [0,1]

0 1
1 0

[0,1] [0,1]

Operations on shadowed sets exhibit commutativity, associativity, idempo-

tency, distributivity, boundary conditions and involution. When the shad-

owed set operations are extended to higher dimensional constructs, shad-

owed relations are obtained. An example of such a case can be given as:

(A�B)(x; y) = min(A(x); B(y)) where a shadowed relation is given based on

operation on two shadowed sets A(x) and B(y).

3.3.2 Inconsistency Types Characterized by Shadowed

Sets

In our approach, we use shadowed sets to evaluate inconsistency in the system.

The shadowed sets are formed after the �rst phase of training, which is the

one highly sensitive to inconsistency. Our evaluation of inconsistency is based

on a concept of indecisiveness region that we develop out of induced shadowed

sets of membership �(x) and nonmembership �(x). This indecisiveness region

is obtained as the intersection of the induced shadowed sets and is used to

characterize the type of inconsistency.

Consider the membership (�(x)) and nonmembership (�(x)) functions and

their induced shadowed sets, M(x) and V (x) respectively. In generating the

shadowed sets, the balance of vagueness mentioned in Section 3.3.1 is also taken

into account in determining the value of the threshold � in each distribution

function. The shadowed sets can overlap in 4 di�erent forms which are shown

in Table 3.2 (I: Indecisiveness region (M \ V ) M: Induced shadowed set for

membership V: Induced shadowed set for nonmembership).

We generate the correspondence between the type of inconsistency obtained
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Table 3.2: Types of the Inconsistency Characterized by Shadowed Sets

Type of Inconsistency Global Index of Fuzziness
Type 1 0 < c < 0:5:

M V

I=∅

M and V are distinct and
there is no intersection re-
gion I. This type corre-
sponds to a fully consistent
assignment of membership
and nonmembership func-
tions.

Type 2 0:5 < c < 1:
M V

I

M and V are just overlap-
ping and there is a thin in-
tersection region I. This in-
troduces a certain level of
inconsistency for this type
of assignment since the val-
ues falling into the intersec-
tion region are members of
both membership and non-
membership functions shad-
owed sets and this creates a
thin indecisiveness region.

Type 3 c > 1:
M V

I

M and V have major over-
lap. The overlap of two
shadowed sets introduces
a larger intersection region
representing a major level
of inconsistency leading to
a large portion of indecisive-
ness.

Type 4 c� 1:
M=V=I  
M∩V=I

M and V fully overlap: full
inconsistency.
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at the output of phase 1 of the 2-way adaptive system that tries to reduce in-

consistency, and a global index of fuzziness obtained from membership and

nonmembership distributions. The measure of fuzziness adapted for this pur-

pose is f = �=m where � is the variance and m is the mean of the related

Gaussian function. In the case of two fuzzy distributions, which are the mem-

bership and nonmembership functions for our case, the sum of each individual

fuzzy measure is used as a combinational measure c =
X
i

�i
mi

i 2 f�(x); �(x)g.

We cluster membership and nonmembership functions of each rule accord-

ing to their size of overlap (size of indecisiveness region). Three clusters are

obtained where the remaining cases not being clustered are grouped as a 4th

cluster. When each cluster is examined according to the fuzziness number c,

we �nd that each cluster is characterized by an interval of c values. There-

fore, the shadowed set patterns clusters are found to point to some correlation

between inconsistency type (indecisiveness region) and c. We see that values

0 < c < 0:5 guarantee the characterization of type 1 inconsistency (cluster

#1) and as c tends to 1 when 0:5 < c < 1 the induced shadowed sets get closer

to each other and begin overlapping generating a type 2 inconsistency (cluster

#2). As c > 1, type 3 inconsistency (cluster #3) can lead to even type 4 for

large values of c (c >> 1).
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CHAPTER 4

STABILITY ANALYSIS

There are three stability analysis methods developed in this chapter for fuzzy

systems. The �rst method is based on approximating sequences technique,

and aims at designing an optimal fuzzy controller. The second method uses

describing function technique to �nd a stability condition for the 2-way fuzzy

adaptive system excited by periodic inputs, and the last method is developed

using Lie algebra theory and analyzes the stability of T-S type fuzzy systems.

The design of the optimal controller based on the equivalent linearization of

approximation techniques can be used in case the other system representations

are not available for the plant to be controlled.

4.1 Equivalent Linearization

In this section, we introduce our method of designing an optimal 2-way fuzzy

adaptive controller. The method is based on the approximating sequences

technique reviewed in Chapter 2.

The 2-way fuzzy adaptive system is applied as a controller to a pseudo-

linear system of the form:

_x = A(x)x +B(x)u (4.1)

where in the place of u, we have the 2-way fuzzy adaptive system given by the

equations:

u = f(x) =
X
l


l(x)yl (4.2)
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and


l =

Qn
i=1 �il(xi)

MX
l=1

nY
i=1

�il(xi)

(4.3)

In the equations, �il's are the membership/(1-nonmembership) functions, yl's

are the maximum values of the consequent membership functions, M is the

rule number, and n is the number of inputs to the fuzzy controller.

When we substitute Equation 4.2 into the Equation 4.1, we obtain:

_x = A(x)x +B(x)
X
l


l(x)yl (4.4)

which can be expanded as:

_x = A(x)x +B(x)

2
6666666666664

0 0 : : : 0

0 0 : : : 0
...

...
...

...

0 0 : : : 0


1(x; �) 
2(x; �) : : : 
M(x; �)

3
7777777777775

| {z }
B(x;�)

2
666666664

y1

y2
...

yM

3
777777775

| {z }
y

(4.5)

Here, � is the parameter vector containing the parameters of the membership

functions. For example, for Gaussian membership functions, components of

� are de�ned by the means and variances for each membership function in

each rule. The design of an optimal control problem heavily rely on the design

of an optimal u that for our case turns into the design of optimal y vector.

We consider the system in Equation 4.5 together with the cost function J =

xT (tf )F (tf) +
R tf
0 (xTQx + uTRu)dt de�ned in Section 2.4.5 Chapter 2, where

u in our case is the y vector. We consider the approximating sequences of this

system, and at each approximation the controller is designed such that the

cost function is minimized. When the system converges, the controller also

converges to the optimal controller [80].

The design for our 2-way fuzzy adaptive system is carried out for both

membership and nonmembership cases, where the system equation 4.5 is the

same in both cases with the only di�erence coming from the de�nition of the
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i functions: We use �rst the membership functions in the calculation of 
l,

and then 1-nonmembership functions. The result is an optimal 2-way fuzzy

controller.

4.2 Stability Analysis using Describing Func-

tion Method

We analyze the stability of our 2-way fuzzy adaptive system using the describ-

ing function method. First, we generalize the describing function method of

Kim et al [23] that was summarized in Section 2.4.4, to multi-input single out-

put fuzzy systems. In order to do this generalization, we derive an additivity

property for the fuzzy systems. Then, we calculate the describing function

of the 2-way fuzzy system to be used in the stability analysis from which we

�nally deduce a stability condition for our 2-way fuzzy adaptive controller.

4.2.1 Additively Decomposable Fuzzy Systems

The describing function of a fuzzy system with more than two inputs can be

found based on the additivity property of fuzzy systems that if formulated

properly would reduce the multi-input single-output fuzzy system to single-

input single-output fuzzy systems. To this end, we needed to extend the theory

of additivity of fuzzy systems in Cuesta et al. [24] to our fuzzy system. We

extend the theory to higher degrees, and especially consider the case of n = 4

since we will apply our methodology to the speci�c example of a 4-dimensional

state space of a 
exible-joint robot arm in Chapter 5.

The rule structure of the fuzzy system is:

R(ijk:::l) : IF x1 is �1i and x2 is �2j and ... and xn is �nl,

THEN y is yijk:::l
(4.6)

where �'s are the antecedent membership functions, x = (x1; :::; xn)
T and y

are respectively input and output linguistic variables. For this fuzzy system
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to be additively decomposable, it should satisfy the following property [24]:

f(x) = f(x1; x2; : : : ; xn) =

f(x1; 0; : : : ; 0) + f(0; x2; : : : ; 0) + : : :+ f(0; 0; : : : ; xn)
(4.7)

In the subsequent paragraph, we consider fi(xi) = f(0; : : : ; xi; : : : ; 0) in order

to simplify the notation.

The assumptions on the membership functions for the system to be decom-

posable are given in Cuesta's work [24] as:

1. �qp(xq = 0) = 1, �qi(xq = 0) = 0, i 6= p, i = 1; : : : ;M and q = 1; : : : ; n.

2.
MX
i=1

�qi(xq) = 1, 8xq , q = 1; : : : ; n.

We use the triangular membership functions of Mamdani:

�qi(xq) =

8>>>>>>><
>>>>>>>:

xq � �qi�1
�qi � �qi�1

; �qi�1 � xq < �qi

xq � �qi+1

�qi � �qi+1
; �qi � xq < �qi+1

0 otherwise

(4.8)

where ��qi = ��qi. The reason for choosing these type of membership func-

tions is that they also satisfy the assumptions in the calculation of the describ-

ing function, which is reviewed in Chapter 2.

The fuzzy controller for n = 4 is represented by the equations:

f(x) =
X
i

X
j

X
k

X
l


ijklyijkl; (4.9)


ijkl =
�1i(x1)�2j(x2)�3k(x3)�4l(x4)X

p

X
r

X
s

X
t

�1p(x1)�2r(x2)�3s(x3)�4t(x4)
(4.10)

To each input x1, x2, x3 and x4 of Equation 4.10, we assign the triangu-

lar memberships de�ned as in Equation 4.8. These memberships satisfy the

assumptions (1) and (2) of additivity, so:

X
p

X
r

X
s

X
t

�1p(x1)�2r(x2)�3s(x3)�4t(x4) = 1 (4.11)

which then naturally leads to:


ijkl = �1i(x1)�2j(x2)�3k(x3)�4l(x4) (4.12)
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When �1a � x1 < �1a+1, two consequent rules are �red for x1 with mem-

berships �1a(x1) and �1a+1(x1). The same applies for the other inputs: for

�2b � x2 < �2b+1 with �2b(x2) and �2b+1(x2), for �3c � x3 < �3c+1 with �3c(x3)

and �3c+1(x3) and for �4d � x4 < �4d+1 with �4d(x4) and �4d+1(x4). As a total,

there are 24 = 16 rules �red, some examples of which are:

R(abcd) : IF x1 is �1a and x2 is �2b and x3 is �3c

and x4 is �4d, THEN y is yabcd.

R(a+1bc+1d) : IF x1 is �1a+1 and x2 is �2b and x3 is �3c+1

and x4 is �4d, THEN y is ya+1bc+1d.

R(a+1b+1c+1d+1) : IF x1 is �1a+1 and x2 is �2b+1 and x3 is �3c+1

and x4 is �4d+1, THEN y is ya+1b+1c+1d+1.

