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ABSTRACT 
 
 
 

COMBINING IMAGE FEATURES FOR SEMANTIC DESCRIPTIONS 
 
 
 

Soysal, Medeni 
 

MSc., Department of Electrical and Electronics Engineering 
 

Supervisor: Associate Professor A.Aydın Alatan 
 
 

September 2003, 85 pages 
 
 
 

Digital multimedia content production and the amount of content present all 

over the world have exploded in the recent years. The consequences of this fact 

can be observed everywhere in many different forms, to exemplify, huge digital 

video archives of broadcasting companies, commercial image archives, virtual 

museums, etc. In order for these sources to be useful and accessible, this 

technological advance must be accompanied by the effective techniques of 

indexing and retrieval. The most effective way of indexing is the one providing a 

basis for retrieval in terms of semantic concepts, upon which ordinary users of 

multimedia databases base their queries. On the other hand, semantic 

classification of images using low-level features is a challenging problem. 

Combining experts with different classifier structures, trained by MPEG-7 
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low-level color and texture descriptors, is examined as a solution alternative. For 

combining different classifiers and features, advanced decision mechanisms are 

proposed, which utilize basic expert combination strategies in different settings. 

Each of these decision mechanisms, namely Single Feature Combination (SFC), 

Multiple Feature Direct Combination (MFDC), and Multiple Feature Cascaded 

Combination (MFCC) enjoy significant classification performance improvements 

over single experts. Simulations are conducted on eight different visual semantic 

classes, resulting in accuracy improvements between 3.5-6.5%, when they are 

compared with the best performance of single expert systems. 

 

Keywords: content-based indexing, MPEG-7, combining classifiers 
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ÖZ 
 
 
 

ANLAMSAL TANIMLAMALAR İÇİN GÖRÜNTÜ ÖZNİTELİKLERİ 
BİRLEŞTİRME 

 
 
 

Soysal, Medeni 
 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 
 

Tez Yöneticisi : Doç. Dr. A. Aydın Alatan 
 
 

Eylül 2003, 85 sayfa 
 
 
 

Sayısal çoğulortam içeriği üretimi ve dolayısıyla tüm dünyada varolan içerik 

miktarı geçtiğimiz yıllarda büyük bir artış göstermiştir. Bu artışın sonuçlarına 

değişik şekillerde de olsa her yerde rastlanabilmektedir. Örnek vermek gerekirse, 

belli başlı yayın kuruluşlarının dev sayısal video arşivleri, ticari amaçlı imge 

arşivleri ve sanal müzeleri bunlar arasında sayabiliriz. Bu kaynakların yararlı ve 

erişilebilir olması için, bu teknolojik ilerlemenin etkili dizinleme ve erişim 

teknikleriyle desteklenmesi gerekmektedir. En etkili dizinleme, çoğulortam 

veritabanlarının sıradan kullanıcılarının sorgularını dayandırdıkları anlamsal 

kavramları temel alan erişime olanak sağlayan dizinlemedir. Öte yandan, 

imgelerin düşük seviyeli tanımlayıcılar yoluyla anlamsal sınıflara ayrılması zor 

bir problemdir. Değişik sınıflandırıcı yapılarına sahip, MPEG-7 düşük seviye 
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renk ve doku tanımlayıcıları ile eğitilmiş uzmanların birleştirilmesi bir çözüm 

alternatifi olarak incelenmiştir. Değişik sınıflandırıcı yapılarını ve imge 

özelliklerini biraraya getirebilmek için temel uzman birleştirme metodlarını farklı 

şekillerde kullanan gelişmiş karar mekanizmaları önerilmiştir. Bu karar 

mekanizmalarının herbiri sınıflandırma performansı konusunda tekil uzmanların 

sağladığından daha  başarılı sonuçlar elde etmişlerdir. Deneyler sekiz ayrı görsel 

anlamsal sınıf üzerinde yapılmış ve birleşik uzmanlar tekil uzmanların en 

başarılısından %3.5-6.5 arasında daha iyi sonuç vermişlerdir. 

 

Anahtar Kelimeler: içerik tabanlı dizinleme, MPEG-7, sınıflandırıcı birleştirme. 
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 CHAPTER 1 
 
 

INTRODUCTION 
 
 
 
In the recent years, technological advances have made multimedia content 

production easier than ever before. Digital cameras and many other personal 

recording devices that enable content production are pervasively utilized today. 

By Internet, it also became possible to exchange produced content throughout the 

world, multiplying the amount of data accessible. 

Until recently, price of storage devices was a limiting factor for the amount 

of content that is possessed and utilized. However, this fact also changed by the 

quick advances in the storage technology. As an illustration, consider the amount 

of video (MPEG-1) that can be stored in a hard disk that’s worth $100. Today, 

approximately 100 hours of video can be stored with a cost of $100, while two 

years ago the amount that could be stored was only 5 hours. 

As a result of these great strides in content production, storage and 

exchange, large collections of digital multimedia data are used in various areas 

today [1]. These areas include planning, government, and military intelligence 

that use satellite imagery, as well as commercial photo libraries and digital 

museums that have extremely large and very diverse image collections. 
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In addition to these specific areas, there is a huge amount of disorganized content 

that is produced and shared by common users (e.g. home video). 

Unfortunately, what would seem like a great technological jump and a 

pleasant dream can easily turn into a chaos, if no sophisticated tools for managing 

the explosion in available content are developed. It should be remembered that 

information has value only if it can be reached and consumed. These solid proofs 

have led researchers to the common consensus that indexing and management is 

compulsory for digital multimedia data to be valuable in the long term.  

1.1 Scope of the Thesis 

The main idea behind this thesis research is reaching high-level semantic 

descriptions of still images by utilizing low-level features.For this purpose, 

combining the results of different classifier structures trained by various low-level 

features is proposed. 

Proposed method is tested on eight different visual semantic classes, which 

are football, indoor, crowd, sunset-sunrise, sky, forest, sea, and cityscape. 

1.2 Content Based Information Retrieval 

The ease in production and storage of multimedia data increases the speed that the 

amount of the data grows and hence makes the problem of managing more 

complex. In fact, the complexity lies in building appropriate representations of the 

data, since indexing is not possible without such a representation. This fact can be 

best explained by the famous example [1]: Imagine a large secondhand book shop 

whose books are sorted by the color of the dust-jacket. No matter how large the 
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collection would be, this shop could attract very few customers and these would 

probably be the most desperate ones. 

As a primary fact, indexing and retrieval should be based on the content. 

The usual strategies of people, who own commercial image and video databases, 

are based upon manual annotation. This means annotating each picture or video 

by hand and it is increasingly unacceptable for two reasons. First of all, it is a 

costly process and if one considers the growing amount of the content, it is 

obvious that the volume of work involved will be tremendous. Secondly, 

preparing an objective and domain-independent description by using an inherently 

subjective method that involves human annotators is not possible. 

Automatic annotation is an alternative to manual indexing. It involves 

analysis of data by automatically extracting features that will be useful for 

searching and discovering content. Representation of data by means of 

automatically extracted low-level descriptors has three main advantages over 

manual annotations: (1) they will be automatically extracted without consuming 

human work power, (2) they can be more objective and domain-independent and 

(3) they can be native to the multimedia data, meaning that they do not involve 

textual descriptions, but use features, such as color, texture and shape. 

The next step in automatic annotation is reaching the semantic descriptions 

using the extracted features. At this point, researchers are faced with the most 

challenging task: Bridging the gap between low-level descriptors that machines 

can process and the high-level descriptions that users can understand and use. 

This thesis aims to shorten this gap. 
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1.3 A Brief Review of MPEG-7 Standard 

The problem mentioned and the technological situation were also recognized by 

International Standards Organization Moving Pictures Expert Group (ISO 

MPEG). Considering the growing interest towards the management of multimedia 

data in the recent years, ISO MPEG organization established a new standard, 

MPEG-7, for describing various types of multimedia data [26]. 

Similar to the other MPEG standards, namely MPEG-1, MPEG-2 and 

MPEG-4, MPEG-7 defines a standard representation of multimedia information 

with a set of well-defined requirements. However, MPEG-7 substantially differs 

from all other MPEG standards due to its target. While all the others represent the 

content itself, MPEG-7 represents information about the content. Therefore, it is 

not a coding standard, but a multimedia content description interface. Moreover, it 

should also be noted that MPEG-7, does not standardize how the information is to 

be extracted or consumed, whereas it standardizes which information is to be 

extracted and utilized. 

MPEG-7 standard comes up with many features, supporting both manual 

and automatic annotation alternatives. In its context, although many detailed 

media descriptions for manual annotation exist, automatic annotation is strongly 

encouraged by many audiovisual low-level descriptors based on native properties 

of the multimedia content. (i.e. color, texture, shape, melody, etc.) The most 

important feature which makes MPEG-7 different and probably superior than 

other digital management methods is that, it addresses the interoperability issues 

and therefore provides a standard way to do multimedia content description and 

allows the exchange of content and its descriptions across different systems. 
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1.4 Outline 

The main focus in this research is about Content Based Image Retrieval (CBIR) 

using low-level visual features. Tools, methods, approaches and systems from the 

related literature about this subject is investigated in detail in the next chapter. A 

realization of a system, whose main aim is to integrate methods and tools used in 

many systems so far, with some newly emerged ones, is presented in Chapter 3. 

This system combines the outputs of many different complex mechanisms to 

reach high-level concepts that ordinary users may seek in their queries. In Chapter 

4, simulation results of the system proposed are presented. Simulation results are 

discussed in detail and some concluding remarks are made in the final chapter. 

Moreover, an outline of the future research will be given, along with the ideas 

emerged during this research. 
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CHAPTER 2 
 
 

STATE OF THE ART IN CONTENT BASED IMAGE 
RETRIEVAL 

 
 
 
State-of-the-art Content Based Image Retrieval Systems (CBIR) are based on 

techniques and approaches which are results of long and intensive research 

conducted on this subject. In this chapter, basic components of these systems are 

analyzed as a detailed summary of the literature. These basic components can be 

listed as low-level features, the distance measures used for discriminating 

features, and similarity and classification based retrieval methods. In the last 

section, a review of current content based retrieval systems will also be presented 

[2]. This review describes the most popular commercial and academic CBIR 

systems as well as some systems enjoying interesting and novel features. This list 

can be considered to contain the key players in the area. 

2.1 Low-level Features 

Low-level feature can be defined as a description of a multimedia signal, which 

has undergone minimum processing after being captured by sensors. When the 

multimedia signal under consideration is a still image, applicable low-level 

features are color, texture and shape. Following sub-sections are devoted to the 
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literature about these three low-level features which are utilized for describing still 

images according to their visual content. 

2.1.1 Color Descriptors 

Color being an important visual attribute for human vision is used extensively in 

image retrieval. It can be defined in many different spaces such as RGB, YCbCr, 

HSV, HMMD, etc. Many different techniques for comparing images in terms of 

color similarity have been described in the literature [2]. 

The first and the most common technique used in indexing of images 

according to their color content is the Color Histogram [3]. In this technique, 

colors in the image are mapped into a discrete color space containing a predefined 

number of colors and the number of points mapped to each point in this new space 

is calculated. It is used in many image retrieval systems [3,4], due to its success in 

characterizing the global color content of the image. 

