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Supervisor: Prof. Dr. Polat Gülkan 

Co-supervisor: Assist. Prof. Dr. Ahmet Yakut 

 

 

September 2003, 119 pages 

 

 Establishment of relationships for predicting the lateral drift demands of 

near-fault ground motions is one of the major challenges in earthquake engineering.  

Excessive lateral drifts caused by earthquake ground motions are the major causes 

of structural damage observed in structures. In this study, some of the fundamental 

characteristics of near-fault ground motions are examined.  Response characteristics 

of elastic frame structures to near-fault ground motions are investigated.  An 

approximate method for estimating the elastic ground story and interstory drifts for 

regular frame type structures is presented.  Inelastic displacement demands imposed 

on elasto-plastic single degree of freedom (SDOF) systems subjected to near-fault 

ground are examined.  Three equations for estimating the maximum lateral inelastic 

displacement demand from the maximum elastic displacement demand are 

established.  Two of these equations relate the inelastic and elastic displacement 

demands through natural period and strength reduction factor.  The third equation 



 iv 

relates the inelastic and elastic displacement demands through the ratio of natural 

period to pulse period and the strength reduction factor.  Efficiency of the natural 

period to pulse period ratio for estimating the inelastic displacement ratio is shown.  

Error statistics of the proposed equations are presented and compared with similar 

studies in the literature. According to the results, these equations can be used for 

quick and rough estimates of displacement demands imposed on regular elastic 

moment resisting frames and elasto-plastic single degree of systems.   

 

 

 

Keywords: drift demand, near-fault ground motion, inelastic displacement ratio, 

beam to column stiffness ratio, strength-based displacement 

amplification, pulse period 
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ÖZ 
 

 

PERFORMANSA DAYALI HESAP PARAMETRELERİNİN  

TESBİTİ İÇİN BİR YÖNTEM 

 

Yazgan, Ufuk 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Polat Gülkan 

Yardımcı Tez Yöneticisi: Doç. Dr. Ahmet Yakut 

 

 

Eylül 2003, 119 sayfa 

 

 Yakın mesafe depremlerinin içerdiği mahalli yerdeğiştirme taleplerinin 

belirlenmesi deprem mühendisliğinin üzerinde en yoğun çalışılan alanlarından 

biridir.  Deprem sonucu yapılarda oluşan yapısal ve yapısal olmayan hasarın en 

önemli nedenlerinden biri yapıların deprem sırasında maruz kaldığı büyük yer 

değiştirme talepleridir.  Bu çalışma yakın mesafe depremlerinin temel özelliklerini 

ve bu depremlere maruz kalan çerçeve tipi yapıların davranımını incelemektedir.  

Çerçeve tipi yapıların birinci kat ve maksimum kat arası ötelemesini bulmak için bir 

yaklaşık yöntem sunulmaktadır.  Çalışma sırasında elastik olmayan tek serbestlik 

dereceli sistemlerin yakın mesafe depremleri sırasında maruz kaldığı elastik ötesi 

yerdeğiştirme talepleri incelenmiştir.  Bu yapıların maruz kaldığı elastik ötesi 

yerdeğistirme talebinin maksimum elastik yerdeğiştirme talebine olan oranını 

tahmin etmek için üç ifade geliştirilmiştir.  Bu ifadelerin ikisi elastik ve elastik ötesi 

yerdeğiştirme taleplerini doğal periyoda ve taban kesme kuvveti azaltma katsayısına 
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göre ilişkilendirmektedir.  Üçüncü ifade ise elastik ve elastik ötesi davranımı, 

sistemin doğal periyodunun depremin impulsif periyoduna oranı ve taban kesme 

kuvveti azaltma katsayısına göre ilişkilendirmektedir. Sistemin doğal perioyudunun 

impulsif periyoda oranının, sistemin elastik ötesi davranımı üzerinde çok belirgin 

bir etkisi olduğu gösterilmektedir.  Bu çalışmada geliştirilmiş olan yaklaşık 

yöntemlerin hata istatistikleri, başka araştırmacılar tarafından ileri sürülmüş  

yaklaşık yöntemlerle karşılaştırılmaktadır. Sonuçlar, bu ifadelerin yakın mesafe 

depremleriyle sarsılan elastik düzenli çerceve tipi binaların ve elastik olmayan tek 

serbestlik dereceli sistemlerin maruz kaldığı yerdeğiştirme talebinin kolay ve 

yaklaşık bir tahmini için kullanılabileceğini göstermektedir.  

 

 Anahtar sözcükler: öteleme talebi, yakın mesafe yer hareketleri, elastik ötesi yer 

değiştirme oranı, kiriş-kolon rijidite oranı, kuvvete dayalı 

elastik ötesi yerdeğiştirme faktörü, impulsif periyot 
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CHAPTER 1 
 

 

INTRODUCTION 
 

 

 

1.1 Statement of the Problem 

 

Establishment of relationships for predicting the lateral drift demands of near-fault 

ground motions is one of the major challenges in earthquake engineering.  Excessive 

lateral drifts caused by earthquake ground motions are the major causes of structural 

damage observed in structures.  A large amount of research has been performed on the 

estimation of global displacement demands, such as roof drift.  In the last decade there 

has been a growing interest in the estimation of local displacement demands.  The 

unexpected level of damage observed in well-engineered structures after the 1994 

Northridge and 1995 Kobe earthquakes forced the engineering community to focus on 

the effects of near-fault ground motions.  Studies on the effects of near-fault ground 

motions on structures showed that the strong ground motion pulses observed in some of 

the near-fault ground motions might have resulted in unexpectedly high local 

displacement demands.  A number of methods for estimating the local displacement 

demands of structures subjected to near-fault ground motions have been developed.  

Iwan(1997) have introduced the drift spectrum, a measure of local displacement demand 

imposed on structures.  This drift spectrum was based on wave propagation analysis of a 

shear beam model.  Gülkan and Akkar (2002) have proposed a simple method for 
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estimating the elastic ground story drift, based on the first mode response of a shear 

beam.  Use of shear beam model may provide sufficiently good estimates for the ground 

story drifts of frames having beams relatively stiffer than columns (shear frames).  

However, for the frames having beams and slabs relatively more flexible than columns 

the use of shear beam model results in inaccurate estimates of the ground story drift.  To 

overcome this inaccuracy, this study aims to introduce a set of modifying coefficients to 

the approximate equation proposed by Gülkan and Akkar (2002). 

 

This study also presents an initial survey for estimating the inelastic displacement 

demands of structures subjected to near-fault ground motions.  Estimation of inelastic 

displacement demands, based on the elastic analysis of structures subjected to near-fault 

ground motions would provide a useful tool for seismic engineering practice.  Although 

a number of methods exists in the literature for estimating the inelastic demands based 

on elastic analysis, a method directly taking into account the intrinsic features of near-

fault ground motions has not been proposed.  This study is an initial survey for such a 

method.  Furthermore, as it will be seen in Chapter 4, C1 coefficient employed in 

FEMA356(2000), which is one of the most discussed technical documents on inelastic 

analysis, may provide alarmingly inaccurate estimates of inelastic displacements for the 

case of near-fault ground motions.  A set of preliminary equations was established for 

estimating the inelastic displacement demands imposed on inelastic non-degrading 

SDOF systems subjected to near-fault ground motions based on elastic analysis of the 

systems.   

 

Integration of the two procedures stated above would provide a useful tool for 

estimating the local inelastic displacement demands of moment resisting frames 

subjected to near-fault ground motions.  However, it should be noted that such an 

integration process requires a comprehensive research on the effects of nonlinearity on 

the response of frame structures subjected to near-fault ground motions. Such a 

comprehensive research is beyond the scope of this study. 

 



 

3 

1.2 Review of Past Studies 

 

 Several researchers have performed experimental and analytical studies on the 

estimation of lateral displacements of building type of structures since the 1960s.  A 

number of analytical procedures and computer programs have been developed for this 

purpose.  Also a number of static and dynamic tests have been conducted for evaluating 

and further improving these methods.  Some of the major studies on estimation of 

displacement demands, effects of near-fault ground motions and characteristic properties 

of near-fault ground motions are summarized below. 

 

1.2.1 Past Studies on the Characteristics of Near-Fault Ground Motions 

 

 Somerville et al., (1997) studied the fundamental characteristics of near-fault 

ground motions.  They stated that, when the velocity of rupture is close to the shear 

wave velocity of the rock near the source, a series of waves resulting from each 

dislocation are accumulated in the direction of rupture.  Accumulation of pulses in the 

direction of rupture results in a single large pulse of strong ground motion at the 

beginning of the record.  This pulse represents the cumulative effect of almost all of the 

seismic radiation from the fault.  The resulting phenomenon, which is closely related to 

the Doppler effect in physics, is called forward directivity.  The large pulse of motion is 

generally observed at the beginning of velocity or displacement traces of the near-fault 

strong motion records affected by forward directivity.  Somerville et al. (1997), stated 

that forward rupture directivity effects are observed when the rupture front propagates 

through the site and the direction of slip on the fault is aligned with the site.  Somerville 

et al. (1997) also stated that, according to the theory of seismic wave propagation, strike 

normal components of near-fault ground motions have greater damage-causing potential 

compared to other components.  It should be noted that if most of the seismic energy is 

released at the beginning or end of rupture, directivity effects would not be significant.  

In other words, energy release through the rupture should be nearly uniform for 

directivity effects to be noticeable (Steward et al., 2001).  Somerville et al., (1997) 
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noticed that when the rupture propagates away from the site, arrivals of seismic waves 

are distributed in time and named this phenomenon as backward directivity. They 

observed that backward directivity resulted in long duration motions having low 

amplitudes at long periods.  Akkar and Gülkan (2002) examined the forward directivity 

effects in the near-fault strong ground motion records taken during the 17 August 1999 

Kocaeli and 12 November 1999 Bolu-Düzce earthquakes.  They observed that the 

ground motion component with highest displacement demands were not always in the 

fault normal direction.  Akkar and Gülkan (2002) stated that the ground motion 

components in the maximum ground velocity direction does correlate better with the 

larger drift demands, compared to the strike normal component for the near-fault ground 

motion records taken from the 17 August 1999 Kocaeli and 12 November 1999 Bolu-

Düzce earthquakes. 

 

1.2.2 Past Studies on the Estimation of Displacement Demands Imposed on Frame 

Structures 

 

Blume (1968) investigated the modal characteristics of a number of frames. He 

examined the effects of the various types of degrees of freedom, joint rotation, axial 

deformation of columns and base rocking, on the overall response of building type of 

structures.  He established a set of equations and graphs for estimating the dynamic 

characteristics of frame type of buildings with joint rotation, overall flexure and base 

motion, using simple rigid-floor shear frame analysis.  Diaz et al. (1994) examined the 

validity of alternate models (i.e., rigid frame model, equivalent shear-beam model and 

equivalent shear-frame model) of building frames by comparing the ductility demands 

found for two idealized buildings excited by five simulated ground motions.  Results of 

the study showed that a model that neglects the joint rotations may produce significant 

errors in estimating the lateral drift demands of frame type of systems.  

 

Heidebrecth and Stafford Smith (1973) studied the interaction of shear walls and 

frames and derived closed form solutions for lateral displacements.  Using these closed 
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form solutions Miranda (1999) set up an approximate procedure for estimating the 

maximum lateral deformations, maximum roof displacement and maximum interstory 

drifts of frame type of structures with uniform stiffness.  Miranda and Reyes (2002) 

further improved the approximate method proposed by Miranda (1999), by adding the 

capability of estimating the lateral displacements of frame structures with non-uniform 

stiffness distribution.  

 

 Anderson and Bertero in 1986 examined the significant displacement demands 

imposed on frame type of structures by near-fault strong ground motions.  However, it 

was after the 1994 Northridge and 1995 Kobe earthquakes that engineering community 

recognized the inadequacy of current seismic design and evaluation methodologies for 

the case of near-fault excitations. 

 

Chopra and Cruz (1986a) analyzed the accuracy of response spectrum analysis 

using a set of 5 story generic frames having various fundamental periods of vibration 

and beam-to-column stiffness ratios.  Comparisons of the response quantities obtained 

from response spectrum analysis with the elastic response history analysis for 8 

simulated ground motions showed tolerable errors.  Making use of those results they 

proposed a method called Simplified Response Spectrum Analysis (Chopra and Cruz 

1986b).  This method involved a practical procedure to estimate the first two 

fundamental modes, periods of vibration and modal participation factors.  

 

 Realizing the fact that local displacements are of primary importance, 

particularly under near-fault excitations, researchers attempted to develop some practical 

tools for measuring local displacement demands.  Iwan (1997) developed the drift 

spectrum concept which was summarized in Section 1.1.  Iwan (1997) demonstrated that 

the single-degree-of-freedom (SODF) response spectrum is an inadequate tool for 

measuring the interstory drift demands, particularly for near-fault ground motions.  

Similarly, Heidebrecht and Naumoski (1997) developed an alternative method for 

establishing a drift spectrum.  They utilized the shear-beam theory together with 
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approximate equivalent shear stiffness formula for portal frames, derived by Heidebrecht 

and Stafford Smith (1973).  Heidebrecht and Rutenberg (2000) further improved this 

method by employing the approximate fundamental period formulas for frame 

structures.  Gülkan and Akkar (2002) developed a simpler procedure, utilizing the shear-

beam model, for constructing the drift spectrum.   

 

 Chopra and Chintanapakdee (2001a) compared the ground story drift ratios 

found from response spectrum analysis with that of drift spectrum analysis and stated 

that the difference is due to effects of higher modes.  They also pointed out that a 

sufficient degree of accuracy may be obtained using response spectrum method, if at 

least five modes are included in the analysis.   

 

 

1.2.3 Past Studies on the Estimation of Inelastic Displacement Demands Imposed 

on Single Degree of Freedom Systems 

 

Estimation of inelastic displacement demands from elastic displacements is the 

most popular research area in earthquake engineering.  Among these methods some are 

based on the modification of elastic spectral ordinates by functions of period (T) and 

ductility (µ) (Newmark and Hall, 1982; Nassar and Krawinkler, 1991; Vidic et al., 1994; 

Miranda, 2001).  The displacement coefficients method employed in FEMA356 (2000) 

is based on the amplification of elastic displacements for estimating the inelastic 

displacement demands according to strength reduction factor, natural period and 

characteristic site period.  FEMA356 (2000) employs the inverted form of an equation 

which was originally derived for constant ductility by Vidic et al. (1994).  This inversion 

of the equation proposed by Vidic et al. (1994) from constant ductility form to constant 

strength form resulted in loss of accuracy.  Aydınoğlu and Kaçmaz (2002) have 

addressed this inaccuracy and performed regression analysis directly on the spectral 

coefficients depending on R and T.  It should be noted that all these studies were 
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primarily based on far-field ground motions whose characteristics are very different 

from near-fault excitations.   

 

Baez and Miranda (2000) studied the inelastic displacement demands imposed 

on single degree of freedom systems by near-fault ground motions.  They stated that 

structures subjected to ground motions with large velocity pulses may experience 

maximum inelastic deformations larger than those subjected to ground motions that do 

not have these pulses, even if the linear elastic ordinates in the short period spectral 

region are similar. 

 

(Chopra and Chintanapakdee, 2001b) compared the responses of single-degree-

of-freedom (SDOF) systems to 15 near-fault and 15 far-fault strong ground motions, 

they concluded that near-fault ground motions had much narrower velocity sensitive 

regions.  Chopra and Chintanapakdee (2001b) further indicated that, the design 

equations proposed by Veletsos and Newmark (1960), which are mainly derived for far-

field ground motions, are valid for near-fault ground motions also, as long as spectral 

regions are defined appropriately. 

 

Another set of methods (Rosenblueth and Herera, 1964, Gülkan and Sözen, 

1974, Iwan 1980) are based on equivalent linearization.  In equivalent linearization 

methods maximum response of the inelastic system is approximated by the elastic 

response of a linear elastic system with increased damping and lowered stiffness.  

Capacity Spectrum Method is a method developed by Freeman et al. (1975), and based 

on the iterative use of equivalent linearization.  Capacity spectrum method is employed 

in ATC-40 (1996), which is one of the most debated technical documents on inelastic 

analysis of structures.  

 

All of these studies provided considerable information on the nature of near-fault 

ground motions, response of frame structures and inelastic displacement demands 

imposed on single degree of freedom systems by near-fault ground motions.   
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1.3 Object and Scope 

 

 This study examines the properties of near-fault ground motions and effects of 

ground motions containing pulses on the response of structures.  Important 

characteristics of near-fault ground motions were studied for this purpose.  Performances 

of various attenuation relationships were evaluated.  Effects of various parameters on the 

characteristic properties of near-fault ground motions were examined.    

 

 Modal properties of frames having different overall lateral deformation patterns 

were analyzed.  A set of idealized moment resisting frames having various numbers of 

stories and beam-to-column stiffness ratios was utilized for this purpose.  A set of 

equations, estimating the elastic ground story and maximum interstory drift ratios for 

moment resisting frames, was established. Principles of modal analysis were utilized in 

the derivation of these equations.  The equations were based on the equation proposed 

by Gülkan and Akkar (2002) for estimating ground story drift. 

  

 Another set of equations have been established for estimating the inelastic 

deformation demands of non-degrading SDOF systems, based on the maximum elastic 

displacement demand imposed on SDOF systems with the same natural period and 

damping.  Equations for estimating the inelastic displacements were established by 

directly performing regression analysis on elastic to inelastic displacement ratio, natural 

period and strength reduction factor. This study is an attempt for establishing a direct 

link between the strength capacity of the structure and inelastic displacement demand.  

Such a methodology may serve as a convenient and practical tool for performance 

evaluation of existing structures excited by near-field earthquakes.  