(4.13)

Consider the short notation of �ia instead of �ia(xi) in what follows, in order

to simplify the arguments. Such �ring of the rules yields the corresponding

fuzzy system:

f(x) = �1a�2b�3c�4dyabcd + �1a�2b�3c�4d+1yabcd+1+

�1a�2b�3c+1�4dyabc+1d + : : :+ �1a+1�2b�3c+1�4dya+1bc+1d+

+ : : :+ �1a+1�2b+1�3c+1�4dya+1b+1c+1d

+�1a+1�2b+1�3c+1�4d+1ya+1b+1c+1d+1

(4.14)

If this system satis�es an adequate condition for additivity, the decomposed

system should have four single-input single-output systems of the form:

f(x1; 0; 0; 0) = f1(x1) = �1ayafgh + �1a+1ya+1fgh

f(0; x2; 0; 0) = f2(x2) = �2byebgh + �2b+1yeb+1gh

f(0; 0; x3; 0) = f3(x3) = �3cyefch + �3c+1yefc+1h

f(0; 0; 0; x4) = f4(x4) = �4dyefgd + �4d+1yefgd+1

(4.15)

We derive the condition under which f1(x1)+f2(x2)+f3(x3)+f4(x4) = f(x)

is satis�ed. First we multiply the above equations by (�2b + �2b+1)(�3c +

�3c+1)(�4d+�4d+1), (�1a+�1a+1)(�3c+�3c+1)(�4d+�4d+1), (�1a+�1a+1)(�2b+

�2b+1)(�4d+�4d+1), and (�1a+�1a+1)(�2b+�2b+1)(�3c+�3c+1) respectively. All

these four terms are equal to 1 for the membership assignments of Equation
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4.8. The equations in 4.15 then become:

f1(x1) = �1a�2b�3c�4dyafgh + �1a�2b�3c�4d+1yafgh + : : :+

�1a+1�2b�3c�4dya+1fgh + : : :+ �1a+1�2b+1�3c+1�4d+1ya+1fgh

f2(x2) = �1a�2b�3c�4dyebgh + �1a�2b�3c�4d+1yebgh + : : :+

�1a�2b+1�3c�4dyeb+1gh + : : :+ �1a+1�2b+1�3c+1�4d+1yeb+1gh

f3(x3) = �1a�2b�3c�4dyefch + �1a�2b�3c�4d+1yefch + : : :+

�1a�2b�3c+1�4dyefc+1h + : : :+ �1a+1�2b+1�3c+1�4d+1yefc+1h

f4(x4) = �1a�2b�3c�4dyefgd + �1a�2b�3c�4d+1yefgd+1 + : : :+

�1a+1�2b�3c�4dyefgd + : : :+ �1a+1�2b+1�3c+1�4d+1yefgd+1

(4.16)

Then, we add the above equations (Equation 4.16) and carry out a term

by term comparison with Equation 4.14. From the comparison of the �rst

terms, we deduce that if yafgh + yebgh + yefch + yefgd = yabcd, the �rst terms

become equal. If we do this comparison for the rest of the terms, we derive

all the constraints under which the system is additively decomposable. These

constraints are summarized in Table 4.1.

4.2.2 Describing Function of a 2-Way Fuzzy System

In this subsection, we derive an analytical expression for the describing function

of our 2-way fuzzy system. The derivation is carried out for a single-input

single-output fuzzy system, since in the design of a fuzzy controller, we are

able to decompose a multi-input single-output fuzzy system into single-input

single-output fuzzy systems using the additivity property introduced in the

previous subsection, when the derived conditions for such decomposability are

met.

The describing function of a 2-way fuzzy system has two components: the

describing function of the system with membership functions, and the describ-

ing function of the system with 1-nonmemberships. The one for the system
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Table 4.1: Constraints on y's for additive decomposability

1 yabcd = yafgh + yebgh + yefch + yefgd
2 yabcd+1 = yafgh + yebgh + yefch + yefgd+1

3 yabc+1d = yafgh + yebgh + yefc+1h + yefgd
4 yabc+1d+1 = yafgh + yebgh + yefc+1h + yefgd+1

5 yab+1cd = yafgh + yeb+1gh + yefch + yefgd
6 yab+1cd+1 = yafgh + yeb+1gh + yefch + yefgd+1

7 yab+1c+1d = yafgh + yeb+1gh + yefc+1h + yefgd
8 yab+1c+1d+1 = yafgh + yeb+1gh + yefc+1h + yefgd+1

9 ya+1bcd = ya+1fgh + yebgh + yefch + yefgd
10 ya+1bcd+1 = ya+1fgh + yebgh + yefch + yefgd+1

11 ya+1bc+1d = ya+1fgh + yebgh + yefc+1h + yefgd
12 ya+1bc+1d+1 = ya+1fgh + yebgh + yefc+1h + yefgd+1

13 ya+1b+1cd = ya+1fgh + yeb+1gh + yefch + yefgd
14 ya+1b+1cd+1 = ya+1fgh + yeb+1gh + yefch + yefgd+1

15 ya+1b+1c+1d = ya+1fgh + yeb+1gh + yefc+1h + yefgd
16 ya+1b+1c+1d+1 = ya+1fgh + yeb+1gh + yefc+1h + yefgd+1

with membership functions is the same as that of a 1-way fuzzy system re-

viewed in Chapter 2 Section 2.4.4, which is:

N(A;w) = N(A) =
b1
A

=
4

�A

dX
i=0

f
�uiA

2��i
((Æi+1 � sin Æi+1 cos Æi+1)

�(Æi � sin Æi cos Æi)) +
1

��i
(�iui+1 � �i+1ui)(cos Æi+1 � cos Æi)g

(4.17)

where d satis�es �d � A < �d+1, d > 0, and varies with A; fÆig are de�ned to

be the angles where the input sinusoid x = A sin Æ intersects the centers f�ig's

of membership functions. For fÆig's, we have:

Æ0 � 0

Æi � sin�1(
�i
A
); (i = 1; : : : ; d; 0 < Æi <

�

2
)

Æd+1 �
�

2

(4.18)

Here as part of our thesis work, we derive the expression for the system

with 1-nonmemberships, together with the necessary and suitable modi�cation

of the assumptions stated for the 1-way fuzzy system case, so as to adapt to

our case. The closed form of the 2-way fuzzy adaptive system dealing with

nonmembership is the same as 1-way fuzzy system apart from the de�nition
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of membership functions. In this case, we have 1 � �(x) (1-nonmembership

functions), and the closed form of the system after substituting this speci�c

plausibility expression becomes:

u = f(x) =
X
l


l(x)ul (4.19)

where


l(x) =
1� �l(x)

rulenoX
k=1

1� �k(x)

(4.20)

The assumptions are:

1. The antecedent nonmembership functions are triangular functions dis-

tributed completely, consistently and symmetrically with respect to the origin.

The functions are of the form:

�i(x) =

8>>>>>><
>>>>>>:

x� �i�1
�i � �i�1

; �i�1 � x < �i

x� �i+1

�i � �i+1

; �i � x < �i+1

0 otherwise

(4.21)

where ��i = ��i.

2. Consequent parts have the odd condition:

u�l = �ul (4.22)

3. When �n � x < �n+1, only two rules are �red, and:

rulenoX
k=1

1� �k(x) = 1� �n(x) + 1� �n+1(x) = 2� (�n(x) + �n+1(x)| {z }
1

) = 1 (4.23)

for the triangular nonmembership functions of Equation 4.21.

So:


l(x) =
1� �l(x)

rulenoX
k=1

1� �k(x)

= 1� �l(x) (4.24)

4. 
�l(�x) = 
l(x), since 
�l(�x) = 1� ��l(�x)| {z }
�l(x)

= 
l(x).

The fuzzy logic system with nonmembership functions satisfying the above

assumptions also satis�es the following lemmas:
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Lemma 1: If the fuzzy system satis�es the above four assumptions, then it

is also odd in time when the input is x = A sinwt.

Lemma 2: If the fuzzy system satis�es the above four assumptions, and

x = A sinwt, then u(t) = u((�=w)� t).

Lemma 3: If the fuzzy system satis�es the above four assumptions, and

�k � x < �k+1, then the output u of the system is:

u =
X
l


l(x)ul = (uk + uk+1)� f
�uk
��k

x+
1

��k
(�k+1uk � �kuk+1)g (4.25)

where ��k � �k+1 � �k and �uk � uk+1 � uk.

The proofs of the lemmas are similar to the proofs in the 1-way fuzzy system

case introduced in [23], so they are omitted here.

The describing function of the fuzzy system with nonmembership functions

satisfying the above four assumptions, and the three lemmas is given in the

following theorem.

Theorem: The describing function of the fuzzy system given by Equation

4.19 that satis�es the four assumptions is a real number, which depends only

on the amplitude A of the input sinusoid, and is in the following form:

�N(A;w) = �N(A) =
b1
A

=
4

�A

dX
i=0

((ui + ui+1)(cos Æi � cos Æi+1))�

f
�uiA

2��i
((Æi+1 � sin Æi+1 cos Æi+1)� (Æi � sin Æi cos Æi))

+
1

��i
(�iui+1 � �i+1ui)(cos Æi+1 � cos Æi)g

(4.26)

where �i's are the centers of the triangular nonmembership functions, d sat-

is�es �d � A < �d+1, d > 0, and varies with A; fÆig are de�ned to be the

angles where the input sinusoid x = A sin Æ intersects the centers f�ig's of

nonmembership functions. For fÆig's, we have:

Æ0 � 0

Æi � sin�1(
�i
A
); (i = 1; : : : ; d; 0 < Æi <

�

2
)

Æd+1 �
�

2

(4.27)

Proof: The describing function of u(t) � u(x = A sinwt) is calculated

as: �N(A;w) = 1
A
(b1 + ja1), where a1 = 1

�

R �
�� u(t) cos(wt)dwt and b1 =
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1
�

R �
�� u(t) sin(wt)dwt. For the fuzzy system:

a1 =
1
�

R �
�� u(t) cos(wt)dwt = 0 by Lemma 1

b1 =
1
�

R �
�� u(t) sin(wt)dwt

= 2
�

R �
0 u(t) sin(wt)dwt by Lemma 1

= 2
�
(
R �=2
0 u(t) sin(wt)dwt+

R �
�=2 u(t) sin(wt)dwt)

= 2
�
(
R �=2
0 u(t) sin(wt)dwt+

R 0
�=2 u(

�
w
� k) sin(� � wk)d(�wk))

= 4
�

R �=2
0 u(t) sin(wt)dwt by Lemma 2

(4.28)

Using the variables Æi's in b1, we have:

b1 =
4
�
(
R Æ1
Æ0
u(t) sin(wt)dwt+

R Æ2
Æ1
u(t) sin(wt)dwt+ : : :+

R Æd+1
Æd

u(t) sin(wt)dwt)

= 4
�

Pd
i=0

R Æi+1
Æi

u(t) sin(wt)dwt

= 4
�

Pd
i=0

R Æi+1
Æi

f(ui + ui+1)� ( �ui
��k

A sin(wt) + 1
��k

(�k+1uk � �kuk+1))g

sin(wt)dwt by Lemma 3

= 4
�

Pd
i=0f((ui + ui+1)(cos Æi � cos Æi+1))�

f�uiA
2��i

(Æi+1 + Æi � sin Æi+1 cos Æi+1 + sin Æi cos Æi)+

1
��i

(�iui+1 � �i+1ui)(cos Æi+1 � cos Æi)gg

(4.29)

The describing function of the 2-way fuzzy system is given by fN(A); �N(A)g.