Experiments with the color histogram technique have proved that this 

technique, though being very useful, is vulnerable against the quantization 

parameter of the histograms. Considering this property, a variation of this 

technique, namely Cumulated Color Histogram, is proposed [3]. Cumulated Color 

Histogram, as it can be inferred from its name, calculates the number of image 

pixels cumulatively and proved more robust than the first one. 

Another important approach is Color Moments technique [5]. This 

technique proposes the use of only the dominant features of the image color 

distribution with a small representative set of color vectors that capture the color 

properties of the image. In order to provide a faster search tool, Color Sets are 
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proposed [2]. This approach identifies the regions within the image containing 

colors from a predefined set. Image is represented by binary vectors 

corresponding to image regions. 

Above methods provide a basis for the research in color-based querying. 

However, they have limited capability of similarity matching due to the lack of 

spatial information incorporation. There are also techniques which are based on 

both spatial relations and color feature. The easiest way to include spatial 

information is Sub-block Histogram [6]. In this method, image is divided into a 

predefined number of sub-blocks and color histogram is computed for each of 

these. Then, similarity search is done by calculating the histogram difference 

between the corresponding blocks. 

Region-based color querying is another technique, which enables selecting a 

region inside an image for using its features in similarity search [2,7,8]. This 

technique has the drawback of requiring a preprocessing operation for segmenting 

the search image into regions. On the other hand, Spatial Chromatic Histograms 

incorporate the information provided by color histogram with the information 

about the location of pixels of similar color and their arrangement within the 

image [2]. Finally, Color Correlograms are also proposed as color features. These 

features can be used to describe the global distribution of local correlations, since 

they include the spatial correlation of colors. 

All of the techniques above are developed in order to model the perceptual 

similarity between the query and target images. Although they provide powerful 

tools for color-based matching, images with quite different appearance may still 

be considered as “similar” because of similar color compositions. Modeling the 
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human visual system by using algorithms that computers can perform is still a 

very popular topic. 

2.1.2 Texture Descriptors 

Texture is the repetition of a basic pattern over a given area. Its repetition rate, as 

well as the shape of the pattern, defines texture features. In other words, texture of 

a visual item characterizes the interrelationship between its adjacent pixels. 

Texture similarity is a quite useful property when distinguishing images that have 

similar color content (e.g. sky-sea, leaves-grass, etc.). There are many techniques 

to reveal the texture features that have significance for human eye. All of these 

techniques work on the grayscale representations of the image pixels. 

Since texture is a property recognized by the human eye, techniques for 

modeling the human perception of texture are also developed [2]. Psychological 

studies have proved that coarseness, contrast, directionality, regularity and 

roughness are the properties mainly used by humans to define texture [3]. 

Considering this, many computational approximations were developed for 

defining these important visual texture properties [2,9]. 

A well known and inspiring technique for defining texture is Co-occurrence 

Matrix [2]. This technique computes a two dimensional histogram of the 

dependencies of neighboring grayscale values. Frequency transform based 

methods are also very popular in this area. A number of methods using the results 

of 2D DFT and 2D DCT applied on images are the first examples of the research 

on this subject [10]. 
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After wavelet transform [3] became popular among researchers, it is also 

integrated into texture analysis research. While in one technique, mean and 

variance extracted from the wavelet subbands are used for texture representation 

[3], wavelet transform is combined with the co-occurrence matrix in another [2]. 

Wavelet-based histogram technique being a variation of the first, is also proposed 

to use a coefficient histogram, utilizing channels as indexes [11]. Gabor Wavelet 

Transform is also used in this subject, since it very closely models the human 

vision of texture. An example, based on this transform, computes coefficients of a 

codebook of important texture patterns and then retrieves images, according to 

their similarity [2]. 

Edge Direction Histogram is a technique that has recently become 

widespread [12]. In this technique, edges with predefined basic orientations are 

counted inside images. Afterwards, in order to compute similarity, histograms 

consisted of the number of edges are used. 

2.1.3 Shape Descriptors 

Shape is an important feature to identify the similarity in a binary image material. 

In order to obtain a more complex semantic representation, images should be 

analyzed based on objects. This can only be achieved via shape descriptors. Since 

shape properties can only be extracted from binary images, input image should 

undergo a segmentation process beforehand. 

During the long studies on defining metrics for shape, many different 

descriptors are proposed. Some of these descriptors are area, center of mass, 

circularity, moments, length, irregularity, complexity, aspect ratio, right 
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angleness, sharpness and directedness [2,9]. These descriptors can be considered 

as parameters that are used in shape recognition by the human vision system. 

Descriptors for shape representation in images are divided into two main 

categories which are region-based and contour-based. The most successful 

representation in the category of region-based descriptors is reported as the 

Moment Invariants. Seven such moments, which are known as Hu Moments [2], 

are proved to be successful, especially when invariance to transformation is 

considered. On the other hand, Curvature Scale Space Representation is the most 

popular among the contour-based descriptors [2,13]. This representation locates 

the strongest peaks on the contour and computes their strength in order to reveal 

the characteristics of the contour. 

2.2 Distance Measures 

For CBIR purposes, two multimedia content should be compared in terms of their 

low-level features. This situation requires a corresponding distance measure for 

each low-level feature. Low-level image features are usually represented by 

vectors of various dimensions. Therefore, images can be compared by evaluating 

the distance of these representative n-dimensional vectors between each other. 

There are many different distance metrics that are native to a specific descriptor, 

in addition to the generic ones. 

Absolute and Euclidian Distances are simply the well known distance 

metrics, used in many different areas [2]. They are also known as L1 and L2-

norms, respectively. Mahalanobis Distance is also a well known distance metric in 

statistics [2]. It is used in modeling multivariate distributions and based on 
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covariance values of the vectors. Baddeley Distance is one of the specific 

measures that are mentioned above [14]. They are based on distance transforms 

and known as a strong similarity measure applied specifically to color vectors. 

For color histograms, many specific distance measures are also defined. One 

of them is the Quadratic Distance [9] for which a similarity matrix that accounts 

for the perceptual similarity of two histogram bins is used. Another common 

distance measure for color histograms is known as Histogram Intersection, and 

also known to be a simple method for fast applications [2]. Lastly, revisiting L1 

and L2 norms, according to the experiments, when applied to histograms, L1-

norm has higher discrimination power than L2-norm. 

Shape Descriptors also have a specific distance metric which is called 

Hausdorff Distance [2]. Hausdorff Distance is simply defined as the maximum 

distance of a set of features to the nearest point in the other set of features. It is 

applied to shape similarity for comparing two different sets of areas characterizing 

the shapes that they belong to. It assigns the highest dissimilarity as the distance 

between them. 

Summing up, one can say that the performance of retrieval mechanisms are 

closely related to the success of the metric used for matching, in modeling human 

judgments of similarity. 

2.3 Similarity-based Retrieval 

The basic idea of similarity-based retrieval is to extract characteristic features 

from the query image and then compare them against the features of the images in  
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a particular database to find the most similar images. The utilized features depend 

on the specific application and must be selected before the query. 

This method has many application areas, especially in art and fashion. As an 

illustration, imagine yourself as a fashion designer who is in need of fabric images 

with a particular mixture of colors, or a documentary director who requires red 

Japanese fish photos. 

Although, similarity based retrieval has applications in many areas, it is far 

from solving the CBIR problem completely. This arises from the fact that many 

users are not experts having past experience about low-level image properties, 

such as color, texture and shape. Without having expert knowledge about the low-

level features, it is not possible to select the feature which best represents the 

concept conveyed by the image. In addition, the requirement to provide a query 

image that represents the concept in mind can be quite cumbersome in many 

cases. As a conclusion, this can be considered as a step towards the solution, but 

not the final solution itself. 

2.4 Classification-based Retrieval 

Ordinary users of image databases all over the world do not have specific 

knowledge about the characteristic features of images that they are interested in. 

However, all of them have the ability to name the semantic concept that they are 

looking for. The queried concept ranges from generic to specific. For instance, 

“Find me indoor images” defines a quite generic query, whereas “Find me photos 

of Tayyip Erdoğan while he was falling down from a horse” defines a very 

specific one. As seen in these examples, classification-based retrieval addresses 
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the much harder problem of bridging the wide gap between semantics that users 

can define and the low-level features that can be automatically extracted by the 

computers. 

Unfortunately, in an unconstrained environment this is still an unsolved 

problem. The effectiveness of the solutions to the problem depends highly on the 

application domain. In the systems that semantic queries are available, a semantic 

concept should first be defined by a sufficient number of images which contain 

this concept. After the system is trained by using the provided data, it can classify 

new test data automatically. However, as it is previously mentioned the success of 

this kind of system is highly dependent on the ability of the training data to make 

the system capturing the concept. 

Another important fact about semantic queries is that most of the time they 

are based on more complex concepts than can be inferred from the whole image. 

This forces the systems to work on objects or regions rather than the whole image. 

In order to fulfill this kind of requests, object regions inside images should be 

initially segmented and defined in terms of low-level features separately. 

However, another unsolved problem, image segmentation, hinders the success at 

this point. 

2.5 Man-in-the-loop 

Today’s technology in many cases does not let the user to stay completely out of 

the decision phases and still reach the semantics successfully. Following this idea, 

many of the approaches are modified to include some feedback from the user. 
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There are many methods to utilize the user response to a given query. One 

of the most common approaches is to ask the user to rank the results that are 

returned by the system to a given query [26]. Another approach is to get some 

positive and negative feedbacks from the user like “Select the least relevant 

result” or “Select the most relevant result”. All of these approaches are 

investigated under the topic relevance feedback, and use the response from the 

user to return refined results back to the user. 

In the systems involving segmentation and a query image, user is given the 

chance to visually specify the target precisely. This is achieved via segmenting the 

image provided by the user and then asking the user to select the region that is 

relevant to the concept searched. In addition, there are systems in the literature 

that give user the chance to specify the importance of low-level features in the 

matching process. 

There are many variations of these approaches for adding the user to the 

loop. However, one should keep in mind the fact that although user interaction 

can be very useful, if exceeds a limit, may degrade the value of the system and 

also veil most of its success. 

2.6 Systems 

During the last decade many content based indexing and retrieval systems have 

been developed. Their inherent technologies greatly vary and these systems are 

currently in use for both general and domain specific applications. None of the 

technologies or systems that are in use has become pervasive among all others. 
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In this section, some of the most popular CBIR systems in the literature are 

introduced. These systems are selected in order to represent different approaches 

based on input interface, query techniques and indexing features. 

One of the first, and probably the most pervasive of CBIR systems is IBM’s 

QBIC (Query By Image Content) [9,15]. It is a commercial system which is a 

module of the IBM DB2 Database System that is used by museums for their 

online galleries. It has support for queries based on given example images, 

selected color and texture patterns and annotation text.  

Netra system developed at University of California, is a more experimental 

image retrieval system [2]. It supports region-based color,texture and shape 

features for indexing and retrieval. Images are segmented at the input stage and 

features to be used for indexing and retrieval are extracted from the regions found. 

VisualSEEk is the successor of the WebSEEk system that is developed by 

Columbia University [8]. This system also segments the images at the input stage. 

For indexing, color sets are used. 