 

 This thesis is composed of five main chapters and two appendices.  Contents of 

each chapter may be summarized as follows: 
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Chapter 1 Statement of the problem and review of past studies on the estimation of 

the displacement demands imposed on structures, effects of near-fault 

ground motions on the response of structures and fundamental 

characteristics of near-fault ground motions. 

 

Chapter 2 Inspection of some of the fundamental characteristics of near-fault 

ground motions records used in the study.  Evaluation of performances 

of some of the attenuation relationships for the case of near-fault ground 

motions. 

 

Chapter 3 Inspection of the effects of near-fault ground motions on moment 

resisting frames.  Derivation of the equations for estimating the elastic 

ground story and maximum interstory drifts of moment resisting frames.  

Establishment of equations for estimating the maximum inelastic 

displacement demands imposed on non-degrading SDOF systems 

subjected to near-fault ground motions. 

 

Chapter 4 Statistical study on the errors of the proposed equations.  Comparison of 

the error ranges with other studies available in the literature. 

 

Chapter 5 Summary and conclusions. 

 

Appendix A List of the near-fault strong ground motion records used. 

 

Appendix B Coefficients of the attenuation relationships referred to in Chapter 2. 
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CHAPTER 2 
 

 

NEAR-FAULT GROUND MOTIONS 
 

 

 

2.1 Ground Motion Records 

 

A set of 148 near-fault ground motion records was utilized in this study.  All the 

records had been recorded on dense or stiff soils, with average shear wave velocities in 

the upper 30 m ranging from 760m/s to 180m/s. Records utilized in this study were 

downloaded from the PEER Strong Motion Data Archive Website 

(http://peer.berkeley.edu/smcat/).  The strong motion record set, comprised of horizontal 

components taken from 10 different earthquakes, covered a moment magnitude (Mw) 

range from 6 to 7.6.  The nearest and farthest records used in the study were made at 

distances of 0.24 km and 20 km to the rupture surface, respectively.  In order to examine 

the effects of strong long duration pulses on the elastic and inelastic response, the record 

set was sub-divided into two parts.  A total of 56 records having both significant velocity 

pulses in their time history traces and corresponding sharp peaks in their pseudo-velocity 

spectra formed the “Records with Pulse” group.   The remaining 92 strong motion 

records formed the “Records without Pulse” group.  Basic properties of these ground 

motion records are listed in Table A.1 in Appendix A. 
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 In Figure 2.1, moment magnitudes (Mw) and distances of the records are 

summarized.  The horizontal crowding in the graph at Mw equal to 7.6 is due to 

numerical dominance of the 1999 Chi-chi earthquake records in the dataset.  This 

earthquake, which was recorded by a very dense array of accelerographs, provided a 

useful group of data for near-fault strong ground motion studies.  Indeed, 82 of the near-

fault strong motion records used in this study have been recorded during the 1999 Chi-

chi earthquake.   
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Figure 2.1 Moment Magnitude versus Distance Plot of the Record Set 

 

 

2.2 Characteristics of Near-Fault Ground Motions 

 

 Understanding the nature of near-fault ground motions is crucial for establishing 

proper design methodologies for buildings situated in such conditions.  In Figure 2.2, a 

near-fault and a far-fault ground motion records were plotted.  The sample near-fault 

strong motion record on the left of Figure 2.2 was taken at a distance of 2.94 km to the 

rupture surface during 1999 Chi-chi, Taiwan Earthquake (Mw=7.6). 
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Figure 2. 2 A Sample Near-Fault Ground Motion Record with Pulse (1999 Chi-Chi 
Earthquake) and Far-Fault Ground Motion Record (1952 Kern County Earthquake) 
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 A significant long duration pulse may easily be noticed in the velocity and 

displacement traces of this near-fault record.  The sample far-fault strong motion record 

on the right side of Figure 2.2 was taken at a distance of 41 km to the rupture surface 

during 1952 Kern County Earthquake.  It may easily be noticed that a significant long 

duration pulse, like the one seen in the velocity and displacement traces of the near-fault 

record, is not observed in the velocity and displacement traces of the sample far-field 

record.  The pseudo-velocity spectra of the records seem to be different too.  By 

examining the pseudo-velocity spectra of the sample near-fault and far-fault records, one 

may conclude that the sample near-fault has significantly higher spectral ordinates for 

the periods greater than 1 s.  Dominance of the strong pulse seen in the velocity trace of 

the sample near-fault record is evident from the pseudo-spectral velocity diagram too. 

 

2.2.1 Peak Ground Acceleration (PGA) 

 

 The most commonly used measure of amplitude of a particular ground motion is 

peak ground acceleration. It is simply the largest (absolute) acceleration in the strong 

motion record.  Widespread use of PGA for characterizing strong ground motions comes 

from its straight-forward relationship with inertial forces.  Although it is strongly related 

to the sampling rate of accelerogram and gives only an indication about the inertial 

forces acting on very stiff structures, it has been used widely for characterizing strong 

ground motions.
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Figure 2.3 Peak Ground Acceleration versus Distance to Rupture Surface 

 
 
 
 Figure 2.3 shows the Peak Ground Acceleration (PGA) versus distance scatter 

plots of the record set grouped into Mw sets. Although a falling trend in PGA with 

increasing distance may easily be noticed from the 6.7 > Mw > 7.4 and Mw ≥ 7.4 graphs, 

such a trend is hardly noticed in the 6.7 ≥ Mw graph in Figure 2.3.  Especially the strong 

motion record taken at Tarzana Cedar Hill Nursery (CDMG 24436) during the 1994 

Northridge (Mw=6.7) earthquake seems to be lying outside the rest of the measurements 

with a PGA of 1.78g at a distance of 17.5 km.  The same plot shows that there is no 

significant relation between the velocity pulse content and PGA.   

 

2.2.2 Peak Ground Velocity (PGV) 

 

Velocity is the first integral of acceleration with respect to time.  Therefore, 

unlike PGA, PGV is less sensitive to higher frequency components of the ground 

motion.  Therefore, PGV is a more effective tool for characterizing ground motion’s 

potential for damage to typical engineering structures.  Wald et al. (1999) have 

developed regression relationships between the peak ground velocity and Modified 

Mercalli Intensity (Richter 1958).  Modified Mercalli Intensity is the measure of damage 

caused by an earthquake at a site.  Wald et al. (1999) have stated that peak ground 
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velocity is strongly related to the Modified Mercalli Intensity for the earthquakes having 

intensities larger than VII. Figure 2.4 shows the Peak Ground Velocity (PGV) versus 

distance distributions of the record set.  A narrowing trend in PGV values with 

increasing distance from rupture surface may be noted in the Mw ≥ 7.4 graph in Figure 

2.4.  In other words, strong motion records taken at closer distances have significantly 

wider ranges of PGV values compared to those recorded at more distant locations.  

Nevertheless, it should be noted that there exists a number of records taken at closer 

distances than 4 km and having relatively small PGV values.  Additionally, PGV versus 

distance graph does not show a notable difference between records with and without 

significant pulses in their velocity traces.   
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Figure 2.4 Peak Ground Velocity versus Distance to Rupture Surface 

 

 

2.2.3 Arias Intensity 

 

 Despite the fact that they are popular ground motion characterization parameters, 

PGA and PGV only provide simple information about the amplitude of strong ground 

motion.  For proper characterization of a strong ground motion for engineering purposes 

amplitude, frequency content and duration of the record should be reflected in the 

characterization parameter.  Arias Intensity (Arias 1970), reflects the amplitude, 
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frequency content and duration of the ground motion.  Arias Intensity proposed by Arias 

(1970), relates the cumulative energy per unit weight absorbed by an infinite set of 

single degree of freedom oscillators having fundamental frequencies uniformly 

distributed in the range (0,∞).  In the case of oscillators with zero damping, Arias 

Intensity is defined as: 

 

( ) 2

02a xI a t dt
g

π ∞

=   ∫  
(2.1) 

 

where Ia is the the Arias Intensity (in units of meter per second), ax(t) is the acceleration 

time history of the strong motion record (in units of meters per second square) and g is 

the gravitational acceleration (9.81m/s2).  

 

 Arias intensity is a simple and efficient index of damage for many structural and 

geotechnical engineering problems, such as dynamic response of stiff structures, 

earthquake induced liquefaction and seismic slope stability (Kayen and Mitchell 1997).  

 

In Figure 2.5, variation of Arias Intensity with distance is presented.  Similar 

outliers, like those in PGA versus distance plot (Figure 2.3), are observed in Figure 2.5.  

Two of these outliers in the 6.7 ≥ Mw graph in Figure 2.5, with distances of 17.5 km are 

again the components of strong motion recorded at Tarzana Cedar Hill Nursery (CDMG 

24436) during the 1994 Northridge earthquake (Mw = 6.7). The third outlier in the  

Mw ≥ 7.4, with a distance of 10.4 km is the west component recorded by TCU084 station 

during 1999 Chi-chi earthquake.  Leaving aside these three outliers, a narrowing trend in 

Arias Intensity with increasing distance may be seen.  No significant difference may be 

observed between Arias Intensities of records with and without pulses. 
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Figure 2.5 Arias Intensity versus Distance to Rupture Surface 

 

 

2.2.4 Peak Ground Acceleration to Peak Ground Velocity Ratio (PGA/PGV) 

 

Studies have indicated that the decrease of ground velocity with distance is 

generally slower than that of acceleration.  Therefore it is generally expected that, the 

(PGA/PGV) ratio is relatively higher near the earthquake source and lower at larger 

distances from the source of energy release.  Because the peak velocities and peak 

accelerations are usually associated with different frequencies, PGA/PGV should give 

information about the frequency content of the earthquake (McGuire, 1978).  Zhu et al. 

(1988), using 36 strong motion records, studied the correlation between the inelastic 

displacement demand and maximum of the ground acceleration to velocity ratio 

computed for each time step of the strong motion record max(a/v).  It should be noted 

that although max(a/v) is not directly related to PGA/PGV.  However, it provides a 

similar information about the strong motion record.  Zhu et al. (1988) found that strong 

ground motion records with lower max(a/v) had higher inelastic displacement demands.  

They also found that records with low max(a/v) ratios had significantly higher hysteretic 

energy demands. Malhotra (1999), using 4 strong motion records, claimed that near-fault 

records having forward directivity effects, which were summarized in Chapter 1, tended 

to have lower PGA/PGV ratios. 
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The PGA/PGV versus distance scatters for different magnitudes were plotted in 

Figure 2.6.  Through Figure 2.6, it is observed that for the ground motions taken from 

earthquakes with Mw<7.4 records with pulse on the average have lower PGA/PGV ratios 

than records without pulse.   
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Figure 2.6 Ratio of Peak Ground Acceleration to Peak Ground Velocity versus Distance 
Plot 

 

 

2.3 Near-fault Ground Motions and Attenuation Relationships  

 

 Estimation of the maximum level of ground acceleration that a structure will be 

subjected to during its service life constitutes an important part of force-based 

earthquake-resistant design.  The ground motion parameters of interest, for common 

engineering applications, are peak ground acceleration (PGA), pseudo-spectral 

acceleration (PSA), pseudo-spectral velocity (PSV), and spectral displacement (SD).  

There exists more than 120 equations proposed by various researchers (Douglas 2001) 

for PGA alone.  Another important parameter that has proven to be strongly correlated 

with the potential destructiveness of an earthquake is the Arias Intensity (Travasarou et 

al. 2003).  Numerous studies have been made for capturing the effects of earthquake 
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magnitude, rupture mechanism, site characteristics and source to site distance on these 

strong motion parameters. In this section, the performance of two studies for predicting 

PGA (Boore et al. 1997, Sadigh et al. 1997) and one study for predicting Arias Intensity 

(Travasarou et al. 2003) will be evaluated.   

 

2.3.1 Attenuation Relationships Predicting Peak Ground Acceleration 

 

Boore et al. (1997), using a record set mostly based on California earthquakes, 

proposed the following empirical equation for estimating the PGA of the average 

horizontal component: 

 

( ) ( ) ( ) ( )2
1 2 3 5ln 6 6 ln ln s

V
A

VY b b M b M b r b
V

= + − + − + +  
(2.2) 

 

where 2 2
jbr r h= +   

 

where Y is the peak horizontal ground acceleration or pseudo-acceleration response 

(measured in g), rjb is the closest distance to surface projection of rupture surface (the so-

called. ‘Joyner and Boore Distance’), M is the Moment Magnitude, VS (m/s) is the 

average shear-wave velocity in the upper 30 m  of the recording station, b1, b2, b5, bV, h 

and VA are the coefficients to be found from weighted, two-stage, regression analysis. 

Coefficients and standard deviations associated with the above equation may be found in 

Appendix B.  

 

 Boore (2001) has compared predictions calculated with this equation with 

records obtained from 1999 Chi-chi earthquake (Mw=7.6).  In his study, Boore (2001) 

concluded that, for periods less than 1 s, predictions on the average were about twice the 

recorded ground motions.  Additionally, Boore (2001) observed that long duration wave 

trains present in the ground motions even at distances of 30-60 km produced spectral 

accelerations as much as five times larger than predictions made by this equation, in the 
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range of periods from 2 to 20 seconds.  Boore (2001) expressed the view that these 

unexpected differences might be due to site and propagation effects. 

 

 Geometric means of the PGA’s found from two components of strong ground 

motion records obtained from each station are plotted above the attenuation relationship 

proposed by Boore et al. (1997) in Figure 2.7.  The moment magnitudes used in the 

generation of each attenuation curve have been indicated on the top right corner of the 

graphs in Figures 2.7, 2.9 and 2.10. 

 

 In their original study Boore et al. (1997) have directly incorporated the site 

effects using the average shear-wave velocity in the upper 30 m of the recording station.  

However, in this study only the NEHRP site classes of the strong motion stations were 

available.  Hence, the Vs in Equation 2.2 was taken as equal to the recommended value 

by Boore et al. (1997) for each NEHRP site class.  Closest distance to surface projection 

of rupture surface was not available for 6 stations in the record set, so, they are excluded 

from these curves. 

 

 In the topmost two curves in Figure 2.7, the principal representation is for near-

fault strong motion records obtained from the 1999 Chi-chi earthquake (Mw=7.6).  It is 

evident from these two graphs that there is a considerable overestimation for both C and 

D class sites.  Additionally, it should be stated that a significant dispersion exists in the 

data. 

 

 The second row of curves in Figure 2.7 contains measurements of the strong 

motion records from 1992 Cape Mendocino (Mw = 7.1) and 1989 Loma Prieta (Mw = 

6.9) earthquakes.  Although there are too few points to draw a comment, it may be seen 

that all the points lie within the 84 percentile (mean plus one standard deviation) range. 
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Figure 2. 7 Attenuation Relationship Proposed by Boore et al. (1997) and Scattergrams 
of Strong Motion Records Used in This Study  
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The third row of graphs in Figure 2.7 consists of strong motion records from 

1994 Northridge (Mw = 6.7) and 1971 San Fernando (Mw = 6.6) earthquakes.  Except for 

a few outliers, it is observed that the attenuation equation follow the trend of scatter 

points.  Similar to the Mw = 7.1 graph, it seems that most of the data points are located 

between the mean and 84 percentile. This may be an indication that the strong motion 

records in the dataset have higher PGA’s than the average near-fault strong motion 

records. 

 

The single graph at the bottom of Figure 2.7 represents the strong motion records 

from 1979 Imperial Valley (Mw = 6.5) earthquake.  It is clearly observable from the 

graph that, attenuation relationship by Boore et al. (1997) captures the individual values 

and trend of data very well. 

 

A similar equation for estimating PGA’s and PSA’s, resulting from earthquakes 

with a moment magnitude range from 4 to 8, at distances up to 100 km, has been 

proposed by Sadigh et al. (1997).  In this study, unlike Boore et al.(1997) all the ground 

motion records are grouped into two according to their site characteristics as “rock sites” 

and “deep soil sites”.  Sadigh et al. (1997) have stated that deep soil data has been 

collected from sites having greater than 20 m of soil over the bedrock.  In the light of 

this statement, it may be assumed that record set used in this study was derived from 

“deep soil sites”.  The comparisons were made accordingly.  Function and coefficients 

proposed by Sadigh et al.(1997) for the prediction of PGA are given in Appendix B.  An 

important point to be noted is that, the attenuation relationship proposed by Sadigh et al. 

(1997) and Boore et al. (1997) have different distance definitions.  The two site to source 

distances, namely closest distance to surface projection of the rupture surface (rjb) used 

by Boore et al. (1997) and closest distance to rupture surface (rrup) used by Sadig et al. 

(1997), are shown in the representative sketch in Figure 2.8. 
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Figure 2.8 Sketch of rjb and rrup 

 

 

Attenuation relationship proposed by Sadigh et al (1997) and measurement 

points of the strong motion records used in this study may be inspected in Figure 2.9.  

The graphs contain the same earthquakes as in Figure 2.7.  Unlike Boore et al. (1997), 

there is some underestimation for the Mw = 7.6 graph.  This underestimation is even 

more noticeable in the Mw = 6.7 graph.  More importantly, a clear parallel trend can not 

be observed between the points and attenuation relationship. 

 

In conclusion, it may be stated that according to dataset used in this study 

attenuation relationship proposed by Boore et al (1997) seems to capture the overall 

trend better than Sadigh et al (1997).  This may be due to the difference of the distance 

definitions proposed for each relationship. 