4.2.3 Stability Analysis of 2-Way Fuzzy Adaptive Sys-

tems

We use the interval valued describing function derived in the previous section

for the stability analysis of our 2-way fuzzy adaptive system. In this approach,

the describing function of the fuzzy system is considered in cascade with a

linear plant with transfer function G(s) =
n(s)

d(s)
, which naturally has to have

a low-pass property for minimal sensitivity to higher order errors. This well

known property is crucial in the application of describing function analysis,

since this analysis is based on the fundamental harmonic of the output of the

fuzzy system. In our application example, we will then have to verify the low-

pass nature of the robotic system in hand and how much error is introduced

by considering it as such.
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The characteristic equation of the feedback system with the fuzzy controller

replaced by the interval valued describing function fN(A); �N(A)g, in cascade

with the linear plant G(s) is: C(s) = 1 + fN(A); �N(A)gG(s). This yields the

interval valued characteristic equation [C1; C2] where:

C1(s) = 1 +N(A)G(s) = d(s) +N(A)n(s)

C2(s) = 1 + �N(A)G(s) = d(s) + �N(A)n(s)
(4.30)

The C1 and C2 in the above equation are both interval polynomials, since

N(A) and �N(A) are real and interval-valued that depend on A. For the stabil-

ity analysis of the Ci interval polynomials, determining themselves the char-

acteristic interval valued equation, we use the Kharitonov's theorem for real

polynomials [82].

Theorem: Let I(s) be the set of real polynomials of degree n of the form

Æ(s) = Æ0+ Æ1s+ Æ2s
2+ Æ3s

3+ : : :+ Æns
n, where the coeÆcients lie within given

ranges, Æ0 2 [x0; y0], Æ1 2 [x1; y1],: : :, Æn 2 [xn; yn].

Every polynomial in the family I(s) is Hurwitz if and only if the following

four extreme polynomials are Hurwitz:

K1(s) = x0 + x1s+ y2s
2 + y3s

3 + x4s
4 + x5s

5 + y6s
6 + : : :

K2(s) = x0 + y1s+ y2s
2 + x3s

3 + x4s
4 + y5s

5 + y6s
6 + : : :

K3(s) = y0 + x1s+ x2s
2 + y3s

3 + y4s
4 + x5s

5 + x6s
6 + : : :

K4(s) = y0 + y1s+ x2s
2 + x3s

3 + y4s
4 + y5s

5 + x6s
6 + : : :

(4.31)

The proof of the theorem can be found in [82].

For our system in Equation 4.30, we need to check the Kharitonov polyno-

mials for each characteristic equation C1 and C2, with N(A) 2 [Nmin; Nmax]

and �N(A) 2 [ �Nmin; �Nmax]. If both polynomials are found to be Hurwitz, then

we conclude that our system is stable. The reader may refer to Chapter 5

Section 5.4 to �nd an illustrative example on how the Kharitonov check is car-

ried out on a speci�c application system in order to ensure the fuzzy controller

stability.
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4.3 Lie Algebra

This section introduces our approach for the stability analysis of fuzzy control

systems where rules have consequents that can be represented in the form of

Equation 2.9 that is R(l): IF x1 is F l
1 and ... and xn is F l

n, THEN _x(t) =

Alx(t) + Blu(t) (Section 2.4.2, Chapter 2). In order to handle such control

system dynamics, we consider the Lie algebra LA generated by the A matrices

of the linear subsystems of the rules, i.e. by fA1; A2; : : : ; AMg.

In the �rst subsection, we �rst start with a simpler case where all the Ai

matrices commute, that is when they form an Abelian Lie algebra LA. Then,

we generalize the results to noncommuting system matrices.

4.3.1 Commuting Fuzzy Systems

First, we assume not only that LA is Abelian, so that all the Ai's commute,

but also that all the Ai's are diagonalizable. This is not a particularly strong

assumption as it may seem, since such matrices are generic, and the results

easily generalize.

There exists a common diagonalizing matrix P for the singularity trans-

formation of Ai: P
�1AiP = �i, where �i = diag(�i1; : : : ; �

i
n), �

i
j being the

eigenvalues of Ai. Hence, considering y = P�1x, we transform Equation 2.12

_x(t) = (
MX
l=1

 l(x(t))Al)x(t) + (
MX
l=1

 l(x(t))Bl)u(t) (4.32)

into

_y(t) = (
MX
l=1

 l(Py(t))�l)y(t) + (
MX
l=1

 l(Py(t))P
�1Bl)u(t) (4.33)

i.e. in a simpli�ed representation:

_yi(t) = �iyi(t) + �iu(t); 1 � i � n (4.34)

where

�i =
MX
l=1

 l(Py(t))�
l
i; �i =

MX
l=1

 l(Py(t))(P
�1Bl)i (4.35)
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The subscript (:)i denotes the i
th element of the corresponding vector repre-

sented by (:).

To achieve stability for the general system of the form 4.34, our approach

is to generate a control u which satis�es the inequalities:

yi(t) _yi(t) = �iy
2
i (t) + �iu(t)yi(t) � �

1

2
"y2i (t); 1 � i � n (4.36)

for some " > 0.

The reason in our selection of the control is the same condition as for the

convergence rule of a sliding mode controller, where 1
2
"y2i (t) acts as a Lyapunov

function:

If yi(t) = 0, then the inequality in Equation 4.36 is obviously satis�ed,

since it is the trivial solution for the inequality where we can choose any u. If

yi(t) 6= 0, for �i real, solving:

1

2

d

dt
y2i (t) = yi(t) _yi(t) = �iy

2
i (t) + �iu(t)yi(t) � �

1

2
"y2i (t) (4.37)

then yields,

y2i (t) � e�"ty2i (0) (4.38)

which shows that yi's are bounded decaying functions, so are stable.

The stability condition for yi 6= 0 for real �i's can be obtained similarly as

in the case of sliding mode control, by dividing Equation 4.37 to yi as:

f
�iyi(t) + �iu(t) � �1

2
"yi(t) if yi(t) > 0

�iyi(t) + �iu(t) � �1
2
"yi(t) if yi(t) < 0

(4.39)

for 1 � i � n.

Now, let us derive similar conditions for the case of complex constants �i.

Remark: If some �i's are complex, then we write:

yi(t) = �i(t) + i�i(t); �i = ai + ibi (4.40)

Then, Equation 4.34 becomes:
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_�i = ai�i � bi�i + (Re(�i))u(t);

_�i = bi�i + ai�i + (Im(�i))u(t)
(4.41)

This time we choose u so that:

ai�
2
i � bi�i�i + �i(Re(�i))u(t) � �1

2
"�2i ;

ai�
2
i + bi�i�i + �i(Im(�i))u(t) � �1

2
"�2i

(4.42)

The above results both for real and complex �i cases lead to the following

theorem:

Theorem 1: The system in Equation 4.32 with Abelian Lie algebra LA

is stabilizable (in the case of real eigenvalues-with a similar condition in the

complex case) if the inequalities in Equation 4.39 (Equation 4.42 for complex

variables case) are solvable for u.

However, the inequalities in Equation 4.39 (Equation 4.42) are diÆcult

to be solved, in general. But, we can �nd a simple, but more conservative,

condition for solution in the following way. De�ne the sets:

S1 = fy 2 Rn :
Pn

i=1 �iy
2
i < 0g;

S2 = fy 2 Rn :
Pn

i=1 �iyi = 0g
(4.43)

and suppose that S2(") � S1 where

S2(") = fy 2 Rn : d(y; S2) � "g (4.44)

for some " > 0. Now, consider the Lyapunov function:

V =
1

2

nX
i=1

y2i (4.45)

Then, we have:

_V =
nX
i=1

yi _yi =
nX
i=1

�iy
2
i + (

nX
i=1

�iyi)u (4.46)

and we choose the control:

u = f

�2
Pn

i=1
�iy2iPn

i=1
�iyi

if y 2 Rn n S1

0 if y 2 S1
(4.47)
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This choice of control guarantees _V to be negative, since when y 2 S1 the

�rst term in Equation 4.46 is negative, so we can set u = 0. When y 2 RnnS1,

the control u in the above equation results in _V = �
Pn

i=1 �iy
2
i , and this is

guaranteed to be negative since y 2 Rn n S1.

Here, we will give two simple examples to illustrate how the above results

apply.

Example 1

We consider a simple numerical example, where we assume that all the

pairs (�l; P
�1Bl) in Equation 4.33 are uniformly stabilizable in the sense that

there exists a vector K independent of l such that �l � P�1BlK is a stable

matrix for each rule l (rule l). The only constraint is that the pairs should be

uniformly stabilizable, but not necessarily controllable.

In this example, there are three rules with the following structure:

R(l) : IF x1 is F
l
1 and x2 is F

l
2, THEN

_x(t) = Alx(t) +Blu(t); for l = 1; 2; 3
(4.48)

where

A1 =

2
64 �2:8 3:6

�2:4 3:8

3
75 ; b1 =

2
64 �1:2
�1:6

3
75

A2 =

2
64 �6:2 8:4

�5:6 9:2

3
75 ; b2 =

2
64 �0:6
�0:8

3
75

A3 =

2
64 �4:3 3:6

�2:4 2:3

3
75 ; b3 =

2
64 �0:3
�0:4

3
75

(4.49)

Here, F l
i are the fuzzy sets in the antecedent parts of the rules. It is easy

to check that the matrices A1; A2; A3 commute and are diagonalized by the

matrix:

P =

2
64 �0:8944 �0:6

�0:4472 �0:8

3
75
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The diagonalized matrices and transformed vectors P�1bl are:

�1 =

2
64 �1 0

0 2

3
75 ; P�1b1 =

2
64 0

2

3
75

�2 =

2
64 �2 0

0 5

3
75 ; P�1b2 =

2
64 0

1

3
75

�3 =

2
64 �2:5 0

0 0:5

3
75 ; P�1b3 =

2
64 0

0:5

3
75

(4.50)

If we choose the control to be u = �Ky where y = P�1x and K =
�
0 6

�
,

the subsystems become stable. Since we are able to �nd a control u to stabilize

all the subsystems, we conclude that the overall system is stable.

Example 2

In Example 1, it was easy to �nd a control that would stabilize all the

subsystems. If this is not the case, we have to apply the control in Equation

4.47. We use the membership functions given in Fig.4.1 for all the states of

the system, i.e. for x1 and x2.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rule 1

Rule 2

Rule 3

x
i

Figure 4.1: Membership functions for Example 2

When we apply the control in the form of Equation 4.47 to the system

given by the diagonalized system matrices of Example 1, we obtain a stable

system as shown in Fig.4.2 together with the control input u.
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Figure 4.2: Stabilized states and control input for Example 2

4.3.2 Noncommuting Fuzzy Systems: General Case

In this section, we generalize our results to the more generalized noncommuting

case, i.e. where LA generated by the linear subsystem matrices fA1; A2; : : : ; AMg

of the rules (R(l): IF x1 is F
l
1 and ... and xn is F

l
n, THEN _x(t) = Alx(t)+Blu(t))

is not Abelian.