Virage Image Engine is another commercial product developed by Virage 

Organization [16]. It is an “Open Framework” platform which provides 

developers the necessary tools for extracting image features. 

SCHEMA, which is a network of excellence under the EC 5th Framework 

Information Society Technologies Programme, has also developed a content based 

image retrieval system named ISTORAMA [17,18]. This system is still under 

development and at this point provides a web-based interface to the users for 

testing. This system both supports region-based color, texture and shape queries  
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enabling the user to adjust the weight of each feature used, and also has a category 

based simplistic interface. 

Caliph&Emir, developed by Know-Center, supports complex manual 

annotations, as well as queries based on color and texture [19]. It is one of the first 

systems that utilizes MPEG-7 color and texture features for automatic indexing. 

Another tool released by IBM is VideoAnn [20]. This tool has a different 

interface enabling the user to create lexicons first, and then use these to annotate 

inputs with these merely checking and unchecking lexicon boxes. It also supports 

region annotation with the interface mentioned above. 

Tecmath developed MediaArchive, which is a powerful archiving tool 

allowing large amounts of media files to be stored reliably [21]. It is an 

application developed under the EUROMEDIA project and currently used by 

many broadcasters in Europe. 
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CHAPTER 3 
 
 

COMPONENTS OF THE PROPOSED 
FULLY-AUTOMATED SEMANTIC IMAGE 

CLASSIFICATION SYSTEM 
 
 
 
As mentioned in the earlier chapters, semantic classification of images using low-

level features is a challenging problem. For an ultimate solution, object-based 

features should be employed. Unfortunately, extracting the semantic objects from 

an image requires image segmentation operation and segmentation still remains as 

an unsolved problem. In the system proposed, the aim is to reach some important 

generic semantic concepts which can be inferred from the entire image. Therefore, 

the unsolved problem of segmentation is avoided. 

Visual image features that are defined by MPEG-7 standard are used. These 

features are a product of the long research on the subject and selected by MPEG 

because of their success and reliability as a result of some experiments. Using 

MPEG-7 based features for our system not only provides robust tools that are 

approved by the experts on the subject, but also give the chance to gain 

experience about a newly emerged standard that will probably constitute the core 

of future multimedia applications. It should be noted that, MPEG-7 standard is a 

reliable outcome of the long research that is summarized in Chapter 2. 
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In order to bridge the gap between the low-level image features and the 

semantic concepts, experts which are classifiers with different structures trained 

by low-level color and texture features, are utilized. For combining different 

classifiers and features, two advanced decision mechanisms are proposed [22]. 

Simulations are conducted on eight different visual semantic classes and 

performance improvements on accuracy, precision and recall, when compared 

with single feature and single classifier systems, are observed. The proposed 

system is implemented as a module in the MPEG-7 compliant multimedia 

management system, BilVMS, which is developed in TÜBİTAK BİLTEN 

[23,24,25]. 

3.1 Low-level Image Features Extraction 

The first step towards successful image classification is a good selection among 

low-level representations (i.e. features). In this research, color and texture 

descriptors of MPEG-7 [26] are utilized. A total of 4 descriptors are used, which 

are selected according to their compatibility with the semantic concepts. Two of 

these descriptors are color-based (color layout and color structure), while the other 

two (edge histogram and homogeneous texture) are texture descriptors. 

3.1.1 Color Layout 

The MPEG-7 Color Layout Descriptor (CLD) is a compact and resolution-

invariant representation of spatial distribution of colors in an image [26,27]. It is 

especially recommended for applications that need to be fast and are based on 

spatial-structure of color. 
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CLD is obtained by applying DCT transformation on the 2-D array of local 

representative colors in YCbCr color space where each channel is represented by 

8 bits. 8x8 grid, and averaging each of the 3 channels separately for these blocks. 

A sample divided image is given in Figure 3.1. In the next step, DCT 

transformation is applied on each of these 8x8 average images. Finally, nonlinear 

quantization is applied on the coefficients obtained from the previous step. The 

extraction process is illustrated in Figure 3.2. 

 
 

 

Figure 3.1: A sample 8x8 gridded image 

 
 
Scalable representation of CLD is allowed in the standard meaning that one 

can select the number of coefficients to use from each channel’s DCT output. For 

each channel, 3, 6, 10, 15, 21, 28 or 64 coefficients can be used. The coefficients 

are taken from 8x8 arrays in zigzag scan order. Zigzag scan order is illustrated in 

Table 3.1. 

In the proposed system, CLD with 6 Y, 3 Cb and 3 Cr coefficients is 

extracted and used.  
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Figure 3.2: Color layout descriptor extraction process 

 

 

 

Table 3.1: Zigzag scan order of theDCT coefficients 
 

  i 

0 1 5 6 14 15 27 28
2 4 7 13 16 26 29 42
3 8 12 17 25 30 41 43
9 11 18 24 31 40 44 53
10 19 23 32 39 45 52 54
20 22 33 38 46 51 55 60
21 34 37 47 50 56 59 61

j 

35 36 48 49 57 58 62 63
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3.1.2 Color Structure 

MPEG-7 Color Structure Descriptor (CSD) specifies both color content (like color 

histogram) and the structure of this content by the help of a structure element 

[26,27]. In contrast to a simple image histogram, this descriptor can distinguish 

between two images in which a given color is present in identical amounts, 

whereas the structure of the groups of pixels is different. In Figure 3.3, an 

example illustrating this case is given. 

 
 

 
 
Figure 3.3: Two images having identical color histograms but different color 
structure descriptors 
 
 

CSD has a form identical to a color histogram though being semantically 

different. In an ordinary color histogram, pixels are counted on the whole image 

in a single session. Therefore, images in Figure 3.3 have identical color 

histograms. On the other hand, CSD counts the pixels that are inside a shifting 

structuring element. As a result, images having identical color histograms have 

different CSDs. 
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CSD is extracted from an image represented in HMMD color space [26]. 

Therefore, images that have color spaces other than HMMD shall be converted to 

this space. Various quantizations can be selected in HMMD color space, as 

defined in the standard. 256, 128, 64, 32 bin HMMD histograms are allowed. An 

8x8 structuring element is used to accumulate the histogram. The accumulation 

process is illustrated in Figure 3.4. For each unique color that falls inside the 

structuring element, bins corresponding to these colors are incremented once. For 

the case of three different colors, as seen in the figure, three of the histogram bins 

are incremented once. After the accumulation process, follows the non-uniform 

quantization of the values of the histogram bins according to the statistics of color 

occurrence, as defined by the standard. This flow is illustrated in Figure 3.5. 

 

 

 
 

Figure 3.4: Accumulation of histogram bins in color structure descriptor 
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Figure 3.5: Color structure descriptor extraction process 
 
 

3.1.3 Edge Histogram 

Spatial distribution of edges are utilized for image classification in our system by 

using MPEG-7 Edge Histogram Descriptor (EHD). The EHD represents local 

edge distribution in an image by dividing the image into 4x4 sub-images and 

generating a histogram from the edges present in each of these sub-images. Edges 

in the image are categorized into five types, namely vertical, horizontal, 45° 

diagonal, 135° diagonal and non-directional edges. In the end, a histogram with 

16x5=80 bins is obtained, corresponding to a feature vector having a dimension of 

80 [26,27]. 

As mentioned above, EHD extraction starts with dividing an image into 16 

sub-images in a 4x4 grid. These sub-images are indexed according to their 

locations, as illustrated in Figure 3.6. Next step is performing edge detection 

inside these sub-images. The filters used in this process are given in Figure 3.7. In 

the application of filters, if maximum result obtained by the filters exceeds a 

threshold, an edge with the type of the filter is reported to be found and the 
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corresponding histogram bin is incremented. The histogram, constructed by the 

result of this process, is then normalized according to the size of the image. 

 
 

 
 

Figure 3.6: A sample image with indexed sub-images 
 
 
 

Although not included in the EHD, semi-global and global edge histograms 

also convey important information. Therefore, during the experimentation process 

of MPEG-7, these are also computed from the EHD. The recommended way of 

reaching 13 bin semi-global histogram using the local EHD values is illustrated in 

Figure 3.8.  

Obtaining the global histogram is achieved by a straightforward unification 

of all the bins related with the same type of edge, resulting in a 5 bin histogram. 

The dimensions of all three kinds of histograms are given in Figure 3.9. 
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Figure 3.7: Filters used for edge detection (a) vertical, (b) horizontal, (c) diagonal 
45º, (d) diagonal 135º, (e) non-directional 

 
 
 
 
 

 
 

Figure 3.8: Semi-global edge histogram (13 bins for 13 regions) 
 
 
 

 
 

Figure 3.9: Local, semi-global and global histogram bins 
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3.1.4 Homogeneous Texture 

MPEG-7 Homogeneous Texture Descriptor (HTD) characterizes the region 

texture by mean energy and energy deviation from a set of frequency channels. 

The channels are modeled by Gabor functions and the 2-D frequency plane is 

partioned into 30 channels. In order to construct the descriptor, the mean and the 

standard deviation of the image in pixel domain is calculated and combined into a 

feature vector with the mean and energy deviation computed in each of the 30 

frequency channels. As a result, a feature vector of 62 dimensions is extracted 

from each image [26,27]. 

 
 
 

 
 

Figure 3.10: Frequency channels on the 2-D frequency plane 
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Channels spanning the 2-D frequency plane, as illustrated in Figure 3.10, 

are indexed by 5 radial and 6 angular indexes and are defined by the following 

formula: 
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In the normalized frequency space ( 10 ≤≤ω ), the channels illustrated in 

Figure 3.10 are equally spaced in the angular direction, such that rr ×°= 30θ , 

while spacing in the radial direction is in octave scale, such that the bandwidth is 

defined by s
s BB −⋅= 20 where 0B is 0.5. In the above formula, s is the radial index 

and r is the angular index, where s∈ {0,1,2,3,4}and r∈ {0,1,2,3,4,5}.  

rθσ and 
sρσ are the standard deviations of the Gaussian distribution and are 

defined by 2ln2/15�=
rθσ  and 2ln22sB

s
=ρσ . Note that the standard 

deviation along the radial direction is constant.  

The mean energy of each channel is computed by the formula 

]1[log10 pe +=  where, 

∫ ∫
+ +=

°

°=

⋅=
1

0

360

)0(

2
, )],(),([

ω θ

θωθω PGp rsP  

On the other hand, standard deviation is calculated from each channel by 

]1[log10 qd += , where q is defined as: 
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The results of these mean and standard deviation calculations are to be 

coded from right to left and from outside to inside as seen in Figure 3.10. 
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3.2 Classifiers 

In this thesis, four popular classifiers are utilized, which are Support Vector 

Machine, Nearest Mean, Bayesian Gaussian Plug-In and K-Nearest Neighbors. 

Binary classification is performed by some experts, which are obtained via 

training these classifiers with in-class and informative out-of-class samples. These 

classifiers are selected due to their distinct natures of modeling a distribution. For 

distance-based classifiers (i.e. Nearest Mean and K-Nearest Neighbor), special 

distance metrics compliant with the nature of the MPEG-7 descriptors are also 

utilized [26]. Since the outputs of the classifiers are to be used in combination, 

modifications are achieved on some of them to convert uncalibrated distance 

values to calibrated probability values in the range [0,1]. All of these 

modifications are explained in detail along with the structure of the classifiers in 

the following subsections. 