Surface projection of the 
rupture surface 

Rupture surface 

rjb 

rrup 

Recording station 
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Figure 2. 9 Attenuation Relationship Proposed by Sadigh et al. (1997) and Scattergram 
of Strong Motion Records Used in This Study 

 

 

2.3.2 Attenuation Relationships Predicting Arias Intensity 

 

 Emphasizing the fact that Arias Intensity is a useful measure for characterizing 

strong ground motions, Travasarou et al. (2003) proposed an attenuation relationship for 

estimating Arias Intensity.  This relationship, which was derived from point-source 

model and the coefficients found from regression analysis on 1208 ground motion 

records, is given in Appendix B.  It is stated that this relationship is applicable for 

earthquakes with moment magnitudes in a range from 4.7 to 7.6 and distances from 0.1 

km to 250 km (Travasarou et al. 2003). It should be noted that the equation proposed by 

Travasarou et al. (2003) estimates the average of the Arias Intensities of the two 

components. 
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 In Figure 2.10 this attenuation equation is plotted over the data obtained from the 

near-fault strong motion record set used in this study.  Travasarou et al. (2003) have 

used the site classification scheme proposed by Rodrigez-Marek et al. (2001).  This site 

classification scheme, unlike NEHRP(2000) site classification which is only based on 

the average shear-wave velocity of the soil profile in the upper 30 m, takes both the 

shear-wave velocity and depth of soil layer above the bedrock as parameters.  Since the 

classification data of all of the stations according to this scheme was not available, plots 

have been prepared assuming all the sites were BRM -D class (which results in higher Ia 

values).  It is seen from Figure 2.10 that the proposed attenuation relationship captures 

most of the measurement points very well.  The same over estimation in Mw = 7.6 set 

and outliers in Mw=6.7 are seen in these graphs too. 
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Figure 2.10 Arias Intensity Attenuation Relationship Proposed by Travasarou et al. 
(2003) and Plotted against Strong Motion Records Used in This Study 
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2.4 Correlation between the Pulse Period and the Predominant Period from 

Pseudo-Velocity Response Spectra 

 

 Two important parameters, characterizing the frequency content of near-fault 

records are pulse period (Tν) and predominant period from pseudo-velocity response 

spectrum (Tp-v).  Pulse Period (Tν) is defined as the duration of the largest amplitude 

pulse in the velocity trace of the strong motion record.  Starting and ending times of the 

pulse are either defined as zero crossing time or the time at which velocity is equal to 10 

percent of the peak velocity (Stewart et al. 2001).  Likewise, Somerville et al. (1999) 

define pulse period as the largest cycle of motion in the strong motion record.  

Predominant period in the pseudo-velocity response spectrum (Tp-v), as the name 

implies, is measured as the period corresponding to the peak at the pseudo-velocity 

response spectrum (Stewart et al., 2001).  These two measures are capable of providing 

information about the frequency content and spectral shapes of near-fault strong 

motions, particularly for those affected by forward directivity.   

 

 Pulse period (Tν)’s of all of the near-fault records were measured by careful 

examination of velocity traces of near-fault strong motion records that had “significant” 

pulses in their velocity traces.  Predominant period of the pseudo-velocity response 

spectrum (Tp-v) of each record were read from the response spectra of all strong motion 

records.  A sample velocity trace and pseudo-velocity response spectrum for 5 percent 

damping, together with corresponding Tν and Tp-v measurements are given in Figure 

2.11. 
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Figure 2.11 Determination of Tν and Tp-v from 1979 Imperial Valley (Mw=6.5) 
Earthquake Strong Motion Record (Station: El Centro Array #6, Component 230) 

 

 

 Stewart et al. (2001) have stated that coincidence of Tν and Tp-v for a strong 

ground motion indicates that velocity pulse contains energy in a narrow period band.  In 

order to examine the correlation in between Tν and Tp-v, the plot given in Figure 2.12 

was prepared, and coefficient of correlation was calculated.  It is apparent from the 

figure and calculated correlation coefficient that there is a strong connection between Tν 

and Tp-v, especially for the periods shorter than 4 seconds.  Mean and standard deviation 

of the ratio between Tν and Tp-v were found to be 0.96 and 0.18, respectively.  In a 

similar study Rodrigez-Marek (2000) found a mean ratio of 0.84 and a standard 

deviation of 0.28. 

 

 Tν ≅ 3.87s  
Tp-v≅ 3.40s  

%5 damping 
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Figure 2. 12 Correlation between the Pulse Period and Predominant Period from Pseudo-
Velocity Response Spectrum for the Records Used in This Study 

 

 

 Sommerville et al. (1999), utilizing large set of ground motion records from 15 

earthquakes, proposed the following relationship for Tν: 

 

10log 3.0 0.5 wT Mν = − +  (2.3) 

 

where Tν is the pulse period (period of strongest pulse in velocity trace) in seconds and 

Mw is the moment magnitude of ground motion. 

 

 A similar study, both relating Tν and Tp-v to magnitude, was presented by 

Rodrigez-Marek (2000).  Using 48 strong motion records from 11 earthquakes, he 

proposed the following relationships: 

ln 5.81 0.97v wT M= − +  (2.4) 

p-vln 5.66 0.91 wT M= − +  (2.5) 
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where Tν is the pulse period (period of strongest pulse in velocity trace) in seconds and 

Mw is the magnitude of ground motion.  Standard errors (σtotal) associated with Equations 

(2.4) and (2.5) were given as 0.51 and 0.61, respectively. 

 

 Alavi and Krawinkler (2001) proposed the following relation for Tp-v:  

10 p-vlog 1.76 0.31 wT M= − +  (2.6) 

where Mw is the moment magnitude. 

 

 Tν versus Mw and Tp-v versus Mw relationships given above are plotted over the 

individual points found using the record set in Figures 2.13 and 2.14, respectively.  It is 

evident from the two figures that although all relationships follow the trend observed in 

the data sets, they are not fully capable of predicting the applicable ranges for related 

variables.  Additionally, the scatter in Tν-Mw graph (Figure 2.13) seems to be smaller 

compared to Tp-v-Mw graph (Figure 2.14).  Large scatter seen in the figures may be due 

to other factors which are not taken into account in the proposed relationships. 
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Figure 2. 13 Scatter Plot of the Records Used and Tν vs. Mw Relationships 
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Figure 2.14 Scatter Plot of the Records Used and Tp-v vs. Mw Relationships 

 

 

 In light of the observations stated above, it is reasonable to examine the variation 

in Tν with other parameters such as site to source distance and faulting mechanism.  

Variation of pulse period with distance may be inspected from the graph in Figure 

2.15(a).  A narrowing trend with increasing distance is hardly noticeable in this graph.  

Magnitude clusters significantly show the variation with magnitude which was selected 

as the governing parameter by other researchers.  The graph in Figure 2.15(b) was 

prepared for making a rough comparison among pulse periods observed from events 

which have similar magnitudes but different faulting mechanisms.  A rough conclusion 

that may be derived from this graph is that, for the data set used in this study, strike slip 

events tend to produce longer velocity pulses compared to reverse slip events. 
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(a)       (b) 

Figure 2. 15 Variation of Pulse Period with Parameters Other than Moment Magnitude 

 

 

2.5 Spectral Displacements of Ground Motion Components 
 

 Spectral displacements are the displacement demands imposed on the single 

degree of freedom structures by ground motions.  Therefore, they are of primary 

importance for earthquake resistant design.  Earthquake ground motion is a three 

dimensional motion.  However, in common engineering applications only the two 

horizontal components are utilized.  Using these two components, an infinite number of 

components in different directions, may be generated.  Eventually, all these generated 

components would have different amplitude and frequency characteristics.  As a result, 

they would have various different displacement spectra.   Since it is not practical to 

analyze the structure under all these generated components, a severest component should 

be selected.  In general, there is no such thing as “severest” component of a ground 

motion record if individual periods for maximum base shear are considered.  Usually, 

for one period highest spectral displacement is observed in one direction, while for 

another period it is observed in another direction.   

 

 Somerville et al. (1997) state that, for the strong motion records showing effects 

of forward directivity, maximum spectral displacements are in the fault normal 
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component.  However, for some cases the fault normal direction may not be readily 

available.  Sometimes, a consensus on the layout of the fault can not be established or 

such information may not be reachable for a design engineer.  Therefore, there is a need 

for a more practical method for finding the ‘relatively’ severest component of a near-

fault ground motion. 

 

 In Figure 2.16, displacement spectra found by simple methods such as taking the 

arithmetic and geometric means of individual spectral displacements found from two 

recorded components are plotted.  It is evident from the top four frames that there is no 

significant difference between taking the means and geometric means.  Another 

important observation is that, records with pulse have noticeably higher spectral 

displacements compared to records without pulse.  Akkar and Gülkan (2002) have 

studied the fault normal and maximum velocity direction components of near-fault 

strong motion records from 1999 Kocaeli (Mw=7.4) and 1999 Bolu-Düzce (Mw=7.2).  

Akkar and Gülkan (2002) pointed out that, the ground motion components in the 

maximum velocity directions, in general, have higher spectral drifts than other 

components.  They have also stated that the maximum velocity direction does not 

always coincide with the fault-normal direction. In light of this study, spectral 

displacements in the maximum velocity direction are plotted in the two frames at the 

bottom of Figure 2.16.  Noticeably, higher spectral displacements are seen in the 

maximum velocity direction components of strong motion records with pulse.  It should 

also be noted that, such a difference is not observed in records without pulse.   

 

 In conclusion, when fault normal directions of the strong motion records are not 

readily available, a relatively severe component may be found in the maximum velocity 

direction.   
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Figure 2.16 Comparisons among Spectral Displacements of Records with and without 

Pulse 
 
 
 

 

 



 

34 

 Taking into account all of these observations it may be concluded that, near-fault 

ground motions have characteristics that are not observed in far-field ground motions.  

An in-depth understanding of these properties would eventually lead to development of 

reliable models for predicting demands imposed by near-fault ground motions on 

engineering structures.  Such models are crucial both for designing earthquake resistant 

structures near-active faults and for reliable evaluation of existing structures affected by 

near-fault strong motions. 
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CHAPTER 3 
 

 

BASIC THEORY AND DERIVATION OF EQUATIONS 
 

 

 

3.1 Models and Analysis Procedures 

 

In this chapter, elastic response of multi-degree-of-freedom (MDOF) systems 

and inelastic response of singe-degree-of-freedom (SDOF) systems subjected to near-

fault ground motions will be analyzed.  Despite the fact that, moment resisting frames 

are usually designed to yield under strong ground motion excitations, it is generally 

believed that analysis of the elastic response of these frames under near-fault excitations 

provides information on their response characteristics.  During elastic MDOF response 

history analyses local displacement demands will be the main items of concern.  In 

addition to examining the elastic response of conventional moment resisting frames, one 

of the main aims of this study is the enhancement of the simple drift estimation equation 

proposed by Gülkan and Akkar (2002).  A set of coefficients will be introduced for 

further improving the predictive power of the equation by adding the capability of 

estimating the ground story drift ratios and maximum interstory drift ratios of frames 

having beams and slabs relatively more flexible than columns. 

 

Response of a series of SDOF systems to the near-fault ground motions in the 

record set will be used to examine the fundamental characteristics of the response of 
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inelastic systems to near-fault ground motions.  Using the results of these analyses, 

differences between the response of systems to records with and without pulse will be 

compared. 

 

3.1.1 MDOF Models 

 

3.1.1.1 Properties of the Idealized Frames 

 

 In order to capture the effects of different structural properties on the response, a 

set of idealized moment resisting frames were generated.  Idealized frames were single-

bay, rectangular plane frames, with a constant story height equal to 3 m and, bay width 

equal to 6 m.  Structural configuration of a sample frame may be viewed in Figure 3.1. 

Only flexural deformations were considered in the structural members.  P-delta effects 

were not taken into account in the analyses.  The frames had uniform stiffness through 

their height.  Moments of inertia of beams (Ib) were varied to investigate response 

characteristics of different frame systems, while moments of inertia of all the columns 

(Ic) were kept constant.  The damping ratio for all modes of vibration was assumed to be 

equal to 5 percent of critical damping.   

 

 
Figure 3.1 Representative Sketch of the Structural Configuration of Idealized Frames 

2h 

h 

h 

h

0.75m 

m  

m  

Ic 

Ic 

Ic 

Ic 

Ic 

Ic 

Ib 

Ib 

Ib 



 

37 

 The story masses were assumed to be concentrated at the floor levels and 

rotational inertias of stories were neglected.  Mass of the roof story of each idealized 

frame was set to be 75% of the other stories. Story masses were adjusted so that the 

fundamental period Tn of the frames were equal to the period found from the 

approximate relation below:  

0.1nT N=  ( 3. 1 ) 

where N is the number of stories and Tn is the fundamental period in seconds.  

 

 Beam-to-column stiffness ratio (ρ), originally named as the joint rotation index 

by Blume (1968), is a parameter for quantifying the distribution pattern of lateral 

deformations in frames. ρ is calculated as follows:  

 

b

beams b

c

columns c

I
L
I
L

ρ =
∑

∑
 ( 3. 2 ) 

 

where Ib and Lb are the moments of inertia and lengths of the beams in the story closest 

to mid-height of the building, respectively, and Ic and Lc are the moments of inertia and 

heights of the columns, in the story closest to mid-height of the building, respectively.  It 

should be noted that units of moments of inertia and lengths should be consistent. It is 

assumed that for a building with nearly uniform distributed stiffness, a representative 

value of ρ may be found by using the member properties of the elements in the mid-

height of the building. For the case of idealized frames used in this study Equation 3.2 

reduces to: 

4
b

c

I
I

ρ =  ( 3. 3 ) 

 

The parameter ρ is a measure of relative beam-to-column stiffness.  It is directly 

related to the degree of frame action.  When ρ equals to zero, indicating Ib equals to 
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zero, and beams do not impose any restraint to rotation of joints.  As a result, system 

shows an overall lateral deformation pattern, like a vertical cantilever bending beam.  

Solid structural walls, with no considerable framing or effective spandrels, would 

portray such deformations.  When, the ρ equals infinity, theoretically beams are 

infinitely stiff relative to columns and joint rotations are completely restrained.  This 

frame model is named as shear building or shear frame in the literature (Ayre 1956, Paz 

1985, Chopra 2000).  Paz (1985) has stated that the name shear building has originated 

from the overall lateral deformation pattern of these frames which is similar to a shear 

beam deflected by shear forces.  It should be noted that, for most of the time, the 

deformations taken into account in the analysis of shear buildings are only the flexural 

deformations of structural components. It should also be noted that in this study the 

deformations taken into account are only the flexural deformations of structural 

members. In the shear buildings, since all joint rotations are completely restrained, all 

the columns would bend in double curvature in the displaced configuration.  

Fundamental mode shapes of idealized four story frames, with various ρ values, are 

shown in Figure 3.2. 

 

 

 
 

Figure 3.2 Fundamental Mode Shapes of Idealized Frames with Different ρ Values 

 ρ = 0   ρ = 0.125   ρ = 4   ρ = ∞ 
Overall lateral 

deformation pattern 
like a bending beam 

Overall lateral 
deformation pattern 
like a shear beam 
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 Blume (1968) calculated ρ values, changing between 0.1 and 1.55, for 27 frames 

designed by several engineers.  In the light of this observation, for the MDOF analyses 

in this study, moment resisting frames with ρ equal to 0.125, 0.25, 0.5, 0.75, 1, 1.5, 2, 3 

and 4 were used.  A separate case, utilizing shear-frame model with completely 

restrained joint rotations was included in the analysis ( ρ = ∞). 

 

 A total of 190 moment resisting frames (corresponding to 19 different number of 

stories from 2 to 20 and 10 different ρ values) were used in the MDOF analyses.    

Studying such a wide set of moment resisting frames led to better understanding of 

various factors affecting the response of frames. 

 

3.1.1.2 Analysis Procedure for MDOF Systems 

 

 For the elastic response history analysis and inspection of modal properties, a 

special MATLAB program was prepared.  The program has the capability of generating 

any frame with the given number of story, fundamental period and ρ.  The seismic 

response of frames was found by superposing the individual modal responses.  Response 

in each mode was computed by exact solution of the response of linear system under the 

ground motion excitation, interpolated over each time step.  This numerical procedure 

has proven to be useful, especially when the excitation is defined at closely spaced time 

intervals, such as the ground motion records used in this study (Chopra 2000).   

 

 Organization of the output file was arranged so that, it could be directly imported 

to common spreadsheet programs.  This compatibility led to easier examination and 

processing of the output data. 

 

 

 

 



 

40 

 

3.1.2 SDOF Systems 

 

3.1.2.1 Properties of the SDOF Systems 

 

 A set of inelastic SDOF systems was used for analyzing the basic response 

characteristics of yielding systems under near-fault ground motions.  Natural periods of 

SDOF systems covered the range from 0.1 s to 3.0 s, with increments of 0.05s.  In order 

to examine the significance of pulse period, which was defined in Chapter 2, on the 

inelastic displacement demands imposed on structures a series SDOF systems having 

natural period to pulse period ratios (Tn /Tν) between from 0.1  to 3 were generated for 

each strong motion record with pulse.  Damping was set to be equal to 5 percent of 

critical.  Elastoplastic load deformation model was used for simulating the inelastic 

behavior of SDOF systems.  This load deformation model is commonly used for 

modeling the inelastic behavior of structural elements that display small strength or 

stiffness degradation.  This is one of most widely used hysteretic models.  Figure 3.3 

shows the load deformation curve of a typical elastoplastic system and corresponding 

linear elastic system.   

 

 

 
Figure 3.3 Elastoplastic Load Deformation Model and Corresponding Linear 

Elastic System 
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 In Figure 3.3, F is the force applied on the system, k is the stiffness of the system 

in the elastic range, uy is the yield displacement, fy is the yield strength, fo is the 

maximum earthquake force on the corresponding linear system, um is the maximum 

displacement of inelastic system and uo is the maximum displacement of the 

corresponding linear system. 