First, we assume that there is an Abelian Lie algebra L ~A such that the

error in approximation of the noncommuting system by this commuting Lie

algebra is small. Then, we will generalize the commuting case results using

Levi decomposition introduced in the Appendix.

Now, suppose that the Lie algebra LA is not Abelian and consider the

error of approximating the original set of matrices by the new commuting set

of matrices f ~A1; ~A2; : : : ; ~AMg, and we aim at minimizing such an error:

� = max1�l�MkAl � ~Alk (4.51)

Then, if we combine this with our system given by Equation 4.32, we get:

_x(t) = (
MX
l=1

 l(x(t)) ~Al)x(t) + (
MX
l=1

 l(x(t))Bl)u(t)

+(
MX
l=1

 l(x(t))(Al � ~Al))x(t)

(4.52)

Hence, if ~P is a common diagonalizing matrix for the set f ~A1; : : : ; ~AMg,
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then we have:

~P�1 ~Al
~P = ~�l = diag(~�l1; : : : ; ~�

l
n) (4.53)

and with y = ~P�1x

_y(t) = (
MX
l=1

 l( ~Py(t))~�l)y(t) + (
MX
l=1

 l( ~Py(t)) ~P
�1Bl)u(t)

+(
MX
l=1

 l( ~Py(t)) ~P
�1(Al � ~Al) ~P )y(t)

(4.54)

i.e.,

_yi(t) = ~�iyi(t) + ~�iu(t) + f[
MX
k=1

 k( ~Py(t)) ~P
�1(Ak � ~Ak) ~P ]y(t)gi; 1 � i � n

(4.55)

where

~�i =
MX
l=1

 l( ~Py(t))~�
l
i;
~�i =

MX
l=1

 l( ~Py(t))( ~P
�1Bl)i (4.56)

As before with the same motivation as for the commuting case, we choose

a control u such that:

X
i

(~�iy
2
i (t) +

~�iu(t)yi(t)) � �
1

2
"
X
i

y2i (t) (4.57)

We have in the case of real eigenvalues:

1
2
d
dt

X
i

y2i (t) =
X
i

yi(t) _yi(t)

=
X
i

(~�iy
2
i (t) +

~�iu(t)yi(t))+

X
i

f[
MX
k=1

 k( ~Py(t)) ~P
�1(Ak � ~Ak) ~P ]y(t)giyi(t)

� �1
2
"
X
i

y2i (t) +
X
i

f[
MX
k=1

 k( ~Py(t)) ~P
�1(Ak � ~Ak) ~P ]y(t)giyi(t)

(4.58)

so,
1

2

d

dt
ky(t)k2 � �

1

2
"ky(t)k2 + ky(t)k2k ~P�1k � k ~Pk � � (4.59)

We therefore have stability if

k ~P�1k � k ~Pk � � <
1

2
" (4.60)

Remark: If some ~�i's are complex, then expressing:

yi(t) = �i(t) + i�i(t); ~�i = ~ai + i~bi (4.61)
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we have:

X
i

(~ai�
2
i � ~bi�i�i + �iRe( ~�i)u(t)+

X
i

Ref[
MX
k=1

 k( ~Py(t)) ~P
�1(Ak � ~Ak) ~P ]y(t)gi�i(t) � �1

2
"
X
i

�2i (t)

+
X
i

Ref[
MX
k=1

 k( ~Py(t)) ~P
�1(Ak � ~Ak) ~P ]y(t)gi�i(t);

X
i

(~ai�
2
i +~bi�i�i + �iIm( ~�i)u(t)+

X
i

Imf[
MX
k=1

 k( ~Py(t)) ~P
�1(Ak � ~Ak) ~P ]y(t)gi�i(t) � �1

2
"
X
i

�2i (t)

+
X
i

Imf[
MX
k=1

 k( ~Py(t)) ~P
�1(Ak � ~Ak) ~P ]y(t)gi�i(t);

(4.62)

So,

X
i

(~ai�
2
i � ~bi�i�i + �iRe( ~�i)u(t)+

X
i

Ref[
MX
k=1

 k( ~Py(t)) ~P
�1(Ak � ~Ak) ~P ]y(t)gi�i(t) � �1

2
"k�k2+

k�k2k ~P�1kk ~Pk�X
i

(~ai�
2
i +

~bi�i�i + �iIm( ~�i)u(t)+

X
i

Imf[
MX
k=1

 k( ~Py(t)) ~P
�1(Ak � ~Ak) ~P ]y(t)gi�i(t) � �1

2
"k�k2+

k�k2k ~P�1kk ~Pk�

(4.63)

We again have stability if

k ~P�1k � k ~Pk � � <
1

2
" (4.64)

The above results form the proof and thus lead to the following theorem.

Theorem 2: The system in Equation 4.32 with Lie algebra LA is stabiliz-

able (in the case of real eigenvalues - with a similar condition in the complex

case) if there is an Abelian Lie algebra L ~A such that inequalities 4.57 are solv-

able for u and the inequality 4.60 (4.64 for the complex case) is satis�ed where

� = max1�l�MkAl � ~Alk.
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Theorem 2 provides the stabilization criterion in terms of the approxi-

mating Abelian Lie algebra L ~A, however we need to establish a criterion for

the original system with noncommuting A's. For developing such a criterion

for the original system, carrying out from Theorem 2, we consider the gen-

eral noncommuting case using the Levi decomposition given by g = r +m =

r + (hm �
P

'2�m
'), r \ m = ;. For any choice of the Levi subalgebra m

and any choice of Cartan subalgebra hm of m, the subsystem matrices Al's of

Equation 4.32 can be written as:

Al = Al(r) + �Al(hm) +
X
'2�

Al(m') (4.65)

where Al(r) 2 r, �Ai(hm) 2 hm and Ai(m') 2 m' (' 2 �). Note that the set of

matrices f �A1(hm); : : : ; �AM(hm)g is commutative.

If we now apply Theorem 2 with ~Al = �Al(hm), then we immediately obtain

the following theorem.

Theorem 3: The system in Equation 4.32 with Lie algebra LA is stabiliz-

able (in the case of real eigenvalues and with a similar condition in the complex

case) if there is a Levi and Cartan decomposition of LA such that inequalities

4.57 are solvable for u and the inequality 4.60 (4.64 for the complex case) is

satis�ed where � = max1�l�MkAl � �Al(hm)k and ~P diagonalizes the Cartan

subalgebra of LA.

76



CHAPTER 5

RESULTS (APPLICATION EXAMPLES)

The theories developed in the previous Chapters 3 and 4, are applied to exam-

ple systems in this chapter. The �rst example is the application of our 2-way

fuzzy adaptive system to the modelling of an unknown nonlinear function. The

results demonstrate the uncertainty and inconsistency handling of our 2-way

fuzzy system. In this �rst example, we also demonstrate the application of

shadow set evaluation of inconsistency typifying them according to their char-

acteristics. The system in the second example is chosen to be a 
exible-joint

robot arm system, which is also modelled by the 2-way fuzzy adaptive system,

and the inconsistency handling is also evaluated for this new plant.

We design fuzzy controllers for the 
exible-joint robot arm system in the

last three examples using our three di�erent techniques developed in Chapter

4. That is to say, in Example 3, we design an optimal fuzzy controller using

the equivalent linearization of approximating sequences. The design of a 2-way

fuzzy controller using describing function method is demonstrated in the fourth

example, and the last example illustrates the use of Lie algebra based stability

results for the stable controller design, where the robotic system dynamics is

put into a T-S fuzzy representation.

5.1 Nonlinear Function Identi�cation

In this �rst application example, we demonstrate the modelling of an unknown

nonlinear system using our 2-way fuzzy adaptive system, and illustrate the un-
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certainty and inconsistency reduction through training. We also evaluate the

inconsistencies of our fuzzy system by extracting and classifying their charac-

teristics using shadowed set theory.

The example system is selected from the problems in [14] for comparative

analysis of the reduction rates of inconsistency and uncertainty of the 2-way

fuzzy adaptive system compared to the classical 1-way fuzzy adaptive systems

that cannot handle disbelief uncertainties and inconsistencies. In this analysis,

we demonstrate how our 2-way fuzzy adaptive system slowly approaches its

1-way counterpart as inconsistency and uncertainty are reduced by multiple

phases of learning. The application problem we consider here is a system identi-

�cation problem, where the adaptive system is expected to match an unknown

nonlinear function as training progresses toward completing the identi�cation

process. The di�erence equation of the plant to be identi�ed is:

y(k + 1) = 0:3y(k) + 0:6y(k � 1) + g[u(k)] (5.1)

where the unknown function g to be identi�ed is given as:

g(u) = 0:6 sin(�u) + 0:3 sin(3�u) + 0:1 sin(5�u) (5.2)

and the input u is taken to as u(k) = sin(2�k=250), for veri�cation purposes.

In our case, g[�] is identi�ed as ĝ[�] by the fuzzy adaptive system described

in Chapter 3. The closed form of the 2-way fuzzy adaptive system is as intro-

duced previously:

f(x) =

MX
l=1

yl(
nY
i=1

�il(xi))

MX
l=1

(
nY
i=1

�il(xi))

=
a

b
(5.3)

The system parameters are adjusted through training in order to minimize

the error between the model output ĝ(u) and the desired response g(u) (the

desired response is obtained using Equations 5.1 and 5.2). The rule number

M is taken to be 40 in the simulations. We use Gaussian membership and

nonmembership functions of the form �il = exp(�(xi�xil
�il

)2), so the three ad-

justable parameters for each rule are the consequent yl, the mean xil, and the
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variance �il. Thus, the fuzzy logic system given by Equation 5.3 has 40x3=120

adjustable parameters.

For the initialization of these adjustable parameters, on-line initial parameter-

choosing method is used, where the training algorithm has a delayed start

and does not trigger for the �rst M points. The parameters are set as fol-

lows: xil(M) = ui(l) and yl(M) = g(�u(l)), where i = 0; 1; ; n, l = 0; 1; ;M ,

�u(l) = (u1(l); : : : ; un(l))
T is the input to both original system and identi-

�ed model, and g(�u(l)) is the desired output of the fuzzy logic system learn-

ing to identify ĝ[�]. �il's are initialized using: �il(M) = [max(ui(l) : l =

1; 2; : : : ;M) �min(ui(l) : l = 1; 2; : : : ;M)]=2M , training starting at iteration

time M + 1.

The update equations used in the training phase for the three adjustable

parameters, yl, xil, and �il, are already given in Chapter 3 Section 3.2 as

p(k + 1) = p(k) + �p(k) = p(k) � 
 @e
@p
jk. In the example system, there is

only one input namely u, so n = 1 in Equation 5.3. Using the error equation

e = 1
2
[f(x) � d]2 (d: desired output) and the update equations, and taking

the partial derivatives @e
@yl

, @e
@xil

and @e
@�il

the following update equations are

obtained.

yl(k + 1) = yl(k)� 
 f�d
b
zl

xil(k + 1) = xil(k)� 
 f�d
b
(yl � f)zl

2(xi�xil(k))
�2
il

�il(k + 1) = �il(k)� 
 f�d
b
(yl � f)zl

2(xi�xil(k))
2

�3
il

(5.4)

where zl =
Qn

i=1 �il(xi), l = 0; 1; : : : ;M and k = 0; 1; 2; : : :.