3.2.1 Support Vector Machines (SVM) 

SVM is a newly introduced machine learning technology that is based on strong 

theoretical foundations [28,29,30]. It performs classification between two classes 

by finding a decision surface that is based on the most informative points of the 

training set. Its empirical success has been proved by experiments in many 

different areas including handwritten digit recognition, text classification, face 

recognition and object recognition [31,32,33]. 

The main reason behind the success of SVM is the way that it handles the 

“risk” concept. Although other classical classifiers try to classify the training set 

with minimal errors and therefore reduce the empirical risk, SVM can sacrifice 
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from training set performance for being successful on yet-to-be-seen samples and 

therefore reduces structural risk [30]. Briefly, SVM constructs a decision surface 

between the samples of two classes, maximizing the margin between them 

differing from the other classifiers, as illustrated in Figure 3.11. 

 
 

 
 
Figure 3.11: (a) boundary obtained by an ordinary classifier, (b) boundary 
obtained by SVM 
 
 

Assume a training data set {x1,…,xn} is given consisting of vectors in a 

space dR⊆Χ , and their labels {y1,…,yn} where }1,1{ +−∈iy . SVM projects the 

data in the original feature space Χ to a higher dimensional space F by using a 

kernel operator K. Then, in this new induced feature space F, the hyperplane 

providing the maximum margin, which is also called optimal separating 

hyperplane (OSH) is sought [30]. If the training data is separable, SVM separates 

the classes and maximizes the margin between them. If the training data is not 

separable, the solution is a trade-off between the largest margin and the lowest 
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number of training errors. This trade-off is controlled by a regularization 

parameter. Samples lying on one side of the hyperplane is labeled as 1, while 

samples on the other side are labeled as -1. Support vectors that gave the name of 

the classifier and specify the references for the boundary, are selected from the 

training instances that determine the boundary. 

The functional representation of the classifier explained above is 

∑
=

=
n

i
ii xxKxf

1
),()( α . Input x is classified as 1, if 0)( ≥xf , and as -1 otherwise. 

The kernel function K is usually time separable and can be written as 

)()(),( vuvuK Φ⋅Φ= where F→ΧΦ : and “.” signifies the inner product 

operation. Therefore, the classifier function can be expressed as [31]: 

)()( xwxf Φ⋅= , where ∑
=

Φ=
n

i
ii xw

1
)(α . 

Although K is not seen in this representation, training data is implicitly 

projected by the kernel into a higher dimensional space. By choosing the type of 

the kernel used here, one can project the data into different induced feature spaces 

F in which separating hyperplanes correspond to more complex boundaries in the 

original feature space X. 

There are many different kernel types, such as polynomial, Gaussian, radial 

basis function and neural network that are used in SVMs [29]. In this research, a 

second degree polynomial kernel, which can be represented by 

2)1(),( +⋅= vuvuK is used. Note that training data feature vectors that are 

transformed by the kernel should be normalized such that the modulus of them  
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( ix ) are constant or at least the modulus of the vectors in the induced space 

( )( ixΦ ) are constant. 

In the next step, SVM computes si 'α that correspond to the OSH. In fact, 

OSH is a member of the version space V, that consists of all the hyperplanes 

successful in separating the data. In other words, every member of the version 

space satisfies ,0)( >ixf  if yi = 1 and ,0)( <ixf  if yi = -1. This fact can be 

explained by a more formal definition as follows: 

 The set of all possible hyperplanes is defined by: 









∈Φ⋅==Η Ww
w

xwxf ,)()(  where W is the parameter space and simply 

equal to F. 

The version space consisting all of the separating hyperplanes can then be 

represented as: 

{ }{ }0)(,...,1 >∈∀Η∈= ii xfynifV  

If one expresses f(x) in terms of w, then one can redefine V as: 

{ }{ }nixwywWwV ii ,...,1,0))((,1 ∈∀>Φ⋅=∈=  

Note that the version space V defined above can only exist, if the training 

data is linearly separable in the induced feature space. Otherwise, it is 

meaningless to search for an OSH. However, this restriction can be overcome by 

modifying the kernel used so that the data in the induced feature space become 

separable. This can be achieved by redefining the kernel with the addition of a 

regularization constant, i.e. vxxKxxK ii +→ ),(),( . 
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In order to illustrate the selection of the hyperplane, the best way is to utilize 

the duality between the induced feature space F where the training data belongs 

and the parameter space W, where the hyperplanes belong. Points in W correspond 

to hyperplanes in F and points in F correspond to hyperplanes in W. This duality 

leads us to the result that if the points in W restricts the points in F, the same must 

apply in the converse case. This means that each point in the training set defines a 

hyperplane that restricts the region to which w may belong. This duality can be 

observed from the decision formula with a small rearrangement: 

0)())(( >Φ⋅=Φ⋅ iiii xywxwy  

As can be seen in the above formula, yiΦ(xi) can be considered as a normal 

vector in W, which defines a half-space in the above inequality. 

SVM finds the hyperplane that maximizes the distance of the closest point 

to the boundary, subject to the constraint 1=w . Notice that this constraint 

ensures that version space is on the surface of a unit hypersphere in W. This 

hypersphere is intersected by the hyperplanes that are defined in W by the training 

data in F. Using SVM, the center of this hypersphere, which has the largest radius, 

and whose surface does not intersect with the training data defined hyperplanes, is 

tried to be found. This center, as already been emphasized, lies on the unit 

hypersphere in W. The hyperplanes tangent to this hypersphere correspond to 

support vectors and the radius of the hypersphere is the margin of the SVM. These 

observations are illustrated by visualizations in Figure 3.12.  

The search for the maximal margin hyperplane is actually an optimization 

problem. Although the problem is stated clearly, solving it for large learning tasks 
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involving many training examples is a real challenge. In this research, the SVM 

learner that is proposed in [34] is utilized. This implementation is called SVMlight 

[35] and is developed using the algorithmic and computational results in [34] and 

makes large-scale SVM learning practical. 

 
 
Figure 3.12: (a) Unit hypersphere W that version space resides in, (b) Largest 
radius hypersphere whose center is on the unit hypersphere  

 
 
SVM classifier takes as input a data vector and finds out at which side of the 

classifying hyperplane it resides, as well as its distance to the decision surface. If 

the input sample resides at the in-class half of the space divided by the 

hyperplane, then the distance value is preceeded by a plus “+” sign, otherwise the 

distance value is preceeded by a minus “-” sign. This output format, though being 

meaningful for the specific context, is not appropriate for combination with other 

classifier outputs. In order to obtain a calibrated posterior probability value, a 

simple logistic link function method, proposed by Wahba [36], is utilized. Using 

this method, posterior probability of a sample to be in-class is computed from its 

distance to the boundary by the following formula: 

)(1
1)|( xfe

xclassin −+
=−Ρ  
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In this formula, f(x) is the uncalibrated output of SVM, which is the signed 

distance of the input vector from the decision surface. It should also be noted that 

this conversion conforms with the important requirements for post processing of 

classifier outputs [37], which should be taken into account in order not to 

experience degradations in the classifier performance. 

3.2.2 Nearest-Mean Classifier  

Nearest mean classifier calculates the centers of in-class and out-of-class training 

samples and then assigns the upcoming samples to the closest center. This 

classifier is included into this research due to its ability to model compact 

distributions effectively. 

This classifier, like SVM, gives distance values at its output. These two 

distance values, which are measured between the mean of each distribution and 

the input vector, should be modified to produce a calibrated posterior probability 

value. A common method used for distance-based K-NN classifiers is adapted to 

this case [38]. According to this method, distance values are mapped to posterior 

probabilities by the formula, 

classofoutclassin

classin

mm

m

dd

d
xclassin

−−−
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)|(  

where 
classinmd

−
and 

classofoutmd
−−

 are distances of the input x from the in-class and out-

of-class training set means respectively. 

Another measure to increase the confidence of the classification, which is 

also proposed in [38], is applied when the probability obtained from the previous 
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step is below an ambiguity threshold (0.55 is selected as a result of the pre-

experiments). This second measure computes the probability values by, 

Ν
Ν

=−Ρ ixclassin )|(  

where Ni is the number of in-class training samples whose distance to the mean is 

greater than x, and N is the total number of in-class training samples. By these 

steps, uncalibrated classifier outputs are not only converted to calibrated 

probabilities in [0,1], but also a more effective nearest mean classifier is obtained 

using the underlying details of the training data. 

3.2.3 Bayesian Gaussian Plug-in Classifier  

Bayesian Gaussian Plug-in classifier fits multivariate normal densities to the 

distribution of the training data. In binary classification, two class conditional 

densities representing in-class and out-of-class training data are obtained, as a 

result of this process. Bayesian decision rule is then utilized to find the probability 

of the input to be a member of the semantic class [39]. 

Multivariate normal densities that are to be fitted to the training data are in 

the form, 
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where x is a d dimensional input feature vector, µ is a d dimensional mean vector 

and ∑ is a dxd covariance matrix. If we have n training samples then µ is 

computed by, 

∑
=

=
n

k
kx

n 1

1µ      (3.1) 
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Covariance matrix is then computed using the above result by the formula: 

∑
=

−−=Σ
n

k

Txx
n 1

))((1 µµ     (3.2) 

where x and µ are dx1 vectors. After class conditional probability distribution 

functions of in-class and out-of-class training data are obtained by Eqns. (3.1) and 

(3.2), models representing each class contained in two functions, P(x | in-class) 

and P(x | out-of-class), can be obtained. 

The next step towards the final decision about an input data is utilizing 

Bayesian decision rule [39], whose class conditional densities are obtained in the 

previous step. According to the Bayesian decision rule, posterior probability of 

being in-class is computed with the formula, 

)()|()()|(
)()|()|(

classofoutclassofoutxclassinclassinx
classinclassinxxclassin

−−Ρ−−Ρ+−Ρ−Ρ
−Ρ−Ρ=−Ρ  

for an input sample. Throughout the research, the apriori probability values for in-

class and out-class are fixed as 0.5 and therefore neglected as: 

)|()|(
)|()|(

classofoutxclassinx
classinxxclassin

−−Ρ+−Ρ
−Ρ=−Ρ  

This classifier is again successful at modeling natural distributions that have 

a characteristic compaction around a center. The main disadvantage of this 

classifier is the degradation in modeling performance with the increasing feature 

dimension. 

3.2.4 K-Nearest Neighbor Classifiers (K-NN)  

K-NN classifiers are known to be successful, especially while capturing important 

boundary details that are too complex for all of the previously mentioned 
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classifiers. Due to this property, they can model sparse distributions with a 

relatively high accuracy. 

Generally, the output of these classifiers are converted to probability, except 

for K=1 case, by the following formula: 

ΚΚ=Ρ /)|( | ii xw  

where Ki represents the number of nearest neighbors from class wi and K is the 

total number of nearest neighbors, taken into consideration. This computation, 

although quite simple, underestimates an important point about the location of the 

test sample relative to in-class and out-of-class training samples. Therefore, 

instead of the above method, a more complex estimation method is adapted and 

utilized in this research: 

∑

∑

=

=−Ρ k

j j

y i

yxd

yxd
xclassin i

1 ),(
1

),(
1

)|(  

where yi shows in-class nearest neighbors of the input and yj represents all k-

nearest neighbors of the input. 