 

 Strength reduction factor (R), is the ratio of the strength demand imposed on the 

linear elastic system to the strength capacity of corresponding inelastic system with the 

same natural period.  It is formulated as follows:  

o o

y y

f uR
f u

= =  ( 3. 4 ) 

.  R is a convenient parameter for normalizing the capacity of a system and it has been 

used as the main capacity parameter in this study.  Inelastic response history analyses 

were performed for SDOF systems having R’s equal to 1.5, 2, 3, 4, 5, 6, 7 and 8.   

 

3.1.2.2 Analysis Procedure for SDOF Systems 

 

 A special FORTRAN program was prepared for performing elastic and inelastic 

response history analysis of SDOF systems.  The program was based on Newmark’s 

(1959) Linear Acceleration Method for Nonlinear Systems.  

 

 The special FORTRAN program had the capability of calculating the 

displacement response spectra for a given list of records and a given set of Ry values 

automatically for any range of periods.   
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3.2 Effects of Near-Fault Ground Motions on the Response of Elastic Moment 

Resisting Frames 

 

 Results obtained from the elastic response history analysis of the idealized 

frames subjected to near-fault ground motions provided a comprehensive data.  In this 

section, observations made on the effects of strong ground motion pulses on the 

response of elastic moment resisting frames are presented.  The importance of local 

displacement demands, particularly for the structures excited by near-fault ground 

motions, has been addressed by several studies (Iwan 1997, Alavi and Krawinkler 2001, 

Gülkan and Akkar, 2002).  Studies by Alavi and Krawinkler (2001) have shown that 

high amplitude pulses observed in some of the near-fault ground motions result in 

significantly high local displacement demands.  In light of this observation, ground story 

drift ratio (GSDR) and maximum interstory drift ratio (MIDR) were selected as the main 

displacement demand parameters in this study.  Ground story drift ratio (GSDR) is 

defined as the lateral drift of the ground story normalized by the height of the ground 

story columns and maximum interstory drift ratio (MIDR) is defined as the maximum 

interstory displacement divided by the story height.  GSDRALL and MIDRALL are short 

for ground story drift ratios and maximum interstory drift ratios found by considering 

the contributions of all modes, respectively.  Similarly, GSDR1 and MIDR1 are the 

ground story drift ratios and maximum interstory drift ratios found by considering only 

the contribution of the first mode, respectively. 

 

3.2.1 Effects of Pulse Period on Local Displacement Demands 

 

 In order to examine the effects of strong velocity pulses on the local 

displacement demands, ratio of fundamental period to pulse period (Tn/Tν) were 

computed for all the individual response history analyses of frames.  GSDRALL versus 

Tn/Tν points are plotted in Figure 3.4.  It may be observed from these plots that, GSDR’s 

are noticeably higher near Tn/Tν=1.  In other words, for the frames with fundamental 

periods close to pulse period GSDR’s are significantly higher, compared to frames with 
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longer or shorter fundamental periods.  Strong correlation between the predominant 

period in the pseudo-velocity spectrum and the pulse period was examined in Chapter 2.  

Therefore, these high displacement demands observed in Figure 3.4 near Tn/Tν=1, are in 

confirmation of peaks observed in the pseudo-velocity spectra of near-fault ground 

motions with pulse.  It should also be noted that, approximate GSDR and MIDR 

estimation equations developed in this study are based on spectral displacements.  As a 

result, these equations inherently take into account the effects of strong velocity pulses 

on GSDR and MIDR.  

 

 

 
Figure 3.4 GSDRALL versus Tn/Tν  Scattergram 

 

 

3.2.2 Effects of Pulse Period on the Contribution of Higher Modes 

 

 Alavi and Krawinkler (2001) have analyzed the effects of pulse-type of ground 

motions on frame structures.  Results of those analyses have shown that, the 

displacement profiles for MDOF frames with fundamental periods larger than the pulse 
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were significantly different compared to the displacement profiles of frames with 

fundamental periods smaller than pulse period.  They observed that for structures with 

Tn/Tν smaller than 1, the displacement profiles resembled the fundamental mode shape.  

However, for structures with Tn/Tν greater than 1, effects of higher modes on the overall 

response were observed to be more significant and displacement profiles showed 

traveling wave effects.   

 

 In order to examine the significance of these effects on the results obtained from 

the elastic MDOF response history analysis, the ratios of GSDR1 to GSDRALL and 

MIDR1 to MIDRALL were computed from all response history analyses.  These ratios 

quantify the contribution of higher modes to overall response.  Deviation of these ratios 

from one implies an increase in effects of higher modes on response.  In order to 

visualize the average trend, mean of these ratios for each ρ and Tn/Tν was computed.  It 

may be noticed from Figure 3.4 that an important part of the data points lie in the Tn/Tν < 

1 region.  This is a result of ground motions, in general, having significantly longer 

pulse periods compared to fundamental periods of idealized frames used in this study.  It 

was thought that such a crowding in the Tn/Tν < 1 range might result in statistically 

questionable observations.  To see the effect of this crowding on the mean curves, the 

same computations were repeated using only the strong motions records with Tν < 2s.  

This way the bulge in Tn/Tν < 1 range was eliminated to some degree. 

 

 In Figure 3.5, resulting mean curves found may be seen.  It is evident from these 

graphs that elimination of records with Tν > 2 s did not affect the overall trend.  It can be 

concluded from Figure 3.5 that for frames with fundamental periods shorter than twice 

the pulse period of ground motion, effects of higher modes on the overall response is, on 

the average, not very significant.  However for the structures with Tn/Tν > 2 effects of 

higher modes on the response become more significant.  A significant dependence 

between effects of higher modes and ρ may not be inferred from the mean lines related 

to GSDR in Figure 3.5.  From the mean curves related to MIDR in Figure 3.5, it may be 
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concluded that effects of higher modes on the response are more significant for frames 

with higher ρ’s. 

 

 These results are similar to the observations made by Alavi and Krawinkler 

(2001).  The only difference is that, they had indicated the effects of contribution of 

higher modes to be significant for frames with Tn/Tν > 1, whereas results of this study 

show that the effects of higher modes become more noticeable for frames with Tn/Tν >2.  

This difference may be a result of specific displacement demands, GSDR and MIDR, 

examined in this study.   
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Figure 3.5 Effect of Ratio of Fundamental Period to Pulse Period on the Contribution of 

Higher Modes  
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 In conclusion, response of frames to near-fault ground motions is affected by the 

ratio of fundamental period to pulse period.  For the systems with Tn/Tν<1, the 

fundamental mode of vibration is dominant in the overall response, whereas for systems 

Tn/Tν > 2 contributions of higher modes significantly affect the overall response of 

systems. 

 

3.2.3 Effects of Strong Motion Pulses on Lateral Displacement and Interstory Drift 

Profiles of Elastic Moment Resisting Frames 

 

 In order to examine the effects of strong ground motion pulses on the lateral 

displacement profiles of the idealized frames, maximum story displacements computed 

for each story were normalized with respect to roof displacement.  Statistics associated 

with these normalized displacement profiles were computed so as to see the ranges of 

different lateral displacement profiles.  In Figure 3.6, lateral displacement profiles 

computed for 10 and 20 story frames with ρ’s equal to 0.125, 0.75 and ∞ are represented 

together with their fundamental mode shapes.  It may be seen from Figure 3.6 that, in 

general, displacement profiles found for 10 story frames are very close to fundamental 

mode shapes.  However, some deviation from the fundamental mode shape may be 

observed in the graphs associated with 20 story frames.   

 

 In order to examine the effects of near-fault records with pulse on the local 

displacement demands, interstory drift profiles of the frames were investigated.  For this 

purpose maximum interstory drifts computed for all stories in each analysis were 

normalized with the maximum interstory drift.  Statistical parameters associated with 

these interstory drift profiles were computed to analyze the overall trend.  Results found 

for six sample frames are presented in Figure 3.7.  On the left and right sides of Figure 

3.7, ranges of interstory drifts are plotted for 10 and 20 story frames, respectively.  It 

may be observed from Figure 3.7 that for the idealized frames with smaller ρ values 

location of maximum interstory drift shifts upwards.  This trend may both be observed in 

the fundamental mode shapes and response history results.   
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Figure 3.6 Displacement Profiles of Moment Resisting Frames Subjected to Near-Fault 

Ground Motions with Pulse 
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Figure 3.7 Interstory Drift Profiles of Idealized Moment Resisting Frames Subjected to 

Near-Fault Ground Motion with Pulse 
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 Moreover, it may be seen that interstory drifts computed for upper stories are 

higher than those computed using only the fundamental mode shape; this is particularly 

more noticeable in the graphs related to 20 story frames.  These deviations from the 

fundamental mode shape interstory drift profiles are results of higher mode effects.   

 

 In conclusion, higher mode effects cause some deviations in distribution of 

interstory drifts, particularly in the upper stories.  However, when the location of 

maximum interstory drift is of concern, these deviations from the fundamental mode 

shape are not very significant.  Also it should be noted that, the effects of higher modes 

on the magnitudes of ground story drift and maximum interstory drift will be further 

investigated in the following sections. 

 

3.3 Derivation of the Equations Related to Elastic Response of Moment Resisting 

Frames 

 

3.3.1 Equation for Estimating the Ground Story Drift Ratios of Moment Resisting 

Frames 

 

 Displacement-based design and evaluation methods emphasize estimation of 

displacement demands.  Some of major studies, proposing approximate methods for the 

estimation of displacement demands, were summarized in Section 2.1.  One of these 

studies was performed by Gülkan and Akkar (2002).  They derived an approximate 

expression, based on the fundamental mode response of shear beam model, for 

estimating the ground story drift ratios of frames.  The approximate equation for the 

ground story drift ratio based on the shear beam model (GSDRSH) is given as follows: 

( ),
1.27 sin

2
d

SH

S T
GSDR

h N
ξ π =  

 
 ( 3. 5 ) 

 

where N is the number of stories, h is the height of the ground story columns, Sd(T,ξ) is 

the displacement spectrum ordinate corresponding to the fundamental period T and 
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damping ratio in the fundamental mode, ξ. It should be noted that Sd(T,ξ) and h should 

be in consistent units.  Performance of Equation 3.5 was evaluated using a set of 25 

near-fault ground motions by Gülkan and Akkar (2002) and it was found that Equation 

3.5 provided sufficient accuracy for estimating the ground story drift of shear frames.  

 

 Since Equation 3.5 have been derived based on the shear beam model and it may 

be conveniently used for estimating the ground story drifts of frames having high ρ 

values (beams and slabs relatively stiffer than columns – shear frames).  However for the 

case of moment frames having low ρ values (beams and slabs relatively more flexible 

than columns), Equation 3.5 may provide inaccurate estimates of GSDR.  Such frames 

would portray overall lateral deformation patterns like a cantilever bending beam.  As a 

result an expression solely based on the shear beam model is insufficient for estimating 

the ground story drifts of frames having low ρ values.  One of the fundamental aims of 

this study is to introduce a set a modifying coefficients to be used with Equation 3.5 for 

estimating the GSDR’s and MIDR’s of general moment frames.  This aim was achieved 

by establishing two coefficients as follows: 

 

MF MF SHGSDR GSDRγ=  ( 3. 6 ) 

MF MIDR MF SHMIDR GSDRγ γ=  ( 3. 7 ) 

 

where GSDRMF is the (approximate) ground story drift ratio of a general moment frame, 

γMF is the general moment frame GSDR to shear frame GSDR conversion coefficient, 

MIDRMF is the approximate maximum interstory drift ratio of the general moment frame 

and γMIDR is the ground story drift ratio to maximum interstory drift ratio conversion 

coefficient. 

  

 In the development of these approximate coefficients four assumptions were 

made: 
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1. Estimation of the first mode response results in an adequately accurate estimate 

of the total response. 

2. Mass distribution in the structure is nearly equivalent to that of idealized frames 

3. Stiffness is nearly uniform in structure. 

4. Fundamental period of the system is nearly equal to the period calculated using 

Equation 3.1. 

 

 In order to verify the first assumption, modal response history analyses of each 

190 idealized frame under 148 near-fault ground motions were made.  GSDR’s and 

MIDR’s found from the modal response history analyses using all modes and only the 

first mode were calculated.  Results of these 28120 response history analyses have 

provided an extensive data for verification of the first assumption.  Results obtained for 

strong motion records with and without pulse were presented separately, so as to 

examine the effects of excitation type on the contribution of higher modes to the 

response.   

 

 In order to find the statistical parameters associated with the error introduced by 

considering only the participation of the first mode, following ratio was used: 

1
GSDR

All

GSDRError
GSDR

=  ( 3.8 ) 

where ErrorGSDR is the error in GSDR for a single response history analysis, GSDR1 is 

the contribution of the first mode to ground story drift ratio, GSDRALL is the ground story 

drift ratio found by considering all modes.  Ranges of ErrorGSDR’s for the records with 

and without pulse may be inspected in Figures 3.8 and 3.9. 

 

 Similar to the computations performed for GSDR, error resulting from 

consideration of only the first mode contribution to MIDR was computed as follows: 

1
MIDR

All

MIDRError
MIDR

=  ( 3.9 ) 



 

52 

where ErrorMIDR is the error in MIDR for a single response history analysis, MIDR1 is 

the maximum interstory drift ratio found considering the contribution of only the first 

mode, MIDRALL is the maximum interstory drift ratio found by considering the 

contributions of all modes.  Means and standard deviations of the errors may be 

inspected in Figures 3.10 and 3.11 for the records with and without pulse, respectively.  

 

 In all of those figures (Figures 3.8, 3.9, 3.10 and 3.11) effects of higher modes 

are more pronounced in the range of longer periods.  Although there is an increasing 

trend in the underestimation, for periods less than 1.2 s error lies in acceptable ranges. 

Even for Tn = 2.0 s the error introduced by considering only the contribution of first 

mode to response is less than -20 percent with a probability of 84 percent.  A significant 

dependence between ρ and error is not observed from the graphs.  However, it may 

easily be noticed that contributions of higher modes to response are more effective for 

GSDR compared to MIDR.  Furthermore, it may be noticed that contribution of higher 

modes are more effective on the response of structures excited by strong ground motions 

with pulse compared to those without pulse.  The difference between the responses of 

the systems to records with and without pulse is more evident in the graphs related to 

MIDR (Figures 3.10 and 3.11) 

  

 In conclusion, by looking at Figures 3.8, 3.9, 3.10 and 3.11 it may be observed 

that, for the regular structures, such as the idealized frames used in this study, estimating 

only the contribution of first mode to response may provide a rough estimate of overall 

response.  It should also be noted that, this conclusion has been derived for frame 

structures having fundamental periods between 0.2 and 2 s.  Although Figures 3.8, 3.9, 

3.10 and 3.11 have been developed for validating the first assumption, error ranges 

found from these figures may also be used as an estimate of the error associated with 

considering only the contribution of the first mode to overall response for regular frame 

structures in the given period range. 
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Figure 3.8 Error Statistics for Considering the Contribution of Only the First Mode to 

GSDR (Records with Pulse)  
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Figure 3.9 Error Statistics for Considering the Contribution of Only the First Mode to 

GSDR (Records without Pulse) 



 

55 

0.5
0.6
0.7
0.8
0.9

1

1.1
1.2
1.3
1.4
1.5

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1
Tn, Fundamental Period (sec)

M
ID

R 1/M
ID

R A
ll

 ρ = 0.125  Mean
 Mean +/- σ 

Records with Pulse
0.5
0.6
0.7
0.8
0.9

1

1.1
1.2
1.3
1.4
1.5

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1
Tn, Fundamental Period (sec)

M
ID

R 1/M
ID

R A
ll

 ρ = 0.25  Mean
 Mean +/- σ 

Records with Pulse

0.5
0.6
0.7
0.8
0.9

1

1.1
1.2
1.3
1.4
1.5

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1
Tn, Fundamental Period (sec)

M
ID

R 1/M
ID

R A
ll

 ρ =0.5  Mean
 Mean +/- σ 

Records with Pulse
0.5
0.6
0.7
0.8
0.9

1

1.1
1.2
1.3
1.4
1.5

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1
Tn, Fundamental Period (sec)

M
ID

R 1/M
ID

R A
ll

 ρ =0.75  Mean
 Mean +/- σ 

Records with Pulse

0.5
0.6
0.7
0.8
0.9

1

1.1
1.2
1.3
1.4
1.5

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1
Tn, Fundamental Period (sec)

M
ID

R 1/M
ID

R A
ll

 ρ = 1  Mean
 Mean +/- σ 

Records with Pulse
0.5
0.6
0.7
0.8
0.9

1

1.1
1.2
1.3
1.4
1.5

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1
Tn, Fundamental Period (sec)

M
ID

R 1/M
ID

R A
ll

 ρ = 1.5  Mean
 Mean +/- σ 

Records with Pulse

0.5
0.6
0.7
0.8
0.9

1

1.1
1.2
1.3
1.4
1.5

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1
Tn, Fundamental Period (sec)

M
ID

R 1/M
ID

R A
ll

 ρ = 2  Mean
 Mean +/- σ 

Records with Pulse
0.5
0.6
0.7
0.8
0.9

1

1.1
1.2
1.3
1.4
1.5

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1
Tn, Fundamental Period (sec)

M
ID

R 1/M
ID

R A
ll

 ρ =3  Mean
 Mean +/- σ 

Records with Pulse

0.5
0.6
0.7
0.8
0.9

1

1.1
1.2
1.3
1.4
1.5

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1
Tn, Fundamental Period (sec)

M
ID

R 1/M
ID

R A
ll

 ρ = 4  Mean
 Mean +/- σ 

Records with Pulse
0.5
0.6
0.7
0.8
0.9

1

1.1
1.2
1.3
1.4
1.5

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1
Tn, Fundamental Period (sec)

M
ID

R 1/M
ID

R A
ll

 Mean
 Mean +/- σ 

 ρ = ∞

Records with Pulse

 
Figure 3.10 Error Statistics for Considering the Contribution of Only the First Mode to 

MIDR (Records with Pulse)  
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Figure 3.11 Error Statistics for Considering the Contribution of Only the First Mode to 

MIDR (Records without Pulse) 
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 In order to establish equations for γMF and γMIDR, principles of modal analysis 

were employed.  The theory underlying the modal analysis has been summarized by 

Chopra (1996).  Principles of modal analysis states that the contribution of the nth mode 

to nodal displacements ( un(t) ) may be found using the relationship below: 

 

( ) ( )n n n nu t D tφ= Γ  ( 3. 10 ) 

where   
T
n

n T
n n

m ı
m

φ
φ φ

Γ =   

where Γn is the modal participation factor of the nth mode, φn is the nth mode shape 

vector, m is the mass matrix of the system, ı is the influence vector and Dn(t) is the 

displacement of the SDOF system with vibration properties, fundamental period Tn and 

damping ratio ξn, equal to properties of the nth mode of the MDOF system, excited by 

the same ground motion.  Since Dn(t) for systems with the same period and damping are 

the same, γMF only depends on the first mode participation factors and the fundamental 

mode shapes of the moment frame and shear frame.  γMF may be formulated as follows: 

1 1,1

1 1,1

MF MF

MF SH SH

φ
γ

φ
Γ

=
Γ

 ( 3. 11 ) 

where Γ1
MF, Γ1

SH are the first mode participation factors of the moment frame and shear 

frame, respectively, φ1,1
MF, φ1,1

SH, are the ground story drifts of the moment frame and 

shear frame in the first modal shapes.  Equation 3.11 can be defined as the ratio of 

participation of the first mode to ground story drift of a moment frame to the 

participation of the first mode to the ground story drift of a shear frame. 