In the �rst phase of the training algorithm, there are two levels of training

as mentioned in Chapter 3 Section 3.2. The �rst level of training is carried

out for the adjustment of the parameters of the membership functions. So

in the simulations the membership functions are used. The second level is

for the adjustment of the parameters of the nonmembership functions. In

order to achieve this, the complements of the nonmembership functions (1-

nonmembership's) are used in the update equations, and the �il(xi) terms in

Equations 5.4 become 1� �il(xi).

The simulation results for three adaptive fuzzy systems, namely the 1-way
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Figure 5.1: Simulation Results

fuzzy adaptive system, where the 2-way fuzzy adaptive system converges with

fully reduced uncertainty, the 2-way fuzzy adaptive system without any incon-

sistency (or fully reduced inconsistency) and the 2-way fuzzy adaptive system

incorporating inconsistency and uncertainty are given in Fig.5.1 together with

the corresponding error curves in Fig.5.2. The training is carried out for 200

iteration steps. Since the example system is not of high nonlinearity, the 1-way

fuzzy adaptive system trained with memberships (supports) (1st graph) is able

to track the desired response very closely. The introduction of nonmemberships

(2nd graph) that are not optimized but only satisfying consistency generates a

slightly larger tracking error in ascending portions. This shows that learning

attempting to reduce uncertainty is still slower than the error dynamics in

the system, leading to a slightly larger error than the 1-way fuzzy adaptive

system. The third tracking graph attests to the extreme success of our system

in reducing inconsistencies. The 2-way inconsistent system is turned by train-

ing into a 100% 2-way fuzzy adaptive system in terms of performance. The

inconsistency is thus fully reduced.

We also evaluate the inconsistency handling of the system by forming the

shadowed set patterns of the fuzzy system after the �rst phase of training.

Since the initial membership and nonmembership functions of phase 1 of train-

ing in the 2-way adaptive approach are taken to be fully overlapping to rep-
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Figure 5.2: Error curves

resent full inconsistency of type 4, their induced shadowed sets cover the full

range of support for both membership and nonmembership functions and rep-

resent total indecisiveness on this entire region. After training, we see that

the shadowed set pattern of the system changes as the system adjusts the

parameters of the membership and nonmembership functions.

Inconsistency types that we consider in this thesis work are correlated with

how the membership and nonmembership functions are assigned. In order to

unveil this correlation, we now generate the correspondence between the type of
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Figure 5.3: Shadowed Set Pattern for Rule 13

inconsistency obtained at the output of phase 1 of the 2-way adaptive system

that tries to reduce inconsistency, and a global index of fuzziness obtained

from membership and nonmembership functions altogether. The measure of

fuzziness that we adopt and further modify for this purpose is f = �=m where �

is the variance and m is the mean of the related Gaussian function. In the case

of two fuzzy sets assigned as it is in our 2-way fuzzy adaptive system, namely

membership and nonmembership functions, the sum of each individual fuzzy

measure is used as a combinational measure c representing the global index of

fuzziness for both assignments.

When the shadowed set patterns for each rule in the fuzzy rule base of

our application are examined, it is seen that there exists a correlation between

inconsistency type and c. We �nd that values 0 < c < 0:5 guarantee the

characterization of type 1 inconsistency and as c tends to 1 within the interval

0:5 < c < 1 the induced shadowed sets get closer to each other and begin

overlapping generating a type 2 inconsistency. As c � 1, type 3 inconsis-

tency dominates that can even lead to type 4 inconsistency for large values of

c. We demonstrate these results by three examples, where fully inconsistent

membership and nonmembership functions reduced to type 1, type 2 or type

3 inconsistencies depending on the value of c.

For Rule 13 of our example c = 0:1034 and the corresponding pattern is

given in Fig.5.3. It can be seen that this �gure matches with the pattern

demonstrated under type 1 inconsistency in Section 3.3.2 of Chapter 3.

Rule 36 has a value of c=0.7758 and the pattern shown in Fig.5.4. This
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Figure 5.4: Shadowed Set Pattern for Rule 36

Figure 5.5: Shadowed Set Pattern for Rule 10

case is classi�ed under type 2 inconsistency. We see that c is close to 1 and

there happens to be a thin intersection region of the induced shadowed sets

showing the emergence of a thin region of indecisiveness.

Rule 10 has a pattern that matches with type 3 inconsistency with a c value

of 3:9485� 1 and can be displayed in the Fig.5.5.

As a result of the evaluation of inconsistency we deduce that our 2-way

adaptive system is able to reduce, through the two levels of training of phase 1

of the 2-way adaptive control system, an initial full inconsistency of type 4 to

either inconsistency of type 2 or of type 1 (inconsistency is fully eliminated),

according to the global index of fuzziness c. The only case where phase 1 train-

ing fail in fully reducing inconsistency by only reducing a type 4 inconsistency

to type 3 inconsistency is for rule 10, where c = 3:9485� 1. This is due to the

wide spread of the corresponding membership and nonmembership functions.

Moreover, in the design of a 2-way fuzzy adaptive controller, the global index

of fuzziness c can be used in the initial assignment of consistent membership
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and nonmembership functions.

5.2 Identi�cation of the Model of Flexible Ro-

bot Arm using 2-Way Fuzzy Adaptive Sys-

tem

In this example application, we apply the 2-way fuzzy adaptive system for the

identi�cation of a 
exible robot arm to be used in its model based control.

5.2.1 System Model

The 
exible-joint robot arm system used in this paper, is shown in Fig.5.6.

I2

I1

l

θ2

θ1

k

m.g

Figure 5.6: Flexible-joint robot arm system

The model is described by the following equations [34]:

I1 ��1 +mglsin(�1) + k(�1 � �2) = 0 (5.5)

I2 ��2 + k(�2 � �1) = u (5.6)

In the equations, u is the torque input, I1 the link inertia, I2 the motor

inertia, m the mass, g the gravity constant, l the link length, k the sti�ness,

�1 joint 1 angular position, and �2 joint 2 angular position.

We adjust the system parameters with the 2-way adaptive system through

its training in order to minimize the error between the model output and the
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Figure 5.7: Identi�cation Process

desired response. The desired response is obtained using Equations 5.5 and 5.6.

The 
exible-joint robot arm system is simulated by applying Euler's method

to the above equations for the given control input u. In parallel, the 2-way

fuzzy adaptive system performs an identi�cation using the system output as

the desired signal d (Fig.5.7).

The rule number M in Equation 5.3 is taken to be 40 in our simulations,

which is further varied to M = 10 and M = 25. The three adjustable pa-

rameters for each rule are yl, xil, and �il. So the fuzzy logic system given

by the Equation 5.3 has again 40 � 3 = 120 adjustable parameters initially

for the 40 rules. For the initialization of the adjustable parameters, on-line

initial parameter-choosing method introduced in Example 1 is used because

this method is proven to be e�ective for faster convergence [14]. The update

equations used in the training phase for the three adjustable parameters, yl,

xil, and �il, are the same as the previous example and are given in Equations

5.4.

The �rst phase of the training has in itself two levels of training as men-

tioned before: the �rst level of training is carried out for the adjustment of the

parameters of the membership functions. In the second level, the adjustment

of the parameters of the nonmembership functions are achieved using the com-

plements of the nonmembership functions (1-nonmembership's) in the update
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Figure 5.8: Output of 1-way fuzzy adaptive system and Tracking Error for
M=40

equations.

5.2.2 Elimination of Uncertainty and Reduction of In-

consistencies

The system parameters are taken to bem = 0:0234kg, g = 9:81m=s2, l = 0:2m,

k = 0:015N:m=rad, bs = 0:007N:m:s=rad, I1 = m � l2, I2 = 6:24 � 10�2kg:m2

in the simulations and the input u is chosen to be u(k) = sin(2�k=250). The

simulation results for three adaptive fuzzy systems, namely 1-way fuzzy adap-

tive system, 2-way fuzzy adaptive system without any inconsistency and 2-way

fuzzy adaptive system incorporating inconsistency in the assignment of mem-

bership and nonmembership functions are given in Figures 5.8, 5.9, and 5.10

below. The solid smooth line in the �gures is the desired output obtained from

simulations using the Euler's method. The error curves for each case are also

given together with the output curves (see Figures b in 5.8, 5.9 and 5.10).

The performance of the system after the �rst phase of training is given in

Fig.5.10. As expected the system reduces inconsistency after training based

on the tracking performance of the system in Fig.5.10 when compared to that

in Fig.5.9. Both performances are close to each other within a tolerance of

0:038rad. The identi�cation and thus tracking control activity exhibited in

Fig.5.10 is of lower frequency (30Hz) than that in Fig.5.9 (36Hz). This is an
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Figure 5.9: Output of 2-way fuzzy adaptive system with consistent membership
assignment and Tracking Error for M=40
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Figure 5.10: Output of 2-way fuzzy adaptive system with inconsistent mem-
bership assignment and Tracking Error for M=40
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extremely desired property for tracking control with 
exible structures since

high frequency control activity may easily trigger the unmodelled modes in

the system. We then conclude from this reduction of frequency that, the sys-

tem is able to reduce inconsistencies present in the system since frequency is

inconsistency driven. The resultant system is further trained to reduce the un-

certainty due to the interval width introduced by the independent assignment

of membership and nonmembership values. The system performance after this

second phase of training is given in Fig.5.8. The system obtained after the two

phases of training is close to a 1-way fuzzy adaptive system despite the amount

of uncertainty and inconsistency it had to overcome, and its performance is

the best among the others.

Our proposed 2-way fuzzy adaptive system thus cannot only compensate for

inconsistencies through its learning capability, but also considerably reduces

the intuitionistic uncertainty interval once inconsistencies have all been mini-

mized leading to a performance close to that of a 1-way fuzzy adaptive system.

Now let us focus on the inconsistency handling process of our architecture and

proceed with its evaluation.

We have also simulated our system for M = 10 and M = 25 number of

rules. The results are given in Figures 5.11, 5.12 and 5.13 for the case where

M = 10, and in Figures 5.14, 5.15 and 5.16 for M = 25. In the case where

M = 25, it is seen that 1-way fuzzy adaptive system does not give the best

result and our proposed 2-way system outperforms the 1-way fuzzy adaptive

system with a superior tracking performance. The reason for such a behavior

is the selection of the rule number, which is not optimal in every case.