Although, this estimation provides a more reliable probability output, it is 

observed that applying another measure to the test samples with probabilities 

obtained by the above formula that are below a threshold, improves the result 

further. This measure utilizes the relative positions of training data among each 

other [38]. This metric is the sum of the distances of each in-class training sample 

to its k in-class nearest neighbors and obtained by, 

∑
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After the computation of this value for each training sample, and the input test 

sample, the final probability is obtained by 

N
Nxclassin i−=−Ρ 1)|(  

where Ni is the number of in-class training samples with g(x) value smaller than 

the input test sample and N is the number of all n-class training samples. In this 

way, significant improvements are achieved in 3-NN, 5-NN, 7-NN and 9-NN 

classifier performances. 

For special case of 1-NN (Nearest Neighbor), the explained conversion 

technique is not applicable. Therefore, for 1-NN classifier the same probability 

estimation technique as that employed in the nearest mean classifier is applied. 

3.3 Expert Combination Strategies 

In the area of pattern recognition, many different schemes have been developed in 

order to achieve the best possible classification performance by combining the 

experts [40,41,42]. Experts are instances of classifiers with distinct natures 

working on distinct feature spaces, and their combination has been a popular 

research topic for years. Latest studies have provided mature and satisfying 

schemes for expert combination [43]. Although many of these schemes developed 

specifically for a task at hand, and making use of heuristics of their applicable 

domain, there also exist some fundamental rules from which most of the other 

schemes are devised. 

Six fundamental expert combination rules are used in this research and they 

are considered to be the most reliable ways of using the complementary 

information offered by different classifier structures. These combination rules, 
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namely product, sum, max, min, median and majority vote, and the relations 

among them have been theoretically analyzed in depth, and many experiments 

have proved that, in many situations, they outperform the single experts that are 

included in the combination [43]. 

According to the utilization of the intermediate classification results, 

combination schemes are divided into three main categories that are abstract level, 

rank level and measurement level combinations [37,41]. The last of these three is 

known to be the one conveying the highest information from the intermediate 

step. Measurement level combination, which is the case in the first five of the 

combination rules below, uses the outputs of expert functions directly. Abstract 

level combination is the category where only the decision labels are used, and to 

which the last rule, namely majority vote, belongs. 

Notwithstanding the successful results achieved in combination experiments 

using these rules, the reasons leading to the superiority of a scheme over the 

others are not obvious. Therefore, special circumstances that this success will 

repeat, have not been adequately understood yet, even for the most fundamental 

ones [44]. 

In all the rules, a priori probabilities are assumed as 0.5 and the decision is 

made by the following formula: 

21

1)|(
Ρ+Ρ

Ρ=−Ρ Xclassin  
21
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Ρ+Ρ

Ρ=−−Ρ Xclassofout  (3.3) 

In this formula, P1 is the combined output of experts about the posterior 

probability of the sample X belonging to the semantic class, while P2 is the 

posterior probability of the sample not belonging to the semantic class. This 
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formula generates probability outputs and normalizes the scale distortion of them 

into the range [0,1]. The final decision is given according to the Bayes’ Rule, if 

posterior probability of the sample being a member of the class is equal to or 

above 0.5, then the sample is assigned as in-class, else it is assigned out-class. P1 

and P2 are obtained by using the combination rules, namely product rule, sum 

rule, max rule, min rule, median rule, and majority vote. The last four of these 

rules are derived from the first two rules which have particular statistical 

assumptions behind their developments. These assumptions are made in order to 

reach practicable rules from the Bayesian decision rule, which depends on joint 

probability density functions that are difficult to infer. 

3.3.1 Product Rule 

Product rule is developed using the Bayesian decision theory, under the 

assumption that densities used by each expert are conditionally statistically 

independent. The cause of this independence may be the use of different 

representations of data or different distribution models. In this rule, R experts are 

combined as follows: 

∏
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−Ρ=Ρ
R

i
i Xclassin

1
1 )|(   ∏

=

−−Ρ=Ρ
R

i
i Xclassofout

1
2 )|(  

Note that, in the above formulas terms depending on a priori probabilities are 

omitted, due to the equal a priori probabilities assumption. 

This rule is known to be a severe rule of combining experts, since one of the 

experts can severely affect the combination result by outputting a probability 

close to zero. 
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3.3.2 Sum Rule 

This rule is developed under assumptions which are stricter than the product rule. 

In addition to the conditional independence assumption in the product rule, sum 

rule assumes that probability distribution will not deviate significantly from the a 

priori probabilities. Although this is a strong assumption that may not be true if 

the noise level of the observations is not high enough, it still provides an adequate 

and useful approximation in many situations. 

According to the sum rule, the posterior probabilities used in Eqn. 3.3 are 

calculated as, 

∑
=

−Ρ+−Ρ−=Ρ
R

i
i XclassinclassinR

1
1 )|()()1(   (3.4) 

∑
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R

i
i XclassofoutclassofoutR

1
2 )|()()1(  (3.5) 

In this rule, equal a priori probabilities do not cancel and therefore they are 

not omitted. However, the output of the sum rule may not be in the appropriate 

probability interval and therefore values less than zero and greater than one are 

corrected as zero and one, respectively. Sum rule has almost inverse properties 

with the product rule. It is robust against outliers and may be viewed as an 

average over the results, as mentioned above. 

3.3.3 Max Rule 

This rule is derived from the sum rule, under the assumption of equal a priori 

probabilities. Outputs are computed in this rule by, 
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3.3.4 Min Rule 

Min rule is derived from the product rule and assumes equal a prior probabilities 

like the max rule. Calculation of the probabilities are by means of the following: 

)|(min
11 Xclassini

R

i
−Ρ=Ρ

=
  )|(min

12 Xclassofouti

R

i
−−Ρ=Ρ

=
 

3.3.5 Median Rule 

Sum rule, under equal a priori assumption, is similar to averaging posterior 

probabilities. However, in order to avoid any disturbance of average value from 

the probable outliers, a robust estimate of the mean, namely median is used. 

Combined estimation is calculated by the median rule in a quite similar way 

to max and min rules: 
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Note that in the case of even number of experts, since median does not exist, 

it is replaced by mean. 

3.3.6 Majority Vote 

Majority vote is derived from the sum rule under equal a priori probability 

assumption. In this rule, instead of measurement level, abstract level expert 

combination is performed. P1 is assigned the number of experts having in-class 

probabilities above 0.5 and therefore P2 is equal to the total number of experts 

minus P1. Both of these values are then normalized by the total number of experts 

that is equal to P1 plus P2. This can be represented by the formulas below: 
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where N1 is the number of experts voting as in-class, and N2 is the number of 

experts voting as out-of-class. 

3.4 Advanced Decision Mechanisms 

In the proposed semantic image classification system, in order to improve the 

classification performance and stability, advanced decision mechanisms are 

implemented. These mechanisms utilize the expert combination strategies 

explained in the previous section to combine the experts having classifier 

structures defined in Section 3.2, and are trained by low-level visual image 

features defined in Section 3.3.  

The decision mechanisms proposed here, namely Single Feature 

Combination (SFC), Multiple Feature Direct Combination (MFDC), and Multiple 

Feature Cascaded Combination (MFCC), constitute the core of the experiments 

conducted throughout this research [22]. 

3.4.1 Single Feature Combination (SFC) 

The most simple decision mechanisms is single feature combination, which is 

merely a realization of the expert combination strategies for a single low-level 

feature. In this setting, experts having distinct classifier structures are trained by a 

single low-level feature. After the training process, an input vector to be classified 

is first introduced to these experts. Then, the calibrated probability outputs of the 

experts are merged into a single calibrated posterior probability value using one of 

the combination strategies defined in the previous section. SFC mechanism is 

illustrated in Figure 3.13. 
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Figure 3.13: Single Feature Combination (SFC) 

 
 

3.4.2 Multiple Feature Direct Combination (MFDC) 

For the cases where more than one low-level visual image feature is required for 

defining a visual semantic concept, experts trained with different visual features 

should be combined. MFDC combines output of single experts that are trained by 

multiple features in a single step by using the expert combination strategies. 

MFDC is illustrated by a diagram in Figure 3.14. In the diagram, a case 

where M features and N different classifier structures are used, is visualized. As 

seen in the figure, for each of the M features, an ensemble of N experts are 

generated, resulting in a total of MxN experts. 

3.4.3 Multiple Feature Cascaded Combination (MFCC) 

Another mechanism that is used to merge the information coming from experts 

trained by multiple features is the multiple feature cascaded combination 

(MFCC). In this setting, SFC outputs obtained by combining multiple experts 

trained by a single feature in the first step are utilized in a second step. MFCC 

mechanism is illustrated in Figure 3.15. 



46 

In Figure 3.15, this mechanism is visualized for M feature and N classifier 

structure case. In the first step, each feature vector is presented to the ensemble of 

classifiers trained for each feature separately. The outcome of this process is MxN 

calibrated probability values that are appropriate for combination. Each ensemble 

of N experts trained by the same low-level feature is then merged to give M 

probability values which are nothing but the SFC outputs of each feature. These 

outputs are then further merged using one of the rules in Section 3.3 to obtain the 

MFCC result. 
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Figure 3.14: Multiple Feature Direct Combination (MFDC) 
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Figure 3.15: Multiple Feature Cascaded Combination (MFCC) 
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CHAPTER 4 
 
 

SIMULATIONS 
 
 
 
The system, whose components are explained in the preceding sections, is tested 

and results are presented in this chapter. A total of 1600 images, collected from 

various resources and having different resolutions are utilized during training and 

test phases. Eight different visual semantic classes are classified using both single 

experts and their combinations. The flow of the system is illustrated in Figure 4.1. 

The illustrated system is implemented as a C++ program, which allows the 

selection of classifier types, low-level image features and decision mechanisms. 

This program is also a module of the MPEG-7 compliant video management 

system, BilVMS, which is developed in TÜBİTAK BİLTEN [23,24]. 

4.1 Semantic Classes and Representative Features 

All of the eight semantic classes that are classified in this research have the 

common property of being convenient to be inferred from low-level visual 

features of the entire image. In other words, the characteristics of these classes are 

usually significant in the entire image.This property, as already mentioned, 

enables us to avoid the need for segmentation of the images. 
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Figure 4.1: System Flow 
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A list of classes and their utilized low-level visual features are given in 

Table 4.1. Note that three of these classes are defined by a single feature, while 

five of them are defined with multiple features. These features are selected 

according to the results of some preliminary experiments which are not 

documented here. During those experiments, the abilities of the MPEG-7 low-

level visual descriptors to represent the semantic details in images are analyzed. 

As a result, each semantic entity is related with some low-level features that 

proved to capture the characteristics best in the preliminary experiments. In Figure 

4.2, some typical images from each of the semantic classes are given. 