 

 The ratio in Equation 3.11 was computed for all the idealized frames used in the 

study.  In Figure 3.12, results of Equation 3.11 for various Tn’s and ρ’s have been 

plotted.  It can be seen that, γMF is significantly influenced by ρ.  For small ρ values, 

such as ρ = 0.125, γMF even falls below 0.5.   
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Figure 3.12 Variation in γMF with Tn and ρ 

 

 

 In order to take into account this difference and improve the estimates found 

using Equation 3.5, conversion factors found from Figure 3.12 may be utilized.  

Conversion factors for ρ values which are not given in the chart may be approximately 

found by linear interpolation.  However, use of such a chart may not be practical for 

general design and evaluation purposes.  An equation for finding γMF, based on ρ and Tn 

(or number of stories) would be much more useful.  Regarding this fact, two stage 

nonlinear regression analyses, were performed on the curves in Figure 3.12.  For all 

regression analyses performed in this study, a commercial curve fitting program 

(SYSTAT 2002) was used.  This program employs the Levenburg-Marquardt algorithm 

for fitting non-linear equations.  Sum of squares of residuals was selected as the fitting 

parameter in all fitting operations. 
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 The following equation is the approximate expression found for γMF: 

( ) ( )

( ) ( )0.65 0.4

1 1
1 0.35 8 25

MF
MF MF

n

MF MF

b
a

T

where a and b

ρ
γ ρ

ρ ρ
ρ ρ

= +

= =
+ +

 ( 3. 12 ) 

where Tn is the fundamental period and ρ is the beam-to-column stiffness ratio at the 

story closest to mid-height of the building.  Theoretically, γMF should approach to 1 for 

all periods as ρ approaches infinity.  It may easily be seen that for ρ = ∞ aMF in Equation 

3.12 equals 1 and bMF equals zero.  Hence, Equation 3.12 satisfies the theoretical 

boundary condition. 

 

 Deviation of the approximate γMF values found using Equation 3.12 from the 

theoretical analysis may be seen in Figure 3.13.  It may be observed from Figure 3.13 

that for the range of ρ and Tn values considered, deviation from theoretical value is 

between +5 percent and -2 percent.  As a result, these values are accurate enough for a 

simple estimation.  Nonlinearity of the deviation may be understood from the ρ values 

indicated in Figure 3.13. 

 

 In conclusion, when Equation 3.12 is used together with Equation 3.5 as a 

coefficient, approximate estimates of GSDR of conventional moment resisting frame 

structures may be obtained.  Error statistics associated with the estimates obtained from 

Equations 3.12 and 3.5 will be evaluated in Chapter 4. 

 



 

60 

Fundamental Period, Tn (s)
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

0.85

0.90

0.95

1.00

1.05

1.10

1.15

ρ = 0.25

ρ = 4

ρ = 0.125

ρ = ∞

 Equation 3.12/ Theoretical 

 
Figure 3.13 Deviation from Theoretical γMF and the Value Found Using Equation 3.12  

 

 

3.3.2 Equation for Estimating the Maximum Interstory Drift Ratios of Moment 

Resisting Frames 

 

 Similar to γMF, principles of modal analysis were utilized in the development of 

the coefficient (γMIDR) for estimation of MIDR.  According to principles of modal 

analysis, for a MDOF system, contribution of the 1st mode to the interstory displacement 

at the nth story, ∆1,n may be computed as follows: 

( )1, 1 ,1 1,1 1( )n n n D tφ φ −∆ = Γ −  ( 3. 13 ) 

where Γ1 is the modal participation factor of the fundamental mode, φn,1 and φn-1,1 are the 

drifts of nth story and the story below nth story in fundamental mode shape, respectively.  

The ratio of maximum interstory drift to ground story drift in the fundamental mode may 

be defined as follows: 
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1,

1,1

max n
MIDR u

γ
 ∆ =  ( 3. 14) 

where max[∆1,n] is the contribution of the first mode to maximum interstory drift (n is 

the story at which the interstory drift is maximum in the fundamental mode shape), u1,1 

is the contribution of the fundamental mode to ground story drift.  After Equations 3.10 

and 3.13 are substituted into Equation 3.14 and simplifications are made, the following 

relationship is obtained: 

1, 1, 1

1,1

max n n
MIDR

φ φ
γ

φ
− − =  ( 3. 15 ) 

where max[φ1,n - φ1,n-1] is the maximum interstory drift in the fundamental mode and φ1,1 

is the ground story drift in the fundamental mode shape.  The ratio in Equation 3.15 has 

been computed for all idealized moment frames and results are plotted in Figure 3.14 
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Figure 3.14 Variation in γMIDR with Tn and ρ 
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 Similar to the nonlinear regression analyses performed for γMF, an equation for 

estimating γMIDR was found using the same regression techniques.  The only difference 

was the abrupt change in the slope of the curves at γMIDR=1.  Since such a change could 

not be modeled with a simple function, a piecewise function was introduced.  As a result 

of the nonlinear regression analyses the following piecewise equation was found for the 

approximate amplification factor for finding the MIDR from GSDR (γMIDR): 

 

( )

( ) ( ) 0.25

max exp ,1

1 0.07
2 0.9

MIDR MIDR MIDR n

MIDR MIDR

a b T

where a b

γ

ρ ρ
ρ ρ

= −

= =
+

 ( 3. 16 ) 

where γMIDR is the maximum of the exp(aMIDR-bMIDR/Tn) and 1, Tn is the fundamental 

period and ρ is the beam-to-column stiffness ratio at the story closest to mid-height of 

the building.  Theoretically, γMIDR should be equal to 1 for ρ=∞, because maximum 

interstory displacement in first mode of shear frames is always at the ground story.  It 

can easily be seen that as ρ approaches infinity, both aMIDR and bMIDR approach zero; as a 

result γMIDR approaches to 1. 

 

 Deviations of the γMIDR‘s found using Equation 3.16 from the theoretical values, 

may be viewed in Figure 3.15.  It is evident from Figure 3.15 that Equation 3.16 

provides approximate values for γMIDR with an acceptable degree of accuracy for a wide 

range of periods.  Maximum deviation from the theoretical values are observed for 

frames with Tn = 0.2 s which changes between +12 percent and -6 percent.  For idealized 

frames with Tn ≥ 0.3 s deviation is much smaller; it varies in the range of +5 percent to  

-2 percent.   
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Figure 3.15 Deviation from Theoretical γMIDR and the Value Found Using Equation 3.13  

 

 

 In brief, Equations 3.12 and 3.16 provide the conversion factors needed for 

estimating GSDR’s and MIDR’s of general moment resisting frame structures.  It should 

be noted that, γMF and γMIDR are essentially based on the first mode response of idealized 

regular moment resisting frames, and may not provide good estimates for irregular 

frames.  Performance of Equations 3.5, 3.12 and 3.16, for the case of near-fault ground 

motions, will be evaluated in Chapter 4. 

 

3.4 Estimating Inelastic Displacement Demands for SDOF Systems 

 

3.4.1 Regression Analysis on the um/uo-R-T Curves 

 

 Estimation of inelastic displacement demands imposed on structures is one of the 

key challenges of displacement based performance evaluation and design.  A number of 

methods have been developed for the estimation of inelastic response spectra by 
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modifying the elastic response spectra.  Major studies on this subject were summarized 

in Section 1.2.   

 

 Ductility and normalized yield strength are two important parameters that define 

the inelastic capacity of a structure.  Yield strength was defined in Section 3.1.2.1.  

Ductility ratio (µ) of a system is the ratio of maximum displacement to yield 

displacement of a system.  µ is formulated as follows: 

m

y

u
u

µ =  ( 3.17 ) 

where um is the maximum displacement of a system and uy is the yield displacement of 

the system.  Ductility ratio is an important factor representing the energy dissipation of 

capacity of a system.   

 

 After substituting equation 3.17 into 3.4 the following relationship is obtained: 

0

mu
u R

µ=  ( 3. 18 ) 

where um is the maximum displacement of the inelastic system and uo is the maximum 

displacement of the corresponding elastic system.  The ratio in Equation 3.18 is also 

known as the inelastic displacement ratio and the functions used for estimating this ratio 

are named displacement modification factors.   

 

 There are two main approaches for estimating the inelastic displacement ratio: 

constant ductility approach and constant strength approach.  Constant ductility approach, 

as the name implies, is based on assessing the required strength for a fixed specified 

ductility factor.  This approach is particularly useful in the design of new structures with 

predefined ductility capacities.  However, implementation of ductility based approaches 

in post-earthquake evaluation of structures requires a series of iterations and is not 

practical.  On the contrary, constant strength approach is based on estimation of inelastic 

displacement demands imposed on structures consistent with their relative strength 

capacities.  After the inelastic displacement demands are estimated, required ductility 
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capacities of members are checked.  Application of constant strength approach in post-

earthquake evaluation of structures is much easier compared to constant ductility 

approach.   

 

 A total of 69856 inelastic displacement ratios were computed (corresponding to 

148 ground motions, 59 periods and 8 strength reduction factors).  In order to include the 

effects of strong ground motion pulses on the inelastic displacement demands of SDOF 

systems, inelastic displacement ratios of the records with and without pulse were 

examined separately.  Medians and standard deviations of natural logarithms, also 

known as dispersions, of inelastic displacement ratios were computed for each period 

and strength reduction factor.  Medians (um/uo)* and dispersions δ(um/uo) in this study 

were computed according to the equations below: 

( )
( )

1
ln /

/ exp

n

m o i
i

m o

u u
u u

n
∗ =

 
 
 =
 
  

∑
 ( 3. 19 ) 

( )
( ) ( )

1/ 2
*

1
0

ln ln

1

n

m o m oi
i

m

u u u u
u u

n
δ =

  −  
 =

− 
  

∑
 ( 3. 20 ) 

where (um/uo)i are the  individual inelastic displacement ratios computed for each ground 

motion and n is the number of ground motions analyzed.  It should be noted that a 

dispersion equal to δ(um/uo) means, 84th percentile of um/uo corresponding to median 

(um/uo)* may be calculated as (um/uo)*exp(δ(um/uo)). 

 

 Figure 3.16 shows the variation in median inelastic displacement ratio with the 

fundamental period and strength reduction factor.  It is evident from Figure 3.16 that the 

inelastic displacement ratios for the systems with short period (T ≤ 0.3 s) are 

significantly higher compared to those with longer periods.  For the structures with long 

periods (T > 2.5 s) inelastic displacement ratios for all strength reduction factors 
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approaches 1.  This trend has been named as “equal displacement rule” by Newmark and 

Hall (1982).  However, in the range of short periods inelastic displacement ratios are 

significantly affected from strength reduction factors.  This phenomenon has been 

explained by Newmark and Hall (1982) as equal energy rule. Equal energy rule states 

that weaker structures tend to dissipate energy primarily by yielding, as a result they 

attain significantly larger displacement compared to elastic systems with the same 

natural period and damping.  Comparing the two graphs in Figure 3.16, it may be 

concluded that inelastic displacement amplifications for records with strong pulses are 

higher than those without strong pulses.   

 

 Although the median inelastic displacement ratio curves are helpful for 

inspecting effects of various parameters on the inelastic displacement demands, it is also 

important to know the scatter associated with these inelastic displacement ratios.  

Dispersions of inelastic displacement ratios computed for each R have been plotted in 

Figure 3.17.  Similar to the trend observed in the medians of inelastic displacement 

ratios, a decreasing trend in the dispersion with the increasing period may be seen in 

Figure 3.17.  Although for the R’s ranging from 1.5 to 4 dispersion of inelastic 

displacement ratios increase significantly with increasing R, such a significant increase 

can not be seen for R’s higher than 4.   Dispersions found for the short period range 

seem to be significantly higher compared to those found for longer periods.  Also the 

dependence of dispersion to period seems to be more effective for smaller R’s.  

Comparing the dispersions of inelastic displacement ratios found for records with and 

without pulse, it may be concluded that dispersions found using records with pulse are 

larger than those found using records without pulse in the period range from 0.5s to 2s.     

It should be noted that a dispersion equal to 0.6 means, 84th percentile of um/uo is 

1.65(=e0.6) times median um/uo.  This is an indication of the large scatter in the um/uo 

values for a single R and T.  
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Figure 3.16 Median Curves for Inelastic Displacement Ratio versus Period 
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Figure 3.17 Dispersion of Inelastic Displacement Ratio versus Period  
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 Although, Figures 3.16 and 3.17 may conveniently be used for estimating 

inelastic displacement ratios for structures with specified periods and strength reduction 

factors, it would be much more desirable to have a simplified expression for finding the 

inelastic displacement ratios.  Considering this, equations for estimating the inelastic 

displacement ratios have been found using two stage nonlinear regression analyses.  

Since a single equation for estimating the inelastic displacement ratios both for records 

with and without pulse together might result in significant errors, two separate equations 

were established.  Regressions for each set of median curves were performed in two 

stages.  For the first stage the following equation, a slightly modified form of R-µ 

equation proposed by Osteraas and Krawinkler (1990), was employed: 

 

( ) 1 1 1
a

m

o

u RR
u R b

 −= + 
 

 ( 3. 21 ) 

where R is the strength reduction factor, a and b are the coefficients to be determined by 

nonlinear regression analysis.  Values for a and b making the sum of squares of residuals 

minimum were found for each period.  Second stage of regression was performed on the 

a-R and b-R pairs.  As a result the following equations were found for estimating 

inelastic displacement ratios (um/uo) : 

 

1 1( , ) 1
a

m

o

u RR T
u R b

 −= + 
 

 ( 3.22 ) 

for records with pulse 

( ) ( ) ( ) ( )1

1 1
1 0.67 exp 0.83 1 0.15 1.4exp 1.3n

a T b T
T T T−= =

− − + ⋅ − −
 

 

( 3.23a ) 

for records without pulse 

( ) ( ) ( ) ( )20.9

1 1
1 0.009 0.55 exp 0.81 0.7 exp 1.1

a T b T
T TT −= =

+ ⋅ − ⋅ −− ⋅ − ⋅
 ( 3.23b ) 
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where T is the period .  It should be noted that constants in Equation 3.22 were adjusted 

by trial and error so that the range of error of the estimation is a minimum, and numbers 

have meaningful precision.  Theoretically, Equation 3.22 should satisfy the following 

conditions: 

um/uo(R→1, T )→ 1 ( 3.24 ) 

um /uo(R, T→∞ )→ 1 ( 3.25 ) 

It can be seen that Equation 3.22 satisfies both of these conditions.  Furthermore, error 

statistics of Equation 3.22 and a similar equation utilized in FEMA356 (2000) has been 

evaluated in Chapter 4.   

 

3.4.2 Derivation of the Equation Based on Natural Period to Pulse Period Ratio 

 

 Several studies (Iwan et al 2000, Baez and Miranda 2000) have shown that 

strong pulses observed in some near-fault ground motions affect the inelastic 

displacement ratios significantly.  Iwan et al (2000) stated that inelastic displacement 

ratios for structures with periods shorter than the pulse period were significantly larger 

than those found for the structures having longer periods than the pulse period.  In order 

to capture the effect of elastic period to pulse period ratio on the inelastic displacement 

ratio, 26432 inelastic displacements (corresponding to 56 ground motions with pulse 

listed in Appendix A, 59 elastic-period-to-pulse-period ratios from 0.1 to 3 with the 

increments of 0.05 and 8 R’s values) were computed.  In this study the term natural 

period is used to define the period of the inelastic SDOF systems in the elastic range.  

Medians and dispersions of inelastic displacement ratios for each natural period to pulse 

period ratio and R have been computed.  Median curves for inelastic displacement ratios 

for each R have been plotted in Figure 3.18.  From these curves it may be seen that 

inelastic displacement ratio is controlled by the ratio of natural period to pulse period.  