Fig.5.17 shows one typical case of how the system has generated consistent

membership and nonmembership functions from totally inconsistent member-

ship and nonmembership assignments. In the �rst graph, the initial assign-

ments of the functions are shown. They are both the same Gaussian functions

with mean 0:1253 and variance 0:012, thus fully overlapping (type 4 inconsis-

tency). After the �rst phase of training, the functions are separated (type 1
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Figure 5.11: Output of 1-way fuzzy adaptive system and Tracking Error for
M=10
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Figure 5.12: Output of 2-way fuzzy adaptive system with consistent member-
ship assignment and Tracking Error for M=10
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Figure 5.13: Output of 2-way fuzzy adaptive system with inconsistent mem-
bership assignment and Tracking Error for M=10
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Figure 5.14: Output of 1-way fuzzy adaptive system and Tracking Error for
M=25
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Figure 5.15: Output of 2-way fuzzy adaptive system with consistent member-
ship assignment and Tracking Error for M=25
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Figure 5.16: Output of 2-way fuzzy adaptive system with inconsistent mem-
bership assignment and Tracking Error for M=25
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inconsistency= fully consistent) and the �nal values for the means and the vari-

ances become: for the membership mean = �0:7608 and variance = 0:0015,

and for nonmembership mean = 0:1191 and variance = 0:6146.

5.2.3 Shadowed Set Evaluation Results for Inconsistency

Minimization

We conduct here the performance evaluation for inconsistency typi�cation in

the model based control of a 
exible robot arm and form after the �rst phase

of training the shadowed set patterns of the membership/nonmemberships in

the antecedents of each rule. The initial assignment of the membership and

nonmembership functions are done in a way that their corresponding shadowed

sets fully overlap, giving rise to a type 4 inconsistency. It is expected that if

the fuzziness index c for each rule falls within the corresponding ranges of the

clusters de�ned in the previous example (example system in Section 5.1), the

shadowed set pattern at the output of the training may contain type 1 or type

2 inconsistency guaranteeing its reduction down from type 4. In our example

with 40 rules (M = 40), it is seen that, at the output of phase 1 training,

when the combinational measure c is very high for some rules such as for rule
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Figure 5.18: Shadowed Set Pattern for Rule 19

1: c = 52:39, for rule 3: c = 119:9, for rule 19 c = 962:15. With c >> 1, the

corresponding shadowed set patterns for such rules are characterized as type

4 (Fig.5.18); thus type 4 inconsistency has lead to type 4 inconsistency after

training. However, further analysis shows that within this type, inconsistency

has been reduced, but not in an amount enough to be able to cause a switch

in inconsistency type. We will consider here typical result samples from our

application.

Let us note that our rules are of the form R : (�F l
1
�:::�F l

n
(x); yl) where

yl = max(�Gl) and implication from antecedent to consequent is taken as the

product operation in the computation of f(x).

If we take as an example rule 19 at the output of a single phase training,

represented by R19 : (M;V; yl = 0:3860) with c = 962:15, (threshold for shad-

owed set M is � = 0:3354 and for V , � = 0:3393) the shadow set pattern is in

the form of Fig.5.18.

This pattern is classi�ed as type 4 according to the value of c even though

type 4 in fact corresponds to fully overlapping shadowed sets. We see that

after training the fully overlapping shadowed sets given initially have been

separated, leading to a reduction of inconsistency, which, still, was not enough

to change its type. So inconsistency reduction has been done within the cluster

corresponding to type 4 without being able to be e�ective enough to decrease

its type number. This is due to the fuzziness index, which assumes a very high

value. The reason for not being able to reduce the type of uncertainty is the

high variance of the membership and nonmembership functions that is also

re
ected in the high valued fuzziness index.

In the case of rule 40 R40 : (M;V; yl = 0:3507), c = 5:44 (threshold for

shadowed set M is � = 0:3354 and for V � = 0:3372) which is not a value
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Figure 5.19: Shadowed Set Pattern for Rule 40

as large as in the other rules. We observe here a reduction in the type of

inconsistency changing it from type 4 to type 3. The corresponding output

pattern is given in Fig.5.19.

We see that as the combinational index c is decreasing and getting closer

to one, the inconsistency type decrease is powerful enough to reduce type

numbers, thus showing that inconsistency is truly substantially decreasing.

In the simulations forM = 10 andM = 25, it is seen that the combinational

index c is much greater than 1 leading to similar results as discussed for the

case with 40 rules (M = 40). Some example results are summarized in Table

5.1, where � represents the threshold value used in forming the shadowed set

patterns of the membership and nonmembership functions.

Table 5.1: Examples for Shadowed Evaluation Results

M Rule No. c Type of Incon. Threshold �

10 Rule 3 9.172 4
For M: 0.3354
For V: 0.5551

10 Rule 4 11.01 4
For M: 0.3354
For V: 0.5411

25 Rule 2 54.97 4
For M: 0.3354
For V: 0.6423

25 Rule 18 17.39 4
For M: 0.3354
For V: 0.4501

When triggered by fully inconsistent belief (membership) and disbelief

(nonmembership) functions, the 2-way fuzzy adaptive system in its �rst train-

ing phase, always reduces inconsistency. But when variances of the functions
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are high, meaning high dispersion in knowledge, leading to high c values, incon-

sistency is reduced within one type cluster without being substantial enough

to also reduce its type number. For more focused knowledge leading to low

variance in membership and nonmembership functions, the values of c are in

the interval of [0:5; 1] or tends toward 1. The 2-way fuzzy adaptive system is

then able to reduce full inconsistency of type 4 to type 2 or to type 1 (which

is the fully consistent case).

This fuzzy measure-based evaluation taking into account membership/ non-

membership variances provides a valuable empirically found and veri�ed pre-

diction measure for the expected eÆciency of the 2-way fuzzy adaptive system

in reducing inconsistency.

5.3 2-Way Fuzzy Controller Design Using E-

quivalent Linearization Method

In this section, we deal with the stable design of a 2-way fuzzy adaptive sys-

tem acting as a controller for the 
exible-joint robot arm. The 2-way fuzzy

controller design is turned into an optimal controller design problem using

approximating sequences technique, and it is applied to the control of the


exible-joint robot arm system. First we need to represent the system with

controller as a pseudo-linear system. The states equations of the controlled

system turn into: _x =

2
666666664

0 1 0 0

(�mgl sin x1
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� k
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) 0 k
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Figure 5.20: (a) States and (b) Control Inputs for 1-Way Fuzzy System
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Figure 5.21: (a) States and (b) Control Inputs for 2-Way Fuzzy System with
Consistent Membership Assignment

nonmembership functions are chosen to be in the most general case Gaus-

sian, and (m; �) are the means and the variances of these functions. We solve

the optimal control problem using the theory on approximating sequences in-

troduced in Chapter 2. The simulation results are given in Figures 5.20, 5.21

and 5.22.

When we examine the results, the states in the case of inconsistent non-

membership functions are close to the states in the consistent case, so we

conclude that the system has the ability to handle inconsistency. The best

results are obtained in the case where membership functions are used.
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Figure 5.22: (a) States and (b) Control Inputs for 2-Way Fuzzy System with
Inconsistent Membership Assignment

5.4 2-Way Fuzzy Controller Design Using De-

scribing Function Method

In this example, we design a fuzzy controller for the 
exible-joint robot arm

system introduced in the second example application. The state equations of

the system are again:

_x1 = x2

_x2 = �mgl
I1

sin(x1) +
k
I1
(x3 � x1)

_x3 = x4

_x4 =
k
I2
(x1 � x3) +

u
I2

(5.7)

where x1 = �1, x2 = _�1, x3 = �2 and x4 = _�2.

In order to be able to apply the stability analysis derived in Chapter 4

Section 4.2, we need a linearized form of the 
exible-joint robot arm system.

We use the input-state linearization of the system introduced in [83]. The

transformed states are as follows:

z1 = x1

z2 = x2

z3 = �mgl
I1

sinx1 �
k
I1
(x1 � x3)

z4 = �mgl
I1
x2 cos x1 �

k
I1
(x2 � x4)

(5.8)
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The corresponding input transformation is:

u =
I1I2
k

(v � a(x)) (5.9)

where a(x) = mgl
I1

sinx1(x
2
2+

mgl
I1

cos x1+
k
I1
)+ k

I1
(x1�x3)(

k
I1
+ k

I2
+ mgl

I1
cos x1).

Then, the linear state equation are found to be:

_z1 = z2

_z2 = z3

_z3 = z4

_z4 = v

(5.10)

The transfer function of this linearized system is G(s) =
1

s4
. The degree of

this system is n = 4, so there are four inputs to our fuzzy controller. In order to

be able to �nd an analytical expression for the describing function of our fuzzy

controller, we use additivity property reviewed in Chapter 4 Section 4.2.1. The

system parameters yijkl of the fuzzy controller f(x) =
X
i

X
j

X
k

X
l


ijklyijkl

are assigned such that the fuzzy system is additively decomposable, so the

output of the fuzzy controller is:

v = f(z) = f(z1; z2; z3; z4) = f(z1; 0; 0; 0) + f(0; z2; 0; 0) + f(0; 0; z3; 0)

+f(0; 0; 0; z4) = f1(z1) + f2(z2) + f3(z3) + f4(z4)

(5.11)

If the describing functions of f(z) are fN(A); �N(A)g, then under the light

of Equation 5.11, the describing functions become N(A) = N1(A) +N2(A)s+

N3(A)s
2+N4(A)s

3, and �N(A) = �N1(A)+ �N2(A)s+ �N3(A)s
2+ �N4(A)s

3, where

fN1(A); �N1(A)g are the describing functions of the system with input z1, cal-

culated using Equations 4.17 and 4.26. In the expression of N(A), Ni(A)

corresponds to the local describing function with respect to zi = siz1, that is

the reason why the terms Ni(A) are multiplied by si.

The characteristic equation of the closed loop system is calculated as:

C1(s) = s4 +N4s
3 +N3s

2 +N2s+N1 (5.12)

for the fuzzy system with membership functions and

C2(s) = s4 + �N4s
3 + �N3s

2 + �N2s+ �N1 (5.13)
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for the fuzzy system with nonmembership functions. For notational simplicity,

we write Ni instead of Ni(A) where i = 1; : : : ; 4.

The ranges forNi's are taken as: N1(A) 2 [a1; b1], N2(A) 2 [a2; b2], N3(A) 2

[a3; b3], and N4(A) 2 [a4; b4], and for �Ni's: �N1(A) 2 [c1; d1], �N2(A) 2 [c2; d2],

�N3(A) 2 [c3; d3], and �N4(A) 2 [c4; d4]. Let us apply the upper bounds and the

lower bounds of each Ni(A) within the expressions of C1 and C2. For stability,

we have to check the Kharitonov polynomials of C1 and C2, and since our

system is of degree 4, we only need to check K3 and K4 of Equation 4.31 [82].

For C1(s):

K3(s) = b1 + a2s+ a3s
2 + b4s

3 + s4

K4(s) = b1 + b2s+ a3s
2 + a4s

3 + s4
(5.14)

and for C2(s):

K3(s) = d1 + c2s+ c3s
2 + d4s

3 + s4

K4(s) = d1 + d2s+ c3s
2 + c4s

3 + s4
(5.15)

Since there are too many parameters to be adjusted, we �x the ranges for

the �rst three describing functions and we only solve for the range of N4(A)

and �N4(A) such that the Kharitonov's theorem is satis�ed, i.e. we solve for

a4, b4, c4 and d4.