 

 
 

Table 4.1: Semantic classes and corresponding low-level features 
 

Semantic Class Low-Level Features 

Football Color Layout 
Indoor Edge Histogram 
Crowd Homogeneous Texture 

Sunset-Sunrise Color Layout, Color Structure, Edge Histogram 
Sky Color Layout, Color Structure, Homogeneous Texture 

Forest Color Structure, Edge Histogram, Homogeneous Texture 
Sea Color Layout, Homogeneous Texture 

Cityscape Color Structure, Edge Histogram, Homogeneous Texture 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
Figure 4.2: Typical images from semantic classes (a) football, (b) indoor, (c) 
crowd, (d) sunset-sunrise, (e) sky 
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(f) 

 
(g) 

 
(h) 

 
Figure 4.2: (cont.) (f) forest, (g) sea, (h) cityscape 
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4.2 Training and Testing Methodology 

Although single expert tests involve eight types of experts, in the combined tests 

only five types of experts are utilized. This is necessary, since using all types of 

experts would result in a dominance of K-NN family type experts. Therefore, in 

addition to the SVM, Nearest Mean and Bayesian Gaussian Plug-in type experts, 

only 1-NN and 5-NN type experts are used leaving out 3-NN, 7-NN and 9-NN. 

During the tests conducted, for each class, 100 in-class and 100 informative 

out-of-class samples are used. 5-fold cross validation is utilized in order to 

prevent the dependence of the performances on the data sets [39]. This is achieved 

by performing five tests for each class by each time taking 20 distinct samples 

from each of the in-class and out-of-class data sets, and training the experts using 

the remaining data consisting of 80 in-class and 80 out-of-class training samples. 

The results of these five tests are then averaged to obtain a reliable result. 

Eight classes that are subjects of the tests are football, indoor (outdoor), 

crowd, sunset-sunrise, sky, forest, sea and cityscape. As already mentioned in the 

previous section, first three of these classes are defined by a single low-level 

feature, and therefore only Single Feature Combination (SFC) is available as a 

decision mechanism. Other five are defined with multiple features and therefore 

the advanced decision mechanisms (MFDC and MFCC) are also applicable. 

4.3 Simulation Results 

Throughout the experiments, the performances of single experts and combined 

experts on the eight selected semantic classes are tested. Moreover, in order to 
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provide a good basis of comparison, for each class, the result of an “optimal 

combination formula”, which is obtained by combining experts with the best 

results, is also included. Obviously, such a case is not practical, since the 

combination formula is non-normative and should be determined in a case-by-

case basis for each class. However, for specific visual classes optimal formula can 

still be obtained in order to classify a large database based on that formulation. 

The performances of the techniques are presented separately for each class 

in the following tables. The results for the first three classes, namely football, 

indoor (outdoor) and crowd, each depending on a single feature, are given in 

Table 4.2, Table 4.3 and Table 4.4 respectively. Other five classes, which are 

sunset-sunrise, sky, forest, sea and cityscape are presented in Table 4.5, Table 4.6, 

Table 4.7, Table 4.8 and Table 4.9 respectively. Three important statistics given in 

the tables are accuracy, precision, and recall. Accuracy is the overall classification 

performance which can be represented as the ratio of the number of correctly 

classified samples to the total number of samples. Precision can be briefly defined 

as the ratio of the number of samples correctly classified as in-class to the number 

of samples classified as in-class. Recall, on the other hand, is the ratio of the 

number of samples correctly classified as in-class to the number of in-class 

samples. Although the performance comparisons are made firstly according to 

accuracy, precision and recall results are also included in the tables. This is due to 

the fact that they convey information about different properties of the techniques, 

which is hidden in accuracy. Comments on the precision values are made 

wherever necessary because according to the preliminary experiments, precision 

gives important clues about the performance of the system on 
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Table 4.2: Football classification results 
 

SFC 
FOOTBALL Max 

Single Prd Sum Max Min Med MV 

Accuracy 87.5 82.5 87.5 85.0 85.0 87.5 92.5 

Precision 82.6 100.0 100.0 100.0 100.0 100.0 90.5 Test Set 1 

Recall 95.0 65.0 75.0 70.0 70.0 75.0 95.0 

Accuracy 95.0 92.5 97.5 92.5 92.5 97.5 97.5 

Precision 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Test Set 2 

Recall 90.0 85.0 95.0 85.0 85.0 95.0 95.0 

Accuracy 95.0 95.0 95.0 95.0 95.0 97.5 95.0 

Precision 95.0 100.0 100.0 100.0 100.0 100.0 95.0 Test Set 3 

Recall 95.0 90.0 90.0 90.0 90.0 95.0 95.0 

Accuracy 90.0 80.0 80.0 77.5 77.5 82.5 85.0 

Precision 94.4 100.0 100.0 92.3 92.3 100.0 88.9 Test Set 4 

Recall 85.0 60.0 60.0 60.0 60.0 65.0 80.0 

Accuracy 87.5 87.5 87.5 87.5 87.5 85.0 85.0 

Precision 85.7 94.1 94.1 94.1 94.1 93.8 88.9 Test Set 5 

Recall 90.0 80.0 80.0 80.0 80.0 75.0 80.0 

Accuracy 91.0 87.5 89.5 87.5 87.5 90.0 91.0 

Precision 91.6 98.8 98.8 97.3 97.3 98.8 92.7 
5-fold 
Cross 

Validation 
Recall 91.0 76.0 80.0 77.0 77.0 81.0 89.0 
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Table 4.3: Indoor-Outdoor classification results 
 

SFC 
INDOOR (OUTDOOR) Max 

Single Prd Sum Max Min Med MV 

Accuracy 87.5 90.0 90.0 92.5 92.5 85.0 90.0 

Precision 85.7 100.0 100.0 100.0 100.0 100.0 100.0 Test Set 1 

Recall 90.0 80.0 80.0 85.0 85.0 70.0 80.0 

Accuracy 77.5 72.5 72.5 70.0 70.0 72.5 75.0 

Precision 73.9 80.0 80.0 75.0 75.0 80.0 81.3 Test Set 2 

Recall 85.0 60.0 60.0 60.0 60.0 60.0 65.0 

Accuracy 77.5 85.0 80.0 82.5 82.5 77.5 82.5 

Precision 76.2 88.9 87.5 84.2 84.2 86.7 88.2 Test Set 3 

Recall 80.0 80.0 70.0 80.0 80.0 65.0 75.0 

Accuracy 92.5 92.5 92.5 95.0 95.0 90.0 95.0 

Precision 94.7 100.0 100.0 100.0 100.0 100.0 100.0 Test Set 4 

Recall 90.0 85.0 85.0 90.0 90.0 80.0 90.0 

Accuracy 80.0 80.0 80.0 77.5 77.5 80.0 77.5 

Precision 75.0 87.5 87.5 82.4 82.4 87.5 82.4 Test Set 5 

Recall 90.0 70.0 70.0 70.0 70.0 70.0 70.0 

Accuracy 83.0 84.0 83.0 83.5 83.5 81.0 84.0 

Precision 81.1 91.3 91.0 88.3 88.3 90.8 90.4 
5-fold 
Cross 

Validation 
Recall 87.0 75.0 73.0 77.0 77.0 69.0 76.0 
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Table 4.4: Crowd classification results 
 

SFC 
CROWD Max 

Single Prd Sum Max Min Med MV 

Accuracy 85.0 77.5 80.0 80.0 80.0 75.0 82.5 

Precision 88.9 76.2 80.0 77.3 77.3 75.0 84.2 Test Set 1 

Recall 80.0 80.0 80.0 85.0 85.0 75.0 80.0 

Accuracy 90.0 87.5 92.5 87.5 87.5 92.5 87.5 

Precision 90.0 82.6 90.5 82.6 82.6 90.5 85.7 Test Set 2 

Recall 90.0 95.0 95.0 95.0 95.0 95.0 90.0 

Accuracy 77.5 77.5 82.5 80.0 80.0 80.0 80.0 

Precision 82.4 76.2 88.2 77.3 77.3 87.5 83.3 Test Set 3 

Recall 70.0 80.0 75.0 85.0 85.0 70.0 75.0 

Accuracy 75.0 65.0 72.5 67.5 67.5 72.5 72.5 

Precision 81.3 65.0 76.5 66.7 66.7 80.0 76.5 Test Set 4 

Recall 65.0 65.0 65.0 70.0 70.0 60.0 65.0 

Accuracy 70.0 70.0 77.5 70.0 70.0 75.0 70.0 

Precision 75.0 62.5 73.9 62.5 62.5 75.0 68.2 Test Set 5 

Recall 60.0 100.0 85.0 100.0 100.0 75.0 75.0 

Accuracy 79.5 75.5 81.0 77.0 77.0 79.0 78.5 

Precision 83.5 72.5 81.8 73.3 73.3 81.6 79.6 
5-fold 
Cross 

Validation 
Recall 73.0 84.0 80.0 87.0 87.0 75.0 77.0 

 



 

 

 
 

Table 4.5: Sunset-Sunrise classification results 
 

MFCC MFDC  SUNSET-SUNRISE Max 
Single

Max 
SFC Prd Sum Max Min Med MV Prd Sum Max Min Med MV 

Optimal 
Comb. 

Formula  
Accuracy 95.0 95.0 90.0 90.0 92.5 92.5 90.0 90.0 90.0 92.5 92.5 92.5 92.5 92.5 97.5 

Precision 100.0 95.0 100.0 94.4 100.0 100.0 94.4 94.4 100.0 100.0 100.0 100.0 94.7 94.7 100.0 Test Set 1 

Recall 90.0 95.0 80.0 85.0 85.0 85.0 85.0 85.0 80.0 85.0 85.0 85.0 90.0 90.0 95.0 

Accuracy 95.0 95.0 92.5 95.0 92.5 92.5 95.0 95.0 92.5 92.5 90.0 92.5 95.0 95.0 92.5 

Precision 95.0 95.0 94.7 95.0 94.7 94.7 95.0 95.0 94.7 94.7 90.0 94.7 95.0 95.0 94.7 Test Set 2 

Recall 95.0 95.0 90.0 95.0 90.0 90.0 95.0 95.0 90.0 90.0 90.0 90.0 95.0 95.0 90.0 

Accuracy 90.0 87.5 92.5 87.5 90.0 90.0 87.5 87.5 92.5 90.0 80.0 90.0 87.5 87.5 90.0 

Precision 86.4 80.0 87.0 82.6 86.4 86.4 82.6 82.6 87.0 86.4 73.1 86.4 82.6 82.6 86.4 Test Set 3 

Recall 95.0 100.0 100.0 95.0 95.0 95.0 95.0 95.0 100.0 95.0 95.0 95.0 95.0 95.0 95.0 

Accuracy 90.0 92.5 92.5 90.0 92.5 92.5 90.0 90.0 92.5 90.0 72.5 85.0 90.0 90.0 92.5 

Precision 86.4 90.5 94.7 94.4 94.7 94.7 94.4 94.4 94.7 94.4 68.0 85.0 94.4 94.4 90.5 Test Set 4 

Recall 95.0 95.0 90.0 85.0 90.0 90.0 85.0 85.0 90.0 85.0 85.0 85.0 85.0 85.0 95.0 

Accuracy 92.5 90.0 95.0 87.5 92.5 92.5 87.5 87.5 95.0 90.0 87.5 95.0 90.0 90.0 95.0 

Precision 87.0 83.3 90.9 89.5 87.0 87.0 89.5 89.5 90.9 90.0 80.0 90.9 86.4 86.4 90.9 Test Set 5 

Recall 100.0 100.0 100.0 85.0 100.0 100.0 85.0 85.0 100.0 90.0 100.0 100.0 95.0 95.0 100.0 

Accuracy 92.5 92.0 92.5 90.0 92.0 92.0 90.0 90.0 92.5 91.0 84.5 91.0 91.0 91.0 93.5 

Precision 90.9 88.8 93.5 91.2 92.6 92.6 91.2 91.2 93.5 93.1 82.2 91.4 90.6 90.6 92.5 
5-fold 
Cross 

Validation 
Recall 95.0 97.0 92.0 89.0 92.0 92.0 89.0 89.0 92.0 89.0 91.0 91.0 92.0 92.0 95.0 
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Table 4.6: Sky classification results 
 

MFCC MFDC  
SKY Max 

Single
Max 
SFC Prd Sum Max Min Med MV Prd Sum Max Min Med MV 

Optimal 
Comb. 