Moreover, it may be observed from Figure 3.18 that median curves for inelastic 

displacement ratios, fall below unity for systems having periods longer that 0.8 times the 

pulse period.  This observation is similar to Iwan et al (2000).  In Figure 3.18 it may be 

seen that the decrease in median inelastic displacement ratio was more effective for 
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systems with higher strength reduction factors.  Similar to the Figure 3.16, for long 

period structures median inelastic displacement ratio curves in Figure 3.18 approach 

unity also.  As a result, it may be concluded that, equal displacement rule may be 

observed from the median curves in Figure 3.18, too. 
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Figure 3.18 Median Curves for Inelastic Displacement Ratio versus Ratio of Natural 

Period to Pulse Period 

 

 

 Median inelastic displacement ratios versus ratio of natural period to pulse period 

curves provide information about the variation of inelastic displacement demands with 

various parameters.  However, the dispersions associated with inelastic displacement 

ratios provide equally important information.  In Figure 3.19, dispersion of inelastic 

displacement ratio versus elastic period curves has been plotted.  From Figure 3.19 it 

may be concluded that dispersion of inelastic displacement ratios for systems with 

elastic periods shorter than 0.8 times the pulse period is significantly larger compared to 

systems with longer natural periods.  Dispersion curves in Figure 3.19 seem to be nearly 
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constant in the range Tn/Tν > 1.  Comparing Figures 3.19 and 3.17, it may be concluded 

that dispersion of inelastic displacement ratios found for each period on the average is 

larger than those found for each elastic period to pulse period ratio.   
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 In order to establish relationships for estimating the inelastic displacement ratios, 

two stage nonlinear curve fitting analysis was performed on the median inelastic 

displacement ratio versus natural period curves.  As a result, the following equation was 

found: 
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( )

( ) ( )
( ) ( ) ( )

3

1 1, 1

0.055 1.4
2.5 1.5

/ 1 exp
exp 2.4 exp 3.8
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n n
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T T T Ta T T b T T
T T T T

ν

ν ν
ν ν

ν ν

 −= + 
 

− + − +
 = + =
 
 
 

 ( 3.26 ) 

where R is the strength reduction factor, Tn/Tν is the ratio of natural period to pulse 

period.  Theoretically, Equation 3.26 should satisfy the following conditions for a 

specific Tν: 

um/uo(R→1, Tn/Tν )→ 1 (3.27) 

um/uo(R, Tn/Tν→∞ )→ 1 (3.28) 

It can be seen that Equation 3.26 satisfies both of these conditions.  

 

 In depth study of the error statistics of Equation 3.26 will be presented in Chapter 

4. 
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CHAPTER 4 
 

 

VERIFICATION 
 

 

 

4.1 Verification of the Approximate Methods for Estimating the GSDR and MIDR 

 

 In this chapter, accuracy of the approximate equations developed for estimating 

the elastic GSDR’s and MIDR’s will be investigated.  The approximate GSDR’s and 

MIDR’s found using Equations 3.5, 3.12 and 3.16 have been compared to those 

computed using the modal response history analysis.  Hereafter, the values computed 

using the response history analysis will be referred as “exact” and the values found using 

the proposed approximations will be referred as “approximate”.  In order to quantify the 

performance of the proposed function approximate-to-exact-ratio (A/E) was used.  A/E 

being greater than one implies that the approximate method overestimates the exact 

response.  Similarly, an A/E smaller than one implies approximate method 

underestimates the exact response.  It should also be noted that A/E is directly related to 

error as follows: 

( ) 1Error A E= −  (4.1)

where A is the value found using the approximate method and E is the exact value 

computed using modal response history analysis.   
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4.1.1 A/E Statistics for GSDR and MIDR 

 

 Selection of a proper theoretical distribution model is the key step for appropriate 

statistical analysis of observational data.  Once the distribution function is found or 

assumed the statistical parameters associated with the data may be computed.  Chi-

square goodness-of-fit test provides a numerical way for evaluating the adequacy of 

different theoretical distribution functions (Ang and Tang, 1975).  In this study, validity 

of normal (Gaussian) and log-normal distributions for modeling the probabilistic 

distribution of A/E was evaluated.  The sample A/E sets used in the chi-square test are 

shown in Figure 4.1.  Selection of these sample clusters was arbitrary.  It was assumed 

that distribution characteristics of these sample clusters represented all the A/E’s. 
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Figure 4.1 Scattergrams and Histograms of the Sample GSDR and MIDR A/E Sets used 

for Chi-Square Test 

 

 

 Chi-square (χ2) values computed using the A/E sets shown in Figure 4.1 is 

presented in Table 4.1.  It may easily be noticed from Table 4.1 that, for most of the sets 
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χ2 values found for normal and log-normal distributions are very close.  However, from 

the 3rd row of Table 4.1 it is seen that normal distribution has a significantly lower χ2 

compared to log-normal.  This indicates the superiority of normal distribution over log-

normal for modeling the A/E values related to GSDR estimation.  For a significance 

level (α) of 0.05 (which the commonly used value), χcr
2 is given as 5.99. χ2 being 

smaller than χcr
2 shows that the selected distribution function fits the data sufficiently 

(Ang and Tang, 1975).  It should also be noted that, all the χ2 values associated with 

normal distribution in Table 4.1 are all smaller than 5.99.  As a result, normal 

distribution provides a sufficient degree of accuracy for analyzing the statistical 

parameters associated with A/E values related to GSDR and MIDR estimation. 

 

Table 4.1 Chi-Square (χ2) Values Computed for the Sample A/E Sets  

for GSDR and MIDR 

  χ2 

 Tn(s) Normal Log-normal 

0.5 1.25 0.90 

1.1 5.71 5.06 GSDR (ρ = 0.5)  

1.7 5.97 10.64 

0.3 2.99 3.31 

1 5.43 6.14 MIDR (ρ = 1)  

1.7 2.00 2.41 

 

 Mean and mean +/- standard deviation curves for A/E values related to GSDR 

and MIDR estimation may be seen in Figures 4.2 and 4.3.  It may easily be noticed from 

Figures 4.2 and 4.3 that Equations 3.5, 3.12 and 3.16 provide, on the average, acceptably 

accurate estimates. It should also be noted that A/E graphs related to ρ=∞ essentially 

show only the accuracy of the Equation 3.5, estimating the GSDR’s of shear frames, 

proposed by Gülkan and Akkar (2002).   
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Figure 4.2 (a) A/E Statistics for GSDR Estimation ρ = 0.125 – 1.5 (Records with Pulse)  
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GSDR ρ=2 (Records with pulse)
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Figure 4.2 (b) A/E Statistics for GSDR Estimation ρ=2-∞ (Records with Pulse)  
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Figure 4.2 (c) A/E Statistics for GSDR Estimation ρ = 0.125 – 1.5 

 (Records without Pulse)  

 

 



 

80 

GSDR ρ=2 (Records without pulse)
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Figure 4.2 (d) A/E Statistics for GSDR Estimation ρ = 2 - ∞ (Records without Pulse)  
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Figure 4.3 (a) A/E Statistics for MIDR Estimation ρ = 0.125 – 1.5  

(Records with Pulse)  
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Figure 4.3 (b) A/E Statistics for MIDR Estimation ρ = 2 – ∞  

(Records with Pulse)  
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MIDR ρ=0.125 (Records without pulse)

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Tn, Fundamental Period (s)

A/E

Mean
Mean +/- σ

MIDR ρ=0.25 (Records without pulse)

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Tn, Fundamental Period (s)

A/E

Mean
Mean +/- σ

MIDR ρ=0.5 (Records without pulse)

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Tn, Fundamental Period (s)

A/E

Mean
Mean +/- σ

MIDR ρ=0.75 (Records without pulse)

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Tn, Fundamental Period (s)

A/E

Mean
Mean +/- σ

MIDR ρ=1 (Records without pulse)

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Tn, Fundamental Period (s)

A/E

Mean
Mean +/- σ

MIDR ρ=1.5 (Records without pulse)

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Tn, Fundamental Period (s)

A/E

Mean
Mean +/- σ

 
Figure 4.3 (c) A/E Statistics for MIDR Estimation ρ = 0.125 – 1.5  

(Records without Pulse)  
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MIDR ρ=2 (Records without pulse)
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Figure 4.3 (d) A/E Statistics for MIDR Estimation ρ = 2 – ∞  

(Records without Pulse)  

 

 It may be seen from Figures 4.3(a),(b),(c) and (d) that for the frames having  

Tn < 0.6 s A/E ranges are greater than 1.  This indicates for frames having Tn <0.6 s 

Equations 3.5, 3.12 and 3.16 overestimates the GSDR and MIDR.  For the frames 

having Tn > 0.6 s underestimations are observed.  However this underestimation is 

limited to an acceptable degree for the frames having 0.6 s < Tn < 1.2 s.  The 

underestimations are generally smaller than 10 percent at that range.  At the extreme 

case Tn = 2 s, underestimation reaches to –20 percent. 

 

4.1.2 Comparison of the Proposed Method with Other Approximate Methods 

 

 In order to compare the performance of the approximate method proposed in this 

study with other studies in the literature, A/E’s related to the method proposed by 
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Miranda (1999) were computed.  Miranda (1999) utilizes an equivalent continuum 

structure consisting of a combination of a flexural cantilever beam and a shear cantilever 

beam.  Approximate mode shape in Miranda (1999) is obtained using the relation below: 
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(4.2) 

where a is the dimensionless parameter controlling the shape of loading (typically taken 

as 0.01 for triangular loading), α is the parameter controlling the participation of shear 

and flexural deformations, z is the height of story and H is the total height of the 

building.  Miranda (1999) uses Equation 4.2 to compute the approximate participation 

factors. 

  

 In essence the parameter α is very similar to ρ. Smaller α‘s indicate that the 

overall lateral displacement profile of the frame is similar to displacement profile of a 

bending cantilever beam, whereas higher α’s indicate an overall lateral displacement 
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profile similar to the displacement profile of a shear beam.  Miranda (1999) states that, 

the α value should be computed as follows 

 

1)  Normalized roof displacement profile should be found from elastic analysis of 

the frame under triangular lateral loading with an arbitrary intensity. 

2) The proper α value minimizing the differences between the displacement profiles 

found in Step 1 and the approximate mode shape found using Equation 4.2 

should be found. 

3)  The α value obtained from Step 2 should be substituted into the set of equations 

presented by Miranda (1999).  As a result of a series of computations maximum 

interstory and ground story drifts are found. 

 

 Therefore, unlike ρ the computation of α as it is proposed in Miranda (1999) 

involves a series of iterations.  A subsequent article by Miranda and Reyes (2002) stated 

that α, without any iteration, may be taken as equal to 10 for typical frame buildings. 

However, as it will be shown in the preceding paragraphs using a constant α for all 

frame buildings may result in significant errors. 

 

 A/E’s found using both methods (Miranda 1999, Miranda and Reyes 2002) have 

been evaluated in this study.  In order to find the proper α values for 190 idealized 

frames using the method proposed in Miranda (1999) a special MATLAB program was 

prepared.  For finding the proper α values a constrained optimization algorithm, namely 

Golden-search method, was utilized in the program.   

 

 The ranges of A/E’s found for frames with ρ = 0.125, 0.75, 2 and ∞ using the 

former method (Miranda, 1999), by finding the α iteratively are shown in Figure 4.4.  

As it may be seen from Figure 4.4(a), the former method (Miranda, 1999) 

underestimates the ground story drift.  For the case of maximum interstory drift some 
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overestimation may be observed in the Tn<0.6 s range in Figure 4.4(b). However for the 

extreme case Tn=2 s mean underestimation is -20 percent.   

 

 Similarly, ranges of A/E’s found for frames with ρ = 0.125, 0.75, 2 and ∞ using 

the latter method (Miranda and Reyes, 2002), by taking α to be equal to 10 for all cases, 

are shown in Figure 4.5.  Comparing Figures 4.4(a) and 4.5(a), it may be concluded that 

selection of a proper α value is critical for acceptably accurate estimation of GSDR.  An 

approximate value of α equal to 10, as given in Miranda and Reyes (2002), may provide 

unsafe GSDR estimates.   However, for the case of MIDR, there is no significant 

difference between the A/E’s found using iterated α’s and those found using α=10.   
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Figure 4.4 (a) A/E Statistics of GSDR Estimation Using the Method by Miranda (1999) 
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MIDR estimation using Miranda (1999) ρ=0.125
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Figure 4.4 (b) A/E Statistics of MIDR Estimation Using the Method by Miranda (1999) 

GSDR estimation using Miranda (2002) ρ=0.125
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Figure 4.5 (a) A/E Statistics of GSDR Estimation Using the Method  

by Miranda and Reyes (2002) 
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MIDR estimation using Miranda (2002) ρ=0.125
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Figure 4.5 (b) A/E Statistics of MIDR Estimation Using the Method  

by Miranda and Reyes (2002) 
 

 

4.2 Verification of the Approximate Equations for Estimating the Inelastic 

Displacement Ratio 

 

4.2.1 A/E Statistics for Inelastic Displacement Ratio 

 

 In order to find the proper theoretical distribution function for modeling the 

distribution of A/E’s associated with Equations 3.22 and 3.26, chi-square tests were 

performed.  Performances of normal and log-normal distributions for modeling A/E’s 

were evaluated.  Sample sets for evaluating the validity of the distribution functions 

were selected arbitrarily.  In Figure 4.6 the A/E’s selected for evaluation were plotted.  It 

was assumed that the A/E sets employed in the analysis represents the distribution 

characteristics of all A/E’s.  In Table 4.2, χ2‘s computed are presented.  It is evident 
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from Table 4.2, that χ2 associated with the log-normal distribution are significantly 

smaller than those associated with normal distributions.  This indicates the superiority of 

log-normal distribution over normal for modeling the A/E values related to estimation of 

inelastic displacement ratio.  As a result, log-normal distribution was used for analyzing 

the statistical parameters associated with the A/E values related to inelastic displacement 

ratio estimation equations.  
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Figure 4.6 Scattergrams and Histograms of the Sample um/uo-R-T Estimation A/E Sets 

used for Chi-Square Test 
 

Table 4.2 Chi-Square (χ2) Values Computed for the Sample A/E Sets for um/uo 

  χ2 

 T(s) Normal Log-normal 

0.2 32.04 2.38 

1 6.34 0.98 
um/uo (R=5)  

(Records with pulse)  
1.8 11.27 1.82 

0.3 37.35 0.95 

0.9 5.99 3.61 
um/uo (R=7)  

(Records without pulse) 
1.5 7.79 1.39 
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 In Figures 4.7, 4.8 and 4.9, A/E statistics for the um/uo-R-T and um/uo-R-Tn/Tν 

equations (Equations 3.22 and 3.26) may be inspected.  As a result of the large 

dispersion associated with the inelastic displacement ratio, the A/E statistics related the 

estimation of inelastic displacement ratio (Equations 3.22 and 3.26) was found to be 

widely scattered in the T<0.5 s range (Figures 4.6 and 4.7).  Although some 

underestimation is observed in the T<0.5 s range, for longer periods Equation 3.22, on 

the average, provides acceptably accurate estimates for inelastic displacement ratio 

(Figures 4.7 and 4.8).  A similar underestimation in the T<0.5 s is observed for the 

estimates obtained using Equation 3.26 (Figure 4.8).  Dispersion of the A/E associated 

with Equation 3.26 is much smaller compared to A/E’s associated with Equation 3.22. 
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Figure 4.7 A/E Statistics for um/uo-R-T Equation for Records with Pulse (Equation 3.22) 
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Figure 4.8 A/E Statistics for um/uo-R-T Equation for Records without Pulse (Equation 

3.22) 
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Figure 4.9 A/E Statistics for um/uo-R-T/Tν Equation (Equation 3.26) 
 



 

95 

4.2.2 Comparison of the Proposed Method with Other Approximate Methods 

 

 Displacement modification factor (C1) utilized in FEMA356 relates the 

maximum inelastic deformation of the non-degrading SDOF system to the maximum 

elastic deformation of the corresponding SDOF system with the same elastic period and 

damping.  Like Equations 3.21 and 3.22, C1 is an approximate factor for estimating the 

inelastic displacement ratio (um/uo). The formula for C1 in FEMA356 is given as 

follows: 

( )1

1.0

1.0 1
e s

s e e s

for T T
C

R T T R for T T

≥= 
 + − < 

 (4.3)

where Te is the natural period of the SDOF system, Ts is the characteristic period of the 

response spectrum and R is the ratio of the elastic strength demand to yield strength of 

the inelastic system (strength reduction factor). 

 

 A/E statistics associated with the C1 coefficient are plotted in Figures 4.10(a) and 

(b). It should be noted that characteristic periods (Ts) were found individually for each 

ground motion record in the record set using the procedure stated in FEMA356.  It is 

evident from Figures 4.10(a) and (b) that C1 significantly underestimates the inelastic 

displacements.  This underestimation is more noticeable for the records with pulse.   

 

 Comparing Figures 4.9 and 4.10(b) it may be concluded that estimation of 

inelastic displacement ratios according to natural period to pulse period ratio (T/Tν) 

provides more accurate results compared to natural period to characteristic period ratio 

(T/Ts).  
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Figure 4.10(a) A/E Statistics for C1 Coefficient Equation for Records without Pulse 
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Figure 4.10(b) A/E Statistics for C1 coefficient equation for records with pulse 
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 Every approximate method inevitably results in estimates different than the 

“exact” response.  The amount and the type (i.e. overestimation or underestimation) of 

the deviation from the exact response is the critical performance parameter for 

approximate methods.  The A/E statistics presented in Figures 4.1, 4.2, 4.3 and 4.5 may 

provide the probable range of error associated with Equations 3.5, 3.12 and 3.16.  