We take �ve rules for each system f1(z1), f2(z2), f3(z3) and f4(z4), and

the parameters for the �rst three systems are given in Table 5.2, where �'s

represent the centers.

For the parameters in Table 5.2, the corresponding ranges are �xed for Ni's:

N1 2 [0:6366; 1:3831], N2 2 [3:6; 5:0930], and N3 2 [8:4506; 15:9155], and for

�Ni's: �N1 2 [0:1739; 1:7608], �N2 2 [1:3916; 4:3835] and �N3 2 [4:3487; 10:0923].

We use these ranges in Equations 5.14 and 5.15 to solve for the ranges

of N4 and �N4, which are found to be N4 2 (0:6148; 21:5611) and �N4 2

(1:1249; 3:0798). In order to have a stable controller, we need to assign the

parameters for f4(z4) such that its describing functions fN4; �N4g fall in the

calculated ranges for stability.

We take the same �i's for f4 as in the other fi's. Then, we �nd the range

of yi's so that the controller is stable. The contour plots for minimum and
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Table 5.2: Fuzzy Controller Parameters

For f1

��2 = ��
��1 = �0:5�
�0 = 0
�1 = 0:5�
�2 = �

y�2 = �5
y�1 = �1
y0 = 0
y1 = 1
y2 = 5

For f2

��2 = ��
��1 = �0:5�
�0 = 0
�1 = 0:5�
�2 = �

y�2 = �10
y�1 = �8
y0 = 0
y1 = 8
y2 = 10

For f3

��2 = ��
��1 = �0:5�
�0 = 0
�1 = 0:5�
�2 = �

y�2 = �20
y�1 = �25
y0 = 0
y1 = 25
y2 = 20

maximum of N4 are shown in Fig.5.23 and Fig.5.24 respectively. In these

plots, the contours represent the value of N4.

The contour plots for minimum and maximum of �N4 are given in Fig.5.25

and Fig.5.26 respectively, where the contours represent the value of �N4.

From the four plots (Fig.5.23, Fig.5.24,Fig.5.25 and Fig.5.26), we see that

if we choose y1 = y2 = 1, the system is unstable, since N4 and �N4 are out of the

stability range, N4 2 (0:6148; 21:5611) and �N4 2 (1:1249; 3:0798). When we

apply the controller with these settings for f4 and with the settings in Table

5.2, the result is represented in Fig.5.27. Since we have chosen the parameters

of the system outside the stable region, the states of the closed loop system

become unstable (Fig.5.27).

If we choose y1 = 5 and y2 = 8 such that N4 2 (0:6148; 21:5611) and �N4 2

(1:1249; 3:0798) from Figures 5.23, 5.24, 5.25 and 5.26, wee see that N4 and �N4

are both in the stability range and the stable system states together with the

corresponding control input are shown in Fig.5.28 and Fig.5.29 respectively. As

can be seen from the �gures, the closed loop system states are stable, together

with a bounded input. This agrees with the theoretical results stating that if

the parameters are chosen from the stability range for N4 and �N4, the closed
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Figure 5.23: Contour Plot for Minimum N4
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Figure 5.27: Unstable System States

loop system becomes stable.

5.5 Fuzzy Controller Design based on Lie Al-

gebra Theory

In this section, we apply the Lie algebra based analysis to the design of the

2-way fuzzy adaptive system controller for a 
exible-joint robot arm system.

First, we have to represent the system as a T-S fuzzy system, modelling our

system with rules having linear subsystems as consequents (with the rule struc-

ture R(l): IF x1 is F
l
1 and ... and xn is F l

n, THEN _x(t) = Alx(t) +Blu(t)). We

then discuss a systematic way on how to �nd a Levi decomposition of the Lie

algebra LA generated by the A matrices of the linear subsystems of this model,

since our example does not have commuting system matrices Al's (Section 4.3

of Chapter 4). In this decomposition, the matrices in the semisimple part

should form a stabilizable pair with the Bl matrices of the system. Finally, we

design the controller so that the system is stable.
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5.5.1 T-S Representation of the System

First, we put the system given by the state equations 5.7 into the _x = A(x)x+

B(x)u form needed in the consequents of the rules in a T-S fuzzy system

representation. Let us remember the robotic system equations:

_x1 = x2

_x2 = �mgl
I1

sin(x1) +
k
I1
(x3 � x1)

_x3 = x4

_x4 =
k
I2
(x1 � x3) +

u
I2

(5.16)

In matrix form we have:

_x =

2
666666664

0 1 0 0

�mgl
I1

sin(x1)
x1

� k
I1

0 k
I1

0

0 0 0 1

k
I2

0 � k
I2

0

3
777777775
x +

2
666666664

0

0

0

1
I2

3
777777775
u (5.17)

where x = [x1; x2; x3; x4]
T .

The only nonlinear term in A(x) is sinc(x1) =
sin(x1)
x1

, so we need to linearize

it in the T-S representation. We use the exact value of the sinc function at

the operation point of the rules. According to this, the rules acquire a linear

form around the point of operation:

R(l) : IF x1 is F
l
1 and ... and x4 is F

l
4, THEN

_x(t) =

2
666666664

0 1 0 0

�mgl
I1

sin(x1)
x1

jxl
1
� k

I1
0 k

I1
0

0 0 0 1

k
I2

0 � k
I2

0

3
777777775
x(t) +

2
666666664

0

0

0

1
I2

3
777777775
u(t)

(5.18)

If we give numerical examples for the rules, we have:

R(1) : IF x1 is around 0 and ... and x4 is F
1
4 , THEN

_x(t) =

2
666666664

0 1 0 0

�mgl
I1
� k

I1
0 k

I1
0

0 0 0 1

k
I2

0 � k
I2

0

3
777777775
x(t) +

2
666666664

0

0

0

1
I2

3
777777775
u(t)

(5.19)
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R(2) : IF x1 is around
�
2
and ... and x4 is F

2
4 , THEN

_x(t) =

2
666666664

0 1 0 0

�mgl
I1

2
�
� k

I1
0 k

I1
0

0 0 0 1

k
I2

0 � k
I2

0

3
777777775
x(t) +

2
666666664

0

0

0

1
I2

3
777777775
u(t)

(5.20)

As the number of rules increase, the accuracy of modelling the original system

by this T-S fuzzy system increases.

The system parameters are taken to be m = 0:01kg, I1 = I2 = 1kg:m2,

k = 0:05N:m=rad, l = 1m and g = 9:81m=s2 for illustrative purposes, so the

system matrices become:

Al =

2
666666664

0 1 0 0

�0:0981 sin(x1)
x1

jxl
1
� 0:05 0 0:05 0

0 0 0 1

0:05 0 �0:05 0

3
777777775
; Bl =

2
666666664

0

0

0

1

3
777777775

(5.21)

If we set cl = �0:0981 sin(x1)
x1

jxl
1
� 0:05, then Al =

2
666666664

0 1 0 0

cl 0 0:05 0

0 0 0 1

0:05 0 �0:05 0

3
777777775
.

Next, we de�ne how to decompose the Lie algebra generated by these Al

matrices.

5.5.1.1 Decomposition Procedure

In order to decompose the Al matrix into the semisimple and solvable bits,

we need to look at the constant matrices Al1 and Al2 that would generate Al.

The choice of these matrices forms the �rst step of the procedure. It should

be noted that the choice of Al1 and Al2 is not unique.
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We start with an arbitrary decomposition of the Al matrix as follows:

Al = cl

2
666666664

0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

3
777777775

| {z }
Al1

+

2
666666664

0 1 0 0

0 0 0:05 0

0 0 0 1

0:05 0 �0:05 0

3
777777775

| {z }
Al2

(5.22)

We now consider the Lie algebra LA generated by the matrices fAl1; Al2g.

In order to �nd the Levi decomposition of LA, we need to separate the semisim-

ple bit and the rest will form the solvable part. From the stability point of

view, the semisimple bit can be considered as the controllable part and the

solvable bit as the uncontrollable part, so we want the solvable bit to be small

enough to be able to stabilize the system by stabilizing the semisimple bit.

The procedure for this decomposition is based on the Cartan's criterion

(see Section 2.4.3), and follow the four steps described below.

Step 1: Form the basis for the Lie Algebra: In order to do this, �rst �nd

the basis elements for LA generated by fAl1; Al2g. Then, �nd the commutators

([X; Y ] = XY � Y X is the commutator of two matrices X; Y ) of the basis

elements, and form the set of matrices composed of the basis elements and

the commutators. Finally, �nd the basis elements of this new set of matrices,

which form the Lie algebra basis.

Step 2: Obtain the Killing form.

Step 3: Obtain the Killing matrix, K. The Killing matrix K is found

by the Killing form equality kf = xKyT , where x = [x1; x2; : : : ; xn], y =

[y1; y2; : : : ; yn], n is the dimension of the Lie algebra LA and kij's are the

coeÆcients of the terms xiyj in the Killing form such that kij = kji. Diagonalize

the Killing matrix K, i.e. �K = P�1KP , where P is the modal matrix.

Transform the basis elements by the same P . The semisimple bit is taken to

be the transformed basis elements corresponding to the large eigenvalues of the

matrix K. This is deduced from the fact that eigenvectors corresponding to

eigenvalues that are close to zero result in a degenerate Killing form, meaning

that the corresponding basis elements belong to the solvable part.
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Step 4: Decompose Al with respect to the transformed basis. This gives

the semisimple part (that corresponds to the basis elements for the semisimple

part found in Step 3) and the solvable part (that corresponds to the rest of

the basis elements).