Formula  

Accuracy 80.0 85.0 92.5 90.0 92.5 92.5 90.0 90.0 92.5 92.5 75.0 82.5 90.0 90.0 92.5 

Precision 71.4 76.9 87.0 83.3 87.0 87.0 83.3 83.3 87.0 87.0 75.0 88.2 83.3 83.3 87.0 Test Set 1 

Recall 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 75.0 75.0 100.0 100.0 100.0 

Accuracy 97.5 92.5 97.5 100.0 95.0 95.0 100.0 100.0 97.5 100.0 95.0 95.0 100.0 100.0 97.5 

Precision 95.2 94.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Test Set 2 

Recall 100.0 90.0 95.0 100.0 90.0 90.0 100.0 100.0 95.0 100.0 90.0 90.0 100.0 100.0 95.0 

Accuracy 97.5 97.5 97.5 100.0 95.0 97.5 100.0 100.0 97.5 100.0 82.5 85.0 97.5 97.5 97.5 

Precision 95.2 100.0 95.2 100.0 90.9 95.2 100.0 100.0 95.2 100.0 93.3 100.0 95.2 95.2 95.2 Test Set 3 

Recall 100.0 95.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 70.0 70.0 100.0 100.0 100.0 

Accuracy 100.0 97.5 97.5 95.0 92.5 95.0 95.0 95.0 97.5 95.0 87.5 95.0 97.5 97.5 100.0 

Precision 100.0 100.0 95.2 95.0 94.7 95.0 95.0 95.0 95.2 95.0 85.7 100.0 95.2 95.2 100.0 Test Set 4 

Recall 100.0 95.0 100.0 95.0 90.0 95.0 95.0 95.0 100.0 95.0 90.0 90.0 100.0 100.0 100.0 

Accuracy 90.0 90.0 95.0 97.5 95.0 95.0 97.5 97.5 95.0 97.5 75.0 85.0 92.5 92.5 92.5 

Precision 83.3 90.0 95.0 95.2 100.0 100.0 95.2 95.2 95.0 95.2 77.8 100.0 87.0 87.0 90.5 Test Set 5 

Recall 100.0 90.0 95.0 100.0 90.0 90.0 100.0 100.0 95.0 100.0 70.0 70.0 100.0 100.0 95.0 

Accuracy 93.0 92.5 96.0 96.5 94.0 95.0 96.5 96.5 96.0 97.0 83.0 88.5 95.5 95.5 96.0 

Precision 89.0 92.3 94.5 94.7 94.5 95.4 94.7 94.7 94.5 95.4 86.4 97.6 92.2 92.2 94.5 
5-fold 
Cross 

Validation 
Recall 100.0 94.0 98.0 99.0 94.0 95.0 99.0 99.0 98.0 99.0 79.0 79.0 100.0 100.0 98.0 
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Table 4.7: Forest classification results 
 

MFCC MFDC   
FOREST 

Max 
Single

Max 
SFC Prd Sum Max Min Med MV Prd Sum Max Min Med MV 

Optimal 
Comb. 

Formula  
Accuracy 77.5 82.5 90.0 85.0 85.0 85.0 85.0 85.0 90.0 82.5 70.0 85.0 80.0 80.0 85.0 

Precision 76.2 84.2 94.4 85.0 88.9 88.9 85.0 85.0 94.4 81.0 68.2 93.8 77.3 77.3 81.8 Test Set 1 

Recall 80.0 80.0 85.0 85.0 80.0 80.0 85.0 85.0 85.0 85.0 75.0 75.0 85.0 85.0 90.0 

Accuracy 90.0 90.0 92.5 95.0 92.5 92.5 95.0 95.0 92.5 92.5 90.0 92.5 92.5 92.5 92.5 

Precision 94.4 94.4 94.7 95.0 94.7 94.7 95.0 95.0 94.7 94.7 90.0 94.7 94.7 94.7 94.7 Test Set 2 

Recall 85.0 85.0 90.0 95.0 90.0 90.0 95.0 95.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 

Accuracy 70.0 82.5 87.5 85.0 87.5 87.5 82.5 82.5 87.5 82.5 77.5 82.5 82.5 82.5 92.5 

Precision 72.2 88.2 89.5 85.0 89.5 89.5 84.2 84.2 89.5 88.2 78.9 88.2 84.2 84.2 94.7 Test Set 3 

Recall 65.0 75.0 85.0 85.0 85.0 85.0 80.0 80.0 85.0 75.0 75.0 75.0 80.0 80.0 90.0 

Accuracy 77.5 72.5 80.0 80.0 77.5 77.5 80.0 80.0 80.0 77.5 72.5 77.5 77.5 77.5 77.5 

Precision 72.0 68.0 71.4 71.4 70.4 70.4 71.4 71.4 71.4 70.4 64.5 69.0 70.4 70.4 73.9 Test Set 4 

Recall 90.0 85.0 100.0 100.0 95.0 95.0 100.0 100.0 100.0 95.0 100.0 100.0 95.0 95.0 85.0 

Accuracy 80.0 82.5 82.5 85.0 82.5 82.5 85.0 85.0 82.5 87.5 80.0 80.0 82.5 82.5 77.5 

Precision 77.3 88.2 78.3 85.0 78.3 78.3 85.0 85.0 78.3 85.7 75.0 75.0 78.3 78.3 73.9 Test Set 5 

Recall 85.0 75.0 90.0 85.0 90.0 90.0 85.0 85.0 90.0 90.0 90.0 90.0 90.0 90.0 85.0 

Accuracy 79.0 82.0 86.5 86.0 85.0 85.0 85.5 85.5 86.5 84.5 78.0 83.5 83.0 83.0 85.0 

Precision 78.4 84.6 85.7 84.3 84.3 84.3 84.1 84.1 85.7 84.0 75.3 84.1 81.0 81.0 83.8 
5-fold 
Cross 

Validation 
Recall 81.0 80.0 90.0 90.0 88.0 88.0 89.0 89.0 90.0 87.0 86.0 86.0 88.0 88.0 88.0 
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Table 4.8: Sea classification results 

MFCC MFDC  SEA Max 
Single

Max 
SFC Prd Sum Max Min Med MV Prd Sum Max Min Med MV 

Optimal 
Comb. 

Formula  
Accuracy 77.5 65.0 75.0 75.0 75.0 75.0 75.0 42.5 75.0 67.5 65.0 75.0 65.0 65.0 65.0 

Precision 82.4 80.0 100.0 100.0 100.0 100.0 100.0 33.3 100.0 100.0 71.4 100.0 100.0 100.0 100.0 Test Set 1 

Recall 70.0 40.0 50.0 50.0 50.0 50.0 50.0 15.0 50.0 35.0 50.0 50.0 30.0 30.0 30.0 

Accuracy 90.0 92.5 85.0 85.0 85.0 85.0 85.0 72.5 85.0 87.5 72.5 77.5 87.5 87.5 92.5 

Precision 83.3 87.0 85.0 85.0 85.0 85.0 85.0 71.4 85.0 89.5 71.4 78.9 89.5 89.5 94.7 Test Set 2 

Recall 100.0 100.0 85.0 85.0 85.0 85.0 85.0 75.0 85.0 85.0 75.0 75.0 85.0 85.0 90.0 

Accuracy 72.5 77.5 82.5 82.5 82.5 82.5 82.5 52.5 82.5 75.0 72.5 75.0 77.5 77.5 80.0 

Precision 65.5 72.0 78.3 78.3 78.3 78.3 78.3 52.0 78.3 72.7 71.4 75.0 78.9 73.9 83.3 Test Set 3 

Recall 95.0 90.0 90.0 90.0 90.0 90.0 90.0 65.0 90.0 80.0 75.0 75.0 75.0 85.0 75.0 

Accuracy 72.5 85.0 90.0 90.0 90.0 90.0 90.0 55.0 90.0 95.0 77.5 82.5 85.0 80.0 90.0 

Precision 64.5 79.2 86.4 86.4 86.4 86.4 86.4 54.2 86.4 90.9 76.2 84.2 79.2 73.1 94.4 Test Set 4 

Recall 100.0 95.0 95.0 95.0 95.0 95.0 95.0 65.0 95.0 100.0 80.0 80.0 95.0 95.0 85.0 

Accuracy 90.0 95.0 97.5 97.5 97.5 97.5 97.5 77.5 97.5 97.5 82.5 85.0 97.5 95.0 100.0 

Precision 83.3 90.9 95.2 95.2 95.2 95.2 95.2 69.0 95.2 95.2 76.0 79.2 95.2 90.9 100.0 Test Set 5 

Recall 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 95.0 95.0 100.0 100.0 100.0 

Accuracy 80.5 83.0 86.0 86.0 86.0 86.0 86.0 60.0 86.0 84.5 74.0 79.0 82.5 81.0 85.5 

Precision 75.8 81.8 89.0 89.0 89.0 89.0 89.0 56.0 89.0 89.7 73.3 83.5 88.6 85.5 94.5 
5-fold 
Cross 

Validation 
Recall 93.0 85.0 84.0 84.0 84.0 84.0 84.0 64.0 84.0 80.0 75.0 75.0 77.0 79.0 76.0 
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Table 4.9: Cityscape classification results 
 

MFCC MFDC  CITYSCAPE Max 
Single

Max 
SFC Prd Sum Max Min Med MV Prd Sum Max Min Med MV 

Optimal 
Comb. 