Similarly the A/E statistics presented in Figures 4.7, 4.8 and 4.9 may be used to find the 

probable range of error associated with Equations 3.22 and 3.26.  It should also be noted 

that, these errors may increase due to a number of other factors affecting the response of 

structure and not taken into consideration in this study.  In conclusion, it may be stated 

that the equations proposed in this study may be used for obtaining quick and rough 

estimates of displacement demands imposed on regular frame type of structures 

subjected to near-fault ground motions. However, the assumptions made in the 

derivation of equations and the error ranges presented in Figures 4.1-4.5 and 4.7-4.9 

should be considered carefully.   
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CHAPTER 5 
 

 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS  

FOR FUTURE STUDIES 
 

 

 

5.1 Summary 

 

 Excessive lateral displacements are the main cause of structural damage in 

structures subjected to earthquakes.  Local displacement demands are particularly 

important for structures excited by near-fault ground motions.  This study presents a 

methodology for developing a simple tool for estimating the ground story and maximum 

interstory displacement demands of moment resisting frames. 

 

 Important properties of near-fault ground motions have been summarized in 

Section 2.2.  A total of 148 near-fault ground motion records were used in the analyses.  

The ground motion record set was sub-divided into two as “records with pulse” and 

“records without pulse”.  The relative success of various attenuation relationships, in 

estimating the peak ground acceleration and arias intensity, were evaluated using the 

near-fault ground motions from the record set.  Peak ground acceleration to peak ground 

velocity ratio versus distance plot of near-fault records was examined.  The correlation 

of pulse period with moment magnitude, distance and faulting mechanism were 

investigated.  Pulse period versus moment magnitude relationships available in the 
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literature were plotted on the data obtained from near-fault records used in this study.  

Displacement spectra of the near-fault records with and without pulse were compared.  

Also, the spectral displacements in the maximum velocity direction of records with and 

without pulse were examined.  

 

 Elastic response of moment resisting frames and inelastic response of non-

degrading SDOF systems subjected to near-fault ground motions were analyzed.  

Fundamental mode shapes and response characteristics of a set of 190 idealized moment 

resisting frames (corresponding to 10 different beam-to-column stiffness ratios and 19 

different numbers of stories ranging between 2 and 20) were analyzed.  Nonlinear 

regression analyses were performed on the results obtained from the modal analysis of 

idealized moment resisting frames.  Two equations (Equations 3.12 and 3.16) for 

estimating the elastic ground story and maximum interstory drifts of moment resisting 

frames were established.  The equations were established as modifying coefficients for 

the approximate ground story drift estimation equation proposed by Gülkan and Akkar 

(2002).  A total of 28120 elastic MDOF response history analyses (corresponding to 190 

idealized moment resisting frames and 148 ground motions) were performed.  Using the 

results obtained from these response history analyses, important response characteristics 

of moment frames to near-fault ground motions were examined.  Higher mode effects on 

the elastic ground story and maximum interstory drifts of moment resisting frames 

subjected to near-fault ground motions were investigated.  Error statistics of the 

proposed approximate ground story and maximum interstory drift estimation equations 

(Equations 3.5, 3.12 and 3.16) were computed.  Errors associated with elastic ground 

story and maximum interstory drift estimates were evaluated comparatively with the 

errors of similar studies (Miranda 1999, Miranda and Reyes 2002). 

 

 Fundamental response characteristics of inelastic non-degrading SDOF systems 

to near-fault ground motions were investigated.  Elasto-plastic load deformation model 

was used for modeling the inelastic behavior of SDOF systems.  A total of 96288 

inelastic SDOF response history analyses were performed for better insight into the 
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statistics of the range of variation.  Inelastic displacement ratios of SDOF systems 

having natural periods covering a range from 0.1 s to 3 s with the increments of 0.05 s 

and strength reduction factors varying between 1.5 and 8 were analyzed.  Effects of the 

strength reduction factor and the natural period on the inelastic displacement ratio were 

examined.  Inelastic displacement ratios for the SDOF systems subjected to strong 

ground motions with and without pulse were compared.  Two equations, listed as 

Equation 3.23a and 3.23b for estimating the inelastic displacement ratios for SDOF 

systems subjected to near-fault ground motions with and without pulse were established.  

These equations have the capability of providing estimates of the inelastic displacement 

ratios for systems with specific strength reduction factors and natural periods.  In order 

to examine the effect of natural period to pulse period ratio on the inelastic displacement 

ratio, a series of non-degrading SDOF systems having pulse period normalized natural 

periods ranging from 0.1 to 3 was analyzed. A third equation (Equation 3.26) was 

established for estimating the inelastic displacement ratios for systems with specific 

strength reduction factors and natural period to pulse period ratios. Errors associated 

with the approximate equations were compared with a similar equation employed in 

FEMA356 (2000). 

 

 

5.2 Conclusions 

 

 The following conclusions were drawn based on the results obtained in this 

study:  

 

• Equations, proposed by Somerville et al. (1999), Rodrigez-Marek (2000) and 

Alavi and Krawinkler (2001), for estimating the pulse period should be further 

studied.  Correlation of pulse period with various parameters, such as faulting 

mechanism and orientation of station with respect to rupture surface, should be 

refined. 
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• Pulse period of a near-fault ground motion is strongly correlated with the 

predominant period in the pseudo-velocity spectrum of the ground motion.  

 

• When the orientation of the rupture plane is unknown and the fault normal 

component of the ground motion record can not be established a priori, a 

relatively severe component may be practically found in the maximum velocity 

direction.  This result confirms the claim of Akkar and Gülkan (2002) about the 

peak ground velocity direction components of near-fault ground motions.  

 

• Ground story drifts and the maximum interstory drifts are noticeably higher for 

elastic structures having fundamental periods close to pulse period of the near-

fault ground motion compared to structures with different fundamental periods 

than the pulse period.  

 

• For the case of regular moment resisting frames (like the idealized frames used in 

this study) with fundamental periods between 0.2 and 1.2 seconds, errors of 

elastic ground story and maximum interstory drift estimation range between +20 

to -10 percent.  For frames with fundamental periods equal to 2 seconds 

underestimation reaches to -20 percent. 

 

• Inelastic displacement ratios computed for the same strength reduction factor 

were found to be noticeably higher for the SDOF systems subjected to strong 

ground motions with pulse compared to those excited by ground motions without 

pulse (Figure 3.16). 

 

• Inelastic displacements of non-degrading SDOF systems with natural periods 

longer than the pulse period, on the average, were found to be less than the 

maximum displacement of the elastic SDOF system with the same period and 

damping (Figure 3.18). 
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• Dispersion of the inelastic displacement ratios for specific strength reduction 

factors and natural period to pulse period ratios were found to be significantly 

less compared to the dispersion of the inelastic displacement ratios for the same 

strength reduction factors and natural periods. (Figures 3.17 and 3.19) 

 

• The approximate equation (Equation 3.26), proposed for estimating the inelastic 

displacement ratios of non-degrading SDOF systems with specific strength 

reduction factors and natural period to pulse ratios were found to provide 

acceptably accurate estimates, particularly for systems with Tn/Tν > 0.2 (Figure 

4.9). 

 

• The use of C1 coefficient in given FEMA356(2000) for estimating the inelastic 

displacement ratios of inelastic SDOF systems subjected to near-fault ground 

motions, may result in significantly unsafe estimates (Figures 4.10). 

 

• Characteristic ground period, used for representing the smallest period at which 

equal displacement rule is applicable, results in inaccurate estimates of inelastic 

displacement ratios for the case of near-fault ground motions.  On the other hand, 

considering the pulse period in the estimation of inelastic displacement ratios 

may significantly improve the accuracy of estimates for the case of near-fault 

ground motions. 

 

 

5.3 Possible Future Extensions 

 

This study can be extended in the future as stated below: 

  

• Semi-empirical models for predicting the effects of forward directivity on the 

amplitude and frequency content of near-fault ground motions may be 

developed.  Relationships for predicting the pulse period may be developed.  
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Such models may be utilized in the probabilistic seismic hazard analysis of 

structures close to active faults.   

 

• Effects of different structural configurations on the modal properties of 

frames type of structures should be studied.  A series of correction factors 

may be established for taking into account the effects of various structural 

configurations on ground story drifts and maximum interstory drifts.  

 

• Modal properties associated with the higher modes of idealized moment 

resisting frames should be analyzed.  An approximate equation for estimating 

the effects of higher modes on the local displacement demands of moment 

resisting frames may be established. 

 

• Inelastic displacement computations may be repeated using different 

hysteretic models.  A new correction factor, similar to C1 in 

FEMA356(2000), may be introduced for considering the effects of various 

hysteretic properties on the inelastic displacement ratios of structures 

subjected to near-fault ground motions. 

 

• Inelastic time history analyses of the idealized moment resisting frames 

excited by near-fault ground motions should be performed.  The proposed 

approximate method for estimating the ground story drifts and maximum 

interstory drifts may be further developed for considering the inelasticity 

effects. 

 

• This study is mainly based on the estimation of local displacement demands 

imposed on moment resisting frame structures by near-fault ground motions.  

In order to facilitate the use of this methodology in the design of new 

structures, design guidelines should be prepared for proportioning and 
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detailing structural components consistent with the estimated local 

displacement demands.   
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APPENDIX A 
 

 

LIST OF THE NEAR-FAULT RECORDS 
 

 

 

A.1 List of Basic Properties of the Near-Fault Ground Motions 

 

 Basic properties of the 148 near-fault ground motions used in this study are listed 

in Tables A.1 and A.2. 



N
o

R
ecord 

N
am

e
Earthquake

M
w

M
ech.

Station
C

om
p.

rrup    
(km

)
rjb 

(km
)

T
ννν ν
 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 
 

 
 

 

(s)
T

p-v    (s)
PG

A (g)
PG

V 
(cm

/s)
1

C
H

Y028N
C

hi-C
hi 1999 

7.6
R

C
H

Y028
N

7.31
7.31

0.81
0.85

0.82
67

2
C

H
Y035W

C
hi-C

hi 1999 
7.6

R
C

H
Y035

W
18.12

18.12
1.29

1.40
0.25

45.6
3

chy080n
C

hi-C
hi 1999 

7.6
R

C
H

Y080
N

6.95
6.79

1.38
0.95

0.90
102

4
chy080w

C
hi-C

hi 1999 
7.6

R
C

H
Y080

W
6.95

6.79
0.92

0.85
0.97

108
5

C
H

Y101N
C

hi-C
hi 1999 

7.6
R

C
H

Y101
N

11.14
11.14

4.69
4.80

0.44
115

6
C

H
Y101W

C
hi-C

hi 1999 
7.6

R
C

H
Y101

W
11.14

11.14
3.38

3.20
0.35

70.6
7

nsye
C

hi-C
hi 1999 

7.6
R

N
SY

E
9.7

9.7
8.14

8.00
0.14

47.5
8

nsyn
C

hi-C
hi 1999 

7.6
R

N
SY

N
9.7

9.7
3.73

4.60
0.13

41.8
9

TC
U

036W
C

hi-C
hi 1999 

7.6
R

TC
U

036
W

16.69
16.69

5.79
4.20

0.14
59.6

10
tcu053n

C
hi-C

hi 1999 
7.6

R
TC

U
053

N
6.69

6.69
6.59

6.00
0.14

41.1
11

TC
U

057N
C

hi-C
hi 1999 

7.6
R

TC
U

057
N

12.57
12.57

6.59
7.50

0.09
42.6

12
TC

U
059W

C
hi-C

hi 1999 
7.6

R
TC

U
059

W
17.84

17.84
5.99

6.50
0.17

59.4
13

tcu060w
C

hi-C
hi 1999 

7.6
R

TC
U

060
W

9.46
9.46

8.37
11.00

0.20
36.3

14
TC

U
063N

C
hi-C

hi 1999 
7.6

R
TC

U
063

N
10.39

10.39
5.22

3.40
0.13

73.1
15

TC
U

064N
C

hi-C
hi 1999 

7.6
R

TC
U

064
N

15.07
15.07

7.16
7.00

0.12
54

16
TC

U
068N

C
hi-C

hi 1999 
7.6

R
TC

U
068

N
1.09

0.5
10.88

9.00
0.46

263
17

TC
U

087N
C

hi-C
hi 1999 

7.6
R

TC
U

087
N

3.18
3.18

4.40
4.00

0.12
37.1

18
TC

U
087W

C
hi-C

hi 1999 
7.6

R
TC

U
087

W
3.18

3.18
9.48

8.00
0.13

40.8
19

TC
U

101W
C

hi-C
hi 1999 

7.6
R

TC
U

101
W

2.94
2.94

7.56
8.50

0.20
67.9

20
TC

U
102N

C
hi-C

hi 1999 
7.6

R
TC

U
102

N
1.79

1.79
2.80

2.40
0.17

77.1
21

TC
U

103W
C

hi-C
hi 1999 

7.6
R

TC
U

103
W

4.01
4.01

7.93
7.00

0.13
61.9

22
TC

U
104N

C
hi-C

hi 1999 
7.6

R
TC

U
104

N
13.64

13.64
6.44

5.50
0.09

47.2
23

TC
U

128N
C

hi-C
hi 1999 

7.6
R

TC
U

128
N

9.7
9.7

3.97
4.80

0.17
68.8

24
TC

U
128W

C
hi-C

hi 1999 
7.6

R
TC

U
128

W
9.7

9.7
7.84

7.50
0.14

73
25

W
G

KE
C

hi-C
hi 1999 

7.6
R

W
G

K
E

11.14
11.14

3.25
3.20

0.33
69

26
W

G
KN

C
hi-C

hi 1999 
7.6

R
W

G
K

N
11.14

11.14
4.47

4.80
0.48

74.4
27

PET090
C

ape M
endocino 1992 

7.1
R

Petrolia
090

9.5
-

0.70
0.70

0.66
89.8

28
R

IO
270

C
ape M

endocino 1992 
7.1

R
R

io D
el O

VP FF
270

18.5
12.3

1.18
1.30

0.39
44

29
KJM

000
Kobe 1995

6.9
SS

KJM
000

0.6
-

0.90
0.90

0.82
81.3

30
KJM

090
Kobe 1995

6.9
SS

KJM
090

0.6
-

1.38
0.80

0.60
74.3

Table A
.1 R

ecords w
ith Pulse

107



31
C

LS090
Lom

a Prieta 1989 
6.9

R
O

C
orralitos 

090
5.1

-
0.70

0.80
0.48

45.2
32

G
02090

Lom
a Prieta 1989 

6.9
R

O
G

ilroy #2
090

12.7
12.1

1.41
1.50

0.32
39.1

33
G

03090
Lom

a Prieta 1989 
6.9

R
O

G
ilroy #3

090
14.4

14.9
2.06

2.00
0.37

44.7
34

STG
090

Lom
a Prieta 1989 

6.9
R

O
Saratoga Aloha

090
13

11.7
3.10

3.80
0.32

42.6
35

LO
S270

N
orthridge 1994 

6.7
R

W
. Lost C

anyon
270

13
12.2

0.70
0.70

0.48
45.1

36
SC

S052
N

orthridge 1994 
6.7

R
Slym

ar C
onverter

052
6.2

0.2
2.51

2.60
0.61

117
37

SPV270
N

orthridge 1994 
6.7

R
Sepulveda VA

270
8.9

0.4
0.77

0.80
0.75

84.8
38

SYL360
N

orthridge 1994 
6.7

R
Slym

ar H
ospital

360
6.4

3.6
1.91

1.60
0.84

130
39

W
PI046

N
orthridge 1994 

6.7
R

N
ew

hall-W
. Pico C

.
046

7.1
7.1

3.20
2.00

0.45
92.8

40
W

PI316
N

orthridge 1994 
6.7

R
N

ew
hall-W

. Pico C
.

316
7.1

7.1
1.89

1.80
0.33

67.4
41

PTS225
Superstition H

ills  1987 
6.6

SS
PTS

225
0.7

-
2.17

1.90
0.45

112
42

BR
A225

Im
perial Valley 1979 

6.5
SS

Braw
ley Airport

225
8.5

8.5
3.39

3.00
0.16

35.9
43

E04230
Im

perial Valley 1979 
6.5

SS
El C

entro #4
230

4.2
6.8

4.27
4.00

0.36
76.6

44
E05230

Im
perial Valley 1979 

6.5
SS

El C
entro #5

230
1

4
3.87

3.40
0.38

90.5
45

E06140
Im

perial Valley 1979 
6.5

SS
El C

entro #6
140

1
1.3

2.86
2.40

0.41
64.9

46
E06230

Im
perial Valley 1979 

6.5
SS

El C
entro #6

230
1

1.3
3.87

3.40
0.44

110
47

E07230
Im

perial Valley 1979 
6.5

SS
El C

entro #7
230

0.6
0.6

3.77
3.20

0.46
109

48
E08230

Im
perial Valley 1979 

6.5
SS

El C
entro #8

230
3.8

3.8
4.01

4.00
0.45

49.1
49

E10050
Im

perial Valley 1979 
6.5

SS
El C

entro #10
050

8.6
8.5

3.94
3.80

0.17
47.5

50
E10320

Im
perial Valley 1979 

6.5
SS

El C
entro #10

320
8.6

8.5
1.97

1.50
0.22

41
51

EC
C

092
Im

perial Valley 1979 
6.5

SS
EC

 C
enter FF

092
7.6

7.6
3.27

3.20
0.23

68.8
52

ED
A270

Im
perial Valley 1979 

6.5
SS

El C
entro D

A
270

5.3
5.1

4.50
2.60

0.35
71.2

53
EM

O
270

Im
perial Valley 1979 

6.5
SS

EC
 O

verp FF
270

0.5
0.5

3.12
3.00

0.30
90.5

54
H

VP225
Im

perial Valley 1979 
6.5

SS
H

oltville PO
225

7.5
7.5

2.43
4.00

0.25
48.8

55
H

VP315
Im

perial Valley 1979 
6.5

SS
H

oltville PO
315

7.5
7.5

3.69
3.40

0.22
49.8

56
N

PS210
N

. Palm
 Springs 1986 

6
R

O
N

. Palm
 Spr. PO

210
8.2

-
1.38

1.10
0.59

73.3

 SS - Strike Slip / R
- R

everse / R
O

 - R
everse O

blique
rrup  : C

losest distance to rupture surface (km
) (Figure 2.8)

rjb  : C
losest distance to surface projection of rupture surface (km

) (Figure 2.8)
T

ν  : Pulse period (s)
T

p-v  :Predom
inant period in the pseudo-velocity spectrum

 (s)

108

M
echanism

:



N
o

R
ecord 

N
am

e
Earthquake

M
w

M
ech.