When we apply this procedure to our example system, we obtain the fol-

lowing computational results:

Step 1: The Lie algebra basis for Al1; Al2 is:

Lbasis = f

2
666666664

0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

3
777777775
;

2
666666664

0 1 0 0

0 0 0:05 0

0 0 0 1

0:05 0 �0:05 0

3
777777775
;

2
666666664

�1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

3
777777775
;

2
666666664

0 2 0 0

0 0 �0:05 0

0 0 0 0

�0:05 0 0 0

3
777777775
;

2
666666664

0 0 �0:15 0

0 0 0 0:05

�0:05 0 0 0

0 0:15 0 0

3
777777775
;

2
666666664

0 �4 0 0

0 0 �0:05 0

0 0 0 0

�0:05 0 0 0

3
777777775
;

2
666666664

0 0 0 0:2

�0:005 0 0:0025 0

0 0:2 0 0

0:0025 0 �0:015 0

3
777777775
;

2
666666664

0 0 0:15 0

0 0 0 0:05

�0:05 0 0 0

0 �0:15 0 0

3
777777775
;

2
666666664

0 0 0 0:1

0:005 0 0 0

0 0:1 0 0

0 0 0:015 0

3
777777775
;

2
666666664

�0:015 0 0:0125 0

0 0:015 0 �0:0025

0:0025 0 �0:025 0

0 �0:0125 0 0:025

3
777777775
g

(5.23)
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Step 2: The Killing form for this example is:

kf = 12y4x1 � 24y6x1 + 0:18y5x5 � 0:18y4x7 � 0:18y9x6 + 0:18y9x2

�0:18y7x4 + 0:003y7x9 + 0:012y7x7 � 0:18y8x8 + 0:18y10x3

+0:01095y10x10 � 0:003y10x8 + 0:003y9x7 � 0:18y6x9 + 6y2x1

�0:6y2x2 + 12y3x3 � 0:012y10x5 � 0:012y5x10 + 6y1x2 + 12y1x4

�24y1x6 � 0:003y8x10 + 0:18y3x10 + 0:18y2x9

(5.24)

Step 3: The Killing matrix is:

KM =
�
k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

�
(5.25)

where k1 = (0; 6; 0; 12; 0;�24; 0; 0; 0; 0)T , k2 = (6;�0:6; 0; 0; 0; 0; 0; 0; 0:18; 0)T,

k3 = (0; 0; 12; 0; 0; 0; 0; 0; 0; 0:18)T, k4 = (12; 0; 0; 0; 0; 0;�0:18; 0; 0; 0)T , k5 =

(0; 0; 0; 0; 0:18; 0; 0; 0; 0;�0:012)T, k6 = (�24; 0; 0; 0; 0; 0; 0; 0;�0:18; 0)T , k7 =

(0; 0; 0;�0:18; 0; 0; 0:012; 0; 0:003; 0)T, k8 = (0; 0; 0; 0; 0; 0; 0;�0:18; 0;�0:003)T ,

k9 = (0; 0:18; 0; 0; 0;�0:18; 0:003; 0; 0; 0)T, and k10 = (0; 0; 0:18; 0;�0:012; 0; 0;

�3� 10�3; 0; 12� 10�3)T . When we diagonalize KM , we get:

�KM
= diag(�0:1678; 0:0232; 0:1906;�0:6054; 0:18;

0:0075; 0:1808;�27:5109; 27:4823; 12:0027)
(5.26)

The modal matrix P is:

P =
�
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

�
(5.27)

p1 = (6�10�4; 0:11; 0; 0:64; 0; 0:35; 0:63; 0; 0:24; 0)T, p2 = (6:6�10�3; �0:19; 0;

�0:04; 0;�0:07; 0:44; 0;�0:87; 0)T , p3 = (�4 � 10�4; 0:08; 0;�0:62; 0; �0:29;

0:63; 0; 0:36; 0)T , p4 = (6 � 10�3; 0:95; 0;�0:13; 0; 0:17;�0:04; 0;�0:23; 0)T ,

p5 = (0; 0; 2�10�4; 0;�5�10�4; 0; 0;�1; 0;�0:02)T , p6 = (0; 0; 0:01; 0;�0:07; 0;

0; 0:02; 0;�0:99)T , p7 = (0; 0; 1 � 10�3; 0; 1; 0; 0; 6 � 10�4; 0;�0:07)T , p8 =

(0:71; �0:16; 0;�0:31; 0; 0:62; �2 � 10�3; 0; 5 � 10�3; 0)T , p9 = (0:71; 0:15;

0; 0:31; 0;�0:62; 0; 0; 5� 10�3; 0)T , p10 = (0; 0;�1; 0; 0; 0; 0; 0; 0;�0:01)T .

When we compare the eigenvalues, we conclude that apart from the last

three, the others can be considered as 0, so we take the last three transformed
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basis elements as the semisimple part. The three basis elements after trans-

formation become:

Tbasis = f

2
666666664

0 �3:2412 0 0:0001

0:7069 0 �0:0233 0

0 0:0001 0 �0:1576

�0:0233 0 0:0080 0

3
777777775
,

2
666666664

0 3:2395 0 0:0001

0:7073 0 0:023 0

0 0:0001 0 0:1511

0:023 0 �0:0075 0

3
777777775
,

2
666666664

1:0001 0 �0:0002 0

0 �1:0001 0 0

0 0 0:0004 0

0 0:0002 0 �0:0004

3
777777775

The transformation of all the basis elements is performed by: Newbasis =

PeT , where e = [e1; e2; : : : ; e10] are the basis elements. In Tbasis, the last three

of the transformed basis elements are taken.

For stability, each of the three matrices should form a stabilizable pair

with the Bl in Equation 5.21. However, we see that the last matrix violates

this condition, i.e. it does not form a stabilizable pair with Bl (controllability

matrix for this pair is

2
666666664

0 0 0 0

0 0 0 0

0 0 0 0

1 �0:0004 0 0

3
777777775
which is not full rank). To solve

this problem, one way is to �nd a similarity transformation so that the result

is a stabilizable set of matrices, but this is not an easy task.

Another way is to start with a di�erent decomposition of Al than the one

in Equation 5.22. We have used some intuition in the decomposition of the
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system, and obtained the following decomposition of the system into:

Al =

2
666666664

0 1 0 0

�1 0 0:05 0

0 �0:05 0 1

0 0 �1 0

3
777777775

| {z }
Al1

+

2
666666664

0 0 0 0

cl + 1 0 0 0

0 0:05 0 0

0:05 0 0:95 0

3
777777775

| {z }
Al2

(5.28)

The �rst part of this matrix decomposition, i.e. Al1, is certainly one di-

mensional and therefore Abelian, and also a simple algebra. We can think of

this one-dimensional Abelian Lie algebra as a kind of 'degenerate' semisimple

algebra (we cannot directly say that it is semisimple because one-dimensional

algebras are not semisimple). It is Abelian, so the Cartan subalgebra is the

whole algebra and the roots are all zero. Thus, Al1 is the semisimple part of

Al.

The second part, Al2, generates a solvable Lie algebra for di�erent cl's, since

they are lower triangular matrices. Since we have found a direct decomposition

of the system into semisimple and solvable bits, we do not need to apply the

decomposition steps here. This concludes our decomposition of Al, and we see

that Al1 forms a stabilizable pair with Bl, so we can stabilize our system.
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Figure 5.30: The states of the controlled system
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Figure 5.31: The control input

We use pole placement for the design of a controller that stabilizes each

linear subsystem in the T-S model. Since the semisimple part of each rule are

equal to each other, which is Al1, the same control is used for every rule. This

satis�es the criterion in Equation 4.57, which is
X
i

(~�iy
2
i (t) +

~�iu(t)yi(t)) �

�1
2
"
X
i

y2i (t).

The controller is of the form: u = �Kx(t), K =
�
9520 9599 148 20

�
.

When this control is applied to the original system, we see that we can stabilize

the system. Fig.5.30 shows an example of stabilized states for initial condition

(�=3; 0; �=3; 0).

The control input is shown in Fig.5.31.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Concluding Remarks

In this thesis, we have developed a novel 2-way fuzzy adaptive system being

able to minimize vagueness and inconsistencies based on intuitionistic fuzzy

sets in place of classical fuzzy sets. The two way characteristic comes from the

property of our system to handle not only inconsistencies by rendering the sys-

tem fully consistent in a �rst learning phase, and also minimizing uncertainty

in a second phase, but also to be able to handle interval valued vagueness with

membership and nonmembership assignments. Inconsistencies naturally arise

from the independent assignments of these membership and nonmembership

functions. We had to also analyze the type of these inconsistencies and look

at the performance of their reduction based on their types. We call this an

evaluation and develop a novel approach for this evaluation of inconsistency

based on shadowed sets. Then, came the actual dynamical role of our 2-way

fuzzy adaptive system coupled to a physical plant. We applied the 2-way fuzzy

adaptive system as a nonlinear system identi�er and analyzed its performance

in matching the nonlinear function of the real plant. During identi�cation, the

parameters of the 2-way fuzzy system have been adjusted adaptively, and their

results have proven that the fuzzy system is capable of reducing uncertainty

and inconsistency through training. We carried out in the performance analysis

the evaluation of inconsistencies after the �rst training phase for inconsistency

reduction. The results have shown that fully inconsistent membership and
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nonmembership functions have been reduced to consistent ones.

The real plant has also been chosen as a 
exible-joint robot arm system

identi�ed by the proposed 2-way system and its inconsistency reduction based

on shadowed sets proved to have a high correlation with the overlapping de-

gree of membership and nonmemberships. This has been tied to a fuzziness

measure c, where high values of the combinational index c used in classi�cation

of inconsistency types led to inconsistency not being able to switch its type

but still be reduced within the same type, and for small values of c around

1 inconsistencies was reduced lowering their type until fully consistent case.

Therefore, the subjective assignment of belief and disbelief in terms of mem-

bership and nonmembership, and their fuzzy support (span) as well as their

degree of disagreement is a crucial initial condition for the inconsistency that

determines if it can be fully or partially reduced by learning.

Prediction and moreover, assurance of stability of the 2-way fuzzy adaptive

system has been achieved using 3 complementary approaches. First method

we develop is based on the approximating sequences technique, where the

design of the fuzzy controller is turned into an optimal control problem applied

to the control of a 
exible-joint robot arm system. Our second approach

uses a describing function technique to develop a systematic design procedure

for the 2-way fuzzy controller. We have calculated an analytical expression

for the describing function of the 2-way fuzzy system using the additivity

property for which decomposability conditions have been de�ned. The fuzzy

controller driving the 
exible-joint robot arm system considered previously

prove to guarantee stability within the stability regions we determine prior to

design in the parameter space. The simulation results for unstable and stable

cases agreed with the theoretical results.

If the plant in question, here the 
exible-joint robot arm, can be represented

as a T-S type fuzzy system, stability conditions for the design of 2-way fuzzy

adaptive controller were generated using Lie algebra theory. Stability condi-

tions for the most general case where we have noncommuting system matrices
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in T-S form were derived after their development for commuting matrices. Our

basic idea is to decompose the Lie algebra generated by the system matrices

into the semisimple and solvable parts, such that the solvable part, which can

be considered as the uncontrollable part, is small compared to the semisimple

part, where the controller is then designed for the semisimple part. For this

analysis, we had to also develop a decomposition procedure.

The major impact of this thesis to the literature is that to our knowledge,

it is the �rst time that the intuitionistic fuzzy sets are used within a fuzzy

control architecture modelling uncertainty and inconsistency. The design of a

fuzzy system using approximating sequences technique is also a novel approach

introduced in the framework of this study. The design of a stable 2-way fuzzy

controller using describing function method and the stability analysis of the

T-S fuzzy systems based on Lie algebra are the other novelties of our work.

6.2 Future Work

The thesis also forms the basis for new research areas. The existing stability

analysis techniques in literature can be adapted such that they can be used

to analyze the stability of the 2-way fuzzy system. Based on the Lie algebra

analysis, new adaption laws can be derived to be used in the design of adaptive

fuzzy systems. The decomposition of the Lie algebra is not a unique decom-

position, and it is not a trivial process. This decomposition procedure can be

modi�ed into such a procedure that the result is an optimum decomposition.

This is not an easy task to accomplish, but it will be a major contribution to

the literature. In the stability analysis using Lie algebra, the case where Ai's

are Jordan form can be considered, and the analysis results can be extended for

this case. The empirical results used in inconsistency evaluation can be made

analytical by the derivation of a rigorous correlation between assignment of

membership and nonmembership functions and the global index used.
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