Formula  
Accuracy 90.0 90.0 82.5 90.0 82.5 82.5 90.0 90.0 82.5 87.5 80.0 85.0 85.0 85.0 77.5 

Precision 86.4 90.0 76.0 86.4 76.0 76.0 86.4 86.4 76.0 85.7 73.1 79.2 85.0 85.0 72.0 Test Set 1 

Recall 95.0 90.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 90.0 95.0 95.0 85.0 85.0 90.0 

Accuracy 82.5 80.0 92.5 90.0 92.5 92.5 90.0 90.0 92.5 90.0 77.5 85.0 87.5 87.5 87.5 

Precision 84.2 83.3 90.5 86.4 90.5 90.5 86.4 86.4 90.5 86.4 76.2 88.9 85.7 85.7 89.5 Test Set 2 

Recall 80.0 75.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 80.0 80.0 90.0 90.0 85.0 

Accuracy 75.0 80.0 85.0 90.0 80.0 80.0 90.0 90.0 85.0 77.5 80.0 82.5 75.0 75.0 95.0 

Precision 77.8 77.3 85.0 90.0 80.0 80.0 90.0 90.0 85.0 76.2 80.0 84.2 70.8 70.8 95.0 Test Set 3 

Recall 70.0 85.0 85.0 90.0 80.0 80.0 90.0 90.0 85.0 80.0 80.0 80.0 85.0 85.0 95.0 

Accuracy 87.5 85.0 87.5 87.5 77.5 77.5 90.0 90.0 87.5 90.0 62.5 62.5 85.0 87.5 87.5 

Precision 89.5 85.0 94.1 89.5 92.3 92.3 90.0 90.0 94.1 90.0 85.7 85.7 79.2 82.6 100.0 Test Set 4 

Recall 85.0 85.0 80.0 85.0 60.0 60.0 90.0 90.0 80.0 90.0 30.0 30.0 95.0 95.0 75.0 

Accuracy 75.0 72.5 77.5 75.0 77.5 77.5 75.0 75.0 77.5 72.5 55.0 70.0 72.5 72.5 80.0 

Precision 75.0 73.7 78.9 77.8 78.9 78.9 77.8 77.8 78.9 76.5 55.6 83.3 73.7 73.7 83.3 Test Set 5 

Recall 75.0 70.0 75.0 70.0 75.0 75.0 70.0 70.0 75.0 65.0 50.0 50.0 70.0 70.0 75.0 

Accuracy 82.0 81.5 85.0 86.5 82.0 82.0 87.0 87.0 85.0 83.5 71.0 77.0 81.0 81.5 85.5 

Precision 82.6 81.9 84.9 86.0 83.5 83.5 86.1 86.1 84.9 82.9 74.1 84.3 78.9 79.6 88.0 
5-fold 
Cross 

Validation 
Recall 81.0 81.0 86.0 87.0 81.0 81.0 88.0 88.0 86.0 84.0 67.0 67.0 85.0 85.0 84.0 
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large-scale databases. Also the variance of the accuracy of a mechanism among 

the five test sets gives important information about the stability and therefore 

analyzed along with the accuracy and precision values. 

For the classes, where only one descriptive feature is used (i.e. football, 

indoor and crowd), it is seen that SFC leads with at least one rule except for the 

football case. However, improvements are not significant and also performance 

depends on the choice of the best combination strategy for each of these classes. 

For football, the majority vote rule gives the same result (91%) with the best 

expert, which is a 1-NN. Indoor class is classified slightly better than the best 

expert (83%) by product and majority vote combinations (84%). In crowd 

classification, sum rule reached 81% and beat 9-NN type expert, whose 

performance was the highest among single experts with 79.5%. In all of the above 

cases, an interesting relation between precision and stability (accuracy variance) is 

observed. In all of the three cases above, whenever precision is higher (football 

and indoor), stability is lower and vice versa (crowd). 

In contrast with the above cases, significant improvements are observed in 

the cases, where the proposed advanced decision mechanisms are applicable. 

MFDC and MFCC outperform the best single expert and the best SFC for nearly 

all cases. The  

only case in which advanced decision mechanisms do not yield better results than 

the best single expert is sunset-sunrise classification. 

MFDC though being successful against single experts, could not beat the 

“optimal decision formula” in most of the cases. However, the “optimal 

combination formula” gives results that are inferior when compared with MFCC 
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for many classes. MFCC improves the performance of classifications, especially 

when its second stage combination rule is fixed to median, while SFCs in the 

previous stage are obtained by the product rule. This should be due to the fact that 

these two rules have properties, which compensate the weaknesses of each other. 

Product rule, though known to have many favorable properties, is a “severe” rule, 

since a single expert can inhibit the positive decision of all others by outputting 

close to zero probability [43]. Median rule, however, can be viewed as a robust 

average of all experts and is therefore more resilient to this kind of situation. This 

leads us to the observation that combining the product rule and the median rule is 

an effective method of increasing the modeling performance. This observation on 

MFCC is also supported by a performance improvement of 3.5% for sky, 6.5% for 

forest, 5.5% for sea and 5.0% for cityscape classification using MFCC, when 

compared against the best single expert. MFCC also achieves a performance 

improvement of at least 1-2% over even the manually selected “optimal 

combination formula” in these cases. 

Another important fact about the performances achieved in classification of 

these classes using advanced decision mechanisms is the increase in stability and 

precision they provide. In the application of these methods to large databases with 

high variation compared with data sets used in experiments, usually recall values 

are sustained, however, precision values drop severely. Therefore methods 

achieving higher precision and stability are considered more as more successful, 

when the accuracy values are equal. In the experiments for the five semantic 

classes, MFCC combination has the highest accuracy. In the case of sunset-

sunrise classification, where MFCC is beaten in terms of accuracy, it can be seen 
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that it has both higher precision and higher stability, meaning that the success of 

the “optimal combination formula” depends highly on the data used in 

experiments. As far as it can be seen from the results of the experiments, a general 

rule is that in the cases where accuracy difference is small and MFCC is better 

(sky, sea, cityscape), if precision is higher then the stability is lower and vice 

versa. Although the same result is expected for the cases where “optimal 

combination combination” has slightly better accuracy, in the only example of this 

(sunset-sunrise), MFCC is favored by both precision and stability. Another 

example that strengthens the success of MFCC is the forest classification. In this 

case, where MFCC has the highest accuracy improvement over the “optimal 

combination formula”, it has also higher precision and stability. Typical 

classification results can also be observed at the website of the ongoing MPEG-7 

compliant multimedia management system, BilVMS 

(http://vms.bilten.metu.edu.tr/).
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CHAPTER 5 
 
 

CONCLUSIONS 
 
 
 

5.1 Summary of Thesis 

Information is valuable as long as it can be retrieved. One of the greatest sources 

of information in today’s world is obviously digital multimedia. The growing 

amount of digital multimedia data brings the problem of appropriate indexing and 

retrieval of large collections. Among many different approaches for fulfilling the 

task, classification based automatic indexing which requires the least user 

interaction is chosen. In this selection, indexes are limited to the generic semantic 

visual classes, in order to construct a basis for more complicated systems which 

might be the subject of the future research. These generic classes can be inferred 

from the entire image features rather than the objects inside images and therefore 

segmentation, which is still an unsolved problem, is not compulsory. 

In the system implemented during this research, the problem of reaching 

the semantic information inside images that is closer to user needs is addressed. 

For this purpose, many methods for representing images are analyzed. As a result 

of the literature survey, MPEG-7, which is a newly emerging standard that aimed 

to combine many of the previous successful work inside its body, is selected as 
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the tool for representing images with low-level features. Two color and two 

texture descriptors that are defined by the standard are used as the low-level 

features. Experience gained as a result of the experimentations using this new 

standard that will probably become widespread in the near future is one of the 

greatest benefits in this research. It is not very optimistic to assume that in the 

future MPEG-7 descriptors, which are already extracted will be transmitted with 

any kind of multimedia data. 

Classifying data into semantic classes is simply a pattern recognition 

problem. Success of pattern recognition systems is highly correlated with the 

performance of the underlying classifier structures used to model the concepts. In 

this research, four different classifiers structures are implemented. Along with the 

three common classifiers, a new classifier called SVM, which has been introduced 

recently and has become very popular because of its generalization performance, 

is utilized. Methods in the literature for normalizing the outputs of each of these 

classifiers are analyzed and some modifications, which force the confidence for 

positive results, are proposed. With the incorporation of these methods, calibrated 

probability outputs of these classifiers become appropriate for combined usage. 

Reaching semantic information from low-level features is a challenging 

problem, which has attracted great attention from the research community. Most 

of the time, to define a semantic entity, training a single type of classifier with a 

single low-level feature is not enough. It is required to use multiple features for 

training experts with different classifier structures and combine the outputs of 

these experts to fit a model to the distribution of the members of these classes. For 

this reason, the most common and reliable combination rules, namely, product, 
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sum, max, min, median and majority vote, are utilized as the basic expert 

combination strategies. As a contribution to the existing literature, two advanced 

decision mechanisms, namely, Multiple Feature Direct Combination (MFDC) and 

Multiple Feature Cascaded Combination (MFCC) are developed on the basic 

strategies (SFC is considered as the realization of the basic mechanisms without 

further process). These mechanisms are proposed as standard combination 

frameworks, whose structures are reliable in most cases in improving the single 

expert results. The reason for a standard structure is the feasibility problem that is 

seen in most of the systems using specific weights and thresholds depending on 

the situation. This kind of a system would be impractical because of the need for 

the case-by-case selection of the best experts and their weights (like in the optimal 

combination rule). 

5.2 Discussion on Simulation Results 

The extensive experiments, where many different cases differentiated by the 

combination rules, features, classes and classifier structures analyzed, are 

performed using the proposed system. The results of the experiments are quite 

interesting and informative in many ways. 

First of all, the methods that are incorporated for the experts to give 

probability outputs make the experts much more robust than their original 

versions. Confidence measures affecting the probability outputs directly seem to 

be contributing to the performances of all types of classifier structures used. 

However, in this success the role of the selected MPEG-7 low-level features 

should not be overlooked. If the utilized features were not discriminative enough, 
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advances in the classifier structures would not have affected the performances 

significantly. 

Another important point that should be mentioned is the inferiority of SFC 

against single experts in nearly half of the cases where multiple feature 

combinations are available. This is due to the increase on the density of the 

experts trained on a single feature. In those cases, the combined performances 

deteriorate, since the confidence constraints utilized in the experts force them to 

be more conservative, while the provided single feature lacks the ability to define 

a semantic concept successfully. In the cases, where only SFC is available 

(football, indoor (outdoor), crowd), since these features are able to describe the 

characteristics of the semantic concept quite well, the complementary natures of 

the classifiers provided performance improvements.  

Among two proposed advanced decision mechanisms, especially MFCC 

achieved significant improvements consistently, even in the cases where single 

experts have already had very successful high accuracies. The main reason for this 

improvement is the reliability and stability the combination enjoys, since experts 

that are successful at modeling different parts of the class distribution, are 

combined to complement each other. On the other hand, MFDC performs 

inconsistently and its performance seems to depend mainly on the shape of the 

distribution. As can be inferred from the tabulated results in the tables, though it 

has achieved nearly the same performance with MFCC in some cases, it can be 

surpassed by even the single expert with the best performance among the others. 

For MFCC, it is observed that classification performance significantly improves, 

when the correct combination rules are selected at each stage. For instance, 
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combining the product rule results of the first stage by using median rule at the 

second stage is found out to be quite successful in all cases, beating even the 

optimal combination formula. This observation can be explained by the 

complementary natures of the combination rules, which compensates each other’s 

weaknesses. 

As a result, the system that is implemented as an outcome of this research 

enabled the analysis of the performance of the combination of different techniques 

and different features. The performance improvements achieved by these 

combinations have been proven to be successful. The results of this research will 

be used as the starting point of the future work regarding the content based 

retrieval. In this future research, incorporation of segmentation using a user-

friendly interactive method is planned. This is inevitable for reaching more 

specific semantic concepts, many of which are defined in terms of objects inside 

an image. Also as a new dimension of image representation, MPEG-7 shape 

descriptors are planned to be used in this scheme. Another important concept in 

content based retrieval has always been the relevance feedback. In the future 

system the goal will be to incorporate all the information that can be obtained 

from the user and therefore user will be able to guide the system during a 

continuous training phase. 
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