Station
C

om
p

rrup     
(km

)
rjb 

(km
)

T
p-v    (s)

PG
A (g)

PG
V 

(cm
/s)

1
C

H
Y006E

C
hi-C

hi 1999 
7.6

R
C

H
Y006

E
14.93

14.93
1.90

0.36
55.4

2
C

H
Y006N

 
C

hi-C
hi 1999 

7.6
R

C
H

Y006
N

14.93
14.93

1.00
0.35

42.8
3

C
H

Y028W
C

hi-C
hi 1999 

7.6
R

C
H

Y028
W

7.31
7.31

0.65
0.65

72.8
4

C
H

Y035N
C

hi-C
hi 1999 

7.6
R

C
H

Y035
N

18.12
18.12

0.85
0.25

37.6
5

C
H

Y036N
C

hi-C
hi 1999 

7.6
R

C
H

Y036
N

20.38
20.38

6.50
0.21

41.4
6

C
H

Y036W
C

hi-C
hi 1999 

7.6
R

C
H

Y036
W

20.38
20.38

3.40
0.29

38.9
7

TC
U

E
C

hi-C
hi 1999 

7.6
R

TC
U

E
5.73

5.73
4.80

0.18
40.5

8
TC

U
N

C
hi-C

hi 1999 
7.6

R
TC

U
N

5.73
5.73

3.60
0.19

34.4
9

TC
U

036N
C

hi-C
hi 1999 

7.6
R

TC
U

036
N

16.69
16.69

5.50
0.13

50.2
10

TC
U

039N
C

hi-C
hi 1999 

7.6
R

TC
U

039
N

16.7
16.7

5.50
0.14

54
11

TC
U

039W
C

hi-C
hi 1999 

7.6
R

TC
U

039
W

16.7
16.7

7.50
0.21

50
12

TC
U

048N
C

hi-C
hi 1999 

7.6
R

TC
U

048
N

14.38
14.38

4.80
0.18

48.3
13

TC
U

048W
C

hi-C
hi 1999 

7.6
R

TC
U

048
W

14.38
14.38

3.80
0.12

32.6
14

TC
U

049N
C

hi-C
hi 1999 

7.6
R

TC
U

049
N

4.48
4.48

6.00
0.25

61.2
15

TC
U

049W
C

hi-C
hi 1999 

7.6
R

TC
U

049
W

4.48
4.48

9.00
0.29

47.9
16

TC
U

050N
C

hi-C
hi 1999 

7.6
R

TC
U

050
N

10.33
10.33

5.50
0.13

42.3
17

TC
U

050W
C

hi-C
hi 1999 

7.6
R

TC
U

050
W

10.33
10.33

11.00
0.15

36.9
18

TC
U

051N
C

hi-C
hi 1999 

7.6
R

TC
U

051
N

8.27
8.27

7.00
0.23

38.4
19

TC
U

051W
C

hi-C
hi 1999 

7.6
R

TC
U

051
W

8.27
8.27

7.50
0.19

49.3
20

TC
U

052N
C

hi-C
hi 1999 

7.6
R

TC
U

052
N

0.24
0.06

8.50
0.42

118
21

TC
U

052W
C

hi-C
hi 1999 

7.6
R

TC
U

052
W

0.24
0.06

5.00
0.35

159
22

TC
U

053W
C

hi-C
hi 1999 

7.6
R

TC
U

053
W

6.69
6.69

9.50
0.22

41.3
23

TC
U

054N
C

hi-C
hi 1999 

7.6
R

TC
U

054
N

5.92
5.92

9.50
0.19

38.5
24

TC
U

054W
C

hi-C
hi 1999 

7.6
R

TC
U

054
W

5.92
5.92

6.50
0.15

59.4
25

TC
U

055N
C

hi-C
hi 1999 

7.6
R

TC
U

055
N

6.88
6.88

4.00
0.20

51.5
26

TC
U

055W
C

hi-C
hi 1999 

7.6
R

TC
U

055
W

6.88
6.88

2.20
0.24

26.2
27

TC
U

057W
C

hi-C
hi 1999 

7.6
R

TC
U

057
W

12.57
12.57

4.80
0.12

35.2
28

TC
U

059N
C

hi-C
hi 1999 

7.6
R

TC
U

059
N

17.84
17.84

5.50
0.17

56.2
29

TC
U

060N
C

hi-C
hi 1999 

7.6
R

TC
U

060
N

9.46
9.46

5.50
0.11

45.3
30

TC
U

061N
C

hi-C
hi 1999 

7.6
R

TC
U

061
N

17.75
17.75

3.60
0.14

43.6
31

TC
U

061W
C

hi-C
hi 1999 

7.6
R

TC
U

061
W

17.75
17.75

5.50
0.14

40.3

Table A
.2 R

ecords w
ithout Pulse

109



32
TC

U
063W

C
hi-C

hi 1999 
7.6

R
TC

U
063

W
10.39

10.39
5.50

0.17
59

33
TC

U
064W

C
hi-C

hi 1999 
7.6

R
TC

U
064

W
15.07

15.07
7.00

0.11
39.2

34
TC

U
068W

C
hi-C

hi 1999 
7.6

R
TC

U
068

W
1.09

0.5
9.50

0.57
177

35
TC

U
070N

C
hi-C

hi 1999 
7.6

R
TC

U
070

N
19.1

19.1
5.00

0.17
62.3

36
TC

U
070W

C
hi-C

hi 1999 
7.6

R
TC

U
070

W
19.1

19.1
5.00

0.25
52.1

37
TC

U
082N

C
hi-C

hi 1999 
7.6

R
TC

U
082

N
5.73

5.73
3.60

0.19
40.5

38
TC

U
082W

C
hi-C

hi 1999 
7.6

R
TC

U
082

W
5.73

5.73
6.50

0.22
58.4

39
TC

U
084N

C
hi-C

hi 1999 
7.6

R
TC

U
084

N
10.39

0.01
0.95

0.42
45.6

40
TC

U
084W

C
hi-C

hi 1999 
7.6

R
TC

U
084

W
10.39

0.01
0.90

1.15
115

41
TC

U
100N

C
hi-C

hi 1999 
7.6

R
TC

U
100

N
12.74

12.74
5.50

0.12
46.5

42
TC

U
100W

C
hi-C

hi 1999 
7.6

R
TC

U
100

W
12.74

12.74
4.80

0.12
34.6

43
TC

U
101N

C
hi-C

hi 1999 
7.6

R
TC

U
101

N
2.94

2.94
5.50

0.25
49.4

44
TC

U
102W

C
hi-C

hi 1999 
7.6

R
TC

U
102

W
1.79

1.79
2.60

0.30
112

45
TC

U
103N

C
hi-C

hi 1999 
7.6

R
TC

U
103

N
4.01

4.01
6.50

0.16
26.8

46
TC

U
104W

C
hi-C

hi 1999 
7.6

R
TC

U
104

W
13.64

13.64
5.50

0.11
36.6

47
TC

U
106N

C
hi-C

hi 1999 
7.6

R
TC

U
106

N
15.22

15.22
5.00

0.13
43.7

48
TC

U
106W

C
hi-C

hi 1999 
7.6

R
TC

U
106

W
15.22

15.22
6.50

0.16
46.6

49
TC

U
107N

C
hi-C

hi 1999 
7.6

R
TC

U
107

N
20.35

20.35
2.40

0.16
47.4

50
TC

U
107W

C
hi-C

hi 1999 
7.6

R
TC

U
107

W
20.35

20.35
5.00

0.12
36.8

51
TC

U
109N

C
hi-C

hi 1999 
7.6

R
TC

U
109

N
13.09

13.09
3.40

0.15
53.1

52
TC

U
109W

C
hi-C

hi 1999 
7.6

R
TC

U
109

W
13.09

13.09
2.60

0.16
50.8

53
TC

U
136E

C
hi-C

hi 1999 
7.6

R
TC

U
136

E
8.97

8.97
9.00

0.17
55.8

54
TC

U
136N

C
hi-C

hi 1999 
7.6

R
TC

U
136

N
8.97

8.97
7.00

0.18
47.5

55
W

N
TE

C
hi-C

hi 1999 
7.6

R
W

N
T

E
2.21

1.94
0.50

0.96
68.8

56
W

N
TN

C
hi-C

hi 1999 
7.6

R
W

N
T

N
2.21

1.94
0.95

0.63
42

57
TAB-LN

Tabas 1978 
7.4

R
Tabas

LN
-

-
0.85

0.84
97.8

58
TAB-TR

Tabas 1978 
7.4

R
Tabas

TR
-

-
4.80

0.85
121

59
PET000

C
ape M

endocino 1992 
7.1

R
Petrolia

000
9.5

-
0.75

0.59
48.4

60
R

IO
360

C
ape M

endocino 1992 
7.1

R
R

io D
el O

VP FF
360

18.5
12.3

0.44
0.55

42.1
61

C
LS000

Lom
a Prieta 1989 

6.9
R

O
C

orralitos 
000

5.1
-

0.75
0.64

55.2
62

G
02000

Lom
a Prieta 1989 

6.9
R

O
G

ilroy #2
000

12.7
12.1

0.40
0.37

32.9
63

G
03000

Lom
a Prieta 1989 

6.9
R

O
G

ilroy #3
000

14.4
14.9

0.48
0.55

35.7
64

G
04000

Lom
a Prieta 1989 

6.9
R

O
G

ilroy #4
000

16.1
15.8

0.46
0.42

38.8
65

G
04090

Lom
a Prieta 1989 

6.9
R

O
G

ilroy #4
090

16.1
15.8

0.55
0.21

37.9

110



66
STG

000
Lom

a Prieta 1989 
6.9

R
O

Saratoga Aloha
000

13
11.7

1.80
0.51

41.2
67

W
VC

000
Lom

a Prieta 1989 
6.9

R
O

Saratoga Valley
000

13.7
12

1.10
0.25

42.4
68

W
VC

270
Lom

a Prieta 1989 
6.9

R
O

Saratoga Valley
270

13.7
12

1.20
0.33

61.5
69

LO
S000

N
orthridge 1994 

6.7
R

Lost C
anyon

000
13

12.2
0.60

0.41
43

70
N

W
H

090
N

orthridge 1994 
6.7

R
N

ew
hall

090
7.1

4.5
1.30

0.58
75.5

71
N

W
H

360
N

orthridge 1994 
6.7

R
N

ew
hall

360
7.1

4.5
0.70

0.59
97.3

72
PKC

090
N

orthridge 1994 
6.7

R
Pacom

ia Kagel C
.

090
8.2

8.1
0.90

0.30
31.4

73
PKC

360
N

orthridge 1994 
6.7

R
Pacom

ia Kagel C
.

360
8.2

8.1
0.70

0.43
51.5

74
SPV360

N
orthridge 1994 

6.7
R

Sepulveda VA
360

8.9
0.4

0.85
0.94

76.6
75

SC
S142

N
orthridge 1994 

6.7
R

Slym
ar C

onverter
142

6.2
0.2

1.60
0.90

102
76

SYL090
N

orthridge 1994 
6.7

R
Slym

ar H
ospital

090
6.4

3.6
0.85

0.60
78.2

77
TAR

090
N

orthridge 1994 
6.7

R
Tarzana-C

edar H
ill

090
17.5

4.1
0.34

1.78
114

78
TAR

360
N

orthridge 1994 
6.7

R
Tarzana-C

edar H
ill

360
17.5

4.1
0.75

0.99
77.6

79
PC

D
164

San Fernando 1971 
6.6

R
Pacoim

a D
am

164
2.8

2.8
1.20

1.22
113

80
PC

D
254

San Fernando 1971 
6.6

R
Pacoim

a D
am

254
2.8

2.8
0.50

1.16
54.3

81
PTS315

Superstition H
ills  1987 

6.6
SS

PTS
315

0.7
-

1.20
0.38

43.9
82

BC
R

140
Im

perial Valley 1979 
6.5

SS
Bonds C

orner 
140

2.5
2.6

0.85
0.59

45.2
83

BC
R

230
Im

perial Valley 1979 
6.5

SS
Bonds C

orner 
230

2.5
2.6

0.60
0.77

45.9
84

BR
A315

Im
perial Valley 1979 

6.5
SS

Braw
ley Airport 

315
8.5

8.5
1.60

0.22
38.9

85
EC

C
002

Im
perial Valley 1979 

6.5
SS

EC
 C

enter FF
002

7.6
7.6

1.30
0.21

37.5
86

EM
O

000
Im

perial Valley 1979 
6.5

SS
EC

 O
verp FF

000
0.5

0.5
2.60

0.31
71.8

87
E04140

Im
perial Valley 1979 

6.5
SS

El C
entro #4

140
4.2

6.8
0.90

0.49
37.4

88
E05140

Im
perial Valley 1979 

6.5
SS

El C
entro #5

140
1

4
2.60

0.52
46.9

89
E07140

Im
perial Valley 1979 

6.5
SS

El C
entro #7

140
0.6

0.6
1.10

0.34
47.6

90
E08140

Im
perial Valley 1979 

6.5
SS

El C
entro #8

140
3.8

3.8
1.40

0.60
54.3

91
ED

A360
Im

perial Valley 1979 
6.5

SS
El C

entro D
A

360
5.3

5.1
1.40

0.48
40.8

92
N

PS300
N

. Palm
 Springs 1986 

6
R

O
N

. Palm
 Spr. PO

300
8.2

-
0.30

0.69
33.8

 SS - Strike Slip / R
- R

everse / R
O

 - R
everse O

blique
rrup  : C

losest distance to rupture surface (km
) (Figure 2.8)

rjb  : C
losest distance to surface projection of rupture surface (km

) (Figure 2.8)
T

p-v  :Predom
inant period in the pseudo-velocity spectrum

 (s)

M
echanism

:

111



 

 

112 

 

 

 

 

APPENDIX B 
 

 

ATTENUATION FUNCTIONS 
 

 

 

B.1 Attenuation Function Proposed by Boore et al. (1997) 

 

 Coefficients of Equation 2.2 are given by Boore et al. (1997) for the estimation 

of peak ground acceleration as follows: 

b1= -0.313 – for stike slip earthquakes 

 -0.117 – for reverse slip earthquakes 

 -0.242 – if mechanism is not specified 

b2= 0.527 

b3= 0 

b5= -0.778 

bV= -0.371 

h= 5.57 

VA= 1396 (m/s) 

σlnY= 0.52 
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B.2 Attenuation Function Proposed by Sadigh et al. (1997) 

 

 The attenuation function for estimating the peak ground acceleration proposed by 

Sadigh et al. (1997) is: 

 

( ) ( )5
2.5

1 2 3 4 6 7ln( ) ln 8.5C M
rupY C C M C r C e C C M= + − + + + −  (B.1)

 

where Y is the peak ground or spectral acceleration in g, M is the moment magnitude of 

earthquake, rrup is the closest distance to rupture surface.  

C1= -2.17 – for stike slip earthquakes 

 -1.92 – for reverse and thrust earthquakes 

C2= 1.0 

C3= 1.7 

C4=2.1863, C5=0.32 for  M ≤ 6.5 

C4=0.3825, C5=0.5882 for M > 6.5 

C6= 0 

C7= 0 

σlnY= min〈 1.52-0.16M , 4〉 

 

 

B.2 Attenuation Function Proposed by Travasarou et al. (1997) 

 

 The attenuation function for estimating the arias intensity proposed by 

Travasarou et al. is: 

( ) ( ) ( ) ( ) ( )( )
( )( )

2 2
1 2 3 4 11 12

21 22 1 2

ln 6 ln 6 ln 6

6

a rup C

D N R

I c c M c M c r h s s M S

s s M S f F f F

= + − − + + + + −

+ + − + +
 

(B.2)

where Ia is the Arias Intensity in m/s, M is the moment magnitude, R is the closest 

distance to the rupture surface in km, h is a fictitious hypocentral depth in km 

determined by the regression, SC and SD are indicator variables for the soil types (both 0 
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for site category B (BRM Site Classification), 1 and 0 for site category C, and 0 and 1 

for site category D), and FN and FR are indicator variables for the fault types (both 0 for 

strike slip faults, 1 and 0 fornormal faults and 0 and 1 for reverse or reverse-oblique 

faults).  The values of regression coefficients are given below: 

 

c1 = 2.8, c2 = -1.981, c3 = 20.72, c4 = -1.703,  h = 8.78,  

s11 = 0.454, s12 = 0.101, s21 = 0.479, s22 = 0.334,  

f1 = -0.166, f2 = 0.512 

 

 The standard error of this estimate is computed as follows: 

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( )

2 2

1

1

2

, , ,

0.013 /
, 0.106 ln ln 0.0132 0.013 0.125 /

0.125 /

0.611 0.047 4.7 4.7 7.6

tot a a

a

a a a

a

M I site I site M

for I m s
I site I for I m s

for I m s

M M for M

σ σ τ

σ
σ σ

σ
τ

= +

 ≤
= − − < ≤
 ≥

= − − ≤ ≤

 

(B.3) 

 

where M is the moment magnitude, Ia is the estimated Arias Intensity,  

σ1 = 1.18,  σ2 = 0.94 for B Class Sites,  

σ1 = 1.17,  σ2 = 0.93 for C Class Sites,  

σ1 = 0.96,  σ2 = 0.73 for D Class Sites. 